

===~::. .:: GA21-9331-6 - - ---- --- ---- - - ---- _ .. - File No. S38-01 - _.-

IBM System/38

IBM System/3S
Functional Reference Manual-Volume 1

Seventh Edition (September 1985)

This major revision makes obsolete GA21-9331-5. See About This Manual for a
summary of major ch,mges in this edition.

The information in this publication applies to the IBM System/38 Instruction Set.
The information herein is subject to change. These changes will be reported in
technical newsletters or in new editions of this publication.

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM licensed program in this publication is not intended to
state or imply that only IBM's licensed program may be used. Any functionally
equivalent program may be used instead.

Publications are not stocked at the address below. Requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving
your locality.

This publication could contain technical inaccuracies or typographical errors. A
form for readers' comments is provided at the back of this publication. If the form
has been removed, comments may be addressed to IBM Corporation, Information
Development, Department 245, Rochester, Minnesota, U.S.A. 55901. IBM may
use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

©Copyright International Business Machines Corporation 1980, 1981, 1982, 1983.
1984. 1985

ABOUT THIS MANUAL . .
Purpose of This Manual . .
Organization of This Manual
How to Use This Manual
Summary of Changes . . .
What You Should Know . .
If You Need More Information

ABBREVIATIONS AND ACRONVMS

CHAPTER 1. INTRODUCTION
Instruction Format

Operation Code Field
Operation Code Extender Field
Instruction Operands

Instruction Format Conventions Used in This Manual.
Definition of the Operand Syntax

CHAPTER 2. COMPUTATION AND BRANCHING
INSTRUCTIONS

Add Logical Character (ADDLC)
Add Numeric (ADDN)
And (AND) .. .
Branch (B)
Cipher (CIPHER). . .
Cipher Key (CIPHERKY)
Compare Bytes Left-Adjusted (CMPBLAB or
CMPBLAI)

Compare Bytes Left-Adjusted with Pad
(CMPBLAPB or CMPBLAPI) .

Compare Bytes Right-Adjusted
(CMPBRAB or CMPBRAI) . .

Compare Bytes Right-Adjusted with Pad
(CMPBRAPB or CMPBRAPI)

Compare Numeric Value (CMPNVB or CMPNVI) .
Compute Array Index (CAl)
Compute Math Function Using One Input Value
(CMF1)

Compute Math Function Using Two Input Values
(CMF2)

Concatenate (CAT)
Convert BSC to Character (CVTBC)
Convert Character to BSC (CVTCB)
Convert Character to Hex (CVTCH)
Convert Character to MRJE (CVTCM)
Convert Character to Numeric (CVTCN)
Convert Character to SNA (CVTCS) . .
Convert Decimal Form to Floating-Point (CVTDFFP)
Convert External Form to Numeric Value (CVTEFN)
Convert Floating-Point to Decimal Form (CVTFPDF)
Convert Hex to Character (CVTHC)
Convert MRJE to Character (CVTMC)
Convert Numeric to Character (CVTNC)
Convert SNA to Character (CVTSC) . .
Copy Bits with Left Logical Shift (CPYBTLLS)
COpy Bits with Right Logical Shift (CPYBTRLS)
Copy Bytes Left-Adjusted (CPVBLA)
Copy Bytes Left-Adjusted with Pad (CPVBLAP)

vii
vii
vii
vii
vii
viii
viii

ix

1·1
1-1
1-1
1-3
1-6

1-16
1-17

2·1
2-1
2-2
2-4
2-6
2-7

2-10

2-15

2-17

2-19

2-21
2-23
2-25

2-26

2-33
2-37
2-38
2-40
2-42
2-43
2-47
2-49
2-56
2-58
2-60
2-62
2-63
2-67
2-68
2-77
2-78
2-80
2-81

Contents

Copy Bytes Overlap Left-Adjusted (CPVBOLA)
Copy Bytes Overlap Left-Adjusted with
Pad (CPVBOLAP)

Copy Bytes Repeatedly (CPYBREP)
Copy Bytes Right-Adjusted (CPYBRA) .
Copy Bytes Right-Adjusted with Pad (CPVBRAP)
Copy Hex Digit Numeric to Numeric (CPYHEXNN)
Copy Hex Digit Numeric to Zone (CPYHEXNZ)
Copy Hex Digit Zone to Numeric (CPYHEXZN)
Copy Hex Digit Zone to Zone (CPYHEXZZ)
Copy Numeric Value (CPYNV). .
Divide (DIV)
Divide with Remainder (DIVREM)
Edit (EDIT)
Exchange Bytes (EXCHBV) . . .
Exclusive OR (XOR)
Extended Character Scan (ECSCAN)
Extract Exponent (EXTREXP) .
Extract Magnitude (EXTRMAG)
Multiply (MULT) ...
Negate (NEG)
No Operation (NOOP)
No Operation and Skip (NOOPS)
Not (NOT) ...
Or (OR)
Remainder (REM)
Scale (SCALE)
Scan (SCAN) . .
Scan with Control (SCANWC) .
Search (SEARCH)
Set Instruction Pointer (SETIP)
Store and Set Computational Attributes (SSCA)
Subtract Logical Character (SUBLC) . .
Subtract Numeric (SUBN)
Test and Replace Characters (TSTRPLC) . . .
Test Bits under Mask (TSTBUMB or TSTBUMI)
Translate (XLATE)
Translate with Table (XLATEWT)
Trim Length (TRIML) .
Verify (VERIFY)

CHAPTER 3. POINTER/NAME RESOLUTION
ADDRESSING INSTRUCTIONS.

Compare Pointer for Object Addressability
(CMPPTRAB or CMPPTRAI)

Compare Pointer Type (CMPPTRTB or CMPPTRTI)
Copy Bytes with Pointers (CPYBWP) .
Create Context (CRTCTX)
Destroy Context (DESCTX) . . .
Materialize Context (MATCTX)
Modify Addressability (MODADR)
Rename Object (RENAME) . . .
Resolve Data Pointer (RSLVDP) .
Resolve System Pointer (RSLVSP)

CHAPTER 4. SPACE OBJECT ADDRESSING
INSTRUCTIONS

Add Space Pointer (ADDSPP)

2-82

2-83
2-84
2-85
2-86
2-87
2-88
2-89
2-90
2-91
2-92
2-95
2-97

2-105
2-106
2-108
2-111
2-113
2-115
2-117
2-119
2-119
2-120
2-122
2-123
2-126
2-128
2-130
2-137
2-139
2-140
2-143
2-144
2-146
2-147
2-149
2-150
2-152
2-153

3·1

3-1
3-3
3-4
3-6
3-9

3-10
3-13
3-15
3-16
3-18

4·1
4-1

Contents iii

Compare Pointer for Space Addressability (CMPPSPADB
or CMPPSPADI) 4-2

Compare Space Addressability
(CMPSPADB or CMPSPADI) .

Set Data Pointer (SETDP)
Set Data Pointer Addressability (SETDPADR)
Set Data Pointer Attributes (SETDPAT) .
Set Space Pointer (SETSPP)
Set Space Pointer with Displacement (SETSPPD)
Set Space Pointer from Pointer (SETSPPFP)
Set Space Pointer Offset (SETSPPO) .
Set System Pointer from Pointer (SETSPFP)
Store Space Pointer Offset (STSPPO)
Subtract Space Pointer Offset (SUBSPP)

CHAPTER 5. SPACE MANAGEMENT INSTRUCTIONS
Create Space (CRTS)
Destroy Space (DESS) .
Materialize Space Attributes (MATS)
Modify Space Attributes (MODS)

CHAPTER 6. INDEPENDENT INDEX INSTRUCTIONS
Create Independent Index (CRTINX)
Destroy Independent Index (DESINX)
Find Independent Index Entry (FNDINXEN)
Insert Independent Index Entry (lNSINXEN) .
Materialize Independent Index Attributes (MATINXAT)
Modify Independent Index (MODINX)
Remove Independent Index Entry (RMVINXEN)

CHAPTER 7. AUTHORIZATION MANAGEMENT
INSTRUCTIONS

Create User Profile (CRTUP)
Destroy User Profile (DESUP) .
Grant Authority (GRANT) .
Grant- Like Authority (GRNTLlKE)
Materialize Authority (MATAU)
Materialize Authorized Objects (MAT AUOBJ)
Materialize Authorized Users (MATAUU)
Materialize User Profile (MATUP)
Modify User Profile (MODUP) .
Retract Authority (RETRACT)
Test Authority (TESTAU)
Transfer Ownership (XFRO) .

CHAPTER 8. PROGRAM MANAGEMENT
INSTRUCTIONS

Create Program (CRTPG) .
Delete Program Observability (DELPGOBS)
Destroy Program (DESPG)
Materialize Program (MATPG) .

CHAPTER 9. PROGRAM EXECUTION
INSTRUCTIONS . .

Activate Program (ACTPG)
Call External (CALLX)
Call Internal (CALLI)
Clear Invocation Exit (CLRIEXIT) .
De-Activate Program (DEACTPG)
End (END)
Modify Automatic Storage Allocation (MODASA)
Return External (RTX)
Set Argument List Length (SET ALLEN)
Set Invocation Exit (SETIEXIT)

iv

4-4
4-6
4-7
4-8
4-9

4-10
4-11
4-13
4-14
4-15
4-16

5-1
5-1
5-4
5-6
5-8

6-1
6-1
6-5
6-6
6-8

6-10
6-13
6-14

7-1
7-1
7-4
7-6
7-8

7-11
7-13
7-17
7-19
7-22
7-24
7-26
7-29

8-1
8-1
8-8
8-9

8-10

9-1
9-1
9-5
9-9

9-10
9-10
9-12
9-13
9-14
9-16
9-17

Store Parameter List Length (STPLLEN)
Transfer Control (XCTL)

CHAPTER 10. EXCEPTION MANAGEMENT
INSTRUCTIONS

Materialize Exception Description (MATEXCPD)
Modify Exception Description (MODEXCPD)
Retrieve Exception Data (RETEXCPD)
Return from Exception (RTNEXCP) .
Sense Exception Description (SNSEXCPD)
Signal Exception (SIGEXCP)
Test Exception (TESTEXCP) .

CHAPTER 11. PROCESS MANAGEMENT
INSTRUCTIONS

Create Process Control Space (CRTPCS)
Destroy Process Control Space (DESPCS)
Initiate Process (iNITPR)
Materialize Process Attributes (MATPRATR)
Modify Process Attributes (MODPRATR)
Resume Process (RESPR)
Suspend Process (SUSPR)
Terminate Instruction (TERMINST) .
Terminate Process (TERMPR)
Wait on Time (WAITTIME)

CHAPTER 12. QUEUE MANAGEMENT
INSTRUCTIONS

Create Queue (CRTQ)
Dequeue (OEQ. DEQB. or DEQI)
Destroy Queue (DESQ) .
Enqueue (ENQ)
Materialize Queue Attributes (MATOAT)
Materialize Queue Messages (MATQMSG)

CHAPTER 13. RESOURCE MANAGEMENT
INSTRUCTIONS

Create Access Group (CRTAG)
Create Duplicate Object (CRTDOBJ)
Destroy Access Group (DESAG) .
Ensure Object (ENSOBJ)
Materialize Access Group Attributes (MATAGAT)
Materialize Resource Management Data (MATRMD)
Modify Resource Management Controls (MODRMC)
Reset Access Group (RESAG) .
Set Access State (SET ACST)
Suspend Object (SUSOBJ)

CHAPTER 14. OBJECT LOCK MANAGEMENT
INSTRUCTIONS

Lock Object (LOCK)
Lock Space Location (LOCKSL)
Materialize Allocated Object Locks (MATAOL) .
Materialize Data Space Record Locks (MATDRECL)
Materialize Object Locks (MATOBJLK)
Materialize Process Locks (MATPRLK)
Materialize Process Record Locks (MATPRECL)
Materialize Selected Locks (MATSELLK)
Transfer Object Lock (XFRLOCK)
Unlock Object (UNLOCK) .
Unlock Space Location (UNLOCKSL) .

CHAPTER 15. EVENT MANAGEMENT
INSTRUCTIONS

Cancel Event Monitor (CANEVTMN)

9-18
9-19

10-1
10-1
10-4
10-7
10-9

10-11
10-14
10-18

11-1
11-1
11-4
11-5

11-14
11-22
11-27
11-29
11-31
11-33
11-37

12-1
12-1
12-5
12-8
12-9

12-11
12-14

13-1
13-1
13-4
13-7
13-8
13-9

13-11
13-18
13-21
13-22
13-25

14-1
14-1
14-4
14-6
14-8

14-10
14-12
14-14
14-16
14-18
14-20
14-22

15-1
15-1

.. ~

Disable Event Monitor (DBLEVTMN) ..
Enable Event Monitor (EBLEVTMN) . .
Materialize Event Monitor (MATEVTMN)
Modify Process Event Mask (MODPEVTM)
Monitor Event (MNEVT) ...
Retrieve Event Data (RETEVTD)
Signal Event (SIGEVT)
Test Event (TESTEVT, TESTEVTB or TESTEVTI) .
Wait on Event (WAITEVT)

CHAPTER 16. DATA BASE MANAGEMENT
INSTRUCTIONS

Activate Cursor (ACTCR)
Copy Data Space Entries (CPYDSE)
Create Cursor (CRTCR).
Create Data Space (CRTDS)
Create Data Space Index (CRTDSINX)
Data Base Maintenance (DBMAINT) .
De-Activate Cursor (DEACTCR) . . .
Delete Data Space Entry (DELDSEN) .
Destroy Cursor (DESCR)
Destroy Data Space (DESDS)
Destroy Data Space Index (DESDSINX)
Ensure Data Space Entries (ENSDSEN) .
Estimate Size of Data Space Index Key Range
(ESTIDKR)

Insert Data Space Entry (lNSDSEN)
Insert Sequential Data Space Entries (lNSSDSE) .
Materialize Cursor Attributes (MATCRAT)
Materialize Data Space Attributes (MATDSAT)
Materialize Data Space Index Attributes (MATDSIAT)
Modify Data Space Attributes (MODDSAT) ...
Modify Data Space Index Attributes (MODDSIA)
Release Data Space Entries (RLSDSEN)
Retrieve Data Space Entry (RETDSEN)
Retrieve Sequential Data Space Entries (RETSDSE)
Set Cursor (SETCR)
Update Data Space Entry (UPDSEN)

CHAPTER 17. SOURCE/SINK MANAGEMENT
INSTRUCTIONS

Create Controller Description (CRTCD) . .
Create Logical Unit Description (CRTLUD)
Create Network Description (CRTND)
Destroy Controller Description (DESCD)
Destroy Logical Unit Description (DESLUD)
Destroy Network Description (DESND) . .
Materialize Controller Description (MATCD)
Materialize Logical Unit Description (MATLUD)
Materialize Network Description (MATND)
Modify Controller Description (MODCD) .
Modify Logical Unit Description (MODLUD)
Modify Network Description (MODND)
Request I/O (REOIO)
Request Path Operation (REOPO)

Contents of the Path Operation Template
Format and Contents of the Feedback Record
Byte 0 Error Attributes
Byte 1 Error Type
Request Path Operation Time-out Considerations .

CHAPTER 18. MACHINE OBSERVATION
INSTRUCTIONS

Cancel Invocation Trace (CANINVTR)
Cancel Trace Instructions (CANTRINS)

15-2
15-4
15-5
15-7
15-8

15-12
15-14
15-16
15-19

16·1
16-1
16-6

16-11
16-30
16-36
16-50
16-54
16-55
16-57
16-58
16-60
16-61

16-62
16-66
16-69
16-72
16-75
16.-77
16-81
16-84
16-87
16-89
16-90
16-97

16-109

17·1
17-1
17-9

17-16
17-26
17-27
17-29
17-30
17-35
17-38
17-43
17-52
17-62
17-70
17-78
17-80
17-81
17-82
17-82
17-82

18·1
18-1
18-2

Materialize Instruction Attributes (MATINAT)
Materialize Invocation (MATINV)
Materialize Invocation Entry (MATINVE)

Long Materialization
Short Materialization Type 1
Short Materialization Type 2
Short Materialization Type 3
Short Materialization Type 4

Materialize Invocation Stack (MATINVS)
Materialize Pointer (MATPTR)
Materialize Pointer Locations (MATPTRL)
Materialize System Object (MATSOBJ)
Modify System Object (MODSOBJ)
Trace Instructions (TRINS)
Trace Invocations (TRINV)

CHAPTER 19. MACHINE INTERFACE SUPPORT
FUNCTIONS INSTRUCTIONS

Diagnose (DIAG)
Materialize Machine Attributes (MATMATR)
Modify Machine Attributes (MODMATR) . .
Reclaim Lost Objects (RECLAIM)
Terminate Machine Processing (TERMMPR) .

CHAPTER 20. JOURNAL MANAGEMENT
INSTRUCTIONS

Apply Journaled Changes (APY JCHG)
Create Journal Port (CRT JP)
Create Journal Space (CRT JS)
Destroy Journal Port (DESJP) .
Destroy Journal Space (DESJS)
Journal Data (JRNLD)
Journal Object (JRNLOBJ) . .
Materialize Journal Port Attributes (MATJPAT)
Materialize Journal Space Attributes (MATJSAT)
Materialize Journaled Object Attributes
(MATJOAT)

Materialize Journaled Objects (MAT JOBJ)
Modify Journal Port (MODJP). . .
Retrieve Journal Entries (RET JENT) . . .

CHAPTER 21. COMMITMENT CONTROL
INSTRUCTIONS

Commit (COMMIT)
Create Commit Block (CRTCB)
Decommit (DECOMMIT) . . .
Destroy Commit Block (DESCB)
Materialize Commit Block Attributes (MATCBATR)

. Modify Commit Block (MODCB).

CHAPTER 22. DUMP SPACE MANAGEMENT
INSTRUCTION

Create Dump Space (CRTDMPS)
Destroy Dump Space (DESDMPS) . .
Insert Dump Data (INS OM PO}
Materialize Dump Space (MATDMPS)
Modify Dump Space (MODDMPS) .
Retrieve Dump Data (RETDMPD) . .

CHAPTER 23. EXCEPTION SPECIFICATIONS . . .
Machine Interface Exception Data
Exception List. . .

02 Access Group
04 Access State
06 Addressing .

18-3
18-7

18-10
18-10
18-11
18-11
18-11
18-11
18-13
18-16
18-19
18-21
18-23
18-25
18-26

19-1
19-1
19-2

19-12
19-17
19-19

20-1
20-1
20-7

20-11
20-14
20-15
20-17
20-19
20-21
20-23

20-27
20-29
20-31
20-34

21·1
21-1
21-3
21-5
21-6
21-8

21-11

22·1
22-1
22-4
22-5
22-8

22-10
22-12

23·1
23-1
23-2
23-5
23-5
23-6

Contents v

08 Argument/Parameter.
OA Authorization . .
OC Computation . .
OE Context Operation
10 Damage
12 Data Base Management
14 Event Management
16 Exception Management.
18 Independent Index ...
1 A Lock State
1 C Machine-Dependent Exception
1 E Machine Observation .
20 Machine Support
22 Object Access. . . .
24 Pointer Specification .
26 Process Management
28 Process State . . .
2A Program Creation ..
2C Program Execution. .
2E Resource Control Limit
30 Journal Management.
32 Scalar Specification
34 Source/Sink Management
36 Space Management .
38 Template Specification
3A Wait Time-Out . .
3C Service
3E Commitment Control .
40 Dump Space Management

CHAPTER 23. EVENT SPECIFICATIONS
Event Definition Elements

Event Identification . . .
Compare Value Qualifier .
Event-Related Data

Event Definitions
0002 Authorization . . .
0004 Controller Description
0007 Data Space . . .
0008 Data Space Index . .
OOOA Lock
OOOB Logical Unit Description
OOOC Machine Resource.
oooD Machine Status . .
OOOE Network Description
oooF Ownership
0010 Process
0011 Program
0012 Queue .
0014 Timer
0016 Machine Observation
0017 Damage Set
0019 Service
001 A Journal Port
001 B Commitment Control .
001 C Journal Space
001 D User Qualified Timer.

CHAPTER 24. PROGRAM OBJECT SPECIFICATION
General ODT Description

OOV
OES

ODT Entries in Detail
Data Object
Entry Point

vi

23-8
23-9

23-10
23-19
23-20
23-21
23-41
23-42
23-42
23-43
23-44
23-49
23-49
23-50
23-54
23-55
23-55
23-56
23-61
23-63
23-63
23-68
23-68
23-74
23-75
23-76
23-77
23-77
23-81

24-1
24-1
24-1
24-1
24-1
24-3
24-3
24-3
24-4
24-4
24-5
24-5
24-8
24-9

24-11
24"'12
24-11
24-13
24-13
24-13
24-14
24-16
24-17
24-17
24-18
24-19
24-19

25-1
25-1
25-1
25-2
25-3
25-3

25-14

Branch Point
Instruction Definition List
Operand List
Constant Data Object . .
Exception Descriptions
References to OES Offsets Greater than 64 K - 1
Space Pointer Machine Object

APPENDIX A. INSTRUCTION SUMMARY.
Number of Operands
Extender Usage
Resulting Conditions
Optional Forms. . .

Instruction Stream Syntax
Program Object Definitions
System Object Declarations
Resulting Conditions Definitions

Instruction Summary (Alphabetical Listing bV
Mnemonic)

INDEX . .

25-16
25-16
25-18
25-20
25-23
25-26
25-26

A·1
A-l
A-l
A-l
A-2
A-2
A-3
A-3
A-4

A-5

. X·1

L
PURPOSE OF THIS MANUAL

This publication describes the System/38 machine
interface instruction set. It describes the functions that
can be performed by each instruction and also the
necessary information to code each instruction. It
provides reference information for the systems engineer
and the program support customer engineer.

ORGANIZATION OF THIS MANUAL

The information in this publication is arranged as
follows:

• Chapter 1 describes the basic information for coding
instructions.

• Chapters 2 through 22 contain detailed descriptions
of all the instructions.

• Chapter 23 contains explanations for the possible
exceptions that error conditions may signal.

• Chapter 24 contains detailed descriptions of the
events that the user can monitor.

• Chapter 25 contains the attributes; specifications; and
ODT (object definition table), ODV (ODT directory
vector), and OES (ODT entry string) formats for each
program object of the machine interface.

• Appendix A provides a summary of all the
instructions and an abbreviated format for each
instruction.

HOW TO USE THIS MANUAL

Refer to Chapters 2 through 22 to find the information
needed to code the various instructions.

Refer to Chapters 23 through 25 to find detailed
specifications for the exceptions, events, and program
objects.

About This Manual

Refer to Appendix A for a summary of all instructions,
which contains the abbreviated description of the
instruction and the page number where the detailed
description of the instruction can be found.

SUMMARY OF CHANGES

The following new instructions have been added to this
manual:

• Cipher (CIPHER)

• Cipher Key (CIPHERKY)

• Create Dump Space (CRTDMPS)

• Destroy Dump Space (DESDMPS)

• Estimate Size of Data Space Index Key Range
(ESTDSIKR)

• Insert Dump Data (INSDMPD)

• Materialize Dump Space (MATDMPS)

• Modify Dump Space (MODDMPS)

• Retrieve Dump Data (RETDMPD)

• Scan with Control (SCANWC)

• Terminate Instruction (TERMINST)

Chapter 22 contains descriptions of the new dump
space management instructions.

Also, miscellaneous changes have been made
throughout this manual.

About This Manual vii

WHAT YOU SHOULD KNOW

You should read the IBM System/38 Functional
Concepts Manual, GA21-9330, in its entirety. This
manual provides information for the machine interface
and its functions.

viii

IF YOU NEED MORE INFORMATION

IBM System/38 Functional Reference Manual-Volume 2,
GA21-9800

IBM Systems Network Architecture Format and Protocol
Reference Manual: Architecture Logic, SC30-3112

IBM Synchronous Data Link Control General Information
Manual, GA27-3093

Abbreviations and Acronyms

l
ABI address bus in EBCDIC extended binary-coded decimal interchange
ABO address bus out code
ACK alternating positive acknowledgment ENQ enquiry
ACR abandon call and retry EOF end of file
ACTLU activate logical unit EOR end of record
ACTPU activate physical unit EOT end of tape
ACU autocall unit EOV end of volume
AIMPL alternate initial microprogram load EPA encapsulated program architecture
AIPL alternate initial process load ERP error recovery procedure
ALU arithmetic and logic unit ETB end of text block
ANSI American National Standards ETX end of text

Institute
APPC advanced program to program FBR feedback record

communications FIFO first in, first out
ASCII American National Standard Code for FOB function operation block

Information Interchange FM frequency modulation
FMD function manager data

B byte
Bin binary HOLC high-level data link control
BOT beginning of tape HDR header
bpi bits per inch

I' bps bits per second I/O input/ output

'\...., BSC binary synchronous communications IAR instruction address register
BSCT binary synchronous communications tributary IC insert cursor
BSTAT basic status 10 identification

IDL instruction definition list
CA channel address 10C input/output controller
CCITT The International Telegraph and 10M input/output manager

Telephone Consultative Committee IMPL initial microprogram load
CD controller description IMPLA initial microprogram load abbreviated
Char character IPL initial program load
CPU central processing unit ITB intermediate text block
CRC cyclic redundancy check
CRT cathode-ray tube K 1024 bytes
CSA control storage address
CTS clear to send L/D load/dump

LEAR lock exclusive allow read
DAF destination address field LENR lock exclusive no read
DBI data bus in LIFO last in, first out
DCE data communications equipment LRC longitudinal redundancy check
DEA data encryption algorithm LSRD lock shared read
DLE data link escape LSRO lock shared read only
DS . data space LSUP lock shared update
DSI data space index LU logical unit
DSR data set ready LUD logical unit description
DSTAT device status
DTE data terminal equipment

I' DTR data terminal ready

~

Abbreviations and Acronyms ix

MB megabyte S-PTR system pointer
MCR machine configuration record SBA set buffer address

~ MOT modified data tag SCB string control byte
MFM modified frequency modulation SCS standard character stream
MISR machine initialization status record SOLC synchronous data link control
MPL multiprogramming level SNA systems network architecture
MRJE MULTI-LEAVING remote job entry SOH start of header
MSCP machine services control point SRCB sub record control byte
MTAM MULTI-LEAVING telecommunication access SSCP system service control point

method 550 source/sink data
SSR source/sink request

NaN not-a-number STX start of text
NO network description
NRL name resolution list TH transmission header
NRZI non-return-to-zero (inverted) TIO temporary text delay

OOT object definition table UCSB universal character set buffer
OOV OOT directory vector
OEM original equipment manufacture VAT virtual address table
OES OOT entry string VLOG VMC log
OMT object mapping table VOL volume
ORE operation request element VTOC volume table of contents
OU operational unit
OU# operational unit number WACK wait before transmitting

WSC work station controller
PAG process access group
PASA process automatic storage area XIO exchange identification
PCO process communication object ..)-PCS process control space
POEH process default exception handler
PE phase encoding
PIN personal identification number
PP presentation position
PSSA process static storage area
PU physical unit

RCB record control block
RO request descriptor
RFT request for text
RH request/ response header
RI ring indicator
RIU request information unit
RNR receive not ready
ROS ready-only storage
RPS rotation position sensor
RTS request to send
RU request/response unit
RVI reverse interrupt

x

This chapter contains the following:

• Detailed descriptions of the System/38 machine
interface instruction fields and the formats of these
fields

• A description of the format used in describing each
instruction

• A list of the terms in the syntax that define the
characteristics of the operands

You should read this chapter in its entirety before
attempting to write instructions.

INSTRUCTION FORMAT

This section describes the formats for the three fields in
an instruction. The three fields are:

• Operation code

• Operation code extender

• Operand

See the Functional Concepts Manual for an explanation of
how particular instruction fields are used, the
relationships between the fields, and other basic
concepts concerning instructions.

Chapter 1. Introduction

Operation Code Field

The operation code field of an instruction is a 2-byte
field that supplies information about the instruction
format, the instruction status, and the basic operation to
be performed by the instruction.

The format of the operation code field is as follows:

Bits
o 1 2 3 4 5 15
'v-'

I
Operation flag field (bits 0-4):

• Reserved ---------

• Branch target ------------1
• Format specifications ________J

Computational format
- Noncomputational format

• Extender field present _________ ..J

Operation specification field (bits 5-15) _______ ..J

The format of the operation specification field is as
follows for the computational format (bit 3 equals 1):

Bits

5 6 7 8 15

Optional instruction forms (bits 5-7): I
• Extender SpeCification---.J

Branch form
Indicator form

• Round form ________ ---l

• Short form -----------1

Basic functions (bits 8-151-----------..J

For the noncomputational format (bit 3 equals 0), bits
5-15 define the basic function.

Introduction 1-1

Operation Flag Field (Bits 0-4)

The operation flag field (bits 0-4) specifies the
following:

Bits

0-1

2

1-2

Meaning

These bits are reserved. They must be 00.

Branch target

o = This instruction is not a branch target.

= This instruction is a branch target
operand in some branch instructions
elsewhere in the instruction stream.
This branch target includes branch
points defined in the ODT (object
definition table), branch targets defined
in an IDL (instruction definition list),
branch targets assigned to an
instruction pointer, immediate
instruction numbers used as branch
operands, and instructions referenced
as entry points.

Note: The bit encoding of the operation
code for each instruction assumes a 0 for
this bit.

3 .

4

Format specification

o = Noncomputational-The instruction does
not have the format of the
computational instructions and does
not allow any optional forms. The
definition of the operation and the
format of the instruction are completely
defined by the operation code
specification field (bits 5-15).

Computational-The instruction has the
computational instruction format. The
basic operation is defined in the basic
function field (bits 8-15) of the
operation code. However, the
instruction may allow one or more of
the optional instruction forms (indicated
by bits 5-7) that define additional
information about the operation to be
performed, the number of operands, or
the format of the instruction.

Extender field present

o = The instruction does not have an
operation code extender field.

The instruction has an operation code
extender field.

Operation Code Specification Field (Bits 5-15)

The operation code specification field contains
information describing the operation to be performed by
the instruction and possibly information about the
instruction. Its contents depend upon whether this
instruction has a computational or a noncomputational
format.

• Computational format:

Bits Meaning

5

6

Extender specification-The extender field
present flag must be on (bit 4 equals 1)
before this field has meaning. If bit 4 equals
0, then bit 5 must equal O.

o = Indicator form-The format of this
instruction is an indicator form of the
computational format. An indicator
form instruction uses an operation
extender field and a character scalar
indicator(s) to specify the conditional
indicator option(s) and the indicators to
be set, respectively.

Branch form-The format of this
instruction is a branch form of the
computational instruction form. A
branch form instruction uses a standard
format operation extender field and
branch target operand field(s) to
specify the conditional branch option(s)
and location(s), respectively.

Round form

o This instruction is not a round form.

The fractional portion of the result of
the operation defined for this
instruction is to be rounded before
being truncated and placed in the field
specified by the receiver operand field.
A floating-point receiver is not allowed
for instructions specified with the round
form.

7 Short form

o = This instruction is not a short form.
The format of this instruction is in its
normal form with all its required
operand fields present.

The format is in the optional short form
in which the receiver operand field acts
as the first source operand field and is
not duplicated as an operand.

8-15 Basic function-These bits indicate the
operation to be performed by this instruction
(for example, add numeric).

• Noncomputational format:

Bits Meaning

5-15 Basic function-These bits indicate the
operation to be performed by this instruction
(for example, create program or set space
pointer).

Operation Code Extender Field

The operation code extender field of an instruction is a
2-byte field that further defines the operation to be
performed by the instruction and/or the format of the
instruction. The extender field is indicated by a 1 in bit
4 of the operation code.

The format and contents of this field are determined by
the specific instruction in which it appears. The two
types of operation codes extender fields, branch options
and indicator options, are described on the following
pages.

Introduction 1-3

Branch Options The following codes are valid for branch conditions:

The branch options operation code extender field Bit Hex Meaning J contains information needed by instructions that involve
conditional branching (comparison instructions and 0000 0 No branch target, no further fields
optional branch forms of computational instructions). are checked

This field indicates how many branch target operand
0001 High, positive, mixed, zero and fields are in the instruction and which of the resulting

status conditions relate to each of these target carry, truncated record, normalized

operands.
0010 2 Low, negative, ones, not-zero and

The following are allowed as branch targets:
no carry, exception ignored,
completed record, receiver overrun,
denormalized, null compare operand

· Branch point
0011 3 Reserved

· Absolute instruction number (unsigned immediate
operand value) 0100 4 Equal, zero, zeros, zero and no carry,

signaled, exception deferred,

· Relative instruction number (signed immediate dequeued, authorized, source

operand value) exhausted, infinity

Instruction pointer (simple operand that is not an
0101 5 Reserved ·

element of an array) 0110 6 Reserved

Up to three mutually exclusive status conditions can be 0111 7 Unequal, not-zero and carry, escape
specified for a given instruction. The status conditions code encountered, unordered, NaN
can be one of the following:

1000 8 Reserved

· Ignored J 1001 9 Not high, not positive, not mixed,

· Associated with a branch target operand field such not-zero and carry, not truncated

that:
record, not normalized

The branch occurs if the condition occurs. 1010 A Not low, not negative, not ones, not
- The branch occurs if the condition does not occur. not-zero and no carry, not

completed record, not receiver
Only one of these three actions can be specified for overrun, not denormalized, not null
each condition. Only those conditions meaningful for a compare operand
particular instruction can have the last two actions
specified for them. Conditions that have either of the 1011 B Reserved

last two actions specified for them are associated with
1100 their branch target operands in left-to-right order. C Not equal, not-zero, not zeros, not

dequeued, not-zero and no carry,

Branch option operation code extender fields consist of
not signaled, not authorized, not

four 4-bit fields. Each of the fields defines one branch
source exhausted, not infinity

condition. The fields must be specified in left-to-right 1101 0 Reserved
order and correspond to the order of the branch target
operands. A field of hex 0 indicates that no branch 1110 E Reserved
target is associated with this condition and that no more
conditions are defined in any field to the right. 1111 F Not unequal, not not-zero and carry,

not escape code encountered, not
unordered, not NaN, not found

1-4

The branch options specified for an instruction must be
mutually exclusive. The user must not specify a branch
to more than one branch target on the same condition;
that is, two 4-bit fields cannot specify the same
condition.

A not condition refers to any condition other than the
one specified. That is, not equal is satisfied with a high,
low, or unordered condition. Therefore, the same
condition cannot be specified as negative and positive in
the same extender (for example, not equal and high
cannot be specified together).

If unordered, negation of unordered, equal, negation of
equal. zero, or negation of zero conditions are not
specified on the instruction and an unordered resultant
condition occurs, the floating-point invalid operand
exceptio,n is signaled. If the exception is masked at the
time of detection, the instruction resumes execution and
performs the specified branch or indicator processing.
For the optional branch forms of computational
instructions, this exception occurs because the implicit
comparison operation is performed after the assignment
of the result of the operation to the receiver operand.
Since the receiver is implicitly being used as a source
operand for the comparison operation, the receiver is
not set with a NaN value as it would be for a masked
occurrence of the floating-point invalid operand
exception.

The same branch target can be used for multiple
conditions. For example, if branch conditions high and
equal are specified separately, each of the
corresponding branch targets can reference the same
instruction. An instruction supporting the high, low, and
equal resultant conditions could be accomplished by just
a not low condition.

Examples

Hex 4000 means:

• One branch target is present in the instruction.

• Branch to the first, branch target operand if an equal
condition occurs.

• Otherwise, execute the next sequential instruction.

Hex 1900 means:

• Two branch targets are present in the instruction.

• Branch to the first branch target operand if a high
condition occurs.

• Branch to the second branch target operand if a high
condition does not occur.

Hex 1210 is not allowed because branch condition 1
(high) is specified twice.

Hex 1 AOO is not allowed because condition 1 (high) is
also specified as part of condition A (not low).

Indicator Options

The indicator options operation code extender field
contains information needed by instructions that allow
conditional indicator setting (comparison instructions and
optional indicator forms of computational format
instructions). The field indicates how many indicator
operand fields are in the instruction and which of the
resulting status conditions relate to each of these
indicator operands.

The preceding discussion of the usage, conditions,
ordering, and encoding of branch options also applies to
indicator options.

If a condition that is being monitored by the indicator
option occurs, the leftmost byte of the associated
indicator target is assigned a value of hex F1; otherwise,
the leftmost byte of the indicator target is assigned a
value of hex FO.

Introduction 1-5

Example

Hex 4000 means:

• One indicator target is present in the instruction.

• Assign a value of hex F1 to the indicator target if the
equal condition occurs.

• Assign a value of hex Fa to the indicator target if the
equal condition does not occur.

In this example, the indicator form of the operand must
be a character or a numeric scalar data object. Only the
first byte of the operand is used. This operand must be
a simple operand and cannot be a compound subscript
operand, a compound substring operand, or a compound
based operand.

Instruction Operands

Each instruction requires from zero to four operands.
Each operand may consist of one or more fields that
contain either a null operand specification, an immediate
data value, or a reference to an ODT object. The size of
the operand field depends on the version of the program
template. If the version number is a, the size of the
operand field is 2 bytes. If the version number is 1, the
size of the operand field is 3 bytes.

Null Operands

Certain instructions allow certain operands to be null. In
general, a null operand means that some optional
function of the instruction is not to be performed or that
a default action is to be performed by the instruction.

1-6

Immediate Operands

The value of this type of operand is encoded in the
instruction operand. Immediate operands may have the
following values:

• Signed binary-representing a binary value of negative
4096 to positive 4095.

• Unsigned binary-representing a binary value of a to
8191.

• Byte string-representing a single byte value from hex
00 to hex FF.

• Absolute instruction number-representing an
instruction number in the range of 1 to 8191.

• Relative instruction number-representing a
displacement of an instruction relative to the
instruction in which the operand occurs. This operand
value may identify an instruction displacement of
negative 4096 to positive 4095.

oor Object References

This type of operand contains a reference (possibly
qualified) to an object in the ODT. Operands that are
ODT object references may be simple operands or
compound operands.

Simple Operands: The value encoded in the operand
refers to a specific object defined in the ODT. Simple
operands consist of a single 2-byte operand entry.

Compound Operands: A compound operand consists of a
primary (2-byte) operand and a series of one to three
secondary (2-byte) operands. The primary operand is an
ODT reference to a base object while the secondary
operands serve as qualifiers to the base object.

A compound operand may have the following uses:

• Subscript references

An individual element of a data object array, a pointer
array, or an instruction definition list may be
referenced with a subscript compound operand. The
operand consists of a primary reference to the array
and a secondary operand to specify the index value
to an element of the array.

• Substring references

A portion of a character scalar data object may be
referenced as an instruction operand through a
substring compound operand. The operand consists
of a primary operand to reference the base string
object and secondary references to specify the value
of an index (position) and a value for the length of
the substring.

The length secondary operand field can specify
whether to allow or not allow for a null substring
reference (a length value of zero).

• Explicit base references

An instruction operand may specify an explicit
override for the base pointer for a based data object
or a based addressing object. The operand consists
of a primary operand reference to the based object
and a secondary operand reference to the pointer on
which to base the object for this operand. The
override is in effect for the single operand. The
displacement implicit in the ODT definition of the
primary operand and the addressability contained in
the explicit pointer are combined to provide an
address for the operand.

The explicit base may be combined with either the
subscript or the substring compound operands to
provide a based subscript compound operand or a
based substring compound operand.

Format of Instruction Operand

The format for an instruction operand depends on the
version of the program template.

For program template version number 0, the format for
an instruction operand (primary or secondary) field is as
follows:

Operand Field (Bits 0-15)

o 1 2 3 15
~' ,

Type Specification _______ ...11

Operand Specification ___________ ..J

Introduction 1-7

Type Specification Field: The type specification field
occupies bits 0-2 of the operand. It indicates whether
the operand is an immediate data value, a simple ODT
reference, or a compound ODT reference.

The following illustrations show the type specifications
allowed for primary operands and secondary operands.

Primary Operand

Type
Operand Function Bits Operand

-

Simple ODT Reference or 000 ODT reference or
Null Operand null

Unsigned Immediate Value 001 Unsigned
immediate value

Subscript Compound 010 Array ODT
Operand reference

Substring Compound 011 String ODT
Operand reference

Explicit Base Compound 100 Based ODT
Operand object reference

Signed Immediate Value 101 Signed
immediate value

Explicit Based Subscript 110 Based array ODT
Compound Operand reference

Explicit Based Substring 111 Based string
Compound Operand ODT reference

Type Secondary
Operand Function Bits Operand

Index 000 ODT reference

001 Unsigned
immediate value

Length (Disallow Null 000 ODT reference
Substring)

001 Unsigned
immediate value

Length (Allow Null 010 ODT reference
Substring)

011 Unsigned
immediate value

Base Pointer 000 Pointer ODT
reference

1-8

Secondary Operand

Number of
Secondary
Operands 1 2 3

0

0

1 Index

2 Index Length

1 Base pointer

0

2 Base pointer Index

3 Base pointer Index Length

Operand Specification Field: The operand specification
field occupies bits 3-15. It can be an OOT reference or
an immediate value. The OOT reference occupies bits
3-15 of the operand field. It contains a binary integer
value indicating which OOV (object definition vector)
entry in the OOT to use for this operand's definition.
This value is an index value for the one-dimensional
array OOV, not a byte displacement into the OOT. Thus,
a maximum of 8191 OOV objects are addressable in any
program. The first OOT reference is 1. If the value of
the operand specification field is 0, the operand is null.

The following primary operands are allowed:

• OOT reference (type bits equal 000)

The operand consists of a simple OOT reference. The
value of bits 3-15 of the operand defines an index
into the OOT. The range of this value may be from 1
to the size of the OOT (maximum size of 8191).

• Null (type bits equal 000)

A null operand consists of a 0 value for bits 3-15 of
the operand. The null operand is used in several
instructions to indicate that a function is not to be
performed or that a default action is to occur.

• Unsigned immediate value (type bits equal 001)

The operand is interpreted as an unsigned immediate
data value. Three uses can be made of this form:

For numeric operands, an unsigned binary value
from 0 to 8191 can be specified in bits 3-15 of
the operand.

- For character (or byte) operands, a single 8-bit
value can be specified in bits 8-15 of the operand.
For branch target operands, an unsigned binary
value of 1 to 8191 can be specified in bits 3-15;
that value is interpreted to contain an instruction
number. A value of 0 is invalid.

• Array OOT reference (type bits equal 010)

When the operand type bits are 010, the operand
specification (bits 3-15) must be an OOT reference to
an array of scalars, an array of pointers, a data
pointer that defines an array of scalars, or an
instruction definition list. The array indexing operation
is performed on this OOT object. If the referenced
OOT object is an array of data pointers that define
arrays, the indexing operation is performed on the
array of data pointers only (this combination is invalid
on instructions that require scalar operands). If the
OOT object is a data pointer that defines an array,
the indexing operation is performed on the defined
array.

A secondary operand is required to specify the array
index value.

• String OOT reference (type bits equal 011)

When the operand type bits are 011, the operand
specification (bits 3-15) must be an OOT reference to
a data object, data pointer, or a constant data object
that has the attributes of a character scalar. The
substring operation refers to a portion of this OOT
object.

Two secondary operands are required: one for the
index (position) and one for the length of the
substring.

The length secondary operand field can specify
whether to allow or not allow for a null substring
reference (a length value of zero).

• Based OOT object reference (type bits equal 100)

When the operand type bits are 100, this operand
specification (bits 3-15) must be an OOT reference to
a data object with based addressability.

A secondary operand is required to specify the
overriding base pointer.

Introduction 1-9

• Signed immediate value (type bits equal 101)

The operand is interpreted as a signed immediate
data value. Negative values are represented in twos
complement form in bits 3-15. Bit 3 is the sign bit.
Two uses can be made of this form:

For numeric operands, a signed value can be
specified in the range of negative 4096 to positive
4095.

- For branch target operands, a signed binary value
of negative 4096 to positive 4095 can be
specified, and it is interpreted as a relative
instruction number.

• Based array OOT reference (type bits equal 110)

When the operand type bits are 110, the operand
specification (bits 3-15) must be an OOT reference to
an array of scalars or an array of pointers with the
array based on a space pointer. Explicit basing and
array indexing are performed for the operand.

Two secondary operands are required: one for the
base pointer and one for the index value.

• Based string OOT reference (type bits equal 111)

When the operand type bits are 111, the operand
specification must be an OOT reference to either a
character scalar data object based on a space pointer
or a character scalar data pointer based on a space
pointer. Explicit basing and the substring function are
performed for the operand.

Three secondary operands are required: a base
pointer, an index value, and a length value.

The length secondary operand field can specify
whether to allow or not allow for a null substring
reference (a length value of zero).

1-10

The following are allowed as secondary operands.
Secondary operands that have the same type value as a
primary operand also have the same format for the
operand specification field. (Note that secondary
operands cannot be compound operands.)

• Index

A secondary operand representing an index value
may be one of the following:

An OOT reference to a binary data object (type
bits equal 000)

- An OOT reference to a binary constant data object
(type bits equal 000)

- An unsigned immediate binary value (type bits
equal 001)

An exception is signaled if the value of the index is
not greater than a or if it is greater than the size of
the primary operand (number of bytes for strings,
number of elements for arrays, or number of
elements for an instruction definition list). The user
can suppress the verification of this valid index value
for substrings of character strings and elements of
arrays by specifying the appropriate constraint
attribute when the program is created.

• Length

A secondary operand representing a length value that
disallows a null substring reference (a zero value
length) may be one of the following:

An OOT reference to a binary data object (type
bits equal 000)
An OOT reference to a binary constant data object
(type bits equal 000)
An unsigned immediate binary value (type bits
equal 001)

A secondary operand representing a length value that
allows a null substring reference (a zero value length)
may be one of the following:

An OOT reference to a binary scalar (type bits
equal 010)
An OOT reference to a binary constant scalar
object (type bits equal 010)

- An unsigned immediate binary value (type bits
equal all)

The operand specification field formats for length
secondary operands with type bits equal to 010 and
011 are the same as those for primary operands with
type bits equal to 000 and 001, respectively.

An exception is signaled if the length value is not
greater than 0 when a null substring reference is not
allowed or is not greater than or equal to 0 when a
null substring reference is allowed, or if the sum of
the index and length values describes a string that
cannot be contained in the bytes of the primary
operand. The user can suppress verification of this
valid index value for substrings of character strings by
specifying the appropriate constraint attribute on
program creation.

• Base pointer

If the primary operand is a data object, the base
pointer secondary operand must be an ODT reference
to a space pointer data object or a space pointer
machine object (type bits equal 000).

Examples

The following are examples of instruction operands:

Operand Values
(Hex)

0007

0000

2000

3FFF

AOOO

AFFF

BFFF

Meaning

A simple ODT reference to
ODT object 7

A null operand

An unsigned immediate
value of 0 (type bits equal
001)

An unsigned immediate
value of 8191 (type bits
equal 001)

A signed immediate value
of 0 (type bits equal 101)

A signed immediate value
of 4095 (type bits equal
101)

A signed immediate value
of minus 1 (type bits equal
101)

Operand Values
(Hex)

400A2006

E009000800070006

600900074006

Meaning

A subscript compound
operand reference to array
element 6 of the array
defined in ODT object 10

An explicit based substring
compound operand that
disallows a null substring
reference:

• ODT object 9 is a based
string.

• ODT object 8 is a space
pointer.

• ODT object 7 is a binary
data object that provides
the index.

• 0 DT object 6 is a binary
data object that provides
the length.

A substring compound
operand that allows a null
substring reference:

• ODT object 9 is a scalar
string.

• ODT object 7 is a binary
scalar index.

• ODT object 6 is a binary
scalar length.

The format for an instruction operand depends on the
version of the program template.

For program template version number 1, the format for
an instruction operand (primary or secondary) field is as
follows:

Operand Fields (Bits 0·23)
o 1 2 7 8 23

Reserved _______ ~ I ~I I

Type Specification ______

Operand Specification __________ -'

Introduction 1-11

Type Specification Field: The type specification field
occupies bits 2-7 of the operand. It indicates whether
the operand is an immediate data value. a simple ODT
reference. or a compound ODT reference.

The following illustrations show the type specifications
allowed for primary operands and secondary operands.

Primary Operand

Type
Operand Function Bits Operand

Simple ODT Reference or 000 ()()() ODT reference or
Null Operand null

Unsigned Immediate Value 000 001 Unsigned
immediate value

Subscript Compound 000 010 Array ODT
Operand reference

Substring Compound 000 011 String ODT
Operand reference

Explicit Base Compound 000 100 Based ODT
Operand object reference

Signed Immediate Value 000 101 Signed
immediate value

Explicit Based Subscript 000 110 Based array ODT
Compound Operand reference

Explicit Based Substring 000 111 Based string
Compound Operand ODT reference

Type Secondary
Operand Function Bits Operand

Index 000 ()()() ODT reference

000 001 Unsigned
immediate value

Length (Disallow Null 000 000 ODT reference
Substring)

000 001 Unsigned
immediate value

Length (Allow Null 000 010 ODT reference
Substring)

000 011 Unsigned
immediate value

Base Pointer 000 000 Pointer ODT
reference

1-12

J

Secondary Operand

Number of
Secondary
Operands 1 2 3

0

0

1 Index

2 Index Length

1 Base pointer

0

2 Base pointer Index

3 Base pointer Index Length

Operand Specification Field: The operand specification
field occupies bits 8-23. It can be an ODT reference or
an immediate value. The ODT reference occupies bits
8-23 of the operand field. It contains a binary integer
value indicating which ODV (object definition vector)
entry in the ODT to use for this operand's definition.
This value is an index value for the one-dimensional
array ODV, not a byte displacement into the ODT. Thus,
a maximum of 65 526 ODV objects are addressable in
any program. The first ODT reference is 1. If the value
of the operand specification field is 0, the operand is
null.

The following primary operands are allowed:

• ODT reference (type bits equal 000 000)

The operand consists of a simple ODT reference. The
value of bits 8-23 of the operand defines an index
into the ODT. The range of this value may be from 1
to the size of the ODT (maximum size of 65 526).

• Null (type bits equal 000 000)

A null operand consists of a 0 value for bits 8-23 of
the operand. The null operand is used in several
instructions to indicate that a function is not to be
performed or that a default action is to occur.

• Unsigned immediate value (type bits equal 000 001)

The operand is interpreted as an unsigned immediate
data value. Three uses can be made of this form:
- For numeric operands, an unsigned binary value

from 0 to 8191 can be specified in bits 8-23 of
the operand.

- For character (or byte) operands, a single 8-bit
value can be specified in bits 16-23 of the
operand.

- For branch target operands, an unsigned binary
value of 1 to 8191 can be specified in bits 8-23;
that value is interpreted to contain an instruction
number. A value of 0 is invalid.

• Array ODT reference (type bits equal 000010)

When the operand type bits are 000 010, the
operand specification (bits 8-23) must be an ODT
reference to an array of scalars, an array of pointers,
a data pointer that defines an array of scalars, or an
instruction definition list. The array indexing operation
is performed on this ODT object. If the referenced
ODT object is an array of data pointers that define
arrays, the indexing operation is performed on the
array of data pointers only (this combination is invalid
on instructions that require scalar operands). If the
ODT object is a data pointer that defines an array,
the indexing operation is performed on the defined
array.

A secondary operand is required to specify the array
index value.

• String ODT reference (type bits equal 000 011)

When the operand type bits are 000 011, the
operand specification (bits 8-23) must be an ODT
reference to a data object. data pointer, or a constant
data object that has the attributes of a character
scalar. The substring operation refers to a portion of
this ODT object.

Two secondary operands are required: one for the
index (position) and one for the length of the
substring.

The length secondary operand field can specify
whether to allow or not allow for a null substring
reference (a length value of zero).

• Based ODT object reference (type bits equal 000 100)

When the operand type bits are 000 100, this
operand specification (bits 8-23) must be an ODT
reference to a data object with based addressability.

A secondary operand is required to specify the
overriding base pointer.

Introduction 1-13

• Signed immediate value (type bits equal 000 101)

The operand is interpreted as a signed immediate
data value. Negative values are represented in twos
complement form in bits 8-23. Bit 8 is the sign bit.
Two uses can be made of this form:
- For numeric operands, a signed value can be

specified in the range of negative 4096 to positive
4095.
For branch target operands, a signed binary value
of negative 4096 to positive 4095 can be
specified, and it is interpreted as a relative
instruction number.

• Based array OOT reference (type bits equal 000 110)

When the operand type bits are 000 110, the
operand specification (bits 8-23) must be an OOT
reference to an array of scalars or an array of
pointers with the array based on a space pointer.
Explicit basing and array indexing are performed for
the operand.

Two secondary operands are required: one for the
base pointer and one for the index value.

• Based string OOT reference (type bits equal 000 111)

When the operand type bits are 000 111, the
operand specification must be an OOT reference to
either a character scalar data object based on a space
pointer or a character scalar data pointer based on a
space pointer. Explicit basing and the substring
function are performed for the operand.

Three secondary operands are required: a base
pointer, an index value, and a length value.

The length secondary operand field can specify
whether to allow or not allow for a null substring
reference (a length value of zero).

1-14

The following are allowed as secondary operands.
Secondary operands that have the same type value as a
primary operand also have the same format for the
operand specification field. (Note that secondary
operands cannot be compound operands.)

• Index

A secondary operand representing an index value
may be one of the following:

An OOT reference to a binary scalar (type bits
equal 000 000)
An OOT reference to a binary data pointer that
defines a binary scalar (type bits equal 000 000)
An OOT reference to a binary constant scalar
object (type bits equal 000 000)
An unsigned immediate binary value (type bits
equal 000 001)

An exception is signaled if the value of the index is
not greater than 0 or if it is greater than the size of
the primary operand (number of bytes for strings,
number of elements for arrays, or number of
elements for an instruction definition list). The user
can suppress the verification of this valid index value
for substrings of character strings and elements of
arrays by specifying the appropriate constraint
attribute when the program is created.

• Length

A secondary operand representing a length value that
disallows a null substring reference (a length value of
zero) may be one of the following:
- An OOT reference to a binary scalar (type bits

equal 000 000)
- An OOT reference to a binary data pointer that

defines a binary scalar (type bits equal 000 000)
- An OOT reference to a binary constant scalar

object (type bits equal 000 000)
An unsigned immediate binary value (type bits
equal 000 001)

A secondary operand representing a length value that
allows a null substring reference (a length value of
zero) may be one of the following:

An OOT reference to a binary scalar (type bits
equal 000 010)

- An OOT reference to a binary constant scalar
object (type bits equal 000 010)
An unsigned immediate binary value (type bits
equal 000 011)

The operand specification field formats for length
secondary operands with type bits equal to 000 01 0
and 000 011 are the same as those for primary
operands with type bits equal to 000 000 and
000 001. respectively.

An exception is signaled if the value of the length is
not greater than 0 when a null substring reference is
not allowed or is not greater than or equal to 0 when
a null substring reference is allowed. or if the index
plus the value of the length is greater than the
number of bytes in the primary operand. The user
can suppress verification of this valid index value for
substrings of character strings by specifying the
appropriate constraint attribute on program creation.

• Base pointer

If the primary operand is a data object. the base
pointer secondary operand must be an ODT reference
to a space pointer data object or a space pointer
machine object (type bits equal 000 000).

Examples

The following are examples of instruction operands:

Operand Values
(Hex)

000007

00000o

010000

011FFF

050000

050FFF

05FFFF

Meaning

A simple ODT reference to
ODT object 7

A null operand

An unsigned immediate
value of 0 (type bits equal
000 001)

An unsigned immediate
value of 8191 (type bits
equal 000 001)

A signed immediate value
of 0 (type bits equal
000 101)

A signed immediate value
of 4095 (type bits equal
000 101)

A signed immediate value
of mi~us 1 (type bits equal
000 101)

Operand Values
(Hex)

02000A010oo6

Meaning

A subscript compound
operand reference to array
element 6 of the array
defined in ODT object 10
(type bits for the primary
operand equal 000 010 and
type bits for the secondary
operand equal 000 001)

070009000008000007000006

030009000007020006

An explicit based substring
compound operand that
disallows a null substring
reference:

• ODT object 9 is a based
string.

• ODT object 8 is a space
pointer.

• ODT object 7 is a binary
data object that provides
the index.

• ODT object 6 is a binary
data object that provides
the length.

A substring compound
operand that allows a null
substring reference:

• ODT object 9 is a
character scalar string.

• ODT object 7 is a binary
scalar index.

• ODT object 6 is a binary
scalar length.

Introduction 1-15

INSTRUCTION FORMAT CONVENTIONS USED IN
THIS MANUAL

The user of this manual must be aware that not every
instruction uses every field described in this section.
Only the information pertaining to the fields that are
used by an instruction is provided for each instruction.

In this manual, each instruction is formatted with the
instruction name followed by its base mnemonic.
Following this is the operation code (op code) in
hexadecimal and the number of operands with their
general meaning.

Example:

ADD NUMERIC (ADDN)

Op Code
(Hex)

Operand
1

Operand
2

Operand
3

1043 Sum Addend 1 Addend 2

This information is followed by the operands and their
syntax. See Definition of the Operand Syntax later in this
chapter for a detailed discussion of the syntax of
instruction operands.

Example:

Operand 1: Numeric variable scalar.

Operand 2: Numeric scalar.

Operand 3: Numeric scalar.

Optional Forms: The mnemonics and bit encodings for
the optional instruction operation codes are given along
with a brief description of the options.

The optional forms are short form, round form, branch
form, and indicator form. For a more detailed
description of these forms see Operation Code Field
earlier in this chapter.

Extender: A brief description of the extender options is
given.

Description: A detailed description and a functional
definition of the instruction is given.

1-16

Authorization Required: A list of the object authorization
required for each of the operands in the instruction or
for any objects subsequently referenced by the
instruction is given.

Lock Enforcement: Describes the specification of the
lock states that are to be enforced during execution of
the instruction.

The following states of enforcement can be specified for
an instruction:

• Enforcement for materialization

Access to a system object is allowed if no other
process is holding a locked exclusive no read (LENR)
lock on the object. In general, this rule applies to
instructions that access an object for materialization
and retrieval.

• Enforcement for modification

Access to a system object is allowed if no other
process is holding a locked exclusive no read (LENR)
or locked exclusive allow read (LEAR) lock. In
general, this rule applies to instructions that modify or
alter the contents of a system object.

• Enforcement of object control

Access is prohibited if another process is holding any
lock on the system object. In general, this rule
applies to instructions that destroy or rename a
system object.

Resultant Conditions: These are the conditions that can
be set at the end of the standard operation in order to
perform a conditional branch or set a conditional
indicator.

Events

The Events sections contain a list of events and the
corresponding event numbers (in hexadecimal form) that
can be caused by the instruction.

A detailed description of the events is in Chapter 24.

Exceptions

The Exceptions sections contain a list of exceptions that
can be caused by the instruction. (The detailed
description of exceptions is in Chapter 23.) Exceptions
related to specific operands are indicated for each
exception by the Xs under the heading operand. An
entry under the word, Other, indicates that the exception
applies to the instruction but not to a particular operand.

DEFINITION OF THE OPERAND SYNTAX

Syntax consists of the allowable choices for each
instruction operand. The following are the common
terms used in the syntax and the meanings of those
terms:

• Numeric: Numeric attribute of binary, packed decimal,
zoned-decimal, or floating-point

• Character: Character attribute

• Scalar:
Scalar data object that is not an array (see Note 1)
Constant scalar object
Immediate operand (signed or unsigned)
Element of an array of scalars (see Notes 1 and 2)
Substring of a character scalar or a character
scalar constant data object (see Notes 1 and 3)

• Data Pointer Defined Scalar:
A scalar defined by a data pointer
Substring of a character scalar defined by a data
pointer (see Notes 1 and 3)

• Pointer:
Pointer data object that is not an array
(see Note 1)
Element of an array of pointers
(see Notes 1 and 2)
Space pointer machine object

• Array: An array of scalars or an array of pointers (see
Note 1)

• Variable Scalar: Same as scalar except constant
scalar objects and immediate operand values are
excluded.

• Data Pointer: A pointer data object that is to be used
as a data pointer.

If the operand is a source operand, the pointer
storage form must contain a data pointer when the
instruction is executed.
If the operand is a receiver operand, a data pointer
is constructed by the instruction in the specified
area regardless of its current contents (see Note
4).

• Space Pointer: A space pointer data object or a space
pointer machine object.

• Space Pointer Data Object: A pointer data object that
is to be used as a space pointer.

If the operand is a source operand, the pointer
storage form must contain a space pointer when
the instruction is executed.
If the operand is a receiver operand, a space
pointer is constructed by the instruction in the
specified area regardless of its current contents
(see Note 4).

• System Pointer: A pointer data object that is to be
used as a system pointer.

If the operand is a source operand, the specified
area must contain a system pointer when the
instruction is executed.
If the operand is a receiver operand, a system
pointer is constructed by the instruction in the
specified area regardless of its current contents
(see Note 4).

• Relative Instruction Number: Signed immediate
operand.

• Instruction Number: Unsigned immediate operand.

• Instruction Pointer: A pointer data object that is to be
used as an instruction pointer.

If the operand is a source operand, the specified
area must contain an instruction pointer when the
instruction is executed.
If the operand is a receiver operand, an instruction
pointer is constructed by the instruction in the
specified area regardless of its current contents
(see Notes 4 and 5).

• Instruction Definition List Element: An entry in an
instruction definition list that can be used as a branch
target. A compound subscript operand form must
always be used (see Note 5).

Introduction 1-17

Notes:
1. An instruction operand in which the primary operand

is a scalar or a pointer may also have an operand
form in which an explicit base pointer is specified.

See oor Object References earlier in this chapter for
more information on compound operands.

2. A compound subscript operand may be used to
select a specific element from an array of scalars or
from an array of pointers.

See oor Object References earlier in this chapter for
more information on compound operands.

3. A compound substring operand may be used to
define a substring of a character scalar, or a
character constant scalar object.

A compound substring operand that disallows a null
substring reference (a length value of zero) may,
unless precluded by the particular instruction, be
specified for any operand syntactically defined as
allowing a character scalar. A compound substring
operand that allows a null substring reference may be
specified for an operand syntactically defined as
allowing a character scalar only if the instruction
specifies that it is allowed. Whether a compound
substring operand does or does not allow a null
substring reference is controlled through the
specification of the length secondary operand field.

See oor Object References earlier in this chapter for
more information on compound operands.

4. A compound subscript operand form may be used to
select an element from an array of pointers to act as
the operand for an instruction.

See oor Object References earlier in this chapter for
more information on compound operands.

5. Compound subscript forms are not allowed on branch
target operands that are used for conditional
branching. Selection of elements of instruction
pointer arrays and elements of instruction definition
lists may, however, be referenced for branch
operands by the Branch instruction.

1-18

Alternate choices of operand types and the allowable
variations within each choice are indicated in the syntax
descriptions as shown in the following example.

Operand 1: Numeric variable scalar.

Operand 2: Numeric scalar.

Operand 3: Instruction number, branch point or instruction

pointer.

Operand 1 must be variable scalar. Operands 1 and 2
must be numeric. Operand 3 can be an instruction
number, branch point or instruction pointer.

When a length is specified in the syntax for the
operand, character scalar operands must be at least the
size specified. Any excess beyond that required by the
instruction is ignored.

Scalar operands that are operated on by instructions
requiring l-byte operands, such as pad values or
indicator operands, can be greater than 1 byte in length;
however, only the first byte of the character string is
used. The remaining bytes are ignored by the
instruction.

/'

....,.....

Chapter 2. Computation and Branching Instructions

This chapter describes all the instructions used for
computation and branching. These instructions are
arranged in alphabetic order. For an alphabetic summary
of all the instructions, see Appendix A. Instruction
Summary.

ADD LOGICAL CHARACTER (ADDLC)

Op Code Operand Operand Operand
(Hex) 1 2 3

1023 Sum Addend 1 Addend 2

Operand 1: Character variable scalar (fixed-length).

Operand 2: Character scalar (fixed-length).

Operand 3: Character scalar (fixed-length).

Optional Forms

Op Code
Mnemonic (Hex) Form Type

ADDLCS 1123 Short
ADDLCI 1823 Indicator
ADDLCIS 1923 Indicator, Short
ADDLCB 1C23 Branch
ADDLCBS 1023 Branch, Short

If the short instruction option is indicated in the op
code, operand 1 is used as the first and second
operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand
(second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
to four branch targets (for branch options) or one to four
indicator operands (for indicator options). The branch or
indicator operands immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and. the allowed syntax of
the branch and indicator operands.

Description: The unsigned binary value of the addend 1
operand is added to the unsigned binary value of the
addend 2 operand and the result is placed in the sum
operand.

Operands 1, 2, and 3 must be the same length;
otherwise, the Create Program instruction signals an
invalid length exception. The length can be a maximum
of 256 bytes.

The addition operation is performed according to the
rules of algebra. The result value is then placed
(left-adjusted) in the receiver operand with truncating or
padding taking place on the right. The pad value used in
this instruction is a byte value of hex 00.

If operands overlap but do not share all of the same
bytes, results of operations performed on these
operands are not predictable. If overlapped operands
share all of the same bytes, the results are predictable
when direct addressing is used. If indir~ct addressing is
used (that is, based operands, parameters, strings with
variable lengths, and arrays with variable subscripts), the
results are not always predictable.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Resultant Conditions: The logical sum of the character
scalar operands is zero with no carry out of the leftmost
bit position, not-zero with no carry, zero with carry, or
not-zero with carry.

Computation and Branching Instructions 2-1

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded

0801 Process storage limit exceeded

0016 Machine observation

0101 Instruction reference

0017 Damage set

0401 System object damage set

0801 Partial system object damage set

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing
01 Space addressing violation X X X

02 Boundary alignment X X X

03 Range X X X
06 Optimized addressability invalid X X X

08 Argument / Parameter

01 Parameter reference violation X X X
10 Damage Encountered

04 System object damage state X X X X

44 Partial system object damage X X X X

1C Machine-Dependent Exception

03 Machine storage limit exceeded X

20 Machine Support
02 Machine check X
03 Function check X

22 Object Access
01 Object not found X X X
02 Object destroyed X X X
03 Object suspended X X X

24 Pointer Specification

01 Pointer does not exist X X X
02 Pointer type invalid X X X

2A Program Creation
05 Invalid op code extender field X

06 Invalid operand type X X X
07 Invalid operand attribute X X X
08 Invalid operand value range X X X

09 Invalid branch target operand X

OA Invalid operand length X X X

OC Invalid operand ODT reference X X X

00 Reserved bits are not zero X X X X

2C Program Execution
04 Branch target invalid X

2-2

ADD NUMERIC (ADDN)

Op Code
(Hex)

1043

Operand
1

Sum

Operand
2

Addend 1

Operand
3

Addend 2

Operand 1: Numeric variable scalar.

Operand 2: Numeric scalar.

Operand 3: Numeric scalar.

Optional Forms

Op Code
Mnemonic (Hex) Form Type

ADDNS 1143 Short
ADDNR 1243 Round
ADDNSR 1343 Short. Round
ADDNI 1843 Indicator
ADONIS 1943 Indicator. Short
ADDNIR 1A43 Indicator. Round
ADDNISR 1B43 Indicator. Short. Round
ADDNB 1C43 Branch
ADDNBS 1043 Branch. Short
ADDNBR 1E43 Branch. Round
ADDNBSR 1F43 Branch. Short. Round

If the short instruction option is indicated in the op

code. operand 1 is used as the first and second

operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand

(second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op

code. the extender field must be present along with one

to four branch targets (for branch options) or one to four
indicator operands (for indicator options). The branch or

indicator operands immediately follow the last operand

listed above. See Chapter 1. Introduction for the
encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The signed numeric value of the addend 1
operand is added to the numeric value of the addend 2
operand. and the result is placed in the sum operand.

All operands must be numeric with any implicit
conversions occurring according to the rules of
arithmetic operations as outlined in the Functional
Concepts Manual.

Decimal operands used in floating-point operations
cannot contain more than 15 total digit positions.

For a decimal operation, alignment of the assumed
decimal point takes place by padding with D's on the
right end of the addend with lesser precision.

Floating-point addition uses exponent comparison and
significand addition. Alignment of the binary point is
performed, if necessary, by shifting the significand of
the value with the smaller exponent to the right. The
exponent is increased by one for each binary digit
shifted until the two exponents agree.

L

The operation uses the lengths and the precision of the
source and receiver operands to calculate accurate
results.

The addition operation is performed according to the
rules of algebra.

The result of the operation is copied into the sum
operand. If this operand is not the same type as that
used in performing the operation, the resultant value is
converted to its type. If necessary, the resultant value is
adjusted to the length of the sum, aligned at the
assumed decimal point of the sum operand, or both
before being copied. Length adjustment and decimal
point alignment are performed according to the rules of
arithmetic operations outlined in the Functional Concepts
Manual. If nonzero digits are truncated on the left end
of the resultant value, a size exception is signaled.

For the optional round form of the instruction,
specification of a floating-point receiver operand is
invalid.

For fixed-point operations, if nonzero digits are
truncated off the left end of the resultant value, a size
exception is signaled.

For floating-point operations involving a fixed-point
receiver field, if nonzero digits would be truncated off
the left end of the resultant value, an invalid
floating-point conversion exception is signaled.

For a floating-point sum, if the exponent of the resultant
value is either too large or too small to be represented
in the sum field, the floating-point overflow and
floating-point underflow exceptions are signaled,
respectively.

If operands overlap but do not share all of the same
bytes, results of operations performed on these
operands are not predictable. If overlapped operands
share all of the same bytes, the results are predictable
when direct addressing is used. If indirect addressing is
used (that is, based operands, parameters, strings with
variable lengths, and arrays with variable subscripts). the
results are not always predictable.

If a decimal to binary conversion causes a size exception
to be signaled, the binary value contains the correct
truncated result only if the decimal value contains 15 or
fewer significant nonfractional digits.

Resultant Conditions: Positive, negative, or zero-The
algebraic value of the numeric scalar sum operand is
positive, negative, or zero. Unordered-The value
assigned a floating-point sum operand is NaN.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
01 01 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-3

Exceptions AND (AND)

Operands Op Code Operand Operand Operand J Exception 1 2 3 Other (Hex) 1 2 3

06 Addressing 1093 Receiver Source 1 Source 2
01 Space addressing violation X X X

02 Boundary alignment X X X Operand 1: Character variable scalar.
03 Range X X X

06 Optimized addressability invalid X X X Operand 2: Character scalar.

08 Argument I Parameter
Operand 3: Character scalar.

01 Parameter reference violation X X X

OC Computation
02 Decimal data X X

Optional Forms
03 Decimal point alignment X X

06 Floating-point overflow X Op Code
07 Floating-point underflow X Mnemonic (Hex) Form Type
09 Floating-point invalid operand X X X

OA Size X ANDS 1193 Short

OC Invalid floating-point conversion X
ANDI 1893 Indicator
ANDIS 1993 Indicator. Short

00 Floating-point inexact result X ANDB 1C93 Branch
10 Damage Encountered ANDBS 1093 Branch. Short

04 System object damage state X X X X

44 Partial system object damage X X X X If the short instruction option is indicated in the op

1C Machine-Dependent Exception code. operand 1 is used as the first and second

03 Machine storage limit exceeded X operational operands (receiver and first source operand).

20 Machine Support Operand 2 is used as the third operational operand

02 Machine check X (second source operand).

03 Function check X

22 Object Access '
01 Object not found X X X Extender: Branch options or indicator options.

02 Object destroyed X X X

03 Object suspended X X X If the branch or indicator option is specified in the op

24 Pointer Specification code, the extender field must be present along with one

01 Pointer does not exist X X X or two branch targets (for branch options) or one or two

02 Pointer type invalid X X X indicator operands (for indicator options). The branch or

2A Program Creation indicator operands immediately follow the last operand

05 Invalid op code extender field X listed above. See Chapter 1. Introduction for the

06 Invalid operand type X X X encoding of the extender field and the allowed syntax of

07 Invalid operand attribute X X X the branch and indicator operands.

08 Invalid operand value range X X X

09 Invalid branch target operand X

OC Invalid operand ODT reference X X X Description: The Boolean AND operation is performed

00 Reserved bits are not zero X X X X on the string values in the source operands. The

2C Program Execution resulting string is placed in the receiver operand. The

04 Branch target invalid X operands must be character strings that are interpreted
as bit strings.

The length of the operation is equal to the length of the
longer of the two source operands. The shorter of the
two operands is logically padded on the right with hex
00 values. This assigns hex 00 values to the results for
those bytes that correspond to the excess bytes of the
longer operand.

..J
2-4

The bit values of the result are determined as follows: Events

L Source 1 Source 2 Result OOOC Machine resource

Bit Bit Bit 0201 Machine auxiliary storage threshold exceeded

0010 Process

a 1 a 0701 Maximum processor time exceeded

1 a a 0801 Process storage limit exceeded

a a a
0016 Machine observation

The result value is then placed (left-adjusted) in the 0101 Instruction reference

receiver operand with truncating or padding taking place
on the right. The pad value used in this instruction is a 0017 Damage set

byte value of hex 00. 0401 System object damage set
0801 Partial system object damage set

If operands overlap but do not share all of the same
Exceptions bytes, results of operations performed on these

operands are not predictable. If overlapped operands
share all of the same bytes, the results are predictable Operands

Wher,jirect addressing is used. If indirect addressing is Exception 1 2 3 Other

usea .hat is, based operands, parameters, strings with
06 Addressing

variable lengths, and arrays with variable subscripts), the
01 Space addressing violation X X X

results are not always predictable.
02 Boundary alignment X X X

Substring operand references that allow for a null
03 Range X X X

substring reference (a length value of zero) may be
06 Optimized addressability invalid X X X

specified for operands 1, 2, and 3. The effect of
08 Argument / Parameter

specifying a null substring reference for either or both
01 Parameter reference violation X X X

L 10 Damage Encountered
of the source operands is that the result is all zero and

04 System object damage state X X X X
instruction's resultant condition is zero. When a null
substring reference is specified for the receiver, a result

44 Partial system object damage X X X X

is not set and the instruction's resultant condition is
1C Machine- Dependent Exception

Zero regardless of the values of the source operands.
03 Machine storage limit exceeded X

20 Machine Support
02 Machine check X

Resultant Conditions: Zero-The bit value for the bits of
03 Function check X

the scalar receiver operand is either all zero or a null
22 Object Access

substring reference is specified for the receiver. Not
01 Object not found X X X

zero-The bit value for the bits of the scalar receiver
02 Object destroyed X X X

operand is not all zero.
03 Object suspended X X X

24 Pointer Specification
01 Pointer does not exist X X X
02 Pointer type invalid X X X

2A Program Creation
05 Invalid op code extender field X
06 Invalid operand type X X X

I 07 Invalid operand attribute X X X
08 Invalid operand value range X X X
09 Invalid branch target operand X
OA Invalid operand length X X X
OC Invalid operand ODT reference X X X
00 Reserved bits are not zero X X X X

2C Program Execution
04 Branch target invalid X

Computation and Branching Instructions 2-5

BRANCH (B) Exceptions

Op Code Operand Operand J IHexl 1 Exception 1 Other

1011 Branch Target 06 Addressing

01 Space addressing violation X

Operand 1: Instruction number, relative instruction number, 02 Boundary alignment X
branch point, instruction pointer, or instruction definition list 03 Range X
element. 08 Argument/ Parameter

01 Parameter reference violation X
10 Damage Encountered

Description: Control is unconditionally transferred to the 04 System object damage state X X
instruction indicated in the branch target operand. The 44 Partial system object damage X X
instruction number indicated by the branch target lC Machine-Dependent Exception
operand must be within the instruction stream 03 Machine storage limit exceeded X
containing the branch instruction. 20 Machine Support

02 Machine check X
The branch target may be an element of an array of 03 Function check X
instruction pointers or an element of an instruction 22 Object Access a definition list. The specific element can be identified by 01 Object not found X
using a compound subscript operand. 02 Object destroyed X

03 Object suspended X
24 Pointer Specification

Events 01 Pointer does not exist X
02 Pointer type invalid X

OOOC Machine resource 2A Program Creation
0201 Machine auxiliary storage threshold exceeded 06 Invalid operand type X

07 Invalid operand attribute X ..J 0010 Process 09 Invalid branch target operand X
0701 Maximum processor time exceeded OC Invalid operand ODT reference X
0801 Process storage limit exceeded 00 Reserved bits are not zero X X

2C Program Execution
0016 Machine observation 04 Branch target invalid X

0101 Instruction reference

0017 Damage set

0401 System object damage set

0801 Partial system object damage set

,

2-6

CIPHER (CIPHER)

Op Code Operand
(Hex) 1

10EF Receiver

Operand
2

Controls

Operand 1: Space pointer.

Operand
3

Source

Operand 2: Character(32) variable scalar.

Operand 3: Space pointer.

Description: The cipher operation specified in the
controls (operand 2) is performed on the string value
addressed by the source (operand 3). The result is
placed into the string addressed by the receiver
(operand 1).

The first character of the source and receiver strings is
addressed by their respective operand pointers. The
data length field of the controls operand specifies the
length of the input source data. The length of data
returned in the receiver is determined from the length of
the source. When the data padding option specifies no,
the length of data returned in the receiver is equal to the
length of the source. When the data padding option
specifies yes, the length of data returned in the receiver
is not equal to the length of the source and is returned
in the data length field of the controls operand. Refer to
the discussion of the data padding option for details on
the amount of data returned in this case.

The controls operand must be a character variable scalar
which specifies information to be used to control the
cipher operation. It must be at least 32 bytes long and
have the following format:

• Controls operand

Function identifier
Must be a hex 000 1

Data length

- Options
- Encrypt or decrypt

0= Encrypt
1 = Decrypt

- Use cipher block chaining
0= No
1 = Yes

Char(32)

Char(2)

Char(2)

Char(1)
Bit 0

Bit 1

- Data padding
0= No
1 = Yes

- Reserved (must be 0)

- Cryptographic key
-Key type

Hex 00 = Unencrypted
Hex 01 = Encrypted with master key

Initial chaining value

Pad character

Reserved

Bit 2

Bit 3-7

Char(8)
Char(1)

Char(8)

Char(1)

Char(9)

The function identifier specifies the function number for
the cipher operation. It must specify a hexadecimal
value of 0001. Any other value causes a template value
invalid exception to be signaled.

Hex 0001 Function identifier value of 1 specifies that
the ANSI (American National Standard
Institute) DEA (data encryption algorithm) is
to be used in conjunction with the
cryptographic key for an encryption or
decryption operation.

The data length field specifies the length of the data
addressed by the source operand. The data length value
must be nonzero, and when the data padding and use
cipher block chaining options specify no, a multiple of 8
bytes. An incorrect data length value results in the
signaling of the template value invalid exception. When
the data padding option specifies yes, the length of the
data placed into the receiver is returned in this field.

The encrypt or decrypt option specifies whether an
encryption or decryption operation is to be performed.

The cipher block chaining option specifies whether or
not cipher block chaining is to be used during the cipher
operation.

When the cipher block chaining option specifies yes for
an encryption operation, the first block of data from the
source operand is exclusive ORed with the initial
chaining value and then encrypted. For subsequent
blocks of data, the prior block of encrypted data from
the receiver operand is exclusive ORed with the current
data block from the source operand and the result is
encrypted.

Computation and Branching Instructions 2- 7

When the cipher block chaining option specifies yes for
a decryption operation, the blocks of data from the
source operand, starting with the last and then moving
from right to left, are decrypted and then exclusive
ORed with the prior block of encrypted data from the
source operand to return the original data. When the
first block of data in the source operand is encountered,
it is decrypted and then exclusive ORed with the initial
chaining value to return the original data.

The data padding option specifies whether data padding
is to be used during the cipher operation. When the
data padding option specifies no, padding is not
performed and the data length value must be a multiple
of a bytes. When the data padding option specifies yes,
padding is performed. In this case, the length of the
data returned in the receiver is different from the source
length and is returned in the data length field for both
encrypt and decrypt operations.

When the data padding option specifies yes for an
encryption operation, the data from the source operand
is padded out to the next multiple of a bytes; for
example, a source length of 20 is padded to 24, 32 is
padded to 40, and so forth. When the source length is
not a multiple of eight, the final block of source data is
padded with zero to six repetitions of the pad character
until the block length is 7 bytes in length. The eighth
byte is then filled with a 1-byte binary counter
containing the number of pad characters used (a value
from zero to six) and the block is encrypted. When the
source length is a multiple of eight. the final block of
source data is encrypted as is and padding produces an
extra block of data which is the encryption of the value
formed from seven repetitions of the pad character
followed by a 1-byte binary value of seven. In this case,
the receiver is set with this extra eight byte block of
encrypted data even though the source length was a
multiple of eight.

When the data padding option specifies yes for a
decryption operation, the final block of data is decrypted
and the last byte of data, which contains the pad
character count (a value from zero to seven), is removed
and used to determine the number of additional pad
characters to remove from the data. The specified
number of pad characters are then removed from the
source data prior to placing the remaining decrypted
data in the receiver operand.

2-8

The cryptographic key field specifies the key to be used
for the cipher operation. The cryptographic key may be
provided in either an unencrypted or encrypted form
through control of the key type.

The key type field specifies whether the cryptographic
key is being supplied in an unencrypted or encrypted
form. The field must contain a valid key type (one
defined in the template). Any other value causes a
template value invalid exception to be signaled.

The unencrypted key type specifies the cryptographic
key is to be used as is to encrypt or decrypt the source
operand. This value is not valid when the use cipher
block chaining or data padding options are yes.

The encrypted under master key key type specifies the
cryptographic key is to be decrypted using the master
key prior to encrypting or decrypting the source
operand.

The initial chaining value field specifies the a-byte value
to be used in conjunction with cipher block chaining
when the cipher block chaining option specifies yes. In
this case, the initial chaining value must not be binary
zero or the template value invalid exception is signaled.
When the cipher block option specifies no, this field is
ignored. Refer to the description of the cipher block
chaining option for details on how this value is used in"~
the cipher operation. ..",

The pad character field specifies the value to be used as
a pad character when the data padding option specifies
yes. When the data padding option specifies no, this
field is ignored.

Specific Properties of ANSI DEA

The encrypt or decrypt operation is performed iteratively
upon 8-byte blocks of the source operand. Each block
is encrypted/decrypted using DEA and the information
specified in the controls and the resulting value is placed
into the receiver at the same relative location as that
from which the source data was accessed from the
source operand. The process is repeated until the data
in the source is exhausted.

Encryption and decryption use the same key, but in a
different key schedule according to the algorithm's rules.

Valid results are produced for the case of the receiver Exceptions

and source operands being coincident with one another.

~
The source data is accessed first, then the result is Operands
stored in the receiver. Exception 1 2 3 Other

Partial overlap between the source and receiver 06 Addressing

operands may produce invalid results. 01 Space addressing violation X X X

02 Boundary alignment violation X X X

Events 03 Range X X X

06 Optimized addressability X X X
invalid

oooC Machine resources
08 Argument/ Parameter

0201 Machine auxiliary storage exceeded
01 Parameter reference violation X X X

DC Computation
oooD Machine status

OF Master key not defined or X
0101 Machine check invalid

10 Damage Encountered
0010 Process 44 Partial system object damage X

0701 Maximum processor time exceeded 1C Machine Dependent Exception
0801 Process storage limit exceeded 03 Machine storage limit X

exceeded
0016 Machine observation 08 Requested function not valid X

0101 Instruction reference 20 Machine Support
02 Machine check X

0017 Damage set 03 Function check X
0801 Partial system object damage set 22 Object Access

01 Object not found X X X
02 Object destroyed X X X
03 Object suspended X X X

l 24 Pointer Specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2A Program Creation
06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X
OA Invalid operand length X
DC Invalid operand ODT reference X X X

00 Reserved bits are not zero X X X X
2E Resource Control Limit

02 Process storage limit exceeded X

32 Scalar Specification
01 Scalar type invalid X X X

38 Template Specification

01 Template value invalid X

Computation and Branching Instructions 2-9

CIPHER KEY (CIPHERKY)

Op Code Operand Operand Operand
(Hex) 1 2 3

10FF Receiver Controls Source

Operand 1: Character(S) variable scalar.

Operand 2: Character(24) variable scalar.

Operand 3: Character(S) scalar.

Description: The cipher key operations specified in the
controls (operand 2) are performed on a source key
value either accessed from the source (operand 3) or
generated by the machine and the result is placed into
the string addressed by the receiver (operand 1).

The source and receiver strings must be at least S bytes
in length. Any excess bytes are ignored.

The controls operand must be a character variable scalar
which specifies information to be used to control the
cipher key operation. It must be at least 24 bytes long
and has the following format:

• Controls Operand Char(64)

2-10

Source operation Chart 1)
Hex 00 = No decrypt
Hex 01 = Decrypt using master key
Hex 02 = Decrypt using template key
Hex 03 = Generate random key
Hex 04 = Decrypt using master key

variant 1
Hex 05 = Decrypt using master key

variant 2
Hex 06 = Decrypt using master key

variant 3

- Receiver operation Char(1)
Hex 00 = Encrypt using master key
Hex 01 = Encrypt using master key J variant 1
Hex 02 = Encrypt using master key

variant 2
Hex 03 = Encrypt using master key

variant 3
Hex 04 = Encrypt using template key
Hex 05 = Verify master key
Hex 06 = Generate PIN
Hex 07 = Verify PIN
Hex OS = Translate PIN
Hex 09 = No encrypt

- Template key type Char(1)
Hex 00 = Encrypted using master key

variant 1
Hex 01 = Encrypted using master key

variant 2
Hex 02 = Use variant 1 of template key
Hex 03 = Use variant 2 of template key
Hex 04 = Use variant 3 of template key

Template key Char(S)

PIN operation parameters Char(42)
PIN validation key Char(S)

j PIN decimalization key Char(S)
PIN protection key Char(S)
PIN pad character Char(1)
PIN check length Char(1)
PI N offset data Char(S)
Encrypted PIN Char(S)

Reserved Char(3)

The source operation specifies how the source key is to
be accessed for the cipher key operation to be
performed. It must specify a valid source operation (one
defined in the template). Any other value causes a
template value invalid exception to be signaled.

The no decrypt source operation specifies that the
source key is to be accessed directly from the source
operand with no decryption.

The decrypt using master key source operation specifies
that the source key is to be accessed from the source
operand and decrypted using the master key held
internally in the machine.

The decrypt using template key source operation
specifies that the source key is to be accessed from the
source operand and decrypted using the template key
specified in the controls operand.

The generate random key source operation specifies that
the source key is to be produced by the machine rather
than being accessed from the source operand. In this
case, the machine generates a random key as the
source key for the cipher key operation to be performed.
If the receiver operation is encrypt, using master key
variant 1. 2, or 3, an 8-byte value must be specified in
the source operation to be used as a seed for the
random key generator. If the receiver operation is
encrypt using master key, values contained in the
system are used to generate the random key.

The decrypt using master key variant 1 source operation
specifies that the source key is to be accessed from the
source operand and decrypted using variant 1 of the
master key held internally by the machine.

The decrypt using master key variant 2 source operation
specifies that the source key is to be accessed from the
source operand and decrypted using variant 2 of the
master key held internally by the machine.

The decrypt using master key variant 3 source operation
specifies that the source key is to be accessed from the
source operand and decrypted using variant 3 of the
master key held internally by the machine.

The receiver operation specifies how the receiver key is
to be set for the cipher key operation to be performed.
It must specify a valid receiver operation (one defined in
the template). Any other value causes a template value
invalid exception to be signaled.

The encrypt using master key receiver operation
specifies that the receiver key is to be set by encrypting
the processed source key using the master key held
internally in the machine. This operation is not valid
when the source operation specifies decrypt using
master key or decrypt using template key when template
key is encrypted under master key variant 1. Any invalid
combination will result in a template value invalid
exception being signaled.

The encrypt using master key variant 1 receiver
operation specifies that the receiver key is to be set by
encrypting the processed source key using variant 1 of
the master key held internally in the machine. This
operation is not valid when the source operation
specifies decrypt using master key or decrypt using
template key. Any invalid combination will result in a
template value invalid exception being signaled.

The encrypt using master key variant 2 receiver
operation specifies that the receiver key is to be set by
encrypting the processed source key using variant 2 of
the master key held internally in the machine. This
operation is not valid when the source operation
specifies decrypt using master key or decrypt using
template key. Any invalid combination will result in a
template value invalid exception being signaled.

Computation and Branching Instructions 2-11

The encrypt using master key variant 3 receiver
operation specifies that the receiver key is to be set by
encrypting the processed source key using variant 3 of
the master key held internally in the machine. This
operation is not valid when the source operation
specifies decrypt using master key or decrypt using
template key. Any invalid combination will result in a
template value invalid exception being signaled.

The encrypt using template key receiver operation
specifies that the receiver key is to be set by encrypting
the processed source key using the template key
specified in the controls operand. This operation is not
valid when the source operation specifies no decrypt.
decrypt using template key, or generate random key.
The template key type must be encrypted under master
key variant 2. Any invalid combination will result in a
template value exception being signaled.

The verify master key receiver operation returns the
4-byte verification code for the host master key in the
receiver operand. The source operand is not used.

The generate PIN (personal identification number)
receiver operation returns a plain text intermediate PIN
generated from the data supplied in the PIN operation
parameters and source operand. The PIN validation key
and PIN decimalization data must be specified in the
PIN operations parameters. The validation data must be
specified in the source operand and the source
operation must be no decrypt. Any invalid combination
will result in a template value invalid exception being
signaled.

The verify PI N receiver operation verifies the encrypted
PIN parameter using the data supplied in the PIN
operation parameters and source operand and returns a
hex F02 for a valid PIN and a hex F1 for an invalid PIN.
All PIN operation parameters must be specified. The
validation data must be specified in the source operand
and the source operand must be no decrypt. Any invalid
combination will result in a template value invalid
exception being signaled.

2-12

The translate PIN receiver operation translated the
encrypted PIN specified in the source operand using the
PIN validation key PIN parameter as the input PIN
protection key and the PIN protection key PIN parameter
as the output PIN protection key. The PIN encrypted
under the output PIN protection key is returned. The
PIN validation key and PIN protection key PIN
parameters must be specified. The encrypted PIN to be
translated must be specified in the source operand and
the source operation must be no decrypt. Any invalid
combination will result in a template value invalid
exception being signaled.

The no encrypt receiver operation specifies that the
receiver key is to be set without performing an
encryption operation. This option is only valid when the
source operation is generate random key. Any invalid
combination will result in a template value invalid
exception being signaled.

The template key type specifies the variant of the
master key that was used to encrypt the template key.
It must specify a valid template key type (one defined in
the template). Any other value causes a template value
invalid exception to be signaled. This field is ignored
when the template key is not to be used.

The encrypted under master key variant 1 template key
type specifies that the template key is encrypted under
variant 1 of the master key and must be decrypted prior
to use. This type is not valid when the source operation
specifies decrypt using template key. Any invalid
combination will result in a template value invalid
exception being signaled.

The encrypted under master key variant 2 template key
type specifies that the template key is encrypted under
variant 2 of the master key and must be decrypted prior
to use. This type is not valid when the source operation
specifies decrypt using template key and the receiver
operation specifies encrypt using master key variant 1,
encrypt using master key variant 2, or encrypt using
template key. Any invalid combination will result in a
template value invalid exception being signaled.

The use variant 1 of template key template key type
specifies that variant 1 of the template key is to be
calculated and used for the required operation.

The use variant 2 of template key template key type
specifies that variant 2 of the template key is to be
calculated and used for the required operation.

The use variant 3 of template key template key type
specifies that variant 3 of the template key is to be
calculated and used for the required operation.

The template key field specifies the key to be used for a
cipher key operation which specifies usage of the
template key for an encrypt or decrypt operation. This
field is ignored when the template key is not to be used.

The PIN operation parameters contain the information
needed to perform the generate PIN, verify PIN, or
translate PIN functions.

The PIN validation key is used when a generate PIN,
verify PIN, or translate PIN function is being performed.
For generate PIN and verify PIN, this field contains the
PIN validation key encrypted under variant 3 of the host
master key. For the translate PIN function, this field
contains the input PI N protection key encrypted under
variant 3 of the host master key.

The PIN decimalization data is used when a generate
PIN or verify PIN function is being performed. This data
is used to decimalize enciphered validation data from the
source operand.

The PIN protection key is used when a verify PIN or
translate PI N function is being performed. For verify
PIN, this contains the input PIN protection key
encrypted under variant 3 of the host master key. For
the translate PI N function, this field contains the output
PIN protection key encrypted under variant 1 of the host
master key.

The PIN pad character is used only when a verify PIN
function is being performed. This is the PIN pad
character presented by the application.

The PI N check length is used only when a verify PI N
function is being performed. This is the PIN check
length presented by the application.

The encrypted PIN is used only when a verify PIN
function is being performed. This is the encrypted PIN
presented by the application.

Valid results are produced for the case of the receiver
and source operands being coincident with one another.
The source data is accessed first, then the result is
stored in the receiver.

Partial overlap between the source and receiver
operands may produce invalid results.

All keys processed by this instruction which are
encrypted under variant 1, 2, or 3 of the host master
key must have odd parity in each byte when decrypted
for use. If the parity of any key byte is not odd, a key
parity invalid exception will be signaled.

The following table lists the source operation values and
the valid receiver operation and template key type values
for each source operation.

Source
Operation

Hex 00

Hex 01

Hex 02

Hex 03

Hex 04

Hex 05

Hex 06

Valid
Receiver
Operations

Hex 00
Hex 01
Hex 02
Hex 03
Hex 04
Hex 05
Hex 06
Hex 07
Hex 08

Hex 04

Hex 00

Hex 00
Hex 09

Hex 04

Hex 04

Hex 04

Valid Template
Key Types

nla

Hex 00
Hex 01

Hex 01

Hex 02
Hex 03
Hex 04

Hex 02
Hex 03
Hex 04

Hex 02
Hex 03
Hex 04

Computation and Branching Instructions 2-13

Events Exceptions

OOOC Machine resource Operands J 0201 Machine auxiliary storage exceeded Exception 1 2 3 Other

0000 Machine status 06 Addressing
0101 Machine check 01 Space addressing violation X X X

0010 Process
02 Boundary alignment violation X X X

0701 Maximum processor time exceeded
03 Range X X X

0801 Process storage limit exceeded
06 Optimized addressability invalid X X X

07 Argument/Parameter

0016 Machine observation 01 Parameter reference violation X X X

0101 Instruction reference OC Computation

OF Master key not defined or X
0017 Damage set invalid

0801 Partial system object damage set 10 Weak key not valid X X

11 Key parity invalid X

10 Damage Encountered

44 Partial system object damage X

1C Machine Dependent Exception

03 Machine storage limit X
exceeded

08 Requested function not X
available

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X X ~ 02 Object destroyed X X X

03 Object suspended X X X

24 Pointer Specification

01 Pointer does not exist X X X
02 Pointer type invalid X X X

2A Program Creation

06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

OA Invalid operand length X

OC Invalid operand ODT reference X X X

00 Reserved bits are not zero X X X X

2E Resource Control Limit

02 Process storage limit exceeded X

32 Scalar Specification
01 Scalar type invalid X X X

38 Template Specification

01 Template value invalid X X

2-14

C
COMPARE BYTES LEFT-ADJUSTED
(CMPBLAB or CMPBLAI)

Op Code Operand Operand Operand
(Hex) Extender 1 2 3 [4, 5)

1CC2 Branch Compare Compare Branch
options operand 1 operand 2 target

18C2 Indicator Indicator
options target

Operand 1: Numeric scalar or character scalar.

Operand 2: Numeric scalar or character scalar.

Operand 3 [4,5]:

• Branch Form-Instruction number, relative instruction
number, branch point, or instruction pointer.

• Indicator Form-Numeric variable scalar or character variable
scalar.

Extender: Branch or indicator options.

Either the branch or indicator option is required by the
instruction. The extender field is required along with
from one to three branch targets (for branch option) or
one to three indicator operands (for indicator option).
The branch or indicator operands are required for
operand 3 and optional for operands 4 and 5. See
Chapter 1. Introduction for the bit encoding of the
extender field and the allowed syntax of the branch and
indicator operands.

Description: This instruction compares the logical string
values of two left-adjusted compare operands. The
logical string value of the first compare operand is
compared with the logical string value of the second
compare operand (no padding done). Based on the
comparison, the resulting condition is used with the
extender field to:

• Transfer control conditionally to the instruction
indicated in one of the branch target operands
(branch form).

• Assign a value to each of the indicator operands
(indicator form).

The compare operands can be either character or
numeric. Any numeric operands are interpreted as
logical character strings.

The compare operands are compared byte by byte, from
left to right with no numeric conversions performed.
The length of the operation is equal to the length of the
shorter of the two compare operands. The comparison
begins with the leftmost byte of each of the compare
operands and proceeds until all bytes of the shorter
compare operand have been compared or until the first
unequal pair of bytes is encountered.

Substring operand references that allow for a null
substring reference (a length value of zero) may be
specified for operands 1 and 2. The effect of specifying
a null substring reference for either or both compare
operands is that the instruction's resultant condition is
equal.

Resultant Conditions: The scalar first compare operand
has a higher, lower, or equal string value than the
second compare operand.

Computation and Branching Instructions 2-15

Events Exceptions

()(X)C Machine resource Operands
0201 Machine auxiliary storage threshold exceeded Exception 1 2 3 [4. 5] Other

0010 Process 06 Addressing

0701 Maximum processor time exceeded 01 Space addressing violation X X X

0801 Process storage limit exceeded 02 Boundary alignment X X X
03 Range X X X

0016 Machine observation 06 Optimized addressability X X X

0101 Instruction reference invalid

08 Argument/ Parameter

0017 Damage set 01 Parameter reference violation X X X

0401 System object damage set 10 Damage Encountered

0801 Partial system object damage set 04 System object damage state X X X X
44 Partial system object damage X X X X

1C Machine- Dependent Exception

03 Machine storage limit X
exceeded

20 Machine Support

02 Machine check X
03 Function check X

22 Object Access

01 Object not found X X X
02 Object destroyed X X X
03 Object suspended X X X

24 Pointer Specification

01 Pointer does not exist X X X
02 Pointer type invalid X X X

2A Program Creation

05 Invalid op code extender field X
06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X
09 Invalid branch target operand X
OA Invalid operand length X X X
OC Invalid operand ODT reference X X X
OD Reserved bits are not zero X X X X

2C Program Execution

04 Branch target invalid X

2-16

COMPARE BYTES LEFT-ADJUSTED WITH PAD
(CMPBLAPB or CMPBLAPI)

Op Code
(Hex)

Operand
Extender 1

Operand
2

Operand
3

lCC3 Branch
options

Compare
operand 1

Compare Pad

18C3 Indicator
options

operand 2

Operand 1: Numeric scalar or character scalar.

Operand 2: Numeric scalar or character scalar.

Operand 3: Numeric scalar or character scalar.

Operand 4 [5,6]:

• Branch Form-Instruction number. relative instruction
number. branch point, or instruction pointer.

• Indicator Form-Numeric variable scalar or character variable
scalar.

Extender: Branch or indicator options.

Either the branch or indicator option is required by the
instruction. The extender field is required along with
from one to three branch targets (for branch option) or
one to three indicator operands (for indicator option).
The branch or indicator operands are required for
operand 4 and optional for operands 5 and 6. See
Chapter 1. Introduction for the bit encoding of the
extender field and the allowed syntax of the branch and
indicator operands.

Description: This instruction compares the logical string
values of two left-adjusted compare operands (padded

Operand
4 [5, 6]

Branch
target

Indicator
target

The compare operands are compared byte by byte, from
left to right with no numeric conversions being
performed.

The length of the operation is equal to the length of the
longer of the two compare operands. The shorter of the
two compare operands is logically padded on the right
with the 1-byte value indicated in the pad operand. If
the pad operand is more than 1 byte in length, only its
leftmost byte is used. The comparison begins with the
leftmost byte of each of the compare operands and
proceeds until all the bytes of the longer of the two
compare operands have been compared or until the first
unequal pair of bytes is encountered. All excess bytes in
the longer of the two compare operands are compared
to the pad value.

Substring operand references that allow for a null
substring reference (a length value of zero) may be
specified for operands 1 and 2. The effect of specifying
a null substring reference for one of the compare
operands is that the other compare operand is compared
with an equal length string of pad character values.
When a null substring reference is specified for both
compare operands, the resultant condition is equal.

if needed). The logical string value of the first compare
operand is compared with the logical string value of the
second compare operand. Based on the comparison, the
resulting condition is used with the extender field to:

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for operand 3.

Resultant Conditions: The scalar first compare operand
has a higher. lower, or equal string value than the
second compare operand. • Transfer control conditionally to the instruction

indicated in one of the branch target operands
(branch form).

• Assign a value to each of the indicator operands
(indicator form).

The compare operands can be either character or
numeric. Any numeric operands are interpreted as
logical character strings.

Computation and Branching Instructions 2-17

Events Exceptions

oooe Machine resource Operands J 0201 Machine auxiliary storage threshold exceeded Exception 1 2 3 4 [5. 6) Other

0010 Process 06 Addressing

0701 Maximum processor time exceeded 01 Space addressing violation X X X X

0801 Process storage limit exceeded 02 Boundary alignment X X X X

03 Range X X X X

0016 Machine observation 06 Optimized addressability X X X X

0101 Instruction reference invalid

08 Argument I Parameter

0017 Damage set 01 Parameter reference X X X X

0401 System object damage set
violation

0801 Partial system object damage set
10 Damage Encountered

04 System object damage X X X X X
state

44 Partial system object X X X X X
damage

1C Machine-Dependent Exception

03 Machine storage limit X
exceeded

20 Machine Support

02 Machine check X
03 Function check X

22 Object Access

01 Object not found X X X X

02 Object destroyed X X X X

03 Object suspended X X X X J 24 Pointer Specification
01 Pointer does not exist X X X X

02 Pointer type invalid X X X X

2A Program Creation

05 Invalid op code extender X
field

06 Invalid operand type X X X X
07 Invalid operand attribute X X X X

08 Invalid operand value range X X X X

09 Invalid branch target X
operand

OA Invalid operand length X X
OC Invalid operand ODT X X X X

reference
00 Reserved bits are not zero X X X X X

2C Program Execution
04 Branch target invalid X

2-18

~
COMPARE BYTES RIGHT-ADJUSTED
(CMPBRAB or CMPBRAI)

Op Code Operand Operand Operand
(Hex) Extender 1 2 3 [4. 5J

1CC6 Branch Compare Compare Branch
options operand 1 operand 2 target

1BC6 Indicator Indicator
options target

Operand 1: Numeric scalar or character scalar.

Operand 2: Numeric scalar or character scalar.

Operand 3 [4,5]:

• Branch Form-Instruction number, relative instruction
number, branch point, or instruction pointer.

• Indicator Form-Numeric variable scalar or character variable
scalar.

Extender: Branch or indicator options.

Either the branch or the indicator option is required by
the instruction. The extender field is required along with
from one to three branch targets (for branch option) or
one to three indicator operands (for indicator option).
The branch or indicator operands are required for
operand 3 and optional for operands 4 and 5. See
Chapter 1. Introduction for the bit encoding of the
extender field and the allowed syntax of the branch and
indicator operands.

Description: This instruction compares the logical string
values of two right-adjusted compare operands. The
logical string value of the first compare operand is
compared with the logical string value of the second
compare operand (no padding done). Based on the
comparison, the resulting condition is used with the
extender field to:

• Transfer control conditionally to the instruction
indicated in one of the branch target operands
(branch form).

• Assign a value to each of the indicator operands
(indicator form).

The compare operands can be either string or numeric.
Any numeric operands are interpreted as logical
character strings.

The compare operands are compared byte by byte, from
left to right with no numeric conversions performed.
The length of the operation is equal to the length of the
shorter of the two compare operands. The comparison
begins with the leftmost byte of each of the compare
operands and proceeds until all bytes of the shorter
compare operand have been compared or until the first
unequal pair of bytes is encountered.

Substring operand references that allow for a null
substring reference (a length value of zero) may be
specified for operands 1 and 2. The effect of specifying
a null substring reference for either or both compare
operands is that the instruction's resultant condition is
equal.

Resultant Conditions: The scalar first compare operand
has a higher. lower. or equal string value than the
second compare operand.

Computation and Branching Instructions 2-19

Events Exceptions

OOOC Machine resource Operands J 0201 Machine auxiliary storage threshold exceeded Exception 1 2 3 [4. 5] Other

0010 Process 06 Addressing

0701 Maximum processor time exceeded 01 Space addressing violation X X X

0801 Process storage limit exceeded 02 Boundary alignment X X X
03 Range X X X

0016 Machine observation 06 Optimized addressability X X X

0101 Instruction reference invalid

OB Argument/Parameter

0017 Damage set 01 Parameter reference violation X X X

0401 System object damage set 10 Damage Encountered

0801 Partial system object damage set 04 System object damage state X X X X

44 Partial system object damage X X X X

1C Machine-Dependent Exception

03 Machine storage limit X
exceeded

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

24 Pointer Specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X J 2A Program Creation

05 Invalid op code extender field X

06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

09 Invalid branch target operand X

OA Invalid operand length X X

OC Invalid operand ODT reference X X X

00 Reserved bits are not zero X X X X

2C Program Execution

04 Branch target invalid X X

2-20

COMPARE BYTES RIGHT-ADJUSTED WITH PAD
(CMPBRAPB or CMPBRAPI)

Op Code
(Hex)

Operand
Extender 1

Operand
2

Operand
3

1CC7 Branch
options

Compare
operand 1

Compare Pad

18C7 Indicator
options

operand 2

Operand 1: Numeric scalar or character scalar.

Operand 2: Numeric scalar or character scalar.

Operand 3: Numeric scalar or character scalar.

Operand 4 [5, 6]:

• Branch Form-Instruction number, relative instruction
number, branch point, or instruction pointer.

• Indicator Form-Numeric variable scalar or character variable
scalar.

Extender: Branch or indicator options.

Either the branch or the indicator option is required by
the instruction. The extender field is required along with
from one to three branch targets (for branch option) or
one to three indicator operands (for indicator option).
The branch or indicator operands are required for
operand 4 and optional for operands 5 and 6. See
Chapter 1. Introduction for the bit encoding of the
extender field and the allowed syntax of the branch and
indicator operands.

Operand
4 [5. 6]

Branch
target

Indicator
target

The compare operands are compared byte by byte. from
left to right with no numeric conversions performed.

The length of the operation is equal to the length of the
longer of the two compare operands. The shorter of the
two compare operands is logically padded on the left
with the 1-byte value indicated in the pad operand. If
the pad operand is more than 1 byte in length, only its
leftmost byte is used. The comparison begins with the
leftmost byte of the longer of the compare operands.
Any excess bytes (on the left) in the longer compare
operand are compared with the pad value. All other
bytes are compared with the corresponding bytes in the
other compare operand. The operation proceeds until all
bytes in the longer operand are compared or until the
first unequal pair of bytes is encountered.

Substring operand references that allow for a null
substring reference (a length value of zero) may be
specified for operands 1 and 2. The effect of specifying
a null substring reference for one of the compare
operands is that the other compare operand is compared
with an equal length string of pad character values.
When a null substring reference is specified for both
compare operands. the instruction's resultant condition
is equal.

Description: This instruction compares the logical string
values of the right-adjusted compare operands (padded
if needed). The logical string value of the first compare
operand is compared with the logical string value of the
second compare operand. Based on the comparison, the
resulting condition is used with the extender field to:

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for operand 3.

• Transfer control conditionally to the instruction
indicated in one of the branch target operands
(branch form).

• Assign a value to each of the indicator operands
(indicator form).

The compare operands can be either character or
numeric. Any numeric operands are interpreted as
logical character strings.

Resultant Conditions: The scalar first compare operand
has a higher. lower. or equal string value than the
second compare operand.

Computation and Branching Instructions 2-21

Events Exceptions

OOOC Machine resource Operands
0201 Machine auxiliary storage threshold exceeded Exception 1 2 3 4 [5, 6] Other

0010 Process 06 Addressing

0701 Maximum processor time exceeded 01 Space addressing violation X X X X

0801 Process storage limit exceeded 02 Boundary alignment X X X X
03 Range X X X X

0016 Machine observation 06 Optimized addressability X X X X

0101 Instruction reference invalid

08 Argument/ Parameter

0017 Damage set 01 Parameter reference X X X X

0401 System object damage set
violation

0801 Partial system object damage set
10 Damage Encountered

04 System object damage X X X X X
state

44 Partial system object X X X X X
damage

1C Machine-Dependent Exception

03 Machine storage limit X
exceeded

20 Machine Support

02 Machine check X
03 Function check X

22 Object Access

01 Object not found X X X X

02 Object destroyed X X X X
03 Object suspended X X X X

24 Pointer Specification

01 Pointer does not exist X X X X

02 Pointer type invalid X X X X

2A Program Creation

05 Invalid op code extender X
field

06 Invalid operand type X X X X

07 Invalid operand attribute X X X X

08 Invalid operand value range X X X X

09 Invalid branch target X
operand

OA Invalid operand length X X
OC Invalid operand ODT X X X X

reference

00 Reserved bits are not zero X X X X X
2C Program Execution

04 Branch target invalid X X

2-22

L
COMPARE NUMERIC VALUE
(CMPNVB or CMPNVI)

Op Code Operand Operand Operand
(Hex) Extender 1 2 3 [4. 5.6)

1C46 Branch Compare Compare Branch
options operand 1 operand 2 target

1846 Indicator Indicator
options target

Operand 1: Numeric scalar.

Operand 2: Numeric scalar.

Operand 3 [4,5, 6]:

• Branch Form-Instruction number. relative instruction
number, branch point, or instruction pointer.

• Indicator Form-Numeric variable scalar or character variable
scalar.

Extender: Branch or indicator options.

Either the branch or indicator option is required by the
instruction. The extender field is required along with
from one to four branch targets (for branch option) or
one to four indicator operands (for indicator option). The
branch or indicator operands are required for operand 3
and optional for operands 4 and 5. See Chapter 1.
Introduction for the bit encoding of the extender field
and the allowed syntax of the branch and indicator
operands.

Description: The signed numeric value of the first
compare operand is compared with the numeric value of
the second compare operand. Based on the comparison,
the resulting condition is used with the extender field to:

• Transfer control conditionally to the instruction
indicated in one of the branch target operands
(branch form).

• Assign a value to each of the indicator operands
(indicator form).

Both the compare operands must be numeric with any
implicit conversions occurring according to the rules of
arithmetic operations as outlined in the Functional
Concepts Manual. For a decimal operation. alignment of
the assumed decimal point takes place by padding with
D's on the right end of the compare operand with lesser
precision.

Decimal operands used in floating-point operations
cannot contain more than 15 total digit positions.

The length of the operation is equal to the length of the
longer of the two compare operands. The shorter of the
two operands is adjusted to the length of the longer
operand according to the rules of arithmetic operations
outlined in the Functional Concepts Manual.

Floating-point comparisons use exponent comparison
and significand comparison. For a denormalized
floating-point number. the comparison is performed as
if the denormalized number had first been normalized.

For floating-point, two values compare unordered when
at least one comparand is NaN. Every NaN compares
unordered with everything including another NaN value.

Floating-point comparisons ignore the sign of zero.
Positive zero always compares equal with negative zero.

A floating-point invalid operand exception is signaled
when two floating-point values compare unordered and
no branch or indicator option exists for any of the
unordered. negation of unordered equal. or negation of
equal resultant conditions.

When a comparison is made between a floating-point
compare operand and a fixed-point decimal compare
operand that contains fractional digit positions. a
floating-point inexact result exception may be signaled
because of the implicit conversion from decimal to
floating-point.

Computation and Branching Instructions 2-23

Resultant Conditions: High, low, or equal-The first Exceptions

compare operand has a higher, lower, or equal numeric
value than the second compare operand. Operands

Unordered-The first compare operand is unordered Exception 1 2 3 [4. 5] Other

compared to the secon.d compare operand.
06 Addressing

01 Space addressing violation X X X

Events 02 Boundary alignment X X X

03 Range X X X

OOOC Machine resource 06 Optimized addressability X X X

0201 Machine auxiliary storage threshold exceeded
invalid

08 Argument/ Parameter

0010 Process
01 Parameter reference violation X X X

0701 Maximum processor time exceeded
DC Computation

0801 Process storage limit exceeded
02 Decimal data X X
03 Decimal point alignment X X

0016 Machine observation
09 Floating-point invalid operand X X

0101 Instruction reference
OD.Floating-point inexact result X

10 Damage Encountered

0017 Damage set
04 System object damage state X X X X

0401 System object damage set
44 Partial system object damage X X X X

0801 Partial system object damage set
1C Machine-Dependent Exception

03 Machine storage limit X
exceeded

20 Machine Support
02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X X J 02 Object destroyed X X X

03 Object suspended X X X

24 Pointer Specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2A Program Creation

05 Invalid op code extender field X

06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

09 Invalid branch target operand X

DC Invalid operand ODT reference X X X

00 Reserved bits are not zero X X X X

2C Program Execution
04 Branch target invalid X

2-24

COMPUTE ARRAY INDEX (CAl)

Op Code
(Hex)

Operand
1

Operand
2

Operand
3

Operand
4

1044 Array index Subscript A Subscript B Dimension

Operand 1: Binary(2) variable scalar.

Operand 2: Binary(2) scalar.

Operand 3: Binary(2) scalar.

Operand 4: Binary(2) constant scalar object or immediate
operand.

Description: This instruction provides the ability to
reduce multidimensional array subscript values into a
single index value which can then be used in referencing
the single-dimensional arrays of the system. This index
value is computed by performing the following
arithmetic operation on the indicated operands.

Array Index Subscript A + ((Subscript B-1) X
Dimension)

The signed numeric value of the subscript B operand is
decreased by 1 and multiplied by the numeric value of
the dimension operand. The result of this multiplication
is added to the subscript A operand and the sum is
placed in the array index operand.

All the operands must be binary with any implicit
conversions occurring according to the rules of
arithmetic operations. The usual rules of algebra are
observed concerning the subtraction, addition, and
multiplication of operands.

This instruction provides for mapping multidimensional
arrays to single-dimensional arrays. The elements of an
array with the dimensions (d1, d2, d3, ... , dn) can be
defined as a single-dimensional array with
d1 *d2*d3* ... *dn elements. To reference a specific
element of the multidimensional array with subscripts
(s1,s2,s3, ... sn), it is necessary to convert the multiple
subscripts to a single subscript for use in the
single-dimensional System/38 array. This single
subscript can be computed using the following:

s1 +((s2-1)*d1)+(s3-1)*d1 *d2)+ ... +((sn-1)*d*d2*d3* ... *dm),

where m=n-1

The CAl instruction is used to form a single index value
from two subscript values. To reduce N subscript values
into a single index value, N-1 uses of this instruction
are necessary.

Assume that S 1, S2, and S3 are three subscript values
and that D1 is the size of one dimension, D2 is the size
of the second dimension, and the D1 D2 is the product
of D1 and D2. The following two uses of this
instruction reduce the three subscripts to a single
subscript.

CAl INDEX, S1, S2, D1 Calculates s1 +(s2-1)*d1

CAl INDEX, INDEX, S3, D1 D2 Calculatess1 +(s2-1)

*d1 +(s3-1)*d2*d1

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-25

Exceptions COMPUTE MATH FUNCTION USING ONE INPUT
VALUE (CMF1)

Operands
Exception 1 2 3 4 Other Op Code Operand Operand Operand

(Hex) 1 2 3
06 Addressing

01 Space addressing violation X X X X 100B Receiver Controls Source
02 Boundary alignment X X X X

03 Range X X X X Operand 1: Numeric variable scalar.
06 Optimized addressability X X X X

invalid Operand 2: Character(2) scalar.

08 Argument/ Parameter

01 Parameter reference violation X X X X
Operand 3: Numeric scalar.

10 Damage Encountered

04 System object damage state X X X X X

44 Partial system object damage X X X X X
Optional Forms

1C Machine-Dependent Exception
Op Code

03 Machine storage limit X Mnemonic (Hex) Form Type
exceeded

20 Machine Support CMF11 180B Indicator
02 Machine check X CMF1B 1COB Branch

03 Function check X

22 Object Access
01 Object not found X X X X Extender: Branch options or indicator options.

02 Object destroyed X X X X

03 Object suspended X X X X If the branch or indicator option is specified in the op

24 Pointer Specification code, the extender field must be present along with one

01 Pointer does not exist X X X X or two branch targets (for branch options) or one or two

02 Pointer type invalid X X X X indicator operands (for indicator options). The branch or ~ 2A Program Creation indicator operands immediately follow the last operand

06 Invalid operand type X X X X listed above. See Chapter 1. Introduction for the

07 Invalid operand attribute X X X X encoding of the extender field and the allowed syntax of

08 Invalid operand value range X X X X the branch and indicator operands.

OC Invalid operand ODT reference X X X X

00 Reserved bits are not zero X X X X X
Description: The mathematical function, indicated by the

controls operand, is performed on the source operand

value and the result is placed in the receiver operand.

The calculation is always done in floating-point.

The source and receiver operands must both be

specified as floating-point with the same length (4 bytes
for short format or 8 bytes for long format).

2-26

The controls operand must be a character scalar that
specifies which mathematical function is to be
performed. It must be at least 2 bytes in length and has
the following format:

• Controls operand
- Hex 0001 = Sine
- Hex 0002 = Arc sine
- Hex 0003 = Cosine
- Hex 0004 = Arc cosine
- Hex 0005 = Tangent
- Hex 0006 = Arc tangent
- Hex 0007 = Cotangent
- Hex 0010 = Exponential function
- Hex 0011 = Logarithm based e

(natural logarithm)
- Hex 0012 = Sine hyperbolic

Hex 0013 = Cosine hyperbolic
- Hex 0014 = Tangent hyperbolic

Char(2)

- Hex 0015 = Arc tangent hyperbolic
- Hex 0020 = Square root
- All other values are reserved

The controls operand mathematical functions are as
follows:

• Hex 0001-Sine

The sine of the numeric value of the source operand,
whose value is considered to be in radians, is
computed and placed in the receiver operand.

The result is in the range:

-1 ~ SIN(x) ~ 1

• Hex oo02-Arc sine

The arc sine of the numeric value of the source
operand is computed and the result (in radians) is
placed in the receiver operand.

The result is in the range:

-pi/2 ~ ASIN(x) ~ +pi/2

• Hex ooo3-Cosine

The cosine of the numeric value of the source
operand, whose value is considered to be in radians,
is computed and placed in the receiver operand.

The result is in the range:

-1 ~ COS(x) ~ 1

• Hex oo04-Arc cosine

The arc cosine of the numeric value of the source
operand is computed and the result (in radians) is
placed in the receiver operand.

The result is in the range:

o ~ ACOS(x) ~ pi

• Hex 0005-Tangent

The tangent of the source operand, whose value is
considered to be in radians, is computed and the
result is placed in the receiver operand.

The result is in the range:

-infinity ~ TAN (x) ~ +infinity

• Hex ooo6-Arc tangent

The arc tangent of the source operand is computed
and the result (in radians) is placed in the receiver
operand.

The result is in the range:

-pi/2 ~ ATAN(x) ~ pi/2

• Hex 0007-Cotangent

The cotangent of the source operand, whose value is
considered to be in radians, is computed and the
result is placed in the receiver operand.

The result is in the range:

-infinity ~ COT(x) ~ +infinity

Computation and Branching Instructions 2-27

• Hex 001O-Exponential function

The computation e power (source operand) is
performed and the result is placed in the receiver
operand.

The result is in the range:

o :5;; EXP(x) :5;; +infinity

• Hex 0011-Logarithm based e (natural logarithm)

The natural logarithm of the source operand is
computed and the result is placed in the receiver
operand.

The result is in the range:

-infinity :5;; LN(x) :5;; +infinity

• Hex 0012-Sine hyperbolic

The sine hyperbolic of the numeric value of the
source operand is computed and the result (in
radians) is placed in the receiver operand.

The result is in the range:

-infinity :5;; SINH(x) :5;; +infinity

• Hex 0013-Cosine hyperbolic

The cosine hyperbolic of the numeric value of the
source operand is computed and the result (in
radians) is placed in the receiver operand.

The result is in the range:

+1 :5;; COSH(x) :5;; +infinity

• Hex 0014-Tangent hyperbolic

The tangent hyperbolic of the numeric value of the
source operand is computed and the result (in
radians) is placed in the receiver operand.

The result is in the range:

+1 :5;; TANH(x) :5;; +1

2-28

• Hex 001 &-Arc tangent hyperbolic

The inverse of the tangent hyperbolic of the numeric
value of the source operand is computed and the
result (in radians) is placed in the receiver operand.

The result is in the range:

-infinity :5;; ATANH(x) :5;; +infinity

• Hex 0020-Square root

The square root of the numeric value of the source
operand is computed and placed in the receiver
operand.

The result is in the range:

o :5;; SORT(x) :5;; +infinity

Null substring references (a length value of zero) cannot
be specified for this instruction.

The following chart shows some special cases for
certain arguments (X) of the different mathematical
functions in projective and affine mode.

~ Masked Unmasked
NaN NaN +infinity

Sine g A(e) A(f)

Arc sine Ig A(e) A(f)

Cosine Ig A(e) A(f)

Arc cosine Ig A(e) A(f)

Tangent Ig A(e) A(f)

Arc tangent Ig A(e) +pi/2

Cotangent g A(e) A(f)

Exponent ~ A(e) +inf

Logarithm g A(e) +inf

Sine g A(e) +inf
hyperbolic

Cosine g A(e) +inf
hyperbolic

Tangent g A(e) +1
hyperbolic

Arc tangent g A(e) A(f)
hyperbolic

Square root g A(e) +inf

-infinity

A(f)

A(f)

A(f)

A(f)

A(f)

-pi/2

A(f)

+0

A(f)

-inf

+inf

-1

A(f)

A(f)

Capital letters in the chart indicate the exceptions, small
letters indicate the returned results, and Arabic numerals
indicate the limits of the arguments (X). as defined in the
following lists:

A = Floating-point invalid operand (no result stored if
unmasked; if masked, occurrence bit is set)

8 = Floating-point inexact result (result is stored
whether or not exception is masked)

C = Floating-point overflow (no result is stored if
unmasked; if masked, occurrence bit is set)

D = Floating-point underflow (no result is stored if
unmasked; occurrence bit is always set)

1 = I pi * 2**50 I = Hex 432921 F854442D18
2 = Argument is in the range: -inf < x < -0
3'" I pi * 2**26 I Hex 41A921F854442D18

Maximum Minimum
+0 -0 Value Value Other

+0 -0 A(1,f) A(1,f) 8(3)

+0 -0 A(6,f) A(6,f) -

+1 +1 A(U) A(1,f) 8(3)

+pi/2 +pi/2 A(6,f) A(6,f) -
+0 -0 A(U) A(U) 8(3)

+0 -0 - - -

+inf -inf A(1,f) A(1,f) 8(3)

+1 +1 C(4,a) D(5,b) -

-inf -inf - - A(2,f)

+0 -0 - - -

+1 +1 - - -

+0 -0 - - -

+0 -0 A(6,f) A(6,f) -

+0 -0 - - A(2,f)

a = Result follows the rules that depend on round mode
b - Result is +0 or a denormalized value
c = Result is +infinity
d = Result is -infinity
e = Result is the masked form of the input NaN
f = Result is the system default masked NaN
g = Result is the input NaN
inf = Result is infinity

4 = 1n(2**1023) = Hex 40862E42FEFA39EF
5 = 1n(2**-1021.4555) = Hex C086200000000000
6 = Argument is in the range: -1 S x S +1

Computation and Branching Instructions 2-29

The following chart provides accuracy data for the
mathematical functions that can be invoked by this
instruction.

Accuracy Data

Function Sample Selection Relative Error (e) Absolute Error IE)
Name A Range of x 0 MAX(e) SD(e) MAX(E) SD(E)

Arc cosine 9 0<= X <= 3.14 U 8.26 * 10**-14 2.11 * 1 0** -15
Arc sine 10 -1.57 <= x <= 1.57 U 1.02 * 10**-13 2.66 * 10**-15
Arc tanaent 1 -oi/2 < x < oi/2 1 3.33 * 10**-16 9.57 * 10**-17
Arc tangent 14 -3 <= x <= 3 U 1.06 * 10**-14 1 .79 * 1 0** -15
hyperbolic
Cosine - ~See Sine belowL - - - - -
Cosine (See Sine Hyperbolic
hyperbolic below)
Cotangent 11 -10 <= x <= 100 U 4.83 * 10**-16 1.48 * 10**-16

.000001 <= x <= .001 U 4.36 * 10**-16 1.49 * 10**-16
4000 <= x <= 4000000 U 5.72 * 10**-16 1.46 * 10**-16

Exponential 2 -100 <= X <= 300 U 5.70 * 10**-14 1.13 * 10**-14
Natural 3 0.5 <= x <= 1.5 U 2.77 * 10**-16 8.01 * 10**-17
logarithm 4 -100 <= x <= 700 E 2.17 * 10**-16 7.37 * 10**-17
Sine -10 <= x <= 100 U 2.22 * 10**-16 1.31 * 10**-16
cosine 5 .000001 <= X <= .001 U 2.22 * 10**-16 1.56 * 10**-16

4000 <= x <= 400000O U 2.22 * 10**-16 1.28 * 10**-16
-10 <= x <= 100 U 3.33 * 10**-16 8.39 * 10**-17

6 .000001 <= X <= .001 U 4.33 * 10**-19 1.28 * 10**-19
4000 <= x <= 400000O U 3.33 * 10**-16 8.17 * 10**-17

Sine / cosine 12 -100 <= x <= 300 U 6.31 * 10**-16 1.97 * 10**-16
hvoerbolic
Sauare root 7 -100 <= x <= 700 E 4.13 * 10**-16 1.27 * 10**-16
Tangent -10 <= x <= 100 U 4.59 * 10**-16 1.54 * 10**-16

8 .000001 <= x <= .001 U 4.42 * 10**-16 1.44 * 10**-16 3.25 * 10**-19 8.06 * 10**-20
4000 <= x <= 400000O U 4.77 * 10**-16 1.43 * 10**-16

Tangent 13 -100 <= x <= 300 U 2.22 * 10**-15 6.26 * 10**-17 2.22 * 10**-16 3.64 * 10**-17
hyperbolic

Algorithm Notes:
1. fIx) = x, and g(x) = ATAN(TAN(x)).
2. fIx) = e**x, and g(x) = e**(l n(e**x)).
3. fIx) = 1 n(x), and g(x) = 1 n(e**(l nIx))).
4. fIx) = x, and g(x) = 1 n(e**x).
5. Sum of squares algorithm. fIx) = 1, and g(x) = SIN(x))**2 + (COS(x))**2.
6. Double angle algorithm. fIx) - SIN(2x), and g(x) = 2*(SIN(x)*COS(x)).
7. fIx) = e(**x, and g(x) = (SQR(e**x))**2.
8. fIx) = TAN(x), and g(x) = SIN(x) / COS(x).
9. fIx) = x, and g(x) = ACOS(COS(x)).
10. fIx) = x, and g(x) = ASIN(SIN(x)).
11. fIx) = COT(x), and g(x) = COS(x) / SIN(x).
12. fIx) = SINH(2x), and g(x) = 2*(SINH(x)*COSH(x)).
13. fIx) = TANH(x), and g(x) = SINH(x) / COSH(x).
14. fIx) = x, and g(x) = ATANH(TANH(x)).

Distribution Note: The sample input arguments were tangents of numbers, x, uniformly distributed between -pi/2
and +pi/2.

2-30

The vertical columns in the accuracy data chart have the
following meanings:

• Function Name: This column identifies the principal
mathematical functions evaluated with entries
arranged in alphabetical order by function name.

• Sample Selection: This column identifies the selection
of samples taken for a particular math function
through the following subcolumns:
- A: identifies the algorithm used against the

argument, x, to gather the accuracy samples. The
numbers in this column refer to notes describing
the functions, fIx) and g(x), which were calculated
to test for the anticipated relation where fIx)
should equal g(x). An accuracy sample then, is an
evaluation of the degree to which this relation held
true. The algorithm used to sample the arctangent
function, for example, defines g(x) to first calculate
the tangent of x to provide an appropriate
distribution of input arguments for the arctangent
function. Since fIx) is defined simply as the value
of x, the relation to be evaluated is then
x=ARCTAN(TAN(x)). This type of algorithm, where
a function and its inverse are used in tandem, is
the usual type employed to provide the appropriate
comparison values for the evaluation.
Range of x: gives the range of x used to obtain
the accuracy samples. The test values for x are
uniformly distributed over this range. It should be
noted that x is not always the direct input
argument to the function being tested; it is
sometimes desirable to distribute the input
arguments in a nonuniform fashion to provide a
more complete test of the function (see column D
below). For each function, accuracy data is given
for one or more segments within the valid range of
x. In each case, the numbers given are the most
meaningful to the function and range under
consideration.
0: identifies the distribution of arguments input to
the particular function being sampled. The letter E
indicates an exponential distribution. The letter U
indicates a uniform distribution. A number refers
to a note providing detailed information regarding
the distribution.

• Accuracy Data: The maximum relative error and
standard deviation of the relative error are generally
useful and revealing statistics; however, they are
useless for the range of a function where its value
becomes zero. This is because the slightest error in
the argument can cause an unpredictable fluctuation
in the magnitude of the answer. When a small
argument error would have this effect. the maximum
absolute error and standard deviation of the absolute
error are given for the range.
- Relative Error (e): The maximum relative error and

standard deviation (root mean square) of the
relative error are defined:

MAX(e):

= MAX(ABS((f(x) - g(x)) I fIx)))

where: MAX selects the largest of its
arguments and ABS takes the absolute value of
its argument.

SO(e):

= SOR((1 IN) SUMSO((f(x) - g(x)) I fIx)))

where: SOR takes the square root of its
argument and SUMSO takes the summation of
the squares of its arguments over all of the test
cases.

- Absolute Error (E): The maximum absolute error
produced during the testing and the standard
deviation (root mean square) of the absolute error
are:

MAX(E):

= MAX(ABS(fIx) - g(x)))

where: the operators are those defined above.

SO(E):

= SOR((1 IN) SUMSO(fIx) - g(x)))

where: the operators are those defined above.

Resultant Conditions: Positive, negative, or zero-The
algebraic value of the receiver operand is positive,
negative, or zero. Unordered-The value assigned to the
floating-point result is NaN.

Computation and Branching Instructions 2-31

Events Exceptions

oooe Machine resource Operands
0201 Machine auxiliary storage threshold exceeded Exception 1 2 3 Other J

oooD Machine status 06 Addressing

0101 Machine check 01 Space addressing violation X X X
02 Boundary alignment violation X X X

0010 Process 03 Range X X X

0701 Maximum processor time exceeded 06 Optimized addressability X X X

0801 Process storage limit exceeded invalid

08 Argument/ Parameter

0016 Machine observation 01 Parameter reference violation X X X

0201 Object location reference OC Computation

06 Floating-point overflow X

0017 Damage set 07 Floating-point underflow X

0801 Partial system object damage set 09 Floating-point invalid operand X
00 Floating-point inexact result X

10 Damage Encountered

44 Partial system object damage X
1C Machine-Dependent Exception

03 Machine storage limit exceeded X
20 Machine Support

02 Machine check X
03 Function check X

22 Object Access

01 Object not found X X X
02 Object destroyed X X X
03 Object suspended X X X

24 Pointer Specification ..J 01 Pointer does not exist X X X
02 Pointer type invalid X X X

2A Program Creation

05 Invalid op-code extender field X
06 Invalid operand type X X X
07 Invalid operand attribute X X X
08 Invalid operand value range X X X
09 Invalid branch target operand X
OC Invalid operand ODT reference X X X
00 Reserved bits are not zero X X X X

2C Program Execution

04 Invalid branch target X
2E Resource Control Limit

02 Process storage limit exceeded X
32 Scalar Specification

01 Scalar type invalid X X X
03 Scalar value invalid X

2-32

COMPUTE MATH FUNCTION USING TWO INPUT
VALUES (CMF2)

Op Code Operand Operand Operand Operand
(Hex) 1 2 3 4

100C Receiver Controls Source 1 Source 2

Operand 1: Numeric variable scalar.

Operand 2: Character(2) scalar.

Operand 3: Numeric scalar.

Operand 4: Numeric scalar.

Optional Forms

Op Code
Mnemonic (Hex) Form Type

CMF21
CMF2B

180C Indicator
1COC Branch

Extender: Branch options or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
to four branch targets (for branch options) or one to four
indicator operands (for indicator options). The branch or
indicator operands immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The mathematical function, indicated by the
controls operand, is performed on the source operand
values and the result is placed in the receiver operand.

The calculation is always done in floating-point.

The source and receiver operands must both be
specified as floating-point with the same length (4 bytes
for short format or 8 bytes for long format).

The controls operand must be a character scalar that
specifies which mathematical function is to be
performed. It must be at least 2 bytes in length and
have the following format:

• Controls operand
Hex 0001 = Power (x to the y)

- All other values are reserved

Char(2)

The computation x power y, where x is the first source
operand and y is the second source operand, is
performed and the result is placed in the receiver
operand.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Computation and Branching Instructions 2-33

The following chart shows some special cases for
certain arguments of the power function (x··y). Within
the chart, the capitalized letters X and Y refer to the
absolute value of the arguments x and y; that is,
X = I x I and Y = I y I.

I~
-inf y<O. y<O y<O -1 -1/2 +0

y=2n+ 1 y=2n real or
-0

+inf +0 +0 +0 +0 +0 +0 +1

+1 +1 +1 +1 +1
x>1 +0 - - - - +1

x··Y x··Y x··Y x SQRTlx)

x=+1 +1 +1 +1 +1 +1 +1 +1

+1 +1 +1 +1 +1
0<x<1 +inf - - - - +1

x··Y x··Y x··Y x SQRTlx)

x-+O Elf) Elf) Elf) Elf) Elf) Elf) +1

x~O Elf) E(g) Elf) E(f) E(g) E(g) +1

-1 +1 -1
0>x>-1 Ala) -- -- A(a) - Ala) +1

X··Y X··Y X

x~1 A(a) -1 +1 A(a) -1 Ala) +1

-1 +1 -1
x<-1 Ala) -- -- Ala) - Ala) +1

X··Y X··Y X

x~inf Ala) -0 +0 Ala) -0 Ala) +1

Masked
b b b b b b b NaN

Un-
masked Ale) Ale) Ale) Ale) Ale) Ale) Ale)

NaN

+1/2 +1 y>O y>O y>O +inf Masked Un-
y=2n+ 1 y=2n real NaN masked

NaN

+inf +inf +inf +inf +inf +inf b Ale)

SQRTlx) x x"y x"y x"y +inf b Ale)

+1 +1 +1 +1 +1 +1 b Ale)

SQRTlx) x x"y x"y x"y +0 b Ale)

+0 +0 +0 +0 +0 +0 b Ale)

-0 -0 -0 +0 +0 +0 b A(e)

Ala) x -X"y IX"y Ala) Ala) b Ale)

Ala) -1 -1 +1 Ala) Ala) b Ale)

Ala) x -IX··y X··y Ala) Ala) b Ale)

Ala) -inf -inf +inf A(a) Ala) b Ale)

b b b b b b d A(e)

Ale) Ale) Ale) Ale) Ale) Ale) Ale) Ale)

Capital letters in the chart indicate the exceptions and small letters indicate the returned results as defined in the fol
lowing list:

A = Floating-point invalid operand
E = Divide by zero
a = Result is the system default masked NaN
b = Result is the same NaN
c = Result is the same NaN masked

2-34

d = Result is the larger NaN
e = Result is the larger NAN masked
f = Result is + infinity
g ~ Result is -infinity

The following chart provides accuracy data for the
mathematical function that can be invoked by this
instruction.

Function Sample Selection Accuracy Data

Name x y MAX(e)

Power 1/3 -345 <= y <= 330 4.99" 10 -16

.75 -1320 <= y <= 2.96" 10 -16
1320

.9 -3605 <= y <= 1.23" 10 -16
3605

10 -165 <= y <= 165 7.10" 10 -16

712 -57 <= y <= 57 1.75 * 10"*-15

The vertical columns in the accuracy data chart have the
following meanings:

• Function Name: This column identifies the
mathematical function.

• Sample Selection: This column identifies the selection
of samples taken for the power function. The
algorithm used against the arguments, x and y, to
gather the accuracy samples was a test for the
anticipated relation where fIx) should equal g(x,y):

where:

f (x) = x

g(x, y) = (x y) (1 I y)

An accuracy sample then, is an evaluation of the
degree to which this relation held true.

The range of argument values for x and y were
selected such that x was held constant at a particular
value and y was uniformly varied throughout a range
of values which avoided overflowing or underflowing
the result field. The particular values selected are
indicated in the subcolumns entitled x and y.

SOle)

1.90" 10 -16

2.39" 10 -16

1.02" 10 -16

3.18" 10 -16

7.24" 10 -16

• Accuracy Data: The maximum relative error and
standard deviation (root mean square) of the relative
error are generally useful and revealing statistics.
These statistics for the relative error, (e), are provided
in the following subcolumns:

MAX(e):

= MAX(ABS((fIx) - g(x)) I fIx)))

where: MAX selects the largest of its arguments
and ABS takes the absolute value of its argument.

SD(e):

= SOR((1 IN) SUMSO((f(x) - g(x)) I fIx)))

where: SOR takes the square root of its argument
and SUMSO takes the summation of the squares
of its arguments over all of the test cases.

Resultant Conditions; Positive, negative, or zero-The
algebraic value of the receiver operand is positive,
negative, or zero. Unordered-The value assigned to the
floating-point result is NaN.

Computation and Branching Instructions 2-35

Events Exceptions

OOOC Machine resource Operands
0201 Machine auxiliary storage threshold exceeded Exception 1 2 3 4 Other

OOOD Machine status 06 Addressing

0101 Machine check 01 Space addressing violation X X X X
02 Boundary alignment violation X X X X

0010 Process 03 Range X X X X

0701 Maximum processor time exceeded 06 Optimized addressability X X X X

0801 Process storage limit exceeded invalid

08 Argument I Parameter

0016 Machine observation 01 Parameter reference violation X X X X

0101 Instruction reference OC Computation

06 Floating-point overflow X

0017 Damage set 07 Floating-point underflow X

0801 Partial system object damage set 09 Floating-point invalid operand X X
OC Invalid floating-point X

conversion

00 Floating-point inexact result X
OE Floating-point zero divide X

10 Damage Encountered

44 Partial system object damage X
1C Machine-Dependent Exception

03 Machine storage limit X
exceeded

20 Machine Support

02 Machine check X
03 Function check X

22 Object Access

01 Object not found X X X X

02 Object destroyed X X X X

03 Object suspended X X X X

24 Pointer Specification

01 Pointer does not exist X X X X

02 Pointer type invalid X X X X

2A Program Creation

05 Invalid op-code extender field X

06 Invalid operand type X X X X

07 Invalid operand attribute X X X X

08 Invalid operand value range X X X X

09 Invalid branch target operand X

OC Invalid operand ODT reference X X X X
00 Reserved bits are not zero X X X X X

2C Program Execution

04 Invalid branch target X

2E Resource Control Limit

02 Process storage limit exceeded X

32 Scalar Specification

01 Scalar type invalid X X X X

03 Scalar value invalid X

2-36

CONCATENATE (CAT)

Op Code
(Hex)

10F3

Operand
1

Receiver

Operand
2

Source 1

Operand 1: Character variable scalar.

Operand 2: Character scalar.

Operand 3: Character scalar.

Operand
3

Source 2

Description: The character string value of the second
source operand is joined to the right end of the
character string value of the first source operand. The
resulting string value is placed (left-adjusted) in the
receiver operand.

The length of the operation is equal to the length of the
receiver operand with the resulting string truncated or is
logically padded on the right end accordingly. The pad
value for this instruction is hex 40.

Substring operand references that allow for a null
substring reference (a length value of zero) may be
specified for operands 1, 2, and 3. The effect of
specifying a null substring reference for one source
operand is that the other source operand is used as the
result of the concatenation. The effect of specifying a
null substring reference for both source operands is that
the bytes of the receiver are each set with a value of
hex 40. The effect of specifying a null substring
reference for the receiver is that a result is not set
regardless of the value of the source operands.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing

01 Space addressing violation X X X

02 Boundary alignment X X X

03 Range X X X

06 Optimized addressability invalid X X X

08 Argument/ Parameter

01 Parameter reference violation X

10 Damage Encountered

04 System object damage state X X X X

44 Partial system object damage X X X X

1C Machine- Dependent Exception

03 Machine storage limit exceeded X

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

24 Pointer Specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2A Program Creation

06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

OA Invalid operand length X X X

OC Invalid operand ODT reference X X X

00 Reserved bits are not zero X X X X

Computation and Branching Instructions 2-37

CONVERT BSC TO CHARACTER (CVTBC)

Op Code
(Hex)

10AF

Operand
1

Receiver

Operand
2

Controls

Operand 1: Character variable scalar.

Operand
3

Source

Operand 2: Character(3) variable scalar (fixed-length).

Operand 3: Character scalar.

Optional Forms

Mnemonic

CVTBCI
CVTBCB

Op Code
(Hex)

18AF
1CAF

Form Type

Indicator
Branch

Extender: Branch options or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
to three branch targets (for branch options) or one to
three indicator operands (for indicator options). The
branch or indicator operands immediately follow the last
operand listed above. See Chapter 1. Introduction for
the encoding of the extender field and the allowed
syntax of the branch and indicator operands.

Description: This instruction converts a string value from
the BSC (binary synchronous communications)
compressed format to a character string. The operation
converts the source (operand 3) from the BSC
compressed format to character under control of the
controls (operand 2) and places the result into the
receiver (operand 1).

2-38

The source and receiver operands must both be
character strings.

The controls operand must be a character scalar that
specifies additional information to be used to control the
conversion operation. It must be at least 3 bytes in
length and have the following format:

• Controls operand
Source offset

- Record separator

Char(3)
Bin(2)
Char(1)

The source offset specifies the offset where bytes are to
be accessed from the source operand. If the offset is
equal to or greater than the length specified for the
source operand (it identifies a byte beyond the end of
the source operand), a template value invalid exception
is signaled. As output from the instruction, the source
offset is set to specify the offset that indicates how
much of the source is processed when the instruction
ends.

The record separator, if specified with a value other than
hex 01, contains the value used to separate converted
records in the source operand. A value of hex 01
specifies that record separators do not occur in the
converted records in the source.

Only the first 3 bytes of the controls operand are used.
Any excess bytes are ignored.

The operation begins by accessing the bytes of the
source operand located at the offset specified in the
source offset. This is assumed to be the start of a
record. The bytes of the record in the source operand
are converted into the receiver record according to the
following algorithm.

The strings to be built in the receiver are contained in
the source as blank compression entries and strings of
consecutive nonblank characters.

The format of the blank compression entries occurring in
the source are as follows:

• Blank compression entry
Interchange group separator

- Count of compressed blanks

Char(2)
Charl1)
Char(1)

The interchange group separator has a fixed value of
hex 1 D.

The compressed blanks count provides for describing up
to 63 compressed blanks. The count of the number of
blanks (up to 63) to be decompressed is formed by
subtracting hex 40 from the value of the count field.
The count field can vary from a value of hex 41 to hex
7F. If the count field contains a value outside of this
range, a conversion exception is signaled.

Strings of blanks described by blank compression
entries in the source are repeated in the receiver the
number of times specified by the blank compression
count.

Nonblank strings in the source are copied into the
receiver intact with no alteration.

If the receiver record is filled with converted data
without encountering the end of the source operand, the
instruction ends with a resultant condition of completed
record. This can occur in two ways. If a record
separator was not specified, the instruction ends when
enough bytes have been converted from the source to
fill the receiver. If a record separator was specified, the
instruction ends when a source byte is encountered with
that value prior to or just after filling the receiver record.
The offset value for the source locates the byte
following the last source record (including the record
separator) for which conversion was completed. When
the record separator value is encountered, any remaining
bytes in the receiver are padded with blanks.

If the end of the source operand is encountered
(whether or not in conjunction with a record separator or
the filling of the receiver), the instruction ends with a
resultant condition of source exhausted. The offset value
for the source locates the. byte following the last byte of
the source operand. The remaining bytes in the receiver
after the converted record are padded with blanks.

If the converted form of a record cannot be completely
contained in the receiver, the instruction ends with a
resultant condition of truncated record. The offset value
for the source locates the byte following the last source
byte for which conversion was performed, unless a
blank compression entry was being processed. In this
case, the source offset is set to locate the byte after the
blank compression entry. If the source does not contain
record separators, this condition can only occur for the
case in which a blank compression entry was being
converted when the receiver record became full.

Any form of overlap between the operands on this
instruction yields unpredictable results in the receiver
operand.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Res!Jltant Conditions: Completed record-The receiver
record has been completely filled with converted data
from a source record. Source exhausted-All of the
bytes in the source operand have been converted into
the receiver operand. Truncated record-The receiver
record cannot contain all of the converted data from the
source record.

Events

OOOC Machine resource
0201 Machine auxiliary storage exceeded

oooD Machine status
0101 Machine check

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-39

Exceptions CONVERT CHARACTER TO BSC (CVTCB)

Operands Op Code Operand Operand Operand ~) Exception 1 2 3 Other (Hex) 1 2 3

06 Addressing 108F Receiver Controls Source
01 Space addressing violation X X X
02 Boundary alignment violation X X X Operand 1: Character variable scalar.
03 Range X X X
06 Optimized addressability invalid X X X Operand 2: Character(3) variable scalar (fixed-length).

08 Argument/ Parameter
01 Parameter reference violation X X X

Operand 3: Character scalar.

OC Computation

01 Conversion X
10 Damage Encountered

Optional Forms

44 Partial system object damage X Op Code
1C Machine-Dependent Exception Mnemonic (Hex) Form Type

03 Machine storage limit exceeded X
20 Machine Support CVTCBI 188F Indicator

02 Machine check X
CVTCBB 1C8F Branch

03 Function check X
22 Object Access

01 Object not found X X X
Extender: Branch options or indicator options.

02 Object destroyed X X X
03 Object suspended X X X

If the branch or indicator option is specified in the op

24 Pointer Specification code, the extender field must be present along with one

01 Pointer does not exist X X X or two branch targets (for branch options) or one or two

02 Pointer type invalid X X X
indicator operands (for indicator options). The branch or

2A Program Creation
indicator operations immediately follow the last operand

05 Invalid op code extender field X
listed above. See Chapter 1. Introduction for the J

06 Invalid operand type X X X
encoding of the extender field and the allowed syntax of

07 Invalid operand attribute X X X
the branch and indicator operands.

08 Invalid operand value range X X X
09 Invalid branch target operand X
OA Invalid operand length X

Description: This instruction converts a string value from

OC Invalid operand ODT reference X X X
character to BSC (binary synchronous communications)

00 Reserved bits are not zero X X X X compressed format. The operation converts the source

2C Program Execution (operand 3) from character to the BSC compressed

04 Invalid branch target X
format under control of the controls (operand 2) and

32 Scalar Specification
places the result into the receiver (operand 1).

01 Scalar type invalid X X X

38 Template Specification
The source and receiver operands must both be

01 Template value invalid X
character strings.

The controls operand must be a character scalar that

specifies additional information to be used to control the
conversion operation. It must be at least 3 bytes in
length and have the following format:

• Controls operand Char(3)

Receiver offset Bin(2)

- Record separator Char(1)

;.-
2-40

The receiver offset specifies the offset where bytes are
to be placed into the receiver operand. If the offset is
equal to or greater than the length specified for the
receiver operand (it identifies a byte beyond the end of
the receiver), a template value invalid exception is
signaled. As output from the instruction, the source
offset is set to specify the offset that indicates how
much of the receiver has been filled when the
instruction ends.

The record separator, if specified with a value other than
hex 01, contains the value used to separate converted
records in the receiver operand. A value of hex 01
specifies that record separators are not to be placed into
the receiver to separate converted records.

Only the first 3 bytes of the controls operand are used.
Any excess bytes are ignored.

The source operand is assumed to be one record. The
bytes of the record in the source operand are converted
into the receiver operand at the location specified in the
receiver offset according to the following algorithm.

The bytes of the source record are interrogated to
identify the strings of consecutive blank (hex 40)
characters and the strings of consecutive nonblank
characters which occur in the source record. Only three·
or more blank characters are treated as a blank string
for purposes of conversion into the receiver.

As the blank and nonblank strings are encountered in
the source they are packaged into the receiver.

Blank strings are reflected in the receiver as one or
more blank compression entries. The format of the
blank compression entries built into the receiver are as
follows:

• Blank compression entry
Interchange group separator

- Count of compressed blanks

Char(2)
Char(1)
Char(1)

The interchange group separator has a fixed value of
hex 1D.

The compressed blanks count provides for compressing
up to 63 blanks. The value of the count field is formed
by adding hex 40 to the actual number of blanks (up to
63) to be compressed. The count field can vary from a
value of hex 43 to hex 7F.

Nonblank strings are copied into the receiver intact with
no alteration or additional control information.

When the end of the source record is encountered the
record separator value if specified is placed into the
receiver and the instruction ends with a resultant
condition of source exhausted. The offset value for the
receiver locates the byte following the converted record
in the receiver. The value of the remaining bytes in the
receiver after the converted record is unpredictable.

If the converted form of a record cannot be completely
contained in the receiver (including the record separator
if specified), the instruction ends with a resultant
condition of receiver overrun. The offset value for the
receiver remains unchanged. The remaining bytes in the
receiver, starting with the byte located by the receiver
offset, are unpredictable.

Any form of overlap between the operands on this
instruction yields unpredictable results in the receiver
operand.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Resultant Conditions: Source exhausted-All of the bytes
in the source operand have been converted into the
receiver operand. Receiver overrun-An overrun condition
in the receiver operand was detected before all of the
bytes in the source operand were processed.

Events

OOOC Machine resources
0201 Machine auxiliary storage exceeded

OOOD Machine status
0101 Machine check

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-41

Exceptions CONVERT CHARACTER TO HEX (CVTCH)

Operands Op Code Operand Operand J Exception 1 2 3 Other (Hex) 1 2

06 Addressing 1082 Receiver Source
01 Space addressing violation X X X
02 Boundary alignment violation X X X Operand 1: Character variable scalar.
03 Range X X X
06 Optimized addressability invalid X X X Operand 2: Character scalar.

08 Argument/ Parameter
01 Parameter reference violation X X X

10 Damage Encountered Description: Each character (8-bit value) of the string

44 Partial system object damage X value in the source operand is converted to a hex digit

1C Machine- Dependent Exception (4-bit value) and placed in the receiver operand. The

03 Machine storage limit exceeded X source operand characters must relate to valid hex digits

20 Machine Support or a conversion exception is signaled.

02 Machine check X
03 Function check X Characters Hex Digits

22 Object Access
01 Object not found X X X Hex Fa-hex F9 Hex a-hex 9

02 Object destroyed X X X Hex C1-hex C6 Hex A-hex F

03 Object suspended X X X
24 Pointer Specification The operation begins with the two operands

01 Pointer does not exist X X X left-adjusted and proceeds left to right until all the hex

02 Pointer type invalid X X X digits of the receiver operand have been filled. If the

2A Program Creation source operand is too small. it is logically padded on the

05 Invalid op code extender field X right with zero characters (hex Fa). If the source

06 Invalid operand type X X X operand is too large. a length conformance or an invalid

~) 07 Invalid operand attribute X X X operand length exception is signaled.

08 Invalid operand value range X X X
09 Invalid branch target operand X Substring operand references that allow for a null

OA Invalid operand length X substring reference (a length value of zero) may be

OC Invalid operand ODT reference X X X specified for operands 1 and 2. The effect of specifying

00 Reserved bits are not zero X X X X a null substring reference for the source is that the

2C Program Execution bytes of the receiver are each set with a value of hex

04 Invalid branch target X 00. The effect of specifying a null substring reference

32 Scalar Specification for the receiver is that no result is set.

01 Scalar type invalid X X X
38 Template Specification

01 Template value invalid X Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set

~~ 0801 Partial system object damage set

2-42

Exceptions CONVERT CHARACTER TO MRJE (CVTCM)

L Operands Op Code Operand Operand Operand
Exception 1 2 Other (Hex) 1 2 3

06 Addressing 108B Receiver Controls Source
01 Space addressing violation X X

02 Boundary alignment X X Operand 1: Character variable scalar.
03 Range X X

06 Optimized addressability invalid X X Operand 2: Character(13) variable scalar (fixed-length).

08 Argument/ Parameter

01 Parameter reference violation X X
Operand 3: Character scalar.

OC Computation
01 Conversion X

08 Length Conformance X
Optional Forms

10 Damage Encountered Op Code
04 System object damage state X X X Mnemonic (Hex) Form Type
44 Partial system object damage X X X

1C Machine- Dependent Exception CVTCMI 188B Indicator

03 Machine storage limit exceeded X
CVTCMB 1C8B Branch

20 Machine Support

02 Machine check X

03 Function check X
Extender: Branch options or indicator options.

22 Object Access

01 Object not found X X
If the branch or indicator option is specified in the op

02 Object destroyed X X
code, the extender field must be present along with one

03 Object suspended X X
or two branch targets (for branch options) or one or two

24 Pointer Specification
indicator operands (for indicator options). The branch or

~
01 Pointer does not exist X X

indicator operands immediately follow the last operand

02 Pointer type invalid X X
listed above. See Chapter 1. Introduction for the

2A Program Creation
encoding of the extender field and the allowed syntax of

06 Invalid operand type X X
the branch and indicator operands.

07 Invalid operand attribute X X

08 Invalid operand value range X X

OA Invalid operand length X
Description: This instruction converts a string of

OC Invalid operand ODT reference X X
characters to MRJE (MULTI-LEAVING remote job entry)

00 Reserved bits are not zero X X X
compressed format. The operation converts the source

(operand 3) from character to the MRJE compressed

format under control of the controls (operand 2) and
places the results in the receiver (operand 1).

The source and receiver operands must both be

character strings. The source operand cannot be

specified as either a signed or unsigned immediate

value.

Computation and Branching Instructions 2-43

The source operand can be described through the
controls operand as being composed of one or more
fixed length data fields, which may be separated by
fixed length gaps of characters to be ignored during the
conversion operation. Additionally, the controls operand
specifies the amount of data to be processed from the
source to produce a converted record in the receiver.
This may be a different value than the length of the data
fields in the source. The following diagram shows this
structure for the source operand.

Actual Source Operand Bytes

data field gap data field gap data field g::]
..... ---_ _-

Data Process as Source Records

EE _o_rd_ _re_c_or_d_

--.....,.---
record reco

The controls operand must be a character scalar that
specifies additional information to be used to control the
conversion operation. It must be at least 13 bytes in
length and have the following format:

• Controls operand
Offset into the receiver operand

- Offset into the source operand
Algorithm modifier

- Source record length
Data field length
Offset to next gap in source
operand
Gap length
Record control block (RCB) value

Char(13)
Bin(2)
Bin(2)
Char(1)
Char(1)
Bin(2)
Bin(2)

Bin(2)
Char(1)

As input to the instruction, the source and receiver
offset fields specify the offsets where bytes of the
source and receiver operands are to be processed. If an
offset is equal to or greater than the length specified for
the operand it corresponds to (it identifies a byte
beyond the end of the operand), a template value invalid
exception is signaled.

2-44

As output from the instruction, the source and receiver
offset fields specify offsets that indicate how much of
the operation is complete when the instruction ends.

The algorithm modifier has the following valid values:

• Hex 00 = Perform full compression.

• Hex 01 = Perform only truncation of trailing blanks.

The source record length value specifies the amount of
data from the source to be processed. If a source
record length of 0 is specified, a template value invalid
exception is signaled.

The data field length value specifies the length of the
data fields in the source. Data fields occurring in the
source may be separated by gaps of characters, which
are to be ignored during the conversion operation.
Specification of a data field length of 0 indicates that
the source operand is one data field. In this case, the
gap length and gap offset values have no meaning and
are ignored.

The gap offset value specifies the offset to the next gap
in the source. This value is both input to and output
from the instruction. This is relative to the current byte
to be processed in the source as located by the source
offset value. No validation is done for this offset. It is
assumed to be valid relative to the source operand. The
gap offset value is ignored if the data field length is
specified with a value of O.

The gap length value specifies the amount of data
occurring between data fields in the source operand
which is to be ignored during the conversion operation.
The gap length value is ignored if the data field length is
specified with a value of O.

The record control block (RCB) field specifies the RCB
value that is to precede the converted form of each
record in the receiver. It can have any value.

Only the first 13 bytes of the controls operand are used.
Any excess bytes are ignored.

The operation begins by accessing the bytes of the
source operand at the location specified by the source
offset. This is assumed to be the start of a source
record. Only the bytes of the data fields in the source
are accessed for conversion purposes. Gaps between
data fields are ignored, causing the access of data field
bytes to occur as if the data fields were contiguous with
one another. Bytes accessed from the source for the
source record length are considered a source record for
the conversion operation. They are converted into the
receiver operand at the location specified by the receiver
offset according to the following algorithm.

The RCB value is placed into the first byte of the
receiver record.

An SRCB (sub record control byte) value of hex 80 is
placed into the second byte of the receiver record.

If the algorithm modifier specifies full compression (a
value of hex 00) then:

The bytes of the source record are interrogated to
locate the blank character strings (2 or more
consecutive blanks), identical character strings (3 or
more consecutive identical characters), and
nonidentical character strings occurring in the source.
A blank character string occurring at the end of the
record is treated as a special case (see following
information on trailing blanks).

If the algorithm modifier specifies blank truncation (a
value of hex 01) then:

The bytes of the source record are interrogated to
determine if a blank character string exists at the end
of the source record. If one exists, it is treated as a
string of trailing blanks. All characters prior to it in
the record are treated as one string of nonidentical
characters.

The strings encountered (blank, identical, or nonidentical)
are reflected in the receiver by building one or more
SCBs (string control bytes) in the receiver to describe
them.

The format of the SCBs built into the receiver is:

• SCB format is 0 k I jjjjj

The bit meanings are:

Bit Value

o o

k o

o

jjjjj

1 jjjjj

Meaning

End of record; the EOR SCB
is hex 00.

All other SCBs.

The string is compressed.

The string is not compressed.

For k = 0:

Blanks (hex 4Os) have been
deleted.

Nonblank characters have
been deleted. The next
character in the data stream is
the specimen character.

For k = 1:
This bit is part of the length
field for length of
uncompressed data.

Number of characters that
have been deleted if k = O.
The value can be 2-31.

Number of characters to the
next SCB (no compression) if
k = 1. The value can be 1-63.
The uncompressed
(nonidentical bytes) follow the
SCB in the data stream.

When the end of a source record is encountered, an
EOR (end of record) SCB (hex 00) is built into the
receiver. Trailing blanks in a record including a record of
all blanks are represented in the receiver by an EOR
character if either full compression or trailing blank
truncation is specified.

If the end of the source operand is not encountered, the
operation then continues by reapplying the above
algorithm to the next record in the source operand.

Computation and Branching Instructions 2-45

If the end of the source operand is encountered
(whether or not in conjunction with a record boundary),
the instruction ends with a resultant condition of source
exhausted. The offset value for the source locates the
byte following the last source record for which
conversion was completed. The gap offset value
indicates the offset to the next gap relative to the
source offset value set for this condition. The gap offset
value has no meaning and is not set when the data field
length is O. The offset value for the receiver locates the
byte following the last fully converted record in the
receiver. The value of the remaining bytes in the
receiver after the last converted record is unpredictable.

If the converted form of a record cannot be completely
contained in the receiver, the instruction ends with a
resultant condition of receiver overrun. The offset value
for the source locates the byte following the last source
record for which conversion was completed. The gap
offset value indicates the offset to the next gap relative
to the sourGe offset value set for this condition. The
gap offset value has no meaning and is not set when
the data field length is O. The offset value for the
receiver locates the byte following the last fully
converted record in the receiver. The value of the
remaining bytes in the receiver after the last converted
record is unpredictable.

Any form of overlap between the operands of this
instruction yields unpredictable results in the receiver
operand.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Resultant Conditions

Source exhausted-All complete records in the source
operand have been converted into the receiver operand.
Receiver overrun-An overrun condition in the receiver
operand was detected prior to processing all of the
bytes in the source operand.

2-46

If source exhausted and receiver overrun occur at the
same time, the source exhausted condition is recognized
first. When source exhausted is the resultant condition,
the receiver may also be full. In this case, the offset
into the receiver may contain a value equal to the length
specified for the receiver, and this condition will cause
an exception on the next invocation of the instruction.
The processing performed for the source exhausted
condition provides for this case when the instruction is
invoked multiple times with the same controls operand
template. When the receiver overrun condition is the
resultant condition, the source always contains data that
can be converted.

Events

OOOC Machine resources
0201 Machine auxiliary storage exceeded

OOOD Machine status
0101 Machine check

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference
0201 Object location reference

0017 Damage set
0801 Partial system object damage set

Exceptions CONVERT CHARACTER TO NUMERIC (CVTCN)

L Operands Op Code Operand Operand Operand
Exception 1 2 3 Other (Hex) 1 2 3

06 Addressing 1083 Receiver Source Attributes
01 Space addressing violation X X X

02 Boundary alignment violation X X X Operand 1: Numeric variable scalar or data-pointer-defined
03 Range X X X numeric scalar.

06 Optimized addressability invalid X X X
08 Argument/ Parameter

Operand 2: Character scalar or data-pointer-defined character
scalar.

01 Parameter reference violation X X X
10 Damage Encountered Operand 3: Character(7) scalar or data-pointer-defined

44 Partial system object damage X character scalar.

1C Machine-Dependent Exception

03 Machine storage limit exceeded X
20 Machine Support Description: The character scalar specified by operand 2

02 Machine check X is treated as though it were a numeric scalar with the

03 Function check X attributes specified by operand 3. The character string

22 Object Access source operand is converted to the numeric forms of the

01 Object not found X X X receiver operand and moved to the receiver operand.

02 Object destroyed X X X The value of operand 2, when viewed in this manner, is

03 Object suspended X X X converted to the type, length, and precision of the

24 Pointer Specification numeric receiver, operand 1, following the rules for the

01 Pointer does not exist X X X Copy Numeric Value instruction.

02 Pointer type invalid X X X
2A Program Creation The length of operand 2 must be large enough to

05 Invalid op code extender field X contain the numeric value described by operand 3. If it

~ 06 Invalid operand type X X X is not large enough, a scalar value invalid exception is

07 Invalid operand attribute X X X signaled. If it is larger than needed, its leftmost bytes

08 Invalid operand value range X X X are used as the value, and the rightmost bytes are

09 Invalid branch target operand X ignored.

OA Invalid operand length X
OC Invalid operand ODT reference X X X Normal rules of arithmetic conversion apply except for

00 Reserved bits are not zero X X X X the following. If operand 2 is interpreted as a zoned

2C Program Execution decimal value, a value of hex 40 in the rightmost byte

04 Invalid branch target X referenced in the conversion is treated as a positive sign

32 Scalar Specification and a zero digit.

01 Scalar type invalid X X X
38 Template Specification If a decimal to binary conversion causes a size exception

01 Template value invalid X to be signaled, the binary value contains the correct

truncated result only if the decimal value contains 15 or

fewer significant nonfractional digits.

Computation and Branching Instructions 2-47

The format of the attribute operand specified by Exceptions

operand 3 is as follows:

. Scalar attributes Char(7) Exception
Operands J 1 2 3 Other

Scalar type Char(1)
Hex 00 = Binary 06 Addressing

Hex 01 = Floating-point 01 Space addressing violation X X X

Hex 02 = Zoned decimal 02 Boundary alignment X X X

Hex 03 = Packed decimal 03 Range X X X

Scalar length Bin(2) 04 External data object not found X X X

If binary: 06 Optimized addressability invalid X X X

length (l) Bits 0-15 08 Argument/Parameter

(where l = 2 or 4) 01 Parameter reference violation X X X

If floating-point: OC Computation

length (l) Bits 0-15 02 Decimal data X X

(where l = 4 or 8) 06 Floating-point overflow X

If zoned decimal or packed 07 Floating-point underflow X

decimal: 09 Floating-point invalid operand X

Fractional digits (F) Bits 0-7 OA Size X

Total digits (T) (where Bits 8-15 OC Floating-point conversion X

1 ~ T ~ 31 and 0 ~ F ~ T) 00 Floating-point inexact result X

Reserved (binary 0) Bin(4) 10 Damage Encountered

04 System object damage state X X X X

Substring operand references that allow for a null 44 Partial system object damage X X X X

substring reference (a length value of zero) may not be 1C Machine- Dependent Exception

specified for this instruction. 03 Machine storage limit exceeded X

20 Machine Support

02 Machine check X

Events 03 Function check X

22 Object Access

OOOC Machine resource 01 Object not found X X X

0201 Machine auxiliary storage threshold exceeded 02 Object destroyed X X X

03 Object suspended X X X

0010 Process 24 Pointer Specification

0701 Maximum processor time exceeded 01 Pointer does not exist X X X

0801 Process storage limit exceeded 02 Pointer type invalid X X X

2A Program Creation

0016 Machine observation 06 Invalid operand type X X X

0101 Instruction reference 07 Invalid operand attribute X X X

08 Invalid operand value range X X X

0017 Damage set OA Invalid operand length X X

0401 System object damage set OC Invalid operand ODT reference X X X

0801 Partial system object damage set 00 Reserved bits are not zero X X X X

32 Scalar Specification

01 Scalar type invalid X X X

02 Scalar attribute invalid X

03 Scalar value invalid X

J
2-48

CONVERT CHARACTER TO SNA (CVTCS)

Op Code Operand Operand Operand
(Hex) 1 2 3

10CB Receiver Controls Source

Operand 1: Character variable scalar.

Operand 2: Character(15) variable scalar.

Operand 3: Character scalar.

Optional Forms

Mnemonic

CVTCSI
CVTCSB

Op Code
(Hex)

l8CB
lCCB

Form Type

Indicator
Branch

Extender: Branch options or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
or two branch targets (for branch options) or one or two
indicator operands (for indicator options). The branch or
indicator operands immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: This instruction converts the source
(operand 3) from character to SNA (systems network
architecture) format under control of the controls
(operand 2) and places the result into the receiver
(operand 1).

The source and receiver operands must both be
character strings. The source operand may not be
specified as an immediate operand.

The source operand can be described by the controls
operand as being one or more fixed-length data fields
that may be separated by fixed-length gaps of
characters to be ignored during the conversion
operation. Additionally, the controls operand specifies
the amount of data to be processed from the source to
produce a converted record in the receiver. This may be
a different value than the length of the data fields in the
source. The following diagram shows this structure for
the source operand.

Actual source operand bytes

gap

Data processed as source records

I record I rec ord I record I record I reco

The controls operand must be a character scalar that
specifies additional information to be used to control the
conversion operation. The operand must be at least 15
bytes in length and has the following format:

• Controls operand
Offset into the receiver operand

- Offset into the source operand
Algorithm modifier

- Source record length
- Data field length
- Gap offset

Gap length
- Record separator character
- Prime compression character
- Unconverted source record bytes

Char(15)
Bin(2)
Bin(2)
Char(1)
Char(1)
Bin(2)
Bin(2)
Bin(2)
Char(1)
Char(1)
Char(1)

When the source and receiver operands are input to the
instruction, they specify the offsets where the bytes of
the source and receiver operands are to be processed.
If an offset is equal to or greater than the length
specified for the operand. the offset identifies a byte
beyond the end of the operand and a template value
invalid exception is signaled. When the source and the
receiver are output from the instruction. they specify
offsets that indicate how much of the operation is
complete when the instruction ends.

Computation and Branching Instructions 2-49

The algorithm modifier specifies the optional functions
to be performed. Any combination of functions can be
specified as indicated by the bit meanings in the
following chart. At least one of the functions must be
specified. If all of the algorithm modifier bits are zero, a
template value invalid exception is signaled. The
algorithm modifier bit meanings are:

Bits Meaning

o

1-2

3

o

00

01

10

11

o

Do not perform compression.

Perform compression.

Do not use record separators and
no blank truncation.
Do not perform data transparency
conversion.

Reserved.

Use record separators and perform
blank truncation.
Do not perform data transparency
conversion.

Use record separators and perform
blank truncation.
Perform data transparency
conversion.

Do not perform record spanning.

Perform record spanning.
(allowed only when bit 1 = 1)

4-7 (Reserved)

The source record length value specifies the amount of
data from the source to

be processed to produce a converted record in the
receiver. Specification of a source record length of zero
results in a template value invalid exception.

The data field length value specifies the length of the
data fields in the source. Data fields occurring in the
source may be separated by gaps of characters that are
to be ignored during the conversion operation.
Specification of a data field length of zero indicates that
the source operand is one data field. In this case, the
gap length and gap offset values have no meaning and
are ignored.

2-50

The gap offset value specifies the offset to the next gap
in the source. This value is both input to and output
from the instruction. This is relative to the current byte
to be processed in the source as located by the source
offset value. No validation is done for this offset. It is
assumed to be valid relative to the source operand. The
gap offset value is ignored if the data field length is
specified with a value of zero.

The gap length value specifies the amount of data that
is to be ignored between data fields in the source
operand during the conversion operation. The gap
length value is ignored if the data field length is zero.

The record separator character value specifies the
character that precedes the converted form of each
record in the teceiver. It also serves as a delimiter when
the previous record is truncating trailing blanks. The
Convert SNA to Character instruction recognizes any
value that is less than hex 40. The record separator
value is ignored if do not use record separators is
specified in the algorithm modifier.

The prime compression character value specifies the
character to be used as the prime compression character
when performing compression of the source data to
SNA format. It may have any value. The prime
compression character value is ignored if the
compression function is not specified in the algorithm
modifier.

The unconverted source record bytes value specifies the
number of bytes remaining in the current source record
that are yet to be converted.

J

When the record spanning function is specified in the
algorithm modifier, the unconverted source record bytes
value is both input to and output from the instruction.
On input, a value of hex 00 means it is the start of a
new record and the initial conversion step is yet to be
performed. That is, a record separator character has not
yet been placed in the receiver. On input, a nonzero
value less than or equal to the record length specifies
the number of bytes remaining in the current source
record that are yet to be converted into the receiver.
This value is assumed to be the valid count of
unconverted source record bytes relative to the current
byte to be processed in the source as located by the
source offset value. As such, it is used to determine the
location of the next record boundary in the source
operand. This value must be less than or equal to the
source record length value; otherwise, a template value
invalid exception is signaled. On output this field is set
with a value as defined above that describes the number
of bytes of the current source record that have not yet
been converted.

When the record spanning function is not specified in
the algorithm modifier, the unconverted source record
bytes value is ignored.

Only the first 15 bytes of the controls operand are used.
Any excess bytes are ignored.

The description of the conversion process is presented
as a series of separately performed steps that may be
selected in allowable combinations to accomplish the
conversion function. It is presented this way to allow for
describing these functions separately. However, in the
actual execution of the instruction, these functions may
be performed in conjunction with one another or
separately depending upon which technique is
determined to provide the best implementation.

The operation is performed either on a record-by-record
basis, record processing, or on a nonrecord basis, string
processing. This is determined by the functions selected
in the algorithm modifier. Specifying the use record
separators and do blank truncation function indicates
record processing is to be performed. If this is not
specified, in which case compression must be specified,
it indicates that string processing is to be performed.

The operation begins by accessing the bytes of the
source operand at the location specified by the source
offset.

When record processing is specified, the source offset l,. may locate the start of a full or partial record.

When the record spanning function has not been
specified in the algorithm modifier, the source offset is

assumed to locate the start of a record.

When the record spanning function has been specified
in the algorithm modifier, the source offset is assumed
to locate a point at which processing of a possible
partially converted record is to be resumed. In this case
the unconverted source record bytes value contains the
length of the remaining portion of the source record to
be converted. The conversion process in this case is
started by completing the conversion of the current
source record before processing the next full source
record.

When string processing is specified, the source offset
locates the start of the source string to be converted.

Only the bytes of the data fields in the source are
accessed for conversion purposes. Gaps between data
fields are ignored causing the access of data field bytes
to occur as if the data fields were contiguous. A string
of bytes accessed from the source for a length equal to
the source record length is considered to be a record for
the conversion operation.

When during the conversion process the end of the
source operation is encountered, the instruction ends
with a resultant condition of source exhausted.

When record processing is specified in the algorithm
modifier, this check is performed at the start of
conversion for each record. If the source operand does
not contain a full record, the source exhausted condition
is recognized. The instruction is terminated with status
in the controls operand describing the last completely
converted record. For source exhausted, partial
conversion of a source record is not performed.

When string processing is specified in the algorithm
modifier, then compression must be specified and the
compression function described below defines the
detection of source exhausted.

If the converted form of the source cannot be
completely contained in the receiver, the instruction ends
with a resultant condition of receiver overrun. See the
description of this condition in the conversion process
described below to determine the status of the controls
operand values and the converted bytes in the receiver
for each case.

Computation and Branching Instructions 2-51

When string processing is specified, the bytes accessed
from the source are converted on a string basis into the
receiver operand at the location specified by the receiver
offset. In this case, the compression function must be
specified and the conversion process proceeds with the
compression function defined below.

When record processing is specified, the bytes accessed
from the source are converted one record at a time into
the receiver operand at the location specified by the
receiver offset performing the functions specified in the
algorithm modifier in the sequence defined by the
following algorithm.

The first function performed is trailing blank truncation.

A truncated record is built by logically appending the
record data to the record separator value specified in the
controls operand and removing all blank characters after
the last non blank character in the record. If a record has
no trailing blanks, then no actual truncation takes place.
A null record, a record consisting entirely of blanks, will
be converted as just the record separator character with
no other data following it. The truncated record then
consists of the record separator character followed by
the truncated record data, the full record data, or no
data from the record.

If either the data transparency conversion or the
compression function is specified in the algorithm
modifier, the conversion process continues for this
record with the next specified function.

If not, the conversion process for this record is
completed by placing the truncated record into the
receiver. If the truncated record cannot be completely
contained in the receiver, the instruction ends with a
resultant condition of receiver overrun. When the record
spanning function is specified in the algorithm modifier,
as much of the truncated record as will fit is placed into
the receiver and the controls operand is updated to
describe how much of the source record was
successfully converted into the receiver. When the
record spanning function is not specified in the
algorithm modifier, the controls operand is updated to
describe only the last fully converted record in the
receiver and the value of the remaining bytes in the
receiver is unpredictable.

2-52

The second function performed is data transparency
conversion.

Data transparency conversion is performed if the
function is specified in the algorithm modifier. This
provides for making the data in a record transparent to
the Convert SNA to Character instruction in the area of
its scanning for record separator values. Transparent
data is built by preceding the data with 2 bytes of
transparency control information. The first byte has a
fixed value of hex 35 and is referred to as the TRN
(transparency) control character. The second byte is a
1-byte hexadecimal count, a value ranging from 1 to
255 decimal, of the number of bytes of data that follow
and is referred to as the TRN count. This contains the
length of the data and does not include the TRN control
information length.

Transparency conversion can be specified only in
conjunction with record processing and, as such, is
performed on the truncated form of the source record.
The transparent record is built by preceding the data
that follows the record separator in the truncated record
with the TRN control information. The TRN count in this
case contains the length of just the truncated data for
the record and does not include the record separator
character. For the special case of a null record, no TRN
control information is placed after the record separator
character because there is no record data to be made
transparent.

If the compression function is specified in the algorithm
modifier, the conversion process continues for this
record with the compression function.

If not, the conversion process for this record is
completed by placing the transparent record into the
receiver. If the transparent record cannot be completely
contained in the receiver, the instruction ends with a
resultant condition of receiver overrun.

J

When the record spanning function is specified in the
algorithm modifier, as much of the transparent record as
will fit is placed into the receiver and the controls
operand is updated to describe how much of the source
record was successfully converted into the receiver. The
TRN count is also adjusted to describe the length of the
data successfully converted into the receiver; thus, the
transparent data for the record is not spanned out of the
receiver. The remaining bytes of the transparent record,
if any, will be processed as a partial source record on
the next invocation of the instruction and will be
preceded by the appropriate TRN control information.
For the special case where only 1 to 3 bytes are
available at the end of the receiver, (not enough room
for the record separator, the transparency control, and a
byte of data) then just the record separator is placed in
the receiver for the record being converted. This can
cause up to 2 bytes of unused space at the end of the
receiver. The value of these unused bytes is
unpredictable.

When the record spanning function is not specified in
the algorithm modifier, the controls operand is updated
to describe only the last fully converted record in the
receiver and the value of the remaining bytes in the
receiver is unpredictable.

The third function performed is compression.

Compression is performed if the function is specified in
the algorithm modifier. This provides for reducing the
size of strings of duplicate characters in the source data.
The source data to be compressed may have assumed a
partially converted form at this point as a result of
processing for functions specified in the algorithm
modifier. Compressed data is built by concatenating one
or more compression strings together to describe the
bytes that make up the converted form of the source
data prior to the compression step. The bytes of the
converted source data are interrogated to locate the
prime compression character strings (two or more
consecutive prime compression characters), duplicate
character strings (three or more duplicate non prime
characters) and nonduplicate character strings occurring
in the source.

The character strings encountered (prime, duplicate and
nonduplicate) are reflected in the compressed data by
building one or more compression strings to describe
them. Compression strings are comprised of an SCB
(string control byte) possibly followed by one or more
bytes of data related to the character string to be
described.

The format of an SCB and the description of the data
that may follow it are:

• SCB Char(1)
- Control Bits 0-1
()() = n nonduplicate characters are between

this SCB and the next one; where n is
the value of the count field (1-63).

01 = Reserved
10= This SCB represents n deleted prime

compression characters; where n is the
value of the count field (2-63). The
next byte is the next SCB.

11 = This SCB represents n deleted
duplicate characters; where n
is the value of the count field
(3-63). The next byte contains
a specimen of the deleted characters.
The byte following the specimen character
contains the next SCB.

Count Bits 2-7
This contains the number of
characters that have been deleted for
a prime or duplicate string, or the
number of characters to the next SCB
for a nonduplicate string. A count
value of zero cannot be produced.

When record processing is specified, the compression is
performed as follows.

The compression function is performed on just the
converted form of the current source record including
the record separator character. The converted form of
the source record prior to the compression step may be
a truncated record or a transparent record as described
above, depending upon the functions selected in the
algorithm modifier. The record separator and TRN
control information is always converted as a
nonduplicate compression entry to provide for length
adjustment of the TRN count, if necessary.

The conversion process for this record is completed by
placing the compressed record into the receiver. If the
compressed record cannot be completely contained in
the receiver, the instruction ends with a resultant
condition of receiver overrun.

Computation and Branching Instructions 2-53

When the record spanning function is specified in the
algorithm modifier, as much of the compressed record
as will fit is placed into the receiver and the controls
operand is updated to describe how much of the source
record was successfully converted into the receiver. The
last compression entry placed into the receiver may be
adjusted if necessary to a length that provides for filling
out the receiver. This length adjustment applies only to
compression entries for nonduplicate strings.
Compression entries for duplicate strings are placed in
the receiver only if they fit with no adjustment. For the
special case where data transparency conversion is
specified, the transparent data being described is not
spanned out of the receiver. This is provided for by
performing length adjustment on the TRN count of a
transparent record, which may be included in the
compressed data so that it describes only the source
data that was successfully converted into the receiver.
For the special case where only 2 to 5 bytes are
available at the end of the receiver, not enough room for
the compression entry for a nonduplicate string
containing the record separator and the TRN control,
and up to a 2-byte compression entry for some of the
transparent data, the nonduplicate compression entry is
adjusted to describe only the record separator. By doing
this, no more than 3 bytes of unused space will remain
in the receiver. The value of these unused bytes is
unpredictable. Unconverted source record bytes, if any,
will be processed as a partial source record on the next
invocation of the instruction and will be preceded by the
appropriate TRN control information when performing
transparency conversion.

When the record spanning function is not specified in
the algorithm modifier, the controls operand is updated
to describe only the last fully converted record in the
receiver. The value of the remaining bytes in the
receiver is unpredictable.

When string processing is specified, the compression is
performed as follows.

The compression function is performed on the data for
the entire source operand on a compression string basis.
In this case, the fields in the controls operand related to
record processing are ignored.

The conversion process for the source operand is
completed by placing the compressed data into the
receiver.

2-54

When the compressed data cannot be compl'etely
contained in the receiver, the instruction ends with a
resultant condition of receiver overrun. As much of the
compressed data as will fit is placed into the receiver
and the controls operand is updated to describe how
much of the source data was successfully converted into
the receiver. The last compression entry placed into the
receiver may be adjusted if necessary to a length that
provides for filling out the receiver. This length
adjustment applies only to compression entries for
nonduplicate strings. Compression entries for duplicate
strings are placed in the receiver only if they fit with no
adjustment. By doing this, no more than 1 byte of
unused space will remain in the receiver.

When the compressed data can be completely contained
in the receiver, the instruction ends with a resultant
condition of source exhausted. The compressed data is
placed into the receiver and the controls operand is
updated to indicate that all of the source data was
successfully converted into the receiver.

At this point, either conversion of a source record has
been completed or conversion has been interrupted due
to detection of the source exhausted or receiver overrun
conditions. For record processing, if neither of the
above conditions has been detected either during
conversion of or at completion of conversion for the
current record, the conversion process continues on the
next source record with the blank truncation step
described above.

At completion of the instruction, the offset value for the
receiver locates the byte following the last converted
byte in the receiver. The value of the remaining bytes in
the receiver after the last converted byte are
unpredictable. The offset value for the source locates
the byte following the last source byte for which
conversion was completed. When the record spanning
function is specified in the. algorithm modifier, the
unconverted source record bytes value specifies the
length of the remaining source record bytes yet to be
converted. When the record spanning function is not
specified in the algorithm modifier, the unconverted
source record bytes value has no meaning and is not
set, The gap offset value indicates the offset to the next
gap relative to the source offset value set for this
condition, The gap offset value has no meaning and is
not set when the data field length is zero.

Any form of overlap between the operands on this
instruction yields unpredictable results in the receiver
operand.

Resultant Conditions: Source exhausted-All bytes in the
source operand have been converted into the receiver
operand. Receiver overrun-An overrun condition in the
receiver operand was detected before all of the bytes in
the source operand were processed.

Programming Notes:

If the source operand does not end on a record
boundary, in which case the last record is spanned out
of the source, this instruction performs conversion only
up to the start of that partial record. In this case, the
user of the instruction must move this partial record to
combine it with the rest of the record in the source
operand to provide for its being processed correctly
upon the next invocation of the instruction. If full
records are provided, the instruction performs its
conversions out to the end of the source operand and
no special processing is required.

For the special case of a tie between the source
exhausted and receiver overrun conditions, the source
exhausted condition is recognized first. That is, when
source exhausted is the resultant condition, the receiver
may also be full. In this case, the offset into the
receiver operand may contain a value equal to the length
specified for the receiver, which would cause an
exception to be detected on the next invocation of the
instruction. The processing performed for the source
exhausted condition should provide for this case if the
instruction is to be invoked multiple times with the same
controls operand template. When the receiver overrun
condition is the resultant condition, the source will
always contain data that can be converted.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0000 Machine status
0101 Machine check

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-55

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment violation

03 Range

06 Optimized addressability
invalid

08 Argument/Parameter

01 Parameter reference violation

10 Damage Encountered

44 Partial system object damage

1C Machine-Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

2A Program Creation

05 Invalid op-code extender field

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

09 Invalid branch target operand

OA Invalid operand length

OC Invalid operand ODT reference

2C Program Execution

04 Invalid branch target

32 Scalar Specification

01 Scalar type invalid

38 Template Specification

01 Template value invalid

2-56

Operands
1 2 3 Other

x X X
X X X
X X X
X X X

X X X

X X X
X X X
X X X

X X X
X X X

X X X
X X X
X X X

X
X X X

X X X

X

X

X

X
X

X

X

X

CONVERT DECIMAL FORM TO FLOATING-POINT
(CVTDFFP)

Op Code
IHex)

107F

Operand
1

Receiver

Operand
2

Decimal
exponent

Operand
3

Decimal significand

Operand 1: Floating-point variable scalar.

Operand 2: Packed scalar or zoned scalar.

Operand 3: Packed scalar or zoned scalar.

Description: This instruction converts the decimal form
of a floating-point value specified by a decimal
exponent and a decimal significand to binary
floating-point format. and places the result in the
receiver operand. The decimal exponent (operand 2) and
decimal significand (operand 3) are considered to specify
a decimal form of a floating-point number. The value of
this number is considered to be as follows:

Value = S .. (10 E)

where: S = The value of the decimal
significand operand.

E = The value of the decimal
exponent operand.

.. Denotes multiplication.

.... Denotes exponentiation.

The decimal exponent must be specified as a decimal
integer value; no fractional digit positions may be
specified in its definition. The decimal exponent is a
signed integer value specifying a power of 10 which
gives the floating-point value its magnitude. A decimal
exponent value too large or too small to be represented
in the receiver will result in the detection of the
appropriate floating-point overflow or floating-point
underflow exception.

J

The decimal significand must be specified as a decimal
value with a single integer digit position and optional
fractional digit positions. The decimal significand is a
signed decimal value specifying decimal digits which
give the floating-point value its precision. The
significant digits of the decimal significand are
considered to start with the leftmost nonzero decimal
digit and continue to the right to the end of the decimal
significand value. Significant digits beyond 7 for a short
float receiver, and beyond 15 for a long float receiver
exceed the precision provided for in the binary
floating-point receiver. These excess digits do
participate in the conversion to provide for uniqueness
of the conversion as well as for proper rounding.

The decimal form floating-point value specified by the
decimal exponent and decimal significand operands is
converted to a binary floating-point number and
rounded to the precision of the result field as follows:

Source values which, in magnitude M, are in the range
where (10**31-1) * 10**-31 <= M <= (10**31-1)
*10**+31 are converted subject to the normal rounding
error defined for the floating-point rounding modes.

Source values which, in magnitude M, are in the range
where (10**31-1) * 10**-31 > M > (10**31-1)
*10**+31 are converted such that the rounding error
incurred on the conversion may exceed that defined
above. For round to nearest, this error will not exceed
by more than .47 units in the least significant digit
position of the result in relation to the error that would
be incurred for normal rounding. For the other
floating-point rounding modes, this error will not exceed
1.47 units in the least significant digit position of the
result.

The converted and rounded value is then assigned to
the floating-point receiver.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0000 Machine status
0101 Machine check

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-57

Exceptions CONVERT EXTERNAL FORM TO NUMERIC VALUE
(CVTEFN)

Operands
Exception 1 2 3 Other Op Code Operand Operand Operand

(Hex) 1 2 3
06 Addressing

01 Space addressing violation X X X 1087 Receiver Source Mask
02 Boundary alignment violation X X X
03 Range X X X Operand 1: Numeric variable scalar or data-pointer-defined
06 Optimized addressability invalid X X X numeric scalar.

08 Argument/ Parameter
01 Parameter reference violation X X X

Operand 2: Character scalar or data-pointer-defined character
scalar.

OC Computation
02 Decimal data X X Operand 3: Character(3) scalar, null, or data-pointer-defined
06 Floating-point overflow X character(3) scalar.

07 Floating-point underflow X
00 Floating-point inexact result X

10 Damage Encountered Description: This instruction scans a character string for

44 Partial system object damage X a valid decimal number in display format, removes the

lC Machine-Dependent Exception display character, and places the results in the receiver

03 Machine storage limit exceeded X operand. The operation begins by scanning the

20 Machine Support character string value in the source operand to make

02 Machine check X sure it is a valid decimal number in display format.

03 Function check X

22 Object Access The character string defined by operand 2 consists of

01 Object not found X X X the following optional entries:

02 Object destroyed X X X
03 Object suspended X X X • Currency symbol-This value is optional and, if

24 Pointer Specification present, must precede any sign and digit values. The

01 Pointer does not exist X X X valid symbol is determined by operand 3. The

02 Pointer type invalid X X X currency symbol may be preceded in the field by

2A Program Creation blank (hex 40) characters.

05 Invalid op-code extender field X

06 Invalid operand type X X X · Sign symbol-This value is optional and, if present,

07 Invalid operand attribute X X X may precede any digit values (a leading sign) or may

08 Invalid operand value range X X X follow the digit values (a trailing sign). Valid signs are

OA Invalid operand length X X X positive (hex 4E) and negative (hex 60). The sign

OC Invalid operand ODT reference X X X symbol, if it is a leading sign, may be preceded by

00 Reserved bits are not zero X X X X blank characters. If the sign symbol is a trailing sign,

32 Scalar Specification it must be the rightmost character in the field. Only

01 Scalar type invalid X X X one sign symbol is allowed.

• Decimal digits-Up to 31 decimal digits may be
specified. Valid decimal digits are in the range of hex
FO through hex F9 (0-9). The first decimal digit may
be preceded by blank characters (hex 40). but hex 40
values located to the right of the leftmost decimal
digit are invalid.

2-58

The decimal digits may be divided into two parts by
the decimal point symbol: an integer part and a
fractional part. Digits to the left of the decimal point
are interpreted as integer values. Digits to the right
are interpreted as a fractional values. If no decimal
point symbol is included, the value is interpreted as
an integer value. The valid decimal point symbol is
determined by operand 3. If the decimal point
symbol precedes the leftmost decimal digit, the digit
value is interpreted as a fractional value, and the
leftmost decimal digit must be adjacent to the
decimal point symbol. If the decimal point follows
the rightmost decimal digit, the digit value is
interpreted as an integer value, and the rightmost
decimal digit must be adjacent to the decimal point.

Decimal digits in the integer portion may optionally
have comma symbols separating groups of three
digits. The leftmost group may contain one, two, or
three decimal digits, and each succeeding group must
be preceded by the comma symbol and contain three
digits. The comma symbol must be adjacent to a
decimal digit on either side. The valid comma symbol
is determined by operand 3.

Decimal digits in the fractional portion may not be
separated by commas and must be adjacent to one
another.

Examples of external formats follow. The following
symbols are used.

$ - currency symbol
- decimal point
- comma

D - digit (hex FO-hex F9)
b - blank (hex 40)
+ - positive sign

negative sign

Format

$+DDDD.DD

DD,DDD-

-.DDD
$DDD,DDD-

b$b+bDD.DD

Comments

Currency symbol, leading sign,
no comma separators
Comma symbol, no fraction,
trailing sign
No integer, leading sign
No fraction, comma symbol,
trailing sign
Embedded blanks before digits

Operand 3 must be a 3-byte character scalar. 8yte 1 of
the string indicates the byte value that is to be used for
the currency symbol. Byte 2 of the string indicates the
byte value to be used for the comma symbol. Byte 3 of
the string indicates the byte value to be used for the
decimal point symbol. If operand 3 is null, the currency
symbol (hex 58), comma (hex 6B), and decimal point
(hex 48) are used.

If the syntax rules are violated, a conversion exception is
signaled. If not, a zoned decimal value is formed from
the digits of the display format character string. This
number is placed in the receiver operand following the
rules of a normal arithmetic conversion.

If a decimal to binary conversion causes a size exception
to be signaled, the binary value contains the correct
truncated result only if the decimal value contains 15 or
fewer significant nonfractional digits.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-59

Exceptions CONVERT FLOATING·POINT TO DECIMAL FORM
(CVTFPDF)

Operands
Exception 1 2 3 Other Op Code Operand Operand Operand

(Hex) 1 2 3
06 Addressing

01 Space addressing violation X X X 10BF Decimal Decimal Source
02 Boundary alignment X X X exponent significand
03 Range X X X
06 Optimized addressability invalid X X X Operand 1: Packed variable scalar or zoned variable scalar.

08 Argument/ Parameter
01 Parameter reference violation X X X

Operand 2: Packed variable scalar or zoned variable scalar.

OC Computation Operand 3: Floating-point scalar.
01 Conversion X
OA Size X

10 Damage Encountered Optional Form
04 System object damage state X X X X
44 Partial system object damage X X X X Op Code

1C Machine-Dependent Exception Mnemonic (Hex) Form Type

03 Machine storage limit exceeded X
20 Machine Support CVTFPDFR 12BF Round

02 Machine check X
03 Function check X

22 Object Access Description: This instruction converts a binary

01 Object not found X X X floating-point value to a decimal form of a

02 Object destroyed X X X
floating-point value specified by a decimal exponent and

03 Object suspended X X X a decimal significand, and places the result in the

24 Pointer Specification decimal exponent and decimal significand operands.

01 Pointer does not exist X X X ~ 02 Pointer type invalid X X X The value of this number is considered to be as follows:

2A Program Creation
06 Invalid operand type X X X Value = S - (lO**E)

07 Invalid operand attribute X X X
08 Invalid operand value range X X X

where: S= The value of the decimal

OA Invalid operand length X X
significand operand.

OC Invalid operand ODT reference X X X
E= The value of the decimal

00 Reserved bits are not zero X X X X
exponent operand.

- Denotes multiplication.
32 Scalar Specification

--
Denotes exponentiation. 01 Scalar type invalid X X X

02 Scalar attribute invalid X
The decimal exponent must be specified as a decimal
integer value. No fractional digit positions are allowed.
It must be specified with at least five digit positions.
The decimal exponent provides for containing a signed
integer value specifying a power of 10 which gives the
floating-point value its magnitude.

The decimal significand must be specified as a decimal
value with a single integer digit position and optional
fractional digit positions. The decimal significand
provides for containing a signed decimal value specifying
decimal digit is which give the floating-point value its
precision. The decimal significand is formed as a
normalized value, that is, the leftmost digit position is

J nonzero for a nonzero source value.

2-60

When the source contains a representation of a
normalized binary floating-point number with decimal
significand digits beyond the leftmost 7 digits for a short
floating-point source or beyond the leftmost 15 digits
for a long floating-point source, the precision allowed
for the binary floating-point source is exceeded.

When the source contains a representation of a
denormalized binary floating-point number, it may
provide less precision than the precision of a normalized
binary floating-point number, depending on the
particular source value. Decimal significand digits
exceeding the precision of the source are set as a result
of the conversion to provide for uniqueness of
conversion and are correct, except for rounding errors.
These digits are only as precise as the floating-point
calculations that produced the source value. The
floating-point inexact result exception provides a means
of detecting loss of precision in floating-point
calculations.

The binary floating-point source is converted to a
decimal form floating-point value and rounded to the
precision of the decimal significand operand as follows:

• The decimal significand is formed as a normalized
value and the decimal exponent is set accordingly.

• For the nonround form of the instruction, the value to
be assigned to the decimal significand is adjusted to
the precision of the decimal significand, if necessary,
according to the current float rounding mode in effect
for the process. For the optional round form of the
instruction, the decimal round algorithm is used for
the precision adjustment of the decimal significand.
The decimal round algorithm overrides the current
floating-point rounding mode that is in effect for the
process.

• Source values which, in magnitude M, are in the
range where (10**31-1) * 10**-31 <= M <=
(10**31-1) * 10**+31 are converted subject to the
normal rounding error defined for the floating-point
rounding modes and the optional round form of the
instruction.

• Source values which, in magnitude M, are in the
range where (10**31-1) * 10**-31 > M > (10**31-1)
* 10**+31 are converted such that the rounding error
incurred on the conversion may exceed that defined
above. For round to nearest and the optional round
form of the instruction, this error will not exceed by
more than .47 units in the least significant digit
position of the result, the error that would be incurred
for a correctly rounded result. For the other
floating-point rounding modes, this error will not
exceed 1.47 units in the least significant digit position
of the result.

• If necessary, the decimal exponent value is adjusted
to compensate for rounding.

• The converted and rounded value is then assigned to
the decimal exponent and decimal significand
operands.

A size exception cannot occur on the assignment of the
decimal exponent or the decimal significand values.

The result of the operation is unpredictable for any type
of overlap between the decimal exponent and decimal
significand operands.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

oooD Machine status
0101 Machine check

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 I nstruction reference

0017 Damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-61

Exceptions CONVERT HEX TO CHARACTER (CVTHC)

Operands Op Code Operand Operand J Exception 1 2 3 Other (Hex) 1 2

06 Addressing 1086 Receiver Source
01 Space addressing violation X X X
02 Boundary alignment violation X X X Operand 1: Character variable scalar.
03 Range X X X
06 Optimized addressability invalid X X X Operand 2: Character scalar.

08 Argument / Parameter
01 Parameter reference violation X X X

DC Computation Description: Each hex digit (4-bit value) of the string

DC Invalid floating-point conversion X X value in the source operand is converted to a character

00 Floating-point inexact result X (8-bit value) and placed in the receiver operand.

10 Damage Encountered
44 Partial system object damage X Hex Digits Characters

1C Machine- Dependent Exception
03 Machine storage limit exceeded X Hex 0-9 = Hex FO-F9

20 Machine Support Hex A-F Hex C1-C6

02 Machine check X
03 Function check X The operation begins with the two operands

22 Object Access left-adjusted and proceeds left to right until all the

01 Object not found X X X characters of the receiver operand have been filled. If

02 Object destroyed X X X the source operand contains fewer hex digits than

03 Object suspended X X X needed to fill the receiver, the excess characters are

24 Pointer Specification assigned a value of hex FO. If the source operand is too

01 Pointer does not exist X X X large, a length conformance or an invalid operand length

02 Pointer type invalid X X X exception is signaled.

2A Program Creation
05 Invalid op-code extender field X Substring operand references that allow for a null

06 Invalid operand type X X X substring reference (a length value of zero) may be

07 Invalid operand attribute X X X specified for operands 1 and 2. The effect of specifying

08 Invalid operand value range X X X a null substring reference for the source is that the

OA Invalid operand length X X X bytes of the receiver are each set with a value of hex

DC Invalid operand cor reference X X X FO. The effect of specifying a null substring reference

00 Reserved bits are not zero X X X X for the receiver is that no result is set.

32 Scalar Specification
01 Scalar type invalid X X X

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

J
2-62

Exceptions CONVERT MRJE TO CHARACTER (CVTMC)

l- Operands Op Code Operand Operand Operand
Exception 1 2 Other (Hex) 1 2 3

06 Addressing 10AB Receiver Controls Source
01 Space addressing violation X X
02 Boundary alignment X X Operand 1: Character variable scalar.
03 Range X X
06 Optimized addressability invalid X X Operand 2: Character(6) variable scalar (fixed-length).

08 Argument/ Parameter

01 Parameter reference violation X X
Operand 3: Character scalar.

OC Computation

08 Length conformance X Optional Forms
10 Damage Encountered

04 System" object damage state X X X Op Code
44 Partial system object damage X X X Mnemonic (Hex) Form Type

1C Machine- Dependent Exception

03 Machine storage limit exceeded X CVTMCI 18AB Indicator

20 Machine Support
CVTMCB 1CAB Branch

02 Machine check X
03 Function check X

22 Object Access
Extender: Branch options or indicator options.

01 Object not found X X
02 Object destroyed X X

If the branch or indicator option is specified in the op

03 Object suspended X X code, the extender field must be present along with one

24 Pointer Specification
or two branch targets (for branch options) or one or two

l- 01 Pointer does not exist X X
indicator operands (for indicator options). The branch or

02 Pointer type invalid X X
indicator operands immediately follow the last operand

2A Program Creation
listed above. See Chapter 1. Introduction for the

06 Invalid operand type X X
encoding of the extender field and the allowed syntax of

07 Invalid operand attribute X X the branch and indicator operands.

08 Invalid operand value range X X
OA Invalid operand length X X
OC Invalid operand ODT reference X X
00 Reserved bits are not zero X X X

Computation and Branching Instructions 2-63

Description: This instruction converts a character string
from the MRJE (MULTI-LEAVING remote job entry)
compressed format to character format. The operation
converts the source (operand 3) from the MRJE
compressed format to character format under control of
the controls (operand 2) and places the results in the
receiver (operand 1).

The source and receiver operands must both be
character strings. The source operand cannot be
specified as either a signed or unsigned immediate
value.

The controls operand must be a character scalar that
specifies additional information to be used to control the
conversion operation. It must be at least 6 bytes in
length and have the following format:

• Controls operand
Offset into the receiver operand
Offset into the source operand
Algorithm modifier

- Receiver record length

Char(6)
Bin(2)
Bin(2)
Char(1)
Char(1)

As input to the instruction, the source and receiver
offset fields specify the offsets where bytes of the
source and receiver operands are to be processed. If an
offset is equal to or greater than the length specified for
the operand it corresponds to (it identifies a byte
beyond the end of the operand). a template value invalid
exception is signaled. As output from the instruction,
the source and receiver offset fields specify offsets that
indicate how much of the operation is complete when
the instruction ends.

The algorithm modifier has the following valid values:

• Hex 00 = Do not move SRCBs (sub record control
bytes) from the source into the receiver.

• Hex 01 = Move SRCBs from the source into the
receiver.

2-64

The receiver record length value specifies the record
length to be used to convert source records into the
receiver operand. This length applies to only the string
portion of the receiver record and does not include the
optional SRCB field. If a receiver record length of a is
specified, a template value invalid exception is signaled.

Only the first 6 bytes of the controls operand are used.
Any excess bytes are ignored.

The operation begins by accessing the bytes of the
source operand at the location specified by the source
offset. This is assumed to be the start of a record. The
bytes of the records in the source operand are
converted into the receiver operand at the location
specified by the receiver offset according to the
following algorithm.

The first byte of the source record is considered to be
an RCB (record control byte) that is to be ignored during
conversion.

The second byte of the source record is considered to
be an SRCB. If an algorithm modifier of value hex 00
was specified, the SRCB is ignored. If an algorithm
modifier of value hex 01 was specified, the SRCB is
copied into the receiver.

. The strings to be built in the receiver record are
described in the source after the SRCB by one or more
SCBs (string control bytes).

The format of the SCBs in the source are as follows:

• SCB format is 0 k 1 jjjjj

The bit meanings are:

Bit Value

o o

k o

o

jjjjj

1 jjjjj

Meaning

End of record; the EOR SeB
is hex DO.

All other SeBs.

The string is compressed.

The string is not compressed.

For k = 0:

Blanks (hex 4Os) have been
deleted.

Nonblank characters have
been deleted. The next
character in the data stream is
the specimen character.

For k = 1:
This bit is part of the length
field for length of
uncompressed data.

Number of characters that
have been deleted if k = o.
The value can be 1-31.

Number of characters to the
next SeB (no compression) if
k = 1. The value can be 1-63.
The uncompressed
(nonidentical bytes) follow the
SeB in the data stream.

A length of 0 encountered in an SeB results in the
signaling of a conversion exception.

Strings of blanks or non blank identical characters
described in the source record are repeated in the
receiver the number of times indicated by the seB count
value.

Strings of nonidentical characters described in the
source record are moved into the receiver for the length
indicated by the seB count value.

When an EOR (end of record) SeB (hex DO) is
encountered in the source, the receiver is padded with
blanks out to the end of the current record.

If the converted form of a source record is larger than
the receiver record length, the instruction is terminated
by signaling a length conformance exception.

If the end of the source operand is not encountered, the
operation then continues by reapplying the above
algorithm to the next record in the source operand.

If the end of the source operand is encountered
(whether or not in conjunction with a record boundary,
EOR SeB in the source), the instruction ends with a
resultant condition of source exhausted. The offset value
for the receiver locates the byte following the last fully
converted record in the receiver. The offset value for
the source locates the byte following the last source
record for which conversion is complete. The value of
the remaining bytes in the receiver after the last
converted record are unpredictable.

If the converted form of a record cannot be completely
contained in the receiver, the instruction ends with a
resultant condition of receiver overrun. The offset value
for the receiver locates the byte following the last fully
converted record in the receiver. The offset value for
the source locates the byte following the last source
record for which conversion is complete. The value of
the remaining bytes in the receiver after the last
converted record is unpredictable.

Any form of overlap between the operands on this
instruction yields unpredictable results in the receiver
operand.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

If the source exhausted and the receiver overrun
conditions occur at the same time, the source exhausted
condition is recognized first. In this case, the offset into
the receiver operand may contain a value equal to the
length specified for the receiver which causes an
exception to be signaled on the next invocation of the
instruction. The processing performed for the source
exhausted condition provides for this case if the
instruction is invoked multiple times with the same
controls operand template. When the receiver overrun
condition is the resultant condition, the source always
contains data that can be converted.

Computation and Branching Instructions 2-65

Resultant Conditions: Source exhausted-All full records Exceptions

in the source operand have been converted into the
receiver operand. Receiver overrun-An overrun condition Operands J in the receiver operand was detected prior to processing Exception , 2 3 Other

all of the bytes in the source operand.
06 Addressing

01 Space addressing violation X X X

Events 02 Boundary alignment violation X X X
03 Range X X X

OOOC Machine resources 06 Optimized addressability X X X

0201 Machine auxiliary storage exceeded
invalid

08 Argumentl Parameter

0000 Machine status
01 Parameter reference violation X X X

0101 Machine check
OC Computation

01 Conversion X

0010 Process
08 Length conformance X

0701 Maximum processor time exceeded
10 Damage Encountered

44 Partial system object damage X

0016 Machine observation
1C Machine-Dependent Exception

0101 Instruction reference
03 Machine storage limit exceeded X

20 Machine Support

0017 Damage set
02 Machine check X
03 Function check X

0801 Partial system object damage set
22 Object Access

01 Object not found X X X
02 Object destroyed X X X
03 Object suspended X X X

24 Pointer Specification

01 Pointer does not exist X X X

~ 02 Pointer type invalid X X X
2A Program Creation

05 Invalid op code extender field X

06 Invalid operand type X X X
07 Invalid operand attribute X X X

08 Invalid operand value range X X X

09 Invalid branch target operand X
OA Invalid operand length X
OC Invalid operand ODT reference X X X

00 Reserved bits are not zero X X X X
2C Program Execution

04 Invalid branch target X

32 Scalar Specification

01 Scalar type invalid X X X
38 Template Specification

01 Template value invalid X

2-66

CONVERT NUMERIC TO CHARACTER (CVTNC)

Op Code Operand Operand
(Hex) 1 2

10A3 Receiver Source

Operand
3

Attributes

Operand 1: Character variable scalar or data-pointer-defined
character scalar.

Operand 2: Numeric scalar or data-pointer-defined numeric
scalar.

Operand 3: Character(7) scalar or data-pointer-defined
character(7) scalar.

Description: The source numeric value (operand 2) is
converted and copied to the receiver character string
. (operand 1). The receiver operand is treated as though it
had the attributes supplied by operand 3.

Operand 1, when viewed in this manner, receives the
numeric value of operand 2 following the rules of the
Copy Numeric Value instruction.

The format of operand 3 is as follows:

• Scalar attributes
Scalar type
Hex 00 = Binary
Hex 01 = Floating-point
Hex 02 = Zoned decimal
Hex 03 = Packed decimal
Scalar length
If binary:

Length (Ll
(where L = 2 or 4)

If floating-point:
Length
(where L = 4 or 8)

If zoned decimal or packed
decimal:

Char(7)
Char(1)

Bin(2)

Bits 0-15

Bits 0-15

Fractional digits (F) Bits 0-7
Total digits (T) (where Bits 8-15
1 ~ T ~ 31 and 0 ~ F ~ T)

Reserved (binary 0) Bin(4)

The byte length of operand 1 must be large enough to
contain the numeric value described by operand 3. If it
is not large enough, a scalar value invalid exception is
signaled. If it is larger than needed, the numeric value is
placed in the leftmost bytes and the unneeded rightmost
bytes are unchanged by the instruction.

If a decimal to binary conversion causes a size exception
to be signaled, the binary value contains the correct
truncated result only if the decimal value contains 15 or
fewer significant nonfractional digits.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-67

Exceptions CONVERT SNA TO CHARACTER (CVTSC)

Operands Op Code Operand Operand Operand ,J Exception 1 2 3 [4, 5] Other (Hex) 1 2 3

06 Addressing 10DB Receiver Controls Source
01 Space addressing violation X X X
02 Boundary alignment X X X Operand 1: Character variable scalar.
03 Range X X X
04 External data object not found X X X Operand 2: Character(14) variable scalar.

06 Optimized addressability X X X
Operand 3: Character scalar. invalid

08 Argument/ Parameter

01 Parameter reference violation X X X
OC Computation

Optional Forms

02 Decimal data X
Op Code

06 Floating-point overflow X Mnemonic (Hex) Form Type
07 Floating-point underflow X
09 Floating- point invalid operand X CVTSCI 18DB Indicator

OA Size X CVTSCB lCDB Branch

OC Invalid floating-point X
conversion

00 Floating-point inexact result X Extender: Branch options or indicator options.

10 Damage Encountered

04 System object damage state X X X X If the branch or indicator option is specified in the op

44 Partial system object damage X X X X code, the extender field must be present along with one

lC Machine-Dependent Exception to three branch targets (for branch options) or one to

03 Machine storage limit X three indicator operands (for indicator options). The
exceeded branch or indicator operands immediately follow the last

20 Machine Support operand listed above. See Chapter 1. Introduction for
02 Machine check X the encoding of the extender field and the allowed
03 Function check X syntax of the branch and indicator operands.

22 Object Access

01 Object not found X X X
02 Object destroyed X X X Description: This instruction converts a string value from
03 Object suspended X X X the SNA (systems network architecture) format to

24 Pointer Specification character. The operation converts the source (operand
01 Pointer does not exist X X X 3) from SNA format to character under control of the
02 Pointer type invalid X X X controls (operand 2) and places the result into the

2A Program Creation receiver (operand 1).
06 Invalid operand type X X X
07 Invalid operand attribute X X X The source and receiver operands must both be
08 Invalid operand value range X X X character strings. The source operand may not be
OA Invalid operand length X X specified as an immediate operand.
OC Invalid operand ODT reference X X X
00 Reserved bits are not zero X X X X

32 Scalar Specification

01 Scalar type invalid X X X
02 Scalar attribute invalid X
03 Scalar value invalid X

J
2-68

The controls operand must be a character scalar that
specifies additional information to be used to control the
conversion operation. It must be at least 14 bytes in
length and have the following format:

• Controls operand base template
- Receiver offset

Source offset
Algorithm modifier
Receiver record length
Record separator
Prime compression
Unconverted receiver
record bytes
Conversion status
Unconverted transparency
string bytes
Offset into template
to translate table

• Controls operand optional
template extension

Record separator translate
table

Char(14)
Bin(2)
Bin(2)
Char(1)
Char(1)
Char(1)
Char(1)
Char(1)

Char(2)
Char(1)

Bin(2)

Char(64)

Char(64)

Upon input to the instruction, the source and receiver
offset fields specify the offsets where bytes of the
source and receiver operands are to be processed. If an
offset is equal to or greater than the length specified· for
the operand it corresponds to (it identifies a byte
beyond the end of the operand), a template value invalid
exception is signaled. As output from the instruction
they are set to specify offsets that indicate how much of
the operation is complete when the instruction ends.

The algorithm modifier specifies the optional functions
to be performed. Any combination of functions not
precluded by the bit definitions below is valid except
that at least one of the functions must be specified. All
algorithm modifier bits cannot be zero. Specification of
an invalid algorithm modifier value results in a template
value invalid exception. The meaning of the bits in the
algorithm modifier is the following:

Bits Meaning

0 0 Do not perform decompression.
Interpret a source character value
of hex 00 as null.

Perform decompression. Interpret
a source character value of hex 00
as a record separator.

1-2 00 No record separators in source, no
blank padding.
Do not perform data transparency
conversion.

01 = Reserved.

10 = Record separators in source,
perform blank padding.
Do not perform data transparency
conversion.

11 Record separators in source,
perform blank padding.
Perform data transparency
conversion.

3-4 00 Do not put record separators into
receiver.

01 Move record separators from
source to receiver (allowed only
when bit 1 = 1).

10 Translate record separators from
source to receiver (allowed only
when bit 1 = 1).

11 = Move record separator from
controls to receiver.

5-7 Reserved

The receiver record length value specifies the record
length to be used to convert source records into the
receiver operand. This length applies only to the data
portion of the receiver record and does not include the
optional record separator. Specification of a receiver
record length of zero results in a template value invalid
exception. The receiver record length value is ignored if
no record separator processing is requested in the
algorithm modifier.

Computation and Branching Instructions 2-69

The record separator value specifies the character that is
to precede the converted form of each record in the
receiver. The record separator character specified in the
controls operand is used only for the case where the
move record separator from controls to receiver function
is specified in the algorithm modifier, or where a
missing record separator in the source is detected.

The prime compression value specifies the character to
be used as the prime compression character when
performing decompression of the SNA format source
data to character. It may have any value. The prime
compression value is ignored if the decompression
function is not specified in the algorithm modifier.

The unconverted receiver record bytes value specifies
the number of bytes remaining in the current receiver
record that are yet to be set with converted bytes from
the source.

When record separator processing is specified in the
algorithm modifier, this value is both input to and output
from the instruction. On input, a value of hex 00 means
it is the start of processing for a new record, and the
initial conversion step is yet to be performed. This
indicates that for the case where a function for putting
record separators into the receiver is specified in the
algorithm modifier, a record separator character has yet
to be placed in the receiver. On input, a nonzero value
less than or equal to the record length specifies the
number of bytes remaining in the current receiver record
that are yet to be set with converted bytes from the
source. This value is assumed to be the valid count of
unconverted receiver record bytes relative to the current
byte to be processed in the receiver as located by the
receiver offset value. As such, it is used to determine
the location of the next record boundary in the receiver
operand. This value must be less than or equal to the
receiver record length value; otherwise, a template value
invalid exception is signaled. On output, this field is set
with a value as defined above which describes the
number of bytes of the current receiver record not yet
containing converted data.

When record separator processing is not specified in the
algorithm modifier, this value is ignored.

2-70

The conversion status value specifies status information
for the operation to be performed. The meaning of the
bits in the conversion status is the following:

Bits Meaning

o o No transparency string active.

Transparency string active.
Unconverted transparency string
bytes value contains the remaining
string length.

1-15 Reserved

This field is both input to and output from the
instruction. It provides for checkpointing the conversion
status over successive executions of the instruction.

If the conversion. status indicates transparency string
active, but the algorithm modifier does not specify
perform data transparency conversion, a template value
invalid exception is signaled.

The unconverted transparency string bytes value
specifies the number of bytes remaining to be converted
for a partially processed transparency string in the
source.

When perform data transparency conversion is specified
in the algorithm modifier, the unconverted transparency
string bytes value can be both input to and output from
the instruction.

On input. when the no transparency string active status
is specified in the conversion status, this value is
ignored.

On input, when transparency string active status is
specified in the conversion status, this value contains a
count for the remaining bytes to be converted for a
transparency string in the source. A value of hex ()()
means the count field for a transparency string is the
first byte of data to be processed from the source
operand. A value of hex 01 through hex FF specifies the
count of the remaining bytes to be converted for a
transparency string. This value is assumed to be the
valid count of unconverted transparency string bytes
relative to the current byte to be processed in the
source as located by the source offset value.

On output, this value is set if necessary along with the
transparency string active status to describe a partially
converted transparency string. A value of hex 00 will be
set if the count field is the next byte to be processed for
a transparency string. A value of hex 01 through hex FF
specifying the number of remaining bytes to be
converted for a transparency string, will be set if the
count field has already been processed.

When do not perform data transparency conversion is
specified in the algorithm modifier, the unconverted
transparency string bytes value is ignored.

The offset into template to translate table value specifies
the offset from the beginning of the template to the
record separator translate table. This value is ignored
unless the translate record separators from source to
receiver function is specified in the algorithm modifier.

The record separator translate table value specifies the
translate table to be used in translating record
separators specified in the source to the record
separator value to be placed into the receiver. It is
assumed to be 64 bytes in length, providing for
translation of record separator values of from hex 00 to
hex 3F. This translate table is used only when the
translate record separators from source to receiver
function is specified in the algorithm modifier. See the
record separator conversion function under the
conversion process described below for more detail on
the usage of the translate table.

Only the first 14 bytes of the controls operand base
template and the optional 64-byte extension area
specified for the record separator translate table are
used. Any excess bytes are ignored.

The description of the conversion process is presented
as a series of separately performed steps, which may be
selected in allowable combinations to accomplish the
conversion function. It is presented this way to allow for
describing these functions separately. However, in the
actual execution of the instruction, these functions may
be performed in conjunction with one another or
separately, depending upon which technique is
determined to provide the best implementation.

The operation is performed either on a record-by-record
basis, record processing, or on a non record basis, string
processing. This is determined by the functions selected
in the algorithm modifier. Specifying the record
separators in source, j:)erform blank padding or move
record separator from controls to receiver indicates
record processing is to be performed. If neither of these
functions is specified, in which case decompression
must be specified, it indicates that string processing is
to be performed.

The operation begins by accessing the bytes of the
source operand at the location specified by the source
offset.

When record processing is specified, the source offset
may locate a point at which processing of a partially
converted record is to be resumed or processing for a
full record is to be started. The unconverted receiver
record bytes value indicates whether conversion
processing is to be started with a partial or a full record.
Additionally, the transparency string active indicator in
the conversion status field indicates whether conversion
of a transparency string is active for the case of
resumption of processing for a partially converted
record. The conversion process is started by completing
the conversion of a partial source record if necessary
before processing the first full source record.

When string processing is specified, the source offset is
assumed to locate the start of a compression entry.

When during the conversion process the end of the
receiver operand is encountered, the instruction ends
with a resultant condition of receiver overrun.

When record processing is specified in the algorithm
modifier, this check is performed at the start of
conversion for each record. A source exhausted
condition would be detected before a receiver overrun
condition if there is no source data to convert. If the
receiver operand does not have room for a full record,
the receiver overrun condition is recognized. The
instruction is terminated with status in the controls
operand describing the last completely converted record.
For receiver overrun, partial conversion of a source
record is not performed.

When string processing is specified in the algorithm
modifier, then decompression must be specified and the
decompression function described below defines the
detection of receiver overrun.

Computation and Branching Instructions 2-71

When during the conversion process the end of the
source operand is encountered, the instruction ends with
a resultant condition of source exhausted. See the
description of this condition in the conversion process
described below to determine the status of the controls
operand values and the converted bytes in the receiver
for each case.

When string processing is specified, the bytes accessed
from the source are converted on a string basis into the
receiver operand at the location specified by the receiver
offset. In this case, the decompression function must be
specified and the conversion process is accomplished
with just the decompression function defined below.

When record processing is specified the bytes accessed
from the source are converted one record at a time into
the receiver operand at the location specified by the
receiver offset performing the functions specified in the
algorithm modifier in the sequence defined by the
following algorithm.

Record separator conversion is performed as requested
in the algorithm modifier during the initial record
separator processing performed as each record is being
converted. This provides for controlling the setting of
the record separator value in the receiver.

When the record separators in source option is
specified, the following algorithm is used to locate them.
A record separator is recognized in the source when a
character value less than hex 40 is encountered. When
do not perform decompression is specified, a source
character value of hex 00 is recognized as a null value
rather than as a record separator. In this case, the
processing of the current record continues with the next
source byte and the receiver is not updated. When
perform data transparency conversion is specified, a
character value of hex 35 is recognized as the start of a
transparency string rather than as a record separator.

If the do not put record separators into the receiver
function is specified, the record separator, if any, from
the source record being processed is removed from the
converted form of the source record and will not be
placed in the receiver.

If the move record separators from the source to the
receiver function is specified, the record separator from
the source record being processed is left as is in the
converted form of the source record and will be placed
in the receiver.

2-72

If the translate record separators from the source to the
receiver function is specified, the record separator from
the source record being processed is translated using
the specified translate table, replaced with its translated
value in the converted form of the source record and,
will be placed in the receiver. The translation is
performed as in the translate instruction with the record
separator value serving as the source byte to be
translated. It is used as an index into the specified
translate table to select the byte in the translate table
that contains the value to which the record separator is
to be set. If the selected translate table byte is equal to
hex FF, it is recognized as an escape code. The
instruction ends with a resultant condition of escape
code encountered, and the controls operand is set to
describe the conversion status as of the processing
completed just prior to the conversion step for the
record separator. If the selected translate table byte is
not equal to hex FF, the record separator in the
converted form of the record is set to its value.

If the move record separator from controls to receiver
function is specified, the controls record separator value
is used in the converted form of the source record and
will be placed into the receiver.

When the record separators in source do blank padding
function is requested, an assumed record separator will
be used if a record separator is missing in the source
data. In this case, the controls record separator
character is used as the record separator to precede the
converted record if record separators are to be placed in
the receiver. The conversion process continues,
bypassing the record separator conversion step that
would normally be performed. The condition of a
missing record separator is detected when during initial
processing for a full record, the first byte of data is not
a record separator character.

Decompression is performed if the function is specified
in the algorithm modifier. This provides for converting
strings of duplicate characters in compressed format in
the source back to their full size in the receiver.
Decompression of the source data is accomplished by
concatenating together character strings described by
the compression strings occurring in the source. The
source offset value is assumed to locate the start of a
compression string. Processing of a partial
decompressed record is performed if necessary.

The character strings to be built into the receiver are
described in the source by one or more compression
strings. Compression strings are comprised of an SCB
(string control byte) possibly followed by one or more
bytes of data related to the character string to be built
into the receiver.

The format of an SCB and the description of the data
that may follow it is as follows:

• SCB Char(1)
- Control Bits 0-1
00 = n nonduplicate characters are

between this SCB and the next one;
where n is the value of the
count field (1-63).

01 = Reserved.
10= This SCB represents n deleted prime

compression characters; where n is
the value of the count field (1-63).
The next byte is the next SCB.

11 = This SCB represents n deleted duplicate
characters; where n is the value of
the count field (1-63). The next
byte contains a specimen of the
deleted characters. The byte following
the specimen character contains the
next SCB.

- Count
This contains the number of
characters that have been deleted
for a prime or duplicate string, or

Bits 2-7

the number of characters to the next SCB
for a nonduplicate string. A count value
of zero is invalid and results in the
signaling of a conversion exception.

Strings of prime compression characters or duplicate
characters described in the source are repeated in the
decompressed character string the number of times
indicated by the SCB count value.

Strings of nonduplicate characters described in the
source record are formed into a decompressed character
string for the length indicated by the SCB count value.

If the end of the source is encountered prior to the end
of a compression string, a conversion exception is
signaled.

When record processing is specified, decompression is
performed one record at a time. In this case, a
conversion exception is signaled if a compression string
describes a character string that would span a record
boundary in the receiver. If the source contains record
separators, the case of a missing record separator in the
source is detected as defined under the initial
description of the conversion process. Record separator
conversion, as requested in the algorithm modifier, is
performed as the initial step in the building of the
decompressed record. A record separator to be placed
into the receiver is in addition to the data to be
converted into receiver for the length specified in the
receiver record length field. The decompression of
compression strings from the source continues until a
record separator character for the next record is
recognized when the source contains record separators,
or until the decompressed data required to fill the
receiver record has been processed or the end of the
source is encountered whether record separators are in
the source or not. Transparency strings encountered in
the decompressed character string are not scanned for a
record separator value. If the end of the source is
encountered, the data decompressed to that point
appended to the optional record separator for this
record forms a partial decompressed record. Otherwise,
the decompressed character strings appended to the
optional record separator for this record form the
decompressed record. The conversion process then
continues for this record with the next specified
function.

When string processing is specified, decompression is
performed on a compression string basis with no record
oriented processing implied. The conversion process for
each compression string from the source is completed
by placing the decompressed character string into the
receiver. The conversion process continues
decompressing compression strings from the source
until the end of the source or the receiver is
encountered. When the end of the source operand is
encountered, the instruction ends with a resultant
condition of source exhausted. When a character string
cannot be completely contained in the receiver, the
instruction ends with a resultant condition of receiver
overrun. For either of the above ending conditions, the
controls operand is updated to describe the status of
the conversion operation as of the last completely
converted compression entry. Partial conversion of a
compression entry is not performed.

Computation and Branching Instructions 2-73

Data transparency conversion is performed if perform
data transparency conversion is specified in the
algorithm modifier. This provides for correctly identifying
record separators in the source even if the data for a
record contains value that could be interpreted as record
separator values. Processing of active transparency
strings is performed if necessary.

A nontransparent record is built by appending the
nontransparent and transparent data converted from the
record to the record separator for the record. The
nontransparent record may be produced from either a
partial record from the source or a full record from the
source. This is accomplished by first accessing the
record separator for a full record. The case of a missing
record separator in the source is detected as defined
under the initial description of the conversion process.
Record separator conversion as requested in the
algorithm modifier is performed if it has not already
been performed by a prior step. Then the rest of the
source record is scanned for values of less than hex 40.

A value greater than or equal to hex 40 is considered
nontransparent data and is concatenated onto the record
being built as is.

A value equal to hex 35 identifies the start of a
transparency string. A transparency string is comprised
of 2 bytes of transparency control information followed
by the data to be made transparent to scanning for
record separators. The first byte has a fixed value of
hex 35 and is referred to as the TRN (transparency)
control character. The second byte is a l-byte
hexadecimal count, a value remaining from 1 to 255
decimal, of the number of bytes of data that follow and
is referred to as the TRN count. A TRN count of zero is
invalid and causes a conversion exception. This contains
the length of the transparent data and does not include
the TRN control information length. The transparent
data is concatenated to the nontransparent record being
built and is not scanned for record separator characters.

A value equal to hex 00 is recognized as the record
separator for the next record only when perform
decompression is specified in the algorithm modifier. In
this case, the nontransparent record is complete. When
do not perform decompression is specified in the
algorithm modifier, a value equal to hex 00 is ignored
and is not included as part of the nontransparent data
built for the current record.

2-74

A value less than hex 40 but not equal to hex 35 is
considered to be the record separator for the next
record, and the forming of the nontransparent record is
complete.

The building of the nontransparent record is completed
when the length of the data converted into the receiver
equals the receiver record length if the record separator
for the next record is not encountered prior to that
point.

If the end of the source is encountered prior to
completion of building the nontransparent record, the
nontransparent record built up to this point is placed in
the receiver and the instruction ends with a resultant
condition of source exhausted. The controls operand is
updated to describe the status for the partially converted
record. This includes describing a partially converted
transparency string, if necessary, by setting the active
transparency string status and the unconverted
transparency string bytes value.

If the building of the nontransparent record is completed
prior to encountering the end of the source, the
conversion process continues with the blank padding
function described below.

Blank padding is performed if the function is specified in
the algorithm modifier. This provides for expanding out
to the size specified by the receiver record length the
source records for which trailing blanks have been
truncated. The padded record may be produced from
either a partial record from the source or a full record
from the source.

The record separator for this record is accessed. The
case of a missing record separator in the source is
detected as defined under the initial description of the
conversion process. Record separator conversion, as
requested in the algorithm modifier, is performed if it
has not already been performed by a prior step.

The nontruncated data, if any, for the record is
appended to the optional record separator for the
record. The nontruncated data is determined by
scanning the source record for the record separator for
the next record. This scan is concluded after processing
enough data to completely fill the receiver record or
upon encountering the record separator for the next
record. The data processed prior to concluding the scan
is considered the nontruncated data for the record.

J

The blanks, if any, required to pad the record out to the
nontruncated data for the record, concluding the forming
of the padded record.

If the end of the source is encountered during the
forming of the padded record, the data processed up to
that point, appended to the optional record separator for
the record, is placed into the receiver and the instruction
ends with a resultant condition of source exhausted.
The controls operand is updated to describe the status
of the partially converted record.

If the forming of the padded record is concluded prior to
encountering the end of the source, the conversion of
the record is completed by placing the converted form
of the record into the receiver.

At this point, either conversion of a source record has
been completed or conversion has been interrupted due
to detection of the source exhausted or receiver overrun
condition. For record processing, if neither of the above
conditions has been detected either during conversion of
or at completion of conversion for the current record,
the conversion process continues on the next source
record with the decompression function described
above.

At completion of the instruction, the offset value for the
receiver locates the byte following the last converted
byte in the receiver. The value of the remaining bytes in
the receiver after the last converted byte are
unpredictable. The offset value for the source locates
the byte following the last source byte for which
conversion was completed. When record processing is
specified, the unconverted receiver record bytes value
specifies the length of the receiver record bytes not yet
containing converted data. When perform data
transparency conversion is specified in the algorithm
modifier, the conversion status indicates whether
conversion of a transparency string was active and the
unconverted transparency string bytes value specifies
the length of the remaining bytes to be processed for an
active transparency string.

Any form of overlap between the operands on this
instruction yields unpredictable results in the receiver
operand.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

This instruction does not provide support for
compression entries in the source describing data that
would span records in the receiver. SNA data from
some systems may violate this restriction and as such
be incompatible with the instruction. A provision can be
made to avoid this incompatibility by performing the
conversion of the SNA data through two invocations of
this instruction. The first invocation would specify
decompressiori with no record separator processing.
The second invocation would specify record separator
processing with no decompression. This technique
provides for separating the decompression step from
record separator processing; thus, the incompatibility is
avoided.

This instruction can end with the escape code
encountered condition. In this case, it is expected that
the user of the instruction will want to do some special
processing for the record separator causing the
condition. In order to resume execution of the
instruction, the user will have to set the appropriate
value for the record separator into the receiver and
update the controls operand offset values correctly to
provide for restarting processing at the right points in
the receiver and source operands.

For the special case of a tie between the source
exhausted and receiver overrun conditions, the source
exhausted condition is recognized first. That is, when
source exhausted is the resultant condition, the receiver
may also be full. In this case, the offset into the
receiver operand may contain a value equal to the length
specified for the receiver, which would cause an
exception to be detected on the next invocation of the
instruction. The processing performed for the source
exhausted condition should provide for this case if the
instruction is to be invoked multiple times with the same
controls operand template. When the receiver overrun
condition is the resultant condition, the source will
always contain data that can be converted.

This instruction will, in certain cases, ignore what would
normally have been interpreted as a record separator
value of hex 00. This applies (hex 00 is ignored) for the
special case when do not perform decompression and
record separators in source are specified in the
algorithm modifier. Note that this does not apply when
perform decompression is specified, or when do not
perform decompression and no record separators in
source and move record separator from controls to
receiver are specified in the algorithm modifier.

Computation and Branching Instructions 2-75

Resultant Conditions Exceptions

Source exhausted-The end of the source operand is Operands J encountered and no more bytes from the source can be Exception 1 2 3 Other

converted. Receiver overrun-An overrun condition in the
receiver operand is detected before all of the bytes in 06 Addressing

the source operand have been processed. Escape code 01 Space addressing violation X X X

encountered-A record separator character is 02 Boundary alignment violation X X X

encountered in the source operand that is to be treated 03 Range X X X

as an escape code. 06 Optimized addressability invalid X X X
08 Argument/ Parameter

01 Parameter reference violation X X X

Events DC Computation

01 Conversion X

OOOC Machine resource 10 Damage Encountered

0201 Machine auxiliary storage threshold exceeded 44 Partial system object damage X
1C Machine-Dependent Exception

oooD Machine status 03 Machine storage limit exceeded X

0101 Machine check 20 Machine Support

02 Machine check X

0010 Process 03 Function check X

0701 Maximum processor time exceeded 22 Object Access

01 Object not found X X X

0016 Machine observation 02 Object destroyed X X X

0101 Instruction reference 03 Object suspended X X X
24 Pointer Specification

0017 Damage set 01 Pointer does not exist X X X

0801 Partial system object damage set 02 Pointer type invalid X X X
2A Program Creation J 05 Invalid op-code extender field X

06 Invalid operand type X X X
07 Invalid operand attribute X X X
08 Invalid operand value range X X X
09 Invalid branch target operand X
OA Invalid operand length X
DC Invalid operand ODT reference X X X

2C Program Execution

04 Invalid branch target X
32 Scalar Specification

01 Scalar type invalid X X X

38 Template Specification

01 Template value invalid X

2-76

COPY BITS WITH LEFT LOGICAL SHIFT
(CPYBTLLS)

Op Code
(Hex)

102F

Operand
1

Receiver

Operand
2

Source

Operand
3

Shift control

Operand 1: Character variable scalar or numeric variable scalar.

Operand 2: Character scalar or numeric scalar.

Operand 3: Character(2) scalar.

Description: This instruction copies the bit string value
of the source operand to the bit string defined by the
receiver operand with a left logical shift of the source bit
string value under control of the shift control operand.

The operation results in copying the shifted bit string
value of the source to the bit string of the receiver while
padding the receiver with bit values of 0 and truncating
bit values of the source as is appropriate for the specific
operation.

No indication is given of truncation of bit values from
the shifted source value. This is true whether the values
truncated are 0 or 1.

The operation is performed such that the bit string of
the source is considered to be extended on the left and
right by an unlimited number of bit string positions of
value O. Additionally, a receiver bit string view (window)
with the attributes of the receiver is considered to
overlay this conceptual bit string value of the source
starting at the leftmost bit position of the original source
value. A left logical shift of the conceptual bit string
value of the source is then performed relative to the
receiver bit string view according to the shift criteria
specified in the shift control operand. After the shift,
the bit string value then contained within the receiver bit
string view is copied to the receiver.

The source and the receiver can be either character or
numeric. Any numeric operands are interpreted as
logical character strings. Due to the operation being
treated as a character string operation, the source
operand may not be specified as a signed immediate
operand. Additionally, for a source operand specified as
an unsigned immediate value, only a 1-byte immediate
value may be specified.

The shift control operand may be specified as an
immediate operand or as a character(2) scalar. It
provides an unsigned binary value indicating the number
of bit positions for which the left logical shift of the
source bit string value is to be performed. A zero value
specifies no shift.

Operands 1 and 2 may be specified as variable length
substring compound operands.

Operand 3 may not be specified as a variable length
substring compound operand.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0000 Machine status
0101 Machine check

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-77

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment violation

03 Range

06 Optimized addressability invalid

08 Argument/ Parameter

01 Parameter reference violation

10 Damage Encountered

44 Partial system object damage

1C Machine Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

2A Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

OA Invalid operand length

OC Invalid operand ODT reference

00 Reserved bits are not zero

32 Scalar Specification

01 Scalar type invalid

2-78

Operands
1 2 3

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

Other

X

X

X

X

X

COpy BITS WITH RIGHT LOGICAL SHIFT
(CPYBTRLS)

Op Code
(Hex)

103F

Operand
1

Receiver

Operand
2

Source

Operand
3

Shift control

Operand 1: Character variable scalar or numeric variable scalar.

Operand 2: Character scalar or numeric scalar.

Operand 3: Character(2) scalar.

Description: This instruction copies the bit string value
of the source operand to the bit string defined by the
receiver operand with a right logical shift of the source
bit string value under control of the shift control
operand.

The operation results in copying the shifted bit string
value of the source to the bit string of the receiver while
padding the receiver with bit values of 0 and truncating
bit values of the source as is appropriate for the specific
operation.

No indication is given of truncation of bit values from
the shifted source value. This is true whether the values
truncated are 0 or 1.

The operation is performed such that the bit string of
the source is considered to be extended on the left and
right by an unlimited number of bit string positions of
value O. Additionally, a receiver bit string view (window)
with the attributes of the receiver is considered to
overlay this conceptual bit string value of the source
starting at the leftmost bit position of the original source
value. A right logical shift of the conceptual bit string
value of the source is then performed relative to the
receiver bit string view according to the shift criteria
specified in the shift control operand. After the shift,
the bit string value then contained within the receiver bit
string view is copied to the receiver.

The source and the receiver can be either character or
numeric. Any numeric operands are interpreted as
logical character strings. Due to the operation being
treated as a character string operation, the source
operand may not be specified as a signed immediate
operand. Additionally, for a source operand specified as
an unsigned immediate value, only a 1-byte immediate
value may be specified.

The shift control operand may be specified as an Exceptions
immediate operand or as a character(2) scalar. It

~ provides an unsigned binary value indicating the number Operands

of bit positions for which the right logical shift of the Exception 1 2 3 Other

source bit string value is to be performed. A zero value
specifies no shift. 06 Addressing

01 Space addressing violation X X X

Operands 1 and 2 may be specified as variable length 02 Boundary alignment violation X X X

substring compound operands. 03 Range X X X
06 Optimized addressability invalid X X X

Operand 3 may not be specified as a variable length 08 Argument/Parameter

substring compound operand. 01 Parameter reference violation X X X
10 Damage Encountered

Substring operand references that allow for a null 44 Partial system object damage X

substring reference (a length value of zero) may not be 1C Machine Dependent Exception

specified for this instruction. 03 Machine storage limit exceeded X
20 Machine Support

02 Machine check X

Events 03 Function check X
22 Object Access

OOOC Machine resource 02 Object destroyed X X X

0201 Machine auxiliary storage threshold exceeded 03 Object suspended X X X
24 Pointer Specification

OOOD Machine status 01 Pointer does not exist X X X

0101 Machine check 02 Pointer type invalid X X X
2A Program Creation

0010 Process 06 Invalid operand type X X X

L
0701 Maximum processor time exceeded 07 Invalid operand attribute X X X

0801 Process storage limit exceeded 08 Invalid operand value range X X X
OA Invalid operand length X X X

0016 Machine observation OC Invalid operand ODT reference X X X

0101 Instruction reference 00 Reserved bits are not zero X X X X
32 Scalar Specification

0017 Damage set 01 Scalar type invalid X X X

0801 Partial system object damage set

Computation and Branching Instructions 2-79

COpy BYTES LEFT-ADJUSTED (CPYBLA)

Op Code
(Hex)

Operand
1

Operand
2

10B2 Receiver Source

Operand 1: Character variable scalar, numeric variable scalar,
data-pointer-defined character scalar, or data-pointer-defined
numeric scalar.

Operand 2: Character scalar, numeric scalar,
data-pointer-defined character scalar, or data-pointer-defined
numeric scalar.

Description: The logical string value of the source
operand is copied to the logical string value of the
receiver operand (no padding done).

The operands can be either character or numeric. Any
numeric operands are interpreted as logical character
strings.

The length of the operation is equal to the length of the
shorter of the two. operands. The copying begins with
the two operands left-adjusted and proceeds until the
shorter operand has been copied.

Substring operand references that allow for a null
substring reference (a length value of zero) may be
specified for operands 1 and 2. The effect of specifying
a null substring reference for either operand is that no
result is set.

Events

oooe Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

2-80

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

04 External data object not found

06 Optimized addressability invalid

08 Argument/Parameter

01 Parameter reference violation

10 Damage Encountered

04 System object damage state

44 Partial system object damage

1 C Machine-Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

2A Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

OA Invalid operand length

OC Invalid operand ODT reference

00 Reserved bits are not zero

32 Scalar Specification

01 Scalar type invalid

Operands J 1 2 Other

X X
X X

X X

X X
X X

X X

X X X
X X X

X

X

X

X X

X X

X X

X X

X X

X X
j

X X

X X
X X

X X

X X X

X X

COPY BYTES LEFT-ADJUSTED WITH PAD
(CPYBLAP)

Op Code
(Hex)

10B3

Operand
1

Receiver

Operand
2

Source

Operand
3

Pad

Operand 1: Character variable scalar or numeric variable scalar,
data-pointer-defined character scalar, or data-pointer-defined
numeric scalar.

Operand 2: Character scalar, numeric scalar,
data-pointer-defined character scalar, or data-pointer-defined
numeric scalar.

Operand 3: Character scalar or numeric scalar.

Description: The logical string value of the source
operand is copied to the logical string value of the
receiver operand (padded if needed).

The operands can be either character or numeric. Any
numeric operands are interpreted as logical character
strings.

The length of the operation is equal to the length of the
receiver operand. If the source operand is shorter than
the receiver operand, the source operand is copied to
the leftmost bytes of the receiver operand, and each
excess byte of the receiver operand is assigned the
single byte value in the pad operand. If the pad operand
is more than 1 byte in length, only its leftmost byte is
used. If the source operand is longer than the receiver
operand, the leftmost bytes of the source operand
(equal in length to the receiver operand) are copied to
the receiver operand.

Substring operand references that allow for a null
substring reference (a length value of zero) may be
specified for operands 1 and 2. The effect of specifying
a null substring reference for the source is that the
bytes of the receiver are each set with the single byte
value of the pad operand. The effect of specifying a null
substring reference for the receiver is that no result is
set.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for operand 3.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

04 External data object not found

06 Optimized addressability invalid

08 Argument/ Parameter

01 Parameter reference violation

10 Damage Encountered

04 System object damage state

44 Partial system object damage

1C Machine-Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

2A Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

OA Invalid operand length

OC Invalid operand ODT reference

00 Reserved bits are not zero

32 Scalar Specification

01 Scalar type invalid

x X X
X X X
X X X
X X
X X X

X X X

X X X
X X X

X X X
X X X
X X X

X X X
X X X

X X X
X X X
X X X
X X
X X X
X X X

X X

X
X

X

X
X

X
X

Computation and Branching Instructions 2-81

COpy BYTES OVERLAP LEFT-ADJUSTED
(CPYBOLA)

Op Code
(Hexl

Operand
1

Operand
2

10BA Receiver Source

Operand 1: Character variable scalar or numeric variable scalar.

Operand 2: Character scalar or numeric scalar.

Description: The logical string value of the source
operand is copied to the logical string value of the
receiver operand (no padding done).

The operands can be either character or numeric. Any
numeric operands are interpreted as logical character
strings.

The length of the operation is equal to the length of the
shorter of the two operands. The copying begins with
the two operands left-adjusted and proceeds until the
shorter operand has been copied. The excess bytes in
the longer operand are not included in the operation.

Predictable results occur even if two operands overlap
because the source operand is, in effect. first copied to
an intermediate result.

Substring operand references that allow for a null
substring reference (a length value of zero) may be
specified for operands 1 and 2. The effect of specifying
a null substring reference for either operand is that no
result is set.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

2-82

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

06 Optimized addressability invalid

08 Argumentl Parameter

01 Parameter reference violation

10 Damage Encountered

04 System object damage state

44 Partial system object damage

1C Machine-Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

2A Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

OA Invalid operand length

OC Invalid operand OOT reference

00 Reserved bits are not zero

32 Scalar Specification

01 Scalar type invalid

Operands J 1 2 Other

X X
X X
X X
X X

X X

X X X
X X X

X

X
X

X X
X X
X X

X X
X X

X X
X X
X X
X X
X X
X X X

X X

COPY BYTES OVERLAP LEFT-ADJUSTED WITH
PAD (CPYBOLAP)

Op Code
(Hex)

10BB

Operand
1

Receiver

Operand
2

Source

Operand
3

Pad

Operand 1: Character variable scalar or numeric variable scalar.

Operand 2: Character scalar or numeric scalar.

Operand 3: Character scalar or numeric scalar.

Description: The logical string value of the source
operand is copied to the logical string value of the
receiver operand.

The operands can be either character or numeric. Any
numeric operands are interpreted as logical character
strings.

The length of the operation is equal to the length of the
receiver operand. If the source operand is shorter than
the receiver operand, the source operand is copied to
the leftmost bytes of the receiver operand and each
excess byte of the receiver operand is assigned the
single byte value in the pad operand. If the pad operand
is more than 1 byte in length, only its leftmost byte is
used. If the source operand is longer than the receiver
operand, the leftmost bytes of the source operand
(equal in length to the receiver operand) are copied to
the receiver operand.

Predictable results occur even if two operands overlap
because the source operand is, in effect, first copied to
an intermediate result.

Substring operand references that allow for a null
substring reference (a length value of zero) may be
specified for operands 1 and 2. The effect of specifying
a null substring reference for the source is that the
bytes of the receiver are each set with the single byte
value of the pad operand. The effect of specifying a null
substring reference for the receiver is that no result is
set.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for operand 3.

Events

oooe Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing

01 Space addressing violation X X X
02 Boundary alignment X X X
03 Range X X X
06 Optimized addressability invalid X X X

08 Argument/Parameter

01 Parameter reference violation X X X

10 Damage Encountered

04 System object damage state X X X X

44 Partial system object damage X X X X
1C M achine- Dependent Exception

03 Machine storage limit exceeded X

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X X
02 Object destroyed X X X

03 Object suspended X X X

24 Pointer Specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2A Program Creation

06 Invalid operand type X X X
07 Invalid operand attribute X X X
08 Invalid operand value range X X X
OA Invalid operand length X X
OC Invalid operand ODT reference X X X

00 Reserved bits are not zero X X X X

Computation and Branching Instructions 2-83

COPY BYTES REPEATEDLY (CPYBREP)

Op Code
(Hex)

Operand
1

Operand
2

10BE Receiver Source

Operand 1: Numeric variable scalar or character variable scalar
(fixed-length).

Operand 2: Numeric scalar or character scalar (fixed-length).

Description: The logical string value of the source
operand is repeatedly copied to the receiver operand
until the receiver is filled.

The operands can be either character or numeric. Any
numeric operands are interpreted as logical character
strings.

The operation begins with the two operands
left-adjusted and continues until the receiver operand is
completely filled. If the source operand is shorter than
the receiver, it is repeatedly copied from left to right (all
or in part) until the receiver operand is completely filled.
If the source operand is longer than the receive operand,
the leftmost bytes of the source operand (equal in
length to the receiver operand) are copied to the receiver
operand.

Substring operand references that allow for a null
substring reference (a length value of zero) may be
specified for operands 1 and 2. The effect of specifying
a null substring reference for either operand is that no
result is set.

Events

oooe Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

2-84

Exceptions

Operands J Exception 1 2 Other

06 AddreSSing

01 Space addressing violation X X
02 Boundary alignment X X
03 Range X X
06 Optimized addressability invalid X X

08 Argument/ Parameter

01 Parameter reference violation X X
10 Damage Encountered

04 System object damage state X X X
44 Partial system object damage X X X

1C Machine- Dependent Exception

03 Machine storage limit exceeded X
20 Machine Support

02 Machine check X
03 Function check X

22 Object Access

01 Object not found X X
02 Object destroyed X X
03 Object suspended X X

24 Pointer Specification

01 Pointer does not exist X X
02 Pointer type invalid X X

2A Program Creation
06 Invalid operand type X X
07 Invalid operand attribute X X
08 Invalid operand value range X X
OA Invalid operand length X X
OC Invalid operand OOT reference X X
00 Reserved bits are not zero X X X

COpy BYTES RIGHT-ADJUSTED (CPYBRA)

Op Code
(Hex)

Operand
1

Operand
2

10B6 Receiver Source

Operand 1: Character variable scalar, numeric variable scalar,
data-pointer-defined character scalar, or data-pointer-defined
numeric scalar.

Operand 2: Character scalar, numeric scalar,
data-pointer-defined character scalar, or data-pointer-defined
numeric scalar.

Description: The logical string value of the source
operand is copied to the logical string value of the
receiver operand (no padding done).

The operands can be either character or numeric. Any
numeric operands are interpreted as logical character
strings.

The length of the operation is equal to the length of the
shorter of the two operands. The rightmost bytes (equal
to the length of the shorter of the two operands) of the
source operand are copied to the rightmost bytes of the
receiver operand. The excess bytes in the longer
operand are not included in the operation.

Substring operand references that allow for a null
substring reference (a length value of zero) may be
specified for operands 1 and 2. The effect of specifying
a null substring reference for either operand is that no
result is set.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2 Other

06 Addressing

01 Space addressing violation X X
02 Boundary alignment X X
03 Range X X
04 External data object not found X X
06 Optimized addressability invalid X X

08 Argument/ Parameter

01 Parameter reference violation X X
10 Damage Encountered

04 System object damage state X X X
44 Partial system object damage X X X

1C Machine-Dependent Exception

03 Machine storage limit exceeded X
20 Machine Support

02 Machine check X
03 Function check X

22 Object Access

01 Object not found X X
02 Object destroyed X X
03 Object suspended X X

24 Pointer Specification

01 Pointer does not exist X X
02 Pointer type invalid X X

2A Program Creation

06 Invalid operand type X X
07 Invalid operand attribute X X
08 Invalid operand value range X X
OA Invalid operand length X X
OC Invalid operand ODT reference X X
00 Reserved bits are not zero X X X

32 Scalar Specification

01 Scalar type invalid X X

Computation and Branching Instructions 2-85

COpy BYTES RIGHT·ADJUSTED WITH PAD
(CPYBRAP)

Op Code
(Hex)

10B7

Operand
1

Receiver

Operand
2

Source

Operand
3

Pad

Operand 1: Character variable scalar, numeric variable scalar,
data-pointer-defined character scalar, or data-pointer-defined
numeric scalar.

Operand 2: Character scalar, numeric scalar,
data-pointer-defined character scalar, or data-pointer-defined
numeric scalar.

Operand 3: Character scalar or numeric scalar.

Description: The logical string value of the source
operand is copied to the logical string value of the
receiver operand (padded if needed).

The operands can be either character or numeric. Any
numeric operands are interpreted as logical character
strings.

The length of the operation is equal to the length of the
receiver operand. If the source operand is shorter than
the receiver operand, the source operand is copied to
the rightmost bytes of receiver operand, and each
excess byte is assigned the single byte value in the pad
operand. If the pad operand is more than 1 byte in
length, only its leftmost byte is used. If the source
operand is longer than the receiver operand, the
rightmost bytes of the source operand (equal in length
to the receiver operand) are copied to the receiver
operand.

Substring operand references that allow for a null
substring reference (a length value of zero) may be
specified for operands 1 and 2. The effect of specifying
a null substring reference for the source is that the
bytes of the receiver are each set with the single byte
value of the pad operand. The effect of specifying a null
substring reference for the receiver is that no result is
set.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for operand 3.

2-86

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

X X X
X X X
X X X

04 External data object not found X X

06 Optimized addressability invalid X X X

08 Argument/Parameter

01 Parameter reference violation X X X

10 Damage Encountered

04 System object damage state X X X

44 Partial system object damage X X X

1 C Machine-Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

2A Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

OA Invalid operand length

OC Invalid operand ODT reference

00 Reserved bits are not zero

32 Scalar Specification

01 Scalar type invalid

X X X

X X X

X X X

X X X

X X X

X X X
X X X

X X X

X X X

X X X

X X X

X X

X
X

X

X
X

X

.J

COpy HEX DIGIT NUMERIC TO NUMERIC Exceptions

(CPYHEXNN)
Operands L Exception 1 2 Other

Op Code Operand Operand
(Hex) 1 2

06 Addressing

1092 Receiver Source 01 Space addressing violation X X

02 Boundary alignment X X

Operand 1: Numeric variable scalar or character variable scalar 03 Range X X
(fixed-length). 06 Optimized addressability invalid X X

08 Argument/ Parameter
Operand 2: Numeric scalar or character scalar (fixed-length).

01 Parameter reference violation X X

10 Damage Encountered

04 System object damage state X X X
Description: The numeric hex digit value (rightmost 4

44 Partial system object damage X X X
bits) of the leftmost byte referred to by the source

1C Machine- Dependent Exception
operand is copied to the numeric hex digit value

03 Machine storage limit exceeded X
(rightmost 4 bits) of the leftmost byte referred to by the

20 Machine Support
receiver operand.

02 Machine check X

03 Function check X
The operands can be either character strings or numeric.

22 Object Access
Any numeric operands are interpreted as logical

01 Object not found X X
character strings. 02 Object destroyed X X

03 Object suspended X X
Substring operand references that allow for a null

24 Pointer Specification
substring reference (a length value of zero) may not be

01 Pointer does not exist X X
specified for this instruction.

02 Pointer type invalid X X

2A Program Creation

L 06 Invalid operand type X X
Events

07 Invalid operand attribute X X

08 Invalid operand value range X X
OOOC Machine resource

OA Invalid operand length X X
0201 Machine auxiliary storage threshold exceeded

OC Invalid operand ODT reference X X

0010 Process
00 Reserved bits are not zero X X X

0701 Maximum processor time exceeded

0801 Process storage limit exceeded

0016 Machine observation

0101 Instruction reference

0017 Damage set

0401 System object damage set

0801 Partial system object damage set

Computation and Branching Instructions 2-87

COPY HEX DIGIT NUMERIC TO ZONE (CPYHEXNZ) Exceptions

Operand Operand Operands j Op Code
Exception 1 2 Other (Hex' 1 2

1096 Receiver Source 06 Addressing

01 Space addressing violation X X

Operand 1: Numeric variable scalar or character variable scalar 02 Boundary alignment X X
(fixed-length). 03 Range X X

06 Optimized addressability invalid X X
Operand 2: Numeric scalar or character scalar (fixed-length).

08 Argument I Parameter

01 Parameter reference violation X X
10 Damage Encountered

Description: The numeric hex digit value (rightmost 4
04 System object damage state X X X

bits) of the leftmost byte referred to by the source
44 Partial system object damage X X X

operand is copied to the zone hex digit value (leftmost 4
1C Machine- Dependent Exception

bits) of the leftmost byte in the receiver operand.
03 Machine storage limit exceeded X

20 Machine Support
The operands can be either character strings or numeric.

02 Machine check X
Any numeric operands are interpreted as logical

03 Function check X
character strings.

22 Object Access
01 Object not found X X

Substring operand references that allow for a null 02 Object destroyed X X
substring reference (a length value of zero) may not be

03 Object suspended X X
specified for this instruction.

24 Pointer Specification

01 Pointer does not exist X X
02 Pointer type invalid X X

Events 2A Program Creation

J 06 Invalid operand type X X
OOOC Machine resource 07 Invalid operand attribute X X

0201 Machine auxiliary storage threshold exceeded 08 Invalid operand value range X X
OA Invalid operand length X X

0010 Process OC Invalid operand ODT reference X X
0701 Maximum processor time exceeded 00 Reserved bits are not zero X X X
0801 Process storage limit exceeded

0016 Machine observation

0101 Instruction reference

0017 Damage set

0401 System object damage set

0801 Partial system object damage set

2-88

COPY HEX DIGIT ZONE TO NUMERIC (CPYHEXZN) Exceptions

Op Code
(Hex)

Operand
1

Operand
2 Exception

109A Receiver Source

Operand 1: Numeric variable scalar or character variable scalar
(fixed-length).

06

Operand 2: Numeric scalar or character scalar (fixed-length). 08

Description: The zone hex digit value (leftmost 4 bits) of
the leftmost byte referred to by the source operand is

10

copied to the numeric hex digit value (rightmost 4 bits) 1 C
of the leftmost byte referred to by the receiver operand.

The operands can be either character strings or numeric.
Any numeric operands are interpreted as logical

20

character strings. 22

Substring operand references that allow for a null
substring reference (a length value of zero) may not be

specified for this instruction. 24

Events 2A

DOoe Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

06 Optimized addressability invalid

Argument/Parameter

01 Parameter reference violation

Damage Encountered

04 System object damage state

44 Partial system object damage

Machine-Dependent Exception

03 Machine storage limit exceeded

Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

OA Invalid operand length

OC Invalid operand ODT reference

00 Reserved bits are not zero

Operands
1 2 Other

X X

X X

X X

X X

X X

X X X

X X X

X

X

X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X X

Computation and Branching Instructions 2-89

COpy HEX DIGIT ZONE TO ZONE (CPYHEXZZI Exceptions

Op Code Operand Operand Operands J (Hex) 1 2 Exception 1 2 Other

109E Receiver Source 06 Addressing

01 Space addressing violation X X

Operand 1: Numeric variable scalar or character variable scalar 02 Boundary alignment X X
(fixed-length). 03 Range X X

06 Optimized addressability invalid X X
Operand 2: Numeric scalar or character scalar (fixed-length). 08 Argument/ Parameter

01 Parameter reference violation X X
10 Damage Encountered

Description: The zone hex digit value (leftmost 4 bits) of 04 System object damage state X X X
the leftmost byte referred to by the source operand is 44 Partial system object damage X X X
copied to the zone hex digit value (leftmost 4 bits) of 1C Machine-Dependent Exception
the leftmost byte referred to by the receiver operand. 03 Machine storage limit exceeded X

20 Machine Support
The operands can be either character strings or numeric. 02 Machine check X
Any numeric operands are interpreted as logical 03 Function check X
character strings. 22 Object Access

01 Object not found X X
Substring operand references that allow for a null 02 Object destroyed X X
substring reference (a length value of zero) may not be 03 Object suspended X X
specified for this instruction. 24 Pointer Specification

01 Pointer does not exist X X
02 Pointer type invalid X X

Events 2A Program Creation

06 Invalid operand type X X
OOOC Machine resource 07 Invalid operand attribute X X

0201 Machine auxiliary storage threshold exceeded 08 Invalid operand value range X X
OA Invalid operand length X X

0010 Process OC Invalid operand ODT reference X X
0701 Maximum processor time exceeded 00 Reserved bits are not zero X X X
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

2-90

COpy NUMERIC VALUE (CPYNV)

Op Code
(Hex)

1042

Operand
1

Receiver

Operand
2

Source

Operand 1: Numeric variable scalar or data-pointer-defined
numeric scalar.

Operand 2: Numeric scalar or data pointer-defined-numeric
scalar.

Optional Forms

Mnemonic

CPYNVR
CPYNVI
CPYNVIR
CPYNVB
CPYNVBR

Op Code
(Hex)

1242
1842
1A42
1C42
1E42

Form Type

Round
Indicator
Indicator, Round
Branch
Branch, Round

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
to four branch targets (for branch options) or one to four
indicator operands (for indicator options). The branch or
indicator operands immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The signed numeric value of the source
operand is copied to the numeric receiver operand.

Both operands must be numeric. If necessary, the
source operand is converted to the same type as the
receiver operand before being copied to the receiver
operand. The source value is adjusted to the length of
the receiver operand, aligned at the assumed decimal
point of the receiver operand, or both before being
copied to it. Length adjustment and decimal pOint
alignment are performed according to the rules of
arithmetic operations outlined in the Functional Concepts
Manual. If significant digits are truncated on the left end
of the source value, a size exception is signaled.

If a decimal to binary conversion causes a size exception
to be signaled, the binary value contains the correct
truncated result only if the decimal value contains 15 or
fewer significant nonfractional digits.

Conversions between floating-point integers and integer
formats (binary or decimal with no fractional digits) is
exact, except when an exception is signaled.

An invalid floating-point conversion exception is
signaled when an attempt is made to convert from
floating-point to binary or decimal and the result would
represent infinity or NaN, or nonzero digits would be
truncated from the left end of the resultant value.

For the optional round form of the instruction, a
floating-point receiver operand is invalid.

For a fixed-point operation, if significant digits are
truncated from the left end of the source value, a size
exception is signaled.

For a floating-point receiver, if the exponent of the
resultant value is too large or too small to be
represented in the receiver field, the floating-point
overflow and floating-point underflow exceptions are
signaled, respectively.

Resultant Conditions: Positive, negative, or zero-The
algebraic value of the numeric scalar receiver operand is
either positive, negative, or zero. Unordered-The value
assigned a floating-point receiver operand is NaN.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-91

Exceptions DIVIDE (DIV)

Operands Op Code Operand Operand Operand
Exception 1 2 Other (Hex) 1 2 3

06 Addressing 104F Quotient Dividend Divisor
01 Space addressing violation X X

02 Boundary alignment X X Operand 1: Numeric variable scalar.
03 Range X X

04 External data object not found X X Operand 2: Numeric scalar.

06 Optimized addressability invalid X X

08 Argument/ Parameter
Operand 3: Numeric scalar.

01 Parameter reference violation X X

OC Computation

02 Decimal data X
Optional Forms

06 Floating-point overflow X Op Code
07 Floating-point underflow X Mnemonic (Hex) Form Type
09 Floating-point invalid operand X X

OA Size X DIVS 114F Short

OC Invalid floating-point conversion X DIVR 124F Round

00 Floating- point inexact result X
DIVSR 134F Short, Round
DIVI 184F Indicator

10 Damage Encountered DIVIS 194F Indicator, Short
04 System object damage state X X X DIVIR 1A4F Indicator, Round
44 Partial system object damage X X X DIVISR 1B4F Indicator, Short, Round

1C Machine- Dependent Exception DIVB 1C4F Branch

03 Machine storage limit exceeded X
DIVBS 1D4F Branch, Short
DIVBR 1E4F Branch, Round

20 Machine Support DIVBSR 1F4F Branch, Short, Round
02 Machine check X

03 Function check X If the short instruction option is indicated in the op
22 Object Access code, operand 1 is used as the first and second

01 Object not found X X operational operands (receiver and first source operand).
02 Object destroyed X X X Operand 2 is used as the third operational operand

03 Object suspended X X X (second source operand).
24 Pointer Specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X Extender: Branch or indicator options.
2A Program Creation

05 Invalid op code extender field X If the branch or indicator option is specified in the op

06 Invalid operand type X X code. the extender field must be present along with one

07 Invalid operand attribute X X to four branch targets (for branch options) or one to four

08 Invalid operand value range X X indicator operands (for indicator options). The branch or

09 Invalid branch target operand X indicator operands will immediately follow the last
OC Invalid operand ODT reference X X X operand listed above. See Chapter 1. Introduction for
00 Reserved bits are not zero X X X the encoding of the extender field and the allowed

2C Program Execution syntax of the branch and indicator operands.
04 Invalid branch target X

32 Scalar Specification

01 Scalar type invalid X X

J
2-92

Description: The signed numeric value of the dividend
operand is divided by the numeric value of the divisor
operand, and the result is placed in the quotient
operand.

All of the operands must be numeric with any implicit
conversions occurring according to the rules of
arithmetic operations as outlined in the Functional
Concepts Manual.

Decimal operands used in floating-point operations
cannot contain more than 15 total digit positions.

If the divisor has a numeric value of zero, a zero divide
or floating-point zero divide exception is signaled
respectively for fixed-point versus floating-point
operations. If the dividend has a value of zero, the
result of the division is a zero quotient value.

If the divisor has a numeric value of 0, a zero divide
exception is signaled. If the dividend has a value of 0,
the result of the division is a zero value quotient.

For a decimal operation, the precision of the result of
the divide operation is determined by the number of
fractional digit positions specified for the quotient. In
other words, the divide operation will be performed so
as to calculate a resultant quotient of the same precision
as that specified for the quotient operand. If necessary,
internal alignment of the assumed decimal point for the
dividend and divisor operands is performed to ensure
the correct precision for the resultant quotient value.
These internal alignments are not subject to detection of
the decimal point alignment exception. An internal
quotient value will be calculated for any combination of
decimal attributes which may be specified for the
instruction's operands. However, the assignment of the
result to the quotient operand is subject to detection of
the size exception thereby limiting the assignment to, at
most, the rightmost 31 digits of the calculated result.

Floating-point division uses exponent subtraction and
significand division.

If the dividend operand is shorter than the divisor
operand, it is logically adjusted to the length of the
divisor operand.

For fixed-point computations and for the significand
division of a floating-point computation, the division
operation is performed according to the rules of algebra.

For a floating-point computation, .the operation is
performed as if to infinite precision.

The result of the operation is copied into the quotient
operand. If this operand is not the same type as that
used in performing the operation, the resultant value is
converted to its type. If necessary, the resultant value is
adjusted to the length of the quotient operand, aligned
at the assumed decimal point of the quotient operand,
or both before being copied to it. Length adjustment
and decimal point alignment are performed according to
the rules for arithmetic operations as outlined in the
Functional Concepts Manual. If significant digits are
truncated on the left end of the resultant value, a size
exception is signaled. A decimal point alignment
exception is also signaled when a division operation is
performed in decimal and one of the following
conditions occurs:

• The dividend operand is aligned, and the number of
fractional digits specified in the divisor operand plus
the number of fractional digits specified for the
quotient operand plus the number of significant
integer digits in the dividend operand exceeds 31.

• The divisor operand is aligned, and the number of
fractional digits specified for the dividend operand
minus the number of fractional digits specified for the
quotient operand plus the number of significant
integer digits in the divisor operand exceeds 31.

If a decimal to binary conversion causes a size exception
to be signaled, the binary value contains the correct
truncated result only if the decimal value contains 15 or
fewer significant nonfractional digits.

For the optional round form of the instruction,
specification of a floating-point receiver operand is
invalid.

For fixed-point operations, if nonzero digits are
truncated from the left end of the resultant value, a size
exception is signaled.

For floating-point operations that involve a fixed-point
receiver field, if nonzero digits would be truncated from
the left end of the resultant value, an invalid
floating-point conversion exception is signaled.

For a floating-point quotient operand, if the exponent of
the resultant value is either too large or too small to be
represented in the quotient field, the floating-point
overflow and floating-point underflow exceptions are
signaled, respectively.

Computation and Branching Instructions 2-93

Resultant Conditions: Positive. negative. or zero-The Exceptions

algebraic value of the numeric scalar quotient is positive.
negative. or zero. Unordered-The value assigned a Operands J 'floating-point quotient operand is NaN. Exception 1 2 3 Other

06 Addressing

Events 01 Space addressing violation X X X

02 Boundary alignment X X X

OOOC Machine resource 03 Range X X X

0201 Machine auxiliary storage threshold exceeded 06 Optimized addressability invalid X X X

08 Argument/ Parameter

0010 Process 01 Parameter reference violation X X X

0701 Maximum processor time exceeded OC Computation

0801 Process storage limit exceeded 02 Decimal data X X
06 Floating-point overflow X

0016 Machine observation 07 Floating-point underflow X

0101 Instruction reference 09 Floating-point invalid operand X X X
OA Size X

0017 Damage set OB Zero divide X

0401 System object damage set OC Invalid floating-point conversion X

0801 Partial system object damage set 00 Floating-point inexact result X
OE Floating-point divide by zero X

10 Damage Encountered

04 System object damage state X X X X
44 Partial system object damage X X X X

1C Machine-Dependent Exception

03 Machine storage limit exceeded X
20 Machine Support

02 Machine check X J 03 Function check X
22 Object Access

01 Object not found X X X
02 Object destroyed X X X
03 Object suspended X X X

24 Pointer Specification

01 Pointer does not exist X X X
02 Pointer type invalid X X X

2A Program Creation

05 Invalid op code extender field X

06 Invalid operand type X X X
07 Invalid operand attribute X X X

08 Invalid operand value range X X X

09 Invalid branch target operand X
OC Invalid operand ODT reference X X X
00 Reserved bits are not zero X X X X

2C Program Execution

04 Invalid branch target X

2-94

~

DIVIDE WITH REMAINDER (DIVREM)

Op Code Operand Operand Operand Operand
(Hex) 1 2 3 4

1074 Quotient Dividend Divisor Remainder

Operand 1: Numeric variable scalar.

Operand 2: Numeric scalar.

Operand 3: Numeric scalar.

Operand 4: Numeric variable scalar.

Optional Forms

(The optional forms apply to the quotient only.)

Op Code
Mnemonic (Hex) Form Type

DIVREMS 1174 Short

DIVREMR 1274 Round

DIVREMSR 1374 Short, Round

DIVREMI 1874 IndiCl'tor

DIVREMIS 1974 Indicator, Short

DIVREMIR 1A74 Indicator, Round

DIVREMISR 1B74 Indicator, Short, Round

DIVREMB 1C74 Branch

DIVREMBS 1D74 Branch, Short

DIVREMBR 1E74 Branch, Round

DIVREMBSR 1F74 Branch, Short, Round

If the short instruction option is indicated in the op
code, operand 1 is used as the first and second
operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand
(second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
to three branch targets (for branch options) or one to
three indicator operands (for indicator options). The
branch or indicator operands immediately follow the last
operand listed above. See Chapter 1. Introduction for
the encoding of the extender field and the allowed
syntax of the branch and indicator operands.

Description: The signed numeric value of the dividend
operand is divided by the numeric value of the divisor
operand; the quotient is placed in the quotient operand;
the remainder is placed in the remainder operand.

The operands must be numeric with any implicit
conversions occurring according to the rules for
arithmetic operations as outlined in the Functional
Concepts Manual.

If the divisor operand has a numeric value of 0, a zero
divide exception is signaled. If the dividend operand has
a value of 0, the result of the division is a zero value
quotient and remainder.

For a decimal operation, the precision of the result of
the divide operation is determined by the number of
fractional digit positions specified for the quotient. In
other words, the divide operation will be performed so
as to calculate a resultant quotient of the same precision
as that specified for the quotient operand. If necessary,
internal alignment of the assumed decimal point for the
dividend and divisor operands is performed to ensure
the correct precision for the resultant quotient value.
These internal alignments are not subject to detection of
the decimal point alignment exception. An internal
quotient value will be calculated for any combination of
decimal attributes which may be specified for the
instruction'S operands. However, the assignment of the
result to the quotient operand is subject to detection of
the size exception thereby limiting the assignment to, at
most, the rightmost 31 digits of the calculated result.

If the dividend operand is shorter than the divisor
operand, it is logically adjusted to the length of the
divisor operand.

Computation and Branching Instructions 2-95

The division operation is performed according to the
rules of algebra. The quotient result of the operation is
copied into the quotient operand. If this operand is not
the same type as that used in performing the operation,
the resultant value is converted to its type. If necessary,
the resultant value is adjusted to the length of the
quotient operand, aligned at the assumed decimal point
of the quotient operand, or both before being copied to
it. Length adjustment and decimal point alignment are
performed according to the rules of arithmetic
operations as outlined in the Functional Concepts Manual.
If significant digits are truncated on the left end of the
resultant value, a size exception is signaled. A decimal
point alignment exception is also signaled when a
division operation is performed in decimal and one of
the following conditions occurs:

• The dividend operand is aligned, and the number of
fractional digits specified in the divisor operand plus
the number of fractional digits specified for the
quotient operand plus the number of significant
integer digits in the dividend operand exceeds 31.

• The divisor operand is aligned, and the number of
fractional digits specified for the dividend operand
minus the number of fractional digits specified for the
quotient operand plus the number of significant
integer digits in the division operand exceeds 31.

After the quotient numeric value has been determined,
the numeric value of the remainder operand is calculated
as follows:

Remainder = Dividend - (Quotient*Divisor)

2-96

If the optional round form of this instruction is being
used, the rounding applies to the quotient but not the
remainder. The quotient value used to calculate the
remainder is the resultant value of the division. The
resultant value of the calculation is copied into the
remainder operand. The sign of the remainder is the
same as that of the dividend operand unless the
remainder has a value of 0, in which case its sign is
positive. If the remainder operand is not the same type
as that used in performing the operation, the resultant
value is converted to its type. If necessary, the resultant
value is adjusted to the length of the remainder operand,
aligned at the assumed decimal point of the remainder
operand, or both before being copied to it. Length
adjustment and decimal point alignment are performed
according to the rules of arithmetic operations as
outlined in the Functional Concepts Manual. If significant
digits are truncated off the left end of the resultant
value, a size exception is signaled.

If a decimal to binary conversion causes a size exception
to be signaled, the binary value contains the correct
truncated result only if the decimal value contains 15 or
fewer significant nonfractional digits.

Resultant Conditions: The algebraic value of the numeric
scalar quotient is positive, negative, or O.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

J

Exceptions EDIT (EDIT)

L Operands Op Code Operand Operand Operand
Exception 1 2 3 4 Other (Hex) 1 2 3

06 Addressing 10E3 Receiver Source Edit mask
01 Space addressing violation X X X X

02 Boundary alignment X X X X Operand 1: Character variable scalar or data-pointer-defined
03 Range X X X X character scalar.

06 Optimized addressability X X X X
Numeric scalar or data-pointer-defined numeric invalid Operand 2:

08 Argument/ Parameter
scalar.

01 Parameter reference violation X X X X Operand 3: Character scalar or data-pointer-defined character
OC Computation scalar.

02 Decimal data X X
OA Size X X
OB Zero divide X Description: The value of a numeric scalar is

10 Damage Encountered transformed from its internal form to character form
04 System object damage state X X X X X suitable for display at a source/sink device. The
44 Partial system object damage X X X X X following general editing functions can be performed

1C Machine- Dependent Exception during transforming of the source operand to the
03 Machine storage limit X receiver operand:

exceeded

20 Machine Support · Unconditional insertion of a source value digit with a
02 Machine check X zone as a function of the source value's algebraic
03 Function check X sign

22 Object Access
01 Object not found X X X X · Unconditional insertion of a mask operand character

L 02 Object destroyed X X X X string
03 Object suspended X X X X

24 Pointer Specification • Conditional insertion of one of two possible mask
01 Pointer does not exist X X X X operand character strings as a function of the source
02 Pointer type invalid X X X X value's algebraic sign

2A Program Creation
05 Invalid op code extender field X · Conditional insertion of a source value digit or a mask
06 Invalid operand type X X X X operand replacement character as a function of
07 Invalid operand attribute X X X X source value leading zero suppression
08 Invalid operand value range X X X X
09 Invalid branch target operand X · Conditional insertion of either a mask operand
OC Invalid operand ODT reference X X X X character string or a series of replacement characters
00 Reserved bits ani not zero X X X X X as a function of source value leading zero

2C Program Execution suppression
04 Branch target invalid X

• Conditional floating insertion of one of two possible
mask operand character strings as a function of both
the algebraic sign of the source value and leading
zero suppression

The operation is performed by transforming the source
(operand 2) under control of the edit mask (operand 3)
and placing the result in the receiver (operand 1).

The mask operand (operand 3) is limited to no more

L
than 256 bytes.

Computation and Branching Instructions 2-97

Mask Syntax: The source field is converted to packed
decimal format. The edit mask contains both control
character and data character strings. Both the edit mask
and the source fields are processed left to right. and the
edited result is placed in the result field from left to
right. If the number of digits in the source field is even,
the four high-order bits of the source field are ignored
and not checked for validity. All other source digits as
well as the sign are checked for validity, and a decimal
data exception is signaled when one is invalid.
Overlapping of any of these fields gives unpredictable
results.

Ten types of control characters can be in the edit mask,
hex AA through hex AD and hex AF through hex 83.
Four of these control characters specify strings of
characters to be inserted into the result field under
certain conditions; and the other five indicate that a digit
from the source field should be checked and the
appropriate action taken. There is one variable value
control character (end-of-string character) that is in the
edit mask. This control character indicates the end of a
string of characters. The value of the end-of-string
character can vary with each execution of the instruction
and is determined by the value of the first character in
the edit mask. If the first character of the edit mask is a
value less than hex 40, then that value is used as the
end-of-string character. If the first character of the edit
mask is a value equal to or greater than hex 40, then
hex AE is used as the end-of-string character.

A significance indicator is set to the off state at the start
of the execution of this instruction. It remains in this
state until a nonzero source digit is encountered in the
source field or until one of the four unconditional digits
(hex AA through hex AD) or an unconditional string (hex
B3) is encountered in the edit mask.

When significance is detected, the selected floating
string is overlaid into the result field immediately before
(to the left of) the first significant result character.

When the significance indicator is set to the on state,
the first significant result character has been reached.
The state of the significance indicator determines
whether the fill character or a digit from the source field
is to be inserted into the result field for conditional
digits and characters in conditional strings specified in
the edit mask field. The fill character is a hex 40 until it
is replaced by the first character following the floating
string specification control character (hex 81).

2-98

When the significance indicator is in the off state:

• A conditional digit control character in the edit mask
causes the fill character to be moved to the result
field.

• A character in a conditional string in the edit mask
causes the fill character to be moved to the result
field.

When the significance indicator is in the on state:

• A conditional digit control character in the edit mask
causes a source digit to be moved to the result field.

• A character in a conditional string in the edit mask is
moved to the result field.

The following control characters are found in the edit
mask field.

End-ot-String Character

One of these control characters (a value less than hex
40 or hex AE) indicates the end of a character string and
must be present even if the string is null.

Static Field Character

Hex AF This control character indicates the start of
a static field. A static field is used to
indicate that one of two mask character
strings immediately following this character
is to be inserted into the result field,
depending upon the algebraic sign of the
source field. If the sign is positive, the first
string is to be inserted into the result field;
if the sign is negative, the second string is
to be inserted.

Static field format:

Hex AF positive string ... Iess than hex 40
or hex AE negative string ... hex AE

J

Floating String Specification Field Character

Hex 81 This control character indicates the start of
a floating string specification field. The first
character of the field is used as the fill
character; following the fill character are
two strings delimited by the end-of-string
control character. If the algebraic sign of
the source field is positive, the first string is
to be overlaid into the result field; if the
sign is negative, the second string is to be
overlaid.

The string selected to be overlaid into the
result field, called a floating string, appears
immediately to the left of the first
significant result character. If significance is
never set. neither string is placed in the
result field.

Conditional source digit positions (hex 82
control characters) must be provided in the
edit mask immediately following the hex 81
field to accommodate the longer of the two
floating strings; otherwise, a length
conformance exception is signaled. For
each of these 82 strings, the fill character
is inserted into the result field, and source
digits are not consumed. This ensures that
the floating string never overlays bytes
preceding the receiver operand.

Floating string specification field format:

Hex 81 fill character positive string ...

end-of-string character negative
string ... end-of-string character

hex 82 ...

Conditional String Character

Hex 80 This control character indicates the start of a
conditional string, which consists of any
characters delimited by the end-of-string
control character. Depending on the state of
the significance indicator, this string or fill
characters replacing it is inserted into the
result field. If the significance indicator is
off, a fill character for every character in the
conditional string is placed in the result field.
If the indicator is on, the characters in the
conditional string are placed in the result
field.

Conditional string format:

Hex 80 conditional string ... end-of-string
character

Unconditional String Character

Hex 83 This control character turns on the
significance indicator and indicates the start
of an unconditional string that consists of
any characters delimited by the
end-of-string control character. This string
is unconditionally inserted into the result
field regardless of the state of the
significance indicator. If the indicator is off
when a 83 control character is
encountered, the appropriate floating string
is overlaid into the result field before (to the
left of) the 83 unconditional string (or to
the left of where the unconditional string
would have been if it were not null).

Unconditional string format:

Hex 83 unconditional
string ... end-of-string character

Computation and Branching Instructions 2-99

Control Characters That Correspond to Digits in the
Source Field

Hex B2 This control character specifies that either
the corresponding source field digit or the
floating string (hex B 1) fill character is
inserted into the result field, depending on
the state of the significance indicator. If
the significance indicator is off, the fill
character is placed in the result field; if the
indicator is on, the source digit is placed.
When a source digit is moved to the result
field, the zone supplied is hex F. When
significance (that is, a nonzero source digit)
is detected, the floating string is overlaid to
the left of the first significant character.

Control characters hex AA, hex AB, hex AC, and hex AD
turn on the significance indicator. If the indicator is off
when one of these control characters is encountered,
the appropriate floating string is overlaid into the result
field before (to the left of) the result digit.

Hex AA This control character specifies that the
corresponding source field digit is
unconditionally placed in the 4 low-order
bits of the result field with the zone set to
a hex F.

Hex AB This control character specifies that the
corresponding source field digit is
unconditionally placed in the result field. If
the sign of the source field is positive, the
zoned portion of the digit is set to hex F
(the preferred positive sign); if the sign is
negative, the zone portion is set to hex D
(the preferred negative sign).

2-100

Hex AC This control character specifies that the
corresponding source field digit is
unconditionally placed in the result field. If
the algebraic sign of the source field is
positive, the zone portion of the result is
set to hex F (the preferred positive sign);
otherwise, the source sign field is moved to
the result zone field.

Hex AD This control character specifies that the
corresponding source field digit is
unconditionally placed in the result field. If
the algebraic sign of the source field is
negative, the zone is set to hex D (the
preferred negative sign); otherwise, the
source field sign is moved to the zone
position of the result byte.

The following table provides an overview of the results
obtained with the valid edit conditions and sequences.

~

L Previous Resulting
Mask Significance Source Source Significance
Character Indicator Digit Sign Result Character(s) Indicator

AF Off/On Any Positive Positive string inserted No Change

Off/On Any Negative Negative string inserted No Change

AA Off 0--9 Positive Positive floating string overlaid; On
hex F, source digit

Off 0--9 Negative Negative floating string overlaid; On
hex F, source digit

On 0--9 Any Hex F, source digit On

AB Off 0--9 Positive Positive floating string overlaid; On
hex F, source digit

Off 0--9 Negative Negative floating string overlaid; On
hex D, source digit

On 0--9 Positive Hex F, source digit On

On 0--9 Negative Hex D, source digit On

AC Off 0--9 Positive Positive floating string overlaid;
hex F, source digit

Off 0--9 Negative Negative floating string overlaid; On
source sign and digit

On 0--9 Positive Hex F, source digit On

On 0--9 Negative Source sign and digit On

AD Off 0--9 Positive Positive floating string overlaid; On
source sign and digit

Off 0--9 Negative Negative floating string overlaid; On
hex D, source digit

On 0--9 Positive Source sign and digit On

On 0--9 Negative Hex D, source digit On

Figure 2-1 (Part 1 of 21. Valid Edit Conditions and Results

Computation and Branching Instructions 2-101

Previous Resulting
Mask Significance Source Source Significance
Character Indicator Digit Sign Result Character(s) Indicator

80 Off Any Any Insert fill character for each 80 Off
string character

On Any Any Insert 80 character string On

81 Off Any Any Insert the fill character for each No Change
(including 82 character that corresponds
necessary to a character in the longer of
82s) the two floating strings

82 (not for Off 0 Any Insert fill character Off
a 81 field)

Off 1-9 Positive Overlay positive floating string On
and insert hex F, source digit

Off 1-9 Negative Overlay negative floating string On
and insert hex F, source digit

On 0-9 Any Hex F, source digit

83 Off Any Positive Overlay positive 'floating string On
and insert 83 character string

Off Any Negative Overlay negative floating string On
and insert 83 character string

On Any Any Insert 83 character string On

Notes:
1. Any character is a valid fill character, including the end-of-string character.
2. Hex AF, hex 81, hex 80, and hex 83 strings must be terminated by the end-of-string character even if they are null

strings.
3. If a hex 81 field has not been encountered (specified) when the significance indicator is turned on, the floating

string is considered to be a null string and is therefore not used to overlay into the result field.
4. If the positive and negative strings of a static field are of unequal length, additional static fields are necessary to

ensure that the sum of the lengths of the positive strings equal the sum of the lengths of the negative strings;
otherwise, a length conformance exception is signaled because the receiver length does not correspond to the
length implied by the edit mask and source field sign.

Figure 2-1 (Part 2 of 2). Valid Edit Conditions and Results

2-102

. ~

J

j

The following figure indicates the valid ordering of
control characters in an edit mask field.

AA, AB, AC, AD

Control Character Y

Control
Charaete rX

Explanation:

Condition

~

AF

BO

B1

B2

B3

AF

0 0

0 0

1 0

1 0

1 0

0 0

Definition

BO B1 B2

2 2 2

0 0 0

0 2 0

1 3 1

0 2 0

2 2 2

B3

0

0

1

1

1

0

o Both X and Y can appear in the edit mask field in either order.

Y cannot precede X.

X cannot precede Y. 2

3 Both control characters (two B l' s) cannot appear in an edit mask field.

Violation of any of the above rules will result in an edit mask syntax exception.

Figure 2·2. Edit Mask Field Control Characters

Computation and Branching Instructions 2-103

The following steps are performed when the editing is
done:

• Convert Source Value to Packed Decimal
- The numeric value in the source operand is

converted to a packed decimal intermediate value
before the editing is done. If the source operand
is binary, then the attributes of the intermediate
packed field before the edit are calculated as
follows:

• Edit

Binary(2) = packed (5,O) or
Binary(4) = packed (10,O)

The editing of the source digits and mask insertion
characters into the receiver operand is done from
left to right.

• Insert Floating String into Receiver Field
- If a floating string is to be inserted into the

receiver field, this is done after the other editing.

Edit Digit Count Exception

An edit digit count exception is signaled when:

• The end of the source field is reached and there are
more control characters that correspond to digits in
the edit mask field.

• The end of the edit mask field is reached and there
are more digit positions in the source field.

2-104

Edit Mask Syntax Exception

An edit mask syntax exception is signaled when an
invalid edit mask control character is encountered or
when a sequence rule is violated.

Length Conformance Exception

A length conformance exception is signaled when:

• The end of the edit mask field is reached and there
are more character positions in the result field.

• The end of the result field is reached and more
positions remain in the edit mask field.

• The number of B2s following a B1 field cannot
accommodate the longer of the two floating strings.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions EXCHANGE BYTES (EXCHBY)

L Operands Op Code Operand Operand
Exception 1 2 3 Other (Hex) 1 2

06 Addressing 10CE Source 1 Source 2
01 Space addressing violation X X X
02 Boundary alignment X X X Operand 1: Character variable scalar (fixed-length) or numeric
03 Range X X X variable scalar.

04 External data object not found X X X
06 Optimized addressability X X X

Operand 2: Character variable scalar (fixed-length) or numeric

invalid
variable scalar.

08 Argument/ Parameter
01 Parameter reference violation X X X

OC Computation
Description: The logical character string values of the

02 Decimal data X two source operands are exchanged. The value of the

04 Edit digit count X second source operand is placed in the first source

05 Edit mask syntax X operand and the value of the first source operand is

08 Length conformance X
placed in the second operand.

10 Damage Encountered

04 System object damage state X X X X The operands can be either character or numeric. Any

44 Partial system object damage X X X X
numeric operands are interpreted as logical character

lC Machine- Dependent Exception strings. Both operands must have the same length.

03 Machine storage limit exceeded X
20 Machine Support Substring operand references that allow for a null

02 Machine check X substring reference (a length value of zero) may not be

03 Function check X specified for this instruction.

22 Object Access

L 01 Object not found X X X
02 Object destroyed X X X

Events

03 Object suspended X X X
24 Pointer Specification

OOOC Machine resource

01 Pointer does not exist X X X
0201 Machine auxiliary storage threshold exceeded

02 Pointer type invalid X X X
2A Program Creation 0010 Process

06 Invalid operand type X X X 0701 Maximum processor time exceeded

07 Invalid operand attribute X X X 0801 Process storage limit exceeded

08 Invalid operand value range X X X
OA Invalid operand length X X 0016 Machine observation

OC Invalid operand ODT reference X X X 0101 Instruction reference

00 Reserved bits are not zero X X X X
32 Scalar Specification

0017 Damage set

01 Scalar type invalid X X X 0401 System object damage set

02 Scalar attributes invalid X 0801 Partial system object damage set

Computation and Branching Instructions 2-105

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment
03 Range

06 Optimized addressability invalid

08 Argument/ Parameter

01 Parameter reference violation

10 Damage Encountered

04 System object damage state
44 Partial system object damage

1 C Machine-Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check
22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist
02 Pointer type invalid

2A Program Creation
06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

OA Invalid operand length
OC Invalid operand ODT reference

00 Reserved bits are not zero

2-106

Operands
1 2 Other

X X

X X
X X

X X

X X

X X X
X X X

X

X

X

X X

X X

X X

X X
X X

X X
X X

X X

X X
X X

X X X

EXCLUSIVE OR (XOR)

Op Code Operand Operand Operand J (Hex) 1 2 3

109B Receiver Source 1 Source 2

Operand 1: Character variable scalar.

Operand 2: Character scalar.

Operand 3: Character scalar.

Optional Forms

Op Code
Mnemonic (Hex) Form Type

XORS 119B Short
XORI 189B Indicator
XORIS 199B Indicator, Short
XORB 1C9B Branch
XORBS 1D9B Branch, Short

If the short instruction option is indicated in the op

code, operand 1 is used as the first and second
operational operands (receiver and first source operand).

Operand 2 is used as the third operational operand

(second source operand).

J
Extender: Branch or indicator options.

If the branch or indicator option is specified in the op

code, the extender field must be present along with one
or two branch targets (for branch options) or one or two

indicator operands (for indicator options). The branch or

indicator operands immediately follow the last operand
listed above. See Chapter 1. Introduction for the

encoding of the extender field and the allowed syntax of

the branch and indicator operands.

Description: The Boolean EXCLUSIVE OR operation is
performed on the string values in the source operands.
The resulting string is placed in the receiver operand.

The operands must be character strings and are

interpreted as bit strings.

The length of the operation is equal to the length of the
longer of the two source operands. The shorter of the
two operands is padded on the right. The operation

begins with the two source operands left-adjusted and
continues bit by bit until they are completed.

J

The bit values of the result are determined as follows: Events

~
Source 1 Source 2 Result OOOC Machine resource

Bit Bit Bit 0201 Machine auxiliary storage threshold exceeded

1 1 a 0010 Process

a a a 0701 Maximum processor time exceeded

a 0801 Process storage limit exceeded

a
0016 Machine observation

The result value is then placed (left-adjusted) in the 0101 Instruction reference

receiver operand with truncating or padding taking place
on the right. 0017 Damage set

0401 System object damage set

The pad value used in this instruction is a hex 00. 0801 Partial system object damage set

Substring operand references that allow for a null Exceptions

substring reference (a length value of zero) may be
specified for operands 1, 2, and 3. The effect of Operands

specifying a null substring reference for one source Exception 1 2 3 Other

operand is that the other source operand is EXCLUSIVE
ORed with an equal length string of all hex OOs. When

06 Addressing

a null substring reference is specified for both source
01 Space addressing violation X X X

operands, the result is all zero and the instruction's
02 Boundary alignment X X X

resultant condition is zero. When a null substring
03 Range X X X

reference is specified for the receiver, a result is not set
06 Optimized addressability invalid X X X

and the instruction's resultant condition is zero
08 Argument/ Parameter

regardless of the values of the source operands.
01 Parameter reference violation X X X

~
10 Damage Encountered

If operands overlap but do not share all of the same
04 System object damage state X X X X

bytes, results of operations performed on these
44 Partial system object damage X X X X

operands are not predictable. If overlapped operands
1C Machine-Dependent Exception

share all of the same bytes, the results are predictable
03 Machine storage limit exceeded X

when direct addressing is used. If indirect addressing is
20 Machine Support

used (that is, based operands, parameters, strings with
02 Machine check X

variable lengths, and arrays with variable subscripts!. the
03 Function check X

results are not always predictable.
22 Object Access

01 Object not found X X X
02 Object destroyed X X X

Resultant Conditions: Zero-The bit value for the bits of
03 Object suspended X X X

the scalar receiver operand is either all zero or a null
24 Pointer Specification

substring reference is specified for the receiver. Not
01 Pointer does not exist X X X

zero-The bit value for the bits of the scalar receiver
02 Pointer type invalid X X X

operand is not all zero.
2A Program Creation

05 Invalid op code extender field X
06 Invalid operand type X X X
07 Invalid operand attribute X X X
08 Invalid operand value range X X X
09 Invalid branch target operand X
OA Invalid operand length X X X
OC Invalid operand ODT reference X X X
OD Reserved bits are not zero X X X X

2C Program Execution

~
04 Branch target invalid X

Computation and Branching Instructions 2-107

EXTENDED CHARACTER SCAN (ECSCAN)

Op Code Operand
(Hex) 1

Operand
2

Operand
3

1004 Receiver Base Compare
operand

Operand 1: Binary variable scalar or binary array.

Operand 2: Character scalar.

Operand 3: Character scalar.

Operand 4: Character(1) scalar.

Optional Forms

Mnemonic

ESCANI
ESCANB

Op Code
(Hex)

18D4
1C04

Form Type

Indicator
Branch

Extender: Branch or indicator options.

Operand
4

Mode
operand

Either the branch option or indicator option is required
by the instruction. The extender field is required along
with from one to three branch targets (for branch
option) or one to three indicator operands (for indicator
option). The branch or indicator operands are required
for operand 3 and optional for operands 4 and 5. See
Chapter 1. Introduction for the bit encoding of the
extender field and the allowed syntax of the branch and
indicator operands.

Description: This instruction scans the string value of
the base operand for occurrences of the string value of
the compare operand and indicates the relative locations
of these occurrences in the receiver operand. The
character string value of the base operand is scanned
for occurrences of the character string value of the
compare operand under control of the mode operand
and mode control characters embedded in the base
string.

2-108

The base and compare operands must both be character
strings. The length of the compare operand must not be
greater than that of the base string. The base and
compare operand are interpreted as containing a mixture
of 1-byte (simple) and 2-byte (extended) character
codes. The mode, simple or extended, with which the
string is to be interpreted, is controlled initially by the
mode operand and thereafter by mode control
characters embedded in the strings. The mode control
characters are as follows:

• Hex OE= Shift out of simple character
mode to extended mode.

• Hex OF= Shift into simple character
mode from extended mode. This
is recognized only if it occurs
in the first byte position of an
extended character code.

The format of the mode operand is as follows:

• Mode operand
Operand 2 initial mode
indicator
o Operand starts in simple

character mode.
1 = Operand starts in extended

character mode.

Char(1)
Bit 0

Operand 3 initial mode Bit 1
indicator
o Operand starts in simple

character mode.
Operand starts in extended
character mode.

- Reserved (binary 0) Bits 2-7

The operation begins at the left end of the base string
and continues character by character, left to right.
When the base string is interpreted in simple character
mode, the operation moves through the base string 1
byte at a time. When the base string is interpreted in
extended character mode, the operation moves through
the base string 2 bytes at a time.

".'

..I

The compare operand value is the entire byte string
specified for the compare operand. The mode operand
determines the initial mode of the compare operand.
The first character of the compare operand value is
assumed to be a valid character for the initial mode of
the compare operand and not a mode control character.
Mode control characters in the compare operand value
participate in comparisons performed during the scan
function except that a mode control character as the
first character of the compare operand causes
unpredictable results.

The base string is scanned until the mode of the
characters being processed i.s the same as the initial
mode of the compare operand value. The operation
continues comparing the characters of the base string
with those of the compare operand value. The starting
character of the characters being compared in the base
string is always a valid character for the initial mode of
the compare operand value. A mode control character
encountered in the base string that changed the base
string mode to match the initial mode of the compare
operand value does not participate in the comparison.
The length of the comparison is equal to the length of
the compare operand value and the comparison is
performed the same as performed by the Compare
Bytes left Adjusted instruction.

If a set of bytes that matches the compare operand
value is found, the binary value for the relative location
of the leftmost base string character of the set of bytes
is placed in the receiver operand.

If the receiver operand is a scalar, only the first
occurrence of the compare operand is noted. If the
receiver operand is an array, as many occurrences as
there are elements in the array are noted.

If a mode change is encountered in the base string, the
base string is again scanned until the mode of the
characters being processed is the same as the initial
mode of the compare operand value, and then the
comparisons are resumed.

The operation continues until no more occurrences of
the compare operand value can be noted in the receiver
operand or until the number of bytes remaining to be
scanned in the base string is less than the length of the
compare operand value. When the second condition
occurs, the receiver value is set to zero. If the receiver
operand is an array, all its remaining elements are also
set to zero.

If the escape code encountered result condition is
specified (through a branch or indicator option).
verifications are performed on the base string as it is
scanned. Each byte of the base string is checked for a
value less than hex 40. When a value less than hex 40
is encountered, it is then determined if it is a valid mode
control character.

If a byte value of less than hex 40 is not a valid mode
control character, it is considered to be an escape code.
The binary value for the relative location of the character
(simple or extended) being interrogated is placed in the
receiver operand, and the appropriate action (indicator or
branch) is performed according to the specification of
the escape code encountered result condition. If the
receiver operand is an array, the next array element after
any elements set with locations or prior occurrences of
the compare operand, is set with the location of the
character containing the escape code and all the
remaining array elements are set to zero.

If the escape encountered result condition is not
specified, verifications of the character codes in the
base string are not performed.

Resultant Conditions: Positive or zero-The numeric
value(s) of the receiver operand is either positive or zero.
In the case where the receiver operand is an array, the
resultant condition is zero if all elements are zero.
Escape code encountered-An escape character code
value was encountered during the scanning of the base
string.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Computation and Branching Instructions 2-109

Events Exceptions

oooe Machine resource Operands
0201 Machine auxiliary storage threshold exceeded Exception 1 2 3 4 Other

OOOD Machine status 06 Addressing

0101 Machine check 01 Space addressing violation X X X X

02 Boundary alignment violation X X X X

0010 Process 03 Range X X X X

0701 Maximum processor time exceeded 06 Optimized addressability invalid X X X X

08 Argument/ Parameter

0016 Machine observation 01 Parameter reference violation X X X X

0101 I nstruction reference OC Computation

08 Length conformance X X X

0017 Damage set 10 Damage Encountered

0801 Partial system object damage set 44 Partial system object damage X

1C Machine-Dependent Exception

03 Machine storage limit X
exceeded

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X X X

02 Object destroyed X X X X

03 Object suspended X X X X

24 Pointer Specification

01 Pointer does not exist X X X X

J 02 Pointer type invalid X X X X

2A Program Creation

05 Invalid op-code extender field X

06 Invalid operand type X X X X

07 Invalid operand attribute X X X X

08 Invalid operand value range X X X X

09 Invalid branch target operand X

OA Invalid operand length X X

OC Invalid operand ODT reference X X X X

00 Reserved bits are not zero X X X X X

2C Program Execution

04 Invalid branch target X

32 Scalar Specification

01 Scalar type invalid X X X X

03 Scalar value invalid X

2-110

EXTRACT EXPONENT (EXTREXP)

Op Code
(Hex)

1072

Operand
1

Receiver

Operand
2

Source

Operand 1: Binary variable scalar.

Operand 2: Floating-point scalar.

Optional Forms

Mnemonic

EXTREXPI
EXTREXPB

Op Code
(Hex)

1872
1C72

Form Type

Indicator
Branch

Extender: Branch options or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
to four branch targets (for branch options) or one to four
indicator operands (for indicator options). The branch or
indicator operations immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: This instruction extracts the exponent
portion of a floating-point scalar source operand and
places it into the receiver operand as a binary variable
scalar.

The operands must be the numeric types indicated
because no conversions are performed.

The source floating-point field is interrogated to
determine the binary floating-point value represented
and either a signed exponent, for number values, or a
special identifier, for infinity and NaN values, is placed
in the binary variable scalar receiver operand.

The value to be assigned to the receiver, is dependent
upon the floating-point value represented in the source
operand as described below. It is a signed binary
integer value and a numeric assignment of the value is
made to the receiver.

When the source represents a normalized number, the
biased exponent contained in the exponent field of the
source is converted to the corresponding signed
exponent by subtracting the bias of 127 for short or
1023 for long to determine the value to be returned.
The resulting value ranges from -126 to +127 for short
format. -1022 to +1023 for long format.

When the source represents a denormalized number, the
value to be returned is determined by adjusting the
signed exponent of the denormalized number. The
signed exponent of a denormalized number is a fixed
value of -126 for the short format and -1022 for the
long format. It is adjusted to the value the signed
exponent would be if the source value was adjusted to a
normalized number. The resulting value ranges from
-127 to -149 for short format. -1023 to -1074 for long
format.

When the source represents a value of zero, the value
returned is zero.

When the source represents infinity, the value returned
is +32767.

When the source represents a not-a-number, the value
returned is -32768.

Resultant Conditions: Normalized-The source operand
value represents a normalized binary floating-point
number. The signed exponent is stored in the receiver.
Denormalized-The source operand value represents a
denormalized binary floating-point number. An adjusted
signed exponent is stored in the receiver. Infinity-The
source operand value represents infinity. The receiver is
set with a value of +32767. NaN-The source operand
value represents a not-a-number. The receiver is set
with a value of -32768.

Computation and Branching Instructions 2-111

Events Exceptions

OOOC Machine resource Operands J 0201 Machine auxiliary storage threshold exceeded Exception 1 2 Other

OOOD Machine status 06 Addressing

0101 Machine check 01 Space addressing violation X X

02 Boundary alignment violation X X

0010 Process 03 Range X X

0701 Maximum processor time exceeded 06 Optimized addressability invalid X X

0801 Process storage limit exceeded 08 Argument I Parameter

01 Parameter reference violation X X

0016 Machine observation 10 Damage Encountered

0101 Instruction reference 44 Partial system object damage X

1C Machine-Dependent Exception

0017 Damage set 03 Machine storage limit exceeded X

0801 Partial system object damage set 20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X

02 Object destroyed X X

03 Object suspended X X

24 Pointer Specification

01 Pointer does not exist X X

02 Pointer type invalid X X

2A Program Creation

05 Invalid op-code extender field X

J 06 Invalid operand type X X

07 Invalid operand attribute X X

08 Invalid operand value range X X

09 Invalid branch target operand X

OC Invalid operand ODT reference X X X

00 Reserved bits are not zero X X X

2C Program Execution

04 Invalid branch target X

32 Scalar Specification

01 Scalar type invalid X X

J
2-112

EXTRACT MAGNITUDE (EXTRMAG)

Op Code
(Hex)

1052

Operand
1

Receiver

Operand
2

Source

Operand 1: Numeric variable scalar.

Operand 2: Numeric scalar.

Optional Forms

Mnemonic

EXTRMAGS
EXTRMAGI
EXTRMAGIS
EXTRMAGB
EXTRMAGBS

Op Code
(Hex)

1152
1852
1952
1C52
1052

Form Type

Short
Indicator
Indicator, Short
Branch
Branch, Short

If the short instruction option is indicated in the op
code, operand 1 is used as the first and second
operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand
(second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
to four branch targets (for branch options) or one to four
indicator operands (for indicator options). The branch or
indicator operands immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The numeric value of the source operand is
converted to its absolute value and placed in the
numeric variable scalar receiver operand.

The absolute value is formed from the source operand
as follows:

• Binary
Extract the numeric value and form twos
complement if the source operand is negative.

• Packed / Zoned
Extract the numeric value and force the source
operand's sign to positive.

• Floating-point
Extract the numeric value and force the significand
sign to positive.

The result of the operation is copied into the receiver
operand according to the rules of the Copy Numeric
Value instruction. If this operand is not the same type
as that used in performing the operation, the resultant
value is converted to its type. If necessary, the resultant
value is adjusted to the length of the receiver operand,
or aligned at the assumed decimal point of the receiver
operand, or both before being copied to it. Length
adjustment and decimal point alignment are performed
according to the rules of arithmetic operations outlined
in the Functional Concepts Manual. If significant digits
are truncated on the left end of the resultant value, a
size exception is signaled. An attempt to extract the
magnitude of a maximum negative binary value to a
binary scalar of the same size also results in a size
exception.

When the source floating-point operand represents
not-a-number, the sign field of the source is not forced
to positive and this value is not altered in the receiver.

If a decimal to binary conversion causes a size exception
to be signaled, the binary value contains the correct
truncated result only if the decimal value contains 15 or
fewer significant nonfractional digits.

For a fixed-point operation, if significant digits are
truncated from the left end of the resultant value, a size
exception is signaled. An attempt to extract the
absolute value of a maximum negative binary value into
a binary scalar of the same size also results in a size
exception.

Computation and Branching Instructions 2-113

For floating-point operations that involve a fixed-point Exceptions

receiver field. if nonzero digits would be truncated from

the left end of the resultant value. an invalid Operands J floating-point conversion exception is signaled. Exception 1 2 Other

For a floating-point receiver operand. if the exponent of 06 Addressing

the resultant value is either too large or too small to be 01 Space addressing violation X X

represented in the receiver field. the floating-point 02 Boundary alignment X X

overflow or the floating-point underflow exception is 03 Range X X

signaled. 06 Optimized addressability invalid X X
08 Argument/Parameter

01 Parameter reference violation X X

Resultant Conditions: Positive or zero-The algebraic OC Computation

value of the receiver operand is either positive or zero. 02 Decimal data X

Unordered-The value assigned a floating-point receiver 06 Floating-point overflow X

operand is NaN. 07 Floating-point underflow X
09 Floating-point invalid operand X
OA Size X

Events 00 Floating-point inexact result X
10 Damage Encountered

OOOC Machine resource 04 System object damage state X X X

0201 Machine auxiliary storage threshold exceeded 44 Partial system object damage X X X
1C Machine-Dependent Exception

0010 Process 03 Machine storage limit exceeded X

0701 Maximum processor time exceeded 20 Machine Support

0801 Process storage limit exceeded 02 Machine check X
03 Function check X

0016 Machine observation 22 Object Access

0101 Instruction reference 01 Object not found X X J 02 Object destroyed X X

0017 Damage set 03 Object suspended X X

0401 System object damage set 24 Pointer Specification

0801 Partial system object damage set 01 Pointer does not exist X X
02 Pointer type invalid X X

2A Program Creation
05 Invalid op code extender field X
06 Invalid operand type X X
07 Invalid operand attribute X X

08 Invalid operand value range X X

09 Invalid branch target operand X
OC Invalid operand ODT reference X X
00 Reserved bits are not zero X X X

2C Program Execution
04 Branch target invalid X

2-114

MULTIPLY (MULT)

Op Code
(Hex)

l04B

Operand
1

Product

Operand
2

Operand
3

Multiplicand Multiplier

Operand 1: Numeric variable scalar.

Operand 2: Numeric scalar.

Operand 3: Numeric scalar.

Optional Forms

Mnemonic

MULTS
MULTR
MULTSR
MULTI
MULTIS
MULTIR
MULTISR
MULTB
MULTBS
MULTBR
MULTBSR

Op Code
(Hex)

114B
124B
134B
184B
194B
1A4B
1B4B
1C4B
104B
1E4B
1F4B

Form Type

Short
Round
Short, Round
Indicator
Indicator, Short
Indicator, Round
Indicator, Short, Round
Branch
Branch, Short
Branch, Round
Branch, Short, Round

If the short instruction option is indicated in the op
code, operand 1 is used as the first and second
operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand
(second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
to four branch targets (for branch options) or one to four
indicator operands (for indicator options). The branch or
indicator operands immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The signed numeric value of the
multiplicand operand is multiplied by the numeric value
of the multiplier operand and the result is placed in the
product operand.

The operands must be numeric with any implicit
conversions occurring according to the rules of
arithmetic operations as outlined in the Functional

Concepts Manual.

Decimal operands used in floating-point operations
cannot contain more than 15 total digit positions.

If the multiplicand operand or the multiplier operand has
a value of 0, the result of the multiplication is a zero
product.

For a decimal operation, no alignment of the assumed
decimal point is performed for the multiplier and
mUltiplicand operands.

The operation occurs using the specified lengths of the
multiplicand and multiplier operands with no logical zero
padding on the left necessary.

Floating-point multiplication uses exponent addition and
significand multiplication.

For nonfloating-point computations and for significand
multiplication for floating-point operations, the
multiplication operation is performed according to the
rules of algebra.

The result of the operation is copied into the product
operand. If this operand is not the same type as that
used in performing the operation, the resultant value is
converted to its type. If necessary, the resultant value is
adjusted to the length of the product operand, aligned at
the assumed decimal point of the product operand, or
both before being copied to it. Length adjustment and
decimal point alignment are performed according to the
rules of arithmetic operations outlined in the Functional
Concepts Manual.

For the optional round form of the instruction,
specification of a floating-point receiver operand is
invalid.

For fixed-point operations, if nonzero digits are
truncated from the left end of the resultant value, a size
exception is signaled.

Computation and Branching Instructions 2-115

For floating-point operations involving a fixed-point Exceptions

receiver field (if nonzero digits would be truncated from
the left end of the resultant value). an invalid Operands J floating-point conversion exception is signaled. Exception 1 2 3 [4. 5] Other

For a floating-point product operand. if the exponent of 06 Addressing

the resultant value is either too large or too small to be 01 Space addressing violation X X X

represented in the product field. the floating-point 02 Boundary alignment X X X

overflow or the floating-point underflow exception is 03 Range X X X

signaled. 06 Optimized addressability invalid X X X
08 Argument/ Parameter

If operands overlap but do not share all of the same 01 Parameter reference violation X X X

bytes. results of operations performed on these OC Computation

operands are not predictable. If overlapped operands 02 Decimal data X X

share all of the same bytes. the results are predictable 06 Floating-point overflow X

when direct addressing is used. If indirect addressing is 07 Floating-point underflow X

used (that is. based operands. parameters. strings with 09 Floating-point invalid operand X X X

variable lengths. and arrays with variable subscripts). the OA Size X

results are not always predictable. OC Invalid floating-point X
conversion

If a decimal to binary conversion causes a size exception
00 Floating-point inexact result X

to be signaled. the binary value contains the correct
10 Damage Encountered

truncated result only if the decimal value contains 15 or
04 System object damage state X X X X

fewer significant nonfractional digits.
44 Partial system object damage X X X X

1C Machine- Dependent Exception
03 Machine storage limit X

exceeded
Resultant Conditions: Positive. negative. or zero-The
algebraic value of the numeric scalar product is positive.

20 Machine Support

negative. or zero. Unordered-The value assigned a
02 Machine check X J 03 Function check X

floating-point product operand is NaN. 22 Object Access
01 Object not found X X X
02 Object destroyed X X X

Events 03 Object suspended X X X
24 Pointer Specification

OOOC Machine resource 01 Pointer does not exist X X X
0201 Machine auxiliary storage threshold exceeded 02 Pointer type invalid X X X

2A Program Creation
0010 Process 05 Invalid op code extender field X

0701 Maximum processor time exceeded 06 Invalid operand type X X X
0801 Process storage limit exceeded 07 Invalid operand attribute X X X

08 Invalid operand value range X X X
0016 Machine observation 09 Invalid branch target operand X

0101 Instruction reference OC Invalid operand ODT reference X X X
00 Reserved bits are not zero X X X X

0017 Damage set 2C Program Execution
0401 System object damage set 04 Branch target invalid X
0801 Partial system object damage set

2-116

NEGATE (NEG)

Op Code
(Hex)

1056

Operand
1

Receiver

Operand
2

Source

Operand 1: Numeric variable scalar.

Operand 2: Numeric scalar.

Optional Forms

Mnemonic

NEGS
NEGI
NEGIS
NEGB
NEGBS

Op Code
(Hex)

1156
1856
1956
1C56
1D56

Form Type

Short
Indicator
Indicator, Short
Branch
Branch, Short

If the short instruction option is indicated in the op
code, operand 1 is used as the first and second
operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand
(second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
to four branch targets (for branch options) or one to four
indicator operands (for indicator options). The branch or
indicator operands immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The sign of the numeric value in the source
operand is changed as if it had been multiplied by a
negative one (-1). The result is placed in the receiver
operand.

The sign changing of the source operand value (positive
to negative and negative to positive) is performed as
follows:

• Binary
- Extract the numeric value and form the twos

complement of it.

• Packed/Zoned
Extract the numeric value and force its sign to
positive if it is negative or to negative if it is
positive.

• Floating-point
Extract the numeric value and force the significand
sign to positive if it is negative or to negative if it
is positive.

The result of the operation is copied into the receiver
operand. If this operand is not the same type as that
used in performing the operation, the resultant value is
converted to its type. If necessary, the resultant value is
adjusted to the length of the receiver operand, aligned
at the assumed decimal point of the receiver operand, or
both before being copied to it. Length adjustment and
decimal point alignment are performed according to the
rules of arithmetic operations outlined in the Functional
Concepts Manual. If significant digits are truncated on
the left end of the resultant value, a size exception is
signaled. An attempt to negate a maximum negative
binary value to a binary scalar of the same size also
results in a size exception. If a packed or zoned a is
negated, the result is always positive O.

When the source floating-point operand represents
not-a-number, the sign field of the source is not forced
to positive and this value is not altered in the receiver.

For a fixed-point operation, if significant digits are
truncated from the left end of the resultant value, a size
exception is signaled. An attempt to negate a maximum
negative binary value into a binary scalar of the same
size also results in a size exception.

For floating-point operations that involve a fixed-point
receiver field, if nonzero digits would be truncated from
the left end of the resultant value, an invalid
floating-point conversion exception is signaled.

Computation and Branching Instructions 2-117

For a floating-point receiver operand, if the exponent of Exceptions

the resultant value is either too large or too small to be

represented in the receiver field, the floating-point Operands J overflow and the floating-point underflow exceptions
Exception 1 2 Other

are signaled. 06 Addressing
01 Space addressing violation X X

If a decimal to binary conversion causes a size exception 02 Boundary alignment X X
to be signaled, the binary value contains the correct 03 Range X X
truncated result only if the decimal value contains 15 or 06 Optimized addressability invalid X X

fewer significant nonfractional digits. 08 Argument/ Parameter
01 Parameter reference violation X X

OC Computation

Resultant Conditions: Positive, negative, or zero-The 02 Decimal data X

algebraic value of the receiver operand is either positive,
06 Floating-point overflow X

negative, or zero. Unordered-The value assigned a
07 Floating-point underflow X

09 Floating-point invalid operand X X
floating-point receiver operand is NaN. OA Size X

OC Invalid floating-point conversion X
OC Floating-point inexact result X

Events 10 Damage Encountered
04 System object damage state X X X

oooe Machine resource 44 Partial system object damage X X X
0201 Machine auxiliary storage threshold exceeded 1C Machine- Dependent Exception

03 Machine storage limit exceeded X
0010 Process 20 Machine Support

0701 Maximum processor time exceeded 02 Machine check X

0801 Process storage limit exceeded 03 Function check X

22 Object Access
0016 Machine observation 01 Object not found X X

0101 Instruction reference 02 Object destroyed X X J 03 Object suspended X X

0017 Damage set 24 Pointer Specification
0401 System object damage set 01 Pointer does not exist X X
0801 Partial system object damage set 02 Pointer type invalid X X

2A Program Creation
05 Invalid op code extender field X

06 Invalid operand type X X
07 Invalid operand attribute X X

08 Invalid operand value range X X

09 Invalid branch target operand X
DC Invalid operand ODT reference X X

00 Reserved bits are not zero X X X
2C Program Execution

04 Branch target invalid X

2-118

NO OPERATION (NOOP)

Op Code
(Hex)

0000

Description: No function is performed. The instruction
consists of an operation code and no operands. The
instruction may not be branched to and is not counted
as an instruction in the instruction stream.

The instruction may be used for inserting gaps in the
instruction stream. These gaps allow instructions with
adjacent instruction addresses to be physically
separated.

The instruction may precede or follow any machine
instruction except the End instruction. and any number
of No Operation instructions may exist in succession.

NO OPERATION AND SKIP (NOOPS)

Op Code
(Hex)

0001

Operand
1

Skip count

Operand 1: Unsigned immediate value.

Description: This instruction performs no function other
than to indicate a specific number of bytes within the
instruction stream that are to be skipped during
encapsulation. It consists of an operation code and 1
operand. Operand 1 is an unsigned immediate value
that contains the number of bytes between this
instruction and the next instruction to be processed.
These bytes are skipped during the encapsulation of this
program. A value of zero for operand 1 indicates that
no bytes are to be skipped between this instruction and
the next instruction to be processed.

If the operand 1 skip count indicates that the next
instruction to process is beyond the end of the
instruction stream. an invalid operand value range
exception is signaled.

This instruction may be used to insert gaps in the
instruction stream in such a manner that allows
instructions with adjacent instruction addresses to not
be physically adjacent.

This instruction may not be branched to. and is not
counted as an instruction in the instruction stream.

The instruction may precede or follow any machine
instruction except the End instruction, and any number
of No Operation and Skip instructions may exist in
succession.

Note: When this instruction is used in an existing
program template. the following items within the
template may be adversely affected:

• The actual count of instructions may be altered to be
different than the count of instructions that is
specified in the program template header.

• Object definitions that reference instructions may now
be out of range or may not reference the intended
instruction.

Computation and Branching Instructions 2-119

The actual number of bytes skipped includes the bytes
containing the instruction plus the number of bytes
specified by the skip count value. The number of bytes
skipped per template version is as follows:

• Version 0 = 4 plus the skip count value.

• Version 1 = 5 plus the skip count value.

Exceptions

Operand
Exception 1 Other

2A Program Creation

06 Invalid operand type X
08 Invalid operand value range X
00 Reserved bits are not zero X X

2-120

NOT (NOT)

Op Code
(Hex)

108A

Operand
1

Receiver

Operand
2

Source

Operand 1: Character variable scalar.

Operand 2: Character scalar.

Optional Forms

Mnemonic

NOTS
NOTI
NOTIS
NOTB
NOTBS

OpCode
(Hex)

118A
188A
198A
lC8A
10SA

Form Type

Short
Indicator
Indicator. Short
Branch
Branch, Short

If the short instruction option is indicated in the op
code. operand 1 is used as the first and second
operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand
(second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op
code. the extender field must be present along with one
or two branch targets (for branch options) or one or two
indicator operands (for indicator options). The branch or
indicator operands immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The Boolean NOT operation is performed
on the string value in the source operand. The resulting
string is placed in the receiver operand.

The operands must be character strings; they are
interpreted as bit strings.

The length of the operation is equal to the length of the
source operand.

The bit values of the result are determined as follows:

Source
Bit

1

a

Result
Bit

a

The result value is then placed (left-adjusted) in the
receiver operand with truncating or padding taking place
on the right. The pad value used in this instruction is a
hex 00 byte.

Substring operand references that allow for a null
substring reference (a length value of zero) may be
specified for operands 1 and 2. The effect of specifying
a null substring reference for the source operand is that
the result is all zero and the instruction's resultant
condition is zero. When a null substring reference is
specified for the receiver, a result is not set and the
instruction's resultant condition is zero regardless of the
value of the source operand.

Resultant Conditions: Zero-The bit value for the bits of
the scalar receiver operand is either all zero or a null
substring reference is specified for the receiver. Not
zero-The bit value for the bits of the scalar receiver
operand is not all zero.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2

06 Addressing

01 Space addressing violation X X

02 Boundary alignment X X
03 Range X X

06 Optimized addressability invalid X X

08 Argument! Parameter

01 Parameter reference violation X X

10 Damage Encountered

04 System object damage state X X
44 Partial system object damage X X

1C Machine-Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found X X
02 Object destroyed X X

03 Object suspended X X
24 Pointer Specification

01 Pointer does not exist X X

02 Pointer type invalid X X
2A Program Creation

05 Invalid op code extender

06 Invalid operand type X X
07 Invalid operand attribute X X
08 Invalid operand value range X X

09 Invalid branch target operand

OA Invalid operand length X X
OC Invalid operand ODT reference X X
00 Reserved bits are not zero X X

2C Program Execution

04 Branch target invalid

Other

X

X

X

X

X

X

X

X

X

Computation and Branching Instructions 2-121

OR (OR)

Op Code Operand Operand Operand
{Hex) 1 2 3

1097 Receiver Source 1 Source 2

Operand 1: Character variable scalar.

Operand 2: Character scalar.

Operand 3: Character scalar.

Optional Forms

Mnemonic

ORS
ORI
ORIS
ORB
ORBS

Op Code
{Hex)

1197
1897
1997
1C97
1097

Form Type

Short
Indicator
Indicator, Short
Branch
Branch, Short

If the short instruction option is indicated in the op
code, operand 1 is used as the first and second
operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand
(second source operand).

Extender: Branch or Indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
or two branch targets (for branch options) or one or two
indicator operands (for indicator options). The branch or
indicator operands immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The Boolean OR operation is performed on
the string values in the source operands. The resulting
string is placed in the receiver operand.

The operands must be character strings; they are
interpreted as bit strings.

The length of the operation is equal to the length of the
longer of the two source operands. The shorter of the
two operands is logically padded on the right with hex
00. The excess bytes in the longer operand are
assigned to the results.

2-122

The bit values of the result are determined as follows:

Source 1
Bit

a

a

Source 2
Bit

1
a
a

1
a

Result
Bit

The result value is then placed (left-adjusted) in the
receiver operand with truncating or padding taking place
on the right. The pad value used in this instruction is a
hex 00.

Substring operand references that allow for a null
substring reference (a length value of zero) may be
specified for operands 1, 2, and 3. The effect of
specifying a null substring reference for one source
operand is that the other source operand is ORed with
an equal length string of all hex OOs. This causes the
value of the other operand to be assigned to the result.
When a null substring reference is specified for both
source operands, the result is all zero and the
instruction's resultant condition is zero. When a null
substring reference is specified for the receiver, a result
is not set and the instruction's resultant condition is zero
regardless of the values of the source operands.

If operands overlap but do not share all of the same
bytes, results of operations performed on these
operands are not predictable. If overlapped operands
share all of the same bytes, the results are predictable
when direct addressing is used. If indirect addressing is
used (that is, based operands, parameters, strings with
variable lengths, and arrays with variable subscripts), the
results are not always predictable.

Resultant Conditions: Zero-The bit value for the bits of
the scalar receiver operand is either all zero or a null
substring reference is specified for the receiver. Not
zero-The bit value for the bits of the scalar receiver
operand is not all zero.

J

Events REMAINDER (REM)

~ oooe Machine resource Op Code Operand Operand Operand
0201 Machine auxiliary storage threshold exceeded (Hex) 1 2 3

0010 Process 1073 Remainder Dividend Divisor

0701 Maximum processor time exceeded

0801 Process storage limit exceeded Operand 1: Numeric variable scalar.

0016 Machine observation
Operand 2: Numeric scalar.

0101 Instruction reference
Operand 3: Numeric scalar.

0017 Damage set
0401 System object damage set

Optional Forms
0801 Partial system object damage set

Op Code
Exceptions Mnemonic (Hex) Form Type

Operands REMS 1173 Short

1 2 3 Other REMI 1873 Indicator Exception
REMIS 1973 Indicator, Short
REMB lC73 Branch

06 Addressing
REMBS 1073 Branch, Short

01 Space addressing violation X X X

02 Boundary alignment X X X If the short instruction option is indicated in the op
03 Range X X X code, operand 1 is used as the first and second
06 Optimized addressability invalid X X X operational operands (receiver and first source operand).

08 Argument/Parameter Operand 2 is used as the third operational operand
01 Parameter reference violation X X X (second source operand).

L 10 Damage Encountered
04 System object damage state X X X X

44 Partial system object damage X X X X Extender: Branch or indicator options.
1C Machine-Dependent Exception

03 Machine storage limit exceeded X If the branch or indicator option is specified in the op
20 Machine Support code, the extender field must be present along with one

02 Machine check X to three branch targets (for branch options) or one to
03 Function check X three indicator operands (for indicator options). The

22 Object Access branch or indicator operands immediately follow the last
01 Object not found X X X operand listed above. See Chapter 1. Introduction for
02 Object destroyed X X X the encoding of the extender field and the allowed
03 Object suspended X X X syntax of the branch and indicator operands.

24 Pointer Specification
01 Pointer does not exist X X X

02 Pointer type invalid X X X Description: The signed numeric value of the dividend
2A Program Creation operand is divided by the numeric value of the divisor

05 Invalid op code extender field X operand, and the remainder is placed in the remainder
06 Invalid operand type X X X operand.
07 Invalid operand attribute X X X

08 Invalid operand value range X X X The operands must be numeric with any implicit
09 Invalid branch target operand X conversions occurring according to the rules of
OA Invalid operand length X X X arithmetic operations as outlined in the Functional
OC Invalid operand ODT reference X X X Concepts Manual.
00 Reserved bits are not zero X X X X

2C Program Execution

L 04 Branch target invalid X

Computation and Branching Instructions 2-123

If the divisor has a numeric value of 0, a zero divide
exception is signaled. If the dividend has a value of 0,
the result of the division is a zero value remainder.

For a decimal operation, the internal quotient value
produced by the divide operation is always calculated
with a precision of zero fractional digit positions. If
necessary, internal alignment of the assumed decimal
point for the dividend and divisor operands is performed
to insure the correct precision for the resultant quotient
value. These internal alignments are not subject to
detection of the decimal point alignment exception. An
internal quotient and the corresponding remainder value
will be calculated for any combination of decimal
attributes which may be specified for the instruction's
operands. However, as described below, the assignment
of the remainder value is limited to that portion of the
remainder value which fits in the remainder operand.

If the dividend is shorter than the divisor, it is logically
adjusted to the length of the divisor.

The division operation is performed according to the
rules of algebra. Before the remainder is calculated, an
intermediate quotient is calculated. The attributes of this
quotient are derived from the attributes of the dividend
and divisor operands as follows:

Dividend Divisor
Intermediate
Quotient

IM,SIM, or BIN(2) IM,SIM, or BIN(2) BIN(2)
IM,SIM, or BIN(2) BIN(4) BIN(4)
IM,SIM, or BIN(2) DECIMAL(P2,Q2) DECIMAL(5+Q2,0)
BIN(4) IM,SIM, or BIN(2) BIN(4)
BIN(4) DECIMAL(P2,Q2) DECIMAL(10+Q2,0)
DECIMAL(P1,Q1) IM,SIM, or BIN(2) DECIMAL(P1,0)
DECIMAL(P1,Q1) BIN(4) DECIMAL(P1,0)
DECIMAL(P1 ,Q1) DECIMAL(P2,Q2) DECIMAL(P1-Q1 +Q,O

1M = IMMEDIATE
SIM = SIGNED IMMEDIATE
DECIMAL = PACKED OR ZONED

Where Q = Larger
of Q1 or Q2

After the intermediate quotient numeric value has been
determined, the numeric value of the remainder operand
is calculated as follows:

Remainder = Dividend - (Quotient*Divisor)

The sign of the remainder is the same as that of the
dividend unless the remainder has a value of 0. When
the remainder has a value of 0, the sign of the
remainder is positive.

2-124

The resultant value of the calculation is copied into the
remainder operand. If this operand is not the same type
as that used in performing the operation, the resultant
value is converted to its type. If necessary, the resultant
value

is adjusted to the length of the remainder operand,
aligned at the assumed decimal point of the remainder
operand, or both before being copied to it. Length
adjustment and decimal point alignment are performed
according to the rules of arithmetic operations as
outlined in the Functional Concepts Manual. If significant
digits are truncated on the left end of the resultant
value, a size exception is signaled.

An exception is also signaled when a decimal division
operation is performed and one of the following
conditions occurs:

• The dividend is aligned, and the number of fractional
digits specified in the divisor plus the number of
fractional digits specified for the quotient plus the
number of significant integer digits in the dividend
exceeds 31.

• The divisor is aligned, and the number of fractional
digits specified for the dividend minus the number of
fractional digits specified for the quotient plus the
number of significant integer digits in the divisor
exceeds 31.

If a decimal to binary conversion causes a size exception
to be signaled, the binary value contains the correct
truncated result only if the decimal value contains 15 or
fewer significant nonfractional digits.

Resultant Conditions: The algebraic value of the numeric
scalar remainder is positive, negative, or 0.

J

J

Events Exceptions

~
OOOC Machine resource Operands

0201 Machine auxiliary storage threshold exceeded Exception 1 2 3 Other

0010 Process 06 Addressing

0701 Maximum processor time exceeded 01 Space addressing violation X X X

0801 Process storage limit exceeded 02 Boundary alignment X X X

03 Range X X X

0016 Machine observation 06 Optimized addressability invalid X X X

0101 Instruction reference 08 Argument/Parameter

01 Parameter reference violation X X X

0017 Damage set OC Computation

0401 System object damage object 02 Decimal data X X

0801 Partial system object damage set OA Size X
OB Zero divide X

10 Damage Encountered

04 System object damage state X X X X

44 Partial system object damage X X X X
1C Machine- Dependent Exception

03 Machine storage limit exceeded X
20 Machine Support

02 Machine check X
03 Function check X

22 Object Access

01 Object not found X X X

02 Object destroyed X X X
03 Object suspended X X X

24 Pointer Specification

01 Pointer does not exist X X X X

02 Pointer type invalid X X X X
2A Program Creation

05 Invalid op code extender field X
06 Invalid operand type X X X
07 Invalid operand attribute X X X
08 Invalid operand value range X X X

09 Invalid branch target X
OC Invalid operand ODr reference X X X

00 Reserved bits are not zero X X X X
2C Program Execution

04 Branch target invalid X

Computation and Branching Instructions 2- 1 25

SCALE (SCALE)

Op Code
(Hex)

1063

Operand
1

Receiver

Operand
2

Source

Operand
3

Scale
factor

Operand 1: Numeric variable scalar.

Operand 2: Numeric scalar.

Operand 3: Binary(2) scalar.

Optional Forms

Mnemonic

SCALES
SCALEI
SCALEIS
SCALEB
SCALEBS

Op Code
(Hex)

1163
1863
1963
1C63
1 D63

Form Type

Short
Indicator
Indicator, Short
Branch
Branch, Short

If the short instruction option is indicated in the op
code, operand 1 is used as the first and second
operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand
(second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
to four branch targets (for branch options) or one to four
indicator operands (for indicator options). The branch or
indicator operands immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and the allowed syntax of
the branch and indicator operands.

2-126

Description: The scale instruction performs numeric
scaling of the source operand based on the scale factor
and places the results in the receiver operand. The
numeric operation is as follows:

Operand 1 = Operand 2 *(B**N)

where:

N is the binary integer value of the scale operand.
It can be positive, negative. or O. If N is O. then
the operation simply copies the source operand
value into the receiver operand.

B is the arithmetic base for the type of numeric
value in the source operand.

Base Type

Binary
Packed/Zoned
Floating - point

B

2
10
2

The operands must be of the numeric types indicated
with any implicit conversions occurring according to the
rules of arithmetic operations as outlined in the
Functional Concepts Manual. The scale operation is a
shift of N binary, packed, or zoned digits. The shift is to
the left if N is positive, to the right if N is negative. For
a floating-point source operand. the scale operation is
performed as if the source operand is multiplied by a
floating-point value of 2**N.

If the source and receiver operands have different
attributes. the scaling operation is done in an
intermediate field with the same attributes as the source
operand. If a fixed-point scaling operation causes
nonzero digits to be truncated on the left end of the
intermediate field, a size exception is signaled. For a
floating-point scaling operation. the floating-point
overflow and the floating-point underflow exceptions
can be signaled during the calculation of the
intermediate result.

The resultant value of the calculation is copied into the
receiver operand. If this operand is not the same type
as that used in performing the operation. the resultant
value is converted to its type. If necessary. the resultant
value is adjusted to the length of the receiver operand.
aligned at the assumed decimal point of the receiver
operand. or both before being copied to it. Length
adjustment and decimal point alignment are performed
according to the rules of arithmetic operations outlined
in the Functional Concepts Manual. For fixed-point
operations. if nonzero digits are truncated off the left
end of the resultant value. a size exception is signaled.

For floating-point operations involving fixed-point
receiver fields. if nonzero digits would be truncated from
the left end of the resultant value. an invalid
floating-point conversion exception is signaled.

For floating-point receiver fields. if the exponent of the
resultant value is either too large or too small to be
represented in the receiver field. the floating-point
overflow or floating-point underflow exception is
signaled.

A scalar value invalid exception is signaled if the value
of N is beyond the range of the particular type of the
source operand as specified in the following table.

Source Operand Type

Binary(2)
Binary(4)
DecimaI(P.O)

Maximum Value of N

-14 ~ N ~ 14
-30 ~ N ~ 30
-31 ~ N ~ 31

For a scale operation in floating-point. no limitations are
placed on the values allowed for N other than the
implicit limits imposed due to the floating-point
overflow and underflow exceptions.

If a decimal to binary conversion causes a size exception
to be signaled. the binary value contains the correct
truncated result only if the decimal value contains 15 or
fewer significant nonfractional digits.

Resultant Condition: Positive. negative. or zero-The
algebraic value of the receiver operand is positive.
negative. or zero. Unordered-The value assigned a
floating-point receiver operand is NaN.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

00 1 0 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-127

Exceptions SCAN (SCAN)

Exception
Operands Op Code Operand Operand Operand
1 2 3 Other J (Hex) 1 2 3

06 Addressing 1003 Receiver Base Compare
01 Space addressing violation X X X operand
02 Boundary alignment X X X

03 Range X X X Operand 1: Binary variable scalar or binary array.

06 Optimized addressability invalid X X X

08 Argumentl Parameter Operand 2: Character scalar.

01 Parameter reference violation X X X

OC Computation
Operand 3: Character scalar.

02 Decimal data X

06 Floating-point overflow X

07 Floating-point underflow X
Optional Forms

09 Floating-point invalid operand X X Op Code
OA Size X Mnemonic (Hex) Form Type
OC Invalid floating-point conversion X

00 Floating-point inexact result X SCANI 1803 Indicator

10 Damage Encountered
SCANB 1C03 Branch

04 System object damage state X X X X

44 Partial system object damage X X X X

1C Machine- Dependent Exception
Extender: Branch or indicator options.

03 Machine storage limit exceeded X

20 Machine Support
If the branch or indicator option is specified in the op

02 Machine check X
code, the extender field must be present along with one

03 Function check X
or two branch targets (for branch options) or one or two

22 Object Access
indicator targets (for indicator options). The branch or

01 Object not found X X X
indicator targets immediately follow the last operand J

02 Object destroyed X X X
listed above. See Chapter 1. Introduction for the

03 Object suspended X X X
encoding of the extender field and the allowed syntax of

24 Pointer Specification
the branch and indicator operands.

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2A Program Creation
Description: The character string value of the base

05 Invalid op code extender field X
operand is scanned for occurrences of the character

06 Invalid operand type X X X
string value of the compare operand.

07 Invalid operand attribute X X X

08 Invalid operand value range X X X
The base and compare operands must both be character

09 Invalid branch target X
strings. The length of the compare operand must not be

OC Invalid operand ODT reference X X X
greater than that of the base string.

00 Reserved bits are not zero X X X X

2C Program Execution
The operation begins at the left end of the base string

04 Branch target invalid X
and continues character by character, from left to right,

32 Scalar Specification
comparing the characters of the base string with those

03 Scalar value invalid X
of the compare operand. The length of the comparisons

are equal to the length of the compare operand value

and function as if they were being compared in the

Compare Bytes Left-Adjusted instruction.

2-128

If a set of bytes that match the compare operand is
found, the binary value for the relative location of its
leftmost base string character is placed in the receiver
operand.

If the receiver operand is a scalar, only the first
occurrence of the compare operand is noted. If it is an
array, as many occurrences as there are elements in the
array are noted.

The operation continues until no more occurrences of
the compare operand can be noted in the receiver
operand or until the number of characters (bytes)
remaining to be scanned in the base string is less than
the length of the compare operand.

When the second condition occurs, the receiver value is
set to O. If the receiver operand is an array, all its
remaining elements are also set to O.

The base operand and the compare operand can be
variable length substring compound operands.

Substring operand references that allow for a null
substring reference (a length value of zero) may be
specified for operands 2 and 3. The effect of specifying
a null substring reference for the compare operand or
both operands is that the receiver is set to zero (no
match found) and the instruction's.resultant condition is
null compare operand. Specifying a null substring
reference for just the base operand is not allowed due
to the requirement that the length of the compare
operand must not be greater than that of the base
string.

Resultant Conditions: Zero or positive-The numeric
value(s) of the receiver operand is either zero or positive.
When the receiver operand is an array, the resultant
condition is zero if all elements are zero. One of these
two conditions will result when the compare operand is
not a null substring reference. Null compare
operand-The compare operand is a null substring
reference; therefore, the receiver has been set to zero
which indicates that no occurrences were found.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process control limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-129

Exceptions SCAN WITH CONTROL (SCANWC)

Operands Op Code Operand Operand Operand Operand ,J Exception 1 2 3 Other (Hex) 1 2 3 4

06 Addressing 10E4 Base Controls Options Escape

01 Space addressing violation X X X locator target or

02 Boundary alignment X X X
null

03 Range X X X
06 Optimized addressability invalid X X X

Operand 1: Space pointer.

08 Argument/Parameter Operand 2: Character(S) variable scalar.
01 Parameter reference violation X X X

OC Computation Operand 3: Character(4) scalar.

08 Length conformance X X
10 Damage Encountered

Operand 4: Instruction number, relative instruction number,
branch point, instruction pointer, instruction definition list

04 System object damage state X X X X element, or null.
44 Partial system object damage X X X X

lC Machine- Dependent Exception

03 Machine storage limit exceeded X Optional Forms
20 Machine Support

02 Machine check X Op Code
03 Function check X Mnemonic (Hex) Form Type

22 Object Access

01 Object not found X X X SCANWC 10E4 Short
02 Object destroyed X X X
03 Object suspended X X X SCANWCI 18E4 Indicator

24 Pointer Specification SCANWCB 1C84 Branch
01 Pointer does not exist X X X
02 Pointer type invalid X X X J 2A Program Creation

Extender: Branch or indicator options.

05 Invalid op code extender field X
06 Invalid operand type X X X

If the branch or indicator option is specified in the op

07 Invalid operand attribute X X X
code, the extender field must be present along with one

08 Invalid operand value range X X X
to four branch targets (for branch options) or one to four

09 I nvalid branch target X
indicator operands (for indicator options). The branch or

OA Invalid operand length X X
indicator operands immediately follow the last operand

OC Invalid operand ODT reference X X X
listed above. See Chapter 1. Introduction for the

00 Reserved bits are not zero X X X X
encoding of the extender field and the allowed syntax of

2C Program Execution
the branch and indicator operands.

04 Branch target invalid X

J
2-130

Description: The base string to be scanned is specified
by the base locator and controls operands. The base
locator addresses first character of the base string. The
controls specifies the length of the base string in the
bas'e length field.

The scan operation begins at the left end of the base
string and continues character by character,
left-to-right. The scan operation can be performed on a
base string which contains all simple (1-byte) or all
extended (2-byte) character codes or a mixture of the
two. When the base string is being interpreted in simple
character mode, the operation moves through the base
string one byte at a time. When the base string is being
interpreted in extended character mode, the operation
moves through the base string 2 bytes at a time. The
character string value of the base operand is scanned
for occurrences of a character value satisfying the
criteria specified in the control and options operands.

The scan is completed by updating the base locator and
controls operands with scan status when a character
value being scanned for is found, the end of the base
string is encountered, or an escape code is encountered
when the escape target operand is specified. The base
locator is set with addressability to the character (simple
or extended) which caused the instruction to complete
execution. The controls operand is set with information
which identifies the mode (simple or extended) of the
base string character addressed by the base locator and
which provides for resumption of the scan operation
with minimal overhead.

The controls and options operands specify the modes to
be used in interpreting characters during the scan
operation. Characters can be interpreted in one of two
character modes: simple (1-byte) and extended
(2-byte). Additionally, the base string can be scanned
in one of two scan modes, mixed (base string may
contain a mixture of both character modes) and
nonmixed (base string contains one mode of characters).

When the mixed scan mode is specified in the options
operand, the base string is interpreted as containing a
mixture of simple and extended character codes. The
mode, simple or extended, with which the string is to be
interpreted, is controlled initially by the base mode
indicator in the controls operand and thereafter by mode
control characters imbedded in the base string. The
mode control characters are as follows:

• Hex OE = Shift out (SO) of simple character mode to
extended mode.

• Hex OF = Shift in (SI) to simple character mode from
extended mode. This is only recognized if
it occurs in the first byte position of an
extended character code.

When the nonmixed scan mode is specified in the
options operand, the base string is interpreted using
only the character mode specified by the base mode
indicator in the controls operand. Character mode
shifting can not occur because no mode control
characters are recognized when scanning in nonmixed
mode.

The base locator operand is a space pointer which is
both input to and output from the instruction. On input,
it locates the first character of the base string to be
processed. On output, it locates the character of the
base string which caused the instruction to complete.

The controls operand must be a character scalar which
specifies additional information to be used to control the
scan operation. It must be at least 8 bytes long and
have the following format:

• Controls operand
Control indicators
Reserved
Comparison characters
Reserved
Base end
-Instruction work area
- Base length

Char(8)
Char(1)
Char(1)
Char(2)
Char(1)
Char(3)
Char(1)
Char(2)

Computation and Branching Instructions 2-131

Only the first 8 bytes of the controls operand are used.
Any excess bytes are ignored. Reserved fields must
contain binary zeros.

The control indicators field has the following format:

• Control indicators
Base mode
0= Simple
1 = Extended

Comparison character mode
0= Simple
1 = Extended

Reserved (must be 0)

Scan state
o = Resume scan
1 = Start scan

Char(1)
Bit 0

Bit 1

Bit 2-6

Bit 7

The base mode is both input to and output from the
instruction. In either case, it specifies the mode of the
character in the base string currently addressed by the
base locator.

The comparison character mode is not changed by the
instruction. It specifies the mode of the comparison
character contained in the controls operand.

The scan state is both input to and output from the
instruction. As input, it indicates whether the scan
operation for the base string is being started or
resumed. If it is being started, the instruction assumes
that the base length value in the base end field of the
controls operand specifies the length of the base string,
and the instruction work area value is ignored. If it is
being resumed, the instruction assumes the base end
field has been set by a prior start scan execution of the
instruction with an internal machine value identifying the
end of the base string.

2-132

For a start scan execution of the instruction, the scan
state indicator is reset to indicate resume scan to
provide for subsequent resumption of the scan
operation. Additionally, for a start scan execution of the
instruction, the base end field is set with an internally
optimized value which identifies the end of the base
string being scanned. This value then overlays the
values which were in the instruction work area and base
length fields on input to the instruction. Predictable
operation of the instruction on a resume scan execution
depends upon this base end field being left intact with
the value set by the start scan execution.

For a resume scan execution of the instruction, the scan
state and base end fields are unchanged.

The comparison character is input to the instruction. It
specifies a character code to be used in the
comparisons performed during the scanning of the base
string. The comparison character mode in the control
indicators specifies the mode (simple or extended) of the
comparison character. If it is a simple character, the
first byte of the comparison character field is ignored
and the comparison character is assumed to be
specified in the second byte. If it is an extended
character, the comparison character is specified as a
2-byte value in the comparison character field.

The base end field is both input to and output from the
instruction. It contains data which identifies the end of
the base string. Initially, for a start scan execution of
the instruction, it contains the length of the base string
in the base length field. Additionally, the base end field
is used to retain information over multiple instruction
executions which provides for minimizing the overhead
required to resume the scan operation for a particular
base string. This information is set on the initial start
scan execution of the instruction and is used during
subsequent resume scan executions of the instruction to
determine the end of the base string to be scanned. If
the end of the base string being scanned must be
altered during iterative usage of this instruction, a start
scan execution of the instruction must be performed to
provide for correctly resetting the internally optimized
value to be stored in the base end from the values
specified in the base locator operand and base length
field.

L

For the special case of a start scan execution where a
length value of zero (no characters to scan) is specified
in the base length field, the instruction results in a not
found resultant condition. In this case, the base locator
is not verified and the scan state indicator, the base end
field, and the base locator are not changed.

The options operand must be a character scalar which
specifies the options to be used to control the scan
operation. It must be at least 4 bytes in length and has
the following format:

• Options operand
Options indicators

- Reserved

Char(4)
Char(1)
Char(3)

The options operand must be specified as a constant
character scalar.

Only the first 4 bytes of the options operand are used.
Any excess bytes are ignored. Reserved fields must
contain binary zeros.

The option indicators field has the following format:

• Option indicators
Reserved

Scan mode
0= Mixed
1 = Nonmixed

Reserved

Comparison relation
- Equal, (=) relation
- Less than, «) relation
-Greater than, (» relation

o = No match on relation
1 = Match on relation

Reserved

Char(1)
Bit 0

Bit 1

Bit 2-3

Bit 4-6
Bit 4
Bit 5
Bit 6

Bit 7

The scan mode specifies whether the base string
contains a mixture of character modes, or contains all
one mode of characters; that is, whether or not mode
control characters should be recognized in the base
string. Mixed specifies that there is a mixture of
character modes and, therefore, mode control characters
should be recognized. Nonmixed specifies that there is
not a mixture of character modes and, therefore, mode
control characters should not be recognized. Note that
the base mode indicator in the controls operand
specifies the character mode of the base string
character addressed by the base locator.

The comparison relation specifies the relation or
relations of the comparison character to characters of
the base string which will satisfy the scan operation and
cause completion of the instruction with one of the
height, low, or equal resultant conditions. Multiple
relations may be specified in conjunction with one
another. Specifying all relations insures a match against
any character in the base string which is of the same
mode as the comparison character. Specifying no
relation insures a not found resultant condition, in the
absence of an escape due to verification, regardless of
the values of the characters in the base string which
match the mode of the comparison character.

An example of comparison scanning is a scan of simple
mode characters for a value less than hex 40. This
could be done by specifying a comparison character of
hex 40 and a comparison relation of greater than in
conjunction with a branch option for the resultant
condition of high. This could also be done by specifying
a comparison character of hex 3F and comparison
relations of equal and greater than in conjunction with
branch options for equal and high. The target of the
branch options in either case would be the instructions
to process the character less than hex 40 in value.

The escape target operand controls the verification of
bytes of the base string for values less than hex 40.
Verification, if requested, is always performed in
conjunction with whatever comparison processing has
been requested. That is, verification is performed even if
no comparison relation is specified. This operand is
discussed in more detail in the following material.

Computation and Branching Instructions 2-133

During the scan operation, the characters of the base
string which are not of the same mode as the
comparison character are skipped over until the mode of
the characters being processed is the same as the mode
of the comparison character. The operation then
proceeds by comparing the comparison character with
each of the characters of the base string. These
comparisons behave as if the characters were being
compared in the Compare Bytes Left Adjusted
instruction.

If a base string character satisfying the criteria specified
in the controls and options operands is found, the base
locator is set to address the first byte of it. the base
mode indicator is set to indicate the mode of the base
string as of that character, and the instruction is
completed with the appropriate resultant condition based
on the relation (high, low, or equal) of the comparison
character to the base string character.

If a matching base string character is not found prior to
encountering a mode change, the characters of the base
string are again skipped over until the mode of the
characters being processed is the same as the mode of
the comparison character before comparisons are
resumed.

If a matching base string character is not found prior to
encountering the end of the base string, the base
location is set to address the first byte of the character
encountered at the end of the base string, the base
mode indicator is set to indicate the mode of the base
string as of that character, and the instruction is
completed with the not found resultant condition. A
mode control string results in the changing of the base
string mode, but the base locator is left addressing the
mode control character.

2-134

If the escape target operand is specified (operand 4 is
not null), verifications are performed on the characters
of the base string prior to their being skipped or
compared with the comparison character. Each byte of
the base string is checked for a value less than hex 40.
Additionally, for a mixed scan mode, when such a value
is encountered, it is then determined if it is a valid mode
control character.

• Hex OE (SO) when the base string is being interpreted
in simple character mode.

• Hex OF (SI) in the left byte of the character code
when the base string is being interpreted in extended
character mode.

If a byte value of less than hex 40 is not a valid mode
control character, it is considered to be an escape code.
The base locator is set to address the first byte of the
base string character (simple or extended) which
contains the escape code, the base mode indicator is
set to indicate the mode of the base string as of that
character, and a branch is taken to the target specified
by the escape target operand. When the escape target
branch is performed, the value of any optional indicator
operands is meaningless.

If the escape target operand is not specified (operand 4
is null), verifications of the character codes in the base
string are not performed. However, for a mixed scan
mode, mode control values are always processed as
described previously under the discussion of the mixed
scan mode.

Substring operand references which allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Variable length substring compound operands may not
be specified for operands two and three.

If possible, use a Space Pointer Machine Object for the
base locator, operand 1. Appreciably less overhead is
incurred in accessing and storing the value of the base
locator if this is done.

If possible, specify through its ODT definition, the
controls operand on an 8-byte multiple (doubleword)
boundary relative to the start of the space containing it.
Appreciably less overhead is incurred in accessing and
storing the value of the controls if this is done.

J

For the case where a base string is to be just scanned
for byte values less than hex 40, two techniques can be
used.

• A direct simple mode scan for a value less than hex
40, without usage of the escape target verification
feature.

• A scan for any character with usage of the escape
target verification feature.

The direct scan approach, the former, is the more
efficient.

The following diagram defines the various conditions
which can be encountered at the end of the base string
and what the base locator addressability is in each case.
The solid vertical line represents the end of the base
string. The dashes represent the bytes before and after
the base string end. The V is positioned over the byte
addressed by the base locator in each case. These are
the conditions which can be encountered when the base
locator input to the instruction addresses a byte prior to
the base string end. When the base length field
specifies a value of zero for a start scan execution of
the instruction, or the input base locator addresses a
point beyond the end of the instruction, no processing is
performed and the instruction is immediately completed
with the not found resultant condition.

Address- Ending Instruction
ability Condition Response

V
(One byte code at
string end)

· Simple character · Appropriate
resultant condition
indicating found or
not found

· Shift in/out · Mode shift
encountered performed, and not

found resultant
condition

· Escape code in · Branch taken
simple character

V
(Extended character
split across string end)

· Extended character · Not found resultant
condition

· Escape code in · Branch taken
extended character

V
(Extended character at
string end)

· Extended character · Appropriate
resultant condition
indicating found or
not found

· Escape code in · Branch taken
extended character

An analysis of the diagram shows that normally, after
appropriate processing for the particular found, not
found, or escape condition, the scan can be restarted at
the byte of data which would follow the base string end
in the data stream being scanned. Any mode shift
required by an ending mode control character will have
been performed.

However, one ending condition may require subsequent
resumption of the scan at the character encountered at
the end of the base string. This is the case where the
instruction completes with the not found resultant
condition and the base string ends with an extended
character split across string end. That is, the base mode
indicator specifies extended mode, the base locator
addresses the last byte of the base string, and that byte
value is not a shift out, hex OE character. In this case,
complete verification of the extended character and
relation comparison could not be performed. If this
extended character is to be processed, it must be done
through another execution of the Scan instruction where
both bytes of the character can be input to the
instruction within the confines of the base string.

Computation and Branching Instructions 2-135

Resultant Conditions Exceptions

. High, Low, Equal: A character value was found in the Operands J base string which satisfies the criteria specified in the Exception 1 2 3 4 Other
controls and options operands in that the comparison

character is of higher, lower, or equal string value to 06 Addressing

the base string character. 01 Space addressing violation X X X X

02 Boundary alignment violation X X X X . Not found: A character value was not found in the 03 Range X X X X

base string which satisfied the criteria specified in the 06 Optimized addressability invalid X X X X

controls and options operands. 08 Argument/ Parameter

01 Parameter reference violation X X X X

OC Computation

Events 08 Length conformance X X

10 Damage Encountered

OOOC Machine resource 44 Partial system object damage X

0201 Machine auxiliary storage exceeded 1C Machine Dependent Exception
03 Machine storage limit X

oooD Machine status exceeded

0101 Machine check 20 Machine Support

02 Machine check X

0010 Process 03 Function check X

0601 Exception signaled to process 22 Object Access

0701 Maximum processor time exceeded 01 Object not found X X X X

02 Object destroyed X X X X

0016 Machine observation 03 Object suspended X X X X

0101 Instruction reference 24 Pointer Specification

0201 Object location reference 01 Pointer does not exist X X X X

02 Pointer type invalid X X X X J 0017 Damage set 2A Program Creation

0801 Partial system object damage set 05 Invalid op-code extender field X

06 Invalid operand type X X X X

07 Invalid operand attribute X X X X

08 Invalid operand value range X X X X

09 Invalid branch target operand X X

OA Invalid operand length X X

OC Invalid operand ODT reference X X X X

00 Reserved bits are not zero X X X X X

2C Program Execution

04 Branch target invalid X

32 Scalar Specification

01 Scalar type invalid X X X X

03 Scalar value invalid X X

2-136

SEARCH (SEARCH)

Op Code
(Hex)

1084

Operand
1

Receiver

Operand
2

Array

Operand
3

Find

Operand
4

Location

Operand 1: Binary variable scalar or binary variable array.

Operand 2: Character array or numeric array.

Operand 3: Character scalar or numeric scalar.

Operand 4: Binary scalar.

Optional Forms

Mnemonic

SEARCHI
SEARCHB

Op Code
(Hex)

1884
1C84

Form Type

Indicator
Branch

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
or two branch targets (for branch options) or one or two
indicator targets (for indicator options). The branch. or
indicator targets immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The portions of the array operand indicated
by the location operand are searched for occurrences of
the value indicated in the find operand.

The operation begins with the first element of the array
operand and continues element by element, comparing
those characters of each element (beginning with the
character indicated in the location operand) with the
characters of the find operand. The location operand
contains an integer value representing the relative
location of the first character in each element to be used
to begin the compare.

The integer value of the location operand must range
from 1 to L. where L is the length of the array operand
elements. A value of 1 indicates the leftmost character
of each element.

The array and find operands can be either character or
numeric. Any numeric operands are interpreted as
logical character strings. The compares between these
operands are performed at the length of the find
operand and function as if they were being compared in
the Compare Bytes Left-Adjusted instruction.

The length of the find operand must not be so large that
it exceeds the length of the array operand elements
when used with the location operand value. The array
element length used is the length of the array scalar
elements and not the length of the entire array element,
which can be larger in noncontiguous arrays.

As each occurrence of the find value is encountered, the
integer value of the index for this array element is
placed in the receiver operand. If the receiver operand is
a scalar, only the first element containing the find value
is noted. If the receiver operand is an array, as many
occurrences as there are elements within the receiver
array are noted.

The operation continues until no more occurrences of
elements containing the find value can be noted in the
receiver operand or until the array operand has been
completely searched. When the second condition
occurs, the receiver value is set to O. If the receiver
operand is an array, all its remaining elements are also
set to O. The find operand can be a variable length
substring compound operand.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Resultant Conditions: The numeric value(s) of the
receiver operand is either 0 or positive. When the
receiver operand is an array, the resultant condition is 0
if all elements are O.

Computation and Branching Instructions 2-137

Events Exceptions

oooe Machine resource Operands ,j 0201 Machine auxiliary storage threshold exceeded Exception 1 2 3 4 Other

0010 Process 06 Addressing

0701 Maximum processor time exceeded 01 Space addressing violation X X X X

0801 Process storage limit exceeded 02 Boundary alignment X X X X

03 Range X X X X

0016 Machine observation 06 Optimized addressability X X X X

0101 Instruction reference invalid

08 Argument/ Parameter

0017 Damage set 01 Parameter reference violation X X X X

0401 System object damage set OC Computation

0801 Partial system object damage set 08 Length conformance X X

10 Damage Encountered

04 System object damage state X X X X X

44 Partial system object damage X X X X X

1C Machine-Dependent Exception

03 Machine storage limit X
exceeded

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X X X

02 Object destroyed X X X X

03 Object suspended X X X X

24 Pointer Specification J 01 Pointer does not exist X X X X

02 Pointer type invalid X X X X

2A Program Creation

05 Invalid op code extender field X

06 Invalid operand type X X X X

07 Invalid operand attribute X X X X

08 Invalid operand value range X X X X

09 Invalid branch target operand X

OA Invalid branch length X

OC Invalid operand ODT reference X X X X

00 Reserved bits are not zero X X X X X

2C Program Execution

04 Branch target invalid X

32 Scalar Specification

01 Scalar type invalid X X X X

OA Invalid operand length X X X X

J
2-138

SET INSTRUCTION POINTER (SETIP) Exceptions

~ Operands Op Code Operand Operand
Exception 1 2 Other (Hex) 1 2

1022 Receiver Branch 06 Addressing

target 01 Space addressing violation X

02 Boundary alignment X
Operand 1: Instruction pointer. 03 Range X

06 Optimized addressability invalid X
Operand 2: Instruction number, relative instruction number, or

08 Argument! Parameter
branch point.

01 Parameter reference violation X

10 Damage Encountered

04 System object damage state X X X
Description: The value of the branch target (operand 2)

44 Partial system object damage X X X
is used to set the value of the instruction pointer

1C Machine- Dependent Exception
specified by operand 1. The instruction number

03 Machine storage limit exceeded X
indicated by the branch target must provide the address

20 Machine Support
of an instruction within the program containing the Set

02 Machine check X
Instruction Pointer instruction.

03 Function check X

22 Object Access

01 Object not found X
Events

02 Object destroyed X

03 Object suspended X oooe Machine resource
24 Pointer Specification

0201 Machine auxiliary storage threshold exceeded
01 Pointer does not exist X
02 Pointer type invalid X

0010 Process
2A Program Creation

~
0701 Maximum processor time exceeded

06 Invalid operand type X X
0801 Process storage limit exceeded

07 Invalid operand attribute X

08 Invalid operand value range X
0016 Machine observation

09 Invalid branch target operand X
0101 Instruction reference

OC Invalid operand ODT reference X X
00 Reserved bits are not zero X X X

0017 Damage set
2C Program Execution

0401 System object damage set
04 Branch target invalid X

0801 Partial system object damage set

Computation and Branching Instructions 2-139

STORE AND SET COMPUTATIONAL ATTRIBUTES
(SSCA)

Op Code Operand Operand
(Hex) 1 2

1078 Receiver Source

Operand
3

Controls

Operand 1: Character(5) variable scalar.

Operand 2: Character(5) scalar or null.

Operand 3: Character(5) scalar or null.

Description: This instruction stores and optionally sets
the attributes for controlling computational operations
for the process this "instruction is executed in.

The receiver is assigned the values that each of the
computational attributes had at the start of execution of
the instruction. It has the same format and bit
assignment as the source.

The source specifies new values for the computational
attributes for the process. The particular computational
attributes that are selected for modification are
determined by the controls operand. The source
operand has the following format:

2-140

• Floating-point exception masks
o = Disabled (exception is masked)

= Enabled (exception is unmasked)
Reserved (binary 0)
Floating-point overflow
Floating-point underflow

- Floating-point zero divide
- Floating-point inexact result
- Floating-point invalid operand

Reserved (binary 0)

• Floating-point exception
occurrence flags
o = Exception has not occurred

= Exception has occurred
Reserved (binary 0)
Floating-point overflow
Floating-point underflow

- Floating-point zero divide
- Floating-point inexact result

Floating-point invalid operand
Reserved (binary 0)

Char(2)

Bits 0-9
Bit 10
Bit 11
Bit 12
Bit 13
Bit 14
Bit 15

Char(2)

Bits 0-9
Bit 10
Bit 11
Bit 12
Bit 13
Bit 14
Bit 15

J

J

• Modes Char(1)
Reserved Bit 0

- Floating-point rounding mode Bits 1-2
00= Round toward positive

infinity
01 = Round toward negative infinity
10= Round toward zero
11 = Round to nearest (default)
Reserved Bits 3-7

The controls operand is used to select those attributes
that are to be set from the bit values of the source
operand. The format of the controls is the same as that
for the source. A value of one for a bit in controls
indicates that the corresponding computational attribute
for the process is to be set from the value of that bit of
the source. A value of zero for a bit in controls indicates
that the corresponding computational attribute for the
process is not to be changed, and will retain the value it
had prior to this instruction. For an attribute controlled
by a multiple-bit field, such as the rounding modes, all
of the bits in the field must be ones or all must be
zeros. A mixture of ones and zeros in such a field
results in a scalar value invalid exception.

If the source and controls operands are both null, the
instruction will just return the current computational
attributes. If the source is specified, the computational
attributes of the process are modified under control of
the controls operand. If the source operand is specified
and the controls operand is null, the instruction will
change all of the computational attributes to the values
specified in the source. If the source operand is null and
the controls operand is specified, an invalid operand
type exception is signaled.

With the floating-point exception masks field, it is
possible to unmask/ mask the exception processing and
handling for each of the five floating-point exceptions.
If an exception that is unmasked occurs, then the
corresponding exception occurrence bit is set, and the
exception is signaled. If an exception that is masked
occurs, the exception is not signaled, but the exception
occurrence flag is still set to indicate the occurrence of
the exception.

The floating-point exception occurrence flag for each
exception may be set or cleared by this instruction from
the source operand under control of the controls
operand.

Unless specified otherwise by a particular instruction, or
precluded due to implicit conversions, all floating-point
operations are performed as if correct to infinite
precision, and then rounded to fit in a destinations
format while potentially signaling an exception that the
result is inexact. To allow control of the floating-point
rounding operations performed within a process, four
floating-point rounding modes are supported. Assume y
is the infinitely precise number that is to be rounded,
bracketed most closely by x and z, where x is the
largest representable value less than y and z is the
smallest representable value greater than y. Note that x
or z may be infinity. The following diagram shows this
relationship of x, y, and z on a scale of numerically
progressing values where the vertical bars denote values
representable in a floating-point format.

x y z
Sma lie r <-'-_'---_I'---_I'----'----J'--> Large r

Given the above, if y is not exactly representable in the
receiving field format, the rounding modes change y as
follows:

Round to nearest with round to even in case of a tie is
the default rounding mode in effect upon the initiation
of a process. For this rounding mode, y is rounded to
the closer of x or z. If they are equally close, the even
one (the one whose least significant bit is a zero) is
chosen. For the purposes of this mode of rounding,
infinity is treated as if it was even. Except for the case
of y being rounded to a value of infinity, the rounded
result will differ from the infinitely preCise result by at
most half of the least significant digit position of the
chosen value. This rounding mode differs slightly from
the decimal round algorithm performed for the optional
round form of an instruction. This rounding mode would
round a value of 0.5 to 0, where the decimal round
algorithm would round that value to 1.

Round toward positive infinity indicates directed
rounding upward is to occur. For this mode, y is
rounded to z.

Round toward negative infinity indicates directed
rounding downward is to occur. For this mode, y is
rounded to x.

Round toward zero indicates truncation is to occur. For
this mode, y is rounded to the smaller (in magnitude) of
x or z.

Computation and Branching Instructions 2-141

Arithmetic operations upon infinity are exact. Negative
infinity is less than every finite value, which is less than
positive infinity.

The computational attributes are set with a default value
upon process initiation. The default attributes are as
follows:

• The floating-point inexact result exception is masked.
The other floating-point exceptions are unmasked.

• All occurrence bits have a zero value.

• Round to the nearest rounding mode.

These attributes can be modified by a program
executing this instruction. The new attributes are then in
effect for the program executing this instruction and for
programs invoked subsequent to it unless changed
through another execution of this instruction. External
exception handlers and invocation exit routines are
invoked with the same attributes as were last in effect
for the program invocation they are related to. Event
handlers do not really relate to another invocation in the
process. As such, they are invoked with the attributes
that were in effect at the point the process was
interrupted to handle the event.

Upon return to the invocation of a program from
subsequent program invocations, the computational
attributes, other than exception occurrence attributes,
are restored to those that were in effect when the
program gave up control. The exception occurrence
attributes are left intact reflecting the occurrence of any
floating-point exceptions during the execution of
subsequent invocations.

Internal exception handlers execute under the invocation
of the program containing them. As such, the above
discussion of how computational attributes are restored
upon returning from an external exception handler does
not apply. The execution of an internal exception
handler occurs in a manner similar to the execution of
an internal subroutine invoked through the Call Internal
instruction. If the internal exception handler modifies the
attributes, the modification remains in effect for that
invocation when the exception handler completes the
exception.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

2-142

Events

OOOC Machine resource J 0201 Machine auxiliary storage threshold exceeded

OooD Machine status
0101 Machine check

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
01 01 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing
01 Space addressing violation X X X

02 Boundary alignment violation X X X

03 Range X X X J 06 Optimized addressability invalid X X X
08 Argument/Parameter

01 Parameter reference violation X X X

10 Damage Encountered
44 Partial system object damage X

1C Machine-Dependent Exception
03 Machine storage limit exceeded X

20 Machine Support
02 Machine check X
03 Function check X

22 Object Access
01 Object not found X X X

02 Object destroyed X X X
03 Object suspended X X X

24 Pointer Specification
01 Pointer does not exist X X X

02 Pointer type invalid X X X
2A Program Creation

06 Invalid operand type X X X
07 Invalid operand attribute X X X

08 Invalid operand value range X X X
OC Invalid operand ODT reference X X X
00 Reserved bits are not zero X X X X

32 Scalar Specification
01 Scalar type invalid X X X
03 Scalar value invalid X X

SUBTRACT LOGICAL CHARACTER (SUBLC)

Op Code
(Hex)

Operand
1

Operand
2

Operand
3

1027 Difference Minuend Subtrahend

Operand 1: Character variable scalar (fixed-length).

Operand 2: Character scalar (fixed-length).

Operand 3: Character scalar (fixed-length).

Optional Forms

Op Code
Mnemonic (Hex) Form Type

SUBLCS
SUBLCI
SUBLCIS
SUBLCB
SUBLCBS

1127
1827
1927
1C27
1027

Short
Indicator
Indicator, Short
Branch
Branch, Short

If the short instruction option is indicated in the op
code, operand 1 is used as the first and second
operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand
(second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
to three branch targets (for branch options) or one to
three indicator operands (for indicator options). The
branch or indicator operands immediately follow the last
operand listed above. See Chapter 1. Introduction for
the encoding of the extender field and the allowed
syntax of the branch and indicator operands.

Description: The unsigned binary value of the
subtrahend operand is subtracted from the unsigned
binary value of the minuend operand, and the result is
placed in the difference operand.

Operands 1, 2, and 3 must be the same length;
otherwise, the Create Program instruction signals an
invalid length exception.

The subtraction operation is performed as though the
ones complement of the second operand and a
low-order 1-bit were added to the first operand.

The result value is then placed (left-adjusted) into the
receiver operand with truncating or padding taking place
on the right. The pad value used in this instruction is a
byte value of hex 00.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

If operands overlap but do not share all of the same
bytes, results of operations performed on these
operands are not predictable. If overlapped operands
share all of the same bytes, the results are predictable
when direct addressing is used. If indirect addressing is
used (that is, based operands, parameters, strings with
variable lengths, and arrays with variable subscripts)' the
results are not always predictable.

Resultant Conditions: The logical difference of the
character scalar operands is zero with carry out of the
high-order bit position, not-zero with carry, or not-zero
with no carry.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-143

Exceptions SUBTRACT NUMERIC (SUBN)

Operands Op Code Operand Operand Operand J Exception 1 2 3 Other (Hex) 1 2 3

06 Addressing 1047 Difference Minuend Subtrahend
01 Space addressing violation X X X
02 Boundary alignment X X X Operand 1: Numeric variable scalar.
03 Range X X X
06 Optimized addressability invalid X X X Operand 2: Numeric scalar.

08 Argument/ Parameter

01 Parameter reference violation X X X
Operand 3: Numeric scalar.

10 Damage Encountered

04 System object damage state X X X X
44 Partial system object damage X X X X

Optional Forms

1C Machine-Dependent Exception Op Code
03 Machine storage limit exceeded X Mnemonic (Hex) Form Type

20 Machine Support

02 Machine check X SUBNS 1147 Short

03 Function check X SUBNR 1247 Round

22 Object Access
SUBNSR 1347 Short. Round
SUBNB 1C47 Branch

01 Object not found X X X SUBNBS 1047 Branch. Short
02 Object destroyed X X X SUBNBR 1E47 Branch. Round
03 Object suspended X X X SUBNBSR 1F47 Branch. Short. Round

24 Pointer Specification SUBNI 1847 Indicator

01 Pointer does not exist X X X
SUBNIS 1947 Indicator. Short
SUBNIR 1A47 Indicator. Round

02 Pointer type invalid X X X SUBNISR 1B47 Indicator. Short. Round
2A Program Creation

.) 05 Invalid op code extender field X If the short instruction option is indicated in the op
06 Invalid operand type X X X code. operand 1 is used as the first and second
07 Invalid operand attribute X X X operational operands (receiver and first source operand).

08 Invalid operand value range X X X Operand 2 is used as the third operational operand

09 Invalid branch target X (second source operand).
OA Invalid operand length X X X

OC Invalid operand OOT reference X X X
00 Reserved bits are not zero X X X X Extender: Branch or indicator options.

2C Program Execution

04 Branch target invalid X If the branch or indicator option is specified in the op

32 Scalar Specification code, the extender field must be present along with one
01 Scalar type invalid X X X to four branch targets (for branch options) or one to four
02 Scalar attributes invalid X X X indicator operands (for indicator options). The branch or

indicator operands immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and the allowed syntax of

the branch and indicator operands.

2-144

Description: The signed numeric value of the subtrahend
operand is subtracted from the numeric value of the
minuend operand, and the result is placed in the
difference operand.

The operands must be numeric with any implicit
conversions occurring according to the rules of
arithmetic operations as outlined in the Functional
Concepts Manual.

Decimal operands used in floating-point operations
cannot contain more than 15 total digit positions.

For a decimal operation, alignment of the assumed
decimal point takes place by padding with O's on the
right end of the source operand with lesser precision.

Floating-point subtraction uses exponent comparison
and significand subtraction. Alignment of the binary
point is performed, if necessary, by shifting the
significand of the value with the smaller exponent to the
right. The exponent is increased by one for each binary
digit shifted until the two exponents agree.

The operation uses the length and the precision of the
source and receiver operands to calculate accurate
results.

The subtract operation is performed according to the
rules of algebra.

The result of the operation is copied into the difference
operand. If this operand is not the same type as that
used in performing the operation, the resultant value is
converted to its type. If necessary, the resultant value is
adjusted to the length of the difference operand, aligned
at the assumed decimal point of the difference operand,
or both before being copied to it. Length adjustment
and decimal point alignment are performed according to
the rules of arithmetic operations outlined in the
Functional Concepts Manual. For fixed-point operation, if
significant digits are truncated on the left end of the
resultant value, a size exception is signaled.

For the optional round form of the instruction,
specification of a floating-point receiver operand is
invalid.

For floating-point operations involving a fixed-point
receiver field, if nonzero digits would be truncated off
the left end of the resultant value, an invalid
floating-point conversion exception is signaled.

For a floating-point difference operand, if the exponent
of the resultant value is either too large or too small to
be represented in the difference field, the floating-point
overflow or the floating-point underflow exception is
signaled.

If operands overlap but do not share all of the same
bytes, results of operations performed on these
operands are not predictable. If overlapped operands
share all of the same bytes, the results are predictable
when direct addressing is used. If indirect addressing is
used (that is, based operands, parameters, strings with
variable lengths, and arrays with variable subscripts), the
results are not always predictable.

If a decimal to binary conversion causes a size exception
to be signaled, the binary value contains the correct
truncated result only if the decimal value contains 15 or
fewer significant nonfractional digits.

Resultant Conditions: Positive, negative, or zero-The
algebraic value of the numeric scalar difference is
positive, negative, or zero. Unordered-The value
assigned a floating-point difference operand is NaN.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-145

Exceptions TEST AND REPLACE CHARACTERS (TSTRPLC)

Operands Op Code Operand Operand J Exception 1 2 3 [4. 5) Other (Hex) 1 2

06 Addressing 10A2 Receiver Replacement
01 Space addressing violation X X X

02 Boundary alignment X X X Operand 1: Character variable scalar.
03 Range X X X

06 Optimized addressability X X X Operand 2: Character scalar.
invalid

08 Argument/ Parameter

01 Parameter reference violation X X X Description: The character string value represented by
OC Computation operand 1 is tested byte by byte from left to right. Any

02 Decimal data X X byte to the left of the leftmost byte which has a value in
03 Decimal point alignment X X the range of hex F1 to hex F9 is assigned a byte value
06 Floating-point overflow X equal to the leftmost byte of operand 2.
07 Floating-point underflow X

09 Floating-point invalid operand X X X Both operands must be character strings. Only the first
OA Size X character of the replacement string is used in the
OC Invalid floating-point X operation.

conversion

00 Floating-point inexact result X The operation stops when the first nonzero zoned
10 Damage Encountered decimal digit is found or when all characters of the

04 System object damage state X X X X receiver operand have been replaced.
44 Partial system object damage X X X X

1C Machine-Dependent Exception Substring operand references that allow for a null
03 Machine storage limit X substring reference (a length value of zero) may not be

exceeded specified for this instruction. ,J 20 Machine Support

02 Machine check X

03 Function check X
Events

22 Object Access
01 Object not found X X X

OOOC Machine resource
02 Object destroyed X X X 0201 Machine auxiliary storage threshold exceeded
03 Object suspended X X X

24 Pointer Specification 0010 Process
01 Pointer does not exist X X X 0701 Maximum processor time exceeded
02 Pointer type invalid X X X 0801 Process storage limit exceeded

2A Program Creation

05 Invalid op code extender field X 0016 Machine observation
06 Invalid operand type X X X 0101 Instruction reference
07 Invalid operand attribute X X X

08 Invalid operand value range X X X 0017 Damage set
09 Invalid branch target X 0401 System object damage set
OC Invalid operand ODT reference X X X 0801 Partial system object damage set
00 Reserved bits are not zero X X X X

2C Program Execution
04 Branch target invalid X

2-146

Exceptions TEST BITS UNDER MASK

L
(TSTBUMB or TSTBUMIl

Operands
Exception 1 2 Other Op Code Operand Operand Operand

(Hex) Extender 1 2 3 [4. 5)
06 Addressing

01 Space addressing violation X X 1C2A Branch Source Mask Branch
02 Boundary alignment X X options target

03 Range X X

06 Optimized addressability invalid X X 182A Indicator Indicator

08 Argument/ Parameter options target

01 Parameter reference violation X X

10 Damage Encountered Operand 1: Character scalar or numeric scalar.

04 System object damage state X X X
Operand 2: Character scalar or numeric scalar.

44 Partial system object damage X X X

1C Machine- Dependent Exception Operand 3 [4.5]:
03 Machine storage limit exceeded X

20 Machine Support . Branch Form-Instruction number. relative instruction

02 Machine check X
number. branch point, or instruction pointer.

03 Function check X . Indicator Form-Numeric variable scalar or character variable
22 Object Access scalar.

01 Object not found X X

02 Object destroyed X X

03 Object suspended X X Extender: Branch or indicator options.
24 Pointer Specification

01 Pointer does not exist X X Either the branch option or the indicator option is
02 Pointer type invalid X X required by the instruction. The extender field is

2A Program Creation required along with from one to three branch targets (for
06 Invalid operand type X X branch option) or one to three indicator operands (for
07 Invalid operand attribute X X indicator option). The branch or indicator operands are
08 Invalid operand value range X X required for operand 3 and optional for operands 4 and
OA Invalid operand length X X 5. See Chapter 1. Introduction for the bit encoding of
OC Invalid operand ODr reference X X the extender field and the allowed syntax of the branch
00 Reserved bits are not zero X X X and indicator operands.

Computation and Branching Instructions 2-147

Description: Selected bits from the leftmost byte of the Exceptions

source operand are tested to determine their bit values.

Operands
Based on the test, the resulting condition is used with Exception 1 2 3 [4. 5) Other

the extender field to:
06 Addressing

01 Space addressing violation . Transfer control conditionally to the instruction X X X

indicated in one of the branch target operands 02 Boundary alignment X X X

(branch form). 03 Range X X X
06 Optimized addressability X X X

invalid . Assign a value to each of the indicator operands
08 Argument/Parameter

(indicator form).
01 Parameter reference violation X X X

10 Damage Encountered
The source and the mask operands can be character or

04 System object damage state X X X X
numeric. The leftmost byte of each of the operands is

44 Partial system object damage X X X X
used in the operands. The operands are interpreted as

1C Machine-Dependent Exception
bit strings.

03 Machine storage limit X
exceeded

The testing is performed bit by bit with only those bits 20 Machine Support
indicated by the mask operand being tested. A 1-bit in 02 Machine check X
the mask operand specifies that the corresponding bit in 03 Function check X
the source value is to be tested. A O-bit in the mask 22 Object Access
operand specifies that the corresponding bit in the 01 Object not found X X X
source value is to be ignored. 02 Object destroyed X X X

03 Object suspended X X X
Substring operand references that allow for a null 24 Pointer Specification
substring reference (a length value of zero) may not be 01 Pointer does not exist X X X

..) specified for this instruction. 02 Pointer type invalid X X X
2A Program Creation

05 Invalid op code extender field X
Resultant Conditions: The selected bits of the bit string 06 Invalid operand type X X X
source operand are all zeros, all ones, or mixed ones 07 Invalid operand attribute X X X
and zeros. A mask operand of all zeros causes a zero 08 Invalid operand value range X X X
resultant condition. 09 Invalid branch target X

OA Invalid operand length X X
OC Invalid operand ODT reference X X X

Events 00 Reserved bits are not zero X X X X
2C Program Execution

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

04 Branch target invalid X

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

2-148

TRANSLATE (XLATE)

Op Code Operand
(Hex) 1

1094 Receiver

Operand
2

Source

Operand 1: Character variable scalar.

Operand 2: Character scalar.

Operand 3: Character scalar or null.

Operand 4: Character scalar.

Operand
3

Position

Operand
4

Replacement

Description: Selected characters in the string value of
the source operand are translated into a different
encoding and placed in the receiver operand. The
characters selected for translation and the character
values they are translated to are indicated by entries in
the position and replacement strings.

All the operands must be character strings. The source
and receiver values must be of the same length. The
position and replacement operands can differ in length.
If operand 3 is null. a 256-character string is used.
ranging in value from hex 00 to hex FF (EBCDIC
collating sequence).

The operation begins with all the operands left-adjusted
and proceeds character by character. from left to right
until the character string value of the receiver operand is
completed.

Each character of the source operand value is compared
with the individual characters in the position operand. If
a character of equal value does not exist in the position
string. the source character is placed unchanged in the
receiver operand. If a character of equal value is found
in the position string. the corresponding character in the
same relative location within the replacement string is
placed in the receiver operand as the source character
translated value. If the replacement string is shorter
than the position string and a match of a source to
position string character occurs for which there is no
corresponding replacement character. the source
character is placed unchanged in the receiver operand.
If the replacement string is longer than the position
string. the rightmost excess characters of the
replacement string are not used in the translation
operation because they have no corresponding position
string characters. If a character in the position string is
duplicated. the first occurrence (leftmost) is used.

If operands overlap but do not share all of the same
bytes. results of operations performed on these
operands are not predictable. If overlapped operands
share all of the same bytes. the results are predictable
when direct addressing is used. If indirect addressing is
used (that is, based operands. parameters. strings with
variable lengths. and arrays with variable subscripts). the
results are not always predictable.

The receiver. source. position. and replacement
operands can be variable length substring compound
operands.

Substring operand references that allow for a null
substring reference (a length value of zero) may be
specified for all of the operands on this instruction. The
effect of specifying a null substring reference for either
the position or replacement operands is that the source
operand is copied to the receiver with no change in
value. The effect of specifying a null substring reference
for both the receiver and the source operands (they
must have the same length) is that no result is set.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-149

Exceptions TRANSLATE WITH TABLE (XLATEWT)

Operands OpCode Operand Operand Operand J Exception 1 2 3 4 Other (Hex) 1 2 3

06 Addressing 109F Receiver Source Table

01 Space addressing violation X X X X
02 Boundary alignment X X X X Operand 1: Character variable scalar.

03 Range X X X X Operand 2: Character scalar.
06 Optimized addressability X X X X

invalid Operand 3: Character scalar.
08 Argument/ Parameter

01 Parameter reference violation X X X X
OC Computation Description: The source characters are translated under

08 Length conformance X X control of the translate table and placed in the receiver.
10 Damage Encountered The operation begins with the leftmost character of

04 System object damage state X X X X X operand 2 and proceeds character-by-character,
44 Partial system object damage X X X X X left-to-right.

1C Machine-Dependent Exception
03 Machine storage limit X Characters are translated as follows:

exceeded

20 Machine Support • The source character is used as an offset and added
02 Machine check X

to the location of operand 3.
03 Function check X

22 Object Access . The character contained in the offset location is the
01 Object not found X X X X

translated character. This character is copied to the
02 Object destroyed X X X X

receiver in the same relative position as the original
03 Object suspended X X X X

character in the source string.
24 Pointer Specification

01 Pointer does not exist X X X X
If operand 3 is less than 256 bytes long, the character in

02 Pointer type invalid X X X X the source may specify an offset beyond the end of
2A Program Creation operand 3.

06 Invalid operand type X X X X
07 Invalid operand attribute X X X X If operand 2 is longer than operand 1, then only the
08 Invalid operand value range X X X X leftmost portion of operand 2, equal to the length of
OA Invalid operand length X X X X operand 1, is translated. If operand 2 is shorter than
OC Invalid operand DDT reference X X X X operand 1, then only the leftmost portion of operand 1,
00 Reserved bits are not zero X X X X X equal to the length of operand 2, is changed. The

remaining portion of operand 1 is unchanged.

J
2-150

If operand 1 overlaps with operand 2 and/or 3, the
overlapped operands are updated for every character
translated. The operation proceeds from left to right,
one character at a time. The following example shows
the results of an overlapped operands translate
operation. Operands 1, 2, and 3 have the same
coincident character string with a value of hex
050403020103.

Hex 050403020103-lnitial value
Hex 030403020103-After the 1 st character is

translated
Hex 0301030201 03-After the 2nd character is

translated
Hex 0301020201 03-After the 3rd character is

translated
Hex 0301020201 03-After the 4th character is

translated
Hex 030102020103-After the 4th character is

translated
Hex 0301 020201 02-After the 5th character, the final

result

Note that the instruction does not use the length specifi
table operand to constrain access of the bytes addresse
table operand.

If operand 3 is less than 256 characters long, and a sour
character specifies an offset beyond
the end of operand 3, the result characters are obtained
from byte locations in the space following
operand 3. If that portion of the space is not currently
allocated, a space addressing exception
is signaled. If operand 3 is a constant with a length less
than 256, source characters
specifying offsets greater than or equal to the length of
the constant are translated into unpredictable characters.

All of the operands support variable length substring co

Substring operand references that allow for a null substr
reference (a length value of zero) may be specified for al
operands on this instruction. Specifying a null substring
for the table operand does not affect the operation of th
instruction. In this case, the bytes addressed by the tabl
are still accessed as described above. This is due to the
of the function of this instruction which does not use th
specified for the table operand to constrain access of th
addressed by the table operand. The effect of specifyin
substring reference for either or both of the receiver and
source operands is that no result is set.

Events

oooe Machine resources
0201 Machine auxiliary storage exceeded

0000 Machine status
0101 Machine check

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing
01 Space addressing violation X X X
02 Boundary alignment violation X X X
03 Range X X X
06 Optimized addressability invalid X X X

08 Argument I Para meter
01 Parameter reference violation X X X

10 Damage Encountered
44 Partial system object damage X

1C Machine-Dependent Exception
03 Machine storage limit exceeded X

20 Machine Support
02 Machine check X
03 Function check X

22 Object Access
02 Object destroyed X X X

03 Object suspended X X X
24 Pointer Specification

01 Pointer does not exist X X X
02 Pointer type invalid X X X

2A Program Creation
06 Invalid operand type X X X

07 Invalid operand attribute X X X
08 Invalid operand value range X X X
OA Invalid operand length X X X
OC Invalid operand ODT reference X X X
OD Reserved bits are not zero X X X X

32 Scalar Specification
01 Scalar type invalid X X X

Computation and Branching Instructions 2-151

TRIM LENGTH (TRIMLI

Op Code
(Hex)

10A7

Operand
1

Receiver
length

Operand
2

Source
string

Operand 1: Numeric variable scalar.

Operand 2: Character scalar.

Operand 3: Character(l) scalar.

Operand
3

Trim character

Description: The operation determines the resultant
length of operand 2 after the character specified by
operand 3 has been trimmed from the end of operand 2.
The resulting length is stored in operand 1.

Operand 2 is trimmed from the end as follows: if the
rightmost (last) character of operand 2 is equal to the
character specified by operand 3, the length of the
trimmed operand 2 string is reduced by 1. This
operation continues until the rightmost character is no
longer equal to operand 3 or the trimmed length is zero.
If operand 3 is longer than one character, only the first
(leftmost) character is used as the trim character.

Operands 2 and 3 are not changed by this instruction.
Operand 2 or 3 may be variable length substring
compound scalars.

Substring operand referenc~s that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Events

OOOC Machine resources
0201 Machine auxiliary storage exceeded

oooD Machine status
0101 Machine check

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

2-152

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment violation

03 Range

06 Optimized addressability invalid

08 Argument/ Parameter

01 Parameter reference violation

OC Computation

OA Size

10 Damage Encountered

44 Partial system object damage

1C Machine-Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

2A Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

OA Invalid operand length

DC Invalid operand ODT reference

00 Reserved bits are not zero

32 Scalar Specification

01 Scalar type invalid

Operands J 1 2 3 Other

X X X
X X X
X X X
X X X

X X X

X

X

X

X
X

X X X

X X X
X X X

X X X
X X X

X X X
X X X

X X X
X X X

X X X
X X X X

X X X

VERIFY (VERIFY)

Op Code
(Hex)

1007

Operand
1

Receiver

Operand
2

Source

Operand
3

Class

Operand 1: Binary variable scalar or binary array.

Operand 2: Character scalar.

Operand 3: Character scalar.

Optional Forms

Op Code
Mnemonic (Hex) Form Type

VERIFYI 1807 Indicator
VERIFYB lCD7 Branch

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
or two branch targets (for branch options) or one or two
indicator operands (for indicator options). The branch or
indicator operands immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: Each character of the source operand
character string value is checked to verify that it is
among the valid characters indicated in the class
operand.

The operation begins at the left end of the source string
and continues character by character, from left to right.
Each character of the source value is compared with the
characters of the class operand. If a match for the
source character exists in the class string, the next
source character is verified. If a match for the source
character does not exist in the class string, the binary
value for the relative location of the character within the
source string is placed in the receiver operand.

If the receiver operand is a scalar, only the first
occurrence of an invalid character is noted. If the
receiver operand is an array, as many occurrences as
there are elements in the array are noted.

The operation continues until no more occurrences of
invalid characters can be noted or until the end of the
source string is encountered. When the second
condition occurs, the current receiver value is set to O.
If the receiver operand is an array, all its remaining
entries are set to 0' s.

The source and class operands can be variable length
substring compound operands.

Substring operand references that allow for a null
substring reference (a length value of zero) may be
specified for operands 2 and 3. The effect of specifying
a null substring reference for the class operand when a
non null string reference is specified for the source is
that all of the characters of the source are considered
invalid. In this case, the receiver is accordingly set with
the offset(s) to the bytes of the source, and the
instruction's resultant condition is positive. The effect of
specifying a null substring reference for the source
operand (no characters to verify) is that the receiver is
set to zero and the instruction's resultant condition is
zero regardless of what is specified for the class
operand.

Resultant Conditions: The numeric value(s) of the
receiver is either 0 or positive. When the receiver
operand is an array, the resultant condition is 0 if all
elements are O.

Events

oooe Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-153

Exceptions

Operands J Exception 1 2 3 Other

06 Addressing

01 Space addressing violation X X X
02 Boundary alignment X X X
03 Range X X X
06 Optimized addressability invalid X X X

08 Argumentl Parameter

01 Parameter reference violation X X X
10 Damage Encountered

04 System object damage state X X X X
44 Partial system object damage X X X X

1C Machine-Dependent Exception

03 Machine storage limit exceeded X
20 Machine Support

02 Machine check X
03 Function check X

22 Object Access

01 Object not found X X X
02 Object destroyed X X X
03 Object suspended X X X

24 Pointer Specification

01 Pointer does not exist X X X
02 Pointer type invalid X X X

2A Program Creation

05 Invalid op code extender field X
06 Invalid operand type X X X
07 Invalid operand attribute X X X

08 Invalid operand value range X X X
09 Invalid branch target operand X
OA Invalid operand length X X
OC Invalid operand ODT reference X X X
00 Reserved bits are not zero X X X X

2C Program Execution

04 Branch target invalid X

2-154

Chapter 3. Pointer/Name Resolution Addressing Instructions

This chapter describes the instructions used for pointer
and name resolution functions. These instructions are in
alphabetic order. For an alphabetic summary of all the
instructions, see Appendix A. Instruction Summary.

COMPARE POINTER FOR OBJECT
ADDRESSABILITY
(CMPPTRAB or CMPPTRAI)

Op Code
(Hex)

1CD2

1802

Operand
Extender 1

Branch Compare
options operand 1

Indicator
options

Operand
2

Compare
operand 2

Operand
3 [4)

Branch
target

Indicator
target

Operand 1: Data pointer, space pointer, system pointer, or
instruction pointer.

Operand 2: Data pointer, space pointer, system pointer, or
instruction pointer.

Operand 3 [4]:

• Branch Form-Instruction number, relative instruction
number, branch point, or instruction pointer.

• Indicator Form-Numeric variable scalar or character variable

scalar.

Extender: Branch or indicator options.

Either the branch option or the indicator option is
required by the instruction.

The extender field is required along with one or two
branch targets (for branch option) or one or two
indicator operands (for indicator option). The branch or
indicator operands are required for operand 3 and
optional for operand 4. See Chapter 1. Introduction for
the bit encoding of the extender field and the allowed
syntax of the branch and indicator operands.

Description: The object addressed by operand 1 is
compared with the object addressed by operand 2 to
determine if both operands are addressing the same
object. Based on the comparison, the resulting condition
is used with the extender to transfer control (branch
form) or to assign a value to each of the indicator
operands (indicator form).

If operand 1 is a data pointer, a space pointer, or a
system pointer, operand 2 may be any pointer type
except for instruction pointer in any combination. An
equal condition occurs if the pointers are addressing the
same object. For space pointers and data pointers, only
the space they are addressing is considered in the
comparison. That is, the space offset portion of the
pointer is ignored.

For system pointer compare operands, an equal
condition occurs if the system pointer is compared with
a space pointer or data pointer that addresses the space
that is associated with the object that is addressed by
the system pointer. For example, a space pointer that
addresses a byte in a space associated with a system
object compares equal with a system pointer that
addresses the system object.

For instruction pointer comparisons, both operands must
be instruction pointers; otherwise, an invalid pointer type
exception is signaled. An equal condition occurs when
both instruction pointers are addressing the same
instruction in the same program. A not equal condition
occurs if the instruction pointers are not addressing the
same instruction in the same program.

A pointer does not exist exception is signaled if a
pointer does not exist in either of the operands.

Pointer / Name Resolution Addressing Instructions 3-1

Resultant Conditions: Equal. not equal. Exceptions

Operands
Authorization Required Exception 1 2 3 4 Other

. Retrieve 06 Addressing

01 Space addressing violation - Contexts referenced for address resolution X X X X
02 Boundary alignment X X X X
03 Range X X X X

Lock Enforcennent 06 Optimized addressability X X X X
invalid

08 Argument/Parameter . Materialize
01 Parameter reference violation X X X X

- Contexts referenced for address resolution
OA Authorization

01 Unauthorized for operation X X
10 Damage Encountered

Events
04 System object damage state X X X X X
44 Partial system object damage X X X X X

0002 Authorization
1A Lock State

0101 Object authorization violation
01 Invalid lock state X X

1C Machine-Dependent Exception
OOOC Machine resource

03 Machine storage limit X
0201 Machine auxiliary storage threshold exceeded exceeded

20 Machine Support
0010 Process 02 Machine check X

0701 Maximum processor time exceeded 03 Function check X
0801 Process storage limit exceeded 22 Object Access

01 Object not found X X X X ,J 0016 Machine observation 02 Object destroyed X X X X
0101 Instruction reference 03 Object suspended X X X X

24 Pointer Specification
0017 Damage set 01 Pointer does not exist X X X X

0401 System object damage set 02 Pointer type invalid X X X X
0801 Partial system object damage set 2A Program Creation

05 Invalid op code extender field X

06 Invalid operand type X X X X

07 Invalid operand attribute X X X X

08 Invalid operand value range X X X X

09 Invalid branch target operand X X

OA Invalid operand length X X
OC Invalid operand ODT reference X X X X

00 Reserved bits are not zero X X X X X

3-2

~

COMPARE POINTER TYPE
(CMPPTRTB or CMPPTRTI)

Op Code Operand Operand Operand
(Hex) Extender 1 2 3 [4]

1CE2 Branch Compare Compare Branch
options operand 1 operand 2 target

18E2 Indicator Indicator
options target

Operand 1: Data pointer, space pointer, system pointer, or
instruction pointer.

Operand 2: Character(1) scalar or null.

Operand 3 [4]:

• Branch Form-Instruction number, relative instruction
number, branch point, or instruction pointer.

• Indicator Form-Numeric variable scalar or character variable
scalar.

Extender: Branch or indicator options.

Either the branch option or the indicator option is
required by the instruction.

The extender field is required along with one or two
branch targets (for branch option) or one or two
indicator operands (for indicator option). The branch or
indicator operands are required for operand 3 and
optional for operand 4. See Chapter 1. Introduction for
the bit encoding of the extender field and the allowed
syntax of the branch and indicator operands.

Description: The instruction compares the pointer type
currently in operand 1 with the character scalar
identified by operand 2. Based on the comparison, the
resulting condition is used with the extender to transfer
control (branch form) or to assign a value to each of the
indicator operands (indicator form).

Operand 1 can specify a space pointer machine object
only when operand 2 is null.

If operand 2 is null or if operand 2 specifies a
comparison value of hex 00, an equal condition occurs if
a pointer does not exist in the storage area identified by
operand 1.

Following are the allowable values for operand 2:

Hex 00 - A pointer does not exist at this location
Hex 01 - System pointer
Hex 02 - Space pointer
Hex 03 - Data pointer
Hex 04 - Instruction pointer

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Resultant Conditions: Equal, not equal.

Authorization Required

• Retrieve
- Contexts referenced for address resolution

Lock Enforcennent

• Materialize
- Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Pointer / Name Resolution Addressing Instructions 3-3

Exceptions COPY BYTES WITH POINTERS (CPYBWP)

Operands Op Code Operand Operand J Exception 1 2 3 4 Other (Hex) 1 2

06 Addressing 0132 Receiver Source
01 Space addressing violation X X X X
02 Boundary alignment X X X X Operand 1: Character variable scalar, space pointer, data
03 Range X X X X pointer, system pointer, or instruction pointer.

06 Optimized addressability X X X X
invalid Operand 2: Character variable scalar, space pointer data

08 Argument/Parameter object, data pointer, system pointer, instruction pointer, or null.

01 Parameter reference violation X X X X
OA Authorization

01 Unauthorized for operation X Description: This instruction copies either the pointer

10 Damage Encountered value or the byte string specified for the source operand

04 System object damage state X X X X X into the receiver operand depending upon whether or

44 Partial system object damage X X X X X not a space pointer machine object is specified as one

1A Lock State of the operands.

01 I nvalid lock state X

1C Machine-Dependent Exception Operations involving space pointer machine objects

03 Machine storage limit X perform a pointer value copy operation for only space

exceeded pointer values or the pointer does not exist state. Due

20 Machine Support to this, a space pointer machine object may only be

02 Machine check X specified as an operand in conjunction with another

03 Function check X pointer or a null second operand. The pointer does not

22 Object Access exist state is copied from the source to the receiver

01 Object not found X X X X pointer without signaling the pointer does not exist

02 Object destroyed X X X X exception. Source pointer data objects must either be

J 03 Object suspended X X X X not set or contain a space pointer value when being

24 Pointer Specification copied into a receiver space pointer machine object.

01 Pointer does not exist X X X X Receiver pointer data objects will be set with either the

02 Pointer type invalid X X X X system default pointer does not exist value or the space

2A Program Creation pointer value from a source space pointer machine

05 Invalid op code extender X object.
operand

06 Invalid operand type X X X X Normal pointer alignment checking is performed on a

07 Invalid operand attribute X X X X pointer data object specified as an operand in

08 Invalid operand value range X X X X conjunction with a space pointer machine object.
09 Invalid branch target operand X X
OA Invalid operand length X X X Operations not involving space pointer machine objects,
OC Invalid operand ODT reference X X X X those involving just data objects as operands, perform a
00 Reserved bits are not zero X X X X X byte string copy of the data for the specified operands.

32 Scalar Specification
03 Scalar value invalid X The value of the byte string specified by operand 2 is

copied to the byte string specified by operand 1 (no

padding done).

3-4

The byte string identified by operand 2 can contain the Exceptions

~
storage forms of both scalars and pointers. Normal
pointer alignment checking is not done. The only Operands
alignment requirement is that the space addressability Exception 1 2 Other

alignment of the two operands must be to the same
position relative to a 16-byte multiple boundary. A 06 Addressing

boundary alignment exception is signaled if the 01 Space addressing violation X X

alignment is incorrect. The pointer attributes of any 02 Boundary alignment X X

complete pointers in the source are preserved if they 03 Range X X

can be completely copied into the receiver. Partial 06 Optimized addressability invalid X X

pointer storage forms are copied into the receiver as 08 Argument/ Parameter

scalar data. Scalars in the source are copied to the 01 Parameter reference violation X X

receiver as scalars. The length of the operation is equal 10 Damage Encountered

to the length of the shorter of the two operands. The 04 System object damage state X X X

copying begins with the two operands left-adjusted and 44 Partial system object damage X X X

proceeds until completion of the shorter operand. 20 Machine Support
02 Machine check X

Operand 1 can specify a space pointer machine object 03 Function check X

only when operand 2 is null. 22 Object Access
01 Object not found X X

If operand 2 is null, operand 1 must define a pointer 02 Object destroyed X X

reference; otherwise, an exception is signaled. When 03 Object suspended X X

operand 2 is null, the byte string identified by operand 1 24 Pointer Specificetion

is set to the system default pointer does not exist value. 01 Pointer does not exist X X
02 Pointer type invalid X X

2A Program Creation

Events 06 Invalid operand type X X

l,
07 Invalid operand attribute X

OOOC Machine resource 08 Invalid operand value range X X

0201 Machine auxiliary storage threshold exceeded OA Invalid operand length X
OC Invalid operand OOT reference X X

0010 Process 00 Reserved bits are not zero X X X

0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Pointer/Name Resolution Addressing Instructions 3-5

CREATE CONTEXT (CRTCTX)

Op Code
(Hex)

0112

Operand
1

Pointer for
address
ability to
created
context

Operand
2

Context
template

Operand 1: System pointer.

Operand 2: Space pointer.

Description: The instruction creates a context with the
attributes of the context template specified by operand
2 and returns addressability to the created context in a
system pointer stored in the storage area specified by
operand 1.

The format of the context template is:

• Template size specification
Number of bytes provided

- Number of bytes available for
materialization

• Object identification
Object type
Object subtype

- Object name

• Object creation options
- Existence attributes

o = Temporary
1 = Permanent

- Space attribute
o = Fixed-length
1 = Variable-length

- Reserved (binary 0)

Char(8)
Bin(4)*
Bin(4)*

Char(32)
Char(1)*
Char(1)
Char(30)

Char(4)

Bit 0

Bit 1

Bit 2
- Access group Bit 3

o Do not create as member
of access group

1 = Create as member of
access group

Reserved (binary 0) Bits 4-31

• Recovery options Char(4)
- Automatic damaged Bit 0

3-6

context rebuild option
o = Do not rebuild at IMPL
1 = Rebuild at IMPL
Reserved (binary 0) Bits 1-31

• Size of space Bin(4)

• Initial value of space Char(1)

• Performance class Char(4)
Space alignment Bit 0
o = The space associated with

the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space. If
no space is specified for
the object, this value must
be specified for the
performance class.
The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space as
well as to allow proper
alignment of input/output
buffers at 512-byte align-
ments within the the space.

Reserved (binary 0) Bits 1-4
Main storage pool selection Bit 5
o Process default main storage

pool is used for object.
1 = Machine default main storage

pool is used for object.
Reserved (binary 0)
Block transfer on implicit
access state modification

Bit 6
Bit 7

o = Transfer the minimum storage
transfer size for this object.
This value is 1 storage unit.
Transfer the machine default
storage transfer size. This
value is 8 storage units.

Reserved (binary 0) Bits 8-31

• Reserved (binary 0)

• Access group

Char(23)

System
pointer

Note: The values of the template entries annotated by
an asterisk are ignored by the instruction.

J

The template identified by operand 2 must be 16-byte
aligned.

If the created context is permanent, it is owned by the
user profile governing process execution. The owning
user profile is implicitly assigned all private authority
states for the context. The storage occupied by the
created context is charged to this owning user profile. If
the created context is temporary, there is no owning
user profile, and all authority states are assigned as
public. Storage occupied by the created context is
charged to the creating process.

The object identification specifies the symbolic name
that identifies the context within the machine. A type
code of hex 04 is implicitly supplied by the machine.
The object identification is used to identify the object on
materialize instructions as well as to locate the object in
the machine.

The existence attribute specifies whether the object is to
be created as a permanent or a temporary object. A
temporary context, if not explicitly destroyed by the
user, is implicitly destroyed when machine processing is
terminated. Permanent contexts have addressability
inserted in the machine context. Temporary contexts'
addressability may not be inserted in any context.

A space may be associated with the created object. The
space may be fixed or variable in size. The initial
allocation is as specified in the size of space entry. The
machine allocates a space of at least the size specified.
The actual size allocated depends on an algorithm
defined by a specific implementation. A fixed size space
of zero length causes no space to be allocated. Each
byte of the space is initialized to a value specified by the
initial value of space entry. When the space is extended
in size, this byte value is also used to initialize the new
allocation. This entry is ignored if no space is to be
allocated.

If the access group creation attribute entry indicates that
the context is to be created in an access group, the
access group entry must be a system pointer that
identifies an access group in which the context is to be
created. The existence attribute of the context must be
identical to the existence attribute of the access group.
If the context is not to be created in an access group,
the access group entry is ignored.

The recovery options field indicates the rebuild option.
A binary 1 indicates the context is to be rebuilt if
damaged. This option is not available for temporary
objects. The Materialize Context instruction may be
used to materialize the rebuild recovery option for a
context.

Note: If the machine context becomes damaged or
destroyed, it is implicitly rebuilt and/or recreated at IPL
time. If a permanent context becomes damaged, and
the context was created with the rebuild recovery
option, the context is implicitly rebuilt at IPL time.

The performance class parameter provides information
allowing the machine to more effectively manage a
context considering overall performance objectives of
operations involving the context.

Authorization Required

• Insert
- User profile of creating process

• Object Control
- Operand 1 if being replaced

• Retrieve
- Contexts referenced for address resolution

Lock Enforcement

• Materialize
- Contexts referenced for address resolution

• Modify
User profile of creating process

- Access group identified by operand 2

• Object Control
- Operand 1 if being replaced

Pointer I Name Resolution Addressing Instructions 3-7

Events Exceptions

0002 Authorization Operands J 0101 Object authorization violation Exception 1 2 Other

oooe Machine resource 02 Access group

0201 Machine auxiliary storage threshold exceeded 01 Object ineligible for access group X

0501 Machine address threshold exceeded 02 Object exceeds available space X

06 Addressing

0010 Process 01 Space addressing violation X X

0701 Maximum processor time exceeded 02 Boundary alignment X X

0801 Process storage limit exceeded 03 Range X X
06 Optimized addressability invalid X X

0016 Machine observation 08 Argument/Parameter

0101 Instruction reference 01 Parameter reference violation X X

OA Authorization

0017 Damage set 01 Unauthorized for operation X

0401 System object damage set OE Context Operation

0801 Partial system object damage set 01 Duplicate object identification X

10 Damage Encountered

02 Machine context damage state X

04 System object damage state X X X

44 Partial system object damage X X X
1A Lock State

01 Invalid lock state X
1C Machine- Dependent Exception

03 Machine storage limit exceeded X

04 Object storage limit exceeded X
20 Machine Support J 02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X

02 Object destroyed X X

03 Object suspended X X

24 Pointer Specification

01 Pointer does not exist X X

02 Pointer type invalid X X

2A Program Creation

06 Invalid operand type X X
07 Invalid operand attribute X X
08 Invalid operand value range X X
OA Invalid operand length X
OC Invalid operand ODT reference X X
00 Reserved bits are not zero X X X

2E Resource Control Limit

01 User profile storage limit X
exceeded

38 Template Specification

01 Template value invalid X

3-8

DESTROY CONTEXT (DESCTX)

Op Code
(Hex) Operand 1

0121 Context

Operand 1: System pointer.

Description: The context addressed by the system
pointer specified by operand 1 is destroyed. If the
context contains addressability to any system object, no
exception is signaled. The context is destroyed and the
objects are, therefore, not addressed by any context. If
the context is a permanent object, the context is deleted
from the machine context. The system pointer identified
by operand 1 is not modified by the instruction, and a
subsequent reference to the context through the pointer
results in the object destroyed exception.

Authorization Required

• Object control
- Operand 1

Lock Enforcement

• Modify
- Access group
- User profile of object owner

• Object control
- Operand 1

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Pointer / Name Resolution Addressing Instructions 3-9

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

06 Optimized addressability invalid

OA Authorization

01 Unauthorized for operation

10 Damage Encountered

02 Machine context damage state

04 System object damage state

44 Partial system object damage

1 A Lock State

01 Invalid lock state

1 C Machine- Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed·

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

03 Pointer addressing invalid object

2A Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

DC Invalid operand ODT reference

00 Reserved bits are not zero

3-10

Operand
1

X
X
X
X

X

X
X

X

X
X

X

X
X
X

X
X
X
X

X

Other

X
X
X

X

X

X

X

MATERIALIZE CONTEXT (MATCTX)

Op Code
(Hex)

0133

Operand
1

Receiver

Operand
2

Permanent
context,
temporary
context,
or machine
context

Operand 1: Space pointer.

Operand 2: System pointer or null.

Operand
3

Materialization
options

Operand 3: Character scalar (fixed-length).

Description: Based on the contents of the materialization
options specified by operand 3, the symbolic
identification and / or system pointers to all or a selected
set of the objects addressed by the context specified by
operand 2 are materialized into the receiver specified by
operand 1. If operand 2 is null, then the machine
context is materialized.

The materialization control information requirements field
in the materialization options operand specifies the
information to be materialized for each selected entry. .~

Symbolic identification and system pointers identifying"
objects addressed by the context can be materialized
based on the bit setting of this parameter. The
materialization control selection criteria field specifies the
context entries from which information is to be
presented. The type code, subtype code, and name
fields contain the selection criteria when a selective
materialization is specified.

When type code or type/subtype codes are part of the
selection criteria, only entries that have the specified
codes are considered. When a name is specified as part
of the selection criteria, the N characters in the search
criteria are compared against the N characters of the
context entry, where N is defined by the name length
field in the materialization options. The remaining
characters (if any) in the context entry are not used in
the comparison.

The materialization options operand has the following
format:

• Materialization control
Information requirements
(1 = materialize)
Reserved (binary 0)
Validation
a = Validate system pointers
1 = No validation
System pointers
Symbolic identification

- Selection criteria
Hex OO-AII context entries
Hex 01-Type code selection
Hex 02-Type code/subtype

code selection
Hex 04-Name selection
Hex 05-Type code/name

selection
Hex 06--Type code/subtype

code / name selection

• Length of name to be used for
search argument

• Type code

• Subtype code

• Name

Char(2)
Char(1)

Bits 0-4
Bit 5

Bit 6
Bit 7
Char(1)

Bin(2)

Char(1)

Char(1)

Char(30)

If the information requirements parameter is binary 0,
the context attributes are materialized with no context
entries.

If the validation attribute indicates no validation is to be
performed, no object validation occurs and a significant
performance improvement results. When no validation
occurs, some of the following pointers may be
erroneous:

• Pointers to destroyed objects

• Pointers to objects that are no longer in the context

• Multiple pointers to the same object

The first 4 bytes of the materialization output identify
the total number of bytes available for use by the
instruction. This value is supplied as input to the
instruction and is not modified by the instruction. A
value of less than S causes the materialization length
exception to be signaled. The instruction materializes as
many bytes and pointers as can be contained in the
receiver. If the byte area identified by the receiver is
greater than that required to contain the information
requested for materialization, the excess bytes are
unchanged. No exceptions are signaled in the event that
the receiver contains insufficient area for the
materialization, other than the materialization length
exception signaled above.

The format of the materialization is as follows:

• Materialization size specification
- N umber of bytes provided for

materialization
- Number of bytes available for

materialization

• Context identification
Object type
Object subtype

- Object name

• Context options
Existence attributes
o = Temporary
1 = Permanent

Char(S)
Bin(4)

Bin(4)

Char(32)
Char(1)
Char(1)
Char(30)

Char(4)
Bit a

- Space attribute Bit 1
a = Fixed-length
1 = Variable-length

- Reserved (binary 0) Bit 2
- Access group Bit 3

a Not a member of access
group
Member of access group

- Reserved (binary 0) Bit 4-31

• Recovery options Char(4)
- Automatic damaged Bit a

context rebuild option
a Do not rebuild at IMPL
1 = Rebuild at IMPL

• Size of space Bin(4)

• Initial value of space Char(1)

Pointer/Name Resolution Addressing Instructions 3-11

• Performance class Char(4)
- Space alignment Bit 0

o = The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space. If
no space is specified for
the object, this value must
be specified for the
performance class.
The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space as
well as to allow proper
alignment of input/output
buffers at 512-byte align
ments within the the space.

Reserved (binary 0) Bits 1-4
- Main storage pool selection Bit 5

o Process default main storage
pool is used for object.
Machine default main storage
pool is used for object.

- Reserved (binary 0) Bit 6
Block transfer on implicit Bit 7
access state modification
o = Transfer the minimum storage

transfer size for this object.
This value is 1 storage unit.
Transfer the machine default
storage transfer size. This
value is 8 storage units.

- Reserved (binary 0) Bits 8-31

• Reserved (binary 0) Char(7)

• Reserved (binary 0) Char(16)

• Access group System
pointer

• Context entry (repeated for Char(16-48)
each selected entry)
- Object identification (if requested) Char(32)

Type code Char(1)
Subtype code Char(1)
Name Char(30)

- Object pointer (if requested) System
pointer

3-12

The context entry object identification information, if
requested by the materialization options parameter, is
present for each entry in the context that satisfies the
search criteria. If both system pointers and symbolic
identification are requested by the materialization
options operand, the system pointer immediately follows
the object identification for each entry.

The order of the materialization of a context is by object
type code, object subtype code, and object name, all in
ascending sequence.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Authorization Required

• Retrieve
- Operand 2

Lock Enforcennent

• Materialization
- Operand 2

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

J

Exceptions MODIFY ADDRESSABILITY (MODADRI

L
Operands Op Code Operand Operand

Exception 1 2 3 Other (Hex) 1 2

06 Addressing 0192 Receiving System
01 Space addressing violation X X X context object

02 Boundary alignment X X X
03 Range X X X Operand 1: System pointer or null.

06 Optimized addressability invalid X X X
08 Argument/ Parameter Operand 2: System pointer.

01 Parameter reference violation X X X
OA Authorization

01 Unauthorized for operation X Description: The system object referenced by operand 2

10 Damage Encountered has its addressability inserted into a context, deleted

02 Machine context damage state X from a context, or transferred from one context to

04 System object damage state X X X X another. If operand 1 addresses a temporary or

44 Partial system object damage X X X X permanent context, addressability to the object is

1A Lock State inserted into the specified context. If the object is

01 Invalid lock state X currently addressed by another context, this

1C Machine-Dependent Exception addressability is removed. If the object is currently

03 Machine storage limit exceeded X X addressed by the context referenced by operand 1, no

20 Machine Support operation takes place.

02 Machine check X
03 Function check X If operand 1 is null, addressability is removed from the

22 Object Access context that addresses the system object defined in

01 Object not found X X X operand 2. If the object referenced by operand 2 is not

02 Object destroyed X X X currently addressed by a context, no operation takes

03 Object suspended X X X place.

~ 24 Pointer Specification

01 Pointer does not exist X X X If operand 2 refers to an object that may only be

02 Pointer type invalid X X X addressed by the machine context, an object ineligible

03 Pointer addressing invalid object X for context exception is signaled.

2A Program Creation

06 Invalid operand type X X X
07 Invalid operand attribute X X Authorization Required

08 Invalid operand value range X X
OA Invalid operand length X X · Insert

OC Invalid operand ODT reference X X X - Operand 1

OD Reserved bits are not zero X X X X
32 Scalar Specification · Delete

02 Scalar attributes invalid X - Context currently addressing object

03 Scalar value invalid X
38 Template Specification · Object management

03 Materialization length exception X - Operand 2

· Retrieve
- Contexts referenced for address resolution

Pointer/Name Resolution Addressing Instructions 3-13

Lock Enforcennent Exceptions

. Modify Operands J Operand 1 Exception 1 2 Other
Operand 2
Context currently addressing object 06 Addressing

01 Space addressing violation X X . Materialize 02 Boundary alignment X X

- Contexts referenced for address resolution 03 Range X X
06 Optimized addressability invalid X X

08 Argument/ Parameter

Events 01 Parameter reference violation X X
OA Authorization

0002 Authorization 01 Unauthorized for operation X X

0101 Object authorization violation OE Context Operation

01 Duplicate object identification X

OOOC Machine resource 02 Object ineligible for context X

0201 Machine auxiliary storage threshold exceeded 10 Damage Encountered

02 Machine context damage state X

0010 Process 04 System object damage state X X X

0701 Maximum processor time exceeded 44 Partial system object damage X X X

0801 Process storage limit exceeded 1A Lock State

01 Invalid lock state X X

0016 Machine observation 1C Machine-Dependent Exception

0101 Instruction reference 03 Machine storage limit exceeded X
04 Object storage limit exceeded X

0017 Damage set 20 Machine Support

0401 System object damage set 02 Machine check X

0801 Partial system object damage set 03 Function check X
22 Object Access

01 Object not found X X
02 Object destroyed X X
03 Object suspended X X

24 Pointer Specification

01 Pointer does not exist X X
02 Pointer type invalid X X
03 Pointer addressing invalid object X

2A Program Creation

06 Invalid operand type X X
07 Invalid operand attribute X X
08 Invalid operand value range X X
OC Invalid operand ODT reference X X
00 Reserved bits are not zero X X X

2E Resource Control Limit

01 User profile storage limit X
exceeded

3-14

\...-

RENAME OBJECT (RENAME)

Op Code Operand Operand
(Hex) 1 2

0162 Object to New symbolic
be renamed identification

Operand 1: System pointer.

Operand 2: Character scalar (fixed-length).

Description: The permanent or temporary system object
addressed by the system pointer specified by operand 1
is assigned the symbolic identification (name and/or
subtype code) specified by operand 2. All objects that
can be addressed by a system pointer can be renamed.
System pointers currently addressing the object are not
affected by the instruction. The symbolic identification is
changed in the context (machine, temporary, or
permanent). if any, that addresses the object.

If the new symbolic identification is not unique in the
context currently addressing the object, a duplicate
object identification exception is signaled, and the object
is not renamed.

The format of operand 2 is:

· Rename option (1 = rename) Char(1)
- Subtype code Bit 0
- Name Bit 1
- Reserved (binary 0) Bits 2-7

· Reserved (binary 0) Char(1)

· Subtype code Char(1)

· Name Char(30)

Note: If either the subtype or the name is not to be
changed by the instruction, the corresponding entry on
the template is ignored.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Authorization Required

• Retrieve
- Contexts referenced for address resolution

• Object management
- Operand 1

• Update
- Context that addresses operand 1

Lock Enforcement

• Materialize
- Contexts referenced for address resolution

• Modify
- Context that addresses operand 1

• Object Control
- Operand 1

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Pointer I Name Resolution Addressing Instructions 3-15

Exceptions RESOLVE DATA POINTER (RSLVDP)

Operands Op Code Operand Operand Operand J Exception 1 2 Other (Hex) 1 2 3

06 Addressing 0163 Pointer for Data object Program
01 Space addressing violation X X address- identi-

02 Boundary alignment X X ability to fication

03 Range X X
data object

06 Optimized addressability invalid X X

OA Authorization
Operand 1: Data pointer.

01 Unauthorized for operation X Operand 2: Character(32) scalar (fixed-length) or null.
OE Context Operation

01 Duplicate object identification X Operand 3: System pointer or null.
10 Damage Encountered

02 Machine context damage state X

04 System object damage state X X X Description: A data pointer with addressability to and
44 Partial system object damage X X X the attributes of an external scalar data element is

1A Lock State returned in the storage area identified by operand 1.
01 Invalid lock state X

1C Machine-Dependent Exception The following describes the instruction's function when
03 Machine storage limit exceeded X operand 2 is null:

20 Machine Support

02 Machine check X · If operand 1 does not contain a data pointer, an

03 Function check X exception is signaled.

22 Object Access

01 Object not found X X · If the data pointer specified by operand 1 is not
02 Object destroyed X X resolved and has an initial value declaration, the

03 Object suspended X X instruction resolves the data pointer to the external j 24 Pointer Specification scalar that the initial value describes. The initial value
01 Pointer does not exist X X defines the external scalar to be located and,
02 Pointer type invalid X X optionally, defines the program in which it is to be

03 Pointer addressing invalid object X located. If the program name is specified in the initial

2A Program Creation value, only that program's activation entry is searched
06 Invalid operand type X X for the external scalar. If no program is specified,
07 Invalid operand attribute X X programs associated with the activation entries in the
08 Invalid operand value range X X process static storage area are searched in reverse
OA Invalid operand length X order of the activation entries, and operand 3 is
OC Invalid operand ODT reference X X ignored.

00 Reserved bits are not zero X X X

32 Scalar Specification · If the data pointer is currently resolved and defines

01 Scalar type invalid X X an existing scalar, the instruction causes no

02 Scalar attributes invalid X operation, and no exception is signaled.
03 Scalar value invalid X

3-16

The following describes the instruction's function when
operand 2 is not null:

• A data pointer that is resolved to the external scalar
identified by operand 2 is returned in operand 1.
Operand 2 is a 32-byte value that provides the name
of the external scalar to be located.

• Operand 3 specifies a system pointer that identifies
the program whose activation is to be searched for
the external scalar definition. If operand 3 is null, the
instruction searches all activations in the process,
starting with the most recent activation and
continuing to the oldest. The activation under which
the instruction is issued also participates in the
search. If operand 3 is not null, the instruction
searches the activation of the program addressed by
the system pointer.

If the external scalar is not located, the object not found
exception is signaled. If an unresolved system pointer is
encountered when the program searches the activation
entries, the pointer not resolved exception is signaled. If
the PSSA chain being modified bit is on when this
instruction is executed, a stack control invalid exception
is signaled.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Authorization Required

• Retrieve
- Contexts referenced for address resolution

Lock Enforcement

• Materialize
- Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation

OODC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Pointer / Name Resolution Addressing Instructions 3-17

Exceptions RESOLVE SYSTEM POINTER (RSLVSP)

Operands Op Code Operand Operand Operand Operand J Exception 1 2 3 Other (Hex) 1 2 3 4

06 Addressing 0164 Pointer for Object Context Authority
01 Space addressing violation X X X address- identi- through to be set

02 Boundary alignment X X X ability to fication which
object and object is to 03 Range X X X

required be located
04 External data object not found X author-
06 Optimized addressability invalid X X X ization

08 Argument/ Parameter

01 Parameter reference violation X X X Operand 1: System pointer.
OA Authorization

01 Unauthorized for operation X X Operand 2: Character(34) scalar (fixed-length) or null.

10 Damage Encountered Operand 3: System pointer or null.
04 System object damage state X X X X
44 Partial system object damage X X X X Operand 4: Character(2) scalar (fixed-length) or null.

1A Lock State

01 Invalid lock state X
1C Machine- Dependent Exception Description: This instruction locates an object identified

03 Machine storage limit exceeded X by a symbolic address and stores the object's
20 Machine Support addressability and authority in a system pointer. A

02 Machine check X resolved system pointer is returned in operand 1 with
03 Function check X addressability to a system object and the requested

22 Object Access authority currently available to the process for the
01 Object not found X X X object.
02 Object destroyed X X X

J 03 Object suspended X X X Note: The ownership flag is never set in the system
04 Pointer not resolved X pointer.

24 Pointer Specification

01 Pointer does not exist X X X Operand 2 specifies the symbolic identification of the
02 Pointer type invalid X X X object to be located. Operand 3 identifies the context to
04 Pointer not resolved X be searched in order to locate the object. Operand 4

2A Program Creation identifies the authority states to be set in the pointer.
06 Invalid operand type X X X First, the instruction locates an object based on
07 Invalid operand attribute X X X operands 2 and 3. Then, the instruction sets the
08 Invalid operand value range X X X appropriate authority states in the system pointer.
OA Invalid operand ODT reference X

OC Invalid operand ODT reference X X X
00 Reserved bits are not zero X X X X

2C Program Execution

03 Stack control invalid X
32 Scalar Specification

01 Scalar type invalid X X X
02 Scalar attributes invalid X
03 Scalar value invalid X

3-18

The following describes the instruction's function when
operand 2 is null:

• If operand 1 does not contain a system pOinter, an
exception is signaled.

• If the system pointer specified by operand 1 is not
resolved but has an initial value declaration, the
instruction resolves the system pointer to the object
that the initial value describes. The initial value
defines the following:

Object to be located (by type, subtype, and name)
- Context to be searched to locate the object

(optional)
Minimum authority required for the object

If a context is specified, only that context is
referenced to locate the object, and operand 3 is
ignored. If no context is specified, the context(s)
located by the process name resolution list is used to
locate the object, and operand 3 is ignored. If the
object is of a type that can only be addressed
through the machine context, then only the machine
context is searched, and the context (if any) identified
in the initial value or identified in operand 3 is
ignored.

If the minimum required authority in the initial value is
not set (binary 0), the instruction resolves the
operand 1 system pointer to the first object
encountered with the designated type code, subtype
code, and object name without regard to the
authorization available to the process for the object.
If one or more authorization (or ownership) states are
required (signified by binary 1's). the context(s) is
searched until an object is encountered with the
designated type, subtype, and name and for which
the process currently has all required authorization
states.

If the system pointer specified by operand 1 is
currently resolved to address an existing object, the
instruction does not modify the addressability
contained in the pointer and causes only the authority
attribute in the pointer to be modified based on
operand 4.

If operand 2 is not null, the operand 1 system pointer is
resolved to the object identified by operand 2 in the
context(s) specified by operand 3. The format of
operand 2 is as follows:

• Object specification
- Type code

Subtype code
Object name

• Required authorization (1 = required)
- Object control

Object management
Authorized pointer
Space authority
Retrieve
Insert
Delete
Update
Ownership

- Reserved (binary 0)

The allowed type codes are as follows:

Hex 01 = Access group
Hex 02 = Program
Hex 04 = Context
Hex 07 = Journal space
Hex 08 = User profile
Hex 09 = Journal port
Hex OA = Queue
Hex OB = Data space
Hex OC = Data space index
Hex 00 = Cursor
Hex OE = Index
Hex OF = Commit block
Hex 10 = Logical unit. description
Hex 11 = Network description
Hex 12 = Controller description
Hex 13 = Dump space
Hex 19 = Space
Hex 1 A = Process control space

Char(32)
Char(1)
Char(1)
Char(30)

Char(2)
Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bit 8
Bits 9-15

All other codes are reserved. If other codes are
specified, they cause a scalar value invalid exception
to be signaled.

Pointer / Name Resolution Addressing Instructions 3-19

Operand 3 identifies the context in which to locate the
object identified by operand 2. If operand 3 is null, then
the contexts identified in the process name resolution
list are searched in the order in which they appear in the
list. If operand 3 is not null, the system pointer
specified must address a context, and only this context
is used to locate the object. If the object is of a type
that can only be addressed through the machine
context, then only the machine context is s.earched, and
operand 3 and the process name resolution list are
ignored.

If the required authorization field in operand 2 is not set
(binary D's), the instruction resolves the operand 1
system pointer to the first object encountered with the
designated type code, subtype code, and object name
without regard to the authorization currently available to
the process. If one or more authorization (or ownership)
states are required (signified by binary l' sl. the context
is searched until an object is encountered with the
designated type, subtype, name, and the user profiles
governing the instruction's execution that have all the
required authorization states.

Once addressability has been set in the pointer, operand
4 is used to determine which, if any, of the object
authority states is to be set into the pointer.

If operand 4 is null, the object authority states required
to locate the object are set in the pointer. This required
object authority is as specified in operand 2 or in the
initial value for operand 1 if operand 2 is null. If the
process does not currently have authorized pointer
authority for the object, no authority is stored in the
system pointer, and no exception is signaled.

If operands 2 and 4 are null and operand 1 is a resolved
system pointer, the authority states in the pointer are
not modified.

3-20

If operand 4 is not null, it specifies the object authority
states to be set in the resolved system pointer. The
format of operand 4 is as follows:

• Requested authorization
(1 = set authority)

Object control
- Object management

Authorized pointer
- Space authority

Retrieve
Insert
Delete
Update
Reserved (binary 0)

Char(2)

Bit 0
Bit 1
Bit 2
Bit 2
Bit 4
Bit 5
Bit 6
Bit 7
Bits 8-15

The authority states set in the resolved system pointer
are based on the following:

• The authority already stored in the pointer can be
increased only when the process has authorized
pointer authority to the referenced object. If this
authority is not available and the pointer was resolved
by this instruction, the authority in the operand 1
system pointer is set to the not set state, and no
exception is signaled. If operand 2 is null, if operand
1 is a resolved system pointer containing authority,
and if authorized pointer authority is not available to
the process, additional authorities cannot be stored in
the pointer.

• If the process does not currently have all the
authority states requested in operand 4, only the
requested and available states are set in the pointer,
and no exception is signaled.

• The object authority currently available to the process
is cumulative based on the following:

Authority stored in a resolved system pointer. This
authority applies to this instruction when operand
2 is null and operand 1 is a resolved system
pointer with authority stored in it.
Public authority for the object.
Private authority specifically granted to the process
user profile or the most current adopted user
profile.
All object special authority available to the process
user profile or the most current adopted user
profile.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

J

Authorization Required Exceptions

L . Retrieve

Contexts referenced for address resolution
Operands

Exception 1 2 3 4 Other

(including operand 3)
06 Addressing

01 Space addressing violation X X X X

Lock Enforcennent 02 Boundary alignment X X X X

03 Range X X X X

• Materialization 06 Optimized addressability X X X X

Contexts referenced for address resolution invalid

(including operand 3) 08 Argument/ Parameter

01 Parameter reference violation X X X X

OA Authorization

Events 01 Unauthorized for operation X X

10 Damage Encountered

0002 Authorization 02 Machine context damage state X

0101 Object authorization violation 04 System object damage state X X X X X

44 Partial system object damage X X X X X

OOOC Machine resource 1A Lock State

0201 Machine auxiliary storage threshold exceeded 01 Invalid lock state X X

20 Machine Support

0010 Process 02 Machine check X

0701 Maximum processor time exceeded 03 Function check X

0801 Process storage limit exceeded 22 Object Access

01 Object not found X X X X

0016 Machine observation 02 Object destroyed X X X X

L
0101 I nstruction reference 03 Object suspended X X X X

24 Pointer Specification

0017 Damage set 01 Pointer does not exist X X X X

0401 System object damage set 02 Pointer type invalid X X X X

0801 Partial system object damage set 04 Pointer not resolved X

2A Program Creation

06 Invalid operand type X X X X

07 Invalid operand attribute X X X X

08 Invalid operand value range X X X X

OA Invalid operand length X X

OC Invalid operand OOT reference X X X X

00 Reserved bits are not zero X X X X X

32 Scalar Specification

02 Scalar attributes invalid X X

03 Scalar value invalid X X

Pointer /Name Resolution Addressing Instructions 3-21

3-22

Chapter 4. Space Object Addressing Instructions

This chapter describes the instructions used for space
object addressing. These instructions are in alphabetic
order. For an alphabetic summary of all the instructions.
see Appendix A. Instruction Summary

ADD SPACE POINTER (ADDSPP)

Op Code
(Hex)

0083

Operand
1

Receiver
Pointer

Operand
2

Source
pointer

Operand 1: Space pointer.

Operand 2: Space pointer.

Operand 3: Binary scalar.

Operand
3

Increment

Description: This instruction adds a signed value to the
offset of a space pointer. The value of the binary scalar
represented by operand 3 is algebraically added to the
space address contained in the space pointer specified
by operand 2. and the result is stored in the space
pointer identified by operand 1. Operand 3 can have a
positive or negative value. The space object that the
pointer is addressing is not changed by the instruction.

Operand 2 must contain a space pointer when the
execution of the instruction is initiated; otherwise. an
invalid pointer type exception is signaled. When the
addressability in a space pointer is modified. the
instruction signals a space addressing exception only
when the space address to be stored in the pointer has
a negative offset value or when the offset addresses
beyond the largest space allocatable in the object. This
maximum offset value is dependent on the size and
packaging of the object containing the space and is
independent of the actual size of the space allocated. If
the exception is signaled by this instruction for this
reason, the pointer is not modified by the instruction.
Attempts to use a pointer whose offset value lies
between the currently allocated extent of the space and
the maximum allocatable extent of the space cause the
space addressing exception to be signaled.

The object destroyed exception. optimized addressability
invalid exception. parameter reference violation
exception. and pointer does not exist exception are not
signaled when operand 1 and operand 2 are space
pointer machine objects. This occurs when operand 2
contains an internal machine value that indicates one of
these error conditions exists. If the corresponding
exception is not signaled. operand 1 is set with an
internal machine value that preserves the exception
condition that existed for operand 2. The appropriate
exception condition will be signaled for either pointer
when a subsequent attempt is made to reference the
space data that the pointer addresses.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Space Object Addressing Instructions 4-1

Exceptions COMPARE POINTER FOR SPACE AOORESSABILITY
(CMPPSPAOB or CMPPSPAOI)

J Operands
Exception 1 2 3 [4-6] Other Op Code Operand Operand Operand

(Hex) Extender 1 2 3 [4-6]
06 Addressing

01 Space addressing violation X X X 1CE6 Branch Compare Compare Branch
02 Boundary alignment X X X options operand 1 operand 2 target
03 Range X X X
06 Optimized addressability X X X 18E6 Indicator Indicator

invalid options target

08 Argument/Parameter

01 Parameter reference violation X X X Operand 1: Space pointer or data pointer.

10 Damage Encountered
Operand 2: Numeric variable scalar, character variable scalar, 04 System object damage state X X X X
numeric variable array, character variable array, space pointer,

44 Partial system object damage X X X X or data pointer.
1C Machine-Dependent Exception

03 Machine storage limit X Operand 3 [4~]:
exceeded

20 Machine Support · Branch Form-Instruction number, relative instruction

02 Machine check X
number, branch point, or instruction pointer.

03 Function check X · Indicator Form-Numeric variable scalar or character variable
22 Object Access scalar.

01 Object not found X X X
02 Object destroyed X X X
03 Object suspended X X X Extender: Branch or indicator options.

24 Pointer Specification

01 Pointer does not exist X X X Either the branch option or the indicator option is

J 02 Pointer type invalid X X X required by the instruction.
2A Program Creation

06 Invalid operand type X X X The extender field is required along with from one to
07 Invalid operand attribute X X X four branch targets (for branch option) or one to four
08 Invalid operand value range X X X indicator operands (for indicator option). The branch or
OC Invalid operand ODT reference X X X indicator operands are required for operand 3 and
00 Reserved bits are not zero X X X X optional for operands 4-6. See Chapter 1. Introduction

for the bit encoding of the extender field and the
allowed syntax of the branch and indicator operands.

Description: The space addressability contained in the

pointer specified by operand 1 is compared with the

space addressability defined by operand 2.

The value of the operand 1 pointer is compared based
on the following:

• If operand 2 is a scalar data object (element or array),

the space addressability of that data object is
compared with the space addressability contained in

the operand 1 pointer.

· If operand 2 is a pointer, it must be a space pointer
or data pointer, and the space addressability
contained in the pointer is compared with the space j addressability contained in the operand 1 pointer.

4-2

Based on the results of the comparison, the resulting
condition is used with the extender to transfer control
(branch form) or to assign a value to each of the
indicator operands (indicator form). If the operands are
not in the same space, the resultant condition is
unequal. If the operands are in the same space and the
offset into the space of operand 1 is larger or smaller
than the offset of operand 2, the resultant condition is
high or low, respectively. An equal condition occurs only
if the operands are in the same space at the same
offset. Therefore, the resultant conditions (high, low,
equal, and unequal) are mutually exclusive.
Consequently, if you specify that an action be taken
upon the nonexistence of a condition, this results in the
action being taken upon the occurrence of any of the
other three possible conditions. For example, a branch
not high would result in the branch being taken on a
low, equal, or unequal condition.

The object destroyed exception, optimized addressability
invalid exception, parameter reference violation
exception, and pointer does not exist exception are not
signaled when operand 1 or operand 2 is a space
pointer machine object or when operand 2 is a scalar
based on a space pointer machine object. This occurs
when the space pointer machine object contains an
internal machine value that indicates one of these error
conditions exists. If the corresponding exception is not
signaled, the resulting condition of the comparison
operation is not defined other than that it will be one of
the four valid resultant conditions for this instruction.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Resultant Conditions: High, low, equal, unequal.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

00 10 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Space Object Addressing Instructions 4-3

Exceptions COMPARE SPACE ADDRESSABILITY
(CMPSPADB or CMPSPADJ)

J Operands
Exception 1 2 3 [4-6] Other

Op Code Operand Operand Operand

06 Addressing
(Hex) Extender 1 2 3 [4-6]

01 Space addressing violation X X X
1CF2 Branch Compare Compare Branch

02 Boundary alignment X X options operand 1 operand 2 target
03 Range X X

04 External data object not found X X 18F2 Indicator Indicator
06 Optimized addressability X X options target

invalid

08 Argument/ Parameter Operand 1: Numeric variable scalar, character variable scalar,
01 Parameter reference violation X X numeric variable array, character variable array, pointer, or

10 Damage Encountered pointer array.

04 System object damage state X X X X
Operand 2: Numeric variable scalar, character variable scalar,

44 Partial system object damage X X X X numeric variable array, character variable array, or pointer data
1C Machine-Dependent Exception object array.

03 Machine storage limit X
exceeded Operand 3 [4-6]:

20 Machine Support

02 Machine check X
. Branch Form-Instruction number, relative instruction

03 Function check X
number, branch point, or instruction pointer.

22 Object Access . Indicator Form-Numeric variable scalar or character variable
01 Object not found X X X scalar.
02 Object destroyed X X X

03 Object suspended X X X

24 Pointer Specification Extender: Branch or indicator options.
01 Pointer does not exist X X X J 02 Pointer type invalid X X X Either the branch option or the indicator option is

2A Program Creation required by the instruction.
05 Invalid op code extender field X

06 Invalid operand type X X X The extender field is required along with from one to
07 Invalid operand attribute X X X four branch targets (for branch option) or one to four
08 Invalid operand value range X X X indicator operands (for indicator option). The branch or
09 Invalid branch target operand X indicator operands are required for operand 3 and
OC Invalid operand ODT reference X X X X optional for operands 4-6. See Chapter 1. Introduction
00 Reserved bits are not zero X X X X for the bit encoding of the extender field and the

allowed syntax of the branch and indicator operands.

4-4

Description: The space addressability of the object
specified by operand 1 is compared with the space
addressability of the object specified by operand 2.

Based on the results of the comparison, the resulting
condition is used with the extender to transfer control
(branch form) or to assign a value to each of the
indicator operands (indicator form). If the operands are
not in the same space, the resultant condition is
unequal. If the operands are in the same space and the
offset of operand 1 is larger or smaller than the offset
of operand 2, the resultant condition is high or low,
respectively. Equal occurs only if the operands are in the
same space at the same offset. Therefore, the resultant
conditions (high, low, equal, and unequal) are mutually
exclusive. Consequently, if you specify that an action be
taken upon the nonexistence of a condition, this results
in the action being taken upon the occurrence of any of
the other three possible conditions. For example, a
branch not high would result in the branch being taken
on a low, equal, or unequal condition.

The object destroyed exception, optimized addressability
invalid exception, parameter reference violation
exception, and pointer does not exist exception are not
signaled when operand 1 or operand 2 is based on a
space pointer machine object. This occurs when the
space pointer machine object contains an internal
machine value that indicates one of these error
conditions exists. If the corresponding exception is not
signaled, the resulting condition of the comparison
operation is not defined other than that it will be one of
the four valid resultant conditions for this instruction.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Resultant Conditions: High, low, equal, unequal.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2 3 [4-81 Other

06 Addressing
01 Space addressing violation X X X
02 Boundary alignment X X X
03 Range X X X
06 Optimized addressability X X X

invalid
08 Argument/ Parameter

01 Parameter reference violation X X X
10 Damage Encountered

04 System object damage state X X X X
44 Partial system object damage X X X X

1C Machine-Dependent Exception
03 Machine storage limit X

exceeded
20 Machine Support

02 Machine check X
03 Function check X

22 Object Access
01 Object not found X X X
02 Object destroyed X X X
03 Object suspended X X X

24 Pointer Specification
01 Pointer does not exist X X X
02 Pointer type invalid X X X

2A Program Creation
05 Invalid op code extender field X
06 Invalid operand type X X X
07 Invalid operand attribute X X X
08 Invalid operand value range X X X
09 Invalid branch target operand X
OC Invalid operand ODT reference X X X X
00 Reserved bits are not zero X X X X

Space Object Addressing Instructions 4-5

SET DATA POINTER (SETDP)

Op Code Operand Operand
(Hex) 1 2

0096 Receiver Source

Operand 1: Data pointer.

Operand 2: Numeric variable scalar, character variable scalar,

numeric variable array, or character variable array.

Description: A data pointer is created and returned in
the storage area specified by operand 1 and has the
attributes and space addressability of the object
specified by operand 2. Addressability is set to the
low-order (leftmost) byte of the object specified by
operand 2. The attributes given to the data pointer
include scalar type and scalar length.

If operand 2 is a substring compound operand, the
length attribute is set equal to the length of the
substring. If operand 2 is a subscript compound
operand, the attributes and addressability of the single
array element specified are assigned to the data pointer.
If operand 2 is an array, the attributes and addressability
of the first element of the array are assigned to the data
pointer. A data pointer can only be set to describe an
element of a data array, not a data array in its entirety.

When the addressability in the data pointer is modified,
the instruction signals the space addressing exception
when one of the following conditions occurs:

• When the space address to be stored in the pointer
would have a negative offset value.

• When the offset would address an area beyond the
largest space allocatable in the object. This maximum
offset value is dependent on the size and packaging
of the object containing the space and is independent
of the actual size of the space allocated.

4-6

If the exception is signaled by this instruction for one of
these reasons, the pointer is not modified by the
instruction.

Attempts to use a pointer whose offset value lies
between the currently allocated extent of the space and
the maximum allocatable extent cause the space
addressing exception to be signaled.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

J

Exceptions

L Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

06 Optimized addressability invalid

08 Argument I Parameter

01 Parameter reference violation

10 Damage Encountered

04 System object damage state

44 Partial system object damage

1C Machine-Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

L
2A Program Creation

06 Invalid operand type

08 Invalid operand value range

DC Invalid operand ODT reference

00 Reserved bits are not zero

Operands
1 2

X X
X X
X X
X X

X X

X X
X X

X
X X
X X

X X
X X

X X
X

X X
X X

Other

X
X

X

X
X

X

SET DATA POINTER ADDRESSABILITY
(SETDPADR)

Op Code
(Hex)

0046

Operand
1

Receiver

Operand 1: Data pointer.

Operand
2

Source

Operand 2: Numeric variable scalar, character variable scalar,

numeric variable array, or character variable array.

Description: The space addressability of the object
specified for operand 2 is assigned to the data pointer
specified by operand 1. If operand 1 contains a resolved
data pointer at the initiation of the instruction's
execution, the data pointer's scalar attribute component
is not changed by the instruction. If operand 1 contains
an initialized but unresolved data pointer at the initiation
of the instruction's execution, the data pointer is
resolved in order to establish the scalar attribute
component of the pointer. If operand 1 contains other
than a resolved data pointer at the initiation of the
instruction's execution, the instruction creates and
returns a data pointer in operand 1 with the
addressability of the object specified for operand 2, and
the instruction establishes the attributes as a
character(1) scalar.

When the addressability is set into a data pointer, the
space addressing exception is signaled by the instruction
only when the space address to be stored in the pointer
has a negative offset value or if the offset addresses
beyond the largest space allocatable in the object. This
maximum offset value is dependent on the size and
packaging of the object containing the space and is
independent of the actual size of the space allocated. If
the exception is signaled for this reason, the pointer is
not modified by the instruction. Attempts to use a
pointer whose offset value lies between the currently
allocated extent of the space and the maximum
allocatable extent of the space cause the space
addressing exception to be signaled.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Space Object Addressing Instructions 4-7

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process control limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2

06 Addressing

01 Space addressing violation X X
02 Boundary alignment X X

03 Range X X
04 External data object not found X
06 Optimized addressability invalid X X

08 Argument/ Parameter

01 Parameter reference violation X X

10 Damage Encountered

04 System object damage state X X
44 Partial system object damage X X

1C Machine-Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found X X

02 Object destroyed X X
03 Object suspended X X

24 Pointer Specification

01 Pointer does not exist X X
02 Pointer type invalid X X

2A Program Creation

06 Invalid operand type X X
08 Invalid operand value range X X
DC Invalid operand ODT reference X X
00 Reserved bits are not zero X X

4-8

Other

X
X

X

X
X

X

SET DATA POINTER ATTRIBUTES (SETDPAT)

Op Code Operand
(Hex) 1

004A Receiver

Operand 1: Data pointer.

Operand
2

Attributes

Operand 2: Character(7) scalar (fixed-length).

Description: The value of the character scalar specified
by operand 2 is interpreted as an encoded
representation of an attribute set that is assigned to the
attribute portion of the data pointer specified by operand
1. The addressability portion of the data pointer is not
modified. If operand 1 contains an initialized but
unresolved data pointer at the initiation of the
instruction's execution, the data pointer is resolved in
order to establish the addressability in the pointer. The
attributes specified by the instruction are then assigned
to the data pointer. If operand 1 does not contain a
data pointer at the initiation of the instruction's
execution, an exception is signaled.

The format of the attribute set is as follows:

• Data pointer attributes
Scalar type
Hex 00 = Binary
Hex 01 = Floating-point
Hex 02 = Zoned decimal
Hex 03 = Packed decimal
Hex 04 = Character
Scalar length
If binary or character:

length (only 2 or 4 for binary)
If floating-point:

length (only 4 or 8 for
floating- point)

If zoned decimal or packed
decimal:

Fractional digits (F)
Total digits (T)
(where 1 ~ T ~ 31, a ~ F ~ T)

If character:
length (l, where 1

Reserved (binary 0)
~ l ~ 32767)

Char(7)
Char(1)

Bin(2)

Bits 0-7
Bits 8-15

Bin(4)

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

J

Events

oooe Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2

06 Addressing

01 Space addressing violation X X
02 Boundary alignment X X
03 Range X X
04 External data object not found X
06 Optimized addressability invalid X X

OS Argument/ Parameter
01 Parameter reference violation X X

10 Damage Encountered
04 System object damage state X X
44 Partial system object damage X X

1C Machine- Dependent Exception
03 Machine storage limit exceeded

20 Machine Support
02 Machine check
03 Function check

22 Object Access
01 Object not found X X
02 Object destroyed X X
03 Object suspended X X

24 Pointer Specification
01 Pointer does not exist X X
02 Pointer type invalid X X

2A Program Creation
06 Invalid operand type X X
07 Invalid operand attribute X X
OS Invalid operand value range X X
OA Invalid operand length X
OC Invalid operand ODT reference X X
00 Reserved bits are not zero X X

32 Scalar Specification
02 Scalar attributes invalid X
03 Scalar value invalid X

Other

X
X

X

X
X

X

SET SPACE POINTER (SETSPP)

Op Code
(Hex)

OOS2

Operand
1

Receiver

Operand
2

Source

Operand 1: Space pointer.

Operand 2: Numeric variable scalar, character variable scalar,
numeric variable array, character variable array, or pointer data

object.

Description: A space pointer is returned in operand 1
and is set to address the lowest order (leftmost) byte of
the byte string identified by operand 2.

When the addressability is set in a space pointer, the
instruction signals the space addressing exception when
the offset addresses beyond the largest space
allocatable in the object or when the space address to
be stored in the pointer has a non positive offset value.
This offset value is dependent on the size and
packaging of the object containing the space and is
independent of the actual size of the space allocated. If
the exception is signaled for this reason, the pointer is
not modified by the instruction. Attempts to use a
pointer whose offset value lies between the currently
allocated extent of the space and the maximum
allocatable extent of the space cause the space
addressing exception to be signaled.

The object destroyed exception, the optimized
addressability invalid exception, the parameter reference
violation exception, and the pointer does not exist
exception are not signaled when operand 1 is a space
pointer machine object and operand 2 is based on a
space pointer machine object. This occurs when the
basing space pointer machine object for operand 2
contains an internal machine value that indicates one of
these error conditions exists. If the corresponding
exception is not signaled, operand 1 is set with an
internal machine value that preserves the exception
condition which existed for operand 2. The appropriate
exception condition is signaled for either pointer upon a
subsequent attempt to reference the space data the
pointer addresses.

Substring operand. references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Space Object Addressing Instructions 4-9

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2 Other

06 Addressing
01 Space addressing violation X X
02 Boundary alignment X X
03 Range X X
06 Optimized addressability invalid X X

08 Argument I Parameter
01 Parameter reference violation X X

10 Damage Encountered
04 System object damage state X X X
44 Partial system object damage X X X

lC Machine-Dependent Exception
03 Machine storage limit exceeded X

20 Machine Support
02 Machine check X

03 Function check X
22 Object Access

01 Object not found X
02 Object destroyed X X
03 Object suspended X X

24 Pointer Specification
01 Pointer does not exist X X
02 Pointer type invalid X X

2A Program Creation
06 Invalid operand type X X
07 Invalid operand attribute X X
08 Invalid operand value range X X
OA Invalid operand length X X
OC Invalid operand ODT reference X X
00 Reserved bits are not zero X X X

32 Scalar Specification
01 Scalar type invalid X X

4-10

SET SPACE POINTER WITH DISPLACEMENT
(SETSPPD)

Op Code
(Hex)

0093

Operand
1

Receiver

Operand
2

Sourca

Operand 1: Space pointer.

Operand
3

Displacement

Operand 2: Numeric variable scalar, character variable scalar,
numeric variable array, character variable array, or pointer data
object.

Operand 3: Binary scalar.

Description: A space pointer is returned in operand 1
and is set to the space addressability of the lowest
(leftmost) byte of the object specified for operand 2 as
modified algebraically by an integer displacement
specified by operand 3. Operand 3 can have a positive
or negative value.

When the addressability is set in a space pointer, the
instruction signals the space addressing exception when
the space address to be stored in the pointer has a
negative offset value or when the offset addresses
beyond the largest space allocatable in the object. This
maximum offset value is dependent on the size and
packaging of the object containing the space and is
independent of the actual size of the space allocated. If
the exception is signaled for this reason, the pointer is
not modified by the instruction. Attempts to use a
pointer whose offset value lies between the currently
allocated extent of the space and the maximum
allocatable extent of the space cause the space
addressing exception to be signaled.

The object destroyed exception, the optimized
addressability invalid exception, the parameter reference
violation exception, and the pointer does not exist
exception are not Signaled when operand 1 is a space
pointer machine object and operand 2 is based on a
space pointer machine object. This occurs when the
basing space pointer machine object for operand 2
contains an internal machine value that indicates one of
these error conditions exists. If the corresponding
exception is not signaled, operand 1 is set with an
internal machine value that preserves the exception
condition which existed for operand 2. The appropriate
exception condition is signaled for either pointer upon a
subsequent attempt is made to reference the space data
the pointer addresses.

J

Substring operand references that allow for a null

L
substring reference (a length value of zero) may not be
specified for this instruction.

Events

oooe Machine resource
0201 Machine auxiliary storage threshold exceeded

00 1 a Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing
01 Space addressing violation X X X

02 Boundary alignment X X X

03 Range X X X

06 Optimized addressability invalid X X X

08 Argument/ Parameter
01 Parameter reference violation X X X

10 Damage Encountered
04 System object damage state X X X X

44 Partial system object damage X X X X

1C Machine-Dependent Exception
03 Machine storage limit exceeded X

20 Machine Support
02 Machine check X

03 Function check X

22 Object Access
01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

24 Pointer Specification
01 Pointer does not exist X X X

02 Pointer type invalid X X X

2A Program Creation
06 Invalid operand type X X X

07 Invalid operand attribute X X X
08 Invalid operand value range X X X
OC Invalid operand ODT reference X X X

(. 00 Reserved bits are not zero X X X X

SET SPACE POINTER FROM POINTER (SETSPPFP)

Op Code
(Hex)

0022

Operand
1

Receiver

Operand
2

Source pointer

Operand 1: Space pointer.

Operand 2: Data pointer, system pointer, or space pointer.

Description: A space pointer is returned in operand 1
with the addressability to a space object from the
pointer specified by operand 2.

The meaning of the pointers allowed for operand 2 is as
follows:

Pointer Meaning

Data pointer or The space pointer returned
space pointer 'in operand 1 is set to address

the leftmost byte of the byte string
addressed by the source pointer for
operand 2.

System pointer The space pointer returned in
operand 1 is set to address the first
byte of the space contained in the
system object addressed by the
system pointer for operand 2. The
space object addressed is either the
created system space or an
associated space for the system
object addressed by the system
pointer. If the operand 2 system
pointer addresses a system object
with no associated space, the invalid
space reference exception is
signaled.

Space Object Addressing Instructions 4-11

The object destroyed exception, optimized addressability Exceptions

invalid exception, parameter reference violation

exception, and pointer does not exist exception are not Operands J signaled when operand 1 and operand 2 are space Exception 1 2 Other

pointer machine objects. This occurs when operand 2

contains an internal machine value that indicates one of 06 Addressing

these error conditions exists. If the corresponding 01 Space addressing violation X X

exception is not signaled, operand 1 is set with an 02 Boundary alignment X X

internal machine value that preserves the exception 03 Range X X

condition that existed for operand 2. The appropriate 04 External data object not found X

exception condition will be signaled for either pointer 05 Invalid space reference X

when a subsequent attempt is made to reference the 06 Optimized addressability invalid X X

space data that the pointer addresses. 08 Argument/Parameter

01 Parameter reference violation X

OA Authorization

Authorization Required 01 Unauthorized for operation X

10 Damage Encountered

· Space authority 04 System object damage state X X X

- Operand 2 (if a system pointer) 44 Partial system object damage X X X

1A Lock State

· Retrieve 01 Invalid lock state X

- Contexts referenced for address resolution 1C Machine-Dependent Exception
03 Machine storage limit exceeded X

20 Machine Support

Lock Enforcement 02 Machine check X

03 Function check X

· Materialize 22 Object Access

- Contexts referenced for address resolution 01 Object not found X X

02 Object destroyed X X

03 Object suspended X X

Events
24 Pointer Specification

01 Pointer does not exist X X

0002 Authorization
02 Pointer type invalid X X

0101 Object authorization violation
03 Pointer addressing invalid object X

2A Program Creation

OOOC Machine resource
06 Invalid operand type X X

0201 Machine auxiliary storage threshold exceeded
07 Invalid operand attribute X X

08 Invalid operand value range X X

0010 Process
DC Invalid operand COT reference X X

0701 Maximum processor time exceeded 00 Reserved bits are not zero X X X

0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

4-12

SET SPACE POINTER OFFSET (SETSPPO)

Op Code
(Hex)

0092

Operand
1

Receiver

Operand
2

Source

Operand 1: Space pointer.

Operand 2: Binary scalar.

Description: The value of the binary scalar specified by
operand 2 is assigned to the offset portion of the space
pointer identified by operand 1. The space pointer
continues to address the same space object.

Operand 1 must contain a space pointer at the initiation
of the instruction's execution; otherwise, an invalid
pointer type exception is signaled.

When the addressability in the space pointer is
modified, the instruction signals a space addressing
exception when one of the following conditions occurs:

• When the space address to be stored in the pointer
has a negative offset value.

• When the offset addresses beyond the largest space
allocatable in the object. This maximum offset value
is dependent on the size and packaging of the object
containing the space and is independent of the actual
size of the space allocated.

If the exception is signaled by this instruction for this
reason, the pointer is not modified by the instruction.

Attempts to use a pointer whose offset value lies
between the currently allocated extent of the space and
the maximum allocatable extent cause the space
addressing exception to be signaled.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2

06 Addressing

01 Space addressing violation X X
02 Boundary alignment X X
03 Range X X
06 Optimized addressability invalid X X

08 Argument/ Parameter

01 Parameter reference violation X X
10 Damage Encountered

04 System object damage state X X
44 Partial system object damage X X

1C Machine- Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found X X
02 Object destroyed X X
03 Object suspended X X

24 Pointer Specification

01 Pointer does not exist X X
02 Pointer type invalid X X

2A Program Creation

06 Invalid operand type X X
07 Invalid operand attribute X X
08 Invalid operand value range X X
OC Invalid operand ODT reference X X
00 Reserved bits are not zero X X

32 Scalar Specification

01 Scalar type invalid X X

Other

X
X

X

X
X

X

Space Object Addressing Instructions 4-13

SET SYSTEM POINTER FROM POINTER (SETSPFP)

Op Code Operand Operand
(Hex) 1 2

0032 Receiver Source pointer

Operand 1: System pointer.

Operand 2: System pointer. space pointer. data pointer. or

instruction pointer.

Description: This instruction returns a system pointer to
the system object address by the supplied pointer.

If operand 2 is a system pointer. then a system pointer
addressing the same object is returned in operand 1
containing the same authority as the input pointer.

If operand 2 is a space pointer or a data pointer. then a
system pointer addressing the system object that
contains the associated space addressed by operand 2
is returned in operand 1.

If operand 2 is an instruction pointer. then a system
pointer addressing the program system object that
contains the instruction addressed by operand 2 is
returned in operand 1.

If operand 2 is an unresolved system pointer or data
pointer. the pointer is resolved first.

4-14

Authorization Required

• Retrieve
- Contexts referenced for address resolution

Lock Enforcement

• Materialization
- Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0801 Partial system object damage set

Exceptions STORE SPACE POINTER OFFSET (STSPPO)

L Operands Op Code Operand Operand
Exception 1 2 Other (Hex) 1 2

06 Addressing OOA2 Receiver Source
01 Space addressing violation X X
02 Boundary alignment X X Operand 1: Binary variable scalar.

03 Range X X
04 External data object not found X X Operand 2: Space pointer.

06 Optimized addressability invalid X X

08 Argument/Parameter

01 Parameter reference violation X Description: The offset value of the space pointer

OA Authorization referenced by operand 2 is stored in the binary variable
01 Unauthorized for operation X scalar defined by operand 1.

10 Damage Encountered

02 Machine context damage X If operand 2 does not contain a space pointer at the
04 System object damage state X X X initiation of the instruction's execution, an invalid pointer
44 Partial system object damage X X X type exception is signaled. If the offset value is greater

1A Lock state than 32 767 and operand 1 is a binary (2) scalar, a size

01 Invalid lock state X exception is signaled.

1C Machine- Dependent Exception

03 Machine storage limit exceeded X
20 Machine Support Events

02 Machine check X
03 Function check X OOOC Machine resource

22 Object Access 0201 Machine auxiliary storage threshold exceeded
01 Object not found X
02 Object destroyed X X 0010 Process
03 Object suspended X X 0701 Maximum processor time exceeded

24 Pointer Specification 0801 Process storage limit exceeded
01 Pointer does not exist X X
02 Pointer type invalid X X 0016 Machine observation

2A Program Creation 0101 Instruction reference
06 Invalid operand type X X
07 Invalid operand attribute X X 0017 Damage set
08 Invalid operand value range X X 0401 System object damage set
OC Invalid operand ODT reference X X 0801 Partial system object damage set
OD Reserved bits are not zero X X X

32 Scalar Specification

01 Scalar type invalid X X

Space Object Addressing Instructions 4-15

Exceptions SUBTRACT SPACE POINTER OFFSET (SUBSPP)

Operands Op Code Operand Operand Operand J Exception 1 2 Other (Hex) 1 2 3

06 Addressing 0087 Receiver Source Decrement
01 Space addressing violation X X pointer pointer
02 Boundary alignment X X
03 Range X X Operand 1: Space pointer.

06 Optimized addressability invalid X X
Operand 2: Space pointer. 08 Argumentl Parameter

01 Parameter reference violation X X
Operand 3: Binary scalar.

OC Computations
OA Size X

10 Damage Encountered Description: The value of the binary scalar specified by
04 System object damage state X X X

operand 3 is algebraically subtracted from the space
44 Partial system object damage X X X

address contained in the space pointer specified by
1C Machine-Dependent Exception

operand 2; the result is stored in the space pointer
03 Machine storage limit exceeded X

identified by operand 1. Operand 3 can have a positive
20 Machine Support

or negative value. The space object that the pointer is
02 Machine check X

addressing is not changed by the instruction. If operand
03 Function check X 2 does not contain a space pointer at the initiation of

22 Object Access
the instruction's execution, an invalid pointer type

01 Object not found X X
exception is signaled.

02 Object destroyed X X
03 Object suspended X X

When the addressability in the space pointer is
24 Pointer Specification modified, the instruction signals a space addressing

01 Pointer does not exist X X
exception when one of the following conditions occurs:

02 Pointer type invalid X X J 2A Program Creation . When the space address to be stored in the pointer
06 Invalid operand type X X

has a negative offset value.
07 Invalid operand attribute X
08 Invalid operand value range X X . When the offset addresses beyond the largest space
OC Invalid operand ODT reference X X allocatable in the object. This maximum offset value
00 Reserved bits are not zero X X X is dependent on the size and packaging of the object

containing the space and is independent of the actual
size of the space allocated.

If the exception is signaled by this instruction for this
reason, the pointer is not modified by the instruction.

Attempts to use a pointer whose offset value lies
between the currently allocated extent of the space and
the maximum allocatable extent cause the space
addressing exception to be signaled.

4-16

The object destroyed exception, optimized addressability Exceptions

invalid exception, parameter reference violation

~
exception, and pointer does not exist exception are not Operands

signaled when operand 1 and operand 2 are space Exception 1 2 3 Other

pointer machine objects. This occurs when operand 2
contains an internal machine value that indicates one of 06 Addressing

these error conditions exists. If the corresponding 01 Space addressing violation X X X

exception is not signaled, operand 1 is set with an 02 Boundary alignment X X X

internal machine value that preserves the exception 03 Range X X X

condition that existed for operand 2. The appropriate 06 Optimized addressability invalid X X X

exception condition will be signaled for either pointer 08 Argument/ Parameter

when a subsequent attempt is made to reference the 01 Parameter reference violation X X X

space data that the pointer addresses. 10 Damage Encountered

04 System object damage state X X X X
44 Partial system object damage X X X X

Events 1C Machine-Dependent Exception

03 Machine storage limit exceeded X

OOOC Machine resource 20 Machine Support

0201 Machine auxiliary storage threshold exceeded 02 Machine check X
03 Function check X

0010 Process 22 Object Access

0701 Maximum processor time exceeded 01 Object not found X X X

0801 Process storage limit exceeded 02 Object destroyed X X X
03 Object suspended X X X

0016 Machine observation 24 Pointer Specification

0101 Instruction reference 01 Pointer does not exist X X X
02 Pointer type invalid X X X

0017 Damage set 2A Program Creation

L 0401 System object damage set 06 Invalid operand type X X X

0801 Partial system object damage set 07 Invalid operand attribute X X
08 Invalid operand value range X X X
OC Invalid operand ODT reference X X X
00 Reserved bits are not zero X X X X

32 Scalar Specification

01 Scalar type invalid X X X
03 Scalar value invalid X X

Space Object Addressing Instructions 4-17

J

4·18

This chapter describes the instructions used for space
management. These instructions are in alphabetic order.
For an alphabetic summary of all the instructions, see
Appendix A. Instruction Summary.

CREATE SPACE (CRTS)

Op Code Operand Operand
(Hex) 1 2

0072 Pointer for Space
space
address
ability

creation
template

Operand 1: System pointer.

Operand 2: Space pointer.

Description: A space object is created with the
attributes that are specified in the space creation
template specified by operand 2, and addressability to
the created space is placed in a system pointer that is
returned in the addressing object specified by
operand 1.

Space objects, unlike other types of system objects, are
used to contain a space and serve no other purposes.

Chapter 5. Space Management Instructions

The template identified by operand 2 must be 16-byte
aligned in the space. The following is the format of the
space creation template:

• Template size specification
Size of template

- Number of bytes available for
materialization

• Object identification
- Object type
- Object subtype
- Object name

• Object creation options
- Existence attribute

o = Temporary
1 = Permanent
Space attribute
o = Fixed-length
1 = Variable-length
Initial context
o Addressability is not

inserted into context
Addressability is
inserted into context

- Access group
o Do not create as member

of access group
Create as member of
access group

- Reserved (binary 0)

• Reserved (binary 0)

• Size of space

• Initial value of space

Char(8)*
Bin(4)*
Bin(4)*

Char(32)
Char(1)*
Char(1)
Char(30)

Char(4)
Bit 0

Bit 1

Bit 2

Bit 3

Bits 4-31

Char(4)

Bin(4)

Char(1)

Space Management Instructions 5-1

• Performance class Char(4)
Space alignment Bit 0
o = The space associated with

the object is allocated to
allow proper alignment of
pointers at 16-byte align-
ments within the space. If
no space is specified for
the object, this value must
be specified for the
performance class.
The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space
as well as to allow proper
alignment of input/output
buffers at 512-byte
alignments within the space.

Reserved (binary 0) Bits 1-4
Main storage pool selection Bit 5
o Process default main storage

pool is used for object.
1 = Machine default main storage

pool is used for object.
Transient storage pool selection Bit 6
o = Default main storage pool

(process default or machine
default as specified for main
storage pool selection) is used
for object.

1 = Transient storage pool is used
for object.

Block transfer on implicit Bit 7
access state modification
o = Transfer the minimum storage

transfer size for this object.
This value is 1 storage unit.
Transfer the machine default
storage transfer size. This
value is 8 storage units.

Unit number
Reserved (binary 0)

Bits 8-15
Bits 16-31

• Reserved (binary 0) Char(7)

• Context

• Access group

5-2

System
pointer

System
pointer

Note: The instruction ignores the values associated with
template entries annotated with an asterisk (*).

If the created object is permanent, it is owned by the
user profile governing process execution. The owning
user profile is implicitly assigned all private authority
states for the object. The storage occupied by the
created object is charged to this owning user profile. If
the created object is temporary, there is no owning user
profile, and all authority states are assigned as public.
Storage occupied by the created context is charged to
the creating process.

The object identification specifies the symbolic name
that identifies the space within the machine. A type
code of hex 19 is implicitly supplied by the machine.
The object identification is used to identify the object on
materialize instructions as well as to locate the object in
a context that addresses the object.

The existence attributes specify whether the space is to
be created as temporary or permanent. A temporary
space, if not explicitly destroyed by the user, is implicitly
destroyed by the machine when machine processing is
terminated. A permanent space exists in the machine
until it is explicitly destroyed by the user.

The space may have a fixed size or a variable size. The
initial allocation is as specified in the size of space entry.
The machine allocates a space of at least the size
specified. The actual size allocated depends on an
algorithm defined by a specific implementation. A fixed
size space of zero length causes no space to be
allocated.

Each byte of the space is initialized to a value specified
by the initial value of space entry. When the space is
extended in size, this byte value is also used to initialize
the new allocation. If no space is allocated, this value is
ignored.

If the initial context creation attribute entry indicates that
addressability is to be inserted into a context. the
context entry must contain a system pointer that
identifies a context where addressability to the newly
created space is to be placed. If addressability is not to
be inserted into a context, the context entry is ignored.

J

If the access group creation attributes entry indicates
that the space is to be created in an access group, the
access group entry must be a system pointer that
identifies the access group in which the space is to be
created. Since access groups may be created only as
temporary objects, the existence attribute entry must be
temporary (bit 0 equals 0) when the access group object
is created. If the space is not to be created into an
access group, the access group entry is ignored.

The performance class parameter provides information
allowing the machine to more effectively manage the
space object considering the overall performance
objectives of operations involving the space. The unit
number field indicates the auxiliary storage unit on
which the space should be located, if possible.

Authorization Required

• Insert
User profile of creating process

- Context identified in operand 2

• Retrieve
- Context referenced for address resolution

• Object control
- Operand 1 if being replaced

Lock Enforcennent

• Materialize
- Contexts referenced for address resolution

• Modify
Context identified in operand 2
User profile of creating process
Access group identified in operand 2

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded
0501 Machine address threshold exceeded

001 0 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Space Management Instructions 5-3

Exceptions DESTROY SPACE (DESS)

Operands Op Code Operand 1 J Exception 1 2 Other (Hex)

02 Access Group 0025 Space to be destroyed

02 Object exceeds available space X
06 Addressing Operand 1: System pointer.

01 Space addressing violation X X

02 Boundary alignment X X

03 Range X X Description: The designated space is destroyed, and
06 Optimized addressability invalid X X addressability to the space is deleted from a context if it

08 Argument/ Parameter is currently addressing the object. The pointer identified
01 Parameter reference violation X X

by operand 1 is not modified by the instruction, and a
OA Authorization

subsequent reference to the pointer causes an object
01 Unauthorized for operation X

destroyed exception. OE Context Operation
01 Duplicate object identification X

10 Damage Encountered
04 System object damage state X X X Authorization Required
44 Partial system object damage X X X

1A Lock State · Retrieve
01 Invalid lock state X - Contexts referenced for address resolution

1C Machine-Dependent Exception
03 Machine storage limit exceeded X · Object control
04 Object storage limit exceeded X - Operand 1

20 Machine Support
02 Machine check X
03 Function check X

22 Object Access Lock Enforcennent

01 Object not found X X

J 02 Object destroyed X X · Modify

03 Object suspended X X User profile owning object
24 Pointer Specification Context addressing object

01 Pointer does not exist X X Access group containing object
02 Pointer type invalid X X

03 Pointer addressing invalid object X · Object control
2A Program Creation - Operand 1

06 Invalid operand type X X
07 Invalid operand attribute X
08 Invalid operand value range X

OC Invalid operand ODT reference X X

00 Reserved bits are not zero X X X
2E Resource Control Limit

01 User profile storage limit X
exceeded

38 Template Specification
01 Tempiate value invalid X

5-4

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operand
Exception 1 Other

06 Addressing

01 Space addressing violation X

02 Boundary alignment X

03 Range X

06 Optimized addressability invalid X

08 Argument/ Parameter

01 Parameter reference violation X
OA Authorization

01 Unauthorized for operation X
10 Damage Encountered

04 System object damage state X X
44 Partial system object damage X X

1A Lock State

01 Invalid lock state X

1C Machine-Dependent Exception

03 Machine storage limit exceeded X

20 Machine Support

02 Machine check X
03 Function check X

22 Object Access

01 Object not found X
02 Object destroyed X
03 Object suspended X

24 Pointer Specification

01 Pointer does not exist X
02 Pointer type invalid X
03 Pointer addressing invalid object

2A Program Creation

06 Invalid operand type X

07 Invalid operand attribute X
08 Invalid operand value range X

OC Invalid operand ODT reference X
00 Reserved bits are not zero X X

Space Management Instructions 5-5

MATERIALIZE SPACE ATTRIBUTES (MATS)

Op Code
(Hex)

0036

Operand
1

Receiver

Operand
2

Space object

Operand 1: Space pointer.

Operand 2: System pointer.

Description: The current attributes of the space object
specified by operand 2 are materialized into the receiver
specified by operand 1.

The first 4 bytes that are materialized identify the total
number of bytes that may be used by the instruction.
This value is supplied as input to the instruction and is
not modified by the instruction. A value of less than 8
causes a materialization length exception.

The second 4 bytes that are materialized identify the
total number of bytes available to be materialized. The
instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the
byte area identified by the receiver is greater than that
required to contain the information requested, then the
excess bytes are unchanged. No exceptions (other than
the materialization length exception described previously)
are signaled in the event that the receiver contains
insufficient area for the materialization.

5-6

The template identified by operand 1 must be 16-byte
aligned in the space. The format of the materialization is
as follows: J
· Materialization size specification Char(8)

Number of bytes provided for Bin(4)
materialization
Number of bytes available for Bin(4)
materialization (always 96 for
this instruction)

· Object identification Char(32)
Object type Char(1)
Object subtype Char(1)
Object name Char(30)

· Object creation options Char(4)
- Existence attributes Bit 0

0 = Temporary
1 = Permanent

- Space attribute Bit 1
0 = Fixed-length
1 = Variable-length

- Context Bit 2
0 = Addressability not in context
1 = Addressability in context
Access group Bit 3
0 = Not member of access group

.J 1 = Member of access group
Reserved (binary 0) Bits 4-31

· Reserved (binary 0) Char(4)

· Size of space Bin(4)

· Initial value of space Char(1)

• Performance class
- Space alignment

o = The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space. If
no space is specified for
the object. this value must
be specified for the
performance class.
The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space
as well as to allow proper
alignment of input/output
buffers at 512 - byte
alignments within the space.

- Reserved (binary 0)
- Main storage pool selection

o Process default main storage
pool is used for object.

1 = Machine default main storage
pool is used for object.

- Transient storage pool selection
o = Default main storage pool

(process default or machine
default as specified for main
storage pool selection) is used
for object.

1 = Transient storage pool is used
for object.

Char(4)
Bit 0

Bits 1-4
Bit 5

Bit 6

Block transfer on implicit Bit 7
access state modification
o = Transfer the minimum storage

transfer size for this object.
This value is 1 storage unit.
Transfer the machine default
storage transfer size. This
value is 8 storage units.

- Unit number
- Reserved (binary 0)

• Reserved (binary 0)

• Context

• Access group

Bits 8-15
Bits 16-31

Charm

System
pointer

System
pointer

Authorization Required

• Operational or space authority
- Operand 2

• Retrieve
- Contexts referenced for address resolution

Lock Enforcement

• Materialize
Operand 2

- Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Space Management Instructions 5-7

Exceptions MODIFY SPACE ATTRIBUTES (MODS)

Operands Op Code Operand Operand J Exception 1 2 Other (Hex) 1 2

06 Addressing 0062 System Space modification
01 Space addressing violation X X object template
02 Boundary alignment X X

03 Range X X Operand 1: System pointer.

06 Optimized addressability invalid X X

08 Argument/ Parameter Operand 2: Binary scalar or character(28) scalar.

01 Parameter reference violation X X

OA Authorization
01 Unauthorized for operation X Description: The attributes of the space associated with

10 Damage Encountered the system object specified for operand 1 are modified

04 System object damage state X X X with the attribute values specified in operand 2.

44 Partial system object damage X X X Operand 1 may address any system object.

1A Lock State

01 Invalid lock state X The operand 2 space modification template is specified

1C Machine-Dependent Exception with one of two formats. The abbreviated format,

03 Machine storage limit exceeded X operand 2 specified as a binary scalar, only provides for

20 Machine Support modifying the size of space attribute. The full format,

02 Machine check X operand 2 specified as a character scalar, provides for

03 Function check X modifying the full set of space attributes.

22 Object Access
01 Object not found X X When operand 2 is a binary value, it specifies the size in

02 Object destroyed X X bytes to which the space size is to be modified. The

03 Object suspended X X current allocation of the space is extended or truncated

24 Pointer Specification accordingly to match as closely as possible the specified J 01 Pointer does not exist X X size. The modified space size will be of at least the size

02 Pointer type invalid X X specified. The actual size allocated is dependent upon

03 Pointer addressing invalid object X the algorithm used within the specific implementation of

2A Program Creation the machine. If the space is of fixed size, or if the value

06 Invalid operand type X X of operand 2 is negative, or if the operand 2 size is

07 Invalid operand attribute X X larger than that for the largest space that can be

08 Invalid operand value range X X associated with the object, the space

OA Invalid operand length X extension/truncation exception is signaled.

OC Invalid operand ODT reference X X

OD Reserved bits are not zero X X X

38 Template Specification

03 Materialization length exception X

5-8

When operand 2 is a character scalar, it specifies a
selection of space attribute values to be used to modify

L the attributes of the space. It must be at least 28 bytes
long and have the following format:

• Modification selection Char(4)
Modify space length attribute Bit 0
0= No
1 = Yes

- Modify size of space Bit 1
0= No
1 = Yes
Modify initial value Bit 2
of space
0= No
1 = Yes
Modify performance class Bit 2
0= No
1 = Yes
Reserved (binary 0) Bit 4-31

· Indicator attributes Char(4)
- Reserved (binary 0) Bit 0
- Space length Bit 1

o = Fixed length
1 = Variable length
Reserved binary 0) Bit 2-31

\..r · Reserved (binary 0) Char(4)

· Size of space Bin(4)

• Initial value of space Char(1)

• Performance class Char(4)

· Reserved (binary 0) Char(7)

The modification selection indicator fields select the
modifications to be performed on the space.

The modify space length attribute modification selection
field controls whether or not the space length attribute
is to be modified. When yes is specified, the value of
the space length indicator is used to modify the space
to be specified fixed or variable length attribute. When
no is specified, the space length indicator attribute value
is ignored and the space length attribute is not modified.

The modify size of space modification selection field
controls whether or not the allocation size of the space
is to be modified. When yes is specified, the current
allocation of the space is extended or truncated
accordingly to match as closely as possible the specified
size. The modified size will be at least the size
specified. The actual size allocated is dependent upon
the algorithm used within the specific implementation of
the machine. When no is specified, the current
allocation of the space is not modified and the size of
space field is ignored.

Modification of the size of space attribute for a space of
fixed length can only be performed in conjunction with
modification of the space length attribute. In this case,
the space length attribute may be modified to the same
fixed length attribute or to the variable length attribute.
An attempt to modify the size of space attribute for a
space of fixed length without modification of the space
length attribute results in the signaling of the space
extension/truncation exception. Modification of the size
of space attribute for a space of variable length can
always be performed separately from a modification of
the space length attribute.

When the size of space attribute is to be modified, if
the value of the size of space field is negative or
specifies a size larger than that for the largest space
that can be associated with the object, the space
extension/truncation exception is signaled.

Space Management Instructions 5-9

The modify initial value of space modification selection
field controls whether or not the initial value of space
attribute is to be modified. When yes is specified, the
value of the initial value of space field is used to modify
the corresponding attribute of this space. This byte
value will be used to initialize any new space allocations
for this space due to an extension to the size of space
attribute on the current execution of this instruction as
well as any subsequent modifications. When no is
specified, the initial value of space field is ignored and
the initial value of space attribute is not modified.

The modify performance class modification selection
field controls whether or not the performance class
attribute of the specified system object is to be modified
with the values relating to space objects. When yes is
specified, the value of the performance class field is
used to modify the corresponding attribute of the
specified system object. When no is specified, the
performance class attribute of the specified system
object is not modified.

5-10

Modification to or from the state of a space being fixed
length of size zero can not be performed for the
following objects:

Controller description
Cursor
Data space
Logical unit description
Space
Network description

If such a modification is attempted for these objects, the
invalid space modification exception is signaled.

Specifying yes for the modify performance class
modification selection field is only allowed when the
space to be modified is a fixed length space of size
zero. This modification may be specified in conjunction
with other modifications. Only bit 0 of the performance
class field is used to modify the performance class
attribute of the specified system object. A bit value of
zero requests that the start of the space storage provide
16-byte multiple (pointer) machine address alignment. A
bit value of one requests that the start of the space
storage provide 512- byte multiple (buffer) machine
address alignment. Bits 1 through 31 are ignored.
Specifying yes for the modify performance class
modification selection field when the space to be
modified is not a fixed length space of size zero results
in the signaling of the invalid space modification
exception.

A fixed length space of size zero is defined by the
machine to have no internal storage allocation. Due to
this, a modification to or from this state is, in essence,
the same as a destroy or create for the space associated
with the specified system object. The effect of
modifying to this state is similar to destroying the
associated space in that address references to the space
through previously set pointers will result in signaling of
the object destroyed exception. Additionally, an attempt
to set a space pointer to the space associated with the
specified system object through the Set Space Pointer
from Pointer instruction will result in the Signaling of the
invalid space reference exception. To the contrary,
modifying the space attributes from this state is similar
to creating an associated space in that the Set Space
Pointer from Pointer instruction can be used to set a
space pointer to the start of a storage within the
associated space and the allocated space storage can be
used to contain space data.

J

The extension and truncation of a space is always by an Exceptions

l,
implementation-defined multiple of 256 bytes. This

means that if, for example, the implementation defined Operands

multiple is 2 (or 512 bytes). any modification of the
Exception 1 2 Other

space size will be in increments of 512 bytes. 06 Addressing
01 Space addressing violation X X
02 Boundary alignment X X

Authorization Required 03 Range X X
06 Optimized addressability invalid X X

· Object management 08 Argument I Parameter

- Operand 1 01 Parameter reference violation X X
OA Authorization

Retrieve 01 Unauthorized for operation X ·
Contexts referenced for address resolution

10 Damage Encountered -
04 System object damage state X X X
44 Partial system object damage X X X

1A Lock State
Lock Enforcement 01 Invalid lock state X

1C Machine- Dependent Exception

· Materialize 03 Machine storage limit exceeded X
- Contexts referenced for address resolution 20 Machine Support

02 Machine check X

· Object control 03 Function check X

- Operand 1 (when operand 2 is binary) 22 Object Access
01 Object not found X X

Modify
02 Object destroyed X X ·

Operand 1 (when operand 2 is character)
03 Object suspended X X

-
24 Pointer Specification

01 Pointer does not exist X X

~ 02 Pointer type invalid X X
Events 03 Pointer addressing invalid object X

2A Program Creation
0002 Authorization 06 Invalid operand type X X

0101 Object authorization violation 07 Invalid operand attribute X X
08 Invalid operand value range X X

OOOC Machine resource OA Invalid operand length X

0201 Machine auxiliary storage threshold exceeded DC Invalid operand ODr reference X X

0501 Machine address threshold exceeded
00 Reserved bits are not zero X X X

2E Resource Control Limit
01 User profile storage limit X

DOOD Machine status exceeded
0101 Machine check 36 Space Management

01 Space extension I truncation X X

0010 Process

0701 Maximum processor time exceeded

0801 Process storage limit exceeded

0016 Machine observation

0101 Instruction reference

0017 Damage set

0401 System object damage set

0801 Partial system object damage set

Space Management Instructions 5-11

5·12

This chapter describes the instructions used for indexes.
These instructions are in alphabetic order. For an
alphabetic summary of all the instructions. see Appendix
A. Instruction Summary.

CREATE INDEPENDENT INDEX (CRTINX)

Op Code Operand Operand
(Hex) 1 2

0446 Index Index description
template

Operand 1: System pointer.

Operand 2: Space pointer.

Description: This instruction creates an independent
index based on the index template specified by operand
2 and returns addressability to the index in a system
pointer stored in the addressing object specified by
operand 1. The maximum length allowed for the
independent index entry is 120 bytes.

The format of the index description template described
by operand 2 is as follows (must be aligned on a
16-byte multiple):

• Template size specification
Number of bytes provided

- Number of bytes available for
materialization

• Object identification
- Object type
- Object subtype

Object name

Char(S)
Bin(4)"
Bin(4)"

Char(32)
Char(1)"
Char(1)
Char(30)

Chapter 6. Independent Index Instructions

• Object creation options
Existence attributes
o = Temporary
1 = Permanent

- Space attribute
o = Fixed-length
1 = Variable-length

Char(4)
Bit 0

Bit 1

- Initial context Bit 2
o = Do not insert addressability

in context
Insert addressability in context

- Access group Bit 3
o Do not create as member

of access group
Create as member
of access group

- Reserved (binary 0)

• Reserved (binary 0)

• Size of space

• Initial value of space

Bits 4-31

Char(4)

Bin(4)

Char(1)

Independent Index Instructions 6-1

• Performance class
Space alignment
o = The space associated with

the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space. If
no space is specified for
the object, 0 must be
specified for the
performance class.
The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space as
well as to allow proper
alignment of input/output
buffers at 512-byte align
ments within the the space.

Reserved (binary 0)
Main storage pool selection
o Process default main storage

pool is used for object.
Machine default main storage
pool is used for object.

Char(4)

Bit 0

Bits 1-4
Bit 5

Reserved (binary 0) Bit 6
- Block transfer on implicit Bit 7

access state modification
o = Transfer the minimum storage

transfer size for this object.
This value is 1 storage unit.
Transfer the machine default
storage transfer size. This
value is 8 storage units.

Reserved (binary 0)

• Reserved (binary 0)

• Context

• Access group

6-2

Bits 8-31

Char(7)

System
pointer

System
pointer

· Index attributes Char(1)
Entry length attribute Bit 0
0 = Fixed-length entries
1 = Variable-length entries
Immediate update Bit 1
0 = No immediate update
1 = Immediate update
Key insertion Bit 2
0 = No insertion by key
1 = Insertion by key
Entry format Bit 3
0 = Scalar data only
1 = Both pointers and scalar data
Optimized processing mode Bit 4
0 Optimize for random references
1 = Optimize for sequential

references
Reserved (binary 0) Bits 5-7

· Argument length Bin(2)

· Key length Bin(2)

Note: This instruction ignores the values associated
with the entries annotated with an asterisk (*).

The template identified by operand 2 must be 16-byte
aligned.

If the created object is permanent, it is owned by the
user profile governing process execution. The owning
user profile is implicitly assigned all private authority
states for the object. The storage occupied by the
created object is charged to this owning user profile. If
the created object is temporary, there is no owning user
profile, and all authority states are assigned as public.
Storage occupied by the created context is charged to
the creating process.

The object identification specifies the symbolic name
that identifies the space within the machine. A type
code of hex OE is implicitly supplied by the machine.
The object identification is used to identify the object on
materialize instructions as well as to locate the object in
a context that addresses the object.

The existence attribute specifies that the index is to be
created as a temporary object. A temporary index, if
not explicitly destroyed by the user, is implicitly
destroyed by the machine when machine processing is
terminated.

J

A space may be associated with the created object. The
space may be fixed or variable in size. The initial
allocation is as specified in the size of space entry. The
machine allocates a space of at least the size specified.
The actual size allocated is dependent on an algorithm
defined by a specific implementation. Each byte of the
space is initialized to a value specified by the initial
value of space entry. When the space is extended in
size, this byte value is also used to initialize the new
allocation. If no space is allocated, this value is ignored.

If the initial context creation attribute entry indicates that
addressability is to be placed in a context, the context
entry must be a system pointer that identifies a context
where addressability to the newly created object is to be
placed. If the initial context indicates that addressability
is not to be placed in a context, the context entry is
ignored.

If the access group creation attribute entry indicates that
the object is to be created in an access group, the
access group entry must be a system pointer that
identifies an access group in which the object is to be
created. The existence attribute of the object must be
identical to the existence attribute of the access group.
If the object is not to be created in the access group,
the access group entry is ignored.

The performance class parameter provides information
allowing the machine to more effectively manage the
object considering the overall performance objectives of
operations involving the index.

If the entry length attribute field specifies fixed-length
(bit 0 = 0). the entry length of every index entry is
established at creation by the value in the argument
length field of the index description template. If the
length attribute field specifies variable-length, then
entries will be variable-length (the length of each entry
is supplied when the entry is inserted), and the
argument length value is ignored.

If the immediate update field specifies that an
immediate update should occur (bit 1 = 1), then every
update to the index will be written to auxiliary storage
after every insert or remove operation.

If the key insertion field specifies insertion by key (bit 2
= 1), then the key length field must be specified. This
allows the specification of a portion of the argument
(the key). which may be manipulated in either of the
following ways in the Insert Index Entry instruction:

• The insert will not take place if the key portion of the
argument is already in the index.

• The insert will cause the nonkey portion of the
argument to be replaced if the key is already in the
index.

The entry format field designates the index entries as
containing both pointers and scalar data or only scalar
data. The both pointers and scalar data entry can be
used only for indexes with fixed-length entries. If the
index is created to contain both pointers and data
(bit 3 = 1), then:

• Entries to be inserted must be 16-byte aligned.

• Each entry retrieved by the Find Independent Index
Entry instruction or the Remove Independent Index
Entry is 16-byte aligned.

• Pointers are allowed in both the key and non key
portions of an index entry.

• Pointers need not be at the same location in every
index entry.

• Pointers inserted into the index remain unchanged.
No resolution is performed before insertion.

If the index is created to contain only scalar data, then:

• Entries to be inserted need not be aligned.

• Entries returned by the Find Independent Index Entry
instruction or the Remove Independent Index Entry
instruction are not aligned.

• Any pointers inserted into the index will be
invalidated.

The optimized processing mode index attribute field is
used to designate whether the index should be created
and maintained in a manner that optimizes performance
for either random or sequential operations.

Independent Index Instructions 6-3

The key length must have a value less than or equal to Exceptions

the argument length whether specified during creation

(for fixed-length entries) or during insertion (for variable Operands J length). The key length is not used if the key insertion Exception 1 2 Other

field specifies no insertion by key (bit 3 = 0).
02 Access Group

01 Object ineligible for access group X

Authorization Required 02 Object exceeds available space X
06 Addressing

· Insert 01 Space addressing violation X X

Context identified by operand 2 02 Boundary alignment X X

- User profile of creating process 03 Range X X
06 Optimized addressability invalid X X

· Retrieve 08 Argument/Parameter

- Contexts referenced for address resolution 01 Parameter reference violation X X
OA Authorization

01 Unauthorized for operation X

Lock Enforcennent OE Context

01 Duplicate object identification X

· Modify 10 Damage Encountered

Access group identified by operand 2 04 System object damage state X X X

User profile of creating process 44 Partial system object damage X X X

- Context identified by operand 2 1A Lock State
01 Invalid lock state X

· Materialize 1C Machine-Dependent Exception

- Contexts referenced for address resolution 03 Machine storage limit exceeded X
04 Object storage limit exceeded X

20 Machine Support

Events 02 Machine check X ,J
03 Function check X

0002 Authorization 22 Object Access

0101 Object authorization violation 01 Object not found X X
02 Object destroyed X X

OOOC Machine resource 03 Object suspended X X

0201 Machine auxiliary storage threshold exceeded 24 Pointer Specification

0501 Machine address threshold exceeded 01 Pointer does not exist X X
02 Pointer type invalid X X

0010 Process 03 Pointer addressing invalid object X

0701 Maximum processor time exceeded 2A Program Creation

0801 Process storage limit exceeded 06 Invalid operand type X X
07 Invalid operand attribute X

0016 Machine observation 08 Invalid operand value range X

0101 Instruction reference OC Invalid operand ODT reference X X
00 Reserved bits are not zero X X X

0017 Damage set 2E Resource Control Limit

0401 System object damage set 01 User profile storage limit X

0801 Partial system object damage set
exceeded

38 Template Specification
01 Template value invalid X

6-4

DESTROY INDEPENDENT INDEX (DESINX)

Op Code
(Hex)

Operand
1

0451 Index

Operand 1: System pointer.

Description: A previously created index identified by
operand 1 is destroyed, and addressability to the object
is removed from any context in which addressability
exists. The system pointer identified by operand 1 is not
modified by the instruction, and a subsequent reference
to the destroyed index through the pointer results in an
object destroyed exception.

Authorization Required

• Object control
- Operand 1

• Retrieve
- Contexts referenced for address resolution

Lock Enforcement

• Materialize
- Contexts referenced for address resolution

• Object control
- Operand 1

• Modify
- Access group which contains operand 1

Context which addresses operand 1
User profile which owns index

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operand
Exception 1

06 Addressing
01 Space addressing violation X
02 Boundary alignment X
03 Range X
06 Optimized addressability invalid X

08 Argument/ Parameter
01 Parameter reference violation X

OA Authorization
01 Unauthorized for operation X

10 Damage Encountered
04 System object damage state X
44 Partial system object damage X

1A Lock State
01 Invalid lock state X

1C Machine-Dependent Exception
03 Machine storage limit exceeded

20 Machine Support
02 Machine check
03 Function check

22 Object Access
01 Object not found X
02 Object destroyed X
03 Object suspended X

24 Pointer Specification
01 Pointer does not exist X
02 Pointer type invalid X
03 Pointer addressing invalid object X

2A Program Creation
06 Invalid operand type X
07 Invalid operand attribute X
08 Invalid operand value range X
OC Invalid operand ODT reference X
00 Reserved bits are not zero X

Other

X
X

X

X
X

X

Independent Index Instructions 6-5

FIND INDEPENDENT INDEX ENTRY (FNDINXEN)

Op Code
(Hex)

0494

Operand
1

Receiver

Operand
2

Index

Operand 1: Space pointer.

Operand 2: System pointer.

Operand 3: Space pointer.

Operand 4: Space pointer.

Operand
3

Option
list

Operand
4

Search
argument

Description: This instruction searches the independent
index identified by operand 2 according to the search
criteria specified in the option list (operand 3) and the
search argument (operand 4); then it returns the desired
entry or entries in the receiver field (operand 1). The
maximum size of the independent index entry is 120
bytes.

The option list is a variable-length area that identifies
the type of search to be performed, the length of the
search argument(s), the number of resultant arguments
to be returned, the lengths of the entries returned, and
the offsets to the entries within the receiver identified by
the operand 1 space pointer. The option list has the
following format:

· Rule option Char(2)

· Argument length Bin(2)

· Argument offset Bin(2)

· Occurrence count Bin(2)

· Return count Bin(2)

Each entry that is returned to the receiver operand
contains the following:

• Entry length Bin(2)

• Offset Bin(2)

6-6

The rule option identifies the type of search to be
performed and has the following meaning:

Search Value
Type (Hex) Meaning

0001 Find equal occurrences of
operand 4.

> 0002 Find occurrences that are
greater than operand 4.

< 0003 Find occurrences that are
less than operand 4.

~ 0004 Find occurrences that are greater
than or equal to operand 4.

S 0005 Find occurrences that are less
than or equal to operand 4.

First 0006 Find the first index entry or
entries.

Last 0007 Find the last index entry or entries.

Between 0008 Find all entries between the two
arguments specified by operand 4
(inclusive).

The option to find between limits requires that operand
4 be a 2-element vector in which element 1 is the
starting argument and element 2 is the ending argument.
All arguments between (and including) the starting and
ending arguments are returned, but the occurrence count
specified is not exceeded.

If the index was created to contain both pointers and
scalar data, then the search argument must be 16-byte
aligned. For the option to find between limits, both
search arguments must be 16-byte aligned.

The rule option and the argument length determine the
search criteria used for the index search. The argument
length must be greater than or equal to one. The
argument length for fixed-length entries must be less
than or equal to the argument length specified when the
index is created.

The argument length entry specifies the length of the
search argument (operand 4) to be used for the index
search. When the rule option equals first or last, the
argument length entry is ignored. For the option to find
between limits, the argument length option specifies the
lengths of one vector element. The lengths of the vector
elements must be equal.

J

The argument offset is the offset of the second search
argument from the beginning of the entire argument
field (operand 4). The argument offset field is ignored
unless the rule option is find between.

The occurrence count specifies the maximum number of
index entries that satisfy the search criteria to be
returned. This field is limited to a maximum value of
4095. If this value is exceeded, a template value invalid
exception is signaled.

The return count specifies the number of index entries
satisfying the search criteria that were returned in the
receiver (operand 1). If this field is 0, no index
arguments satisfied the search criteria.

There are two fields in the option list for each entry
returned in the receiver (operand 1). The entry length is
the length of the entry retrieved from the index. The
offset has the following meaning:

• For the first entry, the offset is the number of bytes
from the beginning of the receiver (operand 1) to the
first byte of the first entry.

• For any succeeding entry, the offset is the number of
bytes from the beginning of the immediately
preceding entry to the first byte of the entry returned.

The entries that are retrieved as a result of the Find
Independent Index Entry instruction are always returned
starting with the entry that is closest to or equal to the
search argument and then proceeding away from the
search argument. For example, a search that is for <
(less than) or :5 (less than or equal to) returns the
entries in order of decreasing value.

All the entries that satisfy the search criteria (up to the
occurrence count) are returned in the space starting at
the location designated by the operand 1 space pointer.

If the index was created to contain both pointers and
scalar data, then each returned entry is 16-byte aligned.

If the index was created to contain only scalar data,
then returned entries are contiguous.

Every entry retrieved causes the count of the find
operations to be incremented by 1. The current value of
this count is available through the Materialize Index
Attributes instruction.

Authorization Required

• Retrieve
Operand 2

- Contexts referenced for address resolution

Lock Enforcement

• Materialize
Operand 2

- Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

I ndependent Index Instructions 6-7

Exceptions INSERT INDEPENDENT INDEX ENTRY (lNSINXEN)

Operands Op Code Operand Operand Operand J Exception 1 2 3 4 Other (Hex) 1 2 3

06 Addressing O4A3 Index Argument Option list
01 Space addressing violation X X X X
02 Boundary alignment X X X X Operand 1: System pointer.
03 Range X X X X
06 Optimized addressability X X X X Operand 2: Space pointer.

invalid

08 Argument/Parameter Operand 3: Space pointer.

01 Parameter reference violation X X X X
OA Authorization

01 Unauthorized for operation X Description: This instruction inserts one or more new

10 Damage Encountered entries into the independent index identified by operand

04 System object damage state X X X X X 1 according to the criteria specified in the option list

44 Partial system object damage X X X X X (operand 3). Each entry is inserted into the index at the

1A Lock State appropriate location based on the EBCDIC value of the

01 Invalid lock state X argument. The maximum length allowed for the

1C Machine-Dependent Exception independent index entry is 120 bytes.

03 Machine storage limit X
exceeded The argument (operand 2) and the option list (operand

20 Machine SLipport 3) have the same format as the argument and option list

02 Machine check X for the Find Independent Index Entry instruction.

03 Function check X
22 Object Access The rule option identifies the type of insert to be

01 Object not found X X X X performed and has the following meaning:

02 Object destroyed X X X X J 03 Object suspended X X X X Value
24 Pointer Specification Insert Type (Hex) Meaning Authorization

01 Pointer does not exist X X X X
02 Pointer type invalid X X X X Insert 0001 Insert unique argument Insert
03 Pointer addressing invalid X

object Insert with 0002 Insert argument.
2A Program Creation replacement replacing the non key

06 Invalid operand type X X X X portion if the key is
07 Invalid operand attribute X X X X already
08 Invalid operand value range X X X X
OA Invalid operand length X X X X

in the index Update

OC Invalid operand ODT reference X X X X Insert without 003 Insert argument only if Insert
00 Reserved bits are not zero X X X X X replacement the key is not already

38 Template Specification in the index
01 Template value invalid X
02 Template size invalid X

J
6-8

The insert rule option is valid only for indexes not containing

keys. The insert with replacement rule option and the insert

without replacement rule option are valid for indexes containing

either fixed- or variable-length entries with keys. The duplicate

key argument exception is signaled for the following conditions:

• If the rule option is insert and the argument to be inserted

(operand 2) is already in the index

• If the rule option is insert without replacement and the key

portion of the argument to be inserted (operand 2) is

already in the index

The argument length and argument offset fields are ignored.

The occurrence count specifies the number of arguments to be

inserted. This field is limited to a maximum value of 4095. If

this value is exceeded. a template value invalid exception is

signaled.

If the index was created to contain both pointers and data.

then each entry to be inserted must be 16-byte aligned. If the

index was created to contain variable-length entries. then the

entry length and offset fields must be specified in the option

list for each argument in the space identified by operand 2.

The entry length is the length of the entry to be inserted.

If the index was created to contain both pointer and scalar

data. the offset field in the option list must be supplied for

each entry to be inserted. The offset is the number of bytes

from the beginning of the previous entry to the beginning of

the entry to be inserted. For the first entry. this is the offset

from the start of the space identified by operand 2.

The return count specifies the number of entries inserted into

the index. If the index was created to contain only data. then

any pointers inserted are invalidated.

Authorization Required

• Insert or update depending on insert type

- Operand 1

• Retrieve
- Contexts referenced for address resolution

Lock Enforcenlent

• Materialize

- Contexts referenced for address resolution

• Modify
- Operand 1

Events

0002 Authorization

0101 Object authorization violation

OOOC Machine resource

0201 Machine auxiliary storage threshold exceeded

0010 Process

0701 Maximum processor time exceeded

0801 Process storage limit exceeded

0016 Machine observation

0101 Instruction reference

0017 Damage set

0401 System object damage set

0801 Partial system object damage set

IndependlJnt Index Instructions 6-9

Exceptions MATERIALIZE INDEPENDENT INDEX ATTRIBUTES
(MATINXATI

Operands
Exception 1 2 3 Other Op Code Operand Operand

(Hex) 1 2
02 Access Group

02 Object exceeds available space X 0462 Receiver Index
06 Addressing

01 Space addressing violation X X X Operand 1: Space pointer.
02 Boundary alignment X X X
03 Range X X X Operand 2: System pointer.

06 Optimized addressability invalid X X X
08 Argument / Parameter

01 Parameter reference violation X X X Description: The instruction materializes the creation

OA Authorization attributes and current operational statistics of the

01 Unauthorized for operation X independent index identified by operand 2 into the

10 Damage Encountered space identified by operand 1. The format of the

04 System object damage state X X X X attributes materialized is as follows:

44 Partial system object damage X X X X
18 Independent Index · Materialization size specification Charla)

01 Duplicate key argument in index X Number of bytes provided for Bin(4)

1A Lock State materialization

01 Invalid lock state X Number of bytes available for Bin(4)

1C Machine-Dependent Exception materialization

03 Machine storage limit exceeded X
04 Object storage limit exceeded X · Object identification Char(32)

20 Machine Support Object type Char(1)

02 Machine check X Object subtype Char(1)

J 03 Function check X Object name Char(30)

22 Object Access

01 Object not found X X X · Object creation options Char(4)

02 Object destroyed X X X Existence attributes Bit 0

03 Object suspended X X X 0 = Temporary

24 Pointer Specification 1 = Reserved

01 Pointer does not exist X X X Space attribute Bit 1

02 Pointer type invalid X X X 0 = Fixed-length

03 Pointer addressing invalid object X 1 = Variable-length

2A Program Creation Context Bit 2

06 Invalid operand type X X X 0 = Addressability not in context

07 Invalid operand attribute X X X 1 = Addressability in context

08 Invalid operand value range X X X Access group Bit 3

OC Invalid operand ODT reference X X X 0 = Not a member of access group

00 Reserved bits are not zero X X X X 1 = Member of access group

2E Resource Control Limit Reserved (binary 0) Bits 4-31

01 User profile storage limit X
exceeded · Reserved (binary 0) Char(4)

38 Template Specification

01 Template value invalid X · Size of space Bin(4)

02 Template size invalid X

6-10

• Initial value of space

• Performance class
- Space alignment

o = The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space. If
no space is specified for
the object, this value must
be specified for the
performance class.
The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space as
well as to allow proper
alignment of input/output
buffers at 512-byte align
ments within the the space.

Char(1)

Char(4)
Bit 0

- Reserved (binary 0) Bits 1-4
Main storage pool selection Bit 5
o Process default main storage

pool used for object.
Machine default main storage
pool used for object.

Reserved (binary 0) Bit 6
Block transfer on implicit
access state modification
o == The minimum storage

transfer size for this
object is a value of 1
storage unit.
The machine default
storage transfer size
for this object is a
value of 8 storage units.

- Reserved (binary 0)

• Reserved (binary 0)

• Context

• Access group

• Index attributes

Bit 7

Bits 8-31

Charm

System
pointer

System
pointer

Char(1)

· Argument length Bin(2)

· Key length Bin(2)

· Index statistics Char(12)
Entries inserted Bin(4)

- Entries removed Bin(4)
- Find operations Bin(4)

The number of arguments in the index equals the
number of entries inserted minus entries removed. The
value of the find operations field is initialized to 0 each
time the index is materialized. The value may not be
correct after an abnormal system termination.

The first 4 bytes of the materialization identify the total
number of bytes that may be used by the instruction.
This value is supplied as input to the instruction and is
not modified by the instruction. A value of less than 8
causes the materialization length exception to be
signaled.

The second 4 bytes of the materialization identify the
total number of bytes available to be materialized. The
instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the
byte area identified by the receiver is greater than that
required to contain the information requested, then the
excess bytes are unchanged.

No exceptions other than the materialization length
exception described previously are signaled in the event
that the receiver contains insufficient area for the
materialization.

The template identified by the operand 1 space pointer
must be 16-byte aligned. Values in the template remain
the same as the values specified at the creation of the
independent index except that the object identification,
context, and size of the associated space contain current
values.

If the entry length is fixed, then the argument length is
the value supplied in the template when the index was
created. If the entry length is variable, then the
argument length entry is equal to the length of the
longest entry that has ever been inserted into the index.

Independent Index Instructions 6-11

Authorization Required Exceptions

· Operational Operands
- Operand 2 Exception 1 2 Other

• Retrieve 06 Addressing

- Contexts referenced for address resolution 01 Space addressing violation X X
02 Boundary alignment X X

03 Range X X

Lock Enforce~nt 06 Optimized addressability invalid X X

08 Argument/Parameter

· Materialize 01 Parameter reference violation X X

Operand 2 OA Authorization

- Contexts referenced for address resolution 01 Unauthorized for operation X
10 Damage Encountered

04 System object damage state X X X

Events 44 Partial system object damage X X X
1A Lock State

0002 Authorization 01 Invalid lock state X

0101 Object authorization violation 1C Machine-Dependent Exception

03 Machine storage limit exceeded X

OOOC Machine resource 20 Machine Support

0201 Machine auxiliary storage threshold exceeded 02 Machine check X

03 Function check X

0010 Process 22 Object Access

0701 Maximum processor time exceeded 01 Object not found X X

0801 Process storage limit exceeded 02 Object destroyed X X

03 Object suspended X X

0016 Machine observation 24 Pointer Specification

0101 Instruction reference 01 Pointer does not exist X X
02 Pointer type invalid X X

0017 Damage set 03 Pointer addressing invalid object X

0401 System object damage set 2A Program Creation

0801 Partial system object damage set 06 Invalid operand type X X

07 Invalid operand attribute X X

08 Invalid operand value range X X

OC Invalid operand ODT reference X X

00 Reserved bits are not zero X X X

38 Template Specification

01 Template value invalid X

03 Materialization length exception X

6-12

MODIFY INDEPENDENT INDEX (MODINX)

Op Code Operand Operand
(Hex) 1 2

0452 Independent Modification
index option

Operand 1: System pointer.

Operand 2: Character (4) scalar.

Description: This instruction modifies the selected
attributes of the independent index specified by operand
1 to have the values specified in operand 2. The
modification options specified in operand 2 have the
following format:

• Modification selection
- Reserved (binary 0)

Immediate update
o Do not change immediate

update attribute
Change immediate update
attribute

- Reserved (binary 0)

• New attribute value
- Reserved (binary 0)
- Immediate update

o = No immediate update
1 = Immediate update

- Reserved (binary 0)

• Reserved (binary 0)

Char(1)
Bit 0
Bit 1

Bits 2-7

Char(1)
Bit 0
Bit 1

Bits 2-7

Char(2)

If the modification selection immediate update is 0, then
the immediate update attribute is not changed. If the
modification selection immediate update bit is 1, the
immediate update attribute is changed to the new
immediate update attribute value.

If the immediate update attribute of the index was
previously set to no immediate update, and it is being
modified to immediate update, then the index is ensured
before the attribute is modified.

Modification of the immediate update attribute of an
independent index will occur only if the index was
created in release 2 or later.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Authorization Required

• Object management
- Operand 1

• Retrieve
- Contexts referenced for address resolution

Lock Enforcement

• Modify
- Operand 1

• Materialization
- Contexts referenced for address resolution

Events

0002 Authorization
0101 Authorization violation

OOOC Machine resources
0201 Machine auxiliary storage exceeded

0000 Machine status
0101 Machine check

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Independent Index Inatructiona 8-13

Exceptions REMOVE INDEPENDENT INDEX ENTRY
(RMVINXEN)

Operands J Exception 1 2 Other Op Code Operand Operand Operand Operand
(Hex) 1 2 3 4

06 Addressing

01 Space addressing violation X X 0484 Receiver Index Option Argument
02 Boundary alignment X X list

03 Range X X

06 Optimized addressability invalid X X Operand 1: Space pointer or null.

08 Argument/Parameter

01 Parameter reference violation X X
Operand 2: System pointer.

OA Authorization Operand 3: Space pointer.
01 Unauthorized for operation X

10 Damage Encountered Operand 4: Space pointer.
04 System object damage X X

44 Partial system object damage X

1A Lock State Description: The index entries identified by operands 3
01 Invalid lock state X and 4 are removed from the independent index

1C Machine- Dependent Exception identified by operand 2 and optionally returned in the
03 Machine storage limit exceeded X receiver specified by operand 1. The maximum length of

20 Machine Support an independent index entry is 120 bytes.
02 Machine check X

03 Function check X The option list (operand 3) and the argument (operand
22 Object Access 4) have the same format and meaning as the option list

01 Object not found X X and argument for the Find Independent Index Entry
02 Object destroyed X X instruction. The return count designates the number of
03 Object suspended X X index entries that were removed from the index.

J 24 Pointer Specification

01 Pointer does not exist X X The arguments removed are returned in the receiver field
02 Pointer type invalid X X if a space pointer is specified for operand 1. If operand
03 Pointer address invalid object X 1 is null, the entries removed from the index are not

2A Program Creation returned. If neither space pointer nor null is specified
06 Invalid operand type X X for operand 1, the entries are returned in the same way
07 Invalid operand attribute X X that entries are returned for the Find Independent Index
08 Invalid operand value range X X Entry instruction.
OA Invalid operand length X

OC Invalid operand ODT reference X X Every entry removed causes the occurrence count to be
00 Reserved bits are not zero X X X incremented by 1. The current value of this count is

32 Scalar Specification available through the Materialize Index Attributes
01 Scalar type invalid X X instruction. The occurrence count field must be less
02 Scalar attributes invalid X then 4096.

6-14

Authorization Required Exceptions

· Delete Operands
- Operand 2 Exception 1 2 3 4 Other

· Retrieve 02 Access Group

- Contexts referenced for address resolution 02 Object exceeds available space X
06 Addressing

01 Space addressing violation X X X X

Lock Enforcement 02 Boundary alignment X X X X
03 Range X X X X

· Materialize 06 Optimized addressability X X X X

- Contexts referenced for address resolution invalid

08 Argument/Parameter

· Modify 01 Parameter reference violation X X X X

- Operand 2 OA Authorization

01 Unauthorized for operation X
10 Damage Encountered

Events 04 System object damage state X X X X X
44 Partial system object damage X X X X X

0002 Authorization 1A Lock State

0101 Object authorization violation 01 Invalid lock state X X
1C Machine-Dependent Exception

OOOC Machine resource 03 Machine storage limit X

0201 Machine auxiliary storage threshold exceeded
exceeded

04 Object storage limit exceeded X

0010 Process
20 Machine Support

0701 Maximum processor time exceeded
02 Machine check X

0801 Process storage limit exceeded
03 Function check X

22 Object Access

0016 Machine observation
01 Object not found X X X X

0101 I nstruction reference
02 Object destroyed X X X X
03 Object suspended X X X X

0017 Damage set
24 Pointer Specification

0401 System object damage set
01 Pointer does not exist X X X X

0801 Partial system object damage set
02 Pointer type invalid X X X X
03 Pointer addressing invalid X

object

2A Program Creation

06 Invalid operand type X X X X
07 Invalid operand attribute X X X X
08 Invalid operand value range X X X X

OC Invalid operand ODT reference X X X X
00 Reserved bits are not zero X X X X X

2E Resource Control Limit

01 User· profile storage limit X
exceeded

38 Template Specification
01 Template value invalid X
02 Template size invalid X

Independent Index Instructions 6-15

.. ,.

Chapter 7. Authorization Management Instructions

This chapter describes the instructions used for
authorization management. These instructions are in
alphabetic order. For an alphabetic summary of all the
instructions, see Appendix A. Instruction Summary.

CREATE USER PROFILE (CRTUP)

Op Code Operand Operand
(Hex) 1 2

0116 User User
profile profile

creation
template

Operand 1: System pointer.

Operand 2: Space pointer.

Description: A user profile is created in accordance with
the user profile template specification. A system pointer
addressing the created user profile is returned in the
addressing object specified by operand 1.

A privileged instruction exception is signaled if the user
profile(s) governing the execution of the process is not
authorized to create a user profile. An exception is
signaled if the new user profile is either for a privileged
instruction or for a special authorization state that is not
authorized the user profile(s) that governs the execution
of the instruction.

The template identified by operand 2 must be 16-byte
aligned in the space. Following is the format of the user
profile template:

• Template size specification
Size of template
Number of bytes available for
materialization

• Object identification
Object type
Object subtype
Object name

• Object creation options
- Existence attribute

1 = Permanent (required)
Space attribute
o = Fixed-length
1 = Variable-length

- Reserved (binary 0)

• Reserved (binary 0)

• Size of space

• Initial value of space

Char(S)*
Bin(4)*
Bin(4)*

Char(32)
Char(1)*
Char(1)
Char(30)

Char(4)
Bit 0

Bit 1

Bits 2-31

Char(4)

Bin(4)

Char(1)

Authorization Management Instructions 7-1

• Performance class Char(4)
- Space alignment Bit 0

o = The space associated with the
object is allocated to allow
proper alignment of pointers
at 16-byte alignments within
the space. If no space
is specified for the object.
this value must be specified
for the performance class.
The space associated with the
object is allocated to allow
proper alignment of pointers
at 16-byte alignments within
the space as well as to allow
proper alignment of
input/output buffers at 512-byte
alignments within the space.

- Reserved (binary 0) Bits 1-4
- Main storage pool selection Bit 5

o Process default main storage
pool is used for object.
Machine default main storage
pool is used for object.

Reserved (binary 0) Bit 6
- Block transfer on implicit Bit 7

access state modification
o = Transfer the minimum storage

transfer size for this object.
This value is 1 storage unit.
Transfer the machine default
storage transfer size. This
value is 8 storage units.

- Reserved (binary 0) Bits 8-31

• Reserved (binary 0)

• Privileged instructions
(1 = authorized)

Create logical unit description
- Create network description

Create controller description
Create user profile

7-2

Modify user profile
Diagnose
Terminate machine processing
Initiate process
Modify resource management
control
Reserved (binary 0)

Char(39)

Char(4)

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bit 8

Bits 9-31

· Special authorizations Char (4)
(1 = authorized)
- All object authority Bit 0
- Load (unrestricted) Bit 1
- Dump (unrestricted) Bit 2

Suspend object (unrestricted) Bit 3
- Load (restricted) Bit 4
- Dump (restricted) Bit 5
- Suspend (restricted) Bit 6
- Process control Bit 7

Reserved (binary 0) Bit 8
Service authority Bit 9
Reserved (binary 0) Bits 10-23

- Modify machine attributes Bits 24-31
Group 2 Bit 24
Group 3 Bit 25
Group 4 Bit 26
Group 5 Bit 27
Group 6 Bit 28
Group 7 Bit 29
Group 8 Bit 30
Group 9 Bit 31

Note: Group 1 requires no authorization.

• Storage authorization-The
maximum amount of auxiliary
storage (in units of 1024 bytes)
that can be allocated for the
storage of objects owned by this
user profile

Bin(4)

• Storage utilization-The Bin(4)
current amount of auxiliary
storage (in units of 1024 bytes)
allocated for the storage of
objects owned by this user profile

Note: The values associated with the template
parameters identified by an asterisk (*) are ignored by
the create user profile instruction.

The created user profile is owned by the user profile
governing process execution. All private object
authorization states are implicitly assigned to the owning
user profile. No user profile is charged for the storage
occupied by the newly created user profile.

The object identification specifies the symbolic name
that identifies the user profile within the machine. An
object type of hex 08 is implicitly supplied by the
machine. The object identification is used to identify the
object for materialize instructions as well as to locate
the object through the machine context. The object
identification for a user profile must be unique
throughout the machine.

The user profile is created as a permanent object and
exists until explicitly destroyed. Addressability to the
created user profile is implicitly inserted into the
machine context.

A space may be associated with the created user profile.
The size of the space may be fixed or variable. The
initial allocation is as specified in the size of space entry.
The machine allocates a space of at least the size
specified. The actual size allocated depends on an
algorithm defined by a specific implementation. A fixed
space size of zero length causes no space to be
allocated.

Each byte of the space is initialized to a value specified
by the initial value of space entry. When the space is
extended, this byte value is also used to initialize the
new allocation.

When a permanent object is created, it is owned by the
user profile governing process execution. The owning
user profile is implicitly assigned all private authority
states for the object. The storage occupied by the
associated space is charged to the owning user profile.

The performance class parameter provides information
that allows the machine to more effectively manage the
object by considering the overall performance objectives
of operations involving the context.

Authorization Required

• Privileged instruction

• Privileges and special authorizations being granted to
the created user profile

• Insert
- User profile of creating process

• Retrieve
- Contexts referenced for address resolution

Lock Enforcennent

• Modify
- User profile of creating process

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded
0501 Machine address threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0801 Partial system object damage set

Authorization Management Instructions 7-3

Exceptions DESTROY USER PROFILE (DESUP)

Operands Op Code
(Hex) Operand 1 Exception 1 2 Other

02 Access Group
0125 User profile

01 Object ineligible for access group X
Operand 1: System pointer.

06 Addressing

01 Space addressing violation X X
02 Boundary alignment X X Description: The user profile specified by operand 1 is
03 Range X X

destroyed, and addressability to the profile is deleted
06 Optimized addressability invalid X X

from the machine context. The system pointer specified
08 Argument/ Parameter

by operand 1 is not modified by the instruction, and any
01 Parameter reference violation X X

future reference to the destroyed user profile through
OA Authorization

the pointer causes an object destroyed exception.
01 Unauthorized for operation X
02 Privileged instruction X

If the referenced user profile owns any object (other
05 Create/modify user profile X

than itself) when the Destroy User Profile instruction is
beyond level of authorization

executed, an object not eligible for destruction exception
OE Context Operation

is signaled and the user profile is not destroyed. The
01 Duplicate object identification X

exception is also signaled if the process executing the
10 Damage Encountered

instruction is controlled by the user profile to be
02 Machine context damage state X

destroyed.
04 System object damage state X X X
44 Partial system object damage X X X

Because a user profile is implicitly locked (LSRD) by the
1A Lock State

machine when a process is initiated by the user profile,
01 Invalid lock state X

an invalid lock state exception is signaled if any process
1C Machine- Dependent Exception

is currently initiated by the referenced user profile and
03 Machine storage limit exceeded X

an attempt is made to destroy the user profile.
04 Object storage limit exceeded X

20 Machine Support

02 Machine check X
03 Function check X

22 Object Access

01 Object not found X X

02 Object destroyed X X

03 Object suspended X X
24 Pointer Specification

01 Pointer does not exist X X

02 Pointer type invalid X X
03 Pointer addressing invalid object X

2A Program Creation

06 Invalid operand type X X
07 Invalid operand attribute X X
08 Invalid operand value range X X

OC Invalid operand ODT reference X X

00 Reserved bits are not zero X X X

2E Resource Control Limit

01 User profile storage limit X
exceeded

38 Template Specification

01 Template value invalid X

J
7-4

Authorization Required Exceptions

L · Object control Operand
- Operand 1 Exception 1 Other

06 Addressing

Lock Enforcement 01 Space addressing violation X

02 Boundary alignment X

· Modify 03 Range X

- User profile of owner of operand 1 06 Optimized addressability invalid X

08 Argument/ Parameter

· Object control 01 Parameter reference violation X

- Operand 1 OA Authorization

01 Unauthorized for operation X

10 Damage Encountered

Events 02 Machine context damage state X

04 System object damage state X X

0002 Authorization 44 Partial system object damage X X

0101 Object authorization violation 1A Lock State

01 I nvalid lock state X

OOOC Machine resource 1C Machine-Dependent Exception

0201 Machine auxiliary storage threshold exceeded 03 Machine storage limit exceeded X

20 Machine Support

0010 Process 02 Machine check X

0701 Maximum processor time exceeded 03 Function check X

0801 Process storage limit exceeded 22 Object Access

01 Object not found X

L
0016 Machine observation 02 Object destroyed X

0101 Instruction reference 03 Object suspended X

06 Object not eligible for destruction X

0017 Damage set 24 Pointer Specification

0201 Machine context damage set 01 Pointer does not exist X

0401 System object damage set 02 Pointer type invalid X

0801 Partial system object damage set 03 Pointer addressing invalid object X

2A Program Creation

06 Invalid operand type X

07 Invalid operand attribute X

08 Invalid operand value range X

OC Invalid operand ODT reference X

00 Reserved bits are not zero X X

32 Scalar Specification

01 Scalar type invalid X

Authorization Management Instructions 7-5

GRANT AUTHORITY (GRANT)

Op Code
(Hex)

0173

Operand
1

User
profile

Operand
2

System
object

Operand 1: System pointer or null.

Operand 2: System pointer.

Operand
3

Authorization
template

Operand 3: Character(2) scalar (fixed-length).

Description: This instruction grants authority to a
specified object. This authority may include all new
authority codes or a new authority code to be added to
the authority codes previously granted. Public authority
for an object can also be granted. If operand 1 is
addressing a user profile, that user profile will be
granted the private authorization states specified by
operand 3 for the system object specified by operand 2.
If the user profile previously had no authority for the
specified object the object and the specified
authorization states are added to the user profile's set of
authorized objects. If the user profile previously had
some authority for the specified object, then the
authorization states specified by operand 3 are logically
ORed to those authorization states previously held. If no
private authorization states that apply to the designated
object type are defined in the authorization template
then no change is made to the user profile's
authorization.

If operand 1 is null, the instruction grants public
authorization. If public authorization has been previously
granted for the object. then the authorization states
specified by operand 3 are logically ORed to those
public authorization states previously granted. Operand
3 is a 2-byte character scalar and employs the following
bit representations to designate the authorization states:
(1 = authorized)

• Authorization template
Object control
Object management
Authorized pointer

- Space authority
Retrieve
Insert
Delete
Update
Reserved (binary 0)

7-6

Char(2)
Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bits 8-15

The four authorities (bits 4-7)-retrieve, insert, delete,
and update-constitute the operational authorities.
Granting any of these four authorities is sufficient for
instructions requiring operational authority. For those
objects (except space objects) that do not support these
operational authorities individually, all four of these
authorities must be granted when operational authority
is to be granted. The operational authority provided by
these bits is considered reserved for objects that do not
have any distinction between them.

The user profile governing the execution of the
instruction (process user profile or most current adopted
user profile) must have object management authority as
well as any authority state being granted for the object
or it must indirectly have authority through the all-object
authority special authorization or through ownership of
the object.

Ownership or all-object authority is required in order to
grant object management authority. The owner is
always allowed to grant any authority, even if it has
been retracted from him. A nonowner must have the
authorities he is granting in addition to object
management authority. Authorization bits that do not
support any function for a particular object type are
considered reserved.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Authorization Required

• Authorities being granted with object management or
ownership
- Operand 2

• Retrieve
- Contexts referenced for address resolution

Lock Enforcement Exceptions

L
. Materialize Operands

- Contexts referenced for address resolution Exception 1 2 3 Other

Modify
06 Addressing .

01 Space addressing violation X X X
- Operand 2 02 Boundary alignment X X X

03 Range X X X
06 Optimized addressability invalid X X X

Events 08 Argument/ Parameter
01 Parameter reference violation X X X

0002 Authorization OA Authorization

0101 Object authorization violation 01 Unauthorized for operation X
03 Attempt to grant/ restrict authority X

OOOC Machine resource
state to that which is not
authorized

0201 Machine auxiliary storage threshold exceeded 10 Damage Encountered
02 Machine context damage state X

0010 Process 04 System object damage state X X X X
0701 Maximum processor time exceeded 44 Partial system object damage X X X X

0801 Process storage limit exceeded 1A Lock State
01 Invalid lock state X X X

0016 Machine observation 1C Machine- Dependent Exception

0101 Instruction reference
03 Machine storage limit exceeded X
04 Object storage limit exceeded X

20 Machine Support
0017 Damage set 02 Machine check X

0201 Machine context damage set 03 Function check X
0401 System object damage set 22 Object Access
0801 Partial system object damage set 01 Object not found X X

02 Object destroyed X X X
03 Object suspended X X

24 Pointer Specification
01 Pointer does not exist X X X
02 Pointer type invalid X X X
03 Pointer addressing invalid object X

2A Program Creation
06 Invalid operand type X X X
07 Invalid operand attribute X X X
08 Invalid operand value range X X X
OA Invalid operand length X
OC Invalid operand ODT reference X X X
00 Reserved bits are not zero X X X X

32 Scalar Specification
01 Scalar type invalid X X X
02 Scalar attributes invalid X
03 Scalar value invalid X

38 Template Specification
02 Template size invalid X

Authorization Management Instructions 7-7

GRANT-LIKE AUTHORITY (GRNTLlKE)

Op Code Operand Operand Operand Operand
(Hex) 1 2 3 4

0174 Receiving Reference Authoriza- Receiver
user user tion
profile profile template

Operand 1: System pointer.

Operand 2: System pointer.

Operand 3: Character(8) scalar.

Operand 4: Space pointer or null.

Description: This instruction grants authority from a
specified reference user profile for all objects (owned
and authorized) in the reference user profile. For each
object, all new authority codes may be granted or new
authority codes may be added to authority codes
previously granted. The receiving user profile (operand
1) is granted the private authorization states for all
objects (as specified in the authorization template) in the
reference user profile (operand 2). If the receiving user
profile previously had no authority for an object in the
reference user profile, then the object and its
authorization states are added to the receiving user
profile's set of authorized objects.

If the receiving user profile previously had some
authority for an object in the reference user profile, then
the authorization states for that object in the reference
user profile are logically OR-ed to the object's
authorization states in the receiving user profile.

In order to grant authorities for objects in the reference
user profile to the receiving user profile, the user profile
governing the execution of the instruction (process user
profile or adopted user profile) must meet one of the
following conditions:

• Object management authority in addition to the
authorities being granted for each object in the
reference user profile. If the user profile governing
the execution of the command does not have object
management authority and all the authorities to be
granted for an object, then no authority will be
granted for that object to the receiver user profile.

• Must indirectly have authority through the all object
authority special authority.

• Must be the owner of the object.

7-8

In order to grant object management authority,
ownership or all object authority is required. The owner
is allowed to grant any authorities, even if they have
been retracted from him.

When this instruction is executed, ownership of an
object is not changed nor are the authorities held by the
reference user profile changed.

The authorization template is input to the instruction and
has the following format:

• Authorization template
Flags
Grant authority for all
authorized objects in
reference user profile
Grant authority for all
owned objects in
reference user profile
Explicit authority to be
granted is provided in
authorization template
for authorized objects
Explicit authority to be
granted is provided
in authorization template
for owned objects
Reserved (binary 0)
Explicit authority for
authorized objects
Object control
Object management
Authorized pointer
Space authority
Retrieve
Insert
Delete
Update
Reserved (binary 0)
Explicit authority for
owned objects
Object control
Object management
Authorized pointer
Space authority
Retrieve
Insert
Delete
Update
Reserved (binary 0)
Reserved (binary 0)

Char(8)
Char(2)
Bit 0

Bit 1

Bit 2

Bit 3

Bits 4-15
Char(2)

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bits 8-15
Char(2)

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bits 8-15
Char(2)

J

J

L
The explicit authorities (authorized and owned) specified
in the authorization template may be used to limit the
authorities granted to the receiving profile. They are
logically ANDed with the authorities in the reference
user profile. If the user profile governing the execution
of the instruction is authorized. the result is logically
ORed with any existing authorities in the receiving user
profile.

The scalar value invalid exception is signaled when the
flags for grant authority for all authorized objects in
reference user profile or grant authority for all owned
objects in reference user profile are not specified. but
the corresponding explicit authorization mask is
specified.

The first 4 bytes of the information returned in the
receiver identify the total quantity of bytes in the
receiver area. This value is supplied as input to the
instruction and is not modified by the instruction. A
value of less than 16 causes the template value invalid
exception to be signaled.

The second 4 bytes are the total number of objects for
which authorization was granted.

The third 4 bytes are filled in by the instruction and are
the number of objects for which detail information
(objects for which authorization was not granted) is
supplied in the receiver area.

The fourth 4 bytes are filled in by the instruction and are
the total number of objects for which authorization was
not granted. This number will be greater than the
previous field when the receiver area does not contain
sufficient space for detail information for all objects for
which authorization was not granted.

The instruction provides detail information for as many
objects as will fit in the receiver area supplied to the
instruction. If the context not found flag is returned.
then the context name field does not contain valid data.
Any excess bytes in the receiver area are unchanged.

If operand 4 is null. then no information is returned from
the instruction.

The information returned in the receiver has the
following format:

• Number of bytes provided for
containing feedback information

Bin(4)

• Total number of objects for which Bin(4)
authorization was granted

• Number of objects for which Bin(4)
authorization was not granted
and detail information is provided
(number of 66-byte entries below)

• Total number of objects for which Bin(4)
authorization was not granted

Detail information for each object for which authorization
was not granted:

· Object information Char(66)
Type code Char(1)
Subtype code Char(l)
Object name Char(30)
Context name Char(30)
Flags Char(2)

Insufficient authority to Bit 0
grant authorization

- Lock conflict prevented Bit 1
granting authorization
Context not found Bit 2
Reserved (binary 0) Bits 3-15

Authorization not granted Char(2)
Object control Bit 0
Object management Bit 1
Authorized pointer Bit 2
Space authority Bit 3
Retrieve Bit 4
Insert Bit 5
Delete Bit 6
Update Bit 7
Reserved (binary 0) Bits 8-15

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Authorization Management Instructions 7-9

Authorization Required Exceptions

· Authorities being granted and object management, or

ownership Exception
Operands J

To each object identified in operand 2-reference
1 2 3 4 Other

user profile. (See description below for specific 06 Addressing

details.) 01 Space addressing violation X X X X
02 Boundary alignment X X X X

· Operational 03 Range X X X X

- Operand 2 06 Optimized addressability invalid X X X X

08 Argument / Parameter

· Retrieve 01 Parameter reference violation X X X X

Operand 2, if granting owned objects OA Authorization

- Contexts referenced for address resolution 01 Unauthorized for operation X

03 Attempt to grant/retract authority X X
state to an object that is not

Lock Enforcennent
authorized

10 Damage Encountered

· Materialize
01 Machine context X

Operand 2, if granting owned objects
04 System object damage X X X

- Contexts referenced for address resolution
44 Partial system object damage X

1A Lock State

· Modification
01 Invalid lock state X X

For each object identified in operand 2-reference
1C Machine-Dependent Exception

user profile.
03 Machine storage limit exceeded X

04 Object storage limit exceeded X

20 Machine Support

Events
02 Machine check X

03 Function check X

J 0002 Authorization
22 Object Access

i

0101 Authorization violation
01 Object not found X X X X

02 Object destroyed X X X X

OOOC Machine resources
03 Object suspended X X X X

0201 Machine auxiliary storage exceeded
24 Pointer Specification

01 Pointer does not exist X X X X

0000 Machine status
02 Pointer type invalid X X X X

0101 Machine check
03 Pointer addressing invalid object X X

2A Program Creation

0010 Process
06 Invalid operand type X X X X

0701 Maximum processor time exceeded
07 Invalid operand attribute X X X X

0801 Process storage limit exceeded
08 Invalid operand value range X X X X

OA Invalid operand length X X

0016 Machine observation
OC Invalid operand ODT reference X X X X

0101 Instruction reference
00 Reserved bits are not zero X X X X X

32 Scalar Specification

0017 Damage set
01 Scalar type invalid X X X X

0201 Machine context
02 Scalar attributes invalid X

0401 System object damage set
03 Scalar value invalid X

0801 Partial system object damage set
38 Template Specification

02 Template size invalid X

7-10

L
MATERIALIZE AUTHORITY (MATAU)

Op Code Operand
(Hex) 1

0153 Receiver

Operand
2

System
object

Operand 1: Space pointer.

Operand 2: System pointer.

Operand 3: System pointer or null.

Operand
3

User
profile

Description: This instruction materializes the specific
types of authority for a system object available to the
specified user profile. The private authorization that the
user profile specified by operand 3 is assigned to the
permanent system object specified by operand 2, and
the object's public authorization is materialized in
operand 1. If operand 3 is null, then only the object's
public authorization is materialized, and the private
authorization field in the materialization is set to
binary O.

The first 4 bytes of the materialization identify the total
number of bytes that may be used by the instruction.
This value is supplied as input to the instruction and is
not modified by the instruction. A value of less than 8
causes the materialization length exception.

The second 4 bytes of the materialization identify the
total number of bytes available to be materialized (12 for
this instruction). The instruction materializes as many
bytes as can be contained in the area specified as the
receiver. If the byte area identified by the receiver is
greater than that required to contain the information
requested, then the excess bytes are unchanged. No
exceptions (other than the materialization length
exception) are signaled in the event that the receiver
contains insufficient area for the materialization.

The format of the materialization is as follows:

• Materialization size specification Char(8)
Number of bytes provided for Bin(4)
materialization

·

·

Number of bytes available for Bin(4)
materialization (contains a value
of 12 for this instruction)

Private authorization Char(2)
(1 = authorized)
- Object control Bit 0

Object management Bit 1
Authorized pointer Bit 2
Space authority Bit 3
Retrieve Bit 4
Insert Bit 5
Delete Bit 6
Update Bit 7
Ownership (1 = yes) Bit 8
Reserved (binary 0) Bits 9-15

Public authorization Char(2)
(1 = authorized)

Object control Bit 0
Object management Bit 1
Authorized pointer Bit 2
Space authority Bit 3
Retrieve Bit 4
Insert Bit 5
Delete Bit 6
Update Bit 7
Reserved (binary 0) Bits 8-15

Any of the four authorizations-retrieve, insert, delete, or
update-constitute operational authority.

If this instruction references a temporary object, all
public authority states are materialized. Private authority
states are not materialized.

Authorization Management Instructions 7-11

Authorization Required Exceptions

· Operational Operands
- Operand 3 Exception 1 2 3 Other

Retrieve
06 Addressing ·

Contexts referenced for address resolution
01 Space addressing violation X X X

-
02 Boundary alignment X X X
03 Range X X X
06 Optimized addressability invalid X X X

Lock Enforcement 08 Argument/ Parameter
01 Parameter reference violation X X X

· Materialize OA Authorization

Operand 2 01 Unauthorized for operation X X

Operand 3 10 Damage Encountered

Contexts referenced for address resolution 02 Machine context damage state X
04 System object damage state X X X X
44 Partial system object damage X X X X

1A Lock State
Events 01 Invalid lock state X X

1C Machine-Dependent Exception
0002 Authorization 03 Machine storage limit exceeded X

0101 Object authorization violation 20 Machine Support
02 Machine check X

OOOC Machine resource 03 Function check X

0201 Machine auxiliary storage threshold exceeded 22 Object Access
01 Object not found X X X

0010 Process 02 Object destroyed X X X

0701 Maximum processor time exceeded
03 Object suspended X X X

0801 Process storage limit exceeded
24 Pointer Specification

01 Pointer does not exist X X X

J 02 Pointer type invalid X X X
0016 Machine observation 03 Pointer addressing invalid object X X

0101 Instruction reference 2A Program Creation
06 Invalid operand type X X X

0017 Damage set 07 Invalid operand attribute X X X
0201 Machine context damage set 08 Invalid operand value range X X X

0401 System object damage set OA Invalid operand length X

0801 Partial system object damage set OC Invalid operand ODT reference X X X
00 Reserved bits are not zero X X X X

38 Template Specification
03 Materialization length exception X

7-12

MATERIALIZE AUTHORIZED OBJECTS
(MATAUOBJ)

Op Code
(Hex)

0138

Operand ,
Receiver

Operand
2

User
profile

Operand 1: Space pointer.

Operand 2: System pointer.

Operand
3

Materialization
options

Value
(Hex) Meaning

11 Materialize count of owned objects with no
description.

12

13

Materialize count of authorized objects with
no description (excludes owned objects).

Materialize count of all authorized and owned
objects with no description.

Operand 3: Character(1) scalar (fixed-length). 21 Materialize identification of owned objects
with short description.

Description: This instruction materializes the 22 Materialize identification of authorized
objects with short description (excludes
owned objects.)

identification and the system pointers to system objects
that are privately owned or that are owned by a
specified user profile. The materialization options
(operand 3) for the user profile (operand 2) are returned 23
in the receiver (operand 1). The materialization options

Materialize identification of all authorized and
owned objects with short description.

for operand 3 for the short template header have the
following format: 31 Materialize identification of owned objects

with long description.

32 Materialize identification of authorized
objects with long description (excludes
owned objects).

33 Materialize identification of all authorized and
owned objects with long description.

Authorization Management Instructions 7 -13

The long template header materialization options hex 51
through hex 63 are the same as the short template
materialization options hex 11 through 23.

The long template header materialization options hex 71
through hex 73 are the same as the short template
materialization options hex 31 through hex 33 except
that context extension is materialized for each object as
well.

The first 4 bytes of the materialization identify the total
number of bytes that may be used by the instruction.
This value is supplied as input to the instruction and is
not modified by the instruction. A value of less than 8
causes the materialization length exception to be
signaled.

The second 4 bytes of the materialization identify the
total number of bytes available to be materialized. The
instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the
byte area identified by the receiver is greater than that
required to contain the information requested, then the
excess bytes are unchanged. No exceptions (other than
the materialization length exception) are signaled in the
event that the receiver contains insufficient area for the
materialization.

The order of materialization is owned objects (if
requested by the materialization options operand)
followed by objects privately authorized to the user
profile (if requested by the materialization options
operand). No authorizations are stored in the system
pointers that are returned.

The template identified by operand 1 must be 16-byte
aligned in the space. For options hex 11 through hex
33, the short template header is materialized. It has the
following format:

• Materialization size specification
- Number of bytes provided for

materialization
Number of bytes available for
materialization

• Number of objects owned by
user profile

• Number of objects privately
authorized to user profile

• Reserved (binary 0)

7-14

Char(8)
Bin(4)

Bin(4)

Bin(2)

Bin(2)

Char(4)

For options hex 51 through 73, the long template header
is materialized. It has the following format:

• Materialization size specification Char(8)

Number of bytes provided for Bin(4)
materialization
- Number of bytes available for Bin(4)
materialization

• Number of objects owned by user Bin(4)
profile

• Number of objects privately Bin(4)
authorized to user profile

If no description is requested in the materialization
options parameter, the above constitutes the information
available for materialization. If a description (short or
long) is requested by the materialization options
parameter, a description entry is present (assuming there
is a sufficient sized receiver) for each object materialized
into the receiver. Either of the following entries may be
selected.

. Short description entry Char(32) • Context extension Char(48)

L
- Type code Char(1) (options hex 71 through hex 73)
- Subtype code Char(1) - Type code Char(1)
- Private authorization Char(2) - Subtype code Char(1)

(1 = authorized) - Context name Char(30)
Object control Bit 0 - Context pointer System
Object management Bit 1 pointer
Authorized pointer Bit 2
Space authority Bit 3 The context extension portion of the long description
Retrieve Bit 4 entry is optional. It is only provided as an extension to
Insert Bit 5 the base form of the long description entry when
Delete Bit 6 options hex 71 through hex 73 are requested. For these
Update Bit 7 options, if the object addressed by the system pointer is
Ownership (1 = yes) Bit 8 not addressed by a context, the context type entry is set
Reserved (binary 0) Bits 9-15 to hex 00 or if the object is addressed by the machine

- Reserved (binary 0) Char(12) context, the context type entry is set to hex 81.
System object System Additionally, in either of these cases, the context pointer

pointer is set to the system default pointer does not exist value.

. Long description entry Char(64) Substring operand references that allow for a null
- Type code Char(1) substring reference (a length value of zero) may not be
- Subtype code Char(1) specified for this instruction.

Object name Char(30)
- Private authorization Char(2)

(1 = authorized) Authorization Required
Object control Bit 0
Object management Bit 1 · Operational
Authorized pointer Bit 2 - Operand 2
Space authority Bit 3
Retrieve Bit 4 · Retrieve
Insert Bit 5 Contexts referenced for address resolution
Delete Bit 6 - Operand 2 if materializing owned objects
Update Bit 7
Ownership (1 = yes) Bit 8
Reserved (binary 0) Bits 9-15 Lock Enforcement
Public authorization Char(2)
(1 = authorized) · Materialize
Object control Bit 0 - Contexts referenced for address resolution
Object management Bit 1 - Operand 2 if materializing owned objects
Authorized pointer Bit 2
Space authority Bit 3
Retrieve Bit 4
Insert Bit 5
Delete Bit 6
Update Bit 7
Reserved (binary 0) Bits 8-15

- Reserved (binary 0) Char(12)
System object System

pOinter

Authorization Management Instructions 7-15

Events Exceptions

0002 Authorization Operands
0101 Object authorization violation Exception 1 2 3 Other

oooe Machine resource
06 Addressing

01 Space addressing violation X X X
0201 Machine auxiliary storage threshold exceeded 02 Boundary alignment X X X

03 Range X X X
0010 Process 06 Optimized addressability invalid X X X

0701 Maximum processor time exceeded 08 Argument/ Parameter
0801 Process storage limit exceeded 01 Parameter reference violation X X X

OA Authorization

0016 Machine observation 01 Unauthorized for operation X

0101 Instruction reference 10 Damage Encountered
02 Machine context damage state X

0017 Damage set
04 System object damage state X X X X
44 Partial system object damage X X X X

0201 Machine context damage set
1A Lock State

0401 System object damage set 01 Invalid lock state X
0801 Partial system object damage set 1C Machine-Dependent Exception

03 Machine storage limit exceeded X
20 Machine Support

02 Machine check X
03 Function check X

22 Object Access
01 Object not found X X X
02 Object destroyed X X X
03 Object suspended X X
04 Object not eligible for operation X X

24 Pointer Specification
01 Pointer does not exist X X X
02 Pointer type invalid X X X
03 Pointer addressing invalid object X

2A Program Creation
06 Invalid operand type X X X
07 Invalid operand attribute X X X
08 Invalid operand value range X X X
OA Invalid operand length X
OC Invalid operand ODT reference X X X
00 Reserved bits are not zero X X X X

32 Scalar Specification
03 Scalar value invalid X

38 Template Specification
03 Materialization length exception X

7-16

MATERIALIZE AUTHORIZED USERS (MATAUU)

Op Code
(Hex)

0143

Operand
1

Receiver

Operand
2

System
object

Operand
3

Materialization
options

Operand 1: Space pointer.

Operand 2: System pointer.

Operand 3: Character(1) scalar (fixed-length).

Description: The instruction materializes the
authorization states and the identification of the user
profile(s). The materialization options (operand 3) for the
system object (operand 2) are returned in the receiver
(operand 1). The materialization options for operand 3
have the following format:

Value
(Hex) Meaning

11

12

21

22

23

31

32

33

Materialize public authority with no
description.

Materialize public authority and number of
privately authorized profiles with no
description.

Materialize identification of owning profile
with short description.

Materialize identification of privately
authorized profiles with short description.

Materialize identification of owning and
privately authorized profiles with short
description.

Materialize identification of owning profile
with long description.

Materialize identification of privately
authorized profiles with long description.

Materialize identification of owning and
privately authorized profiles with long
description.

The first 4 bytes of the materialization identify the total
number of bytes that may be used by the instruction.
This value is supplied as input to the instruction and is
not modified by the instruction. A value of less than 8
causes the materialization length exception.

The second 4 bytes of the materialization identify the
total number of bytes available to be materialized. The
instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the
byte area identified by the receiver is greater than that
required to contain the information requested, then the
excess bytes are unchanged. No exceptions (other than
the materialization length exception) are signaled in the
event that the receiver contains insufficient area for the
materialization.

The order of materialization is an entry for the owning
user profile (if requested by the materialization options
operand) followed by a list (0 to n entries) of entries for
user profiles having private authorization to the object (if
requested by the materialization options operand). The
authorization field within the system pointers will not be
set.

The template identified by operand 1 must be 16-byte
aligned in the space and has the following format:

• Materialization size specification Char(8)
Number of bytes provided for Bin(4)
materialization
Number of bytes available for Bin(4)
materialization

• Public authorization
(1 = authorized)

Object control
Object management
Authorized pointer
Space authority
Retrieve
Insert
Delete
Update
Reserved (binary 0)

• Number of privately authorized
user profiles

• Reserved (binary 0)

Char(2)

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bits 8-15

Bin(2)

Char(4)

Authorization Management Instructions 7 -17

If no description is requested by the materialization
options operand, the template identified by operand 1
constitutes the information available for materialization.
If a description (short or long) is requested by the
materialization options operand, a description entry is
present (assuming there is a sufficient sized receiver) for
each user profile materialized or available to be
materialized into the receiver. Either of the following
entry types may be selected.

. Short description entry Char(32)
- User profile type code Char(1)
- User profile subtype code Char(1)
- Private authorization Char(2)

(1 = authorized)
Object control Bit 0
Object management Bit 1
Authorized pointer Bit 2
Space authority Bit 3
Retrieve Bit 4
Insert Bit 5
Delete Bit 6
Update Bit 7
Ownership (1 = yes) Bit 8
Reserved (binary 0) Bits 9-15

- Reserved (binary 0) Char(12)
- User profile System

pointer

. Long description entry Char(64)
- User profile type code Char(1)
- User profile subtype code Char(1)
- User profile name Char(30)

- Private authorization Char(2)
(1 = authorized)
Object control Bit 0
Object management Bit 1
Authorized pointer Bit 2
Space authority Bit 3
Retrieve Bit 4
Insert Bit 5
Delete Bit 6
Update Bit 7
Ownership Bit 8
Reserved (binary 0) Bits 9-15
Reserved (binary 0) Char(14)

- User profile System
pointer

7-18

If this instruction references a temporary object all
public authority states are materialized. The privately
authorized user and owner profile(s) description is not
materialized (binary 0).

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Authorization Required

• Retrieve
- Contexts referenced for address resolution

• Object management
- Operand 2

Lock Enforcennent

• Materialize
- Operand 2
- Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

J

Exceptions MATERIALIZE USER PROFilE (MATUP)

L Operands Op Code Operand Operand
Exception 1 2 3 Other (Hex) 1 2

06 Addressing
013E

01 Space addressing violation X X X
Receiver User

02 Boundary alignment X X X
profile

03 Range X X X

06 Optimized addressability invalid X X X
Operand 1: Space pointer.

08 Argument/ Parameter
Operand 2: System pointer.

01 Parameter reference violation X X X
OA Authorization

01 Unauthorized for operation X
10 Damage Encountered Description: The attributes of the user profile specified

04 System object damage state X X X X by operand 2 are materialized into the receiver specified
44 Partial system object damage X X X X by operand 1.

1A Lock State
01 Invalid lock state X The first 4 bytes of the materialization identify the total

1C Machine- Dependent Exception number of bytes that may be used by the instruction.
03 Machine storage limit exceeded X This value is supplied as input to the instruction and is

20 Machine Support
not modified by the instruction. A value of less than 8

02 Machine check X

03 Function check X
causes the materialization length exception to be

22 Object Access signaled.

01 Object not found X X X

02 Object destroyed X X X The second 4 bytes of the materialization identify the

03 Object suspended X X X total number of bytes available to be materialized. The

24 Pointer Specification instruction materializes as many bytes as can be
01 Pointer does not exist X X X contained in the area specified as the receiver. If the
02 Pointer type invalid X X X byte area identified by the receiver is greater than that

'-" 2A Program Creation required to contain the information requested, then the
06 Invalid operand type X X X excess bytes are unchanged. No exceptions (other than
07 Invalid operand attribute X X X

the materialization length exception) are signaled in the
08 Invalid operand value range X X X

event that the receiver contains insufficient area for the
OA Invalid operand length X
OC Invalid operand ODT reference X X X materialization.

00 Reserved bits are not zero X X X X
32 Scalar Specification

03 Scalar value invalid X
38 Template Specification

03 Materialization length exception X

Authorization Management Instructions 7-19

The receiver identified by operand 1 must be 16-byte
aligned in the space. The following is the format of the
materialized information:

• Materialization size specification Char(8)
- Number of bytes provided for Bin(4)

materialization
- Number of bytes available for Bin(4)

materialization

• Object identification
Object type

- Object subtype
- Object name

• Object creation options
Existence attribute
1 = Permanent

- Space attribute
o = Fixed-length
1 = Variable-length

- Reserved (binary 1)
- Reserved (binary 0)

• Reserved (binary 0)

• Size of space

• Initial value of space

• Performance class

• Reserved (binary 0)

• Reserved (binary 0)

• Reserved (binary 0)

• Privileged instructions
(1 = authorized)

Char(32)
Char(1)
Char(1)
Char(30)

Char(4)
Bit 0

Bit 1

Bit 2
Bits 3-31

Char(4)

Bin(4)

Char(1)

Char(4)

Charm

Char(16)

Char(16)

Char(4)

Create logical unit description Bit 0
- Create network description Bit 1
- Create controller description Bit 2

Create user profile
- Modify user profile

Bit 3
Bit 4

- Diagnose Bit 5
- Terminate machine processing Bit 6

Initiate process
- Modify resource management

control
- Reserved (binary 0)

7-20

Bit 7
Bit 8

Bits 9-31

· Special authorizations Char(4)
(1 = authorized)

All object authority Bit 0
- Load (unrestricted) Bit 1

Dump (unrestricted) Bit 2
Suspend object (unrestricted) Bit 3
Load (restricted) Bit 4
Dump (restricted) Bit 5
Suspend object (restricted) Bit 6
Process control Bit 7
Reserved (binary 0) Bit 8
Service authority Bit 9

- Reserved (binary 0) Bits 10-23
- Modify machine attributes Bits 24-31

Group 2 Bit 24
Group 3 Bit 25
Group 4 Bit 26
Group 5 Bit 27
Group 6 Bit 28
Group 7 Bit 29
Group 8 Bit 30
Group 9 Bit 31

Note: Group 1 requires no authorization.

• Storage authorization-The
maximum amount of auxiliary
storage (in units of 1024 bytes)
that can be allocated for the
storage of objects owned by this
user profile

Bin(4)

• Storage utilization-The Bin(4)
current amount of auxiliary
storage (in units of 1024 bytes)
allocated for the storage of
objects owned by this user
profile

The attributes that the instruction can materialize are
described in the Create User Profile instruction.

J

J

Authorization Required Exceptions

L . Operational Operands
- Operand 2 Exception 1 2 Other

06 Addressing

Lock Enforcennent 01 Space addressing violation X X
02 Boundary alignment X X . Materialize 03 Range X X

- Operand 2 06 Optimized addressability invalid X X
08 Argument/ Parameter

01 Parameter reference violation X X

Events OA Authorization

01 Unauthorized for operation X

0002 Authorization 10 Damage Encountered

0101 Object authorization violation 04 System object damage state X X X
44 Partial system object damage X X X

OOOC Machine resource 1A Lock State

0201 Machine auxiliary storage threshold exceeded 01 Invalid lock state X
1C Machine-Dependent Exception

0010 Process 03 Machine storage limit exceeded X

0701 Maximum processor time exceeded 20 Machine Support

0801 Process storage limit exceeded 02 Machine check X
03 Function check X

0016 Machine observation 22 Object Access

0101 Instruction reference 01 Object not found X X
02 Object destroyed X X

~
0017 Damage set 03 Object suspended X X

0201 Machine context damage set 24 Pointer Specification

0401 System object damage set 01 Pointer does not exist X X

0801 Partial system object damage set 02 Pointer type invalid X X
03 Pointer addressing invalid object X

2A Program Creation

06 Invalid operand type X X
07 Invalid operand attribute X X
08 Invalid operand value range X X
OA Invalid operand length X
OC Invalid operand ODT reference X X
00 Reserved bits are not zero X X X

38 Template Specification

03 Materialization length exception X

Authorization Management Instructions 7-21

MODIFY USER PROFILE (MODUP)

Op Code Operand Operand
(Hex) 1 2

0142 User
profile

User
profile
modification
template

Operand 1: System pointer.

Operand 2: Space pointer.

Description: The user profile specified by operand 1 is
modified in accordance with the user profile modification
template specified by operand 2. The instruction
replaces the privileged instruction authorizations, special
authorizations, and resource authorization values in the
user profile with the new values specified in the user
profile template. All other values in the user profile are
unchanged.

A privileged instruction exception is signaled if the
instruction is operating under a user profile(s) that does
not have the modify user profile privileged instruction
authorization. If the instruction attempts to set a
privileged instruction authorization or special
authorization state for which its governing user profile(s)
is not authorized, an exception will also be signaled.

No exception is signaled when the resource
authorization parameter is set to a value that is less than
the amount of auxiliary storage currently allocated for
the storage of permanent objects owned by the user
profile specified by operand 1. An exception is signaled
when storage is being allocated for a permanent object
and the new total exceeds the limit established by the
resource authorization parameter.

Following is the format of the user profile modification
template:

• Template size specification Char(8)*
- Number of bytes provided Bin(4)*
- Number of bytes available for Bin(4)*

materialization

• Object identification
Object type
Object subtype

- Object name

• Object creation options

7-22

Char(32)*
Char(1)*
Char(1)*
Char(30)*

Char(4)*

• Reserved (binary 0)

• Size of space

• Initial value of space

• Performance class

• Reserved (binary 0)

• Privileged instructions
(1 = authorized)

Char(4)*

Bin(4)*

Char(1)*

Char(4)*

Char(39)*

Char(4)

- Create logical unit description Bit 0
Create network description Bit 1

- Create controller description Bit 2
- Create user profile Bit 3
- Modify user profile Bit 4
- Diagnose Bit 5
- Terminate machine processing Bit 6
- Initiate process Bit 7
- Modify resource management Bit 8

control
- Reserved (binary 0) Bits 9-31

• Special authorization
(1 = authorized)
- All object authority
- Load (unrestricted)
- Dump (unrestricted)
- Suspend object (unrestricted)
- Load (restricted)
- Dump (restricted)

Suspend (restricted)
Process control

- Default owner
- Service authority

Reserved (binary 0)
- Modify machine attributes

Group 2
Group 3
Group 4
Group 5
Group 6
Group 7
Group 8
Group 9

Char(4)

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bit 8
Bit 9
Bits 10-23
Bits 24-31
Bit 24
Bit 25
Bit 26
Bit 27
Bit 28
Bit 29
Bit 30
Bit 31

Note: Group 1 requires no authorization.

J

J

· Storage authorization-The Bin(4) Exceptions

maximum amount of auxiliary

storage (in units of 1024 bytes) Operands

that can be allocated for the Exception 1 2 Other

storage of permanent objects

owned by this user profile 06 Addressing

01 Space addressing violation X X

· Storage utilization-The Bin(4)* 02 Boundary alignment X X

current amount of auxiliary 03 Range X X

storage (in units of 1024 bytes) 06 Optimized addressability invalid X X

allocated for storage of objects 08 Argument/Parameter

owned by this user profile 01 Parameter reference violation X X
OA Authorization

Note: The template parameters identified by an asterisk 01 Unauthorized for operation X

(*) are ignored by the Modify User Profile instruction. 02 Privileged instruction X
05 Create/modify user profile X

The attributes defined in the template are included in the
beyond level of authorization

description of the Create User Profile instruction.
10 Damage Encountered

04 System object damage state X X X
44 Partial system object damage X X X

Authorization Required
1A Lock State

01 Invalid lock state X

· Object management
1C Machine-Dependent Exception

- Operand 1
03 Machine storage limit exceeded X

20 Machine Support

· Privileged instruction
02 Machine check X
03 Function check X

L
22 Object Access

Lock Enforcennent
01 Object not found X X
02 Object destroyed X X

· Modify
03 Object suspended X X

- Operand 1
24 Pointer Specification

01 Pointer does not exist X X
02 Pointer type invalid X X

Events
03 Pointer addressing invalid object X

2A Program Creation

0002 Authorization
06 Invalid operand type X X

0101 Object authorization violation
07 Invalid operand attribute X X
08 Invalid operand value range X X

OOOC Machine resource
OC Invalid operand ODT reference X X

0201 Machine auxiliary storage threshold exceeded
00 Reserved bits are not zero X X X

38 Template Specification

0010 Process
01 Template value invalid X

0701 Maximum processor time exceeded

0801 Process storage limit exceeded

0016 Machine observation

0101 Instruction reference

0017 Damage set

0201 Machine context damage set
0401 System object damage set

0801 Partial system object damage set

Authorization Management Instructions 7-23

RETRACT AUTHORITY (RETRACT)

Op Code Operand
(Hex) 1

0193 User
profile

Operand
2

System
object

Operand 1: System pointer or null.

Operand 2: System pointer.

Operand
3

Authorization
template

Operand 3: Character(2) scalar (fixed-length).

Description: When operand 1 is addressing a user
profile, the private authorization states (operand 3) for
the permanent system object (operand 2) will be
retracted from the specified user profile. Authorization
may be retracted from the owning user profile.

When operand 1 is null, the instruction is retracting
public authorization. The process user profile or adopted
user profile(s) currently governing the execution of the
instruction when public or private authorization is being
retracted must own the object specified by operand 2,
have object management authority in addition to the
authority being retracted, or have the all object authority
special authorization.

7-24

Authorization may be retracted from the owning user
profile. Ownership does not imply default authorization
to a specific object except as it applies for a specific
instruction. An object owner may, however, grant any
object authority to any user profile, including himself.

Operand 3 is a 2-byte character scalar and employs the
following bit representations to designate the
authorization states to be retracted:
(1 = retract authorization)

. Authorization template Char(2)
Object control Bit 0
Object management Bit 1
Authorized pointer Bit 2
Space authority Bit 3
Retrieve Bit 4
Insert Bit 5
Delete Bit 6
Update Bit 7
Materialize retracted Bit 8
authority

- Reserved (binary 0) Bits 9-15

If the materialize retracted authority bit is on (1). then
operand 2 must be specified as a variable, and the
authorization template must contain the authorities
actually retracted from the specified user profile at
completion of the instruction.

Note: Authority can be effectively retracted only if
pointer authorization has never been granted to the
object. A pointer with authority stored in it may be
saved and used after authority has been retracted.

If this instruction references a temporary object, no
operation is performed, and no exception is signaled.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Authorization Required Exceptions

L · Ownership or object management with authorization Operands

states being retracted Exception 1 2 3 Other

- Operand 2
06 Addressing

01 Space addressing violation X X X · Retrieve 02 Boundary alignment X X X
- Contexts referenced for address resolution 03 Range X X X

06 Optimized addressability invalid X X X

08 Argument/ Parameter
Lock Enforcennent 01 Parameter reference violation X X X

OA Authorization

· Materialize 01 Unauthorized for operation X

- Contexts referenced for address resolution 03 Attempt to grant/ retract authority X
state to that which is not
authorized

· Modification 10 Damage Encountered
- Operand 2 02 Machine context damage state X

04 System object damage state X X X X
44 Partial system object damage X X X X

Events 1A Lock State
01 Invalid lock state X X

0002 Authorization 1C Machine- Dependent Exception

0101 Object authorization violation
03 Machine storage limit exceeded X

20 Machine Support
02 Machine check X

OOOC Machine resource 03 Function check X
0201 Machine auxiliary storage threshold exceeded 22 Object Access

01 Object not found X X X

l,. 0010 Process 02 Object destroyed X X X

0701 Maximum processor time exceeded 03 Object suspended X X X

0801 Process storage limit exceeded 24 Pointer Specification
01 Pointer does not exist X X X

0016 Machine observation 02 Pointer type invalid X X X

0101 Instruction reference 03 Pointer addressing invalid object X

2A Program Creation

0017 Damage set
06 Invalid operand type X X X

07 Invalid operand attribute X X X
0201 Machine context damage set 08 Invalid operand value range X X X
0401 System object damage set OA Invalid operand length X
0801 Partial system object damage set OC Invalid operand ODT reference X X X

00 Reserved bits are not zero X X X X

32 Scalar Specification
02 Scalar attributes invalid X

03 Scalar value invalid X

Authorization Management Instructions 7-25

TEST AUTHORITY (TESTAU)

Op Code Operand Operand Operand
(Hex) 1 2 3

10F7 Available System Required
authority object authority
template or template
receiver object

template

Operand 1: Character(2) variable scalar or null (fixed-length).

Operand 2: System pointer or space pointer data object.

Operand 3: Character(2) scalar (fixed-length).

Optional Forms

Mnemonic

TESTAUI

TESTAUB

Op Code

(Hex) Form Type

18F7 Indicator

1CF7 Branch

Extender: Branch or indicator options

If the branch option is specified in the op code, the
extender field must be present along with one or two
branch targets. If the indicator option is specified in the
op code, the extender field must be present along with
one or two indicator operands. The branch or indicator
operands immediately follow operand 3. See Chapter 1.
Introduction for the encoding of the extender field and
the allowed syntax of the branch and indicator operands.

Description: This instruction verifies that the object
authorities and/or ownership rights specified by operand
3 are currently available to the process for the object
specified by operand 2.

If operand 1 is not null, all of the authorities and / or
ownership specified by operand 3 that are currently
available to the process are returned in operand 1.

7-26

If an object template is not specified, operand 2 is a
system pointer, the authority verification is performed
relative to the invocation executing this instruction. If an
object template is specified, operand 2 is a space
pointer, the authority verification is performed relative to
the invocation specified in the template. Specifying an
invocation causes the invocations subsequent to it to be
bypassed in the authority verification process. This has
the influence of excluding the program adopted user
profiles for any of these excluded invocations from
acting as a source of authority to the authority
verification process.

The required authorities and / or ownership are specified
by the required authority template of operand 3. This
template includes a test option that indicates whether all
of the specified authorities are required or whether any
one or more of the specified authorities is sufficient.
This option can be used, for example, to test for
operational authority by coding a template value of hex
OF01 in operand 3. Using the any option does not affect
what is returned in operand 1. If operand 1 is not null
and the any option is specified, all of the authorities
specified by operand 3 that are available to the process
are returned in operand 1.

If the required authority is available, one of the following
occurs:

• Branch form indicated
Conditional transfer of control to the instruction
indicated by the appropriate branch target
operand.

• Indicator form specified
The leftmost byte of each of the indicator
operands is assigned the following values.

Hex F1-lf the result of the test matches the
corresponding indicator option

Hex FO-If the result of the test does not match
the corresponding indicator option

If no branch options are specified, instruction execution
proceeds to the next instruction. If operand 1 is null and
neither the branch or indicator form is used, an invalid
operand type exception is signaled.

J

The format for the available authority template
(operand 1) is as follows: (1 = authorized)

• Authorization template
- Object control

Object management
Authorized pointer
Space authority
Retrieve
Insert
Delete
Update

- Ownership (1 = yes)
Reserved (binary 0)

Char(2)

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bit 8
Bits 9-15

If operand 2 is a system pointer, it identifies the object
for which authority is to be tested. If operand 2 is a
space pointer, it provides addressability to the object
template. The format for the optional object template is
as follows:

• Object template
- Relative invocation
- Reserved (binary 0)

System object

Char(32)
Bin(2)
Char(14)
System pointer

The relative invocation field in the object template
identifies an invocation relative to the current invocation
at which the authority verification is to be performed.
The value of the relative invocation field must be less
than or equal to zero. A value of zero identifies the
current invocation, -1 identifies the prior invocation, -2,
the invocation prior to that, and so on. A value larger
than the number of invocations currently on the
invocation stack or a positive value results in the
signaling of the template value invalid exception. The
program adopted and propagated user profiles for the
identified invocation and older invocations will be
included in the authority verification process. Program
adopted user profiles for invocations newer than the

identified invocation will not be included in the authority
verification process. If the current invocation is
specified, its program adopted user profile is included
whether or not it is to be propagated.

The system object field specifies a system pointer which
identifies the object for which authority is to be tested.

The format for the required authority template
(operand 3) is as follows: (1 = authorized)

• Authorization template
- Object control

Object management
- Authorized pointer

Space authority
Retrieve
Insert
Delete
Update
Ownership (1 = yes)
Reserved (binary 0)

Char(2)
Bit 0
Bit 1
Bit 2
Bit 3
Bit 4

Bit 5
Bit 6
Bit 7
Bit 8
Bits 9-14

Test option Bit 15
o All of the above authorities

must be present.
Anyone or more of the above
authorities must be present.

The authority available to the process is accumulated
from the following sources:

• Authority stored in the operand 2 system pointer

• Public authority to the object

• Process user profile and adopted user profiles
Private authorization held by these user profiles
Ownership, if any, if one of these user profiles
owns the object

- All authorities implied by all object special
authority in any of these profiles

This instruction will tolerate a damaged object
referenced by operand 2 when the reference is a
resolved pointer. The instruction will not tolerate
damaged contexts or programs when resolving pointers.
Damaged user profiles contribute no authority to the
process and are ignored.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Resultant Conditions:

• Required authority is
available.

• Required authority is
not available.

Bin 0100

Bin 1100

Authorization Management Instructions 7-27

Authorization Required Exceptions

. Retrieve Operands J Contexts referenced for address resolution Exception 1 2 3 Other -

06 Addressing
01 Space addressing violation X X X

Lock Enforcement 02 Boundary alignment X X X
03 Range X X X . Materialize 06 Optimized addressability invalid X X X

- Contexts referenced for address resolution 08 Argument/ Parameter
01 Parameter reference violation X X X

OA Authorization

Events 01 Unauthorized for operation X
10 Damage Encountered

0002 Authorization 02 Machine context damage state X

0101 Object authorization violation
04 System object damage state X X X X
44 Partial system object damage X X X X

1A Lock State
OOOC Machine resource 01 Invalid lock state X

0201 Machine auxiliary storage threshold exceeded 1C Machine-Dependent Exception
03 Machine storage limit exceeded X

0010 Process 20 Machine Support
0701 Maximum processor time exceeded 02 Machine check X
0801 Process storage limit exceeded 03 Function check X

22 Object Access

0016 Machine observation 01 Object not found X X X

0101 Instruction reference 02 Object destroyed X X X
24 Pointer Specification

01 Pointer does not exist X X X
0017 Damage set

02 Pointer type invalid X X X J 0201 Machine context damage set 2A Program Creation
0401 System object damage set 05 Invalid op code extender field X
0801 Partial system object damage set 06 Invalid operand type X X X X

07 Invalid operand attribute X X X
09 Invalid branch target operand X
OC Invalid operand ODT reference X X X X
00 Reserved bits are not zero X X X X

2C Program Execution
04 Invalid branch target X

32 Scalar Specification
01 Scalar type invalid X X X
03 Scalar value invalid X

38 Template Specification
01 Template value invalid X

7-28

TRANSFER OWNERSHIP (XFRO)

Op Code
(Hex)

01A2

Operand
1

User
profile

Operand
2

System
object

Operand 1: System pointer.

Operand 2: System pointer.

Description: The ownership of a system object (operand
2) is transferred to the user profile (operand 1). A user
profile with all object authority may always transfer
ownership of an object. If a program which adopts a
user profile is being transferred, all object authority is
required. After ownership is transferred, the former
owning user profile retains the private object authorities
it had before the transfer. The new owner is implicitly
granted all of the object authorities to the transferred
object. All other user profile authorities are unchanged
as a result of this instruction.

An attempt to transfer ownership of a temporary object
causes the object ineligible for operation exception to be
signaled.

Authorization Required

• Object control
- Operand 2

• Retrieve
- Contexts referenced for address resolution

• Delete
- User profile owning operand 2

• Insert
- Operand 1

Lock Enforcement

• Materialize
- Contexts referenced for address resolution

• Modify
Operand 1
Operand 2
User profile owning the object referenced by
operand 2

Events

OOOF Ownership
0101 Ownership changed

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0201 Machine context damage set
0401 System object damage set
0801 Partial system object damage set

Authorization Management Instructions 7-29

Exceptions

Operands
Exception 1 2 Other

02 Access Group

02 Object exceeds available space X

06 Addressing

01 Space addressing violation X X

02 Boundary alignment X X

03 Range X X

06 Optimized addressability invalid X X

08 Argument/Parameter

01 Parameter reference violation X X

OA Authorization

01 Unauthorized for operation X X

10 Damage Encountered

02 Machine context damage state X

04 System object damage state X X X

44 Partial system object damage X X X

1A Lock State

01 Invalid lock state X X

1C Machine-Dependent Exception

03 Machine storage limit exceeded X

04 Object storage limit exceeded X

20 Machine Support

02 Machine check X

03 Function check X J 22 Object Access

01 Object not found X X

02 Object destroyed X X

03 Object suspended X X

04 Object not eligible fo;" operation X X

24 Pointer Specification

01 Pointer does not exist X X

02 Pointer type invalid X X

03 Pointer addressing invalid object X

2A Program Creation

06 Invalid operand type X X

07 Invalid operand attribute X X

08 Invalid operand value range X X

OC Invalid operand ODT reference X X

00 Reserved bits are not zero X X X

2E Resource Control Limit

01 User profile storage limit X
exceeded

7-30

Chapter 8. Program Management Instructions

This chapter describes all instructions used for program
management. These instructions are in alphabetic order.
For an alphabetic summary of all the instructions, see
Appendix A. Instruction Summary.

CREATE PROGRAM (CRTPG)

Op Code Operand Operand
(Hexl 1 2

023A Program Program
Template

Operand 1: System pointer.

Operand 2: Space pointer.

Description: A program is created from the program
template (operand 2), and a system pointer to the
created program is returned in operand 1.

The program template (operand 2) has the following
format:

• Control information
- Template size specification

Number of bytes provided
Number of bytes available
for materialization (used only
when the program is materialized)

- Program identification
Type
Subtype
Name

Charla)
Bin(4)
Bin(4)*

Char(32)
Char(1)*
Char(1)
Char(30)

- Program creation options
Existence attributes

o = Temporary
1 = Permanent

Space attribute
o = Fixed-length
1 = Variable-length

Char(4)
Bit 0

Bit 1

Initial context Bit 2
o Do not insert addressability

into context
Insert addressability
into context

Access group
o Do not create as a member

of an access group
Create as a member of
an access group

Reserved (binary 0)
Reserved (binary 0)

- Size of space
Initial value of space
Performance class

- Space alignment
o = The space associated with

the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space. If
no space is specified for
the object, a zero value
must be specified for the
performance class.
The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space as
well as to allow proper
alignment of input/output
buffers at 512-byte align
ments within the space.

- Reserved (binary 0)
Main storage pool selection
o Process default main storage

pool is used for object.
Machine default main storage
pool is used for object.

Bit 3

Bits 4-31
Char(4)
Bin(4)
Char(1)
Char(4)
Bit 0

Bits 1-4
Bit 5

Program Management Instructions 8-1

Transient storage pool selection Bit 6 Associated journal entry Bit 7
0 = Default main storage pool 0 Program name is recorded

(process default or machine in journal entries J default as specified for main 1 = Program name is not recorded
storage pool selection) is used in journal entries
for object. Update PASA stack Bit 8

1 = Transient storage pool is used 0 Program requires PASA
for object. stack update

Block transfer on implicit Bit 7 1 = Program does not require
access state modification PASA stack update
0 = Transfer the minimum storage Reserved (binary 0) Bits 9-11

transfer size for this object. Template version Bits 12-15
This value is 1 storage unit. OOOO=Version 0
Transfer the machine default 0001 =Version 1
storage transfer size. This 0010 through 1111 reserved
value is 8 storage units. - Optimization options Char(l)

Reserved (binary 0) Bits 8-31 Optimization Bit 0
Reserved (binary 0) Char(7) 0= No optimization
Context System 1 = Perform optimization

pointer Space pointer machine Bit 1
Access group System objects

pointer 0= Disallow space pOinter
Program attributes Char(2) machine objects in ODV
Adopted user profile Bit 0 component

0 No adoption of user profile. Allow space pointer
1 = Adopt program owner's machine objects in ODV

user profile on invocation. component
Array constraint Bit 1 Coincident operand Bit(2)

J 0 = Arrays are constrained. overlap
1 = Arrays are not constrained. 0= Do not assume coincident

String constraint Bit 2 operand overlap
0 = Strings are constrained. 1 = Assume coincident
1 = Strings are not constrained. operand overlap

User exit Bit 3· Reserved Bits 3-7
0 = Not allowed as user exit Observation attributes Char(1)
1 = Allowed as user exit Hex 00= Program data cannot

Adopted user profile propagation Bit 4 be materialized
0 = Adopted user profile Hex FC=Program data can

authorities are not be materialized
propagated to external Size of static storage Bin(4)
invocations. Size of automatic storage Bin(4)
Adopted user profile Template version 0 sensitive Bin(2)
authorities are propagated For version number 0, this
to all subinvocations. field indicates the number

Static storage Bit 5 of instructions.
0 Initialize storage to For version number 1, this

binary O. field is reserved (binary 0).
= Do not initialize storage Template version 0 sensitive Bin(2)

to binary O. For version number 0, this
Automatic storage Bit 6 field indicates the number
0 Initialize storage to of ODV entries.

binary O. For version number 1, this
= Do not initialize storage field is reserved (binary 0).

to binary O. J
8-2

~

- Offset (in bytes) from beginning Bin(4)
of template to the instruction
stream component

- Offset (in bytes) from beginning of Bin(4)
template to the OOV component

- Offset (in bytes) from beginning of Bin(4)
template to the OES component

- User data part 3 Char(4)
- Length of data part 1 Bin(4)
- Offset (in bytes) from beginning of Bin(4)

template to the user data part 1
- User data part 4 Char(4)
- Length of user data part 2 Bin(4)
- Offset (in bytes) from beginning of Bin(4)

template to the user data part 2
- Offset (in bytes) from beginning of Bin(4)*

template to the object mapping
table (OMT) component

- Template version 1 sensitive Bin(4)
For version number 1, this
field indicates the number
of instructions.
For version number 0, this
field is reserved (binary 0).

- Template version 1 sensitive Bin(4)
For version number 1, this
field indicates the number
of OOV entries.
For version number 0, this
field is reserved (binary 0).

· Program data
- Instruction stream component
- OOV component
- OES component

• User data parts 1 and 2

• Object mapping table*

Note: The value associated with the template entry
annotated with an asterisk (*) is ignored by the
instruction.

The template identified by operand 2 must be 16-byte
aligned.

If the created object is permanent. it is owned by the
user profile governing process execution. The owning
user profile is implicitly assigned all private authority
states for the object. The storage occupied by the
created object is charged to this owning user profile. If
the created object is temporary, there is no owning user
profile, and all authority states are assigned as public.
Storage occupied by the created context is charged to
the creating process.

The order and location of the program data and the user
defined data in the template are established by the
control information parameters. The entries in the
parameter need not be contiguous, but the number of
bytes provided entry must include any unused bytes
between entries.

The program identification specifies the symbolic name
that identifies the program within the machine. A type
code of hex 02 is implicitly supplied by the machine.
The program identification is used to identify the
program on materialize instructions as well as to locate
the program in the context that addresses it.

The existence attribute specifies whether the object is to
be temporary or permanent. A temporary program
object, if not explicitly destroyed by the user, is implicitly
destroyed by the machine when machine processing is
terminated. A permanent program object exists in the
machine until explicitly destroyed by the user.

If the initial context creation attribute entry indicates that
addressability is to be inserted into a context, the
context entry must contain a system pointer that
identifies a context where addressability to the newly
created program is to be placed. Addressability is
inserted into the context based on the object
identification (type, subtype, and name). If addressability
is not to be inserted into a context. the context entry is
ignored.

If the access group creation attribute entry indicates that
the object is to be created in an access group, the
access group entry must contain a system pointer that
identifies an access group in which the object is to be
created. The existence attribute of the object must be
temporary because access groups are temporary objects.
If the object is not to be created in an access group, the
access group entry is ignored.

Program Management Instructions 8-3

A space may be associated with the created program.
The space may be fixed or variable in size. The initial
allocation is as specified in the size of space entry. The
machine allocates a space of at least the size specified.
The actual size allocated depends on an algorithm
defined for a specific implementation. A fixed size
space of zero length causes no space to be allocated.

Each byte of the space is initialized to the value
specified by the initial value of space entry. When the
space is extended, this byte value is also used to
initialize the new allocation. If no space is allocated, this
value is ignored.

The performance class parameter provides information
that allows the machine to more effectively manage the
program by considering overall performance objectives
of operations involving the program.

If the adopted user profile attribute is specified, any
reference to a system object from an invocation of this
program uses the user profile of the owner of this
program and other sources of authority to determine the
authorization to system objects, privileged instructions,
ownership rights, and all authorizations. If the adopted
user profile propagation attribute is specified, then the
authorities available from the adopted user profile are
available to any further invocations while this program is
invoked. If the adopted user profile propagation
attribute is not specified, then the authorities available to
the program's owning user profile are not available to
further subinvocations and are available only to this
invocation. These attributes do not affect the
propagation of authority from higher existing
invocations. The adopted user profile propagation
attribute must not be specified if this program does not
have the adopted user profile specified; otherwise, a
template value invalid exception is signaled.

If constrainment (string or array) is not specified, the
references are assumed to be within the defined bounds
of the array or string. No execution time checks are
performed to ensure this is the case. However, if the
reference is outside the defined bounds, unpredictable
results may occur. There may be significant savings in
performance if constrainment is not specified.

The user exit attribute is ignored when the program is
created, but is an attribute that can be materialized by
specifying that the program is allowed to be referenced
as a user exit program.

8-4

Whenever a new invocation or activation is allocated,
the automatic or static storage areas are initialized to
bytes of binary O's, respectively. The static storage and
automatic storage program attributes control this default
initialization. There is a significant performance
advantage when these areas are not initialized by
default. However, initial values specified for individual
data objects are still set.

The associated journal entry attribute controls which
program is associated with a journal entry. As a journal
entry is made, a newest-to-oldest interrogation of the
invocation stack is performed. The first program
encountered that has the associated journal entry
attribute specified is associated with the journal entry by
a record of the program name in the journal entry. If a
program is encountered for which the associated journal
entry attribute is not specified, the program is ignored
unless the program is on the top of the invocation stack.
If the program is on the top of the invocation stack, it is
associated with the journal entry by a record of the
program name in the journal entry.

The update PASA stack attribute specifies whether or
not the program requires that the PASA stack
information be updated when it is invoked. This
attribute allows a program which has no dependency on
the stack information in the PASA base entry and the
PASA invocation entries to avoid the overhead
associated with updating this information upon
invocation of the program. This attribute applies only to
the invocation of the program specifying the attribute. It
is not propagated to subsequent invocations. Refer to
the description of the Call External and Return External
instructions for additional detail on the attribute.

The optimization options provide information that allows
the machine to create a program based on the intended
use of the program.

If the performance optimization attribute is specified,
additional processing is performed which provides for
creating a program that requires less processor resource
for execution. This optimizes addressability used within
the program. If this attribute is not specified, normal
optimization processing is performed.

If the allow space pointer machine objects in ODV
component attribute is specified, additional processing is
performed which allows for space pointer machine
objects within the program. If this attribute is not
specified, space pointer machine objects are not allowed
in the ODV component.

J

The coincident operand overlap optimization option
controls whether or not additional processing is
performed during the encapsulation of certain
computation and branching instructions which affects
the processor resource required to execute these
instructions. The effect of the option controls whether
or not the encapsulation process for these instructions
should assume that coincident operand overlap may
occur between the source and receiver operands during
execution of the instruction. This assumption applies to
cases of nonidentical coincident operand overlap where
the Create Program instruction cannot determine if
coincident operand overlap may occur during execution
of the instruction. These instructions may produce
invalid results if nonidentical coincident overlap occurs
during execution, but the instruction was encapsulated
with the assumption that it would not occur.

Specifying the do not assume coincident operand
overlap attribute indicates that nonidentical coincident
overlap will not occur during execution and therefore the
receiver on an instruction may be used as a work area
during operations performed to produce the final result.
Using the receiver as a work area does not require the
processor resource that would be required to move the
final result from an internal work area to the receiver.

Specifying the assume coincident operand overlap
attribute indicates that nonidentical coincident operand

,...,. overlap may occur during execution and therefore the
receiver on an instruction should not be used as a work
area during operations that produce the final result. This
can require more processor resource for instruction
execution but it insures valid results if overlap occurs.

The following is a list of instructions that can be
affected by the coincident operand overlap optimization
option during the encapsulation process:

• Add Logical Character

• Add Numeric

• And

• Compute Math Function Using One Input Value

• Concatenate

• Convert Character To Numeric

• Convert Decimal Form To Floating-Point

• Convert External Form To Numeric Value

• Convert Floating-Point To Decimal Form

• Convert Numeric To Character

• Copy Bytes Left Adjusted With Pad

• Copy Bytes Right Adjusted With Pad

• Divide

• Divide With Remainder

• Exclusive OR

• Multiply

• Or

• Remainder

• Scale

• Subtract Logical Character

• Subtract Numeric

• Trim Length

If the observation attribute is specified, the program
data in the program template is available through the
Materialize Program instruction.

Program Management Instructions 8-5

Less storage is used by the program when the program
is created without the capability to materialize. If the
program is created without the capability to materialize,
the program data (instruction stream, ODV, OES, break
offset mapping table, symbol table, and object mapping
table components) cannot be materialized by the
Materialize Program instruction.

The size of static storage entry consists of a 4-byte
binary value that defines the total amount of static
storage required for this program's static data. A value
of 0 indicates that the amount of static storage required
is to be calculated by the Create Program instruction
based upon the amount of static data specified for the
program. A value greater than 0 specifies the amount of
static storage required, and that value must be sufficient
to provide for the amount of static data specified for the
program. If it is not, a create program exception is
signaled.

The size of automatic storage entry consists of a 4-byte
binary value that defines the total amount of automatic
storage required for this program's automatic data. A
value of 0 indicates that the amount of automatic
storage required is to be calculated by the Create
Program instruction based upon the amount of
automatic data specified for the program. A value
greater than 0 specifies the amount of automatic storage
required, and that value must be sufficient to provide for
the amount of automatic data specified for the program.
If it is not, a create program exception is signaled.

The template version attribute is used to define different
versions of the program template. Template version 0
limits the number of instructions to a maximum of
32 767 and the number of ODV entries to a maximum
of 8191. Programs that exceed one of these maximums
cannot be created with template version O. Template
version 1 limits the number of instructions to a
maximum of 32 767 and the number of ODV entries to
a maximum of 65 526. Programs that exceed one of
these maximums cannot be created with template
version 1. All other values for the template version are
reserved.

The instruction stream component consists of a 4-byte
binary value that defines the total length of the
instruction stream component and a variable-length
vector of 2-byte entries that defines the instruction
stream. The 2-byte entries define instruction operation
codes, instruction operation code extenders, or
instruction operands.

8-6

The format of the instructions is defined in Chapter 1.
Introduction. The instruction stream component is
optional (that is, instructions need not be defined), and
its absence is indicated by a value of 0 in the offset to
instruction stream component entry. If the instruction
stream is not present, an End instruction is assumed
and, should the program be executed, an immediate
Return External instruction results.

The ODV (object definition vector) component consists
of a 4-byte binary value that defines the total length of
the ODV and a variable-length vector of 4-byte entries.
Each entry describes a program object either by a
complete description or through an offset into the OES
(object entry string) to a location that contains a
description. If no program objects are defined, the ODV
can be omitted, and its absence is noted with a value of
o in the offset to ODV component entry. The ODV is
required if the OES is present.

The OES consists of a 4-byte binary value that defines
the total length of the OES and a series of
variable-length entries that are used to complete an
object description. Entries in the ODV contain offsets
into the OES. The OES is optional, and its absence is
indicated with a value of 0 in the offset to OES
component entry.

The format of the ODT (object definition table) (ODV
and OES) is defined in Chapter 23. Program Object
Specifications.

The user data components can be used by compilers to
relate high-level language statement numbers to
instruction numbers and high-level language names to
ODT numbers. The format of the user data components
is defined by the user.

The object mapping table is a component constructed
by the machine and is available through the Materialize
Program instruction. It describes the location of pointers
and scalars that are defined in the program. See the
Materialize Program instruction for a description of this
component.

Authorization Required Exceptions (continued)

L Insert Operands · Exception 1 2 Other
User profile of creating process

- Context identified by operand 2 08 Argument/ Parameter
01 Parameter reference violation X X

· Retrieve OA Authorization
- Contexts referenced for address resolution 01 Unauthorized for operation X

OE Context Operation
01 Duplicate object identification X

Lock Enforcennent 10 Damage Encountered
04 System object damage state X X X
44 Partial system object damage X X X · Materialize

1A Lock State - Contexts referenced for address resolution
01 Invalid lock state X

1C Machine-Dependent Exception · Modify 02 Program limitation exceeded X
User profile of creating process 03 Machine storage limit exceeded X X
Context identified by operand 2 04 Object storage limit exceeded X
Access group identified by operand 2 20 Machine Support

02 Machine check X
03 Function check X

Events 22 Object Access
01 Object not found X X

0002 Authorization 02 Object destroyed X X
03 Object suspended X X 0101 Object authorization violation

24 Pointer Specification
01 Pointer does not exist X X

OOOC Machine resource 02 Pointer type invalid X X
0201 Machine auxiliary storage threshold exceeded 03 Pointer addressing invalid object X
0501 Machine address threshold exceeded 2A Program Creation

~ 01 Program header invalid X
0010 Process 02 ODT syntax error X

0701 Maximum processor time exceeded 03 ODT relation error X

0801 Process storage limit exceeded 04 Operation code invalid X
05 Invalid op code extender field X

0016 Machine observation 06 Invalid operand type X X
07 Invalid operand attribute X X 0101 Instruction reference
08 Invalid operand value range X X
09 Invalid branch target operand X

0017 Damage set OA Invalid operand length X
0401 System object OB Invalid number of operands X
0801 Partial system object damage set OC Invalid operand ODT reference X X

00 Reserved bits are not zero X X X
Exceptions 2C Program Execution

06 Instruction cancellation X
Operands 07 Instruction termination X

Exception 1 2 Other
2E Resource Control Limit

01 User profile storage limit X 02 Access Group exceeded
01 Object ineligible for access group X 38 Template Specification

06 Addressing 01 Template value invalid X
01 Space addressing violation X X 02 Template size invalid X
02 Boundary alignment X X
03 Range X X
06 Optimized addressability invalid X X

Program Management Instructions 8-7

DELETE PROGRAM OBSERVABILITY (DELPGOBS)

Op Code Operand 1
(Hex)

0211 Program

Operand 1: System pointer.

Description: The instruction eliminates the capability to

materialize the components, other than the control
information component, of the program template
associated with the program identified by operand 1.
After deleting observability, only the control information
component of the program template can be materialized.

In general, the instruction causes the amount of storage
used by the referenced program to be decreased. The

amount of storage released is equal to the size of the
program template and all of its components.

Authorization Required

• Object control
- Operand 1

• Retrieve
- Contexts referenced for address resolution

Lock Enforcement

• Materialize
- Contexts referenced for address resolution

• Object control
- Operand 1

8-8

Events

0002 Authorization J 01 01 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operand
Exception 1 Other

06 Addressing
01 Space addressing violation X
02 Boundary alignment X
03 Range X
06 Optimized addressability invalid X

08 Argument/ Parameter J 01 Parameter reference violation X
OA Authorization

01 Unauthorized for operation X
10 Damage Encountered

04 System object damage state X X
44 Partial system object damage X X

1A lock State
01 Invalid lock state X

1C Machine-Dependent Exception
03 Machine storage limit exceeded X

20 Machine Support
02 Machine check X
03 Function check X

22 Object Access
01 Object not found X
02 Object destroyed X
03 Object suspended X

24 Pointer Specification
01 Pointer does not exist X
02 Pointer type invalid X
03 Pointer addressing invalid object X

2A Program Creation
06 Invalid operand type X
07 Invalid operand attribute X
08 Invalid operand value range X
OA Invalid operand length X
OC Invalid operand ODr reference X
00 Reserved bits are not zero X X J

DESTROY PROGRAM (DESPG)

Op Code
(Hex)

Operand 1

0221 Program

Operand 1: System pointer.

Description: The program referenced by the system
pointer specified by operand 1 is destroyed. The
program's identification is deleted from the context
currently addressing the object if it is addressed by a
context. The system pointer identified by operand 1 is
not modified by the instruction. Any subsequent
reference to the destroyed object through the pointer
causes the object destroyed exception.

If the referenced program is currently activated in some
process, an attempt to invoke the program causes the
object destroyed exception to be signaled. If the
referenced program is currently invoked in some
process, execution of the next instruction in the program
causes the object destroyed exception. Any use of an
unresolved pointer that has its initial value specified by
this referenced program causes an object destroyed
exception.

Authorization Required

• Object control
- Operand 1

• Retrieve
- Contexts referenced for address resolution

Lock Enforcement

• Materialize
- Contexts referenced for address resolution

• Object control
- Operand 1

• Modify
Access group containing operand 1
Context which addresses operand 1
User profile owning operand 1

Events

0002 Authorization
0101 Object authorization .violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operand
Exception 1

06 Addressing
01 Space addressing violation X
02 Boundary alignment X
03 Range X
06 Optimized addressability invalid X

08 Argument/ Parameter
01 Parameter reference violation X

OA Authorization
01 Unauthorized for operation X

10 Damage Encountered
04 System object damage state X
44 Partial system object damage X

1A Lock State
01 Invalid lock state X

1C Machine-Dependent Exception
03 Machine storage limit exceeded

20 Machine Support
02 Machine check
03 Function check

22 Object Access
01 Object not found X
02 Object destroyed X
03 Object suspended X

24 Pointer Specification
01 Pointer does not exist X
02 Pointer type invalid X
03 Pointer addressing invalid object X

2A Program Creation
06 Invalid operand type X
07 Invalid operand attribute X
08 Invalid operand value range X
OC Invalid operand ODT reference X
00 Reserved bits are not zero X

Other

X
X

X

X
X

X

Program Management Instructions 8-9

MATERIALIZE PROGRAM (MATPG)

Op Code
(Hex)

0232

Operand
1

Attribute
receiver

Operand
2

Program

Operand 1: Space pointer.

Operand 2: System pointer.

Description: The program identified by operand 2 is
materialized into the template identified by operand 1.

Operand 2 is a system pointer that identifies the
program to be materialized. The format of the
materialization is identical to the program template
identi"fied on the Create Program instruction. The values
in the materialization relate to the current attributes of
the materialized program. Components of the program
template, other than the control information component,
may not be available for materialization because they
were removed by the Delete Program Observability
instruction or because they were absent from the Create
Program instruction.

The template identified by operand 1 must be 16-byte
aligned.

The first 4 bytes of the materialization template identify
the total number of bytes in the template. This value is
supplied as input to the instruction and is not modified.
A value of less than 8 causes the materialization length
exception to be signaled.

The second 4 bytes of the materialization template are
modified by the instruction to contain a value identifying
the template size required to provide for the total
number of bytes available to be materialized. The
instruction materializes as many bytes as can be
contained in the area specified by the receiver. If the
byte area identified by the receiver is greater than that
required to contain the information requested, then the
excess bytes are unchanged. No exceptions (other than
the materialization length exception) are signaled in the
event that the receiver contains insufficient area for the
materialization.

8-10

The following attributes apply to the materialization of a
program:

• The existence attribute indicates whether the program
is temporary or permanent.

• The observation attribute entry specifies the template
components of the programs that currently can be
materialized.

• If the program has an associated space, then the
space attribute is set to indicate either fixed- or
variable-length; the initial value for the space is
returned in the initial value of space entry, and the
size of space entry is set to the current size value of
the space. If the program has no associated space,
the size of space entry is set to a zero value, and the
space attribute and initial value of space entry values
are meaningless.

• If the program is addressed by a context, then the
context addressability attribute is set to indicate this,
and a system pointer to the addressing context is
returned in the context entry. If the program is not
addressed by a context, then the context
addressability attribute is set to indicate this, and
binary D's are returned in the context entry.

• If the program is a member of an access group, then
the access group attribute is set to indicate this, and
a system pointer to the access group is returned in
the access group entry. If the program is not a
member of an access group, then the access group
attribute is set to indicate this, and binary D's are
returned in the access group entry.

• The performance class entry is set to reflect the
performance class information associated with the
program.

• The user exit attribute defines if the referenced
program is allowed to be used as a user exit
program.

J

L
The program data cannot be materialized if a Delete
Program Observability instruction has been issued for
this program. If the program was created with an
observation attribute that cannot be materialized, the
program data (instruction stream, ODV, OES, user data,
and object mapping table components) cannot be
materialized by this instruction. If the program data
cannot be materialized, O· s are placed in the fields of
the program template that describe the size and offsets
to the program data components. The only information
that can be materialized is that part of the program
template up to and including the offset to the OMT
(object mapping template) entry.

The offset to the OMT component entry specifies the
location of the OMT component in the materialized
program template. The OMT consists of a
variable-length vector of 6-byte entries. The number of
entries is identical to the number of ODV entries
because there is one OMT entry for each ODV entry.
The OMT entries correspond one for one with the ODV
entries; each OMT entry gives a location mapping for
the object defined by its associated ODV entry.

The following describes the formats for an OMT entry:

• OMT entry
- Addressability type

Hex 00= Base addressability
is from the start of
the static storage
area.

Hex 01 = Base addressability is
from the start of the
automatic storage area.

Hex 02= Base addressability is
from the start of the
storage area addressed
by a space pointer.

Hex 03= Base addressability is
from the start of the
storage area of a
parameter.

Hex 04= Base addressability is
from the start of the
storage area addressed
by the space pointer
found in the process
communication object
attribute of the process
executing the program.

Char(6)
Char(1)

Hex FF= Base addressability not
provided. The object is
contained in machine
storage areas to which
addressability cannot be
given, or a parameter has
addressability to an object
that is in the storage of
another program.

- Offset from base Char(3)
For types hex 00, hex 01, hex 02,
hex 03, and hex 04, this is a 3-byte
logical binary value representing
the offset to the object from the
base addressability. For type hex FF,
the value is binary O.
Base addressability Char(2)
For types hex 02 and hex 03,
this is a 2-byte binary field
containing the number of the
OMT entry for the space pointer
or a parameter that provides
base addressability for this
object. For types hex 00, hex 01,
hex 04, and hex FF, the value
is binary O.

Program Management Instructions 8-11

Authorization Required Exceptions

. Retrieve Operands J Operand 2 Exception 1 2 Other

- Contexts referenced for address resolution
06 Addressing

01 Space addressing violation X X

Lock Enforcennent 02 Boundary alignment X X
03 Range X X

• Materialize 06 Optimized addressability invalid X X

Operand 2 08 Argument/ Parameter

- Contexts referenced for address resolution 01 Parameter reference violation X X
OA Authorization

01 Unauthorized for operation X

Events 10 Damage Encountered

04 System object damage state X X X

0002 Authorization 44 Partial system object damage X X X

0101 Object authorization violation 1A Lock State

01 Invalid lock state X

OOOC Machine resource 1C Machine-Dependent Exception

0201 Machine auxiliary storage threshold exceeded 03 Machine storage limit exceeded X
20 Machine Support

0010 Process 02 Machine check X

0701 Maximum processor time exceeded 03 Function check X

0801 Process storage limit exceeded 22 Object Access

01 Object not found X X

0016 Machine observation 02 Object destroyed X X

0101 Instruction reference 03 Object suspended X X
24 Pointer Specification J 0017 Damage set 01 Pointer does not exist X X

0401 System object damage set 02 Pointer type invalid X X

0801 Partial system object damage set 03 Pointer addressing invalid object X
2A Program Creation

06 Invalid operand type X X
07 Invalid operand attribute X X
08 Invalid operand value range X X
OA Invalid operand length X
OC Invalid operand ODT reference X
00 Reserved bits are not zero X X X

38 Template Specification

03 Materialization length exception X

8-12

This chapter describes the instructions used for program
execution control. These instructions are in alphabetic
order. For an alphabetic summary of all the instructions,
see Appendix A. Instruction Summary.

ACTIVATE PROGRAM (ACTPG)

Op Code
(Hex)

0212

Operand
1

Program
or program
activation
entry

Operand
2

Program

Operand 1: Space pointer, system pointer, or data object.

Operand 2: System pointer.

Description: This instruction allocates and initializes
storage for static objects that are declared for a
specified program within the executing process. The
program identified by operand 2 is activated in the
executing process. The program is activated by
allocating an area in the PSSA (process static storage
area) to contain the program static storage. This static
storage is then available each time the program is
invoked within the process. The pointer object specified
by operand 1 receives a space pointer addressing the
activation of the referenced program. The activation
consists of storage for the program's static objects as
well as a system pointer to the associated program, a
space pointer to the next activation entry (if one exists)
in the PSSA, a space pointer to the preceding activation
entry in the PSSA, and attributes specifying the status
of the activation.

Chapter 9. Program Execution Instructions

Each activation entry in the PSSA is 16-byte aligned
and has the following format:

• Previous activation entry pointer
(the first activation entry locates
the PSSA base entry)

• Next activation entry pointer
(undefined if this activation is
last in the PSSA chain)

• Associated program pointer

• Activation number

• Activation attributes
Activation status
o = Not currently active
1 = Currently active
Reserved (binary 0)

• Reserved (binary 0)

• Invocation count

• Activation mark

• Length of this PSSA entry

• Program static storage

Space
pointer

Space
pointer

System
pointer

Bin(2)

Char(2)
Bit 0

Bits 1-15

Char(2)

Bin(2)

Bin(4)

Bin(4)

Char(·)

Program Execution Instructions 9-1

The PSSA is located by a space pointer specified when
the process was initiated. The location identified by the
space pointer is considered to be the beginning of the
PSSA and must be l6-byte aligned. At this location is a
96-byte PSSA base entry that consists of the following:

• Last activation entry in process PSSA Space
chain (addresses the base entry if no pointer
programs are activated)

• First activation entry in process Space
(ignored if no programs are activated) pointer

• Next available storage location Space
in current space containing PSSA pointer

• Reserved

• PSSA control
Chain being modified
o = Chain not being modified
1 = Chain being modified

- Chain was modified
o = Chain was not modified
1 = Chain was modified
Reserved (binary 0)

• Reserved (binary 0)

Char(16)

Char(l)
Bit 0

Bit 1

Bits 2-7

Char(3l)

The user must properly initialize the PSSA base entry
before the first program is activated in the process.

A space pointer locating the PSSA can be materialized
using the Materialize Process instruction.

If the chain being modified bit is on and an attempt is
made to activate or de-activate a program with static
storage, a stack control invalid exception is signaled.

9-2

The program is activated by allocating an area in the
PSSA space sufficient to contain the activation entry.
The area used for allocating the first activation in a
space is located by the next available storage location
pointer in the PSSA base entry; otherwise, this pointer
locates the first free byte after all activation entries in
the space. This pointer must address a l6-byte aligned
area in the space, or a boundary alignment exception is
signaled. The pointer may be set to address beyond the
currently allocated storage in the space, which is
implicitly extended, and no exception is signaled. If the
space is not currently large enough to contain the entry
and if it is extendable, it is implicitly extended by the
machine. The owner's authority to the space is included
with the authority of the extending process when
checking for object management authority when the
space is extended. If the space is of a fixed size or
cannot be extended to contain the entry, a space
extension truncation exception is signaled.

The new activation entry is initialized as follows:

• The previous activation entry pointer is copied from
the most recent activation entry in the PSSA base
entry.

• The next activation entry pointer field is unchanged
by the instruction (the last activation is process
pointer in the PSSA base entry specifies the last
activation on the chain).

• The associated program pointer is copied from the
operand 2 system pointer.

• The activation number is set to a value one greater
than the activation number entry in the previous
activation.

• The activation is marked as active (the activation
status is set to binary 1).

• The invocation count is set to O.

• The activation mark is obtained by incrementing the
mark counter field in the machine by one and copying
the resulting value.

• The length field is set to the number of bytes of
storage occupied by the PSSA header and the static
data following it.

• The reserved fields are set to binary O.

A space pointer addressing the new activation entry is
stored in the last activation entry pointer of the PSSA
base entry, and the next available storage location in the
PSSA base entry is set to address the next available
16-byte aligned area beyond the new activation entry.

If the referenced program's activation already exists
within the process PSSA chain when the Activate
Program instruction is executed, the program's static
storage is reused if the activation was active, and may
or may not be reused if the activation was inactive. In
either case, the storage is reinitialized, the activation is
set to the active state, and the operand 1 space pointer
is set to the reinitialized activation. No chain pointers
are modified, and the activation entry remains at the
same relative location in the chain of PSSA entries.

When a new activation is allocated or an existing
inactive allocation is reactivated, the mark counter in the
machine is incremented by 1 and the resulting value is
copied to the active mark field of the activation. If an
attempt is made to activate an already active activation,
the activation mark and mark counter values are not
updated.

When a new activation is allocated, space occupied by
other activations in the inactive state may be used for
the new activation. The current PSSA space is the
space located by the next available location pointer
within the PSSA base entry.

PSSA entries that have all the following conditions are
removed from the PSSA chain:

• Inactive

• Reside in the current PSSA space

• Have an invocation count of a

• Have no active activations or activations with a
nonzero invocation count at a higher address in the
current PSSA space

• Appear as the last entries in the linked PSSA chain

The new activation is placed at the lowest address
within the current PSSA space that is higher than both
the address of any activation in the chain which is in the
current PSSA space and the address of any unallocated
space between previously existing noncontiguous
activations. If no previous activations remain in the
current PSSA space (after being removed under the
above conditions!. the new activation is placed at the
lowest address (in the current PSSA space) of the
removed activations. If no previous activations existed in
the current PSSA space, the next available location
pointer in the PSSA base entry specifies the location
where the new activation is to be allocated.

If the program addressed by the operand 2 system
pointer addresses a program that requires no static
storage, no activation entry is allocated, and the operand
2 system pointer is copied to the operand 1 pointer.

A space pointer machine object may not be specified for
operand 1.

Authorization Required

• Operational
- Program referenced by operand 2

• Retrieve
- Contexts referenced for address resolution

Lock Enforcement

• Materialize
- Contexts referenced for address resolution

Program Execution Instructions 9-3

Events Exceptions

0002 Authori;zation Operands J 0101 Object authorization violation Exception 1 2 Other

oooe Machine resource 06 Addressing

0201 Machine auxiliary storage threshold exceeded 01 Space addressing violation X X .. 02 Boundary alignment X X

0010 Process 03 Range X X

0701 Maximum processor time exceeded 06 Optimized addressability invalid X X

0801 Process storage limit exceeded OA Authorization

01 Unauthorized for operation X

0016 Machine observation 10 Damage Encountered

0101 Instruction reference 04 System object damage state X X X
44 Partial system object state X X X

0017 Damage set 1A Lock State

0401 System object damage set 01 Invalid lock state X

0801 Partial system object damage set 1C Machine-Dependent Exception

03 Machine storage limit exceeded X

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X

02 Object destroyed X X
03 Object suspended X X

24 Pointer Specification

01 Pointer does not exist X

02 Pointer type invalid X X

03 Pointer addressing invalid object X

2A Program Creation

06 Invalid operand type X X

07 Invalid operand attribute X X

08 Invalid operand value range X X

OC Invalid operand ODT reference X X

00 Reserved bits are not zero X X X

2C Program Exception

03 Stack co~trol invalid X

36 Space Management

01 Space extension/truncation X

9-4

CAll EXTERNAL (CAlLX)

Op Code
(Hex)

0283

Operand
1

Program

Operand
2

Argument
list

Operand 1: System pointer.

Operand 2: Operand list or null.

Operand
3

Return
list

Operand 3: Instruction definition list or null.

Description: The instruction preserves the calling
invocation and causes control to be passed to the
external entry point of the program specified by
operand 1. Operand 1 is a system pointer addressing
the program that is to receive control.

The instruction ensures that the program is properly
activated in the process, if required. The following
conditions are allowed:

• If the referenced program requires no static storage,
the program is invoked, and no activation is created.

• If operand 1 is a system pointer to a program that
requires static storage, the program is implicitly
activated. The chain of activation entries located by
the PSSA (process static storage area) is searched for
an entry for the referenced program. If an entry is
located that is not active, it is set to the active state,
and the static storage is reinitialized based on the
program definition. If no activated entry exists for the
program, a new entry is allocated and initialized. See
the Activate Program instruction for a definition of
this function. The activation mark value for a newly
created activation will be the same as the invocation
mark value described later.

After any needed static storage has been allocated or
located, automatic storage is allocated and initialized for
the newly invoked program. The automatic storage is
obtained from the PASA (process automatic storage
area).

The update PASA stack program attribute specified on
program creation indicates whether or not the program
requires that the PASA stack information contained in
the PASA base entry and invocation entries must be
updated. Refer to the Create Program instruction for the
detail on how to specify this program attribute. Upon
invocation of a program that requires that the stack be
updated, it is possible that prior invocations may exist
that did not require the stack update. These invocations
would not have their associated stack information
updated to reflect the current chain of invocations active
in the PASA. If necessary, the PASA stack information
in the PASA base entry and all prior invocation entries is
updated with the current status prior to continuing with
the invocation of a program requiring update of the
PASA stack.

Each invocation entry in the PASA is 16-byte aligned
and has the following format:

• Previous invocation entry pointer
(the first invocation entry
addresses the PASA base entry)

• Next invocation entry pointer
(not defined for the current
invocation entry)

• Associated program pointer (0 for
data base select/omit program)

• Invocation attributes
Invocation number
I nvocation type
Hex 00= Data base select/omit

program
Hex 01=Call external
Hex 02=Transfer control
Hex 03= Event handler
Hex 04= External exception

handler
Hex 05=lnitial program in

process problem state
Hex 06=lnitial program in

process initiation state
Hex 07= Initial program in

process termination
state

Hex 08= Invocation exit
Reserved (initialized to binary 0)
Invocation mark

Space
pointer

Space
pointer

System
pointer

Char(8)
Bin(2)
Char(l)

Char(l)
Bin(4)

Program Execution Instructions 9-5

• User area Char(8)

• Program's automatic storage Char(*)

The PASA is located by a space pointer specified when
the process is initiated, The location identified by the
space pointer is considered to be the beginning of the
PAS A and must be 16-byte aligned. At this location is
a 64-byte PASA header entry that consists of the
following:

• Current invocation entry in process Space
(if no programs are invoked, this pointer
pointer must address the PASA
base entry)

• First invocation entry in process Space
(ignored if no programs are invoked) pointer

• Next available storage location

• Reserved

• Reserved (binary 0)

• Mark counter

• Reserved (binary 0)

Space
pointer

Char(16)

Char(12)

Bin(4)

Char(16)

The PASA base entry must be initialized by the user
before the process is initiated. The current invocation
entry in process and next available storage location and
mark counter values are accessed as input to the
machine only during the initiation of the process.
Thereafter, the machine maintains these values
internally. The PASA base entry fields are optionally
updated on each program invocation depending upon
whether or not the program being invoked has specified
the update PAS A stack program attribute.

A space pointer locating the PASA can be materialized
by using the Materialize Process instruction.

A space pointer locating the PASA invocation entry for
the currently executing program can be materialized
using the Materialize Invocation Entry instruction.

9-6

The program is invoked by allocating an area in the
PASA space sufficient to contain the invocation entry.
The area used for allocation is located by the next
available storage location pointer in the PASA base entry
for the invocation of the initial program in the process.
For all other invocations of programs within the process,
the area used for the allocation is located by an internal
machine value that is maintained with the space address
of the next available storage location. This pointer must
address a 16-byte aligned area in the space, or a
boundary alignment exception is signaled. If the space
is not currently large enough to contain the entry and if
it is extendable, it is implicitly extended by the machine.
The owner's authority to the space is included with the
authority of the process when checking for object
management authority when the space is extended. If
the space is of a fixed size or cannot be extended
enough to contain the entry, a space
extension/truncation exception is signaled.

For programs created with the update PASA stack
attribute specifying that they require the PASA stack
update, the new invocation entry is updated as follows:

• The previous invocation entry pointer is set from the
current invocation entry in the process address value
in the machine.

• The next invocation entry is not modified.

• The associated program pointer is copied from the
operand 1 system pointer.

• The invocation number is incremented by 1 beyond
that in the calling invocation. The first invocation in
the current process state has an invocation number
of 1.

• The invocation type value is set to hex 01 to indicate
how the program was invoked.

• The value of the mark counter in the machine is
incremented by one and the new value is copied to
the invocation mark field. The new value is also
copied to the activation mark field of the program's
activation if the activation was initialized by this
instruction.

• The user area field is set to binary O.

• The program's automatic storage is initialized as
defined in the program definition.

• The invocation count, if any, in the associated
activation is incremented by 1.

For programs created with the update PASA stack
attribute specifying that they do not require the PASA
stack update, the new invocation entry is updated as
follows:

• The value of the mark counter in the machine is
incremented by one. The new value is also copied to
the activation mark field of the program's activation if
the activation was initialized by this instruction.

• PASA stack information necessary to provide for
subsequent program invocations or updating of stack
information for this invocation is stored in the
machine. This includes values associated with this
invocation for the previous invocation entry address,
next available storage location, program pointer,
invocation number, invocation type, and mark
counter.

• The program's automatic storage is initialized as
defined in the program definition.

For programs created with the update PASA stack
attribute that specifies that they require the PASA stack
update, a space pointer addressing the new invocation
entry is stored in the next invocation entry pointer of the
invoking invocation.

For programs created with the update PASA stack
attribute that specifies that they require the PASA stack
update, a space pointer addressing the new invocation
entry is stored in the current invocation entry pointer of
the PASA base entry and the next available storage
location in the PASA base entry is set to address the
next available 16-byte aligned area beyond the new
invocation entry.

A program with no automatic data has a PASA entry
created for it. The created PASA entry consists of only
a stack control entry.

The user defines the invocation attribute entry. This
entry is not used after the program is initialized.

Following the allocation and initialization of the
invocation entry, control is passed to the invoked
program.

Operand 2 specifies an operand list that identifies the
arguments to be passed to the invocation entry to be
called. If operand 2 is null, no arguments are passed by
the instruction. A parameter list length exception is
signaled if the number of arguments passed does not
correspond to the number required by the parameter list
of the target program.

Operand 3 specifies an IDL (instruction definition list)
that identifies the instruction number(s) of alternate
return points within the calling invocation. A Return
External instruction in an invocation immediately
subordinate to the calling invocation can indirectly
reference a specific entry in the IDL to cause a return of
control to the instruction associated with the referenced
IDL entry. If operand 3 is null, then the calling
invocation has no alternate return points associated with
the call.

Authorization Required

• Operational
- Program referenced by operand 1

• Retrieve
- Contexts referenced for address resolution

Lock Enforcennent

• Materialize
- Contexts referenced for address resolution

Program Execution Instructions 9-7

Events Exceptions

0002 Authorization
Operands J 0101 Object authorization violation Exception 1 2 3 Other

OOOC Machine resource 06 Addressing

0201 Machine auxiliary storage threshold exceeded 01 Space addressing violation X
02 Boundary alignment X

0010 Process 03 Range X
0701 Maximum processor time exceeded 06 Optimized addressability invalid X
0801 Process storage limit exceeded 08 Argument/Parameter

01 Parameter reference violation X
0016 Machine observation 02 Parameter list length violation X

0101 Instruction reference OA Authorization

01 Unauthorized for operation X
0017 Damage set 10 Damage Encountered

0401 System object damage set 04 System object damage state X X X X
0801 Partial system object damage set 44 Partial system object damage X X X X

1A Lock State

01 Invalid lock state X
1C Machine-Dependent Exception

03 Machine storage limit exceeded X
20 Machine Support

02 Machine check X
03 Function check X

22 Object Access

01 Object not found X
02 Object destroyed X J 03 Object suspended X

24 Pointer Specification

01 Pointer does not exist X
02 Pointer type invalid X
03 Pointer addressing invalid object X

2A Program Creation

06 Invalid operand type X X X
07 Invalid Operand attribute X
08 Invalid operand value range X
OC Invalid operand ODT reference X X X
00 Reserved bits are not zero X X X X

2C Program Execution

03 Stack control invalid X
36 Space Management

01 Space extension/truncation X

9-8

L
CAll INTERNAL (CALLI)

Op Code Operand Operand Operand
(Hex) 1 2 3

0293 Internal Argument Return
entry list target
point

Operand 1: Internal entry point.

Operand 2: Operand list or null.

Operand 3: Instruction pointer.

Description: The internal entry point specified by
operand 1 is located in the same invocation in which the
Call Internal instruction is executed. A subinvocation is
defined, and execution control is transferred to the first
instruction associated with the internal entry point. The
instruction does not cause a new invocation to be
established. Therefore, there is no allocation of objects,
and instructions in the subinvocation have access to all
invocation objects.

Operand 2 specifies an operand list that identifies the
arguments to be passed to the subinvocation. If
operand 2 is null, no arguments are passed. After an
argument has been passed on a Call Internal instruction,
the corresponding parameter may be referenced. This
causes an indirect reference to the storage area located
by the argument. This mapping exists until the
parameter is assigned a new mapping based on a
subsequent Call Internal instruction. A reference to an
internal parameter before its being assigned an
argument mapping causes a parameter reference
violation exception to be signaled.

Operand 3 specifies an instruction pointer that identifies
the pointer into which the machine places addressability
to the instruction immediately following the Call Internal
instruction. A branch instruction in the called
subinvocation can directly reference this instruction
pointer to cause control to be passed back to the
instruction immediately following the Call Internal
instruction.

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06 Addressing
01 Space addressing violation
02 Boundary alignment
03 Range
06 Optimized addressability invalid

08 Argument/ Parameter
01 Parameter reference violation

10 Damage Encountered
04 System object damage state
44 Partial system object damage

1C Machine-Dependent Exception
03 Machine storage limit exceeded

20 Machine Support
02 Machine check
03 Function check

24 Pointer Specification
01 Pointer does not exist
02 Pointer type invalid

2A Program Creation
06 Invalid operand type
09 Invalid branch target
OB Invalid number of operands
OC Invalid operand ODT reference
00 Reserved bits are not zero

Operands
123

X
X

X

X

X

X X X

X X X

X

X

X X X

X
X

X X X
X X X

Other

X

X

X

X

X

X

Program Execution Instructions 9-9

CLEAR INVOCATION EXIT (CLRIEXIT)

Op Code
(Hex)

0250

Description: The instruction removes the invocation exit
program for the requesting invocation. No exception is
signaled if an invocation exit program is not specified
for the current invocation. Also, an implicit clear of the
invocation exit occurs when the invocation exit program
is given control, or the program which set the invocation
exit completes execution.

For more information about the invocation exit program,
see Program Execution in the Functional Concepts
Manual.

Events

oooe Machine resources
0201 Machine auxiliary storage exceeded

OOOD Machine status
0101 Machine check

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

10 Damage Encountered

04 System object damage state

44 Partial system object damage

1C Machine- Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

2A Program Creation

00 Reserved bits are not zero

9-10

Other

X
X

X

X
X

X

DE-ACTIVATE PROGRAM (DEACTPG)

Op Code
(Hex) Operand 1

0225 Program

Operand 1: System pointer or null.

Description: The instruction locates the activation entry
addressed through operand 1 and marks it as inactive if
the appropriate conditions are satisfied.

If operand 1 is null, the program issuing the instruction
is to be de-activated. An activation in use by invocation
exception is signaled if the activation entry's invocation
count is not equal to 1.

If operand 1 is a system pointer to a program, then that
program's activation entry is de-activated if its
invocation count is O. Otherwise, an activation in use by
invocation exception is signaled.

In the previous two cases, if the program has no static
storage or no activation, no operation is performed and
no exception is signaled.

The activation is de-activated when the activation status
is set to not currently active (0). When the activation is
not active and its invocation count is 0, the storage
occupied by the activation is subject to reuse for
allocating other activations.

If the user de-activates a program by setting the
activation status bit with an instruction other than the
De-activate Program instruction, the following steps
must be taken to ensure proper stack operation:

1.

2.

The chain being modified and the chain was
modified bits must be turned on in the PSSA base
entry.

The contents and linking of the PSSA chain of
activation headers can be modified as necessary.

3. The chain being modified bit must be turned off.

4. The machine subsequently turns off the chain was
modified bit.

If the chain being modified bit is on and an attempt is
made to activate or de-activate a program with static
storage, a stack control invalid exception is signaled.

Authorization Required Exceptions

L . Retrieve Operand
- Contexts referenced for address resolution Exception 1 Other

06 Addressing

Lock Enforcement 01 Space addressing violation X
02 Boundary alignment X . Materialize 03 Range X

- Contexts referenced for address resolution 06 Optimized addressability invalid X
08 Argument/ Parameter

01 Parameter reference violation X

Events OA Authorization

01 Unauthorized for operation X

0002 Authorization 10 Damage Encountered

0101 Object authorization violation 04 System object damage state X X
44 Partial system object damage X X

OOOC Machine resource 1A Lock State

0201 Machine auxiliary storage threshold exceeded 01 Invalid lock state X
20 Machine Support

0010 Process 02 Machine check X

0701 Maximum processor time exceeded 03 Function check X

0801 Process storage limit exceeded 22 Object Access
01 Object not found X

0016 Machine observation 02 Object destroyed X

0101 Instruction reference 03 Object suspended X
24 Pointer Specification

0017 Damage set 01 Pointer does not exist X

0401 System object damage set 02 Pointer type invalid X

0801 Partial system object damage set 03 Pointer addressing invalid object X
2A Program Creation

06 Invalid operand type X
07 Invalid operand attribute X
OA Invalid operand value range X
OC Invalid operand OOT reference X
00 Reserved bits are not zero X X

2C Program Execution

03 Stack control invalid X
05 Activation in use by invocation X

32 Scalar Specification

01 Scalar type invalid X

Program Execution Instructions 9-11

END (END)

Op Code
(Hex)

0260

No operands are specified.

Description: The instruction delimits the end of a
program's instruction stream. When this instruction is
encountered in execution, it causes a return to the
preceding invocation (if present) or causes termination of
the process phase if the instruction is executed in the
highest-level invocation for a process. The End
instruction delineates the end of the instruction stream.
When it is encountered in execution, the instruction
functions as a Return External instruction with a null
operand. Refer to the Return External instruction for a
description of that instruction.

Events

oooe Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0202 Process terminated
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference
0301 Invocation reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

9-12

Exceptions

Exception

10 Damage Encountered

04 System object damage state

44 Partial system object damage

1 C Machine-Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

2A Program Creation

OD Reserved bits are not zero

Other J
X

X

X

X

X

X

MODIFY AUTOMATIC STORAGE ALLOCATION
(MODASA)

Op Code
(Hex)

02F2

Operand
1

Storage
allocation

Operand
2

Modification
size

Operand 1: Space pointer data object or null.

Operand 2: Binary scalar.

Description: The size of automatic storage assigned to
the invocation of the currently executing program is
extended or truncated by the size specified by operand
2. A positive value indicates that the storage allocation
is to be extended; a negative value indicates that the
storage allocation is to be truncated. The instruction
also returns addressability of the allocated or deallocated
storage area in the space pointer identified by operand
1. When allocating additional space, the space pointer
locates the first byte of the allocated area. If space is
deallocated, the space pointer locates the first byte of
the deallocated area. If operand 1 is null, the storage is
allocated or deallocated but no addressability is
returned. The space pointer identified by operand 1
always addresses storage that is on a 16-byte
boundary.

This instruction modifies the next available storage
location address value in the machine. Additionally, if
the program executing this instruction specified the
program requires PASA stack update program attribute,
the instruction modifies the next available storage
location pointer in the PASA (process automatic storage
area) base entry.

The owner's authority to the space is included with the
authority of the process when a space is extended and
when checked for object management authority.

If the space is extended, the new bytes contain the
initial value for the space; otherwise, no initialization is
done to the allocated area.

A space extension/truncation exception is signaled if the
space containing the PASA cannot be extended. A
scalar value invalid exception is signaled if truncation
causes the next available storage location pointer in the
PASA to point to a location that precedes the beginning
of the data of the automatic storage entry for the
executing invocation.

The storage allocated with this instruction is not
initialized to any value. If implicit space extension
occurs, however, the extended portion is initialized to
the default value specified for the space when it was
created.

A space pointer machine object cannot be specified for
operand 1.

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Program Execution Instructions 9-13

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

06 Optimized addressability invalid

08 Argument/Parameter

01 Parameter reference violation

10 Damage Encountered

04 System object damage state

44 Partial system object damage

1 C Machine- Dependent Exception

03 Machine storage limit exceeded

04 Object storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

2A Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

OA Invalid operand length

OC Invalid operand ODT reference

00 Reserved bits are not zero

2C Program Execution

03 Stack control invalid

32 Scalar Specification

01 Scalar type invalid

02 Scalar attributes invalid

03 Scalar value invalid

36 Space Management

01 Space extension /truncation

9-14

Operands
1 2

X X
X X
X X

X X

X X

X X
X X

X X
X X
X X

X X
X X

X X
X X
X X
X X
X X
X X

X X
X
X

Other

X
X

X
X

X
X

X

X

X

RETURN EXTERNAL (RTX)

Op Code
(Hex) Operand 1

02A 1 Return point

Operand 1: Binary (2) scalar or null.

Description: The instruction terminates execution of the
invocation in which the instruction is specified. All
automatic program objects in the invocation are
destroyed by removing the returning program's
automatic storage from the PASA (process automatic
storage area) by the updating of the PASA chaining
pointers.

A Return External instruction can be specified within an
invocation's subinvocation, and no exception is signaled.

If a higher invocation exists in the invocation hierarchy,
the instruction causes execution to resume in the
preceding invocation in the process' invocation hierarchy
at an instruction location indirectly specified by operand
1. If operand 1 is binary 0 or null, the next instruction
following the Call External instruction from which control
was relinquished in the preceding invocation in the
hierarchy is given execution control. If the value of
operand 1 is not 0, the value represents an index into
the IDL (instruction definition list) specified as the return
list operand in the Call External instruction, and the
value causes control to be passed to the instruction
referenced by the corresponding IDL entry. The first IDL
entry is referenced by a value of one. If operand 1 is
not 0 and no return list was specified in the Call
External instruction, or if the value of operand 1 exceeds
the number of entries in the IDL, or if the value is
negative, a return point invalid exception is signaled.

If the prior invocation is for a program created with the
update PASA stack attribute specifying that it requires
the PASA stack update, the instruction sets the current
invocation entry in the PASA base entry to address the
immediately preceding invocation, and it also sets
addressability to the returning invocation into the next
available storage location entry in the PASA header.

If the prior invocation is for a program created with the
'update PASA stack attribute specifying that it does not
require the PASA stack update, the instruction only
updates internal machine values related to the invocation
stack.

If a higher invocation does not exist, the Return External
instruction causes termination of the current process
state. If operand 1 is not 0 and is not null, the return
point invalid exception is signaled. Refer to the
Terminate Process instruction for the functions
performed in process termination.

If the returning invocation has received control to
process an event, then control is returned to the point
where the event handler was invoked. In this case, if
operand 1 is not 0 and is not null, then a return point
invalid exception is signaled.

If the returning invocation has received control from the
machine to process an exception, the return instruction
invalid exception is signaled.

If the returning invocation has an activation, the
invocation count in the activation is decremented by 1.

If the returning invocation currently has an invocation
exit set, the invocation exit is not given control and is
implicitly cleared.

Events

0002 Authorization
01 01 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference
0301 Invocation reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

06 Optimized addressability invalid

08 Argument/ Parameter

01 Parameter reference violation

10 Damage Encountered

04 System object damage state

44 Partial system object damage

1C Machine-Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

2A Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

OA Invalid operand length

OC Invalid operand ODT reference

00 Reserved bits are not zero

2C Program Execution

01 Return instruction invalid

02 Return point invalid

Operand
1

X

X

X

X

X

X

X

X
X
X

X
X

X
X
X
X

X

X

X

Other

X

X

X

X

X

X

X

X

X

X

Program Execution Instructions 9-15

SET ARGUMENT LIST LENGTH (SETALLEN)

Op Code
(Hex)

0242

Operand
1

Argument
list

Operand 1: Operand list.

Operand 2: Binary scalar.

Operand
2

Length

Description: This instruction specifies the number of
arguments to be passed on a succeeding Call External
or Transfer Control instruction. The current length of the
variable-length operand list (used as an argument list)
specified by operand 1 is modified to the value indicated
in the binary scalar specified by operand 2. This length
value specifies the number of arguments (starting from
the first) to be passed from the list when the operand
list is referenced on a Call External or Transfer Control
instruction.

Only variable-length operand lists with the argument list
attribute may be modified by the instruction.

The value in operand 2 may range from 0 (meaning no
arguments are to be passed) to the maximum size
specified in the ODT definition of the operand list
(meaning all defined arguments are to be passed).

The length of the argument list remains in effect for the
duration of the current invocation or until a Set
Argument List Length instruction is issued against this
operand list.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

9-16

Exceptions

Operands j
Exception 1 2 Other

06 AddreSSing

01 Space addressing violation X
02 Boundary alignment X
03 Range X
06 Optimized addressability invalid X

08 Argument/ Parameter

01 Parameter reference violation X
03 Argument list length modification X

violation

10 Damage Encountered

04 System object damage state X X X
44 Partial system object damage X X X

1C Machine-Dependent Exception

03 Machine storage limit exceeded X
20 Machine Support

02 Machine check X
03 Function check X

22 Object Access

01 Object not found X
02 Object destroyed X
03 Object suspended X

24 Pointer Specification

01 Pointer does not exist X

J 02 Pointer type invalid X
2A Program Creation

06 Invalid operand type X X
07 Invalid operand attribute X X
08 Invalid operand value range X
OA Invalid operand length X
OC Invalid operand ODT reference X X
00 Reserved bits are not zero X X X

32 Scalar Specification

03 Scalar value invalid X

SET INVOCATION EXIT (SETIEXIT)

Op Code
(Hexl

0252

Operand
1

Operand
2

Invocation Argument
exit list
program

Operand 1: System pointer.

Operand 2: Operand list or null.

Description: This instruction allows the external entry
point of the program specified by operand 1 to be given
control when the requesting invocation is destroyed due
to normal exception handling actions. or due to any
process termination. Normal exception handling actions
are considered to be those actions performed by the
Return From Exception or the Signal Exception
instructions.

Operand 1 is a system pointer addressing the program
that is to receive control. The operand 1 system pointer
must be in either the static or automatic storage of the
program invoking this instruction.

Operand 2 specifies an operand list that identifies the
arguments to be passed to the invocation exit program
being called. If operand 2 is null. no arguments are
passed to the invocation.

No operand verification takes place when this instruction
is invoked. Operand verification occurs when the
invocation exit program is invoked. At that time
operational authorization to the invocation exit program
and retrieve authorization to any contexts referenced for
materialization take place. Also. materialization lock
enforcement occurs to contexts referenced for
materialization.

If an invocation exit program currently exists for the
requesting invocation. it is replaced. and no exception is
signaled. The invocation exit set by this instruction is
implicitly cleared when the invocation exit program is
given control. or the program which set the invocation
exit completes execution.

If any invocations are to be destroyed due to normal
exception handling actions. then those invocation exit
programs associated with the invocations to be
destroyed are given control before execution proceeds
to the signaled exception handler.

An invocation exit bypassed due to a RTNEXCP or a
SIGEXCP instruction event is signaled when both of the
following conditions occur:

• Exception management is destroying an invocation
stack due to a Signal Exception instruction. a Return
From Exception instruction. or process termination.

• An invocation exit program is to be destroyed due to
a second Signal Exception or a second Return From
Exception instruction.

The invocation exit program that is being destroyed is
terminated, and its associated invocation execution is
terminated. Termination of invocations due to a previous
Signal Exception instruction, a Return From Exception
instruction, or a process termination is then resumed.

If a process phase is terminated and the process was
not in termination phase, then the invocations are
terminated. Invocation exit programs set for the
terminated invocations are allowed to run. If an
invocation to be terminated is an invocation exit
program, then the following occurs:

• An invocation exit bypassed due to process
termination event is Signaled.

• If an invocation exit has been set for this invocation
exit. it is allowed to run.

• The invocation exit is terminated and the associated
invocation is terminated (the invocation exit is not
reinvoked).

Invocation exit programs for the remaining invocations
to be terminated are then allowed to run.

For more information about the invocation exit program,
see Program Execution in the Functional Concepts
Manual.

Program Execution Instructions 9-17

Events

0002 Authorization
0101 Authorization violation

OOOC Machine resources
0201 Machine auxiliary storage exceeded

oooD Machine status
0101 Machine check

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference
0301 Invocation reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2 3 4

06 Addressing

01 Space addressing violation X
02 Boundary alignment X

03 Range X
06 Optimized addressability invalid X

08 Argument / Parameter

01 Parameter reference violation X

10 Damage Encountered

04 System object damage state

44 Partial system object damage

1C Machine-Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check
03 Function check

2A Program Creation

06 Invalid operand type X X
07 Invalid operand attribute X
08 Invalid operand value range X
OC Invalid operand ODT reference X X

Other

X
X

X

X
X

00 Reserved bits are not zero X X X X X

32 Scalar Specification
01 Scalar type invalid X

9-18

STORE PARAMETER LIST LENGTH (STPLLEN)

Op Code
(Hex) Operand 1

0241 Length

Operand 1: Binary variable scalar.

Description: A value is returned in operand 1 that
represents the number of parameters associated with
the invocation's external entry point for which arguments
have been passed on the preceding Call External or
Transfer Control instruction.

The value can range from 0 (no parameters were
received) to the maximum size possible for the
parameter list associated with the external entry point.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

,J

Exceptions TRANSFER CONTROL (XCTll

L Operand Op Code Operand Operand
Exception 1 Other (Hex) 1 2

06 Addressing 0282 Program Argument
01 Space addressing violation X list
02 Boundary alignment X
03 Range X Operand 1: System pointer.

06 Optimized addressability invalid X
08 Argumentl Parameter Operand 2: Operand list or null.

01 Parameter reference violation X
10 Damage Encountered

04 System object damage state X X Description: The instruction destroys the calling

44 Partial system object damage X X invocation and causes control to be passed to the

1C Machine-Dependent Exception external entry point of the program specified by operand

03 Machine storage limit exceeded X 1. Operand 1 is a system pointer addressing the

20 Machine Support program that is to receive control.

02 Machine check X
03 Function check X The invocation count in the activation (if any) of the

22 Object Access calling program is decremented by 1. The instruction

01 Object not found X ensures that the called program is properly activated in

02 Object destroyed X the process, if required. See the Activate Program

03 Object suspended X instruction for a definition of this activation verification

24 Pointer Specification process.

01 Pointer does not exist X
02 Pointer type invalid X After any needed static storage has been allocated or

2A Program Creation located, the invocation entry to the program issuing the

06 Invalid operand type X Transfer Control instruction is made available for the

07 Invalid operand attribute X new invocation. Unless precluded by internal machine

08 Invalid operand value range X alignment requirements, the new invocation's stack

OA Invalid operand length X control entry and automatic storage overlay that of the

OC Invalid operand ODT reference X invocation issuing the Transfer Control instruction. The

00 Reserved bits are not zero X X new invocation entry is allocated beginning at the same

32 Scalar Specification location as that of the current (transferring) invocation.

01 Scalar type invalid X See the Call External instruction for a definition of a

02 Scalar attributes invalid X PASA (process automatic storage area) entry.

Program Execution Instructions 9-19

The new invocation's stack control entry is initialized as
follows:

• The previous invocation entry pointer and the next
invocation entry pointer are the same as that of the
invoking program's entry.

• The associated program pointer is copied from the
associated activation entry (or from the operand 1
system pointer if no activation entry exists).

• The invocation number entry is unchanged.

• The invocation type value is set to indicate that the
program was invoked via a Transfer Control
instruction (hex 20).

• The program's automatic storage is allocated and
initialized as specified in the program definition.

The invocation entry for the preceding invocation is
unchanged by the instruction. The current invocation
entry pointer in the PASA base entry is unchanged by
the instruction. The next available storage location entry
in the PASA base entry is set to address the next
available 16-byte aligned area beyond the new
invocation entry.

The program is invoked by allocating an area in the
PASA space that is sufficient to contain the invocation
entry. The area used for allocation is located by the next
available storage location pointer in the PASA base
entry. This pointer must address a 16-byte aligned area
in the space. or a boundary alignment exception is
signaled.

The maximum addressable location in the PASA space
limits the amount of storage that may be allocated for
PASA storage. If this limit is exceeded. the process
storage limit exceeded exception is signaled. If the
maximum addressable location entry does not address
the same space as that addressed by the next available
storage location entry. the stack control invalid exception
is signaled.

If insufficient space is available in the PASA for the
entire new entry. the PASA space is implicitly extended
by the machine. If the space is fixed size or may not be
extended enough to contain the entry. a space
extension/truncation exception is signaled.

9-20

Following the allocation and initialization of automatic
storage. control is passed to the invoked program.

Operand 2 specifies an operand list that identifies the
arguments to be passed to the invocation to which
control is being transferred. Automatic objects allocated
by the transferring invocation are destroyed as a result
of the transfer operation and. therefore. cannot be
passed as arguments. A parameter list length exception
is signaled if the number of arguments passed does not
correspond to the number required by the parameter list
of the target program.

If the transferring invocation has received control to
process an exception. an event, or an invocation exit,
the return instruction invalid exception is signaled.

If the transferring invocation currently has an invocation
exit set, the invocation exit is not given control and is
implicitly cleared.

Authorization Required

• Operand 1
- Operational

• Retrieve
- Contexts referenced for address resolution

Lock Enforcement

• Materialize
- Contexts referenced for address resolution

Events Exceptions

'-. 0002 Authorization Operands
0101 Object authorization violation Exception 1 2 Other

OOOC Machine resource 06 Addressing

0201 Machine auxiliary storage threshold exceeded 01 Space addressing violation X

02 Boundary alignment X

0010 Process 03 Range X

0701 Maximum processor time exceeded 06 Optimized addressability invalid X

0801 Process storage limit exceeded 08 Argument/ Parameter

01 Parameter reference violation X

0016 Machine observation 02 Parameter list length violation X

0101 Instruction reference OA Authorization

01 Unauthorized for operation X

0017 Damage set 10 Damage Encountered

0401 System object damage set 04 System object damage state X X X

0801 Partial system object damage set 44 Partial system object damage X X X

1A Lock State

01 Invalid lock state X

1C Machine- Dependent Exception

02 Program limitation exceeded X

03 Machine storage limit exceeded X

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

L
01 Object not found X

02 Object destroyed X

03 Object suspended X
24 Pointer Specification

01 Pointer does not exist X

02 Pointer type invalid X

03 Pointer addressing invalid object X

2A Program Creation

06 Invalid operand type X X
07 Invalid operand attribute X X

08 Invalid operand value range X

OC Invalid operand ODT reference X X

00 Reserved bits are not zero X X X

2C Program Execution

01 Return instruction invalid X

03 Stack control invalid X

36 Space Management

01 Space extension/truncation X

Program Execution Instructions 9-21

9-22

Chapter 10. Exception Management Instructions

This chapter describes all instructions used for exception
management. These instructions are in alphabetic order.
For an alphabetic summary of all the instructions. see
Appendix A. Instruction Summary.

MATERIALIZE EXCEPTION DESCRIPTION
(MATEXCPD)

Op Code Operand Operand Operand
(Hex) 1 2 3

0307 Attribute
receiver

Exception Materialization
description option

Operand 1: Space pointer.

Operand 2: Exception description.

Operand 3: Character(l) scalar.

Description: The instruction materializes the attributes
(operand 3) of an exception description (operand 2) into
the receiver specified by operand 1.

The template identified by operand 1 must be a 16-byte
aligned area in the space if the materialization option is
hex 00.

The first 4 bytes of the materialization identify the total
number of bytes that may be used by the instruction.
This value is supplied as input to the instruction and is
not modified by the instruction. A value of less than 8
causes the materialization length exception to be
signaled.

The second 4 bytes of the materialization identify the
total number of bytes available to be materialized. The
instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the
byte area identified by the receiver is greater than that
required to contain the information requested. then the
excess bytes are unchanged. No exceptions (other than
the materialization length exception) are signaled in the
event that the receiver operand contains insufficient area
for the materialization.

Operand 2 identifies the exception description to be
materialized.

Exception Management Instructions 10-1

The value of operand 3 specifies the materialization
option. If the materialization option is hex 00, the
format of the exception description materialization is as
follows:

• Template size Char(S)
Bin(4) Number of bytes provided

for materialization
- Number of bytes available

for materialization
Bin(4)

• Control flags Char(2)
Bits 0-2 - Exception handling action

000 = Do not handle.

001 =

010

100 =

101

No data

(Ignore occurrence of
exception and continue
processing.)
Do not handle.
(Disable this exception
description and continue
to search this invocation
for another exception
description to handle
the exception.)
Do not handle.
(Continue to search for
an exception description
by resignaling the ex
ception to the preceding
invocation.)
Defer handling.
(Save exception data for
later exception handling.)
Pass control to the
specified exception
handler.

Bit 3
o Exception data is

returned
Exception data is not
returned

- Reserved (binary 0) Bit 4
Bit 5 - User data indicator

o User data not present
1 User data present
Reserved (binary 0)
Exception handler type
00 External entry point
01 Internal entry point
10 Branch point

- Reserved (binary 0)

10-2

Bits 6-7
Bits S-9

Bits 10-15

· Instruction number to be given Bin(2)
control (if internal entry point
or branch point; otherwise, 0) ,J

· Length of compare value Bin(2)
(maximum of 32 bytes)

· Compare value (size established Char(32)
by value of length of compare
value parameter)

· Number of exception IDs Bin(2)

· System pointer to the exception System
handling program if an external pointer
exception handler is specified

· Pointer to user data (not present Space
if value of user data indicator pointer
is binary 0)

· Exception ID (one for each Char(2)
exception ID dictated by the
number of exception IDs attribute)

J

L

L

If the materialization option is hex 01. the format of the
materialization is as follows:

. Template size Char(8)
Number of bytes provided Bin(4)
for materialization

- Number of bytes available Bin(4)
for materialization

. Control flags Char(2)
- Exception handling action Bits 0-2

000 = Do not handle.
(Ignore occurrence of
exception and continue
processing.)

001 Do not handle.
(Disable this exception
description and continue
to search this invocation
for another exception
description to handle
the exception.)

010 Do not handle.
(Continue to search for
an exception description
by resignaling the ex-
ception to the preceding
invocation.)

100 = Defer handling.
(Save exception data for
later exception handling.)

101 Pass control to the
specified exception
handler.

- No data Bit 3
0 Exception data is

returned
Exception data is not
returned

- Reserved (binary 0) Bit 4
- User data indicator Bit 5

0 User data not present
1 User data present

- Reserved (binary 0) Bits 6-15

If the materialization option is hex 02. the format of the
materialization is as follows:

• Template size
- Number of bytes provided

for materialization
- Number of bytes available

for materialization

• Compare value length
(maximum of 32 bytes)

• Compare value

Char(8)
Bin(4)

Bin(4)

Bin(2)

Char(32)

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
01 01 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exception Management Instructions 10-3

Exceptions MODIFY EXCEPTION DESCRIPTION (MODEXCPD)

Operands Op Code Operand Operand Operand J Exception 1 2 3 Other
(Hex) 1 2 3

06 Addressing
03EF Exception Modifying Modification 01 Space addressing violation X X

description attributes option
02 Boundary alignment X X
03 Range X X

Operand 1: Exception description.
06 Optimized addressability invalid X X

08 Argument/ Parameter Operand 2: Space pointer, or character(2) constant.
01 Parameter reference violation X X

10 Damage Encountered Operand 3: Character(1) scalar.
04 System object damage state X X X X
44 Partial system object damage X X X X

1C Machine- Dependent Exception
Description: The exception description attributes 03 Machine storage limit exceeded X

20 Machine Support specified by operand 3 are modified with the values of

02 Machine check X operand 2.

03 Function check X
22 Object Access Operand 1 references the exception description.

01 Object not found X X
02 Object destroyed X X Operand 2 specifies the new attribute values. Operand 2
03 Object suspended X X may be either a character constant or a space pointer to

24 Pointer Specification the modification template. When operand 3 is a
01 Pointer does not exist X X

constant, operand 2 is a character constant; when
02 Pointer type invalid X X

operand 3 is not a constant, operand 2 is a space
2A Program Creation

pointer. 06 Invalid operand type X X X

07 Invalid operand attribute X X
08 Invalid operand value range X X
OA Invalid operand length X X
OC Invalid operand ODT reference X X X
00 Reserved bits are not zero X X X X

32 Scalar Specification
03 Scalar value invalid X

38 Template Specification
03 Materialization length exception X

10-4

The value of operand 3 specifies the modification
option. If the modification option is hex 01 and operand
2 specifies a space pointer, the format of the modifying
attributes pointed to by operand 2 is as follows:

• Template size
Number of bytes provided for
materialization (must be at least 10)

- Number of bytes available for
materialization

• Control flags
Exception handling action
000 = Do not handle.

001

010

100

101

- No data
a

(Ignore occurrence of
exception and continue
processing.)
Do not handle.
(Disable this exception
description and continue
to search this invocation
for another exception
description to handle
the exception.)
Do not handle.
(Continue to search for
an exception description
by resignaling the ex
ception to the preceding
invocation.)
Defer handling.
(Save exception data for
later exception handling.)
Pass control to the
specified exception
handler.

Exception data is
returned.
Exception data is not
returned.

- Reserved (binary 0)

Char(8)
Bin(4)

Bin(4)*

Char(2)
Bits 0-2

Bit 3

Bits 4-15

If the exception description was in the deferred state
prior to the modification, the deferred signal, if
present, is lost.

When the option to not return exception data is

selected, no data is returned for the Retrieve Exception
Data or Test Exception instructions, and the number of
bytes available for the materialization field is set to O.
This option can also be selected in the ODT definition of
the exception description.

If the modification option of operand 3 is a constant
value of hex 01, then operand 2 may specify a character
constant. The operand 2 constant has the same format
as the control flags entry previously described.

If the modification option is hex 02, then operand 2
must specify a space pointer. The format of the
modification is as follows:

• Template size
Number of bytes provided
(must be at least 10 plus the
length of the compare value in
the exception description)
Number of bytes available for
materialization

Compare value length
(maximum of 32 bytes)

• Compare value

Char(8)
Bin(4)

Bin(4)*

Bin(2)*

Char(32)

Note: Entries shown here with an asterisk (*) are
ignored by the instruction.

The number of bytes in the compare value is dictated by
the compare value length specified in the exception
description as originally specified in the object definition
table.

An external exception handling program can be modified
by resolving addressability to a new program into the
system pointer designated for the exception description.

The presence of user data is not a modifiable attribute
of exception descriptions. If the exception description
has user data, it can be modified by changing the value
of the data object specified in the exception description.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Exception Management Instructions 10-5

Events Exceptions

0002 Authorization Operands J 0101 Object authorization violation Exception 1 2 3 Other

OOOC Machine resource 06 Addressing

0201 Machine auxiliary storage threshold exceeded 01 Space addressing violation X X

03 Range X X

0010 Process 06 Optimized addressability invalid X X

0701 Maximum processor time exceeded 08 Argument/Parameter

0801 Process storage limit exceeded 01 Parameter reference violation X X
10 Damage Encountered

0016 Machine observation 04 System object damage state X X X X

0101 Instruction reference 44 Partial system object damage X X X X

1C Machine-Dependent Exception

0017 Damage set 03 Machine storage limit exceeded X

0401 System object damage set 20 Machine Support

0801 Partial system object damage set 02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X

02 Object destroyed X X

03 Object suspended X X

24 Pointer Specification

01 Pointer does not exist X X

02 Pointer type invalid X X

2A Program Creation

06 Invalid operand type X X X

07 Invalid operand attribute X X

08 Invalid operand value range X X

OA Invalid operand length X

OC Invalid operand ODT reference X X X

00 Reserved bits are not zero X X X X

32 Scalar Specification

03 Scalar value invalid X

38 Template Specification

01 Template value invalid X

02 Template size invalid X

10-6

RETRIEVE EXCEPTION DATA (RETEXCPD)

Op Code
(Hex)

03E2

Operand
1

Receiver

Operand
2

Retrieve
options

Operand 1: Space pointer.

Operand 2: Character(l) scalar (fixed-length).

Description: The data related to a particular occurrence
of an exception is returned and placed in the specified
space.

Operand 1 is a space pointer that identifies the receiver
template. The template identified by operand 1 must be
16-byte aligned in the space.

The value of operand 2 specifies the type of exception
handler for which the exception data is to be retrieved.
The exception handler may be a branch point exception
handler, an internal entry point exception handler, or an
external entry point exception handler.

An exception state of process invalid exception is
signaled to the invocation issuing the Retrieve Exception
Data instruction if the retrieve option is not consistent
with the process's exception handling state. For
example, the exception is signaled if the retrieve option
specifies retrieve for internal entry point exception
handler and the process exception state indicates that
an internal exception handler has not been invoked.

The first 4 bytes of the materialization identify the total
number of bytes that may be used by the instruction.
This value is supplied as input to the instruction and is
not modified by the instruction. A value of less than S
causes the materialization length exception.

The second 4 bytes of the materialization identify the
total number of bytes available to be materialized. The
instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the
byte area identified by the receiver is greater than that
required to contain the information requested, then the
excess bytes are unchanged. No exceptions (other than
the materialization length exception) are signaled in the
event that the receiver contains insufficient area for the
materialization.

After an invocation has been destroyed, exception data
associated with a signaled exception description within
that invocation is lost.

The format of operand 1 for the materialization is as
follows:

· Template size Char(S)

Number of bytes provided Bin(4)
for retrieval
Number of bytes available Bin(4)

for retrieval

· Exception identification Char(2)

· Compare value length Bin(2)
(maximum of 32 bytes)

· Compare value Char(32)

· Reserved (binary 0) Char(4)

· Exception specific data Char(*)

· Signaling program invocation Space
pointer

· Signaled program invocation Space
pointer

• Signaling program instruction address Bin(2)

• Signaled program instruction address Bin(2)

• Machine-dependent data Char(10)

The signaling program invocation address entry locates
the invocation entry in the PASA (process automatic
storage area) that corresponds to the invocation that
caused the exception to be signaled. For machine
exceptions, this space pointer locates the invocation
executing when the exception occurred. For
user-signaled exceptions, this space pointer locates the
invocation that executed the Signal Exception
instruction. The signaling program instruction address
entry locates the instruction that caused the exception to
be signaled.

Exception Management Instructions 10-7

The signaled program invocation entry locates the
invocation entry in the PASA that is signaled to handle
the exception. This invocation is the last invocation
signaled or resignaled to handle the exception. For
machine exceptions, the first invocation signaled is the
invocation incurring the exception. For user-signaled
exceptions, the Signal Exception instruction may initially
locate the current or any previous invocation. If the
invocation to be signaled handles the exception by
resignaling the exception, the immediately previous
invocation is considered to be the last signaled
invocation. This may occur repetitively until no more
prior invocations exist in the process and the signaled
program invocation entry is assigned a value of binary O.
If an invocation to be signaled handles the exception in
any manner other than resignaling or does not handle
the exception, that invocation is considered to be the
last signaled.

The signaled program instruction address entry specifies
the number of the instruction that is currently being
executed in the signaled invocation.

The machine extends the area beyond the exception
specific data area with binary 0' s so that the pointers to
program invocations are properly aligned.

The operand 2 values are defined as follows:

• Retrieve options
Hex 00= Retrieve for a branch

point exception handler
Hex 01 = Retrieve for an internal

entry point exception
handler

Hex 02= Retrieve for an external
entry point exception
handler

Char(1)

If the exception data retention option is set to 1 (do not
save). the number of bytes available for retrieval is set
to O.

Exception data is always available to the process default
exception handler.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

10-8

Events

0002 Authorization j 0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2 Other

06 Addressing
01 Space addressing violation X X
02 Boundary alignment X X
03 Range X X

06 Optimized addressability invalid X X
08 Argument/ Parameter

01 Parameter reference violation X X
10 Damage Encountered

04 System object damage state X X X

44 Partial system object damage X X X

16 Exception Management
02 Exception state of process invalid X

1C Machine- Dependent Exception
03 Machine storage limit exceeded X

20 Machine Support
02 Machine check X
03 Function check X

22 Object Access
01 Object not found X X
02 Object destroyed X X
03 Object suspended X X

24 Pointer Specification
01 Pointer does not exist X X

2A Program Creation
06 Invalid operand type X X

07 Invalid operand attribute X X
08 Invalid operand value range X X
OA Invalid operand length X X
OC Invalid operand ODT reference X X
00 Reserved bits are not zero X X X

32 Scalar Specification
03 Scalar value invalid X

38 Template Specification
03 Materialization length exception X J

RETURN FROM EXCEPTION (RTNEXCP)

Op Code
(Hex) Operand 1

03E1 Return target

Operand 1: Space pointer.

Description: An internal exception handler subinvocation
or an external exception handler invocation is
terminated, and control is passed to the specified
instruction in the specified invocation.

The template identified by operand 1 must be 16-byte
aligned in the space. It specifies the target invocation
and target instruction in the invocation where control is
to be passed. The format of operand 1 is as follows:

• Invocation address

• Reserved (binary 0)

Space
pointer

Char(1)

• Action Char(1)
Reserved (binary 0) Bits 0-6
Action Code Bit 7
o = Re-execute the instruction

that caused the exception
or the instruction that
invoked the invocation.

= Resume execution with the
instruction that follows the
instruction that caused the
exception or resume execution
with the instruction that
follows the instruction that
invoked the invocation.

Reserved (binary 0) Char(1)

The invocation address entry is a space pointer that
locates an invocation entry in the PASA (process
automatic storage area) chain to which control will be
passed. The current instruction in an invocation is the
one that caused another invocation to be created. If an
event handler was invoked, then the current instruction
is the instruction that executed prior to the invocation of
the event handler.

If the action code is 0, then the current instruction of
the addressed invocation is reexecuted. If the action
code is 1, execution resumes with the instruction
following the current instruction of the addressed
invocation.

When a Return From Exception instruction returns
control to an invocation that was interrupted by an
event, the action code in the operand 1 template is
ignored and execution continues at the point of
interruption. That is, the interrupted instruction is not
reexecuted and execution of the instruction is completed
as if no interruption occurred. For example, if a
Dequeue instruction is waiting for a message to arrive
on a queue when an event handler is invoked that
produces an exception, the exception handler returns
control to the interrupted Dequeue instruction and the
instruction continues to wait for the message.

The Return From Exception instruction may be issued
only from the initial invocation of an external exception
handling sequence or from an invocation that has an
active internal exception handler.

If the instruction is issued from an invocation that is not
an external exception handler and has no internal
exception handler subinvocations, the return instruction
invalid exception is signaled.

Exception Management Instructions 10-9

The following table shows the actions performed by the
Return From Exception instruction:

Invocation Addressing Addressing
Issuing Own Higher
Instruction Invocation/Option Invocation/Option

Not handling Error Error
exception

Handling Allowed 2 Allowed 3
internal
exception(s)

Handling Error Allowed 3
external
exception(s)

Handling Allowed 2 Allowed 3
external
exception(s)
and internal
exception(s)

1. A return instruction invalid exception is signaled.
If there are no more internal exception handler
subinvocations active and this invocation is not
an external exception handler, the instruction
may not be issued.

2. The current internal exception handler
subinvocation is terminated.

3. All invocations after the addressed invocation
are terminated and execution proceeds within
the addressed invocation. Any invocation exit
programs set for the terminated invocations will
be given control before execution proceeds
within the addressed invocation.

Whenever an invocation is terminated, the invocation
count in the corresponding activation entry (if any) is
decremented by 1.

An action code of 1 specifies completion of an
instruction rather than execution of the following
instruction if the current instruction in the addressed
invocation signaled a size exception or a floating-point
inexact result exception.

10-10

Note: The previous condition does not apply if any of
the above exceptions were explicitly signaled by a Signal
Exception instruction.

A Return From Exception instruction cannot be used or
recognized in conjunction with a branch point internal
exception handler.

If a failure to invoke an invocation exit handler occurs, a
failure to invoke program event is signaled.

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0011 Program
0301 Invocation exit bypassed due to a RTNEXCP

or a SIGEXCP instruction
0401 Failure to invoke program

0016 Machine observation
0101 Instruction reference
0301 Invocation reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06 Addressing

01 Space addressing violation

01 Boundary alignment

03 Range

06 Optimized addressability invalid

08 Argument/Parameter

01 Parameter reference violation

10 Damage Encountered

04 System object damage state

Operand
1

x
X

X

X

X

X

44 Partial system object damage X

16 Exception Management

03 Invalid invocation X

1 C Machine-Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

02 Object destroyed X

03 Object suspended X

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

2A Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

09 Invalid branch target operand

OA Invalid operand length

OC Invalid operand ODT reference

00 Reserved bits are not zero

2C Program Execution

01 Return instruction invalid

38 Template Specification

01 Template value invalid

X
X

X

X
X

X
X

X

X

Other

X

X

X

X
X

X

X

X

SENSE EXCEPTION DESCRIPTION (SNSEXCPD)

Op Code
(Hex)

03E3

Operand
1

Attribute
receiver

Operand
2

Invocation
template

Operand
3

Exception
template

Operand 1: Space pointer.

Operand 2: Space pointer.

Operand 3: Space pointer.

Description: The Sense Exception Description instruction
searches the invocation specified by operand 2 for an
exception description that matches the exception
identifier and compare value specified by operand 3 and
returns the user data and exception handling action
specified in the exception description. The exception
descriptions of the invocation are searched in ascending
ODT number sequence.

The exception identifier in the exception description can
be specified in one of the following ways:

Hex ()()()()

Hex nnOO

Hex nnmm

= Any exception 10 will result in a
match

= Any exception 10 in class nn will
result in a match

Only exception I D nnmm will result
in a match

If a match on exception I D is detected. the
corresponding compare values are matched. If the
compare value length in the exception description is less
than the compare value in the search template. the
length of the compare value in the exception description
is used for the match. If the compare value length in
the exception description is greater than the compare
value in the search template. an automatic mismatch
results.

Exception Management Instructions 10-11

If a match on exception ID and compare value is
detected, the exception handling action of the exception
description determines which of the following actions is
taken:

IGNORE

DISABLE

RESIGNAL

DEFER

HANDLE

The operand 1 template is materialized.

The exception description is bypassed
and the search for an exception
description continues with the next
exception description defined for the
invocation.

The operand 1 template is materialized.

The operand 1 template is materialized.

The operand 1 template is materialized.

If no exception description of the invocation matches
the exception I D and compare value of operand 3, the
number of bytes available for materialization on the
operand 1 template is set to O.

The template identified by operand 1 must be 16-byte
aligned.

The first 4 bytes of the materialization identify the total
number of bytes that may be used by the instruction.
This value is supplied as input to the instruction and is
not modified by the instruction. A value of less than 8
causes the materialization length exception to be
signaled.

The second 4 bytes of the materialization identify the
total number of bytes available to be materialized. The
instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the
byte area identified by the receiver is greater than that
required to contain the information requested, then the
excess bytes are unchanged. No exception is signaled in
the event the receiver contains insufficient area for the
materialization, other than the materialization length
exception described previously.

10-12

The format of the attribute receiver is as follows:

• Template size
- Number of bytes provided

for materialization
Number of bytes available
for materialization

• Control flags

ChartS)
Bin(4)

Bin(4)

Char(2)
- Exception handling action Bits 0-2

000 Do not handle-ignore occurrence of
exception and continue processing

010 Do not handle-continue search for an
exception description by resignaling the
exception to the immediately preceding
invocation

100 Defer handling-save exception data for
later exception handling

101 = Pass control to the specified exception
handler

No data Bit 3
o Exception data is returned

= Exception data is not
returned

Reserved (binary 0)
User data indicator
o = User data not present

= User data present
Reserved (binary 0)
Exception handler type
00 External entry point
01 = Internal entry point
10 = Branch point

- Reserved (binary 0)

• Relative exception description
number

• Reserved (binary 0)

• Pointer to user data (binary 0
if value of user data indicator is
binary 0)

Bit 4
Bit 5

Bits 6-7
Bits 8-9

Bits 10-15

Bin(2)

Char(4)

Space
pointer

The relative exception description number entry
identifies the relative number of the exception
description that matched the search criteria. The order
of definition of the exception descriptions in the ODT
determines the value of the index. A value of 1
indicates that the first exception description defined in
the ODT matched the search criteria.

The template identified by operand 1 must be 16-byte
aligned. The invocation address entry is a space pointer
that locates an invocation entry in the PASA (process
automatic storage area). The invocation is searched for
a matching exception description. If the space pointer
locates the PASA base entry, the operand 1 template is
materialized with the number of bytes available for
materialization set to O. If the space pointer locates
neither a valid invocation entry nor the PASA base entry,
the invalid invocation address exception is signaled.

The first exception description to search entry specifies
the relative number of the exception description to be
used to start the search. The number must be a nonzero
positive binary number determined by the order of
definition of exception descriptions in the DDT. A value
of 1 indicates that the first exception description in the
invocation is to be used to begin the search. If the
value is greater than the number of exception
descriptions for the invocation, the operand 1 template
is mate,ialized with the number of bytes available for
materialization set to o.

The format of the invocation template is as follows:

• Invocation address

• Reserved (binary 0)

Space
pointer

Char(2)

• First exception description to search Bin(2)

The operand 3 exception template specifies the
exception-related data to be used as a search argument.
The format of the template is as follows:

• Template size Char(8)
Number of bytes provided for Bin(4)
materialization (must be at least 44)

- Number of bytes available for Bin(4)*
materialization

• Exception identifier

• Compare value length (maximum
of 32)

• Compare value

Char(2)

Bin(2)

Char(32)

Note: Entries noted with an asterisk (*) are ignored by
the instruction.

Events

0002 Authorization
0101 Authorization violation

OOOC Machine resources
0201 Machine auxiliary storage exceeded

0000 Machine status
0101 Machine check
0801 Process storage limit exceeded

0010 Process
0701 Maximum processor time exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exception Management Instructions 10-13

Exceptions SIGNAL EXCEPTION (SIGEXCP)

Operands Op Code Operand Operand J Exception 1 2 3 Other (Hex) 1 2

06 Addressing 10CA Attribute Exception
01 Space addressing violation X X X template data

02 Boundary alignment X X X

03 Range X X X Operand 1: Space pointer.

06 Optimized addressability invalid X X X

08 Argument/ Parameter Operand 2: Space pointer.

01 Parameter reference violation X X X

10 Damage Encountered

04 System object damage X Optional Forms

44 Partial system object damage X
16 Exception Management

Op Code
Mnemonic (Hex) Form Type

03 Invalid invocation address X

1C Machine- Dependent Exception SIGEXCPI 18CA Indicator

03 Machine storage limit exceeded X SIGEXCPB 1CCA Branch

20 Machine Support

02 Machine check X

03 Function check X Extender: Branch options or indicator options.

22 Object Access

01 Object not found X X X If the branch or indicator option is specified in the op

02 Object destroyed X X X code. the extender field must be present along with one

03 Object suspended X X X or two branch targets (for branch options) or one or two

24 Pointer Specification indicator operands (for indicator options). The branch or

01 Pointer does not exist X X X indicator operands immediately follow the last operand

02 Pointer type invalid X X X listed above. See Chapter 1. Introduction for the J 2A Program Creation encoding of the extender field and the allowed syntax of

06 Invalid operand type X X X the branch and indicator operands.

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

OA Invalid operand length X X X Description: The Signal Exception instruction signals a

OC Invalid operand ODT reference X X X new exception or resignals an existing exception to the

OD Reserved bits are not zero X X X X process. Optionally. the instruction branches to one of

32 Scalar Specification the specified targets based on the results of the signal

01 Scalar type invalid X X X and the selected branch options in the extender field. or

38 Template Specification it sets indicators based on the results of the signal. The

01 Template value invalid X X signal is presented starting at the invocation identified in

02 Template size invalid X the signal template.

03 Materialization length exception X

10-14

The template identified by operand 1 specifies the signal
option and starting point. It must be 16-byte aligned in
the space with the following format.

• Signaled to invocation address Space
pointer

• Signal option Char(1)
Signal/resignal option Bit 0
o Signal new exception.
1 = Resignal currently handled

exception (valid only for an
external exception handler).

Invoke PDEH (process default Bit 1
exception handler) option
o = Invoke PDEH if no

exception description
found for invocation.
Do not invoke PDEH if
no exception description
found for invocation
(ignore if PASA base
entry specified).

Exception description
search control
o = Exception description

search control not
present

1 = Exception description
present

- Reserved (binary 0)

• Reserved (binary 0)

• First exception description
to search

Bit 2

Bits 3-7

Char(1)

Bin(2)

The signaled to invocation address entry is a space
pointer that locates an invocation entry in the PASA
(process automatic storage area). The exception is
signaled to this invocation. If the space pointer locates
the PASA base entry, the exception is signaled to the
PDEH. If the space pointer locates neither a valid
invocation entry nor the PASA base entry, the invalid
invocation address exception is signaled. If the program
associated with the invocation has defined an exception
description to handle the exception, the specified action
is taken; otherwise, the PDEH is invoked unless the
invoke PDEH option bit is 1 (the exception is considered
ignored). If the PASA base entry is addressed instead
of an existing invocation, the PDEH will be invoked.

Exception descriptions of an invocation are searched in
ascending ODT number sequence. If the exception
description search control is not present, the search
begins with the first exception description defined in the
ODT. Otherwise, the first exception description to
search value identifies the relative number of the
exception description to be used to start the search.
The value must be a nonzero positive binary number
determined by the order of definition of exception
descriptions in the ODT. This value is also returned by
the Sense Exception Description instruction. A value of
1 indicates that the first exception description in the
invocation is to be used to begin the search. If the
value is greater than the number of exception
descriptions for the invocation, the template value invalid
exception is signaled.

The template identified by operand 2 must be 16-byte
aligned in the space. It specifies the exception-related
data to be passed with the exception signal. The format
of the exception data is the same as that returned by
the Retrieve Exception Data instruction. The format is as
follows:

• Template size Char(8)
- Number of bytes of data to be Bin(4)

signaled (must be at least 48 bytes)
Number of bytes available for Bin(4)*
materialization

• Exception identification

• Compare value length
(maximum of 32 bytes)

• Compare value

• Reserved (binary 0)

• Exception specific data

Char(2)

Bin(2)

Char(32)

Char(4)

Char(*)

Note: Entries shown here with an asterisk (*) are
ignored by the instruction.

Operand 2 is ignored if operand 1 specifies the resignal
option, because the exception-related data is the same
as for the exception currently being processed; however,
it must be specified when signaling a new exception.

The maximum size for exception-related data that is to
accompany an exception signaled by the Signal
Exception instruction is 32 608 bytes, including the
standard signal data.

Exception Management Instructions 10-15

If an exception ID in an exception description
corresponds to the signaled exception, the
corresponding compare values are verified. If the
compare value length in the exception description is less
than the compare value length in the signal template,
the length of the compare value in the exception
description is used for the match. If the compare value
length in the exception description is greater than the
compare value length in the signal template, an
automatic mismatch results. Machine-signaled
exceptions have a 4-byte compare value of binary O's.

An exception description may monitor for an exception
with a generic I D as follows:

Hex 0000 = Any signaled exception ID
results in a match.

Hex nnOO = Any signaled exception ID
in class nn results
in a match.

Hex nnmm = The signaled exception ID
must be exactly nnmm in
order for a match to occur.

An exception description may be in one of five states,
each of which determines an action to be taken when
the match criteria on the exception ID and compare
value are met.

IGNORE No exception handling occurs. The Signal
Exception instruction is assigned a
resultant condition of ignored. If a
corresponding branch or indicator setting
is present, that action takes place.

DISABLE

RESIGNAL

10-16

The exception description is bypassed,
and the search for a monitor continues
with the next exception description
defined for the invocation.

The search for a monitoring exception
description is to be reinitiated at the
preceding invocation. A resignal from the
initial invocation in the process results in
the invocation of the process default
exception handler. A resignal from an
invocation exit program results in an
unhand led exception that causes process
term i nation.

DEFER

HANDLE

The exception description is signaled, and
the Signal Exception instruction is
assigned the resultant condition of
deferred. If a corresponding branch or
indicator setting is present, that action
takes place. To take future action on a
deferred exception, the exception
description must be synchronously tested
with the Test Exception instruction in the
signaled invocation.

Control is passed to the indicated
exception handler, which may be a branch
point, an internal subinvocation, or an
external invocation.

If the exception description is in the ignore or defer
state and if the Signal Exception instruction does not
specify a branch or indicator condition or if it specifies
branch or indicator conditions that are not met, then the
instruction following the Signal Exception instruction is
executed.

When control is given to an internal or branch point
exception handler, all invocations up to, but not
including, the exception handling invocation are
terminated. Any invocation exit programs set for the
terminated invocations will be given control before
execution proceeds in the signaled exception handler.
For more information about the invocation exit program,
see Program Execution in the Functional Concepts
Manual.

If a failure to invoke an external exception handler or an
invocation exit occurs, a failure to invoke program event
is signaled. For each destroyed invocation, the
invocation count in the corresponding activation entry (if
any) is decremented by 1.

Resultant Conditions: Exception ignored or exception
deferred.

Events Exceptions

L 0002 Authorization Operands
0101 Object authorization violation Exception 1 2 Other

OOOC Machine resource 06 Addressing

0201 Machine auxiliary storage threshold exceeded 01 Space addressing violation X X
02 Boundary alignment X X

0010 Process 03 Range X X

0701 Maximum processor time exceeded 06 Optimized addressability invalid X X

0801 Process storage limit exceeded 08 Argument/ Parameter

01 Parameter reference violation X X

0011 Program 10 Damage Encountered

0301 Invocation exit bypassed due to a RTNEXCP 04 System object damage state X X X

or a SIGEXCP instruction 44 Partial system object damage X X X

0401 Failure to invoke program 16 Exception Management

02 Exception state of process invalid X

0016 Machine observation 03 Invalid invocation X

0101 Instruction reference 1C Machine- Dependent Exception

0301 Invocation reference 03 Machine storage limit exceeded X
20 Machine Support

0017 Damage set 02 Machine check X

0401 System object damage set 03 Function check X

0801 Partial system object damage set 22 Object Access

01 Object not found X X
02 Object destroyed X X
03 Object suspended X X

24 Pointer Specification

01 Pointer does not exist X X
02 Pointer type invalid X X

2A Program Creation
05 Invalid op code extender field X
06 Invalid operand type X X
07 Invalid operand attribute X X

08 Invalid operand value range X X
09 Invalid branch target operand X
OC Invalid operand ODT reference X X
00 Reserved bits are not zero X X X

38 Template Specification

01 Template value invalid X
02 Template size invalid X

Exception Management Instructions 10-17

TEST EXCEPTION (TESTEXCP)

Op Code
(Hex)

104A

Operand
1

Receiver

Operand
2

Exception
description

Operand 1: Space pointer.

Operand 2: Exception description.

Optional Forms

Mnemonic

TESTEXCPI
TESTEXCPB

Op Code
(Hex) Form Type

184A
1C4A

Indicator
Branch

Extender: Branch options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
or two branch targets (for branch options) or one or tWo
indicator targets (for indicator options). The branch or
indicator targets immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The instruction tests the signaled status of
the exception description specified in operand 2, and
optionally alters the control flow or sets the specified
indicators based on the test. Exception data is returned
at the location identified by operand 1. The branch or
indicator setting occurs based on the conditions
specified in the extender field depending on whether or
not the specified exception description is signaled.

Operand 2 is an exception description whose signaled
status is to be tested. An exception can be signaled
only if the referenced exception description is in the
deferred state.

10-18

Operand 1 addresses a space into which the exception
data is placed if an exception identified by the exception
description has been signaled.

The template identified by operand 1 must be 16-byte
aligned in the space.

The first 4 bytes of the materialization identify the total
number of bytes that may be used by the instruction.
This value is supplied as input to the instruction and is
not modified by the instruction. A value of less than 8
causes the materialization length exception to be
signaled.

The second 4 bytes of the materialization identify the
total number of bytes available to be materialized. The
instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the
byte area identified by the receiver is greater than that
required to contain the information requested, then the
excess bytes are unchanged. No exceptions (other than
the materialization length exception) are signaled in the
event that the receiver contains insufficient area for the
materialization.

If the exception description is not in the signaled state,
the number of bytes available for the materialization
entry is set to binary O's, and no other bytes are
modified. The format of the data returned in operand 1
is as follows:

• Template size
Number of bytes provided for
material ization
Number of bytes available for
materialization (0 if exception
description is not signaled)

• Exception identification

• Compare value length
(maximum of 32 bytes)

• Compare value

Char(8)
Bin(4)

Bin(4)

Char(2)

Bin(2)

Char(32)

• Reserved (binary 0) Char(4)

• Exception-specific data Char(*)

• Signaling program invocation address Space
pointer

• Signaled program invocation address Space
pointer

• Signaling program instruction address Bin(2)

• Signaled program instruction address Bin(2)

• Machine-dependent data Char(10)

The area beyond the exception-specific data area is
extended with binary O's so that pointers to program
invocations are properly aligned.

If no branch options are specified, instruction execution
proceeds at the instruction following the Test Exception
instruction.

If the exception data retention option is set to 1 (do not
save), no data is returned by this instruction.

Resultant Conditions: Exception Signaled or exception
not signaled.

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2

06 Addressing

01 Space addressing violation X
02 Boundary alignment X
03 Range X
06 Optimized addressability invalid X

08 Argument/ Parameter
01 Parameter reference violation X

10 Damage Encountered
04 System object damage state X X
44 Partial system object damage X X

16 Exception Management
01 Exception description status X

invalid
lC Machine-Dependent Exception

03 Machine storage limit exceeded
20 Machine Support

02 Machine check

03 Function check
24 Pointer Specification

01 Pointer does not exist X
02 Pointer type invalid X

2A Program Creation
05 Invalid op code extender field
06 Invalid operand type X X
09 Invalid branch target operand
OA Invalid operand length X
OC Invalid operand ODT reference X X
00 Reserved bits are not zero X X

38 Template Specification
03 Materialization length exception X

Other

X
X

X

X
X

X

X

X

Exception Management Instructions 10-19

10-20

Chapter 11. Process Management Instructions

This chapter describes instructions used for process
management. These instructions are in alphabetic order.
For an alphabetic summary of all the instructions, see
Appendix A. Instruction Summary.

CREATE PROCESS CONTROL SPACE (CRTPCS)

Op Code Operand Operand
(Hex) 1 2

0322 Process Creation
control template
space

Operand 1: System pointer.

Operand 2: Space pointer.

Description: A process control space is created. That
space has the attributes contained in the creation
template specified by operand 2. Addressability to the
created process control space is placed in a system
pointer that is specified by operand 1.

A process control space is required as a machine work
area for an initiated process. A system pointer
addressing the process control space of an initiated
process is used to identify the process.

The size of the process control space is managed by the
machine and is not specified by the user.

The template identified by operand 2 must be 16-byte
aligned within the control space. Following is the format
of the space creation template:

• Template size specification
- Size of template
- Number of bytes available for

materialization

• Object identification
- Object type
- Object subtype
- Object name

Char(8)*
Bin(4)*
Bin(4)*

Char(32)
Char(1)*
Char(1)
Char(30)

• Object creation options Char(4)
- Existence attribute Bit 0

o = Temporary (required)
- Space attribute Bit 1

o = Fixed-length
1 = Variable-length

- Initial context Bit 2
o Addressability is not

inserted into the context
Addressability is inserted
into the context

- Access group Bit 3
o Not created as member

of access group
Created as member of
access group

- Reserved (binary 0) Bits 4-31

• Reserved (binary 0) Char(4)

• Size of space Bin(4)

• Initial value of space Char(1)

Process Management Instructions 11-1

• Performance class
- Space alignment

o = The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space. If
no space is specified for
the object. this value must
be specified for the
performance class.
The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space as
well as to allow proper
alignment of input/output
buffers at 512-byte align-
ments within the the space.

Reserved (binary 0)
Main storage pool selection
o Process default main storage

pool is used for object.
1 = Machine default main storage

pool is used for object.

Char(4)
Bit 0

Bits 1-4
Bit 5

Reserved (binary 0) Bit 6
- Block transfer on implicit Bit 7

access state modification
o = Transfer the minimum storage

transfer size for this object.
This value is 1 storage unit.
Transfer the machine default
storage transfer size. This
value is 8 storage units.

- Reserved (binary 0)

• Reserved (binary 0)

• Context

• Access group

Bits 8-31

Char(7)

System
pointer

System
pointer

Note: The values associated with template entries
annotated with an asterisk (*) are ignored by the
instruction.

11-2

The created process control space is temporary and has
no owning user profile. All authority states for the
object are considered to be public. The storage
occupied by the created process control space is
charged to the creating process.

The object identification specifies the symbolic name
that identifies the process control space within the
machine. A type code of hex 1 A is implicitly supplied by
the machine. The object identification identifies the
process control space on materialize instructions and
locates the process control space in a context that
addresses the process control space.

The existence attribute specifies that the process control
space is to be created as temporary. A process control
space, if not explicitly destroyed by the user, is implicitly
destroyed by the machine when machine processing is
terminated.

A space may be associated with the created process
control space. The length of the space may be fixed or
variable. The initial allocation is specified in the size of
space entry. The machine allocates a space of at least
the size specified. The actual size allocated is dependent
on an algorithm defined by a specific implementation. A
fixed size space of zero length causes no space to be
allocated.

Each byte of the space is initialized to a value specified
by the initial value of space entry. When the space is
extended in size, the initial value of space byte is also
used to initialize the new allocation.

If the initial context creation attribute entry indicates that
addressability is to be inserted into a context, the
context entry must contain a system pointer that
identifies a context where addressability to the newly
created process control space is to be placed. If
addressability is not to be inserted into a context, the
context entry is ignored.

If the access group creation attribute entry indicates that
the process control space is to be created in an access
group, the access group entry must be a system pointer
that identifies the access group in which the process
control space is to be created. If the process control
space is not to be created in an access group, the
access group entry is ignored.

The performance class parameter provides information
that allows the machine to manage the process control
space with consideration for the overall performance
objectives of operations involving the space.

J

Authorization Exceptions

L · Insert Operands
- Context identified in operand 2 Exception 1 2 3 4 Other

• Retrieve 02 Access Group

- Contexts referenced for address resolution 01 Object ineligible for access X
group

06 Addressing

Lock Enforcement 01 Space addressing violation X X

02 Boundary alignment X X

Materialize 03 Range X X ·
Contexts referenced for address resolution 06 Optimized addressability X X -

invalid

08 Argument/ Parameter · Modify
01 Parameter reference violation X X

Context identified in operand 2
OA Authorization

- Access group identified in operand 2
Unauthorized for operation X 01

OE Context Operation

01 Duplicate object identification X
Events

10 Damage Encountered

04 System object damage state X X X X X
0002 Authorization

44 Partial system object damage X X X X X
0101 Object authorization violation

1A Lock State

01 Invalid lock state X
OOOC Machine resource

1C Machine-Dependent Exception
0201 Machine auxiliary storage threshold exceeded

01 Machine dependent request X
0501 Machine address threshold exceeded invalid

L 03 Machine storage limit X
001 0 Process exceeded

0701 Maximum processor time exceeded 04 Object storage limit exceeded X
0801 Process storage limit exceeded 20 Machine Support

02 Machine check X
0016 Machine observation 03 Function check X

0101 Instruction reference 22 Object Access

01 Object not found X X
0017 Damage set 02 Object destroyed X X

0401 System object damage set 03 Object suspended X X
0801 Partial system object damage set 24 Pointer Specification

01 Pointer does not exist X

02 Pointer type invalid X

03 Pointer addressing invalid X
object

2A Program Creation

06 Invalid operand type X X

07 Invalid operand attribute X X

08 Invalid operand value range X X
OA Invalid operand length X

OC Invalid operand ODT reference X X
00 Reserved bits are not zero X X X X X

2E Resource Control Limit

01 User profile storage limit X
exceeded

38 Template Specification

01 Template value invalid X

Process Management Instructions 11-3

DESTROY PROCESS CONTROL SPACE (DESPCS)

Op Code
(Hex) Operand 1

0311 Process control space
to be destroyed

Operand 1: System pointer.

Description: The designated process control space is
destroyed and addressability to the space is deleted
from a context if a context is currently addressing the
object. The system pointer identified by operand 1 is
not modified by the instruction, and a subsequent
reference to the destroyed process control space
through the pointer results in an object destroyed
exception.

If the process control space is currently being used by a
process, an object not eligible for destruction exception
is signaled.

Authorization Required

• Retrieve
- Contexts referenced for address resolution

Lock Enforcement

• Modification
Context addressing object

- Access group containing object

• Object control
- Operand 1

11-4

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06 Addressing
01 Space addressing violation
02 Boundary alignment
03 Range
06 Optimized addressability invalid

08 Argument/Parameter
01 Parameter reference violation

OA Authorization
01 Unauthorized for operation

10 Damage Encountered
04 System object damage state
44 Partial system object damage

1 A Lock State
01 Invalid lock state

1C Machine-Dependent Exception
03 Machine storage limit exceeded

20 Machine Support
02 Machine check
03 Function check

22 Object Access
01 Object not found
02 Object destroyed
03 Object suspended
06 Object not eligible for destruction

24 Pointer Specification
01 Pointer does not exist
02 Pointer type invalid
03 Pointer addressing invalid object

2A Program Creation
06 Invalid operand type
07 Invalid operand attribute
08 Invalid operand value range
OC Invalid operand ODT reference
00 Reserved bits are not zero

Operand
1 Other

X
X
X
X

X

X

X X
X X

X

X

X
X

X
X
X
X

X
X
X

X
X
X
X
X X

INITIATE PROCESS (lNITPR)

Op Code Operand Operand Operand Operand
(Hex) 1 2 3 4

0324 Process Process Argument Lock
control definition list list
space template

Operand 1: System pointer.

Operand 2: Space pointer.

Operand 3: Argument list or null.

Operand 4: Space pointer or null.

Description: A process is established in the machine.

The process control space identified by operand 1
identifies a process to be established.

The process definition template specified by operand 2
defines the attributes of the process.

Operand 3 specifies an argument list to be presented to
the first program executed in the process problem
phase. When the operand is null, no arguments are
presented.

Operand 4 locates an area in a space that identifies
object locks (that are to be transferred to the process
being established) currently held by the process issuing
the Initiate Process instruction. When the operand is
null, no locks are transferred.

When a new process is being established, the process
control space provided by operand 1 must not be
associated or used by any other active or suspended
process. If a process is already associated with the
process control space, the object not available to
process exception is Signaled. Privileged instruction
authorization is required to establish a new process. The
number of initiated processes is dependent on the main
storage size and other current demands on main
storage. Each initiated process requires a minimum of
1024 bytes of main storage.

Process Management Instructions 11-5

Because this instruction requires one process to act
upon another process, a portion of the function is
controlled by the issuing process, and the remainder of
the function is controlled by the new process. When
control is returned to the issuing process, the function
may not have been performed in its entirety. An event
is signaled when the process initiation is complete
(either successfully or unsuccessfully). The process
terminated event is signaled when the initiation of a
process is incomplete. An exception that indicates the
reason for the failure of the Initiate Process instruction
is signaled if the exception is detected prior to the new
process becoming a dispatchable entity in the machine.

The process definition template specified by operand 2
establishes the attributes of the process being
established. The template identified by operand 2 must
be 16-byte aligned in a space.

The format of the process definition template is as
follows:

Size of process definition template
Number of bytes provided
Number of bytes available for
materialization

Process control attributes
Process type
o = Dependent process
1 = Independent process
Instruction wait access state
control
o Access state modification

is not allowed
Access state modification
is allowed if specified

Char(a)*
Bin(4)*
Bin(4)*

Char(4)
Bit 0

Bit 1

Time slice end access state control Bit 2

11-6

o Access state modification
is not allowed

1 = Access state modification
is allowed if specified

Time slice event option
o = Time slice expired without

entering instruction wait
event is not signaled during
time slice
Time slice expired without
entering instruction wait
event is signaled

Bit 3

- Reserved (binary 0) Bit 4
Initiation phase program option Bit 5
o = No initiation phase program

specified (do not enter
initiation phase)

1 = Initiation phase program specified
(enter initiation phase)

- Problem phase program option Bit 6
o = No problem phase program

specified (do not enter
problem phase)

1 = Problem phase program specified
(enter problem phase)

Termination phase program option Bit 7
o = No termination phase program

specified (do not enter
termination state)
Termination phase program
specified (enter termination
state)

Process default exception handler Bit a
option
o No process default exception

handler
Process default exception
handler specified

Process name resolution list option Bit 9
o No process name resolution

list
1 = Process name resolution list

specified
Process access group option
o No process access group

option
1 = Process access group

specified
Process adopted user profile
list option
o No process adopted user

profile list
Process adopted user
profile list specified

Reserved (binary 0)

• Signal event control mask

• Number of event monitors (0-256)

Bit 10

Bit 11

Bits 12-31

Char(2)

Bin(2)

• Resource management attributes
- Process priority
- Process storage pool

identification
- Maximum temporary auxiliary

storage allowed (in bytes)
- Time slice interval
- Default time-out interval
- Maximum processor time allowed
- Process multiprogramming

level class ID

• Modification control indicators

Char(1)
Char(1)

Bin(4)

Char(8)
Char(8)
Char(8)
Char(1)

Char(8)

Each indicator specifies the modification options for a
specific attribute of the process being controlled by
the process definition template that the modification
control indicators are part of. The values and bit
assignments are as follows:

00 =Modification of the attribute is not allowed.

01 =Modification is allowed only in the initiation
and termination phases, and only by the
executing process. Processes external to the
initiated process cannot modify this attribute.

11 =Modification is allowed in all phases and by
all processes.

The bit assignment is as follows:
Instruction wait access
state control

- Time slice end access
state control

- Time slice event option
- Exception event option
- Problem phase program option
- Termination phase program option
- Process default exception

handler option
- Process NRL option
- Signal event control mask

Process priority
Process storage pool
identification

- Maximum temporary auxiliary
storage allowed
Time slice interval

- Default wait timeout interval
- Maximum processor time allowed

Process MPL class 10
User profile pointer

- Process communication object
pointer
Process NRL pointer
Termination phase program pointer

- Problem phase program pointer
- Process default exception handler

Process adopted user profile list
Process adopted user profile list
option
Reserved (binary 0)

• Reserved (binary 0)

Bits 0-1

Bits 2-3

Bits 4-5
Bits 6-7
Bits 8-9
Bits 10-11
Bits 12-13

Bits 14-15
Bits 16-17
Bits 18-19
Bits 20-21

Bits 22-23

Bits 24-25
Bits 26-27
Bits 28-29
Bits 30-31
Bits 32-33
Bits 34-35

Bits 36-37
Bits 38-39
Bits 40-41
Bits 42-43
Bits 44-45
Bits 46-47

Bits 48-63

Char(9)

The format of the process pointer attributes is as
follows:

• Process user profile System
pointer

• PCO (process communication object) System

• Process NRL (name resolution list)

• Initiation phase program

pointer
Space
pointer
Data
pointer or
Char(16)

Space
pointer

System
pointer

Process Management Instructions 11-7

• Termination phase program

• Problem phase program

• PDEH (process default
exception handler)

• PASA (process automatic
storage area)

• PSSA (process static
storage area)

• PAG (process access group)

• Process status indicators (see the
Materialize Process Attributes
instruction for the details of
this attribute)

• Reserved (binary 0)

• Process resource usage attributes*
(see Materialize Process Attributes
instruction for the details)

• Subordinate process identification
Number of immediately
subordinate processes
Identification of
subordinate processes

System
pointer

System
pointer

System
pointer

Space
pointer

Space
pointer

System
pointer

Char(13)*

Char(3)

Char(14)*

Char(*)
Bin(2)

System
pointer(s)

• Process adopted user profile list Space
pointer

Note: The values of the entries associated with an
asterisk (*) are ignored by this instruction.

Authorization verification for all objects identified by
pointers in the process definition template (except the
process user profile, initiation phase program.
termination phase program, and problem phase
program) employs the user profile identified in the
template, the user profiles identified in the process
adopted user profile list, or employs the authorization
previously set in the system pointers. The initiator must
have object management authority for the new process
user profile or the new process user profile must be
identical to the initiating process user profile.

11-8

Process control attributes establish the basic process
characteristics. The attributes and definitions are as
follows:

• Process type (dependent/independent): This attribute
denotes the upper boundary of the process hierarchy
(domain). Designating a process as independent
produces a direct-dependent relationship so that
destruction of the initiator of an independent process
does not cause implicit destruction of the
independent process and its dependent subordinates.
The initiator of an independent process. however, has
implied full authority over that independent process
and its dependents for explicit termination or
suspension.

• Instruction wait access state control: This attribute
specifies that the access state of the process access
group can be modified when the process enters a
wait as a result of a Dequeue, Lock. Wait On Event.
Wait On Time, Suspend Process, or Set Cursor (for
delete or update) instruction. If the parameter equals
binary 1 and the instruction causing the wait also
specifies an access state modification. the access
state of the process access group is modified.

• Time slice end access state control: This attribute
has the same function as the instruction wait access
state control attribute. except for time slice end.

• Time slice event option (signal event/do not signal
event): This attribute specifies that an event is to be
signaled if a process has exhausted its time slice
without having entered a wait as a result of a
Dequeue. Lock. Wait On Event. Wait On Time.
Suspend. or Set Cursor (for delete or update)
instruction. The event is signaled if the time slice
event option is set to signal event and the condition
of the signal event is met.

• Initiation phase program option: This attribute
specifies that a system pointer to the initiation phase
program is supplied and that the initiation phase is to
be entered.

• Problem phase option: This attribute specifies that a
system pointer to the problem phase program is
supplied and that the problem phase is to be entered.
Either an initiation phase option or a program phase
option must be specified. The template value invalid
exception is signaled if one of the options is not
specified.

J

• Termination phase option: This attribute specifies
that a system pointer to the termination phase
program is supplied and that the termination phase is
to be entered.

• Process default exception handler option: This
attribute specifies that a system pointer to a program
is supplied as the process default exception handler.

• Process name resolution list option: This attribute
specifies that a space pointer is supplied for the
process NRL.

• Process adopted user profile list option: This
attribute specifies if a space pointer is supplied which
addresses a list of user profiles to be adopted by the
process.

The signal event control mask controls the signaling of
conditionally specified events. If the conditional signal
mask in a Signal Event instruction is binary 0 or if one
or more matching bit positions in the conditional signal
mask and the signal event control mask are set to binary
1, the specified event is signaled.

The number of event monitors allows the machine to
more effectively manage event monitors. This number is
not a maximum; it represents a performance variable.
The allowable value in this entry is from 0 through 256.

Resource management attributes define a process's
limitations or restrictions in competing for machine
resources. The attributes and definitions are as follows:

• Process priority: This attribute designates the relative
importance of this process to other processes in the
machine when contending for the processor and main
storage. A value of 0 is the highest priority.

• Process storage pool identification: This attribute
designates the main storage pool from which the
machine is to draw for storage of the process's
objects and machine overhead in support of a
process. The storage pool identification must be one
of the storage pools existing in the machine as
defined by the machine attribute. The storage pool
identification of hex 00 is reserved for the machine.

• Maximum temporary auxiliary storage allowed: This
attribute restricts the amount of auxiliary storage for
temporary system objects and machine overhead that
a process can consume in the course of its existence.

• Time slice interval: This attribute specifies the
amount of processor resource time to be given to the
process until it is made temporarily ineligible for the
processor.

• Default time-out interval: This attribute specifies a
realtime interval that restricts the amount of time the
process waits for an object to be made available, a
message to arrive on a queue, or an event to occur.
This value supplies a default when a wait time-out
value is not specified on the Lock, Dequeue, or Wait
On Event instruction. The bits in this field are
numbered from 0 to 63, and bit 41 is defined as
1024 microseconds. The maximum wait time-out
interval allowed is a value equal to (248 - 1)
microseconds. Any value that indicates more time
than the maximum wait time-out causes the
maximum wait time-out to be used.

• Maximum processor time allowed: This attribute
specifies the maximum amount of processor time that
a process may consume during its existence. An
event is signaled when the specified value is
exceeded.

• Process MPL (multiprogramming level) class ID: This
attribute is used to associate the MPL class of the
new process with a previously specified MPL class
set as a machine attribute.

Modification control indicator attributes restrict the
modification of process attributes through the Modify
Process Attributes instruction. Modification of the
process can be disallowed, restricted to modification by
the process itself only in the initiation and termination
phases, or allowed in all phases by any process with
proper authority. External modification is allowed
implicitly to the initiator of this process, provided the
modification control indicators are set to allow
modification in all phases. Other processes are allowed
to modify this process if they have the special process
control authority within their process user profile or
current adopted user profile and the modification control
indicators of this process are set to allow modification in
all phases. The modification control indicators cannot be
modified.

Process Management Instructions 11-9

The process user profile system pointer is required and
identifies the user profile that is to govern the execution
of the process. The user profile governing the process
issuing the Initiate Process instruction must have object
management authorization for the designated user
profile or must be identical to the designated user
profile. The process user profile provides the basic
authorization control for the process. Permanent system
object storage allocation and ownership of objects
created by the process are always reflected in the user
profile specified in the process definition template. A
process's authorization can be augmented through
specification of a process adopted user profile list or
through the invocation of a program created with an
adopted user profile. Adopted user profiles are used in
conjunction with the process user profile to determine a
process's eligibility for access to existing objects,
privileged instructions, or special authorizations.

An implicit lock is applied to the process user profile for
the duration of the initiation of the process. If a process
holds an LENR lock on the user profile, an invalid lock
state exception is signaled. The implicit lock is removed
when the process is terminated.

The PCO (process communication object) pointer
provides addressability to a user object whose use and
format is an external convention. The area may contain
a system pointer, a space pointer, a data pointer, or any
data value. The contents of the area are not verified by
the machine. If a PCO is not used, the associated
storage area may contain any value.

The process NRL (name resolution list) pointer is a
space pointer that provides addressability to a list of
resolved system pointers addressing contexts to be used
by the machine for address resolution. The list of
system pointers is preceded by a binary(2} scalar
denoting the number of system pointers in the list. The
space pointer must address a 16-byte boundary that
has the following format:

• Number of pointers

• Reserved (binary O)

• List of resolved system
pointers to contexts

Bin(2}

Char(14}

System
pointer(s}

The process NRL is optional. If not specified, it causes
the object not found exception to be signaled when a
context is not specified for explicit or implicit system
pointer name resolution functions.

11 -10

The initiation phase program pointer is optional. If
specified, it identifies the first program to be given
control by the machine at the completion of the Initiate
Process instruction. The initiation phase option
parameter establishes whether the initiation phase is to
be entered and whether the designated program is to be
invoked.

The termination phase program pointer is optional. If
specified, it indicates the program to be given control
when the process enters the termination phase. The
termination phase option parameter establishes whether
the termination phase is to be entered and whether the
designated program (if specified) is to be invoked.

The problem phase program pointer identifies the
program to be invoked when the process enters the
problem phase. The problem phase option parameter
establishes whether the problem phase is to be entered
and whether the designated program is to be invoked.

The PDEH (process default exception handler) pointer is
optional. If it is present, it identifies the program to be
given control when an exception is not handled by a
signaled program invocation. This program is invoked as
an external exception handler and as the most current
invocation in the process. No invocations within the
process are destroyed prior to invoking the PDEH.
When no PDEH is specified, the process is terminated if
a signaled invocation does not handle an exception. The
PDEH is given control when an exception occurs
invoking the signaled invocation program. The exception
data intended for the signaled invocation program is
presented to the PDEH.

The PAS A (process automatic storage area) space
pointer is required and addresses a location in a space
the machine uses to allocate invocations. The space
pointer must address a 16-byte boundary. The space
pointer locates the PASA base entry. At this location,
the user must have constructed the PASA base entry.
The base entry consists of three space pointers. The
succeeding bytes in the space are then assumed to be
available for allocation for invocation entries. These
entries contain stack control pointers, data, and the
automatic storage allocated for program invocations.
See the Call External instruction, for a description of the
PASA.

The PASA base entry must be initialized prior to the
Initiate Process instruction that specifies the PASA base
entry in the PDT (process definition template). The
initialization of the base entry consists of the following:

• Current invocation entry
(initialized to address the
PASA base entry)

• First invocation entry
(need not be initialized. and
any value present is ignored
by the machine)

• Next available storage location
(initialized to the byte location
in the space where the first
invocation entry is to be allocated)

Space
pointer

Space
pointer

Space
pointer

The space that contains the PASA can be permanent or
temporary and can be contained in an access group only
if the space is temporary.

The PSSA (process static storage area) space pointer is
optional. If this pointer is present. it addresses a space
the machine uses to stack activations. The PSSA space
pointer is an optional parameter. provided no programs
executed within the process require static storage. The
space pointer must address a 16-byte boundary and
locates the beginning of the PSSA. The succeeding
bytes in the space are assumed to be available for
allocation for activation entries. These entries contain
stack control pointers. data. and the static storage
allocated for program activations. See the Activate
Program instruction for a description of the PSSA.

If a valid PSSA space pointer is not provided prior to
the first program activation or prior to the invocation
within the process that requires static storage. a pointer
does not exist. pointer type invalid. or a space
addressing violation exception is signaled at activation or
invocation of the program.

The PSSA base entry must be initialized prior to the

activation of the first program in the process. The base
entry consists of the following:

• Current activation entry
(initialized to address the
PSSA base entry)

• First activation entry
(need not be initialized. and any
value present is ignored by the
machine)

• Next available storage location
(initialized to the byte location
in the space where the first
activation entry is to be allocated)

Space
pointer

Space
pointer

Space
pointer

The space containing the PSSA can be permanent or
temporary and can be contained in an access group only
if the space is temporary.

The PAG (process access group) system pointer is
optional. If this pointer is present. it addresses an
access group that will be managed by the machine at
instruction wait entry. at time slice end. and at process
predispatching times. The PAG access state
modification is controlled by the instruction wait access
state control and time slice end access state control
indicators. in conjunction with access state modification
options supplied with the Dequeue. Lock. Wait On
Event. Wait On Time. Suspend Process. and Set Cursor
(for delete or update) instructions. The access group
and its member objects can be referenced by other
processes at any time.

The subordinate process identification information is
ignored unless a process adopted user profile list is
specified. In this case. the number of immediately
subordinate processes field is interrogated for the value
(possibly zero) specifying the number of pointers which
follow prior to the process adopted user profile list
space pointer. The value(s) of the pointers which may
be specified as following it are ignored. This number of
pointers value is used only to determine the location of
the space pointer to the process adopted user profile
list.

Process Management Instructions 11-11

The process adopted user profile list space pointer is
optional and if present identifies user profiles which the
process adopts at initiation in addition to the process
user profile. The user profile governing the process
issuing the Initiate Process instruction must have
operational authorization for the designated user profiles.
Note that to specify this attribute the number of
immediately subordinate processes field in the
subordinate process identification information must also
be set with a value which is used in determining the
location of the process adopted user profile list space
pointer.

The list of system pointers addressing these user
profiles is preceded by a binary(2) scalar denoting the
number of system pointers in the list. The space pointer
must address a 16-byte boundary that has the following
format:

• Number of pointers

• Reserved

• List of system pointers
to user profiles

Bin(2)

Char(14)

System
pointer(s)

The process adopted user profiles provide an additional
authorization control for the process. Note, however,
that system object storage allocation and ownership of
objects created by the process are always reflected in
the process user profile which must always be specified
in the process definition template (see the earlier
description of process user profile). A process·
authorization may be augmented through the invocation
of a program created with an adopted user profile.
Adopted user profiles are used in conjunction with the
process user profile and the process adopted user
profiles to determine a process· eligibility for access to
existing objects, privileged instructions, or special
authorizations.

Operand 3 can identify an argument list to be presented
to the process being initiated, or it can be null (no
arguments passed). The argument and parameter
functions are the same as defined for interinvocation
communications (argument list on Call External and
Transfer Control instructions). Refer to Program
Execution in the Functional Concepts Manual for the
details on argument/parameter correspondence.

The argument to parameter relationship is established
for only the first program invoked in the problem phase.
The process initiation and termination programs are not
given access to the argument list.

11-12

Operand 4 can identify a space that specifies system
objects whose locks are to be transferred to the new
process. The template identified by operand 4 must be
16-byte aligned in the space.

The space object is organized such that a l-byte lock
state selection entry exists in the space for each
addressing object in the template. The addressing
objects must be system pointers if the associated lock
option entry is active; otherwise, an exception is
signaled. If the entry is not active, the associated
addressing object is ignored.

The format of the lock template is as follows:

• Number of lock transfer requests

• Offset to lock state selection entries

• Reserved (binary 0)

• Object lock(s) to be transferred
System pointer for each object
lock to be transferred

• Lock state selection entry
(repeated for each addressing
object in the template)
- Lock state to transfer

(only one state may be
requested: 1 = transfer)

transfer LSRD state
transfer LSRO state
transfer LSUP state
transfer LEAR state
transfer LENR state

Set lock count option
o Transfer the current

lock count
1 = Transfer a lock count of 1
Reserved (binary 0)
Entry active indicator
o = Entry not active

(do not use this
entry and associated
system pointer)
Entry active
(transfer this lock)

Bin(4)

Bin(2)

Char(10)

System
pointer(s)

Char(1)

Bits 0-4

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5

Bit 6
Bit 7

Only one lock state can be transferred within each entry.

The initiating process must hold the locks in the states
that are to be transferred, or an exception is signaled.

J

The initiating process cannot transfer a subset of lock
states (to the new process) that would result in
conflicting locks. For example. the initiating process
could not hold an object locked in the LENR and LSRD
state and transfer only the LSRD state. The object not
available to process exception is signaled if the transfer
request results in conflicting lock states.

See the Transfer Object Lock instruction for associated
functions and exceptions.

Authorization Required

• Privileged Instruction

• Object management
User profile specified as the process user profile
when the user profile is different than user profile
of the process that issued the instruction

• Retrieve
- Contexts referenced for address resolution

• Authorized operational to initiated processes
- Process adopted user profiles

Lock Enforcement

• Materialize
- Contexts referenced for address resolution

• Modify
- Process control space

Implicit Locks

• User profile of process to be initiated is implicitly
locked LSRD

Events

0002 Authorization
0201 Privileged instruction violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

00 1 0 Process
0102 Process initiated (to initiating process)
0202 Process terminated (to initiating process)
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Process Management Instructions 11-13

Exceptions MATERIALIZE PROCESS ATTRIBUTES (MATPRATR)

Operands Op Code Operand Operand Operand J Exception 1 2 3 4 Other (Hex) 1 2 3

06 Addressing 0333 Receiver Process Materialization
01 Space addressing violation X X X control options
02 Boundary alignment X X X space

03 Range X X X
06 Optimized addressability X X X Operand 1: Space pointer.

invalid

08 Argument/Parameter Operand 2: System pointer or null.

01 Parameter reference violation X X X
02 Initiate process X

Operand 3: Character scalar(1 I.

OA Authorization
01 Unauthorized for operation X
02 Privileged instruction X

Description: The instruction causes either one specific

10 Damage Encountered
attribute or all the attributes of the designated process
to be materialized.

04 System object damage state X X X X X
44 Partial system object damage X X X X X

Operand 1 specifies a space that is to receive the
1C Machine- Dependent Exception

01 Machine-dependent request X
materialized attribute values. The space pointer specified

invalid
in operand 1 must address a 16-byte aligned area.

03 Machine storage limit X
exceeded Operand 2 is a system pointer identifying the process

04 Object storage limit exceeded X control space associated with the process whose

06 Machine lock limit exceeded X attributes are to be materialized. If operand 2 is null, the

20 Machine Support process issuing the instruction is the subject process. If

02 Machine check X the subject process's attributes are being materialized by

J 03 Function check X another process, that process must be the original

22 Object Access initiator of the subject process or the governing user

01 Object not found X X X profile(s) must have process control special

02 Object destroyed X X X authorization.

03 Object suspended X X X

05 Object not available to process X X Operand 3 is a character scalar(1) specifying which

24 Pointer Specification process attribute is to be materialized. A value of hex

01 Pointer does not exist X X X 00 results in all the attributes of a process being

02 Pointer type invalid X X X materialized in the format described in the Initiate

03 Pointer addressing invalid X X Process instruction for the process definition template.

object Other options allow materialization of specialized

2A Program Creation process attributes.

06 Invalid operand type X X X X
07 Invalid operand attribute X X X X

08 Invalid operand value range X X X
OC Invalid operand ODT reference X X X X

00 Reserved bits are not zero X X X X X
38 Template Specification

01 Template value invalid X X

11-14

The materialization template has the following general
format when a process scalar attribute is materialized:

• Materialization size specification
Number of bytes provided for
materialization
Number of bytes available for
materialization

• Process scalar attributes

Charla)
Bin(4)

Bin(4)

Char(*)

The materialization template has the following general
format when a process pointer attribute is materialized:

• Materialization size specification
Number of bytes provided for
materialization
Number of bytes available for
materialization

Reserved (binary 0)

• Process pointer attribute

Charla)
Bin(4)

Bin(4)

Charla)

System
pointer
or
Space
pointer

Note: The values of the entry associated with an
asterisk (*) are ignored by this instruction.

The following attributes require materialization targets of
varying lengths. The attributes to be materialized and
their operand 3 materialization option values follow.

• Process control attributes

Values hex 01 through hex OB
or hex 27 cause the 4-byte
process control attributes value
to be placed in the byte area
identified by operand 1. The
individual attributes and the
corresponding values are as follows:

Process type
o = Dependent process
1 = I ndependent process
Instruction wait access state
control
o Access state modification

is not allowed
Access state modification
is allowed if specified

Time slice end access state
control
o Access state modification

is not allowed
Access state modification
is allowed if specified

Time slice end event option
o = Time slice expired without

entering instruction wait
event is not signaled

= Time slice expired without
entering instruction wait
event is signaled

Char(4)

Bit 0

Bit 1

Bit 2

Bit 3

Reserved (binary 0) Bit 4
Initiation phase program option Bit 5
o = No initiation phase program

specified (do not enter
initiation phase)
Initiation phase program
specified (enter initiation
phase)

Problem phase program option Bit 6
o = No problem phase program

specified (do not enter
problem phase)
Problem phase program
specified (enter problem
phase)

Process Management Instructions 11 -15

- Termination phase program option
o = No termination phase program

specified (do not enter
termination phase)
Termination phase program
specified (enter termination
phase)

- Process default exception
handler option
0 No process default

exception handler
Process default exception
handler specified

Process NRL (name resolution list)
option
o = No process NRL specified
1 = Process N R L specified

- Process access group option
0 No process access group

specified
Process access group
specified

- Process adopted user profile
list option
0 No process adopted user

profile list specified
Process adopted user
profile list specified

- Reserved (binary 0)

• Signal event control mask

The materialization of the control mask
is as follows:
- Hex OC = Signal event control

mask

• Number of event monitors

The materialization of this attribute is
as follows:
- Hex OD = Number of event

monitors

11-16

Bit 7 The resource management attributes and data types are
as follows:

· Hex OE = Process priority Char(1) J
· Hex OF = Process storage Char(1)

poollD
Bit S

· Hex 10 = Maximum temporary Bin(4)

auxiliary storage
allowed

· Hex 11 = Time slice interval Char(S)
Bit 9

Hex 12 = Default time-out Char(S)
interval

Bit 10 • Hex 13 = Maximum processor Char(S)
time allowed

Hex 14 = Process multipro- Char(1)
programming level class ID

Bit 11

· Hex 15 = Modification control Char(S)
indicators

Bits 12-31 J

Char(2)

Bin(2)

The modification control indicators are materialized
when the operand 3 value is hex 15. Each indicator
specifies the modification options allowed to a
process upon itself by the initiating process. The
possible values of each modification control indicator
are as follows:

00 = Modification of the attribute is not allowed.

01 = Modification is allowed in the initiation or
termination phases only.

10 = Modification is allowed in all phases
(initiation, problem, and termination).

The bit assignments of the modification control
indicators are as follows:
- Instruction wait access

state control
Time slice end access
state control
Time slice event option

- Reserved (binary 0)
- Problem phase program option
- Termination phase program option

Process default exception
handler option
Process NRL option

- Signal event control mask
Process priority

- Process storage pool
identification
Maximum temporary auxiliary
storage allowed
Time slice interval
Default time-out interval
Maximum processor time allowed
Process MPL class ID
User profile pointer
Process communication object
pointer
Process NRL pointer
Termination phase program
pointer
Problem phase program pointer
Process default exception
handler
Process adopted user profile list

- Process adopted user profile
list option
Reserved (binary 0)

Bits 0-1

Bits 2-3

Bits 4-5
Bits 6-7
Bits 8-9
Bits 10-11
Bits 12-13

Bits 14-15
Bits 16-17
Bits 18-19
Bits 20-21

Bits 22-23

Bits 24-25
Bits 26-27
Bits 28-29
Bits 30-31
Bits 32-33
Bits 34-35

Bits 36-37
Bits 38-39

Bits 40-41
Bits 42-43

Bits 44-45
Bits 46-47

Bits 48-63

The process pointer attributes which may be
materialized are the following:

• Hex 16= Process user profile pointer

The system pointer with addressability to the user
profile is placed into the space addressed by operand
1. If the materialization option (hex 00) is specified in
operand 3, a reserved character(9) field is included at
this point. This user profile is the process user profile
assigned by the Initiate Process or Modify Process
Attribute instruction.

• Hex 17= Process communication object (PCO) pointer

The PCO pointer is placed in the space addressed by
operand 1.

• Hex 18= Process name resolution List

The space pointer to the NRL is placed in the space
addressed by operand 1.

• Hex 19=1nitiation phase program pointer

The system pointer to the program is placed in the
space addressed by operand 1.

• Hex 1 A=Termination phase program pointer

The system pointer to the program is placed in the
space addressed by operand 1.

• Hex 1 B=Problem phase program pointer

The system pointer to the program is placed in the
space addressed by operand 1.

• Hex 1 D=Process automatic storage area

The space pointer with addressability to the PASA is
placed in the space addressed by operand 1.

• Hex 1 E=Process static storage area

The space pointer with addressability to the PSSA is
placed in the space addressed by operand 1.

• Hex 1 F= Process access group

The system pointer with addressability to the PAG is
placed in the space addressed by operand 1.

Process Management Instructions 11-17

Process status indicators are materialized when the
value of operand 3 is hex 20. The format and
associated values of this attribute are as follows:

• Process states
External existence state
000 = Suspended
010 = Suspended, in instruction wait
100 = Active, in ineligible wait
101 = Active, in current M PL
110 = Active, in instruction wait
Invocation exit active
Reserved (binary 0)
Internal processing phase
001 = Initiation phase
0·10 = Problem phase
100 = Termination phase

- Reserved (binary 0)

• Process interrupt status
(Bit = 1 denotes pending)

Time slice end pending
- Transfer lock pending
- Asynchronous lock retry pending

Suspend process pending
Resume process pending
Resource management attribute
modify pending

- Process attribute modify pending
- Terminate machine processing

pending
Terminate process pending
Wait time-out pending
Event schedule pending

- Machine service pending
- Invocation exit active
- Reserved (binary 0)

11-18

Char(2)
Bits 0-2

Bit 3
Bits 4-7
Bits 8-10

Bits 11-15

Char(2)

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5

Bit 6
Bit 7

Bit 8
Bit 9
Bit 10
Bit 11
Bit 12
Bits 13-15

• Process initial internal termination
status

Initial internal termination reason
Hex 80= Return from first

invocation in
problem phase.

Hex 40= Return from first
invocation in
initiation phase,
and no problem
phase program
specified.

Hex 20=Terminate Process
instruction issued by
this process to itself.

Hex 1 0= Exception was not
handled by the
process.

Hex 00= Process terminated
externally.

- Initial internal termination code

Char(3)

Bits 0-7

Bits 8-23

The code is assigned in one of the following ways:
a. If the termination is caused by a Return External

instruction from the first invocation, then this
code is binary O's.

b. The code is assigned by operand 2 of the
Terminate Process instruction. This code is also
given to subordinate processes involved in the
termination.

c. The code is assigned by the original exception
code that caused process termination to
commence. This code is also given to
subordinate processes involved in the
termination.

• Process initial external termination
status

Char(3)

Initial external termination reason: Bits 0-7
Hex 80=Terminate Process

instruction issued
explicitly to this
process from another
process.

Hex 40=A superordinate
process has been
terminated.

Hex 00= Process terminated
internally.

Initial external termination code:
This code is supplied by the
termination code in operand 2
of the Terminate Process
instruction.

Bits 8-23

• Process final termination status
- Final termination reason:

Hex 80=Return instruction from
first invocation.

Hex 40=Terminate Process
instruction issued
by the process being
materialized.

Hex 20=Terminate Process
instruction issued
to the process being
materialized by another
process.

Hex 10= Exception not handled
by this process.

Hex 08=Terminate Process
instruction issued
to superordinate of
the process being
materialized.

Hex 04=Superordinate process
of the process being
materialized completed
termination phase.

Final termination code
is assigned in one of
the following ways:
a. If the termination is

caused by a Return External
instruction from first
invocation, then this
code is binary 0' s.

b. The termination code is
assigned by the Terminate
Process instruction.

c. The termination code is
assigned by the original
exception code that
caused process termination.

The process final termination
status is presented as
event-related data in the
terminate process event.
Usually the event is the only
source of the process final
termination status since the
process will cease to exist
before its attributes can be
materialized.

Char(3)
Bits 0-7

Bits 8-23

Process resource usage attributes are materialized when
the value of operand 3 is hex 21. The format and
associated values of this attribute are as follows:

• Total temporary auxiliary storage used Bin(4)

• Total processor time used

• Number of locks currently held by
the process (including implicit locks)

Char(8)

Bin(2)

Subordinate processes identification attributes are
materialized when the value of operand 3 is hex 22. The
format and associated values of this attribute are as
follows:

• Materialization size specification
Number of bytes provided for
materialization
Number of bytes available for
materialization

• Number of immediately subordinate
processes

• Reserved (binary 0)

• System pointer to the process
control space for each subordinate
process (repeated for each
immediately subordinate process)

Char(8)
Bin(4)

Bin(4)

Bin(2)

Char(6)

System
pointer(s)

Process Management Instructions 11-19

Process performance attributes are materialized when
the value of operand 3 is hex 23. The format and
associated values of this attribute are as follows:

• Materialization size specification
- Number of bytes provided

for materialization
Number of bytes available
for materialization

Char(8)
Bin(4)

Bin(4)

• Number of page reads into main Bin(4)
storage associated with data base

• Number of page reads into main Bin(4)
storage not associated with data base

• Number of page writes from main Bin(4)
storage

• Number of transitions into ineligible Bin(2)
wait state

• Number of transitions into an
instruction wait

• Number of transitions into ineligible
wait state from an instruction wait

• Timestamp of materialization

Bin(2)

Bin(2)

Char(8)

Each of these counters has a limit of 32 767. If this
limit is exceeded, the count is set to 0, and no exception
is signaled.

The process performance attributes are not supplied
with materialization option hex 00.

The first 4 bytes of the materialization identify the total
number of bytes that may be used by the instruction.
This value is supplied as input to the instruction and is
not modified by the instruction. A value of less than 8
causes the materialization length exception to be
signaled.

The second 4 bytes of the materialization identify the
total number of bytes available to be materialized. The
instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the
byte area identified by the receiver is greater than that
required to contain the information requested, then the
excess bytes a No exceptions (other than the
materialization length exception described previously) are
signaled in the event that the receiver contains
insufficient area for the materialization.

11-20

Process execution status attributes are materialized
when the value of operand 3 is hex 24. The format and
associated values of this attribute are as follows: J
· Process priority Char(2)

Machine interface priority Char(1)
- Machine adjusted priority Char(1)

Normal value is hex 80.
This value is dynamically
modified by the machine.

· Pending interruptions Char(2)
Time slice end Bit 0
Transfer lock Bit 1
Asynchronous lock retry Bit 2
Suspend process Bit 3
Resume process Bit 4
Modify resource management Bit 5
attribute
Modify process attribute Bit 6
Terminate machine processing Bit 7
Terminate process Bit 8
Wait time-out Bit 9
Event Bit 10
Machi,ne service Bit 11
Reserved (binary 0) Bits 12-15

· Execution status Char(2)

J Suspended Bit 0
Instruction wait Bit 1
In MPL Bit 2
Ineligible wait Bit 3
Reserved (binary 0) Bits 4-15

· Wait status Char(2)
Wait on event Bit 0
Dequeue Bit 1
Lock Bit 2
Wait on time Bit 3
Reserved (binary 0) Bits 4-15

· Process class identification Char(2)
Storage pool class Char(1)

- MPL class Char(1)

L
· Processor time used Char(8)

· Performance attributes Char(18)
Number of data base read Bin(4)
operations

- Number of nondata base read Bin(4)
operations
Number of write operations Bin(4)
Transitions to ineligible wait Bin(2)
Transitions to instruction wait Bin(2)
Transitions to ineligible Bin(2)
from instruction wait

A system pointer to the process control space is
materialized when the value of operand 3 is hex 25. If a
process control space pointer is supplied in operand 2, it
is ignored. A pointer to the process that is executing
the MATPRATR instruction is always materialized.

A materialization option's value of hex 26 causes the
adopted user profile list attributes to be materialized as
follows:

• Materialization size specification
Number of bytes provided for
materialization
Number of bytes available for
materialization

• Reserved (binary 0)

• Pointer to the adopted
user profile list last
used to set this attribute

• Number of user profiles
in the encapsulated adopted
user profile list

• Reserved

• List of user profiles
in the encapsulated adopted
user profile list (one system
pointer to each user profile
in the list)

Char(8)
Bin(4)

Bin(4)

Char(8)

Space
pointer

Bin(2)

Char(14)

System
pointers

Due to verifications performed on the user profiles
specified in an adopted process user profile list input to
either the Initiate Process or Modify Process
instructions, the encapsulated adopted user profile list
may differ from the input list. When verification of an
input user profile fails, it is not included in the
encapsulated list.

The adopted user profile list attributes are not supplied
with materialization option hex 00.

A materialization option's value of hex 27 causes the
process control attributes to be materialized. Refer to
the description of this materialization provided in prior
text for this instruction.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Authorization Required

• Process control special authorization
For materializing a process other than the one
executing this instruction

• Retrieve
- Contexts referenced for address resolution

Lock Enforcement

• Materialize
- Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage! threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Process Management Instructions 11-21

Exceptions MODIFY PROCESS ATTRIBUTES (MODPRATR)

Operands Op Code Operand Operand Operand J Exception 1 2 3 4 Other (Hex) 1 2 3

06 Addressing 0337 Process Modifi- Modify
01 Space addressing violation X X X control cation attribute
02 Boundary alignment X X X space template

03 Range X X X
06 Optimized addressability X X X Operand 1: System pointer or null.

invalid

08 Argument/ Parameter Operand 2: Space pointer.

01 Parameter reference violation X X X
OA Authorization

Operand 3: Character(l) scalar (fixed-length).

01 Unauthorized for operation X
04 Unauthorized for process X

Description: An attribute of the process identified by control

10 Damage Encountered operand 1 is modified to the value specified by operand

04 System object damage state X X X X X
2. Operand 3 identifies the attribute that is to be

44 Partial system object damage X X X X X
modified.

1A Lock State

01 Invalid lock state X
If the process is attempting to modify itself (that is,

20 Machine Support operand 1 is null or operand 1 designates the process

02 Machine check X
itself), the modification is allowed or disallowed based

03 Function check X
on the modification control indicators specified in the

22 Object Access
process definition template supplied with the Initiate

01 Object not found X X X
Process instruction. Modification is also conditioned on

02 Object destroyed X X X
the internal phases: initiation, problem or termination

03 Object suspended X X X
phase.

24 Pointer Specification ..)
01 Pointer does not exist X X X

The initiating process always carries implicit modify

02 Pointer type invalid X X X
authority. Any other process can modify another

03 Pointer addressing invalid X
process if the process control special authorization is

object defined in the process user profile or in a current

28 Process State adopted user profile, provided the modification control

02 Process control space not X indicators are set to allow modification in all phases.

associated with a process
2A Program Creation Operand 1 is a system pointer addressing a process

06 Invalid operand type X X X control space associated with a process.

07 Invalid operand attribute X X X

08 Invalid operand value range X X X Because this instruction may require one process to act

OA Invalid operand length X upon another process, a portion of the function is

OC Invalid operand ODT reference X X X controlled by the issuing process, and the remainder of

00 Reserved bits are not zero X X X X X the function is controlled by the target process. When

32 Scalar Specification control is returned to the issuing process, the function

03 Scalar value invalid X may not have been performed in its entirety.

38 Template Specification

03 Materialization length X The action the machine takes upon modification of an
exception attribute may cause an immediate effect, or the effect

may be delayed. The effect will be immediate only if the
process is modifying itself; otherwise, it will be delayed

to an instruction boundary of the target process.
However, if the process termination phase program is

changed, the modification does not influence the
process until the process enters the termination phase.

~
11-22

When a process scalar attribute is being modified, the
modification template has the following general format:

• Template size
- Number of bytes provided
- Number of bytes available

for materialization

• Scalar modification value

Char(8)
Bin(4)
Bin(4)

Char(*)

When a process pointer attribute is being modified, the
modification template has the following general format
(and must be aligned on a 16-byte multiple):

• Template size
Number of bytes provided
Number of bytes available
for materialization

• Reserved (binary 0)

• Process pointer attribute

Char(8)
Bin(4)*
Bin(4)*

Char(8)

System
pointer
or
Space
pointer

The template identified by operand 2 must be 16-byte
aligned in the space.

Operand 3 is a character(1) scalar specifying the process
attributes to be modified.

The following attributes require modification values of
varying lengths. The attributes and their operand 3
character(1) scalar values are as follows:

• Process control attributes Char(4)

Bits that are not selected in this
option are ignored by this instruction.
The following attribute bits can be
selected:

Hex 02= Instruction wait
access state control
o = Access state

modification
is not allowed
Access state
modification
is allowed if
specified

The machine recognizes the new
value at the next instruction wait
by the process.

- Hex 03=Time slice end
access state control
o = Access state

modification
is not allowed
Access state
modification
is allowed if
specified

The machine recognizes the new
value at the next time slice end
for the process.

Bit 1

Bit 2

Process Management Instructions 11-23

Hex 04=Time slice event Bit 3 Hex 08=Termination phase Bit 8
option program option
o = No event is o = No termination J signaled if phase program

time slice specified
end occurred (do not enter
without a long termination
wait during the phase)
time slice Termination
An event is phase program
signaled if specified (enter
time slice the termination
end occurred phase)
without a long
wait during the Hex 09= Process default Bit 8
time slice exception handler

option
The machine recognizes the new o = No process
value at the next time slice end. default

exception
Hex 05= Exception event Bit 4 handler

option specified
0 = No event is Process

signaled upon default
exception exception
occurrence handler
An event is specified
signaled upon
exception Hex OA=Process name Bit 9
occurrence resolution list

option
Hex 07= Problem phase Bit 6 0 = No process

program option name resolution
0 = No problem phase list

program specified Process name
(do not enter the resolution list
problem phase) specified
Problem phase
program specified - Hex 27= Process adopted Bit 11
(enter the user profile
problem phase) list option

0 = No process
adopted user
profile list
Process adopted
user profile
list
specified

Bit 11 of the scalar modification
value replaces the current process
value.

J
11-24

• Signal event control mask

The modification of the control mask is:

Hex OC=Signal event
control mask

Char(2)

The machine recognizes the
change on the next conditional
Signal Event instruction that is
encountered.

The resource management attributes and data types are
as follows:

• Hex OE= Process priority Char(1)

The scalar modification value replaces
the current process priority. If the
process is active, its position relative
to other processes contending for the
same resource is immediately adjusted.

• Hex OF= Process storage pool
identification

Char(1)

The scalar modification value replaces
the current process value. If the
process is active, subsequent main
storage requirements are satisfied
from the new storage pool. The release
of main storage acquired from other
storage pools is unpredictable.

• Hex 10=Maximum temporary
auxiliary storage
allowed

The scalar modification value replaces
the current process value. The new
value is checked the next time auxiliary
storage is required to determine if the
scalar modification value has been
exceeded.

• Hex 11 =Time slice interval

The scalar modification value replaces
the current process time slice value.
The new time slice value takes effect
the next time the process is dispatched.

Bin(4)

Charla)

• Hex 12= Default time-out
interval

The scalar modification value replaces
the current process value. The new
new value is used the next time the
process executes a Dequeue Lock or
Wait On Event instruction that
specifies a zero time-out value.

• Hex 13= Maximum processor
time allowed

The scalar modification value replaces
the current process value. The new
value is used at the end of the next
time slice to determine if the maximum
allowed processor time has been
exceeded.

• Hex 15= Process multipro
gramming level class ID

The effect of the modification is
immediate. but the MPL rules are
not applied until the next instruction
wait or time slice end.

Charla)

Charla)

Char(1)

The process pointer attributes and data types are as
follows:

• Hex 16=User profile pointer

Modification of this attribute is
reflected in the next authority
verification for the process or upon
creation of a permanent system
object by the process.

• Hex 17= Process communi
cation object pointer

Modification of this attribute is
reflected only upon the next
Materialize Process Attributes
instruction.

System
pointer

Space pointer
system
pointer.
data pointer.
or scalar

Process Management Instructions 11-25

• Hex 18= Process na me
resolution list
pointer

The machine references this list for
subsequent address resolutions.

• Hex 1 A=Termination phase
program pointer

The new program is to be used when

Space
pointer

System
pointer

Authorization Required

Process control special authorization

• Retrieve
- Contexts referenced for address resolution

• Object Management
User profile (new) of the process if the process
user profile is to be changed

the process enters the termination • Operational
phase. The system pointer must Process adopted user profile (new) of the process
address a program. if the process adopted user profile list is to be

changed

• Hex 1 B=Problem phase System
program pointer pointer

The new program is to be used when
the process enters the problem phase.
The system pointer must address a
program.

• Hex 1 C=Process default
exception pointer

The program is to be activated and
invoked if an exception is not handled

System
pointer

at the program invocation level. The
system pointer must address a program.

• Hex 26=Process adopted
user profile
list pointer

System
pointer

The machine uses this list for the next authority
verification. The list has the format as
described in the Initiate Process instruction.
This list of user profiles completely replaces
a previously provided list.

The modification control indicators can not be modified
through the Modify Process Attributes instruction.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

11-26

Lock Enforcement

• Materialize
- Contexts referenced for address resolution

• Object management
User profile (new) of the process if the process
user profile is to be changed
User profile of process is locked LSRD when the
process user profile is being modified
The previous process user profile has its LSRD
lock removed

Events

0002 Authorization
0301 Special authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions RESUME PROCESS (RESPR)

~ Operands Op Code Operand Operand
Exception 1 2 3 4 Other (Hex) 1 2

06 Addressing 0386 Process Option
01 Space addressing violation X X X control template

02 Boundary alignment X X X space

03 Range X X X

06 Optimized addressability X X X Operand 1: System pointer or null.

invalid

08 Argument/ Parameter Operand 2: Character(1) scalar (fixed-length).

01 Parameter reference violation X X X

OA Authorization

01 Unauthorized for operation X Description: The designated process or processes are

04 Unauthorized for process X made eligible for the processor resource. The affected

control processes are denoted by the operand 1 and operand 2

10 Damage Encountered values.

04 System object damage state X X X X X

44 Partial system object damage X X X X X If operand 1 is a system pointer, it must identify the

1A Lock State process control space associated with a process to be

01 Invalid lock state X resumed. If operand 1 is nUll, the executing process is

1C Machine- Dependent Exception identified and its subordinate processes are resumed.

04 Object storage limit exceeded X

06 Machine lock limit X The process issuing the Resume Process instruction

20 Machine Support requires no authority if the resuming process is the

02 Machine check X initiator of the target process. If this condition is not

03 Function check X met, the resuming process must carry the process

~ 22 Object Access control special authorization in its process user profile or

01 Object not found X X X any current adopted user profile(s).

02 Object destroyed X X X

03 Object suspended X X X Operand 2 is a character scalar designating the resume

24 Pointer Specification process option. The format is:

01 Pointer does not exist X X X
02 Pointer type invalid X X X . Resume option Char(1)

03 Pointer addressing invalid X Resume domain Bits 0-1
object 01 = Root process only

28 Process State 10= All subordinate
02 Process control space not X processes only

associated with a process 11 = Root process and all
OA Process attribute modification X subordinate processes

not allowed
Reserved (binary 0) Bits 2-7

2A Program Creation

06 Invalid operand type X X X
If operand 1 identifies the issuing process, the resume

07 Invalid operand attribute X X X
option must designate all subordinate processes only;

08 Invalid operand value range X X X
otherwise, the scalar value invalid exception is signaled.

OA Invalid operand length X X X
OC Invalid operand ODT reference X X X

The suspended process or processes are resumed in the
00 Reserved bits are not zero X X X X X

same internal processing phase as they existed in when
32 Scalar Specification

03 Scalar value invalid X
they were suspended. The phases may be initiation,

38 Template Specification
problem, or termination.

01 Template value invalid X
Substring operand references that allow for a null

02 Template size invalid X
substring reference (a length value of zero) may not be
specified for this instruction.

Process Management Instructions 11-27

Authorization Required

• Process control special authorization

• Retrieve
- Contexts referenced for address resolution

Lock Enforcement

• Materialize
- Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation
0301 Special authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0402 Process resumed

(signaled to initiating process)
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

11-28

Exceptions

Operands
Exception 1 2 3 4 Other J
06 Addressing

01 Space addressing violation X X

02 Boundary alignment X X

03 Range X X

06 Optimized addressability X X
invalid

08 Argument/ Parameter

01 Parameter reference violation X X

OA Authorization

01 Unauthorized for operation X

04 Unauthorized for process X
control

10 Damage Encountered

04 System object damage state X X X X X

44 Partial system object damage X X X X X

1A Lock State

01 Invalid lock state X

1C Machine- Dependent Exception

04 Object storage limit exceeded X

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X

02 Object destroyed X X

03 Object suspended X X

24 Pointer Specification

01 Pointer does not exist X X

02 Pointer type invalid X X

03 Pointer addressing invalid X
object

28 Process State

02 Process control space not X
associated with a process

2A Program Creation

06 Invalid operand type X X

07 Invalid operand attribute X X

08 Invalid operand value range X X

OA Invalid operand length X X

OC Invalid operand ODT reference X X

00 Reserved bits are not zero X X X X X

32 Scalar Specification

01 Scalar type invalid X X

03 Scalar value invalid X

SUSPEND PROCESS (SUSPR)

Op Code
(Hex)

0392

Operand
1

Process
control
space

Operand
2

Option
template

Operand 1: System pointer or null.

Operand 2: Character(1) scalar.

Description: Designated processes are suspended based
on the process or processes identified by operand 1 and
the suspend options specified in operand 2.

Operand 1 identifies the process to be suspended. The
operand 1 system pointer addresses the process control
space associated with the process to be suspended. If
operand 1 is null, the process issuing the instruction is
considered the process to be suspended.

No authorization is required if one of the following
conditions exists:

• The suspending process is the initiator of the target
process.

• The process is suspending itself.

If neither condition exists, the suspending process must
carry the process control special authorization in its
process user profile or currently adopted user profile(s).

Operand 2 is a character(1) scalar designating the
suspend option. The format is:

• Suspend option
- Suspend domain

01 = Suspend root process only
10= Suspend all subordinate

processes only
11 = Suspend root process and

all subordinates
Access state control
o = Access state is not modified
1 = Access state is modified
Reserved (binary 0)

Char(1)
Bits 0-1

Bit 2

Bits 3-7

A process can be suspended in any internal processing
phase: initiation, problem, or termination.

If any process designated to be suspended has already
been suspended, no operation is performed on the
process, and no exception is signaled. If the suspend
option specifies subordinate processes and the
referenced process has no subordinates, no exception is
signaled.

If the access state control parameter specifies modify
access state and the process's or processes' instruction
wait access state control specifies allow access state
modification, then the access state of the process's
access group is modified.

Suspended processes retain locks. Processes in the
suspended state can be operated on with the Materialize
Process Attributes, Modify Process Attributes, Resume
Process Attributes, and Terminate Process Attributes
instructions.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Authorization Required

• Process control special authorization

• Retrieve
- Contexts referenced for address resolution

Lock Enforcennent

• Materialize
- Contexts referenced for address resolution

Process Management Instructions 11-29

Events Exceptions

0002 Authorization J
0101 Object authorization violation

Operands
Exception 1 2 3 4 Other

oooe Machine resource 06 Addressing

0201 Machine auxiliary storage threshold exceeded 01 Space addressing violation X X

02 Boundary alignment X X

0010 Process 03 Range X X

0302 Process suspended 06 Optimized addressability X X

(signaled to initiating process) invalid

0701 Maximum processor time exceeded 08 Argument/Parameter

0801 Process storage limit exceeded 01 Parameter reference violation X X
OA Authorization

0016 Machine observation 01 Unauthorized for operation X

0101 Instruction reference 04 Unauthorized for process
control

X

0017 Damage set
10 Damage Encountered

0401 System object damage set
04 System object damage state X X X X X

0801 Partial system object damage set
44 Partial system object damage X X X X X

1A lock State

01 Invalid lock state X

1C Machine-Dependent Exception

04 Object storage limit exceeded X

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X

02 Object destroyed X X

03 Object suspended X X

24 Pointer Specification

01 Pointer does not exist X X

02 Pointer type invalid X X

03 Pointer addressing invalid X
object

28 Process State

02 Process control space not X
associated with a process

2A Program Creation

06 Invalid operand type X X

07 Invalid operand attribute X X

08 Invalid operand value range X X

OA Invalid operand length X X

OC Invalid operand ODT reference X X

00 Reserved bits are not zero X X X X X
32 Scalar Specification

03 Scalar value invalid X

11-30

TERMINATE INSTRUCTION (TERMINST)

Op Code Operand Operand
(Hex) 1 2

0342 Process Termination
control
space

option

Operand 1: System pointer.

Operand 2: Character(3) scalar.

Description: The instruction causes the currently
executing instruction within the process specified by
operand 1 to be terminated according to the options
specified by operand 2. Operand 1 is a system pointer
addressing the process control space associated with
the process for which the currently executing instruction
is to be terminated. If the process control space
specified by operand 1 is not associated with a process,
then an exception is signaled.

Operand 2 is a character (3) scalar specifying the
termination options. The format of the character scalar
is:

• Termination type
(Must be hex 00)

• Reserved

Char(1)

Char(2)

The termination type of hex 00 specifies that only
instructions which require a relatively long time for their
execution are to be terminated. These instructions are
the following:

Activate cursor
Apply journaled changed
Copy data space entries
Create program
Create data space index
Data base maintenance
Insert sequential data space entries
Modify data space index attributes
Request I/O
Retrieve journal entries
Retrieve sequential data space entries
Set cursor

These instructions are only subject to termination at
certain points within their execution. If the instruction is
beyond the last point at which it can be terminated
when this instruction is executed, the target instruction
will execute to completion. Additionally, if the specified
process is not currently executing one of these
instructions, the termination request is ignored.

Termination of the currently executing instruction in the
specified process results in the signaling of an exception
by the terminated instruction to indicate that it
terminated rather than completed execution.

Substring operand references which allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

It is anticipated that this instruction will be used in
cases where a target process is to have the current
instruction processing terminated, if necessary, to
provide for timely processing of an event sent to the
process. Without the capability to terminate certain
instructions, processing of the event could be delayed
until instruction completion, which in extreme cases,
takes hours. The target process must be prepared to
provide for this case of instruction termination, since the
function of the instruction will not have been performed
if it is terminated.

Authorization Required

• Process control special authorization
- If not initiating process

• Retrieve
- Contexts referenced for address resolution

Lock Enforcennent

• Materialization
- Contexts referenced for address resolution

Process Management Instructions 11-31

Events Exceptions

0002 Authorization J 0101 Object violation
Operands

Exception 1 2 Other

OOOC Machine resources 06 Addressing

0201 Machine auxiliary storage exceeded 01 Space addressing violation X X

02 Boundary alignment X X

0000 Machine status 03 Range X X

0101 Machine check 06 Optimized addressability X X
invalid

0010 Process 08 Argument / Parameter

0601 Exception signaled to process 01 Parameter reference violation X X

0701 Maximum processor time exceeded OA Authorization

0801 Process storage limit exceeded 04 Unauthorized for process X
control

0016 Machine observation
10 Damage Encountered

0101 Instruction reference
04 System object damage X X

0201 Object location reference
44 Partial system object damage X

1A Lock State

0017 Damage set
01 Invalid lock state X

0401 System object damage set
1C Machine-Dependent Exception

0801 Partial system object damage set
03 Machine storage limit X

exceeded

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X J 02 Object destroyed X X

03 Object suspended X X

24 Pointer Specification

01 Pointer does not exist X X

02 Pointer type invalid X X

03 Pointer address invalid object X

28 Process State

01 Process ineligible for operation X

02 Process control space not X
associated with a process

2A Program Creation

06 Invalid operand type X X
07 Invalid operand attribute X X

08 Invalid operand value range X X

OC Invalid operand ODT reference X X
00 Reserved bits are not zero X X X

32 Scalar Specification

01 Scalar type invalid X X

03 Scalar value invalid X

11-32

TERMINATE PROCESS (TERMPR)

Op Code
(Hex)

0332

Operand
1

Process
control
space

Operand
2

Termination
option

Operand 1: System pointer or null.

Operand 2: Character(3) scalar (fixed-length).

Description: The instruction causes the termination of
one or more processes. Because this instruction may
require one process to act upon another process, a
portion of the function is controlled by the issuing
process, and the remainder of the function is controlled
by the target process. When control is returned to the
issuing process, the function may not have been
performed in its entirety.

Operand 1 identifies the process that is to be
terminated. Operand 1 can be a system pointer that
addresses the process control space associated with the
process to be terminated, or it can be null. If operand 1
is null, the process issuing the instruction is considered
the process to be terminated.

Operand 2 is a character(3) scalar specifying the
termination option. The format of the termination option
is as follows:

• Termination specifications
- Termination action

o = Initiate process destruction
against the subordinate
processes of the designated
process.
Initiate process destruction
against the designated
process and all subordinate
processes.

Char(1)
Bit 0

Conditional termination action Bit 1
o = Place process in termination

phase if not already there.
If the process is in the
termination phase, the
request is ignored
(conditional).
Place process in termination
phase if not already there.
If in termination phase,
immediate process
destruction results
(unconditional).

Reserved (binary 0) Bits 2-7

• Termination code Char(2)

A process can apply the terminate function to any
process in the machine except for a superordinate
process in whose domain the issuing process resides.

No authorization is required in the following
circumstances:

• The process issuing the instruction initiated the
process identified by operand 1.

• The process referenced by operand 1 is the process
issuing the instruction.

In all other cases, the process issuing the instruction
must be currently governed by a user profile having the
process control special authorization. The user profile
can be either the process's assigned user profile or a
currently adopted user profile.

Process Management Instructions 11-33

The key element that dictates the function of Terminate
Process instruction is the subject process's process
status indicators. This attribute of a process supplies
information relative to the current state of the process
and the actions occurring both within and without that
have caused the process to be in the current state.
These indicators contain the following major categories
of information:

• Process states
External existence state
a. Active
b. Suspended
Internal processing phase
a. Initiation phase
b. Problem phase
c. Termination phase

• Process interrupt status

• Process initial internal termination status

• Process initial external termination status

• Process final termination status

The process initial internal termination status is
generated when a process takes termination action upon
itself. For example, this status is generated when the
Terminate Process instruction is executed with the
process itself as the target. The process and its
subordinate processes are then placed in the termination
phase. A subprocess's process initial external
termination status is generated, and it contains the same
information supplied in the superordinate process's
process initial internal termination status.

Subprocesses are not placed in the termination phase
when the superordinate process enters termination
phase as a result of a RETURN from the first invocation
in the initiation or problem phase, or when it is returned
as a result of an unhandled exception.

The process initial external termination status is
generated when action is taken against the process by
another process; for example, this status is generated
when the Terminate Process instruction is issued by one
process with another process as the target. This action
conditionally places the process in the termination phase
if the process is not already in that phase. The status is
also placed in the subprocess's process initial external
termination status.

11-34

The process is placed in the termination phase only if
the termination phase option process attribute is set to
enter the termination phase. The process can be
conditionally removed from the termination phase based
on the conditional termination action option. This option
allows orderly return from a termination phase. An
unconditional termination request results in an
immediate process destruction if the process is already
in the termination phase. A conditional request results in
the instruction not being performed.

The process final termination status either is generated
internally by the process's own termination action while
in the termination phase or is supplied by another
process while the target process is in the termination
phase.

All three termination status fields are supplied as
event- related data for the process terminate event.

When the Terminate Process instruction is executed by
a process itself, and the process is in the initiation or
problem phase, the machine stores the termination
status in the process initial internal termination status.
This status field is also filled in when returning from the
first invocation in the problem phase and upon an
exception not being handled by the process. The initial
internal termination status is propagated to any
established subprocess's initial external status indicators
only during Terminate Process instruction action. Refer
to the Materialize Process Attributes instruction, earlier
in this chapter, for the detailed format of the attribute.
The following information is recorded:

• Initial internal termination reason
Return from first invocation in problem phase
Return from first invocation in initiation phase
and no first program phase program supplied
Terminate Process instruction issued by process
itself
Exception not handled by the process

• Initial internal termination code

The process's internal processing phase attribute is set
to indicate that the process is in the termination phase if
the process termination phase option specifies enter
termination phase. If the process's current attributes
indicate that a termination phase program is to be given
control, the process status indicators are set to the
active-termination state, an activation of the designated
program is established (if not already existing). an
invocation is created, and control is transferred to the
program's entry point. All program invocations are
destroyed prior to giving the process termination phase
program control. If no termination phase program is
defined, the machine sets the final termination status
field equal to the initial internal termination status field.
This indicates that a termination phase program was not
executed and the instruction proceeds immediately with
destruction of the process.

If a Return External instruction is executed in the highest
level invocation in the problem phase or an exception is
not handled in either the problem phase or initiation
phase, the same functions are applied as for the
explicitly specified terminate instruction described in the
previous paragraph. When control is returned from the
highest invocation, the initial internal termination code is
set to 0 or to the exception type for an exception that is
not handled.

When the Terminate Process instruction is issued by a
process to itself while it is in the termination phase, the
instruction stores information relative to the termination
in the process's final termination status field. All
subprocesses are destroyed regardless of their current
internal processing phase.

The stored information is contained in the process
status indicators attribute materialized through the
Materialize Process Attributes instruction. The
information made available includes:

• Final termination reason
Return from first invocation
Terminate Process instruction issued by
the process itself
Terminate Process instruction issued to this
process by another process
Exception not handled by the process

• Final termination code

The machine immediately proceeds with the destruction

of the process.

If the Terminate Process instruction is executed in an
external process, the target process's initial external
termination code is supplied by the instruction's
termination option. If the target process is in the
initiation or problem phase, termination action proceeds
as described earlier; that is, the process internal
processing phase is set to the termination phase, and
the termination phase program is invoked.

If the initial external termination status had been
previously supplied; that is, the process has already
been the target of an external Terminate Process
instruction, immediate process destruction takes place
with the later termination option recorded as the final
termination status. If the status was not previously
supplied, then it is recorded in the initial external
termination status and the process is placed in the
termination phase.

The following information is recorded in the initial
external termination status:

• Initial external termination reason
Terminate Process instruction issued explicitly to
the process from another process
Terminate Process instruction issued to
superordinate process of this process

• Initial external termination code

If the process returns from the highest invocation or
receives an exception that is not handled during the
termination phase and if the process has active or
suspended subprocesses, the process and its
subprocesses are destroyed.

The same action occurs if the process that has active or
suspended subprocesses attempts to terminate itself
during the termination phase.

The functions performed by the instruction are
determined by the setting of the termination action
operand field in the Terminate Process instruction and
are described in the following paragraphs.

Process Management Instructions 11-35

The first option (binary 0) specifies that all the
designated process's subordinates are to be destroyed.
No exception is signaled if there are no subordinate
processes.

The second option (binary 1) specifies that the
designated process and all subordinates are to be
destroyed.

If a process phase is terminated and programs are
currently invoked. these invocations are terminated. If
conditional termination was specified or the process was
not in termination phase for an unconditional
termination. then invocation exit programs set for the
terminated invocations will be allowed to run.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

For more information about the invocation exit program.
see Program Execution in the Functional Concepts
Manual.

Authorization Required

• Process control special authorization
If not initiating process or process not terminating
itself

• Retrieve
- Contexts referenced for address resolution

Lock Enforcement

• Materialize
- Contexts referenced for address resolution

11-36

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0202 Process terminated (to initiating process)
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0011 Program
0301 Invocation exit bypassed due to a RTNEXCP

or a SIGEXCP instruction
0302 Invocation exit bypassed due to process

termination
0304 Failure to invoke program (invocation exit

or exception handler)

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

J

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

06 Optimized addressability
invalid

08 Argument/Parameter

01 Parameter reference violation

OA Authorization

01 Unauthorized for operation

04 Unauthorized for process
control

10 Damage Encountered

04 System object damage state

44 Partial system object damage

1 A Lock State

01 Invalid lock state

1 C Machine- Dependent Exception

03 Machine storage limit
exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

03 Pointer addressing invalid
object

28 Process State

Operands
1 234

X X
X X
X X
X X

X X

X
X

X

X X
X X
X X

X X
X X
X

01 Process ineligible for operation X

02 Process control space not X
associated with a process

2A Program Creation

06 Invalid operand type X X
07 Invalid operand attribute X X

08 Invalid operand value range X X

OC Invalid operand ODT reference X X

00 Reserved bits are not zero X X X X

32 Scalar Specification

03 Scalar value invalid X

Other

X

X

X

X

X

X

X

WAIT ON TIME (WAITTIME)

Op Code
(Hex)

Operand
1

0349 Wait
template

Operand 1: Character(16) scalar.

Description: This instruction causes the process to wait
for a specified time interval. The current process is
placed in wait state for the amount of time specified by
the wait template in accordance with the specified wait
options.

The format of the wait template for operand 1 is:

• Wait time interval

• Wait options
Access state control
for entering wait
o = Do not modify access state
1 = Modify access state
Access state control
for leaving wait
o = Do not modify access state
1 = Modify access state
MPL (multiprogramming level)
control during wait
o Do not remain in current

MPL set
1 = Remain in current MPL set
Reserved

• Reserved

Char(8)

Char(2)
Bit 0

Bit 1

Bit 2

Bits 3-15

Char(6)

The format of the wait time interval value is that of a
64-bit unsigned binary value where bit 41 is equal to
1024 microseconds, assuming the bits are numbered
from 0 to 63.

The access state control options control whether the
process access group (PAG) will be explicitly transferred
between main and auxiliary storage when entering and
leaving a wait as a result of execution of this instruction.
Specification of modify access state requests that the
PAG be purged from main to auxiliary storage for
entering a wait and requests that the PAG be
transferred from auxiliary to main storage for leaving a
wait. Specification of do not modify access state
requests that the PAG not be explicitly transferred
between main and auxiliary storage as a result of
executing this instruction.

Process Management Instructions 11-37

The access state of the PAG is modified when entering
the wait if the process' instruction wait initiation access
state control attribute specifies allow access state
modification, if the access state control for entering wait
option specifies modify access state, and if the MPL
control during wait option specifies do not remain in
current MPL set.

The MPL control during wait option controls whether the
process will be removed from the current MPL
(multiprogramming level) set or remain in the current
MPL set when the process enters a wait as a result of
executing this instruction.

When the MPL control during wait option specifies
remain in current MPL set and the access state control
for entering wait option specifies do not modify access
state, the process will remain in the current MPL set for
a maximum of 2 seconds. After 2 seconds, the process
will automatically be removed from the current MPL set.
The automatic removal does not change or affect the
total wait time specified for the process in the wait time
interval.

While the process is in wait state it may be interrupted
for events unless the process is masked.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Events

oooe Machine resources
0201 Machine auxiliary storage exceeded

0000 Machine status
0101 Machine check

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

11-38

Exceptions

Operands
Exception 1 2 3 4 Other

06 Addressing

01 Space addressing violation X

02 Boundary alignment X

03 Range X

06 Optimized addressability X
invalid

08 Argument/ Parameter

01 Parameter reference violation X

10 Damage Encountered

04 System object damage X

44 Partial system object damage X

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

02 Object destroyed X

03 Object suspended X

24 Pointer Specification

01 Pointer does not exist X

02 Pointer type invalid X

2A Program Creation

06 Invalid operand type X

07 Invalid operand attribute X

OA Invalid operand length X

OC Invalid operand ODT reference X

00 Reserved bits are not zero X X

32 Scalar Specification

01 Scalar type invalid X

02 Scalar attributes invalid X

03 Scalar value invalid X

Chapter 12. Queue Management Instructions

This chapter describes the instructions used for queue
management. These instructions are in alphabetic order.
For an alphabetic summary of all the instructions. see
Appendix A. Instruction Summary.

CREATE QUEUE (CRTQ)

Op Code Operand Operand
(Hex) 1 2

0316 Address- Queue
ability template
to created
queue

Operand ,: System pointer.

Operand 2: Space pointer.

Description: The instruction creates a queue based on
the parameters specified in the queue template (operand
2) and returns a system pointer in the pointer object
(operand 1) that addresses the created object.

The queue template (operand 2) has the following
format:

• Template size specification
Number of bytes provided
Number of bytes available for
materialization

• Object identification
Object type

- Object subtype
Object name

Char(S)
Bin(4)*
Bin(4)*

Char(32)
Char(1)*
Char(1)
Char(30)

• Object creation options Char(4)
Existence attributes Bit 0
o ... Temporary
1 = Permanent
Space attribute Bit 1
o ... Fixed-length
1 ... Variable-length
Initial context Bit 2
o ... Addressability is not

inserted in context
.. Addressability is inserted

in context
Access group Bit 3
o .. Member of access group

is not created
1 .. Member of access group

is created
- Reserved (binary 0) Bits 4-31

• Reserved (binary 0) Char(4)

• Size of space Bin(4)

• Initial value of space Char(1)

Queue Management Instructions 12-1

• Performance class Char(4)
- Space alignment Bit 0

o = The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space. If
no space is specified for
the object, this value must
be specified for the
performance class.
The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space as
well as to allow proper
alignment of input/output
buffers at 512-byte align
ments within the space.

Reserved (binary 0) Bits 1-4
Main storage pool selection Bit 5
o = Process default main storage

pool is used for object.
Machine default main storage
pool is used for object.

- Reserved (binary 0) Bit 6
- Block transfer on implicit Bit 7

access state modification
o = Transfer the minimum storage

transfer size for this object.
This value is 1 storage unit.
Transfer the machine default
storage transfer size. This
value is 8 storage units.

Reserved (binary 0) Bits 8-31

• Reserved (binary 0) Char(7)

• Context System
pointer

• Access group

12-2

System
pointer

• Queue attributes Chart 1)
Message content Bit 0
o Contains scalar data only
1 = Contains pointers and

scalar data
- Queue type Bits 1-2

00= Keyed
01 = Last in first out (LIFO)
10= First in first out (FIFO)
11 = Reserved

- Queue overflow action
o = Signal exception
1 = Extend queue

- Reserved (binary 0)

• Maximum number of messages

• Current number of messages

• Extension value

• Key length
(maximum key length = 256)

Bit 3

Bits 4-7

Bin(4)

Bin(4)*

Bin(4)

Bin(2)

Maximum size of messages to be Bin(4)
enqueued (The maximum allowable
size of a queue message is
64 000 bytes.)

Note: The values of the parameters annotated with an
asterisk (*) are ignored by this instruction.

The template identified by operand 2 must be 16-byte
aligned.

If the created object is permanent, it is owned by the
user profile governing process execution. The owning
user profile is implicitly assigned all private authority
states for the object. The storage occupied by the
created object is charged to this owning user profile. If
the created object is temporary, no owning user profile
exists, and all authority states are assigned as public.
Storage occupied by the created context is charged to
the creating process.

The object identification specifies the symbolic name
that identifies the queue within the machine. A type
code of hex OA is implicitly supplied by the machine.
The object identification is used to identify the object on
materialize instructions as well as to locate the object in
a context that addresses the object.

J

The existence attribute specifies that the queue is to be

created as temporary. A temporary queue, if not
explicitly destroyed by the user, is implicitly destroyed
by the machine when machine processing is terminated.

A space may be associated with the created object. The
space may be fixed or variable in size. The initial
allocation is as specified in the size of space entry. The
machine allocates a space of at least the size specified;
the actual size allocated depends on an algorithm
defined by a specific implementation. Each byte of the
space is initialized to a value specified by the initial
value of space entry. When the space is extended, this
byte value is also used to initialize the new allocation. If
no space is allocated, this byte value is ignored.

If the initial context creation attribute entry indicates that
addressability is to be inserted into a context, the
context entry must be a system pointer that identifies a
context where addressability to the newly created queue
is to be placed. If the initial context indicates that
addressability is not to be inserted into a context. the
context entry is ignored.

If the access group creation attribute entry indicates that
the object is to be created in an access group, the
access group entry must be a system pointer that
identifies an access group in which the object is to be
created. Only temporary queues may be created in an
access group. If the object is not to be created in the
access group, the access group entry is ignored.

The message content attribute specifies whether the
messages to be enqueued will contain pointers and
scalar data, or scalar data only. If the messages are to
contain pointers the message text operand on Enqueue
and Dequeue instructions must be aligned on 16-byte
boundaries.

The queue type parameter establishes the basic
sequence in which messages are dequeued from the
queue.

The queue overflow action parameter establishes the

machine action when the number of messages resident
on the queue (enqueued and not yet dequeued) exceeds
the current maximum capacity of the queue. This value
is initially established by the value specified in the
maximum number of messages parameter. The queue
message limit exceeded exception and the queue
message limit exceeded event are signaled when the
number of resident messages exceeds this parameter
unless the extend queue option is specified. When the
extend queue option is specified, the value of the
maximum number of messages parameter is increased
by the amount specified by the extension value
parameter each time the number of enqueued messages
exceeds the current value of the maximum number of
messages parameter. When the extend queue option is
specified, the extension value parameter must contain a
value greater than O. If the signal exception option is
specified, the extension value parameter is ignored and
the maximum number of messages parameter must
contain a value greater than zero.

The current number of messages entry is reported in the
materialization of the queue's attribute, and the value of
the entry is ignored in the creation template.

The key length parameter establishes the size of the
queue's key. If the queue type parameter keyed is
specified, the value must be greater than O. The key can
contain pointers, but the pointers are considered to be
scalar data when they are pla'ced on the queue by an
Enqueue instruction. If the queue type parameter
specifies LIFO or FIFO, the key length can be equal to
or greater than 0; however, the queue is not treated as
a keyed queue.

The size of all messages to be enqueued is established
by the maximum size of messages to be enqueued
parameter. The Enqueue instruction may specify a size
(in the message prefix) that is greater than this value,
but the message is truncated to this length. The
maximum size of messages to be enqueued parameter
must have a value of 0 or greater, up to a maximum
value of 64 000 bytes. The maximum size of a queue,
excluding its associated space, cannot exceed 16
megabytes. This value includes machine overhead
associated with the queue.

Queue Management Instructions 12-3

Authorization Required Exceptions

· Insert Operands J User profile of creating process Exception 1 2 Other
- Context identified by operand 2

02 Access Group

· Retrieve 01 Object ineligible for access group X

- Contexts referenced for address resolution 06 Addressing

01 Space addressing violation X X

· Object control 02 Boundary alignment X X

- Operand 1 if replace option requested 03 Range X X
06 Optimized addressability invalid X X

08 Argument/ Parameter

Lock Enforcement 01 Parameter reference violation X X
OA Authorization

· Materialize 01 Unauthorized for operation X X

- Contexts referenced for address resolution OE Context Operation

01 Duplicate object identification X

· Modify 10 Damage Encountered

Access group identified by operand 2 04 System object damage state X X X

Context identified by operand 2 44 Partial system object damage X X X

User profile of creating process 1A Lock State

01 Invalid lock state X X

· Object control 1C Machine-Dependent Exception

- Operand 1 if replace option requested 03 Machine storage limit exceeded X
04 Object storage limit exceeded X

20 Machine Support

Events 02 Machine check X J 03 Function check X

0002 Authorization 22 Object Access

0101 Object authorization violation 01 Object not found X X
02 Object destroyed X X

OOOC Machine resource 03 Object suspended X X

0201 Machine auxiliary storage threshold exceeded 24 Pointer Specification

0501 Machine address threshold exceeded 01 Pointer does not exist X X
02 Pointer type invalid X X

0010 Process 03 Pointer addressing invalid object X

0701 Maximum processor time exceeded 2A Program Creation

0801 Process storage limit exceeded 06 Invalid operand type X X
07 Invalid operand attribute X

0016 Machine observation 08 Invalid operand value range X

0101 Instruction reference OA Invalid operand length X
OC Invalid operand ODT reference X X

0017 Damage set 00 Reserved bits are not zero X X X

0401 System object damage set 2E Resource Control Limit

0801 Partial system object damage set 01 User profile storage limit X
exceeded

38 Template Specification

01 Template value invalid X

12-4

DEQUEUE (DEQ. DEQB. or DEQI)

Op Code
IHex)

1033

1C33

1833

Operand
Extender 1

Branch
options

Indicator
options

Message
prefix

Operand
2

Message
text

Operand 1: Character variable scalar (fixed-length).

Operand 2: Space pointer.

Operand 3: System pointer.

Operand 4-5:

Operand
3

Queue

• Branch Form-Branch point, instruction pointer, relative
instruction number, or absolute instruction number.

• Indicator Form-Numeric variable scalar or character variable

scalar.

Extender: Branch or indicator options.

If the branch or indicator option is indicated in the op
code, the extender field is required along with one or
two branch operands (for branch option) or one or two
indicator operands (for indicator option). See Chapter 1.
Introduction for the bit encoding of the extender field
and the allowed syntax of the branch and indicator
operands.

Operand
4-5

Branch
target

Indicator
target

Description: The instruction retrieves a queue message
based on the queue type (FIFO. LIFO, or keyed)
specified during the queue's creation. If the queue was
created with the keyed option, messages can be
retrieved by any of the following relationships between
an enqueued message key and a selection key specified
in operand 1 of the Dequeue instruction: ¢, >, <, :5,
and ~. If the queue was created with either the LIFO or
FIFO attribute, then only the next message can be
retrieved from the queue.

If a message is not found that satisfies the dequeue
selection criterion and the branch or options are not
specified, the process is put into the wait state until a
message arrives to satisfy the dequeue or until the
dequeue wait time-out expires. If branch or indicator
options are specified, the process is not placed in the
dequeue wait state and either the control flow is altered
according to the branch options, or indicator values are
set based on the presence or absence of a message to
be dequeued.

Queue Management Instructions 12-5

A nonzero dequeue wait time-out value overrides any
dequeue wait time-out value specified as the current
process attribute. A zero wait time-out value causes the
wait time-out value to be taken from the current
process attribute. If all wait time-out values are 0 (from
the Dequeue instruction and the current process
attribute). an immediate wait time-out exception is
signaled. The bits in this field are numbered from 0 to
63, and bit 41 is defined as 1024 microseconds. The
maximum wait time-out interval allowed is a value equal
to (248 - 1) microseconds. Any value that indicates more
time than the maximum wait time-out causes the
maximum wait time-out to be used.

A message is dequeued from the queue specified by
operand 3. The criteria for message selection are given
in the message prefix specified by operand 1. The
message text is returned in the space specified by
operand 2, and the message prefix is returned in the
scalar specified by operand 1. The size of the message
text retrieved is returned in the message prefix. The size
of the message text can be less than or equal to the
maximum size of message specified when the queue
was created. When dequeuing from a keyed queue, the
length of the search key field and the length of the
message key field (in the message key prefix specified
in operand 1) are determined implicitly by the attributes
of the queue being accessed. If the message text on
the queue contains pointers, the message text operand
must be 16-byte aligned. Improper alignment results in
an exception being signaled. The format of the message
prefix is as follows:

• Timestamp of enqueue of
message

• Dequeue wait time-out value
(ignored if branch options
specified)

• Size of message dequeued
(The maximum allowable
size of a queue message
is 65 000 bytes.)

12-6

Char(8)**

Char(8)*

Bin(4)**

. Access state modification option Char(1)*
indicator and message selection
criteria

Access state modification option Bit 0-1*
When entering Dequeue wait Bit 0*
0 = Access state is not modified
1 = Access state is modified
When leaving Dequeue wait Bit 1*
0 = Access state is not modified
1 = Access state is modified
Multiprogramming level option Bit 2*
0 Leave current MPL set at

Dequeue wait
1 = Remain in current MPL set

at Dequeue wait
Time-out option Bit 3*
0 Wait for specified time,

then signal time-out exception
1 = Wait indefinitely
Actual key to input key Bits 4-7*
relationship (for keyed queue)
0010: Greater than
0100: Less than
0110: Not equal
1000: Equal
1010: Greater than or equal
1100: Less than or equal

. Search key (ignored for Char(key
FIFO/LIFO queues but must length)*
be present for FIFO/LIFO
queues with nonzero key
length values)

. Message key Char(key
length)**

Note: Fields shown here with one asterisk indicate
input to the instruction, and fields shown here with two
asterisks are returned by the machine.

J

J

The access state of the process access group is
modified when a Dequeue instruction results in a wait
and the following conditions exist: the process'
instruction wait initiation access state control attribute
specifies allow access state modification, the dequeue
access state modification option specifies modify access
state. and the multiprogramming level option specifies
leave MPL set during wait.

The process will remain in the current M PL set for a
maximum of two seconds when a Dequeue instruction
results in a wait if the multiprogramming level option
specifies remain in current MPL set at Dequeue wait and
the access state modification when entering Dequeue
wait option specifies do not modify access state. After
two seconds, the process will automatically be removed
from the current MPL set. The automatic removal does
not change or affect the total wait time specified for the
process by the Dequeue wait time-out value.

Operand 3 is a system pointer addressing the queue
from which the message is to be dequeued.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Resultant Conditions: Message dequeued (equal),
message not dequeued (not equal).

Authorization Required

• Retrieve
Operand 3

- Contexts referenced for address resolution

Lock Enforcement

• Materialize
- Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Queue Management Instructions 12-7

Exceptions DESTROY QUEUE (DESQ)

Operand. OpCode Operand 1 J Exception 1 2 3 Other (Hex'

06 Addressing 0325 Queue
01 Space addressing violation X X X
02 Boundary alignment X X X Operand 1: System pointer.
03 Range X X X
06 Optimized addressability invalid X X X

08 Argument/ Parameter Description: This instruction destroys the specified
01 Parameter reference violation X X X queue and all currently enqueued messages. All

OA Authorization processes currently in the dequeue wait state for this
01 Unauthorized for operation X X queue are removed from the dequeue wait state and an

10 Damage Encountered object destroyed exception is signaled to the waiting
04 System object damage state X X X X processes. Addressability is deleted from the context (if
44 Partial system object damage X X X X any) that addresses the object. The system pointer

1A Lock State identified by operand 1 is not modified by the
01 Invalid lock state X X instruction, and a subsequent reference to the destroyed

1C Machine-Dependent Exception queue through the pointer results in an object destroyed
03 Machine storage limit exceeded X exception.

20 Machine Support
02 Machine check X
03 Function check X Authorization Required

22 Object Access
01 Object not found X X · Retrieve
02 Object destroyed X X X - Contexts referenced for address resolution
03 Object suspended X X X

24 Pointer Specification · Object control J 01 Pointer does not exist X X X - Operand 1
02 Pointer type invalid X X X
03 Pointer addressing invalid object X

2A Program Creation Lock Enforcement
06 Invalid operand type X X X
07 Invalid operand attribute X · Materialize
08 Invalid operand value range X - Contexts referenced for address resolution
09 Invalid branch target operand X
OA Invalid operand length X • Modify
OC Invalid operand ODT reference X X X, Context which addresses operand 1
00 Reserved bits are not zero X X X X User profile which owns operand 1

32 Scalar Specification Access group which contains operand 1
03 Scalar value invalid X

3A Wait Time-out · Object control
01 Dequeue X - Operand 1

12-8

L

(..

L

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operand
Exception 1

06 Addressing
01 Space addressing violation X
02 Boundary alignment X
03 Range X
06 Optimized addressability invalid X

08 Argument I Parameter
01 Parameter reference violation X

OA Authorization
01 Unauthorized for operation X

10 Damage Encountered
04 System object damage state X
44 Partial system object damage X

1A Lock State
01 Invalid lock state X

1C Machine-Dependent Exception
03 Machine storage limit exceeded

20 Machine Support
02 Machine check
03 Function check

22 Object Access
01 Object not found X
02 Object destroyed X
03 Object suspended X

24 Pointer Specification
01 Pointer does not exist X
02 Pointer type invalid X
03 Pointer addressing invalid object X

2A Program Creation
06 Invalid operand type X
OC Invalid operand ODT reference X
00 Reserved bits are not zero X

Other

X

X
X

X

X

X
X

X

ENQUEUE (ENQ)

Op Code
(Hex)

036B

Operand
1

Queue

Operand
2

Message
prefix

Operand 1: System pointer.

Operand 2: Character scalar.

Operand 3: Space pointer.

Operand
3

Message
text

Description: A message is enqueued according to the
queue type attribute specified during the queue's
creation.

If keyed sequence is specified. enqueued messages are
sequenced in ascending binary collating order according
to the key value. If a message to be enqueued has a
key value equal to an existing enqueued key value. the
message being added is enqueued following the existing
message.

If the queue was defined with either last in. first out
(LIFO) or\first in. first out (FIFO) sequencing. then
enqueued messages are ordered chronologically with the
latest enqueued message being either first on the queue
or last on the queue. respectively. A key can be
provided and associated with messages enqueued in a
LIFO or FIFO queue; however, the key does not
establish a message's position in the queue. The key
can contain pointers. but the pointers are not considered
to be pointers when they are placed on the queue by an
Enqueue instruction.

Queue Management Instructions 12-9

Operand 1 specifies the queue to which a message is to
be enqueued. Operand 2 specifies the message prefix,
and operand 3 specifies the message text.

The format of the message prefix is as follows:

• Size of message to be enqueued

• Enqueue key value (Ignored
for FIFO/LIFO queues with
key lengths equal to O.
Must be present for all
other queues.)

Bin(4)*

Char(key
length)*

Note: Fields annotated with an asterisk indicate input to
the instruction.

The size of the message to be enqueued is supplied to
inform the machine of the number of bytes in the space
that are to be considered message text. The size of the
message is then considered the lesser of the size of the
message to be enqueued attribute and the maximum
message size specified on queue creation. The message
text can contain pointers. When pointers are in message
text. the operand 3 space pointer must be 16-byte
aligned. Improper alignment will result in an exception
being signaled.

If the enqueued message causes the number of
messages to exceed the maximum number of messages
attribute of the queue, one of the following occurs:

• If the queue is not extendable, the queue message
limit exceeded exception and the queue message limit
exceeded event are signaled. The message is not
enqueued.

• If the queue is extendable, the queue is implicitly
extended by the extension value attribute. The
message is enqueued. No exception is signaled, but
the queue extended event is signaled.

The maximum allowable queue size, including all
messages currently enqueued and the machine
overhead, is 16 megabytes.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

12-10

Authorization Required

• Insert
- Operand 1

• Retrieve
- Contexts referenced for address resolution

Lock Enforcennent

• Materialize
- Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0012 Queue
0301 Queue message limit exceeded
0401 Queue extended

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions MATERIALIZE QUEUE ATTRIBUTES (MATOAT)

L Operands OpCode Operand Operand
Exception 1 2 3 Other (Hex) 1 2

06 Addressing 0336 Receiver Queue
01 Space addressing violation X X X

02 Boundary alignment X X X Operand 1: Space pointer.
03 Range X X X

06 Optimized addressability invalid X X X Operand 2: System pointer.

08 Argument/ Parameter

01 Parameter reference violation X X X

OA Authorization Description: The attributes of the queue specified by

01 Unauthorized for operation X X operand 2 are materialized into the object specified by

10 Damage Encountered operand 1. The format of the materialized queue

04 System object damage state X X X X attributes must be aligned on a 16-byte multiple. The

44 Partial system object damage X X X X format is as follows:

1A Lock State

01 Invalid lock state X X · Materialization size specification Char(8)

1C Machine-Dependent Exception Number of bytes provided for Bin(4)

03 Machine storage limit exceeded X X materialization

04 Object storage limit exceeded X Number of bytes available for Bin(4)

20 Machine Support materialization

02 Machine check X

03 Function check X · Object identification Char(32)

22 Object Access Object type Char(1)

01 Object not found X X X Object subtype Char(1)

02 Object destroyed X X X Object name Char(30)

L 03 Object suspended X X X

24 Pointer Specification · Object creation options Char(4)

01 Pointer does not exist X X X Existence attributes Bit 0

02 Pointer type invalid X X X 0 = Temporary

03 Pointer addressing invalid object X 1 = Permanent

26 Process Management Space attribute Bit 1

02 Queue message limit exceeded X 0 = Fixed-length

2A Program Creation 1 = Variable-length

06 Invalid operand type X X X Initial context Bit 2

07 Invalid operand attribute X 0 = Addressability not in context

OC Invalid operand ODT reference X X X 1 = Addressability in context

00 Reserved bits are not zero X X X X Access group Bit 3

2E Resource Control Limit 0 Not a member of access

01 User profile storage limit X group
exceeded 1 = Member of access group

- Reserved (binary 0) Bits 4-31

· Reserved (binary 0) Char(4)

· Size of space Bin(4)

· Initial value of space Char(l)

Queue Management Instructions 12-11

• Performance class Char(4)
Space alignment Bit 0
o = The space associated with

the object is allocated to
allow proper alignment of
pointers at 16-byte align-
ments within the space. If
no space is specified for
the object, this value must
be specified for the
performance class.
The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space as
well as to allow proper
alignment of input/output
buffers at 512-byte align
ments within the the space.

- Reserved (binary 0) Bits 1-4
Main storage pool selection Bit 5
o Process default main storage

pool is used for object.
1 = Machine default main storage

pool is used for object.
Reserved (binary 0) Bit 6
Block transfer on implicit Bit 7
access state modification
a = Transfer the minimum storage

transfer size for this object.
This value is 1 storage unit.
Transfer the machine default
storage transfer size. This
value is 8 storage units.

Reserved (binary 0)

• Reserved (binary 0)

• Context

• Access group

12-12

Bits 8-31

Char(7)

System
pointer

System
pointer

• Queue attributes Char(1)
Message content Bit a
a = Contains scalar data only
1 = Contains pointers and scalar data
Queue type Bits 1 - 2
00= Keyed
01 = Last in, first out
10= First in, first out
Queue overflow action
a = Signal exception
1 = Extend queue
Reserved (binary 0)

• Current maximum number
of messages

• Current number of
messages enqueued

• Extension value

• Key length

• Maximum size of message
to be enqueued

Bit 3

Bits 4-7

Bin(4)

Bin(4)

Bin(4)

Bin(2)

Bin(4)

The first 4 bytes of the materialization identify the total
number of bytes that may be used by the instruction.
This value is supplied as input to the instruction and is
not modified by the instruction. A value of less than 8
causes the materialization length exception.

The second 4 bytes of the materialization identify the
total number of bytes available to be materialized. The
instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the
byte area identified by the receiver is greater than that
required to contain the information requested, then the
excess bytes are unchanged. No exceptions (other than
the materialization length exception described previously)
are signaled when the receiver contains insufficient area
for the materialization.

Authorization Required Exceptions

· Operational Operands
- Operand 2 Exception 1 2 Other

• Retrieve 06 Addressing

- Contexts referenced for address resolution 01 Space addressing violation X X
02 Boundary alignment X X

03 Range X X

Lock Enforcement 06 Optimized addressability invalid X X

08 Arg u ment / Parameter

· Materialize 01 Parameter reference violation X X

Operand 2 OA Authorization

- Contexts referenced for address resolution 01 Unauthorized for operation X X

10 Damage Encountered

04 System object damage state X X X

Events 44 Partial system object damage X X X

1A Lock State

0002 Authorization 01 Invalid lock state X X

0101 Object authorization violation 20 Machine Support

02 Machine check X

OOOC Machine resource 03 Function check X

0201 Machine auxiliary storage threshold exceeded 22 Object Access

01 Object not found X X

0010 Process 02 Object destroyed X X

0701 Maximum processor time exceeded 03 Object suspended X X

0801 Process storage limit exceeded 24 Pointer Specification

01 Pointer does not exist X X

0016 Machine observation 02 Pointer type invalid X X

0101 Instruction reference 03 Pointer addressing invalid object X

2A Program Creation

0017 Damage set 06 Invalid operand type X X

0401 System object damage set 07 Invalid operand attribute X

0801 Partial system object damage set 08 Invalid operand value range X

OA Invalid operand length X

OC Invalid operand OOT reference X X

00 Reserved bits are not zero X X X
38 Template Specification

03 Materialization length exception X

Queue Management Instructions 12-13

MATERIALIZE QUEUE MESSAGES (MATQMSG)

Op Code Operand
(Hex) 1

0338 Receiver

Operand
2

Queue

Operand 1: Space pointer.

Operand 2: System pointer.

Operand 3: Character(16) scalar.

Operand
3

Message
selection
template

Description: This instruction materializes selected
messages on a queue. One or more messages on the
queue specified by operand 2 is selected according to
information provided in operand 3 and materialized into
operand 1. The number of messages materialized and
the amount of key and message text data materialized
for each message is governed by the message selection
template.

Note that the list of messages on a queue is a dynamic
attribute and may be changing on a continual basis. The
materialization of messages provided by this instruction
is just a picture of the status of the queue at the point
of interrogation by this instruction. As such, the actual
status of the queue may differ from that described in
the materialization when subsequent instructions use the
information in the template as a basis for operations
against the queue.

Operand 1 specifies a space that is to receive the
materialized attribute values.

Operand 2 is a system pointer identifying the queue
from which the messages are to be materialized.

Operand 3 is a character (16) scalar specifying which
messages are to be materialized.

12-14

The operand 1 space pointer must address a 16-byte
boundary. The materialization template has the following
format:

· Materialization size specification Char(8)
- Number of bytes provided for Bin(4)

materialization
Number of bytes available for Bin(4)
materialization

· Materialization data Char(4)
Count of messages Bin(4)
materialized

· Queue data Char(12)
Count of messages on Bin(4)
the queue

- Maximum message size Bin(4)
- Key size Bin(4)

· Reserved Char(8)

· Message data Chad*)
(repeated for each message)

Message attributes Char(16)
Message enqueue time Char(8)

- Message length Bin(4)
- Reserved Char(4)
Message key Char(*)
Message text Char(*)

The first 4 bytes of the materialization identify the total
quantity of bytes that may be used by the instruction.
This value is supplied as input to the instruction and is
not modified by the instruction. A value of less than 8
causes the materialization length exception to be
signaled.

The second 4 bytes of the materialization identify the
total quantity of bytes available to be materialized. The
instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the
byte area identified by the receiver is greater than that
required to contain the information requested, then the
excess bytes are unchanged. No exceptions are signaled
in the event that the receiver contains insufficient area
for the materialization, other than the materialization
length exception described previously.

The maximum message size and key size are values
specified when the queue was created. If the queue is
not a keyed queue, the value materialized for the key
size is zero.

J

L
The length of the message key and message text fields
is determined by values supplied in operand 3, message
selection data. If the length supplied in operand 3
exceeds the actual data length, the remaining space will
be padded with binary zeros.

The message selection template identified by operand 3
must be at least 16 bytes and must be on a 16-byte
boundary. The format of the message selection
template is as follows:

• Message selection
Type

000l-AII messages
00lD-First
mOD-Last
l00D-Keyed

Char(2)
Bits 0-3

All other values are reserved

Key relationship (if needed) Bits 4-7
001 D-Greater than
01OD-Less than
011 D-Not equal
l00D-Equal
101D-Greater than or equal
11OD-Less than or equal

All other values are reserved
Reserved Bits 8-15

• Lengths
Number of key bytes
to materialize
Number of message text
bytes to materialize

• Reserved

• Key (if needed)

Char(8)
Bin(4)

Bin(4)

Char(6)

Char(")

The message selection type must not specify keyed if
the queue was not created as a keyed queue.

Both of the fields specified under lengths must be zero
or an integer multiple of 16. The maximum value
allowed for the key length is 256. The maximum value
allowed for the message text is 65536.

Authorization Required

• Retrieve
Operand 2

- Contexts referenced for address resolution

Lock Enforcennent

• Materialization
Operand 2

- Contexts referenced for address resolution

Events

0002 Authorization
0101 Authorization violation

OOOC Machine resources
0201 Machine auxiliary storage exceeded

OOOD Machine status
0101 Machine check

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Queue Management Instructions 12-15

Exceptions

Operands J Exception 1 2 3 4 Other

06 Addressing

01 Space addressing violation X X X
02 Boundary alignment X X X
03 Range X X X
06 Optimized addressability invalid X X X

08 Argument / Parameter

01 Parameter reference violation X X X
OA Authorization

01 Unauthorized for operation X
10 Damage Encountered

04 System object damage X X
44 Partial system object damage X

1A Lock State

01 Invalid lock state X
20 Machine Support

02 Machine check X
03 Function check X

22 Object Access

01 Object not found X X X
02 Object destroyed X X X
03 Object suspended X X X

24 Pointer Specification

01 Pointer does not exist X X X
02 Pointer type invalid X X X

J 03 Pointer addressing invalid object X
28 Process State

02 Process control space not X
associated with a process

2A Program Creation

06 Invalid operand type X X X
07 Invalid operand attribute X X X
08 Invalid operand value range X X X
OA Invalid operand length X
OC Invalid operand ODT reference X X X
00 Reserved bits are not zero X X X X X

32 Scalar Specification

01 Scalar type invalid X X X
02 Scalar attributes invalid X X X
03 Scalar value invalid X

38 Template Specification

03 Materialization length exception X

12-16

Chapter 13. Resource Management Instructions

This chapter describes the storage and resource
management instructions. These instructions are in
alphabetic order. For an alphabetic summary of all the
instructions, see Appendix A. Instruction Summary.

CREATE ACCESS GROUP (CRTAG)

Op Code Operand Operand
(Hex) 1 2

0366 Address- Access
ability to group
created template
access
group

Operand 1: System pointer.

Operand 2: Space pointer.

Description: An access group with the attributes of the
template identified by operand 2 is created, and a
system pointer to the access group is returned in the
pointer identified by operand 1.

The access group template specified by operand 2 must
be 16-byte aligned and must have the following format:

• Template size specification
- Number of bytes provided

in template
- Number of bytes available

for materialization

• Object identification
- Object type
- Object subtype
- Object name

Char(8)*
Bin(4)*

Bin(4)*

Char(32)
Char(1)*
Char(1)
Char(30)

• Object creation options
- Existence attributes

o = Temporary (required)
- Space attribute

o = Fixed-length
1 = Variable-length

- Initial context
o Addressability is not

inserted into context
Addressability is
inserted into context

- Reserved (binary 0)

• Reserved (binary 0)

• Size of space

• Initial value of space

Char(4)
Bit 0

Bit 1

Bit 2

Bits 3-31

Char(4)

Bin(4)

Char(1)

Resource Management Instructions 13-1

• Performance class Char(4)
Space alignment Bit 0
o = The space associated with

the object is allocated to
allow proper alignment of
pointers at 16-byte align-
ments within the space. If
no space is specified for
the object, this value must
be specified for the
performance class.

1 = The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space as
well as to allow proper
alignment of input/output
buffers at 512-byte align
ments within the the space.

Reserved (binary 0) Bits 1-4
Main storage pool selection Bit 5
o Process default main storage

pool is used for object.
1 = Machine default main storage

pool is used for object.
Reserved (binary 0) Bit 6
Block transfer on implicit Bit 7
access state modification
o = Transfer the minimum storage

transfer size for this object.
This value is 1 storage unit.
Transfer the machine default
storage transfer size. This
value is 8 storage units.

Reserved (binary 0) Bits 8-31

• Reserved (binary 0) Charm

• Context System
pointer

Note: The value associated with each entry shown here
with an asterisk (*) is ignored.

13-2

The storage occupied by the created access group is
charged to the creating process.

The object identification specifies the symbolic name
that identifies the access group within the machine. A
type code of hex 03 is implicitly supplied by the
machine. The object identification is used to identify the
access group on materialize instructions as well as to
locate the access group in a context that addresses the
access group.

The existence attribute specifies that the access group is
to be created as temporary. An access group, if not
explicitly destroyed by the user, is implicitly destroyed
by the machine when machine processing is terminated.
An access group can contain only other temporary
objects and not another access group.

A space may be associated with the created access
group. The space may be fixed or variable in size. The
initial allocation is specified in the size of space entry.
The machine allocates a space of at least the size
specified; the actual size allocated depends on an
algorithm defined by a specific implementation. A fixed
size space entry of 0 causes no space to be allocated.

Each byte of the space is initialized to a value specified
by the initial value of space entry. When the space is
extended, the byte space entry value is also used to
initialize the new allocation. If no space is allocated, this
entry is ignored.

If the initial context creation attribute entry indicates that
addressability is to be inserted into a context, the
context entry must contain a system pointer that
identifies a context in which addressability to the newly
created object is to be placed. If addressability is not to
be inserted into a context, the context entry is ignored.

The performance class parameter provides information
that allows the machine to manage the access group
with consideration for the overall performance objectives
of operations involving the access group.

Access groups are implicitly extended by the machine to
a size large enough to contain any objects inserted into
them. The maximum size of an access group is 4
megabytes.

J

Authorization Required Exceptions

L . Insert Operands
- Context identified by operand 2 Exception 1 2 Other

06 Addressing

Lock Enforcennent 01 Space addressing violation X X
02 Boundary alignment X X . Modify 03 Range X X

- Context identified by operand 2 06 Optimized addressability invalid X X
08 Argument/ Parameter

01 Parameter reference violation X X

Events OA Authorization

01 Unauthorized for operation X

0002 Authorization OE Context Operation

0101 Object authorization violation 01 Duplicate object identification X
10 Damage Encountered

OOOC Machine resource 04 System object damage state X X X

0201 Machine auxiliary storage threshold exceeded 44 Partial system object damage X X X

0501 Machine address threshold exceeded 1A Lock State

01 Invalid lock state X

0010 Process 1C Machine-Dependent Exception

0701 Maximum processor time exceeded 03 Machine storage limit exceeded X

0801 Process storage limit exceeded 04 Object storage limit exceeded X
20 Machine Support

0016 Machine observation 02 Machine check X

0101 Instruction reference 03 Function check X

l,
22 Object Access

0017 Damage set 01 Object not found X X

0401 System object damage set 02 Object destroyed X X

0801 Partial system object damage set 03 Object suspended X X
24 Pointer Specification

01 Pointer does not exist X X
02 Pointer type invalid X X

2A Program Creation

06 Invalid operand type X X
07 Invalid operand attribute X X
08 Invalid operand value range X X
OC Invalid operand ODT reference X X
00 Reserved bits are not zero X X X

38 Template Specification

01 Template value invalid X

Resource Management Instructions 13-3

CREATE DUPLICATE OBJECT (CRTDOBJ)

Op Code
(Hex)

0327

Operand
1

Address
ability to
new object

Operand
2

Create
duplicate
object
template

Operand 1: System pointer.

Operand 2: Space pointer.

Operand 3: System pointer.

Operand
3

Object
to be
duplicated

Description: A copy of the object identified by operand
3 is created. The object may be a cursor or a space.

The new object is identical to the source object except
as modified by the creation template.

• A resolved pointer in the space portion of the source
object that has an address to an interior element in
the same space is not resolved to address the same
functional address in the new version of the object;
that is, pointers are not relocated.

• Any authorization established for the source object is
not duplicated into the new object.

• A cursor addressed by the instruction is duplicated in
its unactivated form. Any modifications that have
been made to the cursor after it was originally
created are not reflected in the new object.

A system pointer addressing the new object is returned
in the pointer specified by operand 1.

13-4

The Create Duplicate Object instruction template
specified by operand 2 must be aligned on a 16-byte

J boundary. The format is:

· Template size specification Char(8)*
Number of bytes provided Bin(4)*

- Number of bytes available for Bin(4)*
materialization

· Object identification Char(32)
- Object type Char(1)*
- Object subtype Char(1)
- Object name Char(30)

· Object creation options Char(4)
- Existence attributes Bit 0

0 = Temporary
1 = Permanent

- Space attribute Bit 1
o = Fixed-length
1 = Va ria ble -length

- Initial context Bit 2
0 Addressability is not

inserted in context
Addressability is
inserted in context

- Access group Bit 3
0 Member of access J group is not created

Member of access
group is created

- Replace option Bit 4
o = Create as new object
1 = Replace existing object

- Return space. size option Bit 5
0 Do not return space size
1 = Return actual space size

in space size field
Reserved (binary 0) Bits 6-31

· Reserved (binary 0) Char(4)

· Size of space Bin(4)@

· Initial value of space Char(1)

• Performance class Char(4)
- Space alignment Bit 0

o = The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space. If
no space is specified for
the object, this value must
be specified for the
performance class.
The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space as
well as to allow proper
alignment of input/ output
buffers at 512-byte align
ments within the the space.

Reserved (binary 0) Bits 1-4
- Main storage pool selection Bit 5

o Process default main storage
pool is used for object.
Machine default main storage
pool is used for object.

Transient storage pool selection Bit 6
o = Default main storage pool (as

specified for main storage pool
selection)

1 = Transient storage pool is used
for object.

- Block transfer on implicit Bit 7
access state modification
o = Transfer the minimum storage

transfer size for this object.
This value is 1 storage unit.
Transfer the machine default
storage transfer size. This
value is 8 storage units.

Unit number
- Reserved (binary 0)

• Reserved (binary 0)

Bits 8-15
Bits 16-31

Charm

• Context

• Access group

System
pointer

System
pointer

Note: The value associated with each entry shown here
with an asterisk (*) is ignored. The value associated
with each entry shown here with an at sign (@) may be
altered by the instruction.

If the created object is permanent, it is owned by the
user profile governing process execution. The owning
user profile is implicitly assigned all private authority
states for the object. The storage occupied by the
created object is charged to this owning user profile. If
the created object is temporary, there is no owning user
profile and all authority states are assigned as public.
Storage occupied by the created context is charged to
the creating process.

The object identification specifies the symbolic name
that identifies the object within the machine. A type
code identical to that of the source object is implicitly
supplied by the machine. The object identification is
used to identify the object on materialize instructions as
well as to locate the object in a context that addresses
the object.

The subtype code and name can be the same as or
different from the object being duplicated. If both
names and subtypes are the same, the new object
cannot be placed in the same context as the original
object. If the names or subtypes are different, the new
object may be placed in the same context.

The existence attribute specifies whether the duplicate is
to be a temporary object or a permanent object. The
temporary and the permanent object creation attributes
are supported for both the original object and the
duplicate object.

A temporary object, if not explicitly destroyed by the
user, is implicitly destroyed by the machine when
machine processing is terminated. A permanent object
exists in the machine until explicitly destroyed by the
user.

Resource Management Instructions 13-5

A space may be associated with the created object. The
space may be fixed or variable. The initial allocation is
specified in the size of space entry. The machine
allocates a space of at least the size specified; the
actual size allocated depends on an algorithm defined by
a specific implementation and is optionally returned in
the space size entry. A fixed size space entry of 0
causes no space to be allocated.

The contents of the original space (if any) are copied
into the duplicate space without modification. If the
duplicate space is shorter than the original space, the
information is truncated. If the duplicate space is longer,
each byte beyond that copied from the original is
initialized to a value specified by the initial value of
space entry. When the space is extended, this byte
value is also used to initialize the new allocation.

If the initial context creation attribute entry indicates that
addressability is to be inserted into a context, the
context entry must contain a system pointer that
identifies a context in which addressability to the newly
created object is to be placed. If addressability is not to
be inserted into a context, the context entry is ignored.

If the access group creation attribute entry indicates that
the object is to be created in an access group, the
access group entry must be a system pointer that
identifies the access group in which the object is to be
created. Because access groups may only be created as
temporary objects, the existence attribute entry must be
temporary (bit 0 equals 0). If the object is not to be
created in an access group, the access group entry is
ignored.

Performance class parameters provide information that
allows the machine to manage the duplicate object with
consideration for the overall performance objectives of
operations involving the duplicate object.

The unit number field, which can be specified for space
objects only, indicates the auxiliary storage unit on
which the space should be located if possible.

Operand 3 identifies a system pointer addressing the
object to be duplicated.

13-6

Authorization Required

• Insert
User profile of creating process

- Context referenced by operand 2

• Retrieve
Operand 3 (object to be duplicated)

- Contexts referenced for address resolution

• Space authority
Operand 3 (only if the object to be duplicated has
an associated space to be duplicated)

Lock Enforcement

• Materialize
- Operand 3 (object to be duplicated)
- Contexts referenced for address resolution

• Modify
User profile of creating process
Context referenced by operand 2
Access group referenced by operand 2

Events

0002 Authorization
0101 Object authorization violation

ooOC Machine resource
0201 Machine auxiliary storage threshold exceeded
0501 Machine address threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

J

Exceptions DESTROY ACCESS GROUP (DESAG)

L Operands Op Code
(Hex) Operand 1 Exception 1 2 3 Other

02 Access Group
0351 Access group

01 Object ineligible for access group X
Operand 1: System pointer.

06 Addressing

01 Space addressing violation X X X

02 Boundary alignment X X X Description: The access group identified by the system
03 Range X X X

pointer (operand 1) is destroyed, and addressability is
06 Optimized addressability invalid X X X

deleted from any context that addresses the access
08 Argument/ Parameter

group. The system pointer is not modified. Any
01 Parameter reference violation X X X

attempted reference to the destroyed access group
OA Authorization

through the pointer causes the object destroyed
01 Unauthorized for operation X X

exception to be signaled.
OE Context Operation

01 Duplicate object identification X
If objects exist within the designated access group, the

10 Damage Encountered
access group is not destroyed, and an object not eligible

04 System object damage state X X X
for destruction exception is signaled.

44 Partial system object damage X X X X

1A lock State

01 Invalid lock state X X Authorization Required
lC Machine-Dependent Exception

03 Machine storage limit exceeded X · Retrieve
04 Object storage limit exceeded X - Contexts referenced for address resolution

20 Machine Support

02 Machine check X

L 03 Function check X Lock Enforcennent
22 Object Access

01 Object not found X X X · Materialize

02 Object destroyed X X X - Contexts referenced for address resolution

03 Object suspended X X X

04 Object not eligible for operation X · Modify
- Context that addresses access group 24 Pointer Specification

01 Pointer does not exist X X X
Object control · 03 Pointer addressing invalid object X X - Operand 1

2A Program Creation

06 Invalid operand type X X X

OC Invalid operand ODT reference X X X

00 Reserved bits are not zero X X X X

2E Resource Control limit

01 User profile storage limit X
exceeded

38 Template Specification

01 Template value invalid X

Resource Management Instructions 13-7

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operand
Exception 1 Other

06 Addressing
01 Space addressing violation X
02 Boundary alignment X
03 Range X
06 Optimized addressability invalid X

08 Argument/Parameter
01 Parameter reference violation X

OA Authorization
01 Unauthorized for operation X

10 Damage Encountered
04 System object damage state X X
44 Partial system object damage X X

1A Lock State
01 Invalid lock state X

1C Machine- Dependent Exception
03 Machine storage limit exceeded X

20 Machine Support
02 Machine check X
03 Function check X

22 Object Access
01 Object not found X
02 Object destroyed X
03 Object suspended X
06 Object not eligible for destruction X

24 Pointer Specification
01 Pointer does not exist X
02 Pointer type invalid X
03 Pointer addressing invalid object X

2A Program Creation
06 Invalid operand type X
07 Invalid operand attributes X
08 Invalid operand value range X
OC Invalid operand ODT reference X
00 Reserved bits are not zero X X

13-8

ENSURE OBJECT (ENSOBJ)

Op Code
(Hex) Operand 1

0381 Object to be ensured

Operand 1: System pointer.

Description: The object identified by operand 1 is
protected from volatile storage loss. The machine
ensures that any changes made to the specified object
are recorded on nonvolatile storage media. The access
state of the object is not changed by this instruction. If
operand 1 addresses a temporary object. no operation is
performed because temporary objects are not preserved
during a machine failure. No exception is signaled if
temporary objects are referenced.

Authorization Required

• Retrieve
- Contexts referenced for address resolution

Lock Enforcennent

• Materialize
- Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

001 A Journal port
0401 Journal space attached to a journal port

became unusable

Exceptions MATERIALIZE ACCESS GROUP ATTRIBUTES

L Exception

(MATAGAT)

Operand
1 Other Op Code Operand Operand

(Hex) 1 2
06 Addressing

01 Space addressing violation X 03A2 Receiver Access
02 Boundary alignment X group

03 Range X
06 Optimized addressability invalid X Operand 1: Space pointer.

08 Argument / Parameter
01 Parameter reference violation X Operand 2: System pointer.

OA Authorization

01 Unauthorized for operation X
10 Damage Encountered Description: The attributes of the access group and the

04 System object damage state X identification of objects currently contained in the access

44 Partial system object damage X X group are materialized into the receiving object specified

1A Lock State by operand 1.

01 Invalid lock state X
1C Machine-Dependent Exception The materialization must be aligned on a 16-byte

03 Machine storage limit exceeded X boundary. The format is:

20 Machine Support

02 Machine check X · Materialization size specification Char(8)

03 Function check X Number of bytes provided for Bin(4)

22 Object Access materialization

01 Object not found X Number of bytes available for Bin(4)

02 Object destroyed X materialization

~
03 Object suspended

24 Pointer Specification

01 Pointer does not exist

X

· Object identification Char(32)

X Object type Char(1)

02 Pointer type invalid X Object subtype Char(1)

03 Pointer addressing invalid object X Object name Char(30)

2A Program Creation

06 Invalid operand type X · Object creation options Char(4)

07 Invalid operand attributes X Existence attributes Bit 0

08 Invalid operand value range X 0 = Temporary

OC Invalid operand ODT reference X 1 = Reserved

OD Reserved bits are not zero X X Space attribute Bit 1

0 = Fixed -length

1 = Variable-length

Context Bit 2

0 = Addressability not in context

1 = Addressability in context
Reserved (binary 0) Bits 3-31

• Reserved (binary 0) Char(4)

• Size of space Bin(4)

• Initial value of space Char(1)

Resource Management Instructions 13-9

• Performance class Char(4)
- Space alignment Bit 0

o = The space associated with the
object is allocated to allow
proper alignment of pointers at
16-byte alignments within the
space. If no space is specified
for the object, this value must
be specified for the performance
class.
The space associated with the
object is allocated to allow
proper alignment of pointers at
16-byte alignments within the
space as well as to allow proper
alignment of input/output buffers
at 512-byte alignments within the
space.

Reserved (binary 0) Bits 1-4
Default main storage pool Bit 5
o Process main storage pool

is used for this object.
Machine default main storage
pool is used for this object.

- Reserved (binary 0) Bit 6
- Block transfer on implicit Bit 7

access state modification
o = Minimum storage transfer size

for this object is transferred.
This value is 1 storage unit.
Machine default storage transfer
size is transferred. This
value is 8 storage units.

- Reserved (binary 0)

• Reserved (binary 0)

• Context

• Reserved (binary 0)

• Access group size

• Reserved (binary 0)

• Number of objects in the
access group

13-10

Bits 8-31

Charm

System
pointer

Char(16)

Bin(4)

Bin(4)

Bin(4)

• Reserved (binary 0)

• Access group object system
pointer (repeated for each
object currently contained
in the access group)

Char(4)

System
pointer

The receiver space contains the access group's
attributes (as defined by the Create Access Group
instruction), the current status of the access group, and
a system pointer to each object assigned to the access
group.

The access group size represents the total amount of
space that has been allocated to the access group. The
amount of available space represents the amount of
space that is available in the access group for additional
objects.

There is one access group object system pointer for
each object currently assigned to the access group. The
authorization field within each system pointer is not set.

Authorization Required

• Retrieve
- Operand 2
- Contexts referenced for address resolution

Lock Enforcen1ent

• Materialize
Operand 2

- Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

J

Exceptions MATERIALIZE RESOURCE MANAGEMENT DATA
(MATRMD)

Operands
Exception 1 2 Other

Op Code Operand Operand

06 Addressing (Hex) 1 2

01 Space addressing violation X X
02 Boundary alignment X X 0352 Receiver Control

03 Range X X
data

06 Optimized addressability invalid X X
08 Argument / Parameter Operand 1: Space pointer.

01 Parameter reference violation X X
OA Authorization Operand 2: Character(8) scalar (fixed-length).

01 Unauthorized for operation X
10 Damage Encountered

04 System object damage state X X X Description: The data items requested by operand 2 are

44 Partial system object damage X X X materialized into the receiving object specified by
1A Lock State operand 1. Operand 2 is an 8-byte character scalar.

01 Invalid lock state X X The first byte identifies the generic type of information
1C Machine- Dependent Exception being materialized, and the remaining 7 bytes further

03 Machine storage limit exceeded X qualify the information desired.
20 Machine Support

02 Machine check X
Operand 1 contains the materialization and has the

03 Function check X
22 Object Access following format:

01 Object not found X X
02 Object destroyed X X · Materialization size specification Char(8)

03 Object suspended X X Number of bytes provided for Bin(4)

24 Pointer Specification materialization
01 Pointer does not exist X X Number of bytes available for Bin(4)
02 Pointer type invalid X X materialization
03 Pointer addressing invalid object X

2A Program Creation · Time of day Char(8)
06 Invalid operand type X X
07 Invalid operand attribute X X

Resource management data Char(*)
08 Invalid operand value range X X ·
OA Invalid operand length X
OC Invalid operand ODT reference X X The remainder of the materialization depends on

00 Reserved bits are not zero X X X operand 2 and on the machine implementation.

38 Template Specification
03 Materialization length exception X

Resource Management Instructions 13-11

The following values are allowed for operand 2:

• Selection option

Hex 01 = Materialize process
utilization data

Hex 02= Materialize auxiliary
storage information

Hex 03=Materialize extended

Char(l)

storage management counters
Hex 04= Materialize storage

transient pool
information

Hex 05= Materialize storage
pool information

Hex 06=Storage management
counters

Hex 07=Materialize extended
storage pool information

Hex 08= Materialize machine
address threshold data

Hex OA=Materialize MPL
control information

Hex OB=Materialize machine
reserved storage pool
information

• Reserved (binary 0) Charm

The following defines the formats and values associated
with each of the above materializations of resource
management data.

Processor Utilization (Hex 01):

• Processor time since IPL
(initial program load)

Char(8)

Processor time since IPL is the total amount of
processor time used, both by instruction processes and
internal machine functions, since IPL. The significance
of bits within the field is the same as that defined for
the time-ot.-day clock.

Auxiliary Storage Information (Hex 02):

• Number of auxiliary storage units Bin(2)

• Auxiliary storage capacity Bin(8)

• Auxiliary storage space available Bin(8)

• Auxiliary storage event threshold Bin(8)

13-12

• Auxiliary storage control flags
- Error logging control flag
- Reserved

• Reserved

• Auxiliary storage unit utilization
(repeated once for each auxiliary
storage unit)

Device type
Reserved
Unit number

- Reserved
Capacity
Space available
Device dependent information

Bytes transferred to
main storage
Bytes transferred from
main storage
Requests for data transfer
to main storage
Requests for data transfer
from main storage
Reserved

Char(l)
Bit 1
Bit 3

Char(5)

Char(64)

Bin(2)
Char(l)
Bin(l)
Char(4)
Bin(8)
Bin(8)
Char(40)
Bin(4)

Bin(4)

Bin(4)

Bin(4)

Char(24)

Number of auxiliary units is the number of logical and
physical devices that comprise the secondary store.

Auxiliary storage capacity is the total number of bytes of
auxiliary storage attached to the machine.

Auxiliary storage space available is the number of bytes
of space on secondary storage available for allocation;
that is, not currently assigned to objects or internal
machine functions.

Auxiliary storage event threshold is a number which,
should it exceed secondary storage space available, will
cause the event secondary storage threshold exceeded
to be signaled. When the event is signaled, the machine
resets this value to O.

J

L

Error logging control flag bit, when set to 1, specifies
that any temporary errors subject to threshold control
are logged on every occurrence. When set to 0, such
errors are logged only when the device specific
thresholds are reached.

Auxiliary storage unit utilization data is repeated once for
each logical device of the auxiliary storage. The
relationship of logical to physical devices, and portions
of the materialized utilization data, are
device-dependent. Data is associated with a device by
virtue of its logical position on the array.

Extended Storage Management Counters (Hex 03):

• Access pending Bin(2)

• Storage pool delays Bin(2)

• Directory look-up operations Bin(4)

• Directory page faults Bin(4)

• Access group member page faults Bin(4)

· Microcode page faults Bin(4)

· Microtask read operations Bin(4)

· Microtask write operations Bin(4)

· Reserved Bin(4)

The definition of the fields materialized for this option is
the same as that provided under the storage
management counters option, hex as. The extended
fields under this option allow for materialization of larger
values.

Storage Transient Pool Information (Hex 04):

• Storage pool to be used for the
transient pool

Bin(2)

The pool number materialized is the number of the main
storage pool, which is being used as the transient
storage pool. A value of 0 indicates that the transient
pool attribute is being ignored.

Storage Pool Information (Hex 05):

• Machine minimum transfer size

• Maximum number of pools

• Current number of pools

• Main storage size

• Minimum size-pool 1

• Reserved (binary 0)

• Individual main storage pool
information (repeated once for
each pool, up to the current
number of pools)

Pool size
Pool maintenance
Process interruptions
(data base)
Process interruptions
(nondata base)

- Data transferred to
pool (data base)
Data transferred to
pool (nondata base)

Bin(2)

Bin(2)

Bin(2)

Bin(2)

Bin(2)

Char(S)

Char(1S)

Bin(2)
Bin(2)
Bin(2)

Bin(2)

Bin(4)

Bin(4)

Machine minimum transfer size is the smallest number
of bytes that may be transferred as a block to or from
main storage.

Maximum number of pools is the maximum number of
storage pools into which main storage may be
partitioned. These pools will be assigned the logical
identification beginning with 1 and continuing to the
maximum number of pools.

Current number of pools is a user-specified value for
the number of storage pools the user wishes to utilize.
These are assumed to be numbered from 1 to the
number specified. This number is fixed by the machine
to be equal to the maximum number of pools.

Main storage size is the amount of main storage, in
units equal to the machine minimum transfer size, which
may be apportioned among main storage pools.

Minimum size-Pool 1 is the amount of main storage, in
units equal to the machine minimum transfer size, which
must remain in pool 1. This amount is machine and
configuration dependent.

Resource Management Instructions 13-13

Individual main storage pool information is data in an
array that is associated with a main storage pool by
virtue of its ordinal position within the array. In the
descriptions below, data base refers to all other data,
including internal machine fields. Pool size, pool
maintenance, and data transferred information is
expressed in units equal to the machine minimum
transfer size described above.

Pool size is the amount of main storage assigned to the
pool.

Pool maintenance is the amount of data written from a
pool to secondary storage by the machine to satisfy
demand for resources from the pool. It does not
represent total transfers from the pool to secondary
storage, but rather is an indication of machine overhead
required to provide primary storage within a pool to
requesting processes.

Process interruptions (data base and nondata base) is
the total number of interruptions to processes (not
necessarily assigned to this pool) which were required to
transfer data into the pool to permit instruction
execution.

Data transferred to pool (data base and nondata base) is
the amount of data transferred from auxiliary storage to
the pool to permit instruction execution and as a
consequence of set access state, implicit access group
movement, and internal machine actions.

Storage Management Counters (Hex 06):

• Access pending Bin(2)

• Storage pool delays Bin(2)

• Directory look-up operations Bin(2)

• Directory page faults Bin(2)

• Access group member page faults Bin(2)

• Microcode page faults Bin(2)

• Microtask read operations Bin(2)

• Microtask write operations Bin(2)

13-14

Access pending is a count of the number of times that a
paging request must wait for the completion of a
different request for the same page.

Storage pool delays is a count of the number of times
that processes have been momentarily delayed by the
unavailability of a main storage frame in the proper pool.

Directory look-up operations is a count of the number
of times that auxiliary storage directories were
interrogated, exclusive of storage allocation or
deallocation.

Directory page faults is a count of the number of times
that a page of the auxiliary storage directory was
transferred to main storage, to perform either a look-up
or an allocation operation.

Access group member page faults is a count of the
number of times that a page of an object contained in
an access group was transferred to main storage
independently of the containing access group. This
occurs when the containing access group has been
purged or because portions of the containing access
group have been displaced from main storage.

Microcode page faults is a count of the number of times
a page of microcode was transferred to main storage.

Microtask read operations is a count of the number of
transfers of one or more pages of data from auxiliary
main storage on behalf of a microtask rather than a
process.

Microtask write operations is a count of the number of
transfers of one or more pages of data from main
storage to auxiliary storage on behalf of a microtask,
rather than a process.

J

J

Extended Storage Pool Information (Hex 07):

• Machine minimum transfer size

• Maximum number of pools

• Current number of pools

• Main storage size

• Minimum siz~pool 1

• Reserved (binary 0)

• Individual main storage pool
information (repeated once for
each pool, up to the current
number of pools)

Pool size
Pool maintenance
Process interruptions
(data base)
Process interruptions
(nondata base)
Data transferred to
pool (data base)
Data transferred to
pool (nondata base)
Reserved (binary 0)

Bin(2)

Bin(2)

Bin(2)

Bin(2)

Bin(2)

Char(6)

Char(32)

Bin(2)
Bin(4)
Bin(4)

Bin(4)

Bin(4)

Bin(4)

Char(10)

The meanings for the fields of this selection option are
the same as the meanings described for selection option
hex 05.

Machine Address Threshold Data (Hex 08):

• Total permanent addresses possible Char(S)

• Total temporary addresses possible Char(S)

• Permanent addresses remaining Char(S)

• Temporary addresses remaining Char(S)

• Permanent addresses threshold Char(S)

• Temporary addresses threshold Char(S)

Total permanent addresses possible is the maximum
number of permanent addresses that can exist on the
machine.

Total temporary addresses possible is the maximum
number of temporary addresses that can exist on the
machine.

Permanent addresses remaining is the number of
permanent addresses that can still be created before
address regeneration must be run.

Temporary addresses remaining is the number of
temporary addresses that can still be created before
address regeneration must be run.

Permanent addresses threshold is a number that, when
it exceeds the number of permanent addresses
remaining, causes the event machine address threshold
exceeded to be signaled. When the event is signaled,
the threshold is reset to O.

Temporary addresses threshold is a number that, when
it exceeds the number of temporary addresses
remaining, causes the event machine address threshold
exceeded to be signaled. When the event is signaled,
the threshold is reset to O.

Resource Management Instructions 13-15

Multiprogramming Level Control Information (Hex OA):

• Machine-wide M PL control
'Machine maximum number
of M PL classes
Machine current number
of M PL classes
MPL (max)
Ineligible event threshold
MPL (current)

- Number of processes
in ineligible state
Reserved

• M PL class information
(repeated for each MPl class,
from 1 to the current
number of MPl classes)

MPl (max)
Ineligible event threshold
Current MPl
Number of processes
ineligible state
Number of processes
assigned to class
Transitions (active to ineligible)
Transitions (active to MI wait)
Transitions (MI wait to ineligible)

Machine-Wide MPl Control:

Char(16)
Bin(2)

Bin(2)

Bin(2)
Bin(2)
Bin(2)
Bin(2)

Char(4)

Char(16)

Bin(2)
Bin(2)
Bin(2)
Bin(2)

Bin(2)

Bin(2)
Bin(2)
Bin(2)

Maximum number of MPl classes is the largest
number of MPL classes allowed in the machine.
These are assumed to be numbered from 1 to the
maximum.

Current number of MPl classes is a user-specified
value for the number of MPl classes in use. They are
assumed to be numbered from 1 to the current
number.

MPl (max) is the maximum number of processes
which may concurrently be in the active state in the
machine.

Ineligible event threshold is a number which, if
exceeded by the machine number of ineligible
processes defined below, will cause the machine
ineligible threshold exceeded event to be signaled.
When the event is signaled, this value is set by the
machine to 65 535.

MPl (current) is the current number of processes in
the active state.

13-16

Number of processes in the ineligible state is the
number of processes not currently active because of
enforcement of both the machine and class M Pl
rules.

MPL Class Information:

MPl class controls is data in an array that is
associated with an MPl class by virtue of its ordinal
position within the array.

MPl (max) is the number of processes assigned to
the class which may be concurrently active.

Ineligible event threshold, MPl (current). and number
of processes in ineligible state are as defined above
but apply only to processes assigned to the class.

Number of processes assigned to class is the total
number of processes, in any state, assigned to the
pool.

Transitions count is the total number of transitions by
processes assigned to a class as follows:

1. Active state to ineligible state

2. Active state to wait

3. Wait state to ineligible state

Note that transitions from wait state to active state
can be derived as (2 - 3) and transitions from
ineligible state to active state as (1 + 3). These
numbers are unsigned Bin(2) and are maintained by
the machine without regard to overflow conditions.

Machine Reserved Storage Pool Information (Hex OB): Exceptions

L • Current number of pools Bin(2) Operends
Exception 1 2 Other

· Reserved Char(6)
06 Addressing

· Individual main storage Char(8) 01 Space addressing violation X X

pool information 02 Boundary alignment X X

(repeated once for each pool. up 03 Range X X

to the current number of pools) 06 Optimized addressability invalid X X

Pool size Bin(2) 08 Argument I Parameter

- Machine portion of the pool Bin(2) 01 Parameter reference violation X X

- Reserved Char(4) 10 Damage Encountered
04 System object damage state X X

Pool size is the amount of main storage aSSigned to the 44 Partial system object damage X X X

pool (including the machine reserved portion). 1C Machine-Dependent Exception
03 Machine storage limit exceeded X

Machine portion of the pool specifies the amount of 20 Machine Support

storage from the pool that is dedicated to machine 02 Machine check X

functions. 03 Function check X
22 Object Access

Substring operand references that allow for a null 01 Object not found X X

substring reference (a length value of zero) may not be 02 Object destroyed X X

specified for this instruction. 03 Object suspended X X
24 Pointer Specification

01 Pointer does not exist X X

Events 02 Pointer type invalid X X
2A Program Creation

0002 Authorization 06 Invalid operand type X X

0101 Object authorization violation 07 Invalid operand attribute X X
08 Invalid operand value range X X

oooA Lock OC Invalid operand ODT reference X X

0301 Object lock transferred 00 Reserved bits are not zero X X X
32 Scalar Specification

OOOC Machine resource 02 Scalar attribute invalid X

0201 Machine auxiliary storage threshold exceeded 03 Scalar value invalid X
38 Template Specification

00 1 0 Process 03 Materialization length exception X

0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Resource Management Instructions 13-17

MODIFY RESOURCE MANAGEMENT CONTROLS
(MODRMC)

Op Code
(Hex)

0326

Operand
1

Receiver

Operand
2

Control
data

Operand 1: Space pointer.

Operand 2: Character(8) scalar (fixed-length).

Description: The control fields implied by operand 2 are
modified according to the template specified in operand
1. Operand 2 is an 8-byte character scalar. The first
byte generically identifies the type of controls being
modified, and the remaining 7 bytes further qualify these
controls. The allowable values for operand 2 are
machine-dependent.

Operand 1 specifies the values to be used in the
modification. The modification template is of the same
size and layout as the corresponding materialize resource
management data template. The instruction assumes
that all values that may be modified under a given value
for operand 2 are in fact being modified.

The values allowed for operand 2 and their
interpretations are:

• Selection option

Hex 02= Modify auxiliary storage
controls

Hex 04= Modify storage transient
pool identification

Hex 05= Modify main storage
pool controls

Hex 08= Modify machine address
threshold

Hex OA=Modify MPL controls

• Reserved (binary 0)

13-18

Char(1)

Char(7)

Associated with these values are the following
modification templates, which are assumed to begin 16
bytes past the location specified by operand 1.

Auxiliary Storage Control (Hex 02):

• Reserved

• Auxiliary storage event threshold

• Auxiliary storage control flags
Error logging control flag

- Reserved

Char(18)*

Bin(8)

Char(1)
Bit 1
Bit 7

Note: The value associated with each entry shown here
with an asterisk (*) is ignored.

Auxiliary storage event threshold is a number that, if
greater than the number of bytes of auxiliary storage
space available, causes the auxiliary storage threshold
exceeded event to be signaled. This number is set by
the machine to 0 whenever the event is signaled.

Error logging control flag, when set to 1, specifies that
any temporary errors subject to threshold control be
logged on every occurrence. When set to 0, such errors
are logged only when the device specific thresholds are
reached.

Modify Storage Transient Pool Identification (Hex 04):

• Storage pool to be used as the
transient pool

Bin(2)

The value specified identifies which of the main storage
pools is to be used for the transient pool. A value of 0
indicates that the transient pool attribute is to be
ignored.

J

J

J

Main Storage Pool Control (Hex OS):

• Machine-wide storage pool control
Reserved Char(4)*

~ Current number of pools Bin(2)
Reserved Char(10)*

• Individual main storage pool
controls (repeated once for
each main storage pool, up
to the current number of pools)

Pool size
Modify failure indicator

- Reserved

Bin(2)
Char(1)
Char(13)*

Note: The value associated with each entry shown here
with an asterisk (*) is ignored.

Current number of pools equals the maximum number of
pools allowed.

Individual main storage pool controls are associated with
main storage pools by virtue of their logical position in
the array.

Pool size specifies the size of the pool. The unit
assumed is the machine minimum transfer size. The
sum of the values specified for all pools must equal
main storage size, and the value specified for pool 1
must be greater than or equal to the pool 1 minimum
size. This minimum value is machine and configuration
dependent and the value for any given machine may be
materialized using the Materialize Resource Management
Data instruction. A value of 0 means that no storage is
to be allocated for a pool. A nonzero value must be
greater than 16.

Modify failure indicator indicates that the instruction has
tried to modify the pool size to less than the machine
required minimum size. The machine required minimum
size is 16 plus the machine reserved portion of the pool.
This field is set to hex FF by the instruction if the pool
size is less than the machine required minimum size.

Machine Address Threshold (Hex 08):

• Reserved Char(32)

• Permanent addresses threshold Char(8)

• Temporary addresses threshold Char(8)

Permanent addresses threshold is a number that, when
it exceeds the number of permanent addresses
remaining, causes the event machine address threshold
exceeded to be signaled. When the event is signaled,
the threshold is reset to O.

Temporary addresses threshold is a number that. when
it exceeds the number of temporary addresses
remaining, causes the event machine address threshold
exceeded to be signaled. When the event is signaled,
the threshold is reset to O.

Multiprogramming Level Control (Hex OA):

• Machine-wide MPL control
- Reserved

Current number of MPL classes
MPL (maximum)

Char(2)*
Bin(2)
Bin(2)

Ineligible event threshold Bin(2)
Reserved Char(8)*

• MPL class controls (repeated once
for each MPL class, up to the
current number of MPL classes)
- MPL (maximum) Bin(2)
- Ineligible event threshold
- Reserved

Bin(2)
Char(12)*

Note: The value associated with each entry shown here
with an asterisk (*) is ignored.

Current number of MPL classes specifies the number of
MPL classes required by the user. These are assumed
to be numbered from 1. This value may not be modified
and is set by the machine to be equal to the machine
maximum number of MPL classes.

M PL (maximum) specifies the maximum number of
processes which may concurrently be in the active state.

Resource Management Instructions 13-19

Ineligible event threshold is a number which, if exceeded Exceptions

by the number of processes in the machine in the
ineligible state, causes the machine ineligible state Operands

threshold event to be signaled. When this event is
Exception 1 2 Other

signaled, the threshold is reset by the machine 06 Addressing
to 32 767. 01 Space addressing violation X X

02 Boundary alignment X X
MPL class controls are associated with an MPL class by 03 Range X X

virtue of their ordinal position in the array. 06 Optimized addressability invalid X X
08 Argument/ Parameter

MPL (maximum) and ineligible event threshold are as 01 Parameter reference violation X X

defined for machine-wide MPL controls but apply only OA Authorization

to processes applied to a particular MPL class. 01 Unauthorized for operation X
02 Privileged instruction X

Substring operand references that allow for a null
10 Damage Encountered

04 System object damage state X X
substring reference (a length value of zero) may not be 44 Partial system object damage X X X
specified for this instruction. 1C Machine-Dependent Exception

03 Machine storage limit exceeded X
07 Modify main storage pool controls X

Authorization Required invalid
20 Machine Support

Privileged instruction 02 Machine check X .
03 Function check X

22 Object Access
01 Object not found X X

Events 02 Object destroyed X X

03 Object suspended X X
0002 Authorization 24 Pointer Specification

0201 Privileged instruction violation 01 Pointer does not exist X X J 02 Pointer type invalid X X

OOOALock 2A Program Creation

0301 Object lock transferred 06 Invalid operand type X X

07 Invalid operand attribute X X

oooe Machine resource 08 Invalid operand value range X X

0201 Machine auxiliary storage threshold exceeded
OC Invalid operand ODT reference X X
00 Reserved bits are not zero X X X

32 Scalar Specification
0010 Process 02 Scalar attribute invalid X

0701 Maximum processor time exceeded 03 Scalar value invalid X
0801 Process storage limit exceeded 38 Template Specification

01 Template value invalid X

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set

0801 Partial system object damage set

13-20

RESET ACCESS GROUP (RESAG)

Op Code
(Hex) Operand 1

0365 Access group

Operand 1: System pointer.

Description: This instruction resets the space used
within an access group to remove the unused space and
therefore reduce the overhead of transferring the access
group from one storage media to another.

The access group identified by the system pointer
specified by operand 1 is reset to remove unused space
within the access group.

Because the access group is used as a storage area for
the dynamic creation and destruction of objects, the
internal storage space associated with the access group
can be automatically extended to a size that is
unnecessary for subsequent usage of the access group.
This instruction provides a mechanism to reset the
internal storage space associated with the access group
back to a size which is adequate for its current usage.

Authorization Required

• Operational
- Operand 1

• Retrieve
- Contexts referenced for address resolution

Lock Enforcement

• Materialization
- Contexts referenced for address resolution

• Modify
- Access group specified for operand 1

Events

0002 Authorization
0101 Authorization violation

OOOC Machine resources
0201 Machine auxiliary storage exceeded

0000 Machine status
0101 Machine check

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Resource Management Instructions 13-21

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

06 Optimized addressability invalid

08 Argument I Parameter

01 Parameter reference violation

OA Authorization

01 Unauthorized for operation

10 Damage Encountered

04 System object damage

44 Partial system object damage

1A Lock State

01 Invalid lock state

1C Machine Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

06 Object not eligible for destruction

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

03 Pointer addressing invalid object

2A Program Creation

06 Invalid operand type

07 Invalid operand attributes

08 Invalid operand value range

OC Invalid operand ODT reference

00 Reserved bits are not zero

32 Scalar Specification

01 Scalar type invalid

13-22

Operand
1 Other

X
X
X

X

X

X

X X
X

X

X

X

X

X

X

X

X

X

X
X

X

X
X

X
X X

X

SET ACCESS STATE (SETACST)

Op Code
(Hex) Operand 1

0341 Access state
template

Operand 1: Space pointer.

Description: The instruction specifies the access state
(which specifies the desired speed of access) that the
issuing process has for a set of objects or subobject
elements in the execution interval following the
execution of the instruction. The specification of an
access state for an object momentarily preempts the
machine's normal management of an object.

The Set Access State instruction template must be
aligned on a 16-byte boundary. The format is:

· Number of objects to be Bin(4)
acted upon

· Reserved (binary 0) Char(12)

· Access state specifications Char(32)
(repeated as many times
as necessary)

Pointer to object whose Space
access state is to be pointer
changed or System

pointer
Access state code Char(1)
Reserved (binary 0) Char(3)
Access state parameter Char(12)

Access pool I D Char(4)

Space length Bin(4)
Reserved (binary 0) Char(4)

The number of objects entry specifies how many objects
are potential candidates for access state modification.
An access state specification entry is included for each
object to be acted upon.

The pointer to object entry identifies the object or space
which is to be acted upon. For the space associated
with a system object, the space pointer may address
any byte in the space. This pointer is followed by
parameters that define in detail the action to be applied
to the object.

J

The access state code designates the desired access
state. The allowed values are as follows:

Access State
Code (Hex) Function and Required Parameter

00 No operations are performed.

01

02

03

20

21

40

80

Associated object is moved into main
storage (if not already there)
synchronously with the execution of the
instruction.

Associated object is moved into main
storage (if not already there)
asynchronously with the execution of
the instruction.

Associated object is placed in main
storage without regard to the current
contents of the object. This causes
access to secondary storage to be
reduced or eliminated.

Associated object attributes are moved
into main storage synchronous with the
instruction's execution. The associated
attributes are the attributes that are
common to all system objects. The
associated pointer to object must be a
resolved system pointer.

Associated object attributes are moved
into main storage asynchronous with
the instruction's execution. The
associated attributes are the attributes
that are common to all system objects.
The associated pointer to object must
be a resolved system pointer.

Perform no operation on the associated
object. The main storage occupied by
this object is to be used, if possible, to
satisfy the request in the next access
state specification entry.

Associated object not required in main
storage by issuing process. Object is
moved from main storage
synchronously with the execution of the
instruction.

Access State
Code (Hex) Function and Required Parameter

81 Associated object not required in main
storage by issuing process. Object is
moved from main storage
asynchronously with the execution of
the instruction.

Access state code hex 03 may be used for spaces only.
The pointer to the object in the access state
specification must be a space pointer. Otherwise, the
pointer type invalid exception is signaled.

Access state code hex 40 may be used in conjunction
with access state codes hex 01, hex 02, or hex 03. The
access state specification entry with access state code
hex 40 must immediately precede the access state
specification entry with access state code hex 01, hex
02, or hex 03 with which it is to be combined. The
pointer to the object in both entries must be a space
pointer. Otherwise, the pointer type invalid exception is
signaled. The access state parameter field in the access
state specification entry with code hex 40 is ignored.
The access pool 10 and the space length in the entry
with access state code hex 01, hex 02, or hex 03 are
used.

The access/pool 10 entry indicates the desired main
storage pool in which the object is to be placed
(0000-0006). The storage pool 10 entry is treated as a
4-byte logical binary value. When a 0000 storage pool
10 is specified, the storage pool associated with the
issuing process is used.

The space length entry designates the part of the space
associated with the object to be operated on. If the
pointer to the object entry is a system pointer, the
operation begins with the first byte of the space. If the
pointer to the object entry is a space pointer that
specifies a location, the operation proceeds for the
number of storage units that are designated. No
exception is signaled when the number of referenced
bytes of the space are not allocated. When operations
on objects are designated by system pointers, this
operation is performed in addition to the access state
modification of the object. This entry is ignored for
access state codes hex 20 and hex 21.

Resource Management Instructions 13-23

Authorization Required Exceptions

• Retrieve Operand J - Contexts referenced for address resolution Exception 1 Other

04 Access State

Lock Enforce~nt 01 Access state specification invalid X
06 Addressing

• Materialize 01 Space addressing violation X

- Contexts referenced for address resolution 02 Boundary alignment X
03 Range X
06 Optimized addressability invalid X

Events 08 Argument/ Parameter

01 Parameter reference violation X

0002 Authorization OA Authorization

0101 Object authorization violation 01 Unauthorized for operation X
10 Damage Encountered

OOOC Machine resource 04 System object damage state X

0201 Machine auxiliary storage threshold exceeded 44 Partial system object damage X X
1A Lock State

0010 Process 01 Invalid lock state X

0701 Maximum processor time exceeded 1C Machine-Dependent Exception

0801 Process storage limit exceeded 03 Machine storage limit exceeded X
20 Machine Support

0016 Machine observation 02 Machine check X

0101 Instruction reference 03 Function check X
22 Object Access

0017 Damage set 01 Object not found X

0401 System object damage set 02 Object destroyed X

0801 Partial system object damage set 03 Object suspended X
24 Pointer Specification

01 Pointer does not exist X
02 Pointer type invalid X
03 Pointer addressing invalid object X

04 Pointer not resolved X
2A Program Creation

06 Invalid operand type X
07 Invalid operand attributes X
08 Invalid operand value range X
OC Invalid operand ODT reference X
00 Reserved bits are not zero X X

38 Template Specification

01 Template value invalid X

13-24

SUSPEND OBJECT (SUSOBJ)

Op Code
(Hex) Operand 1

0361 Object to be
suspended

Operand 1: System pointer.

Description: The object is truncated to the minimum size
needed to maintain its existence in the machine.

After this instruction has been executed, the operational
portion of the referenced object cannot be accessed.
Ownership and addressability to the object may still be
obtained, and some access to the object's attributes is
possible. However, any operation that involves access
to the operational part of the object results in an
exception. This instruction makes space in the system
available for other objects. The instruction should be
used after an object dump function to save the object
on a backup storage medium. An object load function
can be used to restore a truncated object to its
untruncated or normal state.

Only permanent objects may be suspended. The
following objects may be suspended:

• Space object

• Data space

• Data space index

• Index (except those with pointers)

• Program

• Journal space

The following instructions can reference objects that
have been suspended:

• Destroy (all suspendable objects)

• Grant Authority

• Journal Object

• Lock Object

• Materialize Authority

• Materialize Authorized Users

• Materialize Journal Object Attributes

• Materialize Object Lock

• Materialize System Object

• Modify Addressability

• Rename Object

• Request I/O (load and dump)

• Resolve System Pointer

• Restart Authority

• Transfer Object Lock

• Transfer Ownership

• Unlock Object

The object suspended exception is signaled if an
attempt is made to suspend an object that already is
suspended.

Resource Management Instructions 13-25

Authorization Required

• Suspend
Unrestricted (special authorization)
or
Restricted (special authorization and object control
authority on the object)

• Retrieve
- Contexts referenced for address resolution

Lock Enforcennent

• Object control
- Operand 1

• Materialize
- Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

001 A Journal port
0301 Entry not journaled
0401 Journal space attached to a journal

port became unusable

001 C Journal space
0301 Threshold reached

13-26

Exceptions

Operand
Exception 1 Other

06 Addressing

01 Space addressing violation X

02 Boundary alignment X

03 Range X

06 Optimized addressability invalid X

08 Argument/ Parameter

01 Parameter reference violation X

OA Authorization

01 Unauthorized for operation X

04 Special authorization required X

10 Damage Encountered

04 System object damage state X X

44 Partial system object damage X X

1A Lock State

01 Invalid lock state X

1C Machine-Dependent Exception

03 Machine storage limit exceeded X

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X

02 Object destroyed X

03 Object suspended X J 04 Object not eligible for operation X

24 Pointer Specification

01 Pointer does not exist X

02 Pointer type invalid X

03 Pointer addressing invalid object X

2A Program Creation

06 Invalid operand type X

07 Invalid operand attributes X

08 Invalid operand value range X

DC Invalid operand ODT reference X

00 Reserved bits are not zero X X

Chapter 14. Object Lock Management Instructions

This chapter describes the lock management
instructions. The instructions are in alphabetic order.
For an alphabetic summary of all the instructions, see
Appendix A. Instruction Summary.

LOCK OBJECT (LOCK)

Op Code
(Hex) Operand 1

03F5 Lock request template

Operand 1: Space pointer.

Description: The instruction requests that locks for
system objects identified by system pointers in the
space object (operand 1) be allocated to the issuing
process. The lock state desired for each object is
specified by a value associated with each system pointer
in the lock template (operand 1).

The lock request template must be aligned on a 16-byte
boundary. The format is as follows:

• Number of lock requests
in template

Offset to lock state
selection values

Bin(4)

Bin(2)

• Wait time-out value
for instruction

• Lock request options
- Lock request type

00= Immediate request
If all locks cannot be
immediately granted,
signal exception.

01 = Synchronous request
- Wait until all locks

can be granted.
10= Asynchronous request

- Allow processing to
continue and signal
event when the
object is available.

Char(S)

Char(1)
Bits 0-1

- Access state modifications Bits 2-3
When the process is entering Bit 2
lock wait for synchronous request:

o Access state should not
be modified.
Access state should
be modified.

When the process is leaving
lock wait:

o Access state should
not be modified.
Access state should
be modified.

Reserved (binary 0)
Time-out option
o Wait for specified time,

Bit 3

Bits 4-5·
Bit 6

then signal time-out exception.
Wait indefinitely.

- Reserved (binary 0) Bit 7

• Reserved (binary 0) Char(1)

Object Lock Management Instructions 14-1

• Object(s) to be locked

• Lock state selection
(repeated for each pointer
in the template)

Requested lock state
(1 = lock requested,
o = lock not requested)
Only one state may be requested.

System pointer
(one for each
object to be
locked)

Char(1)

Bits 0-4

LSRD lock Bit 0
LSRO lock Bit 1
LSUP lock
LEAR lock
LENR lock
Reserved (binary 0)

- Entry active indicator
o Entry not active

- This entry is not used.
Entry active
- Obtain this lock.

Bit 2
Bit 3
Bit 4
Bits 5-6*
Bit 7

Note: Entries indicated with an asterisk are ignored by
the instruction.

Lock Allocation Procedure

A single Lock instruction can request the allocation of
one or more lock states on one or more objects. Locks
are allocated sequentially until all locks requested are
allocated.

When a requested lock state cannot be immediately
granted, any locks already allocated by this Lock
instruction are released, and the lock request option
specified in the lock request template establishes the
machine action. The lock request options are described
in the following paragraphs.

14-2

• Immediate Request-If the requested locks cannot be
granted immediately, this option causes the lock
request not grantable exception to be signaled. No
locks are granted, and the lock request is canceled.

• Synchronous Request-This option causes the process
requesting the locks to be placed in the wait state
until all requested locks can be granted. If the locks
cannot be granted in the time interval established by
the wait time-out parameter specified in the lock
request template, the lock wait time-out exception is
signaled to the requesting process at the end of the
interval. No locks are granted, and the lock request is
canceled.

• Asynchronous Request-This option allows the
requesting process to proceed with execution while
the machine asynchronously attempts to satisfy the
lock request.

When the synchronous request option is specified
and the requested locks cannot be immediately
allocated, the access state modification parameter in
the lock request template specifies whether the
access state of the process access group is to be
modified on entering and/or returning from the lock
wait. The parameter has no effect if the process
instruction wait access state control attribute
specifies that no access state modification is allowed.
If the process attribute value specifies that access
state modification is allowed and the wait on event
access state modification option specifies modify
access state, the machine modifies the access state
for the specified process access group.

If a synchronous lock wait is requested and the
invocation containing the lock instruction is
terminated, then the lock request is canceled.

If the lock request is satisfied, then the object locked
event is signaled to the requesting process. If the
request is not satisfied in the time interval established
by the wait time-out parameter specified in the lock
request template, the wait time-out for pending lock
event is signaled to the requesting process. No locks
are granted, and the lock request is canceled. If an
object is destroyed while a process has a pending
request to lock the object, the object destroyed event
is signaled to the waiting process.

If an asynchronous lock wait is requested and the
invocation containing the Lock instruction is
terminated, then the lock request remains active.

J

The wait time-out parameter establishes the maximum
amount of time that a process competes for the
requested set of locks when either the synchronous or
asynchronous wait options are specified. The bits in this
field are numbered from 0 to 63, and bit 41 is defined
as 1024 microseconds. The maximum wait time-out
interval allowed is a value equal to (248 - 1)
microseconds. Any value that indicates more time than
the maximum wait time-out causes the maximum wait
time-out to be used. If the wait time-out parameter is
specified with a value of binary 0, then the value
associated with the default wait time-out parameter in
the process definition template establishes the time
interval.

When two or more processes are competing for a
conflicting lock allocation on a system object, the
machine attempts to first satisfy the lock allocation
request of the process with the highest priority. Within
that priority, the machine attempts to satisfy the request
that has been waiting longest.

If any exception is identified during the instruction's
execution, any locks already granted by the instruction
are released, and the lock request is canceled.

For each system object lock counts are kept by lock
state and by process. When a lock request is granted,
the appropriate lock count(s) of each lock state specified
is incremented by 1.

If a previously unsatisfied lock request is satisfied by the
transfer of a lock from another process, the lock request
and transfer lock are treated as independent events
relative to lock accounting. The appropriate lock counts
are incremented for both the lock request and the
transfer lock function.

Authorization Required

• Some authority or ownership
- Objects to be locked

• Retrieve
- Contexts referenced for address resolution

Lock Enforcement

• Materialize
- Contexts referenced for address resolution

Events

0002 Authorization
01 01 Object authorization violation

OOOA Lock
0101 Object locked
0201 Object destroyed
0401 Asynchronous lock wait timeout

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Object Lock Management Instructions 14-3

Exceptions

Exception

06 Addressing

Operand
1

01 Space addressing violation X

02 Boundary alignment X

03 Range X

06 Optimized addressability invalid X

08 Argument/Parameter

01 Parameter reference violation X

OA Authorization

01 Unauthorized for operation

10 Damage Encountered

04 System object damage state

44 Partial system object damage

1 A Lock State

01 Invalid lock state

02 Lock request not grantable

1C Machine-Dependent Exception

03 Machine storage limit exceeded

06 Machine lock limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

2A Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

OC Invalid operand ODT reference

00 Reserved bits are not zero

38 Template Specification

01 Template value invalid

3A Wait Time-out

02 Lock

14-4

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

Other

X

X

X

X

X

X

X

X

X

LOCK SPACE LOCATION (LOCKSL)

Op Code
(Hex)

03F6

Operand
1

Space
location

Operand
2

Lock type request

Operand 1: Space pointer data object.

Operand 2: Char(l) scalar.

Description: The space location identified by operand 1
is locked according to the request specified by operand
2. Locking the space location does not prevent any byte
operation from referencing that location, nor does it
prevent the space from being extended, truncated, or
destroyed. Space location locks follow the normal
locking rules with respect to conflicts and waits but are
strictly symbolic in nature.

Following is the format of operand 2:

• Requested lock state

Hex 80=LSRD lock
Hex 40= LSRO lock
Hex 20=LSUP lock
Hex 10= LEAR lock
Hex 08=LENR lock
All other values are reserved.

Char(1)

If the requested lock cannot be immediately granted, the
process will enter a synchronous wait for the lock, for a
period of up to the interval specified by the process
default time-out value. If the wait exceeds this time
limit, a space location lock wait exception is signaled,
and the requested lock is not granted.

During the wait, the process access state may be
modified. This can occur if the process' instruction wait
access state control attribute is set to allow access state
modification.

A space pointer machine object cannot be specified for
operand 1.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

J

Events Exceptions

L OOOC Machine resources Operands
0201 Machine auxiliary storage exceeded Exception 1 2 Other

oooD Machine status 06 Addressing

0101 Machine check 01 Space addressing violation X X
02 Boundary alignment X X

0010 Process 03 Range X X

0701 Maximum processor time exceeded 06 Optimized addressability invalid X X

0801 Process storage limit exceeded 08 Argument/ Parameter

01 Parameter reference violation X X

0016 Machine observation 10 Damage Encountered

0101 Instruction reference 04 System object X

44 Partial system object damage X

0017 Damage set 1C Machine-Dependent Exception

0401 System object 03 Machine storage limit exceeded X

0801 Partial system object damage set 06 Machine lock limit exceeded X

20 Machine Support

02 Machine check X

03 Function check X
22 Object Access

02 Object destroyed X X
24 Pointer Specification

01 Pointer does not exist X X
02 Pointer type invalid X X

2A Program creation

06 Invalid operand type X X
07 Invalid operand attribute X X

08 Invalid operand value range X X
OC Invalid operand ODT reference X X
00 Reserved bits are not zero X X X

32 Scalar Specification

01 Scalar type invalid X X

03 Scalar value invalid X
3A Wait Time-Out

04 Space location lock wait X

Object Lock Management Instructions 14-5

MATERIALIZE ALLOCATED OBJECT LOCKS
(MATAOL)

Op Code Operand Operand
(Hex) 1 2

03FA Receiver System object or space location

Operand 1: Space pointer.

Operand 2: System pointer or space pointer data object.

Description: This instruction materializes the current
allocated locks on a designated object. If operand 2 is a
system pointer, the current allocated locks on the object
identified by the system pointer specified by operand 2
are materialized into the template specified by operand
1. If operand 2 is a space pointer, the current allocated
locks on the specified space location are materialized
into the template specified by operand 1. The
materialization template identified by operand 1 must be
16-byte aligned. The format of the materialization is as
follows:

• Materialization size specification
Number of bytes provided for
materialization

- Number of bytes available for
materialization

• Current cumulative lock status
Lock states currently allocated
(1 = Yes)
LSRD
LSRO
LSUP
LEAR
LENR
Locks implicitly set
Reserved (binary zero)

- Reserved (binary 0)

• Reserved (binary 0)

Char(8)
Bin(4)

Bin(4)

Char(3)
Char(1)

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bits 6-7
Char(2)

Char(1)

• Number of lock descriptions following Bin(2)

14-6

• Reserved (binary 0)

• Lock state descriptors (repeated
for each lock currently allocated)
- Process control space

Lock state being described
Hex 80= LSRD lock request
Hex 40=LSRO lock request
Hex 20=LSUP lock request
Hex 10= LEAR lock request
Hex 08=LENR lock request
A" other values are reserved
Status of lock request
A value of 1 in the corresponding
bit indicates the condition is true:
Reserved (binary 0)
Implicit lock (machine
applied)
Lock held by process
Reserved (binary 0)

Char(2)

Char(32)

System
pointer
Char(1)

Char(1)

Bits 0-5
Bit 6

Bit 7
Char(14)

Locks may be implicitly applied by the machine (status
code = hex 02). If the implicit lock is held for a process,
a pointer to the associated process control space is
returned. Locks held by the machine but not related to a
specific process, cause the process control space entry
to be assigned a value of binary zero.

Only a single lock state is returned for each lock state
descriptor entry.

The first 4 bytes of the materialization identify the total
quantity of bytes that may be used by the instruction.
This value is supplied as input to the instruction and is
not modified by the instruction. A value of less than
eight causes the materialization length exception to be
signaled.

The second 4 bytes of the materialization identify the
total quantity of bytes available to be materialized. The
instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the
byte area identified by the receiver is greater than that
required to contain the information requested, then the
excess bytes are unchanged. No exceptions are signaled
in the event the receiver contains insufficient area for
the materialization, other than the materialization length
exception.

A space pointer machine object cannot be specified for
operand 2.

J

Events Exceptions

~
0002 Authorization Operands

0101 Authorization violation Exception 1 2 Other

oooe Machine resource 06 Addressing

0201 Machine auxiliary storage threshold exceeded 01 Space addressing violation X X
02 Boundary alignment X X

OOODMachine status 03 Range X X

0101 Machine check 06 Optimized addressability invalid X X
08 Argumentl Parameter

0010 Process 01 Parameter reference violation X X

0701 Maximum processor time exceeded OA Authorization

0801 Process storage limit exceeded 01 Unauthorized for operation X X

10 Damage Encountered

0016 Machine observation 04 System object damage X X

0101 Instruction reference 44 Partial system object damage X

1A lock State

0017 Damage set 01 Invalid lock state X

0401 System object 1C Machine-Dependent Exception

0801 Partial system object damage set 03 Machine storage limit exceeded X

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X

02 Object destroyed X X

03 Object suspended X X

~
24 Pointer Specification

01 Pointer does not exist X X

02 Pointer type invalid X X

2A Program Creation

06 Invalid operand type X X

07 Invalid operand attribute X X

08 Invalid operand value range X X

OA Invalid operand length X
OC Invalid operand ODT reference X X

00 Reserved bits are not zero X X X

32 Scalar Specification

01 Scalar type invalid X X

38 Template Specification

03 Materialization length exception X

Object lock Management Instructions 14-7

MATERIALIZE DATA SPACE RECORD LOCKS
(MATDRECL)

Op Code
(Hex)

Operand
1

Operand
2

032E Receiver Record selection template

Operand 1: Space pointer.

Operand 2: Space pointer.

Description: This instruction materializes the current
allocated locks on the specified data space record.

The current lock status of the data space record
identified by the template in operand 2 is materialized
into the space identified by operand 1.

The record selection template identified by operand 2
must be 16-byte aligned. The format of the record
selection template is as follows.

• Record selection
Data space identification

Record number
Reserved

• Lock selection
Materialize data space
locks held
1 Materialize
a = Do not materialize

Materialize data space
locks waited for

1 = Materialize
a = Do not materialize

Reserved
Reserved

Char(24)
System
pointer

Bin(4)
Char(4)

Char(S)
Bit a

Bit 1

Bits 2-7
Char(7)

The data space identification must be a system pointer
to a data space.

The record number is a relative record number within
that data space. If the record number is zero then all
locks on the specified data space will be materialized. If
the record number is not valid for the specified data
space a template value invalid exception is signaled.

14-8

Both of the fields specified under lock selection are bits
which determine the locks to be materialized. If the first
bit is on, the current holders of the specified data space
record lock are materialized. If the second bit is on, any
process waiting to lock the specified data space record
is materialized.

The materialization template identified by operand 1
must be 16-byte aligned. The format of the
materialization is as follows:

• Materialization size specification
Number of bytes provided
for materialization
Number of bytes available
for materialization

• Materialization data
Count of locks held
Count of locks waited for
Reserved

• Locks held identification
(repeated for each lock held)
- Process identification

Record number
Reserved

Locks waited for identification
(repeated for each lock
waited for)

Process identification

Record number
- Reserved

Char(S)
Bin(4)

Bin(4)

Char(S)
Bin(2)
Bin(2)
Char(4)

Char(32)

System
pointer

Bin(4)
Char(12)

Char(32)

System
pointer
Bin(4)
Char(12)

The first 4 bytes of the materialization identify the total
quantity of bytes that may be used by the instruction.
This value is supplied as input to the instruction and is
not modified by the instruction. A value of less than S
causes the materialization length exception to be
signaled.

The second 4 bytes of the materialization identify the
total quantity of bytes available to be materialized. The
instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the
byte area identified by the receiver is greater than that
required to contain the information requested, the
excess bytes are unchanged. No exceptions are signaled
in the event that the receiver contains insufficient area
for the materialization, other than the materialization
length exception described previously.

J

The count of locks held contains the number of locks Exceptions

held. One system pointer to the PCS (process control

~ space) of each process holding a lock and the relative Operands

record number which is locked are materialized in the Exception 1 2 Other

area identified as locks held identification. These fields
contain data only if held data space locks are selected 06 Addressing

for materialization. 01 Space addressing violation X X
02 Boundary alignment X X

The count of locks waited for contains the number of 03 Range X X

locks being waited for. One system pointer to the PCS 06 Optimized addressability invalid X X

(process control space) of each process waiting for a 08 Argument/ Parameter

lock and the relative record number which the process is 01 Parameter reference violation X X

waiting for is materialized in the area identified as locks OA Authorization

waited for identification. These fields contain data only 01 Unauthorized for operation X X

if data space record locks waited for are selected for 10 Damage Encountered

materialization. 04 System object damage X X
44 Partial system object damage X

1A Lock State

Authorization Required 01 Invalid lock state X
1C Machine Dependent Exception

. Retrieve 03 Machine storage limit exceeded X

- Contexts referenced for address resolution 20 Machine Support

02 Machine check X
03 Function check X

Lock Enforcement 22 Object Access

01 Object not found X X

. Materialize 02 Object destroyed X X

- Contexts referenced for address resolution 03 Object suspended X X
24 Pointer Specification

01 Pointer does not exist X X

Events 02 Pointer type invalid X X
2A Program Creation

0002 Authorization 06 Invalid operand type X X

0101 Authorization violation 07 Invalid operand attribute X X
08 Invalid operand value range X X

OOOC Machine resources OA Invalid operand length X

0201 Machine auxiliary storage exceeded OC Invalid operand ODT reference X X
00 Reserved bits are not zero X X X

0000 Machine status 32 Scalar Specification

0101 Machine check 01 Scalar type invalid X X
38 Template Specification

0010 Process 01 Template value invalid X

0701 Maximum processor time exceeded 03 Materialization length exception X

0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object
0801 Partial system object damage set

L
Object Lock Management Instructions 14-9

MATERIALIZE OBJECT LOCKS (MATOBJLK)

Op Code Operand Operand
(Hex) 1 2

033A Receiver System object or space location

Operand 1: Space pointer.

Operand 2: System pointer or space pointer data object.

Description: If operand 2 is a system pointer, the
current lock status of the object identified by the system
pointer is materialized into the template specified by
operand 1. If operand 2 is a space pointer, the current
lock status of the specified space location is materialized
into the template specified by operand 1. The
materialization template identified by operand 1 must be
aligned on a 16-byte boundary. The format of the
materialization is as follows:

• Materialization size specification
- Number of bytes provided for

materialization

Char(8)
Bin(4)

- Number of bytes available for
materialization

Bin(4)

• Current cumulative lock status Char(3)
Char(1) - Lock states currently allocated

(1 = yes)
LSRD
LSRO
LSUP
LEAR
LENR

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4

Locks implicitly set Bit 5
Reserved (binary 0) Bits 6-7

- Lock states for which processes Char(1)
are in synchronous wait (1 = yes)
LSRD Bit 0
LSRO Bit 1
LSUP Bit 2
LEAR Bit 3
LENR Bit 4
Implicit lock request Bit 5
Reserved (binary 0) Bits 6-7
Lock states for which processes Char(1)
are in asynchronous wait (1 = yes)
LSRD Bit 0
LSRO Bit 1
LSUP Bit 2
LEAR Bit 3
LENR Bit 4
Reserved (binary 0) Bits 5-7

• Reserved (binary 0) Char(1)

14-10

· Number of lock descriptions Bin(2)
that follow

· Reserved (binary 0) Char(2)

· Lock state descriptors (repeated Char(32)
for each lock currently
allocated or waited for)
- Process control space System

pointer
- Lock state being described Char(1)

LSRD Bit 0
LSRO Bit 1
LSUP Bit 2
LEAR Bit 3
LENR Bit 4
Reserved (binary 0) Bits 5-7

- Status of lock request Char(1)
Reserved Bits 0-2
Waiting because this Bit 3
lock is not available
Process in asynchronous Bit 4
wait for lock
Process in synchronous Bit 5
wait for lock
Implicit lock (machine- Bit 6
applied)
Lock held by process Bit 7

- Reserved (binary 0) Char(14)

Locks may be applied by the machine (status code =
hex 02). If the implicit lock is held for a process, a
pointer to the associated process control space is
returned. Locks held by the machine but not related to a
specific process cause the process control space entry
to be assigned a value of binary O.

Only a single lock state is returned for each lock state
descriptor entry.

The first 4 bytes of the materialization identify the total
number of bytes that may be used by the instruction.
This total is supplied as input to the instruction and is
not modified by the instruction. A total of less than 8
causes the materialization length exception to be
signaled.

J

J

The second 4 bytes of the materialization identify the Exceptions

L
total number of bytes available to be materialized. The

instruction materializes as many bytes as can be Operands
contained in the area specified as the receiver. If the Exception 1 2 Other

byte area identified by the receiver is greater than that

required to contain the information requested, then the 06 Addressing

excess bytes are unchanged. No exceptions (other than 01 Space addressing violation X X

the materialization length exception described previously) 02 Boundary alignment X X

are signaled if the receiver contains insufficient area for 03 Range X X

the materialization. 06 Optimized addressability invalid X X
08 Argument / Parameter

A space pointer machine object cannot be specified for 01 Parameter reference violation X X

operand 2. OA Authorization

01 Unauthorized for operation X X
10 Damage Encountered

Authorization Required 04 System object damage state X X X
44 Partial system object damage X X X

. Retrieve 1A Lock State

- Contexts referenced for address resolution 01 Invalid lock state X
1C Machine-Dependent Exception

03 Machine storage limit exceeded X

Lock Enforcement 20 Machine Support
02 Machine check X

. Materialize 03 Function check X

- Contexts referenced for address resolution 22 Object Access
01 Object not found X X
02 Object destroyed X X

Events 03 Object suspended X X
24 Pointer Specification

0002 Authorization 01 Pointer does not exist X X

0101 Object authorization violation 02 Pointer type invalid X X
2A Program Creation

OOOC Machine resource 06 Invalid operand type X X

0201 Machine auxiliary storage threshold exceeded 07 Invalid operand attribute X X
08 Invalid operand value range X X

001 0 Process OA Invalid operand length X

0701 Maximum processor time exceeded OC Invalid operand ODT reference X X

0801 Process storage limit exceeded 00 Reserved bits are not zero X X X
38 Template Specification

0016 Machine observation 03 Materialization length exception X

0101 Instruction reference

0017 Damage set
0401 System object damage set

0801 Partial system object damage set

Object Lock Management Instructions 14-11

MATERIALIZE PROCESS LOCKS (MATPRLK)

Op Code Operand Operand
(Hex) 1 2

0312 Receiver Process
control
space

Operand 1: Space pointer.

Operand 2: System pointer or null.

Description: The lock status of the process identified by
operand 2 is materialized into the receiver specified by
operand 1. If operand 2 is null, the lock status is
materialized for the process issuing the instruction. The
materialization identifies each object or space location
for which the process has a lock allocated or for which
the process is in a synchronous or asynchronous wait.
The format of the materialization is as follows:

• Materialization size specification
- Number of bytes provided

for materialization
Number of bytes available
for materialization

• Number of lock entries

• Reserved (binary 0)

14-12

Charla)
Bin(4)

Bin(4)

Bin(2)

Char(6)

. Lock status (repeated Char(32)
for each lock currently
allocated or waited for by
the process)
- Object, space location, or System

binary 0 if no pointer exists pointer or
space pointer

Lock state Char(1)
LSRD Bit 0
LSRO Bit 1
LSUP Bit 2
LEAR Bit 3
LENR Bit 4
Reserved (binary 0) Bits 5-7

- Status of lock state for process Char(1)
Reserved Bits 0-1
Object or space location Bit 2
no longer exists
Waiting because this lock Bit 3
is not available
Process in asynchronous Bit 4
wait for lock
Process in synchronous Bit 5
wait for lock
Implicit lock (machine- Bit 6
applied)
Lock held by process Bit 7

. Reserved (binary 0) Char(14)

The first 4 bytes of the materialization identify the total
number of bytes that may be used by the instruction.
This value is supplied as input to the instruction and is
not modified by the instruction. A value of less than a
causes the materialization length exception to be
signaled.

The second 4 bytes of the materialization identify the
total number of bytes available to be materialized. The
instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the
byte area identified by the receiver is greater than that
required to contain the information requested, then the
excess bytes are unchanged. No exceptions (other than
the materialization length exception described previously)
are signaled if the receiver contains insufficient area for
the materialization.

J

Authorization Required Exceptions

L . Retrieve Operands
- Context referenced by address resolution Exception 1 2 Other

06 Addressing

Lock Enforcement 01 Space addressing violation X X
02 Boundary alignm"ent X X . Materialize 03 Range X X

- Contexts referenced for address resolution 06 Optimized addressability invalid X X
08 Argument/Parameter

01 Parameter reference violation X X

Events 10 Damage Encountered

04 System object damage state X X X

0002 Authorization 44 Partial system object damage X X X
0101 Object authorization violation 1C Machine- Dependent Exception

03 Machine storage limit exceeded X
OOOC Machine resource 20 Machine Support

0201 Machine auxiliary storage threshold exceeded 02 Machine check X

0010 Process
03 Function check X

0701 Maximum processor time exceeded
22 Object Access

0801 Process storage limit exceeded
01 Object not found X X
02 Object destroyed X X

0016 Machine observation 03 Object suspended X X

0101 Instruction reference 24 Pointer Specification

01 Pointer does not exist X X
0017 Damage set 02 Pointer type invalid X X

~.
0401 System object damage set 03 Pointer addressing invalid object X
0801 Partial system object damage set 28 Process State

02 Process control space not X
associated with a process

2A Program Creation

06 Invalid operand type X X
07 Invalid operand attribute X X
08 Invalid operand value range X X
OA Invalid operand length X
OC Invalid operand ODT reference X X
00 Reserved bits are not zero X X X

38 Template Specification

03 Materialization length exception X

Object Lock Management Instructions 14-13

MATERIALIZE PROCESS RECORD LOCKS
(MATPRECL)

Op Code
(Hex)

031E

Operand
1

Receiver

Operand
2

Process
selection
template

Operand 1: Space pointer.

Operand 2: Space pointer.

Description: This instruction materializes the current
allocated data space record locks held by the process.
The current lock status of the process identified in the
process selection template specified by operand 2 is
materialized into the receiver identified by operand 1.
The materialization identifies each data space record
lock which the process has or the process is waiting to
obtain.

If the PCS (process control space) pointer is null or all
zeros, the lock activity for the process issuing the
instruction is materialized.

The process selection template identified by operand 2
must be 16-byte aligned. The format of the process
selection template is as follows:

• Process selection
- Process identification

• Lock selection
Materialize held locks
1 = Materialize
a = Do not materialize
Materialize locks waited for
1 = Materialize
o = Do not materialize

- Reserved
Reserved

Char(16)
System
pointer

Char(S)
Bit 0

Bit 1

Bits 2-7
Char(7)

The process identification must be a system pointer to a
PCS (process control space) or null, all zeros.

Both of the fields specified under lock selection are bits
which determine the locks to be materialized. If the first
bit is on, any data base record lock held by the process
is materialized. If the second bit is on, any data base
record lock the process is waiting for is materialized.

14-14

The materialization template identified by operand 1
must be 16-byte aligned. The format of the
materialization is as follows:

· Materialization size specification Char(8)
Number of bytes provided Bin(4)
for materialization
Number of bytes available Bin(4)
for materialization

· Materialization data Char(8)
Count of locks held Bin(2)
Count of locks waited for Bin(2)
Reserved Char(4)

· Locks held identification Char(32)
(repeated for each lock held)

Data space identification System
pointer

Relative record number Bin(4)
- Reserved Char(12)

· Locks waited for identification Char(32)
(repeated for each lock
waited for)

Data space identification System
pointer

Relative record number Bin(4)
Reserved Char(12)

The first 4 bytes of the materialization identify the total
quantity of bytes that may be used by the instruction.
This value is supplied as input to the instruction and is
not modified by the instruction. A value of less than 8
causes the materialization length exception to be
signaled.

The second 4 bytes of the materialization identify the
total quantity of bytes available to be materialized. The
instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the
byte area identified by the receiver is greater than that
required to contain the information requested, the
excess bytes are unchanged. No exceptions are signaled
in the event that the receiver contains insufficient area
for the materialization, other than the materialization
length exception described previously.

The count of locks held contains the number of locks
held by the process. One system pointer to the data
space and relative record number in the data space is
materialized in the area identified as locks held
identification for each lock. These fields contain data
only if held locks are selected for materialization.

J

The count of locks waited for contains the number of Exceptions

~
locks that the process is waiting for. One system

pointer to the data space and relative record number in Operands

the data space is materialized in the area identified as Exception 1 2 Other

locks waited for identification for each lock waited for.

These fields contain data only if locks waited for are 06 Addressing

selected for materialization. 01 Space addressing violation X X
02 Boundary alignment X X

03 Range X X

Authorization Required 06 Optimized addressability invalid X X

08 Argument/ Parameter

. Retrieve 01 Parameter reference violation X X

- Contexts referenced for address resolution OA Authorization

01 Unauthorized for operation X X

10 Damage Encountered

Lock Enforcennent 04 System object damage X X

44 Partial system object damage X

. Materialize 1A Lock State

- Contexts referenced for address resolution 01 Invalid lock state X
1C Machine Dependent Exception

03 Machine storage limit exceeded X

Events 20 Machine Support

02 Machine check X

D002 Authorization 03 Function check X

0101 Authorization violation 22 Object Access

01 Object not found X X

OOOC Machine resources 02 Object destroyed X X

0201 Machine auxiliary storage exceeded 03 Object suspended X X

~
24 Pointer Specification

DOOD Machine status 01 Pointer does not exist X X

0101 Machine check 02 Pointer type invalid X X

2A Program Creation

0010 Process 06 Invalid operand type X X

0701 Maximum processor time exceeded 07 Invalid operand attribute X X

0801 Process storage limit exceeded 08 Invalid operand value range X X

OA Invalid operand length X

0016 Machine observation OC Invalid operand ODT reference X X

0101 I nstruction reference 00 Reserved bits are not zero X X X

32 Scalar Specification

0017 Damage set 01 Scalar type invalid X X

0401 System object 38 Template Specification

0801 Partial system object damage set 01 Template value invalid X

03 Materialization length exception X

Object Lock Management Instructions 14-15

MATERIALIZE SELECTED LOCKS (MATSELLKI

Op Code Operand Operand
(Hex) 1 2

033E Receiver Object

or

space location

template

Operand 1: Space pointer.

Operand 2: System pointer or space pointer data object.

Description: The locks held by the process issuing this
instruction for the object or space location referenced by
operand 2 are materialized into the template specified by
operand 1. The format of the materialization template is
as follows:

· Materialization size specification Char(8)
- Number of bytes provided for Bin(4)

materialization
Number of bytes available for Bin(4)
materialization

· Cumulative lock status for all Char(1)
locks on operand 2
- Lock state Char(1)

LSRD Bit 0
LSRO Bit 1
LSUP Bit 2
LEAR Bit 3
LENR Bit 4
Reserved (binary 0) Bits 5-7

· Reserved Char(3)

· Number of lock entries Bin(2)

14-16

· Reserved Char(2)

· Lock status (repeated for each lock Char(2)
currently allocated)
- Lock state Char(1)

Hex 80=LSRD lock request
Hex 4Q=LSRO lock request
Hex 20=LSUP lock request
Hex 10= LEAR lock request
Hex 08=LENR lock request
All other values are reserved

- Status of lock Char(1)
Reserved (binary 0) Bits 0-5
Implicit lock Bit 6
o = Not implicit lock
1 = Is implicit lock
Reserved (binary 1) Bit 7

The first 4 bytes of the materialization identifies the total
number of bytes that may be used by the instruction.
This value is supplied as input to the instruction and is
not modified by the instruction. A value of less than 8
causes the materialization length exception to be
signaled.

The second 4 bytes of the materialization identifies the
total quantity of bytes available to be materialized. The
instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the
byte area identified by the receiver is greater than that
required to contain the information requested, then the
excess bytes are unchanged. No exceptions are signaled
in the event that the receiver contains insufficient area
for the materialization, other than the materialization
length exception described previously.

A space pointer machine object cannot be specified for
operand 2.

Authorization

• Retrieve
- Context referenced by address resolution

Lock Enforcennent

• Materialize
- Contexts referenced for address resolution

J

J

Events Exceptions

L 0002 Authorization Operands
0101 Authorization violation Exception 1 2 Other

oooe Machine resources 06 Addressing

0201 Machine auxiliary storage exceeded 01 Space addressing violation X X
02 Boundary alignment X X

OOOD Machine status 03 Range X X

0101 Machine check 06 Optimized addressability invalid X X
08 Argument/ Parameter

0010 Process 01 Parameter reference violation X X

0601 Exception signaled to process OA Authorization

0701 Maximum processor time exceeded 02 Unauthorized for operation X

0801 Process storage limit exceeded 10 Damage Encountered

04 System object X X X

0016 Machine observation 44 Partial system object damage X

0101 Instruction reference 1A Lock State

0201 Object location reference 01 Invalid lock state X
1C Machine-Dependent Exception

0017 Damage set 03 Machine storage limit exceeded X

0401 System object 20 Machine Support

0801 Partial system object damage set 02 Machine check X
03 Function check X

22 Object Access

01 Object not found X X
02 Object destroyed X X
03 Object suspended X X

24 Pointer Specification

01 Pointer does not exist X X
02 Pointer type invalid X X
03 Pointer addressing invalid object X

28 Process State

02 Process control space not X
associated with a process

2A Program creation

06 Invalid operand type X X
07 Invalid operand attribute X X
08 Invalid operand value range X X
OA Invalid operand length X
OC Invalid operand ODT reference X X
00 Reserved bits are not zero X X X

32 Scalar Specification

01 Scalar type invalid X X
38 Template Specification

03 Materialization length exception X

Object Lock Management Instructions 14-17

'TRANSFER OBJECT LOCK (XFRLOCK)

Op Code
(Hex)

0382

Operand Operand
1 2

Receiving Lock
process
control
space

transfer
template

Operand 1: System pointer.

Operand 2: Space pointer.

Description: The receiving process (operand 1) is
allocated the locks designated in the lock transfer
template (operand 2). Upon completion of the transfer
lock request. the current process no longer holds the
transferred lock(s).

Operand 2 identifies the objects and the associated lock
states that are to be transferred to the receiving
process. The space contains a system pointer to each
object that is to have a lock transferred and a byte
which defines whether this entry is active. If the entry is
active, the space also contains the lock states to be
transferred. Operand 2 must be aligned on a 16-byte
boundary. The format is as follows:

• Number of lock transfer Bin(4)
requests in template

• Offset to lock state selection
bytes (1 byte for each lock
transfer request)

• Reserved (binary 0)

• Reserved
Reserved

- Reserved (binary 0)

• Reserved (binary 0)

14-18

Bin(2)

Char(8)*

Char(1)
Bits 0-6*
Bit 7

Char(1)

• Object lock(s) to be transferred System

• Lock state selection (repeated
for each pointer in the template)

Lock state to transfer. Only
one state may be requested.
(1 = transfer)
LSRD
LSRO
LSUP
LEAR
LENR
Reserved (binary 0)
Lock count
o The current lock count

is transferred.
A lock count of 1
is transferred.

Entry active indicator
o Entry not active

This entry is not used.
Entry active
This lock is transferred.

pointer
(one for
each object
lock to be
transferred)

Char(1)

Bits 0-4

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5*
Bit 6

Bit 7

Note: Entries indicated by an asterisk are ignored by
the instruction.

If the receiving process is issuing the instruction, then
no operation is performed, and no exception is signaled.
The lock count transferred is either the lock count held
by the transferring process or a count of 1. If the
receiving process already holds an identical lock, then
the final lock count is the sum of the count originally
held by the receiving process and the transferred count.

Only locks currently allocated to the process issuing the
instruction can be transferred. If the transfer of an
allocated lock would result in the violation of the lock
allocation rules, then the lock cannot be transferred. An
implicit lock may not be transferred.

No locks are transferred if an entry in the template is
invalid.

The locks specified by operand 2 are transferred
sequentially and individually. If one lock cannot be
transferred because the process does not hold the
indicated lock on the object, then exception data is
saved to identify the lock that could not be transferred.
Processing of the next lock to be transferred continues.

After all locks specified in operand 2 have been Exceptions

L
processed, the object lock transferred event is signaled

to the process receiving the locks if any locks were Operands
transferred. If any lock was not transferred, the invalid Exception 1 2 Other

object lock transfer request exception is signaled.
06 Addressing

When an object lock is transferred, the transferring 01 Space addressing violation X X

process synchronously loses the record of the lock, and 02 Boundary alignment X X

the object is locked to the receiving process. However, 03 Range X X

the receiving process obtains the lock asynchronously 06 Optimized addressability invalid X X

after the instruction currently being executed is 08 Argument/ Parameter

completed. If the transferring process holds multiple 01 Parameter reference violation X X

locks for the object, any lock states not transferred are OA Authorization

retained in the process. 01 Unauthorized for operation X
10 Damage Encountered

04 System object damage state X X X

Authorization Required 44 Partial system object damage X X X
1A Lock State

. Retrieve 01 Invalid lock state X

- Contexts referenced for address resolution 04 Invalid object lock transfer X
request

1C Machine- Dependent Exception

Lock Enforcement
03 Machine storage limit exceeded X

20 Machine Support

. Materialize
02 Machine check X

- Contexts referenced for address resolution
03 Function check X

22 Object Access

01 Object not found X X

Events
02 Object destroyed X X
03 Object suspended X X

0002 Authorization
24 Pointer Specification

0101 Object authorization violation
01 Pointer does not exist X X
02 Pointer type invalid X X

OOOA Lock
03 Pointer addressing invalid object X

0301 Object lock transferred
28 Process State

02 Process control space not X

OOOC Machine resource
associated with a process

0201 Machine auxiliary storage threshold exceeded
2A Program Creation

06 Invalid operand type X X

0010 Process
07 Invalid operand attribute X X

0701 Maximum processor time exceeded
08 Invalid operand value range X X

0801 Process storage limit exceeded
OC Invalid operand ODT reference X X
OD Reserved bits are not zero X X X

0016 Machine observation
38 Template Specification

0101 Instruction reference
01 Template value invalid X

0017 Damage set

0401 System object damage set
0801 Partial system object damage set

L
Object Lock Management Instructions 14-19

UNLOCK OBJECT (UNLOCK)

Op Code Operand 1
(Hex)

03F1 Unlock template

Operand 1: Space pointer.

Description: The instruction releases the object locks
that are specified in the unlock template. The template
specified by operand 1 identifies the system objects and
the lock states (on those objects) that are to be
released. The unlock template must be aligned on a
16-byte boundary. The format is as follows:

• Number of unlock requests
in template

Offset to lock state
selection bytes

• Reserved (binary 0)

• Unlock option
-. Reserved (binary 0)
- Unlock type

00= Unlock specific locks
now allocated to
process

01 = Cancel specific
asynchronously waiting
lock request or
allocated locks

10= Cancel all
asynchronously waiting
lock requests

11 = Invalid
- Reserved (binary 0)
- Reserved (binary 0)
- Reserved (binary 0)

14-20

Bin(4)

Bin(2)

Char(8)*

Char(1)
Bits 0-3*
Bits 4-5

Bit 6*
Bit 7
Char(1)

• Object to unlock (one
for each unlock request)

• Unlock options (repeated
for unlock request)
- Lock state to unlock (only

one state can be selected)
(1 = unlock)
LSRD
LSRO
LSUP
LEAR
LENR

- Lock count option
o Lock count reduced by 1
1 = All locks are unlocked

- The set lock count = 0
- Reserved (binary 0)

Entry active indicators
o Entry not active

- This entry is not used.
Entry active
- These locks are unlocked.

System
pointer

Char(1)

Bits 0-4

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5

Bit 6*
Bit 7

Note: Entries indicated by an asterisk are ignored by
the instruction.

If all asynchronous lock waits are being canceled (unlock
type 10), then system pointers to the objects and unlock
options for each object are not required. If the
asynchronous lock fields are provided in the template,
then the data is ignored.

Unlock type 01 attempts to cancel an asynchronous lock
request that is identical to the one defined in the
template. After the instruction attempts to cancel the
specified request, program execution continues just as if
unlock type 00 had been selected. A waiting lock
request is canceled if the number of active requests in
the template, the objects, the objects corresponding lock
states, and the order of the active entries in the
template all match.

When a lock is released, the lock count is reduced by 1
or set to 0 in the specified state. This option is
specified by the lock count option parameter.

If unlock type 01 is specified and the unlock count
option for an object lock is 0 (lock count reduced by 1).
then a successful cancel satisfies this request, and no
additional locks on the object are unlocked. If the
unlock count option for an object lock is set to 1 (set
lock count to 0). the results of the cancel are
disregarded, and all held locks on the object are
unlocked.

Specific locks can be unlocked only if they are allocated
to the process issuing the unlock instruction. Implicit
locks may not be unlocked with this instruction. No
locks are unlocked if an entry in the template is invalid.

Object locks to unlock are processed sequentially and
individually. If one specific object lock cannot be
unlocked because the process does not hold the
indicated lock on the object, then exception data is
saved, but processing of the instruction continues.

After all requested object locks have been processed,
the invalid unlock request exception is signaled if any
object lock was not unlocked.

If unlock type 01 is selected and the cancel attempt is
unsuccessful, an invalid unlock request exception is
signaled when any object lock in the template is not
unlocked.

Authorization Required

• Retrieve
- Contexts referenced for address resolution

Lock Enforcement

• Materialize
- Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Object Lock Management Instructions 14-21

Exceptions

Exception

06 Addressing

Operand
1

01 Space addressing violation X

02 Boundary alignment X

03 Range X

06 Optimized addressability invalid X

08 Argument/Parameter

01 Parameter reference violation X

OA Authorization

01 Unauthorized for operation X

10 Damage Encountered

04 System object damage state X

44 Partial system object damage X

1 A Lock State

01 Invalid lock state

03 Invalid unlock request X

1 C Machine- Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

2A Program Creation

06 Invalid operand type

07 Invalid operand attribute

X
X

X

X

X

X

X
08 Invalid operand value range X

OC Invalid operand ODT reference X

00 Reserved bits are not zero

38 Template Specification

01 Template value invalid

14-22

X

X

Other

X
X

X

X

X

X

X

UNLOCK SPACE LOCATION (UNLOCKSL)

Op Code
(Hex)

03F2

Operand
1

Space
location

Operand
2

Lock type

Operand 1: Space pointer data object.

Operand 2: Char(1) scalar.

Description: The lock type specified by operand 2 is
removed from the space location identified by operand 1
(the lock must be held by the process that issues the
instruction). The space location specified by operand 1
need not exist when this instruction is issued, although
the space pointer must be a valid pointer as used to
lock the space location. When multiple locks of the
same lock state for the same space location need to be
unlocked, this instruction must be issued for each lock
held for the space location. If an attempt is made to
unlock a space location lock not held by the process, an
invalid space location unlock exception is signaled.

Following is the format of operand 2:

• Lock state to be unlocked

Hex 80=LSRD lock
Hex 40= LSRO lock
Hex 20=LSUP lock
Hex 10= LEAR lock
Hex 08=LENR lock
All other values are reserved.

Char(1)

A space pointer machine object cannot be specified for
operand 1.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

J

Events Exceptions

OOOC Machine resources Operand.
0201 Machine auxiliary storage exceeded Exception 1 2 Other

oooD Machine status 06 Addressing

0101 Machine check 01 Space addressing violation X
02 Boundary alignment X

0010 Process 03 Range X

0701 Maximum processor time exceeded 06 Optimized addressability invalid X

0801 Process storage limit exceeded DB Argument/Parameter
01 Parameter reference violation X

0016 Machine observation 10 Damage Encountered

0101 Instruction reference 04 System object X X
44 Partial system object damage X

0017 Damage set 1A Lock State

0401 System object 05 Invalid space location unlock X

0801 Partial system object damage set 1C Machine-Dependent Exception

03 Machine storage limit exceeded X
06 Machine lock limit exceeded X

20 Machine Support
02 Machine check X
03 Function check X

22 Object Access
02 Object destroyed X X

24 Pointer Specification
01 Pointer does not exist X
02 Pointer type invalid X

2A Program Creation

06 Invalid operand type X
07 Invalid operand attribute X
DB Invalid operand value range X
DC Invalid operand ODT referenca X
00 Reserved bits are not zero XX X

32 Scalar Specification

01 Scalar type invalid X X
03 Scalar value invalid X

Object Lock Management Instructions 14-23

J

14-24

Chapter 15. Event Management Instructions

This chapter describes all instructions used for event
management. These instructions are in alphabetic order.
For an alphabetic summary of all the instructions, see
Appendix A. Instructions Summary.

CANCEL EVENT MONITOR (CANEVTMN)

Op Code
(Hex) Operand 1

0301 Event monitor
template

Operand 1: Character(48) scalar (fixed-length).

Description: An event monitor having exactly the same
qualifications as the template referenced by the operand
1 template is canceled, and the event monitor is
disassociated from the currently executing process. The
qualifications used to determine the event monitor are
based on event identification, compare value length, and
compare value. All event monitors currently associated
with the process are examined until a matching monitor
is located. If a monitor is not found within the process,
the event monitor not present exception is signaled.

The Cancel Monitor Event instruction template identified
by operand 1 must be 16-byte aligned and have the
following format:

• Option indicators
- Compare value content

o = System pointer not present
1 = System pointer present

- Reserved (binary 0)

• Reserved (binary 0)

• Event identification
- Event class
- Event type
- Event subtype

• Compare value length

• Compare value

Char(2)
Bit 0

Bits 1-15

Char(8)

Char(4)
Char(2)
Char(1)
Char(l)

Bin(2)

Char(32)

If compare value content is set to system pointer
present, compare value length must be at least 16 and
the system pointer must be located in the first 16 bytes
of the compare value.

If the compare value length entry is 0, the compare
value entry is ignored. If the event monitor to be
canceled has a compare value qualifier, the compare
value length and compare values must be identical to
that specified in the operand 1 template.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Event Management Instructions 15-1

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

06 Optimized addressability invalid

08 Argument/Parameter

01 Parameter reference violation

10 Damage Encountered

04 System object damage state

44 Partial system object damage

14 Event Management

02 Event monitor not present

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

2A Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

OA Invalid operand length

OC Invalid operand ODT reference

00 Reserved bits are not zero

32 Scalar Specification

02 Scalar attributes invalid

03 Scalar value invalid

15-2

Operand
1

X
X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

Other

X

X

X

X

X

DISABLE EVENT MONITOR (DBLEVTMN)

Op Code
(Hex) Operand 1

0399 Event monitor
template

Operand 1: Character(48) scalar (fixed-length).

Description: The event monitor with the same
qualifications as the template referenced by operand 1 is
placed in the disabled state. When an event monitor is
disabled, the machine does not schedule execution of
the event handling routine associated with the event
monitor and a wait on event for the disabled monitor is
not satisfied.

If the event monitor specifies that signals are to be held
while the event monitor is disabled, the signals and
event-related data are retained. The maximum number
of signals to be retained is denoted by an event monitor
attribute in the Monitor Event instruction. Signals and
event-related data received by the event monitor in
excess of the maximum number to be retained are lost.

If the event monitor specifies that signals are not to be
held while the event monitor is disabled, the signals and
event-related data are not recorded.

If an event monitor is signaled while it is in the disabled
state, the signals are retained, and the monitor's event
handler, if specified, is scheduled for execution when
the event monitor is enabled.

The operand 1 Disable Monitor Event instruction
template must be 16-byte aligned and have the
following format:

• Option indicators
Compare value content
o = System pointer not present
1 = System pointer present
Reserved (binary 0)

• Reserved (binary 0)

• Event identification
Event class
Event type
Event subtype

Char(2)
Bit 0

Bits 1-15

Char(S)

Char(4)
Char(2)
Char(1)
Char(1)

J

J

. Compare value length Bin(2) Exceptions

L . Compare value Char(32) Operand
Exception 1 Other

If compare value content is set to system pointer
present, compare value length must be at least 16 and 06 Addressing

the system pointer must be located in the first 16 bytes 01 Space addressing violation X

of the compare value. 02 Boundary alignment X
03 Range X

If the compare value length is 0, the compare value 06 Optimized addressability invalid X

entry is ignored by the instruction. The event monitor to 08 Argument/ Parameter

be disabled must also have a zero length compare value. 01 Parameter reference violation X

10 Damage Encountered

If no event monitor with an identical event identification, 04 System object damage state X X

compare value length, and compare value is found 44 Partial system object damage X X

within the executing process, the event monitor not 14 Event Management

present exception is signaled. 02 Event monitor not present X
05 Disable timer event monitor X

If the event monitor is currently disabled, no operation
invalid

takes place, and no exception is signaled.
20 Machine Support

02 Machine check X

An event monitor monitoring timer event (class 0014)
03 Function check X

cannot be disabled.
22 Object Access

01 Object not found X

Substring operand references that allow for a null
02 Object destroyed X

substring reference (a length value of zero) may not be
03 Object suspended X

specified for this instruction.
24 Pointer Specification

01 Pointer does not exist X

02 Pointer type invalid X

,.." Events
2A Program Creation

06 Invalid operand type X

OOOC Machine resource
07 Invalid operand attribute X

0201 Machine auxiliary storage threshold exceeded
08 Invalid operand value range X
OC Invalid operand ODT reference X

0010 Process
00 Reserved bits are not zero X X

0701 Maximum processor time exceeded
32 Scalar Specification

0801 Process storage limit exceeded
02 Scalar attributes invalid X

03 Scalar value invalid X

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Event Management Instructions 15-3

ENABLE EVENT MONITOR (EBLEVTMN)

Op Code
(Hex) Operand 1

0369 Event monitor
template

Operand 1: Character(48) scalar (fixed-length).

Description: The instruction places an event monitor in
the enabled state. The event monitor may have been
initially established in the disabled state or may have
been disabled explicitly by the Disable Monitor Event
instruction.

If the event monitor is for an interval timer event, the
time interval begins when the monitor is enabled.

If the event monitor is currently enabled, no operation
takes place, and no exception is signaled.

If the event monitor currently has any retained signals,
the event handling program, if specified, is invoked.

The operand 1 template must be 16-byte aligned and
have the following format:

• Option indicators Char(2)
- Compare value content Bit a

a = System pointer not present
1 = System pointer present

- Reserved (binary 0) Bits 1-15

• Reserved (binary 0)

• Event identification
- Event class
- Event type
- Event subtype

• Compare value length

• Compare value

Char(S)

Char(4)
Char(2)
Char(1)
Char(1)

Bin(2)

Char(32)

If compare value content is set to system pointer
present, compare value length must be at least 16 and
the system pointer must be located in the first 16 bytes
of the compare value.

If the compare value length is 0, the instruction ignores
the compare value entry. The event monitor to be
enabled must have a zero length compare value.

15-4

If no event monitor with an identical event identification,
compare value length, and compare value is currently
associated with the executing process, the event monitor
not present exception is signaled.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

001 a Process
0701 Maximum processor time exceeded
OS01 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
OS01 Partial system f)bject damage set

J

Exceptions MATERIALIZE EVENT MONITORS (MATEVTMN)

L Operand Op Code

Exception 1 Other (Hex) Operand 1

06 Addressing 0379 Receiver

01 Space addressing violation X
Operand 1: Space pointer.

02 Boundary alignment X
03 Range X
06 Optimized addressability invalid X Description: This instruction materializes the event

08 Argument/ Parameter
monitors for the current process. The event monitors for

01 Parameter reference violation X
the current process are materialized into the

10 Damage Encountered
materialization template specified by operand 1.

04 System object damage state X X
44 Partial system object damage X X The materialization template identified by operand 1

14 Event Management
must be 16-byte aligned and has the following format:

02 Event monitor not present X
20 Machine Support

Template header Char(16)
02 Machine check X
03 Function check X • Template size specification Char(S)

22 Object Access Number of bytes provided Bin(4)
01 Object not found X

Number of bytes available Bin(4)
02 Object destroyed X for materialization
03 Object suspended X

24 Pointer Specification • Materialization data Char(S)
01 Pointer does not exist X Count of event monitors Bin(4)
02 Pointer type invalid X - Reserved (binary 0) Char(4)

2A Program Creation

~ 06 Invalid operand type X Monitor data Char(-)
OC Invalid operand ODT reference X (repeated for each monitor and
00 Reserved bits are not zero X X identical to the template for

32 Scalar Specification monitor event)
02 Scalar attributes invalid X
03 Scalar value invalid X · Reserved (binary 0) Char(16)

• Event handler specification System
(system pointer to the program pointer

or all zeros if no event handler
is specified)

• Reserved (binary 0) Char(2)

Event Management Instructions 15-5

• Option indicators
- Monitor domain

o = Machine-wide
1 = Process-directed

- Reserved (binary 0)
- Enabled/Disabled state

o = Enabled state
1 = Disabled state

- Signal retention option
o = Signals are retained

while disabled
1 Signals are not retained

while disabled

Char(2)
Bit 0

Bits 1-7
Bit 8

Bit 9

Short form option Bit 10
o Include event-related data

with the signal
1 - Do not include event-related

data with the signal
Event handler qualifier Bit 11
o = Event handler not present
1 = Event handler present

- Compare value content Bit 12
o = System pointer not present
1 = System pointer present

- Reserved (binary 0) Bits 13-15

• Maximum number of signals
to be retained

• Event priority (0-255;
o = highest priority)

• Event identification
- Event class

Event type
Event subtype

• Compare value length

• Compare value
(padded with binary 0
if less than 32 bytes)

Bin(4)

Bin(2)

Char(4)
Char(2)
Char(1)
Char(1)

Bin(2)

Char(32)

The first 4 bytes of the materialization identify the total
quantity of bytes that may be used by the instruction.
This value is supplied as input to the instruction and is
not modified by the instruction. A value of less than 8
causes the materialization length exception to be
signaled.

15-6

The second 4 bytes of the materialization identify the
total quantity of bytes available to be materialized. The
instruction. materializes as many bytes as can be
contained in the area specified as the receiver. If the
byte area identified by the receiver is greater than that
required to contain the information requested, the
excess bytes are unchanged. No exceptions are signaled
in the event that the receiver contains insufficient area
for the materialization, other than the materialization
length exception described previously.

All other values in the template are identical to those
specified as input to the Monitor Event instruction.

Events

OOOC Machine resources
0201 Machine auxiliary storage exceeded

0000 Machine status
0101 Machine check

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

J

Exceptions

L Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

06 Optimized addressability invalid

08 Argument/ Parameter

01 Parameter reference violation

10 Damage Encountered

04 System object damage

44 Partial system object damage

1C Machine Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

2A Program Creation

06 Invalid operand type

07 Invalid operand attribute

OA Invalid operand length

OC Invalid operand ODT reference

00 Reserved bits are not zero

32 Scalar Specification

01 Scalar type invalid

38 Template Specification

03 Materialization length exception

Operand
1 Other

X
X
X
X

X

X
X

X

X
X

X
X
X

X
X

X
X
X
X
X X

X

X

MODIFY PROCESS EVENT MASK (MODPEVTM)

Op Code
(Hex)

0372

Operand
1

Previous
mask
state

Operand
2

New mask
state

Operand 7: Binary(2) scalar variable or null.

Operand 2: Binary(2) scalar or null.

Description: This instruction optionally modifies and
retrieves the state of the event mask in the process
executing this instruction. If the event mask is in the
masked state, the machine does not schedule signaled
event monitors in the process. The event monitors
continue to be signaled by the machine or other
processes. When the process is modified to the
unmasked state, event handlers are scheduled to handle
those events that occurred while the process was
masked and those events occurring while in the
unmasked state. The number of signals retained while
the process is masked is specified by the attributes of
the event monitor associated with the process.

The process is automatically masked by the machine
when event handlers are invoked. If the process is
unmasked in the event handler, other events can be
handled if another enabled event monitor within that
process is signaled. If the process is masked when it
exits from the event handler, the machine explicitly
unmasks the process.

Valid operand values are:

o Masked
256 Unmasked

Other values are reserved and must not be specified. If
any other values are specified, a scalar value invalid
exception is signaled. If operand 1 is nUll, the current
mask state is not returned. If operand 2 is null, the
mask state is not modified. If both operands are null, an
invalid operand type exception is signaled. If both
operands are not null, the mask state is retrieved before
the state is modified.

Event Management Instructions 15-7

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2

06 Addressing

01 Space addressing violation X X
02 Boundary alignment X X
03 Range X X
06 Optimized addressability invalid X X

08 Argument/ Parameter

01 Parameter reference violation X X
10 Damage Encountered

04 System object damage state X X
44 Partial system object damage X X

1C Machine- Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found X X
02 Object destroyed X X

24 Pointer Specification

01 Pointer does not exist X X
02 Pointer type invalid X X

2A Program Creation

06 Invalid operand type X X
07 Invalid operand attribute X X
08 Invalid operand ODT reference X
OC Invalid operand ODT reference X X
00 Reserved bits are not zero X X

32 Scalar Specification

02 Scalar attributes invalid X X
03 Scalar value invalid X

15-8

Other

X
X

X

X
X

X

MONITOR EVENT IMNEVT)

Op Codes
(Hex) Operand 1

0371 Event monitor
template

Operand 1: Space pointer.

Description: This instruction specifies an intent to
monitor for a specific event and defines a preliminary
event handling mechanism within the executing process.
It allows monitoring of both machine and user-signaled
events.

The monitor is in effect until a Cancel Monitor Event
instruction is issued or until the process terminates.

The event monitor template identified by operand 1
must be 16-byte aligned and have the following format:

· Template size specification Char(8)
Number of bytes provided Bin(4)*
Number of bytes available Bin(4)*
for materialization

· Reserved (binary 0) Char(8)

· Event handler specification System
(program) pointer

· Reserved (binary 0) Char(2)

J

• Option indicators
Monitor domain
o = Machine-wide
1 = Process-directed
Reserved (binary 0)
Enabled / disabled option
o = Enabled state
1 = Disabled state
Signal retention option
o Signals are retained

while disabled.
1 = Signals are not retained

while disabled.
Short form option
o Event- related data is

included with the signal.
Event-related data is not
included with the signal.

Char(2)
Bit 0

Bits 1-7
Bit 8

Bit 9

Bit 10

Event handler qualifier Bit 11
o = Event handler not present
1 = Event handler present

- Compare value content Bit 12
o = System pointer not present
1 = System pointer present
Reserved (binary 0) Bits 13-15

• Maximum number of signals to
be retained

• Event priority
(0-255; 0 = highest priority)

• Event identification
Event class
Event type
Event subtype

• Compare value length

• Compare value

Bin(4)

Bin(2)

Char(4)
Char(2)
Char(1)
Char(1)

Bin(2)

Char(32)

Note: This instruction ignores template entries
annotated with an asterisk.

The attributes of the event monitor have the following
meaning:

• Event handler specification-This entry is a system
pointer with addressability to a program that is to be
given control on the occurrence of the event. The
pointer must reference a program and the currently
adopted user profile or the process user profile must
carry operational authority for the program. The entry
is ignored if the event handler qualifier indicator is set
to not present.

• Option indicators

These indicators further describe the qualifications of
the event monitor.

Monitor domain-This attribute denotes whether
the event is to be monitored on a process-directed
or a machine-wide basis. If the monitor domain is
set to process-directed, the event monitor is
signaled to monitor machine events occurring
based on the execution of the monitoring process
or to monitor user-signaled events that are
specifically directed at the monitoring process. If
the monitor domain is set to machine-wide, the
event monitor is capable of receiving both
process-directed or machine-wide signals.

Most machine events are signaled machine-wide,
which means that to monitor machine events, the
monitor domain must be specified as
machine-wide. However, a specific subset of
machine events is signaled directly to a process
because the event is associated with a function
initiated by the process. The following machine
events, for example, are signaled directly to a
process:
a. All timer types (time of day, interval, repetitive

interval)
b. REOIO complete (signaled to process issuing

the REOIO instruction)
c. Process initiated successfully / unsuccessfully

(signaled to the initiator of the process)
d. Process terminated (signaled to the initiator of

the process)
e. Pending lock granted (signaled to process

receiving the lock)
f. Object destroyed during asynchronous lock wait

(signaled to the requesting process)
g. Lock transferred (signaled to the receiving

process)
h. Asynchronous lock wait time-out (signaled to

the requesting process)

Event Management Instructions 15-9

Events signaled through the Signal Event
instruction can be signaled to all processes in the
machine (machine-wide) or to a specific process.
The Signal Event instruction allows specification of
the domain of the signal-machine-wide or
process.
Enabled/ disabled initial state-This option specifies
whether or not the event monitor is to be initially
enabled for signals immediately. The state can be
altered by the Enable Monitor Event and the
Disable Monitor Event instructions.
Signal retention option-This option specifies
whether or not signals are to be retained while the
event monitor is disabled. This option can be used
to limit the maximum number of signals to be
retained value.
Short form option-This option specifies whether or
not the specific event-related data is to be
appended to the standard event data when the
signal is presented. If the short form option is set
to do not include event-related data with the
signal, only the standard data is presented upon
retrieval of the signal. This option has a
performance advantage.
Event handler qualifier-This indicator specifies
whether or not the corresponding system pointer
entry in the template is to be used. If this
indicator denotes the presence of a system
pointer, the pointer object must be a resolved or
initial-valued system pointer addressing a program.
Compare value content-This indicator specifies the
presence or absence of a system pointer in the
compare value. The indicator is ignored if the
compare value length is O. If the indicator is set to
system pointer present and the compare value
length is not equal to 0, the compare value length
must be at least 16, and the system pointer is
assumed to be located in the first 16 bytes of the
compare value. The template must be 16-byte
aligned. The instruction does not verify that the
system pointer addresses an object type
associated with the machine event specified in the
event identification.

• Maximum number of signals to be retained
This attribute indicates the number of signals that
the machine retains while the process is masked,
while an event monitor is disabled, or while the
event monitor is enabled with the events not being
handled as rapidly as they are being signaled. The
number must be greater than O. While this
number of signals is pending, any signals received
are discarded.

15-10

• Event priority
- This attribute specifies the relative importance of

this event compared with other events to be
monitored within a process. The event priority
value establishes the order in which event handlers
are scheduled if multiple events have occurred,
and it determines the preemptability when a
process is waiting for one event and another
occurs.

The duplicate event monitor exception (hex 1401)
is signaled if an identical event monitor exists but
it specifies a different event handling program. If
an identical event monitor already exists with the
same event handler specified, then no exception is
signaled.

• Event identification-This attribute is an identification
corresponding to a machine set of events or the
identification specified for a user-signaled event. An
event class value of hex 0000 is invalid. An event
type value of hex 00 denotes generic monitoring by
event class; that is, all types and subtypes within an
event class are monitored. An event subtype value of
hex 00 denotes generic monitoring by event class and
type; that is, all subtypes within an event class and
type are monitored. Timer events require the
specification of class, type, and subtype; that is,
there is no generic monitor capability for timer
events. If an interval timer event monitor is created
as disabled, the time interval is not started until the
monitor is enabled. The event class for machine
events is in the range of hex 0001 to hex 7FFF.
User-defined events may be signaled from classes
hex 8000 and above. See Chapter 24. Event
Specifications for the event identifications.

J

J

• The compare value length entry is used when the
machine event allows or requires a compare value,
and it must be equal to the length specified for the
event. The compare value length entry is also used
for user-signaled event monitoring to further qualify a
signal. For user events, the length cannot exceed 32
characters. A template value invalid exception is
signaled if the compare value length is less than 0 or
greater than 32 characters.

• The compare value entry is used to further qualify a
signal. If a compare value length of 0 is specified,
the compare value entry and the compare value
content indicator are ignored. Certain machine events
require a compare value to specify to the machine
under what conditions the event is to be signaled.
For example, the timer class machine events require
the specification of the time interval to be monitored.
For these events, the compare value length must
contain the proper value, and the compare value must
always be present. A template value invalid exception
is signaled if an invalid compare value length or
compare value is specified.

If the compare value qualifies the event monitor and
the length of the compare value specified in the event
monitor is greater than the length specified in an
event generated by the Signal Event instruction, the
event monitor is not signaled. If the compare value
length in the event monitor is less or equal to the
compare value length in an event generated by the
Signal Event instruction, the compare value length
from the event monitor is used as the comparison
length for the compare value. If the compare value
content is set to a system pointer present, the
compare value length must be at least 16, and the
system pointer must be located in the first 16 bytes
of the compare value. The operand must be 16-byte
aligned. If the compare value is not required and is
not present, the event monitor receives signals
regardless of the signaled compare value. Chapter
24. Event Specifications defines the appropriate
compare value length for machine events.

Authorization Required

• Operational
- Contexts referenced for address resolution
- Program referenced as event handler

Lock Enforcement

• Materialize
- Contexts referenced for address resolution

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

001 0 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Event Management Instructions 15-11

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

06 Optimized addressability invalid

08 Argument/ Parameter

01 Parameter reference violation

OA Authorization

01 Unauthorized for operation

10 Damage Encountered

04 System object damage state

44 Partial system object damage

14 Event Management

01 Duplicate event monitor

03 Machine event requires compare
value

1C Machine-Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

03 Pointer addressing invalid object

2A Program Creation

06 Invalid operand type

OC Invalid operand ODT reference

00 Reserved bits are not zero

38 Template Specification

01 Template value invalid

15-12

Operand
1 Other

X

X

X

X

X

X

X X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

RETRIEVE EVENT DATA (RETEVTD)

Op Code
(Hex) Operand 1

0375 Receiver

Operand 1: Space pointer.

Description: The instruction retrieves the event-related
data associated with a signaled event monitor and
places it in the specified space object.

If an event handling program does not retrieve the
event-related data before it returns or terminates, the
signal and event-related data are lost. This instruction
causes the event-related data to be purged and
decrements the signals pending count.

If the instruction is issued from a program that is not an
event handler, the number of bytes available for retrieval
entry is set to binary S.

Operand 1 defines a template in which the event-related
data is to be placed. The receiver must be 16-byte
aligned.

The following data is placed in the template by the
instruction:

• Template size specification
Number of bytes provided
for retrieval
Number of bytes available
for retrieval

• Reserved (binary 0)

• Event identification
Event class
Event type
Event subtype

• Compare value length (value
of 0 denotes the absence
of a compare value)

• Compare value

Char(S)
Bin(4)

Bin(4)

Char(2)

Char(4)
Char(2)
Char(1)
Char(1)

Bin(2)

Char(32)

· Origin of signal
- Hex 80=Signal by machine

L Hex OO=Signal by Signal
Event instruction

· Reserved (binary 0)

· Event-specific data length

For short form event monitors, the
event-specific data length value is
o and the following attributes are
not supplied:

· Signals pending count

· Time of event signal

This is a 64-bit field representing an
unsigned binary value where bit 41
is equal to 1024 microseconds.

· Process (causing signal-denoted
by process control space pointer)

This entry is set to binary 0
if the event signal is not related
to a process action. For example,
this attribute is set to binary 0
for a timer event.

This entry is set to binary 0
if the signaling PCS (process
control space) does not exist
when the data is retrieved.

· Event-specific data

Char(l)

Char(1)

Bin(2)

Bin(4)

Char(8)

System
pointer

Char(*)

The first 4 bytes of the retrieved output identify the total
number of bytes that may be used by the instruction.
This value is supplied as input to the instruction and is
not modified by the instruction. If fewer than 8 bytes
are available in the space identified as the receiver
operand, a materialization length exception is signaled.
The second 4 bytes of the retrieved output identify the
total number of bytes available to be retrieved. The
instruction retrieves as many bytes as can be contained
in the area specified as the receiver. If the byte space
identified by the receiver is greater than that required to
contain the information requested for retrieval, then the
excess bytes are unchanged. No exceptions (other than
the materialization length exception described previously)
are signaled in the event that the receiver contains
insufficient area for the retrieval.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

If the short form option is selected, the signals pending
count, time of event signal, process control space
pointer, size of event-specific data, and event-specific
data entries are not made available.

When the compare value length is less than 32, the
excess bytes in the 32-byte compare value are
unpredictable.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
01 01 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Event Management Instructions 1 5- 1 3

Exceptions SIGNAL EVENT (SIGEVT)

Exception
Operand Op Code J 1 Other (Hex) Operand 1

06 Addressing 0345 Signal event
01 Space addressing violation X template

02 Boundary alignment X
03 Range X Operand 1: Space pointer.

06 Optimized addressability invalid X
08 Argument/Parameter

01 Parameter reference violation X Description: The instruction causes an event to be
10 Damage Encountered signaled. The instruction also causes any event monitor

04 System object damage state
44 Partial system object damage

1C Machine-Dependent Exception
03 Machine storage limit exceeded

X X currently associated with existing processes to be
X X located, signals these event monitors, and passes the

X
event-related data to them.

20 Machine Support
02 Machine check X Operand 1 specifies the event qualifications, the process

03 Function check X to be signaled, the conditional signal mask, and the

22 Object Access event-related data. The format is as follows:

01 Object not found X
02 Object destroyed X · Template size specification Char(8)
03 Object suspended X Number of bytes provided Bin(4)*

24 Pointer Specification Number of bytes available for Bin(4)*

01 Pointer does not exist X materialization

02 Pointer type invalid X
2A Program Creation · Reserved (binary 0) Char(8)

06 Invalid operand type X
07 Invalid operand attribute X · Process to signal System

OA Invalid operand length
OC Invalid operand ODT reference
OD Reserved bits are not zero

X pointer

J X
X X · Option indicators Char(2)

38 Template Specification Signal domain Bit 0

03 Materialization length exception X 0 = Machine-wide domain
1 = Process domain
Compare value content Bit 1
o = System pointer not present
1 = System pointer present
Reserved (binary 0) Bits 2-15

· Conditional signal mask Char(2)

· Reserved (binary 0) Char(4)

· Size of event-specific data Bin(2)

· Event identification Char(4)
Event class Char(2)
Event type Char(1)
Event subtype Char(1)

· Compare value length (value Bin(2)
of 0 denotes the absence
of a compare value)

· Compare value Char(32)

· Event-specific data Char(*)

15-14

An event class value of hex 0000 is invalid.

An event type value of hex 00 is invalid.

An event subtype value of hex 00 is invalid.

Events can be signaled directly to a process by
providing addressability to the process control space as
the process to signal attribute of the Signal Event
instruction template. If the event is to be signaled
directly to a process, the signal domain must be set to
process, and the system pointer addressing the process
control space must be supplied. If the process control
space is not currently associated with a process, the
process control space not associated with a process
exception is signaled. If the signal domain is
machine-wide, then the process to signal entry is
ignored.

A value of binary 0 in the conditional signal mask results
in the event being unconditionally signaled. If the value
is nonzero, the conditional signal mask is ANDed with
the process signal event control mask with a nonzero
result causing the event to be signaled. If the result is
0, the event is not signaled. (See the Initiate Process
instruction in Chapter 11. Process Management
Instructions, for a description of the signal event control
mask.)

If no compare value is specified on the signal. then only
event monitors monitoring the event identification
without a compare value will be signaled. The compare
value presence is denoted by the compare value length
greater than 0 and less than or equal to 32 characters.
If a compare value is specified, then event monitors
monitoring the event will be signaled if the compare
value length in the signaled event is greater than or
equal to the compare value length in the event monitor
and the compare values match for as many bytes as
specified in the event monitor. The event monitor is also
signaled when it does not specify a compare value if the
event IDs match. If the compare value content is set to
system pointer present. the compare value length must
be at least 16 bytes, and the system pointer must be
located in the first 16 bytes of the compare value.

Since this instruction deals with one process acting
upon another process, a portion of the function is
performed under control of the issuing process and the
remainder of the function is performed under control of
the target process. When control is returned to the
issuing process, the function may not have been
performed in its entirety.

A timer event (class (014) cannot be signaled explicitly
through the use of this instruction.

Authorization Required

• Retrieve
- Context referenced for address resolution

Lock Enforcement

• Materialize
- Context referenced for address resolution

Events

nnnn Any machine or user-signaled event

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference
0301 Invocation reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Event Management Instructions 15-15

Exceptions TEST EVENT (TESTEVT, TESTEVTB, or TESTEVTI)

Operand Op Code Operand Operand J Exception , Other (Hex) Extender , 2

06 Addressing 10FA None
01 Space addressing violation X
02 Boundary alignment X 1CFA Branch Event- Event
03 Range X option related monitor

06 Optimized addressability invalid X data template

08 Argument/ Parameter
18FA Indicator

01 Parameter reference violation X option
OA Authorization

01 Unauthorized for operation X
Operand 1: Space pointer.

10 Damage Encountered
04 System object damage state X X Operand 2: Character(48) scalar or null (fixed-length).
44 Partial system object damage X X

14 Event Management

06 Signal time event invalid X Extender: Branch or indicator options.
1A lock State

01 Invalid lock state X If the branch or indicator option is specified in the op
1C Machine- Dependent Exception code, the extender field must be present along with one

03 Machine storage limit exceeded X or two branch targets (for branch options) or one or two
20 Machine Support indicator operands (for indicator options). The branch or

02 Machine check X indicator operands immediately follow the last operand
03 Function check X listed above. See Chapter 1. Introduction for the

22 Object Access encoding of the extender field and the allowed syntax of
01 Object not found X the branch and indicator operands.

J 02 Object destroyed X

03 Object suspended X
24 Pointer Specification Description: The instruction tests the signaled flag of

01 Pointer does not exist X the event monitor that matches the event identification,
02 Pointer type invalid X compare value length, and compare value specified by
03 Pointer addressing invalid object X the operand 2 template. If the event monitor has been

28 Process State signaled, the instruction materializes the event-related
02 Process control space not X data into the area specified by operand 1.

associated with a process

2A Program Creation
If operand 2 is null, the instruction locates the highest

05 Invalid op code extender field X
priority signaled event monitor associated with the

06 Invalid operand type X
process.

07 Invalid operand attribute X
OC Invalid operand ODT reference X If operand 2 is null and no event monitors are currently
OD Reserved bits are not zero X X active, the not signaled condition is returned and no

38 Template Specification
event data is returned.

01 Template value invalid X

15-16

The template addressed by operand 2 must be 16-byte
aligned and have the following format:

• Option indicators Char(2)
- Compare value content Bit 0

o = System pointer not present
1 = System pointer present
Reserved (binary 0) Bits 1-15

• Reserved (binary 0)

• Event identification
Event class
Event type
Event subtype

• Compare value length

• Compare value

Char(8)

Char(4)
Char(2)
Char(1)
Char(1)

Bin(2)

Char(32)

If compare value content is set to system pointer
present, the compare value length must be at least 16
and the system pointer must be located in the first 16
bytes of the compare value.

If no event monitor associated with the process has the
matching attributes of event identification, compare
value length, and compare value, the event monitor not
present exception is signaled.

If the compare value length entry is 0, the instruction
ignores the compare value entry. The requirement of the
instruction is then met by a corresponding event
identification.

If an event monitor in the signaled state is found, the
instruction causes the event-related data to be moved
to the area located by operand 1 and decrements the
signals pending count by 1. Operand 1 is unchanged if
no event monitors are in the signaled state.

If branch options are specified, control flow may be
modified depending on whether the specified event
monitor is in the signaled or not signaled state. If
branch options are not specified for the instruction,
control is returned to the next sequential instruction.

The operation is independent of the enabled/disabled
state of the referenced event monitor or the
masked/unmasked state of the process.

The receiver must be 16-byte aligned.

The following data is placed in the operand 1 space
when the instruction is executed:

• Template size specification
Number of bytes provided
for retrieval
Number of bytes available
for retrieval

• Reserved (binary 0)

• Event identification
Event class

- Event type
Event subtype

• Compare value length (value
of 0 denotes the absence
of a compare value)

• Compare value

• Indicators
Origin of signal
o Signaled by machine
1 = Signaled by Signal Event

instruction

Char(8)
Bin(4)

Bin(4)

Char(2)

Char(4)
Char(2)
Char(1)
Char(1)

Bin(2)

Char(32)

Char(2)
Char(1)

- Compare value content Bit 1
o = System pointer not present
1 = System pointer present
Reserved (binary 0) Bits 2-15

• Reserved (binary 0)

• Event- specific data length

For short form event monitors, the
event-specific data length value is
o and the following attributes
are not supplied:

• Signals pending count

• Time of event signal

This is a 64-bit field representing

Charm

Bin(2)

Bin(4)

Char(8)

an unsigned binary value where bit 41
is equal to 1024 microseconds.

Event Management Instructions 15-17

• Process (causing signal-denoted
by process control space pointer)

System
pointer

This entry is set to binary 0 if the
event signal is not related to a process
action. For example, this attribute
is set to binary 0 for a timer event.

This entry is set to binary 0
if the signaling PCS (process
control space) does not exist
when the data is retrieved.

• Event-specific data Char(·)

The first 4 bytes of the retrieved output identify the total
number of bytes that may be used by the instruction.
This value is supplied as input to the instruction and is
not modified by the instruction. If fewer than 8 bytes
are available in the space identified as the receiver
operand, a materialization length exception is signaled.
The second 4 bytes of the retrieved output identifies the
total number of bytes available to be retrieved. The
instruction retrieves as many bytes as can be contained
in the area specified as the receiver. If the area
identified by the receiver is greater than that required to
contain the information requested for retrieval, then the
excess bytes are unchanged. No exceptions (other than
the materialization length exception described previously)
are signaled in the event that the receiver contains
insufficient area for the retrieval.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Resultant Conditions: Event monitor is in the signaled pr
not signaled state.

15-18

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

J

Exceptions WAIT ON EVENT (WAITEVT)

L Operands Op Code Operand Operand Operand Operand
Exception 1 2 Other 'Hex) 1 2 3 4

06 Addressing 0344 Event- Event Time-out Wait
01 Space addressing violation X X related monitor value options
02 Boundary alignment X X data template

03 Range X X

06 Optimized addressability invalid X X Operand 1: Space pointer.

08 Argument/ Parameter
Operand 2: Character scalar (fixed-length).

01 Parameter reference violation X X

10 Damage Encountered Operand 3: Character(8) scalar (fixed-length).
04 System object damage state X X X

44 Partial system object damage X X X Operand 4: Character(3) scalar (fixed-length).

14 Event Management

02 Event monitor not present X

1C Machine- Dependent Exception Description: The executing process is placed in the wait

03 Machine storage limit exceeded X state until an event is signaled to an event monitor

• 20 Machine Support identified by operand 2 or until the time-out value

02 Machine check X elapses. By waiting for an event to occur, the

03 Function check X instruction allows synchronization of the process with an

22 Object Access external source.

01 Object not found X X

02 Object destroyed X X The instruction can specify a time-out value (operand 3)

03 Object suspended X X which, when exceeded, causes the waiting process to

24 Pointer Specification be made eligible for the processor resource and has an

01 Pointer does not exist X X exception signaled to the instruction. A default time out

02 Pointer type invalid X X value is alternatively supplied at process initiation time.

2A Program Creation
05 Invalid op code extender field X Event monitors have a priority associated with them.

06 Invalid operoand type X X X The priority defines if the waiting process should be

07 Invalid operand attribute X X made eligible for the processor in order to handle events

08 Invalid operand value range X X X of equal or higher priority than the event that the

09 Invalid branch target operand X process is waiting for. If the waiting process is

OC Invalid operand ODT reference X X X monitoring events of lower priority than the event that it

00 Reserved bits are not zero X X X is waiting for, the process remains in the wait state until

2C Program Execution the event that it is waiting for occurs or the time-out

04 Invalid branch target X value is reached. All of the event monitors present in

32 Scalar Specification the operand 2 template must be of equal priority. If the

02 Scalar attributes invalid X X event monitors do not have the same priority associated

03 Scalar value invalid X with them, a scalar value invalid exception is signaled.

38 Template Specification The exception data returned contains the first event

03 Materialization length exception X monitor specification from operand 2 with a different
priority.

All the event monitors in the operand 2 template must
be of equal priority. If the event monitors in operand 2
do not have the same priority, a scalar value invalid
exception is signaled and the exception data returned
contains the first event monitor specification from

operand 2 that has a different priority.

Event Management Instructions 15-19

The event monitor template addressed by operand 2 is
used to locate an event monitor that is associated with
the process and has matching event 10, compare value
length, and compare value. If a matching event monitor
is not found, the event monitor not present exception is
signaled.

The format of the operand 2 template must be 16-byte
aligned and have the following format:

• Option indicators
Compare value content
o = System pointer not present
1 = System pointer present
Reserved (binary 0)

• Reserved (binary 0)

• Event identification
Event class
Event type
Event subtype

• Compare value length

• Compare value

Char(2)
Bit 0

Bits 1-15

Char(S)

Char(4)
Char(2)
Char(1)
Char(1)

Bin(2)

Char(32)

If the compare value content is set to system pointer
present, the compare value length must be at least 16,
and the system pointer must be located in the first 16
bytes of the compare value.

If the compare value length entry is 0, the instruction
ignores the compare value.

If the number of event monitors entry is 0, the wait is
completed by the signaling of any event monitor that
has no event handler. The signaling of an event monitor
which has an event handler causes the event handler to
be invoked, but the wait is not completed. Either of the
following conditions causes the wait to be completed,
and control is passed to the instruction following the
Wait On Event instruction:

• If one or more event monitors (each having no event
handlers) are in the signaled state, the highest priority
event monitor completes the wait.

• If no event monitors are in the signaled state, the
first event monitor (having no event handler) to be
signaled completes the wait.

15-20

If the number of event monitors entry is 1, the wait is
completed only by the signaling of the specified event
monitor. The signaling of any other event monitor does
not complete the wait but does cause the action
specified by the event monitor to be performed
(invoking an event handler if the event is of higher
priority or recording the signal), and the wait is resumed.
If the signaled event monitor has an event handler
specification, the event handler is given control. The
wait is completed when the event handler returns
control and control is passed to the instruction following
the Wait On Event instruction. Operand 1 is not
modified by the instruction. If the signaled event
monitor has no event handler, the data associated with
the occurrence of the event is stored in the area
designated by operand 1, the wait is completed, and
control is returned to the instruction following the Wait
On Event instruction.

Unless the short form option is used by the event
monitor, the receiver must be 16-byte aligned.

The following data is placed in the space object when
the wait is completed by an event and no event handler
is present:

• Template size specification
- Number of bytes provided

for retrieval
Number of bytes available
for retrieval

• Reserved (binary 0)

• Event identification
Event class
Bit 0 = O-Machine event
Bit 0 = 1-User event
Event type
Event subtype

• Compare value length

• Compare value

Char(S)
Bin(4)

Bin(4)

Char(2)

Char(4)
Char(2)

Char(1)
Char(1)

Bin(2)

Char(32)

• Indicators
Origin of signal
o Signaled by machine
1 = Signaled by Signal

Event instruction

Char(2)
Bit 0

Compare value content Bit 1
o = System pointer not present
1 = System pointer present
Reserved (binary 0) Bits 2-15

• Event-specific data length

For short form event monitors, the
event-specific data length value is
o and the following attributes
are not supplied:

• Reserved (binary 0)

• Signals pending count

• Time of event signal

• Process (causing signal-denoted
by process control space pointer)

This entry is set to binary 0 if
the event signal is not related to a
process action. For example, this
attribute is set to binary 0 for a
timer event.

This entry is set to binary 0
if the signaling PCS (process
control space) does not exist
when the data is retrieved.

• Event-specific data

Bin(2)

Char(4)

Bin(4)

Char(S)

System
pointer

Char(*)

Operand 3 is a character(S) scalar specifying a realtime
interval that the process will wait for the event to occur.
If the event does not occur within the interval, a wait
time-out exception is signaled, and the process is taken
out of the wait. The machine uses operand 3 as a
64-bit unsigned binary field (bit 41 has a value of 1024
microseconds). If time interval is 0, the process default
wait time-out value is used. If the wait time-out value
is also 0, a wait time-out exception is signaled
immediately. The maximum wait time-out allowed is a
value equal to (248 - 1) microseconds. Any value that
indicates more time than the maximum wait time-out
causes the maximum wait time-out to be used. If the
wait is timed and the wait time limit is exceeded, then
operand 1 is not modified by the instruction.

Operand 4 is a character(3) scalar specifying the access
state modification option. The operand has the following
values and meaning:

• Number of event monitors Bin(2)

• Wait options Char(1)
- When entering event wait Bit 0

o = Access state is not modified.
1 = Access state is modified.
When leaving event wait Bit 1
o = Access state is not modified.
1 = Access state is modified.
Time-out option Bit 2
o Wait for specified time, then

signal time-out exception.
Wait indefinitely

Reserved (binary 0) Bits 3-7

The number of event monitors denotes the number of
event monitor specifications in the operand 2 template.
If this value is 0, operand 2 is ignored. The value
specified for number of event monitors can be from 0 to
16. If any other value is specified, an exception is
signaled.

Operand 4 has no effect if the process instruction wait
access state control attribute specifies that access state
modification is not allowed. If the process attribute
value specifies that access state modification is allowed
and the wait on event access state modification option
is modify access state, the process access group
defined for the process has its access state modification
performed by the machine.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Event Management Instructions 15-21

Events Exceptions

oooe Machine resource Operands J 0201 Machine auxiliary storage threshold exceeded Exception 1 2 3 4 Other

0010 Process 06 Addressing

0701 Maximum processor time exceeded 01 Space addressing violation X X X X

0801 Process storage limit exceeded 02 Boundary alignment X X X X

03 Range X X X X

0016 Machine observation 06 Optimized addressability invalid X X X X

0101 Instruction reference 08 Argument/Parameter

01 Parameter reference violation X X X X

0017 Damage set 10 Damage Encountered

0401 System object damage set 04 System object damage state X X X X X

0801 Partial system object damage set 44 Partial system object damage X X X X X
14 Event Management

02 Event monitor not present X

04 Wait on event attempted while X
masked

1C Machine-Dependent Exception

03 Machine storage limit exceeded X

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X X X

02 Object destroyed X X X X

03 Object suspended X X X X

24 Pointer Specification J 01 Pointer does not exist X X X X

02 Pointer type invalid X X X X

2A Program Creation

06 Invalid operand type X X X X
07 Invalid operand attribute X X X
OA Invalid operand length X X X X

OC Invalid operand ODT reference X X X X

00 Reserved bits are not zero X X X X X

32 Scalar Specification

02 Scalar attributes invalid X X X

03 Scalar value invalid X X

38 Template Specification

03 Materialization length exception X

3A Wait Time-out
03 Event X

15-22

Chapter 16. Data Base Management Instructions

This chapter describes the instructions used for data
base management. These instructions are in alphabetic
order. For an alphabetic summary of all the instructions,
see Appendix A. (instruction Summary.

ACTIVATE CURSOR (ACTCR)

Op Code
(Hex)

0402

Operand
1

Cursor

Operand
2

Activation
template

Operand 1: System pointer.

Operand 2: Space pointer or null.

Description: This instruction connects a previously
created cursor to a process, allowing data base
operations to be performed with that cursor. The cursor
identified by operand 1 is temporarily modified with the
replacement values as specified by operand 2.

The data spaces specified in operand 2 are implicitly
locked LSRD (lock shared read) or as indicated in the
activation template. The data space index specified in
operand 2 is implicitly locked LSRD. The secondary data
space indexes visible beneath the join cursor are
implicity locked LSRD.

The cursor is implicitly locked LEAR (lock exclusive allow
read) by the machine. Locking the cursor, data spaces,
and data space index prevents them from being
destroyed while in use.

An activated cursor can be operated on only by the
process that activated it. Activating a cursor prevents
any data base operations (except Create Duplicate
Object and Materialize Cursor Attributes instructions for
the creation template) from accessing the cursor unless
they are issued by the activating process.

Locking the data spaces and data space index(es)
prevents them from being destroyed while the cursor is
activated.

The cursor may be either a permanent or a temporary
object and must not be currently activated. The resulting
activated cursor does not address an entry for retrieval
and has no locked entries associated with it.

The format of the cursor activation template is as
follows:

• Data space list pointer

• Length of data space list

• Cursor attributes
- Reserved (binary 0)

Data space index
Replace values
o Use original cursor values.
1 = Use replacement cursor

values for the activation.
Disregard data space index
o = Activation of the cursor

uses the data space index
over which it was created.
Activation of the cursor

Space
pointer

Bin(2)

Bin(2)
Bit 0
Bit 1 *
Bit 2

Bit 3

does not use the data space
index over which it was created.

Reserved (binary 0) Bit 4
Second activation template
extension indicator Bit 5
Extended activation functions Bit 6
indicator

- Return activation statistics Bit 7
Processing mode Bits 8-9
Index indicator Bit 8
o = Random (or no index)
1 = Sequential
Data indicator Bit 9
o = Random
1 = Sequential
Ensure activity Bit 10
o Ensure data space entries

instruction will not be used.
Ensure data space entries
instruction will be used.

Reserved (binary 0) Bits 11-15

Data Base Management Instructions 16-1

• Unit of transfer

• Locked entry wait time

• Extended activation functions
Retrieve indicator
Update indicator
Delete indicator
Insert indicator
Reserved (binary 0)
Implicit lock indicator
Hex 00 = LSRD lock
Hex 01 = LSRO lock
Hex 02 = LSUP lock
Hex 03 = LEAR lock
Hex 04 = LENR lock
All other values are reserved.
Reserved (binary 0)

Bin(2)

Char(8)

Char(2)
Bit a
Bit 1
Bit 2
Bit 3
Bits 4-7
Bits 8-10

Bits 11-15

• Activation statistics Char(8)
Number of entries in data spaces Bin(4)*
Number of entries in data space Bin(4)*
index

• Second activation template
extension functions

Join default values options
Default values prohibited
Default values allowed
Default values required
Reserved (binary 0)

• Data space number to start
providing default values

• Reserved (binary 0)

Notes:

Char(2)

Bit 0
Bit 1
Bit 2
Bit 3-15

Bin(2)

Char(20)

1. The cursor activation template and data space list
must each be aligned on a multiple of 16 bytes.

2. The value of the entry shown here with an asterisk (*)
is ignored by this instruction.

3. This template is a subset of the create cursor
template.

16-2

The entry identified as data space list pointer must
provide a space pointer to a list of system pointers.
Each of these system pointers must address a data
space. The length of data space list indicates the
number of bytes in the data space list and must be a
multiple of 16 bytes.

The Activate Cursor instruction allows the user to
specify a subset of the data spaces that are associated
with the cursor to be selected for activation. This is not
allowed when the cursor type is join. Each system
pointer that identifies a data space that is to be put in
use under this cursor must occupy the same position in
the list that it occupied when the cursor was created by
the Create Cursor instruction. To identify data spaces
that are not to be used in this cursor activation, 16
bytes of O' s must be placed into the list in place of that
data space's system pointer. If the entire data space list
contains O's, then a pointer does not exist exception is
signaled.

A zero value in the length of data space list entry
indicates all data spaces associated with the cursor are
to be put in use and the pointer to the data space list is
ignored. If operand 2 is null, all data spaces associated
with the cursor are put in use and no replacement
values are applied.

If the replace values entry is 1, the new values for
processing mode, ensure activity, unit of transfer, and
locked entry wait time replace those in the cursor during
this activation. See the Create Cursor instruction for
definitions of these fields.

A disregard data space index value of binary 1 indicates
that this activation of the cursor does not result in the
use of the data space index over which the cursor was
created. No check is made to ensure the validity,
damage, or suspended state of the data space index.
The only operations allowed for the activation of the
cursor are those which would be allowed if the cursor
had been created directly over the data spaces identified
for use through this cursor. A value of binary 0 causes
the cursor to use the data space index over which it was
created. This field does not apply to the data space
indexes defined over secondary data spaces under a join
cursor. If the cursor was not created over a data space
index, this field is ignored.

J

A value of binary 1 in the second activation template
extension field indicates that the second extension of
the activation template has been provided and will be
processed. The presence of the second activation
template extension requires the extended activation
function indicator to be binary one.

A value of binary 1 in the extended activation functions
indicator field indicates that the extended activation
functions are to be processed for this activation of the
cursor. If this field contains a binary 0, the extended
activation functions are ignored.

A value of binary 1 in the return activation statistics field
indicates that the system should return the proper values
in the activation statistics fields. If this field contains a
value of binary 0, the activation statistics are not
returned and the values provided in the input template
are not modified. If this field contains a binary 1 but the
extended activation functions indicator field has a value
of binary 0, a template value invalid exception is
signaled on the return activation statistics field.

The extended activation functions are as follows:

• A retrieve indicator value of binary 1 indicates that
data space entries are retrieved using this activation
of the cursor. This includes use of this cursor as the
source operand for the Copy Data Space Entries
instruction. A value of binary 0 indicates that data
space entries are not retrieved through this activation
of the cursor. If an attempt is made to retrieve data
space entries through this activation of the cursor, an
invalid data base operation exception is signaled. The
update, delete, and insert indicators may not be
specified if the cursor is a join type.

• An update indicator value of binary 1 indicates that
data space entries are updated in data spaces using
this activation of the cursor. A value of binary 0
indicates that data space entries are not updated
through this activation of the cursor. If an attempt is
made to update data space entries through this
activation of the cursor, an invalid data base
operation exception is signaled.

• A delete indicator value of binary 1 indicates that
data space entries are deleted from data spaces
using this activation of the cursor. A value of binary
o indicates that data space entries are not deleted
through this activation of the cursor. If an attempt is
made to delete data space entries through this
activation of the cursor, an invalid data base
operation exception is signaled.

• An insert indicator value of binary 1 indicates that
data space entries are inserted into data spaces using

this activation of the cursor. This includes use of this
cursor as the receiver operand for the Copy Data
Space Entries instruction. A value of binary 0
indicates that data space entries are not inserted
through this activation of the cursor. If an attempt is
made to insert data space entries through this
activation of the cursor, an invalid data base
operation exception is signaled. The update, delete,
and insert indicators may not be specified if the
curosr is a join type.

Note: If the extended activation functions field has a
value of binary 0, the retrieve indicator, insert indicator,
delete indicator, and update indicator fields are ignored
and all operations are allowed through this activation of
the cursor.

• The implicit lock indicator value indicates the level of
the implicit locks to be obtained on the data spaces
identified for use through this cursor. If the extended
activation functions indicator has a value of binary 0,
this field is ignored and the data spaces identified for
use through this cursor will be implicitly locked LSRD.
A LSRD lock or LSRO lock remains with the data
spaces until a data space entry in the data space is
locked through this activation of the cursor (the lock
is changed to LSUP until all entries are removed from
the cursors' locked entry queue at which time it is
returned to its initial lock state).

• If the activation statistics have been requested for
this activation, the number of entries in data spaces
field contains the number of data space entries,
exclusive of deleted data space entries, in the data
spaces identified for use through this cursor. When
the cursor type is join, only the data space entries
from the primary data space under the join cursor will
be included. If the cursor is activated over a data
space index, this field contains a value of O. The
number of entries in the data space index field
contains the total number of data space entries
referenced by the data space index that the cursor is
activated over. Only those data space entries in data
spaces identified for use through this cursor are
included. When the cursor type is join, only the data
space entries in the primary data space will be
included. If the cursor was not created over a data
space index or the disregard data space index option
has a value of binary 1, this field contains a value of
O. If the activation statistics are not requested, these
fields are not modified.

Data Base Management Instructions 16-3

When performing a join operation and the join is not
satisfied due to the absence of a qualifying entry in the
joined-to data space, the field values of the default
entry of the joined-to data space may be substituted.
All mapping / conversion, intermediate buffer mapping,
selection, and group-by processing will be performed
using the default entry values.

A value of binary one in the default values prohibited
field specifies the default entry values may not be
substituted.

A value of binary one in the default values allowed field
specifies the default entry values may be substituted.

A value of binary one in the default values required field
specifies the resulting joined record may not be used
unless default values have been substituted for at least
one data space participating in the joined record.

Default values allowed may not be specified if default
values prohibited has been specified. Default values
required may not be specified unless default values
allowed has been specified. These options are ignored
for non-join type cursors.

The data space number to start providing default values
field specifies which data space (as defined by the data
space list on Create Cursor may provide default values
(as defined by the join default values options). All
succeeding data spaces in the list may likewise provide
default values. The preceding data space in the list may
not provide default values. A value of binary zero or
binary one in this field is not allowed. This field is
ignored when the cursor is not allowed. This field is
ignored when the cursor is not a join type cursor or
default values prohibited is specified.

16-4

The authority available to the process for each data
space to be referenced by a cursor is determined at the
time the cursor is activated. After activation of the
cursor, references through the activated cursor do not
take into consideration any further changes in the
authority environment (adopted user profiles, granting or
retracting authority). The authority stored at activate
time is the sum of the following authority sources:

• Authority stored in a system pointer (in data space
list)

• Public authorization

• Authority of the process user profile

• Authority of the current adopted and / or propagated
user profiles

Authorization Required

• Operational
Operand 1

- Data spaces referenced by operand 1

• Retrieve
- Contexts referenced for address resolution

Lock Enforcement

• Materialize
- Contexts referenced for address resolution

• Implicit locks
Cursor is implicitly locked LEAR.
Data spaces referenced are implicitly locked
according to the extended activation function
options. This is either LSRD, if the cursor is not
activated with the extended activation function
option, or the level indicated in the activation
template.
Data space index referenced is implicitly locked
LSRD.
Secondary data space indexes visible beneath a
join cursor are implicitly locked LSRD.

Events Exceptions

~ 0002 Authorization Operands
0101 Object authorization violation Exception 1 2 Other

oooe Machine resource 12 Data Base Management

0201 Machine auxiliary storage threshold exceeded 07 Data space index invalid X

16 Data space not addressed by X

0010 Process cursor

22 Data space index with selection X 0701 Maximum processor time exceeded
routine build termination

0801 Process storage limit exceeded
33 Data space index with non-user X

exit S/O routine build termination
0016 Machine observation 39 Derived field operation error X

0101 Instruction reference during build index

1A Lock State
0017 Damage set 01 Invalid lock state X X

0401 System object damage set 1C Machine-Dependent Exception
0801 Partial system object damage set 03 Machine storage limit exceeded X

06 Machine lock limit exceeded X
001 A Journal port 20 Machine Support

0301 Entry not journaled 02 Machine check X
0401 Journal space attached to a 03 Function check X

journal port because unusable 22 Object Access

01 Object not found X X
001 CJournal space 02 Object destroyed X X

0301 Threshold reached 03 Object suspended X X

04 Object not eligible for operation X
Exceptions 05 Object not available to process X X X

~ 24 Pointer Specification
Operands 01 Pointer does not exist X X

Exception 1 2 Other 02 Pointer type invalid X X

03 Pointer addressing invalid object X X
06 Addressing

2A Program Creation
01 Space addressing violation X X

06 Invalid operand type X X
02 Boundary alignment X X

07 Invalid operand attribute X X
03 Range X X

08 Invalid operand value range X X
06 Optimized addressability invalid X X

OC Invalid operand ODT reference X X
08 Argument/ Parameter

00 Reserved bits are not zero X X X
01 Parameter reference violation X X

2C Program Execution
OA Authorization

06 Instruction cancellation X
01 Unauthorized for operation X X

07 Instruction termination X
10 Damage Encountered

2E Resource Control Limit
04 System object damage state X X X

01 User profile storage limit X
44 Partial system object damage X X X exceeded

30 Journal Management

02 Entry not journaled X
32 Scalar Specification

01 Scalar type invalid X X

38 Template Specification

01 Template value invalid X

Data Base Management Instructions 16-5

COPY DATA SPACE ENTRIES (CPYDSE)

Op Code
(Hex)

048F

Operand
1

Cursor
(receiver)

Operand
2

Option
template

Operand 1: System pointer.

Operand 2: Space pointer.

Operand 3: System pointer.

Operand
3

Cursor
(source)

Description: All or part of the entries in the data space
referenced through the operand 3 cursor are copied into
the data space referenced through the operand 1 cursor
according to the specifications provided in the options
template (operand 2). Operands 1 and 3 may indicate
that the same data space is to be used as both source
and receiver. In this case, the result of the copy is
placed in the data space at the completion of the
operation. The data space entries and data space
referenced through the operand 3 cursor are left
unchanged. If a data space index is specified in the
options template, the data space entries are copied into
the receiving data space in the order they are referenced
by the data space index. Otherwise, the entries are
copied in ordinal entry sequence into the receiver. The
template can also specify both start and stop relative
entries or keys. The copy can be limited to a number of
entries to be copied. The copy can optionally skip
deleted entries. The copied data space entries can be
added to the end of the receiver data space or the
receiver data space may be optionally reset by the copy.
No input or output cursor mapping can be performed.

16-6

The format of the copy options template is as follows:

• Copy options
Remove deleted entries
Data space index retrieval
Reset receiving data space
Reserved (binary 0)

• Copy specifications
Starting entry specified
Ending entry specified
Entry limit specified
User entry buffer specified
Reserved (binary 0)

• Number of entries copied

• Data space entry last processed

• Maximum number of entries

• Source data space number

• Receiver data space number

• Starting ordinal entry number

• Ending ordinal entry number

• Starting key field count

• Ending key field count

• Reserved (binary 0)

• Starting key

• Ending key

• User buffer entry

Char(2)
Bit 0
Bit 1
Bit 2
Bits 3-15

Char(2)
Bit 0
Bit 1
Bit 2
Bit 3
Bits 4-15

Bin(4)

Bin(4)

Bin(4)

Bin(2)

Bin(2)

Bin(4)

Bin(4)

Bin(2)

Bin(2)

Char(12)

Space
pointer

Space
pointer

Space
pointer

The copy options template must be aligned on a
16-byte boundary.

If the remove deleted entries field has a value of binary
1, deleted entries are not copied into the receiving data
space. This field is ignored if the data space index
retrieval option is used for retrieving the entries.

A data space index retrieval field value of binary 1
indicates the data space index referenced through the
operand 3 cursor is to be used to order the retrieval of
entries from the designated source data space. If the
data space index has a selection routine, those entries
omitted from the data space index are not copied to the
receiver. As the entries are placed into the receiving
data space (if the same as the source data space). the
data space index is updated to reflect the new
organization of the data space entries. The data space
index must be valid. If this field has a value of binary 0,
the data space entries are retrieved in ordinal number
sequence.

A reset receiving data space value of binary 1 indicates
the data space to receive the entries is to be reset to an
empty status before any of the copied entries are
added. If the receiving data space and the source data
space are the same, this field must be binary 1. See the
Data Base Maintenance instruction in this chapter for
details of the operation. If a value of binary 0 is
specified, the copied entries will be added to the end of
the receiving data space.

If the starting entry specified field has a value of binary
0, the copy retrieves entries from the source data space
beginning with the ordinal entry number equal to 1. If
the data space index is to be used for retrieval, the data
space entry identified by the first entry in the data space
index becomes the first entry retrieved. In either case,
the copy continues through the data space or data
space index sequentially until terminated. If this field
contains a binary 1 and entry retrieval is not through a
data space index, the copy begins with the data space
ordinal entry number specified in the starting ordinal
entry number field. If the field contains a binary 1 and
entry retrieval is through a data space index, the starting
key and the starting key field count are used to
determine the first entry. The data space index is
searched for the first data space entry that has a key
that is equal to or after the specified argument key. If
the field contains a binary 1, retrieval is through a data
space index, and the starting key pointer has a value of
binary O's, the key of the data space entry designated

by the starting ordinal entry number will be used as the
first entry. Subsequent retrievals are performed
sequentially through the data space index. In this case,
if the designated entry has been omitted from the data
space index or is deleted, an exception is signaled.

If the ending entry specified field has a value of binary
1, the copy attempts to retrieve entries until end of path
is encountered. If this field is a binary 1 and the
retrieval of entries is not through a data space index, the
copy does not retrieve any entries that have an ordinal
number that is greater than the ending ordinal entry
number. If this field is binary 1 and entries are being
retrieved through a data space index, the copy
terminates when an entry is retrieved with a key that
collates after the key defined by the ending key and the
ending key field count. If this field has a value of binary
1 and the ending entry logically precedes the starting
entry, a template value invalid exception is signaled for
the ending key field.

Note: If an error is incurred while creating either of the
argument keys, a key mapping error exception is
signaled, and the instruction is terminated before any
entries are copied. If either key field count contains a
value of 0, only leading fork characters are used to
determine the key. If either key field count specifies
fewer than the actual number of fields represented in
the data space index, then a truncated generic key is
generated. Trailing fork characters are always used to
generate the key.

If the entry limit specified field has a value of binary 1,
the copy inserts up to the number of entries specified in
the maximum number of entries field and then terminate
the copy. If the field has a value of binary 0, no limit is
placed on the number of entries to copy. If the source
data space and receiving data space are the same, then
this field must contain a binary O.

If the entries retrieved from the source data space are
shorter than entries inserted into the receiver data
space, the remainder of each inserted entry is filled with
data acquired from the corresponding positions of the
user buffer entry (if provided). When no such user
buffer entry has been provided, the remaining portion of
each inserted entry is padded with binary O's.

Upon completion of the instruction, the number of
entries copied field contains the total number of data
space entries that were inserted into the receiving data
space. This count includes deleted entries if they were
copied to the receiver. The data space entry last
processed field contains the ordinal entry number of the
last data space entry successfully referenced in the
source data space before the instruction was completed.

Data Base Management Instructions 16-7

The maximum number of entries indicates the upper
limit on the number of entries to be inserted into the
receiving data space. If the entry limit specified field is
binary 1, this field must not contain a negative value,
otherwise, it is ignored.

The source data space number designates which data
space referenced by the operand 3 cursor is to be the
source data space. This entry corresponds to the
position of the data space in the corresponding data
space pointer list associated with the cursor. This data
space must be in the cursor's data space list after
cursor activation. A value of 2 indicates the second data
space in the list, for example.

The receiver data space number designates which data
space referenced by the operand 1 cursor is to be the
receiving data space. This entry corresponds to the
position of the cursor's data space in the corresponding
data space pointer list associated with the cursor. A
value of 2 indicates the second data space in the list,
for example. The receiver data space must not be in use
by any process. If the data space is in use by any
process (including the same process), an object not
eligible for operation is signaled.

The starting ordinal entry number indicates which entry
is to be retrieved from the source data space first. It
corresponds to the ordinal entry number of the desired
entry in the source data space. If the starting entry
specified field is binary 1 and the retrieval of entries is
not through a data space index, this field must contain a
value greater than O. If the retrieval of the designated
entry would result in an end of path condition, no
entries are copied. This field is ignored if the starting
entry specified field is binary 0 or the retrieval is through
a data space index and a key is to be used.

The ending ordinal entry number indicates which entry is
to be retrieved last from the source data space. It
corresponds to the ordinal entry number of the desired
entry in the source data space. If the ending entry
specified field is binary 1 and the retrieval of entries is
not through a data space index, this field must contain a
value greater than O. This field is ignored if the ending
entry specified field is binary 0 or the retrieval is through
a data space index.

16-8

The starting key field count and ending key field count
indicate the number of fields assumed to be in the
starting key and ending key values. The key field counts
include only data fields supplied by the user of the
instruction and do not include fork characters. If the
starting entry specified field has a binary 1 value and the
retrieval of entries is through a data space index, the
starting key field count must be greater than or equal to
O. Otherwise, the starting key and the starting key field
count are ignored. If the ending entry specified field has
a binary 1 value and the retrieval of entries is through a
data space index, the ending key field count must be
greater than or equal to O. Otherwise, the ending key
and the ending key field count are ignored.

The user buffer entry, if specified, is used to obtain
default values in the physical (not logical) representation
for the receiving data space when the source data space
does not provide them. It is assumed to be as large as
the physical (not logical) representation of each entry
that resides in the receiving data space.

The cursors identified by operands 1 and 3 must have
been activated to the issuing process. They may not be
positioned to an entry in any data space and they may
not hold entry locks. If either of the cursors is set or
holds entry locks, an object not eligible for operation is
signaled. At the completion of the instruction, the
cursors are not positioned to any data space entries.

If either of the cursors are of a join type, an operation
not valid with join cursor exception is signaled.

If the source cursor has output selection, an object not
eligible for operation exception is signaled.

If either of the indicated cursors is under commitment
control, an operation not valid under commitment control
exception is signaled and the operation is terminated.

If the receiver data space is being journaled, an object
not eligible for operation exception is signaled and the
operation is terminated.

J

If this instruction does not complete normally, the
entries already copied may be placed into the receiving
data space. In the case of a system-generated
exception, entries already copied may appear in the
receiver (except when the source and receiving data
spaces are the same). In the case of a system failure,
the normal system recovery facilities control the entries
which appear in the data space used as a receiver
(except when the source and the receiving data spaces
are the same). If the source and receiving data spaces
are the same, the data space remains unchanged unless
the instruction terminates normally. If a data space
index was specified in the template and the source and
receiving data spaces are the same, the data space
index may be marked invalid if the instruction terminates
abnormally. When this instruction completes, the
changed system objects are not ensured.

If a data space index was specified in the input template
and the source and receiver data spaces are the same,
the data space index may be defined and valid over the
receiver data space only once.

If the operand 1 cursor has not been activated with an
operation intent of insert, or the operand 3 cursor has
not been activated with an operation intent of retrieve.
then an invalid data base operation exception is
signaled.

Authorization Required

• Insert
- The data space referenced by operand 1

• Retrieve
- The data space referenced by operand 3
- Contexts referenced for address resolution

• Delete
The data space referenced by operand 1 (reset
option)

• Object management
The data space referenced by operand 1 (reset
option)
The data space referenced by operand 3 (if no
cursor mapping is specified and the cursor does
not have the direct map attribute)

Lock Enforce~nt

• Materialize
- Contexts referenced for address resolution

• Implicit locks
Data space referenced by operand 3 is locked
LEAR
Data space referenced by operand 1 is locked
LENR

Events

0002 Authorization
0101 Authorization violation

0008 Data space index
0301 Data space index invalidated

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0000 Machine status
0101 Machine check

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

001 A Journal port
0301 Entry not journaled
0401 Journal space attached to a

journal port became unusable

001 C Journal space
0301 Threshold reached

Data Base Management Instructions 16-9

Exceptions
Operands

Exception 1 2 3 Other

J Operands
Exception 1 2 3 Other 24 Pointer Specification

01 Pointer does not exist X X X
06 Addressing 02 Pointer type invalid X X

01 Space addressing violation X X X

02 Boundary alignment X X X 03 Pointer addressing invalid object X X
03 Range X X X 2A Program Creation

06 Optimized addressability invalid X X X 06 Invalid operand type X X X
08 Argument/ Parameter 07 Invalid operand attribute X X X

01 Parameter reference violation X X X 08 Invalid operand value range X X X
OA Authorization OA Invalid operand length X

01 Unauthorized for operation X X X OC Invalid operand ODT reference X X X
10 Damage Encountered 00 Reserved bits are not zero X X X X

04 System object damage state X X X X 2C Program Execution

44 Partial system object damage X X 06 Instruction cancellation X
12 Data Base Management 07 Instruction termination X

01 Conversion mapping error X 2E Resource Control Limit

02 Key mapping error X 02 User profile storage limit X

04 Data space entry limit exceeded X exceeded

07 Data space index invalid X 30 Journal management

08 Incomplete key description X 02 Entry not journaled

09 Duplicate key value X 38 Template Specification

OF Duplicate key value in X 01 Template value invalid X

uncommitted data space entry 3E Commitment Control

21 Unable to maintain unique key X 10 Operation not valid under X X
DSI commitment control

23 Data space index select routine X J failure

25 Invalid data base operation X

27 Data space index key with invalid X
floating-point field

37 Operation not valid with join X
cursor

38 Derived field operation error X

1A Lock State

01 Invalid lock state X X

1C Machine- Dependent Exception

03 Machine storage limit exceeded X

06 Machine lock limit exceeded X

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X X X

02 Object destroyed X X X X

03 Object slJspended X X X X

04 Object not eligible for operation X X X

05 Object not available to process X X

16-10

CREATE CURSOR (CRTCR)

Op Code
(Hex)

044A

Operand
1

Cursor

Operand
2

Cursor
template

Operand 1: System pointer.

Operand 2: Space pointer.

Description: A cursor object is created according to the
definition given in the cursor template specified by
operand 2, and addressability to the cursor is returned in
the system pointer identified by operand 1.

Upon successful completion of the instruction, the
created cursor contains addressability to the data
space(s) and the primary data space index (if defined)
specified in the cursor template.

The format of the cursor template is as follows:

• Template size
Number of bytes provided
by user

- Number of bytes that can be
materialized

• Object identification
- Object type
- Object subtype
- Object name

• Object creation options
- Existence attributes

o = Temporary
1 = Permanent
Space attribute
o = Fixed-length
1 = Variable-length
Initial context
o Addressability is not

inserted in context
Addressability is
inserted in context

Char(8)
Bin(4)*

Bin(4)*

Char(32)
Char(1)*
Char(1)
Char(30)

Char(4)
Bit 0

Bit 1

Bit 2

- Access group Bit 3
o Not created as a member

of an access group
1 = Created as a member of

an access group
- Reserved (binary 0) Bits 4-31

• Reserved (binary 0) Char(4)

• Size of space Bin(4)

• Initial value of space Char(1)

• Performance class Char(4)
- Space alignment Bit 0

o = The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space. If
no space is specified for
the object, this value must
be specified for the
performance class.
The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space as
well as to allow proper
alignment of input/ output
buffers at 512-byte align
ments within the the space.

Reserved (binary 0) Bits 1-4
Main storage pool selection Bit 5
o Process default main storage

pool is used for object.
1 = Machine default main storage

pool is used for object.
Transient storage pool selection Bit 6
o = Default main storage pool

(process default or machine
default as specified for
main storage pool selection)
is used for object.

1 = Transient storage pool is used
for object.

- Block transfer on implicit Bit 7
access state modification
o = Transfer the minimum storage

transfer size for this object.
This value is 1 storage unit.
Transfer the machine default
storage transfer size. This
value is 8 storage units.

Reserved (binary 0) Bits 8-31

• Reserved (binary 0)

• Context

Charm

System
pointer

Data Base Management Instructions 16-11

• Access group

• Data space index pointer

Data space mapping templates
list pointer

• Data space list pointer

• Length of data space list

• Cursor attributes

System
pointer

System
pointer

Space
pointer

Space
pointer

Bin(2)

Char(2)
- Second template extension Bit 0

o No second extension
1 = Second extension of creation

template
- Data space index Bit 1

o No data space index provided
1 = Access through a data space

index
- Ignored
- First template extension

o No extended creation
functions
Extended creation functions

Bits 2-3*
Bit 4

- Floating-point attributes Bit 5
specified
o Use default floating-point

attributes
Use specified floating-point
attributes

- Ignored
- Processing mode

Index indicator
o = Random (or no index)
1 = Sequential
Data indicator
o = Random
1 = Sequential

Bits 6-7*
Bits 8-9
Bit 8

Bit 9

- Ensure activity Bit 10

16-12

o Ensure data space entries
instruction will not be used.
Ensure data space entries
instruction will be used.

- Cursor type Bit 11
o = Non-join cursor
1 = Join cursor

- Group-by processing Bit 12
o Group-by processing not

specified
Group-by processing specified

Materialize of cursor not allowed Bit 13
Reserved (binary 0) Bit 14-15

• Unit of transfer Bin(2)

• Locked entry wait time Char(8)*

• Extended creation functions Char(18)
- Floating-point attributes Char(1)

Floating-point overflow mask Bit 0
o = Masked
1 = Unmasked
Floating-point underflow mask Bit 1
o = Masked
1 = Unmasked
Floating-point zero divide mask Bit 2
o = Masked
1 = Unmasked
Floating-point inexact result Bit 3
o = Masked
1 = Unmasked
Floating-point invalid operand Bit 4
o = Masked
1 = Unmasked
Reserved (binary 0) Bit 5
Floating-point rounding mode
00 = Round to positive infinity
01 = Round to negative infinity
10= Round to zero (truncate)
11 = Round to nearest or even
Reserved (binary 0)

Bits 6-7

Char(17)

• Second creation template
extension

Length of group-by mapping
template list

Number of translate tables
Reserved (binary 0)
Join definition template
pointer
Group-by processing definition
template
Output selection templates
list pointer
Group-by selection template
pointer

- Group-by mapping templates
pointerpointer

- Translate table list pointer

- Reserved (binary 0)
- Reserved (binary 0)

Notes:

Char(192)

Bin(2)

Bin(2)
Char(12)
Space
pointer
Space
pointer

Space
pointer

Space
pointer
Space
pointer
Space
pointer
Char(48)
Char(32)

1. The cursor template, data space list, and mapping
templates list must each be aligned on a multiple of
16 bytes.

2. The values of the entries shown here with an asterisk
(*) are ignored by this instruction.

The object identification specifies the symbolic name
that identifies the cursor within the machine. A type
code of hex OD is implicitly supplied by the machine.
The object identification is used to identify the object on
materialize instructions as well as to locate the object in
a context that addresses the object.

The existence attribute specifies whether the cursor is to
be created as temporary or permanent. A temporary
cursor, if not explicitly destroyed by the user, is
implicitly destroyed by the machine when machine
processing is terminated. A permanent cursor exists in
the machine until explicitly destroyed by the user. A
permanent cursor may not be created over a temporary,
primary, or secondary index.

If the created object is permanent, it is owned by the
user profile governing process execution. The owning
user profile is implicitly assigned all private authority
states for the object. The storage occupied by the
created cursor is charged to this owning user profile. If
the created cursor is temporary, there is no owning user
profile and all authority states are assigned as public.
The storage occupied by the created cursor is charged
to the creating process.

A space may be associated with the cursor. The space
may be fixed or variable in size. The initial allocation is
specified in the size of space entry. The machine
allocates a space of at least the size specified; the
actual size allocated depends on an algorithm defined by
a specific implementation. A fixed size space of zero
length causes no space to be allocated.

Each byte of the space is initialized to a value specified
by the initial value of space entry. When the space is
extended, this byte value is also used to initialize the
new allocation. If no space is allocated, this value is
ignored.

If the initial context creation attribute entry indicates that
addressability is to be inserted into a context, the
context entry must contain a system pointer that
identifies a context where addressability to the newly
created cursor is to be placed. If addressability is not to
be inserted into a context, the context entry is ignored.

Data Base Management Instructions 16-13

If the access group creation attribute entry indicates that
the cursor is to be created in an access group, the
access group entry must be a system pointer that
identifies the access group in which the cursor is to be
created. Since access groups may only be created as
temporary objects, the existence attribute entry must be
temporary (bit 0 equals 0) when a cursor is created in an
access group. If the cursor is not to be created in an
access group, the access group entry is ignored.

The performance class parameter provides information
that allows the machine to manage the cursor with
consideration for the overall performance objectives of
operations involving the cursor.

If the data space index attribute specifies that the cursor
is to be created over a data space index, the data space
index pointer entry must be a system pointer. It must
address a data space index that is used in accessing the
data spaces through the cursor. If the data space index
attribute specifies that the cursor is not to be created
over an index, the data space index pointer entry is
ignored.

The mapping templates list pointer must address a list
of mapping template space pointers, one for each data
space system pointer. The data space list pointer must
address a list of system pointers, each addressing a
data space. The length of data space list entry (which
must be a multiple of 16 bytes) specifies the length of
each of these lists.

A binary zero in the data space index attribute indicates
that the cursor is to be built directly over the data
spaces and that the data space index pointer entry is to
be ignored. A binary one in the attribute indicates that
the cursor is to access the data spaces through the data
space index addressed by the data space index pointer.

A value of binary one in the first template extension
field indicates that the extended creation functions are
to be processed for the creation of this cursor. If this
field contains a binary zero, the extended creation
functions are ignored.

A value of binary one in the second template extension
field indicates that the second creation template
extension is to be processed for the creation of this
cursor. If this field is binary zero, the second creation
template extension is ignored. This field is ignored
unless the first template extension field contains a
binary one.

16-14

A value of binary one in the floating-point attributes
specified field indicates that the floating-point attributes
field contains the floating-point attributes for this cursor.
If this field contains a binary zero, the default
floating-point attributes are used. The default
floating-point attributes are as follows:

• The floating-point overflow mask field contains a
binary one indicating that this exception is unmasked.

• The floating-point underflow mask field contains a
binary one indicating that this exception is unmasked.

• The floating-point zero divide mask field contains a
binary one indicating that this exception is unmasked.

• The floating-point inexact result mask field contains a
binary zero indicating that this exception is masked.

• The floating-point invalid operand mask field contains
a binary one indicating that this exception is
unmasked.

• The floating-point rounding mode field contains a
binary 11 indicating that round to nearest or even is
enabled.

If the floating-point attributes are specified field
contains a value of binary one and the first extension
field contains a value of binary zero then a template
value invalid exception is signaled.

The processing mode entry identifies the type of
processing to be accomplished with the cursor. This
entry indicates whether the access to the data and/or
index is random or sequential. This information is used
to optimize the internal method for transferring
information between main and auxiliary storage for both
data spaces and the data space index. The index
indicator indicates whether the index (independent of the
data) is accessed randomly or sequentially and must be
binary 0 if no index is specified in the cursor. The index
indicator is used to optimize usage of the index. The
data indicator indicates whether the entries (independent
of the index) are accessed randomly or sequentially by
arrival sequence and is used to optimize their transferral
to and from auxiliary storage. If the type of processing
is not known, binary O's should be specified for both.

When the cursor type field indicates a join cursor, the
processing mode refers only to the primary data space
in the join definition and the data space index addressed
by the data space pointer.

J

If the data indicator field is specified as a binary 1, the
unit of transfer argument specifies the minimum number
of data space entries that are to be transferred between
auxiliary and main storage. The transfer takes place any
time an entry residing outside the current transfer block
is referenced by the Set Cursor instruction, the Retrieve
Sequential Data Space Entries instruction, or the
Retrieve Data Space Entry instruction. If the unit of
transfer is binary 0 or the data indicator is binary 0, the
machine establishes the unit of transfer of 1.

The ensure active attribute allows the cursor user to
indicate at creation or activation of the cursor his intent
to subsequently use the Ensure Data Space Entries
instruction. Performance improvements may be obtained
by specifying the intended use of this instruction at
these times.

When the cursor type field indicates a join cursor, the
unit of transfer argument is meaningful only for the
primary data space in the data space list provided. The
machine establishes the unit of transfer for the
secondary data spaces.

A cursor type value of binary one indicates a join cursor
is to be created. When this field contains a binary one,
the second extended template field must contain a value
of binary one. The join definition is given in the join
definition template.

A group-by processing field value of binary one
indicates group-by processing is specified. The
group-by processing definition template pointer locates
the group-by processing definition template. This
definition will be associated with this cursor and
performed optionally during retrieve sequential DSE.

If the materialize of cursor not allowed cursor attribute
contains a binary one, materialize cursor will not allow
the creation template to be materialized. This will allow
pieces of the cursor creation templates necessary only
for materialize cursor to be dropped from the cursor
object, therefore, reducing the required space to store
the object. This option is required when the second
extension of the template is supplied or intermediate
mapping table is supplied.

Locked entry wait time is the amount of elapsed time
that a Set Cursor instruction is allowed to wait for an
entry that is already locked before signaling an
exception. Bit 41 of the value is equivalent to 1024
microseconds. If the field is 0, a machine default data
base lock wait time-out value of approximately 60
seconds is used.

The system pointers in the data space list identify the
data spaces the cursor is to reference. When a cursor is
used over multiple data spaces, the data spaces are
identified by a data space number derived from their
position in the data space list. This data space number
is used to uniquely identify each data space whenever
the cursor is referenced. The first data space in the list
is assigned the number 1, and the nth data space in the
list is assigned the number n. For a join cursor, each
position in the data space list must contain a system
pointer to a data space.

When the cursor type indicates a join cursor, the data
space list identifies the data spaces taking part in the
join operation.

The join definition array identifies the order of the
primary and secondary spaces in the join. The primary
will be the first entry in the array, the subsequent entries
define the order of the secondaries.

If the cursor is created over a data space index, only a
subset of those data spaces visible through the index
that are intended to be referenced through the cursor
need to be specified in the data space list. For a
non-join cursor, the data spaces must appear in the
same position in the data space list as they did when
the data space index was created. If a data space that
is covered by the data space index is not to be
referenced through the cursor, 16 bytes of binary 1 must
be placed in the data space list in place of the data
space system pointer. In the event that the entire data
space list contains O's, a pointer does not exist
exception is signaled.

The extended creation functions are as follows:

The floating-point attributes are the floating-point
computational attributes that are placed in effect
whenever the from data space entry or the from key
mapping is executed. The floating-point attributes are
as follows:

• A value of binary one for the floating-point overflow
mask field indicates that the floating-point overflow
exception is unmasked and can be signaled. A value
of binary zero indicates that the exception is masked
and cannot be signaled.

• A value of binary one for the floating-point underflow
mask field indicates that the floating-point underflow
exception is unmasked and can be signaled. A value
of binary zero indicates that the exception is masked
and cannot be signaled.

Data Base Management Instructions 16-15

• A value of binary one for the floating-point zero
divide mask field indicates that the floating-point zero
divide exception is unmasked and can be signaled. A
value of binary zero indicates that the exception is
masked and cannot be signaled.

• A value of binary one for the floating-point inexact
result mask field indicates that the floating-point
inexact result exception is unmasked and can be
signaled. A value of binary zero indicates that the
exception is masked and cannot be signaled.

• A value of binary one for the floating-point invalid
operand mask field indicates that the floating-point
invalid operand exception is unmasked and can be
signaled. A value of binary zero indicates that the
exception is masked and cannot be signaled.

• The floating-point rounding mode controls how
floating-point values are rounded. The Store and Set
Computational Attributes instruction provides a
definition of the floating-point rounding modes.

16-16

The second creation template extension functions are as
follows:

The join definition template pointer locates the join
definition template. This pointer is required if the cursor
type indicates a join cursor and is otherwise ignored.

The group-by processing definition template pointer
locates the group-by processing definition template.
This pointer is required if the group-by processing
cursor attribute field contains a binary one and is
otherwise ignored.

When the group-by selection template pointer contains
a null pointer, no selection on group-by results is
requested. When this space pointer contains a non-null
value, it addresses a selection template to be used on
group-by results. This space pointer is ignored if the
group-by processing attribute contains a value of binary
zero.

When the output selection template list pointer contains
a null value, this variety of selection is not requested.
Otherwise, for each data space in the data space list. a
corresponding space pointer to a selection template
exists in the same position in the list of output selection
templates. A null pointer in this list indicates no
selection template exists for this data space.

Unused positions in the input and output selection
template lists are ignored.

The translate table list pointer addresses an array of
translate tables, each table 256 bytes in length. These
tables are available for use by intermediate mapping
when performing the translate operation. The number of
tables in the array is designated by the number of
translate tables field. A value of binary 0 in this field
designates no translate tables are specified and the
translate table list pointer is ignored.

The translation table is a 256-byte table of replacement
values. The replacement value for a specific byte is
located in the table at an offset equal to the bytes'
binary value. Refer to the Create Data Space Index
instruction in this chapter for an example of a translate
table.

The group-by mapping templates list pointer must
contain a non-null pointer if group-by processing is
specified. This field is ignored if group-by processing is
not specified.

The length of group-by mapping template list
designates the byte length of that list. This byte length
must be a multiple to 16 bytes. The field is ignored if
group-by processing is not specified.

For each data space referenced by the data space list,
there must be a corresponding mapping template space
pointer in the same position in the mapping templates
pointer list. Each mapping template space pointer must
point to a mapping template that defines the view the
user is to have of the data space entries that reside in
that data space. Unused positions in the mapping
templates pointer list are ignored.

The format of the mapping template for data space
mapping and group-by mapping is as follows:

• Number of bytes in the mapping
template

• Mapping type
- Input mapping type
- Output mapping type

• Reserved (only specified when
optional intern"lediate mapping is
specified-contents ignored)

• Intermediate mapping (optional)

Bin(4)

Char(2)
Char(1)
Char(1)

Char(10)

- Number of intermediate mapping Bin(2)
specifications

- Reserved (binary 0)
- Number of data pointers
- Data pointers (repeated)

- Intermediate mapping table
- Intermediate mapping

specification (repeated)

Field description of operand 1
- Operand location type

Hex 0000 = Data space

Char(12)
Bin(2)
Data
pointers
Char(O-n)

Char(32)

Char(8)
Bin(2)

Hex 0001 = Cursor intermediate buffer
Hex 0002 = Group-by intermediate buffer
Hex 0005 = Null (type)
Hex 0006 = Literal (type)
Remaining codes reserved

- Field number
- Start character
- End character
or
- Array position of data

pointer
- Reserved (binary 0)
or

Reserved (binary 0)

Bin(2)
Bin(2)
Bin(2)

Bin(2)

Char(4)

Char(6)

- Result field attributes Char(5)
- Field type Bin(2)
- Field length Bin(2)
- Rounding mode Char(1)

Hex 02 = Round to zero (truncate)
Hex 04 = Decimal round remaining

codes reserved
Hex 05 = Not applicable

Operation

Field description of
operand 2
-Operand location/type

Hex QOOO=Data space-location
Hex 0001 =Cursor intermediate

buffer-location

Char(1)

Char(18)

Bin(2)

Hex ooo2=Group-by intermediate
buffer-location

Hex ooo3=Reserved
Hex 0004=Reserved
Hex 0005=Null (type)
Hex ooo6=Literal (type)
Hex ooo7=Translate table-type
Remaining codes reserved

- Operand description
Field number

or

or

Start character
End character
Reserved (binary 0)

Array position of data
pointer to literal
Reserved

Array position of
translate table
Reserved (binary 0)

Char(16)
Bin(2)
Bin(2)
Bin(2)
Char(10)

Bin(2)

Char(14)

Bin(2)

Char(14)

Data Base Management Instructions 16-17

• Input mapping table (optional)
Number of fields described

- Field specification (repeated
for each field in template)

Field number
Field attributes

Field type
Field length

• Output mapping table (optional)
- Number of fields described
- Field specification (repeated

for each field in template)
Field number
Field attributes

Field type
Field length

Char(O-n)
Bin(2)
Char(6)

Bin(2)
Char(4)
Bin(2)
Bin(2)

Char(O-n)
Bin(2)
Char(6)

Bin(2)
Char(4)
Bin(2)
Bin(2)

The mapping template must be aligned on a 16-byte
boundary when intermediate mapping is specified.

The number of bytes in the mapping template indicates
the total number of bytes included in the number of
bytes field, the mapping type field, the optional
intermediate mapping tables, the input mapping table,
and the output mapping table for this data space.

The input mapping type entry specifies the type of
mapping to be used during the mapping of the data
from the interface buffer to the data space during insert
and update operations. Conversely, the output mapping
type entry specifies the mapping type to be used during
the mapping of the data from the data space to
interface buffer for the retrieve operation. The values
that can be associated with the mapping type entries are

as follows:

Input Mapping Type

Hex 00 = Direct mapping
Hex 01 = Mapping table provided
Hex 04 = Not applicable

Output Mapping Type

Hex 00 = Direct mapping
Hex 01 = Mapping table provided
Hex 02 = Same as input mapping
Hex 03 = Intermediate mapping table provided

16-18

The input and output mapping types allowable with the
mapping template are shown below:

Mapping template types:

Data space mapping ~

Group-by mapping l ~

-"""'---_....!...--
Output mapping types:

Direct mapping
Mapping table provided
Same as input mapping
Intermediate mapping

Input mapping types:

Direct mapping
Mapping table provided

X = Allowable mapping types

X
X

X

X
X
X
X

X
X

AAC001·0

Direct mapping signifies that the data space entry is to
be moved directly to or from the machine interface
buffer without conversion or field repositioning. The
mapping table provided or intermediate mapping
table provided specifies that conversion and / or field
repositioning are to be performed as designated by an
associated mapping table defined in the mapping
template. When same as input mapping is specified, the
specifications for input mapping (input mapping type
specification and the input mapping table, if specified)
are also used for the output mapping function (this does
not include intermediate mapping).

The input mapping table is present only if the input
mapping type code specifies mapping table provided.
Similarly, the output mapping table is present only if the
output mapping type code specified mapping table
provided. Also, the output intermediate mapping table is
present only if the intermediate mapping table provided
implies both the output mapping table and the
intermediate mapping table are provided.

Whenever output intermediate mapping is specified, the
output mapping table must also be supplied and its
existence will be implied by the machine.

Whenever the group-by mapping template is specified,
the input mapping type must equal hex 04, not
applicable. Also, the only allowable output ampping type
is intermediate mapping table provided or mapping table
provided or direct mapping.

When creating a join cursor, the intermediate mapping
table must be specified for each OS in the OS list. The
intermediate mapping table associated with the first OS
in the OS list will define the first N fields of the join
intermediate buffer. The intermediate mapping tables
associated with the subsequent data spaces in the OS
list define the remaining fields in the join intermediate
buffer in the order of the OS's in the OS list.

The output mapping tables of a join cursor define the
mapping to occur from the intermediate buffer to the
user interface buffer. The field number specified as the
source in the intermediate buffer must have been
defined by the intermediate mapping table of either the
corresponding data space in the data space list or any
preceding data space in the OS list.

Each output mapping table describes the receiving user
interface buffer beginning at offset zero (first byte of
user interface buffer). Output mapping performed on
behalf of a join cursor begins with the mapping
associated with the first data space in the list and
proceeds sequentially through the OS list, performing
the output mapping associated with each data space.
The offset in the user buffer to which the results are
placed can be controlled by use of dummy mapping to
skip over result fields associated with previous data
spaces in the list.

When creating a non-join cursor, the intermediate
mapping table may be specified for a subset of the data
spaces in the OS list. There is no relationship between
the intermediate mapping tables specified. Each
intermediate mapping table defines the fields in the
intermediate buffer for that data space.

The field numbers in the intermediate buffer assigned to
the corresponding intermediate mapping table may be
used as a source field number by that mapping table,
provided that field number had been defined by a
preceding intermediate mapping specification.

The allowable source field numbers in the group-by
intermediate buffer may be a previously defined field
number for the results of group-by processing (the
fields preceding the fields defined by the group-by
intermediate mapping table).

The number of fields entry specifies the number of
fields that are to be mapped between the intermediate
buffers, user interface buffers, and / or the data space,
and must equal the number of field specification entries
in the associated mapping table. A value of zero in this
field is allowable for input and output mapping tables.
An exception is signaled by Insert Data Space Entry,
Insert Sequential Data Space Entry, and Update Data
Space Entry when attempting to perform those
instructions with a number of fields specified as zero on
input mapping table. Likewise, an exception is signaled
by Retrieve DSE and Retrieve Sequential DSEs when
attempting to perform those instructions with number of
fields value of zero specified on the output mapping
table. It is allowable with a join cursor to specify zero
fields on a subset of the output mapping tables
supplied. However, at least one output mapping table
must specify non-zero fields to map, otherwise, an
exception will be signalled by Retrieve DSE and Retrieve
Sequential DSE.

The field specification entry is repeated for each field in
the template. The order of the field specification entries
on the mapping table implicitly specifies the order of the
fields in the user interface buffer.

The order of the intermediate mapping specification
entries in the intermediate mapping table implicitly
specifies the order of the resulting fields in the
associated intermediate buffer.

Data Base Management Instructions 16-19

The field number entry is the relative location of the
associated field in the data space or intermediate buffer
as established by the Create Data Space and Create
Cursor instructions. A value of 1 identifies the first field,
and a value of n identifies the nth field. When the
intermediate buffer is present. it is the source location
during output mapping for each field specification entry
associated with the output mapping table. The field
number must reference a previosusly defined field.

The allowable operand location for operand 1 and
operand 2 with the intermediate mapping types follows:

Intermediate mapping types:

Cursor (output)

1 Group-by

l
Buffer sources:

DS entry X

User interface
Cursor intermediate (output) X

Group-by intermediate X

X = Buffer is allowable source for the associated
intermediate buffer mapping type.

AAC002-0

16-20

The start character and end character fields are
meaningful only for character type fields and specify the
byte positions in the designated operand 1 or operand 2
fields. A value of the binary zero in these fields
designates the entire field will be used. The end
character field must contain a value of binary zero when
the start character field contains a binary zero. When
the start character field contains a non-zero positive
value, the end character field must contain a value at
least as great. Negative values in these fields are not
allowed. A value of 1 specifies the first byte position
and so on. A value of binary zero must be specified for
non-character type result fields.

When the operand type is a literal, the operand
description references a data pointer to the associated
literal.

The result field attributes for intermediate buffer
mapping describe the result field in the intermediate
buffer associated with this intermediate mapping table.
For arithmetic operators, this requires both fields to be
defined identically (whether it was defined in the data
space at Create Data Space, or previously defined in the
intermediate buffer).

Fields are mapped from the machine interface buffer to
the data space in the order they are specified in the
input mapping template. If more than one field in the
machine interface buffer is mapped to the same field in
the data space, each field is mapped (and validity
checking performed) to the data space entry as it is
encountered. After all fields have been mapped, the
data space entry fields with duplicate mapping will
contain only the value contained in the last machine
interface buffer field specified.

The following field types and specification codes are
allowed:

Field Type

Binary
Floating- point
Zoned decimal
Packed decimal
Character
Dummy

Specification Code
(Hex)

0000
0001
0002
0003
0004
0005

The permissible values for the field length entry vary
based on the value of the associated field type entry as
follows:

Field
Type Allowed Field length Values

Binary

Floating
point

Zoned
decimal

Packed
decimal

Character

Dummy

Bytes 1-2 - length in bytes =

Binary 2 or 4

Bytes 1-2 - Length in bytes =

Binary 4 or 8

Byte 1

Byte 2

Byte 1

Byte 2

Fractional digits' =
Binary 0 to total
number of digits

- Total number of digits =

Binary 1 to 31

- Fractional digits' =

Binary 0 to total
number of digits

Total number of digits =

Binary 1 to 31

Bytes 1-2 - Length in bytes =

Binary 1 to 32 767

Bytes 1-2 - Length in bytes =

Binary 1 to 32 767

'The number of fractional digits to the right of the
decimal point.

The allowable field operations and their definition in the
intermediate mapping table follow:

Hex 01 = Concatenate
Hex 02 = Map
Hex 03 = Direct map
Hex 04 = Addition
Hex 05 = Subtraction
Hex 06 = Multiplication
Hex 07 = Division (/)
Hex 08 = Minimum
Hex 09 = Maximum
Hex OA = Absolute value
Hex OB = Translate
Hex OC = Natural logarithm
Hex OD = Exponential
Hex OE = Sine
Hex OF = Cosine
Hex 10 = Tangent
Hex 11 = Cotangent
Hex 12 = Arc sine
Hex 13 = Arc cosine
Hex 14 = Arc tangent
Hex 15 = Hyperbolic sine
Hex 16 = Hyperbolic cosine
Hex 17 = Hyperbolic tangent
Hex 18 = Arc hyperbolic tangent
Hex 19 = Square root
Hex 1 A = X taken to the Y power
Hex 1 B = Binary OR
Hex 1 C = Binary XOR
Hex 1 D = Binary AN D
Hex 1E = NOT
Hex 1 F = Negate

Remaining codes are reserved.

The concatenation operator is valid only for character
type fields.

Data Base Management Instructions 16-21

Refer to the specific computation instruction for
restrictions on the use of these field operations
(except MAP).

Character fields may not be specified as being
mapped to or from any of the numeric field types
with the following exception: when defining the
intermediate mapping buffer, character fields may be
specified as being mapped to or from a zoned field
of equal length. Character fields are truncated or
padded with blanks on the right when needed.
Numeric fields are truncated or padded with zeros on
the left or right as necessary.

The dummy field type indicates the number of bytes
to be skipped in the interface buffer or intermediate
buffer when a data space entry is being mapped to
or from that buffer. The dummy type allows the
alignment of fields in a buffer for reservation of
space in the buffer for performing join operations, or
other like functions. When dummy is specified, the
field number entry must be zero. The operand 1 and
operand 2 field description must be null type when
dummy result field type is specified.

The floating point attributes of the cursor are used
when performing floating point computations during
output intermediate mapping and group-by
intermediate mapping.

The rounding mode is meaningful only for decimal
field operations and is otherwise ignored.

If the cursor is over a data space index, the keys
provided in the interface buffer to set cursor and
materialized to the interface buffer by materialize
cursor attributes, have the key fields ordered as
specified in the data space index (minus the fork
characters).

16-22

If the data space index does not have intermediate
key mapping specified, the key field attributes will
have those as specified in the cursor output mapping
table. If a key field is referenced more than once in
the output mapping template, the first occurrence of
the field in the template determines the attributes of
the field for those instructions. If the cursor has
intermediate mapping associated with the data space,
the key field must be defined as a result field in an
intermediate buffer field defined by the intermediate
mapping table for that data space. The result field
must have been defined as the result of the map
operator with the data space entry field (used as the
key field for the key in the index) as the source of the
map. The key field does not undergo the map
transformation which may have occurred when
mapping from the data space entry to the
intermediate buffer and then to the user interface
buffer. But rather, the key field undergoes the
transformation from the attributes of the data space
entry field to the attributes of the result field in the
user interface buffer.

J

If the data space index has intermediate key mapping
specified, the key field attributes will have those as
specified by the data space index. When providing
keys in the user interface buffer to Set Cursor, the
key field contents are used with no further alternation
(other than the alterations performed internally for
ordering, alternate collating and zone / digit force
options and, insertion of fork characters).

Fork characters are never present in the interface
buffer and are inserted by the machine during
construction and maintenance of the index.

The mapping sequences follow:

Output mapping:

Retrieve operations:
No join, no group-by
No join, group-by -------....,

Join, no group-by 1 1
Join, group-by -------.\It ~

Mapping sequences:
Cursor intermediate (output) X X X
Group-by intermediate X X
Group-by output X X
Output X

X

X

AACOO3-0

Input mapping:

Insert/update operations:

No join ---------.l
Mapping sequences:
Input X

AAC004-0

The group-by intermediate buffer field numbers are
assigned the number(s) immediately following the
number(s) assigned to the group-by result fields.
Refer to the group-by template for the possible result
fields.

If any of the key fields for a data space does not
appear in the output mapping, output intermediate
mapping template or the key fields are defined (in the
output intermediate template) with a field operation
other than map with source field attributes identical
to the result field attributes, then the Set Cursor
instruction with the rule = key attribute results in an
exception, the Materialize Cursor Attributes
instruction will not materialize a key and the Set
Cursor instruction will not materialize a key.

The format of the join definition template is as
follows:

• Number of bytes in template
• Number of elements in template
• Reserved (binary 0)
• Definition array

Join definition (repeated)
for each OS
-Index pointer (current

OS)
- Offset to join field

identities template
- Data space number in the

index data space list (current OS)

Bin(4)
Bin(2)
Char(10)
Char(*)

System
pointer

Bin(4)

Bin(2)

- Data space number of the Bin(2)
previous data space (in the
cursor list)

- Reserved (binary 0)
- Reserved (binary 0)

Char(4)
Char(20)

The join definition template must be aligned on a
16-byte boundary.

The format of the join field identities template is as
follows:

• Number of field identities
• Relationship to be applied

- Hex 01 = Equal
• Reserved (binary 0)
• Field identities (repeated)

Field number
- Reserved (binary 0)

Bin(2)
Char(1)

Char(1)
Char(*)
Bin(2)
Char(2)

Data Base Management Instructions 16-23

The order of the join definitions dictate the order of
the join operation (that is, joining is performed in the
order the join definitions are provided, the first
definition describes the primary data space, the
subsequent entries describe the secondary data
spaces).

A join definition must be provided for the primary
data space under a join cursor as well as all
secondary data spaces. When the data space
associated with the template is the primary data
space, the field data space numbered in the index
data space list must equal 1 (if an index is over the
primary) and the remaining unreserved fields are
ignored.

The current data space is the data space being joined
(target os of a join operation). The previous data
space is the source of the joining field value(s). The
index pointer addresses a data space index containing
composite keys comprised of join fields in the current
data space.

The data space number in the index data space list
specifies which data space under this index is to be
associated with the join operation as the current data
space.

The data space associated with the slot in the OS list
(for the cursor) which corresponds with this join
definition slot, is considered the current data space.
The current data space address must be identical
with the address of the data space referenced by the
data space number in the index data space list.

The data space number of the previous data space
indicates which data space under the cursor is to be
associated with this join definition as the previous
data space. This value must identify either the
primary data space or a previously defined secondary
data space.

The number of field identities contain the number of
elements in the array of field identities.

The field identities template specifies the field
identities in the output mapping intermediate buffer
and the relationship to apply to these fields.

16-24

The field number indicates a field location in the
intermediate output mapping buffer as defined by the
intermediate mapping definition in the cursor for the
previous data space. This location contains the join
value(s) to be used. The definition of this field(s) in
the intermediate buffer must be identical to the
definition of the key field(s) comprising the composite
key for this OS in the index for this secondary data
space.

Packed and zoned numeric key fields used in the join
must have been specified with numeric ordering
options other than internal form. Internal ordering
allows key fields in the index to contain
non-preferred S/38 signs. Floating point key fields
require that the cursor's floating point computational
attributes are identical to the index's floating point
computational attributes. A template value invalid
exception will be signaled on the join field identities
template field corresponding to the key field in error
for these conditions.

The composite key is constructed using the join
field(s), inserting fork characters and ordered as
defined by the key field attributes for the data space
referenced by the data space number in the index
data space list. The number of field identities (join
fields) may be greater than the number of key fields
comprising the composite key, however, the excess
join fields are ignored when constructing the key,
likewise, fewer join fields may be specified.

The join relationship indicates the relationship to be
applied when comparing the join value in the current
data space to the join value from the field in the
intermediate buffer associated with the previous data
space.

J

The format of the group- by processing template
follows:

• Group-by processing definition template
Number of function specifiers Bin(2)
Function specifier definition Char(10)
(repeated for each definition)
Field number Bin(2)
Result field description

Field type Bin(2)
Field length Bin(2)
Rounding mode Char(1)

Hex 02 = Round to zero (truncate)
Hex 04 = Decimal round
Unassigned values reserved
Hex 05 = Not applicable

Operation Char(1)
Hex 01 = Count
Hex 02 = Materialize key field
Hex 03 = Sum
Hex 04 = Minimum
Hex 05 = Maximum
Remaining values reserved

Reserved (binary 0) Char(2)

The group-by processing definition template
describes the operation to be performed on specified
field(s).

The number of function specifiers field specifies the
number of elements in the function specifier
definition table.

The field number specifies the relative position of the
field within a source buffer as defined by the
mapping in the cursor. A template value invalid
exception is signaled if the field number specified has
no corresponding field defined in the mapping
template in the cursor. The source for the field will
be either the data-space entry if output intermediate
mapping is not specified or the output intermediate
buffer.

The allowable field types and field lengths for the
group-by result field description are the same as
those allowable for input and output mapping
described earlier

The field number is ignored when the count and
materialize key field operation is specified. The count
is incremented by 1 for each entry participating in the
group. The field type for sum operation disallows a
field type of character. In addition, the field type for
the count must be a binary(4) or float(8) type.

The materialize key field group-by operation indicates
a key field of the composite group-by key is to be

materialized in the result field. The order of the
function specifiers with materialize key field
operations defines the key field to be materialized.
The first function specifier with materialize key field
specified will materialize the second key field, and so
on. Key fields defined to be materialized but not
participating in the group designated by the key field
count or key byte count in Retrieve Sequential Data
Space Entries, will contain default value of hex 40 for
character and zeros (in the appropriate representation)
for numerics). The field number and result field
description are ignored for materialized key fields.
The result field type and length will be identical with
the key field description of the key field as
materialized by Set Cursor, Retrieve Sequential, and
Materialize Cursor Attributes instructions. Specifying
the materialize key field is not allowed if the cursor is
not over an index.

The group-by result fields define the first fields of
the group-by intermediate buffer. The remaining
fields are defined by the optional group-by
intermediate mapping template and are assigned the
field numbers immediately following the number
assigned to the group-by result fields.

Minimum and maximum are restricted to length of
256 bytes when result field type is character. Result
field type and length for minimum and maximum
must be identical with the type and length of the field
referenced by the field number.

Data Base Management Instructions 16-25

The format of the selection template for output and
group-by selection follows:

• Length of selection template
• Number of selection descriptors
• Reserved (binary 0)
• Number of data pointers

Data pointer (repeated

• Selection descriptor (repeated)
- Descriptor type

Hex 00 = Operand is a field.
Hex 01 = Operand is literal.
Hex 03 = Operand is a pattern.
Hex 04 = Operator.
Unassigned values are reserved.

- Operation/ uperand location
Operation descriptor

or

Reserved (binary 0)
Operation

Operand is field descriptor
Operation location

Field source
Hex 00 = Data space

Bin(4)
Bin(2)
Char(8)
Bin(2)
Data
pointer
Char(16)
Char(1)

Char(7)

Char(5)
Char(2)

Char(1)

Hex 01 = Cursor intermediate buffer
Hex 02 = Group-by intermediate buffer
Hex 03 = Reserved

16-26

or

Hex 04 = Key field
Unassigned values reserved

Field number
Starting character
Ending character

Operand is literal descriptor
Operand location

Field source
Hex 00 = Data space

Bin(2)
Bin(2)
Bin(2)

Char(1)

Hex 01 = Cursor intermediate buffer
Hex 02 = Group-by intermediate buffer
Hex 03 = Reserved

or

Hex 04 = Key field
Unassigned values reserved

Field number
Starting character
Ending character

Operand is literal descriptor
Reserved (binary 0)

or

(bit 0,1 used internally)
Reserved (binary 0)
Array position of data pointer

Bin(2)
Bin(2)
Bin(2)

Char(1)

Char(4)
Bin(2)

Operand is a pattern

or

Reserved (binary 0)
(bit 0 used internally)
Offset from start of this
template to pattern descriptor
array
Number of pattern descriptors
in array

All other descriptor types
Reserved (binary 0)

Reserved (binary 0)

• Pattern descriptor arrays

(Char 1)

Bin(4)

Bin(2)

Charm
Char(8)

Char(*)

The selection template must be aligned on a 16-byte
boundary.

The allowable operation codes and definitions follow:

Operation Codes

Hex 0001 = Equal
Hex 0002 = Not equal
Hex 0003 = Greater than or equal
Hex 0004 = Less than or equal
Hex 0005 = Greater than
Hex 0006 = Less than
Hex 0007 = Range (low bound <= field; >= high bound)
Hex 0008 = Range (low bound <+ field; > high bound)
Hex 0009 = Range (low bound < field; <= high bound)
Hex OOOA = Range (low bound < field; < high bound)
Hex OOOB = OR
Hex OOOC = XOR
Hex 0000 = AND
Hex OOOE = NOT
Hex oooF = Select and exit if true
Hex 0010 = Omit and exit if false
Unassigned values reserved

The selection template(s) will be used to perform
selection against the specified data in the location given.

The template will be used to produce a run-time
Boolean result stack.

The Boolean result stack houses the intermediate
results. All values stored on this stack are Boolean in
nature.

The resulting selection or omission is designated by the
value residing on the top of this run-time stack. The
select and exit if true operation causes the value on the
top of this stack to remain unchanged. (If it is already
true, the corresponding DSE is selected.) Similarly the
omit and exit if false operation leaves the Boolean result
residing on the top of this run-time stack unaltered.

The final result residing on the top of this Boolean stack
thereby reveals whether the DSE has been selected (true
resides on the top of the stack) or has been omitted
(false resides on the top of the stack).

The operand is field descriptor specifies this descriptor
designates on operand with the operand location
specified by field source and field number. The field
number describes the relative location of the associated
field in the field source. The field source may be either
a data space entry field, intermediate buffer field, ~r a
key field. The field type of the field referenced by field
number may not be type of dummy.

The key field refers to the field number in the composite
key of the data space index over the data space as
referenced by the cursor. The key field number does not
include fork character fields. The selection is performed
on the key field contents prior to appending of fork
characters or manipulating the fields into internal
physical key representation as specified by the key field
specification.

The following are the allowable operand locations when
specifying different selection templates:

Selection

Output

Group-by

Allowable Operand Location

Data space entry
Cursor intermediate output buffer
Key field

Group-by intermediate buffer

The starting character and ending character value of
binary zero indicates the entire field should be used. A
non-zero value is valid only for fields with type of
character.

The operand is literal descriptor specifies this descriptor
designates an operand with the operand identified as a
literal. The literal type and location is given by a data
pointer in the array of data pointers. The specific data
pointer location in the array is given by the array
position of data pointer field for this descriptor.

The operand is a pattern specifies this descriptor
designates an operand with the operand identified as an
array of pattern descriptors. The pattern scan is
described by the array of pattern descriptors. The array
of pattern descriptors is located by an offset from the
start of the selection template. The specific offset is
given by the offset from start of this template to pattern
descriptor array field for this descriptor.

The operator specifies this descriptor designates an
operator, with the operation to perform given by the
operation field for this descriptor. The allowable
operations are listed under operation codes.

Data Base Management Instructions 16-27

The low bound and high bound of the range operators
must be literals.

The select and exit if true and omit and exit if false
descriptor types indicate specific action to take when
these results occur. The absence of these descriptor
types will leave the result of the current operation at the
top of the result stack; the last operation would control
the selection outcome for the entrie selection process.

The format of a pattern descriptor follows:

• Pattern descriptor
Descriptor type

Hex 00 = Field
Hex 01 = Literal
Hex 02 = Span
Unassigned values reserved

Descriptor
Wild card span

Span type
Hex 01 = Fixed
Hex 02 = Float
Unassigned values reserved

Span width
(binary 0 for float span)

Reserved (binary 0)
or

Field descriptor
Location

Field source
Hex 01 = Data space

Char(16)
Char(1)

Charm

Char(1)

Bin(2)

Char(4)

Char(1)

Hex 01 = Cursor intermediate buffer
Hex 02 = Group-by intermediate buffer
Hex 03 = Reserved

or

Hex 04 = Key field
Unassigned values reserved

Field number
Starting offset
Ending offset

Literal Descriptor
Reserved (binary 0)
(bit 0,1 used internally)
Reserved (binary 0)
Array position of data
pointer

Reserved (binary 0)

Bin(2)
Bin(2)
Bin(2)

Char(1)

Char(4)
Bin(2)

Char(8)

The field descriptor and literal descriptor are identical
with that described in the selection descriptor.

16-28

The field or literal of the pattern must be character and
likewise the field of the target must be character. The
wild card span pattern descriptor type specifies the
width of bytes to ignore before the following pattern
scan begins. A fixed span specifies the number of bytes
designated by span width is to be skipped after the
current position, before the following field or literal scan
begins. A float span specifies that the following pattern
scan may begin in any byte following the current
position inclusive of the current byte. The current
position is initially established by the associated
selection description for the target of the scan. As field
or literal pattern matches are satisfied, this position is
then changed to the byte in the target immediately
following the byte(s) matching the criteria.

The pattern descriptor array may begin with any of the
descriptor types. Any combination of descriptor types
may be specified.

The pattern scan is performed from left to right of the
specified location.

The order of operands, operator, and exit criterion
descriptors to specify for each selection criterion
follows:

For pattern match operations:

1. Operand field descriptor or literal

2. Operand pattern match

For dual bounded range operations:

1. Operand: Low bound

2. Operand: Field description or literal

3. Operand: High bound

4. Operation

For all other operations:

1. Operand field description or literal

2. Operand field description or literal

3. Operation

J

~

L

The OR. XOR, and AND operations may follow any two
consecutive sets of the preceding operation. The
operation is applied to the last two results obtained.
The NOT operation may follow any operation set and is
applied to the result of that operation.

Output selection may be specified for a subset of the
data spaces in the DS list.

When output selection is specified on a join cursor, the
selection criteria associated with a specific data space
may specify any field number in the intermediate
mapping table associated with that same data space or
any data space preceding that data space in the data
space list.

Fields and literals of an operation must be of identical
type and length.

The mapping sequences with selection follow:

Output mapping:

Retrieve operations:
No join, no group-by
No join, group-by
Join, no group-by 1 Join, group-by 1 ~
Map/Select sequence:
Cursor intermediate X X X X
Per DS selection X X X X
Group-by intermediate X X
Group selection X X
Group-by output X X
Output X X

AACOO5-0

The number of selection descriptors must not be greater
than 24,563.

The number of pattern descriptors must no exceed
10,917_

Authorization Required

• Retrieve
- Contexts referenced for address resolution

• Insert
User profile of creating process

- Context identified in operand 2

• Object management
Data spaces identified in operand 2

- Data space index identified in operand 2

Lock Enforcement

• Materialize
- Contexts referenced for address resolution

• Modify
Access group identified in operand 2
Context identified in operand 2
User profile of creating process

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded
0501 Machine address threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Data Base Management Instructions 16-29

Exceptions CREATE DATA SPACE (CRTDS)

Operands Op Code Operand Operand J
Exception 1 2 Other

(Hex) 1 2

02 Access Group
01 Object ineligible for access group X

045A Data Data space

06 Addressing
space template

01 Space addressing violation X X
Operand 1:

02 Boundary alignment X X
System pointer.

03 Range X X
06 Optimized addressability invalid X X

Operand 2: Space pointer.

08 Argument/ Parameter
01 Parameter reference violation X X

OA Authorization Description: This instruction creates a data space

01 Unauthorized for operation X according to the data space template specified by

OE Context Operation operand 2. The template describes the type of data
01 Duplicate object identification X space to be created, the characteristics of that data

10 Damage Encountered space, and the attributes of the fields that make up the
04 System object damage state X X X individual entries within the data space. Addressability
44 Partial system object damage X X X to the newly created data space is returned in the

12 Data Base Management
system pointer stored in the addressing object specified

08 Incomplete key description X
by operand 1.

13 Invalid mapping template X
14 Invalid selection template X
15 Data space not addressed by X The format of the data space template is as follows:

index
1 B Logical data space entry size limit X · Template size specification Char(8)

exceeded Number of bytes provided Bin(4)*
1 D Logical key size limit exceeded X

by the user J 1A Lock State
Number of bytes that can be Bin(4)*

01 Invalid lock state X
1C Machine- Dependent Exception materialized

03 Machine storage limit exceeded X
04 Object storage limit exceeded X · Object identification Char(32)

20 Machine Support Object type Char(1)*

02 Machine check X Object subtype Char(1)

03 Function check X Object name Char(30)
22 Object Access

01 Object not found X X · Object creation options Char(4)
02 Object destroyed X X Existence attributes Bit 0

24 Pointer Specification
0 = Not permanent

01 Pointer does not exist X X
1 = Permanent

02 Pointer type invalid X X
03 Pointer addressing invalid object X Space attribute Bit 1

2A Program Creation 0 = Fixed -length

06 Invalid operand type X X 1 = Variable-length

07 Invalid operand attribute X X Initial context Bit 2

08 Invalid operand value range X X 0 Addressability is not
OC Invalid operand ODT reference X X inserted in context.
00 Reserved bits are not zero X X X 1 = Addressability is

2E Resource Control Limit inserted in context.
01 User profile storage limit X Reserved (binary 0) Bits 3-31

exceeded
38 Template Specification

Char(4) 01 Template value invalid X · Reserved (binary 0)

· Size of space Bin(4)

J
16-30

· Initial value of space Char(1) · Data space attributes Char(2)

(,
- Relative entry Bit 0

· Performance class Char(4) Reserved (binary 0) Bits 1-2

- Space alignment Bit 0 - Initial allocation Bit 3
0 = The space associated with 0 Use default allocation

the object is allocated to 1 = Allocate for maximum
allow proper alignment of number of entries
pointers at 16-byte align- - Contiguous return Bit 4*
ments within the space. If 0 Contiguous storage
no space is specified for not allocated
the object. this value must Contiguous storage
be specified for the allocated
performance class. Unit return Bit 5*
The space associated with 0 Not allocated on
the object is allocated to requested unit
allow proper alignment of Allocated on requested
pointers at 16-byte align- unit
ments within the space as - Conversion error checking Bit 6
well as to allow proper 0 Conversion error checking
alignment of input/output not enabled
buffers at 512-byte align- Conversion error checking
ments within the space. enabled

- Reserved (binary 0) Bits 1-4 - Contiguous allocation Bit 7
- Main storage pool selection Bit 5 Floating-point attributes Bit 8

0 Process default main storage specified
pool is used for object. 0 Use default floating-point
Machine default main storage attributes
pool is used for object. Use specified floating-point

- Reserved (binary 0) Bit 6 attributes
Block transfer on implicit Bit 7 Reserved (binary 0) Bits 9-15
access state modification
o = Transfer the minimum storage · Maximum number of entries Bin(4)

transfer size for this object.
This value is 1 storage unit. · Entry number increment Bin(2)
Transfer the machine default
storage transfer size. This · Unit identification Char(1)
value is 8 storage units.

- Reserved (binary 0) Bits 8-31 · Compression threshold Char(1)

· Reserved (binary 0) Charm · Length of the entry definition table Bin(2)

· Context System · Offset to the entry definition table Bin(4)
pointer

· Length of the default values entry Bin(2)

· Reserved (binary 0) Char(16)

· Offset to the default values entry Bin(4)

Data Base Management Instructions 16-31

• Floating-point attributes
- Floating-point overflow mask

o = Masked
1 = Unmasked

- Floating-point underflow mask
o = Masked
1 = Unmasked

Char(1)
Bit 0

Bit 1

- Floating-point zero divide mask Bit 2
o = Masked
1 = Unmasked

- Floating-point inexact result
mask
o = Masked
1 = Unmasked

- Floating-point invalid operand
mask
o = Masked
1 = Unmasked
Reserved (binary 0)

- Floating-point rounding mode
00 = Round to positive infinity
01 = Round to negative infinity
10= Round to zero (truncate)
11 = Round to nearest or even

• Reserved (binary 0)

Bit 3

Bit 4

Bit 5
Bits 6-7

Char(5)

Note: The value of an entry shown here with an
asterisk (*) is ignored by this instruction.

The data space template must be aligned on a multiple
of 16 bytes.

The object identification specifies the symbolic name
that identifies the data space within the machine. A
type code of hex OB is implicitly supplied by the
machine. The object identification is used to identify the
data space on materialize instructions as well as to
locate the object in a context that addresses the object.

Data spaces are created as permanent objects and exist
in the machine until explicitly destroyed by the user. A
space may be associated with the created data space.
The space may be fixed or variable in size. The initial
allocation is specified in the size of space entry. The
machine allocates a space of at least the size specified;
the actual size allocated depends on an algorithm
defined by a specific implementation. A fixed size space
of zero length causes no space to be allocated. If no
space is allocated, this value is ignored.

16-32

Each byte of the space is initialized to a value specified
by the initial value of space entry. When the space is
extended, this byte value is also used to initialize the
new allocation. If no space is allocated, this value is
ignored.

The user profile governing process execution is assigned
ownership of the object, and the storage occupied by
the data space is charged to this user profile.

If the initial context creation attribute entry indicates that
addressability is to be inserted into a context, the
context entry must contain a system pointer that
identifies a context where addressability to the newly
created data space is to be placed. If addressability is
not to be inserted into a context, the context entry is
ignored.

The performance class parameter provides information
that allows the machine to manage the data space with
consideration for the overall performance objectives of
operations involving the data space.

The data space attributes entry specifies the type of
data space being created and its allocation requirements.
The type of the data space can be specified to be
relative.

If the initial allocation attribute is specified (binary 1),
sufficient storage is allocated to contain the number of
data space entries specified by the maximum number of
entries field. Data spaces are implicitly extended until
logically the number of entries exceeds the maximum
number of entries specified by the entry number
increment parameter.

If initial allocation is not specified (binary 0). a default
initial allocation and extension allocation are used. If
initial allocation is specified (binary one) and the
maximum number of entries field contains a value of
zero, a template value invalid exception is signaled.

The values of the contiguous return bit and unit return
bit are set by this instruction. The contiguous return bit
(binary 1) indicates the data portion of the data space is
contiguously allocated on auxiliary storage. The
contiguous return bit (binary 0) indicates either that the
data portion of the data space is not contiguously
allocated on auxiliary storage or that contiguous storage
was not requested. No exception is signaled as the
result of failing to obtain a contiguous allocation when
requested.

J

A value of binary one in the floating-point attributes
specified field indicates that the floating-point attributes
field contains the floating-point attributes for this data
space. If this field contains a binary zero, the default
floating-point attributes are used. The default
floating-point attributes are as follows:

• The floating-point overflow mask field contains a
binary one indicating that this exception is unmasked.

• The floating-point underflow mask field contains a
binary one indicating that this exception is unmasked.

• The floating-point zero divide mask field contains a
binary one indicating that this exception is unmasked.

• The floating-point inexact result mask field contains a
binary zero indicating that this exception is masked.

• The floating-point invalid operand mask field contains
a binary one indicating that this exception is
unmasked.

• The floating-point rounding mode field contains a
binary 11 indicating that round to nearest or even is
enabled.

The conversion mapping error exception will not be
signaled if the enable conversion error checking field has
a value of binary 0, and if a data conversion or
truncation error is encountered on a numeric field while
mapping to or from the interface buffer on RETDSEN,
RETSDSE, UPDSEN, INSDSEN, or INSSDSE
instructions. The erroneous data will be used in
generating the interface buffer or the data space entry.
If the enable conversion error checking field has a value
of binary 1, the conversion mapping error exception will
be signaled for each entry that produces a conversion or
truncation error. The indicated instructions will not
detect conversion or truncation errors if the fields in the
data space entry are not converted or truncated, as in
direct mapping. The key conversion mapping error is
always signaled when encountered, regardless of the
value of the enable conversion error checking field.

If the contiguous allocation bit is binary 0, the system
attempts to allocate the data space contiguously on
auxiliary storage. If this bit is binary 1, the data space
may not be contiguously allocated on auxiliary storage.
If the initial allocation field is binary 0, the contiguous
allocation bit is ignored.

The maximum number of entries field specifies the

number of entries that can reside in a data space before
the data space entry limit exceeded exception is
signaled. If this field is 0, an implementation-defined
maximum is assumed. The entry number increment field
specifies an increment that can be applied to the
maximum number of entries field through the use of the
Data Base Maintenance instruction to derive a new
upper limit. If the maximum number of entries field
specifies a negative number or a number greater than
the number of entries allowed in a data space, a
template value invalid exception is signaled.

The unit identification entry (which is interpreted as a
l-byte unsigned binary number) indicates the auxiliary
storage unit on which the data space should reside.
Unit values are installation dependent. If it is not
possible to allocate all of the data space on the
requested unit. the instruction sets the unit return bit to
binary 0; otherwise, the unit return bit is set to binary 1
indicating the data portion of the data space resides on
the requested auxiliary storage unit. If no specific unit is
selected (binary 01. the machine selects the unit for data
space storage and returns a value of binary 0 in the unit
return value. If the unit identification is nonzero, it must
be valid for the machine. The Materialize Resource
Management Data instruction or Destroy Cursor
instruction provides the allowable valid unit numbers. If
the intended unit has insufficient space to accommodate
the data space, an alternative unit is selected.

The compression threshold entry is interpreted as a
l-byte unsigned binary number that specifies the
percentage of deleted entries that can remain in the data
space before the data space compression threshold
exceeded event is signaled. The event is signaled on
any De-Activate Cursor instruction where the
compression threshold of a data space referenced by
that cursor has been exceeded. The compression
threshold represents a percentage expressed as a
number between 0 and 100 (inclusive). If the percentage
equals 0, the event is not signaled.

The entry definition table defines the format of the data
space entries for this data space. The offset to the
entry definition table defines the offset from the start of
the data space template to the first byte of the entry
definition table. The length of the entry definition table
identifies the number of bytes in the table.

Data Base Management Instructions 16-33

The default values entry is a character string equal in
length to the computed length of the data space entry.
This string defines the default values for insert
operations to use for any field that is not present in the
input mapping template of a Create Cursor instruction.
This string also defines the default values for an Update
Data Space Entry instruction to use when deleted entries
are updated as well as the values to be inserted by the
insert default entries option of the Data Base
Maintenance instruction. The offset to the default values
entry defines the offset from the start of the data space
template to the first byte of the default values entry.
The length of the default values entry identifies the
number of bytes in the default values entry.

No data validity checking is done on the contents of the
default values entry field. If the offset to the default
values entry is 0, no default entry is provided, and the
length field is ignored. If default values are not
provided, the default values supplied by the machine are
blanks (hex 40) for character fields and O's (in the
appropriate representation) for numeric fields.

The floating-point attributes are the floating-point
computational attributes, that are placed in effect
whenever the to data space entry or the to key mapping
is executed. The floating-point attributes are as follows:

• A value of binary one for the floating-point overflow
mask field indicates that the floating-point overflow
exception is unmasked and can be signaled. A value
of binary zero indicates that the exception is masked
and cannot be signaled.

• A value of binary one for the floating-point underflow
mask field indicates that the floating-point underflow
exception is unmasked and can be signaled. A value
of binary zero indicates that the exception is masked
and cannot be signaled.

16-34

• A value of binary one for the floating-point zero
divide mask field indicates that the floating-point zero
divide exception is unmasked and can be signaled. A
value of binary zero indicates that the exception is
masked and cannot be signaled.

• A value of binary one for the floating-point inexact
result mask field indicates that the floating-point
inexact result exception is unmasked and can be
signaled. A value of binary zero indicates that the
exception is masked and cannot be signaled.

• A value of binary one for the floating-point invalid
operand mask field indicates that the floating-point
invalid operand exception is unmasked and can be
signaled. A value of binary zero indicates that the
exception is masked and cannot be signaled.

• The floating-point rounding mode controls how
floating-point values are rounded. The Store and Set
Computational Attributes instruction provides a
definition of the floating-point rounding modes.

The entry definition table defines the field attributes, one
for each field in the data space entry. The number of
fields in the data space entry (number of entries in the
table) is the value of the length of the entry definition
table divided by 4 bytes per field attribute.

Each field attributes entry designates the attributes that
field processes in the data space entry.

The format of the field attributes is as follows:

• Field attributes
- Field type
- Field length

Char(4)
Bin(2)
Bin(2)

The following field types and specification codes are
allowed:

Field Type

Binary
Floating-point
Zoned decimal
Packed decimal
Character

Specification
Code
(Hex)

0000
0001
0002
0003
0004

The permissible values for each of the field lengths are
as follows:

Field
Type Allowed Field Length Values

Binary Bytes 1-2 - Length in bytes =

Binary 2 or 4

Floating- Bytes 1-2 - Length in bytes =
point Binary 4 or 8

Zoned Byte 1 - Fractional digits' =
decimal Binary 0 to total

number of digits

Byte 2 Total number of digits =
Binary 1 to 31

Packed Byte 1 - Fractional digits =
decimal Binary 0 to total

number of digits

Byte 2 - Total number of digits =
Binary 1 to 31

Character Bytes 1-2 - Length in bytes =

Binary 1 to 32 766

'The number of fractional digits to the right of the decimal
point.

Authorization Required

• Insert
- Context identified in operand 2
- User profile of creating process

• Retrieve
- Contexts referenced for address resolution

Lock Enforcement

• Materialize
- Contexts referenced for address resolution

• Modify
Context identified in operand 2

- User profile of creating process

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded
0501 Machine address threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Data Base Management Instructions 16-35

Exceptions CREATE DATA SPACE INDEX (CRTDSINX)

Operands Op Code Operand Operand ~
Exception 1 2 Other (Hex) 1 2

06 Addressing 046A Data Data space
01 Space addressing violation X X space index template
02 Boundary alignment X X index

03 Range X X
06 Optimized addressability invalid X X Operand 1: System pointer.

08 Argument/Parameter

01 Parameter reference violation X X
Operand 2: Space pointer.

OA Authorization

01 Unauthorized for operation X

OE Context Operation
Description: This instruction creates a data space index

01 Duplicate object identification X
that defines an alternate ordering over the entries in one

10 Damage Encountered
or more data spaces. The data space index orders keys

04 System object damage state X X X
derived from the data space entries according to a

44 Partial system object damage X X X standard collating sequence or a user-provided alternate

12 Data Base Management
collating sequence and can include all, or a subset, of

1 A Data entry size exceeded X
the entries in the associated data space(s).

1A Lock State
Addressability to the newly created data space index is

01 Invalid lock state X
returned in the system pointer specified by operand 1.

1C Machine- Dependent Exception

03 Machine storage limit exceeded X
The format of the data space index template is as

04 Object storage limit exceeded X
follows:

20 Machine Support

02 Machine check X · Template size Char(S)

03 Function check X
Number of bytes provided Bin(4)" J

22 Object Access
by the user

01 Object not found X X
Number of bytes that Bin(4)"

02 Object destroyed X X
can be materialized

03 Object suspended X X

24 Pointer Specification · Object identification Char(32)

01 Pointer does not exist X X
Object type Char(1)"

02 Pointer type invalid X X
Object subtype Char(1)

03 Pointer addressing invalid object X
Object name Char(30)

2A Program Creation

06 Invalid operand type X X · Object creation options Char(4)

07 Invalid operand attribute X X
Existence attributes Bit 0

08 Invalid operand value range X X 0 = Temporary

DC Invalid operand ODT reference X X
1 = Permanent (required)

00 Reserved bits are not zero X X X
Space attribute Bit 1

2E Resource Control Limit
0 = Fixed-length

01 User profile storage limit X
1 = Variable-length

exceeded Initial context Bit 2

38 Template Specification 0 Addressability is not

01 Template value invalid X inserted in context.

1 = Addressability is
inserted in context.

Reserved (binary 0) Bits 3-31

· Recovery options Char(4)

· Size of space Bin(4)

16-36

L
• Initial value of space Char(1)

• Performance class Char(4)
Space alignment Bit 0
o = The space associated with

the object is allocated to
allow proper alignment of
pointers at 16-byte align-
ments within the space. If
no space is specified for
the object. this value must
be specified for the
performance class.
The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space as
well as to allow proper
alignment of input/output
buffers at 512-byte align-
ments within the space.

Reserved (binary 0) Bits 1-4
Main storage pool selection Bit 5
o Process default main storage

pool is used for object.
1 = Machine default main storage

pool is used for object.
- Reserved (binary 0) Bit 6

Block transfer on implicit Bit 7
access state modification
o = Transfer the minimum storage

transfer size for this object.
This value is 1 storage unit.
Transfer the machine default
storage transfer size. This
value is 8 storage units.

Reserved (binary 0) Bits 8-31

• Reserved (binary 0) Char(7)

• Context

• Access group

• Data space list pointer

System
pointer

System
pointer

Space
pointer

• Alternate collating template pointer Space
pointer

• Selection template pointer

• Length of selection template

• Length of data space list

• Index attributes

Space
pointer

Bin(2)

Bin(2)

Char(2)
Floating-point attributes Bit 0
specified
o Use default floating-point

attributes
1 = Use specified floating-point

attributes
Extended creation template Bit 1
Reserved (binary 0) Bits 2-7
Alternate collating template Bit 8
o = Template not provided
1 = Template provided
Validate index option Bit 9
o = Create valid
1 = Created invalidated index
Unit return bit Bit 10*
o Not allocated on

requested unit
1 = Allocated on requested unit
Delayed maintenance Bit 11
Optimized processing mode Bit 12
o = Random
1 = Sequential
Data space index force option
o Normal data space index

force
Force all data space index
changes

Bit 13

Duplicate key rules Bits 14-15
00 = Unique keys required
01 = LIFO duplicates permitted
10 = FIFO duplicates permitted
11 = Reserved

Data Base Management Instructions 16-37

• Unit identification Char(1)

• Floating-point attributes Char(1)
Floating-point overflow mask Bit a
a = Masked
1 = Unmasked

- Floating-point underflow mask Bit 1
a = Masked
1 = Unmasked
Floating-point zero divide mask Bit 2
a = Masked
1 = Unmasked

- Floating-point inexact result Bit 3
mask
a = Masked
1 = Unmasked

- Floating-point invalid operand Bit 4
mask
a = Masked
1 = Unmasked

- Reserved (binary 0) Bit 5
- Floating-point rounding mode Bits 6-7

00 = Round to positive infinity
01 = Round to negative infinity
10= Round to zero (truncate)
11 = Round to nearest or even

• Length of the data space key Bin(4)
specifications

16-38

The data space key specification is repeated for each
data space.

• Key field count Bin(2)

• Key field specification (repeated Char(4)
for each field in the data space key)
- Key field number

Key field attributes
Reserved (binary 0)
Ordering option

a = Ascending sequence
1 = Descending sequence

Numeric ordering
00 = Internal form
01 = Absolute value
10 = Algebraic
11 = Reserved

Bin(2)
Char(2)
Bits 0-7
Bit 8

Bits 9-10

Fork character Bit 11
a = No fork character specified
1 = Fork character specified

Alternate collating Bit 12
a Machine default collating

sequence
Alternate collating sequence

Zone/digit force Bits 13-14
00 = No zone/digit force
01 = Digit force
10 = Zone force
11 = Reserved

Reserved (binary 0) Bit 15

• Extended area of creation template
- Extended functions

Create index from index
Non-user exit selection
Reserved (binary 0)

Reserved (binary 0)
Offset to intermediate key
mapping table pointer list

- Offset to source data space
index list pointer

- Offset to non-user exit
selection template pointer list
Number of translate tables

- Offset to translate table list
- Index logical page size
- Reserved (binary 0)

Notes:

Char(2)
Bit(O)
Bit(1)
Bit(2-15)
Char(32)
Bin(2)

Bin(2)

Bin(2)

Bin(2)
Bin(2)
Bin(2)
Char(6)

1. The data space index template, data space list, and
selection template must each be 16-byte aligned.

2. The values of the entries shown here with an asterisk
(*) are ignored by this instruction.

The data space index is owned by the user profile that
governs process execution. The owning user profile is
implicitly assigned all authority states for the data space
index. The storage occupied by the data space index is
charged to this owning user profile.

The object identification specifies the symbolic name
that identifies the data space index within the machine.
A type code of hex OC is implicitly supplied by the
machine. The object identification is used to identify the
data space index on materialize instructions as well as to
locate the data space index in a context that addresses
the data space index.

The existence attribute specifies whether the data space
index is to be created as temporary or permanent. A
temporary data space index, if not explicitly destroyed
by the user, is implicitly destroyed by the machine when
machine processing is terminated. A permanent data
space index exists in the machine until explicitly
destroyed by the user.

A space may be associated with the data space index.
The space may be fixed or variable in size. The initial
allocation is specified in the size of space entry. The
machine allocates a space of at least the size specified;
the actual size allocated depends on an algorithm
defined by a specific implementation. A fixed size space
of zero length causes no space to be allocated.

Each byte of the space is initialized to a value specified
by the initial value of space entry. When the space is
extended, this byte value is also used to initialize the
new allocation. If no space is allocated, this value is
ignored.

If the initial context creation attribute entry indicates that
addressability is to be inserted into a context, the
context entry must contain a system pointer that
identifies a context where addressability to the newly
created data space index is to be placed. If
addressability is not to be inserted into a context. the
context entry is ignored.

The performance class parameter provides information
that allows the machine to manage the data space index
with consideration for the overall performance objectives
of operations involving the data space index.

When the index is created from data space(sl. the data
space list pointer identifies a list of system pointers.
Each system pointer addresses a data space. The length
of data space list entry (which must be a multiple of 16
bytes) indicates the number of bytes in the list. Only
these data spaces are addressable through the data
space index.

When the create index from index field contains a binary
one, the data space list pointer addresses a table of
2-byte elements, each element assumed to be a Bin(2)
field. Each element's value specifies a slot in the source
index's data space list. This value must specify an
existing slot. The data space address given by the
source index in the associated data space list slot will
be utilized as a data space the new index will cover.
The order of the data spaces in the newly created index
is determined by the order of the elements in the table.

The ordering of the data space pointers in the data
space list is used, in exception data, to identify the data
spaces with a 2-byte number known as the data space
number. The first data space in the list is assigned the
number one, and the nth data space in the list is
assigned the number n.

The ordering of the data spaces is significant in data
space indexes where duplicate keys are allowed because
duplicate keys from different data spaces appear in the
index in the same order as the data spaces appear in
the list.

Index keys are normally ordered by the machine's
standard collating sequence. The alternate collating
template pointer (if provided) points to a fixed-length,
256-byte alternate collating template. If the pointer is
not provided and any data space key specification
specifies alternate collating, an exception is signaled.

Data space entry selection allows the data space index
to address a selected subset of data space entries
covered by the data space index, rather than address all
data space entries. The number of bytes in the selection
template is indicated by the length of selection template.
A binary 0 in the length of selection template field
indicates that selection is not used for this data space
index and the selection template pointer is ignored.

The index attribute entry specifies general data space
index attributes. An alternate collating template attribute
value of binary 1 indicates that the alternate collating
template pOinter addresses a 256-byte alternate
collating template. A binary 0 indicates that the pointer
is to be ignored.

Data Base Management Instructions 16-39

The create invalidated index attribute indicates that a
data space index addressing no entries and marked
invalid should be created. This attribute has the same
effect as if the index had been operated on by the
invalidate data space index option of the Data Base
Maintenance instruction.

A value of 0 causes a valid, up-to-date index to be
created.

A value of binary one in the floating-point attributes
specified field indicates that the floating-point attributes
field contains the floating-point attributes for this index.
If this field contains a binary zero, the default
floating-point attributes are used. The default
floating-point attributes are as follows:

• The floating-point overflow mask field contains a
binary one indicating that this exception is unmasked.

• The floating-point underflow mask field contains a
binary one indicating that this exception is unmasked.

• The floating-point zero divide mask field contains a
binary one indicating that this exception is unmasked.

• The floating-point inexact result mask field contains a
binary zero indicating that this exception is masked.

• The floating-point invalid operand mask field contains
a binary one indicating that this exception is
unmasked.

• The floating-point rounding mode field contains a
binary 11 indicating that round to nearest or even is
enabled.

16-40

The unit return bit is set by this instruction. A value of
binary 1 indicates that the index is on the requested
auxiliary storage unit. A value of binary 0 indicates that
some of the index is not on the requested unit. If no
unit identification is specified (binary 0), the unit return
bit is O.

The delayed maintenance option, equal to binary 1,
delays changes to the data space until a cursor that
references the data space is activated. This delay is
used for performance reasons. Changes to the data
space index occur when an Activate Cursor instruction is
issued to a cursor that references the data space index
or when a Data Base Maintenance instruction is used to
explicitly rebuild the index after an up-to-date index
was created. A value of 0 indicates that immediate
index maintenance is to be used. If duplicate key rules
are equal to the unique keys, the delayed maintenance
value must be O.

If the optimized processing mode field is binary 1, then
the data space index will be built and maintained in a
way that attempts to optimize performance for
sequential operations on the data space index.
Otherwise, the optimization will be done for random
access operations.

If the data space index force option attribute field
contains a value of binary 1, the system will ensure that
any change to data space entries that result in changes
to this data space index will result in the changed
portion of the data space index being written to
nonvolatile storage along with the changed data space
entries before the instruction is completed. A value of
binary zero in this field indicates that this data space
index is to be forced to nonvolatile storage when the
operation being performed against it or the underlying
data spaces or data space entries indicates that this
force is to be performed. This option may not be
specified when creating a temporary index.

The duplicate key rules have the following meaning:

• If unique keys are specified, then duplicate keys are
not allowed in the index. During an index creation or
rebuild, the operation is terminated if duplicate keys
are detected. During insertion or modification of a
data space entry, detection of a duplicate key will
inhibit alteration of the data space. If the index has
been implicitly invalidated by the machine, changes to
the data space entries that could result in duplicate
keys are not allowed. In either case, an exception is
signaled.

• If duplicate keys are permitted, then the LIFO (last in,
first out). or the FIFO (first in, first out) rule
determines how duplicate keys are to be ordered
within the data space index.

The LIFO or FIFO rules only apply to the ordering of
duplicate keys acquired from entries that reside in the
same data space. If LIFO is specified, then the entry
with the largest ordinal number is ordered first. If FIFO
is specified, then the entry with the smallest ordinal
number is ordered first. When duplicate keys are
acquired from entries that reside in different data
spaces, the ordering is determined by the order of the
data spaces as they are specified in the data space
pointer list.

The unit identification entry is interpreted as a 1-byte
unsigned binary number indicating a valid auxiliary
storage unit on which the data space index should
reside. If no unit identification is specified (binary 0), the
machine selects an auxiliary storage unit for the data
space index. The value of the unit identification is
installation dependent.

Valid unit numbers can be obtained by using the
Materialize Resource Management Data instruction. If
the intended unit has insufficient space to accommodate
the data space index, an alternative unit is selected.

The floating-point attributes are the floating-point
computational attributes, that are placed in effect for the
execution of the select/omit mapping and the
select/omit program. The floating-point attributes are
as follows:

• A value of binary one for the floating-point overflow
mask field indicates that the floating-point overflow
exception is unmasked and can be signaled. A value
of binary zero indicates that the exception is masked
and cannot be signaled.

• A value of binary one for the floating-point underflow
mask field indicates that the floating-point underflow
exception is unmasked and can be signaled. A value
of binary zero indicates that the exception is masked
and cannot be signaled.

• A value of binary one for the floating-point zero
divide mask field indicates that the floating-point zero
divide exception is unmasked and can be signaled. A
value of binary zero indicates that the exception is
masked and cannot be signaled.

• A value of binary one for the floating-point inexact
result mask field indicates that the floating-point
inexact result exception is unmasked and can be
signaled. A value of binary zero indicates that the
exception is masked and cannot be signaled.

• A value of binary one for the floating-point invalid
operand mask field indicates that the floating-point
invalid operand exception is unmasked and can be
signaled. A value of binary zero indicates that the
exception is masked and cannot be signaled.

• The floating-point rounding mode controls how
floating-point values are rounded. The Store and Set
Computational Attributes instruction provides a
definition of the floating-point rounding modes.

Data Base Management Instructions 16-41

Each data space key specification entry defines a key for
a data space. A data space key specification must be
defined for each data space referenced by the data
space list, and its order must correspond to the order of
the data spaces in the list. If more than one key
specification is defined for a data space, then the data
space must appear in the data space list more than
once, and each entry in the data space provides more
than one key to the index.

When intermediate key mapping is specified, the key
field(s) defined in the key field specifications refer to the
field(s) defined in the intermediate key mapping buffer,
not those defined in the data space entry.

The key field count entry specifies the number of key
field specification entries for a particular data space. A
key field specification entry appears for each field
extracted from the data space entry as well as each fork
character to be used in creating the key for a particular
data space. The key field location entry identifies the
relative position of the field in the data space entry. The
first field in the entry is relative position 1.

The key field number entry identifies the relative position
of the field in the data space entry or intermediate key
buffer. The first field in the source location is relative
position 1.

The key field attributes entry specifies the attributes of
the corresponding key field.

The ordering option attribute specifies whether the key
field is collated in ascending or descending sequence.
Descending sequence is valid with any field attribute
except fork character.

The numeric ordering attribute specifies whether numeric
fields are to be ordered based on their internal
representation value, algebraic value, or absolute
numeric value. The numeric ordering attributes of
algebraic or absolute value causes the specified numeric
ordering to be enforced independent of a field·s numeric
type or internal physical representation. If the field is a
floating-point field and algebraic collating is specified,
then the collating sequence is:

negative infinity -+ real numbers -+ positive infinity.

If the field is a floating-point field and absolute collating
is specified then the collating sequence is:

real numbers -+ infinities.

16-42

If internal form numeric ordering is specified, ordering is
performed according to the physical storage
representation of the key field. For example, a packed
decimal number has its sign on the right. This causes
the ordering to alternate between positive and negative
numbers. For zoned decimal, the sign is in the left half
of the rightmost byte, which causes the ordering to be
10 positive numbers followed by 10 negative numbers.
For floating-point. the sign is the leftmost bit, the
exponent is next, and the significant is last; so the
collating sequence is:

positive real numbers -+ positive infinity -+ negative
real numbers -+ negative infinity-+.

Numeric ordering can be used with any data type except
character. Numeric ordering is valid with the ascending
and descending field attributes only. Any other attribute
specified with numeric ordering results in an exception.

The fork character attribute indicates that a data space
entry field or intermediate key buffer field is not being
specified and that the key field location entry contains a
fork character (rather than the identity of a field within
the data space entry field) to be inserted into the
composite key at this position. Byte 1 of the key field
location is ignored, and byte 2 must contain the fork
character to be inserted into the composite key. It is
important to note that the data space index functions
append information to the rightmost portion of each key,
and, therefore, it may be necessary to place a fork
character at the end of each short key to ensure that the
appended information does not affect the ordering of
this key with respect to longer keys. If the fork
character option is specified, all other key field attributes
must be binary 0 or an exception is signaled.

The alternate collating attribute indicates that the value
acquired from the data space entry is to be modified in
accordance with the alternate collating template before
being placed into the key. This modification is
performed after the zone or digit force changes have
been applied but before the descending sequence
changes, if either is specified. This attribute is valid for
character and zoned decimal fields only; it is also valid
with the descending sequence and either zone/digit
force key field attributes. Any other data type or key
field attributes result in an exception.

J

The zone/digit force attribute specifies a modification to
4 bits of every byte in the specified key field. Zone
force (10) causes the leftmost 4 bits (the zone portion)
of every byte in the field to be set to zeros. Digit force
(01) causes the rightmost 4 bits (the digit portion) of
every byte in the field to be set to O's. These attributes
are valid for the character and zoned data fields only;
they are also valid with the descending sequence and
the alternate collating key field attributes. Any other
data type or key field attributes result in an exception.

The order in which the key field specifications appear in
the template determines the order of the fields in the
resulting key. The data space key field count must
include both the data key fields extracted from the data
space entry as well as the fork characters that comprise
the resulting key.

The alternate collating template, if one exists, is used as
a translation table needed for a specific alternate
collating sequence. This translation table must consist
of a 256-byte table of replacement values. The
replacement value for a specific byte is located in the
table at an offset equal to the byte's binary value. For
example, if hex C1 is to be replaced with hex F2, the
byte residing at offset hex C1 in the table must contain
the replacement value hex F2. When alternate collating
sequence is specified for a field, the field is translated
before being placed into the key. For the example
above, this means that when the keys are automatically
ordered, hex C1 = A is logically placed in the index
between hex F1 = 1 and hex F3 = 3. Thus, an alternate
collating sequence of 1 A3 is achieved.

A value of binary one in the create index from index
field specifies this index is to be created via the
contents of an existing data space index. The newly
created index will be constructed using the data space
entries addressed by the source data space index. The
existing data space index is addressed by the source
data space index system pointer. The offset to source
data space index list pointer defines the offset from the
beginning of the data space index creation template to
the first byte of a list of one system pointer to the
source data space index. If the source data space index
is invalid, the new index will be built by referencing the
data space entries directly.

If the source data space index becomes invalid after the
build of the new index begins, an exception data space
index invalid is signaled and the creation fails.

Any existing selection template(s) from the source data
space index will be adopted by the newly created data
space index.

The offset to intermediate key mapping templates
pointer list defines the offset from the beginning of the
data space index creation template to the first byte of a
list of space pointers to intermediate key mapping
templates.

When the offset to intermediate key mapping templates
pointer list contains a non-zero value, for each data
space in the data space list there must be a
corresponding key mapping template space pointer in
the same position in the key mapping templates pointer
list. Null pointers in the list are permissible and indicate
intermediate key mapping for the corresponding data
space is not to be performed.

Each key mapping template space pointer locates a
mapping template which defines the operations to be
performed on specified fields. The resulting fields will
be used to construct the composite key in the index.
The resulting fields to be used will be determined by the
data space key specifications.

The offset to translate table list addresses an array of
translate tables starting at that offset past the start of
the template. Each table is 256 bytes long. These
tables are available for use by intermediate key mapping
when performing the translate operation. The number of
tables in the array is designated by the number of
translate tables field. A value of binary zero in this field
designates no translate tables are provided and the
offset to translate table list field is ignored.

For an explanation of a translate table, refer to the
example under the alternate collating template definition.

The index logical page size field specifies the number of
bytes to use in a logical index page. A value of hex
0000 specifies a system default is to be used. The other
allowable values are hex 0200, hex 0400, hex 0800, hex
1000, hex 2000, hex 4000, or hex 8000. All other values
are reserved.

Data Base Management Instructions 16-43

The example below shows how a translation table could
be organized to cause the numbers 0-9 (hex FO through
hex F9) to appear before the characters A-Z (hex C1
through hex E9) in a collating sequence. To accomplish
this ordering, the numbers 0 through 9 (hex FO through
hex F9) must take on the values hex C1 through hex CA
and the values hex C1 through hex EF must take on the
values hex CB through hex F9. The following translation
table causes this to happen.

00 01 02 03 04 05 06 07 08 09 OA DB OC 00 OE OF

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 10 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 20 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 40 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 50 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 60 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 70 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 80 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 90 9E 9F

AO A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

BO B1 B2 B3 B4 B5 B6 B7 B8 B9 SA BB BC BO BE SF

CO CB CC CO CE CF DO 01 02 03 04 05 06 07 08 09

OA DB DC DO DE OF EO E 1 E2 E3 E4 E5 E6 E7 E8 E9

EA ES EC ED EE EF FO F1 F2 F3 F4 F5 F6 F7 F8 F9

C1 C2 C3 C4 C5 C6 C7 C8 C9 CA FA FB FC FO FE FF

Note: co is translated to CO
C 1 is translated to CB
EF is translated to F9

FO translated to C1
F9 translated to CA
FA translated to FA

The format of the key mapping template is as follows:

• Number of bytes in key mapping
template

Bin(4)

• Mapping type Char(2)
- Input mapping Char(l)

Hex 03=lntermediate mapping table
provided

All other values reserved
- Output mapping (must =

hex 04; not applicable

• Reserved (ignored-only for
alignment)

• Intermediate Mapping
Number of key mapping
specifications

- Create index only options
Use derived results for key
Reserved (binary 0)

- Reserved (binary 0)
Number of data pointers
Data pointers (repeated)

16-44

-Intermediate key mapping
specification (repeated)

Char(l)

Char(10)

Bin(2)

Char(l)
Bit 0
Bit 1-7
Char(11)
Bin(2)
Data
pointer
Char(32)

- Field location of operand 1
Operand 1 location/type

Char(8)
Bin(2)

or

or

Hex 0000 = Data space entry
Hex 0003 = Intermediate key buffer
Hex 0005 = Null (type)
Hex 0006 = Literal (type)
Unassigned values reserved

Field number
Start character
End character

Array position of data
pointer
Reserved (binary 0)

Reserved (binary 0)
Result field attributes

Field type
Field length
Rounding mode
Hex 40 = Decimal round

Bin(2)
Bin(2)
Bin(2)

Bin(2)

Char(4)

Char(6)
Char(5)
Bin(2)
Bin(2)
Char(l)

-Operation Char(l)

- Field location of operand 2
Operand location/type

Char(18)
Bin(2)

Hex 0000 = Data space entry location
Hex 0003 = Intermediate key buffer (location)
Hex 0005 = Null (type)
Hex 0006 = Literal (type)
Hex 0007 = Translate tablet (type)
Unassigned values reserved

Operand description Char(16)
Field number Bin(2)
Start character Bin(2)
End character Bin(2)
Reserved (binary 0) Char(10)

or
Array position of data Bin(2)
pointer to literal
Reserved (binary 0) Char(14)

or
Array position of Bin(2)
translate table
Reserved (binary 0)Char(14)

The key mapping template must be aligned on a
16-byte boundary.

The number of key mapping specifications specifies the
number of key mapping specification entries in the key
mapping table.

L
The order of the key mapping specification entries in the
intermediate mapping table implicitly specifies the order
of the result fields in the key mapping buffer.

The field number entry is the relative location of the
associated field in the data space or intermediate key
mapping buffer as established by Create Data Space
and Create Data Space Index instructions. A value of 1
identifies the first field and so on. When intermediate
key mapping is specified, the intermediate key mapping
buffer is the source for the fields defined by the data
space key specifications. The field number must
reference a previously defined field.

The start character and end character fields specify the
byte positions in the designated operand 1 or operand 2
fields. A value of binary a in these fields designates the
entire field will be used. The end character field must
contain a value of binary zero when the start character
field contains a binary zero. When the start character
field contains a non-zero positive value, the end
character field must contain a value at least as great.
Negative values in these fields are not permissible. A
value of 1 specifies the first position and so on.

When the operand type is a literal, the operand
description references a data pointer to the associated
literal.

The result field attributes for intermediate key buffer
mapping describe the result field in the intermediate key
mapping buffer. For arithmetic operations, this requires
both operands to be defined identically.

The permissible field types are the same as allowed by
create cursor intermediate mapping with the exclusion of
relative record number field type. The restrictions and
operations unique to individual field types are also
documented in the create cursor architecture.

Floating point computations performed on behalf of
intermediate key mapping will use the floating point
attributes defined for ths index.

The permissible field lengths are the same as those
allowed for the field types defined for create cursor
mapping.

The permissible operations are the same as those
allowed by create cursor intermediate mapping.

The format of the user-exit selection template is as
follows:

• Selection routine pointer

• Selection routine program
template pointer

• Data space selection specification
(repeated for each data space in
the data space list)

System
pointer

Space
pointer

Char(*)

Note: The value of the entry shown here with an
asterisk (*) is ignored by this instruction.

When the user selection template is specified and when
a key is to be put into the data space index. the user
exit selection routine is passed a space pointer which
addresses an interface buffer.

The selection routine program template pointer contains
addressability to the program template used for the
creation of the selection routine (see Chapter 8.
Program Management Instructions). It is ignored by the
Create Data Space Index instruction and is materialized
by the Materialize Data Space Index Attributes
instruction.

A value of binary one in the non-user exit selection field
specifies non-user exit selection processing should
occur.

The offset to non-user exit selection template pointer
list defines the offset from the beginning of the data
space index creation template to the first byte of the list
of space pointers to non-user exit selection template. A
pointer must be supplied for each data space in the data
space list. A null pointer value is permissible and
non-user exit selection will not be performed for that
data space.

The selection templates are addressed by space pointers
in the non-user exit selection template list. This is a list
of space pointers aligned on a 16-byte boundary. The
selection template referenced by a particular slot in the
non-user exit selection template list is associated with
the data space in the corresponding slot in the data
space list. A null pointer in the non-user exit selection
template list indicates selection is not specified for that
data space.

Data Base Management Instructions 16-45

The format of the non-user exit selection template is as
follows:

• Length of selection template

• Number of selection descriptors

• Reserved (binary 0)

• Number of data pointers

• Data pointer (repeated)

• Selection descriptor (repeated)

- Descriptor type
Hex 00 = Operand is a field.
Hex 01 = Operand is a literal.
Hex 03 = Operand is a pattern.
Hex 04 = Operator.
Unassigned values are reserved.

- Operation / operand location
Operation descriptor

Operation
Reserved (binary 0)

or
Operand location

Field source
Hex 00 = Data space
Hex 01 = Reserved
Hex 02 = Reserved

Bin(4)

Bin(2)

Char(8)

Bin(2)

Data
pointer

Char(16)

Char(1)

Char(7)

Char(2)
Char(5)

Char(1)

Hex 03 = Intermediate key buffer
Hex 04 = Key field

16-46

or

Field number
Starting offset
Ending offset

Operand is literal descriptor
Reserved (binary 0)

or

(bits 0,1 used internally)
Reserved (binary 0)
Array position of data
pointer

Operand is a pattern
Reserved (binary 0)
(bit 0 used internally)
Offset from start of this
template to pattern descriptor
array
Number of pattern descriptors
in array

Bin(2)
Bin(2)
Bin(2)

Char(1)

Char(4)
Bin(2)

Char(1)

Bin(4)

Bin(2)

or
All other descriptor types

Reserved (binary 0)
- Reserved (binary 0)

• Pattern descriptor array

Char(7)
Char(8)

Char(*)

The selection template must be aligned on a 16-byte
boundary.

The format of a pattern descriptor follows:

Pattern descriptor
- Descriptor type

Hex 00 = Field

Char(16)
Char(1)

Hex 01 = Literal
Hex 02 = Span
Unassigned values reserved

- Descriptor Char(7)
Char(1)

or

Wild card span type
Hex 01 = Fixed
Hex 02 = Float
Unassigned values reserved

Span width Bin(2)
(binary 0 for float span)
Reserved (binary 0) Char(4)

Field descriptor

or

Location
Field source
Hex 00 = Data space
Hex 01 = Reserved
Hex 02 = Reserved

Char(1)

Hex 03 = Intermediate key buffer
Unassigned values reserved

Field number Bin(2)
Starting offset Bin(2)
Ending offset Bin(2)

Literal descriptor
Reserved (binary 0) Char(1)

(B it 0,1 used internally)
Reserved (binary 0)
Array position of
of data pointer

Char(4)
Bin(2)

- Reserved (binary 0) Char(8)

The selection template will be used to perform selection
against the specified data in the location given.

The field source of key (binary 010) refers to the field
number in the composite key associated with the source
data space index when creating the index from another
index. This field source may not be specified if not
creating an index from another index.

The description of the selection template may be found
in the Create Cursor architecture.

It is not allowable to specify both length of selection
template as n on-zero (user exit selection specified), and
non-user exit selection as binary one (non-user exit
selection specified). It is not permissible to specify user
exit selection when creating the index from an existing
index if the existing source index contains user exit
selection.

When the user exit selection template is specified and
when a key is to be put into the data space index, the
user exit selection routine is passed a space pointer
which addresses an interface buffer. The storage for the
interface buffer is allocated from the process automatic
storage area. The first 2 bytes of the buffer are a return
value and must be set by the selection routine to
indicate whether addressability to the entry just passed
is to be placed in the index. Binary 0 indicates that
addressability to the entry is to be included in the index,
and any other value indicates that addressability is not
to be included in the data space index.

The second 2 bytes of the buffer contain the data space
number that indicates the data space from which the
fields have been extracted. This number corresponds to
the order of the data spaces as specified in the data
space list associated with the data space index
template.

The data space number is followed by the fields
mapped from the data space entry that is being passed
to the selection routine. The fields are presented in the
buffer as a continuous string.

If an error occurs in the selection routine, a data space
index routine failure exception is signaled, and the data
space entry is neither inserted or updated.

The data space selection specification entry contains
locations and attributes of the fields that are to be
passed to the selection routine. The selection routine
determines whether or not addressability to the entry is
to be placed in the index. The fields are presented to
the selection routine in the order of specification and
with the attributes described in the template. This
implies that values residing in the data space entry may
need to be transformed (mapped) into equivalent values
while being assembled in the selection buffer. This
transformation process may involve conversions and
truncations that are data sensitive. If any such
conversion or truncation errors are encountered during
this transformation, the conversion error checking
attribute associated with the data space will govern
whether these errors are suppressed or reported as
events. The data space selection specification entry has
the following format:

• Data space selection specification (repeated for each
data space)

Number of selection fields
- Field specification

(repeated for each field)
Field location
Field attributes

Bin(2)
Char(6)

Bin(2)
Char(4)

A data space specification entry must be present for
each data space defined for the data space index, and it
must be specified in the same order as the data spaces
are defined in the data space list. The argument and
number of selection fields designate the number of
fields (from the data space) that are to be passed to the
selection routine.

Data Base Management Instructions 16-47

If the number of selection fields is 0, the selection
routine is not invoked, and every entry's key is inserted
into the data space index for that particular data space.
A field specification entry determines the fields that are
passed to the selection routine. The order in which the
fields are specified establishes the order in which the
corresponding mapped field values appear in the
selection buffer for the selection routine. The number of
field specification entries must equal the number of
selection fields value for that data space. The field
location entry specifies the relative field position in the
data space entry of the field that is to be passed to the
selection routine. The first field in the data space entry
is identified by relative position 1. The field attributes
entry specifies the attributes that the field is to have
when it is passed to the selection routine. The definition
and meaning of the field attributes is the same as the
field attributes in the Create Cursor instruction mapping
templates. The dummy field attribute may be used to
align data in the selection buffer, but the contents of the
dummy field are binary O. If a conversion or truncation
error occurs in mapping data to the selection buffer and
enable conversion error checking was specified for that
data space, a data space index selection routine failure
exception is signaled and the data space entry is neither
inserted nor updated in the data space. If checking was
not specified, the selection routine is presented the
invalid fields.

Inserting, updating, and deleting data space entries can
occur concurrently with creating or rebuilding a data
space index over the data space.

16-48

Authorization Required

• Retrieve
- Contexts referenced for address resolution

• Insert
User profile of creating process

- Context identified by operand 2

• Object management
- Data spaces identified by operand 2

• Operational
- Selection routine identified by operand 2

Lock Enforcement

• Materialize
Selection routine identified by operand 2

- Contexts referenced for address resolution

• Modify
User profile of creating process

- Context identified by operand 2

• Implicit locks
- The data space index being created is implicitly

locked LENR for the duration of this instruction.
Source data space index (when creating an index
from an index), is locked LSRD during this
instruction.
The data spaces addressed by operand 2 are
implicitly locked LSRD during this instruction.

J

Events

0002 Authorization
0101 Object authorization violation

0008 Data space index
0401 Data space entry not addressed by data

space index

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded
0501 Machine address threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2 Other

06 Addressing
01 Space addressing violation X X

02 Boundary alignment X X

03 Range X X

06 Optimized addressability invalid X X

08 Argument/ Parameter
01 Parameter reference violation X X

OA Authorization
01 Unauthorized for operation X

OE Context Operation
01 Duplicate object identification X

10 Damage Encountered
04 System object damage state X X X

44 Partial system object damage X X

12 Data Base Management
OB Duplicate key value detected X

while building a unique data
space index

13 Invalid mapping template X

14 Invalid selection template X

1C Key size limit exceeded X

1E Selection routine buffer size limit X
exceeded

1F User exit routine criteria not X
satisfied

22 Data space index with selection X
routine build determination

26 Data space index with invalid X
floating-point field build
termination

33 Data space index with non-user X
exit selection

39 Derived field operation error X
during build index

Data Base Management Instructions 16-49

Exceptions DATA BASE MAINTENANCE (DBMAINT)

Operands Op Code Operand Operand Operand

~ Exception 1 2 Other (Hex) 1 2 3

1A Lock State
0413 Data Mainte- Number of

01 Invalid lock state X space or nance entries
1C Machine- Dependent Exception data space option

03 Machine storage limit exceeded X index
04 Object storage limit exceeded X
06 Machine lock limit exceeded X Operand 1: System pointer.

20 Machine Support
02 Machine check X Operand 2: Character(1) scalar (fixed-length).
03 Function check X

22 Object Access Operand 3: Binary scalar or null.
01 Object not found X X
02 Object destroyed X X
03 Object suspended X X Description: This instruction performs the function
05 Object not available to process X identified by the option field in operand 2 on the data

24 Pointer Specification
space or data space index identified by operand 1.

01 Pointer does not exist X X
Operand 3 is required for options hex 06, 07, and 08

02 Pointer type invalid X X
and is ignored if present for options hex 01 -05. 03 Pointer addressing invalid object X

2A Program Creation
Maintenance 06 Invalid operand type X X
Option

07 Invalid operand attribute X X
Value Function to

08 Invalid operand value range X X (Hex) Be Performed Operand 1
OC Invalid operand ODT reference X X
00 Reserved bits are not zero X X X 01 Rebuild index Data space index

2C Program Execution

06 Instruction cancellation X 02 Invalidate index Data space index

07 Instruction termination X
2E Resource Control Limit 03 Reset data space Data space

01 User profile storage limit X
Reserved exceeded 04

38 Template Specification
05 Increment maximum Data space

01 Template value invalid X
number of entries

06 Insert deleted entries Data space

07 Insert default entries Data space

08 Reset data space Data space
allocation specified

16-50

L
Rebuild Index-The invalid data space index identified by
operand 1 is rebuilt according to the definition supplied
when the data space index was created. If a truncation
or conversion error occurs when filling the selection
buffer and enable conversion error checking is specified
for the data space or if an error occurs within the
selection routine, a data space index with selection
routine build determination exception is signaled, and
the rebuild is terminated. The data space index is not
available for the duration of the operation.

Invalidate Index-The data space index is invalidated and
no further maintenance is performed on it. The data
space index must be rebuilt before it is used again.
Storage held by the data space index keys is released.
The original definition of the index remains intact. The
data space index must not be currently in use by an
activated cursor.

Reset Data Space-The data space is reset to an empty
status (all data space entries are removed) and all valid
data space indexes over the data space are updated to
reflect the empty status. A new allocation is obtained
based on the creation attributes of the data space. The
data space must not be currently in use.

Increment Maximum Number of Entries-The current
maximum number of entries limit for the data space
specified is incremented by the entry number increment
that was specified when the data space was created.
This option is used to respond to the data space entry
limit exceeded exception that is signaled by the Insert
Data Space Entry instruction, the Insert Sequential Data
Space Entries instruction, the Update Data Space Entry
instruction, the Copy Data Space Entries instruction, or
the initialize default entries option of the Data Base
Maintenance instruction.

Insert Deleted Entries-The number of entries specified
by operand 3 is inserted into the data space specified
by operand 1. Since the entries are deleted entries, this
operation will not cause the number of entries in the
data space to exceed the designated limit but the
compression threshold may be exceeded. If the
compression threshold is exceeded, no event will be
signaled; however, a subsequent De-Activate Cursor
instruction will recognize this condition and signal an
event. The number of entries value in operand 3 must
be greater than O.

Insert Default Entries-The number of entries specified
by operand 3 is inserted into the data space specified
by operand 1. The field values for the inserted entries
come from the default values entry in the specified data
space. If inserting the entries causes the number of
entries (undeleted) in the data space to exceed the
designated limit, the corresponding exception is signaled
and no entries are inserted. Inserting default entries
cannot result in the compression threshold event being
signaled. The number of entries value in operand 3
must be greater than O. An object not eligible for
operation exception is signaled if the data space has a
data space index defined over it prohibiting duplicate
keys.

Reset Data Space with Allocation Specified-The data
space is reset to an empty status (all data space entries
are removed) and all valid data space indexes over the
data space are updated to reflect the empty status. A
new allocation is obtained based on the operand 3 value
(number of entries). An operand 3 value of zero or
greater than the limit for number of entries in a data
space will cause a scalar value invalid exception. If the
data space has the initial allocation attribute, a new
allocation is obtained based on the maximum of the
initial allocation value and the operand 3 number of
entries value.

The journal entry for reset data space with allocation
specified is identical to the option hex 03 reset data
space. Performing an Apply Journaled Changes
instruction with a reset data space journal entry causes
an allocation to be obtained based on the creation
attributes for initial allocation. An allocation that is
obtained but not currently in use may be returned to the
system because of certain conditions or exceptions.

Inserting, updating, and deleting data space entries can
occur concurrently with rebuilding a data space index
over the data space.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Data Base Management Instructions 16-51

Authorization Required

• Object management
- Data space (reset options or insert entries option)
- Data space index (invalidate option)

• Retrieve
- Contexts referenced for address resolution

• Delete
- Data space (reset options)
- Data space (insert deleted entries)

• Insert
- Data space (insert default entries)
- Data space (insert deleted entries)

• Operational
Data space index (rebuild option)
Data space (increment maximum number of entries
option)

Lock Enforcement

• Materialize
- Contexts referenced for address resolution

• Modify
Data space if increment maximum number of
entries or insert entries options are specified

• Object control
- Data space index if invalidate option

• Implicit locks
Rebuild option

16-52

Data spaces locked implicitly LSRD
for the duration of the instruction

Data space index locked implicitly LEAR
for the duration of the instruction

Reset option
Data space locked implicitly LENR
for the duration of the instruction

Events

0002 Authorization
0101 Object authorization violation

0008 Data space index
0301 Data space index invalidated

OooC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

oo1AJournai port
0301 Entry not journaled

001 CJournal space
0301 Threshold reached
0401 Journal space attached to a

journal port became unusable J

Exceptions Operands
Exception 1 2 3 Other

C Operands
Exception 1 2 3 Other 24 Pointer Specification

01 Pointer does not exist X X X
06 Addressing 02 Pointer type invalid X X X

01 Space addressing violation X X X 03 Pointer addressing invalid object X
02 Boundary alignment X X

2A Program Creation
03 Range X X X 06 Invalid operand type X X X
06 Optimized addressability invalid X X X 07 Invalid operand attribute X X X

08 Argument/ Parameter
08 Invalid operand value range X X X

01 Parameter reference violation X X X
OA Invalid operand length X X

OA Authorization
OC Invalid operand ODr reference X X X

01 Unauthorized for operation X OD Reserved bits are not zero X X X X
10 Damage Encountered

2C Program Execution
04 System object damage state X X X X 06 Instruction cancellation X
44 Partial system object damage X X 07 Instruction termination X

12 Data Base Management
2E Resource Control Limit

04 Data space entry limit exceeded X 01 User profile storage limit X
OB Duplicate key value detected X exceeded

while building a unique data
07 Instruction termination X

space index
30 Journal Management

22 Data space index with selection X
02 Entry not journaled X routine build determination

23 Data space index selection routine X 32 Scalar Specification

failure 01 Scalar type invalid X

26 Data space index with invalid X 03 Scalar value invalid X X

floating-point field build
termination

27 Data space index key with invalid X
floating-point field

33 Data space index with non-user X
exit selection routine build
termination

34 Non-user exit selection routine X
failure

38 Derived field operation error X

39 Derived field operation error X
during build index

1A Lock State

01 Invalid lock state X

1C Machine- Dependent Exception

03 Machine storage limit exceeded X

04 Object storage limit exceeded X

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

04 Object not eligible for operation X

05 Object not available to process X

Data Base Management Instructions 16-53

DE-ACTIVATE CURSOR (DEACTCR)

Op Code
(Hex) Operand 1

0401 Cursor

Operand 1: System pointer.

Description: If the cursor is activated to this process,
the cursor is de-activated. All entries locked to this
cursor are unlocked. Each data space in use by this
cursor is taken out of use. All changed data spaces
charged by this cursor are forced to nonvolatile storage.
The data space index, if present, is taken out of use. A
data space index is forced to nonvolatile storage when
the forcing of a changed data space referencing the data
space index causes the data space index to no longer
reference any unforced data spaces.

The cursor is then disconnected from the process and is
available to any process for activation. An event is
signaled for each data space in use by the cursor that
currently exceeds its compression threshold. If the
cursor is not active to this process, an exception is
signaled. If the cursor is under commitment control, an
operation not valid under commitment control exception
is signaled. The cursor must be removed from
commitment control before it is deactivated.

Authorization Required

• Retrieve
- Contexts referenced for address resolution

Lock Enforcennent

• Materialize
- Contexts referenced for address resolution

• Implicit locks
Implicit LEAR lock removed from the cursor

- Implicit LSRD lock removed from the data space
- Implicit LSRD lock removed from the data space

index(es)
- Implicit LSUP lock removed from data space, if

obtained for locked data space entries

16-54

Events

0002 Authorization
0101 Object authorization violation

0007 Data space
0301 Data space compression threshold exceeded

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

001 A Journal port
0301 Entry not journaled
0401 Journal space attached to a

journal port became unusable

001 C Journal space
0301 Threshold reached

J

Exceptions

C Exception

06 Addressing
01 Space addressing violation
02 Boundary alignment

03 Range
06 Optimized addressability invalid

08 Argument/Parameter
01 Parameter reference violation

OA Authorization

01 Unauthorized for operation
10 Damage Encountered

04 System object damage state
44 Partial system object damage

1A Lock State
01 Invalid lock state

1C Machine- Dependent Exception
03 Machine storage limit exceeded

20 Machine Support
02 Machine check

03 Function check
22 Object Access

01 Object not found
02 Object destroyed
04 Object not eligible for operation
05 Object not available to process

24 Pointer Specification

L 01 Pointer does not exist
02 Pointer type invalid
03 Pointer addressing invalid object

2A Program Creation
06 Invalid operand type
07 Invalid operand attribute

08 Invalid operand value range

OC Invalid operand ODT reference
OD Reserved bits are not zero

3E Commitment Control
10 Operation not valid under

commitment control

Operand
1

X
X
X
X

X

X

X
X

X

X
X
X
X

X
X
X

X
X
X
X
X

X

Other

X
X

X

X
X

X

X

DELETE DATA SPACE ENTRY (DELDSEN)

Op Code
(Hex) Operand 1

0481 Cursor

Operand 1: System pointer.

Description: The first entry referenced by the cursor's
locked entry queue is deleted from the data space in
which it resides. The cursor must be activated to this
process and must have previously been set (with the
lock entry option) to the entry to be deleted. If no entry
is locked, an exception is signaled. The deletion of a
data space entry from the data space in which it resides
does not affect the ordinal numbers assigned to other
entries in the same data space. The keys associated
with the data space entry that is deleted are removed
from all data space indexes over the data space. An
implicit LSUP (lock shared update) lock is applied
against a data space only when the number of currently
locked entries to this cursor from this data space goes
from 0 to 1. This LSUP lock is removed only when the
number of entries currently locked to this cursor from
this data space goes from 1 to O. If this instruction
encounters an abnormal condition, the entry is not
deleted or unlocked.

If the data space entry is being deleted under
commitment control, the lock that was identified by the
locked entry queue for the cursor is transferred to the
controlling commit block. Once transferred to the
commit block, the data space entry remains locked to
the commit block until all uncommitted changes
controlled through the commit block are committed or
decommitted. If there are any valid unique keyed data
space indexes over this data space entry, the key of this
entry in that data space index is reserved (an entry may
not be added or changed in any data space that
conflicts with the deleted key) until this change is
committed or decommitted. All views of the data space
entry indicate that the entry has been deleted. Because
the entry logically remains locked under commitment
control, no other user of the data space can change the
deleted data space entry. The issuing process can
update this entry through this same cursor or another
cursor that is under the control of the same commit
block.

If this change is later decommitted, the original data
space entry is placed back in the data space at its
original ordinal entry position.

Data Base Management Instructions 16-55

If a delete operation intent was not indicated during an
Activate Cursor instruction. an invalid data base
operation exception is signaled.

Authorization Required

• Delete
- Data space affected

• Retrieve
- Contexts referenced for address resolution

Lock Enforcement

• Materialize
- Contexts referenced for address resolution

• Implicit locks
Implicit LSUP lock removed from the affected data
space if the cursor is not under commitment
control or the cursor activation options indicate the
implicit lock is to be removed.

Events

0002 Authorization
0101 Object authorization violation

0008 Data space index
0301 Data space index invalidated

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

001 A Journal port
0301 Entry not journaled
0401 Journal space attached to a

journal port became unusable

001 CJournal space
0301 Threshold reached

16-56

Exceptions

Operand
Exception 1 Other

06 Addressing
01 Space addressing violation X
02 Boundary alignment X
03 Range X
06 Optimized addressability invalid X

08 Argumentl Parameter
01 Parameter reference violation X

OA Authorization
01 Unauthorized for operation X X

10 Damage Encountered
04 System object damage state X X
44 Partial system object damage X X

12 Data Base Management
00 No entries locked X
25 Invalid data base operation X
37 Operation not valid with join X

cursor
1A Lock State

01 Invalid lock state X
1C Machine-Dependent Exception

03 Machine storage limit exceeded X
20 Machine Support

02 Machine check X
03 Function check X

22 Object Access
01 Object not found X
02 Object destroyed X
03 Object suspended X
05 Object not available to process X

24 Pointer Specification
01 Pointer does not exist X
02 Pointer type invalid X
03 Pointer addressing invalid object X

2A Program Creation
06 Invalid operand type X
07 Invalid operand attribute X
08 Invalid operand value range X
OC Invalid operand ODT reference X
00 Reserved bits are not zero X X

30 Journal Management
02 Entry not journaled X

DESTROY CURSOR (DESCR)

Op Code
(Hex) Operand 1

0429 Cursor

Operand 1: System pointer.

Description: A previously created cursor is destroyed,
and addressability to the cursor is deleted from the
context (if any) that addresses the cursor. The system
pointer identified by operand 1 is not modified by the
instruction and a subsequent reference to the cursor
through the pointer causes an object destroyed
exception to be signaled. If the cursor is currently
activated to this process, the cursor is de-activated
before being destroyed. See De-activate Cursor
instruction for a description of the de-activate function's
authorities, locks, and exceptions. If the cursor is active
but not to this process, an exception is signaled. If the
cursor is damaged and its state cannot be determined, it
is destroyed. If the cursor is under commitment control,
an operation not valid under commitment control
exception is signaled. The cursor must be removed from
commitment control before it is destroyed.

L Authorization Required

• Object control
- Operand 1

• Retrieve
- Contexts referenced for address resolution

Lock Enforcement

• Object control
- Operand 1

• Materialize
- Contexts referenced for address resolution

• Modify
- Access group which contains operand 1
- Context which addresses operand 1

User profile owning operand 1

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 I nstruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

001 A Journal port
0301 Entry not journaled
0401 Journal space attached to a

journal port became unusable

001 C Journal space
0301 Threshold reached

Data Base Management Instructions 16-57

Exceptions DESTROY DATA SPACE (DESDS)

Operand Op Code
Exception 1 Other (Hex) Operand 1

06 Addressing 0421 Data space
01 Space addressing violation X
02 Boundary alignment X Operand 1: System pointer.

03 Range X

06 Optimized addressability invalid X

08 Argument/ Parameter Description: The data space referenced by operand 1 is
01 Parameter reference violation X removed from the system, and addressability to the data

OA Authorization space is deleted from the context (in any) that addresses
01 Unauthorized for operation X

that data space.
10 Damage Encountered

04 System object damage state X X
The system pointer identified by operand 1 is not 44 Partial system object damage X X

1A Lock State modified by the instruction, and a subsequent reference

01 Invalid lock state X to the data space causes the object destroyed exception

1C Machine- Dependent Exception to be signaled.
03 Machine storage limit exceeded X

20 Machine Support If the data space is currently in-use by this or other
02 Machine check X processes in the system, or any uncommitted changes
03 Function check X are outstanding for the data space an exception is

22 Object Access signaled and the data space is not destroyed. In-use
01 Object not found X

means that a cursor is active over the data space, or
02 Object destroyed X

that the Create Data Space Index or Data Base
04 Object not eligible for operation X

Maintenance instructions are currently using the data 05 Object not available to process X

24 Pointer Specification space.

01 Pointer does not exist X J 02 Pointer type invalid X If a data space index refers to this data space, an

03 Pointer addressing invalid object X exception is signaled, and the object is not destroyed.
2A Program Creation

06 Invalid operand type X If the data space is damaged so that its state or the
07 I nvalid operand attribute X existence of data space indexes referencing it cannot be
08 Invalid operand value range X determined, the data space is destroyed.
OC Invalid operand ODT reference X
00 Reserved bits are not zero X X

30 Journal Management
Authorization Required 02 Entry not journaled X

3E Commitment Control
10 Operation not valid under X . Object control

commitment control - Operand 1

. Retrieve

- Contexts referenced for address resolution

16-58

Lock Enforcennent Exceptions

~ · Materialize Operand

- Contexts referenced for address resolution Exception 1 Other

Object control
06 Addressing · 01 Space addressing violation X

- Operand 1 02 Boundary alignment X
03 Range X

· Modify 06 Optimized addressability invalid X
Context which addresses operand 1 08 Argument/ Parameter

- User profile owning operand 1 01 Parameter reference violation X
OA Authorization

01 Unauthorized for operation X

Events 10 Damage Encountered
04 System object damage state X X

0002 Authorization
44 Partial system object damage X X

0101 Object authorization violation
1A Lock State

01 Invalid lock state X
1C Machine-Dependent Exception

OOOC Machine resource 03 Machine storage limit exceeded X
0201 Machine auxiliary storage threshold exceeded 20 Machine Support

02 Machine check X
0010 Process 03 Function check X

0701 Maximum processor time exceeded 22 Object Access

0801 Process storage limit exceeded 01 Object not found X
02 Object destroyed X

0016 Machine observation 06 Object not eligible for destruction X

0101 Instruction reference 24 Pointer Specification
01 Pointer does not exist X

l, 0017 Damage set
02 Pointer type invalid X
03 Pointer addressing invalid object X

0401 System object damage set 2A Program Creation
0801 Partial system object damage set 06 Invalid operand type X

07 Invalid operand attribute X
001 A Journal port 08 Invalid operand value range X

0301 Entry not journaled OC Invalid operand ODT reference X

0401 Journal space attached to a 00 Reserved bits are not zero X X

journal port became unusable

001 C Journal space

0301 Threshold reached

Data Base Management Instructions 16-59

DESTROY DATA SPACE INDEX (DESDSINX)

Op Code
(Hex) Operand 1

0425 Data space
index

Operand 1: System pointer.

Description: The data space index referenced by
operand 1 is removed from the machine, and
addressability to the data space index is deleted from
the context (if any) that addresses the data space index.
The system pointer identified by operand 1 is not
modified by the instruction, and a subsequent reference
to the data space index causes the object destroyed
exception to be signaled.

If the data space index is currently in-use by this or
other processes in the system, an exception is signaled.
In-use means that a cursor is active over the data space
index or that some data base maintenance operation is
in progress against this object. If the Data Base
Maintenance instruction is currently using the data space
index, an exception is signaled and the data space index
is not destroyed.

If the data space index is damaged and its state cannot
be determined, it is destroyed.

Authorization Required

• Object control
- Operand 1

• Retrieve
- Contexts referenced for address resolution

Lock Enforcement

• Materialize
- Contexts referenced for address resolution

• Object control
- Operand 1

• Modify
Context which addresses operand 1

- User profile owning operand 1

16-60

Events

0002 Authorization j 0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operand
Exception 1 Other

06 Addressing
01 Space addressing violation X
02 Boundary alignment X
03 Range X
06 Optimized addressability invalid X

08 Argument/ Parameter J 01 Parameter reference violation X
OA Authorization

01 Unauthorized for operation X
10 Damage Encountered

04 System object damage state X X
44 Partial system object damage X X

1A Lock State
01 Invalid lock state X X

1C Machine-Dependent Exception
03 Machine storage limit exceeded X

20 Machine Support
02 Machine check X
03 Function check X

22 Object Access
01 Object not found X
02 Object destroyed X
06 Object not eligible for destruction X

24 Pointer Specification
01 Pointer does not exist X
02 Pointer type invalid X
03 Pointer addressing invalid object X

2A Program Creation
06 Invalid operand type X
07 Invalid operand attribute X
08 Invalid operand value range X
OC Invalid operand ODT reference X
00 Reserved bits are not zero X X

J

ENSURE DATA SPACE ENTRIES (ENSDSEN)

Op Code
(Hex) Operand 1

0499 Cursor

Operand 1: System pointer.

Description: The instruction ensures that all changes to
data space entries that have resulted from operations
involving the identified cursor since it was activated to
this process are forced to nonvolatile storage. The
referenced cursor must have been activated to this
process. At the completion of the instruction, all data
base changes (entries that were inserted, updated, or
deleted) made through this cursor are recorded on
nonvolatile storage. The instruction does not directly
ensure the data space indexes that reference the data
space. Therefore, on a system failure, the indexes may
have to be rebuilt even though the Ensure Data Space
Entries instruction was issued. If, however, the ensuring
of a data space results in no uninsured data spaces
being referenced by a data space index, then the data
space index is also ensured to reduce the chance of it
being invalidated.

l" Authorization Required

• Retrieve
- Contexts referenced for address resolution

Lock Enforcennent

• Materialize
- Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 I nstruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

001 A Journal port
0301 Entry not journaled
0401 Journal space attached to a

journal port became unusable

001 C Journal space
0301 Threshold reached

Data Base Management Instructions 16-61

Exceptions

Operand
Exception 1

06 Addressing
01 Space addressing violation X
02 Boundary alignment X
03 Range X
06 Optimized addressability invalid X

08 Argument/ Parameter
01 Parameter reference violation X

OA Authorization
01 Unauthorized for operation X

10 Damage Encountered
04 System object damage state X
44 Partial system object damage X

1A Lock State
01 Invalid lock state X

1C Machine- Dependent Exception
03 Machine storage limit exceeded

20 Machine Support
02 Machine check
03 Function check

22 Object Access
01 Object not found X
02 Object destroyed X
03 Object suspended X
05 Object not available for process X

24 Pointer Specification
01 Pointer does not exist X
02 Pointer type invalid X
03 Pointer addressing invalid object X

2A Program Creation
06 Invalid operand type X
07 Invalid operand attribute X
08 Invalid operand value range X
OC Invalid operand ODT reference X
00 Reserved bits are not zero X

30 Journal Management
02 Entry not journaled

16-62

Other

X

X
X

X

X
X

X

X

X

ESTIMATE SIZE OF DATA SPACE INDEX KEY
RANGE (ESTDISKR)

Op Code
(Hex)

0432

Operand
1

Options
template

Operand
2

Cursor

Operand 1: Space pointer.

Operand 2: System pointer.

Description: This instruction estimates the number of
records in a given range in a data space index to
facilitate performance decisions involving the data space
index under the operand 2 cursor and the underlying
data space specified in the operand 1 option template.

Notes:
1. The operand 2 cursor must be active and must be

over a data space index or a 2204 exception (object
not eligible for operation) will be signaled.

2. If the operand 2 cursor has an associated selection
template, this will not be taken into account in the
estimate returned.

The format of the options template is as follows:

· Input options Char(2)
Depth cutoff choice Bit 0
Early exit specified Bit 1
Field/byte count choice Bit 2
Key count specified Bit 3
for 1st key
Key count specified Bit 4
for 2nd key
Reserved (binary 0) Bits 5-15

· Key 1 count Bin(2)

• Key 2 count Bit(2)

· Granularity of accuracy Bin(2)

· Data space number Bin(2)

· Early exit criterion Bin(4)

· Reserved (binary 0) Char(2)

· First search key Space
pointer

L
• Last key search Space

pointer

· Return code Char(2)

· Logical page size Char(2)
(return value)

· Total number of keys Bin(4)
in tree (return value)

· Total number of pages Bin(4)
in tree (return value)

· Page density (return value) Bin(4)

· Estimated number of logical pages Bin(4)
in specified key range (return value)

· Key estimate (return value) Bin(4)

· Reserved (binary 0) Char(32)

The options template must be aligned on a 16-byte
boundary.

If the depth cutoff choice indicator in the input options
has a value of binary one, then gradularity of accuracy
will be used to restrict the depth of the search thru. the
index. If the depth cutoff / choice indicator in the input
options has a value of binary zero, then the index will be
searched up to level n-1, where n is the deepest level
of the index corresponding to the specified key range.
The granularity of accuracy field must be zero if the
depth cutoff choice has a value of binary zero or a
template value invalid exception will be signaled.

Granularity of accuracy is interpreted as a percentage
giving the effective depth of tree search to be
performed. The larger the value, the deeper the search
of the index tree, and thus the more accurate the
estimate. This value must be greater than or equal to
100 otherwise, a template value invalid exception will be
generated. The deepest level to search is calculated by
multiplying the percentage times the maximum level of
the first and last keys and truncating to the nearest
integer.

Note: A percentage of 100% will still return an
estimate.

The data space number is with respect to the operand 2
cursor and is used to designate the variety of key
mapping and key building to perform. It must have a
value greater than zero and less than or equal to the
number of data spaces under the cursor. If the data
space is not in the active subset of data spaces under
this cursor, a template value invalid exception will be
generated.

The first search key specifies the low end of the search
range. This is the key of the least magnitude of the two
input keys after the user key has been mapped and the
appropriate key massaging (for alternate collating
sequence, descending collating sequence, and/or
numeric ordering) has been applied.

The last search key specifies the high end of the search
range. This is the key of the greatest magnitude of the
two input keys after the user key has been mapped and
the appropriate key massaging (for alternate collating
sequence, descending collating sequence, and/or
numeric ordering) has been applied.

Enough space to contain the maximum logical key
length must be allowed for both the low and the high
keys because the entire logical key will be copied from
the user's space.

If the field/byte count choice has a value of binary one,
then key count specified for first key, key count
specified for second key, key1 count, and key2 count
are used as byte counts. A byte count indicates that the
indicated number of bytes beginning with the leftmost
byte of the mapped key will be used as the key with
which to scan the index.

Otherwise, if the count choice has a value of binary
zero, then the above key count options are used as field
counts. A field count indicates that the indicated
number of fields beginning with the leftmost field of the
mapped key will be used as the key with which to scan
the index.

The key processing for byte and field counts is identical
to that performed in the Set Cursor instruction. Refer to
the set cursor architecture for more information.

Data Base Management Instructions 16-63

If the key count specified for first key indicator in the
input options has a value of binary one, then key 1
count must have a positive integer value which specifies
the number of fields or bytes assumed to be in the key
value in the first search key to be used. If the key count
specified for first key indicator in the input options has a
value of binary one and the key 1 count is less than
zero, a template value invalid exception will be signaled.
If the key 1 count is zero and there are no leading fork
characters in the key, then a template value invalid
exception will be signaled.

The key count specified for second key and key 2 count
are defined analogously.

Trailing fork characters will be appended to the
respective last field.

If the key count specified for first key indicator in the
input options has a value of binary 0, then the search
will start at the beginning of the index. Similarly, if the
key count specified for second key indicator in the input
options has a value of binary 0, then the search will end
at the last entry of the index.

If the early exit specified indicator in the input options
has a value of binary one, the early exit criterion must
have a value which is used as an upper bound on the
estimate. The search is terminated if and when the
estimated number of entries in the range of interest ever
exceeds this value.

If the early exit specified indicator in the input options
has a value of binary zero, the early exit criterion must
be zero or a template value invalid exception will occur.

The key estimate is the number of keys in the
designated key range. It is the product of the estimated
number of logical pages in specified key range and page
density. The estimated number of logical pages in
specified key range is the number of logical pages found
up to the depth percentage specified by the granularity
of accuracy. The page density is the approximate
number of keys per logical page.

Total number of keys in the tree is the number of keys
in the index under the operand 1 cursor. This value
includes keys from all data spaces under the index.

16-64

Total number of pages in the trees is the number of
logical pages currently in use.

Logical page size is the number of bytes in a logical
page of the index. (Logical page size is always an even
multiple of physical page size.)

The return codes are assigned as follows:

a = Successful
1 = 1 key in range
2 = Search path did not diverge (no range at

specified depth)
3 = Early exit
4 = Zero keys in range
5 = Logically damaged index
6 = Unsupported index structure
7 = Keys not in ascending order after mapping

The following table indicates which of the output fields
are set for every possible return code:

Return Code

0003
Output Fields or

0001 0004 0006
or or or

0000 0002 0005 0007

Logical page size Set Set Set a
Total number of Set Set Set a
keys in tree

Total number of Set Set Set a
pages in tree

Page density Set Set Set a
Estimated number of Set Set a a
logical pages in
specified key range

Key estimate Set a a a

Authorization Required Exceptions

L . Retrieve

Contexts referenced for address resolution Exception
Operands
1 2 Other

- All data spaces under the operand 2 cursor
06 Addressing

01 Space addressing violation X X X

Lock Enforcement
02 Boundary alignment X X

03 Range X X

. Materialize
06 Optimized addressability invalid X X

Operand 2
08 Argument / Parameter

- Contexts referenced for address resolution
01 Parameter reference violation X X

OA Authorization

01 Unauthorized for operation X

Events
10 Damage Encountered

04 System object damage X X

0002Authorization
12 Data Base Management

0101 Authorization violation
02 Mapping error X

07 Data space index invalid X

ooo8Data space index
08 Incomplete key description X

0301 Data space index invalidated
27 Data space index with invalid X

floating point field

OOOCMachine resources
1A Lock State

01 Invalid lock state X
0201 Machine auxiliary storage exceeded

1C Machine Dependent Exception

OOODMachine status
03 Machine storage limit exceeded X

0101 Machine check
06 Machine lock limit exceeded X

20 Machine Support

02 Machine check X
0010Process

03 Function check X
0701 Maximum processor time exceeded

0801 Process storage limit exceeded
22 Object Access

01 Object destroyed X X

0016Machine observation
02 Object destroyed X X

0101 Instruction reference
03 Object suspended X X

04 Object not eligible for operation X

24 Pointer Specification

01 Pointer does not exist X X

02 Pointer type invalid X

03 Pointer addressing invalid object X

2A Program Creation

06 Invalid operand X

07 Invalid operand attribute X

08 Invalid operand value range X

OC Invalid operand ODT reference X

00 Reserved bits are not zero X X

2E Resource Control Limit

02 Process storage limit exceeded X

38 Template Specification

01 Template value invalid X

Data Base Management Instructions 16-65

INSERT DATA SPACE ENTRY (lNSDSEN)

Op Code
(Hex)

0483

Operand
1

Cursor

Operand
2

Option
list

Operand 1: System pointer.

Operand
3

Interface
buffer

Operand 2: Character(7) variable scalar (fixed-length).

Operand 3: Space pointer.

Description: Data values in the interface buffer
addressed by the operand 3 space pointer and control
values designated the operand 2-option list are used to
create and insert a new data space entry into the data
space identified by the operand 1 cursor (which must be
activated to this process). The order of the data fields in
the interface buffer is assumed to be the same order as
defined in the Create Cursor instruction input mapping
template for that particular data space.

The ordinal entry number assigned to the new data
space entry is returned in the option list upon
completion of this instruction. All valid data space
indexes addressing the data space are updated. A check
for duplicate keys is made on data space indexes that
have the unique attribute. If no duplicate keys are
found, all the indexes are updated. If a duplicate key is
found, no indexes are updated, and the entry is not
inserted into the data space. For any field not specified
in the cursor's input mapping template, the
corresponding value from the data space's default
values entry is used.

Any data sensitive mapping error encountered during the
presenting of the new entry to the user exit routine,
associated with a select/omit data space index that
references the data space, causes the data space index
to be invalidated and an event is signaled.

16-66

The option list has the following format:

• Data space requested

• Ordinal entry number assigned

• Control attributes
Forced write option

- Reserved (binary 0)

Bin(2)

Bin(4*)

Char(1)
Bit a
Bits 1-7

Note: The value of the entry shown here with an
asterisk (*) is returned by this instruction.

The data space requested field must always be supplied
and indicates the data space into which the entry is to
be inserted. The value is the data space number which
corresponds to the data space in the data space list
identified by Create Cursor or Activate Cursor
instructions.

A value of 1 in the forced write option bit causes the
entry to be written immediately to nonvolatile storage.

If an attempt is made to insert an entry that would
cause the maximum number of entries limit to be
exceeded, the data space entry limit exceeded exception
is signaled, and the entry is not inserted.

The current addressing of an entry by the cursor for
retrieving, updating, or deleting is unaffected by the
intervening execution of the insert instruction.

If the data space entry is being inserted under
commitment control. a lock is placed on the new entry
and the lock is held by the controlling commit block.
The new entry remains locked to the commit block until
all uncommitted changes controlled through the commit
block are committed or decommitted. All views of the
data space entry indicate that the entry has been
inserted into the indicated data space. Because the new
entry remains locked, no other user of the data space
can change the inserted data space entry. The issuing
process can update this entry through this same cursor
or through another cursor that is under the control of
the same commit block. If this entry is later
decommitted, the ordinal entry of the previously inserted
data space entry contains a deleted data space entry.

If an insert operation intent was not indicated when the
Activate Cursor instruction was performed. an invalid
data base operation exception is signaled.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Authorization Required

• Insert
- Data space affected

• Retrieve
- Contexts referenced for address resolution

Lock Enforcement

• Materialize
- Contexts referenced for address resolution

• Modify
- Data space affected

• Implicit locks
If the data space is not currently implicitly locked
LSUP or higher and the cursor is under
commitment control, an LSUP lock is implicitiy
placed on the data space until either a commit or a
decommit is performed.

Events

0002 Authorization
0101 Object authorization violation

0008 Data space index
0301 Data space index invalidated

oooC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

001 A Journal port
0301 Entry not journaled
0401 Journal space attached to a

journal port became unusable

001 C Journal space
0301 Threshold reached

Data Base Management Instructions 16-67

Exceptions Exceptions

Operands Operands .j Exception 1 2 3 Other Exception 1 2 3 Other

06 Addressing 1A Lock State
01 Space addressing violation X X X 01 I nvalid lock state X X
02 Boundary alignment X X X 1C Machine- Dependent Exception
03 Range X X X 03 Machine storage limit exceeded X
06 Optimized addressability invalid X X X 04 Object storage limit exceeded X

08 Argument/Parameter 20 Machine Support
01 Parameter reference violation X X X 02 Machine check X

OA Authorization 03 Function check X
01 Unauthorized for operation X X

10 Damage Encountered 22 Object Access

04 System object damage state X X X 01 Object not found X X X

44 Partial system object damage X X X 02 Object destroyed X X X X

12 Data Base Management 03 Object suspended X X X

01 Conversion mapping error X 05 Object not available to process X

04 Data space entry limit exceeded X 24 Pointer Specification

09 Duplicate key value in existing X 01 Pointer does not exist X X X
data space entry 02 Pointer type invalid X X X

OF Duplicate key value in X 03 Pointer addressing invalid object X
uncommitted data space entry 2A Program Creation

21 Unable to maintain unique key X 06 Invalid operand type X X X
DSI 07 Invalid operand attribute X X X

23 Data space index select routine X 08 Invalid operand value range X X X
failure

25 Invalid data base operation X
OA Invalid operand length X

27 Data space index key with invalid X
OC Invalid operand ODr reference X X X

floating-point field OD Reserved bits are not zero X X X X

34 Non-user exit selection routine X
failure

36 No mapping code specified X
37 Operation not valid with join X

cursor
38 Derived field operation error X

16-68

Exceptions

L Operands

Exception 1 2 3 Other

2E Resource Control Limit

01 User profile storage limit X

exceeded
02 Process storage limit exceeded X

30 Journal Management
02 Entry not journaled X

32 Scalar Specification

01 Scalar type invalid X

02 Scalar attributes invalid X

03 Scalar value invalid X

3E Commitment Control

06 Commitment control resource X
limit exceeded

INSERT SEQUENTIAL DATA SPACE ENTRIES
(INSSDSE)

Op Code
(Hex)

0487

Operand
1

Cursor

Operand
2

Option
template

Operand 1: System pointer.

Operand 2: Space pointer.

Operand 3: Space pointer.

Operand
3

Interface
buffer

Description: Information contained in the interface buffer
addressed by the operand 3 space pointer is used to
create and insert new data space entries into the data
space identified by the operand 1 cursor (which must be
activated to this process) and the operand 2 option
template. The order of the fields in each entry in the
interface buffer is assumed to be the same order as
defined in the Create Cursor instruction input mapping
template for that particular data space.

Each entry (the total number to be inserted is identified
in the option template) is assumed to begin in the first
position of the next interface buffer entry (the length of
each entry in the buffer is defined in the option
template).

All data space indexes addressing the data space are
updated accordingly.

The option template has the following format:

· Data space requested Bin(2)

· Control attributes Char(2)
Forced write option Bit 0

- Reserved Bits 1-15

· Buffer entry length Bin(2)

· Number of entries Bin(2)

· Ordinal entry number Bin(4)*

· Interface buffer position Bin(2)*

Note: The value associated with each entry shown here
with an asterisk (*) is modified by this instruction.

Data Base Management Instructions 16-69

The data space requested field must always be supplied
and indicates the data space into which the entries are
to be inserted. The data space number must correspond
to the position this data space occupied in the data
space list identified by the Create Cursor or the Activate
Cursor instructions.

A forced write option value of 1 causes the new entries
to be immediately written to nonvolatile storage.

The buffer entry length field defines the starting position
of each entry relative to the beginning of the previous
entry in the interface buffer. The first entry always
begins in position 0 of the interface buffer. If the buffer
entry length was 200, for example, the second buffer
entry would begin in position 200, the third in position
400, and so on. The data space entry is created by
performing the operations/conversions defined in the
input mapping template for the designated data space in
the Create Cursor instruction. Mapping begins with the
first position of the buffer entry and may continue into
other buffer entries. The buffer entry length must be
greater than or equal to O.

The number of entries field indicates the total number of
entries to be mapped from the interface buffer to the
data space. This field must have a value greater than O.

The ordinal entry number assigned to the last entry
inserted into the data space is returned in the option list
upon successful completion of this instruction.

The interface buffer position (identifying the entry in the
interface buffer that caused certain exception conditions)
are returned when those exceptions are signaled. A
value of 1 indicates the first entry, a value of 2 indicates
the second, and so on. A value of 0 indicates that there
were no exceptions.

A check for duplicate keys is made on data space
indexes (over the data space) that have the unique
attribute for each entry in the interface buffer. If a
duplicate is found (duplicates may occur among entries
within the interface buffer), the insert fails and none of
the entries are inserted. The interface buffer position is
updated to indicate which entry in the interface buffer
was a duplicate key. No attempts are made to find
subsequent errors. If no duplicate keys are found, all of
the indexes are updated for each entry. Conversion
mapping errors result in similar instruction completion.

16-70

Any data sensitive mapping error that is encountered
during the presenting of one of the new entries to the
user exit routine (associated with a select/omit data
space index referencing the data space) causes the data
space index to be invalidated and an event to be
signaled.

If the insertion of one of the entries attempts to cause
the maximum number of entries to be exceeded, the
data space entry limit exceeded exception is signaled
and none of the entries are inserted.

For any field not specified in the cursor's input mapping
template, the corresponding value from the data space's
default values entry is used.

The current addressing of any entry by the cursor for
retrieval, updating, or deletion is unaffected by the
intervening execution of this instruction.

If the indicated cursor is under commitment control, an
operation not valid under commitment control exception
is signaled and the operation is terminated.

If an insert operation intent was not indicated when the
Activate Cursor instruction was performed, an invalid
data base operation exception is signaled.

Authorization Required

• Insert
- The data space affected

• Retrieve
- Contexts referenced for address resolution

Lock Enforcement

• Materialize
- Contexts referenced for address resolution

• Modify
- Data space affected

Events Exceptions

C 0002 Authorization Operands
0101 Authorization violation Exception 1 2 3 Other

0008 Data space index 06 Addressing

0301 Data space index invalidated 01 Space addressing violation X X X

02 Boundary alignment X X X

oooC Machine resource 03 Range X X X

0201 Machine auxiliary storage threshold exceeded 06 Optimized addressability invalid X X X

08 Argument/ Parameter

OOOD Machine status 01 Parameter reference violation X X X

0101 Machine check OA Authorization

01 Unauthorized for operation X

0010 Process 10 Damage Encountered

0701 Maximum processor time exceeded 04 System object damage state X X X X

0801 Process storage limit exceeded 44 Partial system object damage X X X X

12 Data Base Management

0016 Machine observation 01 Conversion mapping error X

0101 Instruction reference 04 Data space entry limit exceeded X

09 Duplicate key value in existing X

0017 Damage set data space entry

0401 System object damage set OF Duplicate key value in X

0801 Partial system object damage set
uncommitted data space entry

25 Invalid data base operation X

001 A Journal port
27 Data space index key with invalid X

0301 Entry not journaled
floating-point field

34 Non-user exit selection routine X
0401 Journal space attached to a failure

journal port became unusable 36 No mapping code specified X

37 Operation not valid with join X
001 C Journal space cursor

0301 Threshold reached 38 Derived field operation error X

1A Lock State

01 Invalid lock state X X

1C Machine- Dependent Exception

03 Machine storage limit exceeded X

04 Object storage limit exceeded X

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X X

02 Object destroyed X X X X

03 Object suspended X X X

05 Object not available to process X

24 Pointer Specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

03 Pointer addressing invalid object X

Data Base Management Instructions 16-71

Operands
Exception 1 2 3

2A Program Creation

06 Invalid operand type X X X
07 Invalid operand attribute X X X
08 Invalid operand value range X X X
OA Invalid operand length X
OC Invalid operand ODT reference X X X
00 Reserved bits are not zero X X X

2C Program Execution

06 Instruction cancellation

07 Instruction termination

2E Resource Control Limit

01 User profile storage limit
exceeded

30 Journal Management

02 Entry not journaled

38 Template Specification

01 Template value invalid X
3E Commitment Control

10 Operation not valid under
commitment control

16-72

Other

X

X
X

X

X

X

MATERIALIZE CURSOR ATTRIBUTES (MATCRAT)

Op Code
(Hex)

043B

Operand
1

Receiver

Operand
2

Cursor

Operand 1: Space pointer.

Operand 2: System pointer.

Operand
3

Materialization
options

Operand 3: Character(1) scalar (fixed-length).

Description: The operational statistics or the creation
template associated with the cursor identified by the
operand 2 system pointer is materialized into the space
identified by operand 1. The materialization options
specified by operand 3 determine the information to be
materialized: Hex 00 signifies the creation template, and
hex 01 signifies the statistics.

If statistics are requested and the cursor is not activated
to the current process, an exception is signaled. If
statistics are requested, the cursor is activated to the
current process, and the cursor is not set, then only the
materialization length and cursor attributes portion of the
statistics are materialized.

If the cursor type is join, only the statistics for the first
data space in the data space list will be materialized.

If the creation template is specified, a similar template is
materialized. (See the Create Cursor instruction, earlier
in this chapter, for a definition of the template.)

If the cursor was created with the option to make the
cursor creation template not materializable, then an
object not eligible for operation exception will be
signaled when materialize creation template option is
specified.

The values in the new template are as specified at the
creation of the cursor except in the following cases:

• Current values are provided for the object
identification, initial context, context, and size of
associated space.

• The pointers specifying the various templates may
differ because they are built contiguously in the
receiver operand 1.

The format of the materialization output for statistics is
as follows:

• Materialization length
Number of bytes provided
by the user
Number of bytes that can be
materialized

• Cursor attributes
- Cursor status

Reserved (binary 0)
Cursor under commitment
control
o = No commitment control
1 = Commitment control
Commitment control
lock indicator
o No LSUP lock on a data

space under the cursor
1 = LSUP lock on a data

space under the cursor
Reserved (binary 0)
Cursor addressability set
o = Cursor not set
1 = Cursor set

Char(8)
Bin(4)

Bin(4)

Char(10)
Char(2)
Bits 0-3
Bit 4

Bit 5

Bits 6-14
Bit 15

- Number of locked entries referenced Bin(2)
by locked entry queue

- Data space number of the first entry Bin(2)
referenced by the locked entry queue

- Ordinal entry number of the first Bin(4)
entry referenced by the locked entry
queue

• Option list
- Length of option list

Rule option
Search attributes
Control attributes
Key field count
Relative / ordinal number

- Data space key format
- Data space number
- Ordinal entry number
- Number of data spaces in the

following restricted search list
Data space included in the
restricted search list (1 to 32);
repeated for each data space

• Data space entry key

Char(")
Bin(4)
Char(1)
Char(1)
Char(1)
Char(1)
Bin(4)
Bin(2)
Bin(2)
Bin(4)
Bin(2)

Bin(2)

Char(")

The cursor under commitment control value of binary 1
indicates that the cursor is under commitment control. A
value of binary 0 in this field indicates that the cursor is
not under commitment control.

The commitment control lock indicator value of binary 1
indicates that commitment control holds a LSUP lock on
at least one data space under the cursor. This bit is
valid only if the cursor under commitment control value
is binary 1.

The cursor set attribute indicates that the cursor
currently addresses an entry for retrieval. The values in
the option list are those used in the last successful Set
Cursor instruction operation except key field count,
which is the number of fields in the materialized key. A
key count of 0 indicates a key is not materialized. The
restricted search list materialized does not contain
duplicate occurrences of the same data space; the
entries are in ascending order.

A Set Cursor instruction that used a search attribute of
binary 1 in the position indicator field is not materialized
because the cursor positioning is not recorded in the
cursor. Only a data space entry lock acquired during the
Set Cursor instruction can be materialized as part of the
cursor attributes field.

The data space entry key is the key associated with the
entry addressed for retrieval by the cursor. This key is
for the entry indicated by the data space number and
ordinal entry number materialized in the option list. A
key is materialized only if the cursor is over a data space
index, every key field was specified in the cursor output
mapping template for that data space, retrieve authority
for that data space is satisfied, and the entry is not
deleted from the data space or omitted from the data
space index. The fields within the key are ordered as
specified in the data space key specification for the data
space in the Create Data Space Index instruction; the
fields have the same attributes as specified in the output
mapping template in the Create Cursor instruction. Fork
characters are not in the materialized key.

The first 8 bytes of the materialization output in both
forms of the materialization identify the total number of
bytes provided and the number of bytes that can be
materialized.

Data Base Management Instructions 16-73

If fewer than 8 bytes are available in the space
identified by the receiver operand, a materialization
length exception is signaled. The instruction materializes
as many bytes as can be contained in the receiver's
space. If the space of the receiver is greater than that
required to contain the materialization, the excess bytes
are unchanged. When a key is materialized, additional
bytes are set to binary 0 if the key is shorter than the
longest key defined by the data space index and the
cursor output mapping template.

No exceptions (other than the materialization length
exception) are signaled when the receiver contains
insufficient space for the materialization. If the cursor
creation template is specified, the receiver must be
aligned on a multiple of 16 bytes.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Authorization Required

• Retrieve
Data space referenced, if a key is materialized

- Contexts referenced for address resolution

• Operational
- Operand 2

Lock Enforcement

• Materialize
Contexts referenced for address resolution

- Operand 2

16-74

Events

0002 Authorization
0101 Object authorization violation

0008 Data space index
0301 Data space index invalidated

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

06 Optimized addressability invalid

08 Argument / Parameter

01 Parameter reference violation

OA Authorization

01 Unauthorized for operation

10 Damage Encountered

04 System object damage state

44 Partial system object damage

12 Data Base Management

02 Key mapping error

38 Derived field operation error

1 A Lock State

01 Invalid lock state

1 C Machine- Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

x X X
X X
X X X
X X X

X X X

X

X X X
X X X

X

X X X
X X X

03 Object suspended X X X

04 Object not eligible for operation X

05 Object not available to process X

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

03 Pointer addressing invalid object

2A Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

OA Invalid operand length

OC Invalid operand ODT reference

OD Reserved bits are not zero

32 Scalar Specification

03 Scalar value invalid

X X X
X X X

X

X X X
X X X
X X X

X
X X X
X X X

X

X

X

X
X

X

X

X

X

X

MATERIALIZE DATA SPACE ATTRIBUTES
(MATDSAT)

Op Code
(Hex)

0437

Operand
1

Receiver

Operand
2

Data
space

Operand 1: Space pointer.

Operand 2: System pointer.

Operand
3

Materialization
options

Operand 3: Character(1) scalar (fixed-length).

Description: The operational statistics or the creation

template associated with the data space identified by

the operand 2 system pointer is materialized into the

byte area identified by operand 1. The materialization

option parameter specified by operand 3 determines the

information to be materialized. The format of the option

follows:

• Materialization options

Reserved (binary 0)

Suppress index related statistics

Suppress references to default

entry

Charl1)

Bits 0-3

Bit 4

Bit 5

Suppress references to the field Bit 6

table

Materialize option Bit 7

o Creation template

1 = Operational statistics

A value of binary 1 in the materialize option field

indicates that the operational statistics for the data

space should be materialized. A value of binary 0 in the

materialize option field indicates the creation template

should be materialized.

The index attributes materialized will be materialized

from contents in the data space header. The invalid

statistic is not guaranteed to be the most recent. It may

indicate the index is in a valid state when the index is in

an invalid state. When it indicates the index is in an

invalid state, it is guaranteed to be in that state at that
38 Template Specification time.

03 Materialization length exception X

Data Base Management Instructions 16-75

If the creation template is requested, the instruction
materializes a copy of the template as defined in the
Create Data Space instruction. Values in the creation
template are as specified at the creation of the data
space, with the following exceptions. The object
identification, initial context, context, size of the
associated space, contiguous return bit, unit return bit,
initial allocation, entry number increment, compression
threshold, and the maximum number of entries contain
the current values. The entry definition table and default
values entry are contiguous in the space provided. If no
default values entry was provided in the creation
template, the machine defaults are materialized.

A value of binary 1 in the suppress references to the
default entry field indicates the default entry is not
materialized as part of the creation template, and the
offset to the default entry field in the creation template
materialized is O. However, the length of the default
entry is materialized as described in the Create Data
Space instruction template. A value of binary 1 in this
field without a value of binary 0 in the materialize
options field (materialize creation template) will result in
a scalar value invalid exception.

A value of binary 1 in the suppress references to the
field table field indicates the field definition table is not
materialized as part of the creation template, the offset
to the entry definition table field in the Create Data
Space instruction template materialized is 0, and the
length of the entry definition table field in the Create
Data Space instruction template materialized is O. A
value of binary 1 in this field without a value of binary 0
in the materialize option field (materialize creation
template) will result in a scalar value invalid exception.

16-76

If statistics are requested, the materialization has the
following format:

• Materialization length
- Number of bytes provided by

the user
Number of bytes that can be
materialized

• Number of entries

• Number of deleted entries

• Size of the data space

• Number of distinct data space
indexes over the data space

• Reserved (binary 0)

• Data space index pointer
(repeated for each distinct
data space index)

• Data space index attributes
(repeated for each data space
index pointer materialized)

Type = select omit
Type = unique
Invalidated by user
Invalidated by machine
Index in logging mode
Reserved

Char(8)
Bin(4)

Bin(4)

Bin(4)

8in(4)

Bin(4)

Bin(2)

Char(10)

System
pointer

Char(2)

Bit(O)
Bit(1)
Bit(2)
Bit(3)
Bit(4)
Bit(5-15)

The first 8 bytes of the materialization output in both
materialization options identify the total number of bytes
provided by the user for materialization and the total
number of bytes available to be materialized. If fewer
than 8 bytes are available in the space identified by the
receiver operand, a materialization length exception is
signaled. The instruction materializes as many bytes as
can be contained in the receiver's space. If the space of
the receiver is greater than that required to contain the
information requested for materialization, the excess
bytes are unchanged. No exceptions (other than the
materialization length exception described previously) are
signaled in the event that the receiver contains
insufficient space for the materialization. The receiver
must be aligned on a multiple of 16 bytes.

The number of entries is the number of retrievable
entries in the data space. This number is the number of
entries that have been inserted minus the number of
entries that are deleted. This number includes any
entries that have been inserted under commitment
control but have not been committed or decommitted.

Deleted entries occupy space in a data space, and the
number of deleted entries provides an indication of how
much space they occupy. This number includes any
entries that have been deleted under commitment
control but have not been committed or decommitted.

The number of entries and the number of deleted entries
returned by this instruction may not be accurate if
system failures occur during the data space update
functions (Delete Data Space Entry, or Update Data
Space Entry instructions). These values are used when
the data space entry limit exceeded exception or the
data space compression threshold exceeded event is
signaled.

The size of the data space indicates the total space
taken up on auxiliary storage by the data space.

A value of binary 1 in the suppress index related
statistics field indicates the statistics related to data
space indexes (number of distinct data space indexes
over the data space and data space index pointers
fields) should be suppressed (binary 0). A value of
binary 1 in the suppress index related statistics field
without a value of binary 1 in the materialize option field
results in a scalar value invalid exception.

A system pointer is provided for each distinct data
space index addressing the specified data space if the
statistics related to data space indexes are not
suppressed.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Authorization Required

• Operational
- Operand 2

• Retrieve
- Contexts referenced for address resolution

Lock Enforcement

• Materialize
Operand 2
Contexts referenced for address
resolution

Events

0002 Authorization
01 01 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

00 1 a Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Data Base Management Instructions 16-77

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

06 Optimized addressability invalid

08 Argument/Parameter

01 Parameter reference violation

OA Authorization

01 Unauthorized for operation

10 Damage Encountered

04 System object damage state

44 Partial system object damage

1A Lock State

01 Invalid lock state

1C Machine- Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

03 Pointer addressing invalid object

2A Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

OA Invalid operand length

OC Invalid operand ODT reference

00 Reserved bits are not zero

32 Scalar Specification

03 Scalar value invalid

38 Template Specification

03 Materialization length exception

16-78

Operands
1 2 3

X X X

X X

X X X

X X X

X X X

X

X X X

X X X

X

X X X

X X X

X X X

X X X

X X X

X

X X X

X X X

X X X

X

X X X

X X X

X

X

Other

X

X

X

X

X

X

MATERIALIZE DATA SPACE INDEX ATTRIBUTES
(MATDSIAT)

Op Code Operand Operand
(Hex) 1 2

0433 Receiver Data
space
index

Operand 1: Space pointer.

Operand 2: System pointer.

Operand
3

Materialization
options

Operand 3: Character(1} scalar (fixed-length).

Description: The operational statistics or the creation
template associated with the data space index identified
by the operand 2 system pointer is materialized into the
space identified by operand 1. The materialization
options specified by operand 3 determine the
information to be materialized: Hex 00 signifies the
creation template; hex 01 signifies the operational
statistics without the resetting of the timestamp and
counts; and hex 02 signifies the operational statistics
with the resetting of the timestamp and counts.

If the creation template is requested, the instruction
materializes a copy of the creation templates as defined
in the Create Data Space Index instruction for the data
space index. Values in the template are as specified at
the creation of the data space index, with the following
exceptions. The object identification, initial context,
context, size of the associated space, and the unit return
bit contain current values. Any attributes that can be
modified by the Modify Data Space Index Attributes
instruction also contain the current values. In case this
index was created from an existing index, the
materialized templates may show the values as
adopted/merged from the current index. The pointers
that specify the various templates may be different
because they are built contiguously in the space
provided. The pointer to the selection routine is set to
16 bytes of binary 0, and a space pointer to the
selection routine program template is materialized. The
program template that is materialized has the following
special values set:

• Number of bytes available for materialization is a

• Initial context is binary a

• Size of space is set to a

• Context pointer is null

If data space index operational statistics are requested,
the materialization has the following format:

• Materialization length
Number of bytes provided
by the user
Number of bytes that can be
materialized

• Size of the data space index

• Timestamp of this materialization

Char(8)
Bin(4)

Bin(4)

Bin(4)

Char(8)

• Timestamp acquired from the data Char(8)
space index

• Data space index status Char(2)
Reserved (binary 0) Bits 0-13
Index in logging mode Bit 14
Data space index invalid Bit 15

• Data space status (repeated for each CharI 12)
data space addressed by the index)

Number of entries addressed by Bin(4)
the index
Number of non-entries in this Bin(4)
data space
Number of accesses to the Bin(4)
data space using this index

• Number of entries in logging sid Bin(4)

• Reserved Char(12)

The size of the data space index indicates the total
space occupied on auxiliary storage by the data space
index. The timestamp of this materialization is the
current machine timestamp. The current timestamp is
also stored in the data space index if materialization
option hex 02 is specified. The timestamp from the data
space index is the timestamp stored in the object at
creation or at the last materialization with option hex 02
on this data space index. Timestamps are 64-bit
unsigned binary values. Bit 41 equals 1024
microseconds.

The data space index invalid status indicates that the
data space index needs to be rebuilt before it can be
used. The data space index invalid indication is also
returned if the data space index is in the process of
being rebuilt by another process or a delayed
maintenance index is in overflow condition.

The data space status indicates, for each data space
addressed by the data space index, the number of
entries in the data space index due to that data space,
the number of non-deleted entries in that data space,
and the number of accesses to the data space index due
to that data space. If the data space index is invalid or
being rebuilt, or is in overflow condition, the data space
status fields (except number of non-deleted entries)
field will represent the old values and may not be
correct.

The number of entries addressed by the index is the
number of retrievable entries in the data space except
when the data space index selection routine has omitted
some entries. If any data space entries have been
inserted, deleted, or updated under commitment control
but have not been committed or decommitted, they
appear in their present state. If this data space index
has been created with the delayed maintenance option,
then these numbers reflect the statistics at the time of
the most recent cursor activation over the data space
index or at the time of the most recent rebuild of the
data space index. If the data space index is currently
being referenced through an active cursor, the statistics
are current.

The number of accesses to the data space is the
number of cursor positioning operations completed that
address this data space. A materialization option of hex
02 resets this number to O.

The order of the data space status entries in the
materialization output is the same as the order in which
the data spaces were defined when the index was
created.

The number of entries in logging sid is the number of
entries that will be processed during catch-up time. If
the index is not in logging mode or the logging sid
overflow bit is on, this field will contain binary zeros.

Data Base Management Instructions 16-79

The first 8 bytes of the materialization output in the
materialization options identify the total number of bytes
provided by the user for materialization and the total
number of bytes available to be materialized. If fewer
than 8 bytes are available in the space identified by the
receiver operand, a materialization length exception is
signaled. The instruction materializes as many bytes as
can be contained in the receiver's space. If the space of
the receiver is greater than that required to contain the
information requested for materialization, the excess
bytes are unchanged. No exceptions (other than the
materialized length exception) are signaled in the event
that the receiver contains insufficient space for the
materialization. If the creation template is specified, the
receiver must be 16-byte aligned.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

16-80

Authorization Required

• Retrieve
- Contexts referenced for address resolution

• Operational
- Operand 2

Lock Enforcement

• Materialize
Operand 2

- Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions MODIFY DATA SPACE ATTRIBUTES (MODDSAT)

L Operands Op Code Operand Operand
Exception 1 2 3 Other (Hex) 1 2

06 Addressing 043A Data space Data space
01 Space addressing violation X X X modification template

02 Boundary alignment X X

03 Range X X X Operand 1: System pointer.

06 Optimized addressability invalid X X X

08 Argument / Parameter Operand 2: Space pointer.

01 Parameter reference violation X X X

OA Authorization

01 Unauthorized for operation X Description: This instruction modifies the data space

10 Damage Encountered specified by operand 1 to the data space attributes

04 System object damage state X X X X specified by operand 2.

44 Partial system object damage X X X X

lA Lock State Additional information on data space attributes is

01 Invalid lock state X available under the description of the Create Data Space

1C Machine- Dependent Exception instruction.

03 Machine storage limit exceeded X

20 Machine Support The format of the operand 2 data space modification

02 Machine check X template is as follows:

03 Function check X

22 Object Access · Modification indicators Char(4)

01 Object not found X X X (must be hex 14005(01)

02 Object destroyed X X X

03 Object suspended X X X · Indicator attributes Char(2)

<. 24 Pointer Specification Reserved (binary 0) Bits 0-2

01 Pointer does not exist X X X Allocation Bit 3

02 Pointer type invalid X X X 0 = Use default

03 Pointer addressing invalid object X 1 = Use template value

2A Program Creation Reserved (binary 0) Bits 4-15

06 Invalid operand type X X X

07 Invalid operand attribute X X X · Reset maximum number Bin(4)

08 Invalid operand value range X X X of entries

OA Invalid operand length X X

OC Invalid operand ODT reference X X X · Entry number increment Bin(2)

OD Reserved bits are not zero X X X X

32 Scalar Specification · Unit identification Char(1)

03 Scalar value invalid X

38 Template Specification · Compression threshold Char(1)

03 Materialization length exception X

· Reserved (binary 0) Char(22)

· Current maximum number Bin(4)

of entries

The data space modification template must be aligned
on a multiple of 16 bytes.

The modification indicators field must specify a value of
hex 14005001. Any other value causes a template value
invalid exception to be signaled.

Data Base Management Instructions 16-81

The allocation indicator attribute specifies whether a
machine default value or a template field value is to be
used for certain functions of the Data Base Maintenance
instruction. The template fields related to this indicator
attribute are the reset maximum number of entries field
and the entry number increment field.

The reset maximum number of entries field specifies the
value to be used to reset the current maximum number
of entries attribute for the data space when the data
base maintenance reset data space function is
performed on it. This value can optionally be specified
for use as the allocation size the data space is to be
reset to. When the allocation indicator attribute
specifies use template value, this field also specifies the
number of entries for which the data space is to be
reallocated on the reset and it must contain a value
greater than zero. When the allocation indicator attribute
specifies use default, an internal machine default is used
for the number of entries for which the data space is to
be reallocated on the reset, and this field must contain a
value greater than or equal to zero. In either case, the
field value is used to reset the current maximum number
of entries attribute as described above and must not be
greater than the maximum number of entries allowed in
a data space. If, in the latter case, this field contains a
value of zero, it specifies that no limit is to be made on
the number of entries the data space can contain. If any
of the restrictions on the value of this field are violated,
the template value invalid exception is signaled.

The entry number increment field optionally specifies the
value to be used to increment the current maximum
number of entries data space attribute when the data
base maintenance increment maximum number of
entries function is performed on the data space. When
the allocation indicator attribute specifies use template
value, this field specifies the number of entries value for
the increment function. In this case, it must contain a
value greater than or equal to zero or the template value
invalid exception is signaled. A value of zero specifies
that the increment function is not to be allowed for the
data space. When the allocation indicator attribute
specifies use default, an internal machine default is used
for the number of entries value for the increment
function and the value of this field is ignored.

The unit identification field specifies the auxiliary storage
unit on which the data space should be reallocated
when the data base maintenance reset data space
function is performed on it. A value of zero specifies
that system default allocation should be performed. If
the value specifies an invalid unit 10, the template value
invalid exception is signaled.

16-82

The compression threshold field specifies the percentage
of deleted entries that can remain in the data space
before the data space compression threshold exceeded
event is signaled. The value can range from 0 to 100. A
value of zero specifies that the event should never be
signaled. If the value is outside the valid range, the
template value invalid exception is signaled.

The current maximum number of entries field specifies
the number of entries that can reside in the data space
before the data space entry limit exceeded exception is
signaled. The value must be greater than or equal to
zero. A value of zero specifies that no limit is to be
made on the number of entries the data space can
contain. A positive value must be greater than or equal
to the actual number of entries currently in the data
space, must be greater than or equal to the value
specified for the reset maximum number of entries field,
and must be less than the maximum number of entries
allowed in a data space. If any of the restrictions on the
value of this field are violated, the template value invalid
exception is signaled. Note that this data space attribute
will also be modified when either of the data base
maintenance increment maximum number of entries or
reset data space functions is performed on the data
space.

Authorization Required

• Retrieve
- Contexts referenced for address resolution

• Object management
- Data space identified by operand 1

Lock Enforcement

• Materialize
- Contexts referenced for address resolution

• Modification
- Data space identified by operand 1

Events Exceptions

L 0002 Authorization Operands
0101 Authorization violation Exception 1 2 3 Other

oooe Machine resources 06 Addressing

0201 Machine auxiliary storage exceeded 01 Space addressing violation X X

02 Boundary alignment X X

oooD Machine status 03 Range X X

0101 Machine check 06 Optimized addressability invalid X X

08 Argument / Parameter

0010 Process 01 Parameter reference violation X X

0701 Maximum processor time exceeded OA Authorization

0801 Process storage limit exceeded 01 Unauthorized for operation X

10 Damage Encountered

0016 Machine observation 04 System object damage X X

0101 Instruction reference 44 Partial system object damage X

1A Lock State

0017 Damage set 01 Invalid lock state X

0401 System object damage set 1C Machine Dependent Exception

0801 Partial system object damage set 03 Machine storage limit exceeded X

06 Machine lock limit exceeded

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X

02 Object destroyed X X

03 Object suspended X X

24 Pointer Specification

01 Pointer does not exist X X

02 Pointer type invalid X X

03 Pointer addressing invalid object X X

2A Program Creation

06 Invalid operand type X X

07 Invalid operand attribute X X

08 Invalid operand value range X X

OC Invalid operand ODT reference X X

00 Reserved bits are not zero X X

38 Template Specification

01 Template value invalid X

Data Base Management Instructions 16-83

MODIFY DATA SPACE INDEX ATTRIBUTES
(MODDSIA)

Op Code Operand Operand
(Hex) 1 2

047 A Data space Data space index
index modification template

Operand 1: System pointer.

Operand 2: Space pointer.

Description: This instruction modifies the attributes of a
data space index that already exists. The data space
index modification template identified by operand 2
provides the information needed to modify the data
space index.

The format of the data space index modification
template is described as follows:

• Modification indicators
- Reserved (binary 0)
- Delayed maintenance

o No delayed maintenance
change
Delayed maintenance
attribute change

- Reserved (binary 0)
- Data space index force option

o No data space index
force option change
Data space index
force option change

- Duplicate key rules
o No change in duplicate

key rule
Change in duplicate
key rule

- Unit 10

16-84

o = No change in unit 10
1 = Change unit 10
Reserved (binary 0)

Char(4)
Bits 0-1
Bit 2

Bit 3
Bit 4

Bit 5

Bit 6

Bits 7-31

·

·
•

Index attributes Char(2)
- Reserved (binary 0) Bits 0-10

Delayed maintenance Bit 11 j 0 Change to immediate
maintenance mode
Change to delayed
maintenance mode

- Reserved (binary 0) Bit 12
- Data space index force option Bit 13

0 Normal data space
index force
Force all data space
index changes

- Duplicate key rules Bits 14-15
00= Unique keys
10= FIFO keys
01 = Reserved
11 = Reserved

Unit ID option value Char(1)

Reserved (binary 0) Char(9)

L

The data space index modification template must be
aligned on a multiple of 16 bytes.

The modification indicators indicate which of the
attributes/ parameters of the data space index are to be
modified by the instruction. A value of binary one
indicates the listed attribute is to be changed. If the
indicator contains a binary zero, the attribute is not to be
changed and the corresponding field or fields in the
modification template are ignored.

Only one attribute can be changed at a time by this
instruction. If the modification indicators indicate change
in more than one index attribute, the template value
invalid data space exception will be signaled.

If the delayed maintenance indicator has a value of
binary 1, the data space index attributes indicated by
operand 1 will be modified as indicated in the delayed
maintenance attribute field. An object not eligible for
operation exception will be signaled if the data space
index is a unique keyed data space index and the
delayed maintenance attribute change field contains a
binary one. If index key type indicator has a value of
binary one, the duplicate key rules field in the index will
be modified as indicated by duplicate key rules field. An
object not eligible for operation exception will be
signaled if the index is valid and change in key rule
attributes other than from unique to FIFO specified. In
case data space index is invalid, the change in either
direction is permissible except that an object not eligible
for operation exception will be signaled. If index is
delayed maintenance and duplicate key rule attributes
contain binary zeros. No change from FIFO to LIFO or
LIFO to LIFO is permissible.

If the data space index force option indicator has a
value of binary one, the attributes of the data space
index indicated by operand 1 will be modified as
indicated in the data space index force option attribute
field. An object not eligible for operation will be
signaled if this is a temporary index.

If the unit ID indicator has a value of binary one, the
unit ID of the data space index is changed to the value
indicated by unit ID option value field. The unit ID value
must be valid for the system.

Authorization Required

• Retrieve
- Contexts referenced for address resolution

• Object management
- Data space index

Lock Enforcement

• Materialize
- Contexts referenced for address resolution

• Implicit Locks
Data space index being modified is implicitly
locked LEAR for the duration of this instruction

Events

0002 Authorization
0101 Authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

OOOD Machine status
0101 Machine check

001 0 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 I nstruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Data Base Management Instructions 16-85

Exceptions Exceptions

Operands Operands ~ Exception 1 2 Other Exception 1 2 Other

06 Addressing 24 Pointer Specification
01 Space addressing violation X X 01 Pointer does not exist X X
02 Boundary alignment X X 02 Pointer type invalid X X
03 Range X X 03 Pointer addressing invalid object X X
06 Optimized addressability invalid X X 2A Program Creation

08 Argument I Parameter 06 Invalid operand type X X
01 Parameter reference violation X X 07 Invalid operand attribute X X

OA Authorization 08 Invalid operand value range X X
01 Unauthorized for operation X X DC Invalid operand ODT reference X X

10 Damage Encountered 00 Reserved bits are not zero X X
04 System object damage X X 2C Program Execution
44 Partial system object damage X X 06 Instruction cancellation X

1A Lock State 07 Instruction termination X
01 Invalid lock state X X 2E Resource Control Limit

1C Machine- Dependent Exception 01 User profile storage limit X
03 Machine storage limit exceeded X exceeded
04 Object storage limit exceeded X 02 Process storage limit exceeded X

06 Machine lock limit exceeded X 38 Template Specification
20 Machine Support 01 Template value invalid X

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X

02 Object destroyed X X

03 Object suspended X X

04 Object not eligible for operation X X

16-86

RELEASE DATA SPACE ENTRIES (RLSDSEN)

Op Code
(Hex)

048E

Operand
1

Cursor

Operand
2

Release
options

Operand 1: System pointer.

Operand 2: Character(l) scalar (fixed-length).

Description: The instruction releases either the first data
space entry, the last data space entry, or all data space
entries currently locked to the process through the
cursor. Data space entries are locked to a process, one
at a time, through applications of the Set Cursor
instruction specifying a lock entry option. They are
unlocked during the updating or the deleting of the
entries through the Update Data Space Entry or Delete
Data Space Entry instructions.

If they are to be unlocked without any change having
been made, the Release Data Space Entries instruction
is used. This instruction specifies the cursor (which
must be activated to this process) through which they
were locked.

If the release option field has a value of hex 00, all data
space entries currently identified by the locked entry
queue for this cursor are removed from the queue and
added to the locked entry list for the controlling commit
block. If the cursor is not under commitment control,
the data space entries identified by the locked entry
queue for this cursor are removed from the queue,
unlocked, and the respective LSUP implicit lock is
removed from the data space (if the activation options
indicate to do so).

If the option field has a value of hex 01, only the first
entry identified by the locked entry queue for this cursor
(the entry that has been locked the longest) is unlocked,
and added to the locked entry list for the controlling
commit block. If the cursor is not under commitment
control, the first data space entry identified by the
locked entry queue for this cursor is removed from the
queue, unlocked, and the implicit LSUP lock is removed
from the data space (if the activation options indicate to
do so).

If the option field has a value of hex 02, only the last
entry identified by the locked entry queue for this cursor
(the entry that was last locked) is unlocked and added
to the locked entry list for the controlling commit block.
If the cursor is not under commitment control, the last
data space identified by the locked entry queue for this
cursor is removed from the queue, unlocked, and the
implicit LSUP lock is removed from the data space (if
the activation options indicate to do so).

If the release option field has a value of hex 10, this
instruction causes all data space entries currently
identified by the locked entry queue for this cursor to be
removed from the queue, unlocked (if not previously
locked to the commit block). and the respective LSUP
implicit lock to be removed from the data space (if the
cursor activation options indicate to do so). If the entry
was previously locked through the controlling commit
block, the entry lock is again placed in the locked entry
list of the commit block.

If the option field has a value of hex 11, this instruction
causes only the first entry identified by the locked entry
queue for this cursor (the entry that has been locked the
longest) to be removed from the queue, unlocked (if not
previously locked to the commit block). and the
respective LSUP implicit lock to be removed from the
data space (if the cursor activation options indicate to
do so). If the entry was previously locked through the
controlling commit block, the entry lock is again placed
in the locked entry list of the commit block.

If the option field has a value of hex 12, this instruction
causes only the last entry identified by the locked entry
queue for this cursor (the entry that was locked last) to
be removed from the queue, unlocked (if not previously
locked to the commit block). and the respective LSUP
implicit lock to be removed from the data space (if the
cursor activation options indicate to do so). If the entry
was previously locked through the controlling commit
block, the entry lock is again placed in the locked entry
list of the commit block.

Data Base Management Instructions 16-87

Options indicated by a value of hex 10, hex 11, and hex Exceptions

12 perform the indicated functions regardless of

whether or not the cursor is under commitment control. Operands

No exception is signaled if there are no entries currently Exception 1 2 Other

in the cursor's locked entry queue.
06 Addressing

Substring operand references that allow for a null 01 Space addressing violation X X

substring reference (a length value of zero) may not be 02 Boundary alignment X

specified for this instruction. 03 Range X X
06 Optimized addressability invalid X X

08 Argument/ Parameter

Authorization Required 01 Parameter reference violation X X
OA Authorization

· Retrieve 01 Unauthorized for operation X

- Contexts referenced for address resolution 10 Damage Encountered
04 System object damage state X X X
44 Partial system object damage X X X

Lock Enforcement 1A Lock State

01 Invalid lock state X

· Materialize 1C Machine-Dependent Exception

- Contexts referenced for address resolution 03 Machine storage limit exceeded X
20 Machine Support

· Implicit locks 02 Machine check X

Implicit LSUP locks are removed from the affected 03 Function check X

data spaces 22 Object Access
01 Object not found X X

02 Object destroyed X X

Events 03 Object suspended X X
05 Object not available to process X

0002 Authorization 24 Pointer Specification

0101 Object authorization violation 01 Pointer does not exist X X
02 Pointer type invalid X X

OOOC Machine resource 03 Pointer addressing invalid object X

0201 Machine auxiliary storage threshold exceeded 2A Program Creation
06 Invalid operand type X X

0010 Process 07 Invalid operand attribute X X

0701 Maximum processor time exceeded 08 Invalid operand value range X X

0801 Process storage limit exceeded OA Invalid operand length X
OC Invalid operand ODT reference X X

0016 Machine observation 00 Reserved bits are not zero X X X

0101 Instruction reference 32 Scalar Specification

03 Scalar value invalid X

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

16-88

RETRIEVE DATA SPACE ENTRY (RETDSEN)

Op Code
(Hex)

048A

Operand
1

Interface
buffer

Operand
2

Cursor

Operand 1: Space pointer.

Operand 2: System pointer.

Description: The data space entry addressed by the
most recent cursor positioning operation is retrieved.
Addressability to the entry is provided by the operand 2
cursor, which must be activated to the current process.
The fields are presented in the interface buffer,
identified by the operand 1 space pointer, in the format
and sequence established by the output mapping
template specifications provided in the Create Cursor
instruction. The entry retrieved is the entry addressed by
the most recent successful cursor positioning operation
using the operand 2 cursor and not necessarily the entry
at the head of the locked entry queue associated with
this cursor.

If a key was used directly or indirectly by the cursor
(that is, the cursor is over a data space index) and that
key has changed since the cursor was positioned, an
exception is signaled, and the entry is not retrieved. If
the Set Cursor instruction locked the entry and no
intervening release, update, or delete has been
performed against this cursor, no such key changes are
possible.

If the retrieve operation intent was not indicated when
the Activate Cursor instruction was issued, an invalid
data base operation exception is signaled.

If the cursor position is the result of performing
group-by processing, an object not eligible for operation
exception is signaled.

Authorization Required

• Retrieve
Data space affected

- Contexts referenced for address resolution

Lock Enforcement

• Materialize
- Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation

0008 Data space index
0301 Data space index invalidated

oooC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 I nstruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Data Base Management Instructions 16-89

Exceptions RETRIEVE SEQUENTIAL DATA SPACE ENTRIES
(RETSDSE)

Operands

~ Exception 1 2 Other Op Code Operand Operand Operand
(Hex) 1 2 3

06 Addressing

01 Space addressing violation X X 048B Interface Cursor Option
02 Boundary alignment X X buffer template
03 Range X X
06 Optimized addressability invalid X X Operand 1: Space pointer.

08 Argument/ Parameter

01 Parameter reference violation X X
Operand 2: System pointer.

OA Authorization

01 Unauthorized for operation X
Operand 3: Space pointer.

10 Damage Encountered

04 System object damage state X X X
Description: This instruction retrieves multiple sequential

44 Partial system object damage X X X
12 Data Base Management

data space entries or group-by results based on the

01 Conversion mapping error X
current position of the cursor identified in operand 2 and

03 Cursor not set X
places them, in sequence, in the space identified in

06 Data space entry not found X
operand 1 according to the field mapping specifications

defined at the creation of the cursor. The cursor is
07 Data space index invalid X
17 Key changed since set cursor X

repositioned during the operation. The operand 2 cursor

25 Invalid data base operation X
is modified to address the next sequential entry

30 Specified data space entry X
referenced through the underlying data space(s) or data

rejected space index. The data space entry addressed by the

32 Join value changed X
cursor or the results of processing a group-by function

34 Non-user exit selection routine X
are then placed in the interface buffer (operand 1) in the

failure manner described by the output mapping template

..) 36 No mapping code specified X specifications or group-by template defined during the

38 Derived field operation error X Create Cursor instruction. These operations are repeated

1A Lock State until the number of entries requested in the operand 3

01 Invalid lock state X option template have been placed in the interface buffer

1C Machine-Dependent Exception or the number of entries designated by the candidate

03 Machine storage limit exceeded X entries to process in the extended template have been

20 Machine Support processed. The entries are in the interface buffer in the

02 Machine check X exact order that they were retrieved. Each entry in the

03 Function check X interface buffer has up to four separate pieces of data

22 Object Access that consist of:

01 Object not found X X
02 Object destroyed X X X · The data space number followed by the ordinal entry

03 Object suspended X X number of the data space entry

05 Object not available to process X
24 Pointer Specification · The key of the data space entry (optional)

01 Pointer does not exist X X
02 Pointer type invalid X X · The default values feedback (optional)

03 Pointer addressing invalid object X
2A Program Creation · The mapped data space entry

06 Invalid operand type X X
07 Invalid operand attribute X X The pieces for retrieving group-by results are:

08 Invalid operand value range X X

OC Invalid operand ODT reference X X · The group-by results.

00 Reserved bits are not zero X X X

· The count of candidate data space entries processed

while deriving the group.

16-90

L

• The default values feedback (optional).

• The data space number (optional).

At the completion of the instruction, the cursor
addresses the last data space entry retrieved by the
operation (except in key mapping exception conditions).

The format of the option template referenced by
operand 3 is as follows:

· Control options Char(2)
Reserved (binary 0) Bit 0

- Materialize data space and Bit 1
- Materialize key Bit 2

Materialize default values Bit 3
feedback

- Extended template Bit 4
- Process group-by Bit 5

Key field count specified Bit 6
- Key byte count specified Bit 7

Retrieval direction Bit 8
ordinal number

- Reserved (binary O's) Bits 9-15

· Buffer entry length Bin(2)

· Data space and ordinal entry position Bin(2)

· Key position Bin(2)

· Data space entry position Bin(2)

· Number of entries requested Bin(2)

· Operation status Char(2)
- Key not returned indicator Bit 0*

Exception encountered indicator Bit 1*
- Cursor not positioned indicator Bit 2

Candidate entries to process Bit 3
exceeded
Reserved (binary 0) Bits 4-15

· I nterface buffer position Bin(2)

• Reserved (binary 0)

• Extended template area
Data space key format
Key field count
Key byte count
Candidate entries to process
Candidate entries processed
Candidate entries on primary
Data space processed
Widened buffer entry length
Widened data space and
entry offset
Widened key offset
Wid ended data space entry
offset
Entries processed offset
Default values feedback offset
Reserved (binary 0)

Char(2)

Char(66)
Bin(2)
Bin(2)
Bin(2)
Bin(4)
Bin(4)
Bin(4)

Bin(4)
Bin(4)

Bin(4)
Bin(4)

Bin(4)
Bin(4)
Char(24)

A value of binary 1 in the materialize data space and
ordinal number field results in the return of the data
space number and ordinal entry number in the interface
buffer for each entry. The position of these fields in the
buffer entry is defined by the data space and ordinal
entry position field. When the extended template is
specified, the position of the fields in the buffer entry is
defined by the widened data space and ordinal entry
offset field. The data space and ordinal entry offset
must contain binary zeros. A value of binary 0 in the
materialize data space and ordinal number fields results
in the data space and ordinal entry number not being
placed in the interface buffer entry and the widened
data space and ordinal entry offset field is ignored.

A materialize key value of binary 1 indicates that the key
of each entry retrieved should be returned in the
interface buffer. The position of the key in the interface
buffer is defined by the key offset field. When the
extended template is specified, the position of the key in
the interface buffer entry is defined by the widened key
offset field, and the key offset field must contain binary
zeros. A value of binary 0 in the materialize key field
will result in the key not being mapped into the interface
buffer and the widened key offset field being ignored.

Data Base Management Instructions 16-91

A materialize default values feedback value of binary 1
indicates that information regarding supplying default
values when joining is performed should be returned in
the interface buffer. The position in the interface is
defined by the default values feedback offset field. A
value of binary 0 in the materialize default values
feedback field will result in the information not being
returned. This field is ignored when the cursor is
non-join.

The extended template control option indicates the use
of the extended area of the input template.

The process group-by control attribute indicates to
perform group-by functions through this cursor versus
the retrieval of the data space entries viewed through
the cursor.

Group-by processing will process the next/previous
groups from the position the cursor currently contains.

When the cursor is directly over a data space, group-by
processing cannot be specified if the cursor is set. The
fields key field count specified, key byte count specified,
key field count, key byte count, and DS key format
fields are ignored when the cursor is directly over a data
space.

When the cursor is over a primary data space index, the
group is defined by the key byte count or key field
count. If the cursor is not positioned, the group begins
with the first or last key in the index (depending on
retrieval direction). If the cursor is positioned, it must
have been positioned to an entry with a corresponding
key in the index. The group begins with the adjacent
unique key (as defined by the key byte count or key
field count). Therefore, if positioned in the midst of a
group, the remaining entries in that group are bypassed
and group-by processing begins with the first entry in
the adjacent group.

The data space key format field is required when
specifying group-by processing and key field count or
key byte count is specified. This field indicates which
set of key field attributes are to be used in determining
the internal key length from the provided key field count
or key byte count. The data space key format field must
contain a number that corresponds to the position of the
data space in the data space pointer list for the operand
2 cursor which was provided when the cursor was
activated. This value must equal 1 when using a join
cursor.

16-92

The key field count control option indicates the field key
field count is used in generic key processing. The
extended template must be specified when this option is
specified.

The key byte count specified control option indicates the
field key byte count is used in generic key processing. It
is invalid to specify both key byte count and key field
count. The extended template must be specified when
key byte count is specified.

The retrieval direction field specifies the direction from
the current position of the cursor retrieval should take.
A value of binary zero indicates a forward (next)
direction, a value of binary one indicates a reverse
(previous) direction.

The buffer entry length field defines the length each
entry occupies in the interface buffer. The format of
each entry in the buffer is defined by the option
template. The start of the first buffer entry is at offset
zero in the interface buffer. Each successive entry in the
buffer begins on the byte defined by the buffer template
length. For example, if the buffer entry length is 200,
the second entry starts in position 201 of the interface
buffer, the third entry in position 401, and so on. The
buffer entry length field must be greater than O.

The widened buffer entry length field is identical to the
buffer entry length field except that the widened buffer
entry length is a Bin(4), buffer entry length is a Bin(2).
When the extended template is specified, the widened
buffer entry length field is used, the buffer entry length
field must be binary zero. For the remainder of this
architecture, buffer entry length refers to either field,
whichever is specified.

L
Each entry is created as follows:

• If the materialize data space and ordinal number field
is binary 1, the 2-byte data space number is placed
into the buffer entry beginning in the position
designated by the widened data space and ordinal
entry offset field. This field, if specified, must contain
a value greater than or equal to a and less than the
buffer entry length. The 4-byte ordinal entry number
of the data space entry is returned immediately
following the data space number in the interface
buffer.

• If the materialize key field has a value of binary 1, the
composite key for the data space entry is returned in
the buffer entry beginning in the position designated
by the widened key offset field. This field, if
specified, must contain a value greater than or equal
to a and less than the buffer entry length.

• If the materialize default values feedback field has a
value of binary one, the default values feedback field
is returned in the buffer entry beginning in the
position designated by the default values feedback
offset field. This field, if specified, must contain a
non-negative value and be less than the buffer
length. The default value feedback field is a Char(4)
field.

• The data space entry is then presented, as defined by
the output field mapping specifications defined at the
creation of the cursor, beginning in the first position
of the buffer entry defined by the data space entry
offset field or widened data space entry offset field.
This field must be provided and must have a
non-negative value and be less than the buffer entry
length. When the extended template is specified, the
widened data space entry offset field is used and the
data space entry offset field must contain binary
zeros.

Each entry is created in the following manner when
processing group-by:

• The group-by results is presented, as defined by the
group-by output mapping template at cursor creation,
beginning in the position designated by the widened
data space entry offset field.

• The count of candidate data space entries processed
while deriving the group results, regardless of
whether they belonged to the group, is returned in
the buffer entry beginning in the position designated
by entries processed offset. This field must contain a
non-negative value and be less than the buffer entry
length. This count is a Bin(4) field. This count
remains at 2,147,483,647 once this tally is reached
for a group.

• Default values feedback field, if applicable.

Note: If the remaining area in the buffer entry is not
large enough for the entry or either of the return fields
to be placed in the interface buffer, the entry is mapped
into the position immediately following the buffer entry.
The data space entry may be placed over the area in
which the return fields were specified.

Data Base Management Instructions 16-93

The number of entries requested field contains the
number of entries that are to be presented in the
interface buffer. This field must contain a positive value
that is greater than O.

A key not returned value of binary 1 indicates that even
though a return of the key was requested, the system
was unable to provide the key in every returned entry.
See the Set Cursor instruction for the conditions which
can cause this field to be set to binary 1.

If the cursor positioning status bit is returned with a
value of binary 1, Retrieve Sequential was in the process
of performing the positioning of the cursor. If the cursor
positioning status bit is returned with a value of binary
0, Retrieve Sequential was in the process of performing
the retrieval of data associated with the position
established, but that entry has not been returned in the
interface buffer and the interface buffer position field
does not reflect the data space entry to which the
cursor is nO'l set. At the completion of a successful
Retrieve Sequential, this bit no longer may be used to
determine the positioning status (it is left in a retrieval
status).

16-94

As the secondary positions of a join cursor are
processed, there are similar positioning and retrieving
phases being performed fbr each secondary position.
The cursor positioning status bit is modified to reflect
these phases in the same manner as positioning the
primary position of a join cursor.

When performing group-by operation, the cursor not
positioned indicator is set to binary 1 while positioning
to the first entry to be processed for the group. For a
join cursor, this bit field contains a binary zero while
establishing the join secondary positions. After
successfully positioning, the cursor not positioned
indicator is set to binary 0 and remains that way until
the group is successfully processed (that is, group result
is rejected or returned in user interface).

When the cursor indicates default values are to be
assigned, each data space in the cursor data space list
which supplied a default value will be repeated in the
default values feedback field. This field will contain a
32-bit array with each bit corresponding to a position of
a data space in the cursor's data space list. The default
values assigned will be taken from that data space's
default entry. When a default value feedback field is set
to binary 1. The position in the interface buffer to return
the default values feedbakc is given by the default
values feedback offset field.

An exception encountered return value of binary 1
indicates an exception was encountered while implicitly
setting the cursor or retrieving the next sequential data
space entry. The following exceptions, listed with the
resultant cursor positioning, results in the indicator being
set to binary 1 :

• 1201-Conversion mapping error

The data space and ordinal entry number (of the
primary data space if a join cursor) if requested and
the cursor not positioned indicator contains a binary
0, contain values which identify the data space entry
the cursor is positioned to, but the interface does not
reflect this entry nor the group-by results.

J

• 1202-Key mapping error

The cursor is positioned to the last retrieved data
space entry, or joined entry. The data space and
ordinal entry number (of the primary data space if a
join cursor), if requested, will have been created in
the buffer entry, but the entry and the default values
feedback will not be placed in the buffer entry.
Group-by fields and results will not reflect the
attempted positioning.

• 120A-End of path

The number of entries retrieved field designates the
number of valid entries retrieved.

• 1234-Non-user exit selection routine failure

The cursor is positioned to the entry which caused
the selection routine failure. Nothing has been placed
into the user buffer for this entry.

All other exceptions result in a value of binary 1 in the
exception encountered field. The number of entries
retrieved field may not be updated.

The number of entries retrieved field contains the ordinal
entry number of the last entry mapped into the int~rface
buffer. Certain exception conditions (previously defined)
can result in slightly different settings of this field. A
value of 1 would indicate the first entry and so on.

The key field count designates the number of key fields
to be used as comparison in the composite key used as
the group-by value. The definition of this field is
identical to the definition of this field in Set Cursor.

The key byte count designates the number of bytes of
the logical key structure to be used in comparison on
the group-by key. The definition of this field and the
restrictions on its use is identical to the definition and
restrictions of this field in Set Cursor.

When the key field count specified and key byte count
specified control options contain a value of binary zero,
the entire index is considered the group. Note that
when this option is specified, even though each key is
considered part of the group, the group begins with the
adjacent entry the cursor is currently positioned tot

When Retrieve Sequential requires the use of a key
associated with the current cursor position, and the
cursor was positioned without a key, an invalid rule
option exception is signaled. This includes normal
retrieval processing via the index and group-by
processing when the current key value is required.

Candidate entries include entries which may not be
reflected in the user buffer (may have been omitted via
selection criteria). Entries which may have been omitted
via key selection criteria (refer to Create Cursor) may not
be included in the candidate count.

The candidate entries to process designates a limit to
the number of entries to process before returning to the
MI user (includes entries processed but not reflected in
the user interface buffer). This field is cumulative and
designates the limit on number of entries to process for
all groups when in group-by processing. A value of zero
in this field designates that there is no limit.

Upon exceeding the candidate entries to process value,
the instruction terminates and returns normally with the
candidate entries to process exceeded bit set to binary
1. The cursor position and interface buffer results will
not reflect the attempt to position to the entry exceeding
the limit.

The candidate entries processed return field contains the
count of candidate entries processed; includes both
returned entries and entries not returned.

The candidate entries processed on primary data space
return field contains the count of candidate entries
processed on the primary data space of a join cursor. It
includes both returned entries and entries not returned.
For a non-join cursor, this field contents are the same
as the candidate entries processed field.

If the cursor was not set (that is, is not addressing any
data space entry) prior to the execution of this
instruction, it retrieves the first and last entry(s) or
entries in the data space or data space(s) index
indicated by the cursor.

Data Base Management Instructions 16-95

This instruction does not lock any data space entries. Exceptions

However, any entries previously locked to this cursor

remain locked to the cursor. Operands j
Exception 1 2 3 Other

If the indicated cursor is under commitment control, an

operation not valid under commitment control exception 06 Addressing

is signaled and the operation is terminated. 01 Space addressing violation X X X

02 Boundary alignment X X X

If the retrieve operation intent was not indicated when 03 Range X X X

the Activate Cursor instruction was issued, an invalid 06 Optimized addressability invalid X X X

data base operation exception is signaled. 08 Argument/ Parameter

01 Parameter reference violation X X X

All deleted entries encountered are skipped. OA Authorization

01 Unauthorized for operation X

10 Damage Encountered

Authorization Required 04 System object damage state X

44 Partial system object damage X X

. Retrieve 12 Data Base Management

Data space affected 01 Conversion mapping error X

- Contexts referenced for address resolution 02 Key mapping error X

07 Data space index invalid X

08 Incomplete key description X

Lock Enforcement OA End of path X

19 Invalid rule option X

. Materialize 25 Invalid data base operation X

- Contexts referenced for address resolution 34 Non-user exit selection routine X
failure

36 No mapping code specfied X

Events
38 Derived field operation error X J 1A Lock State

0002 Authorization
01 Invalid lock state X

0101 Authorization violation
1C Machine-Dependent Exception

03 Machine storage limit exceeded X

0008 Data space index
20 Machine Support

0301 Data space index invalidated
02 Machine check X

03 Function check X

OOOC Machine resource
22 Object Access

0201 Machine auxiliary storage threshold exceeded
01 Object not found X X X

02 Object destroyed X X X X

0000 Machine status
03 Object suspended X X X

0101 Machine check
04 Object not eligible for operation X

05 Object not available to process X

0010 Process
24 Pointer Specification

0701 Maximum processor time exceeded
01 Pointer does not exist X X X

0801 Process storage limit exceeded
02 Pointer type invalid X X X

03 Pointer addressing invalid object X

0016 Machine observation
2A Program Creation

0101 Instruction reference
06 Invalid operand type X X X

07 Invalid operand attribute X X X

0017 Damage set
08 Invalid operand value range X X X

0401 System object damage set
OC Invalid operand ODT reference X X X

0801 Partial system object damage set
00 Reserved bits are not zero X X X X

16-96

L

L

Exceptions

Exception

2C Program Execution

06 Instruction cancellation

07 Instruction termination

2E Resource Control Unit

01 User profile storage limit
exceeded

38 Template Specification

01 Template value invalid

3E Commitment Control

10 Operation not valid under
commitment control

Operands
1 2 3 Other

X

X

X

X

X

SET CURSOR (SETCR)

Op Code Operand Operand Operand Operand
(Hex) 1 2 3 4

048C Cursor Option Returned Requested
template key key

Operand 1: System pointer.

Operand 2: Space pointer.

Operand 3: Character variable scalar or null.

Operand 4: Character scalar or null.

Description: This instruction is used to establish
addressability through the operand 1 cursor to a
particular entry within a data space. The cursor must be
activated to this process. The option template identified
by operand 2 governs the setting of the cursor.

This instruction causes the cursor to address or not to
address an entry in a data space according to the search
arguments given in operand 2 and operand 4.
Addressability to the desired entry is stored in the cursor
identified by the operand 1 system pointer. The key of
the desired entry is optionally returned in operand 3.

The option template has the following format:

· Length of option template Bin(4)*

· Rule option Char(1)

· Search attributes Char(1)

· Control attributes Char(1)

· Key length description Char(1)
Key length type Bit 0
0 Length specified as count

of key fields
Length specified as key
byte count

Key length Bits 1-7

· Relative / ordinal number Bin(4)

· Data space key format Bin(2)

· Data space number (return value) Bin(2)

• Ordinal entry number (return value) Bin(4)

Data Base Management Instructions 16-97

• Number of data spaces in restricted Bin(2)
search list (maximum of 32 entries)

• Data space to be included in a
restricted search list (0 to 32)

• Extended option list area

- Extended functions
Candidate entries to process
provided
Candidate limit exceeded
(return field)
Reserved (binary 0)

Candidate entries to process
- Candidate entries processed

(return value)
Candidate entries processed
primary data space
Default values feedback
(return value)
Reserved (binary 0)

Bin(2)

Char(2)
Bit 0

Bit 1

Bit 2-15

Bin(4)
Bin(4)

Bin(4)

Char(4)

Char(28)

Note: The value of the entry shown here with an
asterisk (*) is ignored by this instruction.

The rule option indicates the type of search to be done.
The type of search that can be done through the cursor
depends on whether the cursor is addressing data
spaces through a data space index or it is addressing
data spaces directly. The following table indicates the
allowable values of the rule option and when they can
be used.

Rule Option

First
Last
Next
Previous
Next unique
Previous unique
Relative
Ordinal
Key-before
Key-equal or before
Key-equal
Key-equal or after
Key-after
Next equal
Previous equal
Same

16-98

Value
(Hex)

01
02
03
04
05
06
07
08
09
OA
08
OC
OD
OE
OF
21

Cursor Over:
Data Data
Space Space(s)
Index Directly

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X

X
X

X

For a cursor activated over a data space index, the
meaning of each rule option is as follows:

• First-The cursor is set to address the entry
associated with the first key in the data space index.

• Last-The cursor is set to address the entry
associated with the last key in the data space index.

• Next-The cursor is set to address the entry
associated with the next key in the data space index
after the key currently referenced by the cursor.

• Previous-The cursor is set to address the entry
associated with the previous key in the data space
index before the key currently referenced by the
cursor.

• Next unique-The cursor is set to address the entry in
the data space index after the current entry that has
a key value that is different (as qualified by the key
length description) than the key value of the current
entry.

• Previous unique-The cursor is set to address the
entry in the data space index before the current entry
that has a key value that is different (as qualified by
the key length description) than the key value of the
current entry.

• Relative-The cursor is set to address an entry in the
same data space as the current entry by adding the
specified relative/ordinal number to the ordinal
number of the current entry. If a key for the entry
exists in the data space index, the cursor is set so
that a subsequent rule option of next, previous, next
unique, or previous unique can be used.

• Ordinal-The cursor is set to address the entry in the
data space indicated by the first field entry in the
template area reserved for the restricted data space
search list and having the ordinal number specified by
the relative/ordinal number field. If a key for the
entry exists in the data space index, the cursor is set
such that a subsequent rule option of next, previous,
next unique, or previous unique can be used. The
number of data spaces in restricted search list field
must have a value greater than zero. When the
cursor is type join, the dat space referenced by the
restricted search list must be the primary data space.

L
• Key operations-In the following key operations, the

key length description indicates the length of the key
value in the operand 4 argument. The key length type
specifies whether key length indicates a count of
fields or a count of bytes comprising the key value.
The fields are expected to be ordered as specified in
the key format (see the Create Data Space Index
instruction, earlier in this chapter) for the data space
specified in the data space key format field. The
fields must also have the field attributes as specified
in the output mapping template in the Create Cursor
instruction. If a key field is referenced more than
once in the output mapping template, the first
occurrence of the field in the template determines the
attributes of the field. No fork characters are in the
operand 4 argument, only data fields.

The cursor is set to address the entry associated with
the key found in the index as follows:

Key-before finds the first key in the data space
index before the specified key value.
Key-equal or before finds the first key in the data
space index before the specified key value only
when no key in the data space index matches the
specified key value.
Key-equal finds the first key in the data space
index that matches the specified key value.
Key-equal or atter finds the first key in the data
space index after the specified key value only
when no key in the data space index matches the
specified key value.

- Key-atter finds the key in the data space index
after the specified key value.

• Next equal-The cursor is set to address the entry in
the data space index after the current entry that has
a key value that is the same (qualified by the key
length description) as the key value of the current
entry. If the cursor is not positioned to a key value,
an invalid rule option exception is signaled. If there is
no data space entry after the current entry with a key
value that matches the key value of the current entry
(qualified by the key length description), an entry not
found exception is signaled.

• Previous equal-The cursor is set to address the entry
in the data space index before the current entry that
has a key value that is the same (qualified by the key
length description) as the key value of the current
entry. If the cursor is not positioned to a key value,
an invalid rule option exception is signaled. If there is
no data space entry before the current entry with a
key value that matches the key value of the current
entry (qualified by the key length description). an
entry not found exception is signaled.

• Same-The current cursor position is not changed. If
the cursor is not currently set, a cursor not set
exception is signaled. If the data space entry (the
address of the data space entry that resulted from a
previous Set Cursor or Retrieve Sequential Data
Space Entries instruction) was through a rule option
that used a data space index for positioning but that
data space entry is not addressed by that data space
index, an entry not found exception is signaled. If the
data space entry no longer has the same key value in
that data space index, a key value changed exception
is signaled.

If the data space entry (the address of the cursor that
resulted from a previous Set Cursor or Retrieve
Sequential Data Space Entries instruction) was
through a rule option that did not result in the use of
a data space index for positioning and that data
space entry is deleted and its significance attribute is
binary 0, an entry not found exception is signaled.

When using a rule option of same with a join cursor,
if any join field used in positioning the join cursor has
changed since positioning, a join value changed
exception is signaled. If any of the data space entries
participating in the join no longer have the exact
same key value in the associated data space index, a
key value changed exception is signaled. If any of
the data space entries participating in the join are no
longer addressed by the associated data space index,
an entry not found exception is signaled.

Data Base Management Instructions 16-99

A Set Cursor instruction with the rule option of same,
does not change the status (when a data space index is
used to position the cursor) of the previous successful
Set Cursor or Retrieve Sequential Data Space Entries
instruction.

The meaning of the valid rule options are as follows (for
multiple data spaces, the search continues into the next
data space, when needed, except when restrict to
requested data space is specified):

• First-The cursor is set to address the first undeleted
entry.

• Last-The cursor is set to address the last undeleted
entry.

• Next-The cursor is set to address the first undeleted
entry following the entry currently addressed by the
cursor.

• Previous-The cursor is set to address the first
undeleted entry preceding the entry currently
addressed by the cursor.

• Relative-The cursor is set to address an entry in the
same data space as the current entry by adding the
specified relative / ordinal number to the ordinal
number of the current entry. A relative / ordinal
number causing the search to exceed the bounds of
the data space will result in an end of path exception.

• Ordinal-The cursor is set to the entry in the data
space indicated by the first field entry in the
restricted data space search list and having the
ordinal number specified by the relative/ordinal
number field. When the cursor is type join, the data
space referenced by the restricted search list must be
the primary data space. The number of data spaces
in restricted search list field must be greater than
zero.

• Same-The current cursor position is not changed. If
the cursor is not currently set, a cursor not set
exception is signaled. If the entry the cursor is
addressing as the result of the previous successful
Set Cursor or Retrieve Sequential Data Space Entries
instruction is deleted and the deleted entry
significance attribute contains a binary zero, an entry
not found exception is signaled.

16-100

When positioning a join cursor, the returned key, data
space number and ordinal number return fields, entry
deleted, and key return bit reflect only the position of
the primary data space participating in the join.

Secondary data space positions which contributed
default values will be set to a default position (that is,
the values for that data space originated from the
default entry).

Priming a join cursor position means to determine a
position for each secondary data space defined under
the cursor. Priming is performed without regard for the
current position held for this data space but is based on
the results of the position of the previous data space as
defined by the join order.

All of the rule options except next, previous, next equal,
previous equal, and same refer to positioning of the
primary. The secondary positions are then primed as
determined by the position of the primary. The possible
positions in secondaries (first/last of duplicate join
values) are determined by the implied direction of the
rule option. For rule options of first, next unique,
relative (zero or positive), ordinal, key equal, key equal or
after key after, the first possible secondary data space
positions are returned. For rule options of last, previous
unique, key before, relative (negative), the last of
possible secondary data space positions are returned.

For rule option of key equal or before the last or first of
possible secondary data space positions are returned
depending on whether the key is a before or an equal.
When the key is a before or an equal. When the key is
a before key, the last of possible secondary data space
positions are returned. When the key is an equal key,
the first of possible secondary data space positions are
returned.

When performing a next equal, previous equal, next or
previous operation, and each data space associated with
the join cursor has a position, the last data space in the
defined join order is positioned to the adjacent joined
entry. If a secondary does not have a position (null
position)' an adjacent search begins with the preceding
data space in the join order and each secondary's null
position is them primed. Likewise, when performing an
adjacent search and the end of possible join value is
reached for that data space, the adjacent search begins
with the previous data space (as defined by the join
order) and priming of subsequent secondary positions
then follows.

When adjacent searches have reached the end of all
data space under the join cursor, an end of path
exception is signaled.

The search attributes are used to modify the normal
operations of the searches indicated by the rule options.
The search attributes fields and their functions are as
follows:

Restricted to requested data spaces Bit 0
Trailing fork characters Bit 1
Deleted entry significance Bit 2
Entry deleted return bit Bit 3
Key return bit Bit 4
Materialize key indicator
Positioning indicator
Extended option list

Bit 5
Bit 6
Bit 7

• Restricted to requested data spaces-A value of binary
1 causes the search indicated by the rule option to
continue until an entry is found in a data space
indicated by the restricted data space search list.
This search attribute is ignored in the following
situations:
- Cursor over data spaces directly (no index) and

rule option = next, previous
- Rule option = ordinal, relative, same

If the restricted to requested data spaces attribute is
specified and an entry is not subsequently found, an
end of path exception is signaled, unless rule =
ordinal or key equal is used, for which an entry not
found exception is signaled. If rule = relative, the
resulting ordinal number is valid, and the designated
entry has been deleted, then an entry not found
exception is signaled. If the ordinal number is not
valid, then an end of path exception is signaled.

The search attribute restrict to requested data spaces
may not be designated if the cursor is of type join. A
template value invalid exception is signaled for this
request.

• Trailing fork characters-This attribute is considered
when the key length description field is used. A value
of binary 0 indicates that fork characters following
the last complete key field indicated by key length
description are not to be used during the search. A
value of binary 1 indicates that the fork characters
immediately following the last complete key field
indicated by the key length description field, should
be used during the search.

• Deleted entry significance-Deleted entries are
generally skipped in all searches except when the rule
option is relative, ordinal, or same. They result in
entry not found exceptions for relative, ordinal, or
same because specific entry is referenced. When the
cursor is directly over data spaces or when the rule
option is relative or ordinal and the cursor is over a
data space index, the deleted entry significance value
of binary 1 allows the ordinal positions formerly
occupied by deleted entries to be addressed. When
this attribute is binary 1 and the search criterion leads
to a deleted entry, the entry is not skipped. Instead,
the cursor is set to address the deleted entry and the
entry deleted return bit is set in the option list. A
subsequent attempt to retrieve this entry results in an
entry not found exception, but an update allows a
new entry to be inserted into the space occupied by
the deleted entry. For such an update, values for
fields not in the input mapping template are supplied
by the default values entry. When deleted entry
significance is specified with a join cursor and the
primary position is to a deleted data space entry, the
subsequent secondary positions will be set to null
(that is, no position established).

Data Base Management Instructions 16-101

• The entry deleted return value is altered only when
the deleted entry significance option is specified and
a deleted entry is addressed. A value of binary 1 for
deleted entry significance is invalid when the cursor is
over a data space index and the rule option is not
relative, ordinal, or same.

• A key return value of binary 1 indicates the key of
the desired entry has been returned in operand 3. A
value of binary 0 indicates the key was not returned
for one or more of the reasons listed in the
discussion of the return key.

• A materialize key indicator value of binary 1 indicates
that the key of the desired entry should be returned
in operand 3 upon successful completion of the Set
Cursor instruction. If operand 3 is null or cannot
contain the entire key, a scalar value invalid exception
is signaled.

• A positioning indicator of binary 0 causes the cursor
to be positioned at the entry indicated by the options
list and the current position of the cursor. A position
indicator of binary 1 leaves the position of the cursor
unchanged. The return values of the operand 2
options list and the operand 3 key returned will be
returned as if the positioning indicator was binary O.
Data space entry locks will be queued on the cursor's
locked entry queue. The set cursor operation cannot
be materialized by the Materialize Cursor Attributes
instruction.

A value of binary one in the extended option list field
indicated the extended area of the option list has been
supplied and is to be processed.

The search attributes are meaningful only for the primary
data space position of a join cursor.

16-102

The control attributtes refer only to locking and updating
and are not meaningful with a join cursor.

The control attributes are options that control the status
of the entry upon completion of the Set Cursor
instruction. The control attributes field is as follows:

- Forced write option
- Lock entry check

Lock entry return bit
Locked entry queuing
selector
o Locked as the last

entry on the queue
Locked as the first
entry on the queue

Bit 0
Bit 1
Bit 2
Bit 3

Data space entry lock option Bits 4-5
00 = Shared use
01 = Lock entry with no wait
10 = Reserved
11 = Lock entry with wait

- Access state modifications Bits 6-7
When entering lock wait for Bit 6
a data space entry

o Do not modify access state
when entering wait

1 = Modify access state when
entering lock wait

When leaving lock wait Bit 7
o Do not modify access state

when leaving lock wait
Modify access state when
leaving lock wait

Each of the control options is described as follows:

• Forced write option-If equal to binary 1, the data
space entry, when updated or deleted, is forced to
nonvolatile storage before the completion of the
associated instruction.

• Lock entry check-This option works in conjunction
with the queue entry that is specified in the locked
entry queuing selector. If this option is specified and
the data space entry that is addressed by this
instruction is locked to the same entry on the cursor's
locked queue as the entry that is specified in the
locked entry queuing selector and a lock of the data
space entry is requested, then the lock on the data
space is not changed and the cursor is set to address
the requested data space entry. If this option is not
specified and an attempt is made to lock a data
space entry that is already on this cursor's locked
entry queue, a data space entry locked exception is
signaled. A template value invalid exception is
signaled if this option is selected and the data space
entry lock option contains a value of binary 00.

• Locked entry return bit-This field contains a return
value of binary 1 if the lock entry check option is
selected and the resulting data space entry is already
locked to this cursor at the last entry on the cursor's
locked entry queue. This field contains a return value
of binary 0 if the lock entry check option is selected
and the resulting data space entry is not already
locked to any cursor. If the lock entry check option is
not specified, this field is not modified.

• Locked entry queuing selector-If equal to binary 0,
the data space entry lock obtained by this Set Cursor
instruction is placed on the last entry of the cursor's
locked entry queue. If equal to binary 1, the data
space entry lock obtained by this instruction is placed
on the first entry of the cursor's locked entry queue.

• Shared use-This option does not cause the entry to
be locked and does not check to see whether the
entry is currently locked. This option allows an entry
to be retrieved but not subsequently updated or
deleted. When cursor is of type join, the data space
entry lock option may only designate shared use. A
template value invalid exception is signaled for the
disallowed lock requests.

• Lock entry with no wait-This option allows a data
space entry to be addressed so that it can
subsequently be updated or deleted. This request
causes the entry to be locked to the cursor. If the
cursor is under commitment control and the entry is
locked to the controlling commit block, the cursor
again holds the lock. If the entry is locked to a
cursor or some other commit block, the data space
entry locked exception is signaled immediately.

• Lock entry with wait-If the entry is not presently
locked, this option is the same as lock entry with no
wait. If the entry is already locked, the requesting
process is put in a wait state. The process waits
either until the entry becomes available-in which case
the request is honored-or for a prespecified amount
of time (specified at the time the cursor was
activated) elapses-in which case a data space entry
locked exception is signaled. This exception is an
indication of a potential deadlock.

When an entry is locked, an implicit LSUP lock is
applied to the data space if the cursor activation
options indicate to do so. The data space entry must
have the first data space entry lock for this data
space, the lock must be implicitly applied at activation
time, and the lock must have lower priority than
LSUP.

• Access state modification-The access state
modification attributes control the changing of the
access state of the process access group for the
executing process during the entering of or leaving a
wait for a locked entry. The option has no effect if
the process instruction wait access state control
attribute specifies that access state modification is
not allowed. If the process attribute value specifies
that access state modification is allowed and the
option is modify access state, the process access
group defined for the process has its access state
modified.

Data Base Management Instructions 16-103

A set cursor operation causes most of the results of the
previous set cursor operation to be negated except
when the positioning indicator is binary 1. However, it is
possible to accumulate locks on data space entries for
purposes of updating or deleting multiple entries. This is
accomplished by issuing repetitive Set Cursor
instructions with the lock option set to lock entry. Each
successive Set Cursor instruction causes an additional
entry to be locked and addressability to the entry to be
put in a FIFO (first in, first out) locked entry queue
associated with the cursor.

Each combination of a Set Cursor instruction (with the
lock option specified) and a Retrieve Data Space Entry
instruction causes another entry to be locked (Set
Cursor instruction). The address of the entry is placed in
the FIFO queue (Set Cursor instruction). and the
retrieved entry is placed in the user's interface buffer
(Retrieve Data Space Entry instruction). The FIFO queue
identifies all entries that are locked by the cursor.

The entries can later be modified and unlocked from the
FIFO queue in one of the following manners:

• An Update Data Space Entry or Delete Data Space
Entry instruction is issued. Either of these instructions
causes the first entry referenced by the queue to be
removed from the queue (either updated or deleted)
and unlocked. If the cursor is under commitment
control, the lock is transferred to the controlling
commit block and the data space entry remains
locked through the commit block until all
uncommitted changes are either committed or
decommitted.

• A Release Data Space Entries instruction is issued.
This instruction causes one or all of the entries in the
queue to be removed from the queue and unlocked
(without modification). If the option is to release only
one entry, then this instruction causes the first entry
referenced by the queue to be removed from the
queue and unlocked. If the cursor is under
commitment control. the lock may optionally be
transferred to the controlling commit block and the
data space entry remains locked through the commit
block until all uncommitted changes are either
committed or decommitted.

• The cursor is de-activated.

If no entries are addressable by the FIFO queue when
an Update Data Space Entry or Delete Data Space Entry
instruction is issued, an exception is signaled.

16-104

Intervening Insert Data Space Entry instructions have no
effect on the FIFO queue or the positioning of the
cursor.

The key length description designates the length of the
key value assumed to be in the operand 4 argument to
be used for searching the data space index.

The key length value only includes data fields supplied
by the user for the Set Cursor instruction and does not
include fork characters. The key length type specifies
whether key length designates a count of data fields
specified at data space index creation time or a count of
bytes available to use as the search key value. If key
length specifies a partial key that is less than all data
fields combined, a generic search is performed. If key
length specifies a larger key value than all actual
combined data fields contained in the key for the
designated data space, the key value length used is
determined by the actual number of key fields specified
at create data space index time. When key length using
a byte count key length is specified, a generic search
using a partial key field is valid only if direct key
mapping exists between the logical and physical views
of all key fields. A generic search on partial binary or
floating point data fields is not valid and will result in a
key mapping error exception. If key length specifies a
partial key field and a key value is assumed in the
operand 4 argument, the entire key data field is
assumed to be addressable. A key length of zero is
legal only if a fork character is defined as the first
element of the key. If key length is zero, operand 4 is
ignored. The key length description is required when the
rule option is any of the key operations or next unique
or previous unique or next equal or previous equal.

The relative/ordinal number is a positive or negative
integer scalar that is used in conjunction with the
relative or ordinal rule option. If the rule option is
relative, the number is a positive or negative number
indicating a relative positioning forward or backward in
the data space from the currently addressed entry
(including deleted entries). If the rule is ordinal, the
number is the absolute position in the data space
identified by the first entry in the restricted data space
search list. Ordinal numbers are greater than or equal to
1. A negative or 0 ordinal number causes an end of
path exception to be signaled. A relative number
causing the search to exceed the bounds of the data
space results in an end of path exception.

L

The data space key format field is required when the
cursor is over a data space index and the rule option is
any of the key operations. The data space key format
indicates the variety of mapping and set of fork
characters to be used in building the internal key from
the provided key fields. The data space key format field
must contain a number that corresponds with the
position of an activated data space in the data space
pointer list for the operand 1 cursor which was supplied
(or defaulted to create cursor data space list) when the
cursor was activated. The data space key format must
designate the primary data space when positioning a
join cursor.

The data space number field is a feedback area in the
option template for the Set Cursor instruction. The value
returned identifies the data space in which the data
space entry to which the cursor has been positioned
resides. This number corresponds with the position of
the system pointer within the data space pointer list for
the Create Cursor instruction.

The ordinal entry number field is a feedback area in the
option template for the Set Cursor instruction. When a
Set Cursor instruction operation is completed, the
ordinal entry number of the data space entry currently
being addressed is returned in the option template. The
ordinal entry number of a data space entry is not
affected by the Delete Data Space Entry instruction,
and, therefore, addressability by ordinal number is also
not affected by the Delete Data Space Entry instruction.

The number of data spaces in the restricted search list
field identifies the number of data spaces in the
restricted search list. Only entries from these data
spaces will be used in the attempt to satisfy the search
criteria. Each restricted search list field contains a
number that corresponds with the position of the data
space in the data space pointer list for this cursor. The
ordering of entries in the restricted search list is not
important, and duplicate entries will be eliminated by the
Set Cursor instruction. The Materialize Cursor Attributes
instruction will always return an ordered list of restricted
data space entries without any duplicates.

Upon successful completion of the Set Cursor
instruction with the cursor activated over an index,
operand 3, if not null, will contain the composite key for
the data space entry whose addressability is set in the
cursor at the completion of this instruction; that is, the
key for the entry indicated by the data space number
and ordinal entry number returned in the feedback area
of the option template. The key is returned only if (1)
the cursor is activated over a data space index, (2) every
key field was specified in the cursor output mapping
template for that data space, (3) retrieve authority for
that data space is satisfied, (4) the entry is not deleted,
and (5) the entry has not been selected out of the data
space index. The fields within the key are ordered as
specified in the data space key specification for that
data space in the Create Data Space Index instruction
and have the same attributes as specified in the output
mapping template in the Create Cursor instruction. Fork
characters are not included in the returned key.

Candidate entries include entries which may not be
reflected in the user buffer (may have been omitted by
the selection criteria). Entries which may have been
omitted by the key selection (refer to the Create Cursor
instruction). will not be included in the candidate count.

The candidate entries to process designates a limit to
the number of entries to process before returning to the
MI user. This field must contain a zero or positive value
when the candidate entries to process provided field
contains a binary one and is otherwise ignored. A value
of zero indicates there is no limit.

The candidate entries processed return field contains the
count of candidate entries processed. This field is
uninitialized if the candidate entries to process provided
field contains a binary O.

The candidate entries processed on primary data space
return field contains the count of candidate entries
processed on the primary data space of a join cursor.
For a non-join cursor, this field contains the same value
as candidate entries processed.

Refer to Retrieve Sequential Data Space Entries
instruction for a description of the default values
feedback fields.

The default values feedback is not returned when the
candidate limit exceeded return field contains binary 1
value (exceeded the candidate limit).

Data Base Management Instructions 16-105

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

The following charts summarize the possible results of a
Set Cursor instruction for each of the valid requests.

Results of Set Cursor Without Data Space Index:

Set Cursor Rule
Options to Address Current State Explanation before Set
a Data Space Cursor Request

First or last 1. Data space not empty

2. All data spaces or data spaces
requested are empty.

Next or previous 1. Cursor set

2. Cursor set to last or first entry and no
adjacent data space is among the
active subset

3. Cursor set to last or first entry and an
adjacent data space exists (see Note
1)

4. Cursor not positioned

Relative 1. Cursor set

2. New cursor setting would be set
outside of data space bounds.

3. Cursor not positioned

4. New setting designates deleted entry

5. Data space entry deleted, and deleted
entry significance option specified

Ordinal 1. Ordinal number within data space
bounds

2. Ordinal number outside data space
bounds

3. Data space entry deleted

4. Data space entry deleted, and deleted
entry significance option specified

Results of Set Cursor

Entry Not
Found End of Path Cursor
(Exception (Exception Remains

Normal Condition) Condition) Not Set

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Note: An adjacent data space must not be empty and must contain at least one nondeleted entry unless deleted
entry significance is specified.

16-106

Results of Set Cursor With Data Space Index:

L Results of Set Cursor

Entry Not
Set Cursor Rule Found End of Path Cursor
Options to Address Current State Explanation before Set (Exception (Exception Remains
a Data Space Index Cursor Request Normal Condition) Condition) Not Set

First or last 1. Index not empty X

2. Index empty X

3. Index does not contain key for any X
data space entry as specified by
restricted search list.

Next, previous, next 1. Cursor set X
unique, or previous 2. Cursor set to last (or first) key in the X
unique index

3. Cursor not positioned X
4. Cursor set to last (or first) key X

associated with restricted data space

Relative, ordinal (see Cursor Without Data Spaces Index Results chart)

Key equal 1. Key in index X

2. Key not in index X

Key before, 1. Equal key in index X
key - eq ua 1/ before, 2. Equal key not in index. Next/ previous X
key-equal/ after, key key is in index.
after 3. Key not in index. Either· no key < this X

key in index or no key > this key in
index (depending on rule).

Note: The cursor setting remains unchanged for all exception conditions.

Data Base Management Instructions 16-107

Authorization Required Exceptions

· Operational Operands .j
- Data space affected Exception 1 2 3 4 Other

· Retrieve 06 Addressing

- Contexts referenced for address resolution 01 Space addressing violation X X X X
02 Boundary alignment X X X X

03 Range X X X X

Lock Enforcement 06 Optimized addressability invalid X X X X
08 Argu ment / Pa rameter

· Materialize 01 Parameter reference violation X X X X

- Contexts referenced for address resolution OA Authorization

01 Unauthorized for operation X

· Implicit locks 10 Damage Encountered

Implicit LSUP lock applied to the data space 04 System object damage state X X X X X

referenced by the cursor if lock option is lock and 44 Partial system object damage X X X X X

cursor activation options to do so 12 Data Base Management

02 Key mapping error X X X
03 Cursor not set X

Events 05 Data space entry locked X

06 Data space entry not found X

0002 Authorization 07 Data space index invalid X

0101 Object authorization violation 08 Incomplete key description X

OA End of path X

0008 Data space index 17 Key value changed since Set X

0301 Data space index invalidated Cursor

19 Invalid rule option X

J OOOC Machine resource 27 Data space index key with X

0201 Machine auxiliary storage threshold exceeded
invalid floating-point field

30 Specified data space entry X

0010 Process
rejected

32 Join value changed X
0701 Maximum processor time exceeded 34 Non-user exit selection routine X
0801 Process storage limit exceeded failure

38 Derived field operation error X
0016 Machine observation 1A Lock State

0101 Instruction reference 01 Invalid lock state X

1C Machine-Dependent Exception
0017 Damage set 03 Machine storage limit X

0401 System object damage set exceeded

0801 Partial system object damage set 06 Machine lock limit exceeded X

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access
01 Object not found X X X X
02 Object destroyed X X X X X

03 Object suspended X X X X

04 Object not eligible for X
operation

05 Object not available to process X

16-108

Operands

L
Exception 1 2 3 4

24 Pointer Specification

01 Pointer does not exist X X X X

02 Pointer type invalid X X X X

03 Pointer addressing invalid X
object

2A Program Creation

06 Invalid operand type X X X X

07 I nvalid operand attribute X X X X

08 Invalid operand value range X X X X

OA Invalid operand length X X X

OC Invalid operand ODT reference X X X X

00 Reserved bits are not zero X X X X

2C Program Execution

06 Instruction cancellation X X X X

07 Instruction termination

30 Journal Management

02 Entry not journaled

32 Scalar Specification

01 Scalar type invalid X X

02 Scalar attributes invalid X X

03 Scalar value invalid X X

38 Template Specification

01 Template value invalid X

3E Commitment Control

L
06 Commit control resource limit

exceeded

Other

X

X

X

X

X

UPDATE DATA SPACE ENTRY (UPDSEN)

Op Code
(Hex)

0492

Operand
1

Cursor

Operand
2

Interface
buffer

Operand 1: System pointer.

Operand 2: Space pointer.

Description: The first data space entry of the locked
entry queue associated with the operand 1 cursor (which
must be activated to the current process) is updated
with information provided in the interface buffer
addressed by operand 2. The fields to be updated must
be presented in the interface buffer in the format and
sequence established by the input mapping template
specification provided in the Create Cursor instruction.
Fields in the data space entry that are not included in
the input mapping template are unchanged in the data
space entry, unless the deleted entry update option was
previously specified when this entry was locked. In
which case, the unmapped fields receive default values.
All of the data space indexes referencing the data space
are updated to reflect the changes.

If the data space entry is being updated under
commitment control, the lock identified by the cursor's
locked entry queue is transferred from the cursor's
locked entry queue to the controlling commit block. The
data space entry remains locked to the commit block
until all uncommitted changes controlled through the
commit block are committed or decommitted. If there
are any valid unique keyed data space indexes over this
data space entry, the key for the entry before it was
changed in that data space index is reserved until this
change is committed or decommitted. A data space
entry may not be added or changed, which results in a
key that conflicts with the old key of this data space
entry. All views of the data space entry indicate that the
entry has been changed. Because it remains locked, no
other user of the data space may change the updated
data space entry. The issuing process may update or
delete this entry through this same cursor or another
cursor that is under control of the same commit block.

If this change is later decommitted, the original data
space entry is placed back in the data space at its
original ordinal entry position.

Data Base Management Instructions 16-109

This instruction must have been preceded by a
successful Set Cursor instruction (with a lock entry
option specified) that caused the entry to be locked. At
the successful completion of the instruction, the updated
entry is unlocked and the lock is transferred to the
controlling commit block. The implicit LSUP lock is
removed from the data space, if the activate cursor
options for the cursor indicate for this to be done. If no
entry is locked, then an exception is signaled. Errors in
this instruction cause the entry to remain locked.

If the update operation intent was not indicated when
the Activate Cursor instruction was performed, an invalid
data base operation exception is signaled.

Authorization Required

• Retrieve
- Contexts referenced for address resolution

• Update
- Data space affected

Lock Enforcement

• Materialize
- Contexts referenced for address resolution

• Implicit locks
- Implicit LSUP lock removed from the affected data

space

16-110

Events

0002 Authorization
0101 Object authorization violation

0008 Data space index
0301 Data space index invalidated

OOOC Machine resource
0201 Machine auxiliary storage

threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

001 A Journal port
0301 Entry not journaled
0401 Journal space attached to a

journal port became unusable

001 C Journal space
0301 Threshold reached

Exceptions Exceptions

'--, Operands Operands
Exception 1 2 Other Exception 1 2 Other

06 Addressing 2A Program Creation

01 Space addressing violation X X 06 Invalid operand type X X
02 Boundary alignment X X 07 Invalid operand attribute X X
03 Range X X 08 Invalid operand value range X X
06 Optimized addressability invalid X X OC Invalid operand ODT reference X X

08 Argument/ Parameter 00 Reserved bits are not zero X X X
01 Parameter reference violation X X 2E Resource Control Limit

OA Authorization 01 User profile storage limit X
01 Unauthorized for operation X X exceeded

10 Damage Encountered 30 Journal Management

04 System object damage state X X X 02 Entry not journaled X

44 Partial system object damage X X X 32 Scalar Specification

12 Data Base Management 01 Scalar type invalid X X

01 Conversion mapping error X
09 Duplicate key value in existing X

data space entry

00 No entries locked X
OF Duplicate key value in X

uncommitted data space entry

21 Unable to maintain unique key X
DSI

23 Data space index select routine X
failure

25 Invalid data base operation X
27 Data space index key with invalid X

floating-point field

34 Non-user exit selection routine X
failure

36 No mapping code specified X
37 Operation not valid with join X

cursor

38 Derived field operation X
1A Lock State

01 Invalid lock state X

1C Machine-Dependent Exception

03 Machine storage limit exceeded X
04 Object storage limit exceeded X

20 Machine Support

02 Machine check X
03 Function check X

22 Object Access

01 Object not found X X
02 Object destroyed X X X
03 Object suspended X X
05 Object not available to process X

24 Pointer Specification

01 Pointer does not exist X X

02 Pointer type invalid X X
03 Pointer addressing invalid object X

Data Base Management Instructions 16-111

16-112

Chapter 17. Source/Sink Management Instructions

The following chapter describes the source/sink
management instructions. The instructions are in
alphabetic order. For an alphabetic summary of all the
instructions, see Appendix A. Instruction Summary.

CREATE CONTROLLER DESCRIPTION (CRTCD)

Op Code Operand Operand
(Hex) 1 2

0496 Controller Controller description
description template

Operand 1: System pointer.

Operand 2: Space pointer.

Description: A CD (controller description) is created in
accordance with the controller description template. A
system pointer that addresses the created CD is
returned in the pointer specified by operand 1. The
template identified by operand 2 must be 16-byte
aligned, and any pointers specified within the template
must also be 16-byte aligned. The format of this
template is as follows:

• Template size specification
- Size of template
- Number of bytes available

for materialization

• Object identification
- Object type
- Object subtype
- Object name

Char(8)
Bin(4)
Bin(4)*

Char(32)
Char(1)*
Char(1)
Char(30)

• Object creation options
- Existence attribute

1 = Permanent (required)
- Space attribute

o = Fixed-length
1 = Variable-length

- Reserved (binary 0)
- Access group

o = Not member of access
group (required)

- Replacement option
o = Create as new (required)

- Reserved (binary 0)

• Reserved (binary 0)

• Size of space

• Initial value of space

Char(4)
Bit 0

Bit 1

Bit 2
Bit 3

Bit 4

Bits 5-31

Char(4)

Bin(4)

Char(1)

Source/Sink Management I~structions 17-1

• Performance class Char(4)
- Space alignment Bit 0

o = The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space. If
no space is specified for
the object, this value must
be specified for the
performance class.
The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space as
well as to allow proper
alignment of input/output
buffers at 512-byte align
ments within the the space.

Reserved (binary 0) Bits 1-4
- Main storage pool selection Bit 5

o Process default main storage
pool is used for object.

1 = Machine default main storage
pool is used for object.

Reserved (binary 0) Bit 6
Block transfer on implicit Bit 7
access state modification
o = Transfer the minimum storage

transfer size for this object.
This value is 1 storage unit.
Transfer the machine default
storage transfer size. This
value is 8 storage units.

- Reserved (binary 0) Bits 8-31

• Reserved (binary 0)

• CD definition data
CD type
Hex 0000 = Attached to system
Hex 0100 = Attached to ND

- Controller identification
Unit type
Model number
Reserved (binary 0)

• CD specific data

Char(39)

Char(16)
Char(2)

Char(8)
Char(4)
Char(4)
Char(6)

Char(*)

Note: The value associated with each entry shown here
with an asterisk (*) is ignored by this instruction.

17-2

The created object is owned by the user profile
governing process execution. The user profile that owns
the object is implicitly granted all authority states to the
object. The storage occupied by the created object is
charged to this same user profile.

The template size specification entry within the CD
template must indicate the number of bytes to be used
in defining the CD to be created.

The object identification specifies the symbolic name
that identifies the object within the machine. A type
code of hex 12 is implicitly supplied by the machine.
The object identification is used on materialize
instructions to identify the object and also to locate the
object through the machine context.

Addressability to the CD is inserted in the machine
context.

A space that is fixed or variable in size can be
associated with the created object. The initial allocation
of storage for the space is as specified in the size of
space entry. The machine allocates a space at least the
size specified; the actual size allocated is machine model
dependent. (The maximum amount of storage that can
be specified for the associated space is approximately
16 MB minus 4 K.) Each byte of the space is initialized
to a value specified by the initial value of space entry.
When the space is extended in size, this byte value is
also used to initialize the new additional bytes in the
space. An associated space is not allocated for a fixed
size space of zero length. The maximum size of a CD
object is approximately 4 K bytes.

The performance class parameter provides information
that allows the machine to manage the object with
consideration for the overall performance objectives of
operations involving the context.

One format is defined to specify the creation of a CD. . NO candidate list data Char(32)
The CD specific data entry defines this structure, and - Pointer to NO candidate list Space

L the CD type entry defines the structure of the remaining (binary a for CD types 00 and 10 pointer
portion of the template. that are nonswitched and do not

have the switched backup mode)

· Forward object group Char(32) - Number of NO candidate pointers Bin(2)
- Forward object pointer, NO System - Reserved (binary 0) Char(14)

For type 00, binary a pointer
For type 10, forward NO . Station control information Char(32)
(if unspecified, binary 0) - Exchange identification Char(21)

- Switched network forward, System (SNA only)
NO connection pointer* Byte a Char(1)
(if unspecified, binary 0) XID format Bits 0-3

Physical unit type Bits 4-7

· Backward pointer list data Char(32) XID field length Char(1)
- Pointer to backward object list Space XID Char(4)

(if unspecified, binary 0) pointer Block number Bit(12)
- Number of backward object Bin(2) Specific 10 Bit(20)

pointers Reserved (binary 0) Char(2)
- Reserved (binary 0) Char(14) Configuration flags Char(1)

· Physical definition data Char(16) Physical unit characteristics Char(1)
- Physical address Char(8) Maximum length received Char(2)

For type 00, Reserved (binary 0) Char(4)
Reserved (binary 0) Char(6) Frames limit Char(1)
CD (OU number) address Bit 16 Reserved (binary 0) Char(4)

For type 10, - Station definition Char(1)
Reserved (binary 0) Char(4) Line discipline Bits 0-1

L
Station's link address Char(2) 10= SDLC
for SDLC, BSC mUltipoint, 01 = BSC
or X.25 switched virtual 11 = Defined by line
circuit. Binary a for BSC discipline extension field
point-to-point. 00= Other or not applicable

Switched network Bit 2
NO (OU#) address for Char(2) a No (nonswitched network
leased line or X.25 or not applicable)
permanent virtual circuit. Yes (switched network)
Binary a for switched line Role Bit 3
or X.25 switched virtual a BSC station,
circuit. secondary SDLC

station, APPC
Power control Char(2) station, or not
Hex 0000 = No applicable
Hex 0100 = Yes Primary SDLC

- Reserved (binary 0) Char(6) station, APPC
station, or BSC

· State change/status definition Char(16) multipoint tributary
- State change / status field Char(8)* Switched network backup feature Bit 4
- Reserved (binary 0) Char(8) (on nonswitched network)

o = No
1 = Yes

Data rate select feature Bit 5
o = No
1 = Yes

Reserved (binary 0) Bits 6-7

Source/Sink Management Instructions 17-3

- Line discipline Char(l) · XID information area
extension field - XID information length Bin(2)

Hex OO=Not applicable (contains the length of J (defined previously) the following XID data)
Hex 01=X.25 - XID information data Char(*)

Reserved (binary 0) Char(l)

- Path information unit type Char(2) · Unit-specific contents Char(*)
(SNA format ID, SDLC only) - Unit-specific length Bin(2)

- Reserved (binary 0) Char(6) (contains the length of
the following unit-

· Selected mode data Char(16) specific parameters)
- Selected mode Char(2) - Unit-specific modify length Bin(2)

Reserved (binary 0) Bits 0-2 (contains the length of the
Switched network backup mode Bit 3 specific area that can

0 = Nonswitched mode be modified)
1 = Switched mode - Unit-specific parameters Char(*)

BSC protocol modes Bit 4-6 Area that can be modified Char(*)
000 Normal mode Area that can only be materialized Char(*)
001 = MTAM mode
010 = 3270 emulation mode For BSC controllers, the following unit-specific

Reserved (binary 0) Bits 7-15 parameters have been defined:
- Delayed contact control Char(2)

Hex 0000 = No · Unit-specific length for switched line controllers
Hex 0100 = Yes (contains a value 112+18y, where y is the number of

- BSC delay data remote XIDs in the following list).
Delay time (this program) Bin(2)
Delay time (device) Bin(2) · Unit-specific length for nonswitched line controllers

- Reserved (binary 0) Char(8) is reserved for 112 bytes of binary zeros.

· Activate physical unit information Char(16) · Unit-specific modify length (same as both above
- ACTPU required Char(l) bullets).

Hex 00 = No
Hex 01 = Yes · Unit-specific parameters Char(*)

- ACTPU parameters Char(9) - BSC miscellaneous attributes Char(2)
Request code Char(l) First switched operation indicator Bit 1
Activation type Char(l) 0 = Device must transmit first
Profile number Char(l) 1 = Device must receive first
SSCPID Char(6) Reserved (binary 0) Bit 15
Reserved (binary 0) Char(6) - Reserved (binary 0) ChartS)

- This system's XID Char(18)

· Dial digits Char(32) XID length Bin(2)
- Reserved (binary 0) Char(6) XID Char(15)
- Number of dial digits used Bin(2) Reserved (binary 0) Char(1)
- Dial digits field Char(16) - Number of remote XIDs Bin(2)
- Reserved (binary 0) Char(8) - Reserved (binary 0) Char(l)

- MTAM signon/logon Char(Sl)

· Specific characteristics Char(*) - Remote XID list for dial in/out Char(*)
- Specific characteristics length Bin(2) XID length Bin(2)

(contains the length XID Char(15)
of the following ID type Char(1)
specific data area)

- Specific data Char(*)

17-4

• Backward object list, LUD System
pointer

This entry defines the list of backward objects LUDs
(logical unit descriptions) and is located by the
backward object list pointer. One pointer entry (or
binary 0' s) is present for each attached LUD (logical
unit description).

• ND candidate pointers, ND
(If not specified, binary 0)

System
pointer

This list, if present, defines the ND (network
description) candidates and is located by the N D
candidate list pointer. The number of entries in the
list is determined by the number of ND candidate
pointers.

Note: The value associated with each entry shown here
with an asterisk (*) is ignored by this instruction.

A CD logically represents a physical device controller or
a communications controller for devices in a
communications network. Two versions of CDs are
supported. A type 00 CD attaches directly to the
system. A type 10 CD attaches to the system through
an ND. The structure of the creation template (size and
order of entries) for each CD type is identical; however,
the values and meanings of certain entries may depend
on the type and, in some cases, on other values
specified in the template.

The unit type indicates the IBM product number or a
representative number for other equipment
manufacturers' products. The model number defines the
unit model number of the controller.

The forward object group indicates any association of
the CD with an ND. The forward object pointer
indicates a permanent association. For type 00 CDs, this
entry is not used and must be binary O. For type 10
CDs, this entry is used to specify the line that the CD is
attached to except when it is attached to a switched
network. This entry is optional in a create template. If a
forward object is not specified for type 10 (indicated by
binary O's), no association is made until a Create
Network Description instruction is executed that
specifies this CD as one of its backward objects. A type
10 CD that requires a forward object is unusable until
the forward object is specified. If a forward object
pointer is specified, then the object identified by the
system pointer must be in a varied off state to allow the
connection of this CD. If the object is not in the varied
off state, a source/sink state invalid exception is
signaled.

The switched network forward connection pointer is
used only for switched networks and can be materialized
to determine the ND currently used by the CD. This
entry is ignored in the creation template.

The backward object list identifies the set of LUDs to be
associated with the CD. A pointer locates the list of
system pointers identifying the LUDs. This list is
optional and, if not specified (indicated by binary O's in
the pointer to backward object list entry), the association
of the CD to any LUDs is made when the LUDs are
created. Any LUDs specified as associated with this CD
cannot be associated with another CD.

The physical address defines a unique address by which
the controller is known in the system. The definition
depends on the CD type field as indicated in the
template.

For a type 00 CD, the operation unit number is
specified. For a type 10 CD, the CD station address and
the operational unit number of the associated N Dare
specified. For switched connections, the ND operational
unit number is not specified on create (binary 0). For
switched connections and also for nonswitched
connections that have the switched network backup
feature, a unique address can be established only by an
association of the exchange identification (SSCP ID for a
primary station) with the physical address. Exchange
identification (XID) or SSCP ID assignments must be
made by the user to ensure a unique address. If a
unique address is not established, the source/sink
physical address exception is signaled by the Create
instruction.

The power control entry (allowed only for CD type 10)
specifies whether power to the control unit can be
remotely turned on or off from the system. If yes (hex
Fl FO), the control unit power is turned off or on through
the Modify Controller Description instruction.

The status change/status definition entry is used to
change the state of the CD through a Modify Controller
Description instruction or to determine the current state
of the CD through the Materialize Controller Description
instruction. No information can be specified on the
Create Controller Description instruction.

Source/Sink Management Instructions 17-5

The ND candidate list defines a set of network
descriptions that describe line appearances suitable to
the characteristics of the created CD. The list is used in
switched connections to define possible switched lines
with which this CD can communicate. The list is not
present (indicated by binary a's in the pointer to ND
candidate list entry) for a type 00 CD or for a type 10
CD that is nonswitched and does not have switched
network backup mode.

The list of pointers for the ND candidate list must be
either system pointers to network descriptions or binary
a's. The desired number of ND candidates must be
supplied because the number of these pointers cannot
be changed once the CD is created.

Station control information: This entry is made up of
subentries, which are as follows:

• XID (Exchange identification, SNA only): Station ID
sequence for establishing identity of the station. The
contents of this field allow establishing a unique
identification of the physical unit that this CD object
is to represent. The block number is assigned by the
manufacturing plant at the time of manufacture or
installation for every physical unit. Each unit can
identify itself with this XID information.

17-6

• Station definition: The subentries for this entry are
defined as follows:

Line discipline and line discipline extension field:
These entries define the protocol to be used for
link level communications. All stations
communicating over the link must follow the same
protocol (SDLC, BSC, or X.25) at any point in
time.
Switched network: This entry establishes whether
or not the data link is established through the
public switched network. If not, a nonswitched or
private facility is implied.
Role: For SNA, SDLC or X.25
(secondary / primary): When this entry is set, this
controller represents the SNA station that assumes
the role of a primary station on this line.
Otherwise, either this CD represents a secondary
SNA station on a network for which System/38 is
the primary station or the field is not applicable.

For BSC-When this entry is set, this controller
represents the far end BSC control station for
which System/38 has assumed the role of a
multipoint tributary station. Otherwise, normal
BSC point-to-point communication is assumed.

For APPC (advanced program to program
communications)-This entry should be set to one
if this CD represents a primary station and is, or
will be, attached to an ND that is a secondary
station. This entry should be set to zero if this CD
represents a temporary station and is, or will be,
attached to an ND that is a primary station.
During APPC operations, the role indicator may be
changed by the machine when the network
connection is made because any station (CD) can
change its role from one interval connection to
another interval connection.

Switched network backup: This entry indicates
that the station has a modem with the switched
network backup capability. The normal
communication facility is nonswitched. To use this
option, the selectable mode field bit for switched
backup operation must be set.
Data rate select: This entry indicates that the
station has a modem that is capable of operating
at either full speed or half speed. To use this
option, the selectable mode field bit for selected
rate must be set.

• Path information unit type: This entry defines the
SNA format identifier supported by this controller.

Selected mode data: This field is used by modify
instructions and create instructions to initialize the
operating state of the CD for whichever options have
been defined for this station. The switched network
backup mode bit determines if the CDS that are for
switched network backup are to be operated in
nonswitched or switched backup mode. The BSC
protocol modes bits are used to specify the binary
synchronous communications operating protocol.
Normal mode is used for all protocol mode except
MTAM (MULTI-LEAVING telecommunication access
method). MTAM is used for BSC remote job entry
applications. The delayed contact control indicator is
used by nonswitched stations to periodically attempt to
contact the station if the initial contact was not
successful. If the indicator is set, the CD contact event
will be signaled only after the station is contacted. If the
indicator is not set, the CD contact event (unsuccessful
subtype) will be signaled after an unsuccessful attempt
to contact the station and no further attempt will be
made.

Activate physical unit parameters: This entry defines the
parameters used to establish the MSCP (machine
services control point) to the physical unit session. The
SSCP ID subentry is the identification of the SNA
system services control point in the network and, for the
case of primary controllers, must be established uniquely
within the System/38 network.

Dial digits: This entry contains the number to be dialed
to establish a connection with the station represented by
this CD.

Specific characteristics: This entry defines the set of
characteristics that are described uniquely for each
controller at the time of object creation. See the IBM
System/38 Functional Reference Manual-Volume 2,
GA21-9800 for the details concerning local source/sink
devices, communications, and locally attached work
stations for this entry.

XID information area: This entry can be materialized and
defines the XID (exchange ID) data area. For SDLC, the
two data formats consist of a fixed-length format and a
variable-length format. The fixed-length format is a
subset of the variable-length format and identifies the
physical unit type and specific station. The variable
format provides the physical unit description, which
includes configuration characteristics, information field
length, maximum output count, and addressing
characteristics. For BSC, the format is fixed length for
XIDs as defined in the remote XID lists of the
unit-specific contents area. On a create template, only
the XID information length field is referenced to allocate
the proper amount of space in the CD. The remaining
part of the XID information is ignored.

Unit-specific contents: This entry defines the set of
specific modifiable parameters and the parameters
which are supplied by the machine (materializable only)
for the controller unit described in this CD. The
non modifiable part of this entry is ignored on a create or
modify instruction. The modifiable part of this entry may
or may not be required to contain correct data at the
time of creation depending on the specific controller that
is to be created.

For BSC controllers, the following fields are defined:

• BSC first switched operation indicator entry specifies
to the System/38 in what direction data transfer is
allowed to take place when a switched link is first
activated. Subsequent sessions are not controlled by
this indicator, but are controlled by the first request
I/O operation, which must indicate in which direction
data transfer is to take place.

• This system's XID entry specifies the identification
characters to be used by the System/38 when
identifying itself to the far end switched stations.

• MTAM signon/logon entry contains the sign on or
log on data that is passed to the host system at
connection time when operating in the MT AM
protocol mode.

• Remote XID list entry specifies the array of possible
XIDs that the far end station represented by this CD
is allowed to identify itself to this system. On
switched connections, the System/38 ensures that
the incoming XID matches the requirements of one of
the entries in this list before completing the
connection. The received XID will then be returned in
the XID information area of this CD.

Source/Sink Management Instructions 17-7

Additional information about this entry is contained in
the IBM System/38 Functional Reference
Manual-Volume 2, GA21-9800 for local source/sink
devices, communications, and locally attached work
stations.

The values supplied within the CD template must meet
the requirements to create a CD for the physical
controller being described. If the values are not
compatible with limitations and ranges known to the
machine, a template value invalid exception is signaled,
and the CD is not created.

The physical address and exchange identification
supplied within the template must be unique from any
existing CDs. If not, a source/sink duplicate physical
address exception is signaled and the CD is not created.
The physical controller and its associated machine
support components must be installed on the system
before the CD can be created. If the internal machine
configuration records do not indicate that these physical
components are installed, a source/sink resource not
available exception is signaled, and the CD is not
created.

Authorization Required

• Privileged instruction

• Insert
- User profile of creating process

• Operational
- Source/sink objects identified in operand 2

Lock Enforcement

• Modify

17-8

User profile that is to own this object
Source/sink objects specified as forward and
backward objects identified in operand 2

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded
0501 Machine address threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0201 Machine context damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions CREATE LOGICAL UNIT DESCRIPTION (CRTLUD)

L Operands Op Code Operand Operand
Exception 1 2 Other

(Hex) 1 2

02 Access Group
01 Object ineligible for access group X

049A Logical Logical unit
unit description template

06 Addressing description
01 Space addressing violation X X

02 Boundary alignment X X
Operand 1: System pointer.

03 Range X X

06 Optimized addressability invalid X X
Operand 2: Space pointer.

08 Argument/Parameter
01 Parameter reference violation X X

OA Authorization
01 Unauthorized for operation X Description: A LUD (logical unit description) is created in

02 Privileged instruction X accordance with the logical unit description template. A
OE Context Operation system pointer that addresses the created LUD is

01 Duplicate object identification X returned in the pointer specified by operand 1. The
10 Damage Encountered template identified by operand 2 must be 16-byte

02 Machine context damage state X aligned and any pointers specified within the template
04 System object damage state X must also be 16-byte aligned. A LUD template is
44 Partial system object damage X defined as follows:

1A Lock State

01 Invalid lock state X
Template size specification Char(8)

1C Machine- Dependent Exception ·
03 Machine storage limit exceeded X Size of template Bin(4)

04 Object storage limit exceeded X Number of bytes available Bin(4)*

20 Machine Support for materialization
02 Machine check X

03 Function check · Object identification Char(32)

\.. 22 Object Access Object type Char(1)*
01 Object not found X X Object subtype Char(1)
02 Object destroyed X X Object name Char(30)
03 Object suspended X X

24 Pointer Specification
Object creation options Char(4) · 01 Pointer does not exist X X

Existence attribute Bit 0
02 Pointer type invalid X X

03 Pointer address invalid object X 1 = Permanent (required)

2A Program Creation Space attribute Bit 1

06 Invalid operand type X X 0 = Fixed-length
07 Invalid operand attribute X X 1 = Variable-length
08 Invalid operand value range X X Reserved (binary 0) Bit 2
OC Invalid operand ODT reference X X Access group Bit 3
00 Reserved bits are not zero X X X 0 = Not member of access

2E Resource Control Limit group (required)
01 User profile storage limit X Replacement option Bit 4

exceeded
32 Scalar Specification 0 = Create as new (required)

01 Scalar type invalid X X Reserved (binary 0) Bits 5-31

34 Source/Sink Management
01 Source/sink configuration invalid X · Reserved (binary 0) Char(4)
02 Source/sink duplicate physical X

address · Size of space Bin(4)
03 Source/sink invalid object state X
04 Source/sink resource not X Initial value of space Char(1) available ·

38 Template Specification
01 Template value invalid X

L 02 Template size invalid X

Source/Sink Management Instructions 17-9

• Performance class Char(4)
- Space alignment Bit 0

o = The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space. If
no space is specified for
the object, this value must
be specified for the
performance class.
The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space as
well as to allow proper
alignment of input/output
buffers at 512-byte align
ments within the space.

Reserved (binary 0) Bits 1-4
- Main storage pool selection Bit 5

o Process default main storage
pool is used for object.
Machine default main storage
pool is used for object.

Reserved (binary 0) Bit 6
Block transfer on implicit Bit 7
access state modification
o = Transfer the minimum storage

transfer size for this object.
This value is 1 storage unit.
Transfer the machine default
storage transfer size. This
value is 8 storage units.

- Reserved (binary 0)

• Reserved (binary 0)

• LUD definition data
LUD type
00= Attached directly to system
10= Attached to type 00 CD
30 = Attached to type 10 CD

- LUD identification
Device type
Model number

- Reserved (binary 0)

• LUD specific data

17-10

Bits 8-31

Char(39)

Char(16)
Char(2)

Char(8)
Char(4)
Char(4)
Char(6)

Char(*)

The created object is owned by the user profile
governing process execution. The user profile that owns
the LUD is implicitly granted all authority states to the
object and also charged for the storage occupied by the
created object.

The template size specification entry within the CD
template must indicate the number of bytes to be used
in defining the CD to be created.

The object identification specifies the symbolic name
that identifies the object. A type code of hex 10 is
implicitly supplied by the machine. The object
identification is used to identify the object on materialize
instructions and also to locate the object through the
machine context.

Addressability to the LUD is inserted in the machine
context.

A space that is fixed or variable in size can be
associated with the created object. The initial allocation
of storage for the space is as specified in the size of
space entry. The machine allocates a space of at least
the size specified; the number of bytes allocated is
machine model dependent. (The maximum amount of
storage that can be specified for the associated space is
approximately 16 MB minus 4 K.) Each byte of the
space is initialized to a value specified by the initial
value of space entry. When the space is extended in
size, this value is also used to initialize the additional
bytes in the space. A fixed size space with a zero length
causes no space to be allocated. The maximum size of
a LUD object is 4 K bytes.

The performance class parameter provides information
that allows the machine to more effectively manage the
object.

Three types of LUDs are defined:

Type Attachment

00 Attached directly to the system
10 Attached to a type 00 CD
30 Attached to a type 10 CD

This attachment mechanism defines the information
content and, therefore, the structure of the LUD
template.

J

The following structure is used to define LUD type 00
(attached to system), type 10 (attached to CD). and type
30 (attached to CD and to ND).

· Pointer group data Char(16)
- Forward object pointer System

(if unspecified, binary 0) pointer

· Physical definition data Char(16)
- Physical address Char(8)

For LU D type 00,
a. Reserved (binary 0) Char(6)
b. LUD OU number Bit 16

For LUD type 10,
a. Reserved (binary 0) Char(2)
b. LU address Char(2)
c. Reserved (binary 0) Char(2)
d. CD OU number Bit 16

For LU D type 30,
a. Reserved (binary 0) Char(2)
b. LU address Bit 16
c. CD station address Bit 16
d. ND OU number (binary a Bit 16

if switched line)

- Power control Char(2)
Hex 0000 = No
Hex 0100 = Yes

- Reserved (binary 0) Char(6)

· State/status definition Char(16)
- State change / status field Char(8)*
- Reserved (binary 0) Char(8)

• Session definition data
- Session information (SDLC devices)

Pacing (inbound)
Pacing (outbound)
RU size (buffer size)
Reserved (binary 0)
ACTLU required

Hex 00 = No
Hex 01 = Yes

ACTLU parameters
ACTLU response

- Reserved (binary 0)
- Session information (BSC devices)

Modes
Contention resolution

a = Secondary station role
1 = Primary role

Ignore request for test
a Perform request for

test as requested
Pass request for test
as data

Reserved (binary 0)
- Reserved (binary 0)
- Reserved (binary 0)

Char(32)
Char(20)
Bin(2)
Bin(2)
Bin(2)
Bin(2)
Char(1)

Char(3)
Char(8)*
Char(4)
Char(4)
Char(1)
Bit 0

Bit 1

Bits 2-7
Char(3)
Char(4)

Source/Sink Management Instructions 17-11

• Load/dump definition data
- Load/dump indicator

Load/dump device
Hex OO=Not a

load / dump device
Hex 01 = Load / dump

device-noninterruptible
and nonexchangeable

Hex 11=Load/dump
device-interruptible

Hex 21=Load/dump
device-exchangeable

Operating mode
Hex 00= Data interchange

mode-not load/dump
Hex 01 = Load mode
Hex 02= Dump mode
Load/dump pending
Hex 0000 = None
Hex 0100 = Load pending
Hex 0200 = Dump pending

Char(16)
Char(13)
Char(1)

Char(1)

Char(2)*

Corresponding primary Char(2)*
address
Load/dump exchange Char(3)
status (exchangeable devices only)
For materialize LU D operation:
Hex 000000 = This device is not current
Hex 010000 = This device is current
For modify LUD operation:
Hex 000000 = No modification requested
Hex 01 YYYY = Exchange this device

to become current where YYYY is
the logical unit address of the
LUD which is now current

Reserved (binary 0) Char(1)
Load/dump performance Char(3)
attributes

Load / dump buffer
storage
Load/dump process
priority

Bin(2)

Char(1)

- Reserved (binary 0) Char(3)

• Specific characteristics
- Specific characteristics length

(contains the length of
the following specific
characteristics area)

- Specific data

17-12

Char(y + 2)
Bin(2)

CharIVARI

· Retry value sets Char(6y + 2)
- Retry value length Bin(2)

(contains the length of the ~ following retry value area)
- Error type Char(2)
- Error retry value Bin(2)
- Reserved (binary 0) Bin(2)

· Error threshold sets Char(8y + 2)
Error threshold length Bin(2)
(contains the length of the
following error threshold area)
Error type Char(2)
Threshold value Bin(2)

- Reserved (binary 0) Bin(4)

· Device-specific contents Char(y + 4)
- Device-specific length Bin(2)

(contains the length of
the following device-
specific parameters)

- Device-specific modify length Bin(2)
(contains the length
of the device-specific
area that is modifiable)
Device-specific parameters CharIVARI
Modifiable area CharIVARI
Materializable only area Char(VAR)* J

Note: The value associated with each entry shown here
with an asterisk (*) is ignored by this instruction.

An LUD logically represents a physical device. An LUD
can be associated with a CD (controller description)
through the forward object pointer contained in the
LUD. The CD represents the physical controller, physical
I/O port, or communications line to which this device is
attached. The LUD can be associated directly with the
system when the physical device is directly attached to
the system.

The forward object pointer establishes addressability to
the associated forward objects through the forward
object pointers supplied in the LUD template.
Addressability is also established within these associated
objects back to the LUD being created. It is not
mandatory that the associated object pointer be supplied
in the LUD template because as long as the pointer is
supplied, either in the LUD or within the creation
templates of these associated objects, proper
addressability is established by similar logic within the
Create instruction of the other source/sink objects.
When the associated object pointer is supplied, this
object must exist. If a forward object pointer is
specified, then the object identified by the system
pointer must be in a varied off state to allow this LUD
to be attached. If the object is not in a varied off state,
then the source/sink object state invalid exception is
signaled. When the associated object pointer is not
supplied, this pointer location in the template must
contain 16 bytes of binary O's.

When a forward object is not required (LUD type 00),
the forward pointer location in the template must be
binary O. If the LUD template pointer area does not
meet the previously mentioned requirements, an
exception is signaled and the LUD is not created.

The LUD device type entry defines the IBM product
number or a representation number for an end-use
mechanism.

The physical address defines the unique address by
which this device is known physically in the system.
The content of the physical address entry depends on
the attachment mechanism (LU D type) of the device.

The power control entry specifies whether the device is
capable of having its power turned on or off
independent of the system. If the device has this
capability, it is done through the Modify Logical Unit
Description instruction.

The state/status definition entry is not used by the
Create Logical description instruction. But this entry can
be materialized (Materialize Logical Unit Description
instruction) to show the current status of the LUD. This
entry can be modified (Modify Logical Unit Description
instruction) to change the status of the LUD.

The session information entry defines parameters that
allow the machine to control the device while in use.
The following session parameters for SDLC devices are
defined:

• The pacing inbound and pacing outbound entries are
each comprised of a 2-byte count entry. For more
information about pacing, refer to the IBM
System/38 Functional Reference Manual-Volume 2,
GA21-98oo for local source / sink devices,
communications, and locally attached work stations
and to the IBM Systems Network Architecture Format
and Protocol Reference Manual: Architecture Logic.

• The RU (request/ response unit) size entry defines the
size of the buffer in the unit described by this object.

• The ACTLU (activate logical unit) required entry
defines whether the ACTLU parameters and ACTLU
response entries have any meaning for this device.

• The ACTLU parameters entry is used by the MSCP
(machine services control point) to establish the
MSCP-to-LU (logical unit) session and to provide the
data that can be received as a response to an ACTLU
sequence.

• The ACTLU response entry is a field in which the
only characters that can be materialized are the
response characters provided by the device when the
MSCP-to-LU session is established.

The following session parameters for BSC devices are
defined:

• The contention resolution entry indicates whether the
System/38 should act in a secondary station role and
lose contention conflicts or act in a primary role for
contention resolution.

• The ignore request for test entry indicator being set
on causes the machine to pass all requests for tests
received from the station to the user by a receive
request I/O operation. If this indicator is not set on,
the machine performs any tests requested by the
remote station, and test results are recorded in the
error log.

Source/Sink Management Instructions 17-13

The load/dump indicator entry defines whether an I/O
device can be used for the load/dump function.

For those devices that can be used as load/dump
devices, the load/dump indicator further defines
whether the device is to be used in load mode, dump
mode, or normal mode. Noninterruptible load/dump
devices can operate in normal, load, or dump modes but
cannot change modes while in active or inactive session.
Interruptible load/dump devices can also change modes
while in an inactive session state, according to the set
of rules described in the Modify LUD instruction. For
these interruptible devices only, the load/dump pending
field indicates whether any pending load/dump activity
exists if the LUD is in an inactive session state. An
exchangeable load/dump device can exchange load or
dump request I/O operations with other exchangeable
load/dump devices if the devices are activated in the
same modes (all in load mode or all in dump mode) and
have the same corresponding primary device address.
The load/dump exchange status field of the Modify
LUD instruction is used to cause an exchange to occur
and indicates which device is current at any time.

The load/dump performance attributes are used to
establish a range of load/dump performance
characteristics for the process that currently exists
relative to the process that is doing the load/dump.

The load/dump process priority field is used to specify
the priority of the load/dump processes within the
machine. A value of 0 has the highest priority.

The load/dump buffer storage field specifies the
maximum amount of space that is allowed to be
extracted from the user's process storage pool for this
load/dump session. This value must be specified in
units equal to the machine minimum transfer size for
storage pools. This value can be obtained by using the
Materialize Process Attributes instruction. If 0 is
specified, load/dump will use an appropriate value
which includes previous levels of support that did not
have this parameter. If hex FFFF is specified,
load/dump chooses the largest possible value allowed
for the device that is being used.

Only the load/dump device indicator, load/dump
operating mode indicators, and load / dump process
performance attributes are used on a create. The
remaining entries can be materialized and modified only
and are ignored by the Create instruction.

17-14

The specific characteristics entry defines the set of
characteristics that uniquely describe each device during
the time an object is created. For the size and contents
of this entry for a particular device, refer to the IBM
System/38 Functional Reference Manual-Volume 2,
GA21-9800 for local source/sink devices,
communications, and locally attached work stations.

The retry value sets entry contains values that specify
limits for various error types beyond which a higher level
error recovery is invoked.

The error threshold sets values are used by the internal
error logging algorithms to determine the frequency for
adding device error information records to the error log.

The device-specific contents entry defines the set of
specific parameters that can be modified and also those
parameters that are supplied by the machine
(materializable only) for the device described in this
LUD. The materializable only area of this entry is
ignored by this instruction. The modifiable part of this
entry mayor may not be required to contain correct
data at the time of creation. Further definition of the
parameters for the various devices is contained in the
IBM System/38 Functional Reference Manual- Volume 2,
GA21-9800.

The values supplied within the LUD template must meet
the requirements to create an LUD for the physical
device being described. If the values are not compatible
with limitations and ranges known to the machine, a
template value invalid exception is signaled, and the
LUD is not created.

The physical address that is supplied within the template
must be unique from any existing LUDs. If not, a
source/sink duplicate physical address exception is
signaled, and the LUD is not created. The physical
device and its associated machine support components
must be installed on the system before the LUD can be
created. When the internal machine configuration
records do not indicate that these physical components
are installed, a source / sink resource not available
exception is signaled, and the LUD is not created.

Authorization Required Exceptions

L · Privileged instruction Operands
Exception 1 2 Other

· Operational

Source/sink objects identified in operand 2
02 Access Group - 01 Object ineligible for access group X
06 Addressing · Insert 01 Space addressing violation X X

- User profile of creating process 02 Boundary alignment X X
03 Range X X
06 Optimized addressability invalid X X

Lock Enforcennent 08 Argument/ Parameter
01 Parameter reference violation X X

· Modify OA Authorization

User profile that is to own this object 01 Unauthorized for operation X

Source/sink object specified as the forward object
02 Privileged instruction X

identified in operand 2
OE Context Operation

01 Duplicate object identification X
10 Damage Encountered

02 Machine context damage state X
Events 04 System object damage state X

44 Partial system object damage X
0002 Authorization 1A Lock State

0101 Object authorization violation 01 Invalid lock state X
1C Machine- Dependent Exception

OOOC Machine resource 03 Machine storage limit exceeded X

0201 Machine auxiliary storage threshold exceeded 04 Object storage limit exceeded X

0501 Machine address threshold exceeded
20 Machine Support

02 Machine check X
03 Function check X

\.... 0010 Process 22 Object Access
0701 Maximum processor time exceeded 01 Object not found X X
0801 Process storage limit exceeded 02 Object destroyed X X

03 Object suspended X X
0016 Machine observation 24 Pointer Specification

0101 Instruction reference 01 Pointer does not exist X X
02 Pointer type invalid X X

0017 Damage set 03 Pointer address invalid object X

0201 Machine context damage set 2A Program Creation

0401 System object damage set
06 Invalid operand type X X

0801 Partial system object damage set
07 Invalid operand attribute X X
08 Invalid operand value range X X
OC Invalid operand ODT reference X X
00 Reserved bits are not zero X X X

2E Resource Control Limit
01 User profile storage limit X

exceeded
32 Scalar Specification

01 Scalar type invalid X X
34 Source/Sink Management

01 Source/sink configuration invalid X
02 Source / sink duplicate physical X

address
03 Source/sink invalid object state X

04 Source/sink resource not X
available

38 Template Specification
01 Template value invalid X
02 Template size invalid X

Source/Sink Management Instructions 17-15

CREATE NETWORK DESCRIPTION (CRTND)

Op Code Operand Operand
(Hex) 1 2

049E Network Network description
description template

Operand 1: System pointer.

Operand 2: Space pointer.

Description: An ND (network description) is created in
accordance with the ND template. A system pointer that
addresses the created ND is returned in the pointer
specified by operand 1. The template identified by
operand 2 must be 16-byte aligned and any pointers
specified within the template must also be 16-byte
aligned. This template is defined as follows:

• Template size specification
- Size of template
- Number of bytes available

for materialization

• Object identification
Object type

- Object subtype
Object name

• Object creation options
- Existence attribute

1 = Permanent (required)
- Space attribute

o = Fixed-length
1 = Variable-length

- Reserved (binary 0)
Access group
o = Not member of access

group (required)
Replacement option
o = Create as new (required)

- Reserved (binary 0)

• Reserved (binary 0)

• Size of space

17-16

Char(8)
Bin(4)
Bin(4)"

Char(32)
Char(1)"
Char(1)
Char(30)

Char(4)
Bit 0

Bit 1

Bit 2
Bit 3

Bit 4

Bits 5-31

Char(4)

Bin(4)

• Initial value of space Char(1)

• Performance class Char(4)
Space alignment Bit 0
o = The space associated with

the object is allocated to
allow proper alignment of
pointers at 16-byte align-
ments within the space. If
no space is specified for
the object, this value must
be specified for the
performance class.
The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space as
well as to allow proper
alignment of input/output
buffers at 512-byte align
ments within the the space.

Reserved (binary 0) Bits 1-4
- Main storage pool selection Bit 5

o Process default main storage
pool is used for object.
Machine default main storage
pool is used for object.

Reserved (binary 0) Bit 6
- Block transfer on implicit Bit 7

access state modification
o = Transfer the minimum storage

transfer size for this object.
This value is 1 storage unit.
Transfer the machine default
storage transfer size. This
value is 8 storage units.

- Reserved (binary 0)

• Reserved (binary 0)

• N D definition data
ND type
00 = CDs attached
Reserved (binary 0)

• N D specific data

Bits 8-31

Char(39)

Char(16)
Char(2)

Char(14)

Char(")

Note: The value associated with each entry shown here
with an asterisk (") is ignored by this instruction.

The template size specification entry in the NO template
must indicate the number of bytes of the NO that is to
be created.

The object identification specifies the symbolic name
that identifies the object. A type code of hex 11 is
implicitly supplied by the machine. The object
identification identifies the object on materialize
instructions and also locates the object in the machine
context.

A space that is fixed or variable in size can be
associated with the created object. The initial allocation
of storage for the space is as specified in the size of
space entry. The machine allocates a space at least the
size specified; the actual size allocated is machine model
dependent. (The maximum amount of storage that can
be specified for the associated space is approximately
16 MB minus 4 K.) Each byte of the space is initialized
to a value specified by the initial value of space entry.
When the space is extended in size, this value is also
used to initialize the additional bytes in the space. A
fixed size space of zero length causes no space to be
allocated. The maximum size of an NO (network
description) object is approximately 4 K bytes.

Addressability to the NO is inserted into the machine
context.

The created object is owned by the user profile that
governs process execution. The user profile that owns
the created object is implicitly granted all authority
states to the object and charged for the storage
occupied by the created object.

The performance class parameter provides information
that allows the machine to manage the object with
consideration for the overall performance objectives of
operations involving the context.

One type of NO is defined. Type 00 defines the NOs
that are attached to one or more CDs.

• Backward object pointer group
Pointer to backward object list
(if unspecified, binary 0)
Switched network

Char(4S)
Space
pointer
System

Backward connection CD pointer
(if unspecified, binary 0)
Number of backward object pointers Bin(2)
Reserved (binary 0) Char(14)

• Physical definition data
Physical address
Reserved (binary 0)
Operational unit number
Reserved (binary 0)

• State / status definition
State change/status field

- Reserved (binary 0)

Char(16)
Char(S)
Char(6)
Bit 16
Char(S)

Char(16)
Char(S)*
Char(S)

Source/Sink Management Instructions 17-17

• Line definition data
- Line definition

Line data

Char(16)
Char(10)
Char(4)
Bits 0-3

17-18

Line discipline
1000 = SOLC
0100 = BSC
0010 = X.25/HOCL

Switched network Bit 4
a = No (nonswitched network)
1 = Yes (switched network)

Switched network backup Bit 5
a = No
1 = Yes

Data rate select
a No
1 = Yes

Role
SOLC
a = Primary SOLC station
1 = Secondary SOLC station
BSC
a = BSC point-to-point
1 =

X.25
o
1 =

BSC multipoint tributary

Normal DTE appearance
OCE appearance (S/38
is the OCE)

Reserved (binary 0)
NRZI
(non-return-to-zero [inverted])

o = No
1 = Yes

Bit 6

Bit 7

Bits 8-11
Bit 12

New sync Bit 13
a Not applicable
1 = New sync interface

signal
Nonclocked modem Bit 14

o = No
1 = Yes

OEM modem BH 15
o = No
1 = Yes

Wire Bits 16-17
00 = Two-wire backup

line (if applicable),
two-wire normal line

01 = Two-wire backup
line (if applicable).
four-wire normal line

10 = Fou r-wire switched
backup line, two-wire
normal line

11 = Four-wire switched
backup line, four-wire
normal line

Multipoint network
a = Point-to-point
1 = Multipoint

Reserved
BSC multipoint protocol

a Not applicable
1 = Multipoint tributary

station
Reserved (binary 0)

Switched data
Autodial

a = No
1 = Yes

Bit 18

Bit 19
Bit 20

Bits 21-31
Char(l)
Bit a

Autoanswer Bit 1
a = No
1 = Yes

Autoanswer sequence Bit 2
a = Sequence a
1 = Sequence 1

Answer tone generation Bit 3
o = No
1 = Yes

Marks/spaces for answer tone Bit 4
a = Transmit spaces
1 = Transmit marks

Special answer tone Bit 5
(Far-end modem that requires
2025 hertz answer tone)
a = No
1 = Yes

OCE (data communication Bits 6-7
equipment)

00 = Not applicable (nonswitched
line) or IBM integrated modem
not in US or Canada

01 = Switched line not in
US or Canada and not
IBM integrated modem

10= Switched line in US or Canada
including IBM-integrated modem

11 = Reserved
Reserved (binary 0)
Line speed / 1 00
Secondary address
(binary a for primary SOLC and
BSe pOint-to-point)

SOLC secondary address
Reserved (binary 0)

Char(l)
Bin(2)
Char(2)

Bits 0-7
Bits 8-15

BSC multipoint tributary address Bits 0-15
X.25

Local HOLC address
Remote HOLC address

User assigned identification
Reserved (binary 0)
User identification

- Reserved (binary 0)

Bit 0-7
Bit 8-15
Char(4)
Bit 12
Bit 20
Char(2)

· Communications initialization data Char(16) · Communications subsystem Char(16)
- Initialization data Char(8)* parameters data

C - Reserved (binary 0) Char(8) - Communications subsystem Char(12)
parameters · Exchange identification data Char(16)* Data terminal ready delay Bin(2) - XID characteristics Char(2)
Reserved (binary 0) Char(4)

- XID Char(4)
SNA block number Bit 12 Delayed contact timer Bin(2)

Machine serial (or Bit 20 SDLC idle state detection timer Bin(2)

user assigned 10) (BSC receive time-out timer)

- Reserved (binary 0) Char(10) Nonproductive receive timer Bin(2)
(reserved with BSC)

· Selectable mode data Char(16) Reserved (binary 0) Char(4)
- Selectable modes Char(2)

Network selections Char(1) · Eligibility object group Char(32)
Reserved (binary 0) Bits 0-1 - Pointer to eligibility list Space
Switched network backup mode Bit 2 (if unspecified, binary 0) pointer

0 = Nonswitched mode - Number of eligibility object Bin(2)
1 = Switched mode pointers

Selected rate Bit 3 - Reserved (binary 0) Char(14)
0 = Full speed
1 = Half speed · Reserved group Char(32)

Character encoding Bit 4 - Pointer to reserved list Space
0 = EBCDIC (reserved, binary 0) pointer
1 = ASCII - Number of list entries Bin(2)

BSC protocol modes Bits 5-7 (reserved, binary 0)

000 = Point-to-point - Reserved (binary 0) Char(14)
001 = MTAM mode
010 = 3270 emulation mode · Specific characteristics Char(y + 2)

Switched network selections Char(1) Specific characteristics length Bin(2)

Reserved (binary 0) Bits 0-1 (contains the length of the

Switched connect method Bits 2-3 following specific data area)
00= Nonswitched - Specific data ChariVARI
10= Only dial in allowed
01 = Only dial out allowed · Retry value sets Char(6y + 2)
11 = Either allowed Retry value length Bin(2)

Autodial mode Bit 4 (contains the length of the

0 = Manual dial following retry value area)
1 = Autodial - Error type Char(2)

Autoanswer mode Bit 5 - Error retry value Bin(2)

0 = Manual answer - Reserved (binary 0 on Bin(2)
1 = Autoanswer creation template)

Switched secondary Bit 6
line inactivity · Line-specific contents Char(y + 4)
disconnect (SOLC or BSC) Line-specific contents length Bin(2)
SDLC (contains the length of the

0 No time-out following specific data)
1 Time-out Line-specific contents modify length Bin(2)

BSC (contains the length of the line-
0 Time-out specific area that is modifiable)

No time-out Line-specific parameters ChariVARI
Reserved (binary 0) Bit 7 Area that can be modified ChariVARI

- Reserved (binary 0) Char(14) Area that can only be materialized Char(VAR)*

Source/Sink Management Instructions 17-19

• Backward object pointers
- CDs if ND type 00

System
pointer

This list of pointers is located by the backward object
list pointer and defines the set of objects attached to
this ND. The number of entries is specified in the
number of backward objects entry.

• Eligibility object pointers
CDs if type 00

- Binary a if unspecified

System
pointer

The eligibility object pointers are located by the
pointer to eligibility list entry and contain an entry for
each object specified in the number of eligibility
objects entry.

Note: The value associated with each entry shown here
with an asterisk (*) is ignored by this instruction.

An ND logically represents a physical I/O port or a
communications line adapter for a communications
network. As such, an ND always has one or more CDs
(type 00) that are associated with it through its list of
backward objects, which represent the physical devices
attached to the I/O port or line.

Addressability to the associated backward objects is
established, as appropriate, through the backward object
pointers supplied in the ND template. Addressability is
also established within these associated objects back to
the newly created ND. It is not mandatory that the
associated object pointers be supplied in the ND
template because as long as the pointers are supplied
either in the N D or within the creation templates of the
associated objects, proper addressability is established
by similar logic within the Create instructions of the
other source/sink objects. When the associated object
pointers are supplied, the objects must exist and the
controller objects or the logical unit objects cannot be
associated with another ND. When associated object
pointers are not supplied, these pointer locations in the
template must contain 16 bytes of binary O. If the ND
template pointer area does not meet previous
requirements, an appropriate pointer specification
exception is signaled, and the ND is not created.

17-20

The switched network backup connection pointer is used
only for switched networks and can be materialized to
determine the CD or LUD currently connected to this
ND. This entry is ignored in the creation template.

The number of backward object pointers entry
represents the number of controllers that are attached to
this ND if it is a nonswitched line. This number is not
supplied at create ND time but is incremented once for
each Create Controller Description instruction for
controllers attached to this line. A maximum of 10
controllers are allowed on any primary line.

The physical address entry defines the unique address
by which the I/O port or communication lines is known
internally to the machine. The physical address being
supplied within the template must be unique. If not, a
source/sink duplicate physical address exception is
signaled, and the ND is not created. The physical I/O
port or communication lines and its associated machine
support components must be installed on the system
before the ND can be created. If the internal machine
configuration records do not indicate that these physical
components are installed, a source/sink resource not
available exception is signaled, and the ND is not
created.

The state / status definition entry is not used by this
instruction. This entry can be materialized (Materialize
Network Description instruction) to define the current
status of the ND; it can also be modified (Modify
Network Description instruction) to change the state of
the ND. See the descriptions of those instructions for a
complete definition.

The line definition entry is made up of a number of
subentries. These subentries are:

• Line discipline-This entry defines the protocol that is
used for link level communications. All stations that
communicate over the link must follow the same
protocol at all times.

SDLC (synchronous data link control) establishes
the line discipline as synchronous data link control.

- SSC (binary synchronous communications)
establishes the line discipline as binary
synchronous communications.
X.25 establishes the line discipline as that for
packet-switched data networks as per the CCITT
(1980) X.25 recommendation.

• Switched network-This entry indicates whether or not
the data link is established through the public
switched network (0 = no, 1 = yes). If 0 is specified,
a nonswitched or private facility is implied.

• Switched network backup-This entry indicates that
the modem installed on this communications line is
equipped with the switched network backup
capability. The normal communications facility is
nonswitched. To use this capability, the selectable
mode field switched network back operation must be
set.

• Data rate select-This entry indicates that the modem
on this line has the capability to operate at either a
full- or half-speed rate. The rate is selected by
setting the appropriate selectable mode. This entry
must not be set for SSC lines.

• Role (primary / secondary)-When this entry is set for
SDLC, System/38 assumes the role of a secondary
station on this line. Otherwise, System/38 assumes
the role of a primary station on this line. When this
entry is set for SSC, System/38 assumes the role of
a SSC multipoint tributary station. Otherwise,
point-to-point SSC communication is assumed.

When this entry is set for X.25, the System/38
appears as DeE to the network. Otherwise, the
System/38 appears as DTE to the network.

• NRZI-When this entry is set. System/38 uses the
non-return-to-zero (inverted) transmission coding
method on this line. This coding method is necessary
when interfacing to data communications equipment
that does not provide received data timing (internal
clock required).

• New sync-This entry is valid only for SDLC primary
multipoint lines and should be specified if the data
communications equipment requires the new sync
interface signal for synchronization of the primary
station modem receiver circuitry.

• Nonclocked modem-This entry indicates that the
clocking function (receive data timing) for this line is
provided by the machine. When 0 is specified, the
clocking function is provided by the data
communications equipment.

• OEM modem-This entry is set on if non-IBM data
communications equipment is installed.

• Wire-This entry indicates the physical line
configuration for the modem and the communications
channel and also the backup line configuration if
switched network backup exists.

• Multipoint network-This entry indicates that the
machine is configured as a member of a multipoint
network for this line. If not set, it indicates a
point-to-point configuration.

• SSC multipoint protocol-This entry indicates that the
machine is configured as a BSe multipoint tributary
station. If not set, it indicates a BSe point-to-point
config u ration.

• Autodial-This entry indicates that this switched
communication line is equipped with an autocall
interface. Any communications lines so equipped
require two line positions within the machine so that
the next sequential operational unit number cannot be
assigned as the physical address of another ND
object.

• Autoanswer-This entry indicates that the switched
communications line is equipped with a capability to
automatically connect incoming calls.

• Autoanswer sequence-This indicator specifies which
of two answer sequences is to be used in performing
autoanswer functions as determined by the
characteristics of the modems being used.

• Answer tone generation-This entry indicates that the
machine provides the answer tone signal required by
certain modems with the autoanswer capability.

Source/Sink Management Instructions 17-21

• Transient marks/spaces for answer tone-This
indicator specifies whether marks or spaces should
be transmitted for performing the answer tone
function as required by the modems with the
autoanswer capability.

• Special answer tone-This entry indicates whether or
not the 38LS integrated modem on this switched line
should respond with a 2025 hertz answer tone to the
switched line far-end modem.

• OCE (data communications equipment)-This entry
indicates the types of modems that can be used on
this line. This entry indicates the modem type (an
IBM integrated modem or another supported modem)
used on a switched line either for the US and Canada
or for all other countries.

• Line speed (rate)-This entry indicates the line speed
rate in units of 100 bits per second. Permissible
values are 12 (1200 bps), 20 (2000 bps), 24 (2400
bps), 48 (4800 bps). 72 (7200 bps), or 96 (9600 bps).
If the modem for this communications line has the
data rate select capability, this entry should be the
full-speed rate.

• Secondary address-This entry contains the link level
address to be used by this line when acting in a
secondary SOLC station role or when acting as a
BSC multipoint tributary station. For X.25, this field
contains two 1-byte addresses for the local and
remote ends of the HOLC link level attachment to the
packet switched data network.

• User assigned identification-This entry, if not 0,
causes the machine generated exchange identification
data to be overridden by this user supplied
identification. This field is only meaningful for SOLC
secondary lines, or for APPC support for primary or
secondary line configurations. See exchange
identification data below.

The communications initialization data entry represents
the current set of operating parameters for the
communications facility represented by this NO object.
This entry can be materialized and is updated by the
machine during each activation of the line (Modify
NO-Vary On). It is a composite of the characterization
of this NO as defined by the line definition, the
selectable modes, and the communications subsystem
parameters of this NO. It is used only by maintenance
personnel for system maintenance.

17-22

Exchange identification data-This entry can be
materialized and contains the exchange identification
used by this System/38 when acting as a station on a
network. It is uniquely defined for this system when the
system is installed. Normally the machine generates a
unique identification value consisting of constant values
for the XIO characteristics and SNA block number
subfields and a binary value derived from the serial
number of this machine as recorded in internal
configuration records. This field is only meaningful for
SOLC lines, or for APPC support for primary or
secondary line configurations.

The user assigned identification subfield of the line
definition entry in this template can optionally be used
to supply an external value in place of the machine serial
number. The Create instruction will cause the user
assigned identification, if supplied, to overlay the
internally generated machine serial value.

Selectable modes-This entry selects modes that can be
altered from one line activation to the next.

• Switched network backup
(nonswitched / switched)-When this entry is set to 1,
the switched network backup capability is in use, and
the communications channel exists via the switched
network. When this entry is set to 0, the normal
nonswitched facility is in use.

• Selected rate (full speed/half speed)-When this entry
is set to 1, the transmission speed on this line is
one-half that specified in the line speed field. Oata
rate select modem must be specified in order to run
at half speed. When this entry is set to 0, the
transmission speed specified in the line speed field is
used.

L
• Character encoding-This field specifies whether the

data transmitted across the communication link is to
be encoded in EBCDIC or in ASCII.

• BSC protocol mode-This field specifies the BSC
protocol options to be used.

• Switched network selections-This field defines the
types of switched connection methods that are
allowed when the NO is varied on and enabled to the
switched enabled state (but does not actually
establish the connection). The following types of
switched connections can be defined in this field:
- Allow only incoming calls

Allow only outgoing calls
Allow incoming and outgoing calls

• Autodial mode-When this entry is set to 1, the
switched line connection can be established through
the autocall unit. The autodial modem facility must
exist for this mode to be valid. When this entry is set
to 0, the switched connection is established using
manual dial methods.

• Autoanswer mode-When this entry is set to 1, the
switched line connection can be established through
the autoanswer facilities for incoming calls. The
autoanswer modem facility must exist for this mode
to be valid.

• Switched secondary line inactivity disconnect-When
this communications facility is configured as a
secondary station on a switched SDLC network, this
indicator causes the switched connection to be
disconnected if the communications line is inactive
for a period longer than the time indicated by the
nonproductive timer. This time is approximately 30
seconds for BSC switched lines. When this entry is
set to 0, no disconnect occurs.

The communications subsystem parameters entry
describes the communications subsystem parameters.

• Data terminal ready delay-This entry defines the units
of time that the machine waits before ending a
command that resets the communications line. Each
unit of time is 200 milliseconds.

• Delayed contact timer-This timer is used on SDLC
primary leased configurations to determine the
interval when nonresponding controllers will be
recontacted if they are operating with delayed contact
control. If multiple controllers are not responding.
each will, in turn, be recontacted after the specified
interval. Each increment corresponds to 1 second,
and 0 to 600 seconds may be specified. If 0 is
specified, a default time of 60 seconds will be used
by the machine.

• SDLC idle state detection timer-For secondary
stations, this entry is ignored. For primary stations,
this entry specifies the number of 53.3-millisecond
periods that are necessary to satisfy the idle state
time considerations for SNA data link control. This
time should be greater than the sum of the following
conditions:

Transmission time to the secondary station
Processing time of the control unit's response at
the secondary station (not including customer
program processing time or operator response
time)
Clear-to-send time at the secondary station
modem
Transmission time from the secondary station

The maximum value allowed is 255. which allows a
13.6-second delay. If a value of 0 is specified, a
default value of 500 milliseconds is used. For more
information about idle state time considerations, refer
to IBM Synchronous Data Link Control General
Information Manual.

Source/Sink Management Instructions 17-23

• Nonproductive receive timer-For switched secondary
stations, this parameter specifies the number of
500-millisecond periods that are allowed for the line
to be inactive. If valid frames of information are not
received within this time-out period, the line is
disconnected. Normally 30 seconds is adequate, so a
value of 60 should be used. The maximum time that
can be specified is 127.5 seconds. If 0 is specified, a
default time of 128 seconds is used. For primary
stations, this entry specifies the number of
500-millisecond periods that are necessary to satisfy
the nonproductive receive time considerations. The
nonproductive receive timer is dependent upon the
data rate (line speed field) specified by the selected
rate field. Use the following table to determine, for a
given line speed, the recommended value that should
be specified for the nonproductive receive timer. The
times given in the last column are the resulting
maximum times in which to receive intelligible data.
They provide enough time for 5250 devices, which
can have a maximum number of 266 bytes
transmitted per frame.

Line Speed Nonproductive
(SOle Receive Timer
Primary Recommended Setting (266 Bytes
lines Only) Parameter Value per Frame)

600 11 5.5 seconds

1200 6 3.0 seconds

2400 4 2.0 seconds

4800 2 1.0 seconds

9600 2 1.0 seconds

For more information about the nonproductive receive
time considerations, refer to IBM Synchronous Data
Link Control General Information Manual, GA27-3093.

17-24

The pointer to eligibility list defines the CDs that are
eligible to be attached to the NO if the NO is used for
switched networks. The list contains a set of system
pointers that identify the appropriate CDs (type 00 NO).
The list is modifiable, but when the NO is created, the
list must define the maximum number of entries allowed
in the list. Undefined entries are specified by binary O's.
If the switched network protocol does not apply, the
pointer to the eligibility list entry contains binary O's.

The specific characteristics entry defines the set of
characteristics that uniquely describe the network. The
size and contents of this field are dependent on the
specific communications facility being defined.

The retry value sets entry contains values specifying
limits for various error types beyond which a
higher-level error recovery is invoked.

The line-specific contents entry defines the
characteristics that are uniquely described for a specific
communication facility. These characteristics can be
modified according to the specific communication
requirements. The part of this entry that cannot be
modified is ignored by a create or modify instruction.
The modifiable part of this entry mayor may not be
required to contain correct data at the time of creation.
Additional information about this entry is contained in\
the IBM System/38 Functional Reference ..""
Manual-Volume 2, GA21-9800.

Authorization Required Exceptions

L · Privileged instruction Operands
Exception 1 2 Other

· Insert

User profile of creating process
02 Access Group -

01 Object ineligible for access group X
06 Addressing

· Operational 01 Space addressing violation X X
- Source/sink objects identified in operand 2 02 Boundary alignment X X

03 Range X X
06 Optimized addressability invalid X X

Lock Enforcennent 08 Argument/ Parameter
01 Parameter reference violation X X

· Modify OA Authorization

User profile that is to own this object 01 Unauthorized for operation X

Source/sink objects specified as the backward
02 Privileged instruction X

objects identified in operand 2
OE Context Operation

01 Duplicate object identification X
10 Damage Encountered

02 Machine context damage state X
Events 04 System object damage state X X

44 Partial system object damage X
0002 Authorization 1A Lock State

0101 Object authorization violation 01 Invalid lock state X
1C Machine-Dependent Exception

OOOC Machine resource 03 Machine storage limit exceeded X

0201 Machine auxiliary storage threshold exceeded 04 Object storage limit exceeded X

0501 Machine address threshold exceeded
20 Machine Support

02 Machine check X

0010 Process
03 Function check X

22 Object Access
0701 Maximum processor time exceeded 01 Object not found X X
0801 Process storage limit exceeded 02 Object destroyed X X

03 Object suspended X X
0016 Maohine observation 24 Pointer Specification

0101 Instruction reference 01 Pointer does not exist X X
02 Pointer type invalid X X

0017 Damage set 03 Pointer address invalid object X X

0201 Machine context· damage set 2A Program Creation

0401 System object damage set
06 Invalid operand type X X

0801 Partial system object damage set
07 Invalid operand attribute X X
08 Invalid operand value range X X
OC Invalid operand ODT reference X X
00 Reserved bits are not zero X X X

2E Resource Control Limit
01 User profile storage limit X

exceeded
32 Scalar Specification

01 Scalar type invalid X X
34 Source/Sink Management

01 Source/sink configuration invalid X
02 Source/sink duplicate physical X

address
04 Source/sink resource not X

available
38 Template Specification

01 Template value invalid X
02 Template size invalid X

Source/Sink Management Instructions 17-25

DESTROY CONTROLLER DESCRIPTION (DESCD)

Op Code
(Hex) Operand 1

04A 1 Controller
description

Operand 1: System pointer.

Description: The CD (controller description) specified by
operand 1 is destroyed, and addressability to the CD is
deleted from the machine context.

Addressability to this CD is also removed from the
associated NO (network description) and LUDs (logical
unit descriptions). The associated LUDs are rendered
unusable because they cannot be varied on or otherwise
used for I/O operations until another CD is created to
replace this one. The associated LUDs themselves can
subsequently be destroyed. The CD destroyed event
data contains an indication of whether or not any
associated LUDs were encountered during the
destroying of this CD.

When the Destroy Controller Description instruction is
executed and the CD is not in the varied off state, an
exception is signaled, and the CD is not destroyed. If
the CD is the only CD attached to an NO, then that NO
must also be in the varied off state, or an exception is
signaled and the CD is not destroyed.

If the CD is determined to be damaged during destroy
processing, then the addressability contained in NO and
LUDs to the CD might not be removed. If the state of
the CD cannot be determined, the destroy function is
completed anyway.

17-26

Authorization Required

• Object control
- Operand 1

Lock Enforcement

• Modify
- User profile with CD object ownership
- Network description that is a forward description

object for this CD, if any
Logical unit descriptions that are backward objects
from this CD, if any

• Object control
- Operand 1

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0201 Machine context damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions DESTROY LOGICAL UNIT DESCRIPTION (DESLUD)

L Operand Op Code

Exception 1 Other (Hex) Operand 1

04A9 Logical unit
06 Addressing

description
01 Space addressing violation X
02 Boundary alignment X Operand 1: System pointer.
03 Range X

06 Optimized addressability invalid X
08 Argument/ Parameter Description: The LUD (logical unit description) specified

01 Parameter reference violation X by operand 1 is destroyed, and addressability to the
OA Authorization LUD is deleted from the machine context.

01 Unauthorized for operation X
02 Machine context damage state X Addressability to this LUD is removed from any

10 Damage Encountered associated CD (controller description).
04 System object damage state X
44 Partial system object damage X When this instruction is executed and the LUD is not in

1A Lock State the varied off state (or powered off state for those
01 Invalid lock state X devices that can have their power turned off separately).

1C Machine- Dependent Exception an exception is signaled and the LUD is not destroyed.
03 Machine storage limit exceeded X

20 Machine Support If the LUD is determined to be damaged, then
02 Machine check X addressability to the LU D might not be removed from
03 Function check X the associated CD. If the state of the LUD cannot be

22 Object Access determined, the destroy function is completed anyway.
01 Object not found X
02 Object destroyed X
03 Object suspended X

24 Pointer Specification

01 Pointer does not exist X
02 Pointer type invalid X
03 Pointer address invalid object X

2A Program Creation

06 Invalid operand type X
07 Invalid operand attribute X
08 Invalid operand value range X
OC Invalid operand ODT reference X
OD Reserved bits are not zero X X

32 Scalar Specification

01 Scalar type invalid X
34 Source/Sink Management

03 Source/sink object state invalid X

Source/Sink Management Instructions 17-27

Authorization Required Exceptions

· Object control Operand
- Operand 1 Exception 1 Other

06 Addressing

Lock Enforcennent 01 Space addressing violation X
02 Boundary alignment X

· Modify 03 Range X

User profile with LUD object ownership 06 Optimized addressability invalid X

Controller description which is a forward object for 08 Argument/ Parameter

this LUD, if any 01 Parameter reference violation X
OA Authorization

· Object control 01 Unauthorized for operation X

- Operand 1 10 Damage Encountered

02 Machine context damage state X
04 System object damage state X

Events 44 Partial system object damage X
1A Lock State

0002 Authorization 01 Invalid lock state X

0101 Object authorization violation 1C Machine- Dependent Exception

03 Machine storage limit exceeded X

OOOC Machine resource 04 Object storage limit exceeded X

0201 Machine auxiliary storage threshold exceeded 20 Machine Support

02 Machine check X

0010 Process 03 Function check X

0701 Maximum processor time exceeded 22 Object Access

0801 Process storage limit exceeded 01 Object not found X
02 Object destroyed X J 0016 Machine observation 03 Object suspended X

0101 Instruction reference 24 Pointer Specification

01 Pointer does not exist X

0017 Damage set 02 Pointer type invalid X

0201 Machine context damage set 03 Pointer address invalid object X

0401 System object damage set 2A Program Creation

0801 Partial system object damage set 06 Invalid operand type X
07 Invalid operand attribute X
08 Invalid operand value range X
OC Invalid operand ODT reference X
00 Reserved bits are not zero X X

32 Scalar Specification

01 Scalar type invalid X
34 Source/Sink Management

03 Source/sink object state invalid X

17-28

DESTROY NETWORK DESCRIPTION (DESND)

Op Code
(Hex) Operand 1

04AD Network
description

Operand 1: System pointer.

Description: The ND (network description) specified by
operand 1 is destroyed, and addressability to the ND is
deleted from the machine context.

Addressability to this ND is also removed from all
associated CDs (controller descriptions). These
associated CDs cannot be used (they cannot be varied
on or otherwise used for I/O operations) until a new N D
is created to replace this one. When the ND is not
replaced, the CDs and LUDs themselves should be
destroyed. The ND destroyed event data contains an
indication of whether or not any associated CDs or
LUDs were encountered during the destroying of this
ND.

When this instruction is executed and the ND is not in
the varied off state, an exception is signaled, and the
N D is not destroyed.

If the ND is determined to be damaged, then
addressability to the associated CD might not be
removed. If the state of the ND cannot be determined,
the destroy function is completed anyway.

Authorization Required

• Object control
- Operand 1

Lock Enforcennent

• Modify
- User profile with ND object ownership
- LUDs that are backward objects for this ND, if any

• Object control
- Operand 1

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0201 Machine context damage set
0401 System object damage set
0801 Partial system object damage set

Source/Sink Management Instructions 17-29

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

06 Optimized addressability invalid

08 Argument/ Parameter

01 Parameter reference violation

OA Authorization

01 Unauthorized for operation

10 Damage Encountered

02 Machine context damage state

04 System object damage state

44 Partial system object damage

1A Lock State

01 Invalid lock state

1C Machine-Dependent Exception

03 Machine storage limit exceeded

04 Object storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

03 Pointer address invalid object

2A Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

OC Invalid operand ODT reference

00 Reserved bits are not zero

32 Scalar Specification

01 Scalar type invalid

34 Source/Sink Management

03 Source/sink object state invalid

17-30

Operand
1 Other

X
X
X
X

X

X

X
X

X

X

X
X

X
X

X
X
X

X
X
X

X
X
X
X

X X

X

X

MATERIALIZE CONTROLLER DESCRIPTION
(MATCD)

Op Code
(Hex)

Operand
1

Operand
2

Operand
3

O4B3 Receiver
template

Controller Materialization
description options

Operand 1: Space pointer.

Operand 2: System pointer.

Operand 3: Character(2) scalar (fixed-length).

Description: Based on the materialization options
specified by operand 3, elements of the CD (controller
description) object specified by operand 2 are
materialized into the receiver specified by operand 1.

The first 4 bytes of the template size specification entry
contain a value that specifies the number of bytes that
can be used by the instruction. This value is supplied as
input to the instruction and is not modified by the
instruction. A value of less than 8 causes the
materialization length exception.

The second 4 bytes of the template size specification
entry contain a value that specifies the number of bytes
available to be materialized. The instruction materializes
as many bytes as can be contained in the area specified
as the receiver. If the byte area identified by the
receiver is greater than that required to contain the
information requested, then the excess bytes are
unchanged. No exception (other than the materialization
length exception) is signaled in the event that the
receiver contains insufficient area for the materialization.

The template identified by operand 1 must be 16-byte
aligned.

Authorization is not set in materialized system pointers.

The scalar specified in operand 3 cannot be defined by
a data pointer.

The following charts show the elements within the CD
materialization templates and the corresponding
materialization option values that are used to select
these elements. The materialization option value
specified for operand 3 must contain a value as follows:

Hex 8~Causes a materialization of the entire
contents of the CD as shown within the
following chart.

Hex znnn-Causes one of the following for z = 1 or z
= 4:

Hex 1 nnn-Causes a materialization of only
the individual element within
the CD that has the
corresponding value of nnn.

Hex 4nnn-Causes a materialization of any
members of the set of
elements within the CD that
are modifiable elements. The
nnn value in operand 3 is
formed by a logical OR of the
individual nnn option values for
the desired elements as shown
in the following charts.

Source/Sink Management Instructions 17-31

Sub- Materialize
Elements Contained in the CD Template (CD Element Element Option
Types 00 and 10) for Materialize CD Length Length Values

Template size specification ChartS)

Reserved (for all materialize templates except ones ChartS)
including object header data)

Object header data (includes template size) Char(96) 1003

CD definition data Char(16) 1007

Forward object group Char(32) 1005

Backward pointer list data Char(32) 1006

Physical definition data Char(16) 1009

State / status definition Char(16) zOO 1

• State change / status Char(6)

Syte(s) Sites) Meaning

0-1 Status CD Session Count Bin(2)
(number of LUDs in session)

2-3 Status CD Active Count Bin(2)
(number of LUDs varied on)

4 Status

0 CD active. LUD(s) in session Bit 1

1 CD active. LUD(s) varied on Bit 1

2 Varied on state Bit 1

3 Dialing out state Bit 1

4 Vary on pending and LUD(s) Bit 1
in vary on pending state

5 Vary on pending state Bit 1

6 Reserved Bit 1

7 Power on/vary off state Bit 1

& Status

0 Power off state Bit 1

1-3 Reserved Bits 3

4 Diagnostic mode Bit 1

5 Diagnostic active indicator Bit 1

6-7 Reserved Bits 2 . Recovery / resource activation Char(2)

Syte(s) Sites) Meaning

0 Status

0 Inoperative pending Bit 1

1 Normal pending Bit 1

2 Normal cancel Bit 1

3 Normal continue Bit 1

4 Normal activation pending Bit 1

5-6 Reserved Bits 2

7 Normal active Bit 1

1 Reserved Char(1)

17-32

Sub- Materialize
Elements Contained in the CD Template (CD Element Element Option
Types 00 and 10) for Materialize CD Length Length Values

. Reserved Char(S)

NO candidate list data Char(32) z002

Station control information Char(32) 1000

Selected mode data Char(16) zClO4

Activate physical unit information Char(16) 100E

Dial digits Char(32) ZOOS

Specific characteristics Char 100F
(y + 2)

XID information area Char 1011
(y + 2)

Unit-specific contents Char z010
(y + 4)

Backward object list Variable System 1006
number pointers
of system to LUDs
pointers

NO candidate list Variable System z002
number pointers
of system to NOs or
pointers null

y = Variable length of an element
z = Option value control digit. Valid values are:

z = 1 Materialize this individual element.
z = 4 Materialize this element along with any other elements

of the modifiable set by ORing together their option values.

The CD session count field indicates the number of
LUDs that are attached to this CD because of Modify
LUD (activate session) instructions and for which Modify
LUD (de-activate session) instructions have not been
issued. This is a count of the number of LUDs that are
currently in anyone of the LUD session states.

The CD active count field indicates the number of LUDs
that are attached to this CD because of Modify LUD
(vary on) instructions and for which Modify LUD (vary
off) instructions have not been issued. This is a count of
the number of LUDs that are currently in vary on
pending, varied on/no session, or any session state.

The recovery/resource activation field can be
materialized and is set by the machine when conditions
that require error recovery action are encountered by this
object or any forward object that this object is attached
to.

Refer to the Modify Controller Description instruction for
details of the states in the CD object that can be
materialized and for the corresponding modify
operations to these states.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Authorization Required

• Operational
- Operand 2

Lock Enforcennent

• Materialize
- Operand 2

Source/Sink Management Instructions 17-33

Events Exceptions

0002 Authorization Operands
0101 Object authorization violation Exception 1 2 3 Other

OOOC Machine resource 06 Addressing

0201 Machine auxiliary storage threshold exceeded 01 Space addressing violation X X X
02 Boundary alignment X X X

0010 Process 03 Range X X X

0701 Maximum processor time exceeded 06 Optimized addressability invalid X X X

0801 Process storage limit exceeded 08 Argument/ Parameter

01 Parameter reference violation X X

0016 Machine observation OA Authorization

0101 Instruction reference 01 Unauthorized for operation X
10 Damage Encountered

0017 Damage set 02 Machine context damage state X

0201 Machine context damage set 04 System object damage state X

0401 System object damage set 44 Partial system object damage X X

0801 Partial system object damage set 1A Lock State

01 Invalid lock state X
1C Machine-Dependent Exception

03 Machine storage limit exceeded X
04 Object storage limit exceeded X

20 Machine Support

02 Machine check X
03 Function check X

22 Object Access

01 Object not found X X X
02 Object destroyed X X X J 03 Object suspended X X X

24 Pointer Specification

01 Pointer does not exist X X X
02 Pointer type invalid X X X
03 Pointer address invalid object X

2A Program Creation

06 Invalid operand type X X X
07 Invalid operand attribute X X X
08 Invalid operand value range X X X
OA Invalid operand length X X
OC Invalid operand ODT reference X X X
00 Reserved bits are not zero X X X X

32 Scalar Specification

01 Scalar type invalid X X X
02 Scalar attributes invalid X
03 Scalar value invalid X

34 Source/Sink Management

01 Source/sink configuration invalid X
38 Template Specification

03 Materialization length exception X

17-34

L
MATERIALIZE LOGICAL UNIT DESCRIPTION
(MATLUD)

Op Code Operand Operand Operand
(Hex) 1 2 3

04BB Receiver Logical Materialization
template unit options

description

Operand 1: Space pointer.

Operand 2: System pointer.

Operand 3: Character(2) scalar (fixed-length).

Description: Based on the materialization options
specified by operand 3, elements of the LUD (logical
unit description) object specified by operand 2 are
materialized into the receiver specified by operand 1.

The first 4 bytes of the template size specification entry
contain a value that specifies the number of bytes that
can be used by the instruction. This value is supplied as
input to the instruction and is not modified by the
instruction. A value of less than 8 causes the
materialization length exception.

The second 4 bytes of the template size specification
entry contain a value that specifies the number of bytes
available to be materialized. The instruction materializes
as many bytes as can be contained in the area specified
as the receiver. If the byte area identified by the
receiver is greater than that required to contain the
information requested, then the excess bytes are
unchanged. No exception (other than the materialization
length exception) is signaled in the event that the
receiver contains insufficient area for the materialization.

The template identified by operand 1 must be 16-byte
aligned.

Authorization is not set in materialized system pointers.

The scalar specified in operand 3 cannot be defined by
a data pointer.

The following charts show the elements within the LUD
materialization templates and the corresponding
materialization option values that are used to select
these elerr.ents. The materialization option value
specified for operand 3 must contain a value as follows:

Hex 8000-Causes a materialization of the entire
contents of the LU D as shown in the
following chart.

Hex znnn-Causes one of the following for z = 1 or z
= 4:

Hex 1 nnn-Causes a materialization of only
the individual element within
the LUD that has the
corresponding value for nnn.

Hex 4nnn-Causes a materialization of any
members of the set of
elements within the LU D that
are modifiable elements. The
nnn value in operand 3 is
formed by a logical OR of the
individual nnn option values for
the desired individual elements
as shown in the following
charts.

Source/Sink Management Instructions 17-35

Sub- Materialize
Elements Contained in the Template (LUD Types Element Element Option
DO, 10,30) for Materialize LUD Length Length Values

Template size specification Char(8)

Reserved (for all materialize templates except ones Char(8)
including object header data)

Object header data (includes template size) Char(96) 1003

LUD definition data Char(16) 1007
Pointer group data Char(16) 1005

Physical definition data Char(16) 1009

State / status definition Char(16) z001

• State change/status Char(6)

Byte(s) Bit(s) Meaning

0 Status

0-6 Reserved Bits 7

7 Active session state Bit 1

1 Status

0 Suspended session state Bit 1

1 Quiesced session state Bit 1

2 Reset session state Bit 1

3 Varied on/ no session state Bit 1

4 Vary on pending state Bit 1

5 Reserved Bit'
6 Power on/vary off state Bit'
7 Power off state Bit 1

2 Status

0 Diagnostic mode Bit' , Diagnostic active indicator Bit'
2-7 Reserved Bits 6

3-5 Reserved Char(3)

· Recovery / resource activation Char(2)

Byte(s) Bit(s) Meaning

0 Status

0 Inoperative pending Bit 1 , Normal pending Bit'
2 Normal cancel Bit 1

3 Normal continue Bit 1

4 Normal activation pending Bit 1

5-6 Reserved Bits 2

7 Normal active Bit 1 , Reserved CharI')

· Reserved Char(8)

Session definition data Char(32) z002

Load / dump definition data Char(16) z004

17-36

L

Sub- Materialize
Elements Contained in the Template (LUD Types Element Element Option
00, 10,30) for Materialize LUD Length Length Values

Specific characteristics Char 1012
(y + 2)

Retry value sets Char z008
(6y + 2)

Error threshold sets Char z010
(8y + 2)

Device-specific contents Char z020
(y + 4)

y = Variable length of an element
z = Option value control digit. Valid values are:

z = 1 Materialize this individual element.
z = 4 Materialize this element as part of a group of modifiable elements.

The recovery / resource activation field can be
materialized and is set by the machine when conditions
that require error recovery action are encountered by this
object or any forward object that this object is attached
to.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Refer to the Modify Logical Unit Description instruction
for details of the states in the LUD object that can be
materialized and for the corresponding modify
operations to these states.

Authorization Required

• Operational
- Operand 2

Lock Enforcennent

• Materialize
- Operand 2

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0201 Machine context damage set
0401 System object damage set
0801 Partial system object damage set

Source /Sink Management Instructions 17 -37

Exceptions MATERIALIZE NETWORK DESCRIPTION (MATND)

Operands Op Code Operand Operand Operand j Exception 1 2 3 Other (Hex) 1 2 3

06 Addressing 04BF Receiver Network Materialization
01 Space addressing violation X X X template description options
02 Boundary alignment X X X

03 Range X X X Operand 1: Space pointer.

06 Optimized addressability invalid X X X
Operand 2: System pointer.

08 Argument/ Parameter

01 Parameter reference violation X X
Operand 3: Character(2) scalar (fixed-length).

OA Authorization

01 Unauthorized for operation X

10 Damage Encountered
Description: Based on the materialization options

02 Machine context damage state X
specified by operand 3, elements of the ND (network

04 System object damage state X
description) object specified by operand 2 are

44 Partial system object damage X
materialized into the receiver specified by operand 1.

1A Lock State

01 Invalid lock state X
The first 4 bytes of the template size specification entry

1C Machine- Dependent Exception
contain a value that specifies the number of bytes that

03 Machine storage limit exceeded X
can be used by the instruction. This value is supplied as

04 Object storage limit exceeded X
input to the instruction and is not modified by the

20 Machine Support
instruction. A value of less than 8 causes the

02 Machine check X
materialization length exception.

03 Function check X
22 Object Access

The second 4 bytes of the template size specification
01 Object not found X X X

entry contain a value that specifies the number of bytes
02 Object destroyed X X X

available to be materialized. The instruction materializes
03 Object suspended X X X

as many bytes as can be contained in the area specified
24 Pointer Specification

as the receiver. If the byte area identified by the
01 Pointer does not exist X X X

receiver is greater than that required to contain the
02 Pointer type invalid X X X

information requested, then the excess bytes are
03 Pointer address invalid object X

unchanged. No exception (other than the materialization
2A Program Creation

length exception) is signaled in the event that the
06 Invalid operand type X X X

receiver contains insufficient area for materialization.
07 Invalid operand attribute X X X

08 Invalid operand value range X X X

OA Invalid operand length X X

OC Invalid operand ODT reference X X X

00 Reserved bits are not zero X X X X

32 Scalar Specification

01 Scalar type invalid X X X
02 Scalar attributes invalid X

03 Scalar value invalid X

38 Template Specification

03 Materialization length exception X

17-38

The template identified by operand 1 must be 16-byte
aligned.

Authorization is not set in materialized system pointers.

The scalar specified in operand 3 cannot be defined by
a data pointer.

The following chart shows the elements within the NO
materialization templates and the corresponding
materialization option values that are used to select
these elements. The materialization option value
specified for operand 3 must contain a value as follows:

Hex 8000-Causes a materialization of the entire
contents of the NO as shown in the
following chart.

Hex znnn-Causes one of the following for z '" 1 or z
'" 4:

Hex 1 nnn-Causes a materialization of only
the individual element within the
NO that has the corresponding
value for nnn.

Hex 4nnn-Causes a materialization of any
members of the set of elements
within the NO that are modifiable
elements. The nnn value in
operand 3 is formed by a logical
OR of the individual nnn option
values for the desired elements
as shown in the following charts.

Source/Sink Management Instructions 17-39

Sub- Materialize
Elements Contained in the NO Template (NO Element Element Option
Type 00) for Materialize NO Length Length Values

Template size specification Char(8)

Reserved (for all materialize templates except ones Char(8)
including object header data)

Object header data (includes template size) Char(96) 1003

ND definition data Char(16) 1007

Backward object pointer group Char(48) 1006

Physical definition data Char(16) 1009

State / status definition Char(16) zOO 1

· State change/status Char(6)

Byfe(s) Bit(s) Meaning

0-1 Status NO active count Bin(2)
(number of COs varied on)

2 Status

0 Network active Bit 1

1 Manual dial start state Bit 1

2 Manual answer start state Bit 1

3 Manual answer state Bit 1

4 Dial pending state Bit 1

5 Switched enabled state Bit 1

6 Varied on state Bit 1

7 Varied off state Bit 1

3 Status

0 Diagnostic mode Bit 1

1 Diagnostic active indicator Bit 1

2-7 Reserved Bits 6

4-5 Reserved Char(2)

· Recovery / resource activation Char(2)

Byte(s) Bit(s) Meaning

0 Status

0 Inoperative pending Bit 1

1 Reserved Bit 1

2 Normal cancel Bit 1

3 Normal continue Bit 1

4-6 Reserved Bits 3

7 Normal active Bit 1

1 Reserved Char(l)

· Reserved Char(8)

Line definition data Char(16) looA

Communications initialization data Char(16) looB

Exchange identification data Char(16) looC

Selectable mode data Char(16) z002

Communications subsystem parameters data Char(16) zOO4

17-40

Sub- Materialize

Elements Contained in the NO Template (NO Element Element Option

Type 00) for Materialize NO Length Length Values

Reserved group Char(32) z010

Specific characteristics Char l00D
(y + 2)

Retry value sets Char z020
(6y + 2)

Line-specific contents Char z040
(y + 4)

Backward object pointers Variable System 1006
number pointers
of system to CD or
pointers to LUD

y = Variable length of an element
z = Option value control digit. Valid values are:

z = 1 Materialize this individual element.
z = 4 Materialize this element along with any other elements of the modifiable

set by ORing together their option values.

The ND active count field indicates the number of CD
objects associated with this ND that caused the ND to
be in the network active state. For switched lines
(point-to-point)' this indicator can have values of only a
or 1. The count will be incremented to 1 only when a
switched connection exists and will be decremented to a
when the switched connection is disconnected.

For nonswitched lines, this indicator can have any value
from a to the maximum number of attached controllers.
It indicates a count of the number of attached
controllers for which a Modify CD (vary on) instruction
was issued and a Modify CD (vary off) instruction was
not. It is a count of the number of CDs which are in the
vary on pending or the varied on states.

The recovery / resource activation field can be
materialized and is set by the machine when conditions
that require error recovery action are encountered by this
object.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Refer to the Modify Network Description instruction for
details of the states in the ND object that can be
materialized as shown above and for the corresponding
modify operations to these states.

Authorization Required

• Operational
- Operand 2

Lock Enforcement

• Materialize
- Operand 2

Source/Sink Management Instructions 17-41

Events Exceptions

0002 Authorization Operands ~ 0101 Object authorization violation Exception 1 2 3 Other

OOOC Machine resource 06 Addressing

0201 Machine auxiliary storage threshold exceeded 01 Space addressing violation X X X
02 Boundary alignment X X X

0010 Process 03 Range X X X

0701 Maximum processor time exceeded 06 Optimized addressability invalid X X X

0801 Process storage limit exceeded 08 Argument/ Parameter

01 Parameter reference violation X X

0016 Machine observation OA Authorization

0101 Instruction reference 01 Unauthorized for operation X
10 Damage Encountered

0017 Damage set 02 Machine context damage state X

0201 Machine context damage set 04 System object damage state X

0401 System object damage set 44 Partial system object damage X X

0801 Partial system object damage set 1A Lock State

01 Invalid lock state X
1C Machine-Dependent Exception

03 Machine storage limit exceeded X
04 Object storage limit exceeded X

20 Machine Support

02 Machine check X
03 Function check X

22 Object Access

01 Object not found X X X
02 Object destroyed X X X
03 Object suspended X X X

24 Pointer Specification

01 Pointer does not exist X X X
02 Pointer type invalid X X X
03 Pointer address invalid object X

2A Program Creation

06 Invalid operand type X X X
07 Invalid operand attribute X X X
08 Invalid operand value range X X X
OA Invalid operand length X X
OC Invalid operand ODT reference X X X
00 Reserved bits are not zero X X X X

32 Scalar Specification

01 Scalar type invalid X X X
02 Scalar attributes invalid X
03 Scalar value invalid X

34 Source/Sink Management

01 Source/sink configuration invalid X
38 Template Specification

03 Materialization length exception X

17-42

MODIFY CONTROLLER DESCRIPTION (MODCD)

Op Code Operand Operand Operand
(Hex) 1 2 3

04C3 Controller Controller Modification
description description options

modification
template

Operand 1: System pointer.

Operand 2: Space pointer.

Operand 3: Character(2) scalar (fixed-length).

Description: This instruction modifies the CD (controller
description) specified by operand 1 to the new values
contained in the modification template specified by
operand 2. The elements or groups of elements within
the CD are modified based on the modification options
specified by operand 3.

The scalar specified in operand 3 cannot be defined by
a data pointer.

The template identified by operand 2 and any pointer list
referenced by it must be 16-byte aligned.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

The following chart shows the modifiable elements that
can be included in the template for operand 2. (Refer to
the Create Controller Description instruction for detailed
descriptions of the elements). The template can contain
any combination of these elements as indicated by the
option value in operand 3, by including only those
elements in the order shown here.

The Set Diagnostic Mode and Reset Diagnostic Mode
commands are for use by service personnel.

Source/Sink Management Instructions 17-43

Sub- Materialize
Elements Contained in the CD Template (CD Element Element Option
Types 00 and 10) for Modify CD Length Length Values

Template size specification Char(8)

Modify time-out value (for all modify templates) Char(8)

State/status definition Char(16) 4001

• State change / status Char(6)

Byte(s) Bit(s) Meaning

0-1 Reserved Bin(2)

2-3 Reserved Bin(2)

4 Commands
0-1 Reserved Bits 2

2 Dial Bit 1

3 Abandon connection Bit 1

4 Reserved Bit 1

5 Vary on Bit 1

6 Vary off Bit 1

7 Power on Bit 1

5 Commands

0 Power off Bit 1

1-3 Reserved Bits 3

4 Set diagnostic mode Bit 1

5 Reset diagnostic mode Bit 1

6-7 Reserved Bits 2

· Recovery / resource activation Char(2)

Byte(s) Bit(s) Meaning
0 Status

0-1 Reserved Bits 2

2 Normal cancel Bit 1

3 Normal continue Bit 1

4-7 Reserved Bits 4

1 Reserved Char(1)

· Reserved Char(8)

ND candidate list data Char(32) 4002

Selected mode data Char(16) 4004

Dial digits Char(32) 4008

Unit-specific contents Char 4010
(y + 4)

ND candidate list Variable Either 4002
number system
of system pointers
pointers to NDs or

null

y = Variable length of an element
Note: A combination of elements can be modified on the same Modify instruction
by supplying in operand 3 a value that is the result of performing a logical
OR on the modify option values of the desired elements.

17-44

Each modifiable element within a CD can be
successfully modified only when in certain operational
states of the controller description.

Refer to Figures 17-1 through 17 -4 for a description of
the states, the status, and the elements of the CD that
can be modified.

When the state of the CD does not allow the
modification of a requested element, a source/sink
object state invalid exception is signaled and
modification is stopped. All elements that were modified
before the exception remain successfully modified. The
exception information identifies the element responsible
for the exception.

Any modification options that invoke other changes to
the object, along with changes to the recovery/resource
activation field, cause a template value invalid exception
to be signaled.

Modification options that include the state
change/status element of the CD and involve a vary
state change to this element have the following
additional exceptions that can be signaled if conditions
are not valid for the requested change:

• Source / sink object state invalid-This exception
occurs because an associated ND (network
description) or LUD (logical unit description) is not in
the proper state for this controller to be varied on or
varied off.

• Source / sink configuration invalid-This exception
occurs because the CD does not have a required valid
forward object pointer; therefore, the controller
cannot be associated with any communications line or
I/O port.

• Source / sink resource not available-This exception
occurs because the appropriate physical hardware or
machine support components are not installed on the
system to match this CD. This exception can also
occur because of a hardware failure occurring
anywhere in the communications network while the
system is attempting to establish the vary on function
for the CD.

The following describes the vary on function and the
effect it has on the CD object. The CD for a
particular controller must be explicitly varied on by
using the Modify Controller Description instruction. If
the CD is attached to an ND (network description)'
the ND object must be varied on before varying on
the CD. If the CD (controller description) has logical
unit descriptions (LUDs) attached, the CD must be
varied on before varying on any of the LUDs (this
check is made in the Modify LUD instruction).
However, the LUDs must be varied off before varying
off the CD. If the above conditions are not met, a
source/sink object state invalid exception is signaled,
and the instruction is stopped at that pOint.

Whether the CD is logically or physically varied on
depends on the attachment method used for this
controller.

The following describe the different attachment
methods and the resulting state of the CD object:

If the CD is type 00 (CD is not attached to an
ND), the following conditions apply:

1.

2.

3.

The physical connection is activated, and
initial contact with the station is established.
(If contact cannot be established, a resource
not available exception is signaled, and the
instruction is stopped at that point.)

The CD object is set to a vary on state.

A CD contact event is signaled.

Source/Sink Management Instructions 17-45

If the CD is type 10 (CD is attached to an ND) and
the CD represents a station on a nonswitched line,
the following conditions apply:

1.

2.

3.

4.

17-46

The CD object is set to a vary on pending
state and the Modify CD instruction is
completed. (The remaining activity is
performed asynchronously by the machine.)

If the CD object indicates that delayed
contact control is not present and the station
cannot be contacted, a CD contact event
(unsuccessful) is signaled, and the CD
remains in a vary on pending state.

If the CD object indicates that delayed
contact control is present and the station can
be contacted, the CD contact event
(successful) is signaled, and the CD is
modified to varied on state.

If the CD object indicates delayed contact
control is present and the station cannot be
contacted, the CD object remains in a vary
on pending state and periodic attempts to
contact the station continue until contact is
established (CD goes to a vary on state) or
the CD is varied off. The CD contact event
is signaled when the station has been
contacted, and vary on is completed.

If the attachment method indicates that the CD is
attached to an ND and the CD represents a
controller that supports communications via the
switched network, the forward switched
connection pointer in the CD does not contain the
address of an N D object. The forward switched
connection pointer is set to null (binary 0) when
the CD object is created, when the CD is varied
off, or when the Modify Controller Description
Abandon Connection command sets the CD to a
vary on pending state. When the CD is set to a
vary on pending state, the Modify Controller
Description instruction completes execution. The
following describes how the CD goes from a vary
on pending state to a vary on state and also how
the forward address in the CD is set to address an
ND object:

When a CD for a nonswitched network is being
varied on and the resource is not available because
of a network failure, the CD status is set to the
same status as the N D object.

Dial In

For dial in devices, the vary on pending state
exists until an activated line attachment accepts
an incoming call. If the ND associated with the
line is in the ND candidate list of this CD for
SDLC lines or if this CD is in the eligibility list
of the ND for BSC lines, the forward switched
connection pointer in the CD is set to point to
the ND object and the CD is set to varied on
state. (If the specified ND is not in the list, the
connection is abandoned, and an event is
signaled.) The address of the CD object is put
in the backward switched connection of the ND
object, and the CD object is set to a vary on
state. Any LUDs attached to this CD that are in
a vary on pending state are set to a vary on
state at this time. The CD contact event and
LUD contact event(s) are signaled upon
completion of the activity associated with the
incoming call.

Dial Out

For dial out devices, the system initiates a dial
procedure to establish a switched connection at
the time a Modify CD Dial Connection
command is issued to the CD. To complete a
dial out connection, the ND candidate list in the
CD is again referenced. An N D that is in the
switched enabled state with continue status
must be found in the list. must be enabled for
dial out, and must not be in use. If an ND is
not found, the connection is not made and a
resource not available exception is signaled.
Once an ND is found, the CD is updated to dial
pending state, the switched connection forward
pointer is set to point to the ND that was
selected, the ND status is updated to dial
pending state; the backward connection pointer
in the ND is set to point to this CD; and the
instruction completes execution. The actual
connecting of the line is done asynchronously
by the machine. A manual intervention event
can be signaled during this interval if the
connection requires manual dialing. When the
connection is made, the CD goes to a vary on
state, and the ND goes to the active state. Any
LUDs attached to this CD that are in a vary on
pending state are set to a vary on state at this
time. The CD contact event and LUD contact
event(s) are signaled upon completion of this
dial out activity.

The modify time-out value field is used to specify the
desired length of time (in standard time units) that the
machine should allow for the modification operation to
complete. The minimum time-out value is 10 seconds,
and the maximum time-out value is 45 minutes. If the
operation does not complete within the specified time,
the operation is terminated and the partial system object
damage exception is signaled. Error recovery procedures
must be invoked to perform any shutdown or cleanup
operations if this exception occurs. If no time-out value
is specified in the modify template, a default time-out
value of 85 seconds is used. Any nonzero time-out
value supplied must fall within the time-out limits. This
time-out value should not be construed as a maximum
length of execution time for the modify instruction. The
time-out is only used internally to time some arbitrary
portion of the operation to prevent the Modify
instruction from never completing. Time-out does not
occur in less than the specified time-out value.
However, execution may validly be much longer than the
time-out value when several elements are included in
one Modify instruction because each element operation
is timed separately.

Source/Sink Management Instructions 17-47

All CD CD All CD

Types Type 00 Types Type 10

Diagnostic Power Vary Vary On

State Off Off Pending

Power On

Power Off

Vary

Vary

Set Diagnostic

I
Vary On

Set Diagnostic
Vary Off

CD CD All All All

Type 10 Type 10 Types Types Types
CD Vary On Dial Vary CD Active CD Active
LUD Pending Out On LUD Vary On LUD Session

I I
Continue (CD Type 00) Legen d

Continue (CD Type 00)
or--... --I State transitions

due to MODCD
operations

Off 1 I
I I

On (CD Type 00 only)

Vary On
LUD -----....

Vary Off
LUD

-oC------

------.... State transitions
due to MODLUD on
the related LUD

+++++
Reset Diagnostic Vary On Activate

++ State transitions
by system on
behalf of MODCD • LUD ----.

Reset Diagnostic Vary Off
LUD

..... ~---
Station Connected

++++++++++++++++++++++ I Stationl Connected

Dial
••• 'O:~ •.•••••• ~ •••• +++.

~

Dial Out
Dial Completed

++++++ ++++++

Failure f-c

I I f-c

;"I•..•.....

........ 1··········1 I Aba.ndon Conn~ction

Abandon Conn~ction
~

I
Abandon Connection
~ I

Aban1don Connection

I
Abandon Connection

1 I 1

Session ------....
De-activate

Session rc------

+++++++++ ...

+++++++++ ...

.......... .

..... State transitions
by system due to
failure events

Sta te transitions as a
net ion of CD type
ch CD type supports
y those transitions
ere beginning and

ding states are both
owed stated for that

fu
Ea
onl
wh
en
all
CD type unless noted

ferently on the
gram.

dif
dia

1 For CD type 10 (switched line). a vary off from this state will cause an implicit abandon connection and then
a vary off.

Vary CD Vary On CD
Modify On Pending LUD Active
Option Diagnostic Power Vary Pend- Vary On Dial Vary CD Active LUD
Values CO States State Off Off ing Pending Out On LUD Vary On Session

Element checking
sequence and allowable
states for modification

4002 1. NO candidate list No Yes Yes Yes Yes No No No No

4004 2. Selected modes No Yes Yes No No No No No No

4008 3. Dial digits No Yes Yes Yes Yes No No No No

4010 4. Unit-specific content No Yes Yes Yes Yes Yes Yes Yes Yes

Figure 17-1. CD State Change Rules

17-48

I Inoperative I Normal
Pending Pending

I I 1 Activation I l Cancel 1 Continue Pending l Active
1 _I

Modify CD (vary off)

I I
Modify CD (abandon connection)

r---------~--------~~--or------~~

,
Modify LUD (activate session)

Modify LUD (deactivate session)

I
REalO (activate resource) f--------.! or -------~

MODLUD (vary off)

I
REalO (deactivate resource)

I I 1-.. -
REalO (return activate resources (LUD))

I I '-... -------'--.. -1

REalO (return activate
resources (CD))I I.

===================~ ... I
::~~~~~~~::~E~~~~~~~~~
r.----------I

~==
~:::::::+:::::::::~~==========1

I I
~+++++++++++++++++++++++++++++

~:::::::::;:::::::::I:::::::::I::::::::::·+I+++++++++++

~+++++++++~ I
Modri~fy~C_D~(~co~n_t_in_u~e~.-ty~p-e--OO~)~~--~~---+_or----____ ~ ________ ~

I I .. ~ 1
r---------~-or--------~----------~~

Modify CD (continue)
or --------i~

~------~l----__ ~~or--____ ~

Modify CD (cancel)

I I

Legend

I

or Status transition caused by successful completion of a source/sink Modify or a synchronous
Request I/O instruction.

======~~:: }
========~

Status transition asynchronous to a source/sink instruction.

.... +++++++++++ Status transition asynchronous to a source/sink instruction that is caused by a failure .

Figure 11-2. CD Object Recovery/Resource Activation Status Transitions

Source/Sink Management Instructions 17-49

CD Vary On CD Vary On CD
Pending No Pending CD Active Active

Diagnostic Power On LUDs Vary LUDs Vary Dial Vary LUD Vary LUD
Modify Instruction State Power Off Varied Off On Pending On Pending Out On On Session

Vary On No No Ves No No No No No No

LUD Vary On No No No Ves Ves Ves Ves Ves Ves

LUD Activate No No No No Ves' Ves' No Ves Ves
Session

Dial No No No Ves Ves No No No No

Abandon No No No No No Ves Ves Ves Ves
Connection

LUD Vary Off No No No No Ves Ves No Ves Ves

LUD Deactivate No No No No Ves Ves No No Ves
Session

Vary Off No No No Ves No No Ves No No

Cancel No No No Ves Ves No No No No

Continue No No No Ves Ves No Ves' Ves' Ves'

'These states are conditionally supported. For the specific implementation, see IBM System/38 Functional Reference

Manual-Volume 2, GA21-9800.

Figure 17·3. CD State Modification Rules

Modify Inoperative Normal Activation
Instruction Pending Pending Cancel Continue Pending Active

Vary On No No No Ves No No

LUD Vary On Ves Ves Ves Ves Ves Ves

LUD Activate Ves' Ves' Ves' Ves Ves Ves
Session ,
Dial No No No Ves Ves No

Abandon No Ves No Ves Ves No
Connection

LUD Vary Off Ves Ves Ves Ves Ves Ves

LUD Ves Ves Ves Ves Ves Ves
Deactivate
Session

Vary Off Ves Ves Ves Ves No No

Cancel Ves No No No No No

Continue Ves Ves' Ves No Ves' No

'These states are conditionally supported. For the specific implementation, see IBM System/38 Functional

Reference Manual-Volume 2, GA21-9800.

Figure 17-4. CD Status Modification Rules

17-50

Authorization Required

• Operational
Operand 1
System objects specified within the operand 2
space object, if any (ND candidate list entries)

Lock Enforcement

• Modify
Operand 1

- The ND, which is specified by the forward object
pointer of this CD, if any, and only when this
forward object is to be modified by the
synchronous execution of this Modify CD
instruction on the status field of the CD object
The LUDs that are specified by the backward
object pointer list in this CD, and only when this
backward object is to be modified by the
synchronous execution of the Modify CD
instruction on the status field of the CD object

Note: The state change diagrams provided with the
Modify Logical Unit Description and the Modify Network
Description instructions show when the Modify
Controller Description instruction causes these
modifications. For operations that involve the
recovery / resource activation status field, objects are not
ensured by object locks and the status fields may be
changed independently by the machine or other
processes regardless of the lock state of the object.

Events

0002 Authorization
0101 Object authorization violation

0004 Controller description
0401 Controller description successful contact
0402 Controller description invalid contact
0403 Controller description unsuccessful contact
0601 Controller description manual intervention

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0201 Machine context damage set
0401 System object damage set
0801 Partial system object damage set

Source/Sink Management Instructions 17-51

Exceptions MODIFY LOGICAL UNIT DESCRIPTION (MODLUD)

Operands
Op Code Operand Operand Operand J Exception 1 2 3 Other (Hex) 1 2 3

06 Addressing
O4CB Logical Logical Modification

01 Space addressing violation X X X unit unit options
02 Boundary alignment X X X description description
03 Range X X X modification

06 Optimized addressability invalid X X X template

08 Argument/ Parameter

01 Parameter reference violation X X Operand 1: System pointer.

OA Authorization Operand 2: Space pointer.
01 Unauthorized for operation X

10 Damage Encountered Operand 3: Character(2) scalar (fixed-length).
02 Machine context damage state X
04 System object damage state X X X X

44 Partial system object damage X Description: This instruction modifies the LUD (logical
lA Lock State unit description) specified by operand 1 to the new

01 Invalid lock state X values contained in the modifications template specified
lC Machine-Dependent Exception by operand 2. The elements or groups of elements

03 Machine storage limit exceeded X within the LUD are modified based on the modification
04 Object storage limit exceeded X options specified by operand 3.

20 Machine Support

02 Machine check X Operand 2 must be 16-byte aligned. The scalar
03 Function check X specified in operand 3 cannot be defined by a data

22 Object Access pointer.
01 Object not found X X X
02 Object destroyed X X X Substring operand references that allow for a null
03 Object suspended X X X substring reference (a length value of zero) may not be

24 Pointer Specification specified for this instruction.
01 Pointer does not exist X X X
02 Pointer type invalid X X X The following chart shows the modifiable elements that
03 Pointer addressing invalid object X can be included in the template for operand 2. (Refer to

2A Program Creation the Create Logical Unit Description instruction for
06 Invalid operand type X X X detailed descriptions of the elements.) The template can
07 Invalid operand attribute X X X contain any combination of these elements as indicated
08 Invalid operand value range X X X by the option value in operand 3, by including only
OA Invalid operand length X those elements in the order shown here.
DC Invalid operand ODT reference X X X
00 Reserved bits are not zero X X X X The Set Diagnostic Mode and Reset Diagnostic Mode

32 Scalar Specification commands are for use by service personnel.
01 Scalar type invalid X X X
02 Scalar attributes invalid X
03 Scalar value invalid X

34 Source/Sink Management

01 Source/sink configuration invalid X

03 Source/sink object state invalid X X

04 Source/sink resource not X
available

38 Template Specification

01 Template value invalid X

02 Template size invalid X

J
17-52

Sub- Modify
Elements Contained in the LUD Template (LUD Element Element Option
Types 00, 10, 30) for Modify LUD Length Length Values

Template size specification Char(8)

Modify time-out value Char(8)

State / status definition Char(16) 4001

· State change / status Char(6)

Byte(s) Bit(s) Meaning

0 Commands

0-6 Reserved Bits 7

7 Activate session Bit 1
1 Commands

0 Suspend session Bit 1

1 Quiesce session Bit 1

2 Reset session Bit 1

3 De-activate session Bit 1

4 Vary on Bit 1

5 Vary off Bit 1

6 Power on Bit 1

7 Power off Bit 1
2 Commands

0 Set diagnostic mode Bit 1

1 Reset diagnostic mode Bit 1
2-7 Reserved Bits 6

3-5 Reserved Char(3)

· Recovery / resource activation Char(2)

Byte(s) Bit(s) Meaning

0 Status

0-1 Reserved Bits 2
2 Normal cancel Bit 1

3 Normal continue Bit 1

4-7 Reserved Bits 4
1 Reserved Char(1)

· Reserved Char(8)

Session definition data Char(32) 4002
Load/dump definition data Char(16) 4004
Retry value sets Char 4008

(6y + 2)

Error threshold sets Char 4010
(8y + 2)

Device-specific contents Char 4020
(y + 4)

y = Variable length of an element

Note: A combination of elements can be modified on the same Modify instruction
by supplying in operand 3 a value that is the result of performing a logical
OR on the modify option values of the desired elements.

Source / Sink Management Instructions 17 - 53

Each modifiable element within an lUD can be
successfully modified only when in certain operational
states of the lUD.

Refer to Figures 17 -5 through 17-10 for a description
of the states that exist for the lUD object. for the valid
state changes that can be made by the Modify logical
Unit Description instruction, and for the valid
relationship for modifying elements in the lUD.

When the state of the lUD does not allow the
modification of a requested element. a source/sink
object state invalid exception is signaled and
modification is stopped. All elements that were modified
before the exception remain successfully modified. The
exception information identifies the element responsible
for the exception.

Any modification options that invoke other changes to
the object, along with changes to the recovery/resource
activation field, cause a template value invalid exception
to be signaled.

Modification options that include the state
change/status element of the lUD and involve a power
state, a vary state, or an activate session change to this
element have the following additional exceptions that
can be signaled if conditions are not valid for the
requested change:

• Source/sink object state invalid-This exception
occurs because the associated controller description
or network description is not in the proper state for
the logical unit to be varied on. This exception also
occurs when the logical unit description itself is not in
the proper state to allow a power on, power off,
activate session, de-activate session, suspend,
quiesce, or reset modification.

• Source/sink configuration invalid-This exception
occurs because the lUD does not have a valid
forward object pointer; therefore, the logical unit
cannot be associated with any control unit or
communications line as part of a vary on
modification.

• Source/sink resource not available-This exception
occurs because the appropriate hardware or machine
support components are not installed on the system
to match this lUD. This exception can also occur
because of a hardware failure occurring anywhere in
the system while the system is attempting to
establish a power on, vary on, or activate session
function for the lUD.

17-54

The lUD for a particular device must be explicitly
varied on by using the Modify lUD instruction. If the
lUD is attached to a CD (controller description). the
CD must be in the varied on or the vary on pending
state before varying on the lUD. If not, a
source/sink object state invalid exception is signaled,
and execution of the instruction stops.

Whether the lUD is logically or physically varied on
depends on the attachment method used for this
device. The following paragraphs describe the
different attachment methods and the resulting state
of the lUD object.

When the attachment method indicates that the lUD
can be attached directly (lUD type 00) or attached
only to a CD (lUD type 10), the device is initialized,
and the lUD object is set to the vary on state. A
lUD contact event is also signaled. If the device
cannot be initialized, a resource not available
exception is signaled, and execution of the instruction
is stopped.

When the attachment method indicates that the lUD
is attached to both a CD and an ND (lUD type 30)
and the CD represents a station on a nonswitched
line or local loop, the device is initialized, and the
lUD is modified either to a vary on state if the CD
was in a varied on state or to a vary on pending state
if the CD was in a vary on pending state. If the
device cannot be initialized, the resource not available
exception is signaled, and execution of the instruction
is stopped. If the lUD is modified to a vary on
pending state, asynchronous to this Modify lUD
instruction, the lUD is then modified to a varied on
state; the lUD contact event is signaled whenever
contact is made with the station, and the CD is
modified to a varied on state.

If the attachment method indicates that the lUD is
attached to both a CD and an ND (LUD type 30) and
the CD represents a station on a switched network, the
following conditions apply:

• When the connection to the CD has not been
established (CD is in a vary on pending state). the
lUD is modified to a vary on pending state. The lUD
is modified to a vary on state when the dial in or dial
out function is completed, the CD is set to a vary on
state, and the lUD contact event is signaled.

• If the connection to the CD has been established (CD
is in a varied on state). the lUD is modified to a
varied on state, and the lUD contact event is
signaled.

• When the device cannot be initialized, a resource not
available exception is signaled.

The modify time-out value field is used to specify the
desired length of time (in standard time units) that the
machine should allow for the modification operation to
complete. The minimum time-out value is 10 seconds,
and the maximum time-out value is 5 minutes. If the
operation does not complete within the specified time,
the operation is terminated and the partial system object
damage exception is signaled. Error recovery procedures
must be invoked to perform any shutdown or cleanup
operations if this exception occurs. If no time-out value
is specified in the modify template, a default time-out
value of 30 seconds is used. Any nonzero time-out
value supplied must fall within the time-out limits. This
time-out value should not be construed as a maximum
length of execution time for the Modify instruction. The
time-out is only used internally to time some arbitrary
portion of the operation to prevent the Modify
instruction from never completing. Time-out will not
occur in less than the specified time-out value.
However, execution may validly be much longer than the
time-out value when several elements are included in
one Modify instruction because each element operation
is timed separately.

Source/Sink Management Instructions 17-55

All LUD LUD All LUD All All All All All
Types Type 00 Types Type 30 Types Types Types Types Types

Diagnostic Power Power On Vary On Varied On/No Reset Quiesced Suspend Activate

~te Off Vary Off Pending Session Session Session Session Session

Power On
Power Off

Vary On

Vary Off

Vary On

Vary Off

CD Connection Made

Set
+++++++~
CD Abandon Connection

Diagnostic f-c------
Activate Session

Set Diagnostic o .. 1 Se . e-actlvate SSlon

Reset Reset Session

Diagnostic Activate ~ssion

Reset piagnostic De-activate
Quiesce

Activate

De-activate
Session

I .
Suspend

Activate
De-activate ,

Notes:
1. De-activate from active state causes a state change first to quiesced state and then to varied on state.

De-activate from suspended state causes a state change first to reset state and then to varied on state.
2. For LUDs which are used for load/dump operations. de-activate is not allowed if load pending or

dump pending conditions are set. See Figures 17-9 and 17-10 for load/dump change rules.

Figure 17-6 (Part 1 of 2'. LUD State Change Rules

Diagnostic Power Power Vary On Vary Reset
LUD States State Off On Pending On Session

Element checking
sequence and allowable
states for modification

1. Session information No Yes Yes No No No

2. Load/Dump indicator No Ves Yes Ves Yes Ves/No'

3. Retry value sets No Ves Yes Ves Yes Ves

4. Error threshold sets No Ves Yes Ves Yes Ves

5. Device-specific No Ves Yes Yes Yes Ves
contents

Quiesced
Session

No

Yes/No'

Yes

Yes

Yes

Legend

_ State transitions
due to MODLUD
operations

-++++~ State transitions
due to MODCD on
the related CD

- - - -~ State transitions
by system on
behalf of MODCD

State transitions as a function
of LUD type
Each LUD type supports
only those transitions
where beginning and
ending states are both
allowed states for
that LUD type unless
noted differently on
the diagram.

Suspend Activate
Session Session

No No
Yes/No,,2 Yes/No'

Yes Yes

Yes Yes

Ves Yes

'Transition is allowed only if the load/dump device is defined as an interruptible or exchangeable device.
2For interruptible devices only. transition from load or dump mode to normal mode is allowed. but transition from normal mode to
load or dump mode is not allowed in suspended session state.

Figure 17-6 (Part 2 of 2'. LUD State Change Rules

17-56

I Inoperative \ Normal \
Pending Pending Cancel I I Activation I

Continue Pending Active

Modify LUD (vary off)

Modify LUD (a eLate session) f------"'---------..I
Modify LUD (deactivate session) f.+-----+-I ------i

I REalO (activate resource)f-----_+or----~
REalO (deactivate resource) 1-+-------1

I I
REalO (return activate resource) ~-------j

I I

Mod"y CD~:===~=~=. ~: ==l
-----------1==========:
~-------or-r-----------

~~~::::::::::r===~~== .. 
~+++++++++++++++++++~++++++++++++++++++++++++++++++++ 

I I I 

~+++++++++++++++++++++++++++++++++++++++++ I I 
+++++++++++++++++++++++++++++ 

~++++++++++I I 

Modify CD (continue. type-OO) 
f------~--~----~-~-~~or-----------~ 

I 
Modify CD (continue) 

or 
I 

Modify LUD I (continue) 

or 

or or 

I I 

Modify CD/LUD/ND (cancel) 
I I I 

Legend 

I 

_or_ Status transition caused by successful completion of a source/sink Modify instruction or an 
asynchronous Request I/O instruction. 

-----------~ 

04----------

Status transition asynchronous to a source/sink instruction. 

~-========== 

========~ 

.... +++++++++++ Status transition asynchronous to a source/sink instruction that is caused by a failure . 

Figure 17-6. LUD Object Recovery/Resource Activation Status Transitions 

Source/Sink Management Instructions 17-57 



Diagnostic Power Power On Varied On Varied On Active 
Modify Instruction State Off Varied Off Pending No Session Reset Quiesced Suspended Session 

Vary On No No Ves No No No No No No 

Reset No No No No No No No No Ves 

Quiesce No No No No No No No No Ves 

Suspend No No No No No No No No Ves 

Activate Session No No No No Ves Ves Ves Ves No 

Deactivate Session No No No No No Ves Ves Ves Ves 

CD Abandon No No Ves Ves Ves Ves Ves Ves Ves 
Connection 

Vary Off No No No Ves Ves No No No No 

Cancel No No No Ves Ves Ves Ves Ves Ves 

Continue No No No Ves Ves Ves Ves Ves Ves 

Figure 17-7. LUD State Modification Rules 

Modify Inoperative Normal Activation 
Instruction Pending Pending Cancel Continue Pending Active 

Vary On No No No Ves No No 

Reset Ves Ves Ves Ves Ves Ves 

Quiesce Ves Ves Ves Ves Ves Ves 

Suspend Ves Ves Ves Ves Ves Ves 

Activate Ves Ves Ves Ves Ves Ves 
Session 

Deactivate Ves Ves Ves Ves Ves Ves 
Session 

CD Abandon Ves Ves Ves Ves Ves No 
Connection 

Vary Off Ves Ves Ves Ves Ves No 

Cancel Ves No No No Ves l No 

Continue Ves No Ves No Vesl No 

1 Modification is allowed when inoperative pending status is indicated along with activation pending status; 
otherwise No. 

Figure 17-8. LUD Status Modification Rules 

17-58 



L 

L 

LUD Load/Dump Indicator Change Rules (LUD Tvpes 00, 10) 

Load/Dump Mode Field in LUD 

Normal Mode I Load Mode I Dump Mode 

Normal to Load Mode 

Conditions 1, 2 

Normal to Dump Mode 

Conditions 1,3 

Ilroad to Normal Mode 
Conditions 1,4 

Dump to Normal Mode 

Conditions 1, 5 

Load to Dump 
Condition 1 

Dump to Load 
Condition 1 

Conditions: 
1. Allowed if LUD status is powered off, powered on/varied off, vary on pending, or varied on. 
2. Allowed if LUD status is reset or quiesced and load pending is on. This change is allowed 

only on interruptible load/dump devices and causes the load pending indicator to be reset. 
3. Allowed if LUD status is reset or quiesced and dump pending is on. This change is allowed 

only on interruptible load/dump devices and causes the dump pending indicator to be reset. 
4. Allowed if LUD status is reset, quiesced or suspended. This change is allowed only on 

interruptible load/dump devices and causes the load pending indicator to be reset. 
5. Allowed if LUD status is reset, quiesced or suspended. This change is allowed only on 

interruptible load/dump devices and causes the dump pending indicator to be set. 

Figure 17-9. LUD Load/Dump Indicator Change Rules 

Source/Sink Management Instructions 17-59 



Load/Dump Indicator Field (Hex) 

Load/Dump Device 

00 = Not a Load/Dump Device 

01 = Noninterruptible / 
Nonexchangeable 

11 = Interruptible 

21 = Exchangeable 

Load/Dump Operating Mode (note 1) 

00 = Normal 

01 = Load Mode (primary device) 

02 = Dump Mode (primary device) 

21 = Load Mode (alternative device) 

22 = Dump Mode (alternative device) 

Load/Dump Pending 

0000 = Normal 

0100 = Load Pending 

0200 = Dump Pending 

Corresponding Primary Address (note 
1) 

nnnn = Logical unit address of the 
primary device when this 
device is an alternative mode 
device 

Load/Dump Exchange Status (note 3) 

On Materialize: 

010000 = This device is current. 

000000 = This device is not current. 

On Modify: 
01 nnnn = Exchange to current when 

nnnn is the same as the 
logical unit addless of the 
previous current device 

000000 = No modification requested 

Load/Dump Process Performance 
Attributes 

Notes: 

Diagnostic Power Power Vary On Varied Reset Quiesced 
State Off On Pending On Session Session 

No 

Not Modifiable Data 
(ignored by MODLUD instruction) 

Yes Note 2 

Not Modifiable Data 
(ignored by MODLUD instruction) 

Suspended Active 
Session Session 

No 

No Yes Ignored by MODLUD instruction 

Yes 
No 

(template must contain hex 000000) 
No 

No Yes No 

1. Load/dump mode settings and corresponding primary address settings must be compatible between this LUD and the 
corresponding LUD(s) at session activation. 

2. Mode changes from primary device mode to alternative device mode or the reverse direction are not allowed for LUD states 
above varied on. 

3. On modification, the other LUD with the logical unit address hex nnnn must be current, active, in a corresponding mode (load or 
dump), and must have a corresponding primary address that either indicates this LUD or indicates the same primary as indicated 
in this LUD. The other LUD will be changed to not current. Any unprocessed load/dump request I/O operations will be routed 
to the new current LUD. If the exchange to current occurs while request I/O operations are in process (no terminating errors 
such as EOV indicated), then the disposition of these requests is indeterminate. 

Figure 17·10. LUD Load/Dump State Change Rules 

17-60 



The following conditions are required when sessions are 
activated or de-activated for exchanges: 

• Activate session-If the LUD is in primary load mode 
or primary dump mode, the LUD will become current 
when activated. If the LUD is in alternative load 
mode or alternative dump mode, the corresponding 
primary LUD must be in active session and in a 
matching primary mode. 

• De-activate session-If the LUD is in primary mode, it 
must be current and all alternative LUDs must already 
be de-activated. De-activation will cause the LUD to 
change to not current. If the LUD is in alternative 
mode it must be not current. 

Authorization Required 

• Operational 
- Operand 1 

Lock Enforcement 

• Modify 
- Operand 1 
- The CD that is specified by the forward object 

pointer of this LUD, if any, and only when this 
forward object is to be modified by the 
synchronous execution of this Modify LUD 
instruction on the status field of the LUD object 

Note: The state change diagrams provided with the 
Modify Controller Description and Modify Network 
Description instruction show when the Modify Logical 
Unit Description instruction causes these modifications. 
For operations that involve the recovery / resource 
activation status field, objects are not ensured by object 
locks and the status fields may be changed 
independently by the machine or other processes 
regardless of the lock state of the object. 

Events 

0002 Authorization 
0101 Object authorization violation 

0008 Logical unit description 
0601 Logical unit description contact successful 

(for all Modify LUD-vary on instructions) 
0602 Logical unit description contact unsuccessful 

OOOC Machine resource 
0201 Machine auxiliary storage threshold exceeded 

0010 Process 
0701 Maximum processor time exceeded 
0801 Process storage limit exceeded 

0016 Machine observation 
0101 Instruction reference 

0017 Damage set 
0201 Machine context damage set 
0401 System object damage set 
0801 Partial system object damage set 

Source/Sink Management Instructions 17-61 



Exceptions MODIFY NETWORK DESCRIPTION (MODND) 

Operands 
Op Code Operand Operand Operand j Exception 1 2 3 Other 
(Hex) 1 2 3 

06 Addressing 
01 Space addressing violation X X X O4CF Network Network Modification 

02 Boundary alignment X X X description description options 

03 Range X X X 
modification 

06 Optimized addressability invalid X X X 
template 

08 Argument/ Parameter 
Operand 1: System pointer. 

01 Parameter reference violation X X 
OA Authorization Operand 2: Space pointer. 

01 Unauthorized for operation X 
10 Damage Encountered Operand 3: Character(2) scalar (fixed-length). 

02 Machine context damage state X 
04 System object damage state X X X 
44 Partial system object damage X 

1A Lock State Description: This instruction modifies the ND (network 

01 Invalid lock state X X description) specified by operand 1 to the new values 

1C Machine-Dependent Exception contained in the modification template specified by 

03 Machine storage limit exceeded X operand 2. The elements within the N D are modified 

04 Object storage limit exceeded X based on the modification options specified by operand 
20 Machine Support 3. Operand 2 must be 16-byte aligned. 

02 Machine check X 
03 Function check X The scalar specified in operand 3 cannot be defined by 

22 Object Access a data pointer. 
01 Object not found X X X 

02 Object destroyed X X X 
Substring operand references that allow for a null 

03 Object suspended X X X 
24 Pointer Specification substring reference (a length value of zero) may not be 

J 01 Pointer does not exist X X X specified for this instruction. 

02 Pointer type invalid X X X 

03 Pointer addressing invalid object X The following chart shows the modifiable elements that 

2A Program Creation can be included in the template for operand 2. (Refer to 
06 Invalid operand type X X X the Create Network Description instruction for detailed 
07 Invalid operand attribute X X X descriptions of the elements.) The template can contain 
08 Invalid operand value range X X X any combination of these elements as indicated by the 
OA Invalid operand length X option value in operand 3 and by including only those 
OC Invalid operand ODT reference X X X 

elements in the order shown here. 
00 Reserved bits are not zero X X X X 

32 Scalar Specification 
01 Scalar type invalid X X X 
02 Scalar attributes invalid X 
03 Scalar value invalid X 

34 Source/Sink Management 
01 Source/sink configuration invalid X 
03 Source/sink object state invalid X X 

04 Source/sink resource not X 
available 

38 Template Specification 
01 Template value invalid X 
02 Template size invalid X 

17-62 



Sub- Modify 
Elements Contained in the NO Template (NO Element Element Option 
Type 00) for Modify NO Length Length Values 

Template size specification Char(8) 

Modify time-out value Char(8) 

State / status definition Char(16) 4001 

· State change/ status Char(6) 

Byte(s) Bit(s) Meaning 

0-1 Reserved Bin(2) 

2 Commands 

0 Reserved Bit 1 

1 Abandon call Bit 1 

2 Manual start data Bit 1 

3 Manual answer Bit 1 

4 Disable Bit 1 

5 Enable Bit 1 

6 Vary on Bit 1 

7 Vary off Bit 1 

3 Commands 

0 Set diagnostic mode Bit 1 

1 Reset diagnostic mode Bit 1 

2-7 Reserved Bits 6 

4-5 Reserved Char(2) 

· Recovery / resource activation Char(2) 

Byte(s) Bit(s) Meaning 

0 Status 

0-1 Reserved Bits 2 

2 Normal cancel Bit 1 

3 Normal continue Bit 1 

4-7 Reserved Bits 4 

1 Reserved Char(1) 

· Reserved Char(8) 

Selectable mode data Char(16) 4002 

Communications subsystem parameters data Char(16) 4004 

Retry value sets Char 4020 
(6y + 2) 

Line-specific contents Char 4040 
(y + 4) 

y = Variable length of an element 
Note: A combination of elements can be modified of the same Modify instruction 
by supplying a value in operand 3 that is the result of performing a logical 
OR on the modify option values of the desired elements. 

Source/Sink Management Instructions 17-63 



Each modifiable element within an NO can be 
successfully modified only when in certain operational 
states of the network description. 

Refer to Figures 17 -11 through 17 -14 for a description 
of the states, the status, and the elements of the NO 
that can be modified. 

When the state of the NO does not allow modification 
of a requested element, a source/sink object state 
invalid exception is signaled, and modification is 
stopped. All elements that were modified before the 
exception remain successfully modified. The exception 
information identifies the element responsible for the 
exception. 

Any modification options that invoke other changes to 
the object, along with changes to the recovery / resource 
activation field, cause a template value invalid exception 
to be signaled. 

17-64 

Modification options that include the state 
change/status element of the NO and involve a vary 
state change to this element have the following 
additional exceptions that can be signaled if conditions 
are not valid for the requested change: 

• Source/sink object state invalid-This exception 
occurs because an associated CD (controller 
description) or LUO (logical unit description) is not in 
the proper state for this NO to be varied off. 

The NO for a particular line must be explicitly varied 
on before the CDs are varied on by using the Modify 
Network Description instruction. If the NO is not 
varied on, a source/sink object state invalid exception 
is signaled by the Modify Controller Description 
instruction. Likewise, before the NO can be varied 
off, the CDs must be varied off. If not, a source/sink 
object state invalid exception is signaled by this 
instruction. 

• Source / sink resource not available-This exception 
occurs because the appropriate hardware or machine 
support components are not installed on the system 
to match this NO. This exception can also occur 
because of a hardware failure occurring anywhere in 
the communications network while the system is 
attempting to establish the vary on function for the 
NO. 

When the attachments for the line are activated, the 
NO object is set to a vary on state. If the 
attachments cannot be activated, a resource not 
available exception is signaled, and the instruction is 
stopped at that point. 

When the attachments for nonswitched lines and 
local loops are activated, the line is prepared for 
transmitting to the attached devices. 



When the NO is associated with a communications 
attachment configured for switched network support. 
the attachment is activated and made ready to 
establish a switched connection. This connection can 
be established in the following two ways: 

Dial In 

When an incoming call is received. if the NO is in 
the NO candidate list of the CO that called in and 
if that NO is in switched enabled state with dial in 
allowed. the connection is made. 

Dial Out 

When a modify CO dial command is issued to the 
CO. the NO candidate list in the CO is referenced 
again. If an NO is found that is in a switched 
enabled state with dial out allowed in the switched 
connection method field and this NO is not in use. 
the connection is established. 

For both dial in and dial out. an event is signaled 
upon completion of the activity. Also. the forward 
and backward switched connection pointers in the 
NO and CO are updated to complete the addressing 
chain. 

The modify time-out value field is used to specify the 
desired length of time (in standard time units) that the 
machine should allow for the modification operation to 
complete. The minimum time-out value is 10 seconds. 
and the maximum time-out value is 5 minutes. If the 
operation does not complete within the specified time. 
the operation is terminated and the partial system object 
damage exception is signaled. Error recovery procedures 
must be invoked to perform any shutdown or cleanup 
operations if this exception occurs. If no time-out value 
is specified in the modify template. a default time-out 
value of 30 seconds is used. Any nonzero time-out 
value supplied must fall within the time-out limits. This 
time-out value should not be construed as a maximum 
length of execution time for the Modify instruction. The 
time-out is only used internally to time some arbitrary 
portion of the operation to prevent the Modify 
instruction from never completing. Time-out will not 
occur in less than the specified time-out value. 
However. execution may validly be much longer than the 
time-out value when several elements are included in 
one Modify instruction because each element operation 
is timed separately. 

Source/Sink Management Instructions 17-65 



/
Diagnostic I Varied 

State Off I Varied I Switched I Dial I Manual I Manual I Manual I Net~orkl 
On Enable Pending Answer Answer Start Dial Start Active I 

Reset Vary On 
Diagnostic 

Vary Off 

Set 
Diagnostic Vary On CD 

-----------------------------------. 
~---------~~~E~~E __________________ _ 

Enable I I 
Disable 

Vary Off CD 
~---------------------------------

Ibandon coLection (JD) I 
~---------------------------------

Jailure (CD) I I I 
rc++++++++++++++++++++++++++++++++++++++++++++ 

Dial ---'," (CD) 
I I 

Manual Start Data Manual 
Connection 

++++++++. 
Auto Dial Connection 

++++++++++++++++++++++++++++++++. 
Manual Connection Failure 

rc+++++++++++++++++++++++++++++ 
I Abandon Connection (CD) 

.-----------------------

.--- Abandon Connection (CD) 

Auto Dial Failure 

Manual Answer 
Manual 
Start Manual Connection 
Data '++++++++++++++++ .. 

Auto Answer I 
++++++++++++++++++++++++++++++++++++++++++++ .. 
Manual IConnectionl Failure 
"'+++++'+++++++++1++++++4 

Abandon Call 

Abandon Call 

Figure 17-11 (Part 1 of 2). ND State Change Rules 

Manual 
Diagnostic Vary Vary Switched Manual Answer 

NO States State Off On Enable Answer Start 

Element checking sequence and 
allowable states for modification 

1. Selectable modes No Ves No No No No 

2. Communications subsystem No Ves No No No No 
parameters 

3, Eligibility list No Ves Ves No No No 

4. Retry value sets No Ves Ves Ve!; Ves Ves 

5. Line-specific contents No Ves Ves Ves Ves Ves 

) 
} 

All 
NOs 

Nonswitched 
N Os 

All Switched or 
Switched Network 
backup NOs 

Switched 
Dial Out 
NOs 

Switched 
Answer 
NOs 

Legend 

Transitions 
---I"~ due to 

modify NO 

Transitions 
due to 

---__. modify CD 

instruction 
on related 
CDs 

Transitions 
due to 
system 

H+++. (asynchronous) 
on behalf of 
NO orCO 
contact events 

Transit ions 
due to 

system J" 
~++++ (asynchrono . -

on behalf of 
NO or CD 
failure events 

Manual Dial Network 
Start Active 

No No 

No No 

No No 

Ves Ves 

Ves Ves 

Note: Transition from load or dump mode to normal mode is allowed, but transition from normal mode to load or dump mode is 
not allowed in suspended session state. 

Figure 17-11 (Part 2 of 2). ND State Change Rules 

17-66 



Inoperative 
Pending Continue 

Modify CD (vary off) 
Modify CD (abandon connection) 

I ~---------
+++++++++++++++++++++++++++ 

++++++++++++++++++ 

Modify ND (continue) 

Modify ND (cancel) 

I ~I 

Legend 

_or_ 

------------~ 

..... ------------

.... +++++++++++ 

Status transition caused by successful completion of a source/sink 
Modify instruction. 

Status transition asynchronous to a source/sink instruction. This 
status change is indicated by a CD contact successful event. 

Status transition asynchronous to a source/sink instruction. This 
status change is indicated a CD contact unsuccessful event for a 
switched line, a CD loss of contact event, or a CD failure event for a 
switched line. 

Status transition asynchronous to a source/sink instruction. This 
status change is indicated by a ND line failure event or a partial 
system object damage set event. 

Figure 17-12. NO Object Recovery/Resource Activation Status Transitions 

Source/Sink Management Instructions 17-67 



Manual 
Diagnostic Varied Varied Switched Dial Manual Answer Manual Dial Network 

Modify Instruction Mode Off On Enabled Pending Answer Start Data Start Data Active 

Vary On No Ves No No No No No No No 

Enable No No Ves No No No No No No 

CD Dial No No No Ves No No No No No 

Manual Answer No No No Ves No No No No No 

Manual Start Data No No No No Ves Ves No No No 

Abandon Call No No No No No Ves Ves No No 

Disable No No No Ves No No No No No 

CD Abandon No No No No Ves No No Ves Ves 
Connection 

Vary Off No No Ves No No No No No No 

Cancel No No Ves1 Ves No No No No Ves l 

Continue No No Ves1 Ves No No No No Ves l 

1 Modification is allowed for a nonswitched line; otherwise No. 

Figure 17-13. NO State Modification Rules 

Modify Inoperative 
Instruction Pending Cancel Continue Active 

Vary On No No Ves No 

Enable Ves Ves Ves No 

CD Dial No No Ves No 

Manual No No Ves No 
Answer 

Manual Start No No Ves No 
Data 

Abandon Call No No Ves No 

Disable Ves Ves Ves No 

CD No No Ves No 
Abandon 
Connection 

Vary Off Ves Ves Ves No 

Cancel Ves No No No 

Continue Ves Ves No No 

Figure 17-14. NO Status Modification Rules 

17-68 



Authorization Required Exceptions 

L . Operational Operands 

Operand 1 Exception 1 2 3 Other 

The CD which is specified by the lockword object 
06 Addressing 

pointer in this ND, if any, and only when this 
01 Space addressing violation X X X 

lockword object is to be modified by the 02 Boundary alignment X X X 
synchronous execution of this Modify ND 03 Range X X X 
instruction 06 Optimized addressability invalid X X X 

08 Argument / Parameter 
01 Parameter reference violation X X 

Lock Enforcement OA Authorization 
01 Unauthorized for operation X . Modify 10 Damage Encountered 

Operand 1 02 Machine context damage state X 

The CDs that are specified by the backward object 
04 System object damage state X X X X 

pointer list of this ND, and only when these 
44 Partial system object damage X 

1A Lock State 
backward objects are to be modified by the 01 Invalid lock state X 
synchronous execution of this Modify ND 1C Machine- Dependent Exception 
instruction on the status field of the N D object 03 Machine storage limit exceeded X 

04 Object storage limit exceeded X 
Note: The state change diagrams provided with the 20 Machine Support 

Modify Controller Description instructions show when 02 Machine check X 

the Modify Logical Unit Description instruction will cause 03 Function check X 

these modifications. For operations that involve the 22 Object Access 

recovery / resource activation status field, objects are not 01 Object not found X X X 

ensured by object locks and the status fields may be 
02 Object destroyed X X X 

changed independently by the machine or other 
03 Object suspended X X X 

L 
24 Pointer Specification 

processes regardless of the lock state of the object. 01 Pointer does not exist X X X 
02 Pointer type invalid X X X 
03 Pointer address invalid object X 

Events 2A Program Creation 
06 Invalid operand type X X X 

0002 Authorization 07 Invalid operand attribute X X X 

0101 Object authorization violation 08 Invalid operand value range X X X 
OA Invalid operand length X 

OOOC Machine resource OC Invalid operand ODT reference X X X 

0201 Machine auxiliary storage threshold exceeded 
00 Reserved bits are not zero X X X X 

32 Scalar Specification 
01 Scalar type invalid X X X 

OOOE Network description 02 Scalar attributes invalid X 
0401 XID exchange failure 03 Scalar value invalid X 

34 Source/Sink Management 
0010 Process 01 Source/sink configuration invalid X 

0701 Maximum processor time exceeded 03 Source/sink object state invalid X X 
0801 Process storage limit exceeded 04 Source/sink resource not X 

available 

0016 Machine observation 
38 Template Specification 

0101 Instruction reference 
01 Template value invalid X 
02 Template size invalid X 

0017 Damage set 

0201 Machine context damage set 

0401 System object damage set 

0801 Partial system object damage set 

L 
Source/Sink Management Instructions 17-69 



REQUEST I/O (REQIO) 

Op Code 
(Hex) Operand 1 

0471 Source/sink 
request (SSR) 

Operand 1: Space pointer. 

Description: Operand 1 references an area in a space 
called the SSR (source/sink request). The SSR contains 
the pointers and data that are required to define the 
REQIO operation and must be 16-byte aligned. 

The SSR contains three pointers. The first pointer 
specifies the source/sink description object for the I/O 
device or component to be used. The second pointer 
identifies the queue to which final disposition of the 
requested I/O operation is to be returned. The third 
pointer locates the SSD (source/sink data). which is the 
data area for the requested I/O operation. 

The data contained in the SSR defines the type of 
REQIO function to be performed, certain controls, 
identification, sequencing functions, and the set of 
operational orders or commands for the I/O device. 

Certain checks are made on the objects referenced by 
the SSR pointers and on the SSR data before the I/O 
operation is started. For example, the SSR data area 
must contain valid function and control fields but the 
device operational orders (called request descriptors) are 
not verified during the processing of the Request I/O 
instruction. 

The first pointer in the SSR must represent a proper 
source/sink object that is authorized to this user. The 
object must be in a lock state that allows its use. For a 
normal or load/dump REQIO function, the object must 
be a LUD (logical unit description) in the active session 
state. 

The second pointer must represent a queue that is 
authorized to this user. The queue must (1) be a keyed 
queue with a key length of 10 bytes or larger, (2) have a 
message size of 64 bytes of pointer and scalar data, and 
(3) have a message element available. 

The third pointer may reference a space as a data area. 
If the preceding conditions are not satisfied, an 
appropriate exception is signaled and the instruction is 
terminated. 

17-70 

If the preceding conditions are satisfied, the requested 
I/O operation is scheduled for execution and the 
Request I/O instruction is complete. 

The requested I/O operation is then processed 
asynchronously. The completion of this request I/O 
operation is indicated by the posting of a feedback 
record to the request I/O response queue specified in 
the SSR and also by the signaling of the request I/O 
completed event (only when such event signaling was 
specified in the SSR). Errors encountered during the 
machine processing of this requested operation are 
indicated in the feedback record. These errors include 
those encountered within the RDs (request descriptors) 
in the SSR, any authorization or lock enforcement 
violations encountered within load/dump operations, or 
any hardware errors detected while processing the I/O 
operation. 

Some failures may occur during an I/O operation that 
may prevent the I/O operation from completion. 
Because the Request I/O instruction does not provide a 
time-out in these cases, indefinite waits or operator 
intervention recovery actions may occur. The user must 
prevent these waits or operator intervention recovery 
actions by providing a time-out. The time-out can be 
indicated in the Dequeue instruction by entering it in the 
dequeue-wait-time-out parameter (see Dequeue 
instruction in Chapter 12 for details). The time-out 
values to be used are device-dependent and are a 
function of the particular I/O operation being performed 
by the device. 

The sequence of events is as follows: 

1 . Request I/O instruction is executed. 

2. 

3. 

4. 

The I/O operation is completed. 

The Dequeue instruction is issued to retrieve the 
feedback record. 

Completion of the I/O operation is signaled by the 
retrieval of the feedback record. 

J 



The SSR space object contains the following: 

L· 
Template size specification Char(8) 
- Size of template Bin(4) 

Number of bytes available Bin(4) 
for materialization 

Request I/O time-out Char(8) 
(synchronous only) 

Source/sink object System 
pointer 

Response queue System 
pointer 

Source/sink data area (or binary 0) Space 
pointer 

Optional pointer area Char(16) 

Reserved (binary 0) Char(S) 

Request I/O timestamp Char(S) 

Request priority Bin(2) 

Request 10 Bin(2) 

Function field Char(1 ) 

Request control field Char(1) 

Key length Bin(2) 

Offset to key field Bin(2) 

Request descriptor count Bin(2) 

Offset to request descriptor field Bin(2) 

Offset to the request I/O Bin(2) 
variable parameters 

Variable-length entries: 
Key field (variable 10-256 bytes) Char(·) 
Request descriptor field 
(modulo 16, 2-byte aligned; 
or modulo 96, 16-byte 
aligned for load/dump requests) 

Request descriptor 1 

Request descriptor n 

Request I/O variable parameters 
(must be 16-byte aligned) 

Length of variable 
parameter area 

- Reserved 
- Variable parameters 

(specific to the device 
or support used) 

Char(·) 

Char(16) or (96) 

Char(16) or (96) 

Char(·) 

Bin(4) 

Char(28) 
Char(·) 

These entries are defined as described in the following 
paragraphs. The information associated with service 
request I/O, service functions, and service exceptions is 
for use by service personnel. 

Template size specification-This entry defines the 
standard template header data. The size of the template 
field must indicate a sufficient number of bytes to 
contain all the following entries in the SSR including the 
lengths and positions of all the variable length items in 
the SSR. The number of bytes available for 
materialization field is not used by the Request I/O 
instruction. 

Request I/O time-out-This field is used to specify the 
desired length of time (in standard time units for the 
system model being used) that the machine allows for 
the synchronous request I/O (with task switching) 
operation to complete. If the operation does not 
complete within the specified time, the operation is 
terminated and the partial system object damage set 
exception is signaled. Error recovery procedures must 
be used to perform any cleanup operations after the 
operation is terminated. If no time-out value is specified 
in the template and the function field specifies a 
synchronous operation, a default time is used. The 
default time is used only for internal failures and is not 
the maximum execution time for the synchronous 
Request I/O instruction. This field is ignored for 
asynchronous request I/O operations and for 
synchronous operations that do not have task switching. 

Source/Sink Management Instructions 17-71 



Source/ sink object-This entry can be a system pointer 
to an LUD for a normal or load/dump request I/O 
operation; can be a system pointer to an LUD, a CD, or 
an ND for MSCP (machine services control point) 
request I/O operations; or can contain binary 0 for 
service request I/O operations. 

Response queue-This entry is a system pointer to the 
request I/O response queue. This pointer is ignored for 
synchronous requests. 

Source/sink data area-This entry can be a space pointer 
to an SSD area for any request I/O operations, or it can 
be binary O. 

Optional pointer-This space must be null (binary 0) for 
all operations except service requests. When the SSR 
function field specifies service, this space will either 
contain a space pointer or be null. 

Request I/O timestamp-This field is set by the machine 
to indicate (in standard time units for the system) the 
time when this request was processed. The request I/O 
response queue contains a standard enqueue timestamp 
that is also set to indicate the time of actual completion 
of the resulting I/O operation. 

Request priority-This field defines the priority of each 
Request I/O instruction relative to other Request I/O 
instructions. As each Request I/O instruction is 
processed, this field is used to schedule the priority of 
each request with respect to any previously issued 
requests that are still stacked for processing. Priority 
values can be assigned in binary collating sequence with 
hex 0000 being the highest priority and hex FFFF being 
the lowest priority. This field is ignored for synchronous 
requests that do not have task switching. 

Request I D-This field is used to assign unique 
identification to each source/sink request. This unique 
identification is copied into the feedback record 
associated with this Request I/O instruction and thus 
provides an external capability to correlate feedback 
records with the Request I/O instruction that generated 
them. The request ID field is also used to control the 
signaling of the request I/O completed event. When bit 
o in the request I D field is 1, the request I/O completed 
event is signaled when the feedback message is 
enqueued. This event indicates that the processing of 
this request is completed. When bit 0 in the request ID 
is 0, no event is signaled. This field is ignored for 
synchronous requests. 

17-72 

Function field-This field defines the type of request I/O 
as follows: 

Bits 0-3= 1000-normal request I/O 
= 0100-MSCP request I/O 
= 0010-load/dump request I/O 
= 0001-service request I/O 

Bits 4-7 are function dependent and are defined for 
each device or function in the IBM System/38 
Functional Reference Manual-Volume 2, GA21-9800. 

If the function field indicates a load/dump request, then 
the load/dump indicator in the LUD must indicate 
load/dump mode or the source/sink invalid object state 
exception is signaled. 

Request control field-This field defines request I/O 
control functions as follows: 

Hex 10= Device specific control functions 
Hex 20=Synchronous request I/O with 

task switching 
Hex 21=Synchronous request I/O without 

task switching 
Hex D5=Normal request I/O 
Hex C3=Request I/O continue 

Request I/O continue is used for error recovery 
situations. When a terminating error is posted in the 
feedback record, normal request I/O processing is 
inhibited until a request I/O continue command is 
issued. Normal requests can be issued before the 
request I/O continue command, but these requests 
remain enqueued for processing until the continue 
command is issued. The request I/O continue function 
is internally assigned a higher priority than normal 
requests, and, consequently, is processed before the 
normal requests that are enqueued for processing. 
When request I/O continue is indicated in the SSR. the 
RD count must contain O. When request I/O normal is 
indicated, the RD count must contain a value greater 
than O. 



Synchronous request I/O specifies that the machine is 
to process the operation synchronously with the process 
that issued this instruction, suspend all other process 
activity until the completion of this instruction, and then 
continue processing the next sequential instruction in the 
process. Request I/O completion is indicated by the 
ending status of the instruction. No feedback record is 
posted in the response queue. Synchronous requests 
can be with or without task switching in the machine. 
When task switching is allowed, time-out considerations 
are the same as those for the modify instructions. 

Device specific control functions specify that the request 
I/O for the device has task switching or that it does not 
have task switching. 

Key length - This field indicates the length of the 
request key field in this SSR. This value must also 
match the key length attribute of the response queue 
specified in this SSR. 

Offset to key field-This field indicates the location 
within the SSR where the request key field has been 
placed. This offset value is defined from the beginning 
of the SSR and must be a positive value. 

Request descriptor count-Bin(2)-This field indicates the 
number of request descriptors contained in the request 
descriptor field in this SSR. 

Offset to request descriptors-This field indicates the 
location within the SSR where the request descriptor 
field has been placed. This offset defines a positive 
value offset from the beginning of the SSR and must 
define either a 2-byte aligned location for normal MSCP 
or service requests, or a 16-byte aligned location for 
load/dump requests. 

Offset to the request I/O variable parameters-This field 
indicates the location in the SSR where the variable 
parameters (if any) are placed. This offset is defined as 
a positive value offset from the beginning of the SSR 
and must define a 16-byte aligned location. 

Key field-This field is used by the machine to post the 
feedback record onto the request I/O response queue. 
This is the key value to be used by the Dequeue 
instruction to retrieve the feedback record corresponding 
to this Request I/O instruction. Feedback records are 
posted to the response queue in binary collating 
sequence order so that standard dequeue keyed rules 
apply. Refer to the Dequeue instructions for details. 

Request descriptor field-This part of the source/sink 
request contains the 16-byte RDs, which must be 
halfword aligned (or 96-byte RDs, 16-byte aligned for 
load/dump) for the RIUs (request information units) 
and/or system pointers involved in the source/sink 
operation. The RD is specifically tailored to a particular 
device type, method of attachment and/or the mode of 
the Request I/O instruction. Refer to the IBM 
System/38 Functional Reference Manual-Volume 2, 
GA21-9800 for the contents of request descriptors for 
specific devices. 

Request I/O variable parameters-This variable 
parameter area is used for additional data that is 
necessary to support certain devices or support 
mechanisms. 

The SSD (source/sink data) located by the SSR. when it 
is present for an I/O request, represents the data area 
(I/O data buffer) associated with the particular request. 
The contents of the SSD are also defined for each 
device supported on a particular model of the system in 
the IBM System/38 Functional Reference 
Manual-Volume 2. GA21-9800. The significance 
concerning this SSD space is that it can be subdivided 
into segments called RIUs (request information units), 
which have a one-to-one correspondence with the RDs 
in the SSR so that feedback record subdivisions can be 
defined. 

Unpredictable results can occur if the space object that 
contains the SSD is modified. destroyed. or truncated 
when the space is being used to complete the request 
I/O operation. 

The message associated with a Dequeue instruction is 
called a feedback record only when the message 
resulted from a Request I/O operation associated with 
this response queue. The message operand on the 
Dequeue instruction has the following information 
inserted into it to form the feedback record: 

Field 

Source/sink request address 
Request ID 
Error summary 
RD number 
RIU segment count 
Device-dependent status 

Format 

Space pointer 
Bin(2) 
Bin(2) 
Bin(2) 
Bin(2) 
Char(40) 

Source/Sink Management Instructions 17-73 



Definitions of these feedback record fields follow: 

Source/ sink request address-This pointer locates the 
SSR (source / sink request) that the issuer of the 
Request I/O instruction supplied as its operand. This 
SSR can optionally have new data inserted into it 
based on the Request I/O operation that was 
performed. 

Request ID-This field contains the same value as the 
request ID field within the SSR of the Request I/O 
instruction that generated this feedback record. It is 
used to correlate responses to requests. 

Error summary-This field indicates the final 
disposition of the request I/O operation. The 
contents of this field are: 

Byte 0 Byte 1 

tnisffff r d nnnnnn 

o 7 o 

17-74 

7 

Byte O-Error Attributes 

Bits 0, 1 (t = terminate, n = not normal) 

00 = Normal condition 
01 Not normal. nonterminating error 
11 Not normal, terminating error 

Terminating errors are those for which 
processing of subsequent request I/O 
operations is suspended until higher-level 
Request I/O Control instructions or 
session state changes through the Modify 
LUD instruction are requested. 

Bit 2 (i = included) 

o Device-dependent data is not included. 
Device-dependent data is included in the 
device-dependent status area of this feedback 
message. 

Bit 3 (s = specific error) 

o Error code defined in byte 1. 
Device-specific error code is defined in byte 1, 
and none of the definitions for byte 1 apply. 

Bits 4, 5, 6, 7 (f = function) 

0000 = 
01nn = 

1000 = 
1100 = 

Normal function 
Load/dump function; nn is defined 
in IBM System/38 
Functional Reference Manual 
-Volume 2 
Load/Dump Object 
Management 
MSCP function 
Service function 

Byte 1-Error Type 

Bits 0, 1 (r = SSR, d = SSD) 

00 Error type is not associated with the SSR 
or the SSD. 

10 Error type is associated with the SSR 
(source/ sink request). 

01 Error type is associated with the SSD 
(source/sink data). 

11 Error type is associated with load / dump 
operations. 

Bits 2-7 Bits 2 through 7 are combined with the r 
and d bits to provide the following byte 1 
error type definitions. 



Byte 1 Error Types Defined 

Hex OO=No error conditions 
Hex 08=Request I/O continue response 
Hex 09= Partially processed request-terminated 

because of a reset session, error on quiesce 
session, or error on suspend session 

Hex OA=Unprocessed request-results from a reset 
session, error on quiesce session, error on 
suspend session, or a terminating error 

Hex OB=Partial damage encounter-The machine has 
encountered a partial damage situation that 
prevents successful completion of this 
request I/O operation. A partial system 
object damage event has been signaled 
independently. 

Hex OC=Data flow control sequence error 
Hex OF= Reserved for use above the Machine 

Interface 
Hex 10=Unrecoverable error-LUD Type 00 or 10 
Hex 11 = Read terminated-device control error 
Hex 12= Read completed-device control error 
Hex 13= Data truncated-device control error 
Hex 14=Command terminated-sequence error 
Hex 15= Command terminated 
Hex 16= End of file 
Hex 17= End of volume 
Hex 18= Command terminated-results from the 

conditions sensed 
Hex 20=Unrecoverable error-LUD type 30 
Hex 21 = Line nonfunctional 
Hex 22=Station nonfunctional 
Hex 24=Send/receive error 
Hex 26= Bind rejected 
Hex 28= Invalid information unit 
Hex 29= Bind host pacing parameter error 
Hex 30=MSCP-invalid LUD type 
Hex 31=MSCP-LUD not varied on 
Hex 32= MSCP- invalid request header (RH) 
Hex 33= MSCP-invalid transmission header (TH) 
Hex 34=Cancel failure on ND, CD, or LUD 
Hex 35= De-activate resource error 
Hex 36= Return activate resource error 
Hex 37= Return request I/O operation 
Hex 40=lnvalid source/sink data (SSD) 
Hex 41 =SSD object unusable (destroyed or 

suspended) 
Hex 42= Invalid SSD data 
Hex 43= Invalid SSD boundary alignment 
Hex 44=SSD byte space too small 
Hex 45=SSD byte space too large 
Hex 46= Invalid number of pointers in SSD 
Hex 47= Invalid pointer in SSD 
Hex 48= Pointer in SSD references an unusable object 

(destroyed or suspended) 

Hex 54= Respective session not active (SSCP to LU 
or LU to LU) 

Hex 55= Data traffic session not active 
Hex 80=lnvalid source/sink request (SSR) 
Hex 81 =SSR object unusable (destroyed or 

suspended) 
Hex 82=lnvalid LUD pointer 
Hex 83= Invalid response queue pointer 
Hex 84= Invalid SSD pointer 
Hex 85=lnvalid function field 
Hex 86=lnvalid RD count field 
Hex 87=lnvalid RD 
Hex 88= Invalid RD sequence 
Hex 89=lnvalid control field-continue out of sequence 
Hex 8A=Conversation I D error 
Hex 8B=Mode name error 
Hex CO=Load/dump storage error 
Hex C1 =Insufficient user profile space for create and 

load 
Hex C2=lnvalid lock 
Hex C3=lnsufficient size of user profile or context for 

create and load 
Hex C4=Duplicate object on create and load 
Hex C5=Data space index sequence error on load or 

create and load 
Hex C6=Load/dump object destroyed 
Hex C7=Data space field descriptor mismatch on load 

or data space index key specification 
mismatch 

Hex C8=Reserved 
Hex C9=Object name, type, subtype mismatch on 

load 
Hex CA=Data space or data space index is in use 
Hex CB=Entry cannot be journaled 
Hex CC=Data base linkage problem 
Hex CD=Load/dump object damaged 
Hex CE=Load/dump invalid version level 
Hex CF=Same request I/O-SSR not returned after 

EOF (end of file), EOT (end of tape), or EOV 
(end of volume) 

Hex Dn=Load/dump errors which are further defined 
in model dependent documentation 

RD number-This number indicates the request 
descriptor that is within the Request I/O instruction 
and is appropriate for the ending status of that 
instruction. Normally, it is the last RD in the request. 
and in terminating error cases it is the RD on which 
the failure occurred. 

RIU segment count-This count indicates a further 
breakdown to the segment within the RIU (request 
information unit) associated with the RD number if 
such a breakdown is meaningfully defined for each 
device type. 

Source/Sink Management Instructions 17-75 



Device-dependent status-This field indicates further 
status associated with the error summary field. This 
field is uniquely defined for each type of device 
supported on the system. 

Note: The Request I/O instruction normally initiates 
asynchronous I/O hardware operations that, under 
abnormal circumstances or hardware failures, may fail 
to complete. The Request I/O instruction does not 
provide any time-out mechanism for these cases as 
is provided by the Modify instructions or is provided 
for synchronous Request I/O instructions. Whenever 
possible, the user should provide time-out 
mechanisms for feedback records to prevent these 
I/O failures from causing indefinite waits, which 
ultimately require operator-initiated recovery actions. 
Because the Request I/O instruction execution is 
asynchronous to the actual hardware operations (that 
is, the instruction completes before the actual 
operation is started by the machine), timing must be 
done on the Dequeue instruction, which retrieves the 
feedback record that signals the actual completion of 
the I/O operation. This timing can be done by 
setting a time-out value for the 
dequeue-wait-time-out parameter on the Dequeue 
instruction. Time-out values to be used are 
device-dependent and are a function of the particular 
I/O operation being performed by that device. 

Authorization Required 

• Operational 
- LUD, CD, or ND specified in the SSR 

• Insert 
Queue specified in the SSR (request I/O response 
queue) 

• Retrieve 
- Contexts referenced for address resolution 

• Service-special authorization 

Specific authorization for load/dump operations is 
described in IBM System/38 Functional Reference 
Manual-Volume 2 Load/Dump Object Management. 

17-76 

Lock Enforcement 

• Modify 
- The LUD, CD, or ND specified by the first system 

pointer in the SSR 
The request I/O response queue specified by the 
second system pointer in the SSR 

• Object control 
Any system objects specified in the SSR for 
request I/O functions specifying load operations 

• Materialize 
Contexts referenced for address resolution 
Any system objects specified in the SSR for 
Request I/O functions specifying dump operations 

J 



Events Exceptions 

L 0002 Authorization Operand 
0101 Object authorization violation Exception 1 Other 

0008 Logical unit description 06 Addressing 

0701 Operator intervention required (signaled 01 Space addressing violation X 

asynchronously to execution of Request I/O 02 Boundary alignment X 

instruction) 03 Range X 

0801 Device 06 Optimized addressability invalid X 

failure (signaled asychronously) 08 Argument/Parameter 

0901 Request I/O completed (signaled asynchrono 01 Parameter reference violation X 

to execution of Request I/O instruction) OA Authorization 
01 Unauthorized for operation X 

OOOC Machine resource 10 Damage Encountered 

0201 Machine 02 Machine context damage state X 

auxiliary storage threshold exceeded 04 System object damage state X 

44 Partial system object damage X 

0010 Process 1A Lock State 

0701 Maximum 01 Invalid lock state X 

processor time exceeded 1C Machine-Dependent Exception 

0801 Process storage limit exceeded 03 Machine storage limit exceeded X 
20 Machine Support 

0012 Queue 02 Machine check X 

0401 Queue message limit reached 03 Function check X 

0501 Queue extended 22 Object Access 
01 Object not found X 

L 
0016 Machine observation 02 Object destroyed X 

01 01 Instruction reference 03 Object suspended X 
24 Pointer Specification 

0017 Damage set 01 Pointer does not exist X 

0201 Machine context damage set 02 Pointer type invalid X 

0401 System object damage set 03 Pointer address invalid object X 

0801 Partial system object damage set 26 Process Management 

02 Queue full X 

001 A Journal port 2A Program Creation 

0301 Entry not journaled 06 Invalid operand type X 

0401Journal space attached to 07 Invalid operand attribute X 

a journal port is not usable 08 Invalid operand value range X 

OC Invalid operand ODT reference X 

001 CJournal space 00 Reserved bits are not zero X X 

0301 Threshold reached 2C Program Execution 
06 Instruction cancellation X 
07 Instruction termination X 

2E Resource Control Limit 

02 Process storage limit exceeded X X 
30 Journal Management 

06 Journal space not at a X 
recoverable boundary 

32 Scalar Specification 
01 Scalar type invalid X 

Source/Sink Management Instructions 17-77 



Exception 

34 Source/Sink Management 

01 Source/sink configuration invalid 

03 Source/sink object state invalid 

38 Template Specification 

01 Template value invalid 

02 Template size invalid 

3C Service 

01 Invalid service session state 

02 Unable to start service session 

17-78 

Operand 
1 Other 

X 
X 

X 
X 

X 
X 

REQUEST PATH OPERATION (REQPO) 

Op Code 
(Hex) 

0475 

Operand 
1 

Path 
operation 
template 

Operand T: Space pointer. 

Description: This instruction requests that the path 
operation described in the template be performed for 
the internal machine path function specified in the 
template. The template specifically describes the 
operation and contains the data involved with the 
operation. The template also specifies the queue 
(request path operation response queue) to which an 
asynchronous message called a feedback record is to be 
sent by the machine upon completion of the operation 
by this instruction. 

Operand 1 references an area in a space called the path 
operation template, which contains the pointers and data 
required to define the REQPO operation. This area must 
be 16-byte aligned. 

The template contains several pointers, the first 
specifies the requester object which is using the 
requested path operation. The second specifies the 
queue where final disposition of the requested path 
operation is to be returned. The third system pointer 
specifies the secondary object involved in establishing 
the path operation. This pointer is optional depending 
on the specific role and function requests being made 
so this pointer is located in the dependent portion of the 
template. 

Other optional pointers may exist within the dependent 
portion of the template for other dependent operations. 



L 
Verifications are performed on the objects referenced by 
the pointers and on the data before execution of the 
path operation is started. 

The path operation function to be performed is indicated 
by the value of the request role field in the path 
operation template as follows: 

Hex Value 

Hex 0 

Hex 1 

Hex 2 

Hex 3 

Hex 8 

Path Operation 

Passthru target node operation 

Passthru intermediate node operation 

Passthru source node operation 

Passthru virtual workstation user 
operation 

Load / dump dump space operation 

The remaining request role field values are reserved and 
result in the signaling of the template value invalid 
exception if specified. 

The first pointer, the requestor object pointer, must 
address an object for which path operations are 
supported or the instruction results in the signaling of 
the object not eligible for operation exception. 

The first pointer must be a system pointer to a LUD and 
the LUD must be one of the types which can support 
the path operation as defined in model dependent 
documentation. This field may also contain binary zero if 
the specific role and function request does not require a 
LUD system pointer. 

The second pointer must represent a queue, authorized 
to this user, in a lock state allowing its use, and must be 
a keyed queue with a key length of 16 bytes, a message 
size of 64 bytes of pointer and scalar data, and a 
message element available. If the above conditions are 
not satisfied, an appropriate exception is signaled and 
the instruction terminated. 

The third (optional) LUD pointer has the same 
requirements as the first pointer. 

Any additional optional pointers must satisfy the 
requirements for these pointers as stated in model 
dependent documentation. 

If the above verifications are successful. the requested 
path operation is scheduled for execution by the 
machine and the Request Path Operation instruction is 
completed at this time. 

The requested path operation is then processed 
asynchronously by the machine. The completion of this 
processing is indicated by the posting of a feedback 
record to the response queue specified in the template 
and signaling of the request path operation completed 
event if such event signaling was specified in the 
template. Errors encountered during the machine 
processing of this requested operation are indicated in 
the feedback record. These errors include those 
encountered within the template, any authorization or 
lock enforcement violations encountered, or any 
hardware errors detected while processing the path 
operation. 

Source/Sink Management Instructions 17-79 



Contents of the Path Operation Template 

The space object template contains the following: 

• Template size specification 
Size of template 
Number of bytes 
available for materialization 

• Reserved 

• Requester object 

• Response queue 

• Reserved 

• Request key field 

• Path identifier 

• Request path timestamp 

• Request operations 
Request priority 
Request ID 
Request control field 

Request role 
- Request functions 

• Variable parameters 

17-80 

Char(S) 
Bin(4) 
Bin(4) 

Char(S) 

System pointer 

System pointer 

Char(16) 

Char(16) 

Char(16) 

Char(S) 

Char(S) 
Bin(2) 
Bin(2) 
Char(4) 
Bit(4) 
Bit(2S) 

Char(-) 

Definition of these entries is as follows: 

• Template size specification-This entry defines the 
standard template header data. The size of template 

field must indicate a sufficient number of bytes to contai 
all of the following entries in the template including the I 
and positions of all the variable length items. The numb 
available for materialization field is not used by the 
Request Path Operation instruction. 

• Requester object-System pointer to a requester 
object for the operation. 

• Response queue-System pointer to the request path 
response queue. 

• Key field-This field is used by the machine to post 
the feedback record onto the request path operation 

response queue. This is the key value to be used by the 
Dequeue instruction to retrieve the feedback record carr 
to this Request Path Operation instruction. Feedback rec 
are posted to the response queue in binary collating seq 
order so that standard dequeue keyed rules apply. Refer 
Dequeue instruction for details. 

• Path ID-This field may contain binary zeros on input 
ID that was returned in this field on previous executio 

of the Path Operation instruction. The request role and r 
function fields define the control over the use of the pat 
ID field as defined in model dependent documentation. 

• Request path timestamp-This field is set by the mach 
indicate (in standard time units for the system) the ti 

at which this request was processed. The response que 
contains a standard enqueue timestamp that also will be 
to indicate the time of actual completion of the resulting 
path operation. Refer to the Enqueue instruction for loca 
of this other timestamp. 



• Request priority-This field is used to establish the 
priority of each Request Path instruction relative to 
each other. As each Request Path instruction is 
processed, this field is used to schedule the priority 
of this request with respect to any previously issued 
requests that are still stacked for processing. Priority 
values can be assigned in binary collating sequence 
with hex 0000 being the highest priority and hex 
FFFF being the lowest priority. 

• Request I D-This field can be used to assign any 
unique identification to each path operation. It is 
copied into the feedback record that results from this 
request path operation and thus provides an external 
capability to correlate feedback records with the 
REOPO which generated them. It is also used to 
control signaling of the request path operation 
completed event. If bit 0 in the request ID field is 
equal to 1, this event is signaled at the time the 
feedback message is enqueued. This indicates that 
the processing of this request is completed. If bit a 
in the request ID is equal to zero, no event is 
signaled. 

• Request control field-The two subfields of this 
component are used to define the request role and 
request functions which are further defined for each 
specific usage in model dependent documentation. 
These fields control operation and use of the path ID 
and also the addition variable template parameters 
defined for each use of the instruction. 

• Variable parameters-This variable extension to the 
template is defined in model dependent 
documentation and is controlled by the defined values 
for the request role and request function fields as 
described above. The secondary object LUD pointer, 
when appropriate, is the first pointer within this area. 

Format and Contents of the Feedback Record 

The message associated with a Dequeue instruction is 
called a feedback record whenever the message resulted 
from a request path operation associated with this 
response queue. The message operand on the Dequeue 
instruction has the following information inserted into it 
to form the feedback record: 

• Path operation template 
• Request ID 
• Error summary field 
• Reserved 
• Device dependent status 

Space pointer 
Bin(2) 
Bin(2) 
Char(4) 
Char(40) 

Definitions of these feedback record fields are as 
follows: 

• Path operation template-This pointer locates the 
same template supplied by the issuer of the REOPO 
instruction as its operand. This template can 
optionally have new data inserted into it based on the 
path operation which was performed. 

• Request ID field-This 2-byte field contains the same 
value as the request ID field within the template of 
the Request Path Operation instruction which 
generated this feedback record for correlation of 
responses to requests. 

• Error summary field-This 2-byte field indicates the 
final disposition of the request path operation. The 
contents of this field are: 

Byte 0 Byte 1 

tnisffff nnnnnnnn 

o 7 o 7 

Source / Sink Management Instructions 17 -81 



Byte 0 Error Attributes 

Bits 0, 1 (t = terminate, n = not normal) 

00 
01 
11 

Normal condition. 
Not normal, nonterminating error. 
Not normal. terminating error. 

Terminating errors are defined as those for 
which processing of subsequent request path 
operations is suspended until such time as 
higher level request path control instructions are 
requested. 

Bit 2 (i = included) 

o Device-dependent data is not included. 
Device-dependent data has been included in 
the device-dependent status area of this 
feedback message. 

Bit 3 (s = specific error) 

o Error code defined in byte 1. 
Device-specific error code is defined in byte 1, 
and none of the definitions for byte 1 apply. 

Bits 4, 5, 6, 7 (f = function) 

0000 = Normal function. 
All other values are reserved. 

Byte 1 Error Type 

There are currently no error codes for byte 1 under 
control of byte 0, bit 3 as defined above. Byte 0, bit 3 
specified as 'O'B and all accompanying values for byte 1 
are reserved. Byte 0, bit 3 specified as '1' B results in 
model dependent error codes which are defined in 
model dependent documentation. 

17-82 

Request Path Operation Time-out Considerations 

The Request Path Operation instruction normally initiates 
asynchronous I/O hardware operations that. under 
abnormal circumstances or hardware failures, may fail to 
complete. The REQPO, like the REQIO instruction, does 
not provide any time-out mechanism for these cases as 
is provided by the Modify instructions or for the 
synchronous request I/O. Whenever possible, the user 
should provide time-out mechanisms for feedback 
records to prevent these I/O failures from causing 
indefinite waits or ultimately requiring operator initiated 
recovery actions. 

Since the Request Path Operation instruction execution 
is asynchronous to the actual hardware operations (that 
is, the instruction completes before the actual operation 
is started by the machine), timing must be done on the 
Dequeue instruction that retrieves the feedback record 
that signals the actual completion of the I/O operation. 
This timing can be done by setting a time-out value for 
the dequeue-wait-time-out parameter on the Dequeue 
instruction. 

Time-out values to be used are device dependent and 
are a function of the particular I/O operation being 
performed by that device. 

The path operation template for this instruction must not 
be modified, destroyed, or truncated during the time the 
machine is using this space to complete request path 
operation or unpredictable results including device failure 
or damage event signaling (LUD events) may occur. 

Authorization Required 

• Operational 
LU D or dump space specified as requester object 
in the template 
LUD specified as secondary object in the template 
(when appropriately supplied) 

• Insert 
- Queue specified in the template (response queue) 

• Retrieve 
- Contexts referenced for address resolution 



Lock Enforcement Exceptions 

L · Modification Operands 
The logical unit description or dump space Exception , 2 3 4 Other 
specified by the system pointer in the template 

The response queue specified by the system 06 Addressing 

pointer in the template 01 Space addressing violation X X 

Any secondary system objects specified in the 02 Boundary alignment X X 

dependent portion of the template 03 Range X X 

06 Optimized addressability invalid X X 

· Object Control 08 Argument/ Parameter 

- None 01 Parameter reference violation X 

OA Authorization 

· Materialize 01 Unauthorized for operation X X 

Contexts referenced for address resolution 04 Unauthorized for process control X X 

- Any system objects specified in the template 10 Damage Encountered 

02 Machine context damage X 

04 System object damage X X 

Events 44 Partial system object damage X X 

1A Lock State 

0002 Authorization 01 Invalid lock state X X 

0101 Authorization violation 1C Machine Dependent Exception 

03 Machine storage limit exceeded X 

0008 Logical unit description 20 Machine Support 

0905 Request path operation completed 02 Machine check X 

(signaled asynchronously) 03 Function check X 

OA01 Request path operation response queue 22 Object Access 

destroyed (signaled asynchronously) 01 Object not found X X 

02 Object destroyed X X 

0012 Queue 03 Object suspended X X 

0401 Queue message limit reached 04 Object not eligible for operation X X 

0501 Queue extended 05 Object not available to process X X 
24 Pointer Specification 

oooe Machine resources 01 Pointer does not exist X X 

0201 Machine auxiliary storage exceeded 02 Pointer type invalid X X 
03 Pointer addressing invalid object X X 

0000 Machine status 26 Process Management 

0101 Machine check 02 Queue full X X 

2A Program Creation 

0010 Process 06 Invalid operand type X 

0701 Maximum processor time exceeded 07 Invalid operand attribute X 

0801 Process storage limit exceeded 08 Invalid operand value range X 

OC Invalid operand ODT reference X 

0016 Machine observation 00 Reserved bits are not zero X X 

0101 Instruction reference 2C Program Execution 

06 Instruction cancellation X 

0017 Damage set 32 Scalar Specification 

0201 Machine context 01 Scalar type invalid X 

0401 System object damage set 34 Source/Sink Management 

0801 Partial system object damage set 01 Source/sink configuration invalid X 

03 Source/sink object state invalid X 

38 Template Specification 

01 Template value invalid X 

~ 
02 Template size invalid X 

Source/Sink Management Instructions 17-83 



17-84 



L 
Chapter 18. Machine Observation Instructions 

This chapter describes all instructions used for machine 
observation. These instructions are arranged 
alphabetically. For an alphabetic summary of all the 
instructions, see Appendix A. Instruction Summary. 

CANCEL INVOCATION TRACE (CANINVTR) 

Op Code 
(Hex) Operand 1 

0581 Trace options 

Operand 1: Character(4) scalar. 

Description: Based on the options specified in operand 
1, this instruction causes the invocation reference event 
to no longer be signaled as a result of the creation of a 
new invocation or a return from an existing invocation. 
The instruction locates a specific invocation by its 
invocation number and allows cancellation of the trace 

of either the invocation of subsequent invocations or the 
return from the referenced invocation. No explicit 

control exists for simply turning off the propagation 
status; this is done implicitly by resetting the primary 
status. 

Operand 1 contains the following: 

• Trace status Char(2) 

Invocation trace Bit a 
a = Do not cancel invocation trace 
1 = Cancel invocation trace 
Return trace Bit 1 
a Do not cancel return trace 
1 = Cancel return trace 

• Invocation number Bin(2) 

Any currently existing invocation in the process may be 
the target of this instruction. No exception is signaled if 
no trace is in effect for the target invocation. 

Substring operand references that allow for a null 
substring reference (a length value of zero) may not be 
specified for this instruction. 

Events 

OOOC Machine resource 
0201 Machine auxiliary storage threshold exceeded 

0010 Process 
0701 Maximum processor time exceeded 

0016 Machine observation 
0101 Instruction reference 

0017 Damage set 
0401 System object damage set 
0801 Partial system object damage set 

Exceptions 

Operand 
Exception 1 Other 

06 Addressing 
01 Space addressing violation X 
02 Boundary alignment X 
03 Range X 
06 Optimized addressability invalid X 

08 Argumentl Parameter 
01 Parameter reference violation X 

10 Damage Encountered 
04 System object damage state 
44 Partial system object damage 

20 Machine Support 
02 Machine check 
03 Function check 

22 Object Access 
01 Object not found 
02 Object destroyed 
03 Object suspended 

24 Pointer Specification 
01 Pointer does not exist 
02 Pointer type invalid 

2A Program Creation 
02 ODT syntax error 
04 Operation code invalid 
06 Invalid operand type 
07 Invalid operand attribute 
08 Invalid operand value range 
OA Invalid operand length 
OC Invalid operand ODT reference 
00 Reserved bits are not zero 

32 Scalar Specification 
02 Scalar attributes invalid 
03 Scalar value invalid 

X 
X 

X 
X 
X 

X 

X 
X 
X 
X 
X 
X 

X 
X 

X 
X 

X 
X 

X 

X 
X 

X 

X 

Machine Observation Instructions 18-1 



CANCEL TRACE INSTRUCTIONS (CANTRINS) 

Op Code 
(Hex) 

0562 

Operand 
1 

Program 

Operand 
2 

Instruction 
lists 

Operand 1: System pointer. 

Operand 2: Space pointer or null. 

Description: The instructions specified in operand 2 are 
removed from the instruction trace of the program 
referenced by operand 1. 

The space pointer identified by operand 2 addresses a 
list of instructions that are to be removed from the 
instruction trace. If operand 2 is null, or if the number 
of instructions referenced is 0, then all instructions 
currently being traced in the program are removed from 
the instruction trace. If operand 2 is specified, its format 
must be as follows: 

• Number of instructions referenced (N) Bin(2) 

• Instruction reference 1 Bin(2) 

• Instruction reference N Bin(2) 

Instruction references are binary values representing the 
address (number) of the instruction within the program 
on which the trace is to be canceled. 

Instructions currently being traced but not referenced in 
the instruction list continue to be traced. References to 
instructions not currently being traced are ignored. 

An exception is signaled if an instruction number that is 
not in the program being traced is specified. 

18-2 

Events 

0002 Authorization 
0101 Object authorization violation 

OOOC Machine resource 
0201 Machine auxiliary storage threshold exceeded 

0010 Process 
0701 Maximum processor time exceeded 
0801 Process storage limit exceeded 

0016 Machine observation 
0101 Instruction reference 

0017 Damage set 
0401 System object damage set 
0801 Partial system object damage set 

Exceptions 

Operands 
Exception 1 2 

06 Addressing 
01 Space addressing violation X X 
02 Boundary alignment X 
03 Range X X 
06 Optimized addressability invalid X X 

08 Argument/ Parameter 
01 Parameter reference violation X 

10 Damage Encountered 
04 System object damage state X X 
44 Partial system object damage X X 

1C Machine-Dependent Exception 
03 Machine storage limit exceeded 

20 Machine Support 
02 Machine check 
03 Function check 

22 Object Access 
01 Object not found X X 
02 Object destroyed X X 
03 Object suspended X X 

24 Pointer Specification 
01 Pointer does not exist X X 
02 Pointer type invalid X X 
03 Pointer addressing invalid object X 

2A Program Creation 
06 Invalid operand type X X 
07 Invalid operand attribute X 
08 Invalid operand value range X 
OC Invalid operand ODT reference X X 
00 Reserved bits are not zero X X 

32 Scalar Specification 
01 Scalar type invalid X 

38 Template Specification 
01 Template value invalid X 

Other 

X 
X 

X 

X 
X 

X 

J 



MATERIALIZE INSTRUCTION ATTRIBUTES 
(MATINAT) 

Op Code 
(Hex) 

0526 

Operand 
1 

Receiver 

Operand 
2 

Selection 
information 

Operand 1: Space pointer. 

Operand 2: Character scalar. 

Description: This instruction materializes the attributes of 
the instruction that are selected in operand 2 and places 
them in the receiver (operand 1). 

Operand 2 is a 16-byte template. Only the first 16 
bytes are used. Any excess bytes are ignored. Operand 
2 has the following format: 

• Selection template 
Invocation number 
Instruction number 
Reserved (binary 0) 

Char(16) 
Bin(2) 
Bin(4) 
Char(10) 

The invocation number is a specific identifier for the 
target invocation, in the process, that is to be 
materialized. This program must be observable or the 
program not observable exception is signaled. 

The instruction number specifies the instruction in the 
specified program invocation that is to be materialized. 

Operand 1 is a space pointer that addresses a 16-byte 
aligned template where the materialized data is placed. 
The format of the data is as follows: 

• Materialization size specification 
Number of bytes provided for 
materialization 
Number of bytes available for 
materialization 

• Object identification 
Program type 
Program subtype 
Program name 

ChartS) 
Bin(4) 

Bin(4) 

Char(32) 
Char(1 ) 
Char(1 ) 
Char(30) 

• Offset to instruction attributes 

• Reserved (binary 0) 

• Instruction attributes 
Instruction type 

Instruction version 
Hex 0000=2-byte operand 

references 
Hex 0001 =3- byte operand 

references 
Reserved (binary 0) 

Instruction length 
as input to Create Program 
Offset to instruction form 
specified as input to 
Create Program 
Reserved (binary 0) 
Number of instruction operands 
Operand attributes offsets 

An offset is materialized for 
each of the operands of the 
instruction specifying the 
offset to the attributes for 
the operand 

• Instruction form specified 
as input to Create Program 

Instruction operation code 
Optional extender field and 
operand fields 

Bin(4) 

ChartS) 

Char(*) 
Char(2) 
Bits 0-3 

Bits 4-15 
Bin(2) 

Bin(4) 

Char(4) 
Bin(2) 
Char(*) 
Bin(4) 

Char(*) 

Char(2) 
Char(*) 

• Operand attributes Char(*) 
A set of attributes following this 
format is materialized for each of 
the operands of the instruction. 
Compound operand references result 
in materialization of only one set 
of attributes for the operand which 
describe the substring or array 
element as is appropriate. 
See the specific format described 
below for each operand type. 

Operand type Bin(2) 
1 = Data object 
2 = Constant data object 
3 = Instruction number reference 
4 = Argument list 
5 = Exception description 
6 = Null operand 
7 == Space pointer machine object 
Operand specific attributes Char(*) 
See descriptions below for 
detailed formats. Nothing is 
provided for null operands. 

Machine Observation Instructions 18-3 



• Data object Char(32) 
For a data object, the following 
operand attributes are 
materia I ized. 

Operand type = 1 
- Data object specific attributes 

Element type 

Bin(2) 
Char(7) 
Char(1) 

Hex 00= Binary 
Hex 01=Floating-point 
Hex 02=Zoned decimal 
Hex 03= Packed decimal 
Hex Q4=Character 
Hex 08= Pointer 
Element length Char(2) 
If binary, or character, 
or floating-point: 
Length Bits 0-15 
If zoned decimal or packed decimal: 
Fractional digits Bits 0-7 
Total digits Bits 8-15 
If pointer: 
Length = 16 
Array size 
If scalar, then value of O. 

Bits 0-15 
Bin(4) 

If array, then number of elements. 
- Reserved (binary 0) Char(6) 
- Data object addressability Char(17) 

18-4 

Addressability indicator Char( 1) 
Hex oo=Addressability was 

not established 
Hex 01 =Addressability was 

established 
Space pointer to the object 
if addressability could be 
established 

Space 
pointer 

• Constant data object Char(·) 
For a constant data object, 
the following operand attributes 
are materialized (immediate 
operands as constants, signed 
immediates as binary, and 
unsigned immediates as character). 
- Operand type = 2 
- Constant specific attributes 

Element type 
Hex OO=Binary 
Hex 01=Floating-point 
Hex 02=Zoned decimal 
Hex 03= Packed decimal 
Hex Q4=Character 
Element length 
If binary, or character, 
or floating-point: 
Length 

Bin(2) 
Char(7) 
Char(1) 

Char(2) 

Bits 0-15 
If zoned decimal or packed decimal: 
Fractional digits Bits 0-7 
Total digits Bits 8-15 
Reserved (binary 0) Bin(4) 

- Reserved (binary 0) Char(7) 
Constant value Char(·) 

• Instruction references 
For instruction references, either 
through instruction definition 
lists or immediate operands, 
the following operand attributes 
are materialized. 
- Operand type = 3 
- Number of instruction reference 

elements 
1 = Single instruction reference 
>1 = Instruction definition list 

- Reserved (binary 0) 
Reference list 

The instruction number of 
each instruction reference 
is materialized in the order 
in which they are defined. 

Char(·) 

Bin(2) 
Bin(2) 

Char(12) 
Char(·) 



• Argument list 
For an argument list, the 
following operand attributes 
are materialized. 

Operand type = 4 
Argument list specific 
attributes 

Actual number of list 
entries 
Maximum number of list 
entries 

Reserved (binary 0) 
Addressability to list entries 

Space pointer to each list 
entry for the number of 
actual list entries. A 
value of all zeros is 
materialized if addressability 
could not be established. 

• Exception description 
For an exception description, 
the following operand attributes 
are materialized. 

Char(*) 

Bin(2) 
Char(4) 

Bin(2) 

Bin(2) 

Char(10) 
Char(*) 
Space 
pointer 

Char(48) 

Operand type = 5 Bin(2) 
Reserved (binary 0) Char(10 
Control flags Char(2) 

Exception handling action Bits 0-2 
000 Ignore occurrence of exception 

and continue processing 
001 Disabled exception description 
010 

100 
101 

Continue search for an exception 
description by resignaling the 
exception to the immediately 
preceding invocation 
Defer handling 
Pass control to the specified 
exception handler 

Reserved (binary 0) Bits 3-15 
Bin(2) 
Char(32) 

Compare value length 
Compare value 

• Space pointer machine object 
For a space pointer machine object, 
the following operand attributes 
are materialized. 

Operand type = 7 
- Reserved (binary 0) 

Pointer addressability 
Pointer value indicator 
Hex 00= Addressability value 

is not valid 
Hex 01 = Addressability value 

is valid 
Space pointer data object 
containing the space pointer 
machine object value if 
addressability value is 
valid. 

Char(32) 

Bin(2) 
Char(13) 
Char(17) 
Char(1) 

Space 
pointer 

The first 4 bytes of the materialization identify the total 
number of bytes that may be used by the instruction. 
This value is supplied as input to the instruction and is 
not modified by the instruction. A value of less than 8 
causes the materialization length exception to be 
signaled. 

The second 4 bytes of the materialization identify the 
total number of bytes available to be materialized. The 
instruction materializes as many bytes as can be 
contained in the area specified as the receiver. If the 
byte area identified by the receiver is greater than that 
required to contain the information requested, then 
excess bytes are unchanged. 

The materialization available for an instruction depends 
on the execution status of the program that the 
instruction is in. If the program has not executed to the 
point of the instruction, little or no meaningful 
information about the instruction can be materialized. If 
the program executes the instruction multiple times, the 
materialization will vary with each execution. 

No exceptions are signaled in the event that the receiver 
contains insufficient area for the materialization, other 
than the materialization length exception described 
previously. 

Substring operand references that allow for a null 
substring reference (a length value of zero) may not be 
specified for this instruction. 

Machine Observation Instructions 18-5 



Events Exceptions 

OOOC Machine resource Operands J 0201 Machine auxiliary storage threshold exceeded Exception 1 2 Other 

OOOD Machine status 06 Addressing 

0101 Machine check 01 Space addressing violation X X 

02 Boundary alignment X X 

0010 Process 03 Range X X 

0601 Exception signaled to process 06 Optimized addressability invalid X X 

0701 Maximum processor time exceeded 08 Argument/ Parameter 

0801 Process storage limit exceeded 01 Parameter reference violation X X 

10 Damage Encountered 

0016 Machine observation 04 System object damage X 

0101 Instruction reference 44 Partial system object damage X 

0201 Object location reference 1E Machine Observation 

01 Program not observable X 

0017 Damage set 20 Machine Support 

0401 System object damage set 02 Machine check X 

0801 Partial system object damage set 03 Function check X 

22 Object Access 

01 Object not found X 

02 Object destroyed X X 

03 Object suspended X X 

24 Pointer Specification 

01 Pointer does not exist X X 

02 Pointer type invalid X X 

2A Program Creation 

J 06 Invalid operand type X X 

07 Invalid operand attribute X X 

OC Invalid operand ODT reference X X 

00 Reserved bits are not zero X X X 

32 Scalar Specification 

01 Scalar type invalid X X 

02 Scalar attributes invalid X X 

03 Scalar value invalid X X 

38 Template Specification 

01 Template value invalid X 

03 Materialization length exception X 

18-6 



MATERIALIZE INVOCATION (MATINV) 

Op Code 
(Hex) 

0516 

Operand 
1 

Receiver 

Operand 
2 

Selection 
information 

Operand 1: Space pointer. 

Operand 2: Space pointer. 

Description: The attributes of the invocation selected 
through operand 2 are materialized into the receiver 
designated by operand 1. 

Operand 2 is a space pointer that addresses a template 
of the following form: 

• Invocation number Bin(2) 

• Offset to list of parameters Bin(4) 

• Number of parameter OOV numbers Char(2) 

• Offset to list of exception descriptions Bin(4) 

• Number of exception description OOV Char(2) 
(object definition table) numbers 

The offset to the list of parameters and the offset to the 
list of exception descriptions are both relative to the 
start of the operand 2 template. Each list is an array of 
Char(2) OOV numbers. The number of parameter OOV 
numbers and the number of exception description OOV 
numbers define the sizes of the arrays. 

Operand 2 is a space pointer that addresses a template 
that has the following format: 

• Control information 
Template extension 
o Template extension is 

not present. 
Template extension is 
present. 

Invocation number 

• Offset to list of parameters 

• Number of parameter OOV numbers 

Char(2) 
Bit 0 

Bits 1-15 

Bin(4) 

Char(2) 

• Offset to list of exception 
descriptions 

• Number of exception description 
OOV numbers 

• Template extension (optional) 
Offset to list of space 
pointer machine objects 
Number of space pointer 
machine object OOV numbers 
Reserved (binary 0) 

Bin(4) 

Char(2) 

Char(14) 
Bin(4) 

Char(2) 

ChartS) 

The offset to the list of space pointer machine objects, 
offset to the list of parameters, and the offset to the list 
of exception descriptions are relative to the start of the 
operand 2 template. Each list is an array of Char(2) 
OOV numbers. The number of space pointer machine 
object OOV numbers, number of parameter OOV 
numbers, and the number of exception description OOV 
numbers define the sizes of the arrays. 

Operand 1 is a space pointer that addresses a 16-byte 
aligned template into which the materialized data is 
placed. The format of the data is: 

• Materialization size specification 
Number of bytes provided for 
materialization 
Number of bytes available for 
materialization 

• Object identification 
Program type 
Program subtype 
Program name 

• Trace specification 
Invocation trace status 
o = Not tracing new invocations 
1 = Tracing new invocations 

ChartS) 
Bin(4) 

Bin(4) 

Char(32) 
Char(1) 
Char(1) 
Char(30) 

Char(2) 
Bit 0 

- R~urntrKe Brt1 
o = Not tracing returns 
1 = Tracing returns 
Invocation trace propagation Bit 2 
o = Not propagating invocation trace 
1 = Propagating invocation trace 
Return trace propagation Bit 3 
o = Not propagating return trace 
1 = Propagating return trace 
Reserved (binary 0) Bits 4-15 

• Instruction number Bin(2) 

Machine Observation Instructions 18-7 



• Offset to parameter values Bin(4) 

• Offset to exception description values Bin(4) 

• Offset to space pointer 
machine object values 
(Optional-This data is present 
only if the template extension 
is present in the selection 
information. ) 

Bin(4) 

• Space pointer machine objects Char(*) 
(Optional-This data is present 
only if the template extension is 
present in the selection information.) 
- For each ODV number specified Char(32) 

18-8 

for a space pointer machine 
object, the value of the 
space pointer machine object 
is materialized as follows: 

Reserved (binary 0) 
Pointer value indicator 

00 Addressability value 
is not valid 

01 Addressability value 
is valid 

Space pointer data object 
containing the space 
pointer machine object 
value if addressability 
value is valid. 

Char(15) 
Char(1) 

Space 
pointer 

• Parameters Char(*) 
- For each parameter ODT number Space 

specified, the address of the pointer 
parameter data is materialized 
(If no parameter ODT numbers are 
materialized, this parameter is 
binary 0.) 

• Exception description 
- For each exception description 

ODT number specified, the 
following is materialized: 

- Control flags 
Exception handling action 
000 = Ignore occurrence 

of exception and 

001 
continue processing 
Disabled exception 
description 

010 Continue search 
for an exception 
description by 
resignaling the 
exception to the 
immediately preceding 
invocation 

100 Defer handling 
101 Pass control to the 

specified exception 
handler 

Reserved (binary 0) 
- Compare value length 

Compare value 

Char(*) 
Char(36) 

Char(2) 
Bits 0-2 

Bits 3-15 
Bin(2) 
Char(32) 

The first 4 bytes of the materialization identify the total 
number of bytes that may be used by the instruction. 
This value is supplied as input to the instruction and is 
not modified by the instruction. A value of less than 8 
causes the materialization length exception to be 
signaled. 

The second 4 bytes of the materialization identify the 
total number of bytes available to be materialized. The 
instruction materializes as many bytes as can be 
contained in the area specified as the receiver. If the 
byte area identified by the receiver is greater than that 
required to contain the information requested, then 
excess bytes are unchanged. 

No exceptions (other than the materialization length 
exception) are signaled in the event that the receiver 
contains insufficient area for the materialization. 



The instruction number returned depends on how Exceptions 

control was passed from the invocation: 

L Operands 

Exit Type Instruction Number 
Exception 1 2 Other 

06 Addressing 
Call External Locates the Call External instruction 01 Space addressing violation X X 

02 Boundary alignment X X 
Event Locates the next instruction to 03 Range X X 

execute 06 Optimized addressability invalid X X 
08 Argument/ Parameter 

Exception Locates the instruction that caused 01 Parameter reference violation X X 

the exception 10 Damage Encountered 
04 System object damage state X X X 

The space pointers that address parameter values are 
44 Partial system object damage X X X 

1E Machine Observation 
returned in the same order as the corresponding ODT 01 Program not observable X 
numbers in the input array. The same is true for the 20 Machine Support 
exception description values. 02 Machine check X 

03 Function check X 
If the offset to the list of parameters or the number of 22 Object Access 
parameter ODT numbers is 0, no parameters are 01 Object not found X 

returned and the offset to parameters value is O. If any 02 Object destroyed X X 

parameters are returned, they are 16-byte aligned. If 03 Object suspended X X 

the offset to list of exception descriptions or the number 24 Pointer Specification 

of exception description ODT numbers is 0, no 01 Pointer does not exist X X 

exception descriptions are returned and the offset to 
02 Pointer type invalid X X 

exception description values are O. 
2A Program Creation 

06 Invalid operand type X X 
07 Invalid operand attribute X X 
OC Invalid operand ODT reference X X 

Events 00 Reserved bits are not zero X X X 
32 Scalar Specification 

OOOC Machine resource 01 Scalar type invalid X X 
0201 Machine auxiliary storage threshold exceeded 02 Scalar attributes invalid X X 

38 Template Specification 
0010 Process 01 Template value invalid X 

0701 Maximum processor time exceeded 03 Materialization length exception X 
0801 Process storage limit exceeded 

0016 Machine observation 
0101 Instruction reference 

0017 Damage set 
0401 System object damage set 
0801 Partial system object damage set 

Machine Observation Instructions 18-9 



MATERIALIZE INVOCATION ENTRY (MATINVE) 

Op Code 
(Hex) 

Operand 
1 

Operand 
2 

Operand 
3 

0547 Receiver Selection Materialization 
information options 

Operand 1: Character variable scalar. 

Operand 2: Character(8) scalar or null. 

Operand 3: Character(1) scalar or null. 

Description: This instruction materializes the attributes of 
the specified invocation entry within the process issuing 
the instruction. The attributes specified by operand 3 of 
the invocation selected through operand 2 are 
materialized into the receiver designated by operand 1. 

Operand 2 is an 8-byte template or a null operand. If 
operand 2 is null, it indicates that the attributes of the 
current invocation are to be materialized. If operand 2 is 
not null, it must be an 8-byte template which specifies 
the invocation to be materialized. Only the first 8 bytes 
are used. Any excess bytes are ignored. It has the 
following format: 

• Selection information 
Relative invocation number 

- Reserved 

Char(8) 
Char(2) 
Char(6) 

If operand 2 is not null, it is restricted to a constant with 
the relative invocation number field specifying a value of 
zero, which indicates that the attributes of the current 
invocation are to be materialized. 

Operand 3 is a 1-byte value or a null operand. If 
operand 3 is null, it indicates that the attributes for a 
materialization option value of hex 00 are to be 
materialized. If operand 3 is not null, it must be a 
1-byte value which specifies the type of materialization 
to be performed. Option values that are not defined 
below are reserved values and may not be specified. 
Only the first byte is used. Any excess bytes are 
ignored. It has the following format: 

• Materialization options Char(1) 
Hex OO=Long materialization 

- Hex 01 =Short materialization type 1 
Hex 02=Short materialization type 2 
Hex 03=Short materialization type 3 
Hex Q4=Short materialization type 4 

18-10 

If operand 3 is not null, it is restricted to a constant 
character scalar or an immediate value. 

Operand 1 specifies a receiver into which the 
materialized data is placed. It must specify a character 
scalar with a minimum length which is dependent upon 
the materialization option specified for operand 3. If the 
length specified for operand 1 is less than the required 
minimum, an exception is signaled. Only the bytes up to 
the required minimum length are used. Any excess 
bytes are ignored. For the materialization options which 
produce pointers in the materialized data, 16-byte space 
alignment is required for the receiver. The data placed 
into the receiver differs depending upon the 
materialization option specified. The following 
descriptions detail the formats of the optional 
materializations. 

Long Materialization 

For a materialization option value of hex 00, the 
minimum length for the receiver is 144 bytes. It has the 
following format: 

Hex OO=Long materialization Char(144) 

· Reserved Char(12) 

· Mark counter Bin(4) 

· Reserved Char(32) 

· Associated program pointer (zero System 
for data base select/omit program) pointer 

• Invocation number Bin(2) 

• Invocation type Char(1) 
Hex OO=Data base select/omit program 
Hex 01 =Call external 
Hex 02=Transfer control 
Hex 03=Event handler 
Hex Q4=External exception handler 
Hex 05=lnitial program in process problem state 
Hex 06=lnitial program in process initiation state 
Hex 07=lnitial program in process termination state 
Hex 08=lnvocation exit 

J 



L~ 
· Reserved (binary 0) Char(1 ) 

· Invocation mark Bin(4) 

· Reserved Charla) 

· PASA entry pointer Space pointer 

· PSSA entry pointer Space pointer 

· Reserved Char(32) 

Short Materialization Type 1 

For a materialization option value of hex 01, the 
minimum length for the receiver is 16 bytes. It has the 
following format: 

Hex 01 =Short materialization 
type 1 

• Associated program pointer 
(null for data base 
select/ omit program) 

Short Materialization Type 2 

Char(16) 

System 
pointer 

For a materialization option value of hex 02, the 
minimum length for the receiver is 4 bytes. It has the 
following format: 

Hex 02=Short materialization 
type 2 

• Invocation mark 

Short Materialization Type 3 

Char(4) 

Bin(4) 

For a materialization option value of hex 03, the 
minimum length for the receiver is 16 bytes. It has the 
following format: 

Hex 03=Short materialization 
type 3 

• PASA entry pointer 

Char(16) 

Space 
pointer 

Short Materialization Type 4 

For a materialization option value of hex 04, the 
minimum length for the receiver is 16 bytes. It has the 
following format: 

Hex 04=Short materialization 
type 4 

• PSSA entry pointer 

Char(16) 

Space 
pointer 

The mark counter value represents the current value of a 
counter used by the machine to mark all activations and 
invocations created during the execution of a process 
with a unique value. This mark indicates the point at 
which the specific entry was allocated relative to the 
sequence of all activations and invocations that have 
been created over time within the process. 

The associated program pointer is a system pointer that 
locates the program associated with the invocation 
entry. 

The invocation number is a number that uniquely 
identifies each invocation in the PASA. When an 
invocation is allocated, the invocation number of the 
new invocation entry is one more than that in the calling 
invocation. The first invocation in the current process 
state has an invocation number of one. 

The invocation type indicates how the associated 
program was invoked. 

The invocation mark indicates the point at which this 
invocation entry was allocated relative to the sequence 
of all activations and invocations that have been created 
over time within the process. This is set from the 
incremented mark counter value for each new invocation 
added to the invocation stack. 

The PASA entry pointer is a space pointer that is set to 
address the start of the PASAE (program automatic 
storage area entry) associated with the invocation. The 
associated program's automatic data starts 64 bytes 
after the area addressed by this pointer. 

Machine Observation Instructions 18-11 



The PSSA entry pointer is a space pointer that is set to Exceptions 

address the start of the PSSAE (program static storage 
area entry) associated with the invocation. The Operands 

associated program's static data starts 64 bytes after Exception 1 2 3 Other 

the area addressed by this pointer. The first 64 bytes 06 Addressing 
contain the header information for the PSSAE. Refer to 01 Space addressing violation X X X 
the Create Activation instruction for a description of this 02 Boundary alignment X X X 
header information. This pointer will be set to a value of 03 Range X X X 
all zeros if the invoked program does not have static 06 Optimized addressability invalid X X X 
data. 08 Argument/ Parameter 

01 Parameter reference violation X X X 

The fields labeled reseNed in the descriptions of the 10 Damage Encountered 

optional materializations are currently reseNed for future 04 System object damage X 

use. These fields may be altered by this instruction 
44 Partial system object damage X 

20 Machine Support 
depending upon the particular implementation of the 02 Machine check X 
machine. Any values set into these fields are 03 Function check X 
meaningless. 22 Object Access 

01 Object not found X X X 
Substring operand references that allow for a null 02 Object destroyed X X X 
substring reference (a length value of zero) may not be 03 Object suspended X X X 

specified for this instruction. 24 Pointer Specification 
01 Pointer does not exist X X X 
02 Pointer type invalid X X X 

Events 2A Program Creation 
06 Invalid operand type X X X 
07 Invalid operand attribute X X X 

OOOC Machine resources 08 Invalid operand value range X X 
0201 Machine auxiliary storage exceeded OA Invalid operand length X X X 

OC Invalid operand ODT reference X X X 

J 0000 Machine status 00 Reserved bits are not zero X X X X 
01 01 Machine check 32 Scalar Specification 

01 Scalar type invalid X X X 

0010 Process 02 Scalar attributes invalid X X X 

0701 Maximum processor time exceeded 03 Scalar value invalid X X X 

0801 Process storage limit exceeded 

0016 Machine obseNation 
0101 Instruction reference 

0017 Damage set 
0401 System object damage set 
0801 Partial system object damage set 

18-12 



MATERIALIZE INVOCATION STACK (MATINVS) 

Op Code 
(Hex) 

0546 

Operand 
1 

Receiver 

Operand 
2 

Process 

Operand 1: Space pointer. 

Operand 2: System pointer or null. 

Description: This instruction materializes the current 
invocation stack within the specified process. 

The attributes of the invocation entries currently on the 
invocation stack of the process specified by operand 2 
are materialized into the template specified by operand 
1. 

Operand 2 is a system pointer or a null operand. If 
operand 2 is null, it indicates that the invocation stack of 
the current process is to be materialized. If operand 2 is 
not null, it is a system pointer identifying the process 
control space associated with the process for which the 
invocation stack is to be materialized. If the subject 
process, identified by operand 2, is different from the 
process executing this instruction, the executing process 
must be the original initiator of the subject process or 
must have process control special authorization to the 
process control space associated with the subject 
process. 

Operand 1 is a space pointer that addresses a 16-byte 
aligned template into which is placed the materialized 
data. The format of the data is: 

• Materialization size specification 
Number of bytes provided 
for materialization 
Number of bytes available 
for materialization 

Char(8) 
Bin(4) 

Bin(4) 

• Number of invocation entries Bin(4) 

• Mark counter Bin(4) 

• Invocation entries Char(*) 
(An invocation entry is materialized 
for each of the invocations currently 
on the invocation stack of the specified 
process.) 

The invocation entries materialized are each 128 bytes 
long and have the following format: 

• Reserved 

• Associated program pointer 
(null for data base select/omit 
program or a destroyed program) 

• Invocation number 

• Invocation type 
Hex ()()=Data base select/omit 

program 

Hex 01 =Call external 
Hex 02=Transfer control 
Hex 03=Event handler 

Char(32) 

System 
pointer 

Bin(2) 

Char(1) 

Hex Q4=External exception handler 
Hex 05=lnitial program in process 

problem state 

Hex 06=lnitial program in process 
initiation state 

Hex 07=lnitial program in process 
termination state 

Hex 08=lnvocation exit 

• Reserved 

• Invocation mark 

• Instruction number 

• Reserved 

Char(1) 

Bin(4) 

Bin(4) 

Char(68) 

The number of invocations value specifies the number of 
invocation entries provided in the materialization. 

The mark counter value represents the current value of a 
counter used by the machine to mark all activations and 
invocations created during the execution of a process 
with a unique value. This mark indicates the point at 
which the specific entry was allocated relative to the 
sequence of all activations and invocations that have
been created over time within the process. 

The associated program pointer is a system pointer that 
locates the program associated with the invocation 
entry. 

The invocation number is a number that uniquely 
identifies each invocation in the PASA. When an 
invocation is allocated, the invocation number of the 
new invocation entry is one more than that in the calling 
invocation. The first invocation in the current process 
state has an invocation number of one. 

Machine Observation Instructions 18-13 



The invocation type indicates how the associated 
program was invoked. 

The invocation mark indicates the point at which this 
invocation entry was allocated relative to the sequence 
of all activations and invocations that have been created 
over time within the process. This is set from the 
incremented mark counter value for each new invocation 
added to the invocation stack. 

The instruction number specifies the number of the 
instruction last being executed when the invocation 
passed control to the next invocation on the stack. 

The fields labeled reserved are currently reserved for 
future use. These fields may be altered by this 
instruction depending upon the particular implementation 
of the machine. Any values set into these fields are 
meaningless. 

The first 4 bytes of the materialization identifies the total 
quantity of bytes that may be used by the instruction. 
This value is supplied as input to the instruction and is 
not modified by the instruction. A value of less than 8 
causes the materialization length exception to be 
signaled. 

The second 4 bytes of the materialization identifies the 
total quantity of bytes available to be materialized. The 
instruction materializes as many bytes as can be 
contained in the area specified as the receiver. If the 
byte area identified by the receiver is greater than that 
required to contain the information requested, the 
excess bytes are unchanged. 

No exceptions are signaled in the event that the receiver 
contains insufficient area for the materialization, other 
than the materialization length exception described 
previously. 

18-14 

When the materialization is performed for a process 
other than the one executing this instruction, the 
instruction attempts to interrogate, snapshot. the 
invocation stack of the other process concurrently with 
the ongoing execution of that process. In this case, the 
interrogating process and subject process may be 
interleaving usage of the processor resource. Due to 
this, the accuracy and integrity of the materialization is 
relative to the state, static or dynamic, of the invocation 
stack in the subject process over the time of the 
interrogation. If the invocation stack in the subject 
process is in a very static state, not changing over the 
period of interrogation, the materialization may represent 
a good approximation of a snapshot of its invocation 
stack. To the contrary, if the invocation stack in the 
subject process is in a very dynamic state, radically 
changing over the period of interrogation, the 
materialization is potentially totally inaccurate and may 
describe a sequence of invocations that was never an 
actual sequence that occurred within the process. In 
addition to the above exposures to inaccuracy in 
attempting to take the snapshot, the ongoing status of 
the invocation stack of the subject process may 
substantially differ from that reflected in the 
materialization, due to its continuing execution after 
completion of this instruction. 

When the materialization is performed for the process 
executing this instruction, it does provide an accurate 
reflection of the status of the process' invocation stack. 
In this case, concurrent execution of this instruction with 
execution of other instructions in the process is 
precluded. 

Authorization Required 

• Process control special authorization 
For materializing a different process than the one 
executing this instruction 

• Retrieve 
- Contexts referenced for address resolution 

Lock Enforcement 

• Materialization 
- Contexts referenced for address resolution 

J 



Events Exceptions 

L oooC Machine resources Operands 
0201 Machine auxiliary storage exceeded Exception 1 2 Other 

oooD Machine status 06 Addressing 

0101 Machine check 01 Space addressing violation X X 
02 Boundary alignment X X 

0010 Process 03 Range X X 

0701 Maximum processor time exceeded 06 Optimized addressability invalid X X 

0801 Process storage limit exceeded 08 Argument/ Parameter 

01 Parameter reference violation X X 

0016 Machine observation OA Authorization 

0101 Instruction reference 01 Unauthorized for operation X X 
10 Damage Encountered 

0017 Damage set 04 System object damage X 

0401 System object damage set 44 Partial system object damage X 

0801 Partial system object damage set 20 Machine Support 

02 Machine check X 
03 Function check X 

22 Object Access 

01 Object not found X X 
02 Object destroyed X X 
03 Object suspended X X 

24 Pointer Specification 

01 Pointer does not exist X X 
02 Pointer type invalid X X 

28 Process State 

02 Process control space not X 
associated with a process 

2A Program Creation 

06 Invalid operand type X X 
07 Invalid operand attribute X X 
OC Invalid operand ODT reference X X 
00 Reserved bits are not zero X X X 

32 Scalar Specification 

01 Scalar type invalid X X 
02 Scalar attributes invalid X X 

38 Template Specification 

03 Materialization length X 

Machine Observation Instructions 18-15 



MATERIALIZE POINTER (MATPTR) 

Op Code Operand 
(Hex) 1 

0512 Receiver 

Operand 
2 

Pointer 

Operand 1: Space pointer. 

Operand 2: System pointer, space pointer data object, data 

pointer, or instruction pointer. 

Description: The materialized form of the pointer object 
referenced by operand 2 is placed in operand 1. 

The first 4 bytes of the materialization identify the total 
number of bytes that may be used by the instruction. 
This value is supplied as input to the instruction and is 
not modified by the instruction. A value of less than 8 
causes the materialization length exception to be 
signaled. 

The second 4 bytes of the materialization identify the 
total number of bytes available to be materialized. The 
instruction materializes as many bytes as can be 
contained in the area specified as the receiver. If the 
byte area identified by the receiver is greater than that 
required to contain the information requested, then the 
excess bytes are unchanged. No exceptions (other than 
the materialization length exception) are signaled in the 
event that the receiver contains insufficient area for the 
materialization. 

The format of the materialization is: 

• Materialization size specification 
Number of bytes provided for 
materialization 
Number of bytes available for 
materialization 

• Pointer type 
Hex 01 = System pointer 
Hex 02 = Space pointer 
Hex 03 = Data pointer 
Hex 04 = Instruction pointer 

18-16 

Char(8) 
Bin(4) 

Bin(4) 

Char(1) 

Pointer value materialization depends on the pointer 
type. One of the following pointer type formats is used. 

• System pointer description Char(66) 

The system pointer description identifies 
the object addressed by the pointer and 
the context which the object specifies as 
its addressing context. 
- Context identification 

Context type 
Context subtype 
Context name 
Object identification 
Object type 
Object subtype 
Object name 
Pointer authorization 
Object control 
Object management 
Authorization pointer 
Space authority 
Retrieve 
Insert 
Delete 
Update 
Ownership 
Reserved (binary 0) 

Char(32) 
Char(1) 
Char(1 ) 
Char(30) 
Char(32) 
Char(1) 
Char(1 ) 
Char(30) 
Char(2) 
Bit 0 
Bit 1 
Bit 2 
Bit 3 
Bit 4 
Bit 5 
Bit 6 
Bit 7 
Bit 8 
Bits 9-15 

Note: If the object addressed by the system pointer 
specifies that it is not addressed by a context or if 
the context is destroyed, the context entry is hex 00. 
If the object is addressed by the machine context, a 
context type entry of hex 81 is returned. No 
verification is made that the specified context actually 
addresses the object. 

J 



The following lists the object type codes for system 
object references: 

Value 
(Hex) Object Type 

01 Access group 
02 Program 
04 Context 
07 Journal space 
08 User profile 
09 Journal port 
OA Queue 
OB Data space 
OC Data space index 
00 Cursor 
OE Index 
OF Commit block 
10 Logical unit description 
11 Network description 
12 Controller description 
19 Space 
1A Process control space 

Note: Only the authority currently stored in the 
system pointer is materialized. 

• Data pointer description Char(75) 

The data pointer description describes 
the current scalar and array attributes 
and identifies the space addressability 
contained in the data pointer. 
- Scalar and array attributes 

Scalar type 
Hex 00 = Binary 
Hex 01 = Floating-point 
Hex 02 = Zoned decimal 
Hex 03 = Packed decimal 
Hex 04 = Character 

Scalar length 
If binary, character, 
or floating-point: 

Length 
If zoned decimal or packed 
decimal: 

Charm 
Char(1 ) 

Char(2) 

Bits 0-15 

Fractional digits Bits 0-7 
Total digits Bits 8-15 

Reserved (binary 0) Bin(4) 
- Data pointer space addressability Char(68) 

Context identification Char(32) 
Context type Char(1) 
Context subtype Char(1) 
Context name Char(30) 

Object identification Char(32) 
Object type Char(1) 
Object subtype Char(1) 
Object name Char(30) 

Offset into space Bin(4) 

Note: If the object containing the space addressed 
by the data pointer is not addressed by a context, the 
context entry is hex 00. If the object is addressed by 
the machine context. a context type entry of hex 81 
is returned. 

Machine Observation Instructions 18-17 



• Space pointer description Char(68) 

The space pointer description describes 
space addressability contained in the 
space pointer. 

Context identification 
Context type 
Context subtype 
Context name 
Object identification 
Object type 
Object subtype 
Object name 
Offset into space 

Char(32) 
Char(1 ) 
Char(1 ) 
Char(30) 
Char(32) 
Char(1 ) 
Char(1 ) 
Char(30) 
Bin(4) 

Note: If the object containing the space addressed 
by the space pointer is not addressed by a context, 
the context entry is hex 00. If the object is addressed 
by the machine context, a context type entry of hex 
81 is returned. 

• Instruction pointer description 

The instruction pointer description describes 
instruction addressability contained in the instruction 
pointer. 

Context identification 
Context type 
Context subtype 
Context name 

- Program identification 
Program type 
Program subtype 
Program name 

- Instruction number 

18-18 

Char(32) 
Char(1 ) 
Char(1 ) 
Char(30) 
Char(32) 
Char(1 ) 
Char(1 ) 
Char(30) 
Bin(4) 

If the program containing the instruction currently being 
addressed by the instruction pointer is not addressed by 
a context, the context entry is hex 00. 

If the pointer is a system pointer or a data pointer and 
is initialized but unresolved, the pointer is resolved 
before the materialization occurs. 

This instruction will tolerate a damaged object 
referenced by operand 2 when operand 2 is a resolved 
pointer. The instruction will not tolerate a damaged 
context(s) or damaged programs when resolving 
pointers. Also, as a result of damage or abnormal 
machine termination, this instruction can indicate that an 
object is addressed by a context, when in fact the 
context will not show this as an addressed object. The 
Modify Addressability instruction can be used to correct 
this problem. 

A space pointer machine object cannot be specified for 
operand 2. 

Events 

OOOC Machine resource 
0201 Machine auxiliary storage threshold exceeded 

0010 Process 
0701 Maximum processor time exceeded 
0801 Process storage limit exceeded 

0016 Machine observation 
0101 Instruction reference 

0017 Damage set 
0401 System object damage set 
0801 Partial system object damage set 



Exceptions 

L Exception 

06 Addressing 
01 Space addressing violation 
02 Boundary alignment 
03 Range 
04 External data object not found 
06 Optimized addressability invalid 

08 Argument/ Parameter 
01 Parameter reference violation 

10 Damage Encountered 
04 System object damage state 
44 Partial system object damage 

1C Machine- Dependent Exception 
03 Machine storage limit exceeded 

20 Machine Support 
02 Machine check 
03 Function check 

22 Object Access 
01 Object not found 
02 Object destroyed 
03 Object suspended 

24 Pointer Specification 
01 Pointer does not exist 
02 Pointer type invalid 

2A Program Creation 
06 Invalid operand type 

l" 07 Invalid operand attribute 
08 Invalid operand value range 
OC Invalid operand ODT reference 
OD Reserved bits are not zero 

32 Scalar Specification 
01 Scalar type invalid 

38 Template Specification 
03 Materialization length exception 

Operands 
1 2 Other 

X X 
X X 
X X 

X 
X X 

X X 

X X X 
X X X 

X 

X 
X 

X X 
X X 
X X 

X X 
X X 

X X 
X X 
X X 
X X 
X X X 

X 

X 

MATERIALIZE POINTER LOCATIONS (MATPTRL) 

Op Code 
(Hex) 

Operand 
1 

Operand 
2 

Operand 
3 

0513 Receiver Source Length 

Operand 1: Space pointer. 

Operand 2: Space pointer. 

Operand 3: Binary scalar. 

Description: This instruction finds the pointers in a 
subset of a space and produces a bit mapping of their 
relative locations. 

The area addressed by the operand 2 space pointer is 
scanned for a length equal to that specified in operand 
3. A bit in operand 1 is set for each 16 bytes of 
operand 2. The bit is set to binary 1 if a pointer exists 
in the operand 2 space, or the bit is set to binary 0 if no 
pointer exists in the operand 2 space. 

Operand 1 is a space pointer addressing the receiver 
area. One bit of the receiver is used for each 16 bytes 
specified by operand 3. If operand 3 is not a 16-byte 
multiple, then the bit position in operand 1 that 
corresponds to the last (odd) bytes of operand 2 is set 
to O. Bits are set from left to right (bit 0, bit 1, ... ) in 
operand 1 as 16-byte areas are interrogated from left to 
right in operand 2. The number of bits set in the 
receiver is always a multiple of 8. Those rightmost bits 
positions that do not have a corresponding area in 
operand 2 are set to O. 

The format of the operand 1 receiver is: 

• Template size specification 
Number of bytes provided for 
materialization 
Number of bytes available for 
materialization 

• Pointer locations 

Char(8) 

Bin(4) 

Bin(4) 

Char(·) 

Operand 2 must address a 16-byte aligned area; 
otherwise, a boundary alignment exception is signaled. 
If the value specified by operand 3 is not positive, the 
scalar value invalid exception is signaled. 

Machine Observation Instructions 18-19 



The first 4 bytes of the materialization identify the total Exceptions 

number of bytes that may be used by the instruction. 
This value is supplied as input to the instruction and is Operands 
not modified by the instruction. A value of less than 8 Exception 1 2 3 Other 

causes the materialization length exception to be 
signaled. 06 Addressing 

01 Space addressing violation X X X 

The second 4 bytes of the materialization identify the 02 Boundary alignment X X X 

total number of bytes available to be materialized. The 03 Range X X X 

instruction materializes as many bytes as can be 06 Optimized addressability invalid X X X 

contained in the area specified as the receiver. If the 08 Argument/ Parameter 

byte area identified by the receiver is greater than that 01 Parameter reference violation X X X 

required to contain the information requested, then the 10 Damage Encountered 

excess bytes are unchanged. No exceptions (other than 04 System object damage state X X X X 

the materialization length exception) are signaled in the 44 Partial system object damage X X X X 

event that the receiver contains insufficient area for 1C Machine-Dependent Exception 

materialization. 03 Machine storage limit exceeded X 

20 Machine Support 

02 Machine check X 

Events 03 Function check X 

22 Object Access 

OOOC Machine resource 01 Object not found X 

0201 Machine auxiliary storage threshold exceeded 02 Object destroyed X X X 

03 Object suspended X X X 

0010 Process 24 Pointer Specification 

0701 Maximum processor time exceeded 01 Pointer does not exist X X X 

0801 Process storage limit exceeded 02 Pointer type invalid X X X 
2A Program Creation 

0016 Machine observation 06 Invalid operand type X X X J 
0101 Instruction reference 07 Invalid operand attribute X X X 

08 Invalid operand value range X X X 

0017 Damage set OA Invalid operand length X 

0401 System object damage set OC Invalid operand ODT reference X X X 

0801 Partial system object damage set 00 Reserved bits are not zero X X X X 

32 Scalar Specification 
03 Scalar value invalid X 

38 Template Specification 
03 Materialization length exception X 

18-20 



MATERIALIZE SYSTEM OBJECT (MATSOBJ) 

Op Code Operand Operand 
(Hex) 1 2 

053E Receiver Object 

Operand 1: Space pointer. 

Operand 2: System pointer. 

Description: This instruction materializes the identity and 
size of a system object addressed by the system pointer 
identified by operand 2. It can be used whenever 
addressability to a system object is contained in a 
system pointer. 

The first 4 bytes of the materialization identify the total 
number of bytes that may be caused by the instruction. 
This value is supplied as input to the instruction and is 
not modified by the instruction. A value of less than 8 
raises the materialization length exception. 

The second 4 bytes of the materialization identify the 
total number of bytes available to be materialized. The 
instruction materializes as many bytes as can be 
contained in the area specified as the receiver. If the 
byte area identified by the receiver is greater than that 
required to contain the information requested, then. the 
excess bytes are unchanged. No exceptions (other than 
the materialization length exception) are signaled in the 
event that the receiver contains insufficient area for the 
materialization. 

The format of the materialization is: 

• Materialization size specification 
Number of bytes provided for 
materialization 
Number of bytes available for 
materialization 

Char(8) 

Bin(4) 

Bin(4) 

• Object state attributes Char(2) 
- Suspended state Bit 0 

o = Not suspended 
1 = Suspended 

- Damage state Bit 1 
o = Not damaged 
1 = Damaged 
Partial damage state Bit 2 
o = No partial damage 
1 = Partial damage 

- Existence of addressing context Bit 3 
o Not addressed by a 

temporary context 
Addressed by a temporary 
context 

Reserved (binary 0) Bits 4-15 

• Context identification 
- Context type 
- Control subtype 
- Context name 

• Object identification 
- Object type 
- Object subtype 
- Object name 

• Timestamp of creation 

• Size of associated space 

• Object size 

• Owning user profile identification 
- User profile type 
- User profile subtype 
- User profile name 

• Timestamp of last modification 

Char(32) 
Char(1 ) 
Char(1) 
Char(30) 

Char(32) 
Char(1) 
Char(1 ) 
Char(30) 

Char(8) 

Bin(4) 

Bin(4) 

Char(32) 
Char(1 ) 
Char(1 ) 
Char(30) 

Char(8) 

The timestamp field is materialized as an 8-byte 
unsigned binary number in which bit 41 is equal to 1024 
microseconds. The timestamp of creation field is 
implicitly set when an object is created. 

Machine Observation Instructions 18-21 



The timestamp of last modification field is explicitly set 
by the Modify System Object instruction or by any 
operation that modifies or attempts to modify an object 
attribute value or an object state. When implicitly set, 
the timestamp of last modification field is ensured as 
part of the normal ensuring of objects. The timestamp 
of last modification field can also be implicitly updated 
for some IMPL functions to the last time known to the 
system. 

If the object addressed by the system pointer specifies 
that it is not addressed by a context or if the context is 
destroyed, the context type entry is hex 00. If the object 
is addressed by the machine context, a context type 
entry of hex 81 is returned. No verification is made that 
the specified context actually addresses the object. 

If the object is a temporary object and is, therefore, 
owned by no user profile, the user profile type entry is 
assigned a value of hex 00. 

This instruction will tolerate a damaged object 
referenced by operand 2 when operand 2 is a resolved 
pointer. The instruction will not tolerate a damaged 
context(s) or damaged programs when resolving 
pointers. Also, as a result of damage or abnormal 
machine termination, this instruction can indicate that an 
object is addressed by a context, when in fact the 
context will not show this as an addressed object. The 
Modify Addressability instruction can be used to correct 
this problem. The existence of addressing context 
attribute indicates whether the previously (or currently) 
addressing context was (is) temporary. This field is 0 if 
the object was (is) not addressed by a temporary 
context. 

18-22 

Valid object type fields and their meanings are: 

Value 
(Hex) Object Type 

01 Access group 
02 Program 
04 Context 
07 Journal space 
08 User profile 
09 Journal port 
OA Queue 
OB Data space 
OC Data space index 
OD Cursor 
OE Index 
OF Commit block 
10 Logical unit description 
11 Network description 
12 Controller description 
19 Space 
1A Process control space 

Authorization Required 

• Retrieve 
- Contexts referenced for address resolution 

Lock Enforcennent 

• Materialize 
- Operand 2 
- Contexts referenced for address resolution 

Events 

0002 Authorization 
0101 Object authorization violation 

OOOC Machine resource 
0201 Machine auxiliary storage threshold exceeded 

00 10 Process 
0701 Maximum processor time exceeded 
0801 Process storage limit exceeded 

0016 Machine observation 
0101 Instruction reference 

0017 Damage set 
0401 System object damage set 
0801 Partial system object damage set 



Exceptions MODIFY SYSTEM OBJECT (MODSOBJ) 

L Operands Op Code Operand Operand 
Exception 1 2 Other (Hex) 1 2 

06 Addressing 053E Target Modification options 
01 Space addressing violation X X object 
02 Boundary alignment X X 
03 Range X X Operand 1: System pointer. 

06 Optimized addressability invalid X X 
08 Argument/ Parameter Operand 2: Character(16) scalar. 

01 Parameter reference violation X X 
OA Authorization 

01 Unauthorization for operation X Description: Based on the options specified by operand 

10 Damage Encountered 2, selected state attributes of the system object 

04 System object damage state X X X addressed by the system pointer identified by operand 1 

44 Partial system object damage X X X are modified. 

1A Lock State 
01 Invalid lock state X . Object state modification options Char(16) 

1C Machine-Dependent Exception Modification selection Char(1) 

03 Machine storage limit exceeded X Modification timestamp Bit 0 

20 Machine Support Reserved (binary 0) Bits 1-7 

02 Machine check X Reserved (binary 0) Char(15) 

03 Function check X 
22 Object Access The modification timestamp option, if set, indicates that 

01 Object not found X X the modification timestamp attribute of the object is to 

02 Object destroyed X X be set to the a-byte unsigned binary number for the 

L 
03 Object suspended X X current time-of-day clock value, where bit 41 is equal 

24 Pointer Specification to 1024 microseconds. This field is also implicitly set for 

01 Pointer does not exist X X certain instructions that alter an object attribute value or 

02 Pointer type invalid X X a state of an object. Only the first 16 bytes of the 

2A Program Creation modification option operand are used. 

06 Invalid operand type X X 
07 Invalid operand attribute X X Implicit changing of the modification timestamp will only 

08 Invalid operand value range X X occur through common functions for the following 

OC Invalid operand ODT reference X X objects: 

00 Reserved bits are not zero X X X 
32 Scalar Specification · logical unit description 

01 Scalar type invalid X X 
38 Template Specification · Controller description 

03 Materialization length exception X 

· Network description 

· Access group 

· Queue 

No modification timestamp is provided for a process 

control space and a value of zero will be returned in the 
materialization template. 

Only the first 16 bytes of the modification option 
operand are used. 

Machine Observation Instructions 18-23 



Substring operand references that allow for a null Exceptions 

substring reference (a length value of zero) may not be 

specified for this instruction. Operands J Exception 1 2 Other 

Authorization Required 06 Addressing 
01 Space addressing violation X X 

· Object management 02 Boundary alignment X X 

- Operand 1 03 Range X X 

06 Optimized addressability invalid X X 

· Retrieve 08 Argument/Parameter 

- Contexts referenced for address resolution 01 Parameter reference violation X X 

OA Authorization 

01 Unauthorized for operation X 

Lock Enforcement 10 Damage Encountered 

04 System object damage X X 

· Materialization 44 Partial system object damage X 

- Contexts referenced for address resolution 1A Lock State 

01 Invalid lock state X 

· Modification 20 Machine Support 

- Operand 1 02 Machine check X 

03 Function check X 
22 Object Access 

Events 01 Object not found X X 

02 Object destroyed X X 

0002 Authorization 03 Object suspended X X 

0101 Authorization violation 24 Pointer Specification 

01 Pointer does not exist X X 

OOOC Machine resource 02 Pointer type invalid X X 

0201 Machine auxiliary storage exceeded 2A Program Creation 

06 Invalid operand type X X 

oooD Machine status 07 Invalid operand attribute X X 

0101 Machine check 08 Invalid operand value range X X 

OA Invalid operand length X X 

0010 Process OC Invalid operand ODT reference X X 

0701 Maximum processor time exceeded OD Reserved bits are not zero X X X 

0801 Process storage limit exceeded 32 Scalar Specification 
01 Scalar type invalid X X 

0016 Machine observation 02 Scalar attributes invalid X 

0101 Instruction reference 03 Scalar value invalid X 

0017 Damage set 
0401 System object damage set 

0801 Partial system object damage set 

18-24 



L 
TRACE INSTRUCTIONS (TRINS) 

Op Code 
(Hex) 

0552 

Operand 
1 

Program 

Operand 
2 

Instruction 
list 

Operand 1: System pointer. 

Operand 2: Space pointer or null. 

Description: This instruction causes the execution of the 
program referenced by operand 1 within the current 
process monitored for specific instruction executions. 
When one of the instructions specified by operand 2 
starts execution, an instruction reference event is 
signaled. The event is signaled before any operands of 
the instruction are accessed. 

The space pointer identified by operand 2 addresses an 
area that defines the instructions to be traced in a 
format as follows: 

• Number of instructions to be 
traced (N) 

• Instruction reference 1 

• Instruction reference N 

Bin(2) 

Bin(2) 

Bin(2) 

The value of each instruction reference is interpreted as 
the address (number) of an instruction to be traced. If a 
value of 0 is specified for the number of instructions to 
be traced entry or if operand 2 is null, all program 
instructions are traced. 

A template value invalid exception is signaled if any 
specified instruction number is not in the program being 
traced. If instructions in the referenced program are 
already being traced, the instructions referenced in 
operand 2 are added to those being traced. References 
to instructions already being traced are ignored. 

Any number of programs may be traced within the 
process at the same time. 

This instruction may not be performed in a process 
when a service machine trace is in progress for the 
process. A machine-dependent request invalid 
exception (hex 1 C01) is signaled. The exception is also 
signaled if the service machine trace is requested when 
the trace instruction is in progress. 

Authorization Required 

• Retrieve 
Operand 1 

- Context referenced for address resolution 

Lock Enforcement 

• Materialize 
- Context referenced for address resolution 

Events 

0002 Authorization 
0101 Object authorization violation 

OOOC Machine resource 
0201 Machine auxiliary storage threshold exceeded 

0010 Process 
0701 Maximum processor time exceeded 
0801 Process storage limit exceeded 

0016 Machine observation 
0101 Instruction reference 

0017 Damage set 
0401 System object damage set 
0801 Partial system object damage set 

Machine Observation Instructions 18-25 



Exceptions TRACE INVOCATIONS (TRINV) 

Operands Op Code Operand ~ Exception 1 2 Other (Hex) 1 

06 Addressing 0551 Trace specification 

01 Space addressing violation X X 

02 Boundary alignment X 
Operand 1: Character(4) scalar. 

03 Range X X 
06 Optimized addressability invalid X X 

08 Argument/ Parameter 
Description: The instruction causes the invocation 

01 Parameter reference violation X X 
reference event to be signaled upon invocation of a 

OA Authorization 
program or upon termination of the invocation of a 

01 Unauthorized for operation X 
program. The following conditions may be traced: 

10 Damage Encountered · Call external 
04 System object damage state X X X 

44 Partial system object damage X X X · Transfer control 
1A Lock State 

01 Invalid lock state X 

1C Machine-Dependent Exception · Invocation of an external exception handler 

01 Machine dependent-request 
invalid 

X · Invocation of an event handler 

03 Machine storage limit exceeded X 
20 Machine Support · Invocation of an internal or branch point exception 

02 Machine check X 
handler 

03 Function check X 

22 Object Access • Control given to an invocation exit routine 

01 Object not found X X 
02 Object destroyed X X · Return external 

03 Object suspended X X 

24 Pointer Specification • Return from exception 

01 Pointer does not exist X X 
02 Pointer type invalid X X · Termination of an invocation to pass control to an 

03 Pointer addressing invalid object X 
internal exception handler or to a branch point 

2A Program Creation 
exception handler in a previous invocation 

06 Invalid operand type X X 
07 Invalid operand attribute X X · Termination of an invocation to pass control from an 

08 Invalid operand value range X X external exception handler to an invocation other than 

OA Invalid operand length X 
the invocation in which the exception occurred 

OC Invalid operand ODT reference X X 
00 Reserved bits are not zero X X X · Termination of an invocation to terminate a phase of 

32 Scalar Specification a process 

01 Scalar type invalid X 
38 Template Specification This instruction references only a single invocation 

01 Template value invalid X 
within the process and causes the invocation reference 
event to be signaled when that invocation returns or 
when an invocation subsequent to it is created. The 
instruction also allows the trace control attributes to be 
propagated to subsequently created invocations. 
Currently existing invocations within a process may be 
designated through multiple executions of this 
instruction. Specification of trace propagation in a 
currently existing invocation does not cause propagation 
to other currently existing invocations. 

18-26 



L 

Operand 1 contains the following information: 

Char(2) • Trace specification 
Invocation trace Bit a 
a = Do not cancel new invocations 
1 = Trace new invocations 
Return trace Bit 1 
a = Do not cancel trace return 
1 = Trace returns 
Trace propagation Bit 2 
a = Do not propagate trace to 

subsequent invocations 
Propagate trace to subsequent 
invocations 

Reserved (binary 0) Bits 3-15 

• Invocation number Bin(2) 

If the referenced invocation is currently being traced, the 
invocation trace, the return trace, or both may be added. 
No exception is signaled if either or both are currently 
being traced. If propagation of the trace control 
indicator to lower-level invocations is desired, then trace 
new invocations, trace return, or both must also be set. 
The propagated trace applies only to the trace action 
specified by this instruction, not to the current trace 
action in the referenced invocation. 

Propagating of trace to a lower-level invocation means 
that any immediately subordinate invocations that are 
created have trace controls that are identical to those of 
the designated invocation. The only exception is that the 
invocation trace is not propagated to an invocation 
reference event handler. 

On transfer control conditions, the new invocation 
overlays the old invocation, and the invocation reference 
event is signaled if either the trace new invocations or 
the trace returns option is in effect. 

When the initial invocation in a process phase returns, 
the initial program in the next process phase is invoked, 
and the trace status of the returning invocation becomes 
the trace status of the new invocation. 

Substring operand references that allow for a null 
substring reference (a length value of zero) may not be 
specified for this instruction. 

Events 

OOOC Machine resource 
0201 Machine auxiliary storage threshold exceeded 

0010 Process 
0701 Maximum processor time exceeded 

0016 Machine observation 
0101 Instruction reference 

0017 Damage set 
0401 System object damage set 
0801 Partial system object damage set 

Exceptions 

Operand 
Exception 1 Other 

06 Addressing 

01 Space addressing violation 

02 Boundary alignment 

03 Range 

06 Optimized addressability invalid 

08 Argument/Parameter 

01 Parameter reference violation 

10 Damage Encountered 

04 System object damage state 

44 Partial system object damage 

1C Machine-Dependent Exception 

03 Machine storage limit exceeded 

20 Machine Support 

02 Machine check 
03 Function check 

22 Object Access 

01 Object not found 

02 Object destroyed 

03 Object suspended 

24 Pointer Specification 

01 Pointer does not exist 

02 Pointer type invalid 

X 

X 
X 
X 

X 

X X 
X X 

X 

X 
X 

X 
X 

X 

X 
X 

X 

03 Pointer addressing invalid object X 

2A Program Creation 

02 ODT syntax error X 

04 Operation code invalid 
06 Invalid operand type 

07 Invalid operand attribute 

OA Invalid operand length 

OC Invalid operand ODT reference 

00 Reserved bits are not zero 

32 Scalar Specification 

02 Scalar attributes invalid 

03 Scalar value invalid 

X 
X 

X 
X 
X 

X 
X 

X 

X 

Machine Observation Instructions 18-27 



18·28 



Chapter 19. Machine Interface Support Functions Instructions 

This chapter describes all instructions used for machine 
interface support functions. These instructions are 
arranged in alphabetic order. For an alphabetic summary 
of all the instructions, see Appendix A. Instruction 
Summary. 

DIAGNOSE (DIAG) 

Op Code Operand Operand 
(Hex) 1 2 

0672 Function Function-dependent 
code information 

Operand 1: Binary scalar. 

Operand 2: Space pointer. 

Description: This instruction invokes diagnostic functions 
and is intended for use by personnel who service 
System/38. Each function has a separate and unique 
purpose and is identified by the value in operand 1. 
Operand 2 identifies a template that contains either 
information specified for the function or information to 
be received from the function. 

The instruction is a privileged instruction and its use 
must be authorized to the user profile under which it is 
executing. 

Authorization Required 

• Privileged instruction 

Events 

0002 Authorization 
0201 Privileged instruction violation 

OOOC Machine resources 
0201 Machine auxiliary storage exceeded 

OOOD Machine Status 
0101 Machine check 

0010 Process 
0701 Maximum processor time exceeded 
0801 Process storage limit exceeded 

0016 Machine observation 
0101 Instruction reference 

0017 Damage set 
0401 System object damage set 
0801 Partial system object damage set 

Machine Interface Support Functions Instructions 19-1 



Exceptions 

Exception 

06 Addressing 

01 Space addressing violation 

02 Boundary alignment 

03 Range 

06 Optimized addressability invalid 

08 Argument/Parameter 

01 Parameter reference violation 

OA Authorization 

02 Privileged instruction 

1 0 Damage Encountered 

04 System object damage state 

44 Partial system object damage 

1 C Machine- Dependent Exception 

03 Machine storage limit exceeded 

20 Machine Support 

01 Diagnose 

02 Machine check 

03 Function check 

22 Object Access 

01 Object not found 

02 Object destroyed 

03 Object suspended 

24 Pointer Specification 

01 Pointer does not exist 

02 Pointer type invalid 

2A Program Creation 

06 Invalid operand type 

07 Invalid operand attribute 

08 Invalid operand value range 

OA Invalid operand length 

OC Invalid operand ODT reference 

00 Reserved bits are not zero 

32 Scalar Specification 

01 Scalar type invalid 

03 Scalar value invalid 

38 Template Specification 

01 Template value invalid 

19-2 

Operands 
1 2 Other 

X X 
X X 
X X 
X X 

X X 

X 

X 
X 

X 

X X 
X 
X 

X X 
X X 
X X 

X X 
X X 

X X 
X X 
X X 

X 
X X 

X X X 

X X 

X 

X 

MATERIALIZE MACHINE ATTRIBUTES (MATMATR) 

Op Code 
(Hex) 

0636 

Operand 
1 

Material
ization 

Operand 
2 

Machine 
attributes 

Operand 1: Space pointer. 

Operand 2: Character(2) scalar (fixed-length). 

Description: The instruction makes available the unique 
values of machine attributes. The values of various 
machine attributes are placed in the receiver. Operand 2 
options specify the type of information to be 
materialized. 

The machine attributes are divided into nine groups. 
Byte 0 of the attribute selection operand specifies the 
group from which the machine attributes are to be 
materialized. Byte 1 of the options operand selects a 
specific subset of that group of machine attributes. 

The first 4 bytes of the materialization (operand 1) 
identify the total number of bytes that can be used by 
the instruction. This value is supplied as input to the 
instruction and is not modified by the instruction. A 
value of less than 8 causes the materialization length 
exception to be signaled. 

The second 4 bytes of the materialization identify the 
total number of bytes available to be materialized. The 
instruction materializes as many bytes as can be 
contained in the area specified as the receiver. If the 
byte area identified by the receiver is greater than that 
required to contain the information requested for 
materialization, then the excess bytes are unchanged. 
No exceptions (other than the materialization length 
exception) are signaled in the event that the receiver 
contains insufficient area for the materialization. 

Data-pointer-defined scalars are not allowed as a 
primary operand for this instruction. An invalid operand 
type exception is signaled if this occurs. 

Substring operand references that allow for a null 
substring reference (a length value of zero) may not be 
specified for this instruction. 

J 



The format of the materialization is as follows: 

• Materialization size specification 
- Number of bytes provided 

Char(8) 
Bin(4) 

for materialization 
Number of bytes available Bin(4) 
for materialization 

• Attribute specification Char(*) 
(as defined by the attribute selection) 

The machine attributes defined by operand 2 are 
materialized according to the following selection values: 

Selection 
Value Attribute Description 

Hex 0000 MCR (machine configuration record) 

The MCR contains the internal 
configuration of the machine. The MCR 
machine attribute is provided for machine 
maintenance only and has no meaning or 
value to the user. The MCR is 
materialized as a contiguous character 
string of binary data. 

Hex 0004 Machine serial identification (can be 
materialized but cannot be modified) 

The machine serial identification that is 
materialized is an 8-byte character field 
that contains the unique machine 
identifier. 

Hex 0100 Time-of-day clock (can be materialized 
and modified) 

The time-of-day clock provides a 
consistent measure of elapsed time. The 
maximum elapsed time the clock can 
indicate is approximately 143 years. 

The time-of-day clock is a 64-bit 
unsigned binary counter with the following 
format: 

0 ............... .41 42 reserved 63 

The bit positions of the clock are 
numbered from 0 to 63. 

Selection 
Value Attribute Description 

Hex 0100 (continued) 

The clock is incremented by adding a 1 in 
bit position 41 every 1024 microseconds. 
Bit positions 42 through 63 are used by 
the machine and have no special meaning 
to the user. Note that these bits (42-63) 
may contain either binary 1's or binary 
O's. 

Unpredictable results occur if the time of 
day is materialized before it is set. 

The maximum unsigned binary value that 
the time of day clock can be modified to 
contain is hex DFFFFFFFFFFFFFFF. 

Hex 0104 Initial process definition template (can be 
materialized and modified) 

The initial process definition template is 
used by the machine to perform an initial 
process load. The initial process definition 
template has the same format as the 
process definition template defined by the 
Initiate Process instruction. See Chapter 
11. Process Management Instructions. 

No check is made and no exception is 
signaled if the values in the template are 
invalid; however, the next initial process 
load will not be successful. 

Hex 0108 Machine initialization status record (can be 
materialized and modified) 

The MISR (machine initialization status 
record) is used to report the status of the 
machine. The status is collected at IMPL 
(initial microprogram load) or IMPLA 
(initial microprogram load abbreviated). 

Machine Interface Support Functions Instructions 19-3 



Selection 
Value Attribute Description 

Hex 0108 (continued) 

19-4 

Modifying the MISR causes it to be reset. 
The values in the operand 1 template of 
the Modify Machine Attributes instruction 
are ignored when this selection value is 
specified. The materialize format of the 
MISR is as follows: 

• MISR status 
- Termination status 

o Normal 
(TERMMPR) 

1 Abnormal 
- IMPL 

Reference bit 14 to 
determine if the IMPL 
is initiated because 
of Terminate Machine 
Processing instruction 
with the restart option. 
If bit 14 is set, bit 1 
should be ignored. 

Char(2) 
Bit 0 

Bit 1 

o = Normal (Manual 
depression of the 
Power-on or 
Load push button) 
Auto-IMPL (Auto 
power-on of system 
followed by an IMPL) 

Primary console status Bit 2 
o = Normal 
1 = Inoperative 
Primary load/dump Bit 3 
o = Normal 
1 = Inoperative 
Power status of Bit 4 
Operator / Service 
panel sequence 
indicators 
o = Normal 
1 = Inoperative 
Duplicate user Bit 5 
profile (AI PL only) 
o = Not duplicate, 

new user pro
file created 

1 = Duplicate found 
and used by AIPL 

Reserved (binary 0) Bit 6 

Selection 
Value Attribute Description 

Hex 0108 (continued) 

- Damaged machine 
context 
o Not damaged 
1 = Machine context 

damaged 
- Power control 

initialization 
o = Successful 
1 = Failed 

- Object recovery 
list status 
o = Complete 
1 = Incomplete 

- Recovery phase 
completion 
o = Complete 
1 = Incomplete 

- Most recent machine 
termination 
o Objects ensured 
1 = Object(s) not 

ensured at most 
recent machine 
termination 

Bit 7 

Bit 8 

Bit 9 

Bit 10 

Bit 11 

- Last MISR reset Bit 12 
o = Object(s) ensured 

on every machine 
termination 
Object(s) not 
ensured on every 
machine termin
ation since last 
MISR reset 

Console data 
storage test 
o = Successful 
1 = Failed 
Restart initiated 
from the Terminate 
Machine Processing 
instruction without 
powering down the 
system 

Bit 13 

Bit 14 

o = IMPL was not 
initiated by the 
Terminate instruction 
IMPL was 
initiated by the 
Terminate instruction 

- Reserved (binary 0) Bit 15 



L 
Selection 
Value Attribute Description 

Hex 0108 (continued) 

· Number of damaged Bin(2) 
main storage units 

· Number of entries in Bin(4) 
object recovery list 

· Address of object Space 
recovery list pointer 

· Process control space System 
created as the result pointer 
of IPL or AIPL 

· Process static storage System 
area space pointer 

· Process automatic System 
storage area space pointer 

· Recovery object list Char(*) 
(located by recovery 
object list pointer) 

Recovery entry Char(32) 
(repeated for number 
of entries) 
Object pointer System 

pointer 
Object type Char(1) 
Object status Char(15) 

Termination status indicates how the previous IMPL was 
terminated. If normal, the Terminate Machine 
Processing instruction successfully terminated the 
previous IMPL. If abnormal. the Terminate Machine 
Processing instruction did not successfully terminate the 
previous IMPL. This also implies that some cleanup of 
permanent objects may be required by the user. 

IMPL indicates that the machine was automatically 
powered on and an IMPL was initiated because the 
previous IMPL was terminated as a result of a loss of 
the machine's primary power supply. 

Primary console status indicates that the primary 
console is functioning normally or that it is inoperative. 

Primary load/dump device status indicates that the 
load/dump device is functioning normally or that it is 
inoperative. This indicator is valid only if an IPL has 
been performed with the IMPL or IMPLA. If the primary 
load/dump device is inoperative and an AIPL is to be 
done, the machine terminates machine processing 
because the data needed to perform the AIPL is read 
from the load/dump device. 

The power status for Operator/Service panel sequence 
indicators (light emitting diodes) indicates whether the 
sequence indicators on the Operator/Service panel are 
operational or not. 

The duplicate user profile is valid only for AIPL and 
indicates if a user profile that is the same as the AIPL 
user profile to be created already exists in the machine 
context. The machine in this instance does not create 
the user profile for AIPL but rather uses the one located 
with the same name. 

Damaged AIPL user profile indicates if the currently 
existing user profile was detected as damaged and a 
new user profile was created as specified in the AIPL 
user profile creation template. 

Damaged machine context indicates if damage was 
detected in the machine context when an attempt was 
made to locate the duplicate user profile or to insert 
addressability to a newly created user profile. In either 
case, all current addressability is removed from the 
machine context, the new AIPL user profile is created, 
its addressability is inserted into the machine context, 
and the AIPL continues. Objects whose addressability 
was removed may have it reinserted using the Reclaim 
instruction for all objects or the Modify Addressability 
instruction for a specific object. 

Power control initialization indicates if the power 
controller is operative or not. 

Machine Interface Support Functions Instructions 19-5 



The object recovery list status entry indicates that the 
status is complete unless one of the following 
conditions is true: 

• The recovery list was lost. 

• More objects were to be placed in the list but there 
was insufficient space. 

The recovery phase completion entry indicates that the 
status is complete unless one of the following 
conditions occurs: 

• An object to be recovered and / or inserted into the 
object recovery list no longer exists. 

• The objects to be recovered could not be determined 
due to loss of internal machine indicators that 
specified which objects were in use at machine 
termination. 

The most recent machine termination entry is set to a 
unless all objects were not ensured at the most recent 
machine termination. 

The last MISR reset entry is set to a if all objects were 
ensured at every machine termination since the MISR 
was last reset (to 0) using the Modify Machine 
Attributes instruction. 

The console data storage test indicates whether the 
console data storage is usable or not. If this test fails, 
the storage used by the IOC to operate the console is 
not operating properly and attempts to perform console 
operations may produce unpredictable results. 

The number of damaged main storage transfer blocks 
entry indicates the number of main storage transfer 
blocks that were detected as damaged by the machine 
during IMPL. 

19-6 

The number of entries in the object recovery list entry 
indicates how many objects are listed in the space 
located by the address of object recovery list entry. 

The address of object recovery list entry contains a 
space pointer to the list of the potentially damaged 
objects that were identified during machine initialization. 
The machine maintains this list of objects until a Modify 
Machine Attribute instruction for the MISR is executed. 
The number of such objects is indicated by the number 
of entries in the object recovery list entry. 

The process control space created results from I PL or 
AIPL and is identified by a system pointer returned in 
this field. 

Process static storage space system pointer addresses 
the space object that contains the PSSA created and 
initialized at IPL time. The space containing the PSSA is 
a temporary space and is not addressed by a context. 
This field contains binary a's if the machine to 
programming transition is done via an IPL. 

Process automatic storage area system pointer 
addresses the space object that contains the PASA 
created and initialized at IPL time. The space containing 
the PASA is a temporary space and is not addressed by 
any context. This field contains binary a's if the machine 
to programming transition is done via an IPL. 



The recovery object list identifies objects that required 
some activity performed on the object(s) during IPl. The 
list is located by the recovery object list pointer. Each 
entry in the list has the following general format: 

• Object 

• Object type 

• Object status 
General status 
Damaged 

a = Object not damaged 
1 = Object damaged 

Reserved 
Suspended 

a = Object not suspended 
1 = Object suspended 
Partially damaged 
o Object not partially 

damaged 
Object partially 
damaged 

Journal synchronization 
o = Synchronization 

complete or not 
necessary 

1 = Synchronization 
failure 

Reserved 
IPL detected damage 

o = Any indicated damage 
was not detected by 
directory recovery 
Indicated damage was 
detected by directory 
recovery 

Reserved 
Object specific status 
(The format for the IPL 
recovery status for this 
portion of the object 
recovery list entries is 
different for each object 
type. A description of each 
follows by object type.) 
Commit block status 

System 
pointer 

Char(1 ) 

Char(15) 
Char(2) 
Bit 0 

Bit 1 
Bit 2 

Bit 3 

Bit 4 

Bits 5-6 
Bit 7 

Bits 8-15 
Char(13) 

Char(2) 

Decommit Bit a 
o = The journal has 

successfully been read 
backwards until either 
a start commit or a 
decommit entry was found. 
An attempt has been made 
to decommit all the data 
base changes but the 
attempt may not have been 
successful if the data 
space is damaged or if the 
function check flag is on. 
The journal has not 
successfully been read 
backwards to a start commit 
or decommit entry and all 
the changes have not been 
decommitted. 

Journal read errors Bit 1 
o No journal read errors 
1 = Journal read errors 

occurred during decommit 
Journal write errors Bit 2 

o No journal write 
errors 

1 = Journal write errors 
occurred during decommit 

Partial damage to data space Bit 3 
o No partial damage 

encountered 
1 = Partial damage encountered 

on 1 or more data spaces 
Damage to data space Bit 4 

o No damage 
encountered 

1 = Damage encountered on 
1 or more data spaces 

Function check Bit 5 
o No function check 

encountered 
Function check 
encountered 

Reserved Bit 6 

Machine Interface Support Functions Instructions 19-7 



Data space during IMPL 
o = Data space is 

synchronized with 
the journal 
Data space is not 
synchronized with the 
journal. All changes 
may not be decommitted. 

Bit 7 

Decommit reason code Bits 8-10 
000= Decommit not 

performed 
001= Decommit at IPL 
010= Process termination 
100= Decommit instruction 

(all other values reserved) 
Reserved Bits 11-15 
Reserved (binary 0) Charm 
Start commit journal Bin(4) 
Sequence number 

• Data space 
- Status Char(13) 

19-8 

Indexes detached from data Bit a 
space 

a Indexes remain attached 
1 = All indexes detached from 

this data space 
Reserved (binary 0) 
Reserved (binary 0) 
Ordinal entry number of last 
entry 

Bits 1-15 
Charm 
Bin(4) 

• Data space index 
Status 
Invalidated 

a = Not invalidated 
1 = Invalidated 

Reserved (binary 0) 
Reserved (binary 0) 

• Journal port 
- Status 

Synchronization status 
a All objects 

synchronized 
Not all objects 
synchronized 

Reserved 
- Reserved 

Number of journal spaces 
attached 

• Journal space 
Status 

Char(13) 
Bit a 

Bits 1-15 
Char(11 ) 

Char(13) 
Bit a 

Bits 1-7 
Char(10) 
Bin(2) 

Char(13) 
Journal space usable Bit 0 

o Journal space is usable 
1 = Journal space is not 

usable 
Threshold reached 

o = Threshold has not 
been reached 
Threshold has been 
reached 

Reserved 
Reserved 

- First journal sequence number 
- Last journal sequence number 

Reserved (binary 0) 

Bit 1 

Bits 2-7 
Char(4) 
Bin(4) 
Bin(4) 
Char(13) 

All objects-Any damage detected during IPL is reported 
in the general status information. If this damage is 
detected as a result of special processing performed 
during directory rebuild, it is indicated in the IPL 
detected damage bit. A journal synchronization failure 
indicates the designated object was not made current 
with respect to the journal. Subsequent attempts to 
apply journal changes from the journal to this object will 
not be allowed. 



L 
Commit block-All commit blocks that were attached to 
an active process during the previous IPL are 
interrogated at the following IPL. The system attempts 
to decommit any uncommitted changes referenced 
through these commit blocks. The results of this 
attempted decommit is reported in the status field. The 
system also returns the journal entry sequence number 
of the start commit journal entry (hex 0500) last created 
for this commit block if there were any uncommitted 
changes. If the number is not returned, a value of binary 
zero is returned. 

Data space-If object damage was detected during IPL, 
the object is marked as damaged, damage is indicated 
in the object status field, and an event is signaled. In 
this case, the highest ordinal entry number is O. In 
certain situations, the data space indexes over the data 
space become detached and therefore must be 
recreated. If the object is not damaged, the data space 
is usable and the highest ordinal entry number is set. 
The ordinal entry number of last entry indicates the last 
entry in the data space. Updates are not guaranteed. 
Updates may be out of sequence or partially applied and 
must be verified by the user for correctness. 

Data space index-If object damage was detected during 
IPL, the object is marked as damaged, damage is 
indicated in the object status field, and an event is 
signaled. If the object was invalidated because changes 
were made in a data space addressed by the data space 
index, the data space index is included in the list and 
marked as invalidated. The associated data space is 
also included elsewhere in the object recovery list. Only 
damaged or invalidated data space indexes are included 
in the list. 

Journal port-Each journal port in the system is 
interrogated at I PL. The status field contains the result 
of this checking and also the result of the attempt to 
synchronize the objects (if necessary) being journaled 
through the indicated journal port. The system also 
returns the number of journal spaces attached to the 
journal port after IPL is complete. 

Journal space-Each journal space that was attached to a 
journal port or used by the system to synchronize an 
object which was being journaled at the time of the 
previous machine termination is interrogated during IPL. 
The status field reports the results of this interrogation 
and synchronization use. Journal spaces are only 
referenced by the object recovery list if this IPL was 
preceded by an abnormal failure or some unexpected 
condition was discovered during the IPL. The first 
journal sequence number on the journal space is 
returned. The last usable entry on the journal space is 
also identified. If the journal space is damaged, these 
fields will contain zeroes. 

Machine Interface Support Functions Instructions 19-9 



Selection 
Value Attribute Description 

Hex 0110 Machine system name (can be 
materialized and modified) 

19-10 

The machine system name is used as an 
identifier for certain source/sink APPC 
applications. It is defaulted at IMPL time 
to the machine serial number (with the 
first character changed, if necessary, to an 
alphabetic character). Thereafter, it may 
be materialized or modified to any value 
of 1 through 8 characters with the first 
character alphabetic. 

The format of the template for 
materializing or modifying the system 
name is as follows (including the usual 
8-byte prefix): 

• Number of bytes 
available 

• Number of bytes 
provided (ignored) 
on modify) 

• System name (with 
count) 

Count of system 
name 
System name 

Bin(4) 

Bin(4) 

Char(10) 

Bin(2) 

Char(8) 

For the materialize system name, the 
number of bytes available should be set to 
18 to include the system name in case it 
is 8 bytes long. In any case, it must be at 
least 8 bytes long; otherwise, an 
exception is signaled. 

For the modify system name, the count of 
the system name must be 1 through 8 
with the first character alphabetic and the 
number of bytes available must be at least 
11. The number of bytes available must 
be at least 10 more than the count of the 
system name. If an error is detected, an 
exception is signaled. 

The modify system name may be done at 
any time; however, unpredictable results 
may occur if done while certain 
source/sink APPC applications are active. 

Selection 
Value Attribute Description 

Hex 0114 Verify new system name and materialize 
new system name 

The new system name is a tentative new 
value chosen for the machine system 
name. 

The verify new system name (the modify 
form) determines whether the new value 
of the system name given in the template 
is legitimate and does not conflict with 
the LU names of any existing APPC 
LUD(s). If there is no conflict, it is saved 
as the new system name; the actual 
machine system name is not altered at 
this time. If there is a conflict, an 
exception is signaled. 

The materialize new system name 
materializes the saved value of the new 
system name (if any), similar to the 
materialization of the actual machine 
system name. 

The format of the template for verify new 
system name or materialize new system 
name (including the usual 8-byte prefix) is 
as follows: 

· Number of bytes Bin(4) 
available 

• Number of bytes Bin(4) 
provided (ignored 
on verify new 
system name) 

• New system name Char(10) 
(with count) 

Count of new system Bin(2) 
name 

- New system name Char(8) 

Syntax rules for materialize new system 
name are the same as for materialize 
machine system name. If the new system 
name does not exist, the count of new 
system name field will be zero. 



L 
Selection 
Value Attribute Description 

Hex 0118 Uninterruptible power supply connection 
type (can be materialized and modified) 

The uninterruptible power supply 
connection type provides the machine 
with information about how the 
uninterruptible power supply is connected 
to the system and the disks. If the 
uninterruptible power supply is connected 
to the system and the disks. the normal 
power warning feature (full uninterruptible 
power supply) will be activated when 
utility power fails. If the uninterruptible 
power supply is connected to only the 
System/38 processing unit and its feature 
disk frame. the basic un interruptible 
power supply will be activated when utility 
power fails. In this case. the delay timer 
value determines a delay time interval 
after utility power fails. The delay time 
interval is the amount of time the system 
waits for the return of utility power. The 
delay time interval is equal to the delay 
timer value less the time required to copy 
main storage. The delay timer value will 
not be used by the machine as a delay if 
the uninterruptible power supply 
connection type machine attribute does 
not indicate a basic uninterruptible power 
supply. 

The format of the template for the 
uninterruptible power supply connection 
type (including the 8-byte prefix) is as 
follows: 

• Number of bytes 
available 

• Number of bytes 
provided 

Bin(4) 

Bin(4) 

Events 

• Connection type Char(2) 

Hex OOOO--Indicates that the 
System/38 and the disks are 
connected to the full uninterruptible 
power supply. When utility power fails. 
control is passed to CPF or the system 
is powered down by a machine 
shutdown. 

Hex 0010--Indicates that only the 
System/38 processing unit and its 
feature frame are connected to the 
basic uninterruptible power supply. 
When utility power fails. the delay 
timer value is used to determine the 
delay time interval the system will wait 
before the system is powered down. If 
power does not stabilize within the 
delay time interval. main storage is 
saved and the machine is powered 
down. This power down will allow an 
auto-IMPL when power is restored if 
the auto-IMPL switch is set correctly. 

• Delay timer value 
(seconds) 

Bin(2) 

OOOC Machine resource 
0201 Machine auxiliary storage threshold exceeded 

0010 Process 
0701 Maximum processor time exceeded 
0801 Process storage limit exceeded 

0016 Machine observation 
0101 Instruction reference 

0017 Damage set 
0401 System object damage set 
0801 Partial system object damage set 

Machine Interface Support Functions Instructions 19-11 



Exceptions MODIFY MACHINE ATTRIBUTES (MODMATR) 

Operands Op Code Operand Operand ~ Exception 1 2 Other (Hex) 1 2 

06 Addressing 0646 Source Attribute 
01 Space addressing violation X X value selection 
02 Boundary alignment X X 
03 Range X X Operand 1: Space pointer. 

06 Optimized addressability invalid X X 
10 Damage Encountered Operand 2: Character(2) scalar (fixed-length). 

04 System object damage state X X X 
44 Partial system object damage X X X 

1C Machine-Dependent Exception Description: The instruction alters the value of a specific 

03 Machine storage limit exceeded X machine attribute. The value of the specified machine 

20 Machine Support attribute is altered to the value specified by operand 1. 

02 Machine check X Operand 2 options specify the type of information to be 

03 Function check X modified. 

22 Object Access 

01 Object not found X X The machine attributes that may be modified are divided 

02 Object destroyed X X into nine groups. Byte 0 of the attribute selection 

03 Object suspended X X operand specifies the group from which the machine 

24 Pointer Specification attributes are to be modified. Byte 1 of the operand 

01 Pointer does not exist X X selects a specific subset of that group of machine 

02 Pointer type invalid X X attributes. 

2A Program Creation 

06 Invalid operand type X X The groups are indicated as follows: 

07 Invalid operand attribute X X 
08 Invalid operand value range X X Group 

OA Invalid operand length X Value 

OC Invalid operand ODT reference X X Group (Hex) Function 

OD Reserved bits are not zero X X X 
32 Scalar Specification 1 00 General attributes 

01 Scalar type invalid X X 2 80 Machine defined 

02 Scalar attributes invalid X 3 40 Machine defined 

03 Scalar value invalid X 4 20 Machine defined 

38 Template Specification 5 10 Machine defined 

03 Materialization length exception X 6 08 Machine defined 

7 04 Machine defined 

8 02 Machine defined 

9 01 Machine defined 

Modification of attributes in groups two through nine 
requires that the user profile controlling execution of the 
instruction must have modify machine attributes 

authority for the specific group to be modified. 

19-12 



The format of the source value modification template 
defined by operand 1 is as follows: 

• Template size specification 
- Number of bytes provided 
- Number of bytes available 

for materialization 

• Attribute specifications as defined 
by the attribute selection operand 

Char(8) 
Bin(4) 
Bin(4) 

Char(8) 

Substring operand references that allow for a null 
substring reference (a length value of zero) may not be 
specified for this instruction. 

The machine attributes defined by operand 2 are 
modified according to the following selection values: 

Selection 
Value Attribute Description 

Hex 0000 MCR (machine configuration record) 

The MCR contains the internal 
configuration of the machine. The MCR 
machine attribute is provided for machine 
maintenance only and has no meaning or 
value to the user. The MCR is 
materialized as a contiguous character 
string of binary data. 

Hex 0100 Time-of-day clock (can be materialized 
and modified) 

The time-of-day clock provides a 
consistent measure of elapsed time. The 
maximum elapsed time the clock can 
indicate is approximately 143 years. 

The time-of-day clock is a 64-bit 
unsigned binary counter with the following 
format: 

0 ............... .41 42 reserved 63 

The bit positions of the clock are 
numbered from a to 63. 

The clock is incremented by adding a 1 in 
bit position 41 every 1024 microseconds. 
Bit positions 42 through 63 are used by 
the machine and have no special meaning 
to the user. Note that these bits (42-63) 
may contain either binary 1's or binary 
a's. 

Unpredictable results occur if the time of 
day is materialized before it is set. 

The maximum unsigned binary value that 
the time of day clock can be modified to 
contain is hex DFFFFFFFFFFFFFFF. 

Machine Interface Support Functions Instructions 19-13 



Selection 
Value Attribute Description 

Hex 0104 Initial process definition template (can be 
materialized and modified) 

The initial process definition template is 
used by the machine to perform an initial 
process load. The initial process definition 
template has the same format as the 
process definition template defined by the 
Initiate Process instruction. See Chapter 
11. Process Management Instructions. 

No check is made and no exception is 
signaled if the values in the template are 
invalid; however, the next initial process 
load will not be successful. 

Hex 0108 Machine initialization status record (can be 
materialized and modified) 

19-14 

The MISR (machine initialization status 
record) is used to report the status of the 
machine. The status is collected at IMPL 
(initial microprogram load) or IMPLA 
(initial microprogram load abbreviated). 

Modifying the MISR causes it to be reset. 
The values in the operand 1 template of 
the Modify Machine Attributes instruction 
are ignored when this selection value is 
specified. 

Selection 
Value Attribute Description 

Hex 0114 Verify new system name and materialize 
new system name 

The new system name is a tentative new 
value chosen for the machine system 
name. 

The verify new system name (the modify 
form) determines whether the new value 
of the system name given in the template 
is legitimate and does not conflict with 
the LU names of any existing APPC 
LUD(s). If there is no conflict, it is saved 
as the new system name; the actual 
machine system name is not altered at 
this time. If there is a conflict, an 
exception is signaled. 

The materialize new system name 
materializes the saved value of the new 
system name (if any), similar to the 
materialization of the actual machine 
system name. 

The format of the template for verify new 
system name or materialize new system 
name (including the usual a-byte prefix) is 
as follows: 

• Number of Bin(4) 
bytes available 

• Number of bytes Bin(4) 
provided (ignored on 
verify new system name) 

• New system name 
(with count) 

Count of new 
system name 
New system name 

Char(10) 

Bin(2) 

Char(8) 



Selection 
Value Attribute Description 

Hex 0114 (continued) 

Syntax rules for the verify new system 
name are similar to those for modify 
machine system name. In addition to the 
syntax checking, a check is made of all 
existing APPC LUDs to ensure that the 
new system name does not match the 
remote LU name of any APPC LUD that 
has a null local LU name and that the new 
system name would not cause any two 
APPC LUDs on the same CD to have 
matching LU names. 

If such a problem is detected, a 
source / sink configuration invalid exception 
(hex 3401) is signaled with a subcode of 
hex 5307. 

A verify new system name is performed 
to check a tentative new system name. 
This may be done once or several times. 
The next time the system IPL is 
performed, the most recent new system 
name is used as input to modify machine 
system name. 

Selection 
Value Attribute Description 

Hex 0118 Uninterruptible power supply connection 
type (can be materialized and modified) 

The uninterruptible power supply 
connection type provides the machine 
with information about how the 
uninterruptible power supply is connected 
to the system and the disks. If the 
uninterruptible power supply is connected 
to the system and the disks, the normal 
power warning feature (full uninterruptible 
power supply) will be activated when 
utility power fails. If the uninterruptible 
power supply is connected to only the 
System/38 processing unit and its feature 
disk frame, the basic uninterruptible 
power supply will be activated when utility 
power fails. In this case, the delay timer 
value determines a delay time interval 
after utility power fails. The delay time 
interval is the amount of time the system 
waits for the return of utility power. The 
delay time interval is equal to the delay 
timer value less the time required to copy 
main storage. The delay timer value will 
not be used by the machine as a delay if 
the uninterruptible power supply 
connection type machine attribute does 
not indicate a basic un interruptible power 
supply. 

The format of the template for the 
uninterruptible power supply connection 
type (including the 8-byte prefix) is as 
follows: 

• Number of bytes 
available 

• Number of bytes 
provided 

Bin(4) 

Bin(4) 

Machine Interface Support Functions Instructions 19-15 



Selection 
Value Attribute Description 

Hex 0118 (continued) 

• Connection type Char(2) 

Hex OOOO-Indicates that the 
System/38 and the disks are 
connected to the full uninterruptible 
power supply. When utility power fails, 
control is passed to CPF or the system 
is powered down by a machine 
shutdown. 

Hex 0010-Indicates that only the 
System/38 processing unit and its 
feature frame are connected to the 
basic uninterruptible power supply. 
When utility power fails, the delay 
timer value is used to determine the 
delay time interval the system will wait 
before the system is powered down. If 
power does not stabilize within the 
delay time interval. main storage is 
saved and the machine is powered 
down. This power down will allow an 
auto-IMPL when power is restored if 
the auto-I M PL switch is set correctly. 

• Delay timer value 
(seconds) 

Bin(2) 

Hex 011 C Uninterruptible power supply power off 
type (modifiable only) 

19-16 

The uninterruptible power supply power 
off type is used to inform the machine 
that a higher level user plans to terminate 
machine processing. The machine uses 
this information to determine how to turn 
the machine power off when utility power 
fails before the Terminate Machine 
Processing instruction is issued with 
uninterruptible power supply connection 
type machine attribute set to hex 0010 
(basic uninterruptible power supply). This 
value is always reset at IMPL to allow 
auto-IMPL for subsequent power off. 

Selection 
Value Attribute Description 

Hex 0118 (continued) 

The format of the template for 
uninterruptible power supply power off 
type (including the 8-byte prefix) is as 
follows: 

• Number of bytes 
available 

• Number of bytes 
provided 

• Power off type 

Bin(4) 

Bin(4) 

Char(2) 

Hex 4000-Indicates that power 
off should inhibit auto-IMPL. 

Hex 8000-lndicates that power 
off should allow auto-IMPL. 

Authorization Required 

• Special authorization 

Events 

0002 Authorization 
0301 Special authorization violation 

OOOC Machine resources 
0201 Machine auxiliary storage threshold exceeded 

0010 Process 
0701 Maximum processor time exceeded 
0801 Process storage limit exceeded 

0016 Machine observation 
0101 Instruction reference 

0017 Damage set 
0401 System object damage set 
0801 Partial system object damage set 



Exceptions RECLAIM LOST OBJECTS (RECLAIM) 

L Operands Op Code Operand Operand 
Exception 1 2 Other (Hex) 1 2 

06 Addressing 0686 Reclaimed Reclaim 
01 Space addressing violation X X objects options 
02 Boundary alignment X X list 

03 Range X X 
06 Optimized addressability invalid X X Operand 1: Space pointer. 

OA Authorization 
08 Special authorization required X Operand 2: Character(2) scalar. 

OC Computation 
10 Weak key not valid X 
11 Key parity invalid X 

Description: The instruction finds permanent objects, 

10 Damage Encountered which have been lost from their owning user profiles, 

04 System object damage state X X X and optionally rebuilds the machine context. The 

44 Partial system object damage X X X machine searches storage for permanent objects and 

1C Machine-Dependent Exception checks that the owning user profile specified by the 

03 Machine storage limit exceeded X object actually exists and considers itself to own the 

20 Machine Support object. If not, the object is lost and an entry is returned 

02 Machine check X 
in the reclaimed objects list. 

03 Function check X 
22 Object Access 

Any storage areas not identifiable as valid system 

01 Object not found X X 
objects are destroyed. Following abnormal system or 

02 Object destroyed X X 
instruction termination, there may be portions of objects 

03 Object suspended X X 
which continue to occupy storage space. The Reclaim 

24 Pointer Specification Lost Objects instruction can be used to free up this 

L 01 Pointer does not exist X X storage space. 

02 Pointer type invalid X X 
2A Program Creation 

The machine context may optionally be updated to 

06 Invalid operand type X X 
ensure that it locates all objects that are to be 

07 Invalid operand attribute X X 
addressed by the machine context (contexts, user 

08 Invalid operand value range X X 
profiles and source/sink objects). This option should be 

OA Invalid operand length X 
used when the machine context loses entries or is 

OC Invalid operand ODT reference X X 
damaged. The machine initialization status record 

00 Reserved bits are not zero X X X 
machine attribute indicates whether AIMPL (alternate 

32 Scalar Specification initial microprogram load) detected machine context 

02 Scalar attributes invalid X 
damage. 

03 Scalar value invalid X 
38 Template Specification When addressability to an object is to be inserted into 

02 Template size invalid X 
the machine context, it is possible that an object of the 
same name, type and subtype is now addressed by the 
machine context. This can occur if the newer object 
was created after the currently existing object was lost. 
If this occurs, a pointer is returned to the object and its 
addressability is not inserted into the machine context. 
The Rename Lost Objects instruction can be used to 
change the name of the object and to insert 
addressability into the machine context. 

Machine Interface Support Functions Instructions 19-17 



Operand 2 specifies the verification of the machine 
context. The format is as follows: 

• Reclaim options 
Machine context rebuild 
a = Do not rebuild 
1 = Rebuild 
Reserved (binary 0) 

Char(2) 
Bit a 

Bits 1-15 

Operand 1 identifies the reclaimed objects. This includes 
objects with improper ownership entries as well as 
those that are to be inserted into the machine context 
but cannot be because the object identification is in 
conflict. 

• Materialization size specification 
Number of bytes provided for 
materialization 
Number of bytes available for 
materia I ization 

• Number of objects lost from user 
profile 

Char(8) 
Bin(4) 

Bin(4) 

Bin(4) 

• Number of machine context duplicates Bin(4) 

• Number of bytes reclaimed 

• Reserved 

• Reclaimed object entry 
(repeated for each object) 

Object pointer 

Entry type 
User profile 

a Not lost from user 
profile 

1 = Lost from user profile 
Machine context 

a Not a machine context 
duplicate 

1 = Machine context 
duplicate 

Reserved (binary 0) 
Reserved (binary 0) 

Bin(4) 

Char(12) 

Char(32) 

System 
pointer 
Char(1 ) 
Bit a 

Bit 1 

Bits 2-7 
Char(15) 

No authorization is returned in the system pointers. 

Information in each referenced object can be used to 
restore the ownership of the object to a user profile 
(transfer ownership). 

19-18 

The first 4 bytes of the materialization identify the total 
number of bytes that may be used by the instruction. 
This number is supplied as input to the instruction and 
is not modified by the instruction. A number less than 8 
causes the materialization length exception. 

The second 4 bytes of the materialization identify the 
total number of bytes available to be materialized. The 
instruction materializes as many bytes as can be 
contained in the area specified as the receiver. If the 
byte area identified by the receiver is larger than that 
required to contain the information requested, then the 
excess bytes are unchanged. No exceptions (other than 
the materialization length exception) are signaled in the 
event that the receiver contains insufficient area for the 
materialization. 

Substring operand references that allow for a null 
substring reference (a length value of zero) may not be 
specified for this instruction. 

Authorization Required 

• Special (all objects authority) 

Events 

0002 Authorization 
0101 Authorization violation 

OOOC Machine resources 
0201 Machine auxiliary storage exceeded 

ooOD Machine status 
0101 Machine check 

0010 Process 
0701 Maximum processor time exceeded 
0801 Process storage limit exceeded 

0016 Machine observation 
0101 Instruction reference 

0017 Damage set 
0401 System object damage set 
0801 Partial system object damage set 



Exceptions 

L Exception 

06 Addressing 

01 Space addressing violation 

02 Boundary alignment 

03 Range 

06 Optimized addressability invalid 

08 Arg ument / Para meter 

01 Parameter reference violation 

OA Authorization 

01 Unauthorized for operation 

10 Damage Encountered 

04 System object damage state 

44 Partial system object damage 

20 Machine Support 

02 Machine check 

03 Function check 

22 Object Access 

01 Object not found 

02 Object destroyed 

03 Object suspended 

24 Pointer Specification 

01 Pointer does not exist 

02 Pointer type invalid 

(. 
2A Program Creation 

06 Invalid operand type 

07 Invalid operand attribute 

08 Invalid operand value range 

OA Invalid operand length 

OC Invalid operand OOT reference 

00 Reserved bits are not zero 

32 Scalar Specification 

01 Scalar type invalid 

03 Scalar value invalid 

38 Template Specification 

03 Materialization length exception 

Operand 
1 Other 

X 
X 
X 
X 

X 

X 

X 
X 

X 
X 

X 
X 
X 

X 
X 

X 
X 
X 
X 
X 
X X 

X 
X 

X 

TERMINATE MACHINE PROCESSING (TERMMPR) 

Op Code 
(Hex) 

Operand 
1 

Operand 
2 

0622 Terminate 
options 

Termination reason 
information for 
maintenance use 

Operand 1: Character(2) scalar. 

Operand 2: Space pointer or null. 

Description: This instruction terminates machine 
processing by destroying or suspending all processes in 
the machine including the process that issued the 
instruction. The values of the termination options 
(operand 1) determine the functions to be performed. 
The following is the format of operand 1. 

• Termination options 
Machine termination options 
0001 = Terminate machine 

processing and enter 
the check-stop state. 

Char(2) 
Bits 0-3 

0010 = Terminate immediately and 
leave existing processes in 
an internal machine state 
that will retain information 
for diagnostic purposes. 

0100 = Destroy all processes, 
turn off the machine 
power supply, and 
do not allow an 
auto-IMPL. 

1000 = Destroy all processes 
and re-IMPL. If the machine 
is running on utility power, 
an IMPL of the machine will 
be performed automatically. 
If the machine is running on 
auxiliary power, the machine 
is powered down and an auto
IMPL occurs when utility 
power is restored (if the 
auto-IMPL feature is activated). 

All other values are reserved; if 
any other values are specified, 
they cause an exception. 

Machine Interface Support Functions Instructions 19-19 



Reserved (binary 0) Bits 4-5 
Regenerate permanent addresses Bit 6 
0= No 
1 = Yes 
Address regeneration 
0= No 
1 = Yes 
Termination code 

Bit 7 

Bits 8-15 

If the machine termination option is 0001 or 0010, 
then the termination code in bits 8-15 is displayed on 
the sequence indicators of the operator/CE panel. 
The allowed value is in the range from hex 80 
through hex FF. Any other value causes a default 
value of hex 00 to be displayed. A hex 00 value 
indicates that an invalid termination code was 
specified. 

If any other machine termination option is specified, 
this entry is ignored by the instruction. 

19-20 

The address regeneration and regenerate permanent 
addresses termination options control whether or not 
internal machine addresses used for unique identification 
of system objects are to be regenerated during the 
termination of machine processing. These internal 
machine addresses are a machine resource which can 
be used up over time through successive creation and 
destruction of system objects. When yes is specified for 
these options, a regeneration of these addresses is 
performed during the termination of machine processing 
to renew the supply of addresses available for usage by 
the machine. 

The resource of internal machine addresses is separated 
into two groups, one used for temporary system objects 
and one used for permanent system objects. Address 
regeneration always renews the supply of internal 
machine addresses available for usage with temporary 
system objects. Address regeneration renews the supply 
of internal machine addresses available for usage with 
permanent system objects only if yes is specified for the 
regenerate permanent addresses option. The process of 
regenerating the supply of internal machine addresses 
can be lengthy, on the order of hours, depending upon 
the number of objects which exist on the machine and 
the amount of auxiliary storage on the machine. The 
system console condition indicators will display the 
pattern for hex 3F30 while address regenerating 
processing is being performed. Regeneration of 
permanent addresses will cause the machine to perform 
authority recovery processing on the next IMPL as well. 

Yes can only be specified for the address regeneration 
option in conjunction with machine termination options 
0100 and 1000. Yes can only be specified for the 
regenerate permanent addresses option in conjunction 
with a specification of yes for the address regeneration 
option. Violation of these restrictions results in the 
signaling of the scalar value invalid exception. When no 
is specified for these options, the corresponding address 
regeneration is not performed. 

Operand 2 identifies a space pointer that addresses an 
area in a space. The space pointer locates information 
that further defines the reason for machine termination. 
If the space is not a permanent object, the information 
will be destroyed by the machine because all temporary 
objects allocated are destroyed when machine 
processing is terminated. 



Machine termination causes the following: Exceptions 

L · The process is terminated and no additional Operands 

instructions are allowed to execute. The process Exception 1 2 Other 

does not enter the termination phase. 
06 Addressing 

· All permanent system objects are written to auxiliary 01 Space addressing violation X X 

storage. 02 Boundary alignment X X 
03 Range X X 

· If the power supply is to be turned off, an attempt is 06 Optimized addressability invalid X X 

made to turn off the power supply for all devices 08 Arg ument / Parameter 

associated with source/sink objects that have the 01 Parameter reference violation X X 

power control attribute. If one or more of the devices OA Authorization 

associated with source/sink objects cannot be 02 Privileged instruction X 

powered off, the machine is placed in the check 10 Damage Encountered 

stopped state. If all source/sink objects are powered 04 System object damage state X X 

off, the power supply for the machine is turned off. 44 Partial system object damage X X X 
1C Machine-Dependent Exception 

When more than one process exists in the machine, 03 Machine storage limit exceeded X 

execution of the instruction causes termination of each 20 Machine Support 

of the processes at the next instruction boundary. The 02 Machine check X 

normal process termination functions as defined by the 03 Function check X 

Terminate Process instruction are not performed. 22 Object Access 

01 Object not found X X 

Substring operand references that allow for a null 02 Object destroyed X X 

substring reference (a length value of zero) may not be 03 Object suspended X X 

specified for this instruction. 24 Pointer Specification 

L 
01 Pointer does not exist X X 
02 Pointer type invalid X X 

Authorization Required 2A Program Creation 

06 Invalid operand type X X 

· Privileged instruction 07 Invalid operand attribute X X 
08 Invalid operand value range X X 
OA Invalid operand length X 

Events DC Invalid operand ODT reference X X 
00 Reserved bits are not zero X X X 

0002 Authorization 32 Scalar Specification 

0201 Privileged instruction violation 01 Scalar type invalid X 
02 Scalar attributes invalid X 

0017 Damage set 03 Scalar value invalid X 

0801 Partial system object damage set 

Machine Interface Support Functions Instructions 19-21 



19-22 



Chapter 20. Journal Management Instructions 

This chapter describes all instructions used for journal 
management. These instructions are arranged in 
alphabetic order. For an alphabetic summary of all the 
instructions, see Appendix A. Instruction Summary. 

APPLY JOURNALED CHANGES (APYJCHG) 

Op Code 
(Hex) 

05AA 

Operand 
1 

Object list 

Operand 
2 

Apply template 

Operand 1: Space pointer. 

Operand 2: Space pointer. 

Description: This instruction applies the changes 
specified in the apply template (operand 2) to the object 
list specified in operand 1, if requested. 

The format of the object list is as follows: 

• Number of objects 

• Total number of entries applied 

• Last entry interrogated 

• Reserved (binary 0) 

• List of objects (1 to n) 
Object 

Starting sequence number 
Ending sequence number 
Number of entries applied 
Reserved (binary 0) 
Object dependent status 

Bin(2) 

Bin(4)* 

Bin(4)* 

Char(22) 

System 
pointer 
Bin(4) 
Bin(4) 
Bin(4)* 
Char(4) 
Char(16)* 

The object list must be aligned on a multiple of 16 
bytes. 

Note: The values of the entries annotated with an 
asterisk (*) are ignored by this instruction. 

The number of objects field must contain a value greater 
than 0 and indicate how many objects are contained in 
the following list. 

The total number of entries applied field contains the 
total number of journal entries whose changes have 
been applied as a result of this execution of the 
instruction. This value is returned whenever the 
instruction is executed unless an exception occurs while 
the system is processing the template, in which case it 
is not modified. This field, along with the starting 
sequence number or ending sequence number, 
determines the range of entries processed by this 
invocation of the instruction. 

The last entry interrogated field contains the sequence 
number of the last entry that was checked for eligibility 
for application to one of the indicated objects. 

The object field must contain a system pointer to a valid 
(not damaged, destroyed, or suspended) object. The 
object identified must have a journal ID specified (was 
once journaled); however, it need not currently be 
journaled. No duplicate journal IDs are allowed in the 
list of objects; that is, two or more objects in the list 
may not have the same journal ID. If so, a journal ID no 
unique exception is signaled and the operation is 
terminated. 

The starting sequence number contains the journal 
sequence number of the first journal entry which is to 
be applied to the object. This sequence number must 
be contained on the journal spaces provided in operand 
2, or a template value invalid exception is signaled. 

The ending sequence number contains the journal 
sequence number of the last journal entry which is to be 
applied to the object. This sequence number must be 
contained on the journal spaces provided in operand 2, 
or a template value invalid exception is signaled. If this 
sequence number is not equal to or greater than the 
starting sequence number, a template value invalid 
exception is signaled. 

Journal Management Instructions 20-1 



The number of entries applied field contains the total 
number of journal entries whose changes have been 
applied to this object as a result of this execution of the 
instruction. This value is returned whenever the 
instruction is executed unless an exception occurs while 
processing the template. 

Only changes made to data spaces may be applied to 
the object list through this instruction. The format for 
the object dependent information returned in the object 
list of the Apply Journaled Changes instruction for a 
data space is as follows: 

• Entry count Bin(4) 

• Deleted entry count Bin(4) 

• Entry limit Bin(4) 

• Reserved (binary 0) Char(4) 

The format of the apply template is as follows: 

• Apply options 
- Apply changes indicator 

o = Apply changes 
1 = Do not apply changes 
Retrieval direction 
o = Ascending 
1 = Descending 

- Selection list indicator 
o No selection list 

specified 
Selection list specified 

Selection list processing 
indicator 
o = Do not apply those 

changes referenced in 
the selection list 
Apply only those changes 
referenced in the 
selection list 

Transaction list indicator 
o Do not create a 

transaction list 
Create a transaction 
list 

Char(4) 
Bit 0 

Bit 1 

Bit 2 

Bit 3 

Bit 4 

- List uncommitted transactions Bit 5 

20-2 

indicator 
o Do not list uncommitted 

transactions 
List uncommitted 
transactions 

- List committed transactions 
indicator 
o Do not list committed 

transactions 
List committed transactions 

List decommitted transactions 
indicator 
o Do not list decommitted 

transactions 
List decommitted transactions 

Bit 6 

Bit 7 

Reserved (binary 0) Bits 8-31 

• Number of entries in the 
selection list 

• Number of entries in the 
start transaction list 

• Maximum entries in the start 
transaction list 

• Number of journal spaces 

• Reserved (binary 0) 

• Selection list 

• Transaction list 

• Journal space (1 to n) 

Bin(4) 

Bin(4) 

Bin(4) 

Bin(4) 

Char(12) 

Space 
pointer 

Space 
pointer 

System 
pointer 

The apply template must be aligned on a multiple of 16 
bytes. 

A value of binary 0 in the apply changes indicator field 
specifies that all journal entries that are within the range 
specified for any object in the operand 1 object list are 
to be applied to that object. A value of binary 1 in this 
field results in a transaction list being generated (if 
requested). Any errors detected during this scan (apply 
changes indicator field has a value of binary 1) of the 
journal entries will result in the termination of the 
instruction with the appropriate exception. 



If the retrieval direction indicator field has a value of 
binary 0, the journal entries will be retrieved from the 
journal spaces in ascending order (starting sequence 
number to ending sequence number) and a 
determination of whether or not to apply the indicated 
change is made. If the retrieval direction indicator field 
has a value of binary 1, the journal entries will be 
retrieved from the journal spaces in descending order 
(ending sequence number to starting sequence number) 
and a determination of whether or not to apply the 
indicated change is made. 

A value of binary 0 in the selection list indicator field 
specifies that no selection list is to be processed. If this 
field has a value of binary 0, the selection list processing 
indicator, the number of entries in the selection list, and 
the selection list fields are ignored and all journal entries 
are applied that pertain to the objects listed in operand 
1. A value of binary 1 in the selection list indicator field 
specifies that the selection list is to be processed 
according to the options specified in the selection list 
processing indicator field. 

A value of binary 0 in the selection list processing 
indicator field specifies that the journal entries that are 
indicated in the selection list are not to be applied to the 
indicated objects in the operand 1 object list but all 
other transactions are to be applied. A value of binary 1 
in the selection list processing indicator field specifies 
that only journal entries that are indicated in the 
selection list are to be applied to the indicated objects in 
the operand 1 object list and no other transactions are 
to be applied. 

A value of binary 1 in the transaction list indicator field 
specifies that entries are to be generated in the 
transaction list according to the options specified in the 
list uncommitted transactions indicator, the list 
committed transactions indicator, and the list 
decommitted transactions indicator fields. A value of 
binary 0 in the transaction list indicator field specifies 
that entries are not to be generated in the transaction 
list, the list uncommitted transactions indicator, the list 
committed transactions indicator, the list decommitted 
transactions indicator, the number of entries in the 
transaction list, the maximum number of entries in the 
transaction list, and the transaction list fields are 
ignored. 

A value of binary 1 in the list uncommitted transactions 
indicator specifies that entries that did not start and / or 
complete processing in the range indicated in operand 1 
are placed in the transaction list for identification. A 
transaction is a group of changes identified with the 
same commit 10 in a set of journal entries. A value of 
binary 0 in the list uncommitted transactions indicator 
specifies that entries that did not start and / or complete 
in the range specified in operand 1 are not placed in the 
transaction list. 

A value of binary 1 in the list committed transactions 
indicator specifies that entries that are committed within 
the range indicated in operand 1 are placed in the 
transaction list for identification. These entries are 
indicated by a start commit journal entry and a 
corresponding commit journal entry. A value of binary 0 
in the list committed transactions indicator specifies that 
entries that are committed within the range indicated by 
operand 1 are not generated in the transaction list. 

A value of binary 1 in the list decommitted transactions 
indicator specifies that entries that are decommitted 
within the range indicated in operand 1 are placed in the 
transaction list for identification. These entries are 
indicated by a start commit journal entry and a 
corresponding commit journal entry. A value of binary 0 
in the list committed transactions indicator specifies that 
entries that are decommitted within the range indicated 
by operand 1 are not generated in the transaction list. 

The number of entries in the selection list indicates the 
number of entries that are contained in the selection list 
provided. If this field contains a value of 0, the selection 
list is ignored and is assumed to contain no entries. If 
this field contains a value less than 0, a template value 
invalid exception is signaled. 

The number of entries in the transaction list indicates 
the number of entries that are contained in the 
transaction list provided. If this field contains a value of 
0, the transaction list is assumed to have no entries in it 
and entries generated by the instruction will be returned 
in the first entry position provided. If this field contains 
a value greater than zero, the entries currently in the 
transaction list may be retained or dropped and 
additional entries, if generated, will be added to the list. 
The transaction list returned at instruction completion 
will contain entries provided as input to the instruction, 
if they still meet the criteria for creating entries in the 
transaction list, but not necessarily in the order provided 
to the instruction. If this field contains a value less than 
0, a template value invalid exception is signaled. 

Journal Management Instructions 20-3 



The maximum number of entries in the transaction list 
value indicates the maximum number of entries the 
system generates in the transaction list provided. This 
value includes the number of entries provided to the 
system plus the number generated by the system. 
When this number is reached during execution of the 
instruction, a transaction list limit reached exception is 
signaled and the instruction is terminated. If this field 
contains a value less than 0 or is less than the value 
contained in the number of entries in the transaction list, 
a template value invalid exception is signaled. 

The selection list and transaction list fields, if provided, 
both identify a space that contains a list of multiple 
entries with the following format: 

• Commit ID 

• Commit or decommit journal 
sequence number 

• Status flags 
Entry valid indicator 
o = Ignore this entry 
1 = Valid entry 
Start commit 
o No start commit 

entry was found 
1 = Start commit journal 

entry was found 
Modification indicator 
o = No object modification 

was found for this 
transaction 

1 = Object modification(s) 
were found for transaction 

Bin(4) 

Bin(4) 

Char(2) 
Bit 0 

Bit 1 

Bit 2 

Commit identified Bit 3 

20-4 

o No commit entry was found 
for this transaction 

1 = A commit entry was found 
for this transaction 

Decommit identified Bit 4 
o No decommit entry was found 

for this transaction 
A decommit entry was found 
for this transaction 

Reserved (binary 0) Bits 5-15 

The commit I D field identifies a transaction and is the 
value of the commit ID field in the prefix portion of the 
journal entries. This value corresponds to the journal 
sequence number of the start commit journal entry. All 
subsequent changes made under commitment control, 
through the same commit block, to the objects and the 
corresponding commit or decommit entry are identified 
with this commit ID. A value of 0 in this field indicates 
changes made to the indicated objects were not done 
under commitment control (the commit ID in the prefix 
of the journal entry is binary 0). The system does not 
verify that this field contains a valid commit ID when 
input to the transaction list or selection list as contained 
in the prefix of one or more journal entries. 

The commit or decommit sequence number field 
contains the journal entry sequence number of the 
journal entry for the commit or decommit of the 
transaction, if it is in the range of entries processed by 
the instruction. If it is not in this range, the field 
contains a value of O. 

An entry valid indicator value of binary 1 specifies that 
this entry is a valid entry in the list where it resides. A 
value of binary 0 in this field is used to identify entries 
that are ignored (not considered part of the valid entries) 
in the list. 

A value of binary 1 in the start commit field indicates 
that a start commit journal entry was found for the 
indicated transaction within the range of entries 
processed by the instruction. A value of binary 0 in this 
field indicates that a start commit journal entry was not 
found for the indicated transaction within the range of 
entries processed by the instruction. 

A value of binary 1 in the modification indicator field 
indicates that at least one change was processed for the 
indicated transaction (for one or more of the objects 
listed in operand 1) within the range of entries 
processed by the instruction. A value of binary 0 in this 
field indicates that no change journal entries were found 
for the indicated transaction within the range of entries 
processed by the instruction. 

A value of binary 1 in the commit identified field 
indicates that a commit journal entry was found for the 
indicated transaction within the range of entries 
processed by the instruction. A value of binary 0 in this 
field indicates that a commit journal entry was not found 
for the indicated transaction within the range of entries 
processed by the instruction. 



A value of binary 1 in the decommit identified field 
indicates that a decommit journal entry was found for 
the indicated transaction within the range of entries 
processed by the instruction. A value of binary 0 in this 
field indicates that a decommit journal entry was not 
found for the indicated transaction within the range of 
entries processed by the instruction. 

The number of journal spaces field must contain a value 
greater than 0 which indicates how many journal spaces 
are to be searched for journal entries that satisfy the 
starting and ending sequence numbers. The journal 
space list is a list of system pointers which contains 
addressability to valid journal spaces (not damaged or 
suspended and have previously been attached to a 
journal port). 

Note: Partial damage on a journal space does not 
invalidate it. The list contains as many entries as is 
specified in the number of journal spaces field. Each 
journal space must logically precede the next journal 
space in the list (the journal sequence numbers are 
continuous and ascending across the journal spaces). 
The journal sequence number must not be reset to 1 on 
any but the first journal space identified. If any 
exceptions, except partial damage to a particular journal 
space, are identified, an invalid journal space exception 
is signaled and no journal entries are applied. 

The indicated starting journal entry is interrogated, and if 
the entry pertains to the designated object, the 
corresponding change will be made to the object. If any 
changes exist for the designated object before the 
indicated starting entry but they were not committed 
until after the starting point, these changes are applied 
and an entry to indicate this is generated in the 
transaction list, if requested. Each subsequent entry on 
the journal spaces is checked, and if it pertains to the 
designated object, the corresponding change is made. 
This procedure is repeated until the indicated ending 
entry has been processed or an error is encountered. If 
any uncommitted changes are encountered on the 
journal spaces that were not committed until after the 
indicated ending point, they are applied and the 
incomplete transaction is identified in the transaction list, 
if requested. 

If the journal entries are to be processed in descending 
order, the system removes all of the changes from the 
objects in the operand 1 object list, indicated in the 
journal entries in the range processed. If a selection list 
is not provided, all changes for the objects identified in 
the operand 1 object list are processed. If a selection 
list is provided, only those transactions identified in the 
list are processed. A commit I D with a value of 0 in a 
valid selection list causes all changes that were not 
made under commitment control to be removed in the 
range processed. Processing the selection list and 
application of changes is subject to the selection list 
processing indicator. The system requires that before 
images reside in the journal to allow this type of 
processing. If a before image is required and is not 
present on the journal, an apply journal failure exception 
is signaled and processing is terminated. 

Changes are made to all objects identified in operand 
in the order the journal entries are retrieved and 
processed. If an exception is encountered while 
processing the journal entries, the following conditions 
occur: 

• The appropriate exception is signaled. 

• All return fields contain the correct status and return 
values to that point in the processing. 

• The last entry that was attempted to be processed 
will be returned in the last entry interrogated field. 

• The transaction list, if requested, contains a complete 
list of the requested entries. 

Journal Management Instructions 20-5 



Authorization Required 

• Retrieve 
Contexts referenced for address resolution 

- Journal spaces indicated in the apply template 

• Object management 
- Objects in operand 1 object list 

Lock Enforcement 

• Materialize 
- Contexts referenced for address resolution 

• Implicit locks 
Objects in the operand 1 object list are locked 
implicitly: LEAR in the ascending direction and 
LENR in the descending direction. 
Also the addition of certain journal entries cause 
an implicit LENR lock while the entry is being 
applied. 

Events 

0002 Authorization 
0101 Authorization violation 

OOOC Machine resources 
0201 Machine auxiliary storage exceeded 

0010 Process 
0701 Maximum processor time exceeded 
0801 Process storage limit exceeded 

0016 Machine observation 
0101 Instruction reference 

0017 Damage 
0401 System object damage set 
0801 Partial system object damage set 

001 A Journal port 
0301 Entry not journaled 
0401 Journal space attached to a journal 

port became unusable 

001 C Journal space 
0301 Threshold reached 

20-6 

Exceptions 

Exception 

06 Addressing 

01 Space addressing violation 

02 Boundary alignment 

03 Range 

06 Optimized addressability invalid 

08 Argument/ Parameter 

01 Parameter reference violation 

OA Authorization 

01 Unauthorized for operation 

10 Damage 

04 System object 

44 Partial system object damage 

12 Data Base 

09 Duplicate key value 

21 Unable to perform index 
maintenance 

23 DSI selection routine failure 

27 Data space index key with invalid 
floating-point field 

34 Non-user exit selection routine 
failure 

38 Derived field operation error 

1A Lock State 

01 Invalid lock state 

1C Machine- Dependent Exception 

03 Machine storage limit exceeded 

04 Object storage limit exceeded 

06 Machine lock limit exceeded 

20 Machine Support 

02 Machine check 

03 Function check 

22 Object Access 

01 Object not found 

02 Object destroyed 

03 Object suspended 

04 Object not eligible for operation 

05 Object not available to process 

24 Pointer Specification 

01 Pointer does not exist 

02 Pointer type invalid 

03 Pointer addressing invalid object 

2A Program Creation 

06 Invalid operand type 

07 Invalid operand attribute 

08 Invalid operand value range 

OC Invalid operand ODT reference 

00 Reserved bits are not zero 

Operands 
1 2 Other 

X X 
X X 
X X 
X X 

X X 

X X 

X X X 

X 

X 
X 

X 
X 

X 

X 

X X 

X 
X 

X 

X 
X 

X X 

X X 

X X 

X 
X X 

X X 

X X 

X X 

X X 

X X 

X X 

X X 
X X X 



Operands 
Exception 1 2 

L 2C Program Execution 

06 Instruction cancellation 

07 Instruction termination 

2E Resource Control Limit 

01 User profile storage limit 
exceeded 

02 Process storage limit exceeded 

30 Journal Management 

01 Apply journal failure 

02 Entry not journaled 

04 Invalid journal space X 

05 Invalid selection/transaction list X 
entry 

07 Journal 10 not unique X 
09 Transaction list limit reached 

32 Scalar Specification 

01 Scalar type invalid X X 

02 Scalar attributes invalid X X 

03 Scalar value invalid X X 

38 Template Specification 

01 Template value invalid X X 

Other 

X 

X 

X 

X 

X 

X 

X 

CREATE JOURNAL PORT (CRT JP) 

Op Code 
(Hex) 

05A2 

Operand 
1 

Journal 
port 

Operand 
2 

Journal port 
template 

Operand 1: System pointer. 

Operand 2: Space pointer. 

Description: This instruction creates a journal port 
according to the description in operand 2 and returns 
addressability in the system pointer identified by 
operand 1. A journal port must be created as a 
permanent object. 

The format of the journal port template is as follows: 

• Template size Char(1) 
- Number of bytes provided by user Bin(4)* 

Number of bytes that can be Bin(4)* 
materialized 

• Object identification 
Object type 
Object subtype 
Object name 

• Object creation options 
Reserved (binary 0) 
Space attributes 
o = Fixed-length 
1 = Variable-length 
Initial context 
o = No addressability insert 
1 = Insert addressability 
Reserved (binary 0) 

• Reserved (binary 0) 

• Size of space 

• Initial value of space 

Char(32) 
Char(1 )* 
Char(1) 
Char(30) 

Char(4) 
Bit 0 
Bit 1 

Bit 2 

Bits 3-31 

Char(4) 

Bin(4) 

Char(1) 

Journal Management Instructions 20-7 



• Performance class 
Space alignment 
o = The space associated with 

the object is allocated to 
allow proper alignment of 
pointers at 16-byte 
alignments within the space. 
If no space is specified 
for the object, this value 
must be specified for the 
performance class. 
The space associated with 
the object is allocated to 
allow proper alignment of 
pointers at 16-byte 
alignments within the 
space as well as to allow 
proper alignment of 
input/ output buffers at 
512-byte alignments within 
the space. 

Reserved (binary 0) 
Main storage pool selection 
o Process default main storage 

pool is used for object. 
1 = Machine default main storage 

pool is used for object. 
- Transient storage pool selection 

o = Default main storage pool 
(process default or machine 
default as specified for main 
storage pool selection) is 
used for object. 

1 = Transient storage pool is used 
for object. 

Char(4) 
Bit 0 

Bits 1-4 
Bit 5 

Bit 6 

Block transfer on implicit Bit 7 
access state modification 
o = Transfer the minimum storage 

transfer size for this object. 
This value is 1 storage unit. 
Transfer the machine default 
storage transfer size. This 
value is 8 storage units. 

- Unit number 
- Reserved (binary 0) 

• Reserved (binary 0) 

• Context 

• Reserved (binary 0)Char(16) 

Bits 8-15 
Bits 16-31 

Char(7) 

System 
pointer 

• Length of timestamp in prefix (0 to 8) Bin(2) 

20-8 

• Length of process name in prefix 
(0 to 30) 

• Length of user profile name in 
prefix (0 to 30) 

• Length of program name in prefix 
(0 to 30) 

Bin(2) 

Bin(2) 

Bin(2) 

The journal port template must be aligned on a multiple 
of 16 bytes. 

Note: The values of the entries annotated with an 
asterisk (*) are ignored by this instruction. 

The journal port is owned by the user profile governing 
process execution. The owning user profile is implicitly 
assigned all authority states to the journal port. The 
storage occupied by the journal port is charged to this 
owning user profile. 

The object identification specifies the symbolic name 
that identifies the journal port within the machine. A 
type code of hex 09 is implicitly supplied by the 
machine. The object identification is used to identify the 
journal port on materialize instructions as well as to 
locate the object in a context that addresses the object. 

A space may be associated with the created object. 
This space may be fixed or variable. Initial allocation is 
specified in the size of space entry. The machine 
allocates a space of at least the size specified. The 
actual size allocated is dependent on an algorithm 
defined by a specific implementation. A fixed-size 
space request of zero length results in no space being 
allocated. 

Each byte of the space is initialized to a value specified 
by the initial value of space entry. When the space is 
extended in size, this byte value is also used to initialize 
the new allocation. 

If the initial context creation attribute entry indicates that 
addressability is to be inserted into a context. the 
context entry must contain a system pointer that 
identifies a context where addressability to the newly 
created object is to be placed. If addressability is not to 
be inserted into a context. the context entry is ignored. 

The performance class parameter provides information 
allowing the machine to more effectively manage the 
object, considering the overall performance objective of 
operations involving the journal port. 



L 

L 

The length of timestamp in prefix field must contain a 
value equal to or greater than 0 and less than or equal 
to 8. It indicates the length of the timestamp field that 
is to be contained in the journal prefix of every entry 
created through this journal port. The timestamp that is 
placed in the journal prefix indicates the time that the 
journal entry was generated and placed on a journal 
space. If this field contains a value of 0, the timestamp 
will not appear in journal prefix of entries created 
through this journal port. If a value less then 8 is 
provided in this field, the leading portion of the 
timestamp is placed in the prefix. 

The length of process name in prefix field must contain 
a value equal to or greater than 0 and less than or equal 
to 30. It indicates the length of the process name field 
which is to be contained in the journal prefix of every 
entry created through this journal port. The process 
name that is placed in the journal prefix is the name of 
process (as indicated by the Create Process Control 
Space or Rename Object instruction) performing the 
changes that result in journal entries being created. If 
this field contains a value of 0, the process name will 
not appear in journal prefix of entries created through 
this journal port. If a value less than 30 is provided in 
this field, the leading portion of the process name is 
placed in the prefix. 

The length of user profile name in prefix field must. 
contain a value equal to or greater than 0 and less than 
or equal to 30. It indicates the length of the user profile 
name field that is to be contained in the journal prefix of 
every entry created through this journal port. The user 
profile name that is placed in the journal prefix is the 
name of user profile (as indicated by the Create User 
Profile or Rename Object instruction) the process is 
running under when performing the changes that result 
in journal entries being created. If this field contains a 
value of 0, the user profile name will not appear in 
journal prefix of entries created through this journal port. 

The length of program name in prefix field must contain 
a value equal to or greater than 0 and less than or equal 
to 30. It indicates the length of the program name field 
which is to be contained in the journal prefix of every 
entry created through this journal port. The program 
name that is placed in the journal prefix is the name of 
program (as indicated by the Create Program or Rename 
Object instruction) that is the first program in the 
invocation stack with a value of binary 0 specified on 
the creation template for the program in the system 
program attribute field. The search for the first program 
with this value is made from the bottom of the 
invocation stack to the top. If no program is found with 
the correct value in this field, the top program in the 
invocation stack is identified in the journal prefix. If this 
field contains a value of 0, the program name will not 
appear in journal prefix of entries created through this 
journal port. 

Authorization Required 

• Retrieve 
- Contexts referenced for address resolution 

• Insert 
Access group identified in operand 2 
User profile of creating process 
Context identified in operand 2 

Lock Enforcement 

• Materialize 
- Contexts referenced for address resolution 

• Modify 
Access group identified in operand 2 

- Context identified in operand 2 
User profile of creating process 

Journal Management Instructions 20-9 



Events Exceptions 

0002 Authorization Operands j 
0101 Authorization violation Exception 1 2 Other 

OOOC Machine resources 02 Access Group 

0201 Machine auxiliary storage exceeded 01 Object ineligible for access group X 

0501 Machine address threshold exceeded 06 Addressing 

01 Space addressing violation X X 

0010 Process 02 Boundary alignment X X 

0701 Maximum processor time exceeded 03 Range X X 

0801 Process storage limit exceeded 06 Optimized addressability invalid X X 

08 Argument/ Parameter 

0016 Machine observation 01 Parameter reference violation X X 

0101 Instruction reference OA Authorization 

01 Unauthorized for operation X 

0017 Damage OE Context Operation 

0401 System object damage set 01 Duplicate object identification X 

0801 Partial system object damage set 10 Damage 

04 System object damage X X 

1A Lock State 

01 Invalid lock state X 
1C Machine-Dependent Exception 

03 Machine storage limit exceeded X 

04 Object storage limit exceeded X 
20 Machine Support 

02 Machine check X 

03 Function check X 
22 Object Access 

01 Object not found X X 

02 Object destroyed X X 
03 Object suspended X X 

24 Pointer Specification 

01 Pointer does not exist X X 
02 Pointer type invalid X X 

03 Pointer addressing invalid object X 

2A Program Creation 

06 Invalid operand type X X 

07 Invalid operand attribute X X 

08 Invalid operand value range X X 

OC Invalid operand ODT reference X X 

00 Reserved bits are not zero X X X 

2E Resource Control Limit 
01 User profile storage limit X 

exceeded 

32 Scalar Specification 

01 Scalar type invalid X X 
38 Template Specification 

01 Template value invalid X 

20-10 



L 
CREATE JOURNAL SPACE (CRTJS) 

Op Code Operand Operand 
(Hex) 1 2 

05AE Journal Journal space template 
space 

Operand 1: System pointer. 

Operand 2: Space pointer. 

Description: This instruction creates a journal space 
according to the description in operand 2 and returns 
addressability in the system pointer identified by 
operand 1. A journal space must be created as a 
permanent object. 

The format of the journal space template is as follows: 

• Template size 
- Number of bytes provided by 

user 
Number of bytes that can be 
materialized 

• Object identification 
- Object type 
- Object subtype 

Object name 

• Object creation options 
Reserved (binary 0) 

- Space attributes 
o = Fixed-length 
1 = Variable-length 

- Initial context 
o = No addressability insert 
1 = Insert addressability 

- Reserved (binary 0) 

• Reserved (binary 0) 

• Size of space 

• Initial value of space 

Char(8) 
Bin(4)* 

Bin(4)* 

Char(2) 
Char(1)* 
Char(1 ) 
Char (30) 

Char(4) 
Bit 0 
Bit 1 

Bit 2 

Bits 3-31 

Char(4) 

Bin(4) 

Char(1 ) 

• Performance class Char(4) 

- Space alignment Bit 0 
o = The space associated with 

the object is allocated to 
allow proper alignment of 
pointers at 16-byte 
alignments within the space. 
If no space is specified 
for the object, this value 
must be specified for the 
performance class. 
The space associated with 
the object is allocated to 
allow proper alignment of 
pointers at 16-byte 
alignments within the 
space as well as to allow 
proper alignment of 
input / output buffers at 
512-byte alignments within 
the space. 

- Reserved (binary 0) Bits 1-4 
- Main storage pool selection Bit 5 

o Process default main storage 
pool is used for object. 
Machine default main storage 
pool is used for object. 

- Transient storage pool selection Bit 6 
o = Default main storage pool 

(process default or machine 
default as specified for main 
storage pool selection) is 
used for object. 

1 = Transient storage pool is used 
for object. 

- Block transfer on impliCit Bit 7 
access state modification 
o = Transfer the minimum storage 

transfer size for this object. 
This value is 1 storage unit. 
Transfer the machine default 
storage transfer size. This 
value is 8 storage units. 

- Unit number 
- Reserved (binary 0) 

• Reserved (binary 0) 

• Context 

• Reserved (binary 0) 

• Threshold 

Bits 8-15 
Bits 16-31 

Char(7) 

System 
pointer 
Char(16) 

Bin(4) 

Journal Management Instructions 20-11 



The journal space template must be aligned on a 
multiple of 16 bytes. 

Note: The values of the entries annotated with an 
asterisk (*) are ignored by this instruction. 

The journal space is owned by the user profile governing 
process execution. The owning user profile is implicitly 
assigned all authority states to the journal space. The 
storage occupied by the journal space is charged to this 
owning user profile. 

The object identification specifies the symbolic name 
that identifies the journal space within the machine. A 
type code of hex 07 is implicitly supplied by the 
machine. The object identification is used to identify the 
journal space on materialize instructions as well as to 
locate the object in a context that addresses the object. 

A space may be associated with the created object. 
This space may be fixed or variable. Initial allocation is 
specified in the size of space entry. The machine 
allocates a space of at least the size specified. The 
actual size allocated is dependent on an algorithm 
defined by a specific implementation. A fixed-size 
space request of zero length results in no space being 
allocated. 

Each byte of the space is initialized to a value specified 
by the initial value of space entry. When the space is 
extended in size, this byte value is also used to initialize 
the new allocation. 

If the initial context creation attribute entry indicates that 
addressability is to be inserted into a context, the 
context entry must contain a system pointer that 
identifies a context where addressability to the newly 
created object is to be placed. If addressability is not to 
be inserted into a context, the context entry is ignored. 

The performance class parameter provides information 
allowing the machine to more effectively manage the 
object, considering the overall performance objective of 
operations involving the journal space. 

20-12 

The threshold field contains a value that indicates the 
threshold value for this journal space. It must be a value 
equal to or greater than O. A journal space threshold 
reached event is signaled when a journal entry is placed 
in the journal space and causes more than the space 
indicated in the threshold value to be used. This size 
includes the total object size for the journal space 8S 

provided by the Materialize System Object instruction. 
The event is signaled only once per journal space. If a 
value of 0 is provided in this field, the event will not be 
signaled. 

Authorization Required 

• Retrieve 
- Contexts referenced for address resolution 

• Insert. 
Access group identified in operand 2 
User profile of creating process 
Context identified in operand 2 

Lock Enforcement 

• Materialize 
- Contexts referenced for address resolution 

• Modify 
Access group identified in operand 2 
Context identified in operand 2 
User profile of creating process 



Events Exceptions 

L 0002 Authorization Operands 
0101 Authorization violation Exception 1 2 Other 

oooe Machine resources 02 Access Group 

0201 Machine auxiliary storage 01 Object ineligible for access group X 

threshold exceeded 06 Addressing 

0501 Machine address threshold exceeded 01 Space addressing violation X X 

02 Boundary alignment X X 

0010 Process 03 Range X X 

0701 Maximum processor time exceeded 06 Optimized addressability invalid X X 

0801 Process storage limit exceeded 08 Argument/ Parameter 

01 Parameter reference violation X X 

0016 Machine observation OA Authorization 

0101 Instruction reference 01 Unauthorized for operation X 
OE Context Operation 

0017 Damage 01 Duplicate object identification X 

0401 System object damage set 10 Damage 

0801 Partial system object damage set 04 System object damage X X 
1A Lock State 

001 e Journal space 01 Invalid lock state X 

1C Machine- Dependent Exception 

03 Machine storage limit exceeded X 

04 Object storage limit exceeded X 

20 Machine Support 

02 Machine check X 

03 Function check X 

22 Object Access 

01 Object not found X X 

02 Object destroyed X X 

03 Object suspended X X 
24 Pointer Specification 

01 Pointer does not exist X X 
02 Pointer type invalid X X 
03 Pointer addressing invalid object X 

2A Program Creation 

06 Invalid operand type X X 

07 Invalid operand attribute X X 

08 Invalid operand value range X X 

OC Invalid operand ODT reference X X 

00 Reserved bits are not zero X X X 

2E Resource Control Limit 

01 User profile storage limit X 
exceeded 

32 Scalar Specification 

01 Scalar type invalid X X 
38 Template Specification 

01 Template value invalid X 

Journal Management Instructions 20-13 



DESTROY JOURNAL PORT (DESJP) 

Op Code 
(Hex) 

05AD 

Operand 
1 

Journal port 

Operand 1: System pointer. 

Description: This instruction destroys the specified 
journal port and deletes addressability to the journal port 
from any context that currently addresses the object. 
The pointer identified by operand 1 is not modified by 
the instruction. 

If any objects are currently being journaled through the 
journal port identified in operand 1, an object not eligible 
for destruction exception is signaled and the journal port 
is not destroyed. 

If a journal space is attached to the journal port 
identified in operand 1, an object not eligible for 
destruction exception is signaled and the journal port is 
not destroyed. 

Authorization Required 

• Retrieve 
- Contexts referenced for address resolution 

• Object control 
- Operand 1 

Lock Enforcement 

• Materialize 
- Contexts referenced for address resolution 

• Object control 
- Operand 1 

• Modify 

20-14 

Access group that contains operand 1 
Context that addresses operand 1 
User profile owning operand 1 

Events 

0002 Authorization 
0401 Authorization violation 

OooC Machine resources 
0201 Machine auxiliary storage exceeded 

0010 Process 
0701 Maximum processor time exceeded 

0016 Machine observation 
0401 Instruction reference 

0017 Damage set 
0401 System object damage set 
0801 Partial system object damage set 



Exceptions DESTROY JOURNAL SPACE (DESJS) 

L Operand Op Code Operand 

Exception 1 Other (Hex) 1 

06 Addressing 05A1 Journal space 

01 Space addressing violation X 

02 Boundary alignment X Operand 1: System pointer. 

03 Range X 

06 Optimized addressability invalid X 

08 Argument/ Parameter Description: This instruction destroys the specified 

01 Parameter reference violation X journal space and deletes addressability to the journal 

OA Authorization space from any context that currently addresses the 

01 Unauthorized for operation X object. The pointer identified by operand 1 is not 

10 Damage modified by the instruction. 

04 System object damage X X 

1A Lock State If the journal space is currently attached to a journal 

01 Invalid lock state X X port as a receiver, an object not eligible for destruction 

1C Machine- Dependent Exception exception is signaled. 

03 Machine storage limit exceeded X 

20 Machine Support If any journal entries exist on the journal space that are 

02 Machine check X needed to recover an object that has journaled changes, 

03 Function check X a journal space not at a recoverable boundary exception 

22 Object Access is signaled and the journal space is not destroyed. 

01 Object not found X 

02 Object destroyed X If any journal entries that exist on the journal space 

06 Object not eligible for destruction X were generated under commitment control and the 

24 Pointer Specification changes have not been committed or decommitted, a 

~ 
01 Pointer does not exist X journal space not at a recoverable boundary exception is 

02 Pointer type invalid X signaled and the journal space is not destroyed. 

03 Pointer addressing invalid object X 

2A Program Creation 

06 Invalid operand type X 

07 Invalid operand attribute X 

08 Invalid operand value range X 
OC Invalid operand ODT reference X 

00 Reserved bits are not zero X X 
32 Scalar Specification 

01 Scalar type invalid X 

Journal Management Instructions 20-15 



Events Exceptions 

0002 Authorization Operand 
0401 Authorization violation Exception 1 Other 

OOOC Machine resources 06 Addressing 

0201 Machine auxiliary storage exceeded 01 Space addressing violation X 

02 Boundary alignment X 

0010 Process 03 Range X 

0601 Exception signaled to process 06 Optimized addressability invalid X 

0701 Maximum processor time exceeded 08 Argument/ Parameter 

01 Parameter reference violation X 

0016 Machine observation OA Authorization 

0401 Instruction reference 01 Unauthorized for operation X 

0201 Object location reference 10 Damage 

04 System object damage X X 

0017 Damage set 1A Lock State 

0401 System object damage set 01 Invalid lock state X X 

0801 Partial system object damage set 1C Machine- Dependent Exception 

03 Machine storage limit exceeded X 

001AJournal port 20 Machine Support 

0301 Entry not journaled 02 Machine check X 

0401 Journal space attached to a journal 03 Function check X 

port became unusable 22 Object Access 

01 Object not found X 

001 C Journal space 02 Object destroyed X 

0301 Threshold reached 06 Object not eligible for destruction X 

24 Pointer Specification 

01 Pointer does not exist X 

02 Pointer type invalid X 

03 Pointer addressing invalid object X 

2A Program Creation 

06 Invalid operand type X 

07 Invalid operand attribute X 

08 Invalid operand value range X 

OC Invalid operand ODT reference X 

00 Reserved bits are not zero X X 

30 Journal Management 

06 Journal space not at recoverable X 
boundary 

32 Scalar Specification 

01 Scalar type invalid X 

20-16 



L 
JOURNAL DATA (JRNLD) 

Op Code Operand Operand 
(Hex) 1 2 

0582 Journal User data 
port template 

Operand 1: System pointer. 

Operand 2: Space pointer. 

Description: This instruction places the data specified in 
the template identified by operand 2 in the journal 
spaces attached to the journal port specified by operand 
1. 

The format of the entry template is as follows: 

• Subtype of entry 

• Length of entry 

• Journal data options 
- Force journal spaces 

o Do not force journal 
spaces. 
Force journal spaces. 

- Reserved (binary 0) 

• Journal 10 

• Reserved (binary 0) 

• Entry 

Char(2) 

Bin(2) 

Char(2) 
Bit 0 

Bits 1-15 

Char(10) 

Char(16) 

System 
pointer 

If the journal 10 field contains a value of nonzero, the 
value will be placed in the journal 10 field of the journal 
entry. If this value is binary O's, it will be ignored. and 
binary O's will appear in the generated journal entry. 
This journal 10 may correspond to any journal 10 

currently used by an object being journaled through the 
indicated journal port; however, it need not correspond 
to any of these objects. The indicated journal 10 can be 
used in the input template for the Retrieve Journal 
Entries instruction, and if it matches the journal ID of an 
object that has changes being journaled through the 
indicated journal port, it will be returned with entries for 
the object when the appropriate selection options are 
specified. 

The entry will be placed in the user-defined portion of 
the journal entry for a length defined in the length of 
entry field. 

Authorization Required 

• Retrieve 
- Contexts referenced for address resolution 

• Insert 
- Operand 1 

Lock Enforcement 

• Materialization 
- Contexts referenced for address resolution 

• Modify 
- Operand 1 

Journal Management Instructions 20-17 



Events Exceptions 

0002 Authorization Operands 
0101 Authorization violation Exception 1 2 Other 

OOOC Machine resources 06 Addressing 

0201 Machine auxiliary storage exceeded 01 Space addressing violation X X 
02 Boundary alignment X X 

00 1 0 Process 03 Range X X 

0701 Maximum processor time exceeded 06 Optimized addressability invalid X X 
08 Argument/ Parameter 

0016 Machine observation 01 Parameter reference violation X X 

0101 Instruction reference OA Authorization 
01 Unauthorized for operation X X 

0017 Damage 10 Damage 

0401 System object damage set 04 System object damage X X 

0801 Partial system object damage set 44 Partial system object damage X 
1A Lock State 

001 A Journal port 01 Invalid lock state X X 

0301 Entry not journaled 1C Machine-Dependent Exception 

0401 Journal space attached to a journal 03 Machine storage limit exceeded X 

port became unusable 20 Machine Support 

02 Machine check X 

001 C Journal space 03 Function check X 

0301 Threshold reached 22 Object Access 

01 Object not found X X 
02 Object destroyed X X 
03 Object suspended X X 

24 Pointer Specification 

01 Pointer does not exist X X 
02 Pointer type invalid X X 
03 Pointer addressing invalid object X X 

2A Program Creation 

06 Invalid operand type X X 
07 Invalid operand attribute X X 
08 Invalid operand value range X X 
OA Invalid operand length X 
OC Invalid operand ODT reference X X 

00 Reserved bits are not zero X X X 
30 Journal Management 

02 Entry not journaled X 

32 Scalar Specification 

01 Scalar type invalid X X 
02 Scalar attributes invalid X 
03 Scalar value invalid X 

38 Template Specification 

01 Template value invalid X 

20-18 



JOURNAL OBJECT (JRNLOBJ) 

Op Code Operand 
(Hex) 1 

05BA Object to 
be 
journaled 

Operand 
2 

Journal object 
template 

Operand 1: System pointer. 

Operand 2: Space pointer. 

Description: This instruction indicates that the changes 
to the specified object are to be journaled or that no 
more changes are to be journaled to the specified 
object. If a journal port is specified in operand 2, the 
object specified in operand 1 is modified to the journal 
changes and journal ID through the specified journal 
port. If the object already has changes being journaled, 
an object already being journaled exception is signaled. 
Operand 2 can also stop journaling changes to the 
indicated object if the journal port field is null (binary 
O's). 

The format of the journal object template is as follows: 

• Materialization size specification 
- Number of bytes provided for mat 
- Number of bytes available for mat 

• Object journal attributes 
Object is being journaled 
Before images 
o = Do not journal before 

images whenever the 
entry / image is 
optional 
Journal before images 
whenever the entry is 
optional 

After images 
o = Do not journal after images 

whenever the entry/image is 
optional 

1 = Journal after images 
whenever the entry is optional 

Synchronized with journal 
Journal optional entries 
o Journal all entries defined 

for this object type 
Do not journal optional 
entries defined for this 
object type 

Reserved 

• Journal port 

• Journal ID 

Char(S) 
Bin(4)* 
Bin(4)* 

Char(S) 
Bit 0* 
Bit 1 

Bit 2 

Bit 3* 
Bit 4 

Bits 5-63 

System 
pointer 

Char(10) 

The journal port template must be aligned on a multiple 
of 16 bytes. 

Note: The values of the entries annotated with an 
asterisk (") are ignored by this instruction. 

If the before images bit has a value of binary 1, the 
system will generate before images whenever a change 
is made to an object that is being journaled and the 
change has an architected before image. If this field has 
a value of binary 0, the system will not generate the 
before images on the journal spaces. 

Journal Management Instructions 20-19 



If the after images bit has a value of binary 1, the 
system will generate after images whenever a change is 
made to an object that is being journaled and the 
change has an architected after image. This field must 
contain a value of binary 1, or a template value invalid 
exception is signaled. 

If the do not journal optional entries bit has a value of 
binary 1, the system will not generate the optional 
journal entries defined for this object type. If the bit has 
a value of binary 0, all journal entries defined for this 
object type are generated as needed. 

If the journal port field contains a null value (binary O's), 
the object journal attributes and journal ID fields are 
ignored. If the journal port field contains a null value 
(binary 0' s), the object will no longer be journaled 
through any journal port. If the object is not currently 
being journaled, the operation completes normally (no 
exception); however, the journal ID that was assigned to 
the object remains with the object and can be 
determined through the Materialize Journaled Object 
Attributes instruction. If the operand 1 object is 
damaged, the operation (stop journaling activity) will be 
completed and the object will no longer be journaled 
through any journal port. If there are no journal spaces 
attached to the journal port through which the object's 
changes were being journaled or if the journal port or 
journal spaces are damaged, the operation is performed, 
but no journal entries are placed in the user's journal 
identifying the operation performed. 

The journal ID will be used as the journal ID for each 
journal entry for this object. A value of binary 0' s for 
the journal ID will result in a template value invalid 
exception. The journal I D that is established for the 
object will remain with the object until it is reestablished 
through another execution of this instruction or the 
object is destroyed. The journal ID must be unique for 
each object being journaled through the journal port. If 
the journal ID is not unique, a journal ID not unique 
exception is signaled. 

If operand 2 indicates that the object is to no longer be 
Journaled, this will be done regardless of whether or not 
a journal entry can be generated and placed on the 
proper journal receiver(s). 

20-20 

Authorization Required 

• Retrieve 
- Contexts referenced for address resolution 

• Object management 
- Operand 1 
- Journal port referenced in operand 2 

Lock Enforcement 

• Materialization 
- Contexts referenced for address resolution 

• Object control 
- Operand 1 

• Modify 
- Journal port referenced in operand 2 

Events 

0002 Authorization 
0401 Authorization violation 

OOOC Machine resources 
0201 Machine auxiliary storage exceeded 

0010 Process 
0701 Maximum processor time exceeded 

0016 Machine observation 
0401 Instruction reference 

0017 Damage set 
0401 System object damage set 
0801 Partial system object damage set 

001 A Journal port 
0301 Entry not journaled 
0401 Journal space attached to a 

journal port became unusable 

001 C Journal space 
0301 Threshold reached 



Exceptions MATERIALIZE JOURNAL PORT ATTRIBUTES 
(MATJPAT) 

Operands 
Exception 1 2 Other Op Code Operand Operand 

(Hex) 1 2 

06 Addressing 

01 Space addressing violation X X 05A6 Receiver Journal port 

02 Boundary alignment X X 

03 Subscript range X X Operand 1: Space pointer. 

06 Optimized addressability invalid X X 

08 Argument/ Parameter 
Operand 2: System pointer. 

01 Parameter reference violation X X 

OA Authorization 

01 Unauthorized for operation X X 
Description: This instruction materializes the creation 

10 Damage 
attributes of the journal port specified by operand 2 and 

04 System object damage X X X 
places the attributes in the receiver specified by operand 

44 Partial system object damage X 
1. 

1A Lock State 

01 Invalid lock state X 
The format of the materialization data is as follows: 

1C Machine- Dependent Exception 

03 Machine storage limit exceeded X · Materialization length Char(B) 

20 Machine Support 
Number of bytes provided by user Bin(4) 

02 Machine check X 
Number of bytes that can be Bin(4) 

03 Function check X 
materialized 

22 Object Access 

01 Object not found X X · Object identification Char(32) 

02 Object destroyed X X 
Object type Char(1 ) 

03 Object type invalid X 
Object subtype Char(1 ) 

04 Object not eligible for operation X 
Object name Char(3D) 

24 Pointer Specification 

01 Pointer does not exist X X · Object creation options Char(4) 

02 Pointer type invalid X X 
Existence attributes (binary 1) Bit 0 

03 Pointer addressing invalid object X X 
Space attributes Bit 1 

2A Program Creation 
0 = Fixed-length 

06 Invalid operand type X X 
1 = Variable-length 

07 Invalid operand attribute X X 
Initial context Bit 2 

08 Invalid operand value range X X 
Access group Bit 3 

OC Invalid operand ODT reference X X 
Replace option Bit 4 

00 Reserved bits are not zero X X X 
Reserved Bits 5-31 

30 Journal Management 

02 Entry not journaled X · Reserved (binary 0) Char(4) 

03 Journaled object limit exceeded X 

07 Journal 10 not unique X · Size of space Bin(4) 

08 Object already being journaled X 

32 Scalar Specification · Initial value of space Char(1 ) 

01 Scalar type invalid X X 

38 Template Specification · Performance class Char(4) 

01 Template value invalid X · Reserved Char(7) 

· Context System 

pointer 

· Reserved (binary 0) Char(16) 

Journal Management Instructions 20-21 



• Length of timestamp in prefix Bin(2) 

• Length of process name in prefix Bin(2) 

• Length of user profile name in prefix Bin(2) 

• Length of program name in prefix 

• Number of journal spaces attached 
to the journal port 

• Reserved 

• Journal spaces (0 to n) 

Bin(2) 

Bin(2) 

Char(6) 

System 
pointer 

The first 4 bytes of the receiver must be aligned on a 
16-byte boundary. The first 8 bytes of the 
materialization output identify the total quantity of bytes 
provided by the user for the materialization and the total 
quantity of bytes available to be materialized. If fewer 
than 8 bytes are available in the space identified by the 
receiver, operand 1, a materialization length exception is 
signaled. The instruction materializes as many bytes as 
can be contained in the receiver's space. If the space of 
the receiver is greater than that required to contain the 
information requested for materialization, the excess 
bytes are unchanged. No exceptions are signaled in the 
event that the receiver contains insufficient space for the 
materialization other than the materialization length 
exception described previously. 

The attributes materializable by the instruction are 
described in the Create Journal Port instruction. 

Each journal space currently attached to the journal port 
will be identified in the journal space list. This list has 
as many entries as are identified in the number of 
journal spaces attached to the journal port field. 

20-22 

Authorization Required 

• Retrieve 
- Contexts referenced for address resolution 

• Operational 
- Operand 2 

Lock Enforcement 

• Materialization 
Operand 2 

- Contexts referenced for address resolution 

Events 

0002 Authorization 
0101 Authorization violation 

OOOC Machine resources 
0201 Machine auxiliary storage exceeded 

0010 Process 
0701 Maximum processor time exceeded 

0016 Machine observation 
0101 Instruction reference 

0017 Damage 
0401 System object damage set 
0801 Partial system object damage set 

J 



Exceptions MATERIALIZE JOURNAL SPACE ATTRIBUTES 
(MATJSAT) 

L Operands 
Operand Exception 1 2 Other Op Code Operand 

(Hex) 1 2 
06 Addressing 

01 Space addressing violation X X 05BE Receiver Journal space 

02 Boundary alignment X X 
03 Range X X Operand 1: Space pointer. 

06 Optimized addressability invalid X X 
Operand 2: System pointer. 

08 Argument/ Parameter 

01 Parameter reference violation X X 
OA Authorization Description: This instruction materializes the current 

01 Unauthorized for operation X 
attributes of the journal space specified by operand 2 

10 Damage 
and places the attributes in the receiver specified by 

04 System object damage X X 
operand 1. 

1A Lock State 

01 Invalid lock state X 
The format of the materialization data is as follows: 

1C Machine-Dependent Exception 

03 Machine storage limit exceeded X 
Materialization length Char(S) · 20 Machine Support 

Number of bytes provided by user Bin(4) 
02 Machine check X - Number of bytes materializable Bin(4) 
03 Function check X 

22 Object Access · Object identification Char(32) 
01 Object not found X X 

Object type Char(1) 
02 Object destroyed X X 

Object subtype Char(1 ) 
03 Object suspended X X 

Object name Char(30) 
24 Pointer Specification 

01 Pointer does not exist X X · Object creation options Char(4) 
02 Pointer type invalid X X Existence attributes (binary 1) Bit 0 
03 Pointer addressing invalid object X X 

Space attributes Bit 1 
2A Program Creation 

0 = Fixed-length 
06 Invalid operand type X X 

1 = Variable-length 
07 Invalid operand attribute X X 

Initial context Bit 2 
08 Invalid operand value range X X 

Access group Bit 3 
OA Invalid operand length X 

Replace option Bit 4 
OC Invalid operand ODT reference X X 

Reserved Bits 5-31 
00 Reserved bits are not zero X X X 

32 Scalar Specification · Reserved (binary 0) Char(4) 
01 Scalar type invalid X X 

38 Template Specification · Size of space Bin(4) 
03 Materialization length exception X 

· Initial value of space Char(1) 

· Performance class Char(4) 

· Reserved (binary 0) Char(7) 

· Context System 

pointer 

· Reserved (binary 0) Char(16) 

'-... · Threshold Bin(4) 

Journal Management Instructions 20-23 



· Reserved (binary 0) Char(12) 

· Journal port System 
pointer 

· Number of journal entries Bin(4) 

· First sequence number Bin(4) 

· Last sequence number Bin(4) 

· Reserved (binary 0) Char(4) 

· Time journal space attached to Char(8) 
journal port 

· Time journal space detached to Char(8) 
journal port 

· Length of timestamp Bin(2) 

Length of process name Bin(2) 

· Length of user profile name Bin(2) 

· Length of program name Bin(2) 

· Length of longest journal entry Bin(4) 

20-24 

• Last journal entry dumped 

• Journal space status 
Operable journal space 
o = Journal space is operable 
1 = Journal space is not operable 

- Missing journal entries 
o = No entries missing 
1 = 1 or more entries missing 

Bin(4) 

Char(2) 
Bit 0 

Bit 1 

Journal space size extension Bit 2 
o Journal space could be 

extended 
1 = Journal space could not 

be extended 
Maximum sequence number Bit 3 
reached 
o Maximum sequence number 

has not been reached 
1 = Maximum sequence number 

has been reached 
Journal failure 
o No journal failure has 

occurred 
1 = A journal failure has 

occurred 
- Reserved (binary 0) 

Bit 4 

Bits 5-15 

The first 4 bytes of the receiver must be aligned on a 
16-byte boundary. The first 8 bytes of the 
materialization output identify the total quantity of bytes 
provided by the user for the materialization and the total 
quantity of bytes available to be materialized. If fewer 
than 8 bytes are available in the space identified by the 
receiver (operand 1). a materialization length exception is 
signaled. The instruction materializes as many bytes as 
can be contained in the receiver's space. If the space of 
the receiver is greater than that required to contain the 
information requested for materialization, the excess 
bytes are unchanged. No exceptions are signaled in the 
event that the receiver contains insufficient space for the 
materialization other than the materialization length 
exception described previously. 

The attributes that can be materialized by the instruction 
are described in the Create Journal Space instruction. 

The journal port field contains a system pointer to the 
journal port to which the designated journal space is 
currently attached. If the journal space is not currently 
attached to a journal port, this field will contain binary 
O's. 



The number of journal entries field contains the number 
of journal entries currently in the journal space. If this 
field contains a value of 0, the journal space has never 
been attached to a journal port. 

The first sequence number field contains the journal 
sequence number of the first journal entry contained In 

this journal space. If the number of journal entries field 
contains a value of 0, this field will also contain a value 
of O. 

The last sequence number field contains the journal 
sequence number of the last journal entry contained in 
this journal space. If the number of journal entries field 
contains a value of 0, this field will also contain a value 
of O. 

The time journal space attached to journal port field 
contains a timestamp that indicates the time the journal 
space was attached to a journal port. If the journal 
space has never been attached to a journal port, a value 
of 0 will be returned in this field. 

The time journal space detached from journal port field 
contains a timestamp that indicates the time the journal 
space was detached from a journal port. If the journal 
space has never been attached to a journal port or is 
currently attached to a journal port, a value of 0 will be 
returned in this field. 

The length of timestamp field contains the length of the 
timestamp field in the journal prefix of journal entries 
contained on the journal space. If the journal space has 
never been attached to a journal receiver (number of 
journal entries is equal to 0). this field will contain a 
value of O. 

The length of process name field contains the length of 
the process name field in the journal prefix of journal 
entries contained on the journal space. If the journal 
space has never been attached to a journal receiver 
(number of journal entries is equal to 0). this field will 
contain a value of O. 

The length of user profile name field contains the length 
of the user profile name field in the journal prefix of 
journal entries contained on the journal space. If the 
journal space has never been attached to a journal 
receiver (number of journal entries is equal to 0). this 
field will contain a value of O. 

The length of program name field contains the length of 
the program name field in the journal prefix of journal 
entries contained on the journal space. If the journal 
space has never been attached to a journal receiver 
(number of journal entries is equal to 0). this field will 
contain a value of O. 

The length of longest journal entry field contains the 
length of the longest journal entry currently contained on 
the journal space. This is the length of the entry as it 
would appear through the Retrieve Journal Entries 
instruction. If the journal space has never been attached 
to a journal port or there are no entries on the journal 
space, a value of 0 will be returned in this field. 

The last journal entry dumped field contains the journal 
sequence number of the last complete journal entry that 
has been dumped from this journal space. If no dump 
operation has been performed on this journal space, a 
value of 0 will be returned. 

The journal space status fields indicate whether or not 
the journal space is currently actively receiving journal 
entries or successfully received all journal entries while it 
was attached to a journal port. These fields also 
indicate the reason journal entries were not placed on 
the journal space. 

The operable journal space field indicates whether or not 
journal entries are being placed in the journal space 
while it is attached to the indicated journal port. If the 
journal space is no longer attached to a journal port, this 
field indicates the status of the Journal space when it 
was detached from the journal port. 

The missing j0 urnal entries field indicates whether or not 
journal entries have been created, while this journal 
space was attached to a journal port, that were not 
recorded on this journal space. If this field contains a 
value of binary 1, the Apply Journaled Changes and 
Retrieve Journal Entries instructions will not continue 
beyond the last journal entry recorded on this journal 
space. 

The journal space size extension field indicates whether 
or not the journal space can be extended. A value of 
binary 1 in this field indicates a storage limit exceeded 
exception was encountered while trying to extend the 
journal space. 

The journal failure field indicates whether or not a 
journal failure occurred while this journal space was 
attached to a journal port. 

Journal Management Instructions 20-25 



Authorization Required Exceptions 

· Retrieve Operands J - Contexts referenced for address resolution Exception 1 2 Other 

· Operational 06 Addressing 

- Operand 2 01 Space addressing violation X X 

02 Boundary alignment X X 

03 Range X X 

Lock Enforcement 06 Optimized addressability invalid X X 

08 Arg ument / Pa ra meter 

· Materialization 01 Parameter reference violation X X 

Operand 2 OA Authorization 

- Contexts referenced for address resolution 01 Unauthorized for operation X 

10 Damage 

04 System object X X 

Events 1A Lock State 

01 Invalid lock state X 

0002 Authorization 1C Machine-Dependent Exception 

0101 Authorization violation 03 Machine storage limit exceeded X 

20 Machine Support 

OOOC Machine resources 02 Machine check X 

0201 Machine auxiliary storage exceeded 03 Function check X 

22 Object Access 

0010 Process 01 Object not found X X 

0701 Maximum processor time exceeded 02 Object destroyed X X 

03 Object suspended X X 

0016 Machine observation 24 Pointer Specification 

0101 Instruction reference 01 Pointer does not exist X X 

02 Pointer type invalid X X 

0017 Damage 03 Pointer addressing invalid object X X 

0401 System object damage set 2A Program Creation 

0801 Partial system object damage set 06 Invalid operand type X X 

07 Invalid operand attribute X X 

08 Invalid operand value range X X 

OA Invalid operand length X 

OC Invalid operand ODT reference X X 

00 Reserved bits are not zero X ~ X 

32 Scalar Specification 

x\ 01 Scalar type invalid X 

38 Template Specification 

03 Materialization length exception X 

20-26 



MATERIALIZE JOURNALED OBJECT ATTRIBUTES 
(MATJOAT) 

Op Code Operand Operand 
(Hex) 1 2 

0586 Receiver Object 
space 

Operand 1: Space pointer. 

Operand 2: System pointer. 

Description: This instruction returns the journal 10 and 
the address of the journal port for an object if it is being 
journaled. If the object is not being journaled, it returns 
an indication that it is not journaled (binary 0 for the 
address of the journal port) and the journal 10 the object 
had when it was last journaled. If the journal 10 is 
binary O's, then the object has never been journaled. 

The format of the receiver space is as follows: 

• Materialization size specification 
Number of bytes provided 
for mat 

- Number of bytes available 
for mat 

• Object journal attributes 
Object is being journaled 
o = Not journaled 
1 = Journaled 

- Before images 
o = Journal does not 

contain before images 
whenever the entry/image 
is optional 
Journal contains before 
images whenever the 
entry is optional 

- After images 
o = Journal does not 

contain after images 
whenever the entry or 
image is optional 

= Journal contains after 
images whenever the 
entry is optional 

Char(S) 
Bin(4) 

Bin(4) 

Char(S) 
Bit 0 

Bit 1 

Bit 2 

Synchronized with journal Bit 3 
o = Object is currently 

synchronized with 
the indicated journal 

= Object is not currently 
synchronized with 
the indicated journal 

Journal optional entries Bit 4 
o = Journal all entries 

defined for this object 
type 
Do not journal optional 
entries defined for 
this object type 

- Reserved 

• Journal port 

• Journal 10 

Bits 5-63 

System 
pointer 

Char(10) 

Journal Management Instructions 20-27 



The receiver space must be aligned on a 16-byte 
boundary. The first 8 bytes of the materialization output 
identify the total quantity of bytes provided by the user 
for the materialization and the total quantity of bytes 
available to be materialized. If fewer than 8 bytes are 
available in the space identified by the receiver (operand 
1) a materialization length exception is signaled. The 
instruction materializes as many bytes as can be 
contained in the receiver's space. If the space of the 
receiver is greater than that required to contain the 
information requested for materialization, the excess 
bytes are unchanged. No exceptions are signaled when 
the receiver contains insufficient space for the 
materialization other than the materialization length 
exception described previously. 

If the object is being journaled field has a value of 
binary 0, all other fields except the journal 10 and the 
materialization specification will contain binary a's. 

An attempt is made to synchronize the journal and the 
objects being journaled to it at each IPL. If this cannot 
be done, the object is marked as not synchronized with 
the journal. Either the load or dump operation will 
reestablish an object as synchronized with the journal. 

Authorization Required 

• Retrieve 
- Contexts referenced for address resolution 

• Operational 
- Operand 2 

Lock Enforcement 

• Materialization 
Operand 2 

- Contexts referenced for address resolution 

20-28 

Events 

0002 Authorization 
0101 Authorization violation 

OOOC Machine resources 
0201 Machine auxiliary storage exceeded 

0010 Process 
0701 Maximum processor time exceeded 

0016 Machine observation 
0101 Instruction reference 

0017 Damage 
0401 System object damage set 
0801 Partial system object damage set 



Exceptions 

Exception 

06 Addressing 

01 Space addressing violation 

02 Boundary alignment 

03 Range 

06 Optimized addressability invalid 

08 Argument/ Parameter 

01 Parameter reference violation 

OA Authorization 

01 Unauthorized for operation 

10 Damage 

04 System object damage 

1 A Lock State 

01 Invalid lock state 

1 C Machine- Dependent Exception 

03 Machine storage limit exceeded 

20 Machine Support 

02 Machine check 

03 Function check 

22 Object Access 

01 Object not found 

02 Object destroyed 

03 Object suspended 

24 Pointer Specification 

01 Pointer does not exist 

02 Pointer type invalid 

2A Program Creation 

06 Invalid operand type 

07 Invalid operand attribute 

08 Invalid operand value range 

OA Invalid operand length 

OC Invalid operand ODT reference 

00 Reserved bits are not zero 

32 Scalar Specification 

01 Scalar type invalid 

38 Template Specification 

Operands 
1 2 Other 

X X 
X X 
X X 
X X 

X X 

X 

X 

X 

X X 
X X 
X X 

X X 
X X 

X X 
X X 
X X 
X 

X X 
X X 

X X 

X 

X 

X 

X 

03 Materialization length exception X 

MATERIALIZE JOURNALED OBJECTS (MATJOBJ) 

Op Code 
(Hex) 

Operand 
1 

Operand 
2 

Operand 
3 

05A7 Receiver Journal port Materialize option 

Operand 1: Space pointer. 

Operand 2: System pointer. 

Operand 3: Character(1) scalar. 

Description: This instruction materializes the system 

pointers to the objects that are currently being journaled 

through the journal port specified by operand 2 and 

places them in the receiver (operand 1). It also returns 

the object I D and journal I D of the object if these 

options are specified by operand 3. 

The materialization options are as follows: 

• Materialize options 
Materialize pointer to object 

Materialize object I D 

Materialize journal ID 

Reserved (binary 0) 

Char(1 ) 

Bit 0 

Bit 1 

Bit 2 
Bits 3-7 

If at least one materialize option is not requested, a 

scalar value invalid exception is signaled. 

The receiver identified by operand 1 must be 16-byte 

aligned in the space and have the following format: 

• Materialization size specification 

Number of bytes provided 

- Number of bytes available 

• Number of objects being journaled 

• Reserved (binary 0) 

• Object data (0 to n) 

Charla) 

Bin(4) 

Bin(4) 

Bin(4) 

Char(4) 

Char(") 

The first 4 bytes of the materialization identify the total 

number of bytes that may be used by the instruction. 
This value is supplied as input to the instruction and is 

not modified by the instruction. A value of less than a 

causes the materialization length exception to be 

signaled. 

Journal Management Instructions 20-29 



The second 4 bytes of the materialization identify the 
total quantity of bytes available to be materialized. The 
instruction materializes as many bytes as can be 
contained in the area specified as the receiver. If the 
bytes provided is greater than the bytes available, the 
excess bytes are unchanged. 

For each journaled object there is an entry. These 
entries are in arbitrary order. 

If materialize pointer to object is specified, then the 
system pointer is returned first in each entry. 

• Journaled object System 
pointer 

If materialize object I D is specified, then the system 
pointer (if requested) is immediately followed by the 
object I D of the form: 

• Object ID 
Object type 
Object subtype 
Object name 

Char(32) 
Char(1 ) 
Char(1 ) 
Char(30) 

If materialize journal ID is specified, then the journal ID 
follows the object ID (if requested) and/or the system 
pointer (if requested). The journal ID is of the form: 

• Journal ID Char(10) 

• Reserved (binary 0) Char(6) 

Substring operand references that allow for a null 
substring reference (a length value of zero) may not be 
specified for this instruction. 

Authorization Required 

• Retrieve 
Contexts referenced for address resolution 

- Operand 2 

Lock Enforcement 

• Materialization 
Contexts referenced for address resolution 

- Operand 2 

20-30 

Events 

0002 Authorization 
0101 Authorization violation 

OOOC Machine resources 
0201 Machine auxiliary storage exceeded 

0010 Process 
0701 Maximum processor time exceeded 

0016 Machine observation 
0101 Instruction reference 

0017 Damage 
0401 System object damage set 
0801 Partial system object damage set 



Exceptions MODIFY JOURNAL PORT (MODJP) 

L Operands Op Code Operand Operand Operand 

Exception 1 2 3 Other (Hex) 1 2 3 

06 Addressing 05AB Detached Options Journal port 

01 Space addressing violation X X object template 

02 Boundary alignment X X 
template 

03 Range X X 
Operand 1: Space pointer or null. 

06 Optimized addressability invalid X X 

08 Argument/ Parameter Operand 2: Space pointer. 
01 Parameter reference violation X X 

OA Authorization Operand 3: System pointer. 

01 Unauthorized for operation X 

10 Damage 

04 System object damage X Description: This instruction attaches journal spaces to 

1A Lock State the journal port identified in operand 3 according to the 

01 Invalid lock state X options specified in operand 2. 

1C Machine-Dependent Exception 

03 Machine storage limit exceeded X All journal spaces previously attached to the journal port 

20 Machine Support will be detached. Addressability to any journal spaces 

02 Machine check X detached from the journal port are returned in the 

03 Function check X operand 1 template unless a null value is provided in 

22 Object Access operand 1. The journal sequence may also be 

01 Object not found X X reinitialized when the journal spaces are attached to the 

02 Object destroyed X X journal port. 

03 Object suspended X X 

24 Pointer Specification The receiver identified by operand 1 must be 16-byte 

\...-
01 Pointer does not exist X X aligned in the space and have the following format: 

02 Pointer type invalid X X 

03 Pointer addressing invalid object X X · Materialization size specification Char(B) 

2A Program Creation Number of bytes provided Bin(4) 

06 Invalid operand type X X X - Number of bytes available Bin(4) 

07 Invalid operand attribute X X X 

08 Invalid operand value range X X X · Number of journal spaces detached Bin(2) 

OA Invalid operand length X X 

OC Invalid operand ODT reference X X X · Journal entry sequence number Bin(4) 

OD Reserved bits are not zero X X X X of last entry 

32 Scalar Specification 
01 Scalar type invalid X X · Reserved (binary 0) Char(2) 

03 Scalar value invalid X 

38 Template Specification · Journal space (0 to n) System 

03 Materialization length exception X pointer 

The first 4 bytes of the materialization identify the total 

quantity of bytes that may be used by the instruction. 
This value is supplied as input to the instruction and is 

not modified by the instruction. A value of less than B 
causes the materialization length exception to be 

signaled. 

Journal Management Instructions 20-31 



The second 4 bytes of the materialization identify the 
total quantity of bytes available to be materialized. The 
instruction materializes as many bytes as can be 
contained in the area specified as the receiver. If the 
number of bytes provided is greater than the number of 
bytes available, then the excess bytes are unchanged. 

The number of journal spaces detached field contains 
the number of journal spaces that were previously 
attached to the journal port. This field also indicates the 
number of entries contained in the journal space field. 

The journal entry sequence number of last entry field 
contains the journal entry sequence number of the last 
journal entry generated on the journal spaces that were 
detached from the journal port. 

A system pointer to each journal space detached is 
returned in the journal space field. 

The format of the options template is as follows: 

• Options 
Reset journal sequence number 
o Do not reset journal 

sequence number 
1 = Reset journal sequence 

number 
Reserved (binary 0) 

• Number of journal spaces to attach 

• Reserved (binary 0) 

• Journal space to be attached 
(0 to n) 

Char(2) 
Bit 0 

Bits 1-15 

Bin(2) 

Char(12) 

System 
pointer 

The options template must be aligned on a multiple of 
16 bytes. 

The number of journal spaces to attach field must 
contain a value equal to or greater than 0 and indicate 
how many journal spaces are to be attached to the 
designated journal port. The journal space to be 
attached system pointer addresses a journal space that 
is to be attached as a receiver. If this field has a value 
of binary 0, no journal spaces are attached to the journal 
port as receivers and the journal space to be attached 
field is ignored. If any objects that have changes being 
journaled through the referenced journal port are in use 
and this field has a value of binary 0, a template value 
invalid exception is signaled. 

20-32 

The journal space to be attached system pointer 
addresses a journal space that is to be attached as a 
receiver. If the system journal space is referenced more 
than once in the template, a template value invalid 
exception is signaled. 

If the reset journal sequence number contains a value of 
binary 1, the journal sequence number of the first entry 
on the attached journal space(s) will be 1. If this field 
contains a value of binary 1, all objects currently being 
journaled through the journal port must be at a 
recoverable boundary. A recoverable boundary is that 
point at which no entries for the object on the detached 
journal space are needed for any subsequent IPL 
synchronization. If not, a journal space not at 
recoverable boundary exception is signaled. If this field 
contains a value of binary 0, the first journal entry on 
the attached journal spaces will be 1 greater than the 
journal sequence number of the last entry on the 
detached Journal space(s). 

A journal entry will be generated and added to the 
journal spaces identifying the attached and detached 
journal spaces. Once a journal space has been attached 
to a journal port, it may never be attached to any journal 
port again. If an attempt to perform this operation is 
made, an object not eligible for operation exception is 
signaled. 

Authorization Required 

• Retrieve 
- Contexts referenced for address resolution 

• Update 
- Operand 3 

• Object management 
Operand 1 (journal spaces to be detached) 

- Operand 2 

Lock Enforcement 

• Materialization 
Contexts referenced for address resolution 

- Operand 1 (journal spaces to be detached) 

• Modify 
Operand 3 
All journal spaces whose status as journal 
receivers is to be modified 



Events Exceptions 

L 
0002 Authorization Operands 

0401 Authorization violation Exception 1 2 3 Other 

OOOC Machine resources 06 Addressing 

0201 Machine auxiliary storage reached 01 Space addressing violation X X X 
02 Boundary alignment X X X 

0010 Process 03 Range X X X 

0701 Maximum processor time exceeded 06 Optimized addressability invalid X X X 
08 Argument/ Parameter 

0016 Machine observation 01 Parameter reference violation X X X 

0401 Instruction reference OA Authorization 

01 Unauthorized for operation X X 

0017 Damage set 10 Damage 

0401 System object damage set 04 System object damage X X X 

0801 Partial system object damage set 44 Partial system object damage X X 
1A Lock State 

001 A Journal port 01 Invalid lock state X 

0301 Entry not journaled 1C Machine-Dependent Exception 

0401 Journal space attached to a 03 Machine storage limit exceeded X 

journal port became unusable 20 Machine Support 

02 Machine check X 

001 C Journal space 03 Function check X 

0301 Threshold reached 22 Object Access 

01 Object not found X X X 
02 Object destroyed X X X 
03 Object suspended X X X 
04 Object not eligible for operation X 

24 Pointer Specification 

01 Pointer does not exist X X X 
02 Pointer type invalid X X X 
03 Pointer addressing invalid object X X 

2A Program Creation 

06 Invalid operand type X X X 
07 Invalid operand attribute X X X 
08 Invalid operand value range X X X 

OC Invalid operand ODT reference X X X 
00 Reserved bits are not zero X X X X 

30 Journal Management 

02 Entry not journaled X 
06 Journal space not at recoverable X 

boundary 

38 Template Specification 

03 Materialization length exception X 

Journal Management Instructions 20-33 



RETRIEVE JOURNAL ENTRIES (RETJENT) 

Op Code 
(Hex) 

05CA 

Operand 
1 

Receiver 

Operand 
2 

Option template 

Operand 1: Space pointer. 

Operand 2: Space pointer. 

Description: This instruction retrieves journal entries 
from the indicated journal spaces and places these 
journal entries in the receiving area specified by operand 
1. The journal spaces indicated in the options template 
are scanned according to the rules and options specified 
in the options template and returned in the receiving 
space identified in operand 1. For a journal entry to be 
returned in the receiving area, it must match all of the 
selection criteria specified in the options template. 

The format of the receiver data is as follows: 

• Materialization length Char(8) 
- Number of bytes provided by user Bin(4) 
- Number of bytes returned Bin(4)* 

• Number of journal entries returned 

• First journal sequence number 
returned 

• Last journal sequence number 
returned 

• Entry search status 

• Journal entry 

Bin(4) 

Bin(4) 

Bin(4) 

Char(2) 

Char(*) 

Note: The input values of the entries annotated with an 
asterisk (*) are ignored by this instruction. 

20-34 

The first 4 bytes of the receiver must be aligned on a 
16-byte boundary. The first 8 bytes of the 
materialization output identify the total quantity of bytes 
provided by the user for the materialization and the total 
quantity of bytes available to be materialized. If fewer 
than 22 bytes are available in the space identified by the 
receiver (operand 1). a template size invalid exception is 
signaled. The instruction materializes as many bytes as 
can be contained in the receiver's space. If the space of 
the receiver is greater than that required to contain the 
information requested for materialization, the excess 
bytes are unchanged. No exceptions, other than the 
template size invalid exception described previously are 
signaled in the event that the receiver contains 
insufficient space for the materialization. 

The number of journal entries returned field is set to the 
number of journal entries returned by the instruction in 
the receiving area. 

The first journal sequence number returned field 
contains the journal sequence number of the first journal 
entry returned in the receiving area. If the number of 
journal entries returned is equal to 0, this field contains 
a value of O. Zero is not a valid journal sequence 
number. 

The last journal sequence number returned field contains 
the journal sequence number of the last journal entry 
returned in the receiving area. If the number of journal 
entries returned is equal to 0, this field contains a value 
of O. Zero is not a valid journal sequence number. 

The entry search status indicates whether or not any 
entries were found that matched the criteria established 
in the option template. A value of hex 0001 indicates 
that at least 1 journal entry was found that met the 
criteria. A value of hex 0002 indicates that no entries 
were found that met the criteria. 

When multiple entries are returned in the receiver area 
(indicated by a value greater than 1 in the number of 
journal entries returned field). the length of journal entry 
and journal entry fields are repeated multiple times with 
no intervening space in the receiver area. 



'-" 

The machine generates journal entries whenever the 
indicated change occurs in the system. When the 
Retrieve Journal Entries instruction returns the specific 
entries in the receiving area, they have the following 
formats. Each entry has the same initial fields in their 
format. These common fields are: 

· Journal entry length Bin(4) 

· Journal sequence number Bin(4) 

· Entry type Char(1) 

· Entry subtype Char(2) 

· Status byte Char(1 ) 
Journal 10 present Bit 0 

- Commit Bit 1 

- Reserved Bit 2-7 

· Journal prefix Char(*) 
- Timestamp Char(*) 
- PCS name Char(*) 
- User profile name Char(*) 
- User program name Char(*) 

· Journal 10 Char(10) 

· Commit 10 Char(4) 

The entry specific data immediately follows the prefix 
information and is further described for each entry type. 

The entry type corresponds to the object type of the 
object which is having its change activity journaled. 

The entry specific data is determined by the entry 
subtype for each entry. The entry specific data that is 
provided for each of the entry subtypes is as follows: 

• Entry subtype hex 0010 = 

Start journaling object 
- Object identifier 

Object type 
Object subtype 
Object name 

- Context identifier 
Object type 
Object subtype 
Object name 

- Journal attributes 

Entry subtype hex 0011 
Stop journaling object 
- Object identifier 

Object type 
Object subtype 
Object name 

- Context identifier 
Object type 
Object subtype 
Object name 

Char(32) 
Char(1) 
Char(1 ) 
Char(30) 
Char(32) 
Char(1 ) 
Char(1 ) 
Char(30) 
Char(8) 

Char(32) 
Char(1 ) 
Char(1 ) 
Char(30) 
Char(32) 
Char(1 ) 
Char(1) 
Char(30) 

• Entry subtype hex 0020 = Object synchronized with 
journal 
- No specific data 

• Entry subtype hex 0022 = Object not synchronized 
with journal 
- No specific data 

• Entry subtype hex 0030 = Start of apply 
journal changes 
- Apply options Char(4) 

Starting sequence number specified Bin(4) 
- Ending sequence number specified Bin(4) 

(this entry is not generated if 
journal entries were only scanned) 

Journal Management Instructions 20-35 



• Entry subtype hex 0031 = Apply 
journal changes termination 
- Apply options 
- Starting sequence number 

specified 
- Ending sequence number 

specified 
- Number of entries reapplied 
- Completion code (exception ID) 

(If hex 0000, the apply 
finished normally) 

- First sequence number applied 
- Last sequence number applied 
- First journal space supplied 

Object type 
Object subtype 
Object name 

- Context identifier 
(for first journal space) 
Object type 
Object subtype 
Object name 

- Last journal space supplied 
Object type 
Object subtype 
Object name 

- Context identifier 
(for last journal space) 
Object type 
Object subtype 
Object name 

- Object dependent status field 
(as defined on the apply 
journaled changes object list) 
This entry is not generated if 
journal entries were only scanned. 

Char(4) 
Bin(4) 

Bin(4) 

Bin(4) 
Char(2) 

Bin(4) 
Bin(4) 
Char(32) 
Char(l ) 
Char(l ) 
Char(30) 
Char(32) 

Char(1) 
Char(l) 
Char(30) 
Char(32) 
Char(l ) 
Char(l ) 
Char(30) 
Char(32) 

Char(l ) 
Char(l ) 
Char(30) 
Char(16) 

• Entry subtype hex 0040 = Object loaded 
- Load related data Char(*) 

(provided through Request I/O) 

• Entry subtype hex 0042 = Object dumped 
- Dump related data Char(*) 

(provided through Request I/O) 

• Entry subtype hex 0050 = Object suspended 
- No specific data 

• Entry subtype hex 0060 '" Object destroyed 
- No specific data 

20-36 

Entry type hex 09 is associated with entries that pertain 
to journal ports only. These entries have the entry 
subtypes and entry specific data as follows: 

• Entry subtype hex 0101 = System failure (recorded 
at IPL 
- No specific data 

• Entry subtype hex 0102 = System IPL after normal 
termination 
- No specific data 

• Entry subtype hex 0110 = Receiver attached to 
journal port 
- Number attached Bin(2) 

(The next 2 fields are repeated 
for each journal space attached) 

- Object identifier 
(journal space) 
Object type (hex 07) 
Object subtype 
Object name 

- Context identifier 
(journal space) 
Object type 
Object subtype 
Object name 

Char(32) 

Char(1) 
Char(l ) 
Char(30) 
Char(32) 

Char(1) 
Char(l ) 
Char(30) 

• Entry subtype hex 0120 = Receiver detached 
from journal port 
- Number detached 

(The next 2 fields are repeated 
for each journal space detached) 

- Object identifier 
(journal space) 
Object type (hex 07) 
Object subtype 
Object name 

- Context identifier 
(journal space) 
Object type 
Object subtype 
Object name 

Bin(2) 

Char(32) 

Char(l) 
Char(l) 
Char(30) 
Char(32) 

Char(l ) 
Char(l ) 
Char(30) 



\...r 

Entry type hex OB is associated with entries that pertain 
to data spaces only. These entries have the entry 
subtypes and entry specific data as follows: 

• Entry subtype hex 0210 = Activate cursor 

· 

· 

· 

· 

- Cursor identifier Char(32) 
Object type Char(l) 
Object subtype Char(l) 
Object name Char(30) 

- Context identifier Char(32) 
Object type Char(l) 
Object subtype Char(l) 
Object name Char(30) 

- Cursor attributes Char(2) 
(from the cursor activation 
template) 

- Extended activation functions 
(from the cursor activation 
template) 

- Entry count 
- Deleted entry count 
- Entry limit 

Char(2) 

Bin(4) 
Bin(4) 
Bin(4) 

Entry subtype hex 0212 = Deactivate cursor 
- Cursor identifier Char(32) 

Object type Char(l) 
Object subtype Char(l ) 
Object name Char(30) 

- Context identifier Char(32) 
Object type Char(l ) 
Object subtype Char(l ) 
Object name Char(30) 

- Entry count Bin(4) 
- Deleted entry count Bin(4) 

Entry limit Bin(4) 

Entry subtype hex 0220 = Data space 
reset 
- No specific data 

Entry subtype hex 0224 = Increment 
entry limit 
- New entry limit Bin(4) 
- Increment size Bin(4) 

Entry subtype hex 0226 = Insert default 
entries 
- First ordinal number inserted Bin(4) 
- Number of entries inserted Bin(4) 
- Entry count Bin(4) 
- Deleted entry count Bin(4) 
- Entry limit Bin(4) 

• Entry subtype hex 0228 = Insert 
deleted entries 
- First ordinal number inserted 
- Number of entries inserted 
- Entry count 
- Deleted entry count 
- Entry limit 

Bin(4) 
Bin(4) 
Bin(4) 
Bin(4) 
Bin(4) 

• Entry subtype hex 0230 = Copy data space entries 
(source data space and receiver data space are 
the same) 

Cursor identifier (source) 
Object type 
Object subtype 
Object name 

- Context identifier (source) 
Object type 
Object subtype 
Object name 

- Cursor identifier (receiver) 
Object type 
Object subtype 
Object name 

- Context identifier (receiver) 
Object type 
Object subtype 
Object name 
Copy options template 
(from the copy options template 
on copy data space entries) 
Entry count 

- Deleted entry count 
- Entry limit 

Char(32) 
Char(1 ) 
Char(1 ) 
Char(30) 
Char(32) 
Char(1 ) 
Char(l ) 
Char(30) 
Char(32) 
Char(l ) 
Char(1 ) 
Char(30) 
Char(32) 
Char(1 ) 
Char(1 ) 
Char(30) 
Char(48) 

Bin(4) 
Bin(4) 
Bin(4) 

• Entry subtype hex 0240 = Data space forced 
- Entry count Bin(4) 
- Deleted entry count Bin(4) 
- Entry limit Bin(4) 

• Entry subtype hex 0250 = Insert data space entry 
Ordinal entry number Bin(4) 

- Data space entry (not provided Char(*) 
if after images not selected, 
length = 0) 

Journal Management Instructions 20-37 



• Entry subtype hex 0260 = Update data space entry 
(before image) 
- Ordinal entry number 
- Data space entry 

Notes: 
1. This entry is not provided 

if before images are not 
selected. 

2. This entry is provided if 
before images are selected 
even if the change is an update 
of a deleted entry. The data 
space entry field will not be 
returned in this case, however. 

Bin(4) 
Char(*) 

• Entry subtype hex 0261 = Update data space entry 
(after image) 
- Ordinal entry number 
- Data space entry 

Note: This entry is 
not provided if after 
images are selected. 

Bin(4) 
Char(*) 

• Entry subtype hex 0264 = Update deleted data 
space entry 
- Ordinal entry number 
- Data space entry (not provided 

if after images not selected, 
length = 0) 

Bin(4) 
Char(*) 

• Entry subtype hex 0270 = Delete data space entry 
- Ordinal entry number Bin(4) 
- Data space entry (not provided Char(*) 

if before images not selected, 
length = 0) 

• Entry subtype hex 0271 = Delete deleted data 
space entry 
- Ordinal entry number Bin(4) 

• Entry subtype hex 02EO = Update data space entry 
(before image-decommit) 
- Ordinal entry number Bin(4) 
- Data space entry Char(*) 

• Entry subtype hex 02E1 = Update data space entry 
(after image) 
- Ordinal entry number Bin(4) 
- Data space entry Char(*) 

• Entry subtype hex 02E4 = Update deleted data 
space entry (decommit) 
- Ordinal entry number 
- Data space entry 

20-38 

Bin(4) 
Char(*) 

• Entry subtype hex 02FO = Delete data space 
entry (decommit) 
- Ordinal entry number 
- Data space entry 

Bin(4) 
Char(*) 

• Entry subtype hex 02F1 = Delete deleted data 
space entry (decommit) 
- Ordinal entry number Bin(4) 

Entry type hex OF is associated with entries that pertain 
to commit blocks only. These entries have the entry 
subtypes and entry specific data as follows: 

• Entry subtype hex 0503 = Attach commit block 
- No specific data 

• Entry subtype hex 0504 = Detach commit block 
- No specific data 

• Entry subtype hex 0510 = Start of commit group 
- No specific data 

• Entry subtype hex 0513 = Cursor commit data 
- Internal data area Char(·) 

• Entry subtype hex 0520 = Commit 
Length of commit description 

- Commit description 

• Entry subtype hex 0530 = Decommit 
Constant (hex OF) 

- Decommit status 
Damaged 
o = Commit block is not damaged 
1 = Commit block is damaged 
Reserved 
Partially damaged 
o Commit block is not 

partially damaged 
Commit block is 
partially damaged 

Bin(4) 
Char(*) 

Char(1 ) 
Char(4) 
Bit 0 

Bits 1-2 
Bit 3 



Reserved 
Decommit 
a = The journal has successfully 

been read backwards until 
either a start commit or a 
decommit entry was found. 
An attempt has been made to 
decommit all the data base 
changes but the attempt 
may not have been successful 
if the data space is damaged 
or if the function check 
flag is on. 

Bits 4-15 
Bit 16 

The journal has not successfully 
been read backwards to a start 
commit or decommit entry and, 
consequently all the changes 
have not been decommitted. 

Journal read errors Bit 17 
o No journal read errors 
1 = Journal read errors 

occurred during decommit 
Journal write errors 
a No journal write errors 
1 = Journal write errors 

occurred during decommit 

Bit 18 

Partial damage to data space Bit 19 
a No partial damage encountered 
1 = Partial damage encountered 

on 1 or more data spaces 
Damage to data space Bit 20 
a No damage encountered 

Damage encountered on 
1 or more data spaces 

Function check Bit 21 
a No function check 

encountered 
1 = Function check encountered 
Data space during IMPL Bit 22 
a = Data space is 

synchronized with 
the journal 

= Data space is not 
synchronized with the 
journal. All changes 
may not be decommitted. 

The format of the options template is as follows: 

• Reserved (binary 0) 

• Search attributes 
- Order of search 

a = Ascending 
1 = Descending 
Limit to journal IDs indicator 
a Do not limit search to 

any particular journal IDs 
1 = Limit the search to the 

indicated journal IDs 

Bin(4) 

Char(4) 
Bit a 

Bit 1 

Limit to journal type indicator Bit 2 
a Do not limit search to any 

particular journal type codes. 
1 = Limit the search to the 

indicated journal type codes. 
Limit to journal subtype indicator Bits 3-4 
00= Do not limit search to any 

particular journal subtype codes. 
01 = Limit the search to the indicated 

journal subtype codes. 
10= Limit the search to all subtype 

codes equal to or less than the 
indicated subtype code. 

11 = Limit the search to all subtype 
codes equal to or greater than 
the indicated subtype code. 

Limit to user profile indicator 
o Do not limit search to any 

particular user profile. 
1 = Limit the search to the 

indicated user profile. 
Limit to process name indicator 
a Do not limit search to any 

particular process name. 
1 = Limit the search to the 

indicated process name. 
Limit to program name indicator 
a Do not limit search to any 

particular program name. 
1 = Limit the search to the 

indicated program name. 
Limit to commit ID indicator 
o Do not limit search to any 

particular commit ID. 
Limit the search to the 
indicated commit ID. 

Reserved (binary 0) 

Bit 5 

Bit 6 

Bit 7 

Bit 8 

Bits 9-31 

Journal Management Instructions 20-39 



• Start options 
First entry indicator 
000 First 
001 Last 
010 Sequence number 
011 Timestamp 
1 xx Reserved 

- Reserved 

• End options 
- Last entry indicator 

000 First 
001 Last 
010 Sequence number 
011 Timestamp 
1 xx Reserved 
Reserved 

• Number of journal entries requested 

• Starting journal sequence number 

• Ending journal sequence number 

• Starting timestamp 

• Ending timestamp 

• Number of journal spaces specified 

• Number of journal IDs specified 

• Number of journal type codes 
specified 

• Number of journal subtype codes 
specified 

• Commit 10 

• Reserved (binary 0' s) 

Char(2) 
Bits 0-2 

Bits 3-15 

Char(2) 
Bits 0-2 

Bits 3-15 

Bin(4) 

Bin(4) 

Bin(4) 

Char(S) 

Char(S) 

Bin(2) 

Bin(2) 

Bin(2) 

Bin(2) 

Bin(4) 

Char(12) 

• Length of user profile name for search Bin(2) 

• User profile name Char(30) 

• Length of process name for search Bin(2) 

• Process name Char(30) 

• Length of program name for search Bin(2) 

• Program name Char(30) 

20-40 

· List of journal spaces Space 
pointer 

· List of journal IDs Space 
pointer 

· Journal type code list Space 
pointer 

· Journal subtype code list Space 
pointer 

The options template must be aligned on a multiple of 
16 bytes. 

The list of journal spaces must also be aligned on a 
multiple of 16 bytes. 

The search options identify the criteria for selecting 
entries to be returned by the instruction. It indicates the 
order of the search and the types of entries that will be 
returned in the receiving area. 

If the order of search field contains a binary 0, the 
entries will be searched in ascending order from the 
lowest to the highest sequence number provided. If this 
field contains a binary 1, the journal entries are searched 
in descending order (from the highest to the lowest 
sequence number provided). 

If the limit to journal IDs indicator field has a value of 
binary 1, only those entries that were generated for 
those objects that correspond to the journal IDs 
provided in the list of journal IDs will be selected. If this 
field has a value of binary 0, all entries for specific 
objects will be considered for selection. 

If the limit to journal type indicator field has a value of 
binary 1, only the entries with a journal type code equal 
to the ones provided in the journal type code list will be 
considered for selection. If this field contains a value of 
binary 0, the search is not limited to journal entries of a 
particular journal type code. 

.J 



If the limit journal subtype indicator field contains a 
value of binary 01, only the entries with a subtype code 
equal to those values contained in the journal subtype 
code list are considered for selection. If this field 
contains a value of binary 10, only those entries with a 
subtype code equal to or less than the single value 
contained in the journal subtype code list are considered 
for selection. If this field contains a value of binary 11, 
only those entries with a subtype code equal to or 
greater than the value contained in the single value in 
the journal subtype code list are considered for 
selection. If this field contains a value of binary 00, all 
subtype codes will be considered for selection. 

If the limit to user profile indicator field has a value of 
binary 1, only those entries that contain an identifier for 
the user profile specified in the user profile name field 
will be considered for selection. If this field has a value 
of binary 0, entries for any user profile are considered 
for selection. 

If the limit to process name indicator field contains a 
value of binary 1, only those entries that contain an 
identifier for the process name indicated in the process 
name field are considered for selection. If this field has 
a value of binary 0, entries for all process names are 
considered for selection. 

If the limit to program name indicator field has a value 
of binary 1, only those entries that contain an identifier 
for the program name specified in the program name 
field are considered for selection. If this field has a 
value of binary 0, entries for any program name are 
considered for selection. 

If the limit to commit ID indicator field has a value of 
binary 1, only those entries that were generated under 
commitment control with the commit ID specified in the 
commit ID field are selected. If the limit to commit ID 
indicator field has a value of binary 0, all entries are 
considered for selection. If this field has a value of 
binary 1 and the commit ID field is binary O's, all entries 
are considered for selection even without a commit ID in 
the journal entry. Only one commit ID is allowed. 

The start options indicate which journal entry is to be 
the first entry considered in the search. If the first entry 
indicator field contains a value of binary 000, the first 
entry provided in the journal spaces is considered for 
selection. If this field contains a value of binary 001, the 
last entry provided in the journal spaces is considered 
for selection. If this field contains a value of binary 010, 
the journal entry with the sequence number indicated in 
the starting journal sequence number field is the first 
journal entry considered for selection. If this field 
contains a value of binary 011, the first journal entry 
with the timestamp indicated in the starting timestamp 
field is the first journal entry considered for selection. 

The end options indicate which journal entry is to be the 
last entry considered in the search. If the first entry 
indicator field contains a value of binary 000, the first 
entry provided in the journal spaces is the last entry 
considered for selection. If this field contains a value of 
binary 001, the last entry provided in the journal spaces 
is the last entry considered for selection. If this field 
contains a value of binary 010, the journal entry with the 
sequence number indicated in the ending journal 
sequence number field is the last journal entry 
considered for selection. If this field contains a value of 
binary 011, the last journal entry with the timestamp 
indicated in the ending timestamp field is the last journal 
entry considered for selection. 

The number of journal entries requested field value 
indicates how many entries are returned in the receiving 
area. If the receiving area will not hold all the entries 
requested, only those that can be contained entirely 
within the indicated space of the receiving area are 
returned. 

The starting journal sequence number field must contain 
a value greater than 0 if the first entry indicator field 
contains a value of binary 010. If the first entry indicator 
field contains any other value, the starting journal 
sequence number field is ignored. 

The ending journal sequence number field must contain 
a value greater than 0 if the last entry indicator field 
contains a value of binary 010. If the last entry indicator 
field contains any other value, the ending journal 
sequence number field is ignored. 

Journal Management Instructions 20-41 



The starting timestamp field value is used as a 
timestamp, if the first entry indicator field contains a 
value of binary 011. If the search options indicate the 
retrieval of journal entries is to be done in an ascending 
manner, the first journal entry encountered with a 
timestamp equal to or greater than the one provided in 
the starting timestamp field is the first journal entry 
considered for selection. If the search options indicate 
the retrieval of journal entries is done in a descending 
manner, the first journal entry encountered with a 
timestamp equal to or less than the one provided in the 
starting timestamp field is the first journal entry 
considered for selection. If the first entry indicator field 
contains any other value, the starting timestamp field is 
ignored. 

The ending timestamp field value is used as a 
timestamp, if the last entry indicator field contains a 
value of binary 011. If the search options indicate the 
retrieval of journal entries is to be done in an ascending 
manner, the first journal entry encountered with a 
timestamp greater than the one provided in the ending 
timestamp field terminates the selection process. If the 
search options indicate the retrieval of journal entries is 
to be done in a descending manner, the first journal 
entry encountered with a timestamp less than the one 
provided in the ending timestamp field terminates the 
selection process. If the last entry indicator field 
contains any other value, the ending timestamp field is 
ignored. 

It should be noted that the journal management facilities 
cannot guarantee that the timestamp contained in the 
journal prefix of the journal entries in a journal is 
ascending. 

The number of journal spaces specified field contains 
the number of journal spaces that are contained in the 
list of journal spaces area. This field must contain a 
value greater than O. The list of journal spaces is 
composed of a list of system pointers to journal spaces. 
The journal spaces must be specified in the order that 
they were attached to a journal port. If the sequence 
numbers for entries on all journal spaces are not 
continuous and ascending, a invalid journal space 
exception is signaled and no entries are returned. 

20-42 

The number of journal IDs specified field contains the 
number of journal IDs that are contained in the list of 
journal IDs area. Each entry in the list of journal IDs is 
10 bytes long and is assumed to be a valid journal 10. 
A journal 10 of binary zeros is invalid and a template 
value invalid exception results if such a value occurs. If 
the limit to journal IDs indicator field has a value of 
binary 1, the value contained in each entry of the list of 
journal IDs is compared with the corresponding value in 
each journal entry and only those that are equal to a 
value provided will be considered for selection. If the 
limit to journal IDs indicator field contains a value of 
binary 1, this field must contain a value greater than 0, 
or a template value invalid exception is signaled. If the 
limit to journal IDs indicator field contains a value of 
binary zero, this field is ignored and the list of journal 
IDs is also ignored. 

The number of journal type codes specified field 
contains the number of journal type codes that are 
contained in the list of journal type codes area. Each 
entry in the list of journal type codes is 1 byte long. If 
the limit to journal type indicator field has a value of 
binary 1, the values contained in the list of journal type 
codes are compared with the corresponding value in 
each journal entry, and only those that are equal to the 
values provided will be considered for selection. If the 
limit to journal type indicator field contains a value of 
binary 1, this field must contain a value greater than 0, 
or a template value invalid exception is signaled. An 
invalid journal type code in the list of journal type codes, 
will result in a template value invalid exception. If the 
limit to journal type indicator field has a value of binary 
0, the values contained in the list of journal type codes 
is ignored. 



The number of journal subtype codes specified field 
contains the number of journal subtype codes that are 
contained in the list of journal subtype codes area. Each 
entry in the list of journal subtype codes is 2 bytes long. 
If the limit to journal subtype indicator field has a value 
of binary 01, the values contained in the list of journal 
subtype codes field are compared with the 
corresponding value in each journal entry, and only 
those that are equal to the values provided will be 
considered for selection. If the limit to journal subtype 
indicator field contains a value of binary 01, this field 
must contain a value greater than 0, or a template value 
invalid exception is signaled. If the limit to journal 
subtype indicator field has a value of binary 10, the 
single (the number of journal subtype codes must be 
equal to 1) value contained in the list of journal subtype 
codes is compared with the corresponding value in each 
journal entry, and only those that are equal to or less 
than the value provided will be considered for selection. 
If the limit to journal subtype indicator field has a value 
of binary 11, the single (the number of journal subtype 
codes must be equal to 1) value contained in the list of 
journal subtype codes is compared with the 
corresponding value in each journal entry and only those 
that are equal to or greater than the value provided will 
be considered for selection. If the limit to journal 
subtype indicator field has a value of binary 00, the 
value contained in the list of journal subtype codes and 
the number of journal subtype codes is ignored. 

If the limit to user profile indicator field has a value of 
binary 1, the value contained in the user profile name 
field is compared with the corresponding value in each 
journal entry, and only those that are equal to the value 
provided are considered for selection. Only that portion 
of the user profile name that is contained within the 
length specified in the length of user profile name for 
search field is used for this compare. If the limit to user 
profile indicator field contains a value of binary 1, this 
field must contain a value from 1 to 30. If the limit to 
user profile indicator field has a value of binary 0, the 
value contained in the length of user profile name for 
search and user profile name fields are ignored. 

If the limit to process name indicator field has a value of 
binary 1, the value contained in the process name field 
is compared with the corresponding value in each 
journal entry and only those that are equal to the value 
provided will be considered for selection. Only that 
portion of the process name that is contained within the 
length specified in the length of process name for 
search field is used for this compare. If the limit to 
process name indicator field contains a value of binary 
1, this field must contain a value from 1 to 30. If the 
limit to process name indicator field has a value of 
binary 0, the value contained in the length of process 
name for search and process name fields are ignored. 

If the limit to program name indicator field has a value 
of binary 1, the value contained in the program name 
field is compared with the corresponding value in each 
journal entry, and only those that are equal to the value 
provided will be considered for selection. Only that 
portion of the program name that is contained within the 
length specified in the length of program name for 
search field is used for this compare. If the limit to 
program name indicator field contains a value of binary 
1, this field must contain a value from 1 to 30. If the 
limit to program name indicator field has a value of 
binary 0, the value contained in the length of program 
name for search and program name fields are ignored. 

Authorization Required 

• Retrieve 
- Contexts referenced for address resolution 
- Journal spaces indicated in the options template 

Lock Enforcement 

• Materialize 
Contexts referenced for address resolution 

- Journal spaces indicated in the options template 

Journal Management Instructions 20-43 



Events Exceptions 

0002 Authorization Operands .j 
0101 Authorization violation Exception 1 2 Other 

oooe Machine resources 06 Addressing 

0201 Machine auxiliary storage exceeded 01 Space addressing violation X X 
02 Boundary alignment X X 

0010 Process 03 Range X X 

0701 Maximum processor time exceeded 06 Optimized addressability invalid X X 

0801 Process storage limit exceeded 08 Argument/ Parameter 

01 Parameter reference violation X X 

0016 Machine observation OA Authorization 

0101 Instruction reference 01 Unauthorized for operation X X 
10 Damage 

0017 Damage 04 System object damage X X X 

0401 System object damage set 44 Partial system object damage X X X 

0801 Partial system object damage set 1A Lock State 

01 Invalid lock state X X 
1C Machine-Dependent Exception 

03 Machine storage limit exceeded X 
20 Machine Support 

02 Machine check X 
03 Function check X 

22 Object Access 

01 Object not found X X X 
02 Object destroyed X X X 
03 Object suspended X X X 

24 Pointer Specification 

01 Pointer does not exist X X 
02 Pointer type invalid X X 
03 Pointer addressing invalid object X X 

2A Program Creation 

06 Invalid operand type X X 
07 Invalid operand attribute X X 
08 Invalid operand value range X X 
OC Invalid operand ODT reference X X 
00 Reserved bits are not zero X X X 

2C Program Execution 

06 Instruction cancellation X 
07 Instruction termination X 

30 Journal Management 

04 Invalid journal space X 
32 Scalar Specification 

01 Scalar type invalid X 
02 Scalar attributes invalid X 
03 Scalar value invalid X 

38 Template Specification 

01 Template value invalid X 
02 Template size invalid X 

20-44 



Chapter 21. Commitment Control Instructions 

This chapter describes all the instructions used for 
commitment control functions. These instructions are 
arranged in alphabetic order. For an alphabetic summary 
of all the instructions, see Appendix A. Instruction 
Summary. 

COMMIT (COMMIT) 

Op Code Operand Operand 
(Hex) 1 2 

0502 Commit Commit template 
block 

Operand 7: System pointer. 

Operand 2: Space pointer. 

Description: The changes to system objects, made under 
the control of the commit block, are made permanent 
and available for modification by the rest of the system. 
The operand 2 commit template identifies the commit 
description associated with the operation. Operand 1 
must reference a commit block that is currently attached 
to the issuing process or an object ineligible for 
operation exception is signaled. 

The commit template has the following format: 

• Length of commit description 

• Reserved (binary 0) 

• Commit description 

Bin(4) 

Char(12) 

Space 
pointer 

The commit template must be aligned on a multiple of 
16 bytes. 

The length of commit description contains the length of 
the commit description field. The commit description 
field is preserved with the commit block until the next 
time a successful commit is performed against it or the 
commit block is destroyed or reattached to a process. 

This description may be materialized through the 
Materialize Commit Block Attributes instruction. 

Each uncommitted change referenced in the commit 
block is made permanent in the respective object. 

Authorization Required 

• Retrieve 
- Context(s) for address resolution 

Lock Enforcement 

• Materialize 
- Context(s) used for address resolution 

Commitment Control Instructions 21-1 



Events Exceptions 

0002 Authorization Operands 
0101 Authorization violation Exception 1 2 Other 

oooe Machine resource 06 Addressing 

0201 Machine auxiliary storage threshold exceeded 01 Space addressing violation X X 
02 Boundary alignment X X 

0010 Process 03 Range X X 

0701 Maximum processor time exceeded 06 Optimized addressability invalid X X 

0801 Process storage limit exceeded 08 Argumentl Parameter 

01 Parameter reference violation X X 

0016 Machine observation OA Authorization 

0101 Instruction reference 01 Unauthorized for operation X 
10 Damage 

0017 Damage 04 System object damage X X X 

0401 System object damage set 44 Partial system object damage X X 

0801 Partial system object damage set 1C Machine-Dependent Exception 

03 Machine storage limit exceeded X 

001 A Journal port 04 Object storage limit exceeded X 

0301 Entry not journaled 20 Machine Support 

0401 Journal space attached to a journal 02 Machine check X 

port became unusable 03 Function check X 
22 Object Access 

001 e Journal space 01 Object not found X X 

0301 Threshold reached 02 Object destroyed X X 
03 Object suspended X X 
04 Object ineligible for operation X 

24 Pointer Specification 

01 Pointer does not exist X X 
02 Pointer type invalid X X 
03 Pointer addressing invalid object X X 

2A Program Creation 

06 Invalid operand type X X 
07 Invalid operand attribute X X 

08 Invalid operand value range X X 

OC Invalid operand ODT reference X X 
00 Reserved bits are not zero X X X 

2E Resource Control Limit 

01 User profile storage limit X 
exceeded 

30 Journal Management 

02 Entry not journaled X 
32 Scalar Specification 

01 Scalar type invalid X 
38 Template Specification 

01 Template value invalid X 

21-2 



CREATE COMMIT BLOCK (CRTCB) 

Op Code Operand Operand 
(Hex) 1 2 

05C2 Commit 
block 

Commit block 
template 

Operand 1: System pointer. 

Operand 2: Space pointer. 

Description: This instruction creates a commit block that 
is used to control changes to system objects before the 
system objects are committed or decommitted. The 
commit block template (operand 2) provides the 
information needed to create the commit block. 

The format of the commit block template is as follows: 

• Template size 
- Number of bytes provided by user 
- Number of bytes materializable 

• Object identification 
- Object type 
- Object subtype 
- Object name 

• Object creation options 
- Space attributes 

o = Fixed-length 
1 = Variable-length 

- Initial context 
o = No addressability insert 
1 = Insert addressability 

- Reserved (binary 0) 

• Recovery options 

• Size of space 

• Initial value of space 

• Performance class 

• Reserved 

• Context 

Char(8) 
Bin(4)* 
Bin(4)* 

Char(32) 
Char(1 )* 
Char(1 ) 
Char(30) 

Char(4) 
Bit 1 

Bit 2 

Bits 5-31 

Char(4) 

Bin(4) 

Char(1 ) 

Char(4) 

Char(7) 

System 
pointer 

Note: The values of the entries annotated with an 
asterisk (*) are ignored by this instruction. 

The commit block template must be aligned on a 
multiple of 16 bytes. 

The commit block is owned by the user profile 
governing process execution. The owning user profile is 
implicitly assigned all authority states to the commit 
block. The storage occupied by the commit block is 
charged to this owning user profile. 

The object identification specifies the symbolic name 
that identifies the commit block within the machine. A 
type code of hex OF is implicitly supplied by the 
machine. The object identification is used to identify the 
commit block on materialize instructions as well as to 
locate the object in a context that addresses the object. 

A space may be associated with the created commit 
block. The space may be fixed or variable. Initial 
allocation is specified in the size of space entry. The 
machine allocates a space of at least the size specified. 
The actual size allocated is dependent on an algorithm 
defined by a specific implementation. A fixed size space 
of zero length causes no space to be allocated. 

Each byte of the space is initialized to a value specified 
in the initial value of space entry. When the space is 
extended in size, this byte value is also used to initialize 
the new allocation. 

If the initial context creation attribute entry indicates that 
addressability is to be inserted into a context, the 
context entry must contain a system pointer that 
identifies a context where addressability to the newly 
created object is to be placed. If addressability is not to 
be inserted into a context, the context entry is ignored. 

The recovery options entry is used to specify the 
functions the machine is to perform in the event the 
object becomes damaged. This entry is implementation 
dependent. 

The performance class parameter provides information 
allowing the machine to more effectively manage the 
object considering the overall performance objective of 
operations involving the commit block. 

Commitment Control Instructions 21-3 



Authorization Required Exceptions 

· Retrieve Operands 
- Context(s) referenced for address resolution Exception 1 2 Other 

• Insert 02 Access Group 

User profile of creating process 01 Object ineligible for access group X 

Context identified by operand 2 06 Addressing 

Access group identified by operand 2 01 Space addressing violation X X 

02 Boundary alignment X X 

03 Range X X 

Lock Enforcennent 06 Optimized addressability invalid X X 
08 Argument I Parameter 

· Materialize 01 Parameter reference violation X X 

- Context(s) referenced for address resolution OA Authorization 

01 Unauthorized for operation X 

· Modify 10 Damage 

Context identified by operand 2 04 System object damage X X 

User profile of creating process 1A Lock State 

Access group identified by operand 2 01 Invalid lock state X 

1C Machine-Dependent Exception 

03 Machine storage limit exceeded X 

Events 04 Object storage limit exceeded 

0002 Authorization 20 Machine Support 

0101 Authorization violation 02 Machine check X 
22 Object Access 

OOOC Machine resources 01 Object not found X X 

0201 Machine auxiliary storage exceeded 02 Object destroyed X X 

0501 Machine address threshold exceeded 24 Pointer Specification 

01 Pointer does not exist X X 

0010 Process 02 Pointer type invalid X X 

0701 Maximum processor time exceeded 03 Pointer addressing invalid object X 

0801 Process storage limit exceeded 2A Program Creation 

06 Invalid operand type X X 

0016 Machine observation 07 Invalid operand attribute X X 

0101 Instruction reference 08 Invalid operand value range X X 

OC Invalid operand ODT reference X X 

0017 Damage 00 Reserved bits are not zero X X X 

0401 System object damage set 2E Resource Control Limit 

0801 Partial system object damage set 01 User profile storage limit X 
exceeded 

32 Scalar Specification 
01 Scalar type invalid X X 

38 Template Specification 

01 Template value invalid X 

02 Template size invalid X 

21-4 



DECOMMIT (DECOMMIT) 

Op Code 
IHex) 

Operand 
1 

0501 Commit block 

Operand 1: System pointer. 

Description: This instruction removes the changes that 
are specified in the commit block (operand 1) from the 
system, and the resources that are involved with the 
uncommitted changes are released. All objects under 
commitment control are returned to the status they had 
at the last established commit boundary or the status 
they had when they were placed under commitment if 
no commit boundary was established. 

Operand 1 must reference a commit block that is 
currently attached to the issuing process; otherwise, an 
object ineligible for operation exception is signaled. 

Authorization Required 

• Retrieve 
- Context(s) referenced for address resolution 

Lock Enforcennent 

• Materialize 
- Context(s) referenced for address resolution 

Events 

OOOC Machine resources 
0201 Machine auxiliary storage exceeded 

0010 Process 
0701 Maximum processor time exceeded 
0801 Process storage limit exceeded 

0016 Machine observation 
0101 Instruction reference 

0017 Damage 
0401 System object damage set 
0801 Partial system object damage set 

001AJournal port 
0301 Entry not journaled 
0401 Journal space attached to a journal 

port became usable 

001 B Commit control 
0401 Errors during decommit 

001 C Journal space 
0301 Threshold reached 

Commitment Control Instructions 21-5 



Exceptions DESTROY COMMIT BLOCK (DESCB) 

Operand Op Code Operand 

Exception 1 Other (Hex) 1 

06 Addressing 05CD Commit block 

01 Space addressing violation X 

02 Boundary alignment X Operand 1: System pointer. 

03 Subscript range X 

06 Optimized addressability invalid X 

08 Argumentl Parameter Description: The commit block specified by operand 1 is 

01 Parameter reference violation X destroyed and addressability to the commit block is 

10 Damage deleted from the context, if any. 

04 System object damage X 

44 Partial system object damage X If the commit block is found to be damaged during 

1C Machine- Dependent Exception destroy processing, the commit block is destroyed. 

03 Machine storage limit exceeded X 

20 Machine Support If the commit block is attached to a process, a commit 

02 Machine check X block is attached to process exception is signaled and 

22 Object Access the commit block is not destroyed. 

01 Object not found X 

02 Object destroyed X 

03 Object suspended X Authorization Required 

04 Object ineligible for operation X 

24 Pointer Specification · Object control 

01 Pointer does not exist X - Operand 1 

02 Pointer type invalid X 

03 Pointer addressing invalid object X · Retrieve 

.J 2A Program Creation - Context(s) referenced for address resolution 

06 Invalid operand type X 

07 Invalid operand attribute X 

08 Invalid operand value range X Lock Enforcement 

OC Invalid operand ODT reference X 

00 Reserved bits are not zero X X · Materialize 

2E Resource Control Limit - Context(s) referenced for address resolution 

01 User profile storage limit X 
exceeded · Modification 

30 Journal Management Context addressing object, if any 
02 Entry not journaled X Access group which this object is member of, if 

32 Scalar Specification any 
01 Scalar type invalid X User profile of object owner 

3E Commitment Control 

14 Errors during decommit X · Object control 
- Operand 1 

21-6 



Events Exceptions 

L OOOC Machine resources Operllnd 
0201 Machine auxiliary storage exceeded Exception , Other 

0010 Process 06 Addressing 

0701 Maximum processor time exceeded 01 Space addressing violation X 

0801 Process storage limit exceeded 02 Boundary alignment X 
03 Subscript range X 

0016 Machine observation 06 Optimized addressability invalid X 

0101 Instruction reference 08 Argument / Parameter 
01 Paramater reference violation X 

0017 Damage OA Authorization 

0401 System object damage set 01 Unauthorized for operation X 

0801 Partial system object damage set 10 Damage 
04 System object damage X 

001 A Journal port 1A Lock State 

0301 Entry not journaled 01 Invalid lock state X 

0401 Journal space attached to a 1C Machine-Dependent Exception 

journal port became unusable 03 Machine storage limit exceeded X 
20 Machine Support 

001 C Journal space 02 Machine check X 

0301 Threshold reached 22 Object Access 
01 Object not found X 
02 Object destroyed X 
03 Object suspended X 

24 Pointer Specification 
01 Pointer does not exist X 
02 Pointer type invalid X 
03 Pointer addressing invalid object X 

2A Program Creation 
06 Invalid operand type X 
07 Invalid operand attribute X 
08 Invalid operand value range X 
OC Invalid operand ODT reference X 
00 Reserved bits are not zero X X 

30 Journal Management 
01 Entry not journaled X 

32 Scalar Specification 
01 Scalar type invalid X 

3E Commitment Control 
03 Commit block is attached to X 

process 

Commitment Control Instructions 21-7 



MATERIALIZE COMMIT BLOCK ATTRIBUTES 
(MATCBATR) 

Op Code Operand Operand Operand 
(Hex) 1 2 3 

05C7 Receiver Commit Materialization 
template block options 

Operand 1: Space pointer. 

Operand 2: System pointer. 

Operand 3: Character(1) scalar. 

Description: This instruction materializes the information 
specified in the materialization options (operand 31 into 
the receiver template (operand 1 I. The current values in 
the creation template for the commit block (operand 2) 
may be materialized, or the current status of the commit 
block (operand 2) may be materialized when the commit 
block is not attached to another process. 

The materialization options in operand 3 are as follows: 

• Materialization options 
- Reserved (binary 01 
- Suppress commit description 
- Suppress object list 

Materialize option 
o = Creation template 
1 = Current status 

Char(11 
Bits 0-4 
Bit 5 
Bit 6 
Bit 7 

The attributes materialized will have the following 
format: 

• Materialization length 
Number of bytes provided by user 
Number of bytes that can be 
materialized 

• Object identification 
- Object type 
- Object subtype 

Object name 

21-8 

Charla) 
Bin(41 
Bin(4) 

Char(321 
Char(11 
Char(11 
Char(30) 

• Object creation options 
- Existence attributes 

o = Temp 
1 = Perm 

- Space attributes 
o = Fixed-length 
1 = Variable-length 

- Initial context 
o = No addressability insert 
1 = Insert addressability 
Access group 
o Do not create as access 

group member 
Create as access group 
member 

Replace option 
o Create as new object 
1 = Replace currently existing 

object 
- Reserved (binary 01 

• Recovery options 

• Size of space 

• Initial value of space 

• Performance class 

• Reserved 

• Context 

• Access group 

Char(41 
Bit 0 

Bit 1 

Bit 2 

Bit 3 

Bit 4 

Bits 5-31 

Char(41 

Bin(41 

Char(11 

Char(41 

Charm 

System 
pointer 

System 
pointer 

The target area must be 16-byte aligned. The first a 
bytes of the materialization output in all the 
materialization options identify the total number of bytes 
provided by the user for the materialization and the total 
number of bytes available to be materialized. If fewer 
than a bytes are available in the byte area identified by 
the receiver, operand 1, a materialization length 
exception is signaled. The instruction materializes as 
many bytes as can be contained in the receiver's byte 
area. If the byte area of the receiver is greater than that 
required to contain the information requested for 
materialization, the excess bytes are unchanged. No 
exceptions are signaled in the event the receiver 
contains insufficient space for the materialization, other 
than the materialization length exception described 
previously. 

J 



The values are defined in the Create Commit Block 
instruction. These values were defined at the creation of 
the commit block with the following possible exceptions. 
The object identification, context, initial context, and size 
of associated space will contain current values. 

If operand 3 specified that the status should be 
materialized, the receiver will be in the following format: 

• Materialization length 
- Number of bytes provided by user 

Number of bytes that can be 
materialized 

• Commit block status 
Attached indicator 
o Block not attached 

to a process 
1 = Block attached 

to a process 

Char(8) 
Bin(4) 
Bin(4) 

Char(2) 
Bit 0 

Uncommitted changes indicator Bit 1 
o A commit cycle has not been 

started for this commit block 
1 = A commit cycle has been 

started for this commit block 
Reserved (binary 0) Bits 3-15 

• Number of uncommitted changes 

• Length of commit description 

• Number of objects in associated 
object list 

Journal entry sequence number 

• Reserved 

• Commit description 

• Process control space 

• Object associated with the 
commit block (0 to n pointers) 

Bin(4) 

Bin(4) 

Bin(4) 

Bin(4) 

Char(6) 

Space 
pointer 

System 
pointer 

System 
pointer 

If the operand 2 commit block is attached to a process 
other than the issuing process and both the commit 
object list and the commit description are not 
suppressed, an object not eligible for operation 
exception is signaled. 

The materialization length has the same definition as the 
hex 00 option. 

The commit block status reflects the usage of the 
commit block at the time the materialize was issued. 

An attached indicator value of binary 0 indicates that the 
commit block is not presently attached to a process. A 
value of binary 1 in this field indicates the block is 
attached to a process and a pointer to the process 
control space of that process is returned in the process 
control space field. 

If the uncommitted changes indicator contains a value of 
binary 1, the referenced commit block has started a 
commit cycle. A value of binary 0, indicates the commit 
block has not started a commit cycle. If this indicator 
has a value of binary 1, then either a commit or a 
decommit must be executed before the commit block 
can be detached from the indicated process even if the 
number of uncommitted changes is equal to O. 

The number of uncommitted entries is a count of the 
number of changes that have been made to objects 
associated with the commit block since the last commit. 
This count is cumulative for all objects associated with 
the block. 

The length of commit description returns the number of 
bytes in the commit description. If the length of commit 
description is 0, then either no commit description was 
provided on the last commit that was executed against 
this commit block or no successful commit has been 
executed since it was last attached to a process. The 
commit description is returned in the operand 1 receiver 
area and a space pointer to it is provided. 

The list of objects associated with the commit block is 
an array of system pointers; each pointer references a 
system object whose changes are to be controlled 
through the commit block, if the commit block is active 
to the process making the change. The number of 
objects in associated object list gives the length of this 
array. 

The journal entry sequence number contains the journal 
entry sequence number of the start commit journal entry 
for the last commit cycle since the attach of the commit 
block. If no commit cycle has been started since the 
commit block was last attached to a process, this field 
contains a value of zero. 

Commitment Control Instructions 21-9 



The process control space field contains a system 
pointer to the process control space for the process to 
which the commit block is currently attached if the 
attached indicator contains a value of binary 1. If this 
indicator contains a value of binary 0, the process 
control space field contains binary zeros. 

If the suppress object list option has a value of binary 1, 
the number objects in associated object list and the 
system pointer to the objects associated with the 
commit block contain binary zeros. 

If the suppress commit description option has a value of 
binary 1, the length of commit description and the 
system pointer to the commit description contain binary 
zeros. 

Substring operand references that allow for a null 
substring reference (a length value of zero) may not be 
specified for this instruction. 

Authorization Required 

• Operational 
- Operand 2 

• Retrieve 
- Context(s) referenced for address resolution 

Lock Enforcement 

• Materialize 
Operand 2 

- Context(s) referenced for address resolution 

21-10 

Events 

0002 Authorization 
0101 Authorization violation 

OOOC Machine resources 
0201 Machine auxiliary storage exceeded 

0010 Process 
0601 Exception signaled to process 
0701 Maximum processor time exceeded 
0801 Process storage limit exceeded 

0016 Machine observation 
0101 Instruction reference 
0201 Object location reference 

0017 Damage 
0401 System object damage set 
0801 Partial system object damage set 



Exceptions MODIFY COMMIT BLOCK (MODCB) 

L Operands Op Code Operand Operand 

Exception 1 2 3 Other (Hex) 1 2 

06 Addressing 05C6 Commit Commit block 
block modification 01 Space addressing violation X XX 

template 
02 Boundary alignment X X 
03 Subscript range X XX 

Operand 1: System pointer. 
04 String range X 
06 Optimized addressability invalid X XX Operand 2: Space pointer. 

08 Argumentl Parameter 
01 Parameter reference violation X XX 

OA Authorization Description: This instruction modifies the commit block 
01 Unauthorized for operation X (operand 1) as is specified in the commit block 

10 Damage modification template (operand 2). 
04 System object damage X 

1A Lock State The commit block modification template has the 
01 Invalid lock state X following format: 

1C Machine-Dependent Exception 

03 Machine storage limit exceeded X · Modification options Char(2) 
20 Machine Support Attach commit block Bit 0 

02 Machine check X Detach commit block Bit 1 
22 Object Access Add objects to commitment Bit 2 

01 Object not found X XX control 
02 Object destroyed X XX Remove objects from commitment Bit 3 
03 Object suspended X XX control 
04 Object not eligible for operation X Remove all objects from Bit 4 

24 Pointer Specification commitment control 
01 Pointer does not exist X XX Reserved Bits 5-15 
02 Pointer type invalid X XX 
03 Pointer addressing invalid object X · Number of objects in object list Bin(2) 

2A Program Creation 
06 Invalid operand type X XX · Reserved (binary 0) Char(12) 
07 Invalid operand attribute X XX 
08 Invalid operand value range X XX · Object list System 
OA Invalid operand length X X (0 to n pointers) pointer 
OC Invalid operand ODT reference X XX 

00 Reserved bits are not zero X XX X The commit block modification template must be aligned 
32 Scalar Specification on a multiple of 16 bytes. 

01 Scalar type invalid X XX 
03 Scalar value invalid X If a bit in the modification options is binary 1, then the 

38 Template Specification indicated modification is specified. 
03 Materialization length exception X 

If attach commit block is specified in the modification 
options, the commit block specified by operand 1 is 
checked for attach status. If the block is attached to 
another process, an object not eligible for operation 
exception is signaled. If the block is already attached to 
the issuing process, an invalid commit block status 
change exception is signaled. If the commit block is not 
being journaled, a commit block not journaled exception 
is signaled. The block is attached to the issuing process 
if these conditions are met. 

Commitment Control Instructions 21-11 



If detach commit block is specified in the modification 
options, the commit block specified in operand 1 is 
checked for its current status. The commit block must 
be attached to the issuing process. If the commit block 
is not attached to the issuing process, an object not 
eligible for operation exception is signaled. If there are 
objects under commitment control for this commit block, 
an objects under commitment control exception is 
signaled. If any changes are found that are associated 
with the commit block, a commit block contains 
uncommitted changes exception is signaled. If both the 
attach commit block and detach commit block values 
are binary 1, a template value invalid exception is 
signaled. If all of these conditions are met, the commit 
block is detached from the issuing process. 

If add objects to commitment control, remove objects 
from commitment control. or remove all objects from 
commitment control is requested in the modification 
options, it must be the only option requested. If not, a 
template value invalid exception is signaled. If neither 
add objects nor remove objects is requested, the 
number of objects in object list and the object list are 
ignored. 

If add objects to commitment control is requested in the 
modification options, a check of the commit block is 
made to determine its attached status. If the block is 
not attached to the issuing process, an object ineligible 
for operation exception is signaled. If the number of 
objects in object list value is not greater than zero, a 
template value invalid exception is signaled. If any of 
the objects in the object list are already under 
commitment control, then an object ineligible for 
commitment control exception is signaled. If these 
conditions are met, the objects are placed under 
commitment control of the specified commitment 
control. 

If remove objects from commitment control is requested 
in the modification options, a check of the commit block 
is made to determine its attached status. If the block is 
not attached to the issuing process, an object ineligible 
for operation exception is signaled. If the number of 
objects in object list is not greater than zero or is 
greater than the limit for the number of objects under 
commitment control, a template value invalid exception 
is signaled. If any of the objects in the object list are 
not under commitment control to the specified commit 
block, an object ineligible for removal from commitment 
control exception is signaled. If these conditions are 
met, the objects are removed from commitment control. 

21-12 

If remove all objects from commitment control is 
requested in the modification options, a check of the 
commit block is made to determine its attached status. 
If the block is not attached to the issuing process, an 
object ineligible for operation exception is signaled. If 
these conditions are met, all objects currently under 
commitment control of the specified commit block are 
removed from commitment control. 

Authorization Required 

• Operational 
- Operand 1 

• Retrieve 
- Contexts referenced for address resolution 

Lock Enforcennent 

• Materialization 
- Contexts referenced for address resolution 

• Modification 
- Operand 1 

• Implicit locks 
The operand 1 commit block is implicitly locked 
LEAR. it it is being attached to the issuing 
process. 
The implicit LEAR lock on the operand 1 commit 
block is removed if the commit block is being 
detached from the issuing process. 



Events Exceptions 

L 0002 Authorization Operands 
0101 Authorization violation Exception 1 2 Other 

OOOC Machine resources 20 Machine Support 

0201 Machine auxiliary storage exceeded 02 Machine check X 
03 Function check X 

0010 Process 22 Object Access 

0601 Exception signaled to process 01 Object not found X X 

0701 Maximum processor time exceeded 02 Object destroyed X X 

0801 Process storage limit exceeded 03 Object suspended X X 
04 Object ineligible for operation X 

0016 Machine observation 24 Pointer Specification 

0101 I nstruction reference 01 Pointer does not exist X X 

0201 Object location reference 02 Pointer type invalid X X 
03 Pointer addressing invalid object X X 

0017 Damage 2A Program Creation 

0401 System object damage set 06 Invalid operand type X X 

0801 Partial system object damage set 07 Invalid operand attribute X X 
08 Invalid operand value range X X 

001 A Journal port OA Invalid operand length X X 

0301 Entry not journaled OC Invalid operand ODT reference X X 

0401 Journal space attached to a journal 00 Reserved bits are not zero X X X 

port became unusable 30 Journal Management 

02 Entry not journaled X 

001 C Journal space 32 Scalar Specification 

0301 Threshold reached 01 Scalar type invalid X X 

\.... 
Exceptions 02 Scalar attributes invalid X 

03 Scalar value invalid X 

Operands 38 Template Specification 

Exception 1 2 Other 01 Template value invalid X 
02 Template size invalid X 

06 Addressing 3E Commitment Control 
01 Space addressing violation X X 01 Invalid commit block status X 
02 Boundary alignment X X change 

03 Range X X 04 Commit block controls X 
06 Optimized addressability invalid X X uncommitted changes 

08 Argument/ Parameter 06 Commit control resource limit X X 

01 Parameter reference violation X X exceeded 

OA Authorization 08 Object under commitment control X 

01 Unauthorized for operation X X 
being incorrectly journaled 

10 Damage 
11 Process has attached commit X 

block 
04 System object damage X X X 12 Objects under commitment X 
44 Partial system object damage X control 

1A Lock State 13 Commit block not journaled X 
01 Invalid lock state X 15 Object ineligible for commitment X 

1C Machine-Dependent Exception control 

03 Machine storage limit exceeded X 16 Object ineligible for removal from X X 
commitment control 

L 
Commitment Control Instructions 21-13 



21-14 



L 
Chapter 22. Dump Space Management Instructions 

This chapter describes all the instructions used for dump 
space management. These instructions are arranged in 
alphabetical order. For an alphabetic summary of all the 
instructions, see Appendix A. Instruction Summary. 

CREATE DUMP SPACE (CRTDMPS) 

Op Code Operand Operand 
(Hex) 1 2 

O4D2 Dump Dump space 
space template 

Operand 1: Dump space. 

Operand 2: Dump space template. 

Description: A dump space is created with the attributes 
provided in the dump space creation template specified 
by operand 2. Addressability to the created dump space 
is placed in the system pointer that is returned in the 
addressing object specified by operand 1. 

A dump space provides a storage area within the 
machine for a dump of system objects. In addition to 
the operations provided by the dump space 
management instructions, the Request Path Operation 
instruction provides support for load or dump operations 
utilizing a dump space. 

The dump space template specified by operand 2 must 
be 16-byte aligned in the space. The dump space 
template has the following format: 

• Template Size Specification 
- Size of template 
- Number of bytes available 

for materialization 

• Object Identification 
- Object type 
- Object subtype 
- Object name 

Char(8)* 
Bin(4)* 
Bin(4)* 

Char(32) 
Char(1 )* 
Char(1) 
Char(30) 

• Object Creation Options 
- Existence attribute 

o = Temporary 
1 = Permanent 

- Space attribute 
o = Fixed length 
1 = Variable length 

Char(4) 
Bit 0 

Bit 1 

Initial context Bit 2 
o Do not insert addressability 

into context 
Insert addressability into 
context 

- Reserved (binary 0) Bit 3-31 

• Recovery Options 

• Size of Space 

• Initial Value of Space 

• Performance Class 

• Reserved (binary 0) 

• Context 

• Reserved 

• Dump Space Size 

• Dump Data Size 

• Dump Data Size Limit 

• Reserved (binary 0) 

Char(4) 

Bin(4) 

Char(l ) 

Char(4) 

Charm 

System 
pointer 

Char(16) 

Char(4) 

Char(4)* 

Char(4) 

Char(20) 

Note: The values associated with template entries 
annotated with an asterisk (*) are ignored by the 
instruction. 

Dump Space Management Instructions 22-1 



The created dump space is owned by the user profile 
governing process execution. The owning user profile is 
implicitly assigned all authority states for the object. The 
storage occupied by the created dump space is charged 
to this owning user profile. 

The object identification specifies the symbolic name 
that identifies the dump space within the machine. A 
type code of hex 13 is implicitly supplied by the 
machine. The object identification is used to identify the 
object on materialize instructions as well as to locate the 
object in a context that addresses the object. 

The existence attribute specifies whether the dump 
space is to be created as temporary or permanent. A 
temporary dump space, if not explicitly destroyed by the 
user, is implicitly destroyed by the machine when 
machine processing is terminated. A permanent dump 
space exists in the machine until explicitly destroyed by 
the user. 

The space attribute specifies whether the space 
associated with the created dump space is of fixed or 
variable size. The initial allocation is as specified in the 
size of space entry. The machine allocates a space of at 
least the size specified. The actual size allocated is 
dependent on the algorithm used within the specific 
implementation of the machine. A fixed space of zero 
length causes no space to be allocated. 

Each byte of the space is initialized to a value specified 
by the initial value of space entry. When the space is 
extended in size, this byte value is also used to initialize 
the new allocation. 

If the initial context creation attribute entry indicates the 
addressability is to be inserted into a context, the 
context entry must contain a system pointer that 
identifies a context where addressability to the newly 
created space is to be placed. If addressability is not to 
be inserted into a context, the context entry is ignored. 

The recovery options entry is used to specify the 
functions the machine is to perform in the event the 
dump space becomes damaged in some manner. This 
entry is implementation dependent. 

22-2 

The performance class entry provides information 
allowing the machine to more effectively manage the 
dump space considering overall performance objectives 
of operations involving the dump space. 

The dump space size entry specifies the initial allocation 
size for the dump space. This value specifies the 
number of 512 byte blocks of the space to be usable for 
storage of dump data within the dump space. The 
machine allocates a dump space of at least the size 
specified. The actual size allocated is dependent on an 
algorithm defined by the specific implementation of the 
machine. 

The dump data size limit entry specifies the limit for the 
number of 512-byte blocks of dump data which may be 
stored into the dump space. A size value of zero 
specifies that there is no explicit limit on the amount of 
dump data which can be stored in the dump space. The 
machine implicitly places a limit on the maximum size of 
a dump space. This value of this limitation is dependent 
upon the specific implementation of the machine. 

An attempt to insert dump data through the Insert 
Dump Data instruction from a dump of a size in excess 
of this limit results in the signaling of the dump data 
size limit exceeded exception. An attempt to store dump 
data in excess of this limit through a Request Path 
Operation instruction dump operation results in return of 
a feedback record specifying that the dump data size 
limit has been exceeded. This size value may be larger 
than the value of the dump space size field. The dump 
data size limit field can be used to control the size to 
which a dump space will be extended by the machine 
either explicitly through a Modify Dump Space 
instruction or implicitly through an Insert Dump Data 
instruction or a Request Path Operation instruction dump 
operation. 



Authorization Exceptions 

L · Insert Operands 
User profile of creating process Exception 1 2 3 4 Other 

- Context identified in operand 2 
06 Addressing 

• Retrieve 01 Space addressing violation X X 

Contexts referenced for address 02 Boundary alignment X X 

resolution 03 Range X X 

06 Optimized addressability invalid X X 
08 Argument I Parameter 

Lock Enforcennent 01 Parameter reference violation X X 
OA Authorization 

· Materialize 01 Unauthorized for operation X 

Contexts referenced for address OE Context Operation 

resolution 01 Duplicate object identification X 
10 Damage Encountered 

· Modify 04 System object damage X X 

Context identified in operand 2 44 Partial system object damage X 

- User profile of creating process 1A Lock State 

01 Invalid lock state X 
1C Machine Dependent Exception 

Events 03 Machine storage limit exceeded X 
04 Object storage limit exceeded X 

0002 Authorization 20 Machine Support 

0101 Authorization violation 02 Machine check X 
04 Function check X 

OOOC Machine resources 22 Object Access 

~ 0201 Machine auxiliary storage exceeded 01 Object not found X X 

0501 Machine address threshold exceeded 02 Object destroyed X X 
03 Object suspended X X 

oooD Machine status 24 Pointer Specification 

0101 Machine check 01 Pointer does not exist X X 
02 Pointer type invalid X X 

0010 Process 03 Pointer addressing invalid object X 

0701 Maximum processor time exceeded 2A Program Creation 

0801 Process storage limit exceeded 06 Invalid operand type X X 
07 Invalid operand attribute X X 

0016 Machine observation 08 Invalid operand value range X X 

0101 Instruction reference OC Invalid operand ODT reference X X 
OD Reserved bits are not zero X X X 

0017 Damage set 2E Resource Control Limit 

0401 System object damage set 01 User profile storage limit X 

0801 Partial system object damage set exceeded 

32 Scalar Specification 

01 Scalar type invalid X X 
38 Template Specification 

01 Template value invalid X 

Dump Space Management Instructions 22-3 



DESTROY DUMP SPACE (DESDMPS) 

Op Code 
(Hex) 

0401 

Operand 
1 

Dump space to be 
destroyed 

Operand 1: System pointer. 

Description: The designated dump space is destroyed 
and addressability to the dump space is deleted from a 
context if one is currently addressing the object. The 
pointer identified by operand 1 is not modified by the 
instruction and a subsequent reference to the pointer 
causes an object destroyed exception. 

If the dump space is currently in use by a Request Path 
Operation instruction, load or dump function, or Request 
I/O instruction load or dump function, the object not 
eligible for destruction exception is signaled and the 
dump space is not destroyed. 

Authorization Required 

• Retrieve 
- Contexts referenced for address resolution 

• Object control 
- Operand 1 

Lock Enforcement 

• Modification 
User profile owning object 

- Context addressing object 

• Object control 
- Operand 1 

22-4 

Events 

0002 Authorization 
0101 Authorization violation 

OOOC Machine resources 
0201 Machine auxiliary storage exceeded 

0000 Machine status 
0101 Machine check 

0010 Process 
0701 Maximum processor time exceeded 
0801 Process storage limit exceeded 

0016 Machine observation 
0101 Instruction reference 

0017 Damage set 
0401 System object damage set 
0801 Partial system object damage set 



Exceptions 

L Exception 

06 Addressing 

01 Space addressing violation 

02 Boundary alignment 

03 Range 

06 Optimized addressability invalid 

08 Argument/ Parameters 

01 Parameter reference violation 

OA Authorization 

01 Unauthorized for operation 

10 Damage Encountered 

04 System object damage 

44 Partial system object damage 

1A Lock State 

01 Invalid lock state 

1C Machine Dependent Exception 

03 Machine storage limit exceeded 

20 Machine Support 

02 Machine check 

03 Function check 

22 Object Access 

01 Object not found 

02 Object destroyed 

03 Object suspended 

L 06 Object not eligible for destruction 

24 Pointer Specification 

01 Pointer does not exist 

02 Pointer type invalid 

03 Pointer addressing invalid object 

2A Program Creation 

06 Invalid operand type 

07 Invalid operand attribute 

08 Invalid operand value range 

OC Invalid operand ODT reference 

00 Reserved bits are not zero 

32 Scalar Specification 

01 Scalar type invalid 

Operand 
1 Other 

X 
X 
X 
X 

X 

X 

X X 
X 

X 

X 

X 
X 

X 
X 
X 
X 

X 
X 
X 

X 
X 
X 
X 
X X 

X 

INSERT DUMP DATA (lNSDMPD) 

Op Code 
(Hex) 

0403 

Operand 
1 

Dump 

Space 

Operand 
2 

Controls 

Operand 1: System pointer. 

Operand 2: Character(16) scalar. 

Operand 3: Space pointer. 

Operand 
3 

Source 

Description: The instruction inserts the blocks of dump 
data specified by operand 2 and operand 3 into the 
dump space specified for operand 1. 

The dump data inserted into the operand 1 dump space 
is accessed from the byte string addressed by the 
operand 3 space pointer for the number of blocks 
specified in the controls operand block count field. The 
dump data in the source is appended to the dump data, 
if any, currently stored in the operand 1 dump space. 

The blocks of data contained in the source are assumed 
to have been previously retrieved from a dump space 
through use of the Retrieve Dump Data instruction. Only 
the length attribute of the source data is defined. Each 
block of data in the source is 528 bytes long. A source 
block contains a 512-byte block of dump data to be 
inserted into the operand 1 dump space and 16 bytes of 
machine control information related to the block. The 
internal format of the source data is not defined other 
than for the length attribute just described. 

The 512 byte blocks of dump data to be inserted into 
the receiver are each appended in sequence to the 
dump data contained in the operand 1 dump space. The 
16 bytes of machine control information contained in 
each 528-byte source block provides for verifications to 
insure that the insertion of the 512 bytes of dump data 
is valid for the receiver dump space. Detection of an 
error by these verifications results in the signaling of the 
invalid dump data insertion exception. The verifications 
are performed on a block-by-block basis so that the 
exception may be detected at any point during the 
insertion of the source data into the operand 1 dump 
space. 

Dump Space Management Instructions 22-5 



The controls operand must be a character scalar which 
specifies control information for the dump data to be 
inserted. It must be at least 16 bytes long and have the 
following format: 

• Controls 
Reserved (binary 0) 
Block count 
Reserved (binary 0) 

Char(16) 
Char(4) 
Char(4) 
Char(B) 

The block count field specifies the number of blocks of 
dump data to be inserted. A value of zero is invalid and 
results in the signaling of the template invalid exception. 

Insertion of dump data into the dump space at a point 
beyond the current dump space size results in an 
implicit extension of the dump space to a size adequate 
for the data to be inserted. The storage extension is 
charged to the user profile which owns the dump space. 

Insertion of dump data into the dump space for a dump 
of a size greater than that allowed by the dump data 
size limit attribute of the dump space results in the 
signaling of the dump data size limit exceeded 
exception. This exception is detected on the initial 
insertion of dump data for the dump and prior to 
insertion of any of the dump data from the source into 
the operand 1 dump space. 

The dump space specified by operand 1 must not be in 
use by a Request Path Operation load or dump function 
or a Request I/O load or dump function when this 
instruction is executed or the object not available to 
process exception is signaled. 

Substring operand references which allow for a null 
substring reference (a length value of zero) may not be 
specified for this instruction. 

The insertion of dump data into the receiver dump space 
is performed in a manner that insures the value of the 
dump data size attribute will correctly reflect the amount 
of valid dump data contained in the dump space even in 
the event of a system failure during the insertion of 
dump data. In this event, the Materialize Dump Space 
instruction can be used to determine the dump data size 
attribute value upon subsequent availability of machine 
processing. 

22-6 

It is anticipated that the normal usage of this instruction 
will be to insert all of the dump data for a dump which 
was retrieved from a source dump space. Due to the 
large size of the dump data which can be contained in a 
dump space, the insertion of dump data will probably be 
performed by placing portions of the dump data into a 
buffer and then inserting the buffer of data into the 
target dump space. Partial insertion of a dump into a 
dump space allows for subsequent loading of only the 
objects completely contained within the inserted dump 
data. Because object boundaries within the dump data 
are not defined, the point at which a partial dump would 
allow for the loading of a particular object can not be 
determined by the user of the machine. The point at 
which a partial dump ends may occur at any point 
within the dump data for an object causing the data for 
the object to be only partially contained in the dump 
space. Attempting to load an object partially contained 
in a dump space may result in it not being loaded or 
may result in it being loaded and marked as damaged. 

For a load operation to correctly load the objects 
contained in a dump space, the dump data retrieved 
from a dump space must not be modified and must be 
inserted into the exact same offset in the target dump 
space as that from which it was retrieved. Violation of 
these requirements mayor may not be detected on the 
load operation. However, subsequent usage of an object 
which could not be correctly loaded may produce 
erroneous results, result in termination of the process 
accessing the object or even possibly result in 
termination of machine processing entirely. 



Authorization Required Exceptions 

L 
• Insert Operands 

- Dump space Exception 1 2 3 Other 

• Retrieve 

- Contexts referenced for address resolution 06 Addressing 

01 Space addressing violation X X X 
02 Boundary alignment violation X X X 

Lock Enforcennent 03 Range X X X 
06 Optimized addressability invalid X X X 

· Materialize 08 Argument/ Parameter 

- Contexts referenced for address resolution 01 Parameter reference violation X X X 

• Modify OA Authorization 

- Dump space 01 Unauthorized for operation X 
10 Damage Encountered 

04 System object damage X X 

Events 44 Partial system object damage X X 
1A Lock State 

0002 Authorization 01 Invalid lock state X 

0101 Authorization violation 1C Machine Dependent Exception 

OOOC Machine resources 03 Machine storage limit exceeded X 

0201 Machine auxiliary storage exceeded 04 Object storage limit exceeded X 

0501 Machine address threshold exceeded 20 Machine Support 

0000 Machine status 02 Machine check X 

0101 Machine check 03 Function check X 

0010 Process 22 Object Access 

0701 Maximum processor time exceeded 01 Object not found X X X 

0801 Process storage limit exceeded 03 Object destroyed X X X 

0016 Machine observation 03 Object suspended X X X 

~ 0101 Instruction reference 05 Object not available to process X 

0017 Damage set 24 Pointer Specification 

0401 System object damage set 01 Pointer does not exist X X X 

0801 Partial system object damage set 02 Pointer type invalid X X X 
03 Pointer addressing invalid object X 

2A Program Creation 

06 Invalid operand type X X X 
07 Invalid operand attribute X X X 
08 Invalid operand value range X X X 
OC Invalid operand ODT reference X X X 
00 Reserved bits are not zero X X X X 

2E Resource Control Limit 

01 User profile storage limit X 
exceeded 

32 Scalar Specification 
01 Scalar type invalid X X X 

38 Template Specification 
01 Template value invalid X 

40 Dump Space Management 

01 Dump data size limit exceeded X 
02 Invalid dump data insertion X 

Dump Space Management Instructions 22-7 



MATERIALIZE DUMP SPACE (MATDMPS) 

Op Code Operand 
(Hex) 1 

04DA Receiver 

Operand 
2 

Dump space 

Operand 1: Space pointer. 

Operand 2: System pointer. 

Description: The current attributes of the dump space 
specified by operand 2 are materialized into the receiver 
specified by operand 1. 

The first 4 bytes of the materialization identify the total 
quantity of bytes that may be used by the instruction. 
This value is supplied as input to the instruction and is 
not modified by the instruction. A value of less then 
eight causes the materialization length exception to be 
signaled. 

The second 4 bytes of the materialization identify the 
total quantity of bytes available to be materialized. The 
instruction materializes as many bytes as can be 
contained in the area specified as the receiver. If the 
byte area identified by the receiver is greater than that 
required to contain the information requested, then the 
excess bytes are unchanged. No exceptions are signaled 
in the event that the receiver contains insufficient area 
for the materialization, other than the materialization 
length exception described previously. 

The template identified by operand 1 must be 16-byte 
aligned in the space. The format of the materialization is 
as follows: 

• Materialization Size Specification 
Number of bytes provided 
for materialization 
Number of bytes available 
for materialization (always 128 
for this instruction) 

• Object Identification 
Object type 

- Object subtype 
- Object name 

22-8 

Char(8) 
Bin(4) 

Bin(4) 

Char(32) 
Char(l ) 
Char(l ) 
Char(30) 

• Object Creation Options 
- Existence attributes 

o = Temporary 
1 = Permanent 
Space attribute 
o = Fixed length 
1 = Variable length 
Context 
0= Addressability not in context 
1 = Addressability in context 

Char(4) 
Bit 0 

Bit 1 

Bit 2 

Reserved (binary 0) Bit 3-31 

• Recovery Options 

• Size of Space 

• Initial Value of Space 

• Performance Class 

• Reserved 

• Context 

• Reserved 

• Dump Space Size 

• Dump Data Size 

• Dump Data Size Limit 

• Reserved 

Char(4) 

Bin(4) 

Char(l ) 

Char(4) 

Charm 

System 
pointer 

Char(16) 

Char(4) 

Char(4) 

Char(4) 

Char(20) 

The dump space size entry is set with the current size 
value for the number of 512-byte blocks of space 
allocated for storage of dump data within the dump 
space. 

The dump data size entry is set with the current size 
value for the number of 512-byte blocks of dump data 
contained in the dump space. This value specifies the 
number of blocks from the start of the dump space 
through the block of dump data which has been placed 
into the dump space at the largest dump space offset 
value. A value of zero indicates that the dump space 
currently contains no dump data. 



The dump space size and dump data size values are 
implicitly updated by the Insert Dump Data instruction 
and Request Path Operation instruction dump function 
and can be explicitly reset by the Modify Dump Space 
instruction. Additionally, the dump data size value is 
used by the Retrieve Dump Data instruction, and 
Request Path Operation instruction load function as the 
amount of dump data available in the dump space. 

The dump data size limit entry is set with the current 
size limit for the number of 512-byte blocks of dump 
data which may be stored in the dump space. A value 
of zero indicates that no explicit limitation is placed on 
the amount of dump data which may be stored in the 
dump space. The machine implicitly places a limit on 
the maximum size of a dump space. This value of this 
limitation is dependent upon the specific implementation 
of the machine. 

The dump data size limit is used by the Insert Dump 
Data instruction and Request Path Operation instruction 
dump function as the limit for the amount of dump data 
which can be stored in a dump space. It can be 
modified by the Modify Dump Space instruction. 

Authorization Required 

• Operational 
- Operand 2 

• Retrieve 
- Contexts referenced for address resolution 

Lock Enforcement 

• Materialize 
Operand 2 

- Contexts referenced for address resolution 

Events 

0002 Authorization 
0101 Authorization violation 

OOOC Machine resources 
0201 Machine auxiliary storage exceeded 

0000 Machine status 
0101 Machine check 

0010 Process 
0701 Maximum processor time exceeded 
0801 Process storage limit exceeded 

0016 Machine observation 
0101 Instruction reference 

0017 Damage set 
0401 System object damage set 
0801 Partial system object damage set 

Dump Space Management Instructions 22-9 



Exceptions MODIFY DUMP SPACE (MODDMPS) 

Operands Op Code Operand Operand Exception 1 2 Other (Hex) 1 2 

06 Addressing 

01 Space addressing violation 
0406 Dump Modification template 

X X space 
02 Boundary alignment violation X X 
03 Range X X Operand 1: System pointer. 

06 Optimized addressability invalid X X 

08 Argument/Parameter Operand 2: Character(32) scalar. 

01 Parameter reference violation X X 
OA Authorization 

01 Unauthorized for operation X Description: This instruction modifies the attributes of 

10 Damage Encountered the dump space specified by operand 1 to have the 

04 System object damage X X attribute values specified in operand 2. 

44 Partial system object damage X 
1A Lock State The operand 2 modification template must be a 

01 Invalid lock state X character scalar which specifies the modifications to be 

1C Machine Dependent Exception performed. It must be at least 32 bytes long and have 

03 Machine storage limit exceeded X the following format: 

20 Machine Suppor.: 

02 Machine check X · Modification Char(4) 

03 Function check X Reset dump data size Bit 0 

22 Object Access 0= No 

01 Object not found X X 1 = Yes 

02 Object destroyed X X Reset dump space size Bit 1 

03 Object suspended X X 0= No 

24 Pointer Specification 1 = Yes J 01 Pointer does not exist X X Modify dump data size limit Bit 2 

02 Pointer type invalid X X 0= No 

03 Pointer addressing invalid object X 1 = Yes 

2A Program Creation Reserved (binary 0) Bit 3-31 

06 Invalid operand type X X 

07 Invalid operand attribute X X · Dump Space Size Char(4)* 

08 Invalid operand value range X X 

OA Invalid operand length X · Dump Data Size Char(4)* 

OC Invalid operand ODT reference X X 
00 Reserved bits are not zero X X X · Dump Data Size Limit Char(4) 

32 Scalar Specification 

01 Scalar type invalid X X · Reserved (binary 0) Char(16) 

38 Template Specification 

01 Template value invalid X Note: The values associated with template entries 
annotated with an asterisk (*) are ignored by the 

instruction. 

The modification indicators select the modifications to 
be performed on the dump space. 

The reset dump data size modification indicator controls 
whether or not the dump data size attribute for the 

dump space is to be reset. When yes is specified, the 
dump data size value is reset to zero. When no is 

specified, the dump data size value is not reset. 

22-10 



The reset dump space size modification indicator 
controls whether or not the dump space size attribute is 
to be reset back to the dump data size attribute value. 
When yes is specified, the current allocation of the 
dump space is decreased as closely as possible toward 
the current value of the dump data size attribute. The 
actual size of the decreased allocation is dependent 
upon the algorithm used within the specific 
implementation of the machine. When no is specified, 
the dump space size value is not reset. 

The modify dump data size limit modification indicator 
controls whether or not the dump data size limit for the 
dump space is to be modified. When yes is specified, 
the dump data size limit attribute for the dump space is 
set to the value specified in the controls operand dump 
data size limit field. This value specifies the size limit for 
the number of 512-byte blocks of dump data which 
may be stored in a dump space. A value of zero 
indicates that no explicit limitation is placed on the 
amount of dump data which may be stored in the dump 
space. The machine implicitly places a limit on the 
maximum size of a dump space. This value of this 
limitation is dependent upon the specific implementation 
of the machine. A value less than the current value of 
the dump data space size attribute value for the dump 
space is invalid and results in the signaling of the invalid 
dump space modification exception. When no is 
specified, the dump data size limit attribute for the 
dump space is not modified and the dump data size 
limit field is ignored. 

A reset of the dump data size attribute will be 
performed first when requested in conjunction with 
either a reset of the dump space size or a modify of the 
dump data size limit causing the current value of the 
attribute to be zero when those functions are performed. 

Refer to the description of the dump space size, dump 
data size, and dump data size limit attributes under the 
Materialize Dump Space instruction for additional 
information on their meaning. 

For any modification request other than an increase in 
the value of the dump data size limit attribute, the dump 
space specified by operand 1 must not be in use by a 
Request Path Operation load or dump function or a 
Request I/O load or dump function when this instruction 
is executed or the object not available to process 
exception is signaled. 

Partial object damage for a dump space can be removed 
through a reset of the dump space size when the dump 
data size is zero. The dump data size can either already 
be zero or can be requested through an accompanying 
reset of the dump data size attribute. 

Substring operand references which allow for a null 
substring reference (a length value of zero) may not be 
specified for this instruction. 

Authorization Required 

• Object Management 
- Operand 1 

• Retrieve 
- Contexts referenced for address resolution 

Lock Enforcement 

• Modify 
- Operand 1 

• Materialization 
- Contexts referenced for address resolution 

Events 

0002 Authorization 
0101 Authorization violation 

OOOC Machine resources 
0201 Machine auxiliary storage exceeded 
0501 Machine address threshold exceeded 

0000 Machine status 
0101 Machine check 

0010 Process 
0701 Maximum processor time exceeded 
0801 Process storage limit exceeded 

0016 Machine observation 
0101 I nstruction reference 

0017 Damage set 
0401 System object damage set 
0801 Partial system object damage set 

Dump Space Management Instructions 22-11 



Exceptions RETRIEVE DUMP DATA (RETDMPD) 

Operands Op Code Operand Operand Operand 
Exception 1 2 Other (Hex) 1 2 3 

06 Addressing 
0407 Receiver Controls Dump 

01 Space addressing violation X X space 
02 Boundary alignment violation X X 

03 Range X X Operand 1: Space pointer. 
06 Optimized addressability invalid X X 

08 Argument/Parameter Operand 2: Character(16) variable scalar. 

01 Parameter reference violation X X 

OA Authorization 
Operand 3: System pointer. 

01 Unauthorized for operation X 

10 Damage Encountered Description: The instruction retrieves the number of 
04 System object damage X X 512-byte blocks of dump data selected by operand 2 
44 Partial system object damage X from the dump space specified for operand 3 and places 

1A Lock State it along with associated control information in the space 

01 Invalid lock state X object specified by operand 1. 

1C Machine Dependent Exception The dump data placed into the receiver for the retrieve 
03 Machine storage limit exceeded X operation is set into the byte string addressed by the 
04 Object storage limit exceeded X operand 1 space pointer for the number of blocks 

20 Machine Support returned in the controls operand block count retrieved 

02 Machine check X field. 

03 Function check X Only the length attribute of the retrieved dump data is 
22 Object Access defined. Each block of data placed in the receiver is 528 

01 Object not found X X bytes long. The receiver block contains the requested 

02 Object destroyed X X 512-byte block of dump data from the operand 3 dump 

03 Object suspended X X space and 16 bytes of machine control information 
related to the block. The machine control information 

04 Object suspended X provides for verifications on the data upon its 
24 Pointer Specification subsequent insertion into a target dump space. The 

01 Pointer does not exist X X internal format of the retrieved dump data is not defined 

02 Pointer type invalid X X other than that subsequent insertion of it into a dump 

03 Pointer addressing invalid object X space can be done to prime a dump space prior to 
performing a Request Path Operation instruction load 

2A Program Creation function on the dump space. 
06 Invalid operand type X X 

07 Invalid operand attribute X X 

08 Invalid operand value range X X 

OA Invalid operand length X 

OC Invalid operand ODT reference X X 
00 Reserved bits are not zero X X X 

2E Resource Control Limit 

01 User profile storage limit X 
exceeded 

32 Scalar Specification 

01 Scalar type invalid X X 
02 Scalar attributes invalid X 

38 Template Specification 

01 Template value invalid X 

40 Dump Space Management 

03 Invalid dump space modification X 

22-12 



The number of blocks of dump data retrieved is the 
lessor of that requested and that available at the 
specified block location in the dump space. The number 
of blocks available is calculated by subtracting the 
number of the first block requested from the current 
value of the dump data size attribute for the dump 
space and adding one to the difference. If blocks of 
dump data are available, the number is greater than 
zero, the instruction results in the retrieval of dump data. 
The blocks retrieved field is set to the lessor of the 
calculated blocks available and the blocks requested 
values. If the request is invalid, the number is less than 
or equal to zero, the instruction results in the signaling 
of the invalid dump data retrieval exception. 

The controls operand must be a character scalar which 
specifies selection information for the dump data to be 
retrieved. It must be at least 16 bytes long and have the 
following format: 

• Controls 
First block requested 
Block count requested 

- Block count retrieved 
- Reserved 

Char(16) 
Char(4) 
Char(4) 
Char(4) 
Char(4) 

The first block requested field specifies the number of 
the first block of dump data which is to be retrieved 
from the operand 3 dump space. A value of one 
identifies the first block of dump data contained in the 
dump space. A value of zero is invalid and results in the 
signaling of the template value invalid exception. 

The block count requested field specifies the number of 
blocks of dump data to be retrieved. A value of zero is 
invalid and results in the signaling of the template value 
invalid exception. 

The block count retrieved field is set, as described 
above, by the instruction. This field is continually 
updated during the execution of the instruction to keep 
count of the number of blocks of data which may have 
been retrieved. Due to this, it may also be modified 
from its original value when the instruction results in the 
signaling of an exception. 

The dump space specified by operand 3 must not be in 
use by a Request Path Operation load or dump function 
or a Request I/O load or dump function when this 
instruction is executed or the object no available to 
process exception is signaled. 

Substring operand references which allow for a null 
substring reference (a length value of zero) may not be 
specified for this instruction. 

It is anticipated that the normal usage of this instruction 
will be to retrieve all of the dump data contained in the 
source dump space. Due to the large size of the dump 
data which can be contained in a dump space, the 
retrieval of dump data will probably be performed by 
sequentially retrieving portions of the dump data into a 
buffer and then sending the buffer of data on to another 
system or some other storage media. Subsequent 
insertion of this dump data into a target dump space 
would then be done prior to loading the objects 
contained in the dump back into existence on the 
machine. Partial retrieval of a dump from a dump space 
allows for subsequent loading of only the objects 
completely contained within the retrieved dump data. 
Because object boundaries within the dump data are not 
defined, the point at which a partial dump would allow 
for the loading of a particular object can not be 
determined by the user of the machine. The point at 
which a partial dump ends may occur at any point 
within the dump data for an object causing the data for 
the object to be only partially contained in the dump 
space. Attempting to load an object partially contained 
in a dump space may result in it not being loaded or 
may result in it being loaded and marked as damaged. 

For a load operation to correctly load the objects 
contained in a dump, the dump data retrieved from a 
dump space must not be modified and must be inserted 
into the exact same relative location in the target dump 
space as that from which it was retrieved. Violation of 
these requirements mayor may not be detected on the 
load operation. However, subsequent usage of an object 
which could not be correctly loaded may produce 
erroneous results, result in termination of the process 
accessing the object or even possible result in 
termination of machine processing entirely. 

Dump Space Management Instructions 22-13 



Authorization Required Exceptions 

. Retrieve 
Operands ..J Dump space Exception 1 2 3 Other - Contexts referenced for address resolution 

06 Addressing 

Lock Enforcement 
01 Space addressing violation X X X 
02 Boundary alignment violation X X X 

. Materialize 03 Range X X X 

- Contexts referenced for address resolution 06 Optimized addressability invalid X X X 
08 Argument/ Parameter 

01 Parameter reference violation X X X 
Events OA Authorization 

01 Unauthorized for operation X 
0002 Authorization 10 Damage Encountered 

0101 Authorization violation 04 System object damage X X 

OOOC Machine resources 44 Partial system object damage X X 

0201 Machine auxiliary storage exceeded 1A Lock State 

01 Invalid lock state X 
DOOD Machine status 1C Machine Dependent Exception 

0101 Machine check 03 Machine storage limit exceeded X 

0010 Process 20 Machine Support 

0701 Maximum processor time exceeded 02 Machine check X 
0801 Process storage limit exceeded 03 Function check X 

22 Object Access 
0016 Machine observation 01 Object not found X X X 

0101 Instruction reference 
02 Object destroyed X X X 

0017 Damage set 03 Object suspended X X X 
0401 System object damage set 05 Object not available to process X 
0801 Partial system object damage set 24 Pointer Specification 

01 Pointer does not exist X X X 
02 Pointer type invalid X X X 
03 Pointer addressing invalid object X 

2A Program Creation 

06 Invalid operand type X X X 
07 Invalid operand attribute X X X 
08 Invalid operand value range X X X 
OC Invalid operand ODT reference X X X 
00 Reserved bits are not zero X X X X 

32 Scalar Specification 

01 Scalar type invalid X X X 

38 Template Specification 

01 Template value invalid X 
40 Dump Space Management 

03 Invalid dump space modification X 

22-14 



Exception generation is the only facility for 
synchronously communicating error conditions that are a 
direct result of System/38 instruction processing. 
Machine exceptions identify error conditions that require 
processing before the next sequential System/38 
instruction is executed. Instructions that cause a 
particular exception may not function identically before 
execution is stopped; however, each instruction 
produces consistent results. These results ensure 
machine integrity and reliability. The results are inherent 
in a particular exception definition or in the detailed 
instruction definition. 

The user can monitor any number of exceptions. There 
are three basic techniques for the user to handle an 
exception. One technique is to provide detailed handling 
specified by a program defined exception description 
object. The second technique is to provide a default 
exception handler for the process. This exception 
handler is invoked whenever an invocation fails to 
handle an exception. The third technique is to accept 
the machine default of process termination by not 
providing an appropriate exception handling mechanism. 
See Exception Management in the Functional Concepts 
Manual, for a general description of exception 
management. 

Chapter 23. Exception Specifications 

MACHINE INTERFACE EXCEPTION DATA 

Exception data is communicated across the machine 
interface through a Retrieve Exception Data instruction. 
Certain information is available for all exceptions when 
an appropriate exception description has been defined 
by the user. That information includes the following: 

• Exception identification-This is a 2-byte hexadecimal 
field formed by concatenating to the high-order 
1-byte exception group number a low-order 1-byte 
exception subtype number. The format of the 
exception identification is as follows: 

y 
Subtype number 

Group number 

• Compare value length 

• Compare value (machines signaled have a compare 
value of hex OOOOOOOO with a length of 4) 

• Exception-specific data 

• Signaling program invocation address 

• Signaled program invocation address 

• Signaling program instruction address 

• Signaled program instruction address 

• Machine-dependent data identifying the component 
that generated the exception 

The exception-specific data provides additional pointers 
and data that may be required for an individual 
exception. 

Exception Specifications 23-1 



EXCEPTION LIST 

The following is a list of all exceptions in alphabetic and 
numeric order by group. The subtypes within each 
group are in numeric order. 

02 Access Group 

01 Object ineligible for access group 

04 Access State 

01 Access state specification invalid 

06 Addressing 

01 Space addressing violation 
02 Boundary alignment 
03 Range 
04 External data object not found 
05 I nvalid space reference 
06 Optimized addressability invalid 

08 Argument/Parameter 

01 Parameter reference violation 
02 Argument list length violation 
03 Argument list length modification violation 

OA Authorization 

23-2 

01 Unauthorized for operation 
02 Privileged instruction 
03 Attempt to grant/ retract authority state to an 

object that is not authorized 
04 Special authorization required 
05 Create/modify user profile beyond level of 

authorization 

OC 

OE 

10 

Computation 

01 Conversion 
02 Decimal data 
03 Decimal point alignment 
04 Edit digit count 
05 Edit mask syntax 
06 Floating-point overflow 
07 Floating-point underflow 
08 Length conformance 
09 Floating-point invalid operand 
OA Size 
OB Zero divide 
OC Invalid floating-point conversion 
OD Floating-point inexact result 
OE Floating-point zero divide 
OF Master key not defined 
10 Weak key not valid 
11 Key parity invalid 

Context Operation 

01 Duplicate object identification 
02 Object ineligible for context 

Damage Encountered 

02 Machine context damage state 
04 System object damage state 
44 Partial system object damage state 



12 Data Base Management 14 Event Management 

L 01 Conversion mapping error 01 Duplicate event monitor 
02 Key mapping error 02 Event monitor not present 
03 Cursor not set 03 Machine event requires specification 
04 Data space entry limit exceeded of a compare value 
05 Data space entry already locked 04 Wait on event attempted while masked 
06 Data space entry not found 05 Disable timer event monitor invalid 
07 Data space index invalid 06 Signal timer event monitor invalid 
08 Incomplete key description 
09 Duplicate key value in existing data space 16 Exception Management 

entry 
OA End of path 01 Exception description status invalid 
OB Duplicate key value detected while building 02 Exception state of process invalid 

unique data space index 03 Invalid invocation address 
00 No entries locked 
OF Duplicate key value in 18 Independent Index 

uncommitted data space entry 
13 Invalid mapping template 01 Duplicate key argument in index 
14 Invalid selection template 
15 Data space not addressed by index 1A Lock State 
16 Data space not addressed by cursor 
17 Key changed since set cursor 01 Invalid lock state 
19 Invalid rule option 02 Lock request not grantable 
1A Data space entry size exceeded 03 Invalid unlock request 
1B Logical space entry size limit exceeded 04 Invalid object lock transfer request 
1C Key size limit exceeded 05 Invalid space location unlock 
10 Logical key size limit exceeded 
1E Selection routine buffer size limit exceeded 1C Machine-Dependent Exception 
1F User exit routine criteria not satisfied 
21 Unable to maintain a unique key data space 01 Machine-dependent request invalid 

index 02 Program limitation exceeded 
22 Data space index with user exit selection 03 Machine storage limit exceeded 

routine build termination 04 Object storage limit exceeded 
23 Data space index user exit selection 06 Lock limit exceeded 

routine failure 07 Modify main storage pool 
25 Invalid data base operation controls invalid 
26 Data space index with invalid 08 Requested function not valid 

floating-point field build termination 
27 Data space index key with invalid 1E Machine Observation 

floating - point field 
30 Specified data space entry rejected 01 Program not observable 
32 Join value changed 
33 Data space index with non-user exit 20 Machine Support 

selection routine build termination 
34 Non-user exit selection routine 01 Diagnose 

failure 02 Machine check 
36 No mapping code specified 03 Function check 
37 Operation not valid with join cursor 
38 Derived field operation error 
39 Derived field operation error 

during build index 

Exception Specifications 23-3 



22 Object Access 2E Resource Control Limit 

01 Object not found 01 User profile storage limit exceeded j 
02 Object destroyed 
03 Object suspended 30 Journal 
04 Object not eligible for operation 
05 Object not available to process 01 Apply journal changes failure 
06 Object not eligible for destruction 02 Entry not journaled 

03 Maximum objects through a journal port 
24 Pointer Specification limit exceeded 

04 Invalid journal space 
01 Pointer does not exist 05 Maximum journal spaces attached 
02 Pointer type invalid 06 Journal space not at a recoverable boundary 
03 Pointer addressing invalid object 07 Journal 10 not unique 
04 Pointer not resolved 08 Object already being journaled 

09 Transaction limit list exceeded 
26 Process Management 

32 Scalar Specification 
02 Queue full 

01 Scalar type invalid 
28 Process State 02 Scalar attributes invalid 

03 Scalar value invalid 
01 Process ineligible for operation 
02 Process control space not 34 Source/Sink Management 

associated with a process 
OA Process attribute modification invalid 01 Source/sink configuration invalid 

02 Source / sink physical address invalid 
2A Program Creation 03 Source/sink object state invalid J 04 Source/sink resource not available 

01 Program header invalid 
02 OOT syntax error 36 Space Management 
03 OOT relational error 
04 Operation code invalid 01 Space extension /truncation 
05 Invalid op code extender field 02 Invalid space modification 
06 Invalid operand type 
07 Invalid operand attribute 38 Template Specification 
08 Invalid operand value range 
09 Invalid branch target operand 01 Template value invalid 
OA Invalid operand length 02 Template size invalid 
OB Invalid number of operands 03 Materialization length exception 
OC Invalid operand OOT reference 
00 Reserved bits are not zero 3A Wait Time-Out 

2C Program Execution 01 Oequeue 
02 Lock 

01 Return instruction invalid 03 Wait on event 
02 Return point invalid 04 Space location lock wait 
03 Stack control invalid 
04 Branch target invalid 3C Service 
05 Activation in use by invocation 
06 Instruction cancellation 01 Invalid service session state 
07 Instruction termination 02 Unable to start service session 

.J 
23-4 



3E Commitment Control 

~ 01 Invalid commit block status change 
03 Commit block is attached to process 
04 Commit block controls uncommitted 

changes 
06 Commitment control resource limit 

exceeded 
08 Object under commitment control being 

incorrectly journaled 
10 Operation not valid under commitment 

control 
11 Process has attached commit block 
12 Objects under commitment control 
13 Commit block not journaled 
14 Errors during decommit 
15 Object ineligible for commitment control 
16 Object ineligible for removal from 

commitment control 

40 Dump Space Management 

01 Dump data size limit exceeded. 
02 Invalid dump data insertion 
03 Invalid dump space modification 
04 Invalid dump data retrieval 

L 

02 Access Group 

0201 Object Ineligible for Access Group 

An attempt was made to insert an object into an 
access group. The operation could not be 
performed for one of the following reasons: 

• The object is temporary, or the object is 
permanent and the access group is temporary. 

• The object is restricted by the machine from 
membership in an access group. 

Information Passed: 

• Access group 

• Object to be inserted 
(binary 0 for objects 
not yet created) 

Instructions Causing Exception: 

System 
pointer 

System 
pointer 

• Any create instruction that specifies an access 
group in the create template 

• Signal Exception 

04 Access State 

0401 Access State Specification Invalid 

An access state not supported by the machine 
was specified for an object. 

Information Passed: 

• The invalid access state Char{1 ) 

Instructions Causing Exception: 

• Set Access State 

• Signal Exception 

Exception Specifications 23-5 



06 Addressing 

0601 Space Addressing Violation 

An attempt has been made to operate outside the 
current extent of the space contained in a system 
object. 

Information Passed: 

• Object referenced 

• Offset specified 

Instructions Causing Exception: 

System 
pointer 

Bin(4) 

• Any instruction using a pointer or scalar as an 
operand 

• Any instruction using a scalar as an index, a 
length suboperand, or a space pointer as a base 
suboperand 

• Signal Exception 

0602 Boundary Alignment 

23-6 

A program object has been referenced, and it does 
not have the proper alignment relative to the 
beginning of a space. Pointers must always be 
16-byte aligned. Program objects that are not 
pointers must have at least the alignment specified 
by the ODT entry. 

Information Passed: 

• Addressability to pointer 
or template 

Instructions Causing Exception: 

Space 
pointer 

• Any instruction having a pointer operand or a 
template operand that requires a specific 
boundary alignment 

0603 Range 

A subscript value in a compound operand array 
reference is outside the range defined for the 
array. A subscript value of less than 1 or greater 
than the number of elements defined by the array 
causes this exception. 

A reference to a string has a position and/or 
length that exceeds the bounds of the string. A 
compound operand that defines a character string 
that does not completely fall within the bounds of 
the base character string was referenced. A 
substring with position (P) e1 and length (L) e1 
does not meet the following constraint (n is the 
length of the base string): 

P+L-1 ~n 

Instructions Causing Exception: 

• All instructions that use scalar or pointer 
operands 

• Signal Exception 



0604 External Data Object Not Found 

An unsuccessful attempt was made to resolve a 
data pointer. The external data object specified by 
the initial value of the data pointer was not found 
in the process activations. If a program name was 
specified in the symbolic address, then only that 
program's activation is considered for resolution. If 
no program was specified, then all of the 
programs with activations in the process are 
considered for data pointer resolution. 

Information Passed: 

• External data object name Char(32) 

Instructions Causing Exception: 

• Any instruction that references an external data 
object through a data pointer. 

• Any instruction where a data pointer is used as 
the scalar value for an index of a length 
suboperand. This includes scalar and pointer 
operands that may be subscripted. 

• Signal Exception 

• Compare Pointer Addressability 

• Compare Pointer for Space Addressability 

• Convert Character to Numeric 

• Convert External Form to Numeric 

• Convert Numeric to Character 

• Copy Bytes Left Adjusted 

• Copy Bytes Left Adjusted With Pad 

• Copy Bytes Right Adjusted 

• Copy Bytes Right Adjusted With Pad 

• Copy Numeric Value 

• Edit 

• Materialize Pointer 

• Resolve Data Pointer 

• Set Data Pointer Addressability 

• Set Data Pointer Attributes 

• Set Space Pointer From Pointer 

• Set System Pointer From Pointer 

0605 Invalid Space Reference 

An attempt was made to address a space 
contained in an object that has no space. 

Instruction Causing Exception: 

• Set Space Pointer from Pointer 

0606 Optimized Addressabi/ity Invalid 

An instruction attempted to use the internally 
optimized value of a space pointer that was invalid 
due to the failure of a prior instruction in trying to 
access the pointer's value. 

The machine may optimize the retrieval of a 
pointer's value by using the value retrieved on one 
instruction for use by multiple instructions that 
have need to reference the pointer's value. This 
avoids the overhead of continually retrieving the 
pointer's value from storage for every instruction 
that would have need to use it. If, in attempting to 
retrieve the pointer's value, an exception is 
detected, the machine marks the internally 
optimized value as invalid. This is done to provide 
for detecting the invalid addressability upon 
subsequent execution of instructions that depend 
on the internally optimized value. These 
instructions have no provision for retrieving the 
pointer's value from storage. These instructions 
will not redetect the original exception, but instead 
detect the optimized addressability invalid 
exception for this condition. This condition can 
occur when an exception is detected during an 
attempt to retrieve a pointer's value and the 
exception is ignored which causes execution of the 
program to continue without successfully retrieving 
the pointer's value. 

Exception Specifications 23-7 



This exception may not be detected on certain 
cases of internal machine optimizations that may 
be performed on references to space pointer 
machine objects. A reference to the space data 
addressed by the pointer is necessary to ensure 
consistent detection of this exception. Although 
the exception may not be detected for initial 
operations, it will be detected on any subsequent 
operation that references the space data 
addressed by the space pointer machine objects. 

The optimization of retrieving a pointer's value can 
be prevented by specifying the abnormal attribute 
for the pointer. 

Instructions Causing Exception: 

• Any instruction using a pointer or scalar as an 
operand 

• Signal Exception 

08 Argument/Parameter 

0801 Parameter Reference Violation 

23-8 

An attempt was made to reference an internal or 
an external parameter for which no corresponding 
argument was passed. 

Instructions Causing Exception: 

• Any instruction that references a parameter 
operand 

• Signal Exception 

0802 Argument List Length Violation 

An argument list does not properly correspond to 
the length required by the parameter list. 

Information Passed: 

• Minimum number of arguments 
allowed 

• Maximum number of arguments 
allowed 

• Actual number of arguments 
allowed 

Instructions Causing Exception: 

• Call External 

• Transfer Control 

• Initiate Process 

• Signal Exception 

Char(2) 

Char(2) 

Char(2) 

0803 Argument List Length Modification Violation 

An attempt was made to change the length of a 
variable-length argument list to a value less than 0 
or greater than the maximum size of the argument 
list. 

Instructions Causing Exception: 

• Set Argument List Length 

• Signal Exception 



OA Authorization 

OAO 1 Unauthorized for Operation 

A reference to a permanent system object is 
invalid because the user profiles that provide 
authorization for this process do not have 
sufficient authorization for the object. 

Information Passed: 

• Object preventing execution 

Instructions Causing Exception: 

System 
pointer 

• Any instruction with operands or operand lists 
that refer to an existing permanent system 
object 

• Signal Exception 

OA02 Privileged Instruction 

The user profiles that provide authorization for this 
process do not authorize the use of this instruction 
by the process. 

Instructions Causing Exception: 

• Create Controller Description 

• Create Logical Unit Description 

• Create Network Description 

• Create User Profile 

• Diagnose 

• Initiate Process 

• Modify Resource Management Control 

• Modify User Profile 

• Terminate Machine Processing 

• Signal Exception 

OA03 Attempt to Grant/Retract Authority State to an 
Object That Is Not Authorized 

An attempt has been made to grant or retract 
authority states to a specified object. The user 
profiles that provide authorization for this 
instruction are not authorized to grant or retract 
authorization. 

Information Passed: 

• System pointer to the object 

Instructions Causing Exception: 

• Grant Authority 

• Grant- Like Authority 

• Retract Authority 

• Signal Exception 

Exception Specifications 23-9 



OA04 Special Authorization Required 

An attempt has been made to execute an 
instruction requiring special authorization. The user 
profiles that provide authorization for the process 
do not have the proper authorization. 

Instructions Causing Exception: 

• Materialize Process 

• Modify Process 

• Suspend Process 

• Resume Process 

• Terminate Process 

• Modify Machine Attributes 

• Request I/O For Load or Dump Requests 

• Set Access State 

• Suspend Object 

• Signal Exception 

OAOS Create/Modify User Profile Beyond Level of 
Authorization 

23-10 

A Create or Modify User Profile instruction has 
attempted to set a privileged instruction or special 
authorization state in the user profile that is being 
created or modified. The user profiles that provide 
authorization to the process that is executing the 
create or modify instruction are not authorized. 

Instructions Causing Exception: 

• Create User Profile 

• Modify User Profile 

• Signal Exception 

OC Computation 

OCO 1 Conversion 

A scalar value cannot be converted to the 
necessary type in this instruction. 

Instructions Causing Exception: 

• Convert Character to Hex 

• Convert External Form to Numeric 

• Convert SNA to Character 

• Convert MRJE to Character 

• Convert esc to Character 

• Signal Exception 



L 
OC02 Decimal Data 

The sign or digit codes of a decimal operand, 
either packed or zoned, contain an invalid value. 
For packed and zoned format, either the sign is 
outside the valid range of A through F or a digit 
field is outside the range 0 through 9. 

Instructions Causing Exception: 

• Add Numeric 

• Compare Numeric Value 

• Convert Character to Numeric 

• Convert Decimal Form to Floating-Point 

• Convert Numeric to Character 

• Copy Numeric Value 

• Divide 

• Divide With Remainder 

• Edit 

• Extract Magnitude 

• Multiply 

• Negate 

• Remainder 

• Scale 

• Subtract Numeric 

• Sum 

• Signal Exception 

OC03 Decimal Point Alignment 

The value of a numeric operand cannot be aligned 
in a 31-digit decimal field. Decimal point 
alignment was attempted by padding with 0' s on 
the right. Nonzero digits would have to be 
truncated on the left to fit the aligned value into a 
31-digit decimal field. 

Instructions Causing Exception: 

• Add Numeric 

• Compare Numeric Value 

• Subtract Numeric 

• Signal Exception 

OC04 Edit Digit Count 

The number of digit position characters in the 
mask operand of an Edit instruction is not equal to 
the number of digits in the source operand value. 

Instructions Causing Exception: 

• Edit 

• Signal Exception 

OC05 Edit Mask Syntax 

The characters of the mask operand do not follow 
the valid syntax rules for an Edit instruction. 

Instructions Causing Exception: 

• Edit 

• Signal Exception 

Exception Specifications 23-11 



OC06 Floating-Point Overflow 

The result of a floating-point operation is finite 
and not an invalid value. but its exponent is too 
large for the target floating-point format. The 
signed exponent has exceeded 127 in short format 
or 1023 in long format. 

Information Passed: 

23-12 

• Floating-point value 
attributes 
- Normal bias 

Modified bias 
Rounded to short 
floating-point 
precision 
NaN 
Reserved (binary 0) 

• Reserved (binary 0) 

• Overflowed floating-point 
value 

• Reserved (binary 0) 

Char(1 ) 

Bit 0 
Bit 1 
Bit 2 

Bit 3 
Bits 4-7 

Char(7) 

Floating-(S 
point 

Char(16) 

Instructions Causing Exception: 

• Add Numeric 

• Compute Math Function Using One Input Value 

• Compute Math Function Using Two Input 
Values 

• Convert Character to Numeric 

• Convert Numeric to Character 

• Convert Decimal Form to Floating-Point 

• Copy Numeric Value 

Divide 

• Extract Magnitude 

• Multiply 

• Negate 

• Scale 

• Subtract Numeric 

• Signal Exception 



OC07 Floating-Point Underflow 

The result of a floating-point operation is not zero 
but has too small an exponent for the destination's 
format without being denormalized. The signed 
exponent is less than -126 in short format or less 
than -1022 in long format. 

Information Passed: 

• Floating-point value 
attributes 

Normal bias 
- Modified bias 
- Rounded to short 

floating-point precision 
- NaN 

Reserved (binary 0) 

• Reserved (binary 0) 

• Underflowed floating-point 
value 

• Reserved (binary 0) 

Char(1) 

Bit 0 
Bit 1 
Bit 2 

Bit 3 
Bits 4-7 

Char(7) 

Floating-(S 
point 

Char(16) 

Instructions Causing Exception: 

• Add Numeric 

• Compute Math Function Using One Input Value 

• Compute Math Function Using Two Input 
Values 

• Convert Character to Numeric 

• Convert Numeric to Character 

• Convert Decimal Form to Floating-Point 

• Copy Numeric Value 

• Divide 

• Extract Magnitude 

• Multiply 

• Negate 

• Scale 

• Subtract Numeric 

• Signal Exception 

Exception Specifications 23-13 



OCOB Length Conformance 

The operand lengths or resultant value length or 
both do not conform to the rules of the 
instruction: 

CVTHC 

CVTCH 

CVTMC 

EDIT 

SCAN 

SEARCH 

XLATE 

23-14 

Twice the length of the source 
operand must be less than or 
equal to the length of the receiver 
operand. 

The length of the operand must 
be less than or equal to twice the 
length of the receiver operand. 

The length of a record in the 
receiver was not enough to 
contain the converted form of a 
record from the source. 

The length of the resultant edited 
value must be equal to the length 
of the receiver operand. 

The length of the compare 
operand must not be greater than 
the length of the base string. 

The length of the find operand 
plus the value of the location 
operand must be less than or 
equal to the length of an element 
of the array operand. 

The source and receiver operands 
must be the same length. 

Instructions Causing Exception: 

• Convert Character to Hex 

• Convert Hex to Character 

• Convert MRJE to Character 

• Edit 

• Extended Character Scan 

• Scan 

• Search 

• Signal Exception 

• Translate 



L 

OC09 Floating-Point Invalid Operand 

A floating-point invalid operand condition is 
caused by one of the following conditions: 

• A source operand is an unmasked NaN. 

• Addition of infinities of different signs and 
subtraction of infinities of the same sign. 

• Multiplication of zero times infinity. 

• Division of zero by zero or infinity by infinity. 

• Computing the sine, cosine, or tangent function 
for infinity. 

• Computing the arc tangent, exponential, 
logarithm, square root, or power function for 
infinity when in projective infinity mode. 

• Floating-point values compared unordered and 
no branch or indicator options are specified for 
the unordered, negation of unordered, equal. or 
negation of equal conditions on compare 
numeric value. 

• An unordered resultant condition occurred on a 
computational instruction because the result 
was NaN, and branch or indicator conditions 
are specified but unordered, negation of 
unordered, zero, or negation of zero conditions 
are not specified. 

Information Passed: 

• Exception type 
Hex 00 = Invalid arithmetic 

operation or operand 
is unmasked NaN. 

Hex 01 = Invalid branch or 
indicator conditions. 

Hex 02 through hex FF are reserved. 

• Reserved (binary 0) 

Char(1) 

Char(31 ) 

Instructions Causing Exception: 

• Add Numeric 

• Compare Numeric Value 

• Compute Math Function Using One Input Value 

• Compute Math Function Using Two Input 
Values 

• Convert Character to Numeric 

• Convert Floating-Point to Decimal Form 

• Convert Numeric to Character 

• Copy Numeric Value 

• Divide 

• Extract Magnitude 

• Multiply 

• Negate 

• Scale 

• Subtract Numeric 

• Signal Exception 

Exception Specifications 23-15 



OCOA Size 

An operand was too small to contain a result. This 
condition is detected only when a fixed-point 
result is too large to be assigned to a fixed-point 
receiver. The receiver operand is set with the 
result of the operation truncated to the receiver 
size. 

Instructions Causing Exception: 

• Add Numeric 

• Compute Math Function Using One Input Value 

• Compute Math Function Using Two Input 
Values 

• Convert Character to Numeric 

• Convert External Form 

• Convert Numeric to Character 

• Copy Numeric Value 

• Divide 

• Divide With Remainder 

• Extract Magnitude 

• Multiply 

• Negate 

• Remainder 

• Scale 

• Subtract Numeric 

• Sum 

• Signal Exception 

• Trim Length 

23-16 

OCOB Zero Divide 

An attempt was made to divide by 0 on a 
fixed-point divide operation. 

Instructions Causing Exception: 

• Divide 

• Divide With Remainder 

• Remainder 

• Signal Exception 



L 
OCOC Invalid Floating-Point Conversion 

This exception is detected on a conversion from 
binary floating-point to other than a binary 
floating-point format because overflow, infinity, or 
NaN is detected before conversion is complete. 

Information Passed: 

• Floating-point value 
attributes 

Normal bias 
- Modified bias 
- Reserved (binary 0) 

NaN 
Infinity 

- Reserved (binary 0) 

• Reserved (binary 0) 

• Invalid floating-point 
value 

• Reserved (binary 0) 

Instructions Causing Exception: 

• Add Numeric 

Char(1) 

Bit 0 
Bit 1 
Bit 2 
Bit 3 
Bit 4 
Bits 5-7 

Charm 

Floating-(8 
point 

Char(16) 

• Compute Math Function Using One Input Value 

• Compute Math Function Using Two Input 
Values 

• Convert Character to Numeric 

• Convert Floating-Point to Decimal Form 

• Convert Numeric to Character 

• Copy Numeric Value 

• Divide 

• Multiply 

• Negate 

• Scale 

• Subtract Numeric 

• Signal Exception 

OCOD Floating-Point Inexact Result 

This exception is signaled when the rounded result 
of an operation is not exact because of one of the 
following conditions: 

• The rounded result of an operation is not exact 
because a value is modified (rounded) to fit in a 
receiver operand and nonzero fraction digits are 
lost. 

• The occurrence of a floating-point overflow 
condition when that condition is masked and 
the result is no longer exact because it is set to 
infinity. 

Information Passed: 

• Reserved (binary 0) Char(32) 

Instructions Causing Exception: 

• Add Numeric 

• Compare Numeric Value 

• Compute Math Function Using One Input Value 

• Compute Math Function Using Two Input 
Values 

• Convert Character to Numeric 

• Convert Decimal Form to Floating-Point 

• Convert Floating-Point to Decimal Form 

• Copy Numeric Value 

• Divide 

• Extract Magnitude 

• Multiply 

• Negate 

• Scale 

• Subtract Numeric 

• Signal Exception 

Exception Specifications 23-17 



OCOF Master Key Not Defined 

The cipher operation requested use of the master 
key but the master key has not been defined by 
the Modify Machine Attributes instruction. 

Instructions Causing Exception: 

• Cipher 

• Cipher Key 

• Signal Exception 

OCI0 Weak Key Not Valid 

The key supplied in the template is a weak key 
and cannot be accepted by the cipher operation. 

Instructions Causing Exception: 

• Cipher 

• Cipher Key 

• Modify Machine Attributes 

• Signal Exception 

23-18 

OC 11 Key Parity Invalid 

The key supplied in the template does not have 
odd parity in each byte and is. therefore. 
unacceptable for the cipher operation. 

Information Passed: 

• Offset (byte) to the key field Bin(2) 

• Reserved Char(B) 

Instructions Causing Exception: 

• Cipher 

• Modify Machine Attributes 

• Signal Exception 

OCOE Floating-Point Zero Divide 

This exception is signaled for a floating-point 
division operation if the divisor is zero and the 
dividend is a finite nonzero number. 

Instructions Causing Exception: 

• Compute Math Function Using Two Input 
Values 

• Divide 

• Signal Exception 



OE Context Operation 

OEO 1 Duplicate Object Identification 

An attempt was made to place addressability in a 
context to an object having the same name, type, 
and subtype as an existing entry in the context. 

Information Passed: 

• System pointer to the existing object 

• Object identification 
- Object type 

Object subtype 
- Object name 

Instructions Causing Exception: 

• All create instructions 

• Modify Addressability 

• Rename Object 

• Signal Exception 

Char(32) 
Char(1) 
Char(1 ) 
Char(30) 

OE02 Object Ineligible For Context 

An attempt was made to delete addressability to 
an object of a type that may be addressed only by 
the machine context. or an attempt was made to 
place addressability to an object in a temporary or 
permanent context that may be addressed only by 
the machine context. 

Information Passed: 

• System pointer to object 

• Object identification 
Object type 
Object subtype code 

- Object name 

Instructions Causing Exception: 

• Modify Addressability 

• Signal Exception 

Char(32) 
Char(1 ) 
Char(1) 
Char(30) 

Exception Specifications 23-19 



10 Damage 

1002 Machine Context Damage State 

The machine context cannot be referenced 
because it is in the damaged state. The machine 
context rebuild option of the Reclaim instruction 
can be used to correct the problem or an IPL can 
correct the problem. 

Information Passed: 

• Reserved (binary 0) 

• VLOG dump 10 

• Error class 

• The error class codes for the 
type of damage detected are 
as follows: 

Char(16) 

Char(8) 

Bin(2) 

Hex 0000 

Hex 0001 

Hex 0002 

Hex 0003 

Previously marked damaged 

Detected abnormal condition 

23-20 

Locally invalid device sector 

Device failure 

• Auxiliary storage device 
failure 

This field is defined for error 
classes hex 0002 and hex 0003. 
It is the OU number of the 
failing device or 0 for a 
main storage failure. 

• Reserved (binary 0) 

Instructions Causing: Exception: 

• Materialize Context 

• Resolve System Pointer 

Bin(2) 

Char(1oo) 

• Any instruction that resolves a system object 
that is located by the machine context 

• Signal Exception 

1004 System Object Damage State 

A system object cannot be accessed because it is 
in the damaged state. 

Information Passed: 

• System pointer to the 
damaged object 

• VLOG dump 10 

• Error class 

• The error class codes for the 
type of damage detected are 
as follows: 

System 
pointer 

Char(8) 

Bin(2) 

Hex 0000 

Hex 0001 

Hex 0002 

Hex 0003 

Previously marked damaged 

Detected abnormal condition 

Locally invalid device sector 

Device failure 

• Auxiliary storage device 
indicator 

This field is defined for error 
classes hex 0002 and hex 0003. 
It is the OU number of the 
failing device or 0 for a 
main storage failure. 

• Reserved (binary 0) 

Instructions Causing Exception: 

Bin(2) 

Char(100) 

• Any instruction that references a system object 

• Signal Exception 



1044 Partial System Object Damage 

Partial damage to a system object has been 
detected. 

Information Passed: 

• System pointer to the 
damaged object 

• VLOG dump 10 

• Error Class 

• The error class codes for the 
type of damage detected are 
as follows: 

System 
pointer 

Char(S) 

Bin(2) 

Hex 0000 

Hex 0001 

Hex 0002 

Hex 0003 

Previously marked damaged 

Detected abnormal condition 

Locally invalid device sector 

Device failure 

• Auxiliary storage device 
indicator 

This field is defined for error 
classes hex 0002 and hex 0003. 
It is the OU number of the 
failing device or 0 for a 
main storage failure. 

• Reserved (binary 0) 

Instructions Causing Exception: 

Bin(2) 

Char(1OO) 

• Any instruction that references a system object 

• Signal Exception 

12 Data Base Management 

1201 Conversion Mapping Error 

During conversions of a numeric field from one 
numeric data representation to another numeric 
data representation, the source value was too large 
to fit in the destination field, the digit (nonzone) 
portion of a packed or zoned source field 
contained an invalid numeric encoding, or the sign 
encoding was invalid. 

Information Passed: 

The following data is provided: 

Cursor 

Data space number 

Ordinal entry number 
(0 if signaled during 
an Insert Data Space 
Entry or an Insert 
Sequential Data Space 
Entries instruction) 

Number of fields in error 

Field data (repeated for each 
field that is in error) 

Field number 
- Error type 

System 
pointer 

Bin(2) 

Bin(4) 

Bin(2) 

Bin(2) 
Char(2) 

The ordinal entry number will contain a value of 
binary zero when the exception occurs when 
inserting new data space entries or performing 
group-by and join operations. 

The field number is the relative location of the 
field as specified when creating the cursor. A field 
number of 1 is the first field in the data field 
location. 

The error type values are as follows: 

• Hex ooo2-Decimal Data: (1) Sign encoding is 
invalid for packed or zoned format. or (2) digit 
encoding is invalid for packed or zoned format. 

Exception Specifications 23-21 



• Hex 0006-Floating-Point Overflow: During 
conversion, a floating-point value exceeded the 
maximum value that can be represented. 

• Hex 0007-Floating-Point Underflow: During 
conversion, a floating-point value became less 
than the minimum value that .can be 
represented. 

• Hex 0009-Floating-Point Invalid Operand: A 
floating-point NaN was used as an operand to 
convert from long floating-point format to short 
floating-point format, from short floating-point 
format to long floating-point format, or from 
floating-point to binary. 

• Hex OOOA-Size: The destination field is too 
small to hold all significant digits of the source 
field. 

• Hex OOOC-Invalid Floating-Point Conversion: A 
floating-point NaN or floating-point infinity was 
used as an operand to convert floating-point to 
packed decimal. 

• Hex OOOD-Floating-Point Inexact Result: In a 
conversion operation, a floating-point value had 
at least one bit of precision rounded away. 

These errors are equivalent to the data base 
hexadecimal exceptions numbered OC02, OC06, 
OC07, OC09, OCOA. OCOC, OCOD, and occur for 
similar reasons. 

Instructions Causing Exception: 

• Copy Data Space Entries 

• Insert Data Space Entry 

• Insert Sequential Data Space Entries 

• Retrieve Data Space Entry 

• Retrieve Sequential Data Space Entries 

• Update Data Space Entry 

• Signal Exception 

23-22 

1202 Key Mapping Error 

During conversions of a numeric field from one 
numeric data representation to another numeric 
data representation, the source value was too large 
to fit in the destination field, the digit (nonzone) 
portion of a packed or zoned source field 
contained an invalid numeric encoding, or the sign 
encoding was invalid. 

Information Passed: 

The following data is provided: 

Cursor 

Data space number 

Binary a 

Number of fields in error 

System 
pointer 

Bin(2) 

Char(4) 

Bin(2) 

Field data (repeated for each field that is in error) 

- Field number Bin(2) 
- Error type Char(2) 



The field number is the relative location of the 
field as specified when creating the cursor. A field 
number of 1 is the first field in the data field 
location. 

The error type values are as follows: 

• Hex 0002-Decimal Data: (1) Sign encoding is 
invalid for packed or zoned format, or (2) digit 
encoding is invalid for packed or zoned format. 

• Hex 0006-Floating-Point Overflow: During 
conversion, a floating-point value exceeded the 
maximum value that can be represented. 

• Hex 0007-Floating-Point Underflow: During 
conversion, a floating-point value became less 
than the minimum value that can be 
represented. 

• Hex 0009-Floating-Point Invalid Operand: A 
floating-point NaN was used as an operand to 
convert from long floating-point format to short 
floating-point format, from short floating-point 
format to long floating-point format, or from 
floating-point to binary. 

• Hex OOOA-Size: The destination field is too 
small to hold all significant digits of the source 
field. 

• Hex OOOB-A substring set cursor operation was 
specified. The byte string terminated in the 
middle of a binary field. 

• Hex OOOC-Invalid Floating-Point Convers;on: A 
floating-point NaN or floating-point infinity was 
used as an operand to convert floating-point to 
packed decimal. 

• Hex OOOD-Floating-Point Inexact Result: In a 
conversion operation, a floating-point value had 
at least one bit of precision rounded away. 

• Hex OOFO-A substring set cursor operation was 
specified. The byte string terminated in the 
middle of a floating-point field. 

These errors are equivalent to the data base 
hexadecimal exceptions numbered OC02, OC06, 
OC07, OC09, OCOA, OCOC, OCOD, and occur for 
similar reasons. 

Instructions Causing Exception: 

• Copy Data Space Entries (mapping from 
template) 

• Materialize Cursor Attributes (mapping key out 
to buffer) 

• Retrieve Sequential Data Space Entries 
(mapping key to buffer) 

• Set Cursor (mapping key in/out) 

• Signal Exception 

1203 Cursor Not Set 

An attempt was made to perform a data base 
operation using a cursor that is not set to address 
a data space entry. 

Information Passed: 

• System pointer to cursor 

• Data space number Bin(2) 

The data space number will be zero for a non-join 
cursor. 

Instructions Causing Exception: 

• Retrieve Data Space Entry 

• Set Cursor 

• Signal Exception 

Exception Specifications 23-23 



1204 Data Space Entry Limit Exceeded 

The operation caused the user-provided maximum 
number of entries limitation for the data space to 
be exceeded. 

Information Passed: 

• Cursor (binary 0 for 
instruction not involving 
a cursor) 

• Data space 

Instructions Causing Exception: 

• Copy Data Space Entries 

System 
pointer 

System 
pointer 

• Data Base Maintenance (insert default entries 
and insert deleted entries option) 

• Insert Data Space Entry 

• Insert Sequential Data Space Entries 

• Signal Exception 

23-24 

1205 Data Space Entry Already Locked 

An attempt has been made to lock a data space 
entry using the Set Cursor instruction when the 
data space entry is already locked to a cursor (this 
cursor or another cursor) or to a commit block that 
is not attached to this process. A system pointer 
to the process control space of the process that 
activated the cursor or attached the commit block 
that holds the lock is returned. 

Information Passed: 

• Cursor 

• Data space 

• Ordinal entry number 

• Return code (bit significant) 
- Hex 00 = Locked to 

another process 
- Hex 01 = Locked to 

current process 

• Reserved (binary 0) 

• Process control space 

Instructions Causing Exception: 

• Set Cursor 

• Signal Exception 

System 
pointer 

Bin(2) 

Bin(4) 

Char(1 ) 

Char(9) 

System 
pointer 



1206 Data Space Entry Not Found 

An attempt has been made to refer to a data 
space entry that could not be found because the 
entry has been deleted or its key has been omitted 
from the data space index. 

Information Passed: 

• Cursor 

• Data space number 

Instructions Causing Exception: 

• Retrieve Data Space Entry 

• Set Cursor 

• Signal Exception 

1207 Data Space Index Invalid 

System 
pointer 

Bin(2) 

The index specified for a data base operation is 
not usable. 

Information Passed: 

• Cursor 
(binary 0 for instructions 
not involving cursor) 

• Data space index 

Instructions Causing Exception: 

• Activate Cursor 

• Copy Data Space Entries 

• Retrieve Data Space Entry 

System 
pointer 

System 
pointer 

• Retrieve Sequential Data Space Entries 

• Set Cursor 

• Signal Exception 

1208 Incomplete Key Description 

The cursor cannot be set by key for this data 
space index because the output mapping template 
used to create this cursor failed to provide a 
description of each field that comprises the key. 

Information Passed: 

• Cursor 

• Data space number of the 
key format selected 

Instructions Causing Exception: 

• Copy Data Space Entries 

• Create Cursor 

• Set Cursor 

• Signal Exception 

System 
pointer 

Bin(2) 

Exception Specifications 23-25 



1209 Duplicate Key Value in Existing Data Space 
Entry 

An attempt has been made to insert or update a 
data space entry in a data space over which a 
unique keyed index has been built, and the data 
space entry has a key value identical to an existing 
data space entry addressed by the index. 

Information Passed: 

• Cursor (binary 0 for 
operations not involving 
a cursor) 

• Data space index 

• The data space number of 
the entry associated with 
the key already in the data 
space index 

• The ordinal number of the 
entry associated with the key 
already in the data 
space index 

• The data space number of the 
entry that was being added or 
changed and caused the 
exception 

• The ordinal number of the 
entry that was being changed 
and caused the exception 
(0 if an insert was being 
attempted) 

Instructions Causing Exception: 

• Apply Journaled Changes 

• Copy Data Space Entries 

• Insert Data Space Entry 

• Insert Sequential Data Space Entries 

• Update Data Space Entry 

• Signal Exception 

23-26 

System 
pointer 

System 
pointer 

Bin(2) 

Bin(4) 

Bin(2) 

Bin(4) 

120A End of Path 

The end of an access path was reached when an 
attempt was made to position a cursor. 

Information Passed: 

• Cursor 

Instructions Causing Exception: 

System 
pointer 

• Retrieve Sequential Data Space Entries 

• Set Cursor 

• Signal Exception 

1208 Duplicate Key Value Detected 

While creating or rebuilding a data space index 
with the unique key attribute, entries were found 
to generate the same key value. The build 
detected up to a maximum of 20 duplicate key 
values before terminating. 

Information Passed: 

• Data space index 

• Number of duplicates detected 

• (Repeated for each duplicate) 
Data space number of first 
entry 
Ordinal number of first 
entry 
Data space number of 
second entry 
Ordinal number of second 
entry 

System 
pointer 

Bin(2) 

Bin(2) 

Bin(4) 

Bin(2) 

Bin(4) 



Instructions Causing Exception: 

L • Create Data Space Index 

• Data Base Maintenance (rebuild option) 

• Signal Exception 

1200 No Entries Locked 

No data space entries were locked to this cursor. 

Information Passed: 

• Cursor System 
pointer 

Instructions Causing Exception: 

• Delete Data Space Entry 

• Update Data Space Entry 

• Signal Exception 

120F Duplicate Key Value in Uncommitted Data Space 
Entry 

An attempt has been made to insert or update a 
data space entry in a data space over which a 
unique keyed index has been created. and the data 
space entry has a key value identical to a data 
space entry key value that has been deleted or 
changed under commitment control but is still 
reserved by the index. The insert or update cannot 
be done until the uncommitted changes are 
committed. 

Information Passed: 

· Cursor (binary 0 for System 
operations not involving pointer 
a cursor) 

· Data space index System 
pointer 

· The data space number of Bin(2) 
the entry associated with 
the key reserved in the 
data space index 

· The ordinal number of the Bin(4) 
entry associated with the 
key reserved in the data 
space index 

· The data space number of Bin(2) 
the entry that was being 
added or changed and caused 
the exception 

· The ordinal number of Bin(4) 
the entry that was being 
changed and caused the exception 
(zero if an insert was being 
attempted) 

Exception Specifications 23-27 



Instructions Causing Exception: 

• Copy Data Space Entries 

• Insert Data Space Entry 

• Insert Sequential Data Space Entries 

• Update Data Space Entry 

• Signal Exception 

1213 Invalid Mapping Template 

23-28 

An error was detected in a mapping template. The 
data space number indicates the template in the 
mapping template list that contains the error. This 
field will equal 1 for a group-by mapping 
template, and will reference the appropriate 
template for the per data space mapping 
templates for Create Cursor and Create Data 
Space Index instructions. This field will contain a 
zero when an intermediate mapping table is 
missing. 

The template field number indicates which field 
number is in error for the scalar part of the 
mapping template (number of bytes in mapping 
template and mapping type). The contents of the 
reserved field immediately following the mapping 
type field is ignored (only present when 
intermediate mapping is specified). 

The template field number also indicates the field 
in error for input and output mapping tables. Field 
number equal 0 indicates the template field 
number of bytes in the mapping template, field 
number equal 1 indicates field designating input 
mapping type, field number equal 2 indicates field 
designating output mapping type, field number 
equal 3 indicates field designating number of fields 
in the input/output mapping tables, and so forth. 
Each specification in the input/output tables is 
considered one field for counting purposes. 

When an intermediate mapping table is in error, 
the template field number will equal O. The offset 
to field in error field will designate the offset to 
the field from the start of the intermediate 
mapping table. Offset equal 0 designates the field 
number of intermediate mapping specifications, 
and so forth. 

Possible errors are an invalid value, a value that 
exceeds allowed range, a length that is invalid for 
the specified type or a type that is inconsistent 
with the type specified for the field in the data 
space, key description, or an intermediate buffer 
description. 

The invalid mapping template exception will not be 
signaled when a data pointer fails verification. The 
normal exception associated with verifying data 
pointers will be signaled instead. 

Information Passed: 

• Data space number 

• Template field number 
(valid only for input/output 
mapping tables and the scalar 
part of the mapping template; 
number of bytes in template, 
input mapping type, output 
mapping type) 

Bin(2) 

Bin(2) 

• Template type Char(1) 
Hex 00 = Per data space mapping 

template (input/output mapping 
table and scalar part of template) 

Hex 01 = Per data space mapping 
template (output intermediate 
mapping table) 

Hex 02 = Group-by intermediate 
mapping table 

Hex 03 = Derived key intermediate 
mapping table 

• Reserved Char(1 ) 



• Offset to field in error 

L 
(valid only for intermediate 
mapping table errors) 

• Error type 
(valid only for intermediate 
mapping table errors) 
- Operand 1 error 

Operand 2 error 
Result field error 
Operation field error 
Missing intermediate mapping 
table 
Reserved 
Array position of data 
pointer is invalid 
Array position of translate 
table is invalid 

- Field number invalid 
- Field type invalid 
- Field length invalid 
- Operand location/type 

invalid 
- Start character invalid 

End character invalid 
- Rounding mode invalid 

Reserved field invalid 

Instructions Causing Exception: 

• Create Cursor 

• Signal Exception 

Bin(4) 

Char(2) 

Bit(O) 
Bit(1) 
Bit(2) 
Bit(3) 
Bit(4) 

Bit(5) 
Bit(6) 

Bit(7) 

Bit(Sl 
Bit(9) 
Bit(10) 
Bit(11 ) 

Bit(12) 
Bit(13) 
Bit(14) 
Bit(15) 

1214 Invalid Selection Template 

An error was detected in a selection template. The 
data space number indicates which template in the 
selection template list contains the error. This field 
will equal 1 for a group-by selection template, and 
will reference the appropriate template for the per 
data space mapping template for Create Cursor 
and Create Data Space Index. 

The offset to field in error indicates which field is 
in error in the selection template. The offset equal 
o designates the field length of selection template 
is in error, offset equal 4 designates the field 
number of selection descriptors is in error, and so 
forth. 

The invalid selection template exception will not be 
signaled when a data pointer fails verification. The 
normal exception associated with verifying data 
pointers will be signaled instead. 

Exception Specifications 23-29 



Information Passed: 

• Data space number (position Bin(2) 
list) 

• Offset to field in error Bin(4) 

• Selection template type Char(1) 

23-30 

Hex 00 = Per data space selection 
Hex 01 = Group-by selection 

Reserved 

• Selection descriptor errors 
- Descriptor type error 
- Operand/operation error 
- Maximum number specifications 

exceeded 
- Literal content in error 
- Reserved 
- Operand location invalid 
- Field number invalid 
- Starting offset invalid 
- Ending offset invalid 
- Array position of data 

pointer invalid 
- Offset to pattern descriptor 

invalid 
- Number pattern descriptor 

invalid 
- Reserved field invalid 

• Pattern descriptor error types 
- Descriptor type invalid 
- Descriptor field invalid 
- Reserved 
- Field location invalid 
- Field number invalid 
- Starting offset invalid 
- Ending offset invalid 
- Array position of data 

pointer invalid 
- Span type invalid 
- Span width invalid 
- Reserved field invalid 

Instructions Causing Exception: 

• Create Cursor 

• Signal Exception 

Char(1 ) 

Char(2) 
Bit(O) 
Bit(1 ) 
Bit(2) 

Bit(3) 
Bit(4-7) 
Bit(8) 
Bit(9) 
Bit(10) 
Bit(11 ) 
Bit(12) 

Bit(13) 

Bit(14) 

Bit(15) 

Char(2) 
Bit(O) 
Bit(1 ) 
Bit(2-7) 
Bit(8) 
Bit(9) 
Bit(10) 
Bit(11 ) 
Bit(12) 

Bit(13) 
Bit(14) 
Bit(15) 

1215 Data Space Not Addressed by Index 

An entry in the data space list does not address 
the same data space that is addressed by the 
corresponding entry in the data space list defined 
for the data space index. 

Information Passed: 

• Entry in the data space list of 
the Create Cursor instruction 
template 

Instructions Causing Exception: 

• Create Cursor 

• Signal Exception 

1216 Data Space Not Addressed by Cursor 

Space 
pointer 

An entry in the data space list does not address 
the same data space that is addressed by the 
corresponding list that is defined for the cursor. 

Information Passed: 

• Cursor 

• Entry in the data space list 
of the Activate Cursor 
instruction template 

Instructions Causing Exception: 

• Activate Cursor 

• Signal Exception 

System 
pointer 

Space 
pointer 



L 

1217 Key Value Changed Since Set Cursor 

The data space index key for the entry currently 
addressed by the cursor has changed since the 
cursor was set. The former value of the key was 
instrumental in finding the entry and is no longer 
valid; therefore, the entry is no longer the 
expected entry. 

Information Passed: 

• Cursor 

• Data space number 

Instructions Causing Exception: 

• Retrieve Data Space Entry 

• Set Cursor 

• Signal Exception 

1219 Invalid Rule Option 

System 
pointer 

Bin(2) 

The cursor has addressability to a data space 
index and the current cursor setting allows only 
rule options of relative or ordinal. 

Information Passed: 

• Cursor 

Instructions Causing Exception: 

System 
pointer 

• Retrieve Sequential Data Space Entries 

• Set Cursor 

• Signal Exception 

121 A Data Space Entry Size Exceeded 

The sum of the field lengths in the entry definition 
template exceeds 32 766 bytes which is the 
maximum size allowed for a data space entry. 

Instructions Causing Exception: 

• Create Data Space 

• Signal Exception 

121 B Logical Data Space Entry Size Limit Exceeded 

The user's view of the data space entry (defined 
by the mapping code) exceeds 32 766 bytes, 
which is the maximum size allowed. 

Information Passed: 

• Template number 
(position list) 

Bin(2) 

• Template type Char(1) 
- Hex 00 = Input mapping template 
- Hex 01 = Output mapping template 
- Hex 02 = Intermediate mapping template 
- Hex 03 = Group-by output mapping 

template 
- Hex 04 = Group-by intermediate 

mapping template 

Instructions Causing Exception: 

• Create Cursor 

• Signal Exception 

Exception Specifications 23-31 



121 C Key Size Limit Exceeded 

The sum of the key field lengths plus the specified 
fork characters exceeds 120 bytes, which is the 
maximum size allowed for a data space index key. 

Information Passed: 

• Data space number Bin(2) 

Instructions Causing Exception: 

• Create Data Space Index 

• Signal Exception 

121D Logical Key Size Limit Exceeded 

The user's view of the data space index key 
exceeds 32 766 bytes, which is the maximum size 
allowed. 

Information Passed: 

• Data space number Bin(2) 

Instructions Causing Exception: 

• Create Cursor 

• Signal Exception 

23-32 

121 E Selection Routine Buffer Size Limit Exceeded 

The selection routine's view of the data space 
entry as specified in the selection specification 
exceeds 32 767 bytes, which is the maximum size 
allowed. 

Information Passed: 

• Data space number Bin(2) 

Instructions Causing Exception: 

• Create Data Space Index 

• Signal Exception 

121F User Exit Routine Criteria Not Satisfied 

The specified user exit routine failed to meet the 
criteria for a data space user exit routine. 

Information Passed: 

• User exit routine 

Instructions Causing Exception: 

• Create Data Space Index 

• Signal Exception 

System 
pointer 

J 



L 
1221 Unable to Maintain a Unique Key Data Space 

Index 

An attempt has been made to insert or update a 
data space entry in a data space over which a 
unique keyed index exists that has been implicitly 
invalidated. 

Information Passed: 

• Cursor (binary 0 for 
operations not involving 
a cursor) 

• Data space 

• Data space index (invalidated) 

Instructions Causing Exception: 

• Apply Journaled Changes 

• Copy Data Space Entries 

• Insert Data Space Entry 

• Insert Sequential Data Space Entries 

• Update Data Space Entry 

• Signal Exception 

System 
pointer 

System 
pointer 

System 
pointer 

1222 Data Space Index with User Exit Selection 
Routine Build Termination 

While creating or rebuilding a data space index 
that contains a user exit selection routine, data 
space entries that resulted in an error in the 
selection routine were encountered. The build, 
before termination, found up to 20 instances of 
these types of errors. The instruction is 
terminated. 

Information Passed: 

• Data space index 
(binary 0' s if signaled 
during creation) 

• Number of errors detected 
(repeated for each selection 
routine error) 

• Error descriptor (repeated for 
each selection routine error) 

Data space number 
Ordinal entry number 
Reason code 
Hex 01 = Selection mapping error 
Hex 02 = Selection routine failure 
Hex 03 = Error in invoking 

selection routine 
Reserved (binary 0) 

Instructions Causing Exception: 

System 
pointer 

Bin(2) 

Char(S) 

Bin(2) 
Bin(4) 
Char(1 ) 

Char(1 ) 

• Activate Cursor (over delayed maintenance data 
space index) 

• Create Data Space Index 

• Data Base Maintenance (rebuild data space 
index option) 

• Signal Exception 

Exception Specifications 23-33 



1223 Data Space Index User Exit Selection 
Routine Failure 

An attempt has been made to insert or update a 
data space entry in a data space over which a data 
space index with a selection routine exists. and an 
error was encountered in the selection routine. 

Information Passed: 

• Cursor (binary 0 for 
operations not involving 
a cursor) 

• Data space 

• Data space index 

• Data space number (in the 
data space list of the data 
space index) 

• Ordinal entry number 
(0 if entry was being inserted) 

System 
pointer 

System 
pointer 

System 
pointer 

Bin(2) 

Bin(4) 

• Reason code Char(1) 

1225 Invalid Data Base Operation 

A data base operation was attempted through a 
cursor whose activation options indicated that the 
operation was not to be allowed. 

Information Passed: 

• Cursor 

• Extended activation functions 
(as defined in the cursor 
activation template) 

System 
pointer 

Char(2) 

Operation attempted Char(1) 
Hex 80 = Retrieval of data space entry 
Hex 40 = Update of data space entry 
Hex 20 = Delete of data space entry 
Hex 10 = Insert of data space entry 

Instructions Causing Exception: 

• Copy Data Space Entries 

• Delete Data Space Entry 

Hex 01 = Selection mapping error • Insert Data Space Entry 
Hex 02 = Selection routine failure 
Hex 03 = Error invoking selection • Insert Sequential Data Space Entries 

routine 
• Retrieve Data Space Entry 

• Reserved Char(1 ) 

• Retrieve Sequential Data Space Entries 
• Cursor data space number Bin(2) 

• Update Data Space Entry 

Instructions Causing Exception: • Signal Exception 

• Apply Journaled Changes 

• Copy Data Space Entries 

• Data Base Maintenance (insert default entries) 

• Insert Data Space Entry 

• Insert Sequential Data Space Entries 

• Update Data Space Entry 

• Signal Exception 

23-34 



1226 Data Space Index with Invalid Floating-Point 
Field Build Termination 

While creating or rebuilding a data space index 
that contains floating-point keys. an invalid 
floating-point value was encountered. Up to 20 
instances of these types of errors may be found 
before the instruction is terminated. 

Information Passed: 

• Data space index 
(binary 0 is signaled 
during creation) 

• Number of errors detected 

• Error description 
(repeated for each selection 
routine error) 

Data space number 
Ordinal entry number 

- Reason code 
Hex 01 = Floating-point 
NaN detected 
Reserved (binary 0) 

Instructions Causing Exception: 

• Create Data Space Index 

• Data Base Maintenance 

• Signal Exception 

System 
pointer 

Bin(2) 

Bin(2) 
Bin(4) 
Char(1) 

Char(1 ) 

1227 Data Space Index Key with Invalid Floating-Point 
Field 

An attempt was made to insert or update a data 
space entry in a data space under a data space 
index that contains floating-point key fields. or a 
key is being used to search a data space index 
that contains floating-point key fields and a 
floating-point key field contains an invalid value. 

Information Passed: 

• Cursor (binary 0 for 
operations not involving a 
cursor) 

• Data space 

• Data space index 

• Data space number (in the 
(data space list of the 
data space index) 

• Ordinal entry number (zero 
if entry was being inserted) 

System 
pointer 

System 
pointer 

System 
pointer 

Bin(2) 

Bin(4) 

• Reason code Char(1) 
Hex 01 = Floating-point NaN detected 

• Reserved 

• Cursor data space number 
Instructions Causing Exception: 

• Apply Journaled Changes 

• Data Base Maintenance 

• Copy Data Space Entries 

• Insert Data Space Entry 

• Insert Sequential Data Space Entries 

• Set Cursor 

• Update Data Space Entry 

• Signal Exception 

Char(1) 

Bin(2) 

Exception Specifications 23-35 



1230 Specified Data Space Entry Rejected 

An attempt has been made to position a cursor to 
a specific data space entry but the retrieval 
selection criteria has rejected the entry. 

Information Passed: 

• Cursor 

• Data space number 

• Ordinal number 

Instructions Causing Exception: 

• Retrieve Data Space Entry 

• Set Cursor 

• Signal Exception 

1232 Join Value Changed 

System 
pointer 

Bin(2) 

Bin(4) 

A join value in a data space entry field used in the 
current join position in the cursor has changed 
since the cursor was positioned. The former value 
of the field was instrumental in performing the join 
operation and is no longer valid; therefore, the 
entry is no longer the expected entry. 

23-36 

Information Passed: 

• Cursor 

• Data space number in cursor 
associated with changed field 

Instructions Causing Exception: 

• Retrieve Data Space Entry 

• Set Cursor 

• Signal Exception 

System 
pointer 

Bin(2) 

1233 Data Space Index with Non-User Exit 
Selection Routine Build Termination 

While creating or rebuilding a data space index 
that contains a non-user exit selection routine, 
data space entries were encountered which 
resulted in an error in the selection routine. The 
build, before terminating, found up to 20 instances 
of these types of errors. The instruction is 
terminated. 

Information Passed: 

• Data space index 
(binary zeros if signaled 
during creation) 

• Number of errors detected 

• Reserved 

• Error description 
(repeated for each selection 
routine error) 

Data space number 
Ordinal entry number 
Reserved (binary 0) 

- Error type 
Operand 1 field data 
- Field number 
- Field location 

Hex 00 = Data space entry 

System 
pointer 

Bin(2) 

Char(4) 

Char(22) 

Bin(2) 
Bin(4) 
Char(S) 
Char(2) 
Char(4) 
Bin(2) 
Char(1) 

Hex 01 = Cursor intermediate buffer 
Hex 03 = Intermediate key buffer 
Hex 04 = Key field 

-Reserved 
Operand 2 field data 
(same as operand 1 field data) 

Char(1 ) 
Char(4) 

The field number designates the relative location 
of the field as specified when creating the cursor, 
index, or data space. Field number equal 1 is the 
first field in the field location. 



L 
The error type values are as follows: 

Hex 0002-decimal data: (1) Sign encoded is 
invalid for packed or zoned format, (2) Digit 
encoding is invalid for packed or zoned format. 

Hex 0009-floating-point invalid operand: A 
floating-point NaN was used as an operand in a 
comparison. 

Instructions Causing Exception: 

• Activate Cursor (over delayed maintenance data 
space index) 

• Create Data Space Index 

Data Base Maintenance (rebuild data 
space index) 

• Modify Data Space Index Attributes 

• Signal Exception 

1234 Non-User Exit Selection Routine Failure 

An attempt has been made to insert, retrieve, or 
update a data space entry in a data space, and an 
error was encountered in a non-user exit selection 
routine. 

Information Passed: 

• Cursor (binary 0 for 
operations not involving a 
cursor) 

• Data space 

• Data space index (binary 0 
if selection error not 
involving the index) 

• Join cursor ordinal positions 

• Error description 
Index data space number 
(binary 0 if selection error 
not on the index) 

- Cursor data space number 
(binary 0 for operations not 
involving a cursor) 
Ordinal entry number (0, if 
entry was being inserted or 
group-by selection) 
Reserved 
Error type 
Operand 1 field data (0 
if literal) 
Field number 
Field location 

Hex 00 = Data space entry 

System 
pointer 

System 
pointer 

System 
pointer 

Char(128) 

Char(22) 
Bin(2) 

Bin(2) 

Bin(4) 

Char(4) 
Char(2) 
Char(4) 

Bin(2) 
Char(1 ) 

Hex 01 = Cursor intermediate buffer 
Hex 02 = Group-by intermediate buffer 
Hex 03 = Intermediate key buffer 
Hex 04 = Key field 

Reserved 
Operand 2 field data 
(same as operand 1 field data) 

Char(1 ) 
Char(4) 

Exception Specifications 23-37 



The field number designates the relative location 
of the field as specified when creating the cursor, 
index, or data space. Field number equal 1 is the 
first field in the field location. A field number 
equal 0 designates there is no exception data for 
this operand. 

The error type values are identical with those 
received for exception hex 1233. 

The ordinal entry number will contain a binary zero 
value if the exception occurs while processing 
default values during a join operation. 

The join cursor ordinal positions area is meaningful 
only on operations with a join cursor and is zero 
otherwise. It will be zero for group-by selection. 
Each ordinal number occupies 4 bytes. All current 
ordinal numbers associated with a join cursor are 
returned. 

Instructions Causing Exceptions 

• Apply Journaled Changes 

• Data Base Maintenance (insert default entries) 

• Insert Data Space Entry 

• Insert Sequential Data Space Entries 

• Retrieve Data Space Entry 

• Retrieve Sequential Data Space Entry 

• Set Cursor 

• Update Data Space Entry 

• Signal Exception 

23-38 

1236 No Mapping Code Specified 

Cursor cannot be used to perform inserts, 
retrieves, or updates with the specified data space 
due to no data space entry input mapping code or 
no output mapping code specified in a Create 
Cursor instruction. 

Information Passed: 

• Cursor 

• Data space number 

Instructions Causing Exception: 

• Insert Data Space Entry 

• Insert Sequential Data Space Entries 

• Retrieve Data Space Entry 

System 
pointer 

Bin(2) 

• Retrieve Sequential Data Space Entry 

• Signal Exception 

• Update Data Space Entry 



L 
1237 Operation Not Valid with Join Cursor 

An attempt has been made to insert, update, or 
delete a data space entry through a join cursor. 

Information Passed: 

• Cursor 

Instructions Causing Exception: 

• Copy- Data Space Entries 

• Delete Data Space Entry 

• Insert Data Space Entry 

• Insert Sequential Data Space Entries 

• Signal Exception 

Update Data Space Entry 

System 
pointer 

1238 Derived Field Operation Error 

During derived field operations, one of a variety of 
derived field operational errors occurred. The field 
number designates the relative location of the field 
as specified when creating the cursor or data 
space index. Field number equal 1 is the first field 
in the field location. The field location is described 
by the field location exception data. 

The error type is identical with those for exception 
number hex 1201, conversion mapping error with 
the addition of: 

• Hex OOOB = An attempt has been made to 
divide by zero on a fixed-point divide operation. 

• Hex OOOE = An attemp has been made to divide 
by zero on a floating-point divide operation. 

Information Passed: 

• Cursor (0 for operations 
not involving a cursor) 

• Index (derived key operations) 

• Join cursor ordinal positions 

• Index data space number 
(binary 0 for operations not 
involving the index) 

• Cursor data space number 
(binary 0 for operations not 
involving the cursor) 

• Ordinal entry number 

System 
pointer 

System 
pointer 

Char(128) 

Bin(2) 

Bin(2) 

Bin(4) 

• Buffer location type CharI 1) 
Hex 01 = Cursor intermediate buffer 
Hex 02 = Group-by intermediate buffer 
Hex 03 = Intermediate key buffer 

• Reserved 

• Number of offending fields 

• Field data (repeated) 
- Field number 
- Error type 
- Reserved 

Char(3) 

Bin(2) 

Char(5) 
Bin(2) 
Char(2) 
Char(2) 

Exception Specificatio'ls 23-39 



The ordinal entry number will contain a binary zero 
value if the exception occurs during inserts of new 
entries into a data space or the error occurs while 
processing default values during a join operation. 

The ordinal entry number and data space number 
will contain a value of binary zero when the error 
occurs during group-by derived field operations. 

Instructions Causing Exception: 

• Apply Journal Changes 

• Copy Data Space Entries 

• Data Base Maintenance 

• Insert Data Space Entry 

• Insert Sequential Data Space Entries 

• Materialize Cursor Attributes 

• Modify Data Space Index Attributes 

• Retrieve Data Space Entry 

• Retrieve Sequential Data Space Entry 

• Set Cursor 

• Signal Exception 

• Update Data Space Entry 

23-40 

1239 Derived Field Operation Error During Build Index 

While creating or rebuilding a data space index, 
data space entries were encountered which 
resulted in derived field operational errors. The 
build, before terminating, found up to 20 instances 
of these types of errors. The instruction is 
terminated. 

Even though multiple errors may have occurred on 
a data space entry, only the first occurrence per 
entry is reported. 

Information Passed: 

• Data space index (binary zeros 
if during index creation) 

• Number of error descriptions 

• Reserved 

• Error description (repeated) 
Data space number 
Ordinal entry number 
Field number 
Eror type 
Field location 
Hex 03 = Intermediate key buffer 
Unassigned values reserved 
Reserved 

System 
pointer 

Bin(2) 

Char(4) 

Char(14) 
Bin(2) 
Bin(4) 
Bin(2) 
Char(2) 
Char(1) 

Char(3) 

The exception field definitions are the same as for 
the hex 1238 exception (derived field operation 
error). 

Instructions Causing Exception: 

• Create Data Space Index 

• Data Base Maintenance 

• Activate Cursor (over delayed maintenance 
index) 

• Insert Sequential Data Space Entries 

• Signal Exception 



L 

14 Event Management 

1401 Duplicate Event Monitor 

This exception is signaled when identical event 
monitors (the existing event monitor and the 
requested event monitor) do not specify event 
handlers or when the event monitors specify 
different event handlers. 

Information Passed: 

• Addressability to the monitor 
event template 

Instructions Causing Exception: 

• Monitor Event 

• Signal Exception 

1402 Event Monitor Not Present 

Space 
pointer 

An event monitor with matching event 10, compare 
value length, and compare value was not found in 
the executing process. 

Information Passed: 

• Option indicators 
Compare value content 
o = System pointer not present 
1 = System pointer present 
Reserved (binary 0) 

• Reserved (binary 0) 

• Event identification 
Event class 
Event type 
Event subtype 

• Compare value length 

• Compare value 

Char(2) 
Bit 0 

Bits 1-15 

Char(8) 

Char(4) 
Char(2) 
Char(1) 
Char(1) 

Bin(2) 

Char(32) 

Instructions Causing Exception: 

• Cancel Event Monitor 

• Disable Event Monitor 

• Enable Event Monitor 

• Test Event 

• Wait On Event 

• Signal Exception 

1403 Machine Event Requires Specification of a 
Compare Value 

The referenced machine event requires use of a 
compare value. 

Instructions Causing Exception: 

• Monitor Event 

• Signal Exception 

1404 Wait On Event Attempted While Masked 

The process was masked when the Wait On Event 
instruction was issued. 

Instructions Causing Exception: 

• Wait On Event 

• Signal Exception 

1405 Disable Timer Event Monitor Invalid 

An attempt was made to disable an event monitor 
that is monitoring a timer event. 

Instructions Causing Exception: 

• Disable Monitor Event 

• Signal Exception 

Exception Specifications 23-41 



1406 Signal Timer Event Monitor Invalid 

An attempt was made to signal an event monitor 
that is monitoring a timer event. 

Instructions Causing Exception: 

• Signal Event 

• Signal Exception 

16 Exception Management 

1601 Exception Description Status Invalid 

The tested exception description was not in the 
deferred state. 

Instructions Causing Exception: 

• Test Exception 

• Signal Exception 

1602 Exception State of Process Invalid 

23-42 

An attempt was made to retrieve exception data or 
resignal an exception when the process is not in 
an exception handling state; that is, the process is 
not in an external program, internal entry point, or 
branch point exception handler. The re-signal 
option is valid only for an external exception 
handler. 

Instructions Causing Exception: 

• Signal Exception 

• Retrieve Exception Data 

1603 Invalid Invocation Address 

The invocation address specified in the space 
pointer on a Return From Exception instruction or 
Signal Exception instruction did not represent an 
existing program invocation. 

Information Passed: 

• Space pointer 

Instructions Causing Exception: 

• Return From Exception 

• Sense Exception Description 

• Signal Exception 

18 Independent Index 

1801 Duplicate Key Argument in Index 

An attempt was made to insert a key argument 
that already exists in the index. 

Information Passed: 

• Independent index 

Instructions Causing Exception: 

• Insert Independent Index Entry 

• Signal Exception 

System 
pointer 



1 A lock State 

1 AO 1 Invalid Lock State 

The lock enforcement rule or rules were violated 
when an attempt was made to access an object. 

Information Passed: 

• System pointer to the object 

Instructions Causing Exception: 

• All instructions that enforce the lock rules 

• Signal Exception 

lA02 Lock Request Not Grantable 

The lock request cannot be granted immediately 
and neither the synchronous nor asynchronous 
wait option was specified. 

Information Passed: 

• Pointer to lock request 
template 

• Failing request number 
(relative entry position) 

Instructions Causing Exception: 

• Lock Object 

• Signal Exception 

Space 
pointer 

Bin(2) 

lA03 Invalid Unlock Request 

An attempt was made to unlock a lock state not 
held by the current requesting process. 

Information Passed: 

• Pointer to unlock request 
template 

• Number of requests not 
unlocked 

• Request number (relative 
entry position for each 
lock not unlocked) 

Instructions Causing Exception: 

• Unlock Object 

• Signal Exception 

lA04 Invalid Object Lock Transfer Request 

Space 
pointer 

Bin(2) 

Bin(2) 

An attempt was made to transfer locks that were 
not held by the transferring process, or the 
transfer lock request was not granted because the 
lock granting rules would have been violated. 

Information Passed: 

• Pointer to lock transfer 
request template 

• Number of requests not 
transferred 

• Request number (relative 
entry position for each 
lock not transferred) 

Instructions Causing Exception: 

• Transfer Object Lock 

• Signal Exception 

Space 
pointer 

Bin(2) 

Bin(2) 

Exception Specifications 23-43 



lAOS Invalid Space Location Unlocked 

An attempt was made to unlock a space location 
lock not held by the current requesting process. 

Information Passed: 

• Space location process 
attempted to unlock 

• Unlock request 

Instructions Causing Exception: 

• Unlock Space Location 

• Signal Exception 

1 C Machine-Dependent Exception 

lCOl Machine-Dependent Request Invalid 

Space 
pointer 

Char(1 ) 

A function requested by an instruction may not be 
performed because of the current status of the 
machine or process. 

This exception is caused because of one of the 
following conditions: 

• An attempt is made to use an instruction trace 
while the program event monitor is in use by 
the service function. 

• A contiguous region of 32 K bytes of auxiliary 
storage cannot be obtained for an access 
group. 

Instruction Causing Exception: 

• Machine-dependent 

23-44 

1 C02 Program Limitation Exceeded 

The program template contained objects or 
instructions that caused at least one part of the 
encapsulated program to exceed its machine 
specification limit. 

Information Passed: 

Instruction number Bin(2) 
(0 is returned in this field 
if the error code does not 
apply to a specific instruction) 

• Error code Char(2) 

The error codes and their meanings for the Create 
Program instruction are as follows: 

Error 
Code Meaning 

0001 The data needed to initialize 
static areas exceeds 65 535 bytes. 
This includes storage for IDLs 
(6 bytes for each entry in an IOU, 
the values that are the initial 
values for the static areas, and the 
logic needed to copy these initial 
values and to initialize pointers. 

0002 The logic needed to initialize 
automatic areas exceeds 65 535 bytes. 
This includes the logic needed to 
copy initial values into automatic. 
storage and to initialize pointers 
in automatic storage. 

0003 Certain internal constants, which are 
encapsulated into the program and used 
with specific machine interface 
instructions, exceed 4096 bytes. 



Error Error 

L 
Code Meaning Code Meaning 

0004 The encapsulated form of an 0006 The work space needed by the machine 
instruction requires that the machine to support the machine interface 
address more data items than are invocation for this program exceeds 
supported on one instruction. The 65 535 bytes (see note). 
particular instruction in error is 
identified by number in the 0007 An instruction required more than 
exception data for this exception. the maximum amount of storage 
Internal addressability is required allowed for it in the encapsulated 
for the following types of operands: program. The particular instruction 

in error is identified by number in 

· Compound operands, such as those the exception data for this 
that specify subscripting, exception: 
substringing, or explicit basing. 

· Call External, Transfer Control, 

· Operands that exist in other than and Call Internal instructions 
the first 4 K bytes of static or cannot occupy more than 4800 
automatic storage. bytes of storage. For these 

instructions, passing a large 

· Operands that are parameters or based. number of arguments or passing 
arguments with many levels of 

· Constant operands for which the basing can cause the storage 
encapsulated form exists in· other limit to be exceeded. 
than the first 4 K bytes of the 
internal program constant area. · All other instructions are 

limited to a maximum of 

· Operands for which the encapsulated 1000 bytes. For these 
form exists in other than the first instructions, an extensive amount 
4 K bytes of the internal machine of indirect basing in operand 
work space needed to support addressability can cause the 
the machine interface invocation. storage limit to be exceeded. 

In certain cases, this limitation may 0008 Encapsulation of the machine 
apply to the instruction when the perform interface instruction results in a 
optimization option has been specified but requirement for more than 
would not apply when the no optimization 1016 K bytes. 
option was specified. This is due to 
differences in the optimization algorithms 0009 The number of items that the machine 
being employed in each case. To determi needs to address exceeds 4040. One 
whether or not the limitation also applies addressable item is needed for each 
when no optimization is specified, the of the following: 
program must be recreated with that optio 
in effect. · Each parameter 

0005 The constants that are built into · The external parameter list 
the encapsulated object from the 
program template exceed 64 K bytes · Each nonarray pointer 
minus 288 bytes. Constants defined 
in the program template and initial · Each 4096 bytes of static program 
values for automatic storage are objects 

L 
included in this area. 

Exception Specifications 23-45 



• Each 4096 bytes of automatic 
program objects 

• Each 4096 bytes of work space 
needed by the machine to support 
the machine interface 
invocation (see note) 

The error code and its meaning for the Transfer 
Control instruction is as follows: 

Error 
Code Meaning 

0006 The work space needed by the 
machine to support the machine 
interface invocation for the program 
that is given control exceeds 
65 535 bytes (see note). 

Note: The total amount of storage allocated 
to an invocation of a program excluding storage 
allocated from the process automatic storage 
area is 65 200 bytes. 

The following objects cause storage to be 
allocated in the invocation of a program: 

23-46 

Object Size (Bytes for Each) 

Operand list 

• Argument 2 + 6 * number of elements 

• Parameter (internal) 6 * number of elements 

• Parameter (external)2 

Exception descriptions 

• Fixed per entry (26 bytes) 

• Variable-length per entry (1 + length of 
compare value if even; plus 1 if odd) 

The storage allocated from the PASA is 
determined by the space that was allocated by the 
user for PASA use. 

Instructions Causing Exception: 

• Create Program 

• Signal Exception 

• Transfer Control 

lC03 Machine Storage Limit Exceeded 

The storage capacity of the machine was 
exceeded. 

Instructions Causing Exception: 

• This exception can be signaled during any 
machine operation that causes auxiliary storage 
to be allocated. The operations can include 
creation or extension of system objects and 
extension of auxiliary storage for machine 
overhead supporting the established processes 
in the machine. 

• Signal Exception 

1 C04 Object Storage Limit Exceeded 

The maximum size for an object was exceeded. 

The following maximum size limitations are defined 
for the various system objects. Listed with each 
object is a specification of the size as well as a 
definition of the characteristics on which the object 
size depends. Size is independent of any 
associated space that is considered elsewhere. 



Maximum Size The maximum size of the space in a system object 
Object Size Dependency depends on the size and packaging of the system 

Access 4 MB - 32 K Access group directory object. 

group and all objects contained 
in the access group The maximum space size ensures that a space less 

Context 
than or equal to this size may always be allocated 

16 MB Context entries including with the object. Fixed-length spaces can always 
object identification and 
address have this size. Variable-length spaces can always 

be extended to at least this size. This value is 
Controller 4K Controller description independent of the object's size. 
description definition as well as 

relationships to LUDs The following is a list of the guaranteed maximum 
and NOs 

sizes of associated space for various system 

Cursor 64 K Cursor definition objects: 
including entry mappings 

Guaranteed 
Data space 16 x 16 MB Data space definition. Object Maximum Space 

information for each data 
space index. and data 
space entries Access group Initial allocation 

Data 16 MB + 64 K Data space index and key Context 16 MB - 32 B 
space information for every data 
index space in the index. and 

Controller 16 MB - 4 K the size of the user exit 
routine for select/omit description 

Index 16 MB Number and size of index Cursor 16 MB - 64 K 
entries 

Logical unit 4K Logical unit description Data space 16 MB - 32 B 

description definition and relationship 
to other source/sink Data space 16 MB - 64 K - 32 B 
objects index 

Network 4K Network description 
description definition and relationship Index 16 MB - 32 B 

to other source/sink 
objects Logical unit 16 MB - 4 K 

Program 20 MB Program definition 
description 

including object 
Network description 16 MB - 4 K definitions. instruction 

stream. initial values. 
and size of the program Program 16 MB - 32 K 
template 

Queue 16 MB Queue definition plus 
Queue 16MB-64K 

entries enqueued to queue 
Space 16MB-160B 

Space 16 MB Space definition and its 
associated space User profile 16 MB - 32 B 

User 16 MB User profile definition 
profile and entries for owned and 

authorized objects 

Exception Specifications 23-47 



Information Passed: 

• Return object pointer 
(binary 0 if the object 
is being created) 

Instructions Causing Exception: 

• All Create instructions 

System 
pointer 

• All instructions that cause additional storage to 
be allocated for an object 

• Signal Exception 

I C06 Machine Lock Limit Exceeded 

The maximum number of concurrently held locks 
was exceeded. 

No more than 57,344 locks, implicit locks, and 
internal locks required for machine operation may 
exist at anyone time. 

Instructions Causing Exception: 

23-48 

• Activate Cursor 

• Apply Journaled Changes 

• Create Cursor 

• Create Data Space Index 

• Data Base Maintenance 

• Dequeue 

• Initiate Process 

• Lock Object 

• Modify Process Attributes 

• Set Cursor 

• Signal Exception 

• Any instruction that acquires an implicit lock or 
an internal machine lock 

ICOl Modify Main Storage Pool Controls Invalid 

An attempt was made to modify a main storage 
pool to a size smaller than the machine required 
minimum size. 

Information Passed: 

• Number of storage pools 
in error 

• Error description 
(repeated for each error) 

Storage pool I D 
- Reserved (binary 0) 

Instructions Causing Exception: 

Bin(2) 

Char(10) 

Bin(2) 
Bin(8) 

• Modify Resource Management Controls 

• Signal Exception 

IC08 Requested Function Not Valid 

The requested function is not valid or is not 
avaiable on the machine. 

Information Passed: 

• Failure explanation Char(1) 
Hex 00 = Function requested which 

requires use of 5/38 support of 
data encryption algorithm RPQ 
(S40270) and the RPQ is not on . 
the system. 

• Reserved Char(10) 

Instructions Causing Exception: 

• Cipher 

• Cipher Key 

• Signal Exception 



1 E Machine Observation 

1 EO 1 Program Not Observable 

The program observation functions were destroyed 
for the program referenced by the executing 
instruction. 

Information Passed; 

• Program 

Instruction Causing Exception; 

• Materialize Instruction Attributes 

• Materialize Invocation 

• Signal Exception 

20 Machine Support 

2001 Diagnose 

System 
pointer 

An error or discrepancy was found when a 
Diagnose instruction was processed. 

Information Passed; 

• Space element to the subelement in the 
operand 2 object that was being processed 

• Data 

Subidentifier unique to the 
requested function 

Indicator of the pointer in 
operand 2 that was being 
processed 

Instructions Causing Exception; 

• Diagnose 

• Signal Exception 

Bin(4) 

Bin(2) 

Bin(2) 

2002 Machine Check 

A machine malfunction affecting system-wide 
operation has been detected during execution of 
an instruction in this process. 

Information Passed: 

• Timestamp that gives the 
current value of the machine 
time-of-day clock. 

• Error code indicating nature 
of machine check. (This value 
is machine-dependent and is 
only defined in the machine 
service documentation.) 

• Reserved (binary 0) 

• VLOG dump 10 

• Error class 

The error class codes for the 
type of damage detected are 
as follows: 

Char(8) 

Char(2) 

Char(6) 

Char(8) 

Bin(2) 

Hex 0000 = Unspecified abnormal condition 
Hex 0002 = Logically invalid device sector 
Hex 0003 = Device failure 

• Auxiliary storage device 
indicator 

This field is defined for error 
classes hex 0002 and hex 0003. 
It is the OU number of the 
failing device or 0 for a 
main storage failure. 

• Reserved (binary 0) 

Instructions Causing Exception: 

• Any instruction 

• Signal Exception 

Bin(2) 

Char(l00) 

Exception Specifications 23-49 



2003 Function Check 

The executing instruction has failed unexpectedly 
during execution within the process. 

Information Passed: 

• Timestamp giving the 
current value of the machine 
time-of-day clock. 

• Error code indicating the 
nature of the function 
check. (This value is 
machine-dependent.) 

• Reserved (binary 0) 

• VlOG dump I D 

• Error class 

The error class codes for the 
type of damage detected are 
as follows: 

Char(S) 

Char(2) 

Char(6) 

Char(S) 

Bin(2) 

Hex 0000 = Unspecified abnormal condition 
Hex 0002 = logically invalid device sector 
Hex 0003 = Device failure 

23-50 

• Auxiliary storage device 
indicator 

This field is defined for error 
classes hex 0002 and hex 0003. 
It is the OU number of the 
failing device or 0 for a 
main storage failure. 

• Reserved (binary 0) 

Instructions Causing Exception: 

• Any instruction 

• Signal Exception 

Bin(2) 

Char(1OO) 

22 Object Access 

2201 Object Not Found 

An attempt to resolve addressability into a system 
pointer was not successful for one of the following 
reasons: 

• The named object was not located in the 
context specified in the symbolic address or in 
any context referenced in the name resolution 
list. 

• An object with a corresponding name was 
found but the user profile(s) governing 
execution of the instruction did not have the 
authority required for resolution. 

Information Passed: 

• Object identification 
- Object type 
- Object subtype 

Object name 

• Required authorization 

Instructions Causing Exception: 

Char(32) 
Char(1) 
Char(1) 
Char(30) 

Char(2) 

• Any instruction that references an object 
through a system pointer 

• Signal Exception 



L 

L 

2202 Object Destroyed 

An attempt was made to reference an object that 
no longer exists. 

Instructions Causing Exception: 

• Any instruction that references an object 
through a system pointer, a space pointer, or a 
data pointer 

• Any instruction that references a scalar or a 
pointer operand when the object and the space 
containing the scalar or pointer have been 
destroyed 

• Signal Exception 

2203 Object Suspended 

An attempt was made to reference an object that 
is in suspended state and, with its contents 
truncated, is not suitable for processing. 

Information Passed: 

• Object System 
pointer 

Instructions Causing Exception: 

• Instructions that reference space, queue, index, 
data space, or data space index objects, except 
for the following instructions: 

Resolve System Pointer (to the target object) 
Grant Authority 
Retract Authority 

- Transfer Ownership 
Modify Addressability 

- Lock Object 
Unlock Object 
Transfer Object Lock 
Request I/O (for load/dump) 
Materialize Object Lock 
All Destroy instructions 

- Create Data Space Index (allows 
suspended data space only) 
Materialize System Object 
Materialize Pointer 

• Signal Exception 

2204 Object Not Eligible for Operation 

An attempt to reference an object was 
unsuccessful because the object was not eligible 
for the operation requested for one of the 
following reasons: 

• An object that cannot be duplicated was 
specified on a Create Duplicate Object 
instruction. 

• A data space or data space index was activated 
when a Suspend instruction or a load / dump 
operation was attempted. 

Exception Specifications 23-51 



23-52 

• An index that can contain pointers was 
referenced by a Suspend Object instruction or 
was referenced for a load/dump operation. 

• An attempt was made to activate a cursor that 
is already activated to this process or is 
activated to another process. 

• A temporary object was referenced on a 
Transfer Ownership instruction. 

• An attempt was made to replace a program 
through a load operation. 

• An attempt was made to materialize cursor 
statistics when the cursor was not active for 
this process. 

• The receiving data space for a Copy Data Space 
Entries instruction is active under more than one 
cursor. 

• An attempt was made to modify (through the 
Modify Data Space Index Attributes instruction) 
a data space index when the current attributes 
of the data space index where incompatible 
with the attempted modification. 

• An attempt was made to retrieve (through the 
Retrieve Data Space Entry instruction) a data 
space entry when the cursor position is the 
result of group-by processing. 

• An attempt was made to set a cursor (by a Set 
Cursor or a Retrieve Sequential Data Space 
Entries instruction) in an event handler while the 
cursor is waiting for a lock for another Set 
Cursor instruction. This can happen when an 
event is handled during a data base entry lock 
wait. 

• The source or receiver cursor has had a set 
cursor operation or another operation performed 
on it that left the cursor set to a data space 
entry after the cursor was activated and before 
a Copy Data Space Entries instruction was 
issued. 

• An attempt was made to apply journal changes 
to an object for which journaling is not 
supported. 

• An attempt was made to apply journal changes 
to a data space that had a cursor active over it. 

Information Passed: 

• System pointer to the object 

Instructions Causing Exception: 

• Activate Cursor 

• Apply Journaled Changes 

• Commit 

• Copy Data Space Entries 

• Create Duplicate Object 

• Data Base Maintenance (all options) 

• Decommit 

• Delete Object From Access Group 

• De-activate Cursor 

• Ensure Data Space Entries 

• Journalize Object 

• Materialize Commit Block Attributes 

• Materialize Cursor Attribute 

• Modify Commit Block 

• Modify Data Space Index Attribute~ 

• Modify Journal Port 

Request I/O 

• Retrieve Data Space Entry 

• Retrieve Sequential Data Space Entries 

• Set Cursor 

• Signal Exception 



2205 Object Not Available to Process 

An attempt to reference an object was 
unsuccessful because it was restricted, temporarily 
or permanently, to another process for one of the 
following reasons: 

• An active cursor was restricted to the process 
that activated it. 

• Application of implicit locks failed. 

• An attempt was made to reference a dump 
space through an Insert Dump Data, a Modify 
Dump Space, a Retrieve Dump Data, a Request 
I/O, or a Request Path Operation instruction 
when the dump space was in use by a Request 
Path Operation or Request I/O instruction load 
or dump function. 

Information Passed: 

• System pointer to the object 

Instructions Causing Exception: 

• Activate Cursor 

• Apply Journaled Changes 

• Create Data Space Index 

• Data Base Maintenance 

• De-activate Cursor 

• Delete Data Space Entry 

• Ensure Data Space Entries 

• Initiate Process 

• Insert Data Space Entry 

• Insert Dump Data 

• Modify Data Space Index Attributes 

• Modify Dump Space 

• Release Data Space Entries 

• Request I/O 

• Request Path Operation 

• Retrieve Data Space Entry 

• Retrieve Dump Data 

• Set Cursor 

• Update Data Space Entry 

• Signal Exception 

2206 Object Not Eligible for Destruction 

An attempt to destroy an object cannot be 
processed because one of the following conditions 
exists within that object: 

• A Destroy User Profile instruction refers to a 
user profile that still owns objects or has a 
process currently initiated for it. 

• A Destroy Data Space instruction refers to a 
data space that is being used through a cursor. 

• A Destroy Data Space Index instruction refers 
to a data space index that is being used 
through a cursor. 

• A Destroy Access Group instruction refers to an 
access group that contains one or more objects. 

• A Destroy Dump Space instruction refers to a 
dump space which is in use by a Request Path 
Operation or Request I/O instruction load or 
dump function. 

Exception Specifications 23-53 



Information Passed: 

• System pointer to the object 

Instructions Causing Exception: 

• Destroy Access Group 

• Destroy Data Space 

• Destroy Data Space Index 

• Destroy Dump Space 

• Destroy Journal Port 

• Destroy Journal Space 

• Destroy Process Control Space 

• Destroy User Profile 

• Signal Exception 

24 Pointer Specification 

2401 Pointer Does Not Exist 

23-54 

A pointer reference was made to a storage 
location in a space that does not contain a pointer 
data object, or a reference was made to a space 
pointer machine object that was not set to address 
a space. 

Instructions Causing Exception: 

• Any instruction that has pointer operands 

• Any instruction that references a base operand 
(scalar or pointer) when the base pointer is not 
a space pointer 

• Any instruction that allows a scalar defined by a 
data pointer to be an operand 

• Any instruction that requires a pointer as part of 
the input template 

• Signal Exception 

2402 Pointer Type Invalid 

An instruction has referenced a pointer object that 
contains an incorrect pointer type for the operation 
requested. 

Instructions Causing Exception: 

• Any instruction that has pointer operands 

• Any instruction that contains a base operand 
(scalar or pointer) when the base pointer is not 
a space pointer 

• Any instruction that allows a scalar defined by a 
data pointer to be an operand 

• Any instruction that requires a pointer as part of 
the input template 

• Signal Exception 

2403 Pointer Addressing Invalid Object 

An instruction has referenced a system pointer 
that addresses an incorrect type of system object 
for this operation. 

Information Passed: 

• The invalid system pointer 

Instructions Causing Exception: 

• Any instruction that references a system 
pointer, either as an operand or within a 
template operand, and that requires a specific 
object type as a part of its operation 

• Signal Exception 



2404 Pointer Not Resolved 

The operation did not find a resolved system 
pointer. For example, NRL (name resolution list) 
entries must be resolved system pointers that 
address contents. 

Information Passed: 

• The invalid pointer 

Instructions Causing Exception: 

• Resolve System Pointer 

• Any instruction that causes a system pointer to 
be implicitly resolved when the NRL is used in 
the resolution. All entries in the NRL must be 
resolved. 

• Resolved Data Pointer 

• Any instruction that causes a data pointer to be 
implicitly resolved. All activation entries in the 
process must contain a resolved pointer to the 
associated program. 

• Signal Exception 

26 Process Management 

2602 Queue Full 

An attempt was made to enqueue a message to a 
queue that is full and is not extendable. 

Information Passed: 

• System pointer to the queue for which the 
enqueue was attempted 

Instructions Causing Exception: 

• Enqueue 

• Request I/O 

• Signal Exception 

28 Process State 

2801 Process Ineligible for Operation 

An attempt was made by a subordinate process to 
terminate a superordinate process. 

Information Passed: 

• Process control space system pointer to the 
process to be terminated. 

Instructions Causing Exception: 

• Terminate Process I 

• Signal Exception 

Exception Specifications 23-55 



2802 Process Control Space Not Associated with 
a Process 

The process control space system pointer 
referenced a process control space that was not 
currently associated with an existing process. 

Information Passed: 

• Process control space 

Instructions Causing Exception: 

• Materialize Invocation Stack 

• Materialize Process Attributes 

• Materialize Process Locks 

• Materialize Selected Locks 

• Modify Process Attributes 

• Resume Process 

• Suspend Process 

• Terminate Process 

• Transfer Object Lock 

• Signal Event 

• Signal Exception 

23-56 

System 
pointer 

280A Process Attribute Modification Invalid 

The modification control indicators for a process 
did not allow the process to modify this attribute. 

Information Passed: 

• System pointer to the process 
control space 

• Modification control indicators 
(bit significant) 

• Modify attribute 
(bit significant) 

Instructions Causing Exception: 

• Modify Process Attributes 

• Signal Exception 

2A Program Creation 

2AOl Program Header Invalid 

Char(8) 

Char(1 ) 

The data in the program header was invalid. 

Instructions Causing Exception: 

• Create Program 

• Signal Exception 



L 
2A02 oor Syntax Error 

The syntax (bit setting) of an ODT (object 
definition table) entry was invalid. 

Information Passed: 

• ODT entry number 

Instructions Causing Exception: 

• Create Program 

• Signal Exception 

2A03 ODr Relational Error 

Char(2) 

An ODT (object definition table) entry reference to 
another ODT entry was invalid. 

Information Passed: 

• ODT entry number Char(2) 

Instructions Causing Exception: 

• Create Program 

• Signal Exception 

2A04 Operation Code Invalid 

One of the following conditions occurred. 

• The operation code did not exist. 

• The optional form was not allowed. 

Information Passed: 

• Instruction number of the 
instruction being analyzed 

Instructions Causing Exception: 

• Create Program 

• Signal Exception 

2A05 Invalid Op Code Extender Field 

The branch/indicator options were invalid. 

Information Passed: 

Bin(2) 

• Instruction number of the 
instruction being analyzed 

Bin(2) 

Instructions Causing Exception: 

• Create Program 

• Signal Exception 

Exception Specifications 23-57 



2A06 Invalid Operand Type 

One of the following conditions was detected: 

• An operand was not the required type (signed 
immediate, immediate, constant data object, 
scalar data object, pointer data object. null, 
branch point, or instruction definition list). 

• An operand was described as an immediate or 
constant data object. However, the instruction 
specifies that the operand be modified to 
something other than an immediate or constant 
data object, or the instruction does not allow an 
immediate or constant data object operand. 

• The operand type specified is not a valid 
operand type. 

• The type of one operand does not satisfy a 
required relationship with the type of another 
operand. 

Information Passed: 

23-58 

• Instruction number of the 
instruction being analyzed 

Instructions Causing Exception: 

• Create Program 

• Signal Exception 

Bin(2) 

2A07 Invalid Operand Attribute 

One of the following conditions was detected: 

• An operand did not have the attributes required 
by the instruction (character, packed decimal, 
zoned decimal, binary, floating-point. scalar, 
array, assumed, overlay, restricted, open, based, 
explicitly based). 

• The attributes of one operand did not match the 
required attributes of another operand. 

• At least one operand in the argument list for a 
Transfer Control instruction was specified as 
automatic. 

• The receiver for an instruction specified with the 
optional round form has the floating-point 
attribute. 

Information Passed: 

• Instruction number of the 
instruction being analyzed 

Instructions Causing Exception: 

• Create Program 

• Signal Exception 

Bin(2) 



2A08 Invalid Operand Value Range 

One of the following conditions was detected: 

• An operand was a constant or immediate data 
object and was used as an index into an array 
or indicated a position in a character string, but 
it was outside the range of the array or 
character string. 

• An operand was a constant or immediate data 
object and did not conform to the value 
required by the instruction. 

• The operand immediate value is outside of the 
accepted range. The valid range for an 
unsigned immediate value is equal to or greater 
than 0 and less than or equal to 8191. The 
valid range for a signed immediate value is from 
negative 4096 through a positive 4095. 

Information Passed: 

• Instruction number of the 
instruction being analyzed 

Instructions Causing Exception: 

• Create Program 

• Signal Exception 

Bin(2) 

2A09 Invalid Branch Target Operand 

One of the following conditions was detected: 

• An operand was not an instruction pointer, 
branch point, instruction number, or relative 
instruction number. 

• An operand was an instruction number or 
relative instruction number but was outside the 
range of the program. 

• A branch target operand identified an 
instruction that was not indicated as a branch 
target. 

Information Passed: 

• Instruction number of the 
instruction being analyzed 

Instructions Causing Exception: 

• Create Program 

• Signal Exception 

Bin(2) 

Exception Specifications 23-59 



2AOA Invalid Operand Length 

One of the following conditions was detected: 

• The length attribute of an operand was not 
greater than or equal to the length required by 
the instruction. 

• The length attribute of an operand was invalid 
based on its relationship to the length attribute 
of another operand in the same instruction. 

• The length attribute of a decimal operand 
exceeds 15 digits when specified in conjunction 
with a floating-point operand. 

• A decimal operand has an invalid integer or 
fractional digit length in relationship to that 
required by the instruction. 

Information Passed: 

• Instruction number of the 
instruction being analyzed 

Instructions Causing Exception: 

• Create Program 

• Signal Exception 

23-60 

Bin(2) 

2AOB Invalid Number of Operands 

The number of arguments in a Call Internal 
instruction was not equal to the number of 
parameters in the called entry point. 

Information Passed: 

• Instruction number of the 
instruction being analyzed 

Instructions Causing Exception: 

• Create Program 

• Signal Exception 

2AOC Invalid Operand ODr Reference 

Bin(2) 

The ODT reference was not within the range of 
the ODV. 

Information Passed: 

• Instruction number of the 
instruction being analyzed 

Instructions Causing Exception: 

• Create Program 

• Signal Exception 

Bin(2) 



2AOD Reserved Bits Are Not Zero 

The reserved bits in an opcode or operand are 
nonzero. 

Information Passed: 

• Instruction number of the 
instruction being processed 

Instructions Causing Exception: 

• Create Program 

• Signal Exception 

2C Program Execution 

2COl Return Instruction Invalid 

Bin(2) 

This exception was improper usage of the Return, 
Transfer Control. or Return From Exception 
instruction for one of the following reasons: 

• A Return From Exception instruction was 
executed in an invocation that was not defined 
as an exception handler. 

• A Return External or Transfer Control instruction 
was issued from a first-invocation-Ievel 
exception handler. 

• A Transfer Control instruction was issued from 
a first-invocation-Ievel event handler. 

Instructions Causing Exception: 

• Return External 

• Return From Exception 

• Transfer Control 

• Signal Exception 

2C02 Return Point Invalid 

An attempt was made to use a Return External 
instruction with a return point that was invalid for 
one of the following reasons: 

• The return point value was outside the range of 
the return list specified on the preceding Call 
External instruction. 

• A nonzero return point was supplied, but no 
return list was supplied on the preceding Call 
External instruction. 

• A nonzero return point was supplied when a 
Return External instruction was issued in the 
first invocation in the process. 

• A nonzero return point was supplied when the 
Return External instruction was issued by an 
invocation acting as an event handler. 

Instructions Causing Exception: 

• Return External 

• Signal Exception 

2C03 Stack Control Invalid 

Information Passed: 

• Cause indicator Bin(2) 

Hex 0003 The chain being modified bit in 
the PSSA base entry was on 
when it was necessary for the 
machine to use the chain of 
PSSA activations or it was 
necessary for the machine to 
modify the chain of PSSA 
activations. 

Exception Specifications 23-61 



Instructions Causing Exception: 

• Activate Program 

• Call External 

• De-activate Program 

• Modify Automatic Storage Allocation 

• Resolve Data Pointer 

• Transfer Control 

• Signal Exception 

2C04 Branch Target Invalid 

An attempt was made to branch to an instruction 
defined through an instruction pointer, but the 
instruction pointer was set by a program other 
than the one that issued the branch. 

Information Passed: 

• Instruction pointer causing the exception 

Instructions Causing Exception: 

• All instructions that have a branch form 

• Signal Exception 

2COS Activation in Use by Invocation 

23-62 

An attempt was made to de-activate a program 
that has an existing invocation which is not the 
invocation issuing the instruction. 

Information Passed: 

• Program 

Instructions Causing Exception: 

• De-activate Program 

• Signal Exception 

System 
pointer 

2C06 Instruction Cancellation 

This exception is raised when an instruction is 
canceled due to a process termination. Because 
the process is about to be terminated, only an 
internal handler is able to field this exception 
before the process is terminated. No guarantee is 
given as to how far the internal handler is able to 
proceed before the process is terminated. 

Instructions Causing Exception: 

• Activate Cursor 

• Apply Journaled Changes 

• Copy Data Space Entries 

• Create Data Space Index 

• Create Program 

• Data Base Maintenance 

• Insert Sequential Data Space Entries 

• Modify Data Space Index Attributes 

• Request I/O 

• Retrieve Journal Space Entries 

• Retrieve Sequential Data Space Entries 

• Set Cursor 

• Signal Exception 

2COl Instruction Termination 

This exception is signaled when an instruction is 
terminated due to execution of a Terminate 
Instruction instruction specifying a process 
currently executing an instruction which is subject 
to termination. Certain instructions which require a 
relatively long period of time for their execution 
are subject to being terminated in this manner. 
Refer to the definition of Terminate Instruction for 
the list of applicable instructions. The signaling of 
this exception does not indicate a pending process 
termination. Normal exception handler processing 
can be performed for this exception. 



Information Passed: 

• Reserved (binary 0) Char(16) 

Instructions Causing Exception: 

• Activate Cursor 

• Apply Journaled Changed 

• Copy Data Space Entries 

• Create Data Space Index 

• Create Program 

• Data Base Maintenance 

• Insert Sequential Data Space Entries 

• Modify Data Space Index Attributes 

• Request I/O 

• Retrieve Journal Entries 

• Retrieve Sequential Data Space Entries 

• Set Cursor 

• Signal Exception 

2E Resource Control Limit 

2EO 1 User Profile Storage Limit Exceeded 

The user profile specified insufficient auxiliary 
storage to create or extend a permanent object. 

Information Passed: 

• System pointer to the user profile 

Instructions Causing Exception: 

• All create instructions creating a permanent 
object 

• All instructions extending a permanent object 

• Signal Exception 

• Transfer Ownership 

30 Journal Management 

3001 Apply Journal Changes Failure 

An exception condition was encountered while the 
system was trying to apply a change contained on 
the indicated journal space to the indicated object. 
The journal sequence number of the change that 
could not be made and the type of condition 
encountered are indicated in the exception data. 

Exception Specifications 23-63 



Information Passed: 

• Journal space System 
pointer 

• Object being changed System 
pointer 

• Journal sequence number Bin(4) 

• Exception condition 
Object type 
Condition code 

Char(2) 
Char(1 ) 
Char(1 ) 

23-64 

Hex 01=Data space entry 
for update did not 
exist. 

Hex 02= Data space entry 
for update of deleted 
entry was not deleted 
in the data space. 

Hex 03= Data space entry 
for insert was not 
next available data 
space entry in the 
data space. 

Hex 04= Data space entry for 
delete did not exist 
in the data space. 

Hex 05= Data space entry for 
delete of a deleted 
entry was not already 
deleted in the data space. 

Hex 08=A before image or entry 
was required to perform 
the apply but was not 
contained on the journal. 

Hex 09=The journal entry 
describes a valid change 
to an object whose changes 
are being reapplied, but 
Apply Journal Changes 
instruction does not 
support reapplying through 
the change described by 
the indicated entry. 

Hex OA=Data space entry 
limit was exceeded. 

Instructions Causing Exception: 

• Apply Journal Changes 

• Signal Exception 

3002 Entry Not Journaled 

An operation could not be performed because a 
journal entry could not be placed on the journal 
space of the indicated journal port. The condition 
described in the exception data identifies the 
reason for the failure. 

Information Passed: 

• Journal port 

• Journal space 

• Return value 
Hex 01=No journal space 

System 
pointer 

System 
pointer 
or null 

was attached to the 
specified journal port. 

Hex 02=Unable to obtain 
sufficient space on the 
journal space for the 
entry. 

Hex 03=Journal port is 
damaged. 

Hex Q4=AII journal spaces 
attached to the journal 
port are damaged. 

- Hex 05=The journal sequence 
number has reached its 
maximum allowed value. 

Hex 06=Journal failure. 

Instructions Causing Exception: 

• Any instruction that causes journal entries to be 
created and placed on the journal receiver 

• Signal Exception 



3003 Maximum Objects Through a Journal Port Limit 
Exceeded 

The identified journal port is already journaling 
changes to the maximum number of objects. 

Information Passed: 

• Journal port 

• Object attempted to journal 

Instructions Causing Exception: 

• Journal Object 

• Signal Exception 

System 
pointer 

System 
pointer 

3004 Invalid Journal Space 

The identified journal space was provided as input 
to one of the indicated instructions and was not in 
a valid position in the journal space list. The 
exceptional condition is identified in the exception 
data. 

Information Passed: 

• Journaled space System 
pointer 

• Error condition indicator Char(1) 
Hex 01 =Journal sequence 

numbers not 
ascending 

Hex 02=Journal sequence 
numbers missing 

Hex 03=Journal space 
contains no 
journal entries 

Hex 04=Journal entry 
prefix length 
does not match 

Instructions Causing Exception: 

• Apply Journaled Changes 

• Retrieve Journal Entries 

• Signal Exception 

Exception Specifications 23-65 



3005 Invalid Selection/Transaction List Entry 

A selection/transaction list entry passed to the 
Apply Journaled Changes instruction contains 
invalid values. 

Information Passed: 

• Template that addresses 
the selection / tra nsaction 
list with the entry in 
error 

• Selection/transaction list 

• Entry in the 
selection / transaction list 

Instructions Causing Exception: 

• Apply Journaled Changes 

• Signal Exception 

23-66 

Space 
pointer 

Space 
pointer 

Bin(4) 

3006 Journal Space Not at a Recoverable Boundary 

An operation was attempted on a journal space or 
journal port that required all object changes 
corresponding to journal entries contained on the 
indicated journal space to be at a recoverable 
boundary. 

Information Passed: 

• Journal port 

• Number of journal spaces 

• Reserved (binary 0) 

• Journal space (1 to n) 

Instructions Causing Exception: 

• Destroy Journal Space 

• Modify Journal Port 

• Suspend Object 

System 
pointer 

Bin(2) 

Char(14) 

System 
pointer 

• Request I/O (request for a load operation) 

• Signal Exception 



L 

3007 Journal ID Not Unique 

An operation was attempted that required unique 
journal IDs and a duplicate journal ID was 
encountered. 

Information Passed: 

• Journal port (binary 0 
if apply journaled entries 
failure) 

• Object being journaled 

• Duplicate object 

• Journal ID of duplicates 

Instructions Causing Exception: 

• Apply Journaled Changes 

• Journal Object 

• Signal Exception 

System 
pointer 

System 
pointer 

System 
pointer 

Char(10) 

3008 Object Already Being Journa/ed 

An object was attempted to be journaled that was 
already being journaled. The exception data 
indicates through which journal port the object is 
currently being journaled. 

Information Passed: 

• Object being journaled 

• Journal port 

• Journal ID 

Instructions Causing Exception: 

• Journal Object 

• Signal Exception 

3009 Transaction List Limit Reached 

System 
pointer 

System 
pointer 

Char(10) 

The maximum number of transactions (de"fined in 
the apply options template) has been reached. 

Information Passed: 

• Number of entries in the 
transaction list 

Instructions Causing Exception: 

• Apply Journaled Changes 

• Signal Exception 

Bin(4) 

Exception Specifications 23-67 



32 Scalar Specification 

3201 Scalar Type Invalid 

A scalar operand did not have the following data 
types required by the instruction: 

• Character 

• Packed decimal 

• Zoned decimal 

• Binary 

• Floating-point 

Instructions Causing Exception: 

• Any instruction using a late bound (data pointer) 
scalar operand 

• Signal Exception 

3202 Scalar Attributes Invalid 

A scalar operand did not have the following 
attributes required by the instruction: 

• Length 

• Precision 

• Boundary 

23-68 

Instructions Causing Exception: 

• Any instruction using a late-bound (data 
pointer) scalar operand 

• Any instruction that verifies the length of a 
character scalar in a space object operand 

• Signal Exception 

3203 Scalar Value Invalid 

A character scalar operand does not contain a 
correct value as required by the instruction. 

Information Passed: 

• Length of data passed 

• Bit offset to invalid field 
(relative to 0) 

• Operand number 

• Invalid data 

Instructions Causing Exception: 

Bin(2) 

Bin(2) 

Bin(2) 

Char(*) 

• Any instruction using a scalar operand 

• Signal Exception 

34 Source/Sink Management 

3401 Source/Sink Configuration Invalid 

A source/sink object associated with a 
source/sink create, modify or request I/O 
instruction was not properly configured to allow 
the requested operation. 

Information Passed: 

• System pointer to the object that prevented 
execution from completing, if appropriate, 
otherwise; binary zero. 

• Exception data-A defect 
code that provides a further 
definition of the cause of 
the exception as follows 
(bit significant): 

Char(2) 



Defect Defect 
Code Code 

L 
(Hex) Instruction Meaning (Hex) Instruction Meaning 

1101 CRTND Backward object supplied 1204 CRTCD Backward or forward 
is of the wrong source/ object does not have 
sink object subtype. attributes that match 

this CD. Forward object 
1102 CRTND Backward object supplied (ND) checks: 

is already connected to 
another forward object. ND cannot be a 

switched ND. 
1103 CRTND Duplicate backward 

pointers supplied. . Role indicator must 
indicate an opposite 

1104 CRTND Backward object does role to that of 
not have attributes this CD. 
that match this N D: . If the ND is a . CD cannot be a primary point to 

switched CD. point configuration 
that already has . Role indicator one CD attached. 

must indicate 
an opposite role 1205 CRTCD Backward objects have 
to that of duplicate physical 
this NO. addresses. 

1105 CRTND Invalid object supplied 1206 CRTCD Invalid ND candidate 
in eligibility list. (not switched, wrong 

ND type or wrong line 
1106 CRTND Backward objects have discipline). 

duplicate physical 
addresses. 1207 CRTCD Backward objects 

supplied have 
1107 CRTND Attempting to create an duplicate LU names. 

L 
ND that will exceed the 
maximum allowable number 1208 CRTCD Backward object has 
of NDs for this OU number. an address that is 

partly out of range 
1201 CRTCD Backward or forward for this controller. 

object supplied is of 
the wrong source/sink 1209 CRTCD Backward object has 

object subtype. specific characteristics 
that are out of range 

1202 CRTCD Backward object supplied for this controller. 
is already connected to 
another forward object. 1301 CRTLUD Forward object supplied 

is of the wrong 
1203 CRTCD Duplicate backward source/sink object 

pointers supplied. subtype. 

1304 CRTLUD Invalid forward object 
attributes. 

1307 CRTLUD Forward object supplied 
already has an object 
with duplicate LU names. 

1308 CRTLUD Forward object supplied 
is of a type not 
compatible with the 
address range of this 
device. 

1309 CRTLUD Forward object supplied 
is of a type not 
compatible with the 
specific characteristics 
of this device. 

Exception Specifications 23-69 



23-70 

Defect 
Code 
(Hexllnstruction Meaning 

2101 MODND 

2103 MODND 

2104 MODND 

2105 MODND 

2201 MODCD 

2202 MODCD 

2203 MODCD 

2205 MODCD 

2206 MODCD 

Status change attempted 
with no CDs or LUDs 
attached to this NO 
(nonswitched). 

Status change attempted 
to enable dial in with no 
valid eligibility objects. 

Invalid object supplied 
in eligibility list. 

ASCII translation-Invalid 
address characters. 

Status change attempted 
with no LUDs attached. 

Status change attempted 
with no valid forward 
pointer (nonswitched CD). 

Dial attempted with no 
valid NO candidate list 
entries. 

Invalid NO candidate 
(not switched, wrong 
NO type or wrong line 
discipline). 

ASCII translation-Invalid 
address character. 

2301 MODLUD Status change attempted 
with no valid forward 
pointer. 

2302 MODLUD ASCII translation-Invalid 
address character. 

2307 MODLUD 

3401 Request 
I/O 

3402 Request 
I/O 

3403 Request 
I/O 

Change to device specific 
area would result in duplicate 
LU names. 

Request I/O or request path 
operation response queue 
or the LUD object does not 
have proper attributes for 
the Request I/O instruction. 

Object specified in the SSR 
does not support synchronous 
Request I/O instructions. 

LUD specified has invalid value 
in device specific area. 

5307 MODMATR Modify system name would 
result in duplicate LU names. 

Instructions Causing Exception: 

• Create Controller Description 

• Create Logical Unit Description 

• Create Network Description 

• Materialize Controller Description 

• Materialize Network Description 

• Modify Controller Description 

• Modify Logical Unit Description 

• Modify Machine Attributes 

• Modify Network Description 

• Request I/O 

• Signal Exception 



L 
3402 Source/Sink Physical Address Invalid 

An attempt was made to create a source/sink 
object with the same physical address and 
exchange identification as an already existing 
object of the same type, or the physical address 
has a component part that does not match the 
physical address of the related forward or 
backward object specified. 

The duplicate address exception data (hex 01) is 
not signaled for the creation of CD objects for 
BSC controllers or for the creation of CD objects 
for the host system when these CD objects have 
the switched line or the switched backup attribute. 

Information Passed: 

• System pointer to the object preventing 
execution of this instruction 

• Exception data 
(bit significant) 
- Hex 01 = Duplicate address 
- Hex 02 = Related object 

address mismatch 

Instructions Causing Exception: 

• Create Controller Description 

• Create Logical Unit Description 

• Create Network Description 

• Signal Exception 

Char(1 ) 

3403 Source/Sink Object State Invalid 

The source/sink object associated with a 
source/sink create, destroy, modify, or request 
I/O instruction was not in the proper state or 
proper mode to allow execution of the instruction 
to complete successfully. 

Information Passed: 

• Object preventing execution 
of the instruction 

• Exception data 
(bit significant) 
- Affected element within 

the source/sink object 
(bit significant) 

- Source/Sink object status 
field for the object that 
prevented execution of the 
instruction (bit significant) 

- Reserved 

• Primary object for the 
instruction (on a create, 
this entry is binary 0) 

• Template for the instruction 
(binary 0 if not applicable) 

System 
pointer 

Char(16) 

Char(2) 

Char(8) 

Char(6) 

System 
pointer 

Space 
pointer 

Exception Specifications 23 - 71 



The following chart shows the elements that can be 
indicated in the exception data. 

Instruction 

Create Destroy Modify Request 

Element ND CD LUD ND CD 

ND Status X X X X 

CD Status X X 

LUD Status 

Other ND Elements 

Other CD Elements 

Other LU D Elements 

Instructions Causing Exception: 

• Create Controller Description 

• Create Logical Unit Description 

• Create Network Description 

• Destroy Controller Description 

• Destroy Logical Unit Description 

• Destroy Network Description 

• Modify Controller Description 

• Modify Logical Unit Description 

• Modify Network Description 

• Request I/O 

• Signal Exception 

23-72 

LUD 

X 

X 

X 

ND CD LUD I/O 

X X X 

X X 

X X 

X 

X 

X X 

3404 Source/Sink Resource Not Available 

An attempt was made to create a source/sink 
object, but physical hardware or system support 
for this hardware does not exist; or an attempt 
was made to modify a source/sink object, but 
hardware sequences cannot be completed 
successfully. 

Information Passed: 

• A system pointer that identifies the object that 
caused the instruction termination, if 
appropriate, otherwise; binary zero 

• Exception data (bit significant) 
- Generic error code 
- Device-specific error code 

Char(4) 
Char(2) 
Char(2) 



L 

The exception data consists of two 2-byte return 
codes that define the cause of this exception. The 
first 2-byte field provides a generic error code that 
is common to all source/sink objects of that code, 
and the second 2 bytes provide further 
device-specific error code for the device in 
question. The following list defines the generic 
error codes that can be presented by this 
exception. The generic error code values are 
formatted as hex jknn, where: 

j = 1 

j = 2 

k = 1 

k=2 

k=3 

nn 

Code 
(Hex) 

1101 

1201 

1301 

Indicates a create instruction 

Indicates a modify instruction 

Indicates an ND object 

Indicates a CD object 

Indicates an LUD object 

Indicates the generic error code that 
provides further definition of the 
cause of the exception as follows: 

Instruction Meaning 

Create ND NO hardware not 
installed 

Create CD CD hardware not 
installed 

Create LUD LUD hardware not 
installed 

(The above error codes indicate that the object 
creation being attempted, although potentially valid 
on some system, does not agree with the 
hardware or support attributes currently configured 
on this system.) 

Code 
(Hex) Instruction Meaning 

2101 Modify NO Set diagnostic mode 
failure 

2102 Modify ND Vary on failure 

2103 Modify ND Manual answer 
failure 

2105 Modify ND Enable failure 

2108 Modify ND Continue failure 

2109 Modify ND Cancel failure 

2202 Modify CD Vary on failure 

2204 Modify CD Dial out failure 

2206 Modify CD Power on failure 

2207 Modify CD Power off failure 

2208 Modify CD Continue failure 

2209 Modify CD Cancel failure 

2300 Modify LUO Other-than-status 
element failure 

2302 Modify LUD Vary on failure 

2303 Modify LUD Activate failure 

2306 Modify LUD Power on failure 

2307 Modify LUD Power off failure 

2308 Modify LUD Continue failure 

2309 Modify LUD Cancel failure 

2311 Modify LUD Resume failure 

2312 Modify LUD Suspend failure 

2313 Modify LUD Quiesce failure 

3401 Request I/O Request I/O failure 

Instructions Causing Exception: 

• Create Controller Description 

• Create Logical Unit Exception 

• Create Network Description 

• Modify Controller Description 

• Modify Logical Unit Description 

• Modify Network Description 

• Signal Exception 

Exception Specifications 23-73 



38 Space Management 

3601 Space Extension/Truncation 

A Modify Space Attributes instruction made one of 
the following invalid attempts to modify the size of 
the space: 

• Truncate the space to a negative size. 

• Extend or truncate a fixed size space. 

• Extend a space beyond the space allowed in 
the referenced object. 

Information Passed: 

• System pointer to the space 

Instructions Causing Exception: 

23-74 

• Activate Program 

• Call External 

• Modify Automatic Storage Allocation 

• Modify Space Attributes 

• Signal Exception 

• Transfer Control 

• Any instruction that invokes an external 
exception handler or an external event handler 
or an invocation exit 

3602 Invalid Space Modification 

A Modify Space Attributes instruction made an 
attempt to modify the attributes of a space but the 
requested modification is invalid. 

Information Passed: 

• System pointer to the object 

• Error code Char(2) 

Error codes and their meanings are as follows: 

Code 

0001 

0002 

Meaning 

An attempt was made to modify the 
performance class attribute of the 
system object containing the space 
and the space was not a fixed 
length of size zero. 

An attempt was made to modify a 
system object to or from the 
state of having a fixed length 
space of size zero and the 
operation is invalid for 
that type of system object. 

Instructions Causing Exception: 

• Modify Space Attributes 

• Signal Exception 



38 Template Specification 

3801 Template Value Invalid 

A template did not contain a correct value required 
by the instruction. 

Information Passed: 

• Addressability to the template 

• Offset to invalid field 
(leftmost byte) in bytes 
. (A value of 0 is the 
first byte in the template. 
An invalid field is considered 
to be the lowest-level 
character or numeric template 
entry that contains the 
information that is in error.) 

• Bit offset in invalid field 
field or 0 (A 0 value 
indicates the leftmost bit 
in the invalid field.) 

• The number of bytes in the 
invalid field 

• Instruction operand number 
(The first operand in an 
instruction is 1.) 

Instructions Causing Exception: 

Space 
pointer 

Bin(2) 

Bin(2) 

Bin(2) 

Bin(2) 

• Any instruction that has a space pointer as a 
source operand 

• Convert BSC to Character 

• Convert Character to BSC 

• Convert Character to MRJE 

• Convert MRJE to Character 

• Signal Exception 

• Scan with Control 

3802 Template Size Invalid 

A source template was not large enough for this 
instruction. 

Information Passed: 

• Addressability to the 
template 

Instructions Causing Exception: 

Space 
pointer 

• Any instruction that has a space pointer that 
addresses a source template operand 

• Signal Exception 

3803 Materialization Length Exception 

Less than 8 bytes was specified to be available in 
the receiver operand of a materialize instruction. 

Instructions Causing Exception: 

• Any materialize instruction 

• Any retrieve instruction 

• Signal Exception 

Exception Specifications 23-75 



3A Wait Time-Out 

3AOl Dequeue 

A specified time period elapsed, and a Dequeue 
instruction was not satisfied. 

Information Passed: 

• The queue waited for 

• Time-out value 

Instructions Causing Exception: 

• Dequeue 

• Signal Exception 

3A02 Lock 

System 
pointer 

Char (8) 

A specified time period elapsed, and a Lock Object 
instruction was not satisfied. 

Information Passed: 

• System pointer to the object 
waited for 

• Time-out value 

Instructions Causing Exception: 

• Lock Object 

• Signal Exception 

23-76 

Char(8) 

3A03 Event 

A specified time period elapsed, and a Wait On 
Event instruction was not satisfied. 

Information Passed: 

• Number of event monitors 

• Time-out value 

• Template from operand 2 
of the Wait On Event 
instruction and repeated 
for each number of event 
monitors (a's when number 
of event monitors is 0) 

Instructions Causing Exception: 

• Wait On Event 

• Signal Exception 

3A04 Space Location Lock Wait 

Bin(2) 

Charla) 

Char(48) 

A specified time period has elapsed and a Lock 
Space Location instruction has not been satisfied. 

Information Passed: 

• Space location 

• Time-out value 

Instructions Causing Exception: 

• Lock Space Location 

• Signal Exception 

Space 
pointer 

Char(8) 



3C Service 

3CO 1 Invalid Service Session State 

The process is not in the proper service session 
for the request service command because of one 
of the following conditions: 

• No service session exits for the process, and 
the command is other than start service 
session. 

• The process is in service session, and the 
command is to start service session. 

• The process is in service session, but a previous 
stop service session command was issued. 

Instructions Causing Exception: 

• Request I/O (service) 

• Signal Exception 

3C02 Unable to Start Service Session 

The machine was unable to start a valid service 
session. 

Instructions Causing Exception: 

• Request I/O 

• Signal Exception 

3E Commitment Control 

3EO 1 Invalid Commit Block Status Change 

An attempt was made to modify (to an invalid 
status) the status of a commit block attached to 
the issuing process. The exception data defines 
the attempted change to the commit block status. 

Information Passed: 

• Commit block 

• Attempted status change 
(as defined in the 
modifications options in 
the modification template 
for the Modify Commit Block 
instruction) 

Instructions Causing Exception: 

• Modify Commit Block 

• Signal Exception 

3E03 Commit Block Is Attached to Process 

System 
pointer 

Char(2) 

The identified commit block is attached to a 
process making the operation requested 
impossible. The process that has the commit 
block attached is identified in the exception data. 

Information Passed: 

• Commit block 

• Process control space 

Instructions Causing Exception: 

• Destroy Commit Block 

• Signal Exception 

System 
pointer 

System 
pointer 

Exception Specifications 23-77 



3E04 Commit Blocks Control Uncommitted Changes 

The identified commit block controls uncommitted 
changes, and an attempt was made to detach the 
commit block from the issuing process. 

Information Passed: 

• Commit block 

Instructions Causing Exception: 

• Modify Commit Block 

• Signal Exception 

System 
pointer 

3£06 Commitment Control Resource Limit Exceeded 

23-78 

One of the resource limits for the commitment 
control functions has been reached. 

InfQrmation Passed: 

• Commit block 

• Condition code 
Hex 01=Lock limit exceeded 
Hex 02=Object list size 

exceeded 
Hex 03= Limit of attached 

commit blocks in 
the system exceeded 

Instructions Causing Exception: 

• Insert Data Space Entry 

• Modify Commit Block 

• Set Cursor 

• Signal Exception 

System 
pointer 

Char(1 ) 

3£08 Object Under Commitment Control Being 
Journaled Incorrectly 

All objects under commitment control must have 
their changes journaled through the same journal 
port as the commit block. An attempt was made 
to place an object under commitment control that 
did not meet this condition. 

Information Passed: 

• Object 

• Journal port that must 
be used 

• Journal port currently 
being used (binary 0 if 
not currently being 
journaled) 

Instructions Causing Exception: 

• Modify Commit Block 

• Signal Exception 

System 
pointer 

System 
pointer 

System 
pointer 

J 



3ElO Operation Not Valid Under Commitment Control 

An operation was attempted on an object or 
through an object that was currently under 
commitment control. The operation is not 
supported under commitment control. 

Information Passed: 

Object under commitment 
control 

Instructions Causing Exception: 

• Copy Data Space Entries 

• De-activate Cursor 

• Destroy Cursor 

• Insert Sequential Data Space Entries 

System 
pointer 

• Retrieve Sequential Data Space Entries 

• Signal Exception 

3E 11 Process Has Attached Commit Block 

An attempt was made to attach a second commit 
block to a process. 

Information Passed: 

• Commit block (attached) 

• Commit block (attempted 
to attach) 

Instructions Causing Exception: 

• Modify Commit Block 

• Signal Exception 

System 
pointer 

System 
pointer 

3E12 Objects Under Commitment Control 

An attempt was made to detach a commit block 
from a process that has objects under commitment 
control. 

Information Passed: 

• Commit block 

Instructions Causing Exception: 

• Modify Commit Block 

• Signal Exception 

3£13 Commit Block Not Journaled 

System 
pointer 

An attempt was made to attach a commit block to 
a process, and the commit block was not being 
journaled. 

Information Passed: 

• Commit block 

Instructions Causing Exception: 

• Modify Commit Block 

• Signal Exception 

System 
pointer 

Exception Specifications 23- 79 



3E 14 Errors During Decommit 

Errors were detected during an execution of a 
Decommit instruction. The exception data 
indicates the type of errors detected. 

Information Passed: 

• Commit block 

• Reserved (binary 0) 

• Decommit status 
Damaged 

23-80 

o Commit block is 
not damaged 
Commit block is 
damaged 

Reserved (binary 0) 
- Partially damaged 

o Not partially 
damaged 
Partially damaged 

Reserved (binary 0) 
- Decommit 

o All changes 
were decommitted 
Not all changes 
were decommitted 

Journal read errors 
o No journal read 

errors 
Journal read errors 
occurred during 
decommit 

Journal write errors 
o No journal write 

errors 
Journal write errors 
occurred during 
decommit 

Partial damage to data 
space 
o No damage 

encountered 
Damage encountered 
on one or more 
data spaces 

System 
pointer 

Char(1 ) 

Char(4) 
Bit 0 

Bits 1-2 
Bit 3 

Bits 4-15 
Bit 16 

Bit 17 

Bit 18 

Bit 19 

- Damage to data space 
o No damage 

encountered 
Damage encountered 
on one or more 
data spaces 

Function check 
o No function check 

encountered 
Function check 
encountered 

- Reserved (binary 0) 
Constant = 100 
Reserved (binary 0) 

• Reserved (binary 0) 

• Journal entry sequence 
number of start 
commit journal entry 

Instructions Causing Exception: 

• Decommit 

• Signal Exception 

Bit 20 

Bit 21 

Bits 22-23 
Bits 24-26 
Bits 27-31 

Charm 

Bin(4) 



L 
3E15 Object Ineligible for Commitment Control 

The specified object is not eligible to be placed 
under eommitment control. 

Information Passed: 

• Object 

• Reason code 
Hex 01 = Object is a type that 

is not supported under 
commitment control 

Hex 02=Object is a cursor that 
was not activated 
under the issuing process 

Hex 03=Object is already under 
commitment control to 
this commit block or to 
another commit block 

Hex 04=Object is a cursor that 
holds data space entry 
locks 

Hex 05=Object is a join cursor 

Instructions Causing Exception: 

• Modify Commit Block 

• Signal Exception 

System 
pointer 

Char(1 ) 

3E 16 Object Ineligible for Removal from Commitment 
Control 

The specified object cannot be removed from 
commitment control. 

Information Passed: 

• Object 

• Reason code 
Hex 01 = Object is a type that 

is not supported under 
commitment control 

Hex 02=Object is not under 
commitment control of 
this commit block 

Hex 03=Object is a cursor holding 
data space entry locks 

Instructions Causing Exception: 

• Modify Commit Block 

• Signal Exception 

40 Dump Space Management 

System 
pointer 

Char(1 ) 

4001 Dump Data Space Size Limit Exceeded 

An insert of dump data for a dump of a size 
greater than that allowed by the dump data size 
limit attribute of the target dump space is 
attempted. The exception is detected on the initial 
insertion of dump data for the dump. 

The operation is suppressed in that none of the 
dump data is inserted into the dump space. The 
dump data size limit attribute can be modified 
through use of the Modify Dump Space instruction 
to increase the value of the limit if desired. 

Exception Specifications 23-81 



Information Passed: 

• System pointer to the dump space 

Instructions Causing Exception: 

• Insert Dump Data 

• Signal Exception 

4002 Invalid Dump Data Insertion 

An Insert Dump Data instruction attempted to 
insert dump data into a dump space but the 
insertion is invalid. 

23-82 

Information Passed: 

• Space pointer to the dump 
space 

System 
pointer 

• Space pointer to the invalid 
block 

System 
pointer 

• Error code Char(2) 

Error codes and their meanings are as follows: 

Code 

0001 

Meaning 

The block of dump data addressed by 

the above space pointer was retrieved 

from the source dump space at an 

offset different from the offset at 

which it is being inserted. 

0002 The block of dump data addressed by 

the above space pointer has been 

altered in value since it was retrieved 

from the source dump space or is not 

valid relative to the current dump data 

contained within the dump space. 

0003 The block of dump data addressed by 

the above space pointer was produced 

on a newer version of the machine in a 

manner which is not compatible with 

the version of the machine performing 

the insert operation. 

Instructions Causing Exception: 

• Insert Dump Data 

• Signal Exception 

4003 Invalid Dump Space Modification: 

An attempt has been made to modify the attributes of a 

dump space but the modification is invalid. 

Information Passed: 

• System pointer to the dump space 

• Error code Char(2) 

Error codes and their meanings as as follows: 

Code 

0001 

Meaning 

Modification of the dump data size 
limit attribute to a value less than 
the current value of the dump data 
size attribute is specified. 

Instructions Causing Exception: 

• Modify Dump Space 

• Signal Exception 



L 
4004 Invalid Dump Data Retrieval 

A retrieve Dump Data instruction attempted to 
retrieve dump data from a dump space but the 
retrieval was invalid. 

Information Passed: 

• System pointer to the dump space 

• Error code Char(2) 

Error codes and their meanings as as follows: 

Code 

0001 

Meaning 

The first block of dump data 
specified for retrieval is beyond the 
last block of dump data currently 
stored in the dump space. 

Instructions Causing Exception: 

• Modify Dump Space 

• Signal Exception 

Exception Specifications 23-83 



23-84 



L 
Events are managed by using the event management 
instructions. See Chapter 15. Event Management 
Instructions. Each event is identified by specifying the 
event class, type, and subtype. 

To monitor all the event types under an event class, a 
hex 00 is entered in the event type element field. To 
monitor all the event subtypes under an event type, a 
hex 00 is entered in the event subtype element field. 

EVENT DEFINITION ELEMENTS 

Event definitions contain the following elements: 

• Event identification 
Class 
Type 

- Subtype 

• Optional compare value 

• Event-related data 
Standard 

- Specific 

Event Identification 

Events are identified by class, type, and subtype as 
follows: 

Event Class 

Events are divided into classes such as queue events, 
process events, and machine status events. Valid entries 
for this event identification element are hex oo01-7FFF. 

Event Type 

The event type within a class further describes the 
event. Valid entries for this event identification element 
are hex oo-FF. Type hex 00 is never signaled by the 
machine. It is restricted to supporting the technique of 
generic monitoring of the event type. 

Chapter 24. Event Specifications 

Event Subtype 

This entry further describes the event type. Valid entries 
for this event identification element are hex OO-FF. 
Subtype hex 00 is never signaled by the machine. It is 
restricted to supporting the technique of generic 
monitoring of the event subtype. 

Compare Value Qualifier 

Certain classes of machine events allow a compare 
value to be specified. The compare value can contain a 
system pointer, but the system pointer must be located 
in the first 16 bytes of the compare value. The system 
pointer can optionally be followed by a scalar; for 
example, a counter value limit. The compare value can 
be supplied to further qualify the event monitors. 

For timer events, the compare value specifies the time 
of day or the realtime interval that, when reached, 
causes the event monitor to be signaled. 

Event-Related Data 

Associated with machine events is information made 
available to the event monitor that is monitoring the 
event when a signaled condition is met. Both standard 
and specific event-related data are supplied with all 
signals. This information can be materialized through the 
use of the Retrieve Event Data instruction. 

Event Specifications 24-1 



Standard Event-Related Data 

The following format describes the standard 
event-related data available for retrieval when an event 
monitor has been signaled. The format of the data is: 

• Template size specification 
- Number of bytes provided 

for retrieval 
- Number of bytes in 

event-related data 

• Reserved (binary 0) 

• Event ID 
- Class 
- Type 
- Subtype 

• Compare value length 

• Compare value 

• Indicators 
- Origin of signal 

o Signaled by the machine 
1 = Signaled by the Signal 

Event instruction 
- Compare value content 

o = System pointer not present 
1 = System pointer present 

- Reserved (binary 0) 

• Event-specified data length 

This value is 0 for short form 
event monitors, and the following 
attributes are not supplied. 

• Signals pending count 

• Time of event signal 

Charla) 
Bin(4) 

Bin(4) 

Char(2) 

Char(4) 
Char(2) 
Char(1 ) 
Char(1 ) 

Bin(2) 

Char(32) 

Char(2) 
Bit 0 

Bit 1 

Bits 2-15 

Bin(2) 

Bin(4) 

Charla) 

This time is presented as a 64-bit 
unsigned binary value in which bit 41 
equals 1024 microseconds. 

24-2 

• Process (causing signal is 
denoted by process control 
space system pointer) 

This attribute is set to binary 0 if 

System 
pointer 

the event signal is not related to a 
process action, such as a timer event. 

A pointer of all O's is returned if the 
signaling process or process controls no 
longer exists when the data is retrieved. 

• Event-specific data Char(*) 

Specific Event-Related Data 

Machine events contain specific event-related data, 
which is in addition to the standard event-related data 
that accompanies the event signal. 

This specific data is logically appended to the standard 
event-related data when an event handler retrieves the 
data. 

The specific event-related data format is defined for 
each machine event under Event Definitions, later in this 
chapter. 



EVENT DEFINITIONS 

This section gives the definitions of the events that can 
be monitored. They are arranged in numeric order by 
event class. The types and subtypes within each event 
class are in numeric order. Subheadings under each 
event class give the combined type and subtype number 
and name followed by the compare value and event 
related data. 

0002 Authorization 

0101 Object Authorization Violation 

Compare Value: None allowed 

Event-Related Data: System pointer to the object 

0201 Privileged Instruction Violation 

Compare Value: None allowed 

Event-Related Data: None 

0301 Special Authorization Violation 

Compare Value: None allowed 

Event-Related Data: None 

0004 Controller Description 

0401 Controller Description Successful Contact 

Compare Value: Allowed 
- System pointer to the controller description 

Event-Related Data: 
- System pointer to the controller description 
- System pointer to the network description 

(supplied only for CD type 10; otherwise. binary 0) 
- Data length (hex 0000) Bin(2) 
- Variable data None 

0402 Controller Description Unsuccessful Contact 

Compare Value: Allowed 
- System pointer to the controller description 

Event-Related Data: 
- System pointer to the controller 

description 
- System pointer to the network description 

(supplied only for CD type 10; otherwise. 
binary 0) 

- Data length Bin(2) 
(2 to 66 bytes) 

- Variable data 
(2 to 66 bytes) 
Status 
XID data or SSCP ID 
data from the contacted 
station (up to 64 bytes) 

Char(*) 

Char(2) 
Char(*) 

Event Specifications 24-3 



0403 Loss of Contact 

Compare Value: Allowed 
- System pointer to the controller description 

Event-Related Data: 
- System pointer to the 

controller description 
- System pointer to the 

network description only 
for controller description 
type 10. otherwise 0 

- Data length (hex OOOE or 
decimal 14 
Status code 
Reserved 

Char(2) 
Char(12) 

0501 Controller Description Failure (station inoperative) 

0502 Controller Description Failure (protocol violation 
detected) 

0503 Controller Description Failure (SSCP to physical unit 
session inactive) 

0504 Control/er Description Failure (BSC MTAM protocol 
considerations) 

Compare Value (for all subtypes): Allowed 
- System pointer to the controller description 

Event-Related Data (for al/ subtypes): 
System pointer to the controller 
description 

- Data length (hex 001 E) 
- Variable data 

Error code (see 

24-4 

IBM System/38 Functional 
Reference Manual-Volume 2. 
GA21-9800 for local source/sink 
devices. communications. and 
locally attached work stations) 
Timestamp 
(if matching error log entry) 
OU number 
Optional data (see 
IBM System/38 Functional 
Reference Manual-Volume 2, 
GA21-9800 for local source/sink 
devices. communications. and 
locally attached work stations) 
Optional system pointer 

Bin(2) 
Char(30) 
Char(2) 

Char(8) 

Char(2) 
Char(2) 

Char(16) 

0601 Control/er Description Manual Intervention 

0602 Control/er Description Unbound Intervention 

0603 Control/er Description Switched Intervention 

0604 Controller Description Primary Intervention 

Compare Value (for all subtypes): Allowed 
- System pointer to the controller description 

Event-Related Data (for al/ subtypes): 
- System pointer to the controller 

description 
- System pointer to the network description 

(binary 0 if not switched line) 
Data length (hex OOOE) 

- Variable data 
Status (manual dial 
operation hex 0001) 
(see IBM System/38 Functional 
Reference Manual-Volume 2. 
GA21-9800 for local source/sink 
devices. communications. and 
locally attached work stations) 
Timestamp 
OU number 
Optional data 

0007 Data Space 

Bin(2) 
Char(14) 
Char(2) 

Char(8) 
Char(2) 
Char(2) 

0301 Data Space Compression Threshold Exceeded 

Compare Value: Allowed 
- System pointer to the data space 

Event-Related Data: 
- System pointer to the data space 

0008 Data Space Index 

0301 Data Space Index Invalidated (signaled when data 
space index was unexpectedly invalidated) 

Compare Value: Allowed 
- System pointer to the data space index 

Event-Related Data: 
- System pOinter to the data space index 



OOOAlock 

0101 Object Locked (after asynchronous wait-signaled to 
receiving process) 

Compare Value: None allowed 

Event-Related Data: 
- Space pointer to original lock request template 

0201 Object Destroyed (during asynchronous 
wait-signaled to requesting process) 

Compare Value: None allowed 

Event-Related Data: None 

0301 Object Lock Transferred (signaled to receiving 
process) 

Compare Value: None allowed 

Event-Related Data: 
- A copy of the lock transfer template. 

For lock or unlock, the lock transfer template 
contains one entry for each lock transferred. The 
template is binary 0 except for the number of 
entries, the offset to the selected bytes, the 
system pointers, the lock state selection bit, and 
the entry active bit. The system pointers provided 
contain no authority. 

0401 Asynchronous Lock Wait Time-Out (signaled to 
requesting process) 

Compare Value: None allowed 

Event-Related Data: None 

0008 logical Unit Description 

0401 Unformatted Supervisory Service Request 

0402 Formatted Supervisory Service Request 

Compare Value (for all subtypes): Allowed 
- System pointer to the logical unit description 

Event-Related Data (for all subtypes): 
- System pointer to the logical unit description 
- Data length Bin(2) 
- Variable data (RU data Char(*) 

as received-up to 80 bytes allowed) 

0501 Logical Unit Description Unsolicited Incoming 
Messages Expedited 

0502 Logical Unit Description Unsolicited Incoming 
Messages Nonexpedited (with or without data) 

0503 Logical Unit Description Unsolicited Incoming 
Messages SSCP to LU Unsolicited Data 

0504 Logical Unit Description Unsolicited Incoming 
Messages SSC Line Sid Received or SSC Emulation 
Select Received 

0505 Logical Unit Description Unsolicited Incoming 
Messages Expedited (secondary) 

0506 Logical Unit Description Unsolicited Incoming 
Messages Nonexpedited (secondary) 

0507 Logical Unit Description Unsolicited Incoming 
Messages SSC MT AM Invalid Data Received 

0508 Logical Unit Description Unsolicited Incoming 
Messages SSC MT AM Data Stream Restarted 

0509 Logical Unit Description Unsolicited Incoming 
Messages SSC MT AM Incoming Data Discarded 

0510 Logical Unit Description Unsolicited Incoming 
Messages SSC MT AM Device Conflict 

0520 Logical Unit Description APPC Conversation 
Incoming Data Expedited Flow 

0521 Logical Unit Description APPC Conversation 
Incoming Data Nonexpedited Flow 

0522 Logical Unit Description Attached Request Not 
Activated 

Event Specifications 24-5 



0523 Logical Unit Description Attached Request Maximum 
Exceeded 

Compare Value (for all subtypes): Allowed 
- System pointer to the logical unit 

description 
- Conversation I D 

(subtypes 20 and 21 only) 
- Mode name (subtype 22 only) 
- Unit of work ID 

(subtype 23 only) 

Char(16) 

Char(8) 
Char(32) 

Event-Related Data (for all subtypes): 

0602 Logical Unit Description Contact Unsuccessful 

Compare Value: Allowed 
- System pointer to the logical unit description 

Event-Related Data: 
- System pointer to the logical unit description 
- Reserved (binary 0) Char(16) 
- Data length (hex 0012) Bin(2) 
- Variable data Char(18) 

Status Char(2) 
- Additional data Char(16) 

- System pointer to the logical unit The following status values are defined: 
description 

- Data length (hex 0000) Bin(2) 
- Variable data None 

Reason Status Additional Data 

Invalid response 0001 First 4 bytes of ACTLU 
0601 Logical Unit Description Contact Successful to ACTLU response 

Unable to 0002 None 
Compare Value: communicate with 
- System pointer to the logical unit description device 

LUD not varied on 0005 None 
Event-Related Data: (LUD and CD are 
- System pointer to the logical unit description 

Reserved binary 0) Char(16) 
- Data length (hex 0000) Bin(2) 

for a primary 
station) 

- Variable data None 

24-6 



0701 Operator Intervention Required 

0702 Not Ready to Ready Transition 

Compare Value: Allowed 
- System pointer to the logical unit description 

Event-Related Data: 
- System pointer to the logical unit 

description 
- Reserved (binary 0) Char(16) 
- Data length (hex OOOE) Bin(2) 
- Variable data Char(14) 

Status (see Char(2) 
IBM System/38 Functional Reference 
Manual-Volume 2. GA21-9800 for local 
source/sink devices. communications. and 
locally attached work stations) 
Timestamp (if 
matching error log entry) 
OU number 
Optional data 

0801 Device Failure (inoperative) 

0802 Device Failure (not available) 

Char(8) 

Char(2) 
Char(2) 

0803 Device Failure (SSCP to LU session inactive) 

0804 Device Failure (LU to LU termination) 

Compare Value (for all subtypes): Allowed 
- System pointer to the logical unit description 

Event-Related Data: 
- System pointer to the logical unit 

description 
- Data length (hex OOOE) Bin(2) 
- Variable data Char(14) 

Error code (see Char(2) 
IBM System/38 Functional Reference 
Manual-Volume 2. GA21-9800 for local 
source/sink devices. communications 
and locally attached work stations) 
Timestamp of matching Char(8) 
error log entry 
OU number Char(2) 
Optional data (see Char(2) 
IBM System/38 Functional Reference 
Manual-Volume 2. GA21-9800 for local 
source/sink devices. communications. and 
locally attached work stations) 

0901 Session Related Event (request I/O completed 
signaled to requesting process only when the flag is set in 
the SSR) 

0902 Idle Session Event (signaled machine wide) 

0903 No Session Event (signaled machine wide) 

0904 Incoming Data and No Outstanding Request I/O 
instruction (signaled only to the process that activated the 
session) 

Event Specifications 24-7 



0905 Request Path Operation Completed (signaled to the 
requesting process only) 

Compare Value (for all subtypes): Allowed 
- System pointer to the logical unit description 

Event-Related Data: 
- System pointer to the logical unit 

description 
- Data length 

(hex 0000 to 0102) 
Variable data 
Key length 
Key'(10 to 256 bytes) 
The variable data 
includes a 2-byte 
length of key and an 
N-byte key from the SSR. 

Bin(2) 

Char(2 + N) 
Char(2) 
Char(N) 

OA01 Request I/O or Request Path Operation Response 
Queue Destroyed (signaled to requesting process only) 

Compare Value: Allowed 
- System pointer to the logical unit description 

Event-Related Data: 
- System pointer to 

the logical unit description 
- Space pointer to the 

SSR or path operation 
template (source / sink request) 

- Data length (hex 0000) 
- Variable data 

0802 Pass-Thru Terminated 

Compare Value: Allowed 

Sin(2) 
None 

- System pointer to the requestor logical unit 
description 

Event-Related Data: 
- System pointer to the requestor logical unit 

description 
- Data length 
- Termination code 
- VLOG ID 
- System name 
- Failing device name 

24-8 

Bin(2) 
Char(4) 
Char(S) 
Char(S) 
Char(10) 

OOOC Machine Resource 

0201 Machine Auxiliary Storage Threshold Exceeded 

Compare Value: None allowed 

Event-Related Data: 
Machine auxiliary storage 
threshold (set to 0 
when event is signaled) 

- Current amount of auxiliary 
storage used by the 
machine 

- Current amount of auxiliary 
storage available in the Sin(S) 
machine 

0301 Machine Ineligible State Threshold 

Compare Value: None allowed 
Event-Related Data: 
- Number of processes in 

the ineligible state 
Machine ineligible 
threshold value 

Bin(S) 

Bin(S) 

Bin(2) 

Bin(2) 

0401 MPL (multiprogramming level) Class Ineligible State 
Threshold 

Compare Value: None allowed 

Event-Related Data: 
- MPL class ID 
- Number of processes in 

ineligible state in the 
MPL class 

- MPL class ineligible 
threshold value 

Bin(2) 
Bin(2) 

Bin(2) 



L 
0501 Machine Address Threshold Exceeded 

Compare Value: None allowed 

Event-Related Data: 
Reserved (binary 0) 

The address generator 
that was depleted 
Reserved (binary 0) 

Temporary generator depleted 
Permanent generator depleted 
Total permanent 
address possible 
Total temporary 
addresses possible 
Permanent addresses 
remaining 
Temporary addresses 
remaining 
Permanent address 
generation threshold 
Temporary address 
generation threshold 

Charm 
Char(1 ) 

Bits 0-5 
Bit 6 
Bit 7 
Char(8) 

Char(8) 

Char(8) 

Char(8) 

Char(8) 

Char(8) 

0601 Load/Dump Session Buffer Released 

Compare Value: None allowed 
Event-Related Data: 

ID of the storage pool Bin(2) 
that the buffer was released from 

0000 Machine Status 

0101 Machine Check 

Compare Value: None allowed 

Event-Related Data: 
Machine-related data Char(16) 

Machine-related data contains information about 
the type of machine check and the status of the 
machine. The following chart shows the byte 
significance of the machine-related data field. 

Byte Bit Name 

0 Machine 
check 
status 

Machine 
check 
occurrence 

Indicates 

The severity of 
the error 

0 = Permanent machine 
check. An unrecoverable 
machine check occurred. 

Recovered machine 
check. A machine 
malfunction occurred. 
and the machine 
recovered. 

Information is available 
for a record of recovered 
machine checks. No 
special recovery is 
required as a result of a 
recovered machine check 
because these checks do 
not affect the process 
active at the time of the 
machine check. 

Where the error 
occurred 

o Occurred in a process. 

Occurred in a machine 
component unrelated to 
a process. 

Event Specifications 24-9 



Byte Bit Name Indicates 

1 (continued) 

2-7 Reserved 
(binary 0) 

2 0-7 Reserved 
(binary 0) 

3 0-7 Machine This type of machine 
check check for diagnostic 
type purposes only. 

4 0-7 Machine Whether or not 
check the machine check 
log is logged within 
status the machine. 

Bit 0=1 Machine check is 
logged and can be 
retrieved via the 
machine service 
function. 

Bit 0=0 Machine check is not 
logged. 

5-6 0-15 Machine The length of the 
check machine check log. 
log 
length 

7-8 0-15 Reserved 
(binary 0) 

9-16 0-63 Machine The time of day 

24-10 

check the machine check 
timestamp occurred. This field 

can be used to 
relate the machine 
check event to a 
machine check logged 
within the machine. 

Process-related data Char(18) 

Program System 
pointer 

Instruction number Bin(2) 

VLOG dump ID Char(8) 

Reserved Char(6) 

Timestamp (time Char(8) 
of machine check) 

Error code that Bin(2) 

indicates type 
of machine check 
(machine dependent) 

- Reserved (binary 0) Char(6) 

VLOG ID Char(8) 

Error class Bin(2) 

Hex OOOO=Unspecified abnormal condition 
Hex 0002=Logicaily invalid device sector 

Hex 0003=Device failure 

- Auxiliary storage Bin(2) 

device indicator. 

Defined for error classes 

hex 0002 and hex 0003. It 
is the OU number of the 
failing device or 0 for 

a main storage failure. 
Reserved (binary 0) Char(100) 

0201 Auxiliary Power Supply Activated 

0202 Auxiliary Power Supply De-activated 

0203 Auxiliary Power Supply De-activated for 
Mini-Uninterruptible Power Supply 

Compare Value: None allowed 

Event-Related Data: 
Time stamp 

(time of return to 

normal system operations) 
- Duration on 

uninterruptible power 
supply (number of seconds) 
Reserved (binary 0) 

Char(8) 

Bin(4) 

Char(20) 

0301 Device Error Data File Is 80% Full 

0302 Device Accounting Data File Is 80% Full 

0303 Device Activity Data File Is 80% Full 

0304 Device Error Data File Is 100% Full 

0305 Device Accounting Data File Is 100% Full 

J 



L 
0306 Device Activity Data File Is 100% Full 

Compare Value (for all subtypes): None allowed 

Event-Related Data (for all subtypes): None 

OOOE Network Description 

0401 SDLC XID Failure or SSCP ID Failure 

0402 SSC XID Failure 

0403 Disconnect Failure 

0404 SSC MT AM Eligibility Failure 

0405 XID Negotiation Failure 

Compare Value: Allowed 
- System pointer to the network description 

Event-Related Data: 
- System pointer to the network description 
- Data length Bin(2) 

(hex 0000 to hex 0040) 
- Variable data (up to 64 

bytes of XID data if 
primary or 6 bytes of 
SSCP ID data if secondary) 

0501 Network Description Line Failure 

Char(*) 

0502 Network Description SNA Protocol Violation 

Compare Value: Allowed 
- System pointer to the network description 

Event-Related Data: 
- System pointer to the network description 
- Data length (hex OOOE) Bin(2) 
- Variable data Char(*) 

OOOF Ownership 

0101 Ownership Changed 

Compare Value: None allowed 

Event-Related Data: 
- Object type 
- Object subtype 
- Object name 
- Old user profile 

object type 
- Old user profile 

object subtype 
- Old user profile 

object name 
- New user profile 

object type 
- New user profile 

object subtype 
- New user profile 

object name 

0010 Process 

Char(1) 
Char(1) 
Char(30) 
Char(1) 

Char(1 ) 

Char(30) 

Char(1 ) 

Char (1) 

Char (30) 

0102 Process Initiated (signaled to initiating process) 

Compare Value: None allowed 

Event-Related Data: 
- System pointer to the process control space 

pointer 

Event Specifications 24-11 



0202 Process Terminated (signal to initiating process) 

Compare Value: None allowed 

Event-Related Data: 
- System pointer to the process 

control space 
- Termination type Char(1) 

Hex 01 = Process destroyed 
Hex 02 = Process failed to initiate 

- Process status attributes Char(13) 
(See the Materialize Process 
Attributes instruction in 
Chapter 11 for the format of 
this scalar). This attribute 
has no meaning if termination 
type equals hex 02. 

- Reserved 
- Exception-related data 

This entry is used only if 
the process terminated as a 
result of an exception not 
being handled by the process. 
See Chapter 10. Exception 
Management Instructions 
for the details on 
exception-related data format. 

Char(2) 
Char(·) 

0302 Process Suspended (signaled to initiating process) 

Compare Value: None allowed 

Event-Related Data: 
- System pointer to the process control space 

0402 Process Resumed (signaled to initiating process) 

Compare Value: None allowed 

Event-Related Data: 
- System pointer to the process control space 

24-12 

0501 Process Time Slice Expired Without Entering 
Instruction Wait 

Compare Value: Allowed 
- System pointer to the process control space 

Event-Related Data: 
- System pointer to the process control space 

0701 Maximum Processor Time Exceeded 

Compare Value: Allowed 
- System pointer to the process control space 

Event-Related Data: 
System pointer to the process control space 
Current amount of Char(S) 
processor time used 

0801 Process Storage Limit Exceeded 

Compare Value: Allowed 
- System pointer to the process control space 

Event-Related Data: None 



L 

L 

0011 Program 

0301 Invocation Exit Bypassed Due to a RTNEXCP or a 
S/GEXCP Instruction 

Compare Value: Allowed 
- System pointer to the process control space 

Event-Related Data: 
System pointer to the program that set the 
invocation exit that is being bypassed 
System pointer to the invocation exit program that 
is being bypassed 
System pointer to the program executing a 
RTNEXCP or a SIGEXCP instruction that caused 
this event 

0302 Invocation Exit Bypassed Due to a Process 
Termination 

Compare Value: Allowed 
- System pointer to the process control space 

Event - Related Data: 
- System pointer to the program 

that set the invocation exit that is being bypassed 
System pointer to the invocation 
exit program that is being bypassed 

0401 Failure to Invoke Program 
(Invocation Exit or Exception Handler) 

Compare Value: Allowed 
- System pointer to the process control space 

Event-Related Data: 
Invocation type Char(1) 
Hex 04 = External exception handler 
Hex 08 = Invocation exit 
Reserved 
Exception-related data 
This entry is used only if 
the process terminated as a 
result of an exception not 
being handled by the process. 
See Chapter 10. Exception 
Management Instructions 
for the details on 
exception-related data format. 

Char(15) 
Char(*) 

0012 Queue 

0301 Queue Message Limit Exceeded 

Compare Value: Allowed 
- System pointer to the queue 

Event-Related Data: 
System pointer to the queue accessed 
with the Enqueue instruction 
Maximum number of messages from the queue 
attributes 

0401 Queue Extended 

Compare Value: Allowed 
- System pointer to the queue 

Event-Related Data: 
System pointer to the 
extended queue 

- New maximum number 
of messages value 

0014 Timer 

Bin(4) 

0101 Time-of-Day Clock Reached or Exceeded Specific 
Value 

Compare Value: Required 
- Time-of-day clock value Char(8) 

Event-Related Data: None 

0201 A Single Specific Time Interval Has Elapsed 

This occurred since the event monitor was: 
Created enabled 

- Enabled after being established disabled 

Compare Value: Required 
- Time interval 

Event-Related Data: None 

Char(B) 

Event Specifications 24-13 



0301 A Repetitive Time Interval Has Elapsed 

This occurred since the event monitor was: 
- Established enabled 
- Enabled 

Last signaled 

The timer continues to be monitored for the next 
interval. 

Compare Value: Required 
- Time interval (minimum 

repetitive time interval 
is 1048 milliseconds) 

Event-Related Data: None 

0016 Machine Observation 

Char(8) 

0101 Instruction Reference (signal to process only) 

Compare Value: None allowed 

Event-Related Data: 
- System pointer to the associated program 

pointer (current invocation) 
Invocation attribute Char(16) 
(current invocation) 

- Instruction number to Bin(2) 
be executed 

24-14 

0301 Invocation Reference (signal to process only) 

Compare Value: None allowed 

Event-Related Data: 
System pointer to the 
associated program pointer 
(old invocation) 
System pointer to the 
associated program pointer 
(new invocation) 
Invocation attribute 
(old invocation) 
Invocation attribute 
(new invocation) 
Old instruction number 
New instruction number 
Type of external reference 
Hex 0001 = Call external 
Hex 0002 ... Transfer control 
Hex 0003 - Event handler 

Char(16) 

Char(16) 

Bin(2) 
Bin(2) 
Char(2) 

Hex 0004 = External exception handler 
Hex 0005 = Internal or branch point exception 

handler 
Hex 0006= Return from 

exception handler 
Hex 0007= Invocation exit 
Hex 0008= Return external 
Hex 0009-lnvocation termi-

nation due to 
resignaling 
exception to a 
previous invocation 

Hex OOOA= Invocation termination 
due to return from exception 

Hex OOOB=Termination phase 
termination 

Hex OOOC=Termination due to 
unhandled exception 

Hex OOOE= Invocation termination 
Number of page reads Bin(4) 
into main storage 
associated with data base 
Number of page reads Bin(4) 
into main storage not 
associated with data base 
Number of page writes Bin(4) 
from main storage 
Number of transitions Bin(2)* 
into ineligible wait state 
Number of transitions Bin(2)* 
into MI instruction wait 
Number of transitions Bin(2)* 
into ineligible wait from 
MI instruction wait 
Processing unit time Char(8) 
used 



L 
The Bin(2) fields shown with an asterisk (*) have a 
limit of 32767. Should these limits be exceeded, the 
count is set to zero and no exception is signaled. 

If there is no invocation for the old or new instruction 
number, the program pointer, invocation attributes, 
and instruction number is O. 

Reference types hex 0001 through hex 0007 are 
signaled if the trace invocations bit is set in the 
current (old) invocation. 

Reference types hex 0002, 0008, 0009, oooA, oooB, 
OOOC, and oooE are signaled if the trace returns bit is 
set in the current (old) invocation. 

The following paragraphs describe each reference 
type. 

Call External: The old invocation issued a CALLX 
instruction invoking the new invocation. The old 
instruction number locates the CALLX instruction. 
The new instruction number locates the entry point of 
the called program. 

Transfer Control: The old invocation issued a XCTL 
instruction, terminating the old invocation and 
invoking the new invocation. The old instruction 
number locates the XCTL instruction. The new 
instruction number locates the entry point of the 
transferred-to program. 

Event Handler: The old invocation sensed that an 
event had been issued which the process was 
monitoring, invoking the new invocation (event 
handler). The old instruction number locates the next 
instruction to execute when the old invocation 
resumes. The new instruction number locates the 
entry point of the event monitor. 

External Exception Handler: An exception in the old 
invocation, or one of the invocations below it, caused 
an exception which this invocation was handling, 
causing a new invocation for the external exception 
handler. The old instruction number locates the 
excepting instruction, or the invoking instruction if the 
exception was resignaled to this invocation. The new 
instruction number locates the entry point of the 
exception handler. 

Internal or Branch Point Exception Handler: An 
exception occurred which is handled in this 
invocation. No new invocation is created. The old 
and new invocations are the same. The old 
instruction number locates the excepting instruction, 
or the invoking instruction if the exception was 
resignaled to this invocation. The new instruction 
number locates the first instruction of the internal or 
branch point handler. 

Return from Internal Exception Handler: A Return 
From Exception instruction was executed, causing 
this invocation to resume normal execution. No 
invocation is created or destroyed, but the instruction 
number may have changed. The old instruction 
number locates the last instruction executed in this 
invocation. The new instruction number locates the 
instruction at which control resumes. These may be 
the same. The old and new programs are the same. 

Invocation Exit: A Return From Exception instruction, 
a Signal Exception instruction, or a Terminate Process 
instruction caused an invocation exit to be invoked. 

Return External: The old invocation issued a Return 
External instruction, causing the old invocation to be 
destroyed, and control returned to the previous 
invocation. The old instruction number locates the 
Return External instruction. The new instruction 
number locates the instruction at which control 
resumes. 

Invocation Termination Due to Resignaling Exception: 
An exception occurred in the old invocation that 
handled the exception by resignaling it to the 
previous invocation. The old instruction number 
locates the excepting instruction. The new instruction 
number locates the instruction to which control would 
have returned. 

Invocation Termination Due to Return from Exception: 
A Return From Exception instruction was executed by 
an external exception handler, causing the invocation 
in which the external exception handler was running 
to be terminated. The old instruction number locates 
the Return From Exception instruction. The new 
instruction number locates the instruction to which a 
return to next operation would return. 

Event Specifications 24-15 



Termination Phase Termination: The termination phase 
of the process is terminated, terminating the old 
invocation. The old instruction number locates the 
instruction at which the termination occurred. The 
new instruction number locates the instruction to 
which control would have returned. All other 
invocations on the stack will get type hex OOOE 
events. 

Termination Due to Unhandled Exception: An exception 
occurred for which no handler was specified. The old 
instruction number locates the excepting instruction. 
The new instruction number locates the instruction to 
which control would have returned. All other 
invocations on the stack gets type hex OOOE events. 

Intervening Invocation Termination: Some action 
occurred in an invocation below the old invocation, 
causing the old invocation to be terminated. The 
causes are: 

• An exception was resignaled to the old invocation 
and it, in turn, resignaled the exception. 

• A Return From Exception instruction at a lower 
level returned to an invocation above the old 
invocation. 

• An unhandled exception occurred, causing all 
invocations to be terminated. 

• The termination phase terminated, causing all 
invocations to be terminated. 

The old instruction number locates the instruction 
which invoked the lower level invocation. The new 
instruction number locates the instruction to which 
control would have returned. 

24-16 

0017 Damage Set 

0201 Machine Context Damage Set 

Compare Value: None allowed 

Event-Related Data: 
Reserved (binary 0) 
VLOG dump ID 
Error class 
This field indicates how 
the damage was detected: 

Hex OOOO=Previously 
marked damaged 

Hex 0001 = Detected 
abnormal condition 

Hex ooo2=Logically 

Char(16) 
Char(8) 
Bin(2) 

invalid device sector 
Hex ooo3=Device failure 

Auxiliary storage device 
indicator 
This field is defined for 
error class 0002. It is 
the OU number of the failing 
device or 0 for main 
storage failure 
Reserved (binary 0) 

Bin(2) 

Char(l00) 



L 
0401 System Object Damage Set 

Compare Value: None allowed 

Event-Related Data: 
- System pointer to the 

object pointer 
- VLOG dump 10 Char(S) 

- Error class Bin(2) 

This field indicates how 
the damage was detected: 

Hex OOQO=Previously 
marked damaged 

Hex 0001 =Oetected 
abnormal condition 

Hex 0002=Logically 
invalid device 
sector 

Hex 0OO3=Device failure 
Auxiliary storage device Bin(2) 

indicator 
This field is defined for 
error class 0002. It is 
the OU number of the failing 
device or 0 for main 
storage failure 

- Reserved (binary 0) Char(100) 

0801 Partial System Object Damage Set 

Compare Value: None allowed 

Event-Related Data: 
- System pointer to the 

system object 
- VLOG dump 10 

- Error class 
This field indicates how 
the damage was detected: 

Hex OOOO=Previously 
marked damaged 

Hex 0001 =Oetected 
abnormal condition 

Hex ooo2=Logically 

Char(S) 
Bin(2) 

invalid device sector 
Hex 0003=Oevice failure 

Auxiliary storage device 
indicator 
This field is defined for 
error class 0002. It is 
the OU number of the failing 
device or 0 for main 
storage failure 
Reserved (binary 0) 

Bin(2) 

Char(100) 

0019 Service 

0101 Machine Trace Table Full 

Compare Value: None allowed 

Event-Related Data: None 

001 A Journal Port 

0301 Entry Not Journaled 

Compare Value: Allowed 
- System pointer to the journal port 

Event-Related Data: 
- System pointer to the 

journal port 
- Return value code 

Hex 01 = No journal 
space was attached to 
the specified journal port. 

Hex 02=Unable to 
obtain sufficient space 
on the journal space 
for the entry. 

Hex 03=Journal port 
is damaged. 

Hex Q4=AII journal 
spaces attached 
to the journal port 
are damaged. 

Hex 05=The journal 
sequence number has 
reached its maximum 
allowed value. 

Hex 06=Journal failure. 

Char(1 ) 

0401 Journal Space Attached to a Journal Port Became 
Unusable 

Compare Value: Allowed 
- System pointer to the journal port 

Event-Related Data: 
- System pointer to the journal port 

System pointer to the journal space is unusable 
(binary 0 if undetermined) 

Event Specifications 24-17 



001 B Commitment Control 

0301 Commit Block Attached at Process Termination 

Compare Value: Allowed 
- System pointer to the commit block 

Event-Related Data: 
- System pointer to the 

commit block 
- Reserved 

Commit block status 
Damage 
o = Damaged 
1 = Not damaged 
Reserved 
(binary 0) 
Partially damaged 
o = Not partially damaged 
1 = Partially damaged 
Reserved 
(binary 0) 

Char(1) 
Char(4) 
Bit 0 

Bits 1-2 

Bit 3 

Bits 4-15 

Decommit Bit 16 
o = Changes are decommitted 
1 = Changes are not decommitted 
Journal read errors Bit 17 
o No read errors 
1 = Read errors occurred 

during decommit 
Journal write errprs 
o No write errors 
1 = Write error occurred 

during decommit 
Partial damage 
to data space 
o No partial damage 

encountered 
Partial damage 
encountered on one 
or more data spaces 

Damage to 
data space 
o No damage encountered 
1 = Damage encountered 

24-18 

on one or more 
data spaces 

Function check 
o No function check 

encountered 
Function check 
encountered 

Bit 18 

Bit 19 

Bit 20 

Bit 21 

Reserved (binary 0) 
Constant = 010 
Reserved (binary 0) 

- Reserved (binary 0) 
- Journal entry sequence 

number of start commit 
journal entry 

0401 Errors During Decommit 

Compare Value: Allowed 

Bits 22-23 
Bits 24-26 
Bits 27-31 
Charm 
Bin(4) 

- System pointer to the commit block 

Event-Related Data: 

- System pointer to the commit block 
Reserved (binary 0) Char(1) 
Commit block status Char(4) 
Damage 
o = Not damaged 
1 = Damaged 
Reserved (binary 0) 

Bit 0 

Bits 1-2 
Partially damaged Bit 3 
o = Not partially damaged 
1 = Partially damaged 
Reserved (binary 0) Bits 4-15 
Decommit Bit 16 
o Changes are 

decommitted 
Changes are 
not decommitted 

Journal read errors Bit 17 
o No journal read errors 
1 = Journal read errors 

occurred during decommit 
Journal write errors Bit 18 
o No journal write 

errors 
Journal write errors 
occurred during decommit 

Partial damage Bit 19 
to data space 
o No partial damage 
1 = Partial damage 

on one or more 
data spaces 

Damage to 
data space 
o No damage 
1 = Damage on one or 

more data spaces 
Function check 
o No function check 
1 = Function check 

Bit 20 

Bit 21 



L 
Reserved (binary 0) 
Constant = 100 
Reserved (binary 0) 

- Reserved (binary 0) 
- Journal entry 

sequence number 
of start commit 
journal entry 

001 C Journal Space 

0301 Threshold Reached 

Compare Value: Allowed 

Bits 22-23 
Bits 24-26 
Bits 27-31 
Char(7) 
Bin(4) 

- System pointer to the journal space 

Event-Related Data: 
- System pointer to the 

journal space 
- System pointer to the 

journal port 
- Threshold limit Bin(4) 

0010 User Qualified Timer 

All of the user qualified timer events are only signaled to 
the requesting process. 

The optional user data that may be supplied as part of 
the compare value is determined by the user data 
specified on the associated execution of the Monitor 
Event instruction. 

0101 Time-of - Day Clock Reached or Exceeded Specific 
Value 

Compare Value: Required 
- Time-of-day clock value 
- User data (optional) 

Event-Related Data: None 

Char(8) 
Char(8) 

Event Specifications 24- 1 9 



0201 A Single Specific Time Interval 
as Elapsed 

This occurred since the event monitor was: 
- Created enabled 
- Enabled after being established disabled (any 

unexpired interval is discarded) 

Compare Value: Required 
Time interval 

- User data (optional) 

Event-Related Data: None 

Char(8) 
Char(8) 

0301 A Repetitive Time Interval Has Elapsed 

This occurred since the event monitor was: 
Established enabled 

- Enabled (any unexpired time interval is discarded) 
- Last signaled 

The timer continues to be monitored for the next 
interval. 

Compare Value: Required 

- Time interval 
(minimum repetitive time interval 
is 1048 milliseconds) 

- User data 
(optional) 

Event-Related Data: None 

24-20 

Char(8) 

Char(8) 



All attributes, specifications, and ODT (object definition 
table) formats for each program object in the 
System/38 Instruction Set are discussed in this chapter. 
Charts in this chapter illustrate the combinations of 
attributes and specifications. The detailed formats for 
the ODV (ODT directory vector) and the OES (ODT entry 
string) are also specified in this chapter. 

GENERAL ODT DESCRIPTION 

A program template is composed of a header followed 
by several components, including an instruction stream 
component and an object definition table (ODT) 
component. The ODT contains the views of all objects 
referred to in the instruction stream other than those 
objects that are immediate value operands in the 
instructions. The following objects are ODT definable: 

• Data object 
Scalar data object 

- Pointer data object 

• Constant data object 

• Entry point 

• Branch point 

• Instruction definition list 

• Operand list 

• Exception description 

The ODT entry consists of the ODV and the OES. 

Chapter 25. Program Object Specification 

ODV 

The ODV is a vector of 4-byte character string entries in 
a standard format. An ODV entry describes an object 
completely or partially. If the ODV entry does not 
completely describe the object, it must contain an offset 
into the OES where the object is described completely. 

An ODV entry is required for each object described in 
the ODT. The index value for a particular object ODV 
entry is used as an operand for instructions that operate 
on the object. An ODT can contain 8191 entries in 
template version 0 and 65 526 entries in template 
version 1. The first entry has an index value of 1. 

The structure of the ODV is designed to allow a 
complete definition of commonly used objects. An 
object that cannot be completely described in an ODV 
entry must have an OES entry to complete its definition. 

Each ODV entry generally consists of the following: 

• Type information 
- The first 2 bytes of each ODV entry contain 

information identifying the type and general 
attributes of the object. 

• OES offset or attribute information 
- The last 2 bytes of each ODV entry contain either 

detailed attribute information or an offset into the 
OES where the detailed attribute information is 
found. The OES contains a 4-byte OES length 
entry at the beginning of the OES component. 
This means that the minimum valid offset is 4 
bytes. 

Object references in the System/38 instructions consist 
of instruction operands that contain index values into the 
ODV. 

Program Object Specification 25-1 



OES 

The OES consists of a series of variable-length entries 
that complete an object's description. 

If an OES entry exists for an object, its offset value into 
the OES is specified in the OOV entry for that object. 

Several OOV entries for different objects with identical 
definitions can share the same OES entry. OES entries 
do not exist for those objects that can be completely 
described in the OOV. 

Each OES entry consists of the following: 

• OES header 
One byte indicating which OES appendages are 
present. A bit is included for each possible OES 
appendage. A binary zero value for the bit means 
the appendage is not present. A binary one value 
for the bit means the appendage is present. 

• OES appendages 
- A series of variable-length fields each containing a 

specific collection of information about the object. 

The following are examples of object attributes specified 
in an OES entry. 

• Object names 

• Length / number of elements 

• Explicit bases 

• Explicit positions 

• Initial values 

25-2 

When an OES entry is required to complete an object's 
description, its appendages must be in the same order 
as are the bits that indicated their presence in the OES 
header. 

For example, assume the following OES header: 

B ' 100 0 0 0 0 

I 
Name 

]' 
Initial Value 

The name appendage must immediately follow the OES 
header, and the initial value appendage must 
immediately follow the name appendage. 

The OES may consist of 0 to 16 717 215 bytes. 
Because the· OES offset value may be a maximum of 
65 535 bytes, a means is provided to address an OES 
offset beyond this maximum. A special object type 
value ('1111'8) in the OOV denotes an object description 
in which: 

• A 3-byte offset to the OES entry is specified. 

• The entire object description is specified in the OES 
entry (OOV, the OES header, and OES appendages). 

See References to OES Offsets Greater Than 64 K-l, 
later in this chapter for a detailed description of this 
format. 



L 
ODT ENTRIES IN DETAIL 

In this section, the detailed definitions for the various 
ODT entries are discussed by object type. Each object 
type description contains the following information about 
its respective objects: 

• Attribute combination charts-Summarize both the 
attributes of a given object and the valid combination 
of those attributes. 

In the attribute combination charts, the following 
rules are used: 

A combination of attributes is allowed if the 
attributes lie on a single path that progresses from 
left to right through the diagram. For example: 

c--..., 

--A-.,..--B--I---D---+--

E---' 

The attribute A can be used with Band C, Band 
D, Band E, or E only; but C cannot be used with 
D or E. 

Optional attributes are noted where a solid line 
bypasses one or more attributes. 

• ODV Format-Describes the various bit settings of the 
4-byte ODV entry relative to the specific object type. 

• OES Format-Describes the various OES header bit 
settings relative to the specific object type. 

• Notes-Describe any unique characteristics concerning 
the specifications of the object. 

Note: Reserved bits are those bits not being used 
currently and should always be set to binary O. 

Combinations of attributes not defined in these 
specifications cause a create program exception-invalid 
ODT exception to be signaled during the execution of 
the Create Program instruction. 

Data Object 

Data objects provide operational and, possibly, 
representational characteristics to data in a space. 
Scalar data objects and pointer data objects are the two 
basic categories of data contained in the space. 

Scalar data objects provide operational and 
representational characteristics for numeric and character 
data contained in a space. 

Pointer data objects provide operational characteristics 
for pointer data contained in a space. 

The following chart shows the general characteristics of 
data objects. 

Program Object Specification 25-3 



Binary {zon'" Scalar P k ac ed 
Character 

Data 
-Object 

{om P . Instruction olnter 
System 
Space 

Scalar Data Object 

Attribute Combinations 

Direct on 
Static 

Static 

Automatic 

Boundary 

Parameter 

Space 
Pointer 

Based 

PCO 

Position 

Defined 
on Data 
Object 

Automatic ___ ....I 

Scalar Scalar 
--Data--Type 

Object 

Defined{~~~:;r 
Scalar External 
Defined -....L...-Name 
on Static 

Space 

Position 

Based--~------+-~-------L-L--------~~ 

Parameter------------------~--------L~ 

25-4 

Initial Value 

Element 
Arra Offset 
Size 4--------l 

Initial 
Value 



ODV Format 

Bits Meaning 

0-3 Object type 

4 

5-7 

0000 = Scalar data object 

OES present 
o OES is not present. 
1 = OES is present because one or more of 

the following is true: 
Object is named and external. 

- Object has initial value (not system 
default). 

- Object has based or defined 
addressability . 

- Object has direct addressability with 
explicit position. 
Object is an array. 

Addressability type 
000 Direct static 
001 = Direct automatic 
010 Based 
011 Defined 
100 = Parameter 
101 = Based on PCO (process 

communication object) space 
pointer 

All others reserved 

8 Optimization of value 
o Normal value (can be optimized across 

several instructions) 
Abnormal value (cannot be optimized 
for more than a single reference 
because the value may be modified in a 
manner not detectable by the Create 
Program instruction) 

9-11 

12 

13-15 

Boundary 
000 = None 
001 Multiple of 2 
010 Multiple of 4 
011 Multiple of 8 
100 Multiple of 16 
101-111 = Reserved 

Boundary is assumed to be specified for 
indirectly addressed program objects. A 
higher boundary alignment can improve 
performance when the program object is 
referenced. 

System default initial value 
o Do not use the system default initial 

value. 
Use the system default initial value. 

Numeric zero value for binary. 
packed. zoned. or floating-point 

- Blank character value (hex 40) for 
character strings 

Scalar type 
000 Binary 
001 Floating-point 
010 Zoned decimal 
011 Packed decimal 
100 Character 
101 -111 = Reserved 

Program Object Specification 25-5 



16-31 OES offset or scalar length 

25-6 

• If bit 4 of the ODV is 1 (OES is present), 
then bits 16-31 specify the offset to the 
OES entry for this object. 

• If bit 4 of the ODV is 0 (OES not present). 
bits 16-31 represent the scalar length of 
the object as follows: 

If binary. then: 

Bits 16-31 :Precision 
Hex 0002 = 2 

(binary only) 
Hex 0004 = 4 
All others reserved 

If floating-point. then: 

Bits 16-31 :Precision 
Hex 0004 = 4 
Hex 0008 = 8 
All others reserved 

If zoned or packed decimal. then: 

Bits Meaning 

16-23 Digits (D) to the right of 
assumed decimal point. 
where 0 cDc T 

24-31 Total digits (T) in field. 
where 1 c T c 31 

If character string scalar. then: 

Bits 16-31: String length (L). where 
1 ~ L ~ 32767 

OES Format 

OES Header 

Bits Meaning 

o 

2 

3 

4 

5 

6 

7 

Name and external 
o Object is not named and is not 

externally accessible. 
Object is named and is externally 
accessible. 

Scalar length present 
1 = Length is present (required). 

Array information present 
o Array information is not present. 
1 = Array information is present. 

Base present 
o Base is not present. 
1 = Base is present. 

Position present 
o Position is not present (required if 

boundary is specified). 
Position is present. 

Initial value present in OES 
o = Initial value is not present. 
1 = Initial value is present in DES. 

Replications present in OES 
. 0 No replications in initial value. 

1 = Replications in initial value (bit 5 = 1). 

Reserved 

Name Appendage 

Bytes Meaning 

0-1 Length (L) of name. where 1 c L c 32 

2-L L characters of symbolic name 

Note: Names of external data objects and 
the name of the program must be unique. 

J 



L 
Scalar Length Appendage 

Bytes 0-1 : Scalar length 

Array Appendage 

If binary, then: 

Bytes 0-1 : Precision 
Hex 0002 = 2 

(binary only) 
Hex 0004 = 4 
All others reserved 

If zoned or packed decimal, then: 

Byte Meaning 

o Digits (D) to the right of 
assumed decimal point, 
where 0 cDc T 

Total digits (T) in field, 
where 1 c T c 31 

If floating-point, then: 

Bytes 0-1 : Precision 
Hex 0004 = 4 
Hex 0008 = 8 
All others reserved 

If character string scalar, then: 

Bytes 0-1: String length (L), 
1 ~ L :S 32 767 

Bytes Meaning 

0-3 Number (N) of elements in the array, where 
1 c N c 16 777 215 

4-5 Array element offset 

If the array element offset attribute is 
specified (bytes 4-5 are nonzero). this field 
specifies the offset between initial bytes of 
the elements of a defined on array. 

Base Appendage 

Bytes 0-1: ODT reference for: 
Pointer data object or space pointer 
machine object, if based 

- Scalar data object or pointer data 
object if defined 

Position Appendage 

Bytes 0-3: Position value for: 
- Direct if not defaulting to next 

available byte or if no boundary 
defined 

- Based if not 1 
- Defined if not 1 

Note: Position value is in terms of 
bytes with the first byte in position 1. 

Initial Value Appendage 

Bytes O-L: Initial value in format and length as 
determined by scalar type 

In the initial value appendage, a noncharacter string 
scalar must have an initial value of the proper size 
and format (for example, 2-byte binary value for a 
2-byte binary scalar). 

For arrays and character strings, if the replication bit 
in the OES is binary 1, the initial value portion must 
consist of components of the following form: 

2 bytes: Number of replications of associated 
value 

2 bytes: Length (L) of associated value 

L bytes: Associated value 

Program Object Specification 25-7 



The entire object must be initialized contiguously and 
byte by byte. 

If the replication bit for an array is binary 0, the initial 
value appendage must have the following form: 

4 bytes: Length of initial value (less than or 
equal to the total number of bytes in 
the array) 

L bytes: The initial value of proper size and 
format to specify the initial values for 
each element of the array that is to be 
initialized 

If the replication bit for a character string scalar is 
binary 0, the initial value appendage must be a byte 
string with a length equal to the object length. 

Notes: 
1. Scalar data objects with the external attribute must 

be mapped (direct or defined on direct) onto the 
static space. The names must be unique within the 
program template. 

2. When used for address resolution, the name of an 
external data object is implicitly padded to 32 bytes 
by extending on the right with blank characters (hex 
40). 

3. See Data Object Notes later in this chapter for general 
notes concerning data objects. 

25-8 

J 



Pointer Data Objects 

Attribute Combinations 

Pointer 
Data 
Object 

Direct on 
Static----

Direct on 
Automatic 

Defined 

Based 

Array 
Size 

Scalar 

Pointer 

Space 
Pointer 

peo 

Position 

Position 

Position 

Parameter---_____________ ...J 

Pointer 

Initial 
Value 

Type -----''------~ 

Element 

Array Offset 

Size 

Pointer 
Type 

Array 
Size 

Program Object Specification 25-9 



OOV Format 

Bits Meaning 

0-3 Object type 
0001 = Pointer data object 

4 OES present 
0 o ES is not present. 
1 = OES is present because the object has 

initial value. base. or position. or the 
object is an array. 

5-7 Addressability type 
000 Direct static 
001 Direct automatic 
010 Based 
011 Defined 
100 Parameter 
101 Based on PCO (process commun-

ication object) space pointer 
All others reserved 

S Optimization of value 
0 Normal value (can be optimized across 

several instructions) 
= Abnormal value (cannot be optimized 

for more than a single reference 
because the value may be modified in a 
manner not detectable by the Create 
Program instruction) 

9-11 Reserved 

12-15 Pointer type (ignored unless initial value) 
0001 =Space pointer 
0010=System pointer 
0011=Data pointer 
0100=lnstruction pointer 
All others reserved 

16-31 OES offset 

25-10 

• If bit 4 of the ODV contains a binary O. no 
OES is present. and bits 16-31 contain a 
value of binary O. 

• If bit 4 of the ODV contains a binary 1. 
then an OES header is present in the OES 
at the offset specified in bits 16-31. 

OES Format 

OES Header 

Bits Meaning 

0 Reserved 

Initial value appendage modifier 
0 Instruction pointer initial 

value has the basic format. 
Instruction pointer initial 
value has the extended format. 

Note: This bit must be 0 for 
noninstruction pointer initial values. 

2 Array information present 
0 Array information is not present. 
1 = Array information is present. 

3 Base Present 
0 Base is not present. 
1 = Base is present. 

4 Position present 
0 Position is not present. 
1 = Position is present. 

5 Initial value present 
0 Initial value not present. 
1 = Initial value is present. 

6-7 Reserved 

Array Appendage 

Bytes Meaning 

0-3 

4-5 

Number (N) of elements in the array. where 
1cNc1000000 

Array element offset 

If the array element offset attribute is 
specified (bytes 4-5 are nonzero). this field 
specifies the offset between initial bytes of 
the pointers of a defined array. Value must 
be a multiple of 16. 

J 

J 



Base Appendage 

Bytes 0-1: ODr reference for: 

Position Appendage 

Pointer data object or space pointer 
machine object, if based. 
Data object or pointer object if 
defined. Resulting location must be 
a multiple of 16. 

Bytes 0-3: Position value for: 
Direct if not defaulting to next 
available byte (must be a multiple of 
16) 
Based if not 1 
Defined if not 1 

Initial Value Appendage 

If ODV bits 12-15 indicate instruction pointer: 

If the initial value appendage modifier equals 0, the 
basic format is: 

Bytes 0-1: Instruction stream reference; indirect or 
direct reference to an instruction 
number 

• If bit 0 is 0, then bits 1-15 specify 
an indirect reference that contains 
the ODV number of a branch point 
that specifies the instruction number 
to be referenced. 

• If bit 0 is 1, then bits 1-15 specify a 
direct reference that contains the 
instruction number to be referenced. 

If the initial value appendage modifier equals 1, the 
basic format is: 

Bytes 0-1: Instruction stream reference; indirect or 
direct reference to an instruction 
number 

• If bit 0 is 0, then bits 8-23 specify 
an indirect reference that contains 
the ODV number of a branch point 
that specifies the instruction number 
to be referenced. 

• If bit 0 is 1, then bits 8-23 specify a 
direct reference that contains the 
instruction number to be referenced. 

Bits 1-7 are reserved (binary 0). 

If ODV bits 12-15 indicate data pointer: 

Bytes 0-1 : Number of names in name list. One or 
two names may be specified as the 
initial value. 

• If one name is specified, it must 
be in the name specification of 
the data object in the following 
format: 

Number of namesBin(2) 
(value of 1) 
Scalar data objectBin(2) 
name length (N) 
Scalar data objectChar(N) 
name string, where 
1 ~ N ~ 32 

• If two names are specified, the 
name of a program to be searched 
and the name of the external data 
object are specified as follows: 

Number of namesBin(2) 
(value of 2) 
Program typeChar(l) 
(hex 02) 
Program subtypeChar( 1) 
Program nameBin(2) 
length (M) 

- Program nameChar(M) 
string, where 
1~M~30 

- Scalar data objectBin(2) 
name length (P) 
Scalar data objectChar(P) 
name string, where 
1 ~ P ~ 32 

Program Object Specification 25-11 



If ODV bits 12-15 indicate space pointer: 

Bytes 0-1: ODT number of a data object or pointer 
object that is direct or defined on 
direct. 

If ODV bits 12-15 indicate system pointer, one or two 
names may be specified as the initial value. 

• If one name is specified, it must be the name 
specification of the object in the following format: 
- Number of names (value of 1) 

Object type code 
Object subtype code 
Minimum authority code 
Object name length (N) 
Object name string, 
where 1 ::; N ::; 30 

Bin(2) 
Char(1) 
Char(1 ) 
Char(2) 
Bin(2) 
Char(N) 

• If two names are specified, the entry must be a 
context name and an object name in the following 
format: 
- Number of names (value of 2) 
- Context type code (value of hex 04) 
- Context subtype code 
- Context name length (M) 

Context name string, 
where 1 ::; M ::; 30 

- Object type code 
- Object subtype code 
- Minimum authority code 

Object name length (P) 
Object name string, 
where 1 ::; P ::; 30 

25-12 

Bin(2) 
Char(1 ) 
Char(1 ) 
Bin(2) 
Char(M) 

Char(1 ) 
Char(1) 
Char(2) 
Bin(2) 
Char(P) 

Notes: 
1. The object type codes that may be specified for 

system pointer initial values are as follows: 

Code 
(Hex) Object Type 

01 Access group 
02 Program 
04 Context 
07 Journal space 
08 User profile 
09 Journal Port 
OA Queue 
OB Data space 
OC Data space index 
OD Cursor 
OE Index 
OF Commit block 
10 Logical unit description 
11 Network description 
12 Controller description 
13 Dump space 
19 Space 
1A Process control space 

All other codes are reserved and, if specified, cause 
an exception to be signaled. 

2. The minimum authority codes that may be specified 
for system pointer initial values are as follows: 

Bit Meaning 

0 Object control 
Object management 

2 Authorized pointer 
3 Space authority 
4 Retrieve 
5 Insert 
6 Delete 
7 Update 
8 Ownership 
9-15 Reserved 

A value of binary 1 indicates that the object must 
have the specified authority in order for resolution to 
be performed. Zero or more authority bits may be 
specified, and if any are specified, all must be 
satisfied. 



Reserved bits must have a value of binary O. 

A pointer with based addressability need not have a 
base specified. If a base is specified, the pointer can, 
in turn, be based on another pointer. An exception is 
signaled if the final pointer in the chain is not direct, 
is not defined on a direct data object, is not a 
parameter, or is not defined on a parameter. An 
exception is signaled if a base pointer in the chain is 
based on a pointer that was previously specified in 
the chain of based pointers. 

3. A static space pointer may not be initialized to an 
automatic scalar data or pointer object. 

The last initialized pointer data object appearing in 
the ODT for a given storage location overlays all 
previous pointer object initial values for that location. 

4. A pointer data object defining an array may not be 
initialized. See Data Objects Notes later in this 
chapter. 

5. When the initial value specified for a system pointer 
or a data pointer is to be used for address resolution, 
the name string entry is implicitly extended to the 
standard length by padding with blank characters 
(hex 40). The standard length for system object 
names is 30 bytes and for external scalar data 
objects is 32 bytes. 

6. See Data Object Notes later in this chapter for general 
notes concerning data objects. 

Data Object Notes 

The following notes apply to all declarations of data 
objects, scalars, and pointers. The term data object 
applies to either scalar data objects or pointer data 
objects unless explicitly qualified. 

Notes: 
1. Any specification of position uses position 1 as the 

first position in storage. A position value of 0 is 
invalid. 

2. Data objects that are defined on other data objects 
must follow (not necessarily immediately) their 
associated bases in the ODT. If any data objects in a 
chain of defined-on objects have an initial value, 
none of the objects in the chain can have based or 
parameter addressability, and the first object in the 
chain must be direct on the static or automatic space. 
An initial value associated with a defined data object 
overlays all initial values associated with data objects 
that preceded it in the chain. The portion of a scalar 
data object initial value that overlays any part of an 
initialized pointer data object is ignored. 

If more than one data object initializes the same byte 
(or bytes) in a space, the value associated with the 
data object appearing last in the ODT overlays the 
others. 

3. For data objects with the direct mapping type but no 
explicit position, the Create Program instruction 
provides default position (position in the static or 
automatic allocation) ODT information. ODT entries 
for defaulting direct objects must appear in the order 
desired. Declarations for other program objects can 
be interleaved with these defaulting direct data and 
pointer objects. 

Two examples follow: 

These ODT entries 

A Chart2) Direct Static 
B Pkd(3.3) Direct Static 

o Pointer Direct Static 

These ODT entries 

A Chart4) Direct Static 
B Chart4) Direct Static Poo(20) 
C Chart4) Direct Static 
o Char(4) Direct Static Poo('O) 
E Chart2) Defined B 
F Chart3) Direct Static 

Would be truted a. these: 

A Chart2) Direct Static Pos(1) 
B Pkd(3.3) Direct Static Pos(3) 

o Pointer Direct Static Poa(17) 

Would be treated as these: 

A Chart4) Direct Static Pos(1) 
B Chart4) Direct Static Pos(20) 
C Chart4) Direct Static Pos(24) 
o Chart4) Direct Static Pos(10) 
E Chart2) Direct Static Pos(20) 
F Chart3) Direct Static Pos(2B) 

Program Object Specification 25-13 



The default value for the position depends on 
whether the boundary attribute is specified. Pointer 
objects always have a default boundary attribute that 
is a multiple of 16. 

A boundary specification for a direct data object 
causes the data object to be located at the next 
available position having an offset value that is a 
multiple of the boundary specified. If boundary is 
specified, a value may not be specified for the 
position attribute. The boundary specification for a 
direct pointer object is always a multiple of 16. A 
position specified for a direct pointer object must be 
a multiple of 16. 

If neither position nor boundary is specified for a 
direct data object, the object is located at the next 
available position without regard to boundary 
alignment. 

The size for the static and automatic spaces can also 
be defaulted if the size of static (automatic) storage 
entry in the program template is O. The value used is 
such that the space is large enough to contain all 
data objects with defaulted and explicit direct 
mapping. An exception is signaled if a size that is 
insufficient to contain defaulted and direct mapped 
data objects is specified. 

To summarize, the rules related to positioning data 
objects and setting of the size through defaulted 
directed data objects are: 

25-14 

A defined-on data object may extend beyond the 
end of the data object it is defined on. It may not, 
however, extend beyond the total allocated space 
to which it maps. 
Explicit positioning of a data object may be. 
intermixed with implicit positioning. That is, for 
any ODT, a specification of the position for a data 
object does not preclude a succeeding data object 
requiring a default position. 
A defaulted scalar data object is assigned to the 
highest assigned position for a direct data object 
plus 1. A defaulted pointer data object is assigned 
to the next available 16-byte aligned position 
beyond the highest assigned position. It is 
possible, through explicit positioning, to create a 
gap in a space. This gap is not filled in through 
default positioning of a following data object or 
pointer object. The defaulted object follows the 
explicitly positioned data object. 

Entry Point 

Attribute Combinations 

Internal 
Parameter 

List 
_ Entry-{I nternal 

Point External-.--c----:---..----l 
External 

Breakpoint 

ODV Format 

Bits Meaning 

0-3 Object type 
oo10=Entry point 

4 OES present 
o OES is not present 

Parameter 
List 

1 = DES is present because of entry 
point parameters or the 
instruction stream breakpoint 

5-14 Reserved (binary 0) 

15 Scope 
o Internal 
1 = External 

16-31 OES offset or entry point value 
OES offset if OES present (bit 4=1). 
Entry point value equals the 
instruction number if no entry 
point parameters are listed 

Instruction 
Number--



OES Format 

OES Header 

Bits Meaning 

o 

1-2 

3 

Instruction stream breakpoint 
o Appendage not present 
1 = Instruction stream breakpoint 

appendage present 

Reserved (binary 0) 

Parameter information present 
o Parameter information not present 
1 = Parameter information is present 

4-6 Reserved (binary 0) 

7 Initial value present 
1 = Initial value is required 

Parameter Appendage 

Bytes 0-1 : ODT reference for operand list 
describing entry point parameters 

Initial Value Appendage 

Bytes 0-1: Instruction number for entry point 

Instruction Stream Breakpoint Appendage 

Bytes 0-1: Instruction number for instruction 
stream breakpoint identifies first 
instruction of latter half of program that 
is not executed in the normal path 

Notes: 
1. More than one internal entry point can reference the 

same instruction. 
2. An internal entry point and an external entry point 

cannot reference the same instruction. 
3. Only one external entry point can be defined in a 

program. 
4. An internal entry point can only reference an internal 

parameter list; likewise. an external entry point can 
only reference an external parameter list. 

5. An instruction stream breakpoint can only be defined 
with an external entry point. The instruction number 
specified must be greater than that of the external 
entry point. 

6. If no entry point is declared. the first instruction is 
assumed to be the entry point with no parameters. 

7. If external parameters are declared in a program. an 
external entry point must be declared. If one is not 
declared. an ODT relational error exception is 
signaled by the Create Program instruction. 

Program Object Specification 25-15 



Branch Point 

Attribute Combinations 

- Branch--Instruction Number 
Point 

ODV Format 

Bits- Meaning 

0-3 Object type 
0011 =Branch point 

4 OES present 
o = OES is never present 

5-15 Reserved (binary 0) 

16-31 Value 

Instruction number (N) of branch point, 
where 1 c N c 32 767. 

OES Format 

No OES is needed for branch points. 

25-16 

Instruction Definition List 

Attribute Combinations 

- Instruction-- Number of---N Instruction--
Definition Elements (N)Reference 
List 

ODV Format 

Bits Meaning 

0-3 Object type 
0100=lnstruction definition list 

4 OES present 
1 = OES is present (always present to 

contain the list information) 

5-15 Reserved (binary 0) 

16-31 OES offset 

OES Format 

OES Header 

Bits 

o 

Meaning 

Reserved (binary 0) 

Initial value appendage modifier 
o = Initial value instruction 

references have the 
basic format. 
Initial value instruction 
references have the 
extended format. 

2-6 Reserved (binary 0) 

7 Initial value present 
1 = Initial value is required 

J 



Initial Value Appendage 

Bytes Meaning 

0-1 Number (N) of list elements, where 
1 c N c 255 

If the initial value appendage modifier equals 0, the 
basic format: 

2-3 Instruction reference element 1 

X-X+1 Instruction reference element N 

If the initial value appendage modifier equals 1, the 
basic format: 

2-4 Instruction reference element 1 

X-X+1 Instruction reference element N 

Note: An instruction reference element has the 
following formats: 

If the initial value appendage modifier equals 0, the 
basic format is: 

Bytes 0-1: Instruction stream reference; indirect or 
direct reference to an instruction 
number 

• If bit 0 is 0, then bits 1-15 specify 
an indirect reference that contains 
the ODV number of a branch point 
that specifies the instruction number 
to be referenced. 

• If bit 0 is 1, then bits 1 -15 specify a 
direct reference that contains the 
instruction number to be referenced. 

If the initial value appendage modifier equals 1, the 
basic format is: 

Bytes 0-1: Instruction stream reference; indirect or 
direct reference to an instruction 
number 

• If bit 0 is 0, then bits 8-23 specify 
an indirect reference that contains 
the ODV number of a branch point 
that specifies the instruction number 
to be referenced. 

• If bit 0 is 1, then bits 8-23 specify a 
direct reference that contains the 
instruction number to be referenced. 

Bits 1-7 are reserved (binary 0). 

Program Object Specification 25-17 



Operand List 

Attribute Combinations 

Operand 
--List 

Fixed- Number of 

~
Length--Entries (N)--------, 

Argument 
List 

Variable- Maximum Initial 

L h --Number of-- Number of 

Parameter 
List------, 

Internal 

engt 
Entries (N) Entries 

Parameter 
List

External 

Fixed- Number of 
,...---L.-Length----Entries (N) -----I 

Maximum Minimum 
Variable-__ Number of--Number of 

Length Entries (N) Entries 

ODV Format 

Bits Meaning 

0-3 Object type 
0101 = Operand list 

4 OES present 
1 = OES is always present because it 

contains the operand list entries. 

5 Argument list 
o Not used as argument list 
1 = Argument list (bits 6-7 must be 

binary 0) 

6-7 Parameter list (if not binary 0, bit 5 must be 
binary 0) 
00 = Not parameter list 
01 = Reserved 
10 = Internal parameter list 
11 = External parameter list 

8 Length attribute 
o = Variable-length 
1 = Fixed-length 

9-15 Reserved (binary 0) 

16-31 OES offset 
OES offset = OES is always present 

25-18 

N List 
Entries 

J 



OES Format 

DES Header 

Bits Meaning 

0-6 Reserved (binary 0) 

7 Initial value present 
1 = Initial value is required 

Initial Value Appendage 

Bytes Meaning 

0-3 Number (N) of list elements, where 
1 c N c 255 

• For fixed-length lists (argument or 
parameter) 

Bytes Meaning 

0-1 Number (N) of elements, where 
1 c N c 255 

2-3 Reserved (binary 0) 

• For variable-length lists 

Bytes Meaning 

0-1 Maximum number (N) of 
elements that the list can contain, 
where 1 c N c 255 

2-3 For argument lists, the initial 
number (M) of elements to be 
passed on a Call External or 
Transfer Control instruction, 
where a c M c N 

For parameter lists, the minimum 
number (M) of elements to be 
received on entry, 
where a c M c N 

4-5 OOT reference 1 

X-X+1 OOT reference N 
N elements are required. 

Notes: 
1. An operand list cannot be both an argument list and 

a parameter list. 
2. Argument lists referenced on Call Internal instructions 

must be fixed length. 
3. Parameter lists referenced by internal entry points 

must be fixed-length internal parameter lists. 
4. Internal parameter lists and argument lists used on 

internal calls can only be fixed-length. 
5. The same object cannot appear in more than one 

parameter list (internal or external) in a program 
template. 

6. All the OOT entries for the elements of an operand 
list must appear before the OOT entry for that 
operand list. 

7. Variable-length lists must define OOT references for 
every entry in the list. 

8. Objects referenced in a parameter list must have the 
parameter attribute. 

Program Object Specification 25-19 



Constant Data Object 

Attribute Combination 

- Constant,.---- Scalar'----V'alue 
Data Attributes 
Object 

OOV Format 

Bits 

0-3 

4 

5 

6 

7 

Meaning 

Object type 
0110 = Constant data object 

OES present 
o = OES is not present (value in bits 8-15). 
1 = OES is present because the value does 

o 
1 

not fit in bits 8-15. and the system 
default initial value is not used. 

No system default initial value 
Use system default initial value 
- Numeric 0 for binary. packed. zoned. 

or floating-point 
- Blank character value (hex 40) for 

character 

Value in bits 8-15 
o Value not in 8-15 in OES. or system 

default value is to be used. 
= Value to be propogated in each byte is 

in bits 8-15. and scalar type is 
character. 

Reserved (binary 0) 

8-15 Value specification 

25-20 

• If bit 6 is 1. then this byte contains a 
value to be given to each byte in the 
constant. 

• If bit 6 is O. then: 

Bits Meaning 

8-12 Reserved (binary 0) 

13-15 Scalar type 
000 Binary 
001 Floating-point 
010 = Zoned decimal 
011 Packed decimal 
100 = Character 
101-111 = Reserved 

OOV Format (Continued) 

Bits Meaning 

16-31 OES offset or scalar length 

• If bit 4 of the ODV is 1 (OES is present). 
then bits 16-31 represent the offset to 
the OES entry for this object. 

• If bit 4 of the ODV is 0 (OES is not 
present). bits 16-31 represent the scalar 
length of the object. 

If binary. then: 

Bits 16-31: Precision 
Hex 0002 = 2 

(binary only) 
Hex 0004 = 4 
All others reserved 

If floating-point. then: 

Bits 16-31: Precision 
Hex 0004 = 4 
Hex 0008 = 8 
All others reserved 

If zoned or packed decimal. then: 

Bits Meaning 

16-23 Digits (D) to the right of 
assumed decimal point. 
where 0 cDc T 

24-31 Total digits (T) in field. 
where 1 c T c 31 

If character string scalar. then: 

Bits 16-31: String length (L). where 
1 c L c 32 767 



OES Format 

DES Header 

Bits 

o 

2-5 

6 

7 

Meaning 

Reserved (binary 0) 

Length information present 
1 = Scalar length information (required if 

there is an OES) 

Reserved (binary 0) 

Value present 
1 = Value is present (required if there is 

an OES) 

Replications present in OES 
o No replications in initial value 
1 = Replications in initial value (bit 6 = 1) 

Length Information Appendage 

Bytes Meaning 

0-1 Scalar length 

• If binary, then: 

Bytes 0-1 : Precision 
Hex 0002 = 2 (binary 
only) 
Hex 0004 = 4 
All others reserved 

• If floating-point, then: 

Bytes 0-1 : Precision 
Hex 0004 - 4 
Hex 0008 = 8 
All others reserved 

• If zoned or packed decimal, then: 

Bytes Meaning 

o Digits (D) to the right of assumed 
decimal point, where 0 cDc T 

Total digits (T) in field, where 
1 c T c 31 

• If character string scalar, then: 

Bytes 0-1 : String length 
o = Length (L) beyond 

2047, where 1 c L c 
2047 

Program Object Specification 25-21 



Value Appendage 

Bytes O-l: Value in format and length as 
determined by constant data object 
scalar type. 

25-22 

• For noncharacter scalars, a value of 
the proper size and format is 
required; for example, a 2-byte 
binary value is required for a 2-byte 
binary data object. 

• For character strings, if the 
replication attribute specified in the 
OES is binary 1, the value must 
consist of components of the 
following form: 

2 bytes: Number of replications of 
associated value 

2 bytes: length (l) of associated 
value 

l bytes :Associated value 

The total number of bytes specified 
through all replications must equal 
the length of the string (1 to 2047). 

If the replication attribute is binary 0, the 
value for a character constant view is a 
byte string of length equal to the object 
length. 

J 



Exception Descriptions 

Attribute Combinations 

Exception 
Description 

External S 
. ystem 

Exception -- P . 
H dl omter 

an er 

Internal Internal 
Exception -- Entry 
Handler Point 

Branch 
Branch Exception __ 

Handier Point 

Compare User 

Exception Exception [ Value J C Data ~ 
Handling - Identification ..L ______ ----I _____ .L...... _____ ....I...-

Action List 

Program Object Specification 25-23 



OOV Format 

Bits 

0-3 

4 

5 

6-7 

8-9 

Meaning 

Object type 
0111 = Exception description 

OES present 
1 = OES present (required for exception 

description) 

Return exception data 
o = Exception data is returned 
1 = Exception data is not returned 

Reserved (binary 0) 

Exception handler type 
00 = External entry point 
01 = Internal entry point 
10 = Internal branch point 
11 = Reserved 

10-12 Exception handling action 
000 Do not handle-ignore occurrence of 

exception and continue processing. 
001 Do not handle-continue search for 

another exception description to 
handle the exception. 

010 Do not handle-continue search for 
an exception description by 
resignaling the exception to the 
immediately previous invocation. 

011 Reserved. 
100 Defer handling-save exception data 

for later exception handling. 
101 = Pass control to the specified 

exception handler. 
11 0-111 = Reserved. 

13-15 Reserved (binary 0) 

16-31 OES offset (required) 

25-24 

OES Format 

Bits 

o 

1 

2-4 

5 

6 

Meaning 

Target 
1 = Present (always required for exception 

description) 

Target appendage modifier 
o = Target appendage for a 

branch point exception 
handler has the basic 
format. 
Target appendage for a 
branch point exception 
handler has the extended 
format. 

Reserved (binary 0) 

Compare value 
o = Compare value not present 
1 = Compare value present 

User data 
o II: User data not present 
1 = User data present 

7 Exception identifications 
1 ... List of exception identifications (always 

present) 

Target Appendage 

For external and internal entry point exception 
handlers the target appendage modifier must be O. 
The appendage has the following form: 

Bytes 0-1 : OOT reference to 
Pointer data object if the exception 
handler is an external entry point. 
This pointer data object must be 
either in the automatic or static 
storage of this program and must be 
directly referenced. 
Internal entry point if the exception 
handler is an internal entry point. 
Branch point if the exception handler 
is an internal branch point. 

J 



L 
For branch point exception handlers the target 
appendage has the following form: 

If the initial value appendage modifier equals 0, the 
basic format is: 

Bytes 0-1: Instruction stream reference; indirect or 
direct reference to an instruction 
number. 

• If bit 0 is 0, then bits 1 -15 specify 
an indirect reference that contains 
the OOV number of a branch point 
that specifies the instruction number 
to be referenced. 

• If bit 0 is 1, then bits 1-15 specify a 
direct reference that contains the 
instruction number to be referenced. 

If the initial value appendage modifier equals 1, the 
basic format is: 

Bytes 0-1: Instruction stream reference; indirect or 
direct reference to an instruction 
number. 

• If bit 0 is 0, then bits 8-23 specify 
an indirect reference that contains 
the OOV number of a branch point 
that specifies the instruction number 
to be referenced. 

• If bit 0 is 1, then bits 8-23 specify a 
direct reference that contains the 
instruction number to be referenced. 

Bits 1-7 are reserved (binary 0). 

User Data Appendage 

Bytes 0-1 OOT reference to either 
- Pointer data object 
- Scalar data object 
This data object must be in either the 
automatic or the static storage of this 
program and must be directly 
referenced. 

Compare Value Appendage 

Bytes 

0-1 

2-N 

Meaning 

Compare value length 
(maximum value of 32) 

Compare value 

Exception Number Appendage 

Bytes Meaning 

0-1 Number (N) of exception numbers 

2-{2n + 1) N 2-byte exception numbers 

Notes: 
1. A pointer or scalar data object identified by the 

exception description (external exception handler or 
user data) must appear before the OOT entry for the 
exception description. 

2. The exception descriptions are searched in the same 
order as they appear in the OOT when an exception 
has been signaled. Because of this, the first 
exception description that meets the conditions of the 
exception directs subsequent execution. 

Program Object Specification 25-25 



References to OES Offsets Greater Than 64 K - 1 

OOV Format (References to OES Offset Greater 
Than 64 K - 1) 

Bits 

0-3 

Meaning 

Object type 
1111 = References to OES greater than 

64 K - 1 (65 535) 

4-7 Reserved (binary 0) 

8-31 OES offset (3 bytes) 

OES Format (Reference to OES Offset Greater Than 
64 K - 1) 

OES Header 

Bytes Meaning 

0-1 First 2 bytes of standard OOV 
entry for this object 

2 OES header for this object 

3-N OES appendages for this object 

25-26 

Space Pointer Machine Object 

Attribute Combinations 

Space Initial Optimization 
Pointer ,-- Value-, r Priority J 

_Machine' __ ---1..L ___ --.J-----L_---.JLL....-______ .J....-__ 

Object 

OOV Format 

Bits Meaning 

4 

Object type 
1OOO=Space pointer machine object 

OES present 
o OES is not present. 
1 = OES is present because an initial 

value, or optimization priority 
is specified. 

5-11 Reserved (binary 0) 

12-15 Pointer type 
0001 = Space pointer (required) 

16-31 OES offset 

• If bit 4 of the OOV is 1 (OES 
is present), then bits 16-31 
represent the offset to the 
OES entry for this object. 

• If bit 4 of the OOV is 0 (OES 
is not present). bits 16-31 
contain a value of binary zero. 

J 



L-
OES Format 

OES Header 

Bits Meaning 

0-4 Reserved (binary 0) 

5 Initial value present 
o = Initial value is not present 
1 = Initial value is present 

6 Optimization priority value present 
o Priority value is not present 
1 = Priority value is present 

7 Reserved (binary zero) 

Initial Value Appendage 

Bytes Meaning 

0-1 OOV number of a scalar or pointer 
data object that is direct or 
defined on direct. 

Optimization Priority Appendage 

BytesMeaning 

o Optimization priority value. 
Hex FF = Highest priority 

Hex 00 = Lowest priority 

1-3 Reserved (binary 0) 

This attribute should be used with caution. The 
beneficial effects of the normal machine optimizations 
can potentially be negated through incorrect prioritization 
of pointers relative to their influence on a program's 
performance. 

Normally, optimizations are performed on pointers 
according to a priority established by a machine analysis 
of pointer usage within the program. The optimization 
priority attribute allows a space pointer machine object 
to be given a priority attribute which overrides the 
normal prioritization of space pointer machine objects 
performed by the machine when programs are created. 
Through this facility, space pointer machine objects can 
be specified as being of high optimization priority even 
though the analysis performed by the machine would 
determine the space pointer machine object to be of low 
usage within the program. Specifying a priority value 
indicates that the pointer is of higher priority than those 
with a lower value or those for which no value is 
specified. A particular priority value can be specified for 
multiple pointers to indicate that they are of equal 
priority relative to each other. 

The number of space pointer machine objects for which 
special optimizations can be done is quite low, normally 
2 or 3 (maximum of 8) depending on the particular 
program. The number of space pointer machine objects 
that can be specified in the program is limited by the 
amount of storage available for them in the internal 
work space associated with the program. 

Space pointer machine objects are allowed in the OOV 
component of the program template only as an 
optimization option. This is because of the additional 
processing overhead necessary to provide support for 
them during program creation. 

If no priority attribute is specified, the normal 
prioritization of space pointer data objects and space 
pointer machine objects controls the optimizations 
performed on them. When the priority attribute is 
specified, the effect it may have on the optimizations 
being performed is dependent upon the particular 
implementation of the machine. A beneficial effect may 
only be realized for some of the pointers carrying the 
attribute due to constraints on the optimizations which 
can be performed for a particular machine. 

Program Object Specification 25-27 



25-28 



L 

This appendix provides an abbreviated format of a" the 
instructions. The instructions are listed alphabetica"y by 
instruction mnemonic. 

The summary list includes the following items for each 
instruction. 

• Operation Description-The name of the instruction. 

• Mnemonic-The mnemonic assigned to the instruction. 

• Operation Code-The 2-byte hexadecimal operation 
code assigned to the instruction. If an instruction 
allows any optional forms a bit value of 0 is specified 
for those positions. A" instructions assume a bit 
value of 0 for the branch target bit. 

• Number of Operands-The number of operands 
(excluding the extender) in the instruction. 

• Extender-A description of the use of the extender 
field. 

• Operand Syntax-The objects allowed as operands in 
the instruction. 

• Resulting Conditions-The conditions that can be set at 
the end of the standard operation in order to perform 
a conditional branch or set a conditional indicator. 

• Optional Forms-A notation for the optional forms that 
are allowed for the computational instructions. 

Note: This summary list can also be used as an index 
to identify the page where a complete description of 
each instruction can be found in this manual. The page 
number is the last item included with each instruction in 
this summary. 

The following paragraphs further describe the summary 
list format of the last five items in the previous list. 

Appendix A. Instruction Summary 

Number Of Operands 

Certain computational instructions allow a variable 
number of operands and are identified in the summary 
list by the following form: 

number + B 

The number defines the number of fixed operands. The 
B indicates the existence of variable operands (branch 
targets or indicator operands). A pair of braces around 
the letter indicates that the variable operands are 
optional. 

Extender Usage 

Instructions that use an extender field have a brief 
description of the use of the extender. Hyphens indicate 
that the extender is not used. Brackets indicate that the 
extender is optional. The abbreviation BR/IND is used 
to mean branch or indicator options. The extender field 
defines the use of the branch or indicator operands with 
respect to the resulting conditions of the instruction. 

Resulting Conditions 

Resulting conditions are the status result of the 
operation that is used for determining a branch target, if 
any. 

The following conditions are indicated in the instruction 
summary. 

p, N, Z 
Z, NZ 
H, L, E 
E, NE 
P, Z 
H, L, E, U 
Z, 0, M 
[N]Z[N]C 

S, NS 
DE, I 
DO,NDO 

Positive, negative, zero 
Zero, not zero 
High, low, equal 
Equal, not equal 
Positive, zero 
High, low, equal, unequal 
Zero, ones, mixed 

Zero and no carry, not zero an 
no carry, zero and carry, not 
zero and carry 
Signaled, not signaled 
Exception deferred, exception ign 
Dequeued, not dequeued 

Instruction Summary A-1 



Optional Forms 

All instructions are classified as computational or 
noncomputational format. The format determines how 
the operation code is interpreted and whether optional 
forms of the instruction are allowed. (See Instruction 
Format in Chapter 1. Introduction). 

Certain computational instructions allow optional forms. 
The following optional forms can be specified: 

• B (Branch Form)-The resulting conditions of the 
operation are compared with the branch options 
specified in the extender field. If one of the options 
is satisfied, a branch is executed to the branch target 
corresponding to the branch option. 

• I (Indicator Form)-The resulting conditions of the 
operation are compared with the indicator options 
specified in the extender field. If one of the options 
is satisfied, the indicator corresponding to that option 
is assigned a value of hex F1. The other indicators 
referred to by the operation are assigned a value of 
hex FO. 

• S (Short Form)-The operand that acts as a receiver 
in the instruction can also be one of the source 
operands. 

• R (Round Form)-If the result of the operation is to be 
truncated before being placed in the receiver, 
rounding is performed. 

A-2 

INSTRUCTION STREAM SYNTAX 

In this instruction summary, the following metalanguage 
is used to describe the machine interface instruction set 
operand syntax. 

Metasymbol Meaning 

{ } 

[ ] 

.N. 

Choose from a series of alternatives 

Enclose an optional entry or entries 

OR - used to separate alternatives 

Repeat previous entry, up to N times 

Is defined as - define a metavariable 
Metavariable ::= Metadefinition 

DESC- { } Description of a metavariable in 
English 

Notes: 
1. Some of the computational op codes require an 

extender field while on other op codes an extender 
field is optional. Some computational op codes may 
be optionally short, or round. When extender fields 
or different instructional forms are present, the 
second digit of the op code changes: 

Extender and/or Form 

Short 

Round 

Short, round 

Indicator 

Indicator, short 

Indicator, round 

Indicator, short, round 

Branch 

Branch, short 

Branch, round 

Branch, short, round 

Second Digit of 
Op Code 

2 

3 

8 

9 

A 

B 

C 

D 

E 

F 

2. If an instruction is the target of a branch instruction, 
then the third bit of the op code is turned on. 



L 
Program Object Definitions 

ARG-LIST ::= DESC- {operand list which defines an 
argument list} 

B-ARRAY ::= DESC- {array of binary variables} 
B-PT ::= DESC- {branch point} 
BIN ::= DESC- {binary} 
BIN[N] ::= DESC-{binary object with precision N} 
BT ::= DESC- {instruction number I relative instruction 

number I instruction pointer I branch pointer I IDL 
element I null} 

C-ARRAY ::= DESC- {array of character string 
variables} 

CHAR ::= DESC- {character string which is either 
variable or constant} 

CHAR [ N] ::= DESC- {string at least N bytes long} 
CHARV ::= DESC- {char variable} 
CHARC ::= DESC- {char constant} 

D-PTR ::= DESC- {data pointer} 

EXCP- DESC ::= DESC- {exception description} 

F-BT ::= DESC-{instruction number I relative 
instruction number I branch point} 

F-P ::= DESC-{floating-point value} 

IDL ::= DESC- {instruction definition list} 
IT ::= DESC- {char I numeric variable used as an 

indicator target} 
I-ENT PT ::= DESC- {internal entry point} 
I-PTR ::= DESC-{instruction pointer} 

NULL ::= DESC-{indicates a null operand [X'OOOO']J 
NUMERIC ::= DESC-{binary I zoned I packed I 

numeric scalar} 
N-ARRAY ::= DESC- {array of numeric variable} 

OP-LIST ::= DESC-{operand list} 

PROCESS ::= DESC- {character string that names a 
process} 

PTR ::= DESC- {a 16-byte, 16-byte-boundary-aligned 
pointer element} 

P-ARRA Y ::= DESC- {an array of 16 bytes, 
16-byte-boundary-aligned pointer(s)} 

SPDO ::= DESC- {space pointer data object} 
S-PTR ::= DESC- {system pointer} 
SPP ::= DESC- {space pointer} 
SPP-ARRAY ::= DESC-{an array of space pointer 

variables} 

Notes: 
1. NUMERIC, CHAR, and BIN may be followed by the 

special characters S, C, V. These characters further 
qualify the object as being scalar, constant or 
variable, respectively. 

2. All array objects are variable. 

System Object Declarations 

AG ::= DESC- {S-PTR that addresses an access group} 
ACTV ENTRY ::= DESC- {SPP that addresses an 

activation} 

CD ::= DESC- {S-PTR that addresses a controller 
description} 

CONTEXT ::= DESC- {S-PTR that addresses a context} 
CTR ::= DESC-{S-PTR that addresses a counter} 
CURSOR ::= DESC-{S-PTR that addresses a cursor} 

DATA SPACE ::= DESC- {S-PTR that addresses a data 
space} 

DS-INDEX ::= {S-PTR that addresses a data space 
index} 

INDEX ::= DESC- {S-PTR that addresses an index} 

LUD ::= DESC-{S-PTR that addresses a logical unit 
description} 

ND ::= DESC-{S-PTR that addresses a network 
description} 

PCS ::= DESC- {S-PTR to process control space} 
PROGRAM ::= DESC-{S-PTR that addresses a 

program} 

SPACE ::= DESC- {a system pointer pointing to a space 
object} 

QUEUE::= DESC- {S-PTR that addresses a queue} 

USER PROFILE ::= DESC- {S-PTR that addresses a 
user profile} 

Instruction Summary A-3 



Resulting Conditions Definitions 

ZC ::= DESC- {zero with carry} 

[ N ] ZC ::= DESC- {[ not] zero with carry} 

Z[N]C ::= DESC-{zero with [no] carry} 

[N]Z[N]C ::- DESC-{[not] zero with [no] carry} 

CR ::= DESC- {completed record} 

DE ::= DESC-{deferred} 

DEN ::= DESC- {denormalized} 

DO ::= DESC-{dequeued} 

NDO ::= DESC- {not dequeued} 

ECE ::= DESC- {escape code encountered} 

E ::= DESC- {equal} 

H ::= DESC- {high} 

I ::= DESC- {ignored} 

IN ::= DESC-{infinity} 

L ::= DESC-{Iow} 

M ::= DESC- {mixed} 

N ::= DESC- {negative} 

NaN ::= DESC- {symbolic not-a-number} 

NE ::= DESC- {not equal} 

NRN ::= DESC- {normalized real number} 

NS ::- DESC- {not signaled} 

NZ ::- DESC- {not zero} 

o ::= DESC- {ones} 

P ::= DESC-{positive} 

RO ::= DESC- £receiver overrun} 

5 ::= DESC- {signaled} 

A-4 

SE ::- DESC-{source exhausted} 

TR ::- DESC- {truncated record} 

U ::- DESC- {unequal} 

UN ::- DESC- {unordered} 

Z :: .. DESC-{zero} 

J 

J 



INSTRUCTION SUMMARY (Alphabetical Listing by Mnemonic) 

L op No. ...... ltIng OptIonal 
Operation Dncription Mnemonic Code Opnda Extender Operand Syntex Condition. Forma p ... 

Activate Cursor ACTCR 0402 2 CURSOR. {SPP I NULL} 16-1 

Activate Program ACTPG 0212 2 (ACTV ENTRY I PROGRAM}.PROGRAM 9-1 

Add Logical Character ADDLC 1023 3+[B) [BR liND) CHARV. CHARS.2 .• [BT.4.I IT.4.) [N)Z[N)C [B II. S) 2-1 

Add Numeric ADDN 1043 3+[B) [BR liND) NUMERICV. NUMERICS.2 .. [BT.3.IIT.3.) P. N.Z [B II. S. R) 2-2 

Add Space Pointer ADDSPP 00B3 3 SPP.2 .• BINS 4-1 

And AND 1093 3+[B) [BR liND) CHARV. CHARS.2 .• [BT.3.11T.3.) Z. NZ [B II. S) 2-4 

Apply Joumal Changes APYJCHG 05AA 2 SPP. SPP 20-1 

Branch B lOll BT 2-6 

Compute Array Index CAl 1044 4 BINV. BINS.3. 2-25 

Callintemal CALLI 0293 3 I-ENT PT. {ARG LIST I NULL}. I-PTR 9-9 

Call External CALL)( 0283 3 PROGRAM. {ARG LIST I NULL}. {IDL I NULL} 9-5 

Cancel Event Monitor CANEVTMN 03Dl CHARS[4B) 15-1 

Cancel Invocation Trace CANINVTR 0581 CHARS{4} lB-l 

Cancel Traca Instructions CANTRINS 0562 2 PROGRAM. {SPP I NULL} 18-2 

Concatenate CAT 10F3 3 CHARV. CHARS.2. 2-37 

Cipher CIPHER 10EF 3 SP~CHARV[32). SPP 2-7 

Cipher Key CIPHERKY 10FF 3 CHARV[8). CHARV[64). CHARS(8) 2-10 

Clear Invocation Exit CLRIEXIT 0250 0 9-10 

Compute Math Function Using CMFI l00B 3 
One Input Value 

NUMERICV. CHARS[2). NUMERICS P. N. Z. UN [B II) 2-26 

Compute Math Function USing CMF2 100C 4 
Two Input Values 

NUMERICV. CHARS[2). NUMERICS. NUMERICS P. N. Z. UN [B II) 2-33 

Compere Bytes Left-Adjusted CMPBLA 1OC2 2+B BR liND {CHARS I NUMERICS}.2 .• {BT.3.I IT.3.} H. L. E {B II} 2-15 

Compare Bytes Left-Adjusted CMPBLAP IOC3 3+B BR liND {CHARS I NUMERICS}.3 .. {BT.3. IIT.3.} H. L. E {B II} 2-17 
With Pad 

Compere Bytes Right-Adjusted CMPBRA 1OC6 2+B BR liND {CHARS I NUMERICS}.2 .. {BT.3.I IT.3.} H. L. E {B II} 2-19 

Compere Bytes Right-Adjusted CMPBRAP IOC7 3+B BR liND {CHARS I NUMERICS}.3 .• {BT.3.I IT.3.} H. L. E {B II} 2-21 
With Pad 

Compare Numeric Value CMPNV 1048 2+B BR liND NUMERICS.2 .. {BT.3.IIT.3.} H. L. E {B II} 2-23 

Compere Pointer for Spece CMPPSPAD 10E6 2+B BR liND {SPP I D-rR}. fNUMERICV I CHARV I C- H.L.E.U {B II} 4-2 
Addr_bility N-ARRAY SPP D-PTR} 

Compere Pointer for Object CMPPTRA 10D2 2+B BR liND (D-PTR I SPP I S-PTR II-PTR}.2. E. NE [B II) 3-1 
Addressability 

Compere Pointer Type CMPPTRT 10E2 2+B BR liND tD- PTR I SPP I S-PTR II-PTR}. E. NE {B II} 3-3 
CHARS I)NULL} 

Compere Space Addresaability CMPSPAD 10F2 2+B BR liND {CHARV I f-ARfY I NUMERICV I H.L.E.U (B II} 4-4 
N-ARRAY PTR P-ARRAY.2. 

Commit COMMIT 05D2 2 S-PTR. SPP 21-1 

Copy Bytes Left-Adjusted CPVBLA 10B2 2 {NUMERICV I CHARV}. {NUMERICS I CHARS} - 2-80 

Copy Bytes Left-Adjusted With CPYBLAP 10B3 3 {NUMERICV I CHARV}. {NUMERICS I CHARsl·2.- 2-81 
Pad 

Copy Bytes Overlap CPYBOLA 10BA 
Left-Adjusted 

2 {NUMERICV I CHARV}.2. 2-92 

Copy Bytes Overlap CPYBOLAP 10BB 3 (NUMERICV I CHARV}.2 .• (NUMERICS I CHARS}- 2-83 
Left-Adjusted With Pad 

Copy Bytes Right-Adjusted CPYBRA 10B6 2 {NUMERICV I CHARV}. (NUMERICS I CHARS} - 2-85 

Copy Bytes Right-Adjusted With CPYBRAP 10B7 
Pad 

3 {NUMERICV I CHARV}. {NUMERICS I CHARS}.2.- 2-88 

Copy Bytes Repeatedly CPVBREP lOBE 2 {NUMERICV I CHARV}. {NUMERICS I CHARS} - 2-64 

Copy Bytes With Left Logical CPYBTLLS 102F 3 {CHARV I NUMERICV}. (CHARS I NUMERICS}. - 2-77 
Shift CHARS.2. 

L 
Instruction Summary A-5 



Operlltlon Description 

Copy Bits With Right Logical 
Shift 

Copy Bytes With Pointer. 

Copy Data Space Entries 

Copy Hex Digit Numeric to 
Numeric 

Mnemonic 

CPYBTRLS 

CPYBWP 

CPYDSE 

CPYHEXNN 

Copy Hex Digit Numeric to Zone CPYHEXNZ 

Copy Hex Digit Zone to Numeric CPYHEXZN 

Copy Hex Digit Zone to Zone 

Copy Numeric Value 

CPYHEXZZ 

CPYNV 

Create Acces~ Group CRTAG 

Cnsate Commit Block CRTCB 

Create Controller Description CRTCD 

Create Cursor CRTCR 

Cnsate Context CRTCTX 

Create Dump Space CRTDMPS 

Create Duplicate Object CRTDOBJ 

Cnsate Data Space CRTDS 

Create Data Space Index CRTDSINX 

Cnsate Indepandent Index CRTINX 

Create Joumal Port CRTJP 

Create Journal Space CRT JS 

Cnsate Logical Unit Description CRTLUD 

Cnsate Network Oescription CRTND 

Create Process Control Space CRTPCS 

Cnsete Program CRTPG 

Cnsate Queue CRTQ 

Create Space CRTS 

Cnsate User Profile 

Convert BSC to Character 

Convert Character to BSC 

Convert Character to Hex 

Convert Character to MRJE 

Convert Character to Numeric 

Convert Character to SNA 

Convert Decimal Form to 
Floating-Point 

Convert External Form to 
Numeric Value 

Convert Floating-Point to 
Decimal Form 

Convert Hex to Character 

Convert MRJE to Character 

CRTUP 

CVTBC 

CVTCB 

CVTCH 

CVTCM 

CVTCN 

CVTCS 

CVTDFFP 

CVTEFN 

CVTFPDF 

CVTHC 

CVTMC 

Convert Numeric to Character CVTNC 

Convert SNA to Character 

Disable Event Monitor 

Date Base Maintenance 

De-activate Cursor 

De-activate Program 

Decommit 

A-6 

CVTSC 

DBLEVTMN 

DBMAINT 

DEACTCR 

DEACTPG 

DECOMMIT 

Op No. 
Code Opnds 

103F 3 

0132 2 

048F 3 

1092 2 

1096 2 

I09A 2 

I09E 2 

1042 2+[B) 

0366 2 

05C2 2 

0496 2 

044A 2 

0112 2 

0402 2 

0327 3 

045A 2 

046A 2 

0446 2 

05A2 2 

05AE 2 

049A 2 

049E 2 

0322 2 

023A 2 

0316 2 

0072 2 

0116 2 

lOAF 3 

I08F 3 

1082 2 

I08B 3 

1083 3 

IOCB 3 

107F 3 

1087 3 

10BF 3 

1086 2 

10AB 3 

10A3 3 

10DB 3 

0399 

0413 2 

0401 

0225 

0501 

Resuhlng Optional 
Extender Operand Syntax Conditions Forms 

{CHARV I NUMERICV}. {CHARS I NUMERICS}, -
CHARS.2, 

{CHARV I PTR}, {CHARV I PTR I NULL} 

CURSOR,SPP,CURSOR 

{NUMERICV I CHARV}. {NUMERICS I CHARS} -

{NUMERICV I CHARVI. {NUMERICS I CHARS} 

{NUMERICV I CHARV}, {NUMERICS I CHARS} 

{NUMERICV I CHARV}, {NUMERICS I CHARS} 

[BR liND) NUMERICV, NUMERICS, [BT.3, IIT.3.) p, N, Z [B II, R) 

AG, SPP 

S-PTR, SPP 

CD, SPP 

CURSOR, SPP 

CONTEXT, SPP 

S-PTR, SPP 

S-PTR, SPP, S-PTR 

DATA SPACE, SPP 

OS-INDEX, SPP 

INDEX, SPP 

S-PTR, SPP 

S-PTR, SPP 

LUD, SPP 

NO, SPP 

PCS,SPP 

PROGRAM, SPP 

QUEUE, SPP 

S-PTR, SPP 

USER PROFILE, SPP 

[BR liND) CHARV, CHARV[3), CHARS 

[BR liND) CHARV, CHARV[3), CHARS 

CHARV, CHARS 

[BR liND) CHARV, CHARV[13), CHARS 

NUMERICV, CHARS, CHARS(7) 

CHARV, CHARV[ 15), CHARS 

F-PS, NUMERICS, NUMERICS 

NUMERICV, CHARS, {CHARS[3) I NULL} 

NUMERICV, NUMERICV, F-PS 

CHARV, CHARS 

[BR liND) CHARV, CHARV[6), CHARS 

CHARV, NUMERICS, CHARS(7) 

CHARV, CHARV[14), CHARS 

CHARS[48) 

{DATA SPACE IIjIS-INDEX}. 
CHARS[ II,BIN~ I NULL 

CURSOR 

PROGRAM I NULL 

S-PTR 

CR, SE, TR [B III 

SE, RO [B II) 

SE, RO [B III 

SE, RO [B III 

Round 

SE, RO [B III 

SE, RO, ECE [B II] 

Pelle 

2-78 

3-4 

16-6 

2-87 

2-88 

2-89 

2-90 

2-91 

13-1 

21-3 

17-1 

16-11 

3-6 

22-1 

13-4 

16-30 

16-36 

6-1 

20-7 

20-11 

17-9 

17-16 

11-1 

8-1 

12-1 

5-1 

7-1 

2-38 

2-40 

2-42 

2-43 

2-47 

2-49 

2-56 

2-58 

2-60 

2-62 

2-63 

2-67 

2-68 

15-2 

16-50 

16-54 

9-10 

21-5 



Op No. R .. ulting Optional 
Operetion Description Mnemonic Code Opnds Extender Operend Syntex Conditions Forms Peg. 

L Delete Data Space Entry DElDSEN 0481 CURSOR 16-55 

Delete Program Observability DELPGOBS 0211 PROGRAM 8-8 

Dequeue DEQ 1033 3+[BJ [BR IINDJ CHARV, SPP, QUEUE, [BT.2.I 1T.2.J DQ NDQ [B IIJ 12-5 

Destroy Access Group DESAG 0351 AG 13-7 

Destroy Commit Block DESCB 05CD S-PTR 21-6 

Destroy Controiler Description DESCD O4Al CD 17-26 

Destroy Cursor DESCR 0429 CURSOR 16-57 

Destroy Context DESCTX 0121 CONTEXT 3-9 

Destroy Dump Space DESDMPS O4Dl S-PTR 22-4 

Destroy Data Space DESDS 0421 DATA SPACE 16-58 

Destroy Data Space Index DESDSINX 0425 DS-INDEX 16-60 

Destroy Independent Index DESINX 0451 INDEX 6-5 

Destroy Journal Port DESJP 05AD S-PTR 20-14 

Destroy Journal Space DESJS 05Al S-PTR 20-15 

Destroy Logical Unit Description DESLUD O4A9 LUD 17-27 

Destroy Network Description DESND O4AD ND 17-29 

Destroy Process Control Spece DESPCS 0311 PCS 11-4 

Destroy Program DESPG 0221 PROGRAM 8-9 

Destroy Queue DESQ 0325 QUEUE 12-8 

Destroy Spece DESS 0025 S-PTR 5-4 

Destroy User Profile DESUP 0125 USER PROFILE 7-4 

Diagnose DIAG 0672 2 BINS, SPP 19-1 

Divide DIV 100F 3+[BJ [BR liND J NUMERICV, NUMERICS.2 .. [BT.3. IIT.3. J p, N, Z [B II, S, RJ 2-92 

Divide with Remainders DIVREM 1074 4+[BJ [BR IINDJ NUMERICV, NUMERICS.2 .. NUMERICV P, N, Z [B II, S, RJ 2-95 

Enable Evant Monitor EBLEVTMN 0369 CHARS[48J 15-4 

Extended Character Scan ECSCAN 1004 4 B-ARRAY, CHARS, CHARS, CHARS[IJ P, Z, ECE [B II] 2-108 

Edit EDIT 10E3 3 CHARV, NUMERICS, CHARS 2-97 

End END 0260 0 9-12 

Enqueue ENQ 036B 3 QUEUE, CHARS, SPP 12-9 

Ensure Data Space Entries ENSDSEN 0499 CURSOR 16-61 

Ensure Object ENSOBJ 0381 S-PTR 13-8 

Estimate Size of Data Space ESTDSIKR 0432 2 SPP, S-PTR 16-62 
Index Key Range 

Exchange Bytes EXCHBY IOCE 2 {CHARV I NUMERICV}.2. 2-105 

Extract Exponent EXTREXP 1072 2 BINV, F-PS NRN, DEN, [B IIJ 2-111 
IN, NaN 

Extract Magnitude EXTRMAG 1052 2+[BJ [BR IINDJ NUMERICV, NUMERICS, [BT.3.I IT.3.J p, Z [B II, SJ 2-113 

Find Independent Index Entry FNDINXEN 0494 4 SPP, INDEX, SPP.2. 6-6 

Grant Authority GRANT 0173 3 {USER PROFILE I NULL}. S-PTR,CHARS[2J 7-6 

Grant- Like Authority GRNTLIKE 0174 4 S-PTR, S-PTR, CHARS[8], {SPp I NULL} 7-8 

Initiate Process INITPR 0324 4 PCS, SPP, {ARG-liST I NULL}, {SPP I NULL} 11-5 

Insert Dump Data INSDMPD O4D3 3 S-PTR, CHARS[16J, SPP 22-5 

Insert Data Space Entry INSDSEN 0483 3 CURSOR, CHARV[7J, SPP 16-66 

Insert Independent Index Entry INSINXEN O4A3 3 INDEX, SPP.2. 6-8 

Insert Sequential Data Spece INSSDSE 0487 3 CURSOR,SPP,SPP 16-69 
Entries 

Instruction Summary A-7 



Op No. R.sultlng Optional 
Opel'lltion o..cr;ption Mnemonic Cod. Opnds Extend.r Opel'llnd Syntax Conditions Forma Pilge 

Journal Data JRNlD OSB2 2 S-PTR. SPP 20-17 J Journal Object JRNlOBJ 05BA 2 S-PTR, SPP 20-19 

lock Object LOCK 03F5 SPP 14-1 

lock Space location lOCKSl 03F6 2 SPP,CHARS[ 1) 14-4 

Materialize Access Group MATAGAT 03A2 2 SPP, AG 13-9 
Attributes 

Materialize Allocated Object MATAOl 03FA 
locks 

2 SPP, {S-PTR I SPDO} 14-6 

Materialize Authority MATAU 0153 3 SPP, S-PTR, {USER PROFilE I NUll} 7-11 

Materialize Authorized Objects MATAUOBJ 013B 3 SPP, USER PROFilE, CHARS(1) 7-13 

Materialize Authorized Users MATAUU 0143 3 SPP, S-PTR, CHARS[ 1) 7-17 

Materialize Commit Block MATCBATR OSC7 3 SPP, Spp, CHARS[ 1) 21-8 
Attributes 

Materialize Controller Description MATCD O4B3 3 SPP, CD, CHARS(2) 17-30 

Materialize Cursor Attributes MATCRAT 043B 3 SPP, CURSOR, CHARS[ 1) 16-72 

Materialize Context MATCTX 0133 3 SPP, {CONTEXT I NUll}, CHARS 3-10 

Materialize Dump Space MATDMPS O4DA 2 SPP, S-PTR 22-8 

Materialize Data Space Record MATDRECl 032E 2 SPP, SPP 14-8 
locks 

Materialize Data Space Attributes MATDSAT 0437 3 SPP, DATA SPACE. CHARS[ 1) 16-75 

Materialize Data Space Index MATDSIAT 0433 3 SPP, OS-INDEX, CHARS [ 1) 16-76 
Attributes 

Materialize Event Monitors MATEVTMN 0379 SPP 15-5 

Materialize Exception Description MATEXCPD 0307 3 SPP, EXCP-DESC,CHARS[l) 10-1 

Materialize Instruction Attributes MATINAT OS26 2 SPP, CHARS 18-3 

Materialize Invocation MATINV OS16 2 SPP.2. 18-7 

J Materialize Invocation Entry MATINVE 0547 3 CHARV, {CHARV.l.1 NUll}. {CHARS.l.1 NUll}- 18-10 

Materialize I nvocation Stack MATINVS 0546 2 SPP, {S-PTR I NUll} 18-13 

Materialize Independent Index MATINXAT 0462 2 SPP, INDEX 6-10 
Attributes 

Materialize Journaled Object MATJOAT OSB6 2 SPP, S-PTR 20-27 
Attributes 

Materialize Journaled Objects MATJOBJ 05A7 3 SPP, S-PTR, CHAR[ 1) 20-29 

Materialize Journal Pon MATJPAT OSA6 2 SPP, S-PTR 20-21 
Attributes 

Materialize Journal Space MATJSAT OSBE 2 SPP, S-PTR 20-23 
Attributes 

Materialize Logical Unit MATlUD O4BB 3 SPP, lUD, CHARS(2) 17-35 
Description 

Materialize Machine Attributes MATMATR 0636 2 SPP, CHARS[2) 19-2 

Materialize Network Description MATND O4BF 3 SPP, NO, CHARS[2) 17-38 

Materialize Object locks MATOBJlK 033A 2 SPP, S-PTR 14-10 

Materialize Program MATPG 0232 2 SPP, PROGRAM 8-10 

Materialize Process Attributes MATPRATR 0333 3 SPP, {PCS I NUll}. CHARS [1) 11-14 

Materialize Process Record locks MATPRECl 031E 2 spp, SPP 14-14 

Materialize Process locks MATPRlK 0312 2 SPP, {PCS I NUll} 14-12 

Materialize Pointer MATPTR 0512 2 SPP, {S-PTR I D-PTR I SPP II-PTR} 18-16 

Materialize Pointar locations MATPTRl 0513 3 SPP.2., BINS 18-19 

Materialize Queue Attributes MATQAT 0336 2 SPP, QUEUE 12-11 

Materialize Queue Messages MATQMSG 033B 3 SPP, S- PTR, CHARS.16. 12-14 

A-8 



Op No. 
Operation DncrIption Mnemonic Code Opnda 

Materialize Resource MATRM D 0352 2 
Management Data 

Materialize Space Attributes MATS 0036 2 

Materialize Selected Lockl MATSELLK 033E 2 

Materialize System Object MATSOBJ 063E 2 

Mlterialize User Profile MATUP 013E 2 

Monitor Event MNEVT 0371 

Modify Addressability MODADR 0192 2 

Modify Automatic: Storage MODASA 02F2 2 
Allocation 

Modify Commit Block MOOCB OSC6 2 

Modify Controller Oeacription MOOCD 04C3 3 

Modify Dump Space MODDMPS 0406 2 

Modify Date Space Atrributes MODDSAT 043A 2 

Modify Data Space Index MODDSIA 047A 2 
Attributes 

Modify Exception Oeacription MODEXCPD 03EF 3 

Modify Independent Index MODINX 0462 2 

Modify Joumal Port MODJP O6AI 3 

Modify Logical Unit Description MODLUD O4CB 3 

Modify Machine Attributes MODMATR 0646 2 

Modify Network Oeocription MODND 04CF 3 

Modify Process Event Malk MODPEVTM 0372 2 

Modify Process Attributes MODPRATR 0337 3 

Modify Resource Manegement MODRMC 0326 2 
Controls 

Modify Space Attributes MODS 0062 2 

Modify System Object MODSOBJ 053A 2 

Modify User Profile 

Multiply 

Negate 

No Operation 

No Operation and Skip 

Not 

Or 

Reclaim Lost Objects 

Remainder 

Rename Object 

Request I/O 

Request Path Operation 

Re .. t Access Group 

Resume Process 

Retrieve Dump Data 

Retrieve Dltl Space Entry 

Retrieve Event Data 

Retrieve Exception Data 

Retrieve Joumal Entries 

MODUP 

MULT 

NEG 

NOOP 

NOOPS 

NOT 

OR 

RECLAIM 

REM 

RENAME 

REQIO 

REQPO 

RESAG 

RESPR 

RETDMPD 

RETDSEN 

RETEVTD 

RETEXCPD 

RETJENT 

0142 2 

1041 3+[B) 

1056 2+(1) 

0000 0 

0001 

106A 2+(1) 

1097 3+(1) 

06B6 2 

1073 3+[B) 

0162 2 

0471 

0475 

0365 

0386 2 

O4D7 3 

048A 2 

0375 

03E2 2 

OSCA 2 

ExtMIder Opennd Syntax 

Spp, CHARS[8] 

SPP, S-PTR 

SPP, {S-PTR I sppl 

SPP, S-PTR 

Spp, USER PROFILE 

SPP 

{CONTEXT I NULL}, S-PTR 

{SPP I NULL}, BINS 

S-PTR, SPP 

CD, SPP, CHARS(2) 

S-PTR, CHARS(32) 

S-PTR, SPP 

S-PTR, SPP 

EXCP-DESC,SP~CHARS[I) 

S-PTR, CHARS(4) 

{SPP I NULL}, SPP, S-PTR 

LUD,SPP,CHARS(2) 

SPP, CHARS[2] 

ND, SPP, CHARS[2] 

{IINV(2) I NULL}, {IINS(2) I NULL} 

{PCS I NULL}, SPP, CHARS[I) 

Spp, CHARS(8) 

S-PTR, BINS 

S-PTR, CHARS [ 16) 

USER PROFILE, SPP 

[IR liND) NUMERICV, NUMERICS.2., [BT.3.1 IT.3.) 

[IR liND) NUMERICV, NUMERICS, [IT.3. I IT.3.) 

[IR liND) CHARV, CHARS, [1T.3.1 IT.3.) 

[IR liND) CHARV,CHARS.2.,[IT.3.I IT.3.) 

5PP, CHARS(2) 

[BR liND) NUMERICV, NUMERICS.2 .. [BT.3.1 IT.3.) 

S-PTR, CHARS 

SPP 

5PP 

S-PTR 

{PCS I NULL}, CHARS(1) 

SPP, CHARV(18). S-PTR 

SPP. CURSOR 

SPP 

Spp, CHARS [ 1) 

SPP. SPP 

p, N. Z 

P, N, Z 

Z. NZ 

Z. NZ 

p, N, Z 

13-11 

5-6 

14-16 

18-21 

7-19 

15-8 

3-13 

9-13 

21-11 

17-43 

22-10 

16-81 

16-84 

10-4 

6-13 

20-31 

17-52 

19-12 

17-62 

15-7 

11-22 

13-18 

5-8 

18-23 

7-22 

[I I I, S, 2-115 
R) 

[I II, S) 2-117 

2-119 

2-119 

[a II. S) 2-120 

[a I 1,5) 2-122 

19-17 

[81 I. S) 2-123 

3-15 

17-70 

17-78 

13-21 

11-27 

22-12 

16-89 

15-12 

10-7 

20-34 

Instruction Summary A-9 



Op No. Rnultlng Optional 
Operation Description Mnemonic Coda Opnds Extender Operand Syntax Conditions Forms Palla 

Retract Authority RETRACT 0193 3 {USER PROFILE I NULL}. S-PTR. CHARS[2] 7-24 J Retrieve Sequential Data Space RETSDSE O48B 3 SPP. CURSOR. SPP 16-90 
Entries 

Release Data Space Entries RLSDSEN O48E 2 CURSOR.CHARS[l] 16-87 

Remove Independent Index Entry RMVINXEN 0484 4 {SPP I NULL}. INDEX. SPP.2. 6-14 

Resolve Data Pointer RSLVDP 0163 3 D-PTR. {CHARS[32) I NULL}. {S-PTR I NULL} - 3-16 

Resolve System Pointer RSLVSP 0164 4 S-PTR. {CHtRS[341I NULL}. {S-PTR I NULL}. - 3-18 
{CHARS[2] NULL 

Return From Exception RTNEXCP 03El SPP 10-9 

Return External RTX 02Al {BINS I NULL} 9-14 

Scale SCALE 1063 3+[B] [BR liND) NUMERICV. NUMERICS. BINS. [8T.3.I 1T.3.] p. N. Z [B II. 5] 2-126 

Scan SCAN 1003 3+[8] [BR liND) {BINV I 8-ARRAY}. CHARS.2 .• [8T.3·IIT.3.] p. Z [B II] 2-128 

Scan With Control SCANWC 10E4 4 [8R liND] SPP. CHARV[8]. CHARS[4]. 8T 2-130 

Search SEARCH 1084 4+[8] [BR liND] {BINV liB-ARRAY}. {N-ARRAY I C-ARRAY}. p. Z 
CHARS NUMERICS. BINS 

[8 II] 2-137 

Set Access State SETACST 0341 SPP 13-22 

Set Argument List Length SETALLEN 0242 2 ARG-LiST. 81NS 9-16 

Set Cursor SETCR O48C 4 CURSOR.lsPP. CHARV[16]. {CHARV I NULL}. 16-97 
{CHARS NULL} 

Set Deta Pointer SETDP 0096 2 D-PTR 
{NUMERICV I N-ARRAY I CHARV I C-ARRAY} 

4-6 

Set Data Pointer Addressability SETDPADR 0046 2 D-PTR. 
{NUMERICV I N-ARRAY I CHARV I C-ARRAY} 

4-7 

Set Data Pointer Attributes SETDPAT 004A 2 D-PTR. CHARS[7] 4-8 

Set Invocation Exit SETIEXIT 0252 2 S-PTR. ARG LIST NULL 9-17 

Set Instruction Pointer SETIP 1022 2 I-PTR. F-BT 2-139 

Set System Pointer From Pointer SETSPFP 0032 2 S-PTR. {D-PTR I SPP I S-PTR II-PTR} 4-14 

Set Space Pointer SETSPP 0082 2 f~~tRV I C-ARRAY I NUMERICV I N-ARRAY I 
- 4-9 

PTR P-ARRAY 

Set Space Pointer With SETSPPD 0093 3 ~P. {CHARI I C-ifRAY I NUMERICV I 4-10 
Displacement N-ARRAY PTR P-ARRAY 

Set Space Pointer From Pointer SETSPPFP 0022 2 SPP. {S-PTR I D-PTR I SPP} 4-11 

Set Space Pointer Offset SETSPPO 0092 2 SPP. BINS 4-13 

Signal Event SIGEVT 0345 SPP 15-14 

Signal Exception SIGEXCP lOCA 2+[B] [BR liND] SPP.2 .• [BT.2.I IT.2.] I. DE [8 II] 10-14 

Sense Exception Description SNSEXCPD 03E3 3 SPP.3. 10-11 

Store and Set Computational SSCA 107B 3 CHARV[5]. ,CHARS[5)I NULL}. 2-140 
Attributes {CHARS[5] NULL} 

Stons Parameter List Length STPLLEN 0241 BINV 9-18 

Stons Space Pointer Offset STSPPO ooA2 2 8INV.SPP 4-15 

Subtract Logical Character SU8LC 1027 3+[8] [BR liND] CHARV. CHARS.2 .• [BT.3. IIT.3.) [N]Z[N]C [8 II. 5] 2-143 

Subtract Numeric SUBN 1047 3+[B] [BR liND] NUMERICV. NUMERICS.2 .. [BT.3.IIT.3.] p. N. Z [8 II. S. 
R] 

2-144 

Subtract Space Pointer Offset SU8SPP 0087 3 SPP.2 .• BINS 4-16 

Suspend Object SUSOBJ 0361 S-PTR 13-25 

Suspend Process SUSPR 0392 2 {PCS I NULL}. CHARS[I) 11-29 

Terminate Instruction TERMINST 0342 2 S-PTR. CHARS[3] 11-31 

Terminate Machine Processing TERMMPR 0622 2 CHAR[2). {SPP I NULL} 19-19 

Terminate Process TERMPR 0332 2 {PCS I NULL}. CHARS[3] 11-33 

A-10 



Op No. Resulting Optional 
Operation Description Mnemonic Code Opnds Extender Operand Syntax Conditions Forms Page 

Test Authority TESTAU 10F7 3 {CHARV[2] I NULL}, {S-PTR I SPDO}, 
CHARS[2] 

7-26 

Test Event TESTEVT 10FA 2+[B] [BR liND] SPP, {CHARS[48] I NULL}, [BT.2.I IT.2.] s, NS [B II] 15-16 

Test Exception TESTEXCP 100A 2+[B] [BR liND] SPP, EXCP-DESC, [BT.2.I IT.2.] S, NS [B II] 10-18 

Trim Length TRIML 10A7 3 NUMERICV, CHARS, CHARS[ 1] 2-152 

Trace Instructions TRINS 0552 2 PROGRAM, {SPP I NULL} 18-25 

Trace Invocations TRINV 0551 CHARS{4} 18-26 

Test Bits under Mask TSTBUM 102A 2+B BR liND {CHARS I NUMERICS}.2 .. {BT.3·IIT.3.} Z,O, M {B II} 2-147 

Test and Replace Characters TSTRPLC 10A2 2 CHARV, CHARS 2-146 

Unlock Object UNLOCK 03Fl SPP 14-20 

Unlock Space Location UNLOCKSL 03F2 2 SPP,CHARS[I] 14-22 

Update Data Space Entry UPDSEN 0492 2 CURSOR, SPP 16-109 

Verify VERIFY 1007 3+[B] [BR liND] {BINV I B-ARRAY}, CHARS.2 .. [BT.3.I IT.3.] p, Z [B II] 2-153 

Wait On Event WAITEVT 0344 4 SPP, CHARS, CHARS[8], CHARS[3] 15-19 

Wait On Time WAITTIME 0349 CHARS.16. 11-37 

Transfer Control XCTL 0282 2 PROGRAM, {ARG LIST I NULL} 9-19 

Transfer Object Lock XFRLOCK 0382 2 PCS, SPP 14-18 

Transfer Ownership XFRO 01A2 2 USER PROFILE, S-PTR 7-29 

Translate XLATE 1094 4 CHARV, CHARS, {CHARS I NULL}, CHARS 2-149 

Translate With Table XLATEWT I09F 3 CHARV,CHARS, CHARS 2-150 

Exclusive Or XOR I09B 3+[B] [BR liND] CHARV, CHARS.2., [BT.3.IIT.3.] Z, NZ [B II. S] 2-106 

Instruction Summary A-11 



A·12 



A 

abbreviations and acronyms ix 
absolute instruction number 1-6 
acronyms and abbreviations ix 
activate logical unit (ACTLU) 17-13 
ACTLU (activate logical unit) 17 -13 
array 1-17 
array ODT reference 1-8 
authorization management instructions 7-1 
authorization required 1-16 

B 

based array ODT reference 1-10 
based ODT reference 1-8 
based string ODT reference 1-8 
basic functions 1-1,1-3 
branch 

conditions 1-4 
form 1-1.1-3 
options 1-4 
point 24-16 
target 1-3 

byte string 1-6 

c 

CD (controller description) 
character 1 -17 
commands 

17-1 

commitment control instructions 21-1 
compound operands 1 -7 

explicit base 1-7 
subscript 1 - 7 
substring 1-7 

computation and branching 
instructions 2-1 

constant data object 24-20 
controller description (CD) 17-1 

o 

data base management instructions 16-1 
data communications equipment (DCE) 17-22 
data object 24-3 
data pointer 1 -17 
data pointer defined scalar 1-17 
DCE (data communications equipment) 17-22 

diskette magazine drive 
dump space management instructions 22-1 

E 

entry point 24-14 
error summary 
errors 
event management instructions 15-1 
event specifications 24-1 
events 1-16 
exceptions 1 -17 

description 24-23 
management instructions 10-1 
specifications 23-1 

exchange identification (XID) 17-7 
extender field 1 - 2 
extender specifications 1-2,1-3 

F 

feedback record (FBR) 
FIFO (first in, first out) 12-2 
first in, first out (FIFO) 12-2 
format specifications 1 - 2,1 - 7 

computational format 1-2,1-2 
noncomputational format 1-2,1-2 

format, instruction 1 - 7 

I/O (input/output) 17-70 
IDL (instruction definition list) 1-2 
immediate operands 1-6 
IMPL (initial microprogram load) 19-5 
IMPLA (initial microprogram load 
abbreviated) 19-5 

independent index instructions 6-1 
indicator form 1-1,1-3 
indicator options 1-5 
indicator target 1-5 
initial microprogram load (lMPL) 19-5 
initial microprogram load abbreviated 
(lMPLA) 19-5 

input/output (I/O) 17-70 
instruction definition list 24-16 
instruction definition list (lDL) 1-2 

Index 

Index X-1 



instruction definition list element 1 -17 
instruction format 1 - 7 

authorization required 1 -16 
events 1-16 
exceptions 1 -17 
lock enforcement 1 -16 
resultant conditions 1-16 

instruction forms 1-1 
number 1-17 
operands 1-7.1-7 
pointer 1 -17 

instruction summary A-1 
instructions. page references (Appendix B. 
Instruction **** A-5 

IPL (initial program load) 19-6 

J 

journal management instructions 20-1 

L 

LEAR (lock exclusive allow read) 14-2 
LENR (lock exclusive no read) 14-2 
load/dump 
lock enforcement 1 -16 
lock exclusive allow read (LEAR) 14-2 
lock exclusive no read (LENR) 14-2 
lock shared read (LSRO) 14-2 
lock shared read only (LSRO) 14-2 
logical unit description (LUO) 17-9 
LSRO (lock shared read) 14-2 
LSRO (lock shared read only) 14-2 
LSUP (lock shared update) 14-2 
LUO (logical unit description) 17-9 

M 

machine configuration record (MCR) 19-13 
machine initialization status record 
(MISR) 19-6 

machine interface support functions 
instructions 19-1 

machine observation instructions 18-1 
machine services control point 
(MSCP) 17·-7 

MB (megabyte) 17-17 
MCR (machine configuration record) 19-13 
megabyte (MB) 17-17 
MISR (machine initialization status 
record) 19-6 

MPL (multiprogramming level) 11-9 

X-2 

MSCP (machine services control 
point) 17-7 

multiprogramming level (MPL) 11-9 

N 

name resolution list (NRL) 11-10 
NO (network description) 17-16 
network description (NO) 17-16 
non-return-to-zero (inverted) 
(NRZI) 17-18 

N R L (name resolution list) 11-10 
NRZI (non-return-to-zero 
(inverted)) 17 -18 

null operand 1-8 
null operands 1-6 

o 

object 
attributes 24-3 
definition table (OOT) 24-1 
definition vector (OOV) 24-1 
entry string (OES) 24-1 
lock management instructions 14-1 

object mapping table (OMT) 8-11 
OOT (object definition table) 24-1 
OOT object 1-6 
OOT reference 1-8 
OOV (object definition vector) 24-1 
OEM (original equipment 
manufacture) 17-21 

OES (object entry string) 24-1 
OMT (object mapping table) 8-11 
operand 

field 1-1 
list 24-18 
specification field 1-9 
syntax 1-17 

operands 1-6 
operation code 

extender field 1-1.1-3 
field 1-1 
flag field 1-1.1-2 
specification field 1-1 

operational unit (OU) 17-3 
original equipment manufacture (OEM) 
OU (operational unit) 17-3 



p 

PAG (process access group) 11-11 
PASA (process automatic storage area) 9-5 
PCO (process communication object) 11-17 
POEH (process default exception 
handler) 11 -10 

pointer 1-17 
pointer data object 24-3,24-9 
pointer / name resolution addressing 
instructions 3-1 

primary operands 1-8 
process access group (PAG) 11 -11 
process automatic storage area (PASA) 9-5 
process communication object (PCO) 11-17 
process default exception handler 
(POE H) 11-10 

process management instructions 11 -1 
process static storage area (PSSA) 9-1 
program 

execution instructions 9-1 
management instructions 8-1 
object specification 24-1 

program object specifications 25-1 
PSSA (process static storage area) 9-1 

Q 

queue management instructions 12-1 

R 

RO (request descriptor) 17 -70 
relative instruction number 1-6,1-17 
request descriptor (RO) 17 -70 
request I/O 
resource management instructions 13-1 
resultant conditions 1-16 
round form 1 -1 

s 

scalar 1-17 
scalar data object 24-3 
SOLC (synchronous data link 
control) 17-21 

secondary operands 1-9 
base pointer 1 -11 
index value 1 -10 
length value 1 -10 

short form 1-1,1-3 
signed binary 1-6 

signed immediate value 1-10 
simple operands 1-6 
source/sink 

management instructions 17-1 
source / sink request (SSR) 17 -70 
space management instruction 5-1 
space object addressing instructions 4-1 
space pointer 1 -17 
space pointer machine object 24-26 
SSCP (system service control point) 17-7 
SSR (source/sink request) 17-70 
string OOT reference 1-8 
summary, instruction A-1 
synchronous data link control 
(SOLC) 17-21 

syntax definition 
array 1-17 
character 1 -17 
data pointer 1 -17 
data pointer defined scalar 1-17 
instruction definition list 
element 1 -17 

instruction number 1-17 
instruction pointer 1-17 
numeric 1-17 
pointer 1 -17 
relative instruction number 1-17 
scalar 1-17 
space pointer 1 -17 
system pointer 1-17 
variable scalar 1-17 

system pointer 1 -17 
system service control point (SSCP) 17-7 

T 

type specification field 1 -7 

u 

unsigned binary 1-6 
unsigned immediate value 1-8 

v 

variable scalar 1-17 

x 

XIO (exchange identification) 17-7 

Index X-3 



\X-4 



L 
IBM System/38 
Functional Reference Manual-Volume 1 GA21-9331-6 

READER'S COMMENT FORM 

Pi .... u .. this form only to identify publication errors or to reque.t change. in publications_ Direct any 
requests for additional publications, technical questions about IBM systems, changes in IBM programming support, and 
80 on, to your IBM representative or to your nearest IBM branch office_ You may use this form to communicate your 
comments about this publication, its organization, or subject matter, with the understanding that IBM may use or 
distribute whatever information you supply in any way it believes appropriate without incurring any obligation to you. 

D If your comment does not need a reply (for example, pointing out a typing error) check this box and do not 
include your name and address below. If your comment is applicable, we will include it in the next revision 
of the manual. 

D If you would like a reply, check this box. Be sure to print your name and address below. 

Page number(s): Comment(s) : 

No postage neceaury if mailed in the U.S.A. 

Please contact your nearest IBM branch office to request additional 

publications. 

Name 

Company or 

Organization 

Address 

Phone No. 

City State Zip Code 

Area Code 



Fold dnd tdpe. Please do not staple . 

. _-------------------------------------------------------------------------------------------, 

BUSINESS REPLY MAIL 
FIRST CLASS / PERMIT NO. 40 / ARMONK. NEW YORK 

POSTAGE WILL BE PAID BY ADDRESSEE 

International Business Machines Corporation 
Information Development 
Department 245 
Rochester, Minnesota, U.S.A. 55901 

NO POSTAGE 
NECESSARY 
IF MAILED IN THE 
UNITED STATES 

--------------------------------------------------------------------------------------------~ 
Fold dnd tdpe. Plea .. do not staple. 

---------- ----- ---- - ---- - - -----_ .. ----'-

J 



-::. ~ ---------- -- ---= :-:..:~:. (!) --_.---

GA21-9331-6 

" m 
z 
o 
en 
w 
00 
6 
~ 




