
) - - - GC21-7729-0 - - -- - - - --- -- Fi Ie No. 538-36 - ---- - - ---- _.- -- - • -

I BM System/38

IBM System/3S
Control Program Facility Concepts Manual

Program Number 5714-881

First Edition (October 1978)

Changes are periodically made to the information herein; before using this
publication in connection with the operation of I BM systems, be sure you have
the latest edition and any technical newsletters.

This publication is for planning purposes only. The information herein is subject
to change before the products described become available.

Use this publication only for the purposes stated in the Preface.

Publications are not stocked at the address below. Requests for copies of IBM
publications and for technical information about the system should be made to
your IBM representative or to the branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. Use
the Reader's Comment Form at the back of this publication to make comments
about this publication. If the form has been removed, address your comments to
IBM Corporation, Publications, Department 245, Rochester, Minnesota 55901.
IBM may use and distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatsoever. You may, of
course, continue to use the information you supply.

© Copyr\ght International Business Machines Corporation 1978

(

\

)

This publication describes the concepts of the
System/38 Control Program Facility. These concepts
must be understood before decisions can be made
about the overall design and use of a System/38
installation with the Control Program Facility.

This publication is intended for persons who are
responsible for designing and maintaining a system
installation, for programmers who write applications to
be used on the system, and for anyone else who needs
a general understanding of the functions provided by the
System/38 Control Program Facility.

The chapters in this manual are designed to be read in
sequence. The chapters present:

• An overview of the control program facility

• The manner in which the control program facility
manages objects stored in the system

• The manner in which the control program facility
manages work performed on the system

• The manner in which data is managed on the system

• The facilities provided to assist in application
development on the system

• The facilities provided to assist in managing the
operation of the entim system

This publication does not describe how to perform
operations nor does it describe individual commands.
Instead, the publication explains the concepts that must
be understood before the Control Program Facility can
be used efficiently.

Notes:
1. This publication follows the convention that he means

he or she.
2. Some of the publications listed below can be ordered

now; others will be available later. Where the name
of the publication is followed by an order number,
that publication can be ordered now.

Preface

Prerequisite Publications

• IBM System/38 System Introduction, GC21-7728.
This publication summarizes what the System/38 is
and how it can be used to meet an prganization's
application processing requirements.

Related Publications

• IBM System/38 Guide to Publications, GC21-7726.
This publication contains the titles and reading
sequence of related publications and describes the
contents of each.

• IBM System/38 Control Program Facility Reference
Manual-Control Language. This publication explains
the control language syntax.

• IBM System/38 Control Program Facility Reference
Manual- Data Description Specifications. This
publication explains the specifications form used for
describing data.

• IBM System/38 Control Program Facility
Programmer's Guide. This publication describes how
to use the functions introduced in the concepts
manual and how to apply the commands and
specifications explained in the reference manuals.

• IBM System/38 Master Index. This publication
combines the indexes of the frequently used
System/38 publications.

Preface iii

iv

I
I

\

)

This publication describes the concepts of the
System/38 Control Program Facility. These concepts
must be understood before decisions can be made
about the overall design and use of a System/38
installation with the Control Program Facility.

This publication is intended for persons who are
responsible for designing and maintaining a system
installation, for programmers who write applications to
be used on the system, and for anyone else who needs
a general understanding of the functions provided by the
System/38 Control Program Facility.

The chapters in this manual are designed to be read in
sequence. The chapters present:

• An overview of the control program facility

• The manner in which the control program facility
manages objects stored in the system

• The manner in which the control program facility
manages work performed on the system

• The manner in which data is managed on the system

• The facilities provided to assist in application
development on the system

• The facilities provided to assist in managing the
operation of the entim system

This publication does not describe how to perform
operations nor does it describe individual commands.
Instead, the publication explains the concepts that must
be understood before the Control Program Facility can
be used efficiently.

Notes:
1. This publication follows the convention that he means

he or she.
2. Some of the publications listed below can be ordered

now; others will be available later. Where the name
of the publication is followed by an order number,
that publication can be ordered now.

Preface

Prerequisite Publications

• IBM System/38 System Introduction, GC21-7728.
This publication summarizes what the System/38 is
and how it can be used to meet an organization's
application processing requirements.

Related Publications

• IBM System/38 Guide to Publications, GC21-7726.
This publication contains the titles and reading
sequence of related publications and describes the
contents of each.

• IBM System/38 Control Program Facility Reference
Manual- Control Language. This publication explains
the control language syntax.

• IBM System/38 Control Program Facility Reference
Manual- Data Description Specifications. This
publication explains the specifications form used for
describing data.

• IBM System/38 Control Program Facility
Programmer's Guide. This publication describes how
to use the functions introduced in the concepts
manual and how to apply the commands and
specifications explained in the reference manuals.

• IBM System/38 Master Index. This publication
combines the indexes of the frequently used
System/38 publications.

Preface iii

iv

)

CHAPTER 1. INTRODUCTION
CPF Overview

Object Management
Work Management .
Data Management .
Application Development
System Management

Control Language . . .
Command Syntax
Command Prompting
Parameter Defaults

CHAPTER 2. OBJECT MANAGEMENT FACILITIES.
Object Management Concepts

Objects
Libraries
Finding Objects in Libraries

Object Management Operations
General Object Operations
Library Operations

CHAPTER 3. WORK MANAGEMENT FACILITIES
Work Management Concepts

Subsystems
Jobs
Subsystem/Job Relationships

Work Management Functions .
CPF-Provided Subsystems
User-Defined Subsystems
Managing Subsystems
Managing Jobs
Initiating Jobs

CHAPTER 4. DATA MANAGEMENT FACILITIES
Data Management Concepts

Files
File Description
Connecting a File to a Program
File Overrides
File Processing

Data Base Data Management
Access Paths
Members ..
Physical Files
Logical Files .
Using Data Base Files

1
2
2
3
3
4
4
5
5
6
7

9
9
9

10
11
13
13
14

15
15
17
23
26
27
27
29
29
29
31

35
35
35
36
40
40
40
41
42
44
44
45
48

Device Support Data Management
Display Device Support . .
Nondisplay Device Support

Data Operations
Program Described Data Files
Externally Described Data Files .
Spooled File Processing
Copying Files
File Reference Function

CHAPTER 5. APPLICATION DEVELOPMENT
Overview

Design Considerations
Programming Considerations .
Testing and Debugging .
Documentation.

Control Language Programs
Message Handling

Message Descriptions
Message Queues . . .
Using Messages and Message Queues

Debugging Functions
Command Definition.

CHAPTER 6. SYSTEM MANAGEMENT
Security

User Identification
Security Functions
Object Authorization
Using Security .

Savel Restore. . . .
Save Functions
Restore Functions
Using Save/Restore

Installation and Specialization Facilities
System Operation

System Operation Functions
Message Handling

Service

GLOSSARY

INDEX . ..

Contents

49
50
56
57
57
58
60
62
63

65
65
65
68
69
70
71
74
74
75
75
77
78

79
79
80
82
83
84
85
86
86
86
87
87
88
88
89

91

95

Contents v

vi

)

The Control Program Facility (CPF) is the system support program product for

the IBM System/38. CPF is designed to complement and extend the advanced
capabilities of the System/38 machine to provide fully integrated support for

the use of interactive, work station oriented applications. To supplement the

full range of support of the interactive environment, CPF also provides

comprehensive support for concurrent processing in the batch environment.

CPF is designed to support a wide range of operating environments. No single
environment has the exclusive use of a given set of functions. Thus any user

in any operating environment has access to the functions he needs.

Many of the functions of the System/38 CPF are a direct outgrowth of the
system's orientation to interactive data processing. Among these functions

are:

• Data base support to make up-to-date business data available for rapid

retrieval from any work station

• Work management support to schedule the processing of requests from all
work station users so they are satisfied quickly and independently of other

work

• Application development support that allows online development and testing
of new applications concurrently with normal production activities

• System operation support that allows the system operator to perform his
work through the system console or another work station using a single
control language, complete with prompting support for all commands

• Message handling support that allows communication between the system,

the syste":! operator, work station users, and programs executing in the

system

• Security support to protect data and other system resources from

unauthorized access

• Service support that allows service personnel to diagnose pro/:'llems and

install new functions with minimal impact on normal work flow

Introduction

Introduction

2

An installation can be operated at a basic level (for example, with only limited
interactive processing) and increase the use of controls and facilities as the
needs of the installation grow.

CPF functions are used directly through the use of the control language and
the data description specifications. In addition, other System/38 program
products (such as high-level languages and the Interactive ·Data Base Utilities)
also use CPF functions.

System/38 is controlled through a single, consistent control language that is
supported by CPF. The control language provides the operations normally

associated with controlling the operation of a system, such as:

• Controlling the operation of input/ output devices attached to the system

• Submitting batch jobs for execution

• Terminating the system

In addition, many advanced functions used in data processing are provided.
For example, data files and programs are created, program execution is
controlled, and work station users can communicate with each other by using
functions requested through the control language. However, although the
control language is the interface through which the functions of CPF are

controlled, it is not the only interface through which CPF or the system is used.
CPF provides a specialized interface, called data description specifications,
through which data in the system is described to CPF. The data is accessed
and updated by high-level language programs using CPF functions.

The subsequent sections of this introduction provide an overview of CPF and a
description of the control language.

CPF OVERVIEW

This overview groups CPF functions into topics according to their use. These
topics are described more fully in other chapters of this publication.

Object Management

The object management facilities allow objects to be grouped and located in
the system. The general term object is used to refer to any named item (such
as a program or a file) that is stored in the system. The general term is used

because all kinds of objects are located in the same manner. The object
management facilities allow users to name which objects they want, without
needing to specify the exact storage locations of the objects.

Certain functions of CPF, which are valid for many different types of objects,
can be performed through a single set of commands. For example, functions
that provide security or backup copies of objects apply to all object types.

/

)
Work Management

The work management facilities provide the framework through which the
system and all the work performed on the system are controlled. These
facilities provide system functions needed to support a multiprogramming
environment and to manage contention between jobs for main storage and
other system resources. The work management facilities allow work to be
submitted by the user, presented to the machine for execution, and controlled
by the system operator.

Many types of work can be performed concurrently on System/38. Often,
different types of work need different operating environments to operate
efficiently. For example, an interactive application that is used concurrently by
a number of work station users must operate in an environment that provides
rapid responses to the work station user. A batch job would not need the
same type of operating environment. Through the work management facilities,
specialized operating environments, called subsystems, control the use of
resources needed for different types of work. When CPF is installed, it
includes susbsystems that support interactive, batch, and spooling processing.
Although the work management facilities can be used to tailor subsystems to
provide specialized operating environments, the system is fully operational
when it is installed. By starting, controlling, and terminating subsystems, the
system operator can easily control entire operating environments through the
control language.

Data Management

The data management facilities support both data base files and device files.
Data base data management provides the functions required for creating data
base files and performing input/output operations to them. Device data
management provides similar operations for devices attached to the system,
including many unique functions to support the display devices.

Generally, the data in data base files or display device files is described apart
from the programs that use the files. That is, the attributes of each field (such
as its length, data type, and position in a record) are described in the file rather
than in the program. These data descriptions are created with the use of the
data description specifications. A specification form (similar to RPG
specification forms) provides a common format for describing the data. The
form provides fixed columns for frequently specified and required information
and keyword specifications for less frequently specified options.

Other device files are usually described in the traditional manner where the
records and fields are described in the programs that use them. The spooling
functions support the usual operations for reading files from input devices and
writing files to output devices so that programs using the files are not tied
directly to the external devices.

Introduction 3

4

Application Development

A programmer can perform most application development activities
interactively, from a work station. These activities include:

• Entering source programs into the data base

• Compiling programs concurrently with normal system operations, without
interrupting the normal work flow on the system

• Testing programs in a protected environment so that production files are not
inadvertently changed by a program that is being tested

• Debugging a program online, using CPF-provided functions to locate
program errors

• Alternating between two interactive jobs simultaneously, such as reviewing a
display of a compilation listing and reviewing the value of program variables

• Correcting the program source and recompiling the program

System Management

Through CPF functions, a system operation can control the operations of jobs
and subsystems, respond to system messages, and perform other operations
normally performed by a system operator. These operations can be performed
from any work station and are not restricted to a single person.

The security facilities allow various levels of control over the access to objects
by individual work station users. As security requirements change, the control
provided by the security facilities can be modified.

CPF save / restore functions allow applications and data files to be backed up
concurrently with unrelated system operation. These functions can be used to
maintain backup copies of system and application objects. These copies can
be used to recover from system or application malfunctions.

(
"

)
CONTROL LANGUAGE

The control language is the primary interface to CPF and can be used
concurrently by users from different work stations. A single control language
statement is called a command. Commands can be:

• Entered individually from a work station

• Entered as part of batch jobs

• Used as source statements to create a control language program

To simplify the use of the control language, all the commands use a consistent
syntax. In addition, CPF provides prompting support for all commands, default
values for most command parameters, and validity checking to ensure that a
command is entered correctly before the function is performed. Thus the
control language provides a single, flexible interface to many different system
functions that can be used by different system users. The use of commands to
create control language programs is described in Application Development
Facilities later in this publication.

Command Syntax

Each command is made up of a command name and parameters. A command

name usually consists of a verb, or action, followed by a noun or phrase that
identifies the receiver of the action. The words that make up the command
name are abbreviated to reduce the amount of keying that is required to enter
the command. For example, one of the control language commands is the
Cancel Job command. The command name is CNLJOB. The command cancels
a previously submitted job.

Introduction 5

6

: : CNLJOB

The parameters in control language commands are keyword parameters. The
keyword identifies the purpose of each parameter. However, when commands
are entered, the keywords are optional and can be omitted to reduce the
amount of keying required. When the keywords are omitted, the parameters
are positional and must be entered in the correct order. The following display
shows the cancel job command entered on the command entry display and
identifies the parts of a command.

JOBU1YJOB)
COMMAND ENTRY

SPLFILE(tYES)
DISPLAY
OPTION(tCNTRLD)

.. --~\~------------------------------\ \
\ \

\
\

\

\

\

\
\

\

\

\

\
Command
Name

CNLJOB

Do I \0 what?
what? A job?

Cancel

\

Parameters

\
\
\

\

\

\

\

\

\
\

\
\

JOB(MYJOB) SPLFILE(*YES) OPTION(*CNTRLD)

JWOrd \
Parameter Value

Command Prompting

CPF provides interactive command prompting for any command on the system.
The user can identify the command he wants to enter and then request the
prompt display for the command. The resulting display consists of a set of
fill-in-the-blank requests that guide the user to enter the parameter values of
the command.

(

)
The following display shows the prompts for the parameters on the cancel job

command.

CANCEL JOB (CNLJOB) PROMPT
Enter the followinq: R/,----------- Indicates the

parameter is
required.

Job name: - JOB
User name:
W 0 :r k n wn b e:r :

Spooled file (~NO OR ~YES):
Option (tCNTRLD OR ~IMMED):
Delay time:

SPLFILE
OPTION
DELAY

~RLD } _____ Indicates the
~ default

parameter
values.

If a command is partially entered before the prompt display is requested, any

parameter values already entered are shown on the prompt display.

Parameter Defaults

Most of the parameters included in commands allow default values to be
supplied by CPF if the parameter is not entered. The default value can be
explicitly entered if the user desires. The prompt display provided for a
command always shows any default values that are assumed if the parameters
are not entered. The prompt display for the cancel job command shown earlier
includes defaults for the SPLFILE, OPTION, and DELAY parameters. These
defaults can be overridden by other values entered in their place.

I ntrod uction 7

/

8

)
Object Management Facilities

OBJECT MANAGEMENT CONCEPTS

The object management facilities provide the functions necessary to place
objects in storage and to find objects when they are needed for processing.

Objects

An object is a named item that is made up of a set of attributes (that describe
the object) and the data portion of the object. The attributes of an object
include its name, its size, the date it was created, and a-text description
provided by the person who created the object. The data portion of a program,
for example, is the executable code that makes up the program. The data
portion of a file is the collection of records that makes up the file.

The functions performed by most of the control language commands are
applied to objects. Some commands can be used on any type of object and
others apply only to a specific type of object.

CPF supports various unique types of objects. Some types identify objects that
are common to many data processing systems, such as:

• Files

• Programs

• Commands

• Libraries

• Queues

Other object types are pertinent to the System/38 CPF, such as:

• User profiles

• Job descriptions

• Subsystem descriptions

Object Management Facilities 9

10

Different object types have different operational characteristics. These

differences make each object type unique. For example, because a file is an
object that contains data, its operational characteristics differ from those of a
program, which contains instructions.

Each object has a name. The object name and object type are used to identify
an object. The object name is explicitly assigned by a user when he creates an
object. The object type is determined by the command used to create the
object. For example, if a program were created and given the name OEUPDT
(order entry update) the program could always be referred to by that name.
CPF uses the name (OEUPDT) and object type (program) to locate the object

and perform operations on it.

Libraries

A library is an object that is used to group related objects and to find objects
by name when they are used. Thus, a library is a directory to a group of
objects. Libraries can be used to group the objects into any meaningful
collection. For example, objects can be grouped according to security
requirements, backup requirements, or processing requirements. The number
of objects contained in a library and the number of libraries on the system are
limited only by the amount of storage available. Thus, the number of libraries
on a system can be tailored to the way the objects are used.

The object grouping performed by libraries is a logical grouping and does not

affect an object's placement in storage. Thus, objects in a library are not
necessarily adjacent to each other. The size of a library, or any other object, is
not restricted by the amount of adjacent space available in storage. The
system finds the necessary storage for objects as they are stored in the
system. If an object increases in size, the system automatically allocates
additional storage to the object.

Most types of objects are placed in a library when they are created. A library
cannot be contained in another library. An object can be moved from one
library to another, but it cannot be in more than one library at the same time.
When an object is moved to a different library, the object is not moved in
storage, but it is located through the new library. Until an object is deleted
from the system, it is in one library.

A library name can be used to provide another level of identification to the
name of an object. As described earlier, an object is identified by its name and

type. The name of the litlrary further qualifies the object name. The
combination of an object name and the library name is called the qualified
name of the object. The qualified name tells the CPF the name of the object
and the library it is in. For example, the qualified name of the program
OEUPDT in the order entry library (OELlS) is OEUPDT.OELIS.

(
\
\.

Two objects with the same name and type cannot exist in the same library, but

they can exist in different libraries. Because of this, a program that refers to

objects by name can be used to process different objects (residing in different

libraries) in different executions of the program without any changes to the
program. Also, a work station user who is creating a new object does not

need to be concerned about names used for objects in other libraries. The
name of the new object need be unique only in the library it is being stored in.

An object is identified within a library by the object name and type. Many of

the commands in the control language apply only to a single object type, so

the object type does not have to be explicitly identified. In the commands that

can apply to many types of objects, the object type must be explicitly

identified.

As shown in the following drawing, there are CPF-provided libraries and

user-defined libraries.

System Library /
r- Libraries Provided by the CPF

~: .• '.' " , .:> /. General Purpose K / Library

Temporary Library ~.................. 0 OX U'e, Def;ned

.~ ;/ Libraries

OQ
The CPF-provided libraries are:

• The system library containing the objects that are provided as part of CPF.

• The general-purpose library containing user-oriented objects provided by

CPF and user-created objects that are not explicitly placed in a different

library when they are created.

• A temporary library for each job. This library is assigned to a job when the
job begins. Objects created by the job can be placed in this library and are

then available only to that job. The objects in this library are deleted when

the job ends.

Finding Objects in Libraries

An object name can be specified as a qualified name (where both the object

name and library name are specified) or as a simple object name (where the

library name is not specified). If a qualified name is used, CPF finds the object

in the specified library. If a simple object name is used when an object is

created, CPF places the object in the general-purpose library provided by CPF.
If a simple object name is used for any other operation, CPF searches a list of

libraries until it finds that object name. The libraries sear~hed and the order in

which they are searched are determined by a search list called the library list.

CPF creates an initial library list for each job when the job is initiated.

Object Management Facilities 11

12

A library list has two parts. The first part specifies the libraries used forCPF

functions performed during the job. This part is the same for all the jobs that
run on the system and, when the system is installed, consists of only the

system library. These libraries are searched before libraries in the second part

of the library list. The first part of the library list cannot be changed for a job.

The second part of the library list contains the libraries that application

programs use to perform their functions. When the system is installed, this
part contains the general purpose library and the job's temporary library. When

a system has a number of user-defined libraries, the library list might vary

between different jobs. For example, for an order entry job, this part of the list

might be:

1. OELIB (order entry library)

2. OGPL (general-purpose library)

3. OTEMP (temporary library for the job)

This part of the library list can be changed within a job so that the libraries

used and their order can be controlled from within the job.

The use of the library list in conjunction with the use of simple object names

increases the ease and flexibility of object use in System/38. When each

object is created, it can be explicitly placed in the appropriate library. A library

list can be designed for each job so that simple object names can be specified

when the objects are used. This approach provides such advantages as:

• Easier testing of application programs. Libraries can be created to contain

sample data when the program is tested. The object names used in the

library are the same as those used in the normal production library. The

library with the testing objects is placed before the normal production
libraries in the library list. When the program has been fully tested, that

library can be removed from the library list. The program then operates on

the objects contained in the normal production libraries, and the object

names are not changed in the program.

• Flexible use of the libraries on the system. As processing needs change,
existing libraries may need to be divided into more than one library to help

simplify the organization of objects on the system. This change would not

require that the names of objects in the programs be changed. Only the
library lists used by the jobs would need to be changed.

• The ability to let different system users operate on different objects using

the same application program. Separate libraries can be created for each
different user or group of users. The library list for each user's job ensures

that the correct objects are used by the program for each system user.

Because of these advantages, qualified object names are not usually specified

when existing objects are used. However, the qualified name can be used in

situations where it is more efficient than changing the library, list or where
specific objects should be specified to ensure that the correct object is used

(such as in applications where security requirements are very high).

OBJECT MANAGEMENT OPERATIONS

Object management operations include general object operations and library

operations.

General Object Operations

The operational characteristics of objects vary depending on the type of object

involved. For example, some operations that apply to files do not apply to
programs. However, there is a set of operations, known as general object

operations, that apply to most object types. The general object operations are

as follows:

• Display an object description. This. operation displays the attributes of an

object or a specified group of objects. The information can also be printed.

The descriptions of a group of objects can be requested by object type, by

a generic name, or by generic name and .object type.

• Move an object from one library to another. This operation moves an object
out of its current library and into a different library. After the operation is

complete, the object can no longer be accessed through the original library.

This operation is not valid for all object types.

• Rename an object. This operation changes the name of an existing object.
The object itself does not change, nor does it change libraries.

• Security. These operations provide functions that control user access to an

object and protect the object owner's rights.

• Save/restore. These operations provide the functions to save copies of
objects offline and restore them to the system. These functions can be

used to provide backup copies of objects that can be used for recovery

procedures.

Object Management Facilities 13

14

Library Operations

CPF also provides operations used for managing libraries on the system.
These operations provide a means to observe and manage the contents of
libraries as well as to control the existence of the libraries. The library
operations are as follows:

• Create or delete a library. The operation for creating libraries provides the
functions necessary to create user-defined libraries. After a library is
created, objects can be created in it or moved into it. The delete operation
is used to remove libraries from the system. When a library is deleted, any
objects in it are also deleted.

• Clear a library. This operation deletes objects from a library but does not
delete the library.

• Display the contents of a library. This operation displays a list of all the
objects in the library or libraries specified. The information can also be
printed.

• Savel restore. These operations save and restore a copy of the library and
all the objects contained in it. Saved libraries can be used to provide
backup copies for recovery.

)
Work Management Facilities

The work management facilities of the System/38 CPF provide a framework
through which work flow and resource usage on the system is controlled. This
single framework handles all types of work performed by the system
regardless of the sources from which the work is submitted. The work

management facilities can be adapted to a wide range of application
environments and can satisfy the requirements of diverse applications that are
active concurrently.

When CPF is installed, it includes support for interactive, batch, and spooling
processing and can be used without modification. A full understanding of the
work management concepts is not needed to perform basic system operation.
However, if support is needed for unique processing requirements, an
understanding of the concepts described in this chapter is necessary.

WORK MANAGEMENT CONCEPTS

Through the use of information that is stored in various objects, the work
management facilities manage the submission, initiation, execution, and
termination of work. on the system. The basic unit by which work is identified
on the system is a job. A job is a single, identifiable sequence of processing
actions that represents a single use of the system. Jobs are generally
submitted to the system interactively from a work station (interactive jobs) or
as predefined jobs (batch jobs). This second type of job is referred to as a
batch job because it includes batch jobs as they are supported on other IBM
systems.

An interactive job is a job in which the processing actions are performed by the
system in response to i/'lput provided by a work station user. During the job, a
dialog exists between the user and the system. An interactive job consists of
all the work performed as a result of input received from the time the work
station user signs on until he signs off. This work might involve processing

actions performed after the user signs off, such as writing spooled output.
However, the input causing these actions is received while the user is signed
on.

A batch job is a job in which the processing actions are submitted as a

predefined series of actions to be performed without a dialog between the user
and the system. The job consists of all the processing actions that result from
input contained within the job. Batch jobs are placed on a queue, called a job
queue, when they are submitted to the system and are selected from the queue
by the work management facilities.

Work Management Facilities 15

16

Within a job, any number of related or unrelated functions can be performed.
On many systems, the execution of programs within a job is controlled through
the use of job steps, which are identified in the control statements that make
up the job. However, in System/38, programs can call other programs by
using control language commands contained in the calling program. Thus the
job is simply made up of the sequence of processing actions a system user
wants performed. The functions might be requested in:

• A series of control language commands

• A single program

• One or more applications that are each made up of a series of programs

All jobs processed in the system execute within an operating environment
called a subsystem. A subsystem is a predefined operating environment
through which CPF coordinates work flow and resource usage. The
specifications that define the subystem, and that CPF uses to control the
subsystem, are contained in an object called a subsystem description.

The environment provided by a subsystem includes main storage usage,
sources from which jobs can be accepted, and programs that can be invoked
in the subsystem. These programs can, in turn, call other programs to perform
the functions required. Although these elements are predefined, the
environment provided by a subsystem does not limit the flexibility of jobs that
operate within it. For example, a subsystem does not limit the files that are
available nor the system functions that can be used. These are controlled by
the application design and can be further controlled by the system security
functions.

One or more subsystems are always active after CPF has been started. Both
batch and interactive jobs can execute in one subsystem, or separate
subsystems can be used for each type. The following drawing shows a system
operating with one active subsystem. Job 1, an interactive job, is being used
by a work station user. Job 2, a batch job, was selected from the job queue
and is operating concurrently in the same subsystem.

Subsystem
:···:·:·:·:·:·:-:·w:~::::::;:;m~;:::2············ '.'.'."'~.:.j

G--·llliilili,·~B I
:;::ot .. : ... ,!,.:'.·.: .. ,:i::. Hi d ~~

LlmJ
Queue

D

/

\

(

)
In the following drawing, two subsystems are active concurrently. Interactive

jobs 1 and 2 are executing in subsystem 1. Two batch jobs, selected from the
job queue, are executing in subsystem 2.

Subsystem 1

Subsystems

Subsystem 2

I Job 31

I
JOb4

1

·"l
Queue

D

The use of subsystems provides the ability to establish as many, or as few,
unique operating environments as necessary to meet the processing needs of
an installation. The number of subsystems that can be active and process
efficiently at one time is limited only by the resources available on the system.
Although any number of subsystems can be active concurrently, only one

active subsystem is required at any time. Each subsystem can be started and
controlled independently of other work being performed on the system.

A subsystem description defines each subsystem used on the system. As
shown in the following drawing, CPF uses information contained in the
subsystem description to define the environment provided by the subsystem.

CPF

Subsystem

Description

D

Work Management Facilities 17

18.

When CPF is installed, it includes subsystem descriptions that support interactive,

batch, and spooling processing. If specialized support is needed to support
unique processing requirements, the CPF-provided subsystem descriptions can

be altered or user-defined subsystem descriptions can be created.

The number of subsystems an installation needs to define or to have active
I

concurrently depends on several factors, such as:

• The number of unique processing environments that are needed to manage
the use of resources by various applications

• The level of operational control that is needed over the sets of applications
that operate within the different subsystems

• The amount of isolation that is needed between the sets of applications to
ensure that the applications have the resources they need

Once a subsystem description has been created, the subsystem can be started
and terminated by control language commands. The implementation of
subsystems provides the following advantages:

• The processing environment for a set of applications can be prespecified.
As processing requirements change, these specifications can be modified to
meet those requirements.

• A predefined processing environment can be easily started, controlled, and
terminated.

• The use of main storage and the number of jobs executing in a subsystem
can be controlled while the subsystem is active so that work load changes

on the system can be accommodated.

• A level of predictability can be achieved within a subsystem because the use
of resources by that subsystem is isolated from the use of resources by
other subsystems. This can ensure that applications with high performance
requirements, such as interactive applications, have the resources needed to
operate efficiently.

A subsystem description cont9ins the following three categories of information:

• Subsystem attributes, which specify the amount of main storage available to
the subsystem and the number of jobs that can execute concurrently in the

subsystem

• Work entries, which specify the sources from which jobs can be accepted

• Routing entries, which specify the programs that can be invoked in the
subsystem

)
Subsystem Attributes

The amount of storage that the jobs in a subsystem can use is specified in the
subsystem attributes through storage pools. A storage pool provides a quantity
of main storage that can be used by jobs that execute in that storage pool.
Concurrently executing jobs sharing a storage pool compete for the use of this
storage but do not compete for storage with jobs executing in other storage
pools. A storage pool does not acquire a block of main storage for the
subsystem. Rather, it specifies an amount of storage. A storage pool also has
an activity level specified for it that limits the number of jobs that can execute
concurrently in the storage poo/. A subsystem description can define up to 10

storage pools for a subsystem. The subsystem attributes also specify the
maximum number of jobs that can be active concurrently in the entire
subsystem.

Work Entries

Three types of work entries can specify sources from which jobs can be

selected:

• Work station entries

• Job queue entries

• Autostart job entries

Work Station Entries: Work station entries specify the work stations from
which interactive jobs can be initiated. When the subsystem is started and the
work station is allocated to the subsystem, the sign-on prompt is displayed.
For example, in the following drawing, work station A is specified as a work
entry for subsystem 1 in the subsystem description.

CPF

Description

~work Station Entry,
Work Station A

Work Management Facilities 19

20

Job Queue Entry: A job queue entry specifies the job queue from which the
subsystem can select batch jobs. In the following example, the job queue
entry assigns job queue 2 to subsystem 1.

Job Queue Entry: ~SUbsystem
Queue 2 Description

=== Queue 1

D
2

D
Jobs are placed on a job queue when they are read by a spooling reader or
when they are submitted to the queue by another job. The subsystem initiates
these jobs by selecting them from the job queue. Only one job queue can be

specified in a subsystem description. The same job queue cannot be specified
for two active subsystems. The job queue entry in the subsystem description
can also specify the maximum number of jobs that can be active concurrently
from the queue.

(

Autostart Job Entries: Autostart job entries specify any jobs that are to be

automatically initiated when the subsystem is started. The jobs specified as

autostart jobs do not require a work station associated with them, so they are

considered to be batch jobs. In the following example, jobs 1 and 2 are

started automatically when subsystem 1 is started.

/Start Subsystem

~ CMD,O

Subsystem 1

Examples of autostart jobs are jobs that perform initialization functions for

applications or jobs that are used as service jobs by other jobs that execute in
the subsystem.

Work Management Facilities 21

. 22

Routing Entries

A routing entry in a subsystem description specifies the program to be invoked
to perform the processing for a job and the execution environment for the
program.

Routing Entry Subsystem

~c~tion

1 o
The processing performed as a result of invoking the program is called a
routing step. A job can consist of more than one routing step. The processing
within a routing step is controlled by the program that is invoked when the
routing step is initiated. That program might invoke other programs to perform
the functions that make up the routing step. For example, the subsystem
descriptions provided by CPF specify the CPF command processing program in
the routing entries. Thus routing steps initiated in these subsystems operate
under the control of that program, and work is submitted through control
language commands.

Routing entries can specify user-written programs to be selected by means of
routing data. Routing data is a character string that CPF compares with
character strings in the routing entries to select the routing entry to be initiated

for the routing step. Routing data can be provided by a work station user,
specified in a command, or provided through the work ertry for the job. The
routing entries in the subsystem description might be used only once within a
job (when the job is initiated). However, routing entries can also be. used to
change a job's environment during the job's execution .

Jobs

The user can easily manage the work load on the system by starting and
terminating the subsystems needed for the various kinds of work performed.

However, because jobs are separate entities that can be individually controlled,
the work load can be further managed at the individual job level.

Although interactive and batch jobs appear to be quite different to the system
user, once started all jobs are handled essentially the same by the system.
Each job exists and is identifiable in the system from the time it is submitted
(for example, from sign-on from a work station or from the time a job is
placed on a job queue) until all processing actions related to the job are
completed (such as writing spooled output files). As long as the job exists in
the system, control language commands are available to control that job.
These commands along with the commands available to control the system
and subsystems provide a complete set of commands for controlling work in

the system.

Job Description

Each job has a set of attributes. Different sets of attributes can be predefined
for different jobs to meet the special requirements of each job. In addition,
these attributes can be modified during job execution as processing needs
change. Because specifying all the attributes each time a job is submitted

would be tedious and time consuming, the CPF supports an object called a job
description in which the attributes of a job can be stored. The attributes
specified in a job description include:

• The job queue on which the job should be placed when it is submitted

• The scheduling priority used to control when the job is selected for
execution

• The library list that is in effect when the job is started

• The routing data used by the subsystem to determine the appropriate
routing entry for the job

• The default output queue onto which spooled output should be placed

Work Management Facilities 23

24

Each work entry in a subsystem description except the job queue entry refers
to a job description for job attributes.

Subsystem

~tion

Work Entries'/ L-...-.J

Job Description

.P,l
~ ""-JOb Attributes

For jobs placed on a job queue, the job description is specified when a job is
submitted to the queue. In this case, the job attributes specified in the job
description can be overridden when a job is submitted. For example, a
different library list might be specified. The library list specified in the job
description would then be ignored.

(

)

Routing Steps

The job description defines the attributes (that is, the external characteristics)
of a job. Certain elements of the execution environment within the machine are
obtained from the routing entry. The user can change these elements while the
job is executing by initiating additional routing steps in the job. A new routing
step occurs whenever the subsystem uses routing data to select a new routing
entry. Each routing step provides a boundary within the job at which the
execution environment can be changed.

The execution environment of a routing step is defined through the routing
entry that initiates the step. Some of the parameters that define this
environment are contained in an object called a class, which is referred to by
the routing entry.

Subsystem
Description

Routing Entnes 0 CI~SS

The same class can be specified for any number of routing entries. The
parameters that are specified in a class include:

• The machine execution priority to be given to the routing step

• The time slice, or quantity of processor time, allowed for the routing step

before other waiting routing steps are given the opportunity to execute

• The maximum processor time allowed for the routing step

• A default maximum time to wait when an instruction in the routing step

must wait for some resource

Many jobs consist of just one routing step, which is initiated when the job is
started. If additional routing steps are necessary, they are requested explicitly
within the job or, for interactive· jobs, they occur when a work station user
completes one function and requests a new function by providing new routing
data to the subsystem. If more than one routing step occurs in a job, they
execute serially, not concurrently.

Work Management Facilities 25

26

Subsystem/Job Relationships

The framework through which the work management facilities control work is
specified through definitional objects, namely subsystem descriptions, job
descriptions, and classes. These objects provide extensive flexibility in
managing the operational aspects of the system, namely subsystems, jobs, and
routing steps.

Because operating environments are defined through these objects, a single
subsystem monitor is able to manage all types of environments. A separate
invocation of this monitor is established for each subsystem that is started.

Each invocation uses a separate subsystem description to provide the required
operating environment. Because of this design, specialized programs in
separate environments are not needed for special functions, such as monitoring
work stations or scheduling batch jobs. In addition, most of the work
management functions are driven by the occurrence of discrete events; that is,
they are available when needed, but they do not use system resources when
they are not being used.

The work management facilities control the execution of jobs within the
subsystems that are active on the system. As shown in the following drawing,

CPF uses information from the subsystem description to define the subsystem.
The subsystem description refers to job descriptions, programs, and classes.

A

o
B o
t

D
I

~}tion &!SC'iPtion 1

LI-.J ~D- I

~~~ ____________ J 

In this example, one of the work entries in the subsystem description specifies 
work station B as a source of work. The work entry also specifies a job 
description. The routing entry specifies the program and class to be used 
when a routing step (within a job) is started. 

( 
'\ 



) 
In the following example, a job is executing in an interactive subsystem. The 
definitional objects are used by CPF to provide the operational elements that 

exist during job execution. 

1 
Subsystem 

"-"'IE] 
Operational 

Definitional Subsystem 

~;on -rbD~. 

Work Entr;e' ~ J~ I : Job Attdbute, 

Rout;ng Entr;e, - U L~ . 
L-.:.-J ~ Execution Parameters 

WORK MANAGEMENT FUNCTIONS 

CPF provides a set of objects needed for the operation of the standard 
subsystems, the functions needed to create or modify subsystem descriptions, 
and the functions needed to manage the operation of the system, subsystems, 
and jobs. 

CPF-Provided Subsystems 

When CPF is installed, it includes the subsystem descriptions that define 
separate subsystems for interactive, batch, and spooling jobs. These 
subsystems can be used as installed to satisfy normal processing requirements. 

Work Management Facilities 27 



28 

Interactive Subsystem 

The interactive subsystem provides a default interactive operating environment 
that supports interactive jobs for all work stations. This subsystem is started 
automatically when the system is started and remains active as the controlling 
subsystem until the system is terminated. The interactive subsystem serves as 
the subsystem through which the system operator controls the system. 

Because only part of the specifications in a subsystem description for an active 
subsystem can be changed, two copies of the subsystem description for the 
interactive subsystem are provided with CPF. This provides a way to modify a 
copy of the subsystem description so that it can subsequently be used as a 
modified controlling subsystem with characteristics that are different from 
those specified by CPF. 

Batch· Subsystem 

The batch subsystem provides a default batch operating environment. This 
batch subsystem is not started automaticallv, but can be started by a 
command. All the jobs processed in the batch subsystem are obtained from 
the job queue. Jobs can be submitted to the job queue even though the 
subsystem is not active. They are available for processing when the 
subsystem is started. 

Spooling Subsystem 

The spooling subsystem provides the operating environment in which the 
spooling readers and writers execute. This subsystem needs to be active only 
when readers or writers are active. The spooling subsystem and the individual 

readers and writers can be controlled from jobs that execute in other 
subsystems. 

The spooling facilities support the functions commonly provided with other 
systems, such as: 

• Performing input and output operations apart from their related jobs 

• Saving entries on job queues and output queues through system termination 
so those entries can be processed after the system is started again 

• Manipulating and displaying entries on the queues 

( 
'\ 



) 
User-Defined Subsystems 

In addition to the subsystem descriptions for the CPF-provided subsystems, 
CPF also provides the functions needed to create, change, and delete 
subsystem descriptions and to add, remove, and change specific entries in 
them. These functions can also be used to change the CPF-provided 
subsystem descriptions or to create other subsystem descriptions to support 
any special data processing requirements. For example, special subsystems 
might be needed to: 

• Control an application that must be continuously available and that must 
provide a rapid response to its users 

• Provide an operating environment that must be separately controllable 

• Isolate the use of system resources to an application, such as assigning a 
group of work stations to a subsystem that is designed to support the 
application 

Managing Subsystems 

CPF supports the following operations for managing subsystem descriptions 
and their contents through control language commands: 

• Creating, changing, displaying, or deleting a subsystem description. The 
commands that create or change a subsystem description apply only to the 
subsystem attributes; the work entries and routing entries are added, 
changed, or removed through separate commands. The commands to 
display or delete subsystem descriptions apply to the entire description. 

• Adding, changing or removing work entries. Separate commands apply to 
each type: autostart job entries, work station entries, or a job queue entry. 

• Adding, changing, or removing routing entries from an existing subsystem 
description. 

Managing Jobs 

Two types of operations are provided for managing jobs. Object operations 
apply to the job- related objects that are used by work management; execution 
control operations apply to the execution of jobs and routing steps. 

Object Operations 

CPF supports the following operations for managing job-related objects: 

• Creating, displaying, and deleting job descriptions 

• Creating, displaying, and deleting classes 

Work Management Facilities 29 



30 

Execution Control Operations 

CPF provides commands that support the following operations to control job 
execution: 

• Changing a job's attributes. The job being changed must exist on the 
system as an active job, as a job on a job queue, or as a job having output 
on an output que~e. 

• Displaying a job. The display presents information about a job. The job 
being displayed must exist on the system as an active job, as a job on a job 
queue, or as a job having output on an output queue. 

• Holding a job. This operation withholds the job from further processing. 

• Releasing a job. This operation makes a previously held job available for 
further processing. 

• Canceling a job. This operation removes a job from the system. If output 
from the job exists on an output queue, that output can also be removed 
from the system. 

• Sign-off. This operation terminates an interactive job. 

• Submitting a job from within another active job. The job issuing the 
command can be either an interactive job or a batch job. The job being 
submitted is placed on a job queue for subsequent processing as a batch 
job. 

CPF provides commands that support the following operations for routing 
steps: 

• Rerouting a job. This operation causes a new routing step to be initiated for 
the job. The current routing step is terminated. The job continues to 
execute in the same subsystem. 

• Transferring a job. This operation is used to transfer a job to a different 
subsystem. When the job is selected for execution in the new subsystem, a 
new routing step is initiated. The command transfers the job issuing the 
command. 

• Allocating an object. This operation allocates an object, or a group of 
objects, to be used by a routing step. 

• Deallocating an object. This operation deallocates an object, or a group of 
objects, from a routing step. 

/ 

\ 



) 
Initiating Jobs 

Interactive Jobs 

An interactive job is initiated when a work station user signs on. An interactive 
job remains active until the work station user signs off or the job is terminated 
as a result of a command entered by another job. 

Batch Jobs 

Batch jobs are initiated when they are selected from a job queue. Jobs can be 
submitted to a job queue at any time. If the job queue is not assigned to an 
active subsystem when jobs are placed on it, the jobs remain on the queue 
until a subsystem to which the queue is assigned is started. 

Jobs are selected from a job queue according to the priority assigned to each 
job. As shown in the following diagram, jobs with a higher priority (lower 
number) are selected before jobs with a lower priority (higher number). Jobs 
with equal priority are selected on a first-in-first-out basis. 

Priorities 

Ajobaddedtothequeue ,~--------------------~--------------------~ 
with a priority of 1 would 2 3 4 9 
go here. 

--.... 

Job Queue 

Jobs can be submitted to a job queue from within other active jobs or through 
a reader. 

Work Management Facilities 31 



32 

Submitting Jobs from Within Active Jobs: Individual jobs are submitted for 
asynchronous execution when a need arises for a separate function that can be 
executed as a batch job. Jobs can be submitted to any job queue on the 
system. The function could be performed within the submitting job, but it 
might delay the work currently being done. 

For example, if the system operator needs to save a data base file, he can 
simply enter the appropriate command. When the file is completely saved, he 
can enter other commands to continue his work. However, if the operator 
needs to save the file but cannot wait until the end of the operation to 
continue his other work, he can submit the job to be performed independently 
of his other work. Once he has submitted the job, he can continue with other 
work. The job will be selected from the job queue by the appropriate active 
subsystem. 

Submitting Jobs Through a Reader: Some batch jobs are read by CPF 
programs called readers. These jobs can include data files, called inline data 
files, that are used by the jobs. Inline data files are placed in the system and 
processed as described in the Data Management Facilities section. 

A reader reads a job from an input source and puts the job on a job queue. 
Each reader reads from only one source, but more than one reader can be 
active concurrently. The sources from which a reader can read jobs are: 

• Card readers 

• Diskettes 

• Data base files 

The following drawing shows how a reader program reads a job and places it 
on a job queue. The program continues reading until it reaches the end of the 
input or is terminated by a command. 

Spooling Subsy.~~em 
·······~~:a~;/ 

D-OR-.... ·O t [1J"'L, 
~talJ Er' 

( 



) 
The following drawing shows a job stream. Each job is identified by a job 
command. Each job might include the execution of more than one program. 
Programs within the job can call other programs. 

//JOB DAI L YSALES SCDPTY(2) 
RPLLlBL LlBL(ORDLlB) 
CALL SALES205 
CALL SALES206 
CALL SALES209 
//DATA 

AJ1052 
XQ4031 
BZ9504 

//JOB DAIL YSHIPT SCDPTY(5) 

!*PRINT DEPT SUMMARY*/ 
!*PRINT PRODUCT SUMMARY*/ 
!*PR INT SPECIAL SALES* / 

If readers are used to submit batch jobs, the efficiency of batch jobs can be 
increa£ed. For example: 

• Batch jobs are not limited by the speed of the device that contains the in line 
data files. 

• The amount of device contention between jobs is reduced because each job 
can read input files without being constrained by the availability of the input 
device. 

• Jobs can be read by the reader in any order because the subsystem selects 
jobs for execution based on priority, not on the order in which they were 
read. 

• Named inline data files can be processed by more than one program in the 
same job. The file does not need to be read separately for each program 
that uses it. 

Work Management Facilities 33 



34 



) 
Data Management Facilities 

DATA MANAGEMENT CONCEPTS 

Files 

The basic elements of data management are files, records, and fields. A file is 
a collection of data records. A data record is a group of related data items, 

called fields. In System/38, each file has a description that describes the file, 
its records, and, in many cases, the fields in the records. CPF uses this 
description whenever a file is processed. 

A file is an object that is created through CPF. A file is made up of its 
description and the data accessed through the file. The data management 
facilities support two types of files: data base files and device files. All data is 

accessed through files. 

Data base files are files whose data is stored permanently in the system. 
Device files are files whose data is read from or written to devices attached to 
the system. The device files supported are: 

• Card files 

• Diskette files 

• Printer files 

• Display files 

The concept of a file is the same regardless of what type of file it is, which 
device is supported, or whether the device is attached locally or through a 
communication line. When a file is used by a program, it is referred to by 
name, which identifies both the file description and the data itself. 

Data Management Facilities 35 



36 

File Description 

When a file is created, CPF builds the file description from information 
specified through the create command and information specified through data 
description specifications, if these specifications are provided. The file 
description contains the information necessary for a program to access a file. 
The file description includes: 

• Data association specifications that specify where the data is in the data 
base or which device the file uses. 

• Record format specifications that describe the format of the records 
contained in the file. If records of different formats are contained in the file, 
specifications for all the formats are included here. 

• Special file attributes that further describe the file (such as whether the file 
contains source statements). 

The information in the file description varies, depending on the type of file it 
describes. The kind of information contained in a data base file description is 
different from the kind contained in a device file description. 

The data contained in a file is described in the file description. The record 

format specifications can describe the fields contained in the record: A file 
whose data is described at the field level in the file description is called an 
externally described data file because the data is described apart from the 
programs that use the file. 

The source is used by 

/the CPF when the file 
Data Description 
Specifications 

./ is created. 
.•.•• CPF 

D ··· ..... . 
Data descdption /1 t%%%l-dil'",1 
specifications are source~ F·le File 
placed in a source file. D . ~ r--, 

L_..J 

File Description 

If the data is not described to this level, the record format specifications define 
the length of the record and the fields must be described in the programs that 
use the file. A file whose data is described this way is called a program 
described data file. Describing a file this way is similar to describing files for 
other systems. 

Externally described data files are supported for data base files, display device 
files, and printer device files. Program described data files are supported for all 
files. 



) 
The difference between the two types exists in the location of field 

descriptions. In the following example of an externally described data fife, CPF 
provides the record length plus the field description to the compiler when the 
program is compiled: 

Record Length' 

,ORDNO I CUSTNO I AMTlt 

~ ~ '-.-' 
Field Description 

9~ 
~ OPGMA 

~ 
Record Format File Description 

Program described data is completely described in the program. 

Externally Described Data 

When an externally described data file is created, the data in the file is 
described to CPF through data description specifications. These specifications 
are entered as source statements and are used by CPF to create the record 
format specifications associated with the file description. 

When a program that uses an externally described data file is compiled, the 
source statements in the program specify that the record format is externally 

described. The compiler then uses the record format from the file description. 
The field names and descriptions in the record format are copied into the 
program by the compiler. To provide program documentation, the compiler 
also generates program comments from text descriptions specified in the 
source statements for the record format. When the file is processed, records 
passed between the program and CPF are made up of the fields specified in 
the record format. 

The record format in the file description can be ignored by a program that 
processes the file. In this case, the record format is not copied into the 
program when it is compiled. Instead, the fields used by the program are 
defined in the program as if a program described data file were being used. 
The records are passed between the program and CPF according to the record 
format specifications, and the program divides the record into the fields 
defined in the program. 

Data Management Facilities 37 



38 

Programs that process externally described data files are executed in the same 
way as programs that process program described data files. However, there 
are advantages to using externally described data files, such as: 

• Simplicity in writing programs that use the files. If the same file is used by 
many programs, the fields can be defined once to CPF and used by all the 
programs. This saves coding activity when programs are coded and ensures 
that the fields are defined consistently for all the programs that use them . 

• l Less program maintenance activity when the file's record format is changed. 
If the fields were defined in the program, the program would have to be 
updated whenever a change is made to the record format. When externally 
described data files are used, programs using the file can often be updated 
by changes to the file's record format witHout any changes to the coding in 
the program. 

• Less redundant coding when the same record format is used by more than 
one file. In this case, the record format used in the first file can be 
referenced when subsequent files are created. This saves coding time while 
ensuring consistency in the record formats. This technique is especially 
useful when data base files use the same record format. 

• Improved documentation because: 

Programs that use the same files use consistent record and field names 
Text and column headings can be included in the record format and 
displayed at the work station 
Text descriptions of the files and records can be displayed, which 
supports inquiries about the files and record formats 
Improved integrity because record format level checking avoids the use of 
a file whose record format does not match the record format used in the 
program 

Program Described Data 

When a program described data file is created, it contains a default record 
format specification. This record format defines a record of one field of 
character data. The field length equals the record length. When a program 
processes the file, records are passed to and from the program as single, 
character fields. The program must define any individual fields used in the 
record. 

( 
\ 



) 
Special File Attributes 

The special file attributes in a file description specify such things as: 

• Whether record format level checking should be performed when the file is 
processed 

• Whether the file is a source file 

• Whether a device file is to be spooled 

• Whether the file can be shared by more than one program while the file is 
being processed 

Record Format Level Checking: Record format level checking provides a way 
to ensure that the record format specifications have not changed between the 
time the program was created and the time it is executed. Record format level 
checking can be specified when the file is created or when a program that 
uses the file is executed. 

To support record format level checking, CPF assigns a record format level 
identifier to each format in an externally described data file. The level 
identifiers for each record format are placed in the program when it is created. 
When the program processes the file, the level identifiers in the program are 
compared with the level identifiers in the file to ensure that the record format 
has not been changed since the program was created. 

Source File: A source file is a file created to contain source statements for 
such items as: 

• High level language programs 

• Data description specifications 

• Command definitions 

• Print images 

• Translation tables 

Source files use the same record format, regardless of whether they are data 
base files, card files, or diskette files. The record format for a source file 
specifies a sequence number field and a date field followed by the data (source 
statement). 

Spooled Files: A device file defined as a spooled file is not intended for direct 
access to a device. Instead, these files provide access to data processed by 
the readers and writers. When spooled device files are opened for input, they 
provide access to data read inline with a job. When they are opened for 
output, the data is stored by CPF until it is written to the device by a writer. 

Spooling can be specified for card, printer, and diskette device files. 

Data Management Facilities 39 



40 

Connecting a File to a Program 

A file is connected to a program when the file is opened. Opening a file 
requires that the file be allocated either explicitly as a result of a control 
language command requesting the allocation or automatically as part of the 
open operation. Data base files can be allocated exclusively to a program or 
shared by different jobs. Explicitly allocating a file to a job (before the file is 
opened) ensures that the programs in the job will have access to the data 
when the file is opened. 

When a program opens a file, CPF creates a data path between the program 
and the file. This data path allows data to be passed between the file and the 
program. For data base files and spooled device files, the data path connects 
the program to data stored in the system. For nonspooled device files, the 
data path connects the program to the device associated with the file. The 
data path is maintained until the file is closed by the program or until the 

routing step ends and the file is automatically closed by CPF. 

File Overrides 

File overrides are parameters specified when a file is used to temporarily 
change parameters specified when the file is created. Any overrides specified 
for the file are performed before the file is opened.· Overrides are specified 
through control language commands and can be used to change such items as: 

• The name of the file to be processed 

• Whether output is to be spooled 

• Whether record format level checking should be performed 

File Processing 

When a program is connected to a file, the program can perform input/output 
operations to use the file. The program can be written so that it is 
independent of the type of file being processed or is dependent on the file 
type. 

File independent programs are written so that the input/output operations 
performed are not unique to the type of file being processed. For example, a 
program that sequentially reads all the records from an input file is not 
dependent on the file type. In one use of the program, it might read records 
from a card file. In another use, as a result of an override, the program might 
read records from a data base file. CPF performs the operations requested for 
each type of file. File independent programs can process different files from 
the same type of device or from different device types at different times. 

/ 



') 
/ 

The use of file independent programs provides additional flexibility in the way 
files and devices are used on the system. For example: 

• A program that normally processes a card input file can be used to process 
a diskette or data base file. 

• A program that normally produces output to a printer file can produce 
output to a diskette file. 

• A program that normally produces output to the system printer can produce 
output to a work station printer. 

In any of these cases, the program would execute normally regardless of the 
file type involved in a particular program execution. 

On the other hand, file dependent programs are written to take advantage of 
the full range of operations that are valid for the type of file specified in the 
program. These operations might not be valid for other file types. For 
example, various retrieval methods are supported for data base files. Also, for 
display device files, many unique functions are supported for device operations, 
such as display formatting and the use of command function keys. 

DATA BASE DATA MANAGEMENT 

The System/38 data base includes all of the files· whose data is stored 
permanently in the system. Data base data management lets different 
programs operate on data independently of other programs using the same 
data. Each program can view the data in a way that meets the requirements of 
that program. Additional data can be added to the data base without affecting 
the use or availability of the data that is already there. 

Data base files provide permanent data storage much as normal disk files do 
on other systems. However, because of the data base facilities and because 
the data is permanently online and can be used concurrently by many 
applications, the following advantages are achieved: 

• The applications have constant access to up-to-date data because data that 
is updated is immediately available to other applications that use it. 

• The concurrent availability of data to more than one program is improved 
because the data can be locked by record when a program uses it, and thus 
the entire file does not have to be locked to the program. 

• Storage space is used more efficiently because less data redundancy exists 
on the system. 

• System operation is more efficient because separate jobs do not have to be 
run to sort and update data. files e,very time an application is going to use 
them. 

Data Management Facilities 41 



42 

Basic to System/38 data base data management are the concepts of access 
paths, physical files, and logical files. Access paths provide the organization 
necessary to process the data stored in data base files. Two kinds of files are 
used to process the data. One actually contains data and is called a physical 
file. The other, called a logical file, provides alternative methods of formatting 
and accessing data that is stored in one or more physical files. Application 
programs are written the same way regardless of whether they use physical or 
logical files. In either case, the program simply processes a file. 

Access Paths 

An access path provides a logical sequence to records that are stored in data 
base files. In many previous systems, records were stored on the disk 
according to the organization dictated by the access method. In System/38, 
records are stored independently of their retrieval organization. When records 
are added to a data base file, they are stored in a physical file in the order of 
their arrival. When the records are processed, CPF uses the access path as the 
means by which to locate and retrieve the data records needed by a program, 
either randomly or in a predefined sequence. The access path to be used is 
specified when the file is created. When the file is used for input/ output 
operations, records are processed according to the sequence provided by the 
access path. When the file is processed, the access path can al~o be used to 
select or omit certain records. 

More than one access path can be used to access the same physical data in 
the data base. The access paths can be maintained as the files are processed 
so that when the data is used concurrently by more than one program, each 
access path to the data reflects the current contents of the file. This support 
lets different users randomly access and update the same data through 
different keys. Alternatively, access paths can be rebuilt when they are 
opened; this method avoids the overhead of dynamic maintenance. 

CPF supports two types of access paths: arrival sequence and keyed 
sequence. 

Arrival Sequence Access Path 

This access path is based on the order in which the records are stored in a 
physical file. Records in the file can be processed: 

• Sequentially, where the records are retrieved consecutively from the file 

• Directly by relative record number, where the record is identified by its 
position from the beginning of the file or, from the last record accessed in 
the file 

Processing files using the arrival sequence, access path is similar to processing 
consecutive or direct files on previous systems. 



~ 
) 

) 

Keyed Sequence Access Path 

This access path logically organizes the records in a file according to the 
contents of key fields in the records. A key field is a field whose contents are 
used to sequence the records in the file. Records in the ·file can be organized 
according to either the ascending or descending sequence of the key fields. 
Records in the file can be processed: 

• Sequentially, according to the contents of the key fields 

• Randomly, with the key fields identifying the records 

A keyed sequence access path is created when the file is created. It is 
updated whenever records are added to or deleted from a file or whenever a 
record is modified and the contents of a key field change. Thus all the access 
paths to the data can be maintained concurrently. 

Key Fields: The contents of more than one field can be used as a single key. 
In this case, all the records that have the same value in the first key field are 
sequenced by the contents of the next key field, and so on. The fields used in 
the key can occur anywhere in the record format. In addition, some of the 
fields might be used in ascending sequence and others in descending 
sequence. Duplicate key fields can be allowed, and specifications for 
processing them can be included when the file is created. 

Processing Keyed Sequence Files: Using a keyed sequence access path is 
similar to using an indexed sequential access method on previous systems. 
Records in the file can be accessed sequentially or randomly. Random 
processing includes the capability to select a record randomly, then to process 
succeeding records sequentially. Thus, a work station user (through an 
application program) could randomly select a record, then continue with 
sequential processing. 

If more than one key field is used for the keyed sequence access path, either 
the entire key or a partial, or generic, key can be used to retrieve the records. 
If a generic key, which has fewer fields than the entire key, is used to retrieve 
the record, the first record that contains the requested key field is retrieved 
from the file. 

Data Management Facilities 43 



44 

Members 

Data records within a data base file are grouped into members. All the records 
in a file can be in one member or they can be grouped in different members. 
The first member can be named when the file is created. Subsequently added 
members are named when added to the file. Each member of a file is 
processed individually through a separate access path. The records from 

different file members are not merged. A logical file member can be used to 
merge records from more than one physical file member so they appear to 
exist in one file. 

Using more than one member of a file to contain different groups of records 
requires less system overhead than creating a separate file for each group. 
Examples of files with more than one member include: 

• Source files in which each member contains the source statements for a 
different program 

• An order file that has a separate member for each month's incoming orders 

Physical Files 

A physical file is a data base file that contains data records. Thus a physical 

file is similar to files on disk for other systems. All the data records in a 
physical file have the same format. That is, a physical file contains 

fixed-length records, all of which contain the same fields. CPF stores records 
in a physical file in the order in which they are placed in the file. However, the 
records can be processed in any order that is established by the access path 
specified when the file is created. 

The file description for a physical file is created when the file is created. The 
file description includes: 

• A description of the record format used by the file 

• A description of the access path used for processing records from the file 

• A description of the storage attributes of the file 

The data contained in a physical file can be processed through many different 
logical files. Consequently, the records in a physical file can contain more 
fields than any single program would process at one time. However, because a 

physical file can contain the fields used by many logical files, fields that are 
used in more than one logical file need to be stored only once in the data 
base. When such a field is updated for one logical file, it is also updated for 
all the other logical files that use that field. Thus the storage space in the 
system is used efficiently, and up-to-date data is available to any programs 
using the data through various logical files. 

/ 

( 



) 
Logical Files 

A logical file is a data base file through which data that is stored in one or 
more physical files can be accessed by means of record formats and/or access 
paths that are different from the physical representation of the data in the data 
base. A program that processes data by using a logical file operates as though 
the file actually contained the data. In the following example, program 1 is 
accessing data from physical files A and 8 through the logical file C: 

A logical file can be used to access data from physical files, but not from other 
logical files because logical files do not actually contain data. Logical files can 
share the same access path. 

One of the many advantages of using the data base is that different programs 
can access the same elements of data as they need it, through different logical 
files. In the following example, programs 1 and 2 both access data from the 
physical file A, hut through different logical files (8 and C). 

Data Management Facilities 45 



46 

Data in a physical file can be used by any number of logical files. Each file can 
impose its own characteristics, such as field length and type, on the data. 
However, the data is always stored in the system according to the 
characteristics and organization specified by the physical file. When a data 
record is accessed through a logical file, the data is transformed to meet the 
requirements of the logical file. This data transformation is not apparent to the 
program using the file. 

Logical files can share an access path so that two or more logical files can use 
the same access path to retrieve the same data. For example, two logical files 
might use different record formats to process the same data from a physical 
file. If they both want the records sequenced on the same key field in the 
same order, they can share the same access path. When this is done, the 
system needs to build and maintain only one access path for the two files. 

A logical file can impose its own characteristics· and organization on data 
independently of the data's physical characteristics and organization. For 
example, an order entry application might put incoming orders in two physical 
files. One, named HDRIN, contains header information from each order 
received. The second physical file, named DTLlN, contains the detailed 
information from each order. One record is generated for each line on the 
order. The record formats and the records contained in these physical files are 
shown in the following table. 

PHYSICAL FI LE: HDRIN 

RECORD FORMAT: ORDNO ORDDAT CUSTNO SALMN TTLAMT 

522184 063078 108211 085 141111 
523480 071078 100429 026 143250 
534800 071078 180241 047 040479 
553672 071178 123876 079 108449 
564211 071578 156827 068 046848 

PHYSICAL FI LE: DTLI N 

RECORD FORMAT: ORONO lINENO ITEM NO OTY AMT 

522184 01 46628 048 059210 
522184 02 06189 020 003660 
522184 03 17281 129 078241 
523480 01 31482 024 004800 
523480 02 42218 481 096200 
523480 03 22184 006 010800 
523480 04 18421 037 031450 
534800 01 28442 080 024548 
534800 02 41298 041 015949 
553672 01 46821 420 108449 
564281 01 80149 010 040000 
564281 32 42821 016 006848 

/ 



) 

These two physical files are shared by two logical files that are accessed by 
work station users. The work station users access the data through order entry 
application programs. In the following drawing, user A has asked to see order 

number 523480. The order is available through the logical file INPRCORD 
(in-process orders). User B has asked to see all the orders that are entered for 
customer number 108211. This information is available through the logical file 
CUSTORDS (customer orders). 

ORO NO: 523480 DATEIN: 07/10/78 CUSTNO: 100429 

A 

----.I( 1 I 
I P:M

1 
I P~MI __ "I( B J~ 

I t 
INPRCORD CUSTORDS D D Logical Files 

t t 
HDRIN D Physical Files. 

Multiple Record Formats 

LlNENO ITEMNO 

01 31482 
02 42218 
03 22184 
04 18421 

CUSTNO: 10821 

ORONO OATEIN 

522184 06/30/78 

QTY AMT INSTK 

024 48.00 YES 
481 962.00 YES 
006 108.00 NO 
037 314.50 YES 

CREDIT CLASS: 02 

TOTALAMT 

1411.11 

A logical file can use more than one record format. Each logical file record 
format must be related to one physical file record format and can be used for 
retrieving data from one or more physical files. One logical file record cannot 
contain data from more than one physical file. Through the use of a single 
logical file with multiple record formats, data from more than one physical file 
can be processed as though the data were· all in the same file, as follows: 

I 

PGM 

D 
t 

Logical File 

~
Format A for file 1 ~ 
Format B for file 2 
Format C for file 3 

I I o 0 0 Physical Files 

Multiple Record Formats 

The records processed from a logical file can vary in length because of the 
different record formats used. The access path for the logical file determines 
the order in which the records are processed from the physical files. This 
makes different record formats from different physical files available through 
one logical file. 

SALESMAN,: 026 

Data Management Facilities 47 



48 

The Fife Description 

The file description is created when the file is created and includes: 

• A description of each of the record formats used by the file 

• A description of the access path used for processing records from the file 

• An identification of the physical files containing the data that can· be 
processed through the logical file 

The file description and an access path are all that exist in storage for a logical 
file, because the data is actually contained in one or more physical files. If the 
logical file record format is different from the physical file record format, 
records processed through a logical file are transformed to the logical format 
by CPF as the records are retrieved by a program using the logical file. 

Using Data Base Files 

The System/38 data base allows information to be stored on the system in an 
efficient manner and also provides great flexibility in how that data is used. 
Through the use of physical files, logical files, different record formats, and 
different access paths, application programs can be designed to use whatever 
data they need. The data base can be organized so that a minimum of 
redundant data is maintained on the system. 

The following example illustrates how the data base data management facilities 
are used. An application program processes customer orders. Two types of 
information are needed: 

• Header information that applies to each order. This information includes the 
order number, the customer name, the customer address, the order date, 
and other information that applies to the whole order. 

• Detail information that applies to each item included in the order. This 
information includes the item being ordered, the quantity, and the price. 

In this example, each item ordered should be treated separately, as one record. 
The header information should not be repeated in each record, so two physical 
files are used. One physical file contains records of header information, with 
one record for each order received. The other physical file contains records of 
detailed information, with one record for each item included in the order. The 
only information that must be repeated in both files is the key fields (for 
example, the order number field). 

/ 



To process orders, this program needs both the header records and the detail 
records. The program could be written to process both physical files. Instead, 
a logical file is used that shares the data contained in the two physical files. 
The logical file has two record formats, one for each type of record. The 
access path uses key fields in the records so that the detailed records are 
presented to the program following the appropriate header record. 

When a work station user executes the application program, he accesses the 
data contained in both physical files. The program lets the work station user 
request information about any order contained in the files. Another application 
program, using different logical files with a different access path, lets the work 

station user request information about orders placed by individual customers. 
In addition, programs can use either physical file independently. 

DEVICE SUPPORT DATA MANAGEMENT 

The device support data management facilities support the external devices 
that can be attached to System/38. The devices supported are the display 
devices (which include the console), the diskette magazine drive, the 

multifunction card unit, and the system and work station printers. The device 
file descriptions are kept in the system and are used by CPF to transfer data to 
and from the devices. 

There is a device description object for each device that is attached to the 
system. Device descriptions for some devices are provided by CPF. Others are 

created when devices are defined to CPF. 

CPF creates a device file, which includes the file description, for each device 
defined to the system when the device is installed and defined to CPF. _ The file 
description for any file refers to specific device characteristics in the device 
description. Thus, as shown in the following drawing, the file description and 
the device description serve as connecting links between the program and the 
data in the file. 

PGM 

0·..,.. ... ·0 
File Description I t Device Description 

Fil'e object/ 

~EJ 
Device files created by CPF are program described data files. That is, the 
formats of the records in these files must be described in the programs that 
use them. Additional device files can be created to meet any special 
processing requirements. 

Both externally described data files and program described data files can be 
created for work stations and printers. However, printer files usually use 
program described data. Only program described data files can be created for 
card and diskette devices. 

Data Management Facilities 49 



50 

Display Device Support 

The display device support is designed to simplify the use of display devices 
(work stations) by application programs and provide functions that are not 

easily accomplished on many interactive systems. Most display files are 

externally described data files. Externally described data files offer the 
following advantages: 

• CPF performs the device control operations, including formatting data on the 
screen, accepting input from the keyboard, and handling error conditions 

that occur at the device. 

• CPF can perform subfile operations, which let the program perform 
input/ output operations that send and receive mUltiple records in one 

operation. The program processes one record at a time, but CPF and the 

work station send and receive blocks of records. If more records are 

transmitted than can be displayed on the screen at one time, the work 

station operator can page through the block of records without returning 
control to the program. 

• CPF can validate information entered by the work station user and let the 

user correct any errors before the record is passed to the program. For 
example, if the work station user enters alphabetic characters into a numeric 

fiel~ that is validated by CPF, the work station user would be informed of 

the error without returning control to the program. 

• CPF can accept indicators from the program to control the operations 

performed at the work station and return indicators to the program to 
inform it of actions taken by the work station user. 



) 
When externally described data files are used for display devices, coding the 

application program is simplified because the program sends and receives 

records as they are described in the file's record formats. The record format 
describes both the format of the record used in the application program and 

the format of the record when it is displayed. The formats are described to 

CPF through data description specifications, as follows. 

Display Format 

'\ 

Data Descdption specification~ogram Record Format 

1.------.-'-1-1 

'" !L_ 

Format 

Program Format 

/ 

CUSTNM 
CUSTNO 
SALESMN 
ORDERDT 
DE:LDAT I CUSTNO CUSTNM ORDERCT I DEIDAT I SALESMN I 

PGM 

If progiam described data files are used for display devices, the record formats 

and display formatting must be specified in the application program that 

processes the file. The following discussion about display device support is 

limited to the use of externally described data files. 

File Description 

The file description is created when the file is created. It consists of the 

record formats for the file and the functions that CPF is to perform when 

input/ output operations are requested. 

When the file is processed, CPF transforms output data from the program to 

the format to be displayed and displays it on the screen. When data is passed 

to the program, CPF transforms data from the device to the format used by 

the program. CPF performs all the operations needed to control the work 

station. It also passes indicators between the work station and the program so 
that the work station user and the program can communicate with each other. 

Data Management Facilities 51 



52 

Record Formats 

Record formats tell CPF what fields are contained in a record, how the fields 
should appear at the device, and how the fields should appear to the program. 

Thus, the record format is the basic unit for passing information between an 

application program and the work station user. 

A record format used for a display file can contain fields used for input only, 
for output only, and for both output and input (called output/input fields). 

Output fields contain information that is displayed to the work station user. 

Input fields allow information to be entered by the work station user. 

Output/input fields contain output that can be overlaid and returned as input 
by the work station user. 

Attributes can be defined to control the way the fields are displayed or 

processed. For example, field attributes allow: 

• Displaying fields in reverse image 

• Blinking the field 

• Validity-checking input keyed into the field 

Indicator fields can be specified to provide communication between the 

program and CPF. These indicators, which can be set on or off, can be used 

to control data management functions for output operations and to indicate the 

results of input operations. For example, an indicator used in an output 
operation (called a conditioning indicator) could cause a field to be highlighted 

when it is displayed. For input operations, an indicator called a response 

indicator could be used to inform the program that a specific key was pressed 

by the work station user. 

Using Display Device Support 

All the operations necessary to establish an interface through which system 
users can communicate with application programs can be performed by the 

use of the display device support functions. These functions can: 

• Format displays on the screen so that the work station user can use the 

information provided by the program. This function includes the capability 
to control, from the application program, which fields are displayed on the 

screen. 

• Design displays into which the work station user can easily enter input. 

• Use subfiles for either output or input so that the work station user can 
work on a block of records. This capability can reduce the amount of CPF 

activity required between the work station user and the program. It also lets 
the work station user scan the records without returning to the program. 

• Handle errors that occur at the work station without returning to the 

application program. 

• Display error messages to the work station user based on indicators passed 
to CPF by the application program. 

( 



) 
The following steps illustrate how an application program might process 
records using a display device file. The example uses functions provided by 
high-level language programs and data description specifications. The example 
detects an error in the input and uses CPF functions to display an error 
message. 

1. The application program moves the data A. JONES into a variable named 
CUSNAM. 

PGM n 
Move' A JON ES to CUSNAM' 

LJ 

2. A high-level language application program passes an output record to the 
work station, using record format A. 

PGM 

IEX~C~TE FORMAT-A ~ 
LJ ~ 

t I File r Format A 

Data Management Facilities 53 



Sequence 
Number 

3. 

Conditioning 

Condition Name 

o 
~ 

8. ~ ~ 

~LLEo> ~.~ ~ _~c:o ~ ! ~ 
~ ] ~ ~ £ ~ 

1 2 3 4 5 6 8 9 1011 121314151617 

. A 

• A 

A 1/ 

Variables 

54 

Using record format A, CPF displays the record on the screen. The two 
constant fields (NAME: and ENTER NO.) are specified in the record 
format. The variable from the application program is displayed following 
NAME:. The input field following ENTER NO. is to be filled in by the 
work station user. 

Name 

CPF 

): 
x 

Two Constants Input Field 

Location 

~ 
Length ~ i Functions 

g ~ ~ Two specified 
g ~ .. ~ ~ Line Pos constants 

j iIi! ~ 
1920212223242526272829 031323334 35 36 37 38 39 4041424344 45 46 47 48 49 5051 5~ 5~59 60 61626364 6566 67 68 69 70 7172 73 74 7576 77 78 79 80 

I 



Sequence 
Number 

1 2 3 4 5 

• •• A 
· • , A 

• •. A 

· . • A 

• .• A 

Conditioning 

4. The cursor is placed at the first position of the input field (position 11), 
as specified in the record format. 

Position 11 

5. The work station user keys 3571 into the input field and presses the 
Enter key to indicate that he has finished entering the data. 

6. CPF places the data, 3571, into the variable ORDNUM and turns on 
indicator 01 to indicate that the field has been changed. 

7. If the data entered is incorrect, the program turns on indicator 07 to 
display an error message. The program then. passes control to the CPF 
to display the error message caused by indicator 07. 

CPF displays the error message on the bottom line and displays the input 
field (3571) in reverse image with the cursor at the beginning of the input 
field. 

t 
> 
X 

Error Message 

Location 

Condition Name 

~I---r---'-""---'--"--l Name 
~ 

Length ~ ~ Functions 

c: 

~ ~ 
§ ~ ~ 

~o~~~ .~i 
<tz ] ~ ] ~ ~ ~ 

~ ~ ~ 
~ ~ ~ Line 

~ ~ ~ 8, 

~ ~ ~ ;5 

Pos 

7 8 9 1011 121314151617 19202122232425262728293031323334 35 36 38394041424344 45 46 47 46 49 5051525354 5556 57 58 59 60 616263 64 6566 67 66 69 70 7172 73 74 7576 77 78 79 BO 
· 

• 

· 

" / 
Indicator Error Message 

Data Management Facilities 55 



56 

Nondisplay Device Support 

The nondisplay device support functions are the data management functions 
that apply to printers, the diskette drive, and the MFCU. The file description 
for a nondisplay device file includes: 

• Identification of the device associated with the file 

• Spooling and output scheduling information for the file 

• Device-dependent information such as forms or card types to be used, 
hopper and stacker use, and the number of copies to be produced for 
output files 

Using program described data files in your programs is similar to using files on 
other IBM systems. The records are described in the using programs, and 
record types must be identified in the program if more than one type of record 
can be contained in the same file. 

Printer File Support 

The system and work station printers attached to System/38 are supported by 
CPF through printer files. Among the functions supported for printed files are: 

• Folding or truncating the output records if the records passed to the printer 
are longer than the maximum length allowed for the device. Folded records 
are continued on subsequent print lines until the entire record is printed. 

• Allowing the operator to align printer forms before the file is printed. 

• Initializing constant fields for a file. 

• Editing fields in the records according to a predefined edit code or edit 
word. 

Printer files can also be externally described data files. The record format is 
then contained in the file description. Using externally described data printer 
files increases a program's file and device independence because the file 
description can control such specifications as character substitution, forms 
alignment, and forms size. These specifications can be overridden when a 
program is executed if the user specifies a different externally described data 
printer file. In addition, using a different file can change the format of the 
printed records\ even though the program is not changed. 

( 



) 
Multifunction Card Unit Support 

The multifunction card unit is supported for card input and output files. Among 
the functions supported for card files are the following: 

• Output files can be punched only, printed only, or both punched and printed 

• Combined files can be used that combine reading input data and punching 
and/ or printing output data 

• Output records that exceed the length allowed by the device are truncated 
to the maximum length allowed 

Card device files are always processed as program described data files. 

Diskette Magazine Drive Support 

The diskette magazine drive is supported through high-level language 
programs for both input and output files. CPF includes the functions needed to 
initialize diskettes, display the volume and file label information from a diskette, 
rename diskettes, clear diskettes, and duplicate diskettes. Multivolume diskette 
files are also supported. Diskette device files are always processed as program 
described data files. 

DATA OPERATIONS 

The steps involved in creating a file and the requirements imposed on 
programs that use the file depend on whether the file is an externally described 
data file or a program described data file. 

Program Described Data Files 

CPF provides the commands needed to create, change, and delete program 
described data files. The same commands are used for both program 
described data and externally described data files. However, data description 
specifications are not used for program described data files. When the file is 
deleted, the file's description and any data in storage associated with it is 
destroyed. 

Data Management Facilities 57 



58 

For program described data files, the file description serves primarily as a link 
between the application program and the device or data used by the program. 
Because the data is not described to CPF, CPF treats each record as a single 
field containing a character string. The program using the file must identify the 
fields in the record by each field's location in the character string, as follows: 

The CPF passes the record to the program as a 
character string. 

Input Record(A character string from a device 

or data base file.) 

The application program defines the fields 
in the records: 

Field Name Positions 

CUSTNM 1-20 
ACCTNO 2~32 

ORONO 4()'48 

The application program also defines the 
field for output records. For example, 
printer records are defined so that a printed 
report is formatted .. 

Output Record(A character string from the program to the device.) 

Externally Described Data Files 

As with program described data files, CPF provides the commands needed to 
create externally described data files. However, for externally described data 
files the record formats used by the file must also be described to CPF by 
source statements provided when the file is created. The source statements 
are called data description specifications. 

Commands are also provided to delete files and change device files. Deleting a 
file destroys, the file' s description and any data associated with it in storage. 



'\ 
) 

~::==:a= 

. The data description specifications form is used for coding the data description 
specifications for externally described data files: 

GX21·7754-0 UM/050· 
~~~~1; International Business Machines Corporation DATA DESCRIPTION SPECIFICATIONS Printed in U.S.A. 

I File I Keying I Graphic I I I I I Description I Page of

I I Programmer IDate I
Instruction I Key I I I I 1

~ Conditioning
Location

Condition Name

Sequence Name Length Functions
Number

~ Line Pos
l- ff

0 0

1:~ E 5 5
~ ~ ~ ~ ~ ~] llce

123456 8 9 10 11 1213 141516 192021 22232425262728 031 323334 36 37 394041 424344 4546 47 46 49 5051 52 53 54 5566 57 66 59 60 61 6263 64 65 66 67 68 69 70 71 72 73 74 7576 77 78 7980

; : A
•

1 A

: A

•

A

A

•

A •

•

A
A

• •

A

• •

A
•

A

A

A

A
A

•
A •

A
•

J
.. A

• •
A

A

-Number of sheet. per pad may vary slightiV.

• • •
• • •

,

• · •
•

:

•
,

·
· ,

•

; .:
•

,

• •
·

•
; ; ;

• • ,
• · • • •

• •
•

· · '. • • ••• · • •

· • • • • • •
.

· •
• •

• • •• · • ·

: T .-c-
· · •

•
, . ;

· ·
,

•
·

•

i · • • · ;

•

•
•

•
•

•

,

• •
1 • • ••

.
• ·

· '

T
-.

• · .
•

• • •

·
• • • • • ••

• • • ·
" ..

· •

;
•

' .
•

• ••• . '

• • • •
• •

: .

• T ·

• • ••
•

' ;

•
.

• • • •

·

• • . • · , • ·
• • • •

• - ';

•
•

,
• • i · -

• •
•••

,
••

• • • •

,
. '. ·

·
• ••

The form is used for both data base files and device files. A complete
description of the data description form and the entries allowed for each
position is contained in the IBM System/38 Control Program Facility Reference
Manua/- Data Description Specifications. Examples showing how the form is
used are contained in the IBM System/38 Control Program Facility
Programmer's Guide.

•

The data description specifications are provided as source statements when the
file is created. There are two ways to enter the sourc~ statements:

• Use a card or diskette source file

• Use the source entry utility, a part of the Interactive Data Base Utilities
program product., to build a source file in the data base

• •

';

• ; !

' .
•

• • ·

· .
· ;

• • • • •

• •

, .
•

,

; : :
•

·

,

• ·
· .

· . ,

••
.

, .

· ,
.

Data Management Facilities 59

60

The following sequence of operations is used to create an externally described
data file.

1. The data description specifications are coded and entered:

Data Description r O
Specifications

D-'-'I[~---

CPF

File

rrll P
Source File in the Data Base

2. A command is entered to create the file. This command identifies the
source file that contains the data description specifications for the file:

CPF r

OCMD

Data description for

the File to be created~~ OFile

/~
Identified Source File.,,/' "'Created File

3. The file now exists on the system.

Spooled File Processing

CPF provides spooling functions for both input and output. For input, CPF
programs that are called readers read jobs and place them on a job queue. If
inline data files are included with the jobs, they are placed in the system as
spooled input files. For output, CPF places output records produced by a
program in a spooled output file in the system. These files are later written to
the external devices by CPF programs called writers. However, the program
processes any spooled file as though the program were using the device
directly.

)
Inline Data Files

Inline data files are processed by a program as program described data files
coming from the external device. The records in the file are processed
sequentially from the beginning of the file to the end of the file. Inline data
files can be either unnnamed or named.

Unnamed Inline Data Files: Unnamed inline data files are identified in the
spooled input by a data delimiter that does not specify a file name. Once a
unnamed file has been processed by the job, it is closed and cannot be
reopened. If more than one unnamed in line data file is included in a job, the
files are opened in the order in which they were read in the spooled input.

Named Inline Data Files: Named inline data files are identified in the spooled
input by a data delimiter that specifies a file name. Because these files are
uniquely named within the program, they can be opened and processed in any
order. In addition, a file can be closed and then reopened in the same job.
Each time a named inline data file is opened, records are processed from the
beginning of the file. The file is not deleted until the job ends.

Spooled Output Files

Output spooling functions are performed by CPF without requiring any special
operations by the program that produces the files. When an output file is
opened by a program, CPF determines whether the file is to be spooled. The
following information in the file description applies to spooled output files:

• The output queue for the fil~

• The type of forms to be used

• The number of copies to be produced

• The maximum number of records that can be placed in the file

• Whether the spooled file should be written to the device while the program
is still producing output

• Whether the file should be saved on the queue after it has been written to
the device

This information in the file description is used when the file is opened unless
the information is overridden by a control language command in the job.

When a spooled output file is opened, an entry for the file is placed on the
output queue and the data is placed in a spooled file in the system. When a
writer is started, the output file is selected from the queue (according to the
priority assigned to the job). Spooled output is normally unavailable for output
until the file is closed.

Data Management Facilities 61

62

Copying Files

System/38 provides functions for copying data from one storage location or
device to another. After a copy operation, the records exist in two places: in
the file that was copied from, and in the file that was copied. to. The copy
functions can be used to copy entire files or portions of files as follows:

• Copy from any data base file to a physical data base file

• Copy from any data base file to a device file

• Copy from a device file to another device file

• Copy from a device file to a physical data base file

The copy functions also allow changes to be made to a file as it is copied.
Records can be added to the receiving file, or records can completely replace
any previously existing records in the receiving file.

Both externally described data files and program described data files can be
copied. When externally described data files are copied, some operations,
which previously could be performed only by application programs, can be
requested because fields in the records have been described to CPF. These
operations include:

• Selecting only a subset of records from the file being copied

• Deleting a portion of records from the file being copied

• Changing the sequence of the records so that the organization of the new
file is different from that of the copied file

• Changing the format of the records as they are copied by deleting or adding
fields to the record formats of the new file

\
)

File Reference Function

As application programs are developed, the programmer needs to know what
data is available in the system and where it is used before he can determine
whether additional files, record formats, and field definitions are needed. This
information is also necessary when changes are made to the data base. CPF
provides commands that can be used to determine how data is stored on the
system and how it is accessed by application programs.

CPF provides facilities to track file usage on the system. These facilities
simplify the work done when applications are being developed. The functions
provide information about the use of both data base and device files, such as:

• Which files are used by a program; how the file is used by the program, for
example input, output (or both), or update; and what record formats in the
file are used by the program

• The contents of the file description, including file attributes, the record
formats and access paths used for data base files, and the output queues
and record formats used for a device file

• The relationships between shared files, record formats, and access paths in
the data base, including which files use a specific record format or a
specific access path and which logical files use the data in a specific
physical file

• The individual fields included in each record format in a file, with detailed
information describing each field in the record formats used by a file and
secondary references to other record formats

The information generated by these facilities can be displayed at a work station
or printed. In addition, most of the information can be placed in a data base
file. For example, the query utility, part of the Interactive Data Base Utilities
program product, could be used to examine specific information in the data
base file.

Data Management Facilities 63

/'

(

64

)
Application Development

OVERVIEW

The process of developing a data processing application for any system
generally involves a sequen'ce of activities such as:

1. Application design

2. Program writing

3. Application testing and debugging

4. Application documentation

Many of the functions provided by CPF are used during application
development. The first part of this chapter discusses the application
development activities and relates them to System/38. The rest of the chapter
discusses CPF concepts related to application development that have not been
presented earlier in this publication.

Design Considerations

The major design consideration is whether to implement a batch application or
an interactive application. In most cases, a complete application is a
combination of batch and interactive programs. For example, if an application
requires documents to be printed (such as picking slips or purchase orders),
that part of the application is best performed by a batch job. However, the
entry of data that updates master files is needed on a timely basis and is best
performed interactively. Generally, any job that takes more than a short time
should be executed as a batch job so that it does not tie up the work station
while the job is executed.

In System/38, batch jobs can be submitted by work station users other than
the system operator. Consequently, these batch jobs can be included in the
application design in such a way that the work station users can submit them
whenever they are needed.

Three primary elements should be considered when an interactive application is
designed:

• The interface needed by the user to invoke and communicate with the
application

• The files needed for the application

• The structure of the application; that is, the programs to be included and
the method used to control flow among the programs

Application Development 65

66

User Interface

Program Invocation: The interface used to invoke (start) an application should
be designed specifically for the application user. Any program can be called
through a command. However, because many work station users are not
familiar with the control language, some other interface might be more
convenient for those users.

CPF provides the following generalized menu (through which programs can be
called), which is designed for work station users who are not familiar with the
control language:

PROGRnM Cnll MENU
Select one of the following:

1. Call program (identify below)
2. Display messages
3. Send message to system operator
~. Sign off work station

Option: __ Program nam~: ______________ _
Parameter s or message: ________________________________ _

To call a program using this menu, the work station user selects option 1,
provides the name of the· program, and enters any parameters that are
required.

Application programs can also be designed so that the work station user does
not need to call them. The application designer can do this by:

• Specifying that the program should be called whenever the appropriate work
station user signs on the system. Through this method, the program is
available to the work station user whenever he signs on.

• Specifying that the program should be invoked through a routing entry in
the subsystem description. When the work station user wants to use the
program, he might request it by pressing a function key or by entering the
appropriate routing data. The display that requests the routing data could be
a standard display supplied by CPF or a user-defined display. The routing
data can be a descriptive word or phrase that describes the desired
function, such as PAYROLL.

• Specifying the program as an autostart job in the appropriate subsystem
description. When the subsystem is started, the job starts and allocates the
appropriate work stations. The program is then ready for use by the work
station user. The use of these work stations is restricted to the functions
performed by the job.

/

)
Functions that are designed for users who are familiar with the control
language, such as system operators or programmers, could be specifically
called through IBM-supplied commands or user-defined commands.
User-defined commands can be defined to provide functions that are not
available through commands provided by CPF or to provide a different
interface to CPF-supplied functions. CPF provides prompting for any
commands defined on the system. More information on command definition is
provided later under Command Definition in this chapter.

Program-User Communication: When an interactive program is executing,

communication is needed between the program and the work station user.
This communication is normally performed through a display device file.

Data Files

Designing the files used by an application is an important part of designing an
application for use on any system. The CPF data management facilities provide
flexibility in the use of both data base and device files.

Data Base Files: Because logical files can be used to process data stored in
the data base, programs can process data using record formats and access
paths that differ from those used to store the data on the system. During
application design, the following decisions must be made about the use of data
base files:

• What files, record formats, and access paths are needed?

• Are new physical files needed, or do the physical files already on the system
contain the necessary data?

• Are new logical files necessary to provide the record formats and / or access
paths needed by the program?

• Are the record formats and fields used by the program already defined in
the system?

i
CPF provides the functions necessary to display the file descriptions, record
formats, and file usage information for files that already exist on the· system,
as described earlier under Data Management Facilities.

Device Files: The device files used by a program can process either externally
described data or program described data, depending on the type of device
accessed by the file. The CPF functions that display file descriptions, record
formats, and file usage information also apply to device files, as described
earlier under Data Management Facilities.

Application Development 67

68

Application Structure

An application can consist of a number of programs. Each program can be
designed to perform a specific function. Whenever the function is needed, the
program is called. When applications are structured in this manner, one
program in the application controls the flow of activity within the application.

When the application is developed, each program should be written in the
high-level language that best provides the functions needed. Any program can

call any other program regardless of the high-level languages in which the
programs are written. For example, control language programs might be
needed to provide the interface through which a work station user requests
application functions. Control language programs also can be used to call other
programs based on conditions that exist during program execution.

The high-level languages provide the facilities needed to perform operations on
the data processed by the application. These programs can request data base
manipulation functions through the data management functions provided by the
CPF. Because control language programs do not perform the processing
normally associated with data base files, these functions are not available
through control language programs.

Applications that are made up of more than one program must provide a
mechanism through which information can be passed from one program to
another. Information can be passed:

• In the parameters of the command that invokes the program

• In messages supported by the CPF message handling facilities (described
later under Message Handling in this chapter)

• In a data area object contained in a library on the system

A data area object contains common data that can be shared by different
programs in a job or by programs in different jobs. It exists independently of
the programs that use it. Values can be placed in the data area to control the
functions performed by programs that access those values. The values can be
changed by the programs or by commands entered by a work station user. A
facility is provided to synchronize the use of values in the data area so that one

program does not change a value while another program is using it.

Programming Considerations

After an application has been designed, the files used in the application must
be described and created and the various programs must be coded and
compiled. Data description specifications are source statements for externally
described data files. Control language commands and other high-level
language source statements must be provided for programs that will be
created.

(
\

(

)
Entering Source Statements

For programs or externally described data files to be created, source files
containing the source statements must be provided. The user can place a

source file in the data base by copying the file from a device file or by entering

the source statements through the source entry utility, which is part of the

Interactive Data Base Utilities program product. A source file can also be

either a spooled or nonspooled device file that is provided when the program
or file is created.

The source entry utility provides prompts, to help the work station user enter

commands, and it provides special display formats to help the user enter

specifications for other programs and data description. The utility also can

perform syntax checking on the source statements that are entered. A

complete description of the source entry utility is contained in the IBM

System/38 Source Entry Utility Reference Manual and User's Guide.

Creating Programs and Files

CPF provides the commands that are needed to create files and programs from

the source statements contained in source files. These commands can be used
in either interactive or batch jobs.

Any externally described data files must be created before the programs that

use them because the record formats from the file descriptions are copied into

the program when it is created. A program is compiled when it is created and

then exists as a program object that can be called to be executed.

Testing and Debugging

Application programs that manipulate data stored in the system are normally

tested with sample data before they are executed using normal production data

files. CPF provides the functions needed to test applications against sample

data in a protected environment and also provides functions that help a

programmer debug his programs.

Programs that run in the protected environment can use data from files in any

library, but they can update only those files contained in test libraries. Thus

data files that are used in normal data processing operations are protected
from unintentional modification by the program being tested.

This environment can also be a useful tool for protecting production data files

while work station users are being trained to use the program. Because the

program executes the same way in either environment the work station user
can be fully trained before he uses the normal operating environment.

Application Development 69

70

If errors occur in the functions performed by a program when it is tested, the
cause of these errors must be detected. The debugging facilities provided by
CPF can be used in the protected environment for debugging any high-level
language program, including control language programs. These functions do
not require any special coding within the program. Specific points in the
program are identified by the labels and statement identifiers used in the
program's source statements. More information on the CPF debugging
functions is provided under Debugging Functions in this chapter.

After a program has been tested and debugged, the source for the program
can be changed to correct any errors found during testing. When the source
has been updated, the program can be created again (recompiled) and retested.

Documentation

Good documentation is a key element in the maintainability of any data
processing system or application program. CPF allows up-to-date
documentation to be maintained on the system itself. In addition to the use of
comments, which is supported by most high-level languages, CPF provides:

• The ability to include a text description of any object (including libraries) in
the object description on the system. The text description can be provided
when the object is created and changed through commands that change the
object. The text description is displayed when the object description is
displayed.

• The ability to include a text description in the data description specifications
for any record format or for individual fields within the record format. These
text descriptions are stored in the file description and are displayed when
the file description is displayed. They also become comments in all the
programs that use externally descrihed data, which provides complete and
consistent program documentation of the data to the field level.

• The ability to use CPF functions to provide a cross-reference of the use of
files and record formats by programs.

Text descriptions and comments can be included in and stored with the
program source statements, but they are not used as input to a compiler.

!

/

CONTROL LANGUAGE PROGRAMS

A control language program is made up of control language commands. The
commands are compiled into an executable program that can be called

whenever the functions provided by the program are needed. The use of

control language programs in an application can provide many advantages. For
example:

Because the commands are compiled and stored in executable form, using
control language programs is faster than entering and executing the

commands individually.

• Certain functions that are not available when commands are entered
individually are available in control language programs.

• Control language programs can be tested and debugged like other
high-level language programs.

• Parameters can be passed to control language programs to adapt the

operations performed by the program to the particular requirements of that

use.

Control language programs can be used for many kinds of applications. For

example, control language programs can be used to:

• Provide an interface to the user of an interactive application through which
the user can request application functions without an understanding of the
commands used in the program. This makes the work station user's job

easier and reduces the chances of errors occurring when commands are

entered.

• Control the operation of a batch application by establishing variables used in
the application (such as date, time, and external indicators) and specifying

the library list used by the application. This ensures that these operations

are performed whenever the application program is executed.

• Provide predefined procedures for the system operator, such as procedures

to start a subsystem, to provide backup copies of files, or to perform any

other procedural operating functions. The use of control language programs

to perform these procedures reduces the number of commands the operator

uses regularly, and it ensures that system operations are performed
consistently.

Application Development 71

72

Most of the control language commands provided by CPF can be used in
control language programs. In addition, some functions designed for use in
control language programs are not available when commands are entered
individually. These functions include:

• Logic control functions that can be used to control which operations are
performed by the program according to conditions that exist when the
program is executed. For example, if a certain condition exists, then do
certain processing, else (otherwise) do some other operation. These logic
operations provide both conditional and unconditional branching within the
control language program.

• Data operations that provide a way for the program to communicate with a
work station user. These operations let the program send formatted data to
the work station and receive data from the work station.

• Functions that allow the program to send messages to, and receive
messages from, the work station user.

• Functions that receive messages sent by other programs. These messages
can provide normal communication between programs or indicate that errors
or other exceptional conditions exist.

• The use of variables and parameters for passing information betweem
commands in the program and between programs.

Through the use of control language programs, applications can be designed
with a separate program for each function and with a control language
program controlling the execution of all the programs within the application.
The application can consist of control language programs and other high-level
language programs. In this type of application, control language programs are
used to:

• Determine which programs in the application are to be executed

• Provide system functions that are not available through other high-level
languages

• Provide interaction with the application user

Thus control language programs provide the flexibility needed to let the
application user select the operations he wants to perform and to execute the
necessary programs.

The following example shows how control could be passed between a control
language program and RPG programs in an application. To use the application,
a work station user would request program A. Program A controls the entire
application. The example shows:

• A control language program calling another control language program

• A control language program calling an RPG prpgram

• An RPG program calling. another RPG program

• An RPG program calling a control language program

PGMA (CL) PGMB PGMC (RPG)

Call PGM B Call PGMC End

Call PGME Call PGMD------+-----i.PGMD (CL)

Return End

PGME (CL)

Return

End

Application Development 73

74

MESSAGE HANDLING

A message is a communication sent from one person or program to another.
CPF provides message handling functions that can be used to communicate
between programs and system users.

The following concepts of message handling are important to application
development:

• Messages can be defined outside the programs that use them in message
files, and variable information can be provided in the message text when a
message is sent. Because messages are defined outside the programs, the
programs do not have to be changed when the messages are modified.

• Messages are sent to and received from message queues, which are
separate objects on the system. A message sent to a queue can remain on
the queue until it is explicitly received by a program or work station user.

• A program can communicate with the work station user who requested the
program without the messages being sent to a specific device by the
program. Thus one program can be used from different work stations
without change.

Because replies can be returned by a user or program that receives a message,
the message handling facilities provide a mechanism for two-way
communication.

Message Descriptions

A message description defines a message to CPF. In addition to information
about the message, the description contains the text of the message. This
message text can include variable data that is provided by the message sender
when the message is sent.

Message descriptions are stored in message files. Each description must have
an identifier that is unique within the file. When a message is sent, the
message file and message identifier specify to the CPF the message
description that is to be used.

CPF supports message types that allow many kinds of messages. Through
. these message types: information, inquiries, requests and replies can be sent

between users and programs. In addition, completion messages and various
types of diagnostic messages are supported to provide information about the
status of work on the system.

)
Message Queues

When a message is sent to a program or a system user, it is placed on a
I message queue associated with that program or user. The program or user

obtains the message by receiving it from the queue. Thus, the message does
not need to be processed immediately wherl it is sent.

CPF provides message queues f.or:

• Each work station on the system

• Each job on the system and each active program within a job

• The system operator

• The system 16g's

Additional message queues can be created to meet any special application
requirements. Messages are actually sent to message queues, where they are

retained, so the receiver of the message does not need to process the
message immediately. Thus a message queue can be used as a mailbox to

hold the messages until the appropriate program or user receives the message.

Using Messages and Message Queues

Messages and message queues can be used both to pass information and to
request processing by programs in an application. For example, an application

used for entering orders into the system could use messages and message

queues as follows:

1. Three work station users enter orders using the same order entry
program. (Because of the design of the system, all three users actually
share a single copy of the executable program.)

O
r--,

.~----.t! DE ~

0: I rlEj o PGM

Application Development 75

76

2. Once an order has been entered, the application must produce a picking
slip needed for filling the order. One program is used for producing
picking slips. Because this program interacts directly with the printer, if it
were called from one order entry program, it could handle orders from
only one user at a time, thus delaying the work station users while the
printer is in use. The following drawing shows this type of operation.
User C has completed an order, so program PS has been called to print
the picking slip. Program PS is now unavailable to the other users.

To prevent this delay, the program that produces picking slips processes
entries by processing messages from a message queue, as shown in the next
drawing. The order entry program sends a message to that queue for each
order and then continues processing.

A

8~i~~)p-.r~~r;,e P;ck;ng Slip for uoor C

o:=I PGM . B b

(

DEBUGGING FUNCTIONS

CPF includes functions that let a programmer interact with a program as it
executes to observe the operations being performed. These debugging
functions can be used when the program is executing in the testing
environment.

The debugging functions narrow the search for errors that are difficult to find
in the program's source statements. Often, an error is apparent only because
the output produced is not what is expected. To find those errors, a
programmer needs to be able to stop the program at a given point and
examine variable information in the program to see if it is correct. He might
want to make changes to those variables before letting the program continue
executing. The programmer does not need to know machine language
instructions, nor does he need to include special instructions in the program to
use the debugging functions. The CPF debugging functions let the
programmer:

• Stop the execution of the program at any named point in the program's
source statements.

• Display the variable information used by the program as it exists when
program execution is stopped. If he wants to, the programmer can also
change the variable information before program execution is resumed.

• Trace the use of variables in the program by recording the steps in the
program that change the variables and what those changes are. This
operation produces a printout or display that traces the execution sequence,
showing which statements in the program are executing and what the value
of a variable is at any point in, the program.

Application Development 77

78

COMMAND DEFINITION

Through the control language commands, the support of control language
programs, and other CPF functions, CPF provides the functions normally
needed for developing application programs. However, advanced uses of the
system might require redefinition of some control language commands or the

creation of additional commands to meet the specific needs of an installation.
CPF includes functions that allow the creation of user-defined commands.

Each command on the system has a command definition object and a command

processing program. The command definition object defines the command,
including:

• The command name

• The command processing program

• The parameters and values that are valid for the command

• Validity checking information that CPF can use to validate the command
when it is entered

• Prompt text to be displayed if a prompt is requested for the command

The command processing program is the program that CPF calls when the
command is entered. Because CPF performs validity checking when the
command is entered, the command processing program does not have to
check the parameters passed to it.

The command definition functions can be used to:

• Create unique commands needed by an installation.

• Redefine commands provided by CPF to meet the requirements of an
installation. This might include changing the defaults for parameter values or
simplifying the commands so that some parameters would not need to be
entered. Constant values can be defined for those parameters.

• Create specialized commands to meet the needs of individual users.

More detailed information on command definition is contained in the IBM
System/38 Control Program Facility Programmer's Guide and IBM System/38
Control Program Facility Reference Manual.

)
System Management

The System/38 CPF provides the facilities that are needed to regulate the use

and operation of a data processing installation. These facilities are designed to

augment the facilities described in previous chapters to provide system-wide
management and control. System management includes:

• Controlling the use of system resources

• Backing up the system and objects in the system

• Installing new support

• Operating the system

• Servicing the system

SECURITY

In an interactive system, the implementation of controls that ensure data

integrity and security becomes especially important because the work stations

provide many points of direct access to the system outside the physical control

of the data processing department. Without these controls, the potential for

data being misused or destroyed increases, especially when many work station

users are using the system concurrently.

For many data processing installations, maintaining the security and integrity of

data processing information is a primary concern. The most important concern

is integrity: the protection of programs and data from inadvertent destruction

or alteration. Security is the prevention of access to or use of data or

programs by unauthorized persons. Directly related to integrity and security is

the need for user identification: the ability to recognize a system user so that
only the facilities and data he is authorized to use are made available to him.

The security facilities of CPF provide mechanisms for user identification and for

authorizing user access to specific objects. These facilities allow the system to
be tailored to provide the necessary level of security and integrity. In addition,

the user identification supported by these facilities can be used to design an

application-oriented interface for work station users. The system can be

tailored so that each work station user has access to only the system

functions, applications, and data that he needs to perform his work.

System Management 79

80

User Identification

All System/38 security functions rely on a user profile to identify each system
user. A user profile is an object that represents a particular user or group of
users to CPF. The user profile identifies which objects and functions the user
is authorized to use. When a work station user signs on to the system, he
enters a password to identify himself. CPF uses that password to determine
which user profile represents that, user. If more than one user signs on the
system using the same password, they are represented to CPF by the same
user profile and have access to the same objects and functions. A password is
usually known only by the person or persons who use it. To help prevent
unauthorized use, passwords can be changed as desired.

When a work station user signs on, CPF uses the password he enters to find
the user's profile. Each user profile is named. The user is known in the system
by the name of his user profile. Thus references to a user in the system do
not need to be changed when a password is changed. The following drawing
shows how the password and the user name are used by CPF.

Work station user (OEUSER1) signs on using his password. The password
(BLUE) is not displayed when it is entered.

1. The CPF uses the password (BLUE) to determine which user profile to use.

CPF

Sign On: BLUE

User Profi Ie

User name: DEUSER1
---.. Password: BLUE

Authorized to: DEENTRY

(

)
2. The work station user requests the program OEENTRY. The CPF

determines whether the user profile (DEUSER1) is authorized to use the
object.

CPF

Call: OEENTRY

User Profile

User name:
Password:
Authorized to:

OEUSER1
BLUE

OEENTRY

3. If the user is authorized to the object, the request is honored.

i)CPF

L OEENTRY

I
When CPF is installed, it includes a set of predefined user profiles. Together,
these profiles allow the use of all the system functions. The predefined user
profiles are:

• The system security officer-lets one system user control user profiles and
other security functions.

• The programmer-lets a system user perform the functions necessary to
develop system or application programs.

• The system operator-lets a system user perform the functions necessary to
operate the system.

• The work station user-lets a system user operate work stations.

• The program support representative-lets service personnel maintain CPF.

• The customer engineer-lets service personnel use the concurrent service
monitor to maintain the machine.

System Management 81

82

Security Functions

Because all the functions and data available on the system exist as objects,
their use is controlled by the specific authorization of system users. As shown
in the following drawing, CPF provides two leve.ls of security functions:" system
security and user security.

1 Security Officer " / /J---------I.\",
Each user profile is given
the authority that pertains to its
use of the system.

/ / \ " / \ "
/

/ II The secur;ty ollker can create, mod;'y, and \\\ "
/ delete other user profiles.

(/ / \ '" ~
I
I
I
I

System Security

User Security

User
Profile A

User
Profile B

User
Profile C

I
I
I
I
I
I

Objects Objects Objects I
I owned owned owned I

by user by user by user

~ prome A prome B prome C)

f'----------/--J/
The security officer can also control ownership,
use, and existence of other user's objects.

Each user can also grant
other users the authority to use
its objects.

(

)
System Security Functions

The system security functions require the use of the system security officer

user profile. The. system security officer can:

• Enroll users on the system by assigning them to a user profile that is

provided by CPF or that he has created

• Grant or revoke the authority for a user to use specific system functions,
subsystems, application programs and any other objects on the system

• Revoke a user's authority to sign on the system by changing the password

or deleting the user profile from the system

Thus the system security officer has the ultimate control over the use of the

system.

User Security Functions

Within the limits established by the user profile, each system user can control

the use of his objects. User security functions are provided through object
authorization.

Object Authorization

Object authorization is the process of controlling which system users are

allowed (authorized) to use an object and how each user can use the object.
Two basic concepts are involved in object authorization: object ownership and

object authority.

Object Ownership

Whenever a system user creates an object, he becomes the owner of that
object. Unless ownership is transferred to a different user, he remains the

owner of the object until the object is deleted from the system. The owner has

complete control over his object. He can authorize other system users to use

the object and he can transfer ownership of the object to some other system

user. Only the system's security officer has the same control over an object as

the object's owner.

System Management 83

84

Object Authority

Each system user must be authorized to use each object he needs. When an
object is created, three levels of public authority to use the object can be
established:

• All authority, which allows any operation involving the object by all system
users.

• No authority, which allows no operations by anyone except the object
owner.

• Normal authority, which allows the operations normally associated with the
object to be performed by all system users. For example, the normal
operation for a program would be its execution.

After the object is created, any authority can be granted or revoked for specific
users or for the public.

How a user can use an object depends on what rights of object use are
included in his authority. The object's owner and the system's security officer
always have all rights to the use of an object. Other system users can be
granted some or all rights of object use either through public authority or
explicitly granted authority. The authority that can be granted is in two
categories:

• Object rights control what the user can do to the entire object. For example,
object rights can let a user delete, move, or rename an object.

• Data rights control how the user can use data in the object. For example,
the data rights might let a user read and update data in a file. Data rights
provide additional control over the use of data entries within objects and are
granted in addition to the object rights a user has.

Using Security

An installation's security needs should be considered whenever application
programs are designed. Application programs can be designed so that the
security can be increased, as required by future needs, without unnecessary
changes to the application programs. The following are typical security
considerations:

• Each system user should have access only to the functions and data he
needs to perform his job.

• Work station users should be able to access and update data in the data
base only through thoroughly tested programs.

(

)
A user can be authorized to use the objects he needs through the program he
uses. To use this function, programs are created that execute with the user
profile of the program's owner in addition to that of the user who calls the
program. As long as the user is using the program, he has access to the
objects and functions used by the program. This kind of operation offers such
advantages as the following:

• System users are authorized to use the objects without requiring numerous
explicit authorizations to be made.

• Additional work station users can easily be authorized to use the application.

• Changes and additions can be made to the application without requiring
additional explicit authorizations.

• Security can be established through the same program that provides the
interface to the user.

The use of this function ensures that all users have access to the system
functions they need without public authority being granted for many objects.

As with any other security functions, the program should be designed to
prevent users from circumventing the controls that are established.

SAVE/RESTORE

CPF includes the functions needed to save objects offline and later restore
them to the system. These save/restore facilties can be used to establish the
procedures to be used to back up the system. These procedures can be
designed as an integral part of system operations. The save/restore facilities
can also be used to save seldom-used objects and free their auxiliary storage
for other objects, and to store sensitive objects offline in a physically secure
location to prevent access by unauthorized persons. CPF provides functions to:

Save objects from the system by writing a copy of the objects to offline
storage and, optionally, free the auxiliary storage that is occupied by
the objects so the space can be used for other objects

• Restore saved objects to the system

These functions can be used to create backup copies of entire libraries or of
individual objects on the system. The use of save/restore functions is
important in maintaining a system that can recover from failures quickly and
easily.

System Management 85

86

Save Functions

The save functions write a copy of an object onto diskettes. The object's
description is also saved. The object is not removed from the system when it
is saved; it still exists in the system and is available for normal use. In a single
operation, a copy of a single library, of a group of libraries, of a single object,
or of a group of objects in one library can be saved.

CPF maintains save I restore history information about each object saved. The
information tells CPF when and where each object was saved and when the

object was last restored. The information always applies to the most recent
savel restore operations for each object. The information is used to ensure that
objects are not inadvertently restored from an outdated copy of the object.
This information can be displayed through the use of control language
commands.

If you want to make the storage occupied by the data portion of an object
available for other system use, you can also free the object's storage when you
save the object. After the storage has been freed, the object is offline. When
an object is offline, its description and offline location are still maintained in the
system. However, space from the contents of the object is freed. Thus some
operations, such as displaying the object description, can still be performed.
Freeing the object's storage is not the same as deleting an object. When an
object is deleted, all information about it is removed from the system; the

object must be created or restored before it can be used again.

Restore Functions

The restore functions of CPF copy saved copies of objects back into the
system. These functions are used to restore any saved object except those in
the system library. These objects are copied back into the system by the CPF
installation and specialization facilities de~cribed in this chapter.

Using Save/Restore

System operating procedures should include a plan for backing up the system
to recover from system or application failures. The plan should identify which
objects must be saved and how often the save operations must be done.

All the objects in a system do not all need to be saved at the same time.
Some objects are used often but are seldom changed, and so they might be
saved only after a change has occurred. Other objects might contain crucial
information that changes daily. These objects might be saved daily to provide
an up-to-date copy of the object for backup purposes.

The ability to recover from errors and application failures should be part of the

design of an application. When an application is designed, its design should
include the approach to be used to maintain a backup copy of the files and
programs used by the application.

)
INSTALLATION AND SPECIALIZATION FACILITIES

CPF includes the facilities needed to perform:

• Initial installation of the IBM-provided objects that make up CPF

• Installation of IBM-provided objects that are distributed as updates or
enhancements to a previously installed CPF

• Installation of CPF libraries that were saved by the savel restore facilities

After CPF is installed, System/38 is operational and can be used to satisfy
many data processing requirements. CPF can be tailored (specialized) to meet
specific data processing requirements. Specialization of CPF, which is
performed with control language commands, can be performed at any time

after CPF is installed. Specialization might include:

• Defining the lines, control units, and work stations on the system to CPF

• Creating any unique print images and edit codes needed by the application
programs

• Creating user-defined libraries

• Creating any additional subsystem descriptions, job descriptions, job queues,

and classes that are needed to manage the work done on the system

• Creating any additional message queues needed 'by applications run on the
system

• Creating additional output queues to be used by the spooling functions of
CPF

• Creating any additional user profiles and authorizing the various system
users to use the objects they need

Control language commands are also used to install other program products.

SYSTEM OPERATION

The operation of System/38 is controlled through control language commands
and system messages. The system operator uses commands to control and
terminate the system, subsystems, and other functions on the system. He can
also use the message handling facilities to monitor the operation of the
system. Although system operation is normally controlled through the system
console, once the system is started, the operator can sign on at any work
station and perform his normal system operation functions. The system
console can also be used as a normal work station. In addition, System/38
and CPF are designed for semiattended operation. Once the system is started
and the devices are ready for operation, the system can operate with minimal
operator attention.

System Management 87

88

System Operation Functions

When CPF is installed, it includes a user profile for the system operator. This
user profile authorizes the system operator to use the CPF functions and
objects that are normally needed to operate the system. The operations
associated with system operation include:

• Starting the system

• Starting and controlling the operation of subsystems

• Controlling input/output devices when intervention is required

• Controlling spooling functions

• Performing save / restore operations

• Handling diagnostic messages that CPF provides indicating errors or
exceptional conditions that have occurred

Message Handling

When CPF is installed, it includes a message queue for the system operator.
Messages from CPF intended for the system operator are sent to this message
queue. Work station users and application programs can also send messages
to this message queue. The system operator can receive messages from this
queue regardless of the work station at which· he signs on.

The system operator and other work station users can communicate with each
other by using the message handling facilities. Two types of messages are
supported by CPF:

• Predefined messages, which are created before they are used. These
messages are placed in a message file when they are created and are
retrieved from that file when they are used.

• Impromptu messages, which are created when they are sent and are not
permanently stored in the system.

A message can be sent to a specific work station user (actually, to the queue
associated with his work station) or to all the work stations on the system. For
example, if the system operator needs to inform all the work station users that
he is terminating the system, he can send one message to all the work stations
in one operation.

(

SERVICE

CPF lets service personnel perform most service functions concurrently with
normal data processing operations. The service facilities of CPF provide
support for handling CPF problems, work station problems, and machine
problems. The following support is provided to handle CPF problems:

• Analyzing and diagnosing the problem. Commands are provided that
produce diagnostic information. Dumps of specific objects, dumps of
internal job information, and traces of processing flow can be obtained
through these commands. A dump is automatically generated if a job
terminates because of an unexpected exceptional condition.

• Reporting problems to IBM. A command is provided to copy previously
produced diagnostic information onto a diskette so that it can be submitted
to IBM as documentation of a problem.

• Installing program patches and changes. Commands are provided so that
temporary repairs (patches) can be applied to a program. Commands are
also provided to apply IBM-supplied changes.

CPF provides commands to perform the following functions to service internal
machine problems:

• Copy the contents of the machine error log to a spooled printer file

• Produce a trace of the internal machine activities

• Start the machine problem determination procedures

CPF also provides support through which work station device operation can be
checked and work station printer operation can be verified.

System Management 89

90

)

access path: The means by which the Control Program

Facility provides a logical organization to the data in a
data base file so that the data can be processed by a
program. See also arrival sequence access path and
keyed sequence access path.

activity level: An attribute of a storage pool that
specifies the maximum number of jobs that can execute
concurrently in the storage pool.

arrival sequence access path: An access path that is
based on the order in which records are stored in a
physical file.

authority: The right to access objects, resources, or
functions.

autostart job: A job that is automatically initiated when
a subsystem is started. Autostart jobs are specified for
a subsystem by autostart job entries in the subsystem
description.

batch job: A group of processing actions submitted as
a predefined series of actions to be performed without a
dialog between the user and the system.

class: An object that specifies the execution parameters
for a routing step. The class object is specified in the
routing entry in a subsystem description.

command: A statement used to request a function of
the system. A command consists of a command name,
which identifies the requested function, and parameters.

command definition: An object that defines a
command (including the command name, parameters,
and validity checking information) and identifies the

program that performs the function requested by the
command.

control language: The set of all commands with which
a user requests functions of the Control Program
Facility.

control language program: An executable object that
is created from source consisting entirely of control
language commands.

Glossary

controlling subsystem: The interactive subsystem that
is started automatically when the system is started and
through which the system operator controls the system.

data base: The collection of all the files stored in the
system. Files in the data base are called data base
files. See also physical file and logical file.

data description specifications: A description of data
base or device files entered using a fixed-form syntax.
The description is used to create the files.

data rights: The authority that controls how a system
user can use the data contained in an object.

device description: An object that contains information
describing a particular device that is attached to the
system.

device file: A file that is processed on an external input
or output device attached to the system, such as a work

station, a card read and punch unit, a printer, or the
diskette magazine drive.

externally described data: Data contained in a file for

which the fields in the records are described to the
Control Program Facility, through the use of the data
description specifications, when the file is created. The
field descriptions can be used by the program when the
file is processed.

file description: The information contained in the file

that describes the file and its contents. The data in the
file can be described to the record level (see program

described data) or to the field level (see externally
described data).

file overrides: Parameters that are specified when a file
is used to temporarily change parameters specified
when the file was created.

general-purpose library: The library provided by the
Control Program Facility to contain user-oriented,
IBM-provided objects and user-created objects that are
not explicitly placed in a different library when they are
created.

Glossary 91

in line data file: A data file that is included as part of a
job when the job is read from an input device by a
reader program.

integrity: The protection of data and programs from
inadvertent destruction or alteration.

interactive job: A job in which the processing actions
are performed in response to input provided by a work
station user. During the job, a dialog exists between the
user and the system.

job: A single identifiable sequence of processing actions
that represents a single use of the system. A job is the
basic unit by which work is identified on the system.

job description: An object in which the attributes of a
job can be predefined and stored.

job queue: A queue on which batch jobs are placed
when they are submitted to the system and from which
they are selected for execution by the Control Program
Facility.

keyed sequence access path: An access path that is
based on the contents of key fields contained in the
records.

key field: A field, contained in every record in the file,
whose contents are used to sequence the records when
the file is used.

library: An object that serves as a directory to other
objects. A library is used to group related objects and to
find objects by name when they are used.

library list: An ordered list of library names indicating
which libraries are to be searched, and the order in
which they are searched, to find an object.

logical file: A data base file through which data that is
stored in one or more physical files can be accessed by
means of record formats and / or access paths that are
different from the physical representation of the data in
the data base.

members: An identifiable group of records that is a
subset of the data base file to which it belongs. Each
member conforms to the characteristics of the file and
has its own access path.

message: A communication sent from one person or
program to another.

92

message description: A definition of a message that
provides descriptive information about the message and
contains the text of the message.

message queue: A queue (associated with a person or
program) on which messages are placed when they are
sent to the person or program. The person or program
obtains the message' by receiving it from the message
queue.

object: A named unit that consists of a set of attributes
(that describe the object) and data. The term object is
used to refer to anything that exists in and occupies
space in storage on which operations can be performed.
Some examples of objects are programs, files, and
libraries.

object rights: The authority that controls what a
system user can do to an entire object. For example,
object rights can let a user delete, move, or rename an
object.

password: A unique string of characters that a system
user enters to identify himself to the system.

physical file: A data base file that contains data
records. All the records have the same format. That is,
a physical file contains fixed-length records, all of which
contain· the same fields.

program described data: Data contained in a file for
which the fields in the records are not described through
the Control Program Facility. The fields must be
described in the program that processes the file.

qualified name: The combination of an object name
and a library name used to identify an object.

reader: A Control Program Facility program that reads
jobs from an input device and places them on a job
queue.

routing data: A character string that the Control
Program Facility compares with character strings in the
routing entries to select the routing entry to be initiated
for a routing step. Routing data can be provided by a
work station user, specified in a command, or provided
through the work entry for the job.

routing entry: An entry in a subsystem description that
specifies the program to be invoked to control jobs that
execute in the subsystem.

(

routing step: The processing performed as a result of
invoking a program specified in a routing entry.

security: The prevention of access to or use of data or
programs by unauthorized persons.

source file: A file created to contain source statements
for such items as high-level language programs and
data description specifications.

spooled file: A device file that is not intended for direct
access to a device but that provide access to data
processed by the readers and writers.

storage pool: A quantity of main storage available for
use by jobs executing in the storage pool. The storage
pool does not consist of a given block of storage; rather
it specifies an amount of storage that can be used.

subsystem: A predefined operating environment
through which the Control Program Facility coordinates
work flow and resource usage.

subsystem attributes: Specifications in a subsystem
description that specify the amount of main storage
available to the subsystem and the number of jobs that
can execute concurrently in the subsystem.

subsystem description: An object that contains the
specifications that define a subsystem and that the
Control Program Facility uses to control the subsystem.

system library: The library provided by the Control
Program Facility to contain system-oriented objects
provided as part of the Control Program Facility.

temporary library: A library that is automatically
created for each job to contain objects created by that
job that are not specifically placed in another library.
The objects in the temporary library are deleted when
the job ends.

user identification: The ability to recognize a system
user so that only the facilities and data he is authorized
to use are made available to him.

user profile: An object that represents a particular user
or group of users to the Control Program Facility. The
user profile identifies which objects and functions the
user is authorized to use.

work entry: An entry in a subsystem description that
specifies a source from which jobs can be accepted to
be executed in the subsystem.

writer: A Control Program Facility program that writes
spooled output files from an output queue to an external
device, such as a printer.

Glossary 93

(

94

)

access paths
arrival sequence 42
general description 42
keyed sequence 43
sharing 46

access to system, controlling
activity level 19
adding routing entries 29
adding work entries 29
adopt user profile 85
alfocating objects 30
alfocation of storage, objects
application design 65
application development

description of 65
overview 4

application structure 68
application, structuring 72
area, data 68

79

10

arrival sequence access path 42
ascending sequence 43
asynchronous job execution 32
attributes

display field 52
file 36
job 23
objects 9

authority, object 84
authorization, objects 83
authorizing system users 83
autostart job entries 21

backing up the system 85
batch applications, design 65
batch job

definition 15
initiating 31

batch subsystem 28

calf menu, program 66
canceling jobs 30
card device support 57
changing passwords 83
changing job attributes 30
changing routing entries 29
changing subsystem descriptions 29

Index

changing work entries 29
characteristics, device 49
checking, record format level 39
class 25
class operations 29
clearing a library 14
command

description of 5
definition 78
entry display 6
name, description of 5
parameters 6
processing program 78
prompting 6
syntax 5

communication, program-user 67
concepts

data base 42
data management 35
work management 15

concurrent service 89
conditioning indicator 52
connecting a file to a program 40
consecutive record processing 43
control language

general description 5
logic functions 72
programs 71

control program facility, definition of
controlfing resource usage 15
controlfing subsystem 28
controlling system operation 2
controlfing work flow 15
copy operation 62
copying files 62
CPF

definition of
interfaces 2
overview 2

CPF-provided libraries 11
CPF-provided subsystems 27
CPF-provided user profiles 81
creating

libraries 14
edit codes 87
print images 87
programs and files 69
subsystem descriptions 29

customer engineer, user profile 81

Index 95

data area 68
data association specifications 36
data base

definition of 41
file design 67

data base data management 41
data base file

definition of 35
using 48

data, description of 36
data description specifications

definition of 3
form 59
source statements 59

data files
designing 67
in line 61

data integrity 79
data management

card device 57
concepts 35
data base 41
device support 49
diskette 57
facilities 35
overview 3
printer 56

data operations
general description 57
externally described data files 58
program described data files 57

data path 40
data portion, objects 9
data rights 84
data, routing 22
deallocating objects 30
debugging and testing 69
debugging functions 77
defaults, parameter 7
defining commands 78
defining devices . 87
definitional objects, subsystem 26
deleting

libraries 14
subsystem descriptions 29

dependent programs, file 41
descending sequence 43
describing data 36
description

device 49
file 36
job 23
logical file 48
message 74
physical file 44
text 70

design considerations, application 65
designing data files 67
developing applications 65

96

device
characteristics 49
configuration 87
description 49
file design 67
files 49
files, definition of 35

device support
card 57
data management 49
diskette magazine drive 57
display 50
nondisplay 56

diskette magazine drive support
display

command entry 6
device support 50
fields 52
file descriptions
file record formats
files 50

51

library contents 14
prompt 7

52

subsystem descriptions 29
displaying

jobs 30
object descriptions 13
subsystem status 29

documentation 70

edit codes, creating 87
enrolling users 83
entering commands 5
entering source statements 69
entries

routing 22
work 19
work station 19

entry, job queue 20
environment, operating 16
exclusive file allocation 40
execution control operations 30

57

execution environment, machine 25
explicit file allocation 40
external device support 49
externally described data 36, 37
externally described data file

creating 59
operations 58

(

)

facilities
data management 35
installation and specialization 87
object management 9
service 89
work management 15

field level description 36
fields, display 52
file attributes

file

general description 36
special 39

connecting to program 40
definition of 35
members 44
opening 40
overrides 40
processing 40
processing, spooled 60
source 39

file dependent programs 41
file description

display file 51
general description 36
logical file 48
physical file 44

file independent programs 40
file reference function 63
file usage, tracking 63
files

card 57
copying 62
creating 59, 69
data base 41
designing 67
diskette 57
display 50
general description 35
message 74
physical 44
printer 56
spooled 39

finding objects in libraries 11
formatting, screen data 50
free storage 86
functions

debugging 77
restore 86
save 86
save/restore 85
security 82
system operation 88

general object operations 13
general purpose library 11
generic keys 43
granting authority 83
grouping objects 10

handling messages 74
history information, savel restore 86
holding a job 30

identification, user 79
identifier, record format level 39
identifying objects 10
impromptu messages 88
independent programs, file 40
information, passing 68
initiating jobs 31
inline data files 61
input spooling 61
installation and specialization facilities 87
integrity, data 79
interactive

application, design 65
command prompting 6
debugging 77
job, definition of 15
jobs, initiating 31
subystem 28

interface, user 66
interfaces to CPF 2
invoking an application 66

job/ subsystem relationships 26
job

definition of 15
general description 23
holding 30
transferring 30

job attributes, changing 30
job description

general description 23
operations 29

job entries, autostart 21
job queue, definition of 15
job queue entry 20
job priority, batch 31
job stream, example 33
jobs

canceling 30
displaying 30
general description 23
holding 30
initiating 31
managing 29
releasing 30
rerouting 30
submitting 30

Index 97

key field, definition of 43
key fields 43
keyed sequence access path 43
keyed sequence files, processing 43
keyword parameters 6

level checking, record format 39
libraries

backing up 86
CPF-provided 11
general description 10
test 69

library, definition of 10
library list

definition of 11
use 12

library operations 14
library search 11
library types 11
list, library 11
locating objects 11
logic functions, control language 72
logical file description 48
logical files 45

machine execution priority 25
main storage, pools 19
management facilities

data 35
object 9
work 15

managing jobs 29
managing libraries 14
managing subsystems 29
managing the system 79
members 44
menu, program call 66
message descriptions 74
message files 74
message handling

general description 74
system operation 88

message queues 75
message text 54
messages, using 75
monitor, subsystem 26
monitoring system operation 88
moving objects 10, 13
multifunction card unit support 57
multiple-field keys 43
multiple record formats 47

named inline data files 61
names, object 10
nondisplay device support 56
normal object authority 84

98

object
allocating 30
data portion 9
deallocating 30
definition of 2, 9
finding 11
moving 10, 13
renaming 13
restoring 86
save/restore operations
saving 85
security operations 13

object attributes 9
object authority 84
object authorization 83
object description, displaying
object identification 10
object management facilities
object management, overview
object name, qualified 10
object names 10
object operations

general 13
job 29

object organization
object ownership
object rights 84
object types 9
object use, rights of
objects in a library
opening a file 40

10
83

84
10

operating environment 16

13

13

9
2

operational characteristics, object 10
operations

data 57
library 14
object 13
subsystems 29

system 87
operator, system 81
organizing objects 10
output files, spooled 61
output spooling 61
overrides, file 40
overriding job attributes 24
ownership, object 83

parameter defaults 7
parameters, definition of 6
passing parameters 68
password

changing 83
general description 80

path, access 42
physical file 44
physical file record format 44
pools, storage 19
predefined job 15
predefined messages 88

(

)
predefined operating environment 16
predefined user profiles 81
print images, creating 87
printer file support 56
priority

job queue 31
machine execution 25

processing a file 40
processing keyed sequence files 43
processing spooled files 60
processor time 25
profile, user 80
program call menu 66
program

control language 71
command processing 78
connecting to a file 40
creating 69
file dependent 41
file independent 40

program invocation 66
program described data 36, 38
program described data files, operations 57
program support representative, user profile
program-user communication 67
programmer user profile 81
programming considerations 69
prompts, commands 6
protected environment, testing 69
public authority, levels 84

qualified name 10
queues, message 75

random record processing 43
reader execution 32
reader, job submission 32
record, definition of 35
record format level checking 39
record format specifications 36
record formats

display file 52
logical files 47
multiple 47
physical file 44

record organization, retrieval 42
record retrieval

general description 42
random 43

record sequence 42
recovery 86
reference function, file 63
relationships, subsystem/job
relative record number retrieval
releasing jobs 30
removing routing entries 29

26
42

81

removing work entries 29
renaming objects 13
rerouting jobs 30
resource usage, controlling 15
response indicator 52
restore functions 86
restore objects 86
retrieval organization, records 42
revoking authority 83
rights of object use 84
routing data 22
routing entries

general description 22
modifying 29

routing step 22, 25
routing step operations 30

sample data, testing 69
save functions 86
save/ restore 85
save/ restore history information
save/ restore operations

86

library 14
object 13

save/ restore, using 86
saving objects 85
screen formatting 50
searching libraries 11
security 79
security considerations 84
security functions 82
security officer, system 81
security operations, object 13
security, using 84
semi-attended operation 87
sequence, arrival 42
sequence of records 42
sequential record retrieval 42, 43
service 89
sign-on, password 80
source file 39
source statements

data description specifications
entering 69

sources, reader 32
special file attributes 39
specialization facilities 87
specifications

data association 36
record format 36

specifications form, data description
spooled file processing 60
spooled files 39
spooled output files 61
spooling functions 28
spooling input 32
spooling subsystem 28
starting a subsystem 29
step, routing 22, 25

59
I

59

Index 99

storage allocation, objects 10
storage pool, definition 19
structuring applications 68, 72
subfiles 50
submitting jobs 30, 32
subsystem attributes 19
subsystem, definition of 16
subsystem description

contents 18
definition of 16
operations 29
use of 16

subsystem monitor 26
subsystem operations 29
subsystem/job relationships 26
subsystems

batch 28
controlling 28
CPF-provided 27
general description 17
spooling 28
user-defined 29

support, display devices 50
system back-up 85
system level security 83
system library 11
system management

facilities 79
overview 4

system operation 87
system operation. controlling 2
system operation functions 88
system operator user profile 81
system security functions 83
system security officer 81
system tailoring 87

tailoring the system 87
temporary library 11
terminating a subsystem 29
test library 69
testing and debugging 69
testing environment 69
testing, library use 12
text descriptions 70
text of messages 74
time slice 25
tracking file usage 63
traCing variables 77
training work station users 69
transferring object ownership 83
types of libraries 11
types of objects 9

100

unnamed inline data files 61
use of library list 12
user-defined commands 78
user-defined subsystems 29
user-level security 83
user-program communication 67
user access to objects, controlling 79
user authorization 83
user identification 80
user interface 52
user interface, designing 66
user profile

adopting 85
definition 80

user security fUnctions 83
user. work station 81
using data base files 48
using display device support 52
using externally described data 37
using messages and message queues 75
using save/restore 86
using security 84

variable messages
variables, debugging

where used, files
work entries

74
77

63

autostart job entries 21
general description 19
job queue entry 20
modifying 29
work station entries 19

work management concepts
work management facilities
work management functions
work manangement, overview
work station entries 19
work station support 50
work station user

job 15
user profile 81

15
15
27

3

READER'S COMMENT FORM

Please use this form only to identify publication errors or request changes to publications. Technical questions about IBM systems, changes in IBM programming
support, requests for additional publications, etc, should be directed to your IBM representative or to the IBM branch office nearest your location.

Error in publication <typographical, illustration, and so on). No reply.

Page Number Error

Note: All comments and suggestions become the property of IBM.

• No postage necessary if mailed in the U.S.A.

Inaccurate or misleading information in this publication. Please tell us
about it by using this postage-paid form. We will correct or clarify the
publication, or tell you why a change is not being made, provided you
include your name and address.

Page Number Comment

Name __________________ _

Address

'--'"

nno 0 OJ
::J::J ~
C') ...
CIl .., en
"0 0 '<
.... -tn
tn ""0'"

.., CIl

o 3 co, w
3 OJ

" Cl

2: ...
'<

C)
()
t\)

,~
.....
t\)
co
b

GC21·7729·Q

Fold Fold

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Fold

--- ------ ----- ---- ----- - - -------------
<!>

POSTAGE Will BE PAID BY •.•

IBM Corporation
General Systems Division
Development Laboratory
Publications, Dept. 245
Rochester, Minnesota 55901

International Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W.
P.O. Box 2150
Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/International
44 South Broadway
White Plains, New York 10601
U.S.A.
(International)

FIRST CLASS
PERMIT NO. 40
ARMONK, N. Y.

Fold

I

I I

--..- ------ ----- ----- -.. ---- - - ----==-=-:-=<!>

International Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W.
P.O. Box 2150
Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/International
44 South Broadway
White Plains, New York 10601
U.S.A.
(I nternational)

G C21-7729-0

