LY21-0571-6

File No. S38-36

THIS DOCUMENT CONTAINS RESTRICTED
MATERIALS OF IBM CORPORATION.

—_—_—" .. . P

I SN NS s LY21-0571-6
- @ o o o S

[F—— S — — .

- oEEES e File No. S38-36
- e = o W =

[— —_——

[N 4 [] v L]

THIS DOCUMENT CONTAINS RESTRICTED
MATERIALS OF IBM CORPORATION.

IBM System/38

IBM System/38
Control Program Facility
Logic Overviews and
Component Description
Program Number 5714-SS1

Seventh Edition (September 1985)

This major revision makes obsolete, LY21-0571-5. New components have been added:
System/38 Finance Support, Network Facilities, Office Systems, and SNA Distribution
Services. Other changes and additions are indicated by a vertical line to the left of the
change or revision.

This edition applies to release 7, modification level O, of the IBM System/38 Control
Program Facility (Program Number 5714-5S1) and to all subsequent releases and
modifications until otherwise indicated in new editions or Technical Newsletters. Changes
are periodically made to the information herein; any such changes will be reported in
subsequent revisions or Technical Newsletters.

Use this publication only for the purposes stated in About This Manual.

The numbers at the bottom right of illustrations are publishing control numbers and are not
part of the technical content of this manual.

Publications are not stocked at the address below. Requests for IBM publications should be
made to your IBM representative or to the IBM branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. A form for
Reader's Comments is provided at the back of this publication. If the form has been
removed, comments may be addressed to IBM Corporation, Information Development,
Department 245, Rochester, Minnesota, 55901. IBM may use and distribute any of the
information you supply in any way it believes appropriate without incurring any obligation
whatever. You may, of course, continue to use the information you supply.

This document contains restricted materials of International Business Machines Corporation.

© Copyright International Business Machines Corporation 1980, 1981, 1982, 1983, 1984,
1985

All Rights Reserved.

ABOUT THIS MANUAL

What You Should Know
If You Need More Information
Summary of Changes

INTRODUCTION

ACCESS PATH MANAGER

Introduction

General Overview .
Access Path Manager Modules .
Access Path Manager Operation

3270/5250 INFORMATION DISPLAY SYSTEM

VERIFICATION

Introduction
General Overview .
3270/5250 Informatron D|splay System
Verification Modules .
Router Modules .
Printer Verification Modules .
Display Verification Modules
ERAP Modules
Link Test Modules .
Configuration Modules
5250 Overview and Relationship to Other
Components

BINARY SYNCHRONOUS COMMUNICATIONS . . .

Introduction
General Overview
Binary Synchronous Communrcatrons Modules

Binary Synchronous Communications Overview .

COMMAND ANALYZER

Introduction .
Validity Checking .
Parsing a Command .
Example of Work Area .
Command Processing .
General Overview .
Command Analyzer Modules .
Command Analyzer Overview
Command Analyzer as Used by Spool|ng
CL Compiler, Prompter, Command Definition,
and the Source Entry Utility .
Command Analyzer as Used by a CL Program
Command Analyzer as Used by a CL Program
with Prompting

Command Analyzer as Used by the Subsystem

Controller without Prompting

Command Analyzer as Used by a
High-Level Language Program

Command Analyzer as Used by the Subsystem
Controller with Prompting

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

AR-1
AR-1
AR-1

AR-1
AR-1
AR-2
AR-2
AR-3
AR-3
AR-3

AR-4

BS-1
BS-1
BS-1
BS-1
BS-3

CA-1
CA-1
CA-1
CA-1
CA-1
CA-4
CA-4
CA-5
CA-5

CA-7

CA-8

CA-9

CA-10

CA-11

CA-12

Contents

COMMAND DEFINITION CD-1
Introduction . CD-1
Command Def|n|t|on Source Statements . CD-1
Command Definition Objects . CD-2
Building a Command Definition Object CD-4
General Overview CD-6
Command Definition Modules . CD-6
Create Command Command Overview CD-6
CONTROL LANGUAGE COMPILER CL1
Introduction CL-1
General Overview . CL-3
CL Compiler Modules . CL-3
Compile-Time Modules . CL-3
Execution-Time Modules CL-5
Control Language Command with
Independent Command Processing Program CL-6
CL Program Call and Transfer Control Commands CL-7
Call Command .. CL-7
Transfer Control COmmand (Genenc
Description) . CL-7
Delete Program Command . . CL-8
Retrieve Job Attribute Command . CL-8
Convert Date Command . . CL-9
List Command Usage Command CL-9
Retrieve CL Source Command CL-10
Display Program Command CL-11
Change Program Command CL-12
CONSOLE FUNCTION MANAGER CO-1
Introduction CO-1
General Overview CO-1
Console Function Manager Modules CO-1
Console Function Manager External
Interfaces CO-2
Console Function Manager Internal
Interfaces CO-3
Put Operation CO-4
Put to Subfile Record (Data Flowl CO-6
Put to Subfile Control Record {Data Flow) . CO-8
Get Operation CO-10
Get from Subfile Record (Data Flow) C0-12
Pass Option of the Suspend Moduie CO-14
Get {or Put-Get) Nowait Function . cO-14
Subfile Record {Module Flow) CcO-16
COPY e e CP-1
Introduction CP-1
General Overview CP-1
Copy Modules CP-1
Copy File Operation Overvrew CP-2
5424 FUNCTION MANAGER CS-1
Introduction CS-1
General Overview . . CS-1
5424 Function Manager Modules . CS-1
5424 Function Manager Operation CS-2
Contents i

DATABASE

Introduction
Entry to Data Base Functrons
General Overview
Data Base Modules . .
Data Base Definition Modules .
Data Base Manipulation Modules
Data Base Member Modules
Data Base Extraction Modules .
Data Base Recovery Modules
Data Base Event Handling Modules

Data Base Generic File Handling Modules .

Data Base Save/Restore and Reclaim
Generic File Handling Modules .
The Structure of Data Base Files
Structure of an Open Data Base Member
Data Base Recovery
Data Base Object Locking

DEVICE CONFIGURATION

Introduction
General Overview
Device Configuration ModuIes

Create Logical Unit Description, Control Unrt

Description, and Network Description
Add Device Mode Entry to a Peer Device
Description .

Delete Logical Unit Descr|pt|on Control Unlt

Description, and Network Description
Change Logical Unit Description, Control Unit
Description, Network Description, and
Device Mode Entry
Create, Delete, and Display Edlt Codes and
Edit Macro Interface .
Create, Delete, and Display
Edit Code Commands .

Edit Code Macro Interface
Create and Delete Print Images and Tables

Print Image .

Tables .
Device Confrguranon Drsplay Commands
Communication Status Display Commands .
Power and Vary Devices-Start CPF and
Termination Procedures .

Start CPF Procedure

Termination Procedure

Power Commands .

Vary Commands .

DATA DESCRIPTION

Introduction
General Overview
Data Description Modules
Device Related Modules
Data Base Related Modules .
Modules Related to Both Device
and Data Base . . .
DDS Single Line Syntax Checker
Creating Files With a Source Description
Provided . .
Creating a File or Addmg a F|Ie Member
Without Supplying A Source Description
Changing Device Files .

DB-9

DB-10

DB-14
DB-16
DB-18

DC-1
DC-1
DC-1
DC-1

DC-6

DC-8

DC-10

DC-12

DC-14

DC-14
DC-14
DC-16
DC-16
DC-16
DC-18
DC-20

DC-22
DC-22
DC-22
DC-22
DC-23

Single Line Syntax Checking Through
Source Entry Utility
Multiple Line Syntax Checklng Through
Screen Design Aid .
Create Device File Overview
Create Physical File/Add
Physical File Member Overview .
Create Physical File/Create Source F|Ie .
Add Physical File Member . .
Create Logical File/Add Logical File Member
Overview . . .
Create Logical F|Ie .
Add Logical File Member .

Change Device File/Remove Member Overvrew

Change Device File

Remove File Member . -
Single Line Syntax Checker Overview .
Screen Design Aid DDS Parser .

DEVICE FILE DEFINITION

Introduction

General Overview
Device File Definition Modules
Device File Definition Overview .
Create Device File Definition .
Change Device File Definition
Delete Device File Definition .
Device File Definition Extract Operatlon
Convert Device File Definition .
Device File Definition Subset Operatlons .
Duplicate Device File Operation .
Save/Restore of an Online Save File

DISKETTE FUNCTION MANAGER

Introduction

General Overview .
Diskette Function Manager ModuIes
Diskette Operation

COMMON DATA MANAGEMENT

Introduction
General Overview .
Common Data Management ModuIes .
Open
Close .
Device File Defmmon
Data Base File Definition ..
Structure of the Common Data Management
Objects after Opening a Device File
Structure of the Common Data Management
Objects after Opening a Muiti-Device File
Common Data Management Macros
Overrides R
Acquire Program Device .
Release Program Device .
Locking/Unlocking
Accept Input .
Pass Device

DD-4

DD-4
DD-6

DD-8
DD-8
DD-8

DD-10
DD-10
DD-10
DD-12
DD-12
DD-12
DD-13
DD-14

DF-1
DF-1
DF-1
DF-1
DF-3
DF-4
DF-6
DF-7
DF-8

DF-10

DF-12
DF-14
DF-15

DK-1
DK-1
DK-1
DK-2

DM-1
DM-1
DM-1
DM-1
DM-3
DM-3
DM-3
DM-4

o
<
IS

=]

=)

o 0
(]

o Q

o
EEAE A -4

1
0 0o oo omod

o

This document contains restricted materials of IBM. LY21-0571-6
©®Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

C

Routing Common Function .
Install Object .

Data Management Commumcatlons Queue

Machine Interface Request Queue
Device Definition .
Device File Definition

Inactive Open Data Path

3270 EMULATION

Introduction

General Overview .

Display Emulation Modules .
Printer Emulation Modules .

FINANCE SUPPORT

Introduction
General Overview .
Finance |/O Managers
Submit Finance Job (SBMFNCJOB)
Command Interface .
Finance |/0 Manager Interface .

GRAPHICS

Introduction
GDDM Routines
PGR Routines
General Overview
Graphics Modules
A1 Modules .
PGR Modules .
FSM Modules
ESI Modules .
TSI Modules .
CS| Modules .

INSTALLATION

Introduction

General Overview
Installation Modules
Installation Process Overview

JOURNAL MANAGEMENT

Introduction e
Entry to Journal Functions .
General Overview .
Journal Management Modules
Command Processing Modules
Event/Exception Handling Modules
Save/Restore Object Modules .
Recovery Modules .
Journal ID Generation .
Receiver Directory Management
Journal Object Locking
Process Event Masking

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 19856

DM-8

DM-8
DM-10
DM-10
DM-10
DM-10
DM-11

FN-1
FN-1
FN-1
FN-1

FN-2
FN-2

GD-1
GD-1
GD-1
GD-1
GD-1
GD-1
GD-3
GD-3
GD-4
GD-7
GD-7
GD-7

IN-1
IN-1
IN-1
IN-1
IN-2

JO-1
JO-1
JO-2
JO-4
JO-4
JO-4
JO-5
JO-6
JO-6
JO-6
JO-7
JO-7
JO-7

KANJI,

Introduction
General Overview
Kanji Modules

LIBRARIAN

Introduction
General Overview

Librarian Modules

Object

Library

Library List

Check an Object

Delete an Object .

Move an Object

Rename an Object

Create Duplicate Object .

Other Generic Functions .

Clear a Library

Delete a Library

Create a Library e e

Object Information Repository and its
Manipulation

Display a Library List .

Displaying an Object Description

Display the Contents of a Library . .

Librarian Relationships to Other CPF
Components .

Replace Library List Command .

Clear Library Command

Create Library Command

Delete Object Commands

Delete Library Commands

Display Library Command

Display Object Description Command

List Objects .

Move Object Command .

Rename Object Command .

Library Clean-Up During IPL .

Check Object Command .

Add Library List Entry and Remove lerary
List Entry Commands .

Create Duplicate Object Command

Display Library List Command

Change System Library List Command

System Library Cleanup During Installation .

Library Cleanup and Conversion
During Reclaim Storage .
Library Conversion During Installatlon .

MESSAGE HANDLER

Introduction . .
Message Creation, Storage and Retrieval

LI-6

LI-8

LI-9
LI-10
LI-12
LI-14
LI-15
LI-16
LI-17
LI-18
LI-19
LI-20
LI-21

LI-22
LI-23
LI-24
LI-25
LI-25

LI-26
LI-28

. .. MHA1

MH-1
MH-2

Contents v

Message Routing and Queuing MH-4 System Request Menu Overview MN-8
Message Routing . MH-4 Build Menu Text Space Object Overview MN-9
Request MH-4
Scope MH-4 NETWORK FACILITIES NF-1
Completion L MH-4 Introduction NF-1
Diagnostic and Exception . MH-4 Network File Oueues NF-1
Information . . MH-4 Network Job Entry Table NF-1
Inquiry MH-4 General Overview MN-1
Reply MH-4 Network Job Entry Management Modules . NF-1
Sender Copy . . MH-4 Distribution Modules NF-1
Message Queue Types MH-4 Transaction Program Modules NF-2
Message Queue Processing MH-6 Network File Processing Modules . NF-2
Send Message Processing MH-6 Recovery Modules RN NF-2
System Reply List MH-6 Distribution Commands and Processing NF-4
Display Messages MH-8
Receive Message Processing MH-8 OFFICE SYSTEMS 08-1
Move Message from One Program Introduction 0S-1
Queue to Another . .. MH-8 General Overview R 0S-1
Remove Message from Queue . MH-8 Terminal Node Attachment 0S-2
Break /Notify Message Delivery MH-8 Distribution Services Modules 0S-4
Error Detection and Reporting . . . MH-10 Library Services Modules 0S-6
Exception Messages . MH-10 OFFICE/38—-Personal SerV|ces/38 Interface
Sending Exception Messages MH-10 Modules . . 0S-8
Monitoring Exception Messages . MH-10 SNADS Subsystem Modules . e 0S-10
Default System Error Handling MH-10 Command Language (CL) Command Processing
Exception Handling . MH-11 Programs . 0S-12
Unmonitored Message Handling MH-11 Restore Document Command (RSTDOC) 0S-12
Requester Interface MH-16 Delete Document Command (DLTDOC) . 0S-12
Initial Program Processing MH-16 Delete Document List Command (DLTDOCL) 0S-12
Program Message Display . . MH-16 Grant Document Authority Command
Interpretive Request Processing Overview (GRTDOCAUT) . L. 0S-14
Batch Request Processing Overview MH-18 Revoke Document Authority Command
Scope Message Processing . MH-20 (RVKDOCAUT) . R 0S-14
System Logs MH-20 Display Document Authority Command
System Log Structure and Processmg .. MH-20 (DSPDOCAUT) . N 0S-14
System Log Display . MH-20 Display Document Owner Command
(CHGDOCOWN) 0S-14
MENU MN-1 Grant Access Code Authority
Introduction - MN-1 (GRTACCAUT) . 0S-16
Program Call Menu . MN-1 Revoke Access Code Authonty Command
Command Selection Menus MN-1 (RVKAACCAUT) . 0S-16
Command Grouping Menu MN-1 Display Access Code Authority Command
Configuration Menu . MN-2 (DSPACCAUT) . . 0S-16
System Operator Menu MN-2 Add Access Code Command (ADDACC) 0S-16
Programmer Menu MN-2 Remove Access Code Command (RMVACC) 0S-16
System Request Menu MN-2 Display Access Code Command (DSPACC) 0S-16
General Overview MN-2 Manage Directory Command (DNGDIR) . . 0S-18
Menu Modules . MN-2 Display Directory Command (DSPDIR) 0S-20
Program Call Menu Overview MN-3 Manage Distribution List Command
Command Selection Menu Overview MN-4 (MNGDSTL) 0S-22
Configuration Menu Overview MN-5
System Operator Menu Overview MN-6 5211/3262/3203 FUNCTION MANAGER PN-1
Programmer Menu Overview MN-7 Introduction PN-1

vi
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

General Overview

5211/3262/3203 Function Manager Modules

5211/3262/3203 Print Operation .

PROGRAM RESOLUTION MONITOR

Introduction
Input To The PRM
Output From The PRM

General Overview R .
Program Resolution Monitor Modules .
PRM as Used by the RPG Compiler .
PRM Source Input and Its Associated

Program Template .

PROMPTER
Introduction
General Overview

Prompter Modules

Prompter Invocation Paths . A

Prompter Invocation and Control Overview .

Initial Parameter Display, List of Values Display,

and Permissible Values Display Overview .
Function Key Processing .
Error Message Display Overview

RECLAIM/DAMAGE NOTIFICATION

Introduction .
General Overview of Reclaim
Reclaim Modules .
Reclaim Storage Function
Object Addressability
Reclaim Overview e
General Overview of Damage Not|f|cat|on
Damage Notification Modules
Damage Notification Function
Concepts
Assumptions . R e
Exception Handling Program Assumptlons
Event Handling Program Assumptions
Damage Notification During IMPL Overview
Damage Notification Overview
Logging of Damaged Objects on the
History Log Overview R
Special Case Programs Overview . . .

SERVICE

Introduction

General Overview
Service Modules
Alert Messages
Dumps
Trace . ..
Interjob Servicing .

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

PN-1
PN-1
PN-2

PR-1
PR-1
PR-1
PR-1
PR-1
PR-1
PR-4

PR-6

PT-1
PT-1
PT-2
PT-2
PT-3
PT-4

PT-5
PT-6
PT-8

RC-1
RC-1
RC-1
RC-1
RC-3
RC-3
RC-4
RC-7
RC-7
RC-8
RC-9
RC-9
RC-9
RC-9

RC-10

RC-11

RC-12
RC-13

Programming Changes
Program Patches
Programming Change Log

APAR Data Preparation
Internal Service Facilities
System Verification Procedures .
Service Relationship to Other CPF

Components
Dump Current Job
Dump Serviced Job .
Service Job Command .
Dump Object or Dump System Object
Dump Serviced Job Object or System Object
Dump Job Command Executed in a

Serviced Job
Get System Object
Dump Object .
Service Alert Event Handler
Service Request Event Handler .
Service Data Handler
Trace Job Command -
Trace Job Command in a Serviced Job
Trace Internal Command
Prepare APAR Command

Display Service Status Command

Patch Program Command
Patch Program Command Support
Apply, Remove, and Load Programming
Changes .
Apply Program Change .
Remove Program Change .
Load Program Change e
Apply or Remove Programming Changes
Through the Start CPF Interface
Display Programming Change Command .
Dump Current Job Internal Command .
Dump Serviced Job Internal Command
Dump Job Internal Command in Serviced Job
List Internal Data Command
Display CSNAP Attributes Command
Change CSNAP Attributes Command
List CSNAP Data Command
List CSNAP History Command .

ADVANCED PROGRAM-TO-PROGRAM
COMMUNICATIONS FUNCTION MANAGER
Introduction
General Overview e
Advanced Program-to-Program Communications

Function Manager Modules .

Advanced Program-to-Program Communications

Function Manager Operation

SC-7
SC-8
SC-8
SC-8
SC-9
SC-9

SC-10
SC-12
SC-13
SC-14
SC-15
SC-16

SC-18
SC-20
SC-22
SC-23
SC-24
SC-26
SC-27
SC-28
SC-28
SC-30
SC-32
SC-34
SC-36

SC-38
SC-38
SC-38
SC-38

SC-38
SC-40
SC-42
SC-43
SC-44
SC-45
SC-45
SC-46
SC-46
SC-47

Si-1
SI-1
SI-1

Contents vii

SECONDARY LOGICALUNIT

Introduction

General Overview
Secondary Logical Unit Modules
Secondary Logical Unit Operation .

CONCURRENT SERVICE MONITOR

Introduction
Initialization e
Response Queue Handler
Data Available Event Handler .

General Overview e
Concurrent Service Monitor Modules
Concurrent Service Monitor Initialization .
Concurrent Service Monitor Response Queue

Handling .

Data Available Event Handler

and Cancel Event Handler
Control Cancel Event .

SPOOLING

Introduction
Spooling Queues .
Job Queue
Output Queues
General Overview
Spooling Modules
Start CPF and Termination Modules
Queue Command Modules
Reader Function Modules .
Execution With Spooling Modules
Writer Function Modules
Queue Management Module
Display Spool Data Modules
Job/File Command Modules
Convert Data Function Modules
Spooling A Jobstream Into the System
Spooling a Jobstream Into the System
Using a Submit Jobs Command .
Job Selection by Work Monitor
Executing a Program That Receives
Spooled Inline Files . e
Processing of Named Inline Data Files
Processing of Unnamed Inline Data Files
Executing a Program That Produces
Spooled Output . .
Writer Producing Spooled Output .
Writer Redirection . Coe e .
Interrelationship of Spooling Control Blocks
Large Record
Header .
Output Data .

viii

SM-1
SM-1
SM-1
SM-1
SM-1

. SM-1

SM-3

. SM-4

. SM-6

SM-7

SP-1
SP-1
SP-1
SP-1
SP-1
SP-1
SP-1
SP-1
SP-3
SP-3
SP-4
SP-4
SP-5
SP-5
SP-5
SP-6
SP-6

SP-8

SP-10

SP-12
SP-12
SP-12

SP-14
SP-16
SP-18
SP-20
SP-22
SP-23
SP-24

SAVE/RESTORE
Introduction
Save Function
Restore Function
General Overview .
Save/Restore Modules
Save Modules .
Restore Modules
Display Modules .
Save Commands Overview .
Save System Command
Save Object Command/Save
Changed Object Command .
Save Library Command .
Save Data Base Files . C
Save Journals and Journal Receivers .
Save Job/Output Queue and Message
Queue Descriptions .
Free Object Storage
Restore Commands Overview
Restore Library Command
Restore Object Command .
Restore User Profile
Restore Authority
Composite Object Interface .
Standard Composite Objects

Standard Composite Objects-Save Function .

Standard Composite Objects-Restore
Function . .
Nonstandard Composne Ob]ects .
Save/Restore Function Manager

SWITCHED LINES

Introduction
General Overview
Communications Modules
Logical Unit Services Modules
Communications Services Events Slgnaled
by Other CPF Components
Events Handled by QSWCPFEV
Communications Services Events Signaled
by the Machine .
Events Handled by QSWCPFEV .
Events Handled by QSWCUDEV .
Events Signaled by QSWDAMGE
Events Signaled by QSWLUDEV .
Events Signaled by QSWNDEV
Logical Unit Services Events Signaled
by Other CPF Components
Event Signaled by QSWCNSCP
Event Signaled by QSWLCH1
Events Signaled by QSWLCH2
Events Signaled by QSWLSH1

SR-5
SR-5
SR-5
SR-5

SR-5
SR-5
SR-8
SR-8
SR-8
SR-8
SR-9

SR-10

SR-10
SR-10

SR-10
SR-10
SR-11

SW-1
SW-1
SW-1
SW-1
SW-2

SW-4
SW-4

SW-4
SW-4
SW-4
SW-5
SW-5
SW-5

SW-5
SW-5
SW-5
SW-5
SwW-5

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

C

Event Signaled by QSWTALC .
Logical Unit Services Events Signaled
by the Machine
Event Signaled by QSWIDLES
Event Signaled by QSWNOSES
Communications Overview .
Logical Unit Services Overview .

SECURITY

Introduction
User Profile .
User Profile Associated Space
User Password . .
Authorized User Table .
Object Authorization
Rights of Use

General Overview
Security Modules .
Create User Profile and Change User

Profile Commands . .

Display User Profile Command .

User Profile Associated Space Recovery .

Retrieve User Profile Command
Delete User Profile Command

Grant Object Authority Command .
Display Object Authority Command .
Revoke Object Authority Command .
Change Object Owner Command .
Grant User Authority Command
Display Authorized Users Command
Verify System Entry Authorization
Retrieve Authorized Libraries .
Convert Authority .

Save Authorized User Table

Restore Authorized User Table .
Handle Authority Violation .
Authorization Event Handler

Grant Same Authority .

Grant Duplicate Authority

Revoke Data Rights . .
Program Check for Adopted Profile .
Access Interactive Profile

Change Interactive Profile Entry
Copy Interactive Profile

Create Intcractive Profile

Remove Interactive Profile Entry
Retrieve Interactive Profile Entry
Check Command Authority

Extract User Name and Password
Revoke Space Authority .

Extract Group Members .

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

SW-5
SwW-5
SwW-5
SW-6
SW-7

SY-1
SY-1
SY-2
SY-2
Sy-2
SY-4
SY-4
SY-5
SY-5

SY-6
SY-7
Sy-8
SY-9

SY-10

Sy-11
SY-12
SY-13
SY-14
SY-156
SY-16
Sy-17
Sy-18
Sy-18
SY-19
SY-19
SY-20
SY-20
SY-21
Sy-21
SY-22
SY-22
Sy-23
SY-24
SY-25
SY-26
SY-26
SY-27
Sy-27
Sy-28
Sy-28
SY-29

TAPE FUNCTION MANAGER

Introduction

General Overview . .
Tape Function Manager Modules .
Tape Operation .

TESTING

Introduction

General Overview
Testing Modules . ..

Command Processing Modules
Support and Event Handler Modules .

Master Debug Communication Object .
Debug Communication Object
Enter Debug Command
Add Program Command .
Remove Program Command
End Debug Command .
Add Breakpoint Command .
Remove Breakpoint Command
Add Trace Command
Remove Trace Command
Change Debug Command
Display Debug Command
Display Breakpoint Command
Display Trace Command .
Display Program Variable Command
Change Program Variable Command
Change Pointer Command .
Display Trace Data Command
Clear Trace Data Command
Resume Breakpoint Command
Cancel Request Command .
Instruction Reference Event Handler
Instruction Reference Trace Handler .
Verify Object References
Get Variable Value
Locate Object Lo
Default Exception Breakpoint .

COMMITMENT CONTROL

Introduction

General Overview .
Commitment Control Modules
Begin Commitment Control Command .
Commit Command
Rollback Command . R
End Commitment Control Command
Commitment Display Support Using

the Display Job Command

Establishing Commitment Control Overview

Open Processing Overview .
Commit Overview

TA-1
TA-1
TA-1
TA-2

. ... TE41

TE-1
TE-1
TE-1
TE-1
TE-2
TE-3
TE-3
TE-4
TE-5
TE-6
TE-7
TE-8
. TE-9
TE-10
TE-11
TE-11
TE-12
TE-13
TE-14
TE-156
TE-16
TE-17
TE-18
TE-19
TE-20
TE-21
TE-22
TE-24
TE-25
TE-26
TE-27
TE-28

TN-3
TN-3
TN-4
TN-5

Contents ix

Rollback Overview

Display Support Overview

End Commitment Control Overview .
Notify Object Overview e
Initial Program Load Recovery Overview .
Close Processing Overview

SNA-T3 . . .
Introduction
General Overview
SNA-T3 Modules
Functional Overviews
Wait Operation Overview
Nowait Operation Overview .
Unsolicited Data Operation Overview

WORK CONTROL .
Introduction
General Overview .
Work Control Modules .
Start CPF Function Modules
System Arbiter Process Modules .
Logical Unit Services Process Modules
Start Subsystem Modules . .
Subsystem and System Termination
Modules . .
Allocate Object and Deallocate Object
Modules . .
Display Status Information Modules
Class Support Modules .
System Value Support Modules
Network Attributes Support Modules .
Data Area Support Modules .
Sign-Off Support Module .
System Timer Support Modules

System Date and Time Support Modules

System Resource Support Module . .
WCBT Maintenance Support Module .
Machine Event Handling Modules
Reclaim Resource Module
Start CPF
AIPL .
IMPL .
Initial CPF Process
Start CPF Process . .
Work Control Displays Used
During the Start CPF Process
Sign-0On Display
Start CPF Prompt .
Basic System Arbiter Process .
Systemn Arbiter Overview . L.
Logical Unit Services Process Overwew
Start Subsystem Function

TN-6
TN-7
TN-8
TN-9

TN-10

TN-11

T3-1
T3-1
T3-1
T3-1
T3-2
T3-2
T3-3
T3-4

WC-1
WC-1
WC-1
wWC-1
WC-1
WC-2
WC-2
WC-2

WC-2

WC-2
wWC-3
WC-3
wC-4
WC-4
WC-4
WwC-4
wC-4
wWC-4
WC-5
WC-5
WC-5
WC-5
WC-5
WC-5
WC-6
WC-6
wC-7

WwC-9
WC-9
WC-9
WC-10
WC-10
WC-11
WC-12

System/Subsystem Termination Function .
Allocate/Deallocate System Object .

Display Functions For Work Control
Classes .
System Value Functions

Network Attributes Support
Data Areas . .
Sign-Off Function . .
System Date/Time Suppon

System/38 Clock Layout

System Timer Support L.
Storage Pool/MPL Resource Management
Work Control Block Table Maintenance
Machine Event Handling
Reclaim Resources Function

SUBSYSTEM DESCRIPTION
Introduction L
Subsystem Attributes
Storage Pool Descriptions
Routing Entries
Work Entries .
IBM-Supplied Subsystem Descnpuons
Subsystem Description External Controls
General Overview e
Subsystem Description Modules
Subsystem Description Overview .
Subsystem Description Internal Structure
Changing a Subsystem Description
Inactive Subsystem Description
Active Subsystem Description .
Packing . Lo
Extending a Subsystem Descnpuon .
Subsystem Description Recovery
Recovery information .

Subsystem Description Control Information

Entries .
Subsystem Description Emry Structure
Work Entries
Routing Entries
Resolved Names Table
Resolved Names Table .

Flow of Subsystem Description Modules That

Change the Subsystem Description

FILE REFERENCE FUNCTION . .

Introduction

General Overview . .
File Reference Function Modules
File Reference Function Overview .

WORK STATION PRINTER FUNCTION
MANAGER

WC-15
WC-18
WwC-19
WC-22
WC-22
WC-24
WC-24
WC-25
WC-26
WC-26
WC-27
WwC-27
WC-32
WC-33
WC-34

WD-1
WD-1
WD-1
WD-1
WD-1
WD-1
WD-2
WD-3
WD-3
WD-3
WD-5
WD-6
WD-8
WD-8
WD-8
WD-8

WD-10
WD-12
WD-12

WD-13
WD-14
WD-14
WD-14
WD-16
WD-16

WD-18

WH-1
WH-1
WH-1
WH-1
WH-2

WP-1

This document contains restricted materials of IBM. LY21-0571-6

®Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

C

Introduction

General Overview e
Work Station Printer Function Manager Modules
Print Operation . Lo
Work Station Printer Function Manager
Internal Interfaces

5251 DISPLAY FUNCTION MANAGER
Introduction
General Overview
5251 Function Manager Modules .
5251 Function Manager External Interfaces
5251 Function Manager Internal Interfaces .
Put Operation .
Put to Subfile Record (Data Flow)
Put to Subfile Control Record (Data Flow)
Get Operation
Get From Subfile Record (Dala Flow)
Pass Option of the Suspend Module
Get (or Put-get) Nowait Function .
Subfile Record (Module Flow)
[/O Error Flow .

WORK MONITOR
Introduction
General Overview .
Work Monitor Modules
Subsystem Startup Modules
Subsystem Control Modules
Subsystem Termination Modules .
Job Initiation Modules
Job Control Modules .
Job Termination Modules .
Work Station Support Modules
Advanced Program-to-Program
Support Modules . ..
Create Temporary Job Structure
Support Module
Subsystem Functions
Subsystem Startup
Subsystem Control
Subsystem Termination . .
Abnormal Subsystem Termination
Cleanup After Next IMPL .
Job Functions
Job Initiation
Job Control .
Batch Job Creation
Routing Control
Job Termination .
Work Station Support
System Request Support
Attention Key Support

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

WP-1
WP-1
WP-1
WP-4

WP-6

WS-1
WS-1
WS-1
WS-1
WS-2
WS-4
WS-6
WS-8

WS-10
WS-12
WwS-14
WS-16
WS-16
WS-18
WS-20

WT-1
WT-1
WT-1
WT-1
WT-1
WT-1
WT-1
WT-2
WT-2
WT-3
WT-3

WT-4

WT-4
WT-4
WT-4
WT-5
WT-5
WT-5
WT-5
WT-5
WT-5
WT-6
WT-7
wWT-7
WwT-8
WwT-8
WT-9
WT-9

Group Job Support

Advanced Program-to-Program
Communications Support

Create Job Structure .

SNA Distribution Services
Introduction
Distribution Services Queues .
General Overview
Distribute Data/Status Modules
Receive Distribution Modules
QSNADS Subsystem Modules
Distribution Services Router
Distribution Services Sender
Distribution Services LU 6.2 Receiver
Distribution Services Recovery .
Distribution Services Reclaim

Distribution Services General File Server Modules .

Distribution Services Commands

Distribution Services Commands (DSPDSTSRV,

CFGDSTTTSRV)

Distribution Services Component Structure .
Distribute Data and Status Module Flow .
Receive Distribution Module Flow .

Router Director Module Flow
APPC Receiver Module Flow .
Sender Module Flow

Display Distribution Status (DSPDSTSTS)

Command Module Flow R
Display/Configure Distribution Services

APPENDIX A. INVOCATION EXAMPLE . .
GLOSSARY .

INDEX

WT-9

WT-10
WT-10

ZDA1
ZD-1
ZD-1
ZD-1
ZD-1
ZD-2
ZD-2
ZD-2
ZD-3
ZD-4
ZD-4
ZD-4
ZD-5
ZD-5

Z2D-6
ZD-6
ZD-8
ZD-9
ZD-10
ZD-12
ZD-13

ZD-16
ZD-18

G-1

. X1

Contents xi

xii

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

The purpose of this publication is to present CPF
(control program facility) component level information.
When this book is used in conjunction with What You
Should Know, CPF failures can be isolated to a failing
module.

This publication is intended for support level service
personnel (program support representatives and
technical support representatives). The personnel should
complete a customer engineering course in System/38
before attempting to use this document.

The Introduction provides general information about CPF.

The remaining sections provide specific component
information including:

« An overview of the components

« The relationship of the component to other
components

« A general description of each of the component
modules

Note: This publication follows the convention that he
means he or she.
WHAT YOU SHOULD KNOW

To use this publication, you should understand the
concepts in the following manuals:

« IBM Svstem/38 Control Program Facility Concepts
Manual, GC21-7729

o IBM System/38 Control Program Facility
Programmer’s Guide, SC21-7730

« IBM System/38 Control Language Reference Manual,
SC21-7731

« IBM System/38 Data Communications Programmer’s
Guide, SC21-7825

About This Manual

IF YOU NEED MORE INFORMATION

For more information, refer to the following manuals:

IBM System/38 Guide to Publications, GC21-7726

« IBM System/38 Guide to Program Product Installation
and Device Configuration, GC21-7775

« IBM System/38 Operator's Guide, SC21-7735

o IBM System/38 Messages Guide: CPF, RPG Ill, IDU,
SC21-7736

« IBM System/38 Control Program Facility Reference
Manual - Data Description Specifications, SC21-7806

« IBM System/38 Diagnostic Aids, SY21-0584

« IBM System/38 Functional Concepts Manual,
GA21-9330

- IBM System/38 Functional Reference Manual,
GA21-9331

o IBM System/38 Problem Determination Guide,
SC21-7876

SUMMARY OF CHANGES

The following changes have been made to this manual
for release 7, modification O:

« Addition of new components:
System/38 Finance Support
Network Facilities

Office Systems

SNA Distribution Services

« Miscellaneous updates and technical changes

About This Manual xiii

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

This page is intentionally left blank.

Xiv
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

C

The CPF (control program facility) is the system support
program product for the IBM System/38. The CPF is
designed to support the use of interactive work station
applications. To supplement the support of the
interactive environment, the CPF also provides support
for concurrent processing in the batch environment. The
CPF is designed to support a wide range of operating
environments. No single environment has the exclusive
use of a given set of functions. Thus, any user in any
operating environment has access to any of the
functions.

Some of the functions provided by the CPF are:

« Data base support to rapidly make available, to any
job, up-to-date data

« Work management support to schedule quickly and
independently the processing of all user requests

« Application development support that allows online
development of new applications concurrently with
normal production activity

« System operation support that allows the system
operator to control the system through the system
console or any of the work stations using a control
language that provides prompting support for all
commands

« Message handling support that allows communication
between the system, system operator, work station
users, and programs that are executing in the system

» Security support to protect data and other system
resources from unauthorized use

Introduction

« Service support that allows service personnel to
diagnose and repair problems or install new functions
with minimal impact on normal work flow

« Object management support that allows objects to be
grouped and located in the system

« Data management facilities that support both data
base files and device files

« Save/restore functions that allow applications and
data files to be backed up concurrently with unrelated
system operations

The CPF functions are accessed through the use of the
control language and the data description specifications.
In addition, other program products (such as high-level
languages and the interactive data base utilities) also use
the CPF functions.

The CPF has many components. These components,
processing separately or interactively, provide the
support for the CPF functions. Figure 1 shows the CPF
components and their identifiers.

The logic diagrams use a heavy line to indicate transfer
of control () and a light line to
indicate pointers and all other actions

().

The following sections contain descriptions and function
overviews for each of the CPF components. The
sections are arranged alphabetically by component
identifier.

Introduction xv

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Component

Access Path Manager

5250 Information Display System Verification
Binary Synchronous Communications

Command Analyzer
Command Definition
Control Language Compiler
Console Function Manager
Copy

5424 Function Manager
Data Base

Device Configuration

Data Description

Device File Definition
Diskette Function Manager
Common Data Management
3270 Emulation
System/38 Finance Support
Graphics

Installation

Journal Management

Kanji

Data Base Logging
Librarian

Message Handler

Menu

Network Facilities

Office Systems

5211/3262/3203 Function Manager

Program Resolution Monitor
Prompter

Reclaim/Damage Notification
Service

Advanced Program-to-Program Communications Function Manager

Secondary Logical Unit
Concurrent Service Monitor
Spooling

Save/Restore

Switched Lines
Security

Tape Function Manager
Testing

Commitment Control
SNA-T3

Work Control
Subsystem Description
File Reference Function

Work Station Printer Function Manager
5251 Display Function Manager

Work Monitor
SNA Distribution Services

Figure 1. CPF Components and Their Identifiers

XVi

Identifier

AP
AR
BS
CA
CcD
cL
co
cpP
cs
DB
DC
DD
DF
DK
DM
EM
FN
GD
IN
Jo
KJ
LG
LI
MH
MN
NF
0s
PN
PR
PT
RC
sc
sI
sL
Sm
sP
SR
SW
sY
TA
TE
TN
T3
wC
WD
WH
wp
ws
wWT
zD

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

INTRODUCTION.

The access path manager component of the CPF

(control program facility) provides a high-level, data
stream independent, and device file independent
interface to the APPC (advanced program-to-program
communications) support provided by the System/38 for
devices that operate as an SNA logical unit (type 6.2).
The APPC function manager, subsystem monitor, and
system arbiter interface with the access path manager to
perform all APPC-related operations.

GENERAL OVERVIEW

The APPC function manager, subsystem monitor, and
system arbiter create access path control blocks and
issue access path manager commands to allocate or
deallocate an APPC conversation, and transmit or
receive data. The access path manager builds a
source/sink request block containing the function
request code, option bit settings, transmission data
length, and transmission data. Information returned to
the APPC function manager, subsystem monitor, or
system arbiter includes the received data length,
received data type code, error information, and received
data, if any.

Access Path Manager Modules

The access path manager component consists of the
following modules:

Note: Modules identified with an arrow (-->) are entry
modules into the component. Indentation of a module
shows its dependency on a previous module.

-->QAPALCON-Allocate Conversation: This module

allocates a conversation to an access path control
block.

-->QARALSND-Allow Send: This module formats a
request that allows the remote program to send
application data.

-->QAPCANCL-Cance! Receive Request: This module
cancels an outstanding receive request.

Access Path Manager

-->QAPCRTRB-Create Access Path Manager Request
Blocks: This module creates the request blocks used
by the access path manager for |/O requests.

-->QAPDLCON-Deallocate Conversation: This module
deallocates a conversation from an access path
control block.

QAPDEQUE-Dequeue Outstanding 1/0O Request:
This module waits for the completion of a Request
I/ 0 instruction.

QAPERROR-Access Path Manager Error Handler:
This module handles errors resulting from damage
to the request block queue.

-->QAPEVOKE—-Evoke Program: This module formats a
request to initiate a remote program.

QAPGTSES—Get Session: This module obtains a
session for an active conversation.

-->QAPIOCMP—-Request |/0 Complete Event Handler:
This module handles the request |/0 complete event.

-->QAPRCV-Receive Input Data: This module requests
input data from the remote system.

QAPDEQUE-Dequeue Outstanding 1/0 Request:
This module waits for the completion of a Request
1/0 instruction.

-->QAPRSPPS-Send Positive Response: This module
sends a positive response to the remote program.

-->QAPSNDER-Send Error Data: This module sends a
negative response and error data to a remote
program.

-->QAPSNDSG-Send Signal Data: This module sends
a signal code (such as a write request) to the remote
program.

-->QAPSNDTA-Send Application Data: This module
formats a request to send application data to a

remote program.

-->QAPUIEH-Unsolicited Input Event Handler: This
module handles the unsolicited data events.

Access Path Manager AP-1

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

-->QAPWAIT-Wait for Input Data: This module waits
for input data from the remote system and returns
the input data, input data length, data description,
and associated indicators.

QSIOPEN then calls QAPWAIT to wait for the
conversation to be allocated. QAPWAIT calls
QAPDEQUE to dequeue the allocated conversation

QAPDEQUE-Dequeue Outstanding 1/0 Request:
This module waits for the completion of a Request
I/0 instruction.

QAPERROR-Access Path Manager Error Handler:
This module handles errors resulting from damage
to the request block queue.

-->QAPXMT-Transmit Data: This module transmits all

buffered data and requests.

QAPDEQUE-Dequeue Outstanding I/0 Request:
This module waits for the completion of a Request
/0O instruction.

Access Path Manager Operation

Figure AP-1 and the following text describe the
operation of the access path manager.

When an APPC network is varied on, QLUS
(logical unit services process) of the switched line
component uses the access path manager to
perform the 1/0 requests associated with
negotiating the change number of sessions.

When a subsystem is started, the subsystem
monitor uses the access path manager to receive
program initiation requests from the remote
system, if the subsystem description contains a
communications entry for an APPC device.

A high-level language program, through the
QDMCOPEN module of common data
management, calls QSIOPEN to open a
communications file for |/O processing. QSIOPEN
calls QAPALCON to allocate a conversation to the
communications device. QAPALCON issues all
request |/Os necessary for conversation allocation.

request, to set up the access path control block
necessary to support the conversation, and to
return the session information to QSIOPEN.

After the file has been opened, the high-level
language program calls QSIPUT to evoke a remote
program. QSIPUT calls QAPEVOKE to format the
evoke request, and then calls QAPXMT to transmit
the evoke request.

The access path manager on the remote system
receives the evoke request, and returns it to the
subsystem monitor, which initiates the requested
program. The remote program opens a
communications file, allocates its end of the
conversation, and calls QSIGET to receive
information from the source program.

QSIGET calls QAPRCV to issue the receive
request, and then calls QAPWAIT to wait for the
completion of the receive. QAPWAIT calls
QAPDEQUE to wait for the completion of the
receive request 1/0.

The source program calls QSIPUT to send data to
the remote program. QSIPUT calls QAPSNDTA to
format the request to send application data.

When one of the transmit buffers becomes full,
QSIPUT calls QAPXMT to transmit data to the
remote program. QAPXMT uses double buffering
during write requests; one buffer is filled while the
other is transmitted. When both buffers are full,
QAPXMT calls QAPDEQUE to wait for the first
transmission to complete processing.

When data is received on the remote system, the
receive request |/0 completes, and QAPDEQUE
returns control to QAPWAIT. QAPWAIT returns
the data to QSIGET, along with information
describing the length of the data received, the type
of data, and the current state of the conversation.
QSIGET returns the data to the target program.

A program may send unexpected data when there
is no receive request pending. When this occurs,
the APPC station |/O manager sends an event to
the access path manager, and QAPUIEH is
invoked. QAPUIEH calls the APPC function
manager to receive the unsolicited data and
process it.

AP-2
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

C

The high-level language program may issue a put
with invite request. When a put with invite request
is issued, QSIGET calls QAPRCV to issue a receive
request. When the APPC station |/O manager
receives enough data to satisfy the request, an
event is sent to the access path manager and
QAPIOCMP is invoked. QAPIOCMP calls the
APPC function manager to process the completion
of the receive request.

When one program is done communicating with
the other, it calls QSIPUT to detach the other
program. QSIPUT calls QAPDTACH to format the
detach request. QSIPUT then calls QAPXMT to
transmit the detach request. Once the detach
request has been transmitted, the programs can no
longer communicate with each other.

After a communications file has been processed,
the high-level language program calls QSICLOSE
to close the file. If any data remains in the output
buffer at this time, QSICLOSE calls QAPXMT to
transmit the data to the remote system.
QSICLOSE then calls QAPDLCON to terminate the
conversation.

This document contains restricted materials of IBM. LY21-0571-6
© Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Access Path Manager

AP-3

Logi.cal Unit . Sybsystem
Services High-Level Language Program Monitor
Process
APPC
Function
Manager
Il | Access Path Manager
<] a iE H
QAPALCON QAPWAIT QAPEVOKE QAPSNDTA QAPXMT QAPRCV
Allocate Wait for Evoke Send Application Transmit Receive Input
Conversation Input Data Program Data Data Data
QAPGTSES
Get
Session
QAPDLCON
QAPIOCMP QAPALSND QAPCRTRB QAPUIEH
Request 1/0 Create Access Unsolicited
Deallocate Complete Allow Send Path Manager Input
Conversation Event Handler Ow oen Request Blocks Event Handler
QAPCNCL
Cancel Receive
Request
QAPDEQUE
Dequeue
Outstanding
1/0 Request
Machine L
Unsolicited
Request | | Request 1/0 Interface Data
1/0 Complete Event Response Event
Queue

Machine Interface

APPC
1/0 Manager

Figure AP-1. Access Path Manager Operation Overview
AP-4

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

3270/5250 Information Display System Verification

INTRODUCTION

The 5250 information display system verification
component of the CPF (control program facility) provides
test request support for the IBM display stations and
the IBM work station printers when they are attached to
the IBM System/38. The following test request
functions are provided:

» Display verification
» Printer verification
» Configuration data
« 5250 ERAP

- Link test

Menus are presented to a work station user to allow
selection of these tests. As the selected test is being
performed, displays showing test status or additional
test instructions are presented to the user. Tests are
invoked from the prime option menu, which is presented
to the user when the Test Request key is pressed. In
addition, the printer verification tests may also be
invoked by entering the Verify Printer (VFYPRT)
command.

GENERAL OVERVIEW
3270/5250 Information Display System Verification

Modules

The modules in this component are divided into six
categories:

« Router modules—control the component and
determine which test to select.

« Printer verification modules—control verification of the
printer.

« Display verification modules—control verification of the
display.

« ERAP modules—control error recording analysis
procedures.

» Link test modules—control link testing and conversion
of console data to 5250 data.

« Configuration modules—display the configuration data
of the requesting work station and other work
stations and controllers on the work station’s line or
work station controller.

The 3270/5250 information display system verification
component consists of the following modules:

Note: Modules identified by an arrow (-->) are entry
modules into the component. Indentation of a module
shows its dependency on a preceding module.

Router Modules

-->QARDRIVE-Test Request Driver: This module is
loaded when a test request event is processed. It
identifies the requesting terminal and opens a device
file for that terminal. QARDRIVE then calls
QAROPSEL. Upon completion of the requested tests,
QARDRIVE closes the device file and terminates the
process.

QAROPSEL-Test Selection Router: This module
determines if the requesting terminal is remote or
local and if there are any terminals associated with
it. It displays the prime option menu so that the
user can select a test.

3270/5250 Information Display Systemn Verification AR-1

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Printer Verification Modules Display Verification Modules

QARPSEL—Printer Selection: This module builds QARDISP-Display Test Selection Router: This
a list of printers on the same controller as the module displays the display verification menu to
requesting terminal. This list is displayed to the the user so that a function can be selected.

user so that a printer can be selected to verify.

QARPSTAT-Printer Test Selection and
Status: This module sends a menu to the
requesting terminal to allow the user to
choose how many times to print the test
pattern. It also displays completion and error
status messages.

QARPRNT-Printer Verification Control:
This module controls the printing of the
verification pattern.

QAR5256-5256 Print Command: This
module executes the print commands
common to the 5256 Printer.

QAR5219-5219 Print Command: This
module executes the print commands
common to all printers and unique to
the 5219 Printer.

QAR5225-5224 /5225 Print Command:
This module executes the print
commands unique to the 5224/5225
Printer.

QARKCHAR-Displayable Character:
This module displays a chart of all the
ideographic characters in the character
set for the ideographic display.

QAREVINP-Terminal Input Event
Handler: This module monitors input
from the terminal while the printer is
printing the pattern.

AR-2

This document contains restricted materials of IBM. LY21-0571-6

QARATTR-Display Attributes: This module
sends the display attributes pattern to the
Display. After the user selects an attribute to
be displayed, it is displayed on a portion of
the display.

QARCHAR-Displayable Character: This
module displays a chart of all of the
characters in the character set for this
device.

QARS2IGC-5553/5224-Model 12
5225-Model 11/5225 Model 12 Print
Command: This module executes print
commands unique to ideographic printers.

QARSPINP-Specified Input Fields: This
module displays several types of field
validation to the user. The user can then
check for invalid input.

QARFUNKY-Command Function Keys: This
module allows the user to test the Roll Up
and Roll Down function keys as well as the
command function keys.

QARCATTR-Color Display Attributes: This
module sends the color display attributes
pattern to the display. After the user selects
a color attribute to be displayed, it is
displayed on a portion of the display.

QARGMENU-Graphics Test Selection
Router: This module displays the graphics
verification menu so that the user can select
a test.

QARGDISP-Display Graphics: This
module displays five graphic patterns
designed to exercise the graphic
capabilities of the display.

QARGVDO-Video Device: This module
displays three patterns designed to be
used as an aid for calibration of the video
device.

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

C

QARGPSEL-Graphics Plotter Verification Menu:
This module displays the graphics plotter
verification menu so that the user may select
either option 1 for the 7371 or option 2 for the
7372.

QARG7372—Plotter Graphics: This module
produces a test pattern on the IBM 7371
or 7372 corresponding to selection from
plotter verification menu.

QARGPRNT—Printer Graphics: This module
produces a test pattern on the graphics printer
to exercise the graphic printer functions.

ERAP Modules

QARERAP-Device Type Selection for Error
Statistics: This module displays the ERAP
option menu. It then allows the user to request
error history for a type of device (display,
printer, controller, or all devices).

QARDEVSL-ERAP Device Selection: This
module is used to select a device for which
error history information is desired.

QAROUTSL-Output Selection: This
module is used to select an output device
to which the error information is to be
sent.

QARERHST—Error History Table: This
module forces the logging of the
current data from the controller or work
station controller to the system error
log. This information (with the
information already in the log) and
controller {station) statistical data can’
then be retrieved.

Link Test Modules

QARLINK-Link Test Driver: This module
requests the concurrent service monitor to start
the link test service function.

QARCONVT-Console to 5250 Data
Conversion: This module converts data from
a format that can be displayed on the
console to a format that can be displayed on
an IBM 5250 Display.

QARWSCO-5250 to Console Data
Conversion: This module converts the format
of data received from an IBM 5250 Display
to a format that can be displayed on the
console.

Configuration Modules

QARCFIGR-Remote Configuration Data: This
module displays information that describes the
remote configuration environment of the
requesting terminal.

QARCFIGL-Local Configuration Data: This
module displays information that describes the
local configuration environment of the
requesting terminal.

3270/5250 Information Display System Verification AR-3
This document contains restricted materials of IBM. LY21-0571-6
©®Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

5250 Overview and Relationship to Other
Components

Figure AR-1 and the following text describe the
operation of the 3270/5250 information display system
verification component and its relationship to other
components and processes.

n Pressing the Test Request key on a work station
causes a test request event to be signaled.

ﬂ The test request event handler runs in the system
arbiter process and notifies the appropriate
subsystem monitor process, which then creates a
job where QARDRIVE is the problem-state
program. This support is provided by the work
monitor component.

The six options that can be selected from the
prime option menu are:

C Terminate job

1 Display verification

2 Printer verification (only if a printer is
attached to the same controller as the
invoking terminal)

3 Configuration data

4 ERAP

5 Link test (only available from a remote
work station)

n The router modules control the operation of the
5250 information display system component and
select the proper group of modules to use for the
test specified from the prime option menu.

This document contains restricted materials of IBM. LY21-0571-6

o If option 1 is selected, the display verification
modules are used to present the display
verification menu. Those modules then
process any options selected from that menu
and present to the user any displays
associated with the options.

0 If option 2 is selected, the printer verification
modaules are used to present the printer
selection display so that a printer can be
selected for testing. Those modules then
process the request and present any displays
associated with the test. (This is only
available if there is a printer available with
the station.)

e If option 3 is selected, the configuration
modules are used to present the
configuration data displays, either local
station or remote station, depending on the
type of station that initiated the request.

Q If option 4 is selected, the ERAP (error
recording analysis procedure} modules are
used to present error statistic displays to the
user.

G If option 5 is selected, the link test modules
are used to invoke the host SDLC link test
program. (This is only available from a
remote station.)

If option C is selected from the prime option
menu, the job is terminated.

In addition to option 2 (see n 0), entry of the
Verify Printer (VFYPRT) command uses the printer
verification modules to print the test pattern.

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1986

C

Create Process

Test
Request SBS
Event Monitor
Handler
2]
VFYPRT
Command

Display System

r
| 3270/5250 Information
|

: Verification

|
I
|

Router
Modules

1
1
|
|
1
|
|
|
]
I
! !
| l —l l
|
5256 | prioer © ERAP ik @ contig O] !
Function : Verification Modules Test uration :
Manager | Modules Modules Modules |
|
' l | |
— |
Test 5251 : Display e :
Request Function n Verification f— 1
Event Manager | Modules |
I : |
| 1
e ————— - —— e e e e e e e e e e e d
Concurrent
Service
Monitor
_______ L sy, s
Mad.‘ine Station Service
se"“cels 1/0 Function
CO.nth Manager Driver
Point
Request Line) Service Service @
Key 1/0 Link Test Function Function ELC
Manager (link) (ERAP) w

Figure AR-1. 3270/5250 Information Display System Verification Overview and Relationship to Other Components

3270/5250 Information Display System Verification

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

AR-5

AR-6

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

C

INTRODUCTION

The BSC (binary synchronous communications)
component of CPF (control program facility) provides
applications written in RPG Ill, PL/1, and COBOL a way
to transmit data between System/38 and the following
IBM systems and devices:

System/Device Operating With

Series 1 RPS, EDX

System/32 RPG Il BSC

System/34 RPG Il BSC, ICF BSC

System/3 RPG I
Telecommunications
Support, BSCA
ML/MP Feature, CCP

System/38 RPG Ill, COBOL

System /370 DOS/VS BTAM,
0S/VS1
BTAM /TCAM,
0S/VS2
BTAM/TCAM

5280 DE.RPG, COBOL

5110/5120 APL, BASIC

3741 Model 2

5230 Model 2

5260

0S/6

6670

5520

3777, 3776

The application program uses DDS (data description
specifications) to describe the BSC files that are used to
communicate between a System/38 and any of the
above. Communication is supported on point-to-point
switched lines, point-to-point nonswitched lines, and
multipoint tributary lines. System /38 performs first level
error recovery if there are communication line errors.

Binary Synchronous Communications

The following data management functions are supported
by the BSC component:

« Open a BSC file

« Acquire a BSC device

« Put data to a BSC file

« Accept input from a BSC device
« Get data from a BSC file

« Release a BSC device

« Close a BSC file

« Provide error messages and exceptions

GENERAL OVERVIEW

Binary Synchronous Communications Modules
The BSC component consists of the following modules:

Note: An arrow (-->) identifies a module as being an
entry into the component. Indentation of a module
shows its dependency on a previous module.

-->QBSINASP-Initialize LUD-Associated Space: This
module initializes the BSC device-dependent portion
of the LUD-associated space. It runs under the
device configuration component as part of the vary
device (VRYDEV *ON) process. This module does not
change any lock states, or signal or receive any
events. It does not receive or send any messages.

Binary Synchronous Communications BS-1

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

-->QBSOPEN-Function Manager BSC Open: This

module completes the path for nonswitched lines

between common data management open and the

BSC IOM for sending or receiving data over a BSC

communication line. It also prepares the path and

completes it up to the point of making the actual line

connection for switched lines. This module performs

the following functions:

— Determines that the device and the ODP (open
data path) are available

— Ensures that the device is usable and not in
service mode

— Expands the ODP, if necessary

— Initializes the variables in the work area

— Initializes the pointers in the UFCB (user file
control block) to the user's buffer

— Calculates and stores, within the function manager
work area, addressability to structures and objects
required in the function manager

— Performs compatibility checks on various
user-specified parameters

— Creates a 23 K object to contain seven request
blocks with two source/sink data areas

— Activates the device for a nonswitched line

— Enables the REQIO complete event monitor if the
INVITE keyword is defined in the device file

>QBSPUT-BSC Put: This module is used to pass

data, one record at a time, from the user to a buffer.

When the buffer is full, it is sent one record at a

time, to the BSC IOM for transmission across a line.

This module performs the following functions:

— Checks the connection FSM (finite state machine)
to determine if a line connection needs to be made
and calls QBSFSTIO to make the connection if
required

— Calls QBSBID to complete a bid to transmit data

— Obtains the record format for the put and obtains
the keywords selected on the put

— Uses the separate indicator area if specified in the
device file

— Moves the user’s data and appropriate BSC
control characters to the source/sink data areas in
the request block

— lIssues request blocks, one request block at a time,
to the BSC IOM

— Utilizes two request blocks (double buffers) to
optimize overlapped processing

— Dequeues and reuses request blocks as long as
the user continues issuing puts

BS-2

This document contains restricted materials of IBM. LY21-0571-6

— Calls QBSPUTCP to issue the last request block
and EOT (end-of-transmission) to BSC IOM and
sets the connection FSM to contention

— Calls QBSGET, via the INVITE keyword or put or
get function, to prepare for receipt of data

>QBSGET-BSC Get: This module is used to receive

data from the BSC IOM. It then passes the data, one

record at a time, to the user. This module performs
the following functions:

— Checks the connection FSM to determine if a line
connection needs to be made and calls QBSFSTIO
to make the connection if required

— Calls QBSBID to complete a bid to receive data

— Sends receive request 1/0s to the BSC IOM

— Utilizes two request blocks (double buffers) to
optimize overlapped processing

— Dequeues the next request block when data from
a previous request block has been exhausted

— Finds the record format that it is to use to process
the received data, via record ID processing, a
default format, or user-defined format

— Sets response indicators as specified by the record
format

— Uses the separate indicator area if specified in the
device file

— Moves the received data to the user’s input buffer
and updates the 1/0 feedback area

— Receives an EOT and sets the connection FSM to
contention

>QBSFSTIO-First 1/0: This module is used to
interface via the CPF LUD-opened event with the
switched lines component to establish a switched line
connection. The connection is made on the first put
or get operation after an open.

>QBSBID-Bid for Line: This module sets the line
connection of the FSM to put or get. All outstanding
put and get request blocks are dequeued. It also
issues a request | /0 for a bid and dequeues the bid
feedback record. I|f an error occurs in the feedback
record, this module calls QBSERP.

>QBSPUTCP-Put Complete: This module is used to
issue the last request block (with proper ending and
EOT) and to dequeue all outstanding put request
blocks.

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

3

-->QBSCLOSE-Function Manager BSC Close: This
module 1s used to complete the |/0O if required, by
calling QBSPUTCP, and to clean up the system

L objects so that the BSC device can be reused. It
closes a BSC file or releases a BSC device.

-->QBSERP—Error Handler: This module is used for all
error handling within the BSC component. QBSERP
provides all of the error messages and exceptions
between the user or user programs for the BSC
component. When necessary, it does a request |/0
{continue) for the 1/0 modules. It also handles the
setting of certain areas in the ODP, function manager
work areas and LUD-associated space when
appropriate. These areas are:

- Device unusable flag

— File in error-set by QDMERRHP, which is called by
QBSERP

— Major-minor code for exceptions

— State of BSC FSM

-->QBSASYNC-BSC Asynchronous Input Request 1/0
Handler: This module receives control when a bid or
data request |/0O event completes. After dequeing
the request block, QBSASYNC signals the data
available event. Data management calls QBSGET to
process the data.

\, Binary Synchronous Communications Overview

Figure BS-1 and the following text describe the
operation of the BSC function manager.

n QBSINASP is called by the device configuration
component and 1s part of the vary on process.
QBSINASP initializes the device-dependent portion
of the LUD-associated space and passes control
back to the device configuration component.

n A high-level language program, through the
QDMCOPEN module of common data
management, calls QBSOPEN to complete the
opening of a BSC or mixed device file.

QBSOPEN s also called by common data

management to perform subsequent acquires of a
program device.

C

This document contains restricted materials of IBM. LY21-0571-6
« Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

o An argument list is passed that contains a
pointer to the UFCB (user file control block)
and an index into the device name list for the
device-dependent open.

O The message handler is called to signal
exceptions to the user.

After the file has been opened, information can be
passed by the user to the BIOM (BSC I/0
manager) or to the MIOM {MRJE I/O manager) by
calling QBSPUT.

o An argument list 1s passed that contains a
pointer to the UFCB, a pointer to the option
list, and a pointer to the control list. The
option list is not used by the BSC
component. The control list indicates which
record format in the device file should be
used for this request.

QBSPUT checks the connection FSM to determine
if a line connection needs to be made. If a
connection does not exist, QBSPUT calls
QBSFSTIO to establish a connection. QBSFSTIO
sets the connection FSM to a contention state.
QBSPUT then calls QBSBID to complete a bid to
transmit data.

When one of the put buffers becomes full, or a
special function is requested through the use of
communications file keywords, QBSPUT issues a
request 1/0 to the BIOM or to the MIOM to send
data to the remote station. QBSPUT calls
QBSPUTCP to issue the final request 1/0 of the
session when the application requests via a file
keyword.

QBSPUT uses double buffering during put
requests; one buffer is being filled while the other

is being transmitted.

o The message handler is called to signal
exceptions to the user.

Binary Synchronous Communications BS-3

After the file has been opened, information can be
received from the BIOM or from the MIOM by
calling QBSGET.

O an argument list is passed that contains a
pointer to the UFCB, a pointer to the option
list, and a pointer to the control list. The
option list is not used by the BSC
component. The control list indicates which
record formats in the device file should be
used for this request.

QBSGET checks the connection FSM to determine
if a line connection needs to be made. If a
connection does not exist, QBSGET calls
QBSFSTIO to establish a connection. QBSFSTIO
sets the connection FSM to a contention state.
QBSGET then calls QBSBID to complete a bid to
receive data. When the bid is complete, QBSGET
sends two receive request |/Os to the BIOM or to
the MIOM. QBSGET checks for any input data not
already deblocked from a previously received
request | /O before dequeuing the next RB.
QBSGET receives the data and passes it to the
user's input buffer.

QBSGET calls QBSPUTCP when the user issues a
get following a put, and the FSM indicates a put
state.

QBSGET uses double buffering during get
requests; one buffer is being emptied while the
other is being received.

o The message handler is called to signal
exceptions to the user.

This document contains restricted materials of IBM. LY21-0571-6

After a BSC file has been processed, QDMCLOSE
calls QBSCLOSE to close the file.

o An argument list is passed that contains a
pointer to the ODP control block, an index
into the ODP device name list, and the type
of close to perform. A temporary close is
invalid for BSC. If a temporary clése is
encountered, an exception will be signaled.

If QBSCLOSE is processing a permanent close or
a nonreclaim TCLOSE (normal) and the
file-in-error bit is not set and the FSM indicates
put state, QBSCLOSE calls QBSPUTCP to transmit
any data remaining in the buffers and sends a
normal EOT.

o The message handler is called to signal
exceptions to the user.

When a put with invite request is specified, and
the INVITE keyword is defined in the device file,
the completion of a request I/0 causes
QBSASYNC to execute. QBSASYNC dequeues a
request block and signals the data available event.
If an accept input to the BSC device is issued,
data management calls QBSGET to process the
records in the block.

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Command
Language High-Level Language Program
Program
QDCCRBSC QDMCOPEN QDMACCIN QDMCLOSE
Argument
Create Device Common Accept Common List
Description Open Input Close
L] B <]
QBSINASP QBSOPEN QBSPUT QBSGET QBSCLOSE
Initialize BSC BSC BSC BSC
LUD ASP Open Put Get Close
o 1 | 1
QBSASYNC QBSFSTIO QBSBID QBSPUTCP
BSC Data
Available First 1/0 Bid for Line Put
Complete Complete
QBSERP
Error
Handler
\ BSC Function Manager
Machine-
Request 1/0 Interface Request Message
Complete Event Response 1/0 Handler
Queue

BSC 1/0 Manager
or

MRJE 1/0
Manager

Machine Interface

Machine Services
Control Point
(MSCP)

Figure BS-1. BSC Function Manager Operation Overview

Binary Synchronous Communications BS-5
This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

3

BS-6
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

C

INTRODUCTION

The command analyzer component of the CPF (control
program facility) processes all commands. Command
processing consists of parsing the command, validity
checking, transferring control to a command processing
program or to an application program, and returning to
the caller of command analyzer.

The command analyzer uses information contained in a
CDO (command definition object), which is created by
the command definition component, to perform validity
checking and to determine the format of parameters to
be passed to application programs or command
processing programs. The CDO contains a description
of the command, the name of any user-defined validity
check program, and the name of the command
processing programs that processes the command. Each
command has its own unique CDO.

Validity Checking

Validity checking ensures that the required parameters
for a command are entered and that any values
specified are allowable values. If a command does not
meet its validity checking requirements, a message is
sent to the user describing the errors. The command
can then be corrected and reentered.

Validity checking standards for a single keyword allow
for:

« Values to be restricted to a list or range of values

« Transformation (mapping) of an input value to
another value

« Values that meet the syntax requirements for NAME,
DATE, TIME, NUMERIC, GENERIC-NAME, and so
forth

Validity checking can be used to test the relationship of
multiple keywords by:

« The existence of a keyword
« Comparing a keyword value to

— Another keyword
— A constant

Command Analyzer

The user can also define validity checking programs to
supplement the validity checking of the command
analyzer.

Parsing a Command

Parsing a command consists of taking the command and
converting it into a format that can be used by the
application program or command processing program.

The command analyzer receives a work area from the
caller that contains the length of the command string
and the command string itself. The command string is
processed and a token list is created from it.

Length of
Command

End of Cmd ID

T
} Command String
|

Example of Work Area

The token list is a list of elements, with each element
containing information about a part of the command
(command name, keyword, keyword value, qualified
name, list, number of list elements, and length). A token
list element consists of three parts:

« Attribute byte: defines the command part (token)
being described

« Length: defines the length of the keyword value or
list of keyword values

« Value of the keyword or number of list elements if
the attribute byte defines a list of keyword values

The token list is then processed and, using information
contained in the CDO, a positional list is created.

T
|

Length 'Value or Number of
List Elements

Attribute

Command Analyzer CA-1

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

The positional list contains elements that further
describe the keyword values. Each element contains the
following information:

» Four bytes of attribute information

« A link to the next element

« A displacement value into the CDO that locates the

information about the keyword value

« A displacement value into the work area where the
converted value will be placed

« The length of the value data or the displacement to
the first element if the value is a list of values

« The value data itself or the number of elements if the
value is a list of values

Link to next element (O when last element for a parameter)

If the command is to be processed, an argument list
containing a pointer to each of the converted data
values in the work area is passed to the application
program or command processing program. |f the
command is to be processed at a later time, the
positional list is passed back to the caller.

Figure CA-1 shows an overview of command

processing.

CA-2

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Attribute 0 CDO Work Area Length of Data or Number
Displacement Displacement Data or of Elements
Displacement
to First
‘ Element
N —’

5

Positional
List

Argument
List

Caller

Command
Analyzer

Argument
List for
Command
Analyzer

QCAPARSE
Command
String
Parser

QCARULE

Locate CDO

)

Work Area

Command
String

Token

/ List

)

QCAPOS
Create
Positional
List

/]

Command
Definition
Object

QCAFLD
Parameter
Validation and
Conversion

Positional List
Vector Table

Command
Processing
Program

Figure CA-1. Command Processing Overview

[\ / =\ o

nd §

User-Defined
Validity Check
Program

Work Area

Converted
Values

Argument
List

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Command Analyzer

CA-3

Command Processing

CA-4

The command analyzer is called, with a pointer to
the positional list passed as an argument. Within
the positional list is a pointer to a work area. The
work area contains the command string.

QCAPARSE locates the command in the work area
and creates a token list from the various
parameters of the command. The command
parameters can be entered in both positional and
keyword formats on a single command (each
parameter can be specified only once). The
parameter values can be simple scalars, qualified
names, or lists of values (not necessarily in the
order required by the CDO). If a parameter is
entered in keyword format, the parameter value is
associated with the keyword name for use by
QCAPOS.

QCARULE finds the command name in the token
list and locates the CDO for this command. It also
validates the command environment and mode.

QCAPQOS reads the token list and creates a
positional list that will contain the keyword values
and defaults as specified by the CDO. Defaults are
provided by the CDO for unspecified optional
parameters. A vector table containing
displacement values is built into the positional list
to provide ordering of the parameters as specified
in the CDO.

QCAFLD validity checks the parameter values
(scalar value checks, interparameter checks, and
user-defined validity checks) as specified in the
CDO. The converted data values are then placed
in the work area.

If specified in the CDO, the user-defined validity
check program is called to perform extended
validity checking.

If the command is not to be executed immediately,
the command analyzer returns to the caller with
the positional list.

If the command is to be executed immediately, the
command analyzer transfers control to the proper
command processing program passing an
argument list that contains pointers to the
converted data values.

This document contains restricted materials of IBM. LY21-0571-6

GENERAL OVERVIEW

Some CPF components use the command analyzer only
to parse and validity check commands. The parsed and
validity checked form of the command is placed in a
positional list. The positional list is then passed back to
the caller to be used when the command is executed at
a later time. Components that use the command
analyzer only to parse and validity check commands are:

+ CL compiler (as the commands are being compiled)
« Command definition
« Spooling (for job commands)

« Prompter {for partial commands as they are entered
from the console or work station)

Some system functions and programs use the command
analyzer to parse, validity check, and immediately
execute commands. These are:

« Interpretive CL processor

« CL programs (to validity check and then execute the
commands)

« Prompter (to execute a command after it is
completely entered and processed)

« High-level language programs (to process commands
using the QCAEXEC interface); (see Command
Analyzer Modules for a description of the QCAEXEC
module functions.)

« Source entry utility {for validity checking only)

Two interfaces are provided to the command analyzer.
The QCAEXEC interface is used by all high-level
language programs. The parameters passed to
QCAEXEC, as seen from a high-level language
program, are:

« A command string to be processed

« A packed (15, 5) numeric value that specifies the
length of the command string

QCADRYV is the interface for the other CPF components.

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Command Analyzer Modules

The command analyzer component consists of the
following modules:

Note: An arrow (-->) identifies a module as being an
entry module into the component. Indentation of a
module shows its dependency on a previous module.

-->QCADRV-Command Analyzer Driver: This module
provides the interface between other CPF
components and the command analyzer. It controls
the module flow during the command analysis
process.

QCAPARSE-Command String Parser: This module
scans the command string and creates a token list
containing the keyword values.

QCAPRBLD—-Parser Table Build Routine: This
module builds the parser tables needed by
QCAPARSE.

QCARULE-Locate Command Definition Object:
This module establishes addressability to the CDO
and validates the command environment and
command mode.

QCAPQOS-Create Positional List: This module
creates a positional form (positional list} of the
command and adds defaults, as specified in the
CDO, if necessary.

QCAFSCAN-Scan Character Variable: This
module scans the contents of character
variables used on CL commands, classifies its
token type, and builds a token list element.

QCAFLD—-Parameter Validation and Conversion:
This module uses information in the CDO to
convert and validate individual field data.

QCAFEXPR—Process Expression: This module
processes and validates control language
expressions.

QCAFBIF-Process Built-in Function: This
module processes and validates built-in
functions.

QCABIFV-Built-in Function Validity Checker:
This module validity checks the number and
value of built-in function arguments.

QCAFCMD-Process-Embedded Commands:
This module processes embedded commands
on TYPE (*CMD) parameters.

QCAIFLD—-Perform Interparameter Checks: This
module performs validity checking used to test the
relationship between keywords.

QCACALL-Interpretive Call Processing: This
module invokes an application program when a call
is encountered.

QCATRS—Create Argument List and Invoke
Command Processing Program: This module
invokes user-defined validity check programs and
command processing programs.

-->QCAEXEC-High-Level Language Interface to
Command Execution: This module provides the
interface between a high-level language program and
the command analyzer. It converts commands in a
high-level language program into a form that can be
used by the QCADRYV interface. QCAEXEC moves
the command and command length into the work
area and passes this information to QCADRV.
QCADRYV then processes the command.

The following module is used by most of the command
analyzer modules:

QCAXTND—-Extend Command Analyzer Space Objects:
This module extends the space of a command analyzer
positional list or work area if additional space is needed.

Command Analyzer Overview

Figure CA-2 shows the components and functions that
use the command analyzer and the components and
functions used by the command analyzer to perform its
tasks. Following Figure CA-2 are other figures that
show specific component relationships to provide
command analyzer functions; with each figure is a
description of the relationship.

Command Analyzer CA-5

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Validity
Check,
Parse, and
Execute

Figure CA-2. Command Analyzer Overview

Components and
Functions Using
Command Analyzer

Spooling

CL
Compiler

Command
Definition

Screen Design Aid

Source
Entry
Utility

Components and
Functions Used By
Command Analyzer

Prompter

Command
Processing
Program

Command

Prompter

High-Level
Language
Programs

CL Programs

Subsystem
Controller

Batch
Subsystem
Controller

Interactive
Subsystem
Controller

Analyzer

Application
Program

This document contains restricted materials of IBM. LY21-0571-6

User-Defined
Validity Check
Program

Message
Handler

Work
Control

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

9

Command Analyzer as Used by Spooling, CL -
Compiler, Prompter, Command Definition, and the Spooling .
Source Entry Utility CL Compiler
/ Prompter
n A command is read by one of the components Command Defm!t.ion
shown in Figure CA-3, and the command analyzer Positional Source Entry Utility
is invoked to parse and validity check the

. List
command. The component using command B \

analyzer moves the command string and its length n
to the work area. An argument list containing a
pointer to the positional list space is passed. The Work Argument
positional list contains a pointer to the work area, Area List

the option bytes, and the return value. The work

area contains the command string and the length
of the command string.

Command

n Command analyzer, using information in the CDO,
Analyzer

validity checks the command.

If specified in the CDO, the user-defined validity n
check program is called to perform extended
validity checking.

N Command
Bl cControl is returned to the caller. A positional list Definition B

and work area containing the parsed command Object
and assigned default values are passed back at the
completion of parsing and validity checking.

User-Defined
Validity Check
Program

Figure CA-3. Command Analyzer as Used by Spooling, CL
Compiler, Prompter, Command Definition,
and the Source Entry Utility

Command Analyzer CA-7
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Command Analyzer as Used by a CL Program

Figure CA-4 and the following text describe how the
command analyzer is used by a CL program.

n The CL program assigns values to the symbolic
variables and invokes the command analyzer. A
token list, which resides in the associated space of
the CL program, is passed.

n The command analyzer, using information in the
CDO, validity checks the parameters and performs
interparameter checks in the command.

5 e 1

CL Program

Associated Space

Token
List

Command
Processing
Program

Argument
List

Command
Definition
Object

CL Program

Command
Analyzer

If specified in the CDO, the user-defined validity
check program is called to perform extended
validity checking.

The command analyzer transfers control to the
proper command processing program. An
argument list containing pointers to the converted
data values in the work area is passed.

If an error is detected during the command
analysis process, an exception is signaled and
control is passed back to the CL program.

The command processing program returns control
to the CL program.

Argument
List

User-Defined
Validity Check
Program

Figure CA-4. Command Analyzer as Used by a CL Program

CA-8

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Command Analyzer as Used by a CL Program with B cControl is returned to the prompter if an error is
Prompting detected and an exception is signaled during

command validation, or to enter additional

Figure CA-5 and the following text describe how the command data.
command analyzer is used by a CL program with
prompting. H and B are repeated until the command is

completely entered and properly validity checked.
n The CL program invokes the command analyzer. A

token list, which resides in the associated space of If specified in the CDO, the user-defined validity
the CL program, is passed. check program is called to perform extended

validity checking.
n A positional list and work area are built, and

control is transferred to the prompter, passing this B cControl is transferred to the proper command
positional list and work area. processing program, passing an argument list
containing pointers to the converted data values in
The prompter calls the command analyzer to the work area.
validity check the command being entered and to
execute the command if it meets the validity check The command processing program returns control
requirements. to the CL program.
C!. Program — —CL?OE; m— —
with | Associ |
Prompting ssociated Space |
I Token l
B : List |
|
_____ _I
Positional
Comma.nd Command List
Processing Analyzer Work
Program ﬂ B Area

Argument

Prompter
List

User-Defined
Validity Check
Program

Figure CA-5. Command Analyzer as Used by a CL Program with Prompting

Command Analyzer CA-9
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Command Analyzer as Used by the Subsystem
Controller without Prompting

Figure CA-6 and the following text describe how the
command analyzer is used by the subsystem controller
without prompting.

The subsystem controller receives a command and
calls the command analyzer. An argument list
containing a pointer to the positional list space is
passed. The positional list contains a pointer to
the work area, the option bytes, and the return
level. The work area contains the command string
and the length of the command string.

The command analyzer, using information in the
CDO, validity checks the command.

If specified in the CDO, the user-defined validity
check program is called to perform extended
validity checking.

Control is transferred to the proper command
processing program. An argument list is passed
that contains pointers to the converted data values
in the work area.

Control is returned to the subsystem controller if a
null command is found, or an error is detected and
an exception is signaled.

Control is returned to the subsystem controller
after completion of the application program or
command processing program.

ﬂ Subsystem
Controller
without
Prompting
Argument
Command B B List
Processing
Program n
\
E Command
Argument Command Definition
List Analyzer Object

User-Defined
Validity Check
Program

Figure CA-6. Command Analyzer as Used by the Subsystem Controller without Prompting

CA-10

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

C

Command Analyzer as Used by a High-Level
Language Program

Figure CA-7 and the following text describe how the
command analyzer is used by a high-level language n
program.

n A compiled high-level language program invokes
the command analyzer by calling the high-level
language interface, QCAEXEC. An argument list is
passed that contains the command string and its
length. QCAEXEC. creates space for a work area
and a positional list and moves the command
string and its length into the work area. 6 |

ﬂ QCAEXEC calls QCADRYV, passing the work area
and positional list. QCADRV and other command
analyzer modules, using information in the CDO,
validity check and analyze the command, complete
the positional list, and convert the data values in
the work area.

High-Level
Language
Program

If specified in the CDO, the user-defined validity
check program is called to perform extended
validity checking.

Control is transferred and an argument list
containing pointers to the converted data in the
work area is passed to the proper command
processing program.

Control is returned to QCAEXEC if a null command
or an error is detected and an exception is
signaled.

Control is returned to QCAEXEC after completion
of the application program or command processing
program.

QCAEXEC returns control to the high-level
language program.

Argument
List

QCAEXEC
High-Level
Language

Interface

Positional List

Work Area

Argument List

Figure CA-7. Command Analyzer as Used by a High-Level Language

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

\ Command

QCADRV
Argument Command
List Analyzer
n Driver
Command
Processing User-Defined
Program Validity Check
Program

Definition
Object

PAAB050-0

Command Analyzer CA-11

Command Analyzer as Used by the Subsystem
Controller with Prompting

Figure CA-8 and the following text describe how the
command analyzer is used by the subsystem controller
with prompting.

The subsystem controller receives a command and
calls the command analyzer, passing a positional
list space that contains a pointer to a work area.
The work area contains the command character
string and length of character string.

The command analyzer, using information
contained in the CDO, validity checks the
command.

If the command is not valid, the positional list is
not built, an exception is signaled, and control is
returned to the subsystem controller.

If the command is valid, a positional list is built
containing an entry for the command name.
Control is transferred to the prompter passing the
positional list and work area. Only scalar validity
checking is performed; no interparameter checks
or user-defined validity checking has occurred.
The prompter will prompt for missing keywords,
values, or entry errors.

CA-12

This document contains restricted materials of IBM. LY21-0571-6

The prompter calls the command analyzer with
prompted data in the positional list. The command
analyzer validity checks the individual scalar values
and performs interparameter checks as requested
by the prompter. Errors are returned to the
prompter.

n and H are repeated until the command is
completely entered and properly validity checked.

Interparameter checks are performed and, if
specified in the CDO, the user-defined validity
check program is called to perform extended
validity checking.

If the command analyzer was called to only validity
check the command, as in the case of entering
command parameters one at a time, or an error
was found in the command, control is returned to
the prompter.

If the command analyzer was called to execute the
command and no errors were found, control is
transferred to the proper command processing
program. An argument list containing pointers to
the converted data values in the work area is
passed.

The command processing program returns control
to the subsystem controller.

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

<

Positional
List

Work
Area

Prompter

Positional
List

Work
Area

Argument
List

Command
Processing
Program

Figure CA-8. Command Analyzer as Used by the Subsystem Controller with Prompting

Subsystem
Controller
with

Prompting

Positional
List

Work
Area

S m N

Command
Analyzer

Command
Definition
Object

User-Defined
Validity Check
Program

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980,

Command Analyzer

CA-13

CA-14

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

3

INTRODUCTION

The command definition component of the CPF (control
program facility) provides command processing
programs for the following CL {control language)
commands:

« Create Command (CRTCMD)

Change Command (CHGCMD)
« Display Command (DSPCMD)
« Delete Command (DLTCMD)

Note: The command definition component owns the
command syntax, but the librarian component supplies
the command processing program for the Delete
Command command, the generic delete module
QLIDLOBJ.

Using these commands, along with their associated
command definition source statements, users can create,
change, display, or delete their own commands. This is
accomplished by creating, changing, displaying, or
deleting the CDO (command definition object) of the
specified command.

Command Definition Source Statements

The command definition source statements and their
functions are as follows:

« Command statement—-CMD: This statement defines
the prompt text to be associated with the command
being defined. There must be one and only one CMD
statement in the source file referred to by the Create
Command command.

« Parameter statement—PARM: This statement defines
the attributes of command parameters. The order of
the PARM statements in the source file specifies the
order in which the parameters are passed to the CPP
and validity check routine. At least one PARM
statement must precede all element, qualifier, or
dependent statements. There can be a maximum of
75 PARM statements associated with a command.

Command Definition

Element statement—ELEM: This statement defines the
attributes of elements in a list. If a command
parameter consists of a list of elements that are of a
different type, each element in the list must be
described by an element statement.

Qualifier statement—QUAL: This statement defines
qualified names. If a parameter or list element is a
qualified name, that qualified name must be
described by QUAL statements.

Dependent statement—DEP: This statement defines
which parameters are dependent on each other. The
presence or absence of a parameter and the value of
a parameter determine dependency.

Command Definition CD-1

This document contains restricted materials of IBM. LY21-0571-6

@ Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Command Definition Objects

Each command has its own unique CDO (command
definition object). The CDO contains information about
the command. Figure CD-1 shows the contents of a
CDO.

n The description of the parameters is in the form of
a binary tree (see Figure CD-2, which follows).
There is a node for each PARM (parameter), ELEM
{element), and QUAL (qualifier) statement. The
parameters are linked together in order;
specifically:

« Parameters are linked together in the order they
were specified in the CDS (command definition

source) statement.

- A PARM node may specify a link to a QUAL
or ELEM

+ An ELEM node may specify a link to a QUAL

Example:

Command definition statements:

PARM TYPE (E1)
PARM TYPE (*CHAR)
PARM TYPE (E2)

List of two elements
Scalar
List of three elements

E1: ELEM TYPE (*INT2) List element
ELEM TYPE (*INT2) List element
E2: ELEM TYPE (*CHAR) List element
ELEM TYPE (Q1) List element qualified
name of three
qualifiers
ELEM TYPE (*CHAR) List element
Q1: QUAL TYPE (*NAME) Qualifier
QUAL TYPE (*NAME) Qualifier
QUAL TYPE (*NAME) Qualifier

CD-2

or ELEM
+ ELEMs of alist are linked together
» QUALs of a qualified name are linked together

» A QUAL may not specify a link to another
QUAL or ELEM at a lower level. For example:

QUAL TYPE(Q1)
Q1 : QUAL

There is also a linked list in which each node in
the list represents interparameter dependencies.

Each of the nodes in the binary tree and linked list
have displacements to converted data that is used
to describe each parameter.

Each node in the binary tree has a displacement to
the prompt information associated with that node.

This document contains restricted materials of IBM. LY21-0571-6

Displacement to the address of the
command processing program in the
system-wide entry point table

Name of the command processing program

Displacement to the address of the validity
check program in the system-wide entry
point table

Name of the user-supplied validity check
program

Mode and environment in which the
command is allowed

Name of the dependency message file

Maximum number of parameters that may
be coded positionally

Uniqueness verification field

Number of keywords in the command
definition object

Description of each parameter in n
positional order

Description of interparameter
relationships

Converted data that describes each E
parameter

Prompt information—message |Ds and n
text

Name of the prompt file

Figure CD-1. Command Definition Object

Fixed
Portion

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

The following is a binary tree representation of the
preceding statements:

PARM

E1

ELEM PARM

ELEM PARM

E2

ELEM

ELEM

Q1

QUAL

ELEM

QUAL

Figure CD-2. Example of Command Parameters in a Binary Tree Format

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

QUAL

Command Definition

CD-3

CDOs, as created or changed, are used by the following Building a Command Definition Object
CPF components:
Figure CD~3 shows an example of how command

« Command ana|yzer_to Va||d|ty check commands, to definition source statements are used to build a CDO.
identify the command processing program associated
with a command, and to determine the format of Kl The command definition source statements
parameters passed to that command processing describe a Command that has three parameters, A,
program, B, and C. Parameter A is defined to be one of
three restricted character values; each value can
« CL compiler—to identify the name of the command be four characters long. Parameter B must be a
processing program to be Ca”ed and the format of declmal Vaer n packed deClmal 5,2 fOrmat and
the parameters passed to that command processing must be a value between 1 and 500. Parameter C
program. is an integer 2 value with a default value of *ONE.
*ONE is a special value that maps to an integer
. Data management—to determine the parameter name value of 1.
and prompt text for use by the Display Override
(DSPOVR) command. Bl QCDRPAST puts information about the parameters
into the CDO. The data describing the parameters
« Prompter—to determine the prompt text and the is put into a data table. The displacements to
format of the parameters used in prompting for parameter information in the data table are also
command parameters. put into the CDO.
« Menu—to determine the command prompt text for use QCDRPAS2 takes the information in the data
in the all-commands menu display. table, converts the data into the type specified by
the command definition source statements, and
« Security—to determine that the user is authorized to puts it at the end of the CDO. The displacement
the command function that is requested from a values in the CDO are changed to reflect the
display. displacements to the parameter information that is

now in the CDO.

CD-4
This document contains restricted materials of IBM. LY21-0571-6
© Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

C

Command Definition Source Statements

LABEL: CMD

PARM KWD(A) TYPE(*CHAR) LEN(4) +

RSTD(*YES) VALUES (BOB JIM MARK)

PARM KWD(B) TYPE(*DEC) LEN(5 2) RANGE(1 500)
PARM KWD(C) TYPE(*INT2) DFT(*ONE) SPCVAL((*ONE 1))

Command Definition Object and Data Table
as Built by QCDRPAS1

©

(0]

Command Definition Object as Built by QCDRPAS2

© 06 606 00

o
o

Figure CD-3 Command Definition Object Build Overview

Number of restricted values

Displacements into the Data Table to
the restricted values

Displacements into the Data Table to
the lower and upper range values

Displacement into the Data Table to
the default value

Displacements into the Data Table to
the special FROM and TO values

Number of restricted values

Displacements into the CDO to the restricted

values

Displacements into the CDO to the lower and

upper range values

Displacement into the CDO to the default
value

Displacements into the CDO to the special
FROM and TO values

BIN(15) length followed by character data
Value in packed decimal (5 2) format

BIN(15) Integer 2 value

Command Definition Object

Fixed Portion

(description of parameter A)

(3] [o] [e] [

(o)

e Type-CHAR

(description of parameter B)

Type-DEC
Len-5 2

(description of parameter C)

(2]@

(E) Type-INT2

Data Table Information
(converted values)

This document contains restricted matenals of IBM. LY21-0571-6
« Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

100
105
110
116
119
122
128

Data Table (unconverted)

Attribute Length Value

0| CHAR 03 BOB

6 | CHAR 03 JIM
12 | CHAR 04 MARK
19 | NUMERIC 01 1
23 | NUMERIC 03 500
29 | CHAR 04 *ONE
36 | CHAR 04 *ONE
43 | NUMERIC 01 1

Command Definition Object

Fixed Portion

(description of parameter A)

(A

Q Type-CHAR

(description of parameter B)

(c

Type-DEC
LEN-5 2

(description of parameter C)

(0
e Type-INT2

0003 BOB
0003 JIM
0004 MARK

00100F
50000F

0004 *ONE @

0001 Q

Command Definition CD-5

GENERAL OVERVIEW

Command Definition Modules

The command definition component consists of the
following modules:

Note: An arrow (-->) identifies a module as being an
entry module into the component. Indentation of a
module shows its dependency on a previous module.

-->QCDCCMD-Change Command (CHGCMD)': This
module is used to modify the attributes of an existing
CDO. The following attributes of a command can be
changed:

— CPP name

Validity checker program name

Command mode

Command environment

Text information

>QCDDCMD-Display Command (DSPCMD)': This

module is used to display or print the following

information specified on the Create Command

(CRTCMD) command:

— Qualified command name

— Qualified command processing program name

— Qualified source file name (if data base source file)

— Source file member name {if data base source file)

— Qualified validity checking program name

— Valid modes for the command that is displayed

— Valid environments for the command that is
displayed

— Maximum number of parameters that may be
coded positionally

— Qualified prompt message file name

— Qualified DEP message file name

— Text associated with the command that is
displayed

>QCDRCMD-Create Command (CRTCMD) ': This
module, along with the following modules, read
command definition source statements from the
specified data base file, device file, or inline file and
create a CDO.

'This module is a CPP (command processing program).

CD-6

This document contains restricted materials of IBM. LY21-0571-6

QCDRPAS1—Create Command Pass One: This
module reads the command definition source
statement file and builds a CDO. QCDRPAS1 also
calls the command analyzer to syntax check the
command definition source statements.

QCDRPAS2-Create Command Pass Two: This
module scans the CDO, validity checks all entries,
converts data into an internal format, and moves
the converted data to an area near the end of the
CDO.

-->QLIDLOBJ-Delete Command {DLTCMD)': This
module is used to remove a command from the
library in which it resides. It uses the librarian generic
delete function command processing program to
delete a command. Only the CDO is removed. The
validity check program, the command processing
program, and the CDS (command definition source)
statements are not deleted.

QCDRPAS3-Create Command Pass Three: This
module links the parameters in the CDO into the
order in which the parameters are to be prompted.
The prompt information (text and message
identifiers) is then placed at the end of the CDO.

Create Command Command Overview

Figure CD-4 and the following text describe a Create
Command (CRTCMD) command overview.

n The command analyzer decodes the Create
Command command, processes it, and transfers
control to the command definition module
QCDRCMD. A parameter list is passed that
contains the Create Command command
parameters.

n QCDRCMD calls QCDRPAS1 to build a CDO and
unconverted data table using the information
contained in the command definition source
statements.

Bl QCDRPAS1 calls the command analyzer to validity
check the command definition source statements.
The command analyzer returns contro! to the
command definition module.

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

n QCDRCMD calls QCDRPAS2 to validity check the n
information in the CDO and to convert the data in
the table into an internal format. The converted
data is moved to an area near the end of the CDO.

QCDRCMD calls QCDRPAS3 to link the
parameters in the CDO into the order in which
they are to be prompted and puts the prompt
information at the end of the CDO.

QCDRCMD produces a command definition listing
that consists of the following:

Listing of the source statements

Cross reference listing

Error messages, if any

Parameter
List

* CRTCMD / \K_ QCDRCMD

Command n

ﬂ Create Command

QCDRPAS1

Command Definition

Command Pass 1

Analyzer %

Command
Definition
Object

Unconverted
Data Table

QCDRPAS2

Command
Definition Pass 2

Source
Statements

Validity
Checked
CDO
Converted
Data

QCDRPAS3

Pass 3

Validity
Checked
CDO
Converted
Data

Prompt
Text and
Prompt
IDs

Figure CD-4. Create Command Command Overview

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Command
Definition
Listing

Command Definition

CD-7

CD-8

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

)

C

INTRODUCTION

The CL (control language) compiler component of the
CPF (control program facility) provides the command
processing programs for the Create Control Language
Program (CRTCLPGM) command, Retrieve Job
Attributes (RTVJOBA) command, List Command Usage
(LSTCMDUSG) command, Convert Date (CVTDAT)
command, Retrieve Control Language Program Source
(RTVCLSRC) command, Retrieve Data Area
(RTVDTAARA) command, and Display Program
(DSPPGM) command.

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Control Language Compiler

Control Language Compiler

CL-1

The Create Control Language Program (CRICLPGM)
command is the CL compiler. The CL compiler performs
the following functions:

n Reads CL commands from a source file.

H Performs intracommand and intercommand validity
checking. The command analyzer is used for
individual command syntax checking and parsing.
A positional list and work area is passed.

Bl Generates the code for an object program. The

generated code is called an IRP (intermediate
representation of a program).

CRTCLPGM
Command

Command
Positional / Analyzer
List
Work n
Area
CL
- Compiler
CL
Source
File n
Program
Resolution
Monitor

Figure CL-1. CL Compiler System Overview

CL-2

This document contains restricted materials of IBM. LY21-0571-6

n Calls the PRM (program resolution monitor) to
generate a machine interface template from the
IRP.

B Produces a listing of all commands read from the
source file, along with any errors and
cross-reference listings of labels and variables.

Figure CL-1 shows the relationship among the CL
compiler and the command analyzer and program
resolution monitor during execution of the Create
Control Language Program command.

Compiler
Listing

IRP

Machine
Interface
Program

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J’

9

C

GENERAL OVERVIEW

CL Compiler Modules

The CL Compiler component consists of the following
modules:

Note: An arrow (-->) identifies a module as an entry
module into the component. Indentation of a module
shows its dependency on a previous module.

Compile-Time Modules

-->QCLENTR-CL Compiler Driver: This module is the
entry to the CL compiler. it performs the following
functions:

— Processes the Create Control Language Program

command keywords

Calls other CL modules to perform initialization,
process source commands, and create the
program

Handles terminal exceptions occurring during
compilation

Prints the compiler listing from the compiler print
space

Destroys compiler tables

Closes files

QCLINIT—Initialization: This module creates spaces

and indexes needed by the CL compiler. It also
initializes the communications area used by CL
modules, opens the files used during compilation,
and reads all source into the compiler source
space.

QCLCMDPR-Command Processing: This module
retrieves source commands from the compiler
source space, puts them in the compiler listing
space, and calls the command analyzer to parse
and syntax check them. It calls other compiler

modules to process commands and to do cleanup

work. QCLCMDPR contains the main processing
loop for the compiler. QCLCMDPR also puts
diagnostic messages produced by the command

analyzer and lower-level CL compiler modules into

the compiler print space. This module saves
source information for inclusion in the program’s
associated space.

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

QCLICP1-Initial Command Processing 1: This
module handles labels and invokes the
compile-time processor for the Declare CL
Variable command, Declare Data Area
command, Declare File command, and Program
command. This module saves command
information for inclusion in the program'’s
associated space.

QCLDSVST-Declare Data Area and Build
Symbol Table: This module processes the
Declare Data Area command.

QCLDECST-Declare and Symbol Table Build:
This module processes the Declare CL
Variable command.

QCLDMDCL-Data Manipulation Declare:
This module processes the Declare File
command. It also produces a list of variable
names and attributes for variables implicitly
declared by the Declare File command.

QCLPRCMD-Program Command: This
module processes the Program command.

QCLICP2—-Initial Command Processing 2: This
module handles the Do, Enddo, Return, and End
Program commands. It also generates code for
the end of the THEN clause of an If command,
the end of the ELSE clause, and the end of the
MONMSG EXEC clause. This module saves
command information for inclusion in the
program’s associated space.

QCLGTCMD-Goto Command: This module
processes Goto commands in CL programs.

QCLSSVRC-Send Data Area: This module
processes the Send Data Area command.

QCLIFCMD-If Command: This module
processes If commands in CL programs.

QCLGNEVL-Generate Evaluation Code:
This module processes expressions for the
If and Change Variable commands in CL
programs.

QCLBIFCN-Built-In Functions: This
module processes the built-in functions.

Control Language Compiler CL-3

QCLRSVRC—-Receive Data Area: This module
processes the Receive Data Area command
in CL programs.

QCLMNMSG-Monitor Message Command:
This module processes the Monitor Message
command in CL programs.

QCLXCCMD-Transfer Control: This module
processes the Transfer Control command in
CL programs.

QCLDMWC-Data Manipulation Wait/Cancel:
This module processes the Cancel Receive
and Wait commands in CL programs.

QCLDMCMD-Data Manipulation Commands:
This module processes the Send File,
Receive File, and Send Receive File
commands in CL programs.

QCLCLCMD-Call Command: This module
processes Call program commands in CL
programs.

QCLCHVAR-Change Variable: This module
processes the Change Variable command in
CL programs.

QCLGNEVL—-Generate Evaluation Code:
This module processes expressions on the
Change Variable command.

QCLBIFCN-Built-In Functions: This
module processes the built-in functions.

QCLREGCL-Regular Commands: This
module processes all commands that are not
compiled inline.

QCLWUIS-Where Used Information Save:
This module analyzes the commands
processed by QCLREGCL, and saves
information about any value (that the CDO
for the command indicates is a file). This
information is saved in a structure for
inclusion in the OIR for the CL program.

QCLLSCMD-Else Command: This module
processes the Else command in CL
programs.

QCLDMFIN—-Data Manipulation Finish: This

module generates the following tables:

— UFCB (user file control block)

— Data manipulation table containing pointers to
all data tables, corresponding record format
names, and other 1/0 information

— Data manipulation tables, one table for each
record format name that was referred to in the
program

This module saves information from the data
manipulation table for inclusion in the program’s
associated space.

QCLSTOUT-Symbol Table Output: This module
declares variables in IRP format, puts variables,
labels, and any corresponding attributes and
cross-references in the CL program listing.

This module saves information from the symbol
and parameter tables for inclusion in the program’s
associated space.

QCLMSFIN-Monitor Message Code Completion:
This module processes tables built by
QCLMNMSG. It generates code to declare,
enable, and disable message monitors in a CL
program.

QCLIRPC~IRP Completion: This module generates
the epilogue code for all CL programs. This
module formats saved command information for
inclusion in the program’s associated space.

QCLCRPGM-Create Program: This module sets CL
compiler attributes that, when passed to the PRM will
be used in defining and creating a CL program.
QCLCRPGM then invokes the PRM to create the CL
program. This module copies information saved
during compilation into the created program’s
associated space.

QCLCMPXH-Compiler Exception Handler: This
module is called by other CL modules to handle the
space-addressing violation exception during
compilation.

CL-4
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

The following module is used by QCLCLCMD, -->QCLCLNUP-Clean-up: This module is invoked when

QCLXCCMD, QCLDMCMD, and QCLDMWC: the invocation of a CL program is ended by exception
processing. QCLCLNUP deallocates the space objects
L QCLMAP—Resolution of Special Value Mappings: of the program, and closes the data manipulation files
This module extracts a special FROM value from the used by the program. This module is also invoked by
CDO on commands that are compiled to inline code QCLCLCPR and QCLRTNE to perform clean-up.
when a variable is coded on a keyword with special
value mapping. -->QCLRSVRE-Receive Data Area (RCVDTAARA)': This
module processes the Receive Data Area command,
The following module is used by QCLICP1, QCLICP2, and performs the logging function for the Receive
QCLWUIS, QCLREGCL, QCLDMCMD, and QCLDMWC: Data Area command.
QCLERROR-Error routine: This module is called by -->QCLSSVRE-Send Data Area (SNDDTAARA) : This
compile-time modules to send diagnostic and escape module processes the Send Data Area command, and
messages. performs the logging function for the Send Data Area
command.
Execution-Time Modules -->QCLRTVJA—Retrieve Job Attributes (RTVJOBA)':
This module processes the Retrieve Job Attributes
-->QCLRSLV-Resolve: This module is called at the command.
start of every CL program. It performs the following
functions: -->QCLXCEXC-Transfer Control Exception Handler:
— Allocates a positional list and work area, if needed. This module receives control if the code generated
— Checks to see if the CL program is compatible for a CL program Transfer Control command gets a
with the current release/modification level. machine exception. QCLXCEXC then invokes
— Checks to see if the command logging is in effect QCLRSLV, which creates work spaces needed by the
for the current execution of the CL program. program, sends an appropriate CPF message, and
signals a CPF exception. This causes the call and
-->QCLCLCPR=Call (CALL, TFRCTL)': This module is transfer control diagnostic interfaces to appear
" called to handle the interface to an application consistent to the user.
program. QCLCLCPR also performs logging for the
compiled Call and Transfer Control commands. For -->QCLCMXRF-List Command Usage (LSTCMDUSG)":
the Transfer Control command, QCLCLNUP is This module processes the List Command Usage
invoked to perform cleanup before the CL program command.

relinquishes control.
-->QCLCNVNC-Convert Numeric to Character: This

-->QCLDMIO~Data Manipulation 1/0 (SNDF, RCVF, module is invoked by CL programs to perform
SNDRCVF, CNLRCV, WAIT)': This module performs numeric to character conversions, when required by
the functions of the Send File, Receive File, the Change Variable command.

Send/Receive File, Cancel Receive, and Wait

commands. This module also performs the logging -->QCLCNVCN-Convert Character to Numeric: This

functions for these commands. module is invoked by CL programs to perform
character to numeric conversions, when required by

-->QCLRTNE—Return Execution Module: This module is the Change Variable command.
invoked by the CL program on a normal return.

QCLRTNE performs logging for a compiled Return -->QCLCNVDT—-Convert Date (CVTDAT)": This module
command and normal end-of-program logging processes the Convert Date command.

functions. This module invokes QCLCLNUP to

perform cleanup for a CL program. -->QCLXERR-Execution Time Error Handler: This

module is invoked when a function check occurs in a
CL program which does not have a Monitor Message
command to handle the function check. QCLXERR
sends an inquiry message and processes the reply.

L "This module is a CPP (command processing program).

Control Language Compiler CL-5
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

-->QCLXDUMP-Dump CL Program (DMPCLPGM)":
This module processes the Dump CL Program
command. QCLXDUMP is invoked by QCLXERR
when a dump is requested.

-->QCLRTVDA—Retrieve Data Area (RTVDTAARA}':

This module processes the Retrieve Data Area
command.

-->QCLSCAN-Scan for a Pattern in a String: This

module, called from a high-level language program,

finds the position where a character string occurs
within another string of characters.

Control Language Command with Independent
Command Processing Program

Figure CL-2 shows the relationship between a CL

command with an independent command processing

program, the command analyzer, and the command
processing program.

rCL Program_ —l CL
| Associated Space | Program
|

Token

List

Command
Analyzer

|
|
|
4
CDO /

The CL program invokes the command analyzer. A
token list, which resides in the associated space of
the CL program, is passed.

The command analyzer performs the validity
checking and interfaces with the prompter, if
necessary. If the command analyzer detects any
errors, it signals an exception to the CL program.
If no errors are detected, control is transferred to
the command processing program.

If logging is requested, the command string is
rebuilt in a keyword format and sent to the calling
CL program as a command message. The
command then appears in the job log.

The command processing program performs its
function and returns control to the CL program.

Prompter

Command
Processing
Program
Positional
List
Work
Area

Figure CL-2. Control Language Command with Independent CPP Overview

'This module is a CPP {command processing program).

CL-6

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

CL Program Call and Transfer Control Commands

Figure CL-3 shows an overview of the operation of the
CL Call (CALL) and Transfer Control (TRFCTL)
commands.

Call Command

Bl The CL program initializes a control block,
initializes a work area, and calls QCLCLCPR. If the
control language program does not have a pointer
to the application program, QCLCLCPR resolves
addressability to the application program.
QCLCLCPR sets up an argument list and transfers
control to the application program. If the program
name or library name was coded as a variable in
the CL program, QCLCLCPR validity checks the
contents of the variables for type name.
QCLCLCPR also translates any machine interface
exceptions on the call or the resolve of
addressability to command processing program
exceptions for the CL program. If logging is
requested, QCLCLCPR logs the Call command.

Transfer Control Command (Generic Description)

n If the CL program does not have a pointer to the
application program, QCLCLCPR resolves
addressability to the application program for the
CL program. If logging is requested, QCLCLCPR
logs the Transfer Control command. The CL
program then transfers control to the application
program.

|

C

n CALL
Command

CL
Program
Work
Area
)
QCLCLCPR
Call Command
Processing
Program
Application
Program
n TRFCTL
Command
CL Application
Program . Program
QCLCLCPR

Call Command
Processing
Program

Figure CL-3. CL Program Call and Transfer Control
Command Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Control Language Compiler

CL-7

Delete Program Command

The Delete Program (DLTPGM) command deletes a
program from the specified library along with the

corresponding OIR (object information repository) data.

See Figure CL-4 for the Delete Program command
overview.

Retrieve Job Attribute Command

The Retrieve Job Attribute (RTVJOBA) command
retrieves certain job attributes and puts them in a CL
variable. QCLRTVJA extracts the values requested by
the Retrieve Job Attribute command from the work
control block, process attribute template, and job
message queue, and returns these values to the CL

program. See Figure CL-5 for the Retrieve Job Attribute

command overview.

CL-8

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

DLTPGM
Command

Command
Analyzer

L

QLIDLOBJ
Librarian®
Generic Delete
Function

lsee the librarian component (LI) for further detail.

Figure CL-4. Delete Program Command Overview

RTVJOBA
CL Program

] Command
Command
Analyzer

— QCLRTVJA WCB for Job

Executing

Retrieve Job RTVJOBA
Attributes Command

Figure CL-5. Retrieve Job Attribute Command Overview

3

Convert Date Command

The Convert Date (CVTDAT) command converts a date
from one format to another. Figure CL-6 and the
following text describe the operation of the Convert
Date command.

Bl QCLCNVDT calls QWCSVRDR to verify that the
date is correct.

QCLCNVDT calls QWCSCDFR to convert the date
to the proper format.

QCLCNVDT returns the converted date to the CL

program.
Converted CVTDAT
Date
CL Program
Conlmand
Command CVTDAT
Analyzer
Command Values
QCLCNVDT
Convert Date
) 4n
QWCSCDFR QWCSVRDR
Convert Date Verify Date

Figure CL-6. Convert Date Command Overview

List Command Usage Command

The List Command Usage (LSTCMDUSG) command
generates a report showing which CL programs use one
or more of the commands entered on the List Command
Usage command. Figure CL-7 and the following text
describe the operation of the List Command Usage
command.

n QCLCMXRF calls the librarian module QLILIST to
obtain a list of programs matching the value
specified on the List Command Usage command.

QCLCMXRF examines each program to determine
if it is a CL program.

QCLCMXRF examines each CL program in the list
to determine if the program uses any of the
commands specified on the List Command Usage

command.
LSTCMDUSG ‘ Programs to
Command be Examined
Command
Analyzer
i
Command QCLCMXRF /
Usage List Command ﬂ :
Report Usage -
QLILIST
List Object
List of
Programs
in Requested
Libraries

Figure CL-7. List Command Usage Command Overview

Control Language Compiler CL-9

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Retrieve CL Source Command H

The Retrieve CL Source (RTVCLSRC) command retrieves
the source and other information about the program,
saved in the CL program object, and places it in a data
base source file. Figure CL-8 and the following text
describe the operation of the Retrieve CL Source
command.

n QCLRTVDR invokes subroutines to perform the
retrieve function and sends appropriate escape and
completion messages to the caller of QCLRTVDR.

ﬂ QCLRTVVI performs the following:

« Verifies that the program exists and is a CL
program.

« Verifies authority to the CL program.
« Locks the CL program.
- Verifies that the file exists, that the file is a data

base source file, and that it has a proper record

length.

« Adds the member to the file, if necessary.

» Opens and clears the data base source file
member.
RTVCLSRC
Command

Command
Analyzer

QCLRTVDR

Retrieve
CL Program

QCLRTVEI performs the following:

- Extracts the CL program’s source from the CL
program associated space.

» Extracts the patch/no patch option from the CL
program associated space.

- Extracts original source file information from the
CL program OIR.

» Extracts the user modification flag from the CL
program OIR.

QCLRTVFS formats the CL program source and
other information and puts it in the data base
source file member.

QCLRTVCU is used in the Retrieve CL Source
command processing. QCLR"LVCU performs the
following:

« Unlocks any programs that are locked.

- Destroys any work spaces.

« Closes any files.

QCLRTVVI QCLRTVEI QCLRTVFS
Verify Extract Format
Input information Source

QCLRTVCU

Clean
Up

Figure CL-8. Retrieve CL Source Command Overview

CL-10

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

C

Display Program Command

The Display Program (DSPPGM) command produces a
display showing the attributes of a program. Figure
CL-9 and the following text describe the operation of
the Display Program command.

n The command analyzer decodes a Display Program
command, and control is transferred to
QCLDSPPG.

H The program specified on the command is
accessed to obtain its attributes.

The program attributes are formatted and
displayed or printed.

DSPPGM
Command
[1]
Command
Analyzer
Display
QCLDSPPG a Program to
El Be Displayed

Printer /

Figure CL-9. Display Program Command

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Control Language Compiler

CL-11

Change Program Command

EH QCLCHGPG makes the changes to each program.
If the text is being modified, module QLIMROIR is

The Change Program (CHGPGM) command modifies the called to change the text. If the program must be
attributes of one or more programs. Figure CL-10 and re-encapsulated, a new program object is created,
the following text describe the operation of the Change and the old program is replaced with the new
Program command. program.

Bl QCLCHGPG calls the librarian module QLILIST to B it any errors are encountered, QCLCHEXT is called

obtain a list of programs matching the value

specified on the CHGPGM command.

CHGPGM Command

l

Changed
Programs Command
Analyzer
: QCLCHGPG [g
e

/

as an invocation exit program to back out any
changes that are not complete.

Programs to
Be Changed

H H

QLILIST QLIMROIR

List of
Programs

Figure CL-10. Change Program Command Overview

CL-12

QCLCHEXT

PAABOOY-O

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

<

C

INTRODUCTION

The console function manager component of the CPF
(control program facility) provides the interface between
the console and display operations. This interface
causes the console to appear similar to the interface of
the 5251 display function manager. Unlike the 5251
function manager, the console function manager uses
module QCOREQIO to perform its own |/O operations,
instead of the SNA-T3 component.

The console function manager runs independently of
processes or devices active on the system, and is
capable of running in several processes simultaneously.

GENERAL OVERVIEW

Console Function Manager Modules

The console function manager component consists of
the following modules:

Note: An arrow (-->) identifies a module as being an
entry module into the component. Indentation of a
module shows its dependency on a previous module.

-->QCOOPEN-Console Open: This module opens a
display file.

-->QCOPUT-Put to Display: This module performs the
write-to-display function.

QSFPUT—Put to Subfile: This module puts and
updates subfile records and subfile message
records.

QSFCRT—Create Subfile: This module creates the
subfile and sets up necessary subfile controls.

QCOSFLCT—Console Subfile Control Records
Function: This module displays the subfile and
performs functions on the subfile as specified in
the subfile control record: clear, delete, and so
forth.

Console Function Manager

QSFMQDSP-Message Queue Display: This
module handles the program message queue
display functions.

-->QCOGET-Console Get Function: This module
performs the read from display as well as several
operator-requested operations, such as field
validation, print display, and second level text.

QSFGET-Get From Subfile: This module retrieves
records from a subfile.

QSFHSFL-Help Key Support: The module
prompts QCOGET to display the second level text
for a message in a message subfile.

QCORTSFL-Roll/Truncate/Fold Subfile Support:
This module performs subfile roll and fold/truncate
functions.

QCOVLFLD-Field Validation: This module handles
field validation functions.

-->QCOCLOSE—Console Close: This module closes a
display file.

-->QCORST-Restore File: This module restores a
suspended file on a display device.

-->QCOMEEH—-Console Nowait Event Handler: This
module handles the machine-signaled event (REQIO
complete) that follows a nowait operation.

-->QCOSPEND-Suspend File: This module suspends a
file on a display device.

-->QCOMSG—Console Message Function: This module
turns the console Message Waiting light on or off.

-->QCOPTMSG-Special Put Message: This module is
used by CPF work management to display an
operator message independent of the device file
open.

-->QCODSMSG-Special Display Status Message: This

module is used by CPF to display a message with the
status of an active display file.

Console Function Manager CO-1

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

The following module is used by QCOREQIO. Console Function Manager External Interfaces

QCOERROR-Console Exception Handling Routine: Figure CO-1 and the following text describe the external
This module handles exceptions signaled by interfaces to the console function manager. An external
QCOREQIO. interface is defined as a call from the using program to

a module within the function manager.

The following module is used by QDCCRLUD,
QWCISCFR, and QDCVALUD. [1]

QCOLUDIN-LUD Initialization: This module
initializes the LUD (logical unit description)
associated space for the console and is normally

Function manager users: The function manager
does not distinguish one external user from
another. A call from an external user identifies a
requested function. The function manager
performs that function regardless of who the

invoked only at CPF start time. caller is.
The following module is used by QCOOPEN, QCOPUT, n Upward interface: All execution time requests and
QCOGET, QCQOSPEND, QCORST, QCOMSG, controls from the user program are provided
QCOCLOSE, QCOPTMSG, QCODSMSG, and through this interface. The program provides
QCOMEEH. information to the modules through the UFCB
(user file control block), the option list, the control
QCOREQIO-Request |/0O: This module issues the list, and the user output buffer. Information is
console /0 requests. returned in several ways: through the ODPCB

{open data path control block) feedback areas, the
UFCB buffer pointers, events, exceptions, and the
user input buffer.

n Function manager modules: Each call to a console
function manager module is specified through an
ODP (open data path) to the console display.

n 5

Applications, Unles, and CPF Components

1

QCOMEEH'

Machine

Event Handler ﬂ

i ODMCQPEN QDMCLOSE

: Common Commaon
! Open Close
¥
L}
|
|
| 3]
1
, QCOGET QcoPUT QCOOPEN QCOSPEND QCORST QCODSMSG QCOPTMSG gcomse QcoCLOsE
| Console Console Console Suspend Restore Display Speaial Message Console Close
! Get Put Open File File Message Put Message Function
! L LT [I [| [|
| [T |
: QCOREQIO
| Subtile 5
: Modules Request 1/0
1 |
| Machine intertace
: REQIO
i
1
1 Console
1 Request 1/0 Completion Event 1/0

Manager 'see Figures CO-2 and CO-8 for detail.
25ee Figures CO-9 and CO-10 for detail.

Figure CO-1. Console Function Manager External Interfaces .
CO-2
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Console Function Manager Internal Interfaces

Figure CO-2 and the following text describe the internal Machlne—
L interfaces to the console function manager. Signaled
Events
n The REQIO complete event is signaled whenever a]
put nowait or get nowait operation is completed. | o _____Machine
Console
n QCOMEEH dequeues the completed request block
from the machine interface response queue and REQIO n
calls QCOREQIO to process the request block. Complete
When control returns to QCOMEEH, it then
determines if the request type is a put or a get. If Nowait
the request is a put nowait, the put nowait Operation
complete event is signaled to the user. Complete
QCOMEEH
n If the request is a get nowait, QCOGET is called to
process the input data. The get routines in Nowait ﬂ
QCOGET can: detect an operator error, send a Event Handler
message, and reissue the get nowait; handle an

operator request—help or print; print user data. If
the get routines do process good user input data,
QCOMEEH signals a data available event to the

user, but that event will not be signaled if the get Process Process
nowait had to be reissued. Request Froces n
QCOREQIO QCOGET
W Request 1/0 Conso.le Get
Function

Figure CO-2. Console Function Manager Internal interfaces

Console Function Manager CO-3
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980

Put Operation

Figure CO-3 and the following text describe a normal
put operation.

For a field-level put request, the user buffer
contains the option indicators followed by all
hidden and output fields as described in the device
file. Field data is processed one field at a time and
is put into the source/sink data area along with
the necessary controls to display the data. Hidden
fields are saved in the function manager work
area.

A nonfield-level put user buffer contains a
character string that is treated by the function
manager as a single field of data to be sent to the
display. The character string is moved from the
user buffer to the source/sink data area without
being examined or altered. All necessary controls
to display the data are supplied by the function
manager.

The user buffer for a user-defined data stream
request contains the complete console-dependent
data stream. As in a nonfield-level put, the data is
moved into the source/sink data area just as it
was passed to the function manager. With a
user-defined data stream request, the function
manager does not add display controls to the data.

Message file: The user can optionally specify a
message from the message file as output data.
QCOPUT retrieves the message and sends it to
the console user.

Device file: Default data and constants from the
device file can be sent to the console. The data is
taken from the device file, processed and placed in
the source/sink data area.

Source/sink data: The source/sink data {part of

the request block) is where the function manager

builds the console-dependent data stream that is
to be transmitted to the console. The data stream
contains all of the controls needed to display the

user record as described in n

Function manager work area: The function
manager work area is a part of the ODPCB (open
data path contro! block). As the function manager
builds the output data stream in the source/sink
data area, it also builds a user buffer image in the
function manager work area. This work area
contains an image for each active record on the
console screen.

Job log: The device file record, as seen in the
user buffer, can optionally be sent to the job log
as well as to the console.

1/0 feedback area: This area is updated at various
times while the function manager is performing the
put operation.

co-4
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

User Program

User Buffer
Option Indicators
Hidden Fields
Output Fields

Message File 2] Open Data Path

1/0 Feedback

Messages A
rea
QCOPUT
Build Output
Stream
Device File n Job Log
Field Logged
Descriptions n Records
Source/Sink
Data
Console Data
Stream
B FM Work Area
Record Save
Area
Console

Figure CO-3. Put Operation

Console Function Manager CO-5

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Put to Subfile Record (Data Fiow) B The user can optionally specify a message key and

a program message queue as a source of data for

Only field-level files provide subfile functions. The message subfiles. The subfile modules receive a
subfile functions do not support nonfield-level files. copy of the messages specified from the message
User data is treated the same as if the request were to queue and place these into the subfile.

a nonsubfile record by the put routines. QCOPUT

determines that the record is a subfile record and ﬂ QSFPUT calls QSFMQDSP when the put operation

transfers control to QSFPUT. to the subfile record specifies that the data to be

placed in the subfile should come from a program
Figure CO-4 and the following text describe a put to a message queue instead of the user buffer.
subfile record operation.

The subfile is where all subfile information from

B rora subfile record put request, the user buffer (or the user buffer is stored. The subfile record
a separate indicator area) contains the option remains in the subfile until the using program
indicators followed by all hidden and output fields requests that it be displayed.

as described in the device file.

n The record, as seen in the user buffer, can

n The field descriptions for the subfile record are optionally be sent to the job log as well as to the
received from the device file and placed in the subfile. This is done independent of the subfile
subfile. functions.

n QSFPUT takes the data and its attnbutes, one field ﬂ The 1/0 feedback area is updated at various times
at a time, and saves them in the subfile. All of the while the function manager is performing the put
information needed to display the record as part of operation. Additional information, such as the
the subfile is maintained in the subfile, except for relative record operated on, is put in the I/0
constants that are kept in the device file. The feedback area for subfile functions.

record remains in the subfile until the using
program requests that it be displayed.

Bl QSFPUT calis QSFCRT during the first subfile
record put operation to create the subfile space
that will receive all the data from the user buffer
or the program message queue if the subfile is a
message subfile.

CO-6
This document contains restricted materials of IBM. LY21-0571-6
©Copyright 1BM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Device File

Field
Descriptions

User Program

User Buffer
Option Indicators
Hidden Fields
Output Fields

}

QCOPUT

Build Qutput Data
Stream Call Subfile

s ¥

QSFPUT

Open Data Path

I/0O Feedback
Area

[

Place Record

in Subfile
a a
QSFCRT QSFMQDSP
Creates Message
Subfile Space Queue Display

Figure CO-4. Put to Subfile Record (Data Flow)

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

7\

Job Log

Logged
Records

Subfile

Subfile
Records

Program Message
Queue

Messages

Console Function Manager

CO-7

Put to Subfile Control Record (Data Flow)

Only field-level files provide subfile functions. The
subfile functions do not support nonfield-level files.
User data is treated the same as if the request were to
a nonsubfile record by the put routines. QCOPUT calls
QCOSFLCT if a put is done to the subfile control record,
and a subfile function is requested (such as initialize,
delete, and so forth). Operations to the subfile control
record only cause |/0 to the console if the display
subfile or display subfile control record function is
indicated.

Figure CO-5 and the following text describe a put to a
subfile control record operation.

n For a subfile control record put request, the user
buffer contains the option indicators followed by
all hidden and output fields as described in the
device file.

n The function manager processes a put to the
subfile control record in two passes. First, the
function manager processes a put to the subfile
control record as if it were a nonsubfile record.
This includes preparing any fields contained in the
subfile control record for display by building a data
stream, if the display subfile control record
keyword is specified. Second, the function
manager checks if the display subfile keyword is
specified, and if so calls QCOSFLCT to add the
subfile records to be displayed to the data stream.

If the subfile initialize keyword is specified for the
subfile control record, and the subfile space has
not been created, QCOPUT calls QSFCRT to
create the subfile space for the subfile records.
QCOPUT then calls QCOSFLCT to initialize the
subfile records from the device file description.

n The constants are used from the device file to
build subfile records in the data stream.

B The user can optionally specify a message key and
a program message queue as a source of data for
a subfile of messages. The subfile modules
receive a copy of the messages specified from the
message queue and place these into the subfile.

CO-8

This document contains restricted materials of IBM. LY21-0571-6

The subfile is where all subfile information from
the user buffer is stored. The subfile record
remains in the subfile until the using program
requests that it be dispiayed.

The source/sink data, which is a part of the
request block, is where the subfile and console
function managers build the console-dependent
data stream that is to be transmitted to the
console. The data stream contains all of the
controls needed to display the user record as
defined in the device file, and is built only when
displaying the subfile via a put to the subfile
control record.

The function manager work area is a part of the
ODPCB (open data path control block). As the
function manager builds the output data stream in
the source/sink data area, it also builds a user
buffer image in the function manager work area.
This work area contains as many buffer images as
there are records with input capable fields on the
console screen, except for subfile records. A
single record buffer image is maintained for each
subfile description, regardless of the number of
records displayed.

The record, as seen in the user buffer, can
optionally be sent to the job log as well as to the
subfile. This is done independent of the subfile
functions.

The 1/0 feedback area is updated at various times
while the function manager is performing the put
operation. Additional information, such as the
relative record operated on, is put in the I/0
feedback area for subfile functions.

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

Bl User Program

User Buffer
Option Indicators

Hidden Fields m Open Data Path
Output Fields

1/0 Feedback
Area

a Job Log

P
QSFCRT QcopPUT Logged

Records

Build Output
Data Stream
Call Subfile

a
FM Work Area
Device File
Field 2 |
Descriptions
QCOSFLCT

Creates
Subfile Space

L~ L 4 | L/

Source/Sink
Data
Subfile
Control Console Data
Operations Stream Subfile
a
fi
Subfile
Program Message QSFMQDSP Subfile
Queue Records
Message Queue
Messages Display

Figure CO-5. Put to Subfile Control Record (Data Flow)

Console Function Manager CO-9
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980. 1981. 1982, 1983. 1984, 1985

Get Operation

Figure CO-6 and the following text describe a normal
get operation.

n Actual data does not come from the device file
during a get operation, but record and field
descriptions from the device file are used to
process the input information.

a To initiate the read operation, a Read Modified
command is put in the source/sink data area and a
transmitted to the console. To satisfy the read, the
console user must press a command key or the
Enter/Record Advance key.
a
n When the read operation is completed, all fields
with the modified data tag on are returned to the
function manager in the same source/sink data
area that contained the Read Modified command.

n If the field description specifies validity checks
(such as range or list check) during field
processing, QCOGET calls QCOVLFLD to perform
those checks.

B Input records can optionally be logged in the job
log.

E If subfile records are received from the console,
QCOGET alters its normal field process to handle
the subfile records. When the first subfile field
data is received, QCOGET retrieves the proper
record from the subfile and places it in the record
save area of the function manager work area. All
fields received for that subfile record are then
processed in the normal manner. When all fields
are processed, the subfile record is returned to the
subfile with the new data. This process is
repeated for each subfile record that is modified
by the console user.

CO-10

When QCOPUT builds the output data stream in
the source/sink data area, it also builds a user
buffer image in the function manager work area.
These buffer images are updated as QCOGET
processes each modified field returned from the
console. At the completion of the get operation,
all of the modified data on the display screen will
be represented in the record save area of the
function manager work area, in the subfile, or in
both places.

The 1/0 feedback area is updated at various
points in the function manager during the get
operation.

For the normal field-level get operation, the user
buffer contains response indicators followed by all
of the input fields (including any hidden fields) as
described in the device file. The data is moved
from the record save area in the function manager
work area to the user buffer.

During a normal nonfield-level or a user-defined
data stream get operation, the input data is moved
directly from the source/sink data area to the user
buffer.

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

User Program

User Buffer
Response Indicators

Hidden Fields
Input Fields Open Data Path
1/0 Feedback
Area
Device File QCOGET
Issue Decode FM Work Area
Field Read and Process

Descriptions Command | Input Data

QCOREQIO Subfile

Console Data Records
Stream

=

Handles 1/0

Job Log

Logged
Records

a
n Subfile
Source/Sink Data

Console

QCOVLFLD

Field Validation

Figure CO-6. Get Operation

Console Function Manager CO-11
This document contains restricted materials of IBM. LY21-0571-6

@©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Get From Subfile Record {Data Flow)

Open Data Path n

Figure CO-7 shows an overview of the data flow for a

get from subfile record operation. KO Feedback
rea

n Actual data does not come from the device file
during a get from subfile operation.

B Input records can optionally be logged. The data n
is taken from the user buffer, after being put there Device File QCOGET
by QSFGET, and sent to the job log. n Call Subfile Module
Field to Retrieve
n A get from subfile gperatuon does not c§use an Descriptions Subfile Record
I/0 console operation. Instead, control is

transferred to QSFGET to retrieve the requested
record from the subfile.

n QSFGET locates the correct record and moves it
to the user buffer. All field processing and Job Log B QSFGET
validating was done when the data was received
from the console (see Figure CO-6). Because the Logged Get f.rom
records are stored in the subfile with the controls Records Subfile
to redisplay them, the fields are placed in the user]
buffer one field at a time.

User Program

B Output only fields are also returned to the user

buffer when the record is a subfile record. User Buffer Subfile
Response Indicators

n The |/0O feedback area is updated at various :—:dgfr::iz:zlsds B Subfile
points by the function manager while performing OL‘J)tpU‘[Fields Records
the get operation. In addition to the normal

information, certain subfile information, such as

relative record number returned, is also included in Figure CO-7. Get from Subfile Record (Data Flow)
the 1/0 feedback area.

C0-12
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

This page is intentionally left blank.

C

Console Function Manager CO-13
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Pass Option of the Suspend Module

The pass option of QCOSPEND indicates that the

console user intends to pass across processes this
display device and the unformatted data that was

received on the last input request. ’

QCOSPEND places a pointer to the last request block
used by the get operation. A pointer to this new request
block is placed in the LUD (logical unit description)
associated space. This is how the actual request block
is passed to the new process. By passing the logical
unit description lock, the new process has addressability
to the request block, which contains the unformatted
data that was last read. QCOCLOSE always checks to
see if a passed request block exists and, if one is found,
destroys it along with the regular file request block.

Get (or Put-get) Nowait Function

The get {or put-get) nowait request involves functions
by several console function manager modules. Figure
CO-8 and the following text describe the get (or
put-get) nowait function.

n The using program requests a get {or put-get)
nowait operation.

ﬂ QCOGET (or QCOPUT) processes the user request
similar to a wait request, except that, before
calling QCOREQIO to do the request I/0s, it
indicates in the request block that this a nowait
request. When QCOREQIO returns, QCOGET {or
QCOPUT) returns to its caller.

n QCOREQIO recognizes the nowait request and
performs the REQIO instruction but does not wait
for the request to complete nor does it do the
dequeue of that request. Instead, QCOREQIO
returns to its caller.

n The machine issues the request |/0O to the display
as usual.

B Up to this step, each module has processed the
user request and returned to its caller. No module
has waited for a response from the console
device. The invocation stack contains only the
using program.

CO-14

This document contains restricted materials of IBM. LY21-0571-6

When the operator responds to the get or the
console device acknowledges the put, the machine
enqueues the corresponding request block on the
machine interface response queue in the normal
manner. Because the nowait flag is set on in the
request block, the machine signals the REQIO
complete event.

The REQIO complete event invokes the nowait
event handler module, QCOMEEH, which does a
dequeue of the completed request block.

QCOMEEH calls QCOREQIO to process the
dequeued request block.

If the request was a get nowait, QCOMEEH calls
QCOGET to process the input data. QCOGET
recognizes the event handler call and processes
just the user input data. If the operator requested
a function-manager function, such as print or help
text, QCOGET handles the request and reissues
the nowait request.

When contro!l is returned to QCOMEEH from
QCOREQIO, QCOMEEH checks to see if valid data
was entered. If valid data was entered, the data
available event is signaled to the user. In an
operator requested function, the nowait event
handler module will not see any valid operator data
and QCOMEEH terminates without signaling the
data available event (flow returns to n).

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

User Program

QCOGET
or QCOPUT

Console Get or Put

QCOREQIO
Request 1/0
[4] Machine 1/0 to the Console
E Machine Response from the Display
Event Signaled
QCOMEEH
Nowait
Event Handler
QCOREQIO QCOGET
Request |/O Console Get

Figure CO-8. Get (or Put-get) Nowait Function

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Console Function Manager

CO-15

Subfile Record (Module Flow)

Figures CO-9 and CO-10 show the module flow for a
put to subfile and a get from subfile record.

QcopuUT

— Put Subfile Record
— Update Subfile Record
— Put Subfile Control Record

QSFPUT QSFCRT QCOSFLCT

— Put New Record in Subfile — Create Subfile Object — Initialize Subfile
— Call QSFCRT if First Put — Initialize Header Area — Display Subfile
— Initialize Control Tables — Delete Subfile

— Update Subfile Record Clear Subfile

QSFMQDSP

— Initialize Message Subfile

Notes:

1. QSFPUT is invoked only for operations directed at the subfile record.
2. QCOSFLCT is invoked only for control record operations.

Figure CO-9. Put to Subfile Record (Module Flow)

CO-16
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

QCOGET

— Get Subfile Record
— Operator Response

QSFHSFL

— Help for Subfile
Messages

QSFGET

— Get Relative Record
— Get Next Changed
From Subfile

QCORTSFL

— Roll Function

— Fold Function

— Truncate
Function

Notes:

1. QSFHSFL is called only if the operator puts the cursor in a displayed subfile of messages and presses the Help key.

2. QCORTSFL is called only if a subfile is displayed and the CA/CF key is pressed for fold/truncate or roll.

Figure CO-10. Get from Subfile Record (Module Flow)

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Console Function Manager

CO-17

J

CO-18
This document contains restricted materials of IBM. LY21-0571-6
© Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

INTRODUCTION

The copy component of the CPF (control program
facility) provides the copy file function. This function is
used to copy all or part of a device file, spool inline, or
data base file to another device file or data base file.
Records to be copied can optionally be selected on the
basis of data content, relative record number, or key. If
a source file is being copied, new sequence numbers,
zero dates, or both can be inserted in the source fields.
As part of the copy file function, the records being
copied, the records being excluded, or both can be
printed in either a hexadecimal and character format or
in character-only format.

GENERAL OVERVIEW

Copy Modules

The copy component consists of the following modules:

Note: An arrow (-->) identifies a module as being an
entry module into the component. Indentation of a
module shows its dependency on a previous module.

-->QCPEXOFL-Copy File (CPYF,CPYFRMDKT,
CPYTODKT, CPYFRMTAP, CPYTOTAP, CPYSRCF)':
This module error checks user input and calls other
copy modules to complete the copy file function.

QCPFLD-Field-Level Processor: This module is
called if both the from-file and the to-file are data
base files with formats that are not identical. It
compares the difference between record formats
and the FMTOPT parameter option specified, and
sends diagnostic and escape messages as
appropriate. It builds a field mapping table
containing attribute information for each field to be
mapped from the input buffer to the output buffer.
QCPFLD also validates the selection parameters
specified, and sets fields in the copy control block
based on user-defined record selection values for
the FROMKEY, TOKEY, INCCHAR, and INCREL
parameters. If INCREL is specified, a record
selection table is built.

"This module is a CPP (command processing program).

Copy

QCPEXCON-Copy File Execution: This module
opens the files, calls a module to perform the |/0
operations, and closes the files. QCPEXCON uses
the copy control block, and other tables to control
its processing. QCPEXCON uses the following
modules:

QCPFRMBR-Process Members and Labels:
This module is called if the from-file and the
to-file are both data base files, or if a multiple
data base member or diskette label copy is
requested. It builds a member table containing
a list of from-file members or labels to be
copied.

QCPCREAT—Create a To-File and Members: If
the from-file is a data base file, CRTFILE
(*YES) is specified and the to-file does not
exist, this module is called to create a physical
file and members with the same record format
and access path as the from-file. If the to-file
exists, but the member(s) copied do not, then
QCPCREAT is called to add the necessary
members.

QDBFFCPY—Fast Copy: This module performs
fast physical data base file to physical data
base file 1/0, when individual records do not
have to be processed.

QCPGENIO-General |/0 Routine: This module
performs blocked record /0 for all copy
functions.

The following module is used by QCPEXCON and
QCPGENIO.

QCPPRINT—Copy File Print: This module is
called when TOFILE (*LIST) or the PRINT
parameter is specified, to print headings and
messages on the listings.

QCPCLNUP—-Copy File Clean-Up: This module
gets control from QCPEXOFL for normal copy
completion, or by machine functions as an
invocation exit for an error termination.
QCPCLNUP closes files (if necessary), releases file
locks, and destroys the temporary spaces created
by copy for use as workareas.

Copy CP-1

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Copy File Operation Overview

Figure CP-1 and the following text show the copy file
operation.

CcP-2

The copy file function may be invoked by CL input
of the Copy File (CPYF), Copy From Diskette
{CPYFRMDKT), Copy to Diskette (CPYTQDKT),
Copy From Tape (CPYFRMTAP), Copy to Tape
(CPYTOTAP), and Copy Source File {CPYSRCF)
commands.

The copy file function may also be invoked by
another CPF component using a macro interface.
The macro interface offers only a limited subset of
the parameter options that are available to the CL
user.

Each command is syntax checked by the command
analyzer before QCPEXOFL is passed the
command parameters. QCPEXOFL performs
validity checking and preexecution setup, then calls
an execution module. Record selection and
copying, and the print function are performed
based on the file characteristics and user options
specified.

Based on information about the from-file and
to-file, QCPEXOFL performs command validity
checks to detect errors that were not discovered
by command analyzer syntax checking. The
following types of errors can be detected:

+ Library, file, or format cannot be found.

+ From-file or to-file is not a valid type.

- User not properly authorized.

+ Parameters supplied were not appropriate for
the file characteristics.

« Parameters required by the file characteristics
were not supplied.

« Conflicting parameters were entered.

The from-file and to-file are locked and various
file extracts are done to determine file attributes.
If an error is detected, the copy component
terminates the command and issues the
appropriate exception message. If the command is
valid, QCPEXOFL calls another module to do
further preexecution setup and then calls the
execution module. A copy work space and two
temporary spaces (for use by file and member
extracts) are created by QCPEXOFL, updated by
QCPEXOFL and other modules. The copy work
space contains the copy control block, and all
other control blocks and tables built by copy to
control execution. A pointer to the copy control
block is passed to the execution module for use in
controlling the copy operation. Pointers to the
tables created are stored in the copy control block.

QCPEXOFL transfers control to QCPCLNUP, and
QCPCLNUP performs normal copy completion.
QCPCLNUP may also be invoked by machine
function as an invocation exit.

If the from~file and the to-file are both data base
files with nonidentical record formats, QCPFLD will
build a field mapping table. This table indicates
how fields are mapped {(moved and converted).

QCPFLD is also called to validity check and set
fields in the copy control block, based on the
selection parameters entered on the copy
command. If INCREL is specified, a field selection
table is built for use during the copy execution
phase.

QCPEXCON controls the actual data copy. The
from-file can be a diskette, card reader, tape,
spool, inline file, physical file, or logical file. The
to-file can be a diskette, card punch, tape, printer,
physical file, or special value *LIST.

QCPEXCON performs the file open and close
functions. Get, record selection, field mapping,
and put operations are performed by QCPGENIO
or QDBFFCPY. A pointer to the copy control block
is passed as a parameter for use in controlling 1/0
operations.

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

If the from-file and the to-file are both data base
files, or if a multiple data base member or diskette
label copy is requested, QCPFRMBR is called to
extract member information. A member table is
built that contains the list of from-file members or
diskette labels to be copied.

If the to-file does not exist, QCPCREAT will create
a physical file and members with the same record
format and access path as the from-file, provided
CRTFILE (*YES) has been specified. If the to-file
exists, QCPCREAT will create any member in the
to-file that does not exist, using the name of a
corresponding member in the from-file.

Copy
Commands

Command
Analyzer

l

P
QCPFLD QCOEXOFL

Field-Level
Processing

Copy File

QCPEXCON

Copy File
Execution

QCPGENIO performs |/O operations for all types
of files, including printing record data on the
*LIST, *COPIED, and EXCLD listings. Records are
printed in hexadecimal and character format or
character-only format, 100 characters to a print
line.

Print Function: QCPPRINT is called by
QCPEXCON and QCPGENIO to print headings and
messages on the *LIST, *COPIED, and *EXCLD
listings. A listing block is allocated and initialized
by QCPPRINT, and used by QCPPRINT and
QCPGENIO.

QCPCLNUP

Copy Clean-Up

QCPFRMBR

Process Members
and Labels

QCPCREAT

Create
Members

QDBFFCPY

Fast Copy

QCPGENIO

General 1/0
Routine

QCPPRINT

Copy File
Print

Figure CP-1. Copy File Operation Overview

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Copy CP-3

CP-4

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

5424 Function Manager

INTRODUCTION -->QCSPTGT-Card Put/Get: This module performs
both put and get operations for |/O operations on

The 5424 function manager component of the CPF the 5424 MFCU.

(control program facility) provides the support for the

5424 MFCU {multifunction card unit) on System/38. -->QCSPUT-Card Put: This module sends records to
the 5424 MI-Ci! to be punched and/or printed on the

The following MFCU functions are supported by the cards.

5424 function manager:

-->QCSXGERR-Exception Generator and Error Handler:
+ Open MFCU file for processing This module handles all exceptions and generates all
CPF messages.
+ Close MFCU file to processing
-->QCSFEOD—-Forced End-of-Data: This module forces
+ Read data from an MFCU input file the write of internally-buffered data or read to an
EOF end-of-file).
« Write data to an MFCU output file

-->QCSEVT-Event Handler: This module handles the
» Read and write data to MFCU 1/0 files operator intervention required event.

-->QCSLUDIN—-Card LUD Initialization: This module
GENERAL OVERVIEW initializes the 5424 MFCU LUD (logical unit
description) associated space.

5424 Function Manager Modules

The 5424 function manager consists of the following
modules:

Note: An arrow (-->} identifies a module as being an
entry module into the component. Indentation of a
module shows its dependency on a previous module.

-->QCSCLOSE-Card Close: This module closes a file
to processing on the 5424 MFCU.

-->QCSGET-Card Get: This module reads records from
the 5424 MFCU.

-->QCSOPEN-Card Open: This module opens a file to
processing by the 5424 MFCU.

5424 Function Manager CS-1
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

5424 Function Manager Operation

Figure CS-1 and the following text describes the
operation of the 5424 function manager.

n A high-level language program or the spooling
component, through the QDMCOPEN module of
common data management, calls QCSOPEN to
open a card device file for I/0 processing.

o An argument list is passed that contains a
pointer to the UFCB (user file control block)
and an index into the ODPCB (open data
path control block) for the device being
opened.

G Record lengths and the hopper to be used
for the |/ O operations are determined and
appropriate messages or exceptions are
generated.

The type of operation to be performed on the
5424 MFCU is determined and the necessary
objects for that operation are created and
initialized.

QO 1w request |/Os are issued to fill the two
buffers used when nondevice-dependent
input operations are requested, one REQIO is
needed to feed a card from the specified
hopper to the wait station when output
operations are requested, and one REQIO is
needed to read a card for input on all
combined files.

CS-2

After a file has been opened for input or |/0O
operations, the interface to QCSGET is valid.

o An argument list is passed that contains a
pointer to the UFCB, a pointer to a control
list, and a pointer to an option list.

0 If the option list does not specify option
wait, an exception is signaled.

A card is read from the MFCU and the data is
returned to the user for 1/0 files and
device-dependent input operations. For
nondevice-dependent input operations, records are
returned, one at a time, for each get from the
buffers that were filled by the open operation.

o When a buffer is empty, cards are read to
refill it. If an 1/0 error is detected, error
recovery is attempted.

e When EOF (end-of-file) is detected, an
exception is signaled.

When a file has been opened for output or |/0
operations, the interface to QCSPUT is valid.

0 An argument list is passed that contains a
pointer to the UFCB, a pointer to a control
list, and a pointer to an option list.

0 if the option list does not specify option
wait, an exception is signaled.

G An |/ 0 operation to punch cards, print cards,
or both is performed for output
device-dependent control operations. If an
I1/0 error is detected, error recovery is
attempted. For nondevice-dependent control
operations, data is accepted from the user
and put into a buffer. When the buffer is
full, an 1/0 operation is performed and a
buffer switch takes place. A full buffer is
immediately sent to the 5424, If an I/0O error
is detected, error recovery is attempted.

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

C

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

When a file has been opened for |/O operations,
the interface to QCSPTGT is valid.

Q An argument list is passed that contains a
pointer to the UFCB, a pointer to a control
list, and a pointer to an option list.

o If the option list does not specify option
wait, an exception is signaled.

e The first operation to an |1/0 file defaults to
a read operation; subsequent operations
cause first an output operation and then a
read operation to occur. The output
operation is performed on the card that was
previously read. If an 1/0 error is detected,
error recovery is attempted.

G When an EOF is detected, an exception is
signaled.

The interface to QCSFEOD is valid for any type of
open.

o An argument list is passed that contains a
pointer to the UFCB.

o For either input or 1/0 operations, reads are
performed until an EOF is detected. An EOF
exception is then signaled. For output files,
any blocked data is sent to the device.

When a high-level program or the spooling
component is finished with a file, it closes the file
by calling QCSCLOSE through the QDMCLOSE
module of common data management.

o An argument list is passed that contains a
pointer to the ODPCB, an index to the device
being closed, and the type of close that is to
be performed on the file.

o Normal and permanent type close for output
files causes partially filled buffers to be sent
to the MFCU. If an error is detected, error
recovery is attempted. The objects created
by the open to support the output functions
are destroyed. Control is returned to
QDMCLOSE.

Normal and permanent type close for input files
causes any requests for input data sent to the |/0
manager to be recalled. The objects created by
the open to support the input functions are
destroyed. Control is returned to QDMCLOSE.

Normal and permanent type close for 1/0 files
causes the objects created by the open to support
the I/ 0 functions to be destroyed. Control is
returned to QDMCLOSE.

Temporary type close is the same as a normal and
permanent type close, except that the objects
created to support the functions are not destroyed.

Abnormal type close causes all I/0 activity to
stop. All objects are destroyed and control is
returned to QDMCLOSE.

o QCSEVT is called whenever an intervention
required event is signaled by the 5424 |/0
manager.

O a message is sent to the operator console
telling the operator that the 5424 is not
ready.

0 QCSXGERR is called to send error messages
and exceptions.

o When an 1/0 error is detected, error
recovery is attempted.

5424 Function Manager CS-3

High-Level Language Program or Spooling Component

QDMCOPEN

Common Open

0|

Argument
List

|

QDMCLOSE

Common Close

Figure CS-1. 5424 Function Manager Overview

CS-4

This document contains restricted materials of IBM. LY21-0571-6

_— ____+____

5424 1/0
Manager

OCSOPEN QCSGET QCspUT QCSPTGT QCSFEOD 0OCSCLOSE QCSEVT
Card Open Card Get Card Put Card Put/Get Forced Card Close Event Handler
End-of-Date
QCSXGERR
Exception
Generator and
Error Handler
| 5424 Function Manager
Machine
Message Intertace
Handler Request o Event
Queue
Job QOperator Request
Log Console 1/0

Machine Interface

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

2

C

INTRODUCTION

The data base component of the CPF (control program
facility) controls the existence of data-containing files,
provides information about those files, and allows
access to the data in their members.

The types of data base files supported are physical,
logical, logical join files, and logical derived files.
Physical files can actually hold data records. Logical
files and logical join files access data from one or more
physical files by means of record formats, access path,
or both (they are different from the physical file record
formats and access path). Logical derived files access
the data through another logical or a physical file's
keyed access path.

The functions that make up the data base component
fall into the following categories:

« Definition: The creation, change, and destruction of
data base files and the addition, change, rename, and
removal of members of data base files.

» Manipulation; Operations on the data in a data base
file member, including open and close, copy,
reorganize, get/put/update/delete/release, clearing
or initializing a member, forcing end-of-data for a
member, and querying.

» Extraction: Retrieval of information on the structure,
interrelationship, and status of data base files and
members. Check file existence and authority (for
librarian), calculate file size (for librarian), dump file
object (for service), display data object locks (for
Display Object Lock, Display Active Job, and Display
Job commands), and display record locks (for Display
Record Lock, and Display Job commands).

Data Base

Data base recovery: Recovery of the data base from
cancellation of jobs or from a system failure; that is,
completing or backing out interrupted crash-sensitive
functions, handling physical file members that have
their data changed, and rebuilding access paths as
necessary.

Data base event handling: Response to system-wide
events involving the data space indexes that are part
of keyed data base file members and the data spaces
that are part of physical data base file members.

Data base file handling for generic operations that
change an entire file; Compiletion of functions such as
move or rename object, grant or revoke authority to
an object, and change object owner.

Data base file handling for save/restore and reclaim:

— Data base reclaim storage: Lost data is recovered
and placed in the QRCL library, and lost data base
control blocks are eliminated if data is not being
addressed. This function is performed during the
execution of the reclaim storage facility.

— Data base save/restore: Handles part of the
processing for those objects in a save or restore
request that are data base files.

Data Base DB-1

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Entry to Data Base Functions

All of the previously named categories, except the
recovery and event handling functions are visible to
users of data base files. The recovery and event
handling functions of the data base component appear
automatic to users of the component. The recovery
function is invoked by the work control component
when it is performing its start CPF function. The event
handlers are invoked by monitors that listen for
asynchronous system-wide events as long as CPF is
running.

The user entry to most of the data base functions is
through the common data management component.
Figure DB-1 and the following text describe the paths
of invocation of the data base modules.

n QDBCLOSC, QDBCLRPF, QDBINZPF, QDBOPENC,
QDBRNMME, QDBRGZPF, QDBCHGFI,
QDBRGZPF and QDBCHGME are command
processing programs.

Note: QDBCLRPF may also be invoked by
QDBOPEN.

n The open/close and |/0 functions are entered
through macros of the common data management
component.

o There are open and close functions common
to data base and device files that are
performed by QDMCOPEN and QDMCLOSE
before the data base open and close are
invoked.

@ An 1/0 macro determines which data base
module to invoke for its function by using a
table in the open members’ open data path.
There is an element in this table for each
operation that is valid for the open member;
that element is an offset into the system
entry point table so that it identifies the entry
that addresses the data base |/0 module.

0 The query functions are entered through data
base macros. QDBQUERY creates the
queries and the open or close is performed
by existing 1/0 support.

DB-2

This document contains restricted materials of IBM. LY21-0571-6

The QDMROUTE module of common data
management is the interface to the definition,
extraction, and generic functions of both the data
base and the device file definition components. It
transfers control to a data base module after
determining that the file for which it was invoked
is a data base file (as opposed to a device file).

Q The generic functions, such as rename or
grant authority, are reached through the
general object interfaces of the components
responsible for the function.

The command interface to data base
definition function is provided by the data
definition component. The command
interface to data base extraction functions is
provided by the file reference function
component.

G The data base reclaim function is reached
through the reclaim storage facility.

The data base check object function is
reached through the librarian component
Check Object (CHKOBJ) command.

The data base save/restore function is
reached through the Save Object (SAVOBJ),
Save Changed Object (SAVCHGOBJ), Save
Library (SAVLIB), Restore Object (RSTOBJ),
Restore Library (RSTLIB), and Save System:
(SAVSYS) commands.

The data base display lock function is
reached through the Display Object Lock
(DSPOBJLCK), Display Active Job
(DSPACTJOB), and Display Job (DSPJOB)
commands.

The data base display record lock is reached
through the Display Record Lock
(DSPRCDLCK) and Display Job (DSPJOB)
commands.

The data base create duplicate file function is
reached through the librarian component
Create Duplicate Object (CRTDUPOBJ)
command.

The data base convert file function is
reached through the install component or
data base reclaim function.

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

The data base dump file function is reached
through the service component.

(The data base size file function is reached
through the librarian component.

n Copy is a manipulation function. The data base
fast copy and reorganize function is reached
through the copy component and the data base
module QDBRGZPF.

C

Data Base DB-3

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Data Base

-
: |
| QDBINZPF :
|

.) I ™ Initialize Physical :)
omman .
Analyzer : » File Member QDBRNMME |
I
: Rename :
I QDBCHGME Member I
| R |
| Change |
I Member QDBRGZPF :
I
n | Reorganize Physical I
| File Member i
| » QDBCHGFI |
|
| > Change :
: File QDBCLRPF |
|
I
I »1 Clear Physical]
| File Member !
| QDBOPENC :
I] i
| Open File i
0o QDMCOPEN ! QDBCLOSE i
H |
> Common Open | P Close File |
| QDBOPEN \\ :
| Data Base | S, D i
Qpm E |
0o DMELos I Open QDBSOPEN :
|
Common Close | > Data Base ‘
| Shared Open |
Applications, l e Data Base Da!al Basg |
—1 Utilities, and | 1/0 Modules » Manipulation \
CPF Components I Modules |
QDBQUERY \
Data | e |
O Definition : Data Base |
|
CPPs I QDBCLOSE Query |
| r————————— ~ I
l : Data Base // |
Close |
DMR
n a OUTE : = _:/ Data Base |
Common Data | Extraction |
|
Management | Modules |
| Data Base 1
| —p Definition i
L] CPPsof Other : Modules |
CPFC onent
empenents] Data Base :
| Generic I
| Modules |
|
QDBFFCPY |
Copy n | < I
]
Component | Fast Copy :
! PAABO36.0 |

Figure DB-1 (Part 1 of 2). Entry to Data Base

3

DB-4
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

C

Reclaim
Component

Data Base (continued)

Data Base
Reclaim

Installation
Component

Modules

QDBCNVFI

Convert
File

Data Base
Check File

Librarian
Component

Modules

QDBSIZFI

Size
File

QDBDUPFI

Save/Restore
Component

Create Duplicate
File

Data Base

Save/Restore
Modules

QDBJOBLK

Work Control
Component

Display Job Locks

QDBOBJLK

Command
Analyzer

Display
Object Locks

QDBRCDLK

Display

Service
Component

Record Locks

QDBDMPF|

O N (N N N S I

Figure DB-1 (Part 2 of 2). Entry to Data Base

Dump
File

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Data Base

DB-5

GENERAL OVERVIEW

Data Base Modules

The data base components’ functions are performed by
the following modules. They are grouped by the
previously mentioned functional categories.

Note: An arrow (-->) identifies a module as being an
entry module into the component. Indentation of a
module shows its dependency on a previous module.

Data Base Definition Modules

-->QDBCRTFI-Create Data Base File: This module
creates a new data base file with no members.

QDBCRTFS—Create File Select/Omit Processing:
This module processes the select/omit
specification, if any, for the creation of a logical
file with select/omit.

-->QDBCRTME-Create Data Base File Member: This
module creates a new member in a data base file.

QDBCRTMO-Create Member Ownership: This
module changes ownership of the new member to
the file owner.

-->QDBDLTFI-Delete Data Base File: This module
destroys a data base file, including all its members. |f
damage to the file or its members is detected, a
message is sent and the deletion continues.

-->QDBDLTME-Delete Data Base File Member: This
module removes a member from a data base file. If
damage to the members is detected, a message is
sent and the deletion continues.

The following module is used by QDBCHGFI,
QDBDLTFI, QDBCRTME, and QDBDLTME.

QDBISHRX-Implicit Access Path Sharing: This
module does all the processing necessary for
implicitly shared access paths.

The following module is used by QDBCRTFI,
QDBCRTME, QDBDLTFI, QDBDLTME, and QDBISHRX.

QDBDIRUP-Update Data Base Directory: This

module adopts a user profile to add/remove a file
or member from a data base directory.

DB-6

This document contains restricted materials of IBM. LY21-0571-6

-->QDBCHGFI: Change Data Base File: This module
changes the attributes of a data base file.

-->QDBCHGME: Change Data Base Member: This
module changes the attributes of a data base
member.

-->QDBRNMME-Rename Data Base Member
(RNMM)': This module renames a data base
member.

-->QDBDUPFI-Create Duplicate Data Base File: This
module creates a data base file which is a duplicate
of another data base file.

Data Base Manipuiation Modules

-->QDBOPEN-Data Base Open: This module is called
by QDMCOPEN to complete the setup of a data base
file member so that its data can be accessed by a
program. It performs checks such as expiration date,
initializes sections of the ODP (open data path), and
activates cursor copy of the member. If the
member’s data space index is invalid (in a
nonmaintained state) and is to be used for this open,
it is rebuilt. If the member is to be cleared,
QDBCLRPF is called to clear the member.

-->QDBOPENC-Data Base Open CPP (OPNDBF)': This
module invokes the common data management open

function to open a data base file (results in call to
QDBOPEN).

-->QDBSOPEN-Data Base Shared Open: This module
performs open option consistency checking on a
shared data base open.

-->QDBGETSQ-Data Base Get Sequential: This module
performs the get of a record from a data base file
member for the options of FIRST, LAST, NEXT,
PREVIOUS, and SAME.

-->QDBGETM-Data Base Get Sequential Multiple: This
module performs the get of a group of records from
a data base file member for the option NEXT.

-->QDBGETDR-Data Base Get Direct: This module
performs the get of a record from a data base file
member for the relative record options.

'"This module is a CPP {command processing program).

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

-->QDBGETKY—-Data Base Get by Key: This module
performs the get of a record from a data base file
member for the options that specify a key and for get
next/previous unique.

-->QDBSEQMP-Data Base Sequential Member
Processing: This module opens the next member if
OVRDBF MBR (*ALL) has been specified.

-->QDBPUT-Data Base Put: This module inserts a
record into a data base file member and handles
force write, inhibit write and file increments.

-->QDBPUTM-Data Base Put Multiple: This module
inserts a group of records into a data base file
member and handles force write, inhibit write, and
file increments.

QDBPUTMX-Data Base Put Multiple Exception
Handler: This module forces all records in the
group, up to the record in error, and then signals
the exception to the user.

-->QDBUDR-Data Base Update/Delete/Release: This
module performs the update, delete, or release of a
record that was locked for update by a get against
the same data base file member.

The following module is used by QDBOPEN,
QDBGETSQ, QDBGETDR, QDBGETKY, QDBPUT,
QDBUDR, QDBGETM, QDBPUTM, and QDBPUTMX.

QDBSIGEX—Data Base |/0 Signal Exception: This
module signals any status, notify, or escape
message from open and |/O operations. It also
handles the response to a notify message.

-->QDBFEOD-Data Base Force End of Data: This
module sends an end of file message and forces
changes in a member to secondary storage. If there
are any records in a SEQONLY (*Yes) output buffer,
they are added to the member and forced.

-->QDBCLOSE-Data Base Close: This module
permanently sets an open data base file member to a
state that prevents the program from accessing its
data.

-->QDBCLOSC—-Data Base Close CPP (CLOF)': This
module invokes the common data management close

function to close a data base file (results in a call to
QDBCLOSE).

-->QDBQUERY-Data Base Query: This module creates
a query member for use by 1/0 modules.

QDBEXIT-Data Base Exit: This module handles
cleanup during invocation cancelation.

Data Base Member Modules

-->QDBINZPF-Data Base Initialize Physical File Member
(INZPFM)': This module is used to add either default
or deleted records to a member of a physical file,
placing them after existing records in the member.

-->QDBCLRPF-Clear Physical File Member (CLRPFM)':
This module is used to empty a physical file member
of records.

-->QDBRGZPF—-Reorganize Physical File Member
(RGZPFM)': This module performs the entire
reorganize physical file function, including the removal
of deleted records, the resequencing of records by
key, and the updating of the source file sequence
number and date fields.

QDBFFCPY—-Fast Copy: This module performs the
compress and optional reorganize function.

Data Base Extraction Modules

-->QDBEXDFI-Extract from Data Base File: This
module provides the list of a file's members, the
definition of a file, a format, a field in a format, a list
of a file’'s formats, or the definition of a file’s keys.

-->QDBEXDME-Extract Data Base File Member: This
module provides the definition of a member of a data
base file and such status information as its size and
deleted record count.

-->QDBEXTWU-Extract Data Base Where-Used: This
module provides either a list of files using a format, a
list of files sharing the data or access path of a file,
or a list of members sharing the data or access path
of a member.

QDBEXTEX—Data Base Extract Invocation Exit
Program: This module handles a cancel request
and unlocks locked files and members.

-->QDBDMPFI-Dump Data Base File: This module
dumps the constituent objects of a data base file and
its members.

'This module is a CPP (command processing program).

Data Base DB-7

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

-->QDBSIZFI-Data Base File Size: This module
calculates the size of a data base file, including its
members.

-->QDBCHKFI-Check Existence and Authority to Data
Base File: This module checks the existence of and
authorization to a data base file and/or member.

-->QDBOBJLK-Display Object Locks: This module is
invoked to extract information on locks held on parts
of a data base file.

-->QDBJOBLK-Display Job Locks: This module is
invoked to extract information on locks held by the
job on parts of a data base file.

-->QDBRCDLK-Display Record Locks: This module is
invoked to extract information on locks held on data
base records.

Data Base Recovery Modules

-->QDBRCIPS-Data Base Synchronous Recovery: This
module runs during the start CPF process. It invokes
a recovery function for each create, change, deiete,
move, rename, grant, revoke, transfer, or restore that
was In process at crash. It also displays all indexes
requiring recovery at IMPL and the recovery options.
The user may override the displayed recovery option
for this IMPL. It rebuilds indexes which were defined
as synchronous recovery indexes, and locks other
immediate or delayed maintenance indexes. It sends
messages about damage to objects that constitute
data base files.

QDBCDFIR—-Data Base File Create Recovery: This
module recovers from an interrupted create file
operation by deleting all pieces of the file. It is
called either by QDBRCIPS, by exception handling
in QDBCRTFI, or by QDBFIXIT.

QDBCDMER-Data Base File Member
Create/Delete Recovery: This module recovers
from an interrupted create or delete member
operation by deleting all pieces of the member.
It is called either by QDBRCIPS, by exception
handling in QDBCRTME, or by QDBFIXIT.

DB-8

QDBMVRFR—Data Base Move/Rename File
Recovery: This module recovers from an
interrupted move or rename file operation by
completing it. It is called either by QDBRCIPS or
QDBFIXIT.

QDBAUTFR-Data Base Authorization Recovery:
This module recovers from an interrupted grant or
revoke of authority to a data base file or transfer
of ownership of a data base file. It recovers the
function by completing it. It is called either by
QDBRCIPS or QDBFIXIT.

QDBRSRCV-Data Base Restore Mending: This
module ensures the linkage among internal objects
for data base files, which are involved in
interrupted restore operations. It is called either by
QDBRCIPS or QDBFIXIT.

QDBCHGFR—-Data Base Change File Recovery:
This module recovers from an interrupted file
change operation by attempting to complete the
change. It is called either by QDBRCIPS or
QDBFIXIT.

-->QDBRCDYN-Data Base Asynchronous Recovery:
This module rebuilds the indexes locked by
QDBRCIPS.

-->QDBFIXIT-Data Base Logical Damage Recovery:
This module recovers online from any interrupted
file-level operation.

Data Base Event Handling Modules

-->QDBIVLIX-Data Base Invalid Index Event Handier:
This module handles the invalid index event by
rebuilding the index (if it was defined as immediate or
delayed maintenance) and sending a message.

-->QDBCMPTH-Data Base Compression Threshold
Event Handler: This module handles the data space
compression threshold exceeded event by sending a
message to the system operator.

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

C

Data Base Generic File Handling Modules

-->QDBMOVFI-Move Data Base File: This module
transfers addressability of a data base file and its
members from one library to another.

-->QDBRNMFI-Rename Data Base File: This module
changes the name of a data base file.

-->QDBGRTFI-Grant Authority to Data Base File: This
module grants to a user some authority to a data
base file and its members.

-->QDBRVKFI-Revoke Authority to Data Base File:
This module revokes from a user some authority to a
data base file and its members.

-->QDBXFRFI-Transfer Ownership of Data Base File:
This module transfers the ownership of a data base
file and its members from one user to another.

-->QDBCNVFI-Convert Data Base File: This module
converts a data base file to the current
release /modification level of CPF.

Data Base Save/Restore and Reclaim Generic File
Handling Modules

-->QDBRCLMA-Data Base Reclaim Storage: This
module finds all pieces of a data base file, and
ensures that all have consistent authorizations,
ownership, names, and addressability.

-->QDBRCLMB-Data Base Reclaim Lost Cursors,
Indexes, and Data Spaces: This module reclaims the
storage for cursors and indexes that no longer are
part of a data base file. If lost data is found, a data
base file is created into the QRCL library to enable
the user to recover the data.

-->QDBRCLMC-Data Base Reclaim Lost Directories and
Formats: This module reclaims the storage previously
used for directories or formats that no longer are part
of a data base file.

-->QDBSVPRE-Data Base Save Predump Processing:
This module extracts file, format, and member
definitions to be saved, and lists the machine
instruction objects for data and access paths to be
dumped. It handles all the data base files in a save
request, sorting them so they appear on the media in
an order that, if used to re-create the objects,
satisfies all dependencies (that is, logical or physical)
between the files.

-->QDBSVPST-Data Base Save Postdump Processing:
This module cleans up after the objects have been
dumped.

-->QDBRSPRE-Data Base Restore Preload Processing:
This module is invoked once for all files {in a library)
in a restore request before loading objects. It selects
members to load, creates files and/or members if
they do not exist, restores authorities, and lists
machine objects to load.

-->QDBRSPST-Data Base Restore Postload Processing:
This module is invoked once for all files {in a library)
in a restore request after loading objects in order to
complete restore processing.

Data Base DB-S

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

The Structure of Data Base Files

Figure DB-2 and the following text describe the
structure of data base files. In the figure, the dotted
outlines represent the composite objects that are visible
to users of the data base component: files and
members. The solid outlines are the machine interface
objects that implement the data base. Within them, the
unshaded areas contain pointers relating the machine
interface objects (as represented by arrows in the
figure).

In general, a data base file consists of a file definition
plus its members. Data base design objects (formats
and directories) implement sharing between files. The
objects that compose files and members and the
contents of their control blocks vary depending on
whether a file is keyed or arrival sequence, and on
whether it is physical, logical, or derived. In Figure
DB-2, there are three files.

A) File A is a physical, unkeyed file with one member.

B) File B is a keyed logical file based on three physcial
files; one of its based-on files is File A, which it views
through the same format. It is shown with one of its
members, which is based on the single member of file A
and two other physical members.

C) File C is a derived file that shares the access path of
File B but views records from the based-on physical
files of File B (its parent) through three new formats.
File C is shown with two members; each of them has as
its parent member a member of file B.

D) File D is a keyed join logical file that implicitly shares
an access path for one of its secondary indexes {second
member of file B). File D is based on three physical files
that it views through its format.

n The FCB (file control block) contains several
segments of information. The primary portion is
the file description template (WWDBFDT include).
which holds such information as file type, key
definitions and all linkage pointers. The FCB of a
logical file contains a scope list: an array that
addresses the based-on physical files and relates
each of them to a format that describes the logical
view of its records. In the FCB of a logical derived
file, the parent file (the file whose access path is
being shared) is identified. The scope list entries
point to the formats used for records from the
corresponding based-on files of the parent file.

DB-10

The remainder of the FCB consists of templates for the
machine interface objects that constitute the members
of the file. These templates are derived from
information in the file and format descriptions, and are
used at member creation time.

n The format object contains a record format
definition (WWDDFMTD include) consisting of a
series of field descriptions. A format can be used
by one or more data base files and can serve as
both a physical and a logical record format. It can
be addressed only through the FCB scope list of a
file that uses it.

The machine interface object that is addressed
when a data base file member is addressed is the
cursor. It is through an activated copy of the
cursor that records in the member are accessed
and the current record position is maintained. The
inactive cursor in a member is built either directly
over a single data space (physical member} or over
a data space index, which is over one or more
data spaces (keyed physical or logical member).

The ODP (open data path) is the primary control
block of the member and is contained in the
associated space of the cursor. It contains linkage
pointers (to the other objects constituting the
member to the FCB, and to other members), and
information used by manipulation functions of both
the common data management and the data base
components.

n Every physical file member contains a data space,
which is a machine interface object that holds
records in arrival order sequence. (When
describing the fields of the data space entry to the
machine interface, the data base component uses
the format description linked to the physical file.)
A pointer back to the member’s primary object
(the cursor) is maintained in the associated space
of the data space.

Every member of a keyed file (physical or logical)
contains a data space index, created according to
the file’s access path specifications (keys, alternate
collating sequence, select/omit specifications, and
so forth). For a physical member, the index
creates an apparent keyed sequence for the
records in the member’'s data space; for a logical
member, the index appears to merge and
sequence the records from all the based-on
physical members in its scope list. In the
associated space of the data space index there is
a pointer to the cursor.

This document contains restricted materials of IBM. LY21-0571-6
© Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

C

A file’'s members form a doubly linked chain from
the FCB, in the order of their addition to the file.
The FCB has first- and last-member pointers;
each member has a previous- and a next-member
pointer.

Directory objects contain indications of the sharing
(dependencies) between data base files. A file, a
format or a member can have a directory that
contains a list of pointers to files or members that
depend on it. There are five kinds of directories:

e A format directory belongs to a format and
addresses all files that use that record
format. If a format is issued by only one file,
a dijrectory is not created for that format.

o A file shared-data directory belongs to a
physical file and addresses all logical and
derived files that are based on that physical
file.

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Join logical files are joined together using data
space indexes. There is one DSI for each
secondary piece of a joined logical file. Join
logical files will use existing indexes by implicitly
sharing existing indexes.

Note: If a joined logical file is keyed, it will have
an additional access path ordering the primary.

o A member shared-data directory belongs to
a physical member and addresses all logical
and derived members that are based on that
physical member.

o A file shared-access-path directory belongs
to a keyed file and addresses all derived files
that are defined to share the access path of
that keyed file.

G A member shared-access-path directory
belongs to a keyed member and addresses
all derived members that use the index of
that member.

o An implicit-shared-access path directory
belongs to an access path and addresses all
of the members which implicitly share an
index.

Data Base DB-11

}

[—

—_———— e e e] S .
I | s | —_,—————m—em e e e, e — e, e e —————
_ 53 || £ f _
£ O
I :f I & | e | o el
> 2 e
| Y | T 2T _“
= _———e] O
_ 1 ﬁl “ | n_
» L
_ o | Bl S
Ly RIS o el ‘
“ i _ __ [! 1 .
) I
- | _ N 5 @ © @
R s i@ T i@ (i m@||ziim
LI - BE FlS 83z s4¢ _ ! AN - 1B R R &8¢ g5:
e @ 3 & | =
|2 Lbddddd I Sadd | | | “ bl A4
_nF) ! _] 1 3 ,. 3
e A I M | | = I >i5y
1] [* 5 &z
e =t | NS | | iz S . j
n w
%v.. — rww ke e e e e e e, —— e — —
5 Pog
mm S &=
z ——
vy
. . ﬁ
]
£ v
L >0
H
£
o
J _‘ [e e e e e e e e — —
_ B
3 | B —
|
|
_ - L|r|||_ Pt ———— — - —
P———————_—_————————— 1 © i ! v
“ _b | | Y | " OFF
||||||||||||| Tttt T T T | iT T | N N Loy - N
) 1 o [} I~
_ [I N - | _ N - | : S &
| u . [v) [[s)
B _ I3 S
| [[er ey — 1€ b € d
3 IS o [[I
1 I - [R S +||||
5 o - 1 _ | i
4 el - = 8 n | -7 —— " r————————— -—T————— -
s} aw 1] \ 4 Y _
71)
| 1L __ s % 5 , I
- ! € 3 €
.] 2 8 £ _ !
|||||||||||||||||||||||||| 1 " _
IIIIIIIIIIIIIIIIIIIIII J | _

PAAB(Q43-0

Figure DB-2. The Structure of Data Base Files

DB-12

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

This page is intentionally left blank.

Data Base DB-13
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Structure of an Open Data Base Member

Figure DB-3 shows the general structure of a data base
ODP after a data base file member has been opened.
The QDMCOPEN module of common data management
creates the ODP by issuing a machine interface Create
Duplicate Object instruction while referencing a
permanent data base member. The entire data base
ODP is implemented in the associated space of the
cursor. To aid in performance, the ODP and cursor are
copied into the process access group by QDMCOPEN.
A field in the root section of the ODP (WWODPROT)
tells QDMCOPEN how much of the associated space of
a permanent data base member (cursor) to copy. This
length can be longer or shorter than the actual
permanent copy of the ODP in the member. This length
will include enough storage for one |/ 0 buffer; buffer
allocation is not performed until open. The figure shows
the exact physical location of each section. Because all
sections are located by offsets saved in the root section,
any section could appear in any place with no effect on
the code.

BB WwODPROT: ODP-ROOT Section. This section
contains offsets from the start of the associated
space to the following sections.

+ WWODPOFB
+ WWODPIOF
+ WWODPLKL
« WWDBODP

It also contains flags and fields common to all devices
and data base.

ﬂ WWODPOFB: Open Feedback. This is both a
user area (referenced by a pointer set in the UFCB)
and a system implementation area. The second
half of the open feedback area defines the offsets
to the data base 1/0 module pointers within the
system entry point table.

El WWODPIOF: 1/0 Feedback Area. This is a user
area (referenced by a pointer set in the UFCB) that
contains information about each get and put
issued to the file.

B WwODPDBF: Data Base Specific |/O Feedback.

This section is located by an offset saved in the
common |/ 0 feedback area WWODPIOF,

DB-14

This document contains restricted materials of IBM. LY21-0571-6

For a non-keyed data base file, this area is a fixed
length. It contains the relative record number and
member number of the record just manipulated by
the get and put modules.

For a keyed data base file, a key buffer is

provided. The buffer is large enough to hold the
largest key value for the file. The relative record
number and member number are also provided.

WWODPLKL: ODP Lock List. This section exactly
matches the machine interface template for the
machine instruction Lock and Unlock.

Each data space associated with this data base
member has a system pointer in the lock list. In
addition, one system pointer to the permanent
member is provided. The default lock states for all
the data spaces and the member are set by
QODMCRODP, The default is LSRD if open for
input and LSUP if open for update, delete, or
output. If an entry for a data space is inactive, the
associated format name was moved out to the
open data space.

WWDBODP: Data Base Section ODP. This
section is the key area referred to by all of the
data base manipulation modules.

An overlay include (WWDBSTCR) defines the
machine interface template for the machine
instruction Set Cursor. Enough storage is always
provided for a cursor option list (machine interface
template) to have 32 data space numbers in the
data space search list.

Save areas are provided for the 1/0 modules to
save the current set of inputs {get and put option
list and the control list).

An array of record format names is provided with
corresponding associated data space numbers.
The data space search list provides sets of data
space numbers for each record format that spans
more than one data space.

Record Buffers: One record buffer is automatically
allocated by the Create Duplicate Object instruction
in QDMCOPEN. If additional buffer space is
needed (indicated by opening for input and output
or by specifying SEQONLY(*YES)), QDBOPEN
extends the associated space to compensate

for this.

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Cursor
(machine interface)
Include Name

Open Flags n
WWODPROT (fixed length)
Offsets to
All Sections
User Open
Feedback n

WWODPOFB (fixed length)
Offsets into
System EP Table

Common 1/0

Feedback
Get and Put Counts WWODPIOF (fixed length)
Current Record
Associated Format Name
Space of
Cursor Data Base a
I/0O Feedback WWODPDBF (variable length)

Key Feedback

Y Lock List

SYP to All WWODPLKL (variable length)
Data Spaces

Record Manipulation
Flags and Save Area

Record Format Names WWDBODP (variable length)

(WWDBSTCR—overlay)
Data Space Search
List

Record Buffers

Figure DB-3. Open Data Path (After Open)

Data Base DB-15
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Data Base Recovery

Data base recovery, which is performed during IMPL
(internal microprogram load), recovers from an abnormal
system termination by doing the following:

1. Completes, backs out, or ensures objects’
soundness for any data base definition or generic
function that was in progress at system failure.

2. Sends messages to the history log about members
that were open (partially updated) at system failure
and about damaged members.

3. Displays all indexes needing recovery and allows
the user to override the recovery option for this
IMPL.

4, Rebuilds the data space indexes of keyed
members whose access paths were defined as
immediate or delayed maintenance, and are in
need of recovery.

Information about functions and members requiring
recovery is found in objects in the QRECOVERY library.
The following includes describe the contents of those
objects:

WWWCMISR: This include duplicates the structure of
the MISR (machine initialization status record), which
contains a list of partially updated and damaged data
spaces and data spaces indexes. The MISR (machine
initialization status record) is materialized into a space
object in QRECOVERY by work control at IMPL, before
its call to data base recovery. Also, pseudo-MISR
objects are created by QDBFFCPY to list data space
indexes that it invalidates and plans to rebuild. Then, if
they are interrupted by a system failure, data base
recovery finds the pseudo-MISR and rebuilds the
indexes.

DB-16

DBDRCB: This include describes a space object in
QRECOVERY that is called a data base definition
recovery object. It is created by an invocation of a data
base definition or generic function and is left in
QRECOVERY if the function is interrupted. in the object,
data base recovery finds the recovery program to cali for
the function. The recovery program receives the data
base definition recovery object, uses its identification of
the target file to complete or back out the function, and
destroys the data base definition recovery object.

WWDBRCOB: This include describes a permanent
object in QRECOVERY named QDBMISR. lIts logical
counter field is used to generate unique names for MISR
objects. It also contains addressability to a temporary
space used for communication between the two phases
of data base recovery.

WWDBRBLD: This describes an independent index
created by QDBRCIPS and processed by QDBRCDYN.
it contains a list of data space indexes to be rebuilt
(those of keyed members with RECOVERY
[*AFTSTRCPF]) and MISR objects to destroy (those
that data base recovery has finished recovering).

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

QRECOVERY
(context)

WWWCMISR include

QDBMISR (name)
WWDBRCOB include o

~— 4 —

name=QDBMIM | number

Rebuild List
(independent index)

<~—1— WWDBRBLD include

~—10— —10—

name = QDBDBDROBJ | filename Il libraryname

DBDRCB include

Figure DB-4. Data Base Recovery Objects

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Data Base

DB-17

Data Base Object Locking

When two operations refer to and update the same
control blocks, concurrent invocations of the operations
must be controlled to prevent unpredictable results.
Data base modules control concurrency by obtaining
machine interface locks on the objects that constitute
data base files and members and on the various related
objects. Locking is @ complex topic for the data base
component because files and members are composite
objects and because of the interrelationships maintained.
Not all data base modules need to lock objects; the
following covers only the modules that obtain locks.

The definition and extraction functions of the data base
component lock only the external user data base
objects: files, formats, and members. Figure DB-5
shows the levels of locks obtained by definitional
functions on particular objects. When a file is locked,
the machine interface lock is actually obtained on the
file control block space object; a member lock is a lock
on the member’s primary object, the machine interface
cursor.

Figure DB-5 also shows the generic functions locking
machine interface objects that they operate on and that
may be shared by members of dependent files.

The manipulation, recovery, and event handling functions
of the data base component do their locking on the
internal objects that are linked to form a data base file
member as well as the FCB. Figure DB-5 and the
following text explain the locks they obtain on data
spaces, data space indexes, cursors, and FCBs.

Of the open/close and |/0 functions, only open obtains
object locks. These locks are held until the member is
closed and therefore are in force during the 1/0
operations against the open member. The open locking
and close unlocking are performed by modules of the
common data management component.

DB-18

This document contains restricted materials of IBM. LY21-0571-6

Many of the locks shown in Figure DB-6 are necessary
for handling machine interface data space indexes,
which exist one-for-one with keyed members. At the
machine interface, an index is either valid or invalid; a
valid index is one whose keyed access path reflects all
the latest record changes to the underlying data spaces.
An invalid index can become valid by rebuilding the
index. The data base component sees the index as a
piece of a member whose maintenance is defined as
either immediate, rebuild, or delayed, where immediate
or delayed maintenance means the index should never
remain invalid.

« QWHCISCFR detects the invalid index event when an
index has become invalid and invokes QDBIVLIX to
rebuild it if it is part of an immediate or delayed
maintenance member.

» Data Base Recovery processes those indexes that
were marked invalid because they were being
updated when the crash occurred. It rebuilds those
with immediate or delayed maintenance members and
recovery of *STRCPF or *AFTSTRCPF.

« A cursor cannot be activated over an invalid index, so
QDBOPEN will rebuild the index of a member with
rebuild maintenance or a member whose index is in
need of recovery.

« The copy of a physical member's data space is
performed by machine interface instructions that
cannot succeed when there are valid indexes over the
data space. Therefore, QDBFFCPY, if necessary,
invalidates indexes and then rebuilds them after
copying.

©Copyright IBM Corp. 1980, 1981,.1982, 1983, 1984, 1985

“

Member BPa asr::-tot:‘rs Owner
Format
Data Share |Directory To
Library |File Cursor |Index |Space File Member | File Pointer Oid New |Library
QDBCHGFI LENR LEAR'* |LEAR' LEAR'S
QDBCHGME LSRD LEAR LSRO"
QDBCHKFI LSRO
QDBCLRPF LSRD |LSRD LENR
QDBCRTFI LSUP LENR LSRD LSRD
QDBCRTME LEAR LEAR"? LSRD LSRD
QDBDIRUP LEAR
QDBDLTFI LSUP LENR LEAR"? LEAR
QDBDLTME |LSUP LEAR LENR LEAR'S LEAR
QDBDMPFI LSRO
QDBDUPFI'4 LENR LSRD
QDBEXDFI LSRO
QDBEXDME LSRO LSRO
QDBEXTWU LSRO LSRO
QDBFFCPY 2 2 3
QDBGRTFI LENR LSuUp'?
QDBINZPF LSRD LSRD LEAR
QDBISHRX LEAR LEAR'®
QDBIVLIX LSRD LENR LSRD |
QDBMOVF| |{LSUP |LENR LSUP
QDBOPEN LEAR
QDMCOPEN LSRD LSRD 48
QDBQUERY LSRD LSRD LEAR 48
Figure DB-5 (Part 1 of 2). Data Base Functions Locking
Data Base DB-19

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Parent or
Member Based-Ons Owner
Format
Data Share |Directory To
Library |File Cursor |Index Space File Member |File Pointer Old New |Library

QDBRCIPS
through
QDBRCDYNS® LSRD LSRD LSRD*
QDBRCDLK 2 2 3
QDBRNMFI LSUP LENR LENR® |LENR'7
QDBRNMME LEAR LENR LENR LENR?
QDBRSPRE | LENR"'
QDBRVKFI l LENR LENR'7
QDBSIZFI LSRO
QDBSVPRE LSRO'"? LSRQ® !
QDBXFRFI LENR LSUP8 |LSUP'’ LSUP |LSUP

' This function locks the member's sole data space for a physical member (for each member of the file if the function is file

oriented). If it operates on a logical file, it locks no data spaces.

Before this function is invoked, the member must be open {see QDMCOPEN locks); then locking for data base copy may cccur.

This function locks the to-member’'s-data-space (LENR) and the from-member's-data-space (LEAR).

This function locks data spaces under the member {physical or logical).

The locks necessary for data base recovery are obtained by QDBRCIPS during IMPL and are held by the start CPF process until

QDBRCDYN completes the recovery function (after CPF is up and running).

Data space lock states obtained by OPEN for a given data space under the member:

- If the UFCB or override explicitly specifies a lock state for the format associated with the data space (RCDFMTLCK),
that lock state is obtained;

— If open for update, delete, and/or output, then the data space is locked (LSUP) as a default;

— Otherwise the data space is locked (LSRD) as a default.

The security functions lock the data spaces of a physical file's members only if there are logical files over the physical files.

8 QDBXFRFI also locks the data space indexes of a keyed file's members only if there are logical derived files over the keyed file.

® Dependent files are also locked (LENR).

'0 The file and data space are locked (LENR) if saved with storage freed and there is logical dependency on the file.

' Save /restore locks the library, file, and potentially the data spaces or dependent logical files. If the system is in a restricted
state during the save/restore, nothing is locked.

2 This function locks the data space index only if the file is nonderived and keyed.

'3 Directory is only locked if EXPDATE or FRCRATIO is changing for nonderived and keyed members.

% The data spaces are locked (LEAR) only if the data space attributes are changing (SIZE,ALLOCATE,UNIT, and DLTPCT
parameters). The data space indexes are locked (LEAR) only if the data space index attributes are changing (MAINT,
FRCACCPTH, RECOVER, and UNIT parameters).

'S Directory is locked (LEAR) if EXPDATE or FRCRATIO is changing for nonderived and keyed members. Implicit access sharing
directory is locked (LEAR) if any of the indexes are implicitly shared.

'® When called by QDBCRTME to find a sharable index, if a sharable index is found, the DSl is locked (LEAR) and the SPP to the
implicit access sharing directory is locked (LEAR).

'7 All newly created logical indexes are locked (LEAR).

'8 |f the DSI is implicitly shared, it is locked (LEAR).

'S All logical indexes are locked (LEARY).

2
3
a
5

[

7

Figure DB-5 (Part 2 of 2). Data Base Functions Locking

DB-20

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

2

INTRODUCTION

The device configuration component of the CPF (control
program facility) has the following functions:

« Describes the features and characteristics of control
units, communications lines, and devices to the
system. These descriptions are supplied by
user-defined parameters that have passed from the
command analyzer to a command processing
program in device configuration. The command
processing programs can create, change, delete, and
display the descriptions.

« Describes the installation-dependent tables, such as
translate tables, collating sequence tables, and print
belt image tables to the system. Tables can be
created (from user-defined source files) or deleted by
device configuration command processing programs.

« Describes the five user-defined edit codes to the
system. Device configuration command processing
programs can create, delete, and display the edit
code descriptions.

« Controls the power status of some devices and
control units and the online or offline status of
devices, control units, and lines through the use of
other device configuration command processing
programs and modules.

GENERAL OVERVIEW

Device Configuration Modules

To provide the previously mentioned functions, the
following device configuration modules are used. The
modules are grouped by the functions that they provide.

Note: An arrow (-->) identifies a module as being an
entry module into the component. Indentation of a
module shows its dependency on a previous module.

Device Configuration

-->QDCCRLUD-Create Device Description (CRTDEVD)':
This module checks the input parameters and routes
the input to the proper module to build the LUD
(logical unit description) template.

QDCCCARD-Create Device Description for Card
Devices: This module builds the template and
creates the device description for a card device.

QDCCDSKT—Create Device Description for
Diskette Device: This module builds the template
and creates the device description for diskette
devices.

QDCCINST—-Create Device Description for Install
From Save/Restore: This module creates the
device description from save/restore through the
install function.

QDCCPRNT-Create Device Description for Printer
Devices: This module builds the template and
creates the device description for a system printer.

QDCCSDLC—Create Device Description for a
Remote SDLC Device: This module builds the
template and creates the device description for
remote SDLC work station display and printer
devices.

QDCCSLU1-Create Device Description for LU-1
Secondary: This module builds the template and
creates the device description for a secondary
LU-1 device.

QDCCTAPE—Create Device Description for Tape
Devices: This module builds the template and
creates the device description for tape devices.

QDCCWSC-Create Device Description for WSC
Devices: This module builds the template and
creates the device description for work station
display and printer devices attached to a local
WSC (work station controller) or WSC-E (work
station controller extended).

'This module is a CPP (command processing program).

Device Configuration DC-1

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

QDCCRBSC—Create Device Description for BSC
Device: This module builds the template and
creates the device description for BSC and BSCT
(BSC muitipoint tributary) devices.

QDCCPEER-Create Device Description for Peer
Device: This module builds a template and creates
a device description for peer devices (for advanced
program-to-program communications). An event
is signaled to the logical unit services process for
each successfully created device description.

QDCCDPER-Create Control Unit Description for
Peer Controller: This module builds a template for
peer controllers and signals the create CD event to
invoke QDCCTCND to create a CD.

QDCCTCND-Create CD Event Handler: This
module performs the actual create CD using the
template built by the CD type-dependent modules.
QDCCTCND runs under the system arbiter
process.

-->QDCCRND-Create Line Description (CRTLIND)':
This module changes the system configuration to
include a new teleprocessing line.

~~>QDCCRCD-Create Control Unit Description
(CRTCUD)': This module checks the input parameter
and routes the input to the proper module to build
the CD template. -->QDbCADMOD-Add Device Mode Entry
(ADDDEVMODE)': This module adds a device mode
QDCCDWSC-Create Control Unit Description for entry to an existing peer device.
WSC: This module builds the template for WSC
(or WSCE) and signals the create CD event to

invoke QDCCTCND to create the CD.

-->QDCCHLUD-Change Device Description
(CHGDEVD)': This module changes the attributes of
a device.

QDCCDWS—Create Control Unit Description for

Remote Work Station: This module builds the
template for remote work station control units, and
signals the create CD event to invoke QDCCTCND
to create the CD.

QDCCDTAP-Create Control Unit Description for

QDCCGLUD—-Change Device Description Event
Handler: This module handles any events signaled
by the change device description module. It also
changes the actual device description.
QDCCGLUD runs under the system arbiter
process.

Tape Controller: This module builds the template
for tape controllers and signals the create CD
event to invoke QDCCTCND to create the CD.

-->QDCCHCD-Change Control Unit Description
(CHGCUD)': This module changes the attributes of a
control unit.

QDCCDSLU—Create Control Unit Description for

PU2 Secondary: This module builds the template

for PU2 secondary controllers and signals the

create CD event to invoke QDCCTCND to create
the CD.

-->QDCCHND-Change Line Description {CHGLIND)':
This module changes the attributes of a
teleprocessing line.

-->QDCCHMOD-Change Device Mode Entry
({CHGDEVMODE)': This module changes the
attributes of a peer device’s mode entry.

QDCCDINS—Create Control Unit Description for
Install from Save/Restore: This module creates the
control unit description from save/restore through
the install function, and signals the create CD
event to invoke QDCCTCND to create the CD.

-->QDCDLLUD-Delete Device Description (DLTDEVD)':
This module removes a device from the system
configuration.

QDCCDBSC—-Create Control Unit Description for

BSC Controller: This module builds the template

for BSC and BSCT controllers and signals the module handles any events signaled by

create CD event to invoke QDCCTCND to create QDCDLLUD. It also does the actual delete. For

the CD. peer devices, it signals an event to the logical unit

services process.

QDCDTLUD-Delete Device Event Handler: This

'This module is a CPP {command processing program).

DC-2
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

-->QDCDLCD-Delete Control Unit Description
(DLTCUD)': This module removes a control unit from
the system configuration.

QDCDTCD-Delete Control Unit Event Handler:
This module handles any events signaled by the
QDCDLCD. It also does the actual delete.

-->QDCDLND-Delete Line Description (DLTLIND)': This
module removes a teleprocessing line from the
system configuration.

-->QDCDSLUD-Display Device Description
(DSPDEVD)': This module displays the description of
a device to the requestor.

-->QDCDSCD-Display Control Unit Description
(DSPCUD)': This module displays the description of a
control unit to the requestor.

-->QDCDSCST-Display Channel Status (DSPCHLSTS):
This module displays the logical channel status for
X.25 lines.

-->QDCDSLST-Display Link Status (DSPLNKSTS): This
module displays the logical link status for X.25 lines.

-->QDCDSND-Display Line Description (DSPLIND)':
This module displays the description of a
teleprocessing line to the requestor.

-->QDCDSCFG-Display Device Configuration
(DSPDEVCFG)': This module displays the
configuration of the entire system to the requestor.

-->QDCDSMOD-Display Mode Status (DSPMODSTS)":
This module displays status information related to a
peer device’'s mode entry.

-->QDCDSSTS-Display Network Status (DSPLINSTS,
DSPCTLSTS, and DSPDEVSTS)': This module
displays the status of selected device configurations
on a system, displays the jobs using active devices,
and allows input to request additional displays, vary
capability, and job cancellation.

QDCHNCMD-Handle Command Input: This

module handles the functions requested from input

to the screen displayed by QDCDSSTS.

"This module is a CPP (command processing program).

QDCVANET—Vary Network: This module
handles line name or control unit name input,
and calls QDCVALUD, QDCVARCD, and
QDCVARND to vary an entire network online
or offline.

QDCCHPMT—Change Prompt: This module
provides a prompt for the Change Line
Description (CHGLIND) command, Change
Control Unit Description (CHGCUDY
command, or Change Device Description
(CHGDEVD) command with existing and valid
values.

-->QDCCRTBL-Create Table (CRTTBL)': This module
defines a 256-byte table to the system.

-->QDCCRPRI-Create Print Image (CRTPRTIMG)': This
module defines the print image for a print belt to the
system. |f the BELTNBR parameter is used, the
appropriate translate table is also built by QPNCPITT.

-->QDCXLATE-High-Level Language Interface to
Translate Tables: This module issues the machine
instructions to perform byte-by-byte translation of
fields passed to it by a high-level language.

-->QDCCRECD-Create Edit Description (CRTEDTD)':
This module creates the description of a user-defined
edit code as specified by the command parameters.

-->QDCDSECD-Display Edit Description (DSPEDTD)":
This module displays the edit code description to the
requestor.

-->QDCEDITS-Edit Code Expansion for Standard Edit
Codes: This module creates an edit mask for
standard edit codes. The mask is used by the
machine edit instructions.

QDCEDITU-User Edit Code Expansion: This
module creates an edit mask for user-defined edit
codes. The mask is used by the machine edit
instructions.

-->QDCEDITW-Edit Word Expansion: This module
creates an edit mask to be used by the machine edit
instructions.

-->QDCINIT-Device Initialization Interface: This module
builds a parameter list and calls the appropriate CPPs
for the devices, teleprocessing lines, and control units
attached to the system.

Device Configuration DC-3

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

-->QDCSHUTD-Device Shutdown Interface: This
module builds lists of the active online or
powered-on device descriptions, control units, and
teleprocessing line descriptions for use by
QDCVALUD, QDCPWLUD, QDCVARCD,
QDCPWCUD, and QDCVARND.

-->QDCLUDCF-LUD Device Failure Event Monitor: This
module runs under the system arbiter process. If the
LUD device failure event occurs, this module
performs error recovery and sends the appropriate
messages.

-->QDCLUDRC-LUD Device Failure Message Reply
Handler: This module runs in the system arbiter
process. QDCLUDRC processes replies to any inquiry
message sent by QDCLUDCF and performs the
appropriate recovery actions.

-->QDCPWLUD-Power Device: This module passes a
list of device names that are to have their power
status changed to QDCPRLUD.

QDCPRLUD-Power LUD: This module is an event
handler that executes under control of the system
arbiter to change the power status of devices
specified in the Power Device command.

-->QDCPWCUD-Power CUD: This module changes the
power status of control units specified in the Power
Control Unit command.

-->QDCLRFMT-LUD ASP Reformat Modules: This
module is used to reformat the LUD associated space
(ASP) to extend the device dependent spaces without
requiring the user to delete and re-create the existing
device descriptions. This module is called by
QDCINIT at start CPF time.

-->QDCRSCDR-Reset IGC Controller RAM: This
module is used by macro RSCDRAM. It is an
interface provided for character generation utility
(CGU). It resets WSC-E with |IGC RAMs and the
5294 control unit.

DC-4

-->QDCVALUD-Vary Device (VRYDEV)': This miodule
places the specified device in an online or offline
state. It also does the actual vary off.

QDCVRLUD-Vary Device Event Handler: This
module handles the events signaled by
QDCVALUD. It also does the actual vary on.

-->QDCVARCD-Vary Control Unit (VRYCTLU)!: This
module places the specified control unit an online or
offline state.

QDCVARND-Vary Line (VRYLIN)': This module
places the specified teleprocessing line in an online or
offline state.

Note: When creating device configuration descriptions,
the following sequence should be followed. The
descriptions can be created out of sequence, but any
references to names of descriptions not yet created will
be rejected.

1. Create line descriptions.

2. Create control unit descriptions.

3. Create device descriptions.

'This module is a CPP {(command processing programj.

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

This page is intentionally left blank.

Device Configuration DC-5
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Create Logical Unit Description, Control Unit
Description, and Network Description

Figure DC-1 shows an overview of the device
configuration create commands operation.

n The command analyzer decodes a Create Device
Description (CRTDEVD) command and control is
transferred to QDCCRLUD.

H QDCCRLUD calls the proper device
type-dependent module to build a LUD (logical
unit description) template from the user-defined
command parameters. It also issues the Create
LUD instruction to build the LUD on the system.

o The associated space is initialized.

o For all LUDs, except peer LUDs, the lock is
passed to the system arbiter process.

e For peer LUDs only, an event is signaled to
the logical unit services process.

DC-6

This document contains restricted materials of IBM. LY21-0571-6

The command analyzer decodes a Create Control
Unit Description (CRTCUD) command and control
is transferred to QDCCRCD.

QDCCRCD calls the proper device type-dependent
module to build a control unit description template
from the user-defined command parameters.
QDCCRCD signals the create CD event to invoke
QDCCTCND.

e QDCCTCND is invoked to issue the Create
CD instruction to build the control unit
description on the system. QDCCTCND is an
event handler that runs under control of the
system arbiter process.

The command analyzer decodes a Create Line
Description {CRTLIND) command and control is
transferred to QDCCRND.

QDCCRND builds a network description template
from the user-defined command parameters and
then issues the Create ND instruction to build the
network description on the system.

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

CRTDEVD
Command

¥

Command
Analyzer

QDCCRLUD

Create Device

CRTCUD
Command

Command
Analyzer

CRTLIND
Command

¥

Command
Analyzer

QDCCRCD

Create Control

QDCCRND

Create Line
Description

Description Unit Description
Device- CD Type-
Dependent Dependent
Modules Modules

<]
Associated QDCCTCND
0o Space
Initialization Create Control
Routines Description
QSYSARB
o System Arbiter
Process
QLus
° Logical Unit
Services Process
Machine Interface
Logical Unit Control Unit
Description Description

Network
Description

Figure DC-1. Create Logical Description, Control Unit Description, and Network Description Overview

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Device Configuration

DC-7

Add Device Mode Entry to a Peer Device
Description

Figure DC-2 shows an overview of the device
configuration Add Device Mode Entry (ADDDEVMODE)
command.

n The command analyzer decodes an Add Device

Mode Entry command and control is transferred to
QDCADMOD.

B QDCADMOD locates the specified peer device

description and adds a mode entry to the LUD
base on the user-defined command parameters.

ADDDEVMODE
a Command l

Command
Analyzer

QDCADMOD

Add Device
Mode Entry

Machine Interface

Logical Unit
Description

Figure DC-2. Add Device Mode Entry to a Peer Device
Description

DC-8
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

<

This page is intentionally left blank.

C

Device Configuration DC-9
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Delete Logical Unit Description, Control Unit Bl The command analyzer decodes a Delete Control

Description, and Network Description Unit (DLTCUD) command and control is
transferred to QLIDLOBJ.
Figure DC-3 shows an overview of the device J
configuration delete commands operation. QLIDLOBJ determines the proper list of control
unit descriptions to be deleted, based on the
n The command analyzer decodes a Delete Device user-defined command parameters, and calls
Description (DLTDEVD) command and control is QDCDLCD for each control unit description.

transferred to QLIDLOBJ.
B QDCDLCD deletes the associated CD control unit

n QLIDLOBJ determines the proper list of description from the system.
parameters to be deleted, based on the
user-defined command parameters, and calls O QDCDTCD is invoked to actually delete the
QDCDLLUD for each device. CD. QDCDLCD is an event handler that runs

under control of the system arbiter process.
QDCDLLUD sets up parameters for QDCDTLUD to
delete the associated LUD (|Ogica| unit description) The command analyzer decodes a Delete Line
from the system. Description (DLTLIND) command and control is

transferred to QLIDLOBJ.
O i the LUD to be deleted is for a display

device, the ?DLTMSGQ macro is issued to B QLIDLOBJ determines the proper list of line
QMHDLMSAQ to delete the message queue. descriptions to be deleted, based on the
user-defined command parameters, and calls
G QDCDTLUD is invoked to actually delete the QDCDLND for each line description.
LUD. QDCDTLUD is an event handler that
executes under control of the system arbiter n QDCDLND deletes the specified network
process. For peer devices only, an event is description from the system.
signaled to the QLUS process to notify it
that the peer device has been deleted. J

DC-10

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

C

DLTDEVD

I

Command
Command
Analyzer

QLIDLOBJ

Delete Object

QDCDLLUD

Delete Device

DLTCUD
B Command

Command
Analyzer

QLIDLOBJ

Delete Object

QDCDLCD

Delete Control

Description Unit Description
° QDCDTLUD
?DLTMSGQ
Macro Delete LUD
o
QMHDLMSQ QaLus
Logical Unit
Message Handler Services Process
o
QbCDTCD
Delete Control
Unit Description
- F/I;:hine Ir;erface - T
Logical Unit Control Unit
Description Description

DLTLIND
Command

Command
Analyzer

QLIDLOBJ

Delete Object

QDCDLND

Delete Line
Description

Network
Description

Figure DC-3. Delete Logical Unit Description, Control Unit Description, and Network Description Overview

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Device Configuration

DC-11

Change Logical Unit Description, Control Unit a

QDCCHCD modifies the specified control unit
Description, Network Description, and Device Mode

description using information in the user-defined

Entry command parameters.
Figure DC-4 shows an overview of the device B The command analyzer decodes a Change Line
configuration change commands operation. Description (CHGLIND} command and control is
transferred to QDCCHND.
n The command analyzer decodes a Change Device
Description (CHGDEVD) command and control is B QDCCHND modifies the specified line description

transferred to QDCCHLUD. using information in the user-defined command

parameters.

El QDCCHLUD invokes QDCCGLUD to modify the
specified LUD (logical unit description) using The command analyzer decodes a Change Device
information in the user-defined command Mode Entry (CHGDEVMODE) command and
parameters that are passed to it by QDCCHLUD. control is transferred to QDCCHMOD.
QDCCGLUD is an event handler that executes
under control of the system arbiter process. n QDCCHMOD modifies the peer device's mode

entry using information in the user-defined
n The command analyzer decodes a Change Control command parameters.

Unit (CHGCUD) command and control is
transferred to QDCCHCD.

DC-12
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

CHGDEVD CHGCUD CHGLIND CHGDEVMODE;
II Command ﬂ Command B Command Command

L Command Command Command Command
Analyzer Analyzer Analyzer Analyzer
QDCCHLUD QDCCHCD QDCCHND QDCCHGMOD
Change Device Change Control Change Line Change Maode
Description Unit Description Description Entry
QDCCGLUD
Change LUD
‘ T Machine Interface
Logical Unit Control Unit Network Logical Unit
Description Description Description Description

Figure DC-4. Change Logical Unit Description, Control Unit Description, and Network Description Overview

C

Device Configuration DC-13
This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Create, Delete, and Display Edit Codes and Edit
Macro Interface

Figure DC-5 shows an overview of the device
configuration edit code commands as well as the edit
code macro interface operation.

Create, Delete, and Display Edit Code Commands

n The command analyzer decodes a Create Edit
Code Description (CRTEDTD) command and
control is transferred to QDCCRECD.

n QDCCRECD, using information from the command
parameters, creates a user-defined edit code.

The command analyzer decodes a Delete Edit
Code Description (DLTEDTD) command and
control is transferred to QLIDLOBJ.

n QLIDLOBJ deletes the edit code description from
the system.

The command analyzer decodes a Display Edit
Code Description (DSPEDTD) command and
control is transferred to QDCDSECD.

B QDCDSECD displays information about the
specified edit code to the user.

DC-14

This document contains restricted materials of IBM. LY21-0571-6

Edit Code Macro Interface

The ?CRTEDTMS macro provides the macro
interface to build the edit masks required for the
edit function.

ﬂ QDCEDITS builds edit masks from edit codes
passed through the ?CRTEDTMS macro for edit
codes other than 5 through 9.

ﬂ If edit codes 5 through 9 are passed, QDCEDITU
is called to build an edit mask from the
user-defined edit code in the QSYS library.

m QDCEDITW builds edit masks from edit words
passed to it by the ?CRTEDTMS macro.

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

C

CRTEDTD DLTEDTD DSPEDTD
Command Command Command
Command Command Command
Analyzer Analyzer Analyzer
2] 4] 6
QDCCRECD QLIDLOBJ QDCDSECD
?CRTEDTMS
Create Edit Delete Object Display Edit Macro
Code Description Code Description
6 10
Edit Code QDCEDITS QDCEDITW
Description
Codes Edit Code for Edit Word
5 through 9 Standard Edit Expansion
QDCEDITU
A Codes
5 through 9

Figure DC-b. Edit Code Commands and Macro Interface Overview

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Device Configuration

DC-15

Create and Delete Print Images and Tables

Figure DC-6 shows an overview of the device
configuration print image and table commands
operation.

Print Image

The command analyzer decodes a Create Print
Image (CRTPRTIMG) command and control is
transferred to QDCCRPRI.

o QDCCRPRI creates a print belt image from
user-defined source files, in either
hexadecimal or character format, as defined
by the header record. The print image can
be of various sizes and, unless specified
differently, is stored in the QGPL library.

Note: IBM supplies default print images for
common print belts. If the BELTNBR parameter is
specified, control is transferred to QPNCPITT,
which builds the appropriate print image and
translate table from the default values for that
particular belt number.

The command analyzer decodes a Delete Print
Image (DLTPRTIMG) command and control is
transferred to QLIDLOBJ.

© QLIDLOBJ deletes the print image from the
specified library.

DC-16

This document contains restricted materials of IBM. LY21-0571-6

Tables

n The commmand analyzer decodes a Create Table
(CRTTBL) command and control is transferred to
QDCCRTBL.

QDCCRTBL creates 256-byte tables as
specified by user-defined command
parameters. The tables are in hexadecimal
format and can be used as transldte tables,
alternate collating sequence tables, and so
forth.

n The command analyzer decodes a Delete Table
{DLTTBL) command and control is transferred to
QLIDLOBJ.

QLIDLOBJ deletes the table from the
system.

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

C

o

QLIDLOBJ

Delete Object

Command
Analyzer
QDCCRPRI QLIDLOBJ QDCCRTBL
Create Print Delete Object Create Table
Image
BELTNBR
QPNCPITT
Print Print Image
Image and Translate

Table

Figure DC-6. Create/Delete Print Image and Tables Overview

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Table

Device Configuration

DC-17

Device Configuration Display Commands

Figure DC-7 shows an overview of the device
configuration display commands operation.

The command analyzer decodes a Display Device
Description (DSPDEVD) command and control is
transferred to QDCDSLUD. QDCDSLUD then
obtains information from the specified LUD (logical
unit description) and displays or prints it to the
user.

The command analyzer decodes a Display Control
Unit Description {(DSPCUD) command and control
is transferred to QDCDSCD. QDCDSCD then
obtains information from the specified CD {control
unit description) and displays or prints it to the
user.

The command analyzer decodes a Display Line
Description (DSPLIND) command and control is
transferred to QDCDSND. QDCDSND then obtains
network description information from the specified
ND (network description) and displays or prints it
to the user.

The command analyzer decodes a Display Device
Configuration (DSPDEVCFG) command and control
is transferred to QDCDSCFG. QDCDSCFG then
displays or prints information about all of the
devices on the system. There is one record for
each ND, showing name, address, and if the
description is not for a switched network, the
attached control units. There is one record for
each CD showing name, address, type, attached
devices, and if applicable, the attached lines.
There is also one record (or more) that shows LUD
information: name, address, type, model number,
and if applicable, the attached control unit.

DC-18

The command analyzer decodes a Display Mode
Status (DSPMODSTS) command and control is

transferred to QDCDSMOD. QDCDSMOD then

obtains information from the specified LUD and
displays or prints it to the user.

The command analyzer decodes a Display Channel
Status (DSPCHLSTS) command and control is
transferred to QDCDSCST. QDCDSCST then
obtains the channel status information from the
specified ND (network description) and displays or
prints it to the user. Channel status can only be
displayed for X.25 lines.

The command analyzer decodes a Display Link
Status (DSPLNKSTS) command and control is
transferred to QDCDSLST. QDCDSLST then
obtains the link status information from the
specified ND (network description) and associated
CDs (controller descriptions). The module displays
or prints the link status information to the user.
Link status can only be displayed for X.25 lines.

This document contains restricted materials of IBM. LY21-0571-6
© Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

C

QDCDSLUD

Command
Analyzer

QDCDSND

QDCDSMOD

Display Mode

QDCDSCFG

Display Device
Configuration

Display Device Display Line
Description Description
B[apcbsco a
Display Control
Unit Description
_______ Machine |
Interface

Network
Description

QDCDSLST

Display Link
Status

B[aocoscst

Display Channel
Status

I

Control Unit
Description

Logical Unit
Description

Figure DC-7. Device Configuration Display Commands Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

PAABO37-0

Device Configuration

DC-19

Communication Status Display Commands

Figure DC-8 shows an overview of the communication
status display commands.

The command analyzer decodes a Display Line
Status (DSPLINSTS) command, Display Control
Status (DSPCTLSTS) command, or Display Device
Status (DSPDEVSTS) command, and control is
transferred to QDCDSSTS. QDCDSSTS then
displays information about the foliowing:

» All lines and their attached control units and
devices

» A specific line and its attached control units and
devices

« All control units and their attached devices

« A specific control unit and its attached line, if
applicable, and devices

« All devices

« A specific device and its attached line and
control unit, if applicable

There is one record for each ND and CD, showing
name and status. There are one or more records
for each LUD showing name, status, and using job
name if the status is active.

DC-20

If the output is displayed, then QDCDSSTS calls
QDCHNCMD to handle any input. QDCHNCMD
calls the following functions based on the
command input:

o Display the job using the Display Job,
Display Reader, and Display Writer
(DSPJOB, DSPRDR, DSPWTR) commands.

G Display the device configuration object in
detail (QDCDSND, QDCDSCD, QDCDSLUD)

e Prompt the Change Device Description,
Change Control Unit Description, and Change
Line Description (CHGDEVD, CHGCUD,
CHGLIND) commands for the device
configuration object (QDCCHPMT).

Q Vary the network off or on starting with an
ND or CD (QDCVANET) or vary a single LUD
off or on (QDCVALUD)

G Cancel the job using the Cancel Job, Cancel
Reader, and Cancel Writer (CNLJOB,
CNLRDR, CNLWTR) commands.

Any messages generated by the above are built
into a message subfile, and this subfile is returned
to QDCDSSTS.

° Display the mode status for a peer device
(QDbCDSMOD).

e Stop or resume communications recovery for
the Stop Line Recovery, Resume Line
Recovery, Stop Control Unit Recovery,
Resume Control Unit Recovery, Stop Device
Recovery, Resume Device Recovery
(STPLINRCY, RSMLINRCY, STPCTLRCY,
RSMCTLRCY, STPDEVRCY, RSMDEVRCY)
commands.

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

C

Figure DC-8. Communication Status Display Commands Overview

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Command DSPJOB DSPRDR DSPWTR
Analyzer Command Command Command
2
B ‘ 1 1 x
QDCDSSTS QDCDSLUD QDCDSsCD QDCDSND
Display Display Device Display Control Display Line
Network Status Description Unit Description Description
QDCHNCMD QDCCHPMT
Handle Change
Command Input Prompt
QDCVALUD QDCVANET
Vary Vary
Device Network
QDCVARCD QDCVARND
Vary Control Vary Line
Unit Description Description
CNLJOB CNLRDR CNLWTR
Command Command Command
o QDCSMOD
Display Mode
Status
! } i
STPLINRCY/ STPCTLRCY/ STPDEVRCY/
RSMLINRCY BSMCTLRCY RSMDEVRCY
Command Command Command
! |
HLDCMNDEV RSMCMNDEV
Command Command

Device Configuration

Power and Vary Devices-Start CPF and Termination
Procedures

Figure DC-9 shows an overview of the device
configuration vary and power commands operation as
well as the start CPF and termination procedures.

Start CPF Procedure

Kl During start CPF, the system arbiter calls QDCINIT
to control the status of line descriptions, control
units, and devices.

@ Alist of all NDs is obtained from the
machine context. Each ND is checked for
the auto vary flag being set on in the
associated space. A list of all NDs with the
vary flag on is sent to QDCVARND.
QDCVARND varies those NDs online.

@ Ajist of all CDs is obtained. Each CD is
checked for the power control feature and
the auto vary flag. A list of CDs with the
power control feature is sent to QDCPWCUD
to be powered on.

Q A list of the CDs with the auto vary flag on
is sent to QDCVARCD to be varied online.

@ Alist of all LUDs is obtained. Each LUD is
checked for the power control feature and
auto vary flag. A list of the LUDs with the
power control feature is sent to QDCPWLUD
to be powered on.

© A ist of LUDs with the auto vary flag on is
sent to QDCVALUD to be varied online.

DC-22

This document contains restricted materials of IBM. LY21-0571-6

Termination Procedure

n QDCSHUTD provides the termination interface to
control the status of line descriptions, control
units, and devices.

A list of all LUDs is obtained from the
machine context. Each LUD is checked for
being online and having the power control
feature. A list of all LUDs that are online is
passed to QDCVALUD to be varied offline.

A list of all LUDs that have the power
control feature is sent to QDCPWLUD to be
powered off.

A list of all CDs is obtained and a list of
those CDs that are online is passed to
QDCVARCD to be varied offline.

A list of all CDs that have the power control
feature and are powered on is sent to
QDCPWCUD to be powered off.

A list of all NDs is obtained and a list of
those NDs that are online is sent to
QDCVARND to be varied offline.

Power Commands

n The command analyzer decodes a Power Device
(PWRDEV) command and control is transferred to
QDCPWLUD.

QDCPWLUD passes a list of device names
to QDCPRLUD. an event handler that
executes under control of the system arbiter
process, to change the power status of those
devices that are specified in the status
parameter of the Power Device command.

n The command analyzer decodes a Power Control
Unit (PWRCTLU) command and control is
transferred to QDCPWCUD.

QDCPWCUD changes the power status of
the control units with the power control
feature as specified by the status parameter
of the Power Control Unit command.

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

C

C

Vary Commands

The command analyzer decodes a Vary Device

(VRYDEV) command and control is transferred to
QDCVALUD.

o For non-peer devices, QDCVALUD passes a
list of device names to QDCVRLUD, an event
handler under control of the system arbiter
process, to change the online status of the
devices as specified in the Vary Device
command. If the device is varied offline, the
lock on the LUD is passed to the system
arbiter.

0 For peer devices, an event is signaled to the
logical unit services process to change the
online status of the peer device, and to
initiate initial session negotiation.

The command analyzer decodes a Vary Control
Unit (VRYCTLU) command and control is
transferred to QDCVARCD.

Q QDCVARCD processes a list of control unit
names to be varied online or offline as
specified in the Vary Control Unit command.

The command analyzer decodes a Vary Line
(VRYLIN) command and control is transferred to
QDCVARND.

o QDCVARND processes a list of line
description names to be varied online or
offline as specified by the Vary Line
Description command.

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Device Configuration

DC-23

QWCAMNAR ’
(system arbiter) Termination
Start CPF
QDCINIT QDCSHUTD
Command
Initialize Analyzer Shut Down
Control Control
(A o (] (0] (£}
QDCPWLUD QDCVALUD QDCPWCUD QDCVARCD QDCVARND
Power Vary Device Power Control Vary Control Vary Line
Device Unit Description Unit Description Description
QDCPRLUD QDCVRLUD
Power LUD Vary LUD
QLUS
Logical Unit
Services Process
Machine Interface - I R T
Logical Unit Control Unit Network
Description Description Description

Figure DC-9. Power and Vary Device Overview

<

DC-24
This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

C

INTRODUCTION

The data description component of the CPF (control
program facility) is the user interface to create, change,
or delete the files and members for devices and the data
base. In the data base, a physical and logical file can be
created or deleted; physical file members and logical file
members can be added or removed. Device files can be
created, changed, or deleted for displays, the MFCU
(multifunction card unit), printers, diskette, tape, save,
communications (LU-1, peer, BSC) and mixed files.

The physical file, logical file, and device files for
displays, printers, communications, and mixed files let
the user enter a source description of the file using the
data description specification forms. The source
description is usually entered using the source entry
utility, the copy component, or by spooled inline data.
After the description is entered, a create command is
used to process the source description and to create the
specified type of file.

The data base file members and the MFCU, diskette,
save, and tape device files do not use a source
description. The parameters on the appropriate
commands provide the information needed to create the
file, add the member, or modify the device file.

Data Description

GENERAL OVERVIEW

Data Description Modules

The data description component consists of the
following modules:

Note: An arrow (-->) identifies a module as being an
entry module into the component. Indentation of a
module shows its dependency on a previous module.

Device Related Modules

-->QDDCDPF-Create Device File (CRTDSPF,
CRTPRTF)': This module processes the create
commands for display and printer.

-->QDDCDF-Create Device File (CRTCRDF, CRTSAVF,
CRTDKTF, CRTTAPF)': This module processes the
create commands for MFCU, diskette, tape, and save.

-->QDDCCMF-Create Communications/BSC /Mixed
File (CRTCMNF, CRTBSCF, CRTMXDF)}': This
module processes the create command for secondary
LU-1, peer, BSC, and mixed files. It also controls the
invocation of other data description component
modules used to process the required data
description specifications.

QDDREAD-See Modules Related to Both Device
and Data Base.

QDDSPRDV-Device File Syntax Processor: This
module syntax processes the data description
source and builds the IMS, which is used by
QDDCDFDV and QDDPRINT.

QDDCKDV-Device File Syntax Checker: This
maodule performs low-level syntax checking,
one line at a time.

QDDREFER-See Modules Related to Both Device
and Data Base.

'This module is a CPP (command processing program).

Data Description DD-1

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

QDDINIT-See Modules Related to Both Device
and Data Base.

QDDCDFDV-Device IMS Processor: This module
processes the intermediate source into another
intermediate source format, input to the device file
definition component, which is used to create the
device file. Also, this module performs validity
checking not performed by the syntax
processor/checker.

QDDPRINT-See Modules Related to Both Device
and Data Base.

-->QDDMDF-Change Device File (CHGDSPF,
CHGSAVF, CHGPRTF, CHGCRDF, CHGDKTF,
CHGTAPF)': This module processes the change
device file commands for display, printer, card,
diskette device, save, and tape files.

-->QDDMCMF-Change Communications File
(CHGCMNF,CHGBSCF, CHGMKDF)': This module
processes the Change Communications/BSC/Mixed
File command.

-->QDDADDDV-Add Device File (ADDBSCDEVE,
ADDCMNDEVE, ADDDSPDEVE}': This module
processes the mixed file add device entry commands
for BSC, communications, and display devices.

-->QDDRMVDV-Remove Device File (RMVBSCDEVE,
RMVCMNDEVE, RMVDSPDEVE)': This module
processes the mixed file remove device entry
commands for BSC, communications, and display
devices.

Data Base Related Modules

-->QDDCPF-Create Physical File {CRTPF and
CRTSRCPF)': This module is used to create a
physical file from the Create Physical File and Create
Source File commands and, optionally, using a
specified source file containing additional descriptive
information about the record format and the file.

QDDREAD-See Modules Related to Both Device
and Data Base.

'This module is 8 CPP {command processing program).

DD-2

QDDSPRDB-Data Base File Syntax Processor:
This module syntax processes the data description
specification source for a data base file.

QDDCKDB-Data Base File Syntax Checker:
This module performs the low-level syntax
checking functions on a single line basis for a
data base file.

QDDREFER-See Modules Related to Both Device
and Data Base.

QDDINIT-See Modules Related to Both Device
and Data Base.

QDDPFFLD-Physical File Field Processor: This
module processes field descriptions for creation of
a physical file record format.

QDDPRINT-See Modules Related to Both Device
and Data Base.

-->QDDCPFM-Add Physical File Member (ADDPFM)':
This module is used to add a member to a physical
file.

-->QDDCLF~Create Logical File (CRTLF)': This module
is used to create a logical file from a source
description and the information in the call parameter
list.

QDDREAD-See Modules Related to Both Device
and Data Base.

QDDSPRDB-Data Base File Syntax Processor:
This module syntax processes the data description
specification source for a data base file.

QDDCKDB-Data Base File Syntax Checker:
This module performs the low-level syntax
checking functions on a single line basis for a
data base file.

QDDREFER-See Modules Related to Both Device
and Data Base.

QDDINIT-See Modules Related to Both Device
and Data Base.

QDDLFFLD-Logical File Field Processor: This
module processes field descriptions for creation of
a logical file record format.

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

C

C

QDDPRINT-See Modules Related to Both Device
and Data Base.

-->QDDCLFM-Add Logical File Member (ADDLFM)':
This module is used to add a member to a logical
file.

-->QDDDMBR-Remove Member (RMVM)': This
module is used to delete physical or logical data base
file members.

Modules Related to Both Device and Data Base

-->QDDREAD-Common DDS Read: This module
contains the function recessary to read the DDS into
a source space (102-byte records) for processing by
the syntax processor and QDDPRINT. It also
performs some initialization functions such as space
and index creation, and opening and closing the
source input file.

-->QDDPRINT-Common DDS Print: This module
contains the function necessary to print the DDS
source listing, the expanded source listing, and the
error summary. The original source listing is derived
from the information read (QDDREAD) and from error
information accumulated while the source was being
processed. The expanded source listing is generated
from the IMS built by the syntax processors. The
error summary shows the identifier number of the
diagnostic message, its severity, and its text. A
completion message is also generated. When the file
is not created, additional messages will exist with
explanations as to why the file was not created.

-->QDDINIT-Keyword Table Initialization: This module
is invoked to store the appropriate keyword table in
the syntax processor’'s program associated space.
This reduces the initialization time required to invoke
the syntax processor, and is done only once per
installation.

-->QDDESPEH~Extend Space Exception Handler: This
module is used to handle the MCHOB01 (space
addressing violation) exception. It increases the size
of the space object and then returns to retry the
instruction causing the exception.

-->QDDREFER-Field Reference Processor: This module
processes reference-related specifications. It extracts
field reference information from a data base file or
the current source, and is called from the syntax
processor.

'This module is a CPP (command processing program).

DDS Single Line Syntax Checker

-->QDDSEU-Single Line Syntax Checker Bridge
Module: This module is used to invoke the
appropriate checker:

« Check Physical File Description: The module
interfaces with QDDCKDB.

+ Check Logical File Description: The module interfaces
with QDDCKDB.

» Check Display File Description: The module
interfaces with QDDCKDV.

- Check Printer File Description: The module interfaces
with QDDCKDV.

« Check Communications/BSC File Description: The
module interfaces with QDDCKDV.

« Mixed File Description: The module interfaces with
QDDCKDV.

QDDINIT-See Modules Related to Both Device and
Data Base.

Creating Files With a Source Description Provided

Data description has a separate call interface to create a
physical file, logical file, display file, printer file,
communications file, or BSC file. These calls are
generated from the corresponding create command. The
command analyzer checks the create command
parameters for errors. If no errors are found, the
parameters are passed to data description using its call
interface. Data description then performs additional
error checking on the create command parameters. If
any errors are found, diagnostic messages are issued
and an escape message is sent.

Common data management is invoked to open the file
containing the source description and to get each record
in the file. Data description scans each record for
errors; if any errors are found, an error indication line is
generated to be printed on the source listing. An
internal form of the source description is also generated
to be passed to data base or device file definition to
create the file.

Data Description DD-3

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

In addition to the source listing, a second listing is
produced that shows any defaults that were made, to let
processing continue and also to show any retrieved
information from referenced field descriptions that were
used to create the file.

The error messages and error statistics are printed on
the source listing.

Data management is called, which then invokes data
base or device file definition to create the file from the
internal form created by data description. If data
management, data base, or device file definition detects
any additional errors, an escape message is sent to data
description.

Creating a File or Adding a File Member Without
Supplying a Source Description

Physical files, physical file members, logical file
members, and device files {excluding communications,
mixed files, and binary synchronous communications
files) can be created without supplying a source
description by using the call interface to data
description. The calls are generated by using the
corresponding create file command or add member
command. The command analyzer checks the command
parameters for errors. If no errors are found, the
command analyzer passes the parameters to the data
description component.

Data description performs additional error checking and
generates appropriate input for data base or device file
definition. Common data management is then called to
create the file or add the file members. If any errors are
detected by either common data management, data
base definition, device file definition, or data description,
an escape message is sent.

DD-4

This document contains restricted materials of IBM. LY21-0571-6

Changing Device Files

Data description can change device files by using a
change file command. The command analyzer checks
the command parameters for errors. If no errors are
found, the change parameters are passed to the data
description component. Data description performs
additional error checks on the parameters and calls
common data management, which invokes device file
definition to modify the device file. If any errors are
detected by either common data management or data
description, an escape message is sent.

Single Line Syntax Checking Through Source Entry
Utility

The data description component syntax checks single
lines of the data description source specifications as
they are being entered. A routine is provided to syntax
check each of the types of source specifications:
physical file, logical file, printer device file,
communications device file, BSC device file, mixed
device file, and display device file. If errors are
detected, they are returned to the caller in the form of a
message string containing message |Ds and any
replacement text.

Multiple Line Syntax Checking Through Screen
Design Aid

The data description component provides a callable
routine to syntax check multiple lines of display data
description source specifications. The parsed output
provided by the data description component is returned
to the caller.

©®Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

3

This page is intentionally left blank.

C

Data Description DD-5
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Create Device File Overview

Figure DD-1 and the following text describe how a
device file is created.

DD-6

The command analyzer transfers control to
QDDCDF, QDDCCMF, or QDDCDPF. It is passed
pointers to command parameters that were
entered on the Create Display File, Create Printer
File, Create Diskette File, Create Card File, Create
Save File, Create Tape File, or Create
Communications/BSC/Mixed Device File
command. The file attributes entered on the
command are placed in a create-input space.

If the file to be created is a diskette, card, save, or
tape file, or if it is a display or printer device file
without a source description, the ?CRTDEVF macro
calls the QDMROUTE module of common data
management, which invokes device file definition

to create the device file. A pointer to a structure 5 |

that contains the qualified name of the file being
created and a pointer to the space that contains
the input for the new file are passed to
QDMROUTE.

If the Create command also specifies a DDS
source file (required for communications, BSC, and
mixed files), then QDDREAD is called to open the

source file and read the source records. a

QDDREAD also provides other initialization
functions, such as space and index creation. |

o QDDESPEH is called to extend spaces as the
result of handling an out-of-space exception.

QDDSPRDV (see Figure DD-1) is called once to

syntax check the DDS source specification.

QDDSPRDV (see Figure DD-1) is passed a pointer

to a data structure that contains addressability to:

the source input space, intermediate source space,
and error summary space.

o QDDINIT is called to initialize the device file
keyword table (once per install).

© QDDREFER is called to retrieve field
description information from a previously
defined field in a record format in the data
base or from the current source. QDDREFER
is passed a pointer to a data structure that
contains addressability to the intermediate
source space, the source error index, and
work spaces so that field information can be
extracted. The ?EXTFILED macro in
QDDREFER calls QDMROUTE, which invokes
data base definition to extract the field
description from the data base file.

O QDDCKDV (see Figure DD-1) is called by
QDDSPRDYV for each logical line of DDS
source for the file.

Q QDDESPEH is called to extend spaces as the
result of handling an out-of-space exception.

QDDCDFDV (see Figure DD-1) is called to process
the intermediate space. Further syntax processing
takes place (location processing) from the IMS,
and the created input space is updated to contain
information to be used to create the device file.

o QDDESPEH is called to extend spaces as the
result of handling an out-of-space exception.

If the file to be created is a display or printer
device file with a source description, or a
communications, BSC, or mixed file, the
?CRTDEVF macro calls the QDMROUTE module of
common data management, which invokes device
file definition to create the device file. A pointer to
a structure that contains the qualified name of the
file being created and a pointer to the space that
contains the input for the new file are passed to
QDMROUTE.

QDDPRINT is called to open the DDS printer file
{QPDDSSRC) to print the source listings (original
source with diagnostics and expanded source
showing defaults, external/source references, and
buffer positions) and the error summary.

o QDDESPEH is called to extend spaces as the
result of handling an out-of-space exception.

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Command
Analyzer

0]

Command
Processing
Program?2

QDMROUTE QDDSPRDV QDDCDFDV QDDPRINT
Device File
Common Data Syntax Device File DDS Print
Management Processor IMS Processor
QDDREAD QDMROUTE
DDS Common Common Data
Read Management
QDDINIT QDDREFER
Initialize Field Reference
Keyword Table Processor
QDDCKDV QDDESPEH
Device File Extend Space
Syntax Exception
Processor Handler

8 QDDCDF for card, tape, save, and diskette; QDDCCMF for communications (LU-1, peer, BSC),
and mixed file; QDDCDPF for display and printer.

PAAB042-0

Figure DD-1. Create Device File Overview

Data Description DD-7
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Create Physical File/Add Physical File Member
Overview

Figure DD-2 and the following text describe the create
physical file, create source file, and add physical file
member functions.

Create Physical File/Create Source File

n The command analyzer transfers control to
QDDCPF. It is passed pointers to the physical file
attributes that were entered as command
parameters. If a record length is specified on the
Create Physical File (CRTPF) command (defaulted
on the Create Source Physical File command), a
record format is generated using the record length.
Control is then passed to the QDMROUTE module
of common data management (see Q. i,
however, a source file is specified on the Create
Physical File command, that file is opened, read,
and processed.

0 QDDREAD is called to open the source file
and read the source records. It also provides
other initialization functions, such as space
and index creation.

@ QDDSPRDB is called to syntax check the
DDS source specifications. QDDSPRDB is
passed a pointer to a data structure that
contains addressability to a space for the
new record format definitions, the
intermediate source space, the error
summary space, and so forth. QDDCKDB,
the data base file syntax checker, is called by
QDDSPRDB for each logical line of DDS
source for a physical file.

QDDREFER is called to retrieve field
description information from a previously
defined field in a record format in the data
base or from the current source. QDDREFER
is passed a pointer to a data structure that
contains addressability to the intermediate
source space, the source error index, and
work spaces so that field information can be
extracted. The ?EXTFILED macro in
QDDREFER calls QDMROUTE, which invokes
data base definition to extract the field
description from the data base file.

QDDINIT is called to initialize the data base
file keyword table (once for install).

DD-8

© QDDPFFLD s called to process all of the
field specifications for a new record format.
It is passed a pointer to a data structure that
contains addressability to a space for the
new record, to the error summary space, and
so forth.

o If an out-of-space exception is signaled,
QDDESPEH is called to extend the space.

@ The ’CRTDBF macro in QDDCPF is used to
call the QDMROUTE module of common
data management, which invokes data base
definition to create the new physical file.
QDMROUTE is passed a pointer to a data
structure that contains the name of the file
to be created as well as a pointer to the file
definition template.

° QDDPRINT is called to open the printer file
(QPDDSSRC) to print the source listings
(original source with diagnostics and
expanded source, showing defaults,
references, and buffer positions) and the
error summary.

If the physical file is successfully created and the
Create Physical File or Create Source File
commands indicate that a physical file member is
also to be added, QDDCPFM s called and pointers
are passed to the appropriate command
parameters (see).

Add Physical File Member

The command analyzer and QDDCPF transfer
control to QDDCPFM. It is passed pointers to the
physical file member attributes that were entered
as command parameters.

© The CRTDBM macro in QDDCPFM is used
- to call the QDMROUTE module of common
data management, which invokes data base
definition to add a member to the physical
file. QDMROUTE is passed a pointer to a
data structure that contains the file name,
member name, and a pointer to the member
definition template.

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

CRTPF/CRTSRCPF

Commands

QDDCPF

Create Physical
File

Command
Analyzer

ADDPFM
Command

QDDCPFM

Add Physical
File Member

\

QDDSPRDB

Data Base File

Syntax Processor

QDDREAD

DDS Read

Logical File
Field Processor

QDDESPEH
Extend Space
Exception
Handler

=

—
QDDPFFLD \

QDDINIT

Keyword Table
Initialization

QDDREFER

Field Reference
Processor

QDDCKDB

Data Base File
Syntax Checker

QDMROUTE

Common Data
Management

QDDPRINT

DDS Print

Figure DD-2. Create Physical File/Create Source File/Add Physical File Member Overview

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Data Description

DD-9

Create Logical File/Add Logical File Member

Overview

Figure DD-3 and the following text describe the create
logical file and add logical file member functions.

Create Logical File

n The command analyzer transfers control to
QDDCLF. It is passed pointers to the file
attributes that were entered as command
parameters.

o
o

DD-10

See Create Physical File/Create Source File.

QDDSPRDB is called, to syntax check the
DDS source specifications. QDDSPRDB is
passed a pointer to a data structure that
contains addressability to the source input
space, intermediate source space, error
summary space, and so forth.

QDDCKDB is called by QDDSPRDB for each
logical line of DDS source for a logical file.

QDDINIT is called to initialize the data base
file keyword table (once per install}.

QDDLFFLD is called to process field
specifications for a new record format, and is
passed a pointer to a data structure that
contains addressability to a space for new
record format descriptions, intermediate
source data, error summary space, and so
forth.

If an out-of-space excaption is signaled,
QDDESPEH is called to extend the space.

@ The ?CRTDBF macro in QDDCLF is used to
call the QDMROUTE module of common
data management, which invokes data base
definition to create the logical file.
QDMROQUTE is passed a pointer to a data
structure that contains the name of the
logical file to be created and a pointer to the
file definition template.

o See Create Physical File/Create Source File.

If the logical file is successfully created and the
Create Logical File (CRTLF) command indicates
that a logical file member is also to be added,
QDDCLF transfers control to QDDCLFM. It is
passed pointers to the appropriate command
parameters (see n).

Add Logical File Member

The command analyzer and QDDCLF transfer
control to QDDCLFM. It is passed pointers to the
logical file member attributes that were entered as
command parameters.

© The ?EXTFILED macro in QDDCLFM is used
to call the QDMROUTE module of common
data management, which invokes data base
definition to extract file definitions.

The ?CRTDBM macro in QDDCLFM is used to call
the QDMROUTE module of common data
management, which invokes data base definition
to add a member to the logical file. QDMROUTE
is passed a pointer to a data structure that
contains the file name and member name, as well
as a pointer to the member definition template.

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Command
Analyzer

CRTLF
Command

ADDLFM
Command

QDDCLF

Create Logical
File

QDDREAD

DDS Read

QDDSPRDB

Data Base File
Syntax Processor

QDDLFFLD

Logical File
Field Processor

QDDESPEH
Extend Space
Exception
Handler

QDDCLFM

Add Logical
File Member

BN

QDDINIT

Keyword Table
Initialization

QDDCKDB

Data Base File
Syntax Checker

QDMROUTE

Common Data
Management

QDDPRINT

DDS Print

Figure DD-3. Create Logical File/Add Logical File Member Overview

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980. 1981. 1982. 1983. 1984. 1985

Data Description

DD-11

Change Device File/Remove Member Overview

Figure DD-4 and the following text describe the change
device file and remove member functions.

Change Device File

n The command analyzer transfers control to the
command processing program. It is passed
pointers to the file attributes entered on the
Change Display File, Change Printer File, Change
Diskette File, Change Card File, Change Tape File,
Change Communications File, Change BSC File,
Change Mixed File, or Change Save File command.

©® The ?MDFDEVF macro in QDDMDF or
QDDMCMF is used to call device file
definition to change the device file.

Remove File Member

n The command analyzer transfers control to
QDDDMBR. It is passed a painter to the file and
member name that is to be deleted. In the case of
a *GENERIC remove, an alphabetical list of names
is retrieved, using the EXTFILED macro. The
DLTDBM macro is invoked for each member name
that meets the generic name criteria.

©® The ?DLTDBM macro in QDDDMBR is used
to call the QDMROUTE module of common
data management, which invokes data base
to remove the member from the file.
QDMROUTE is passed a pointer to a data
structure that contains the qualified name of
the member that is to be removed.

DD-12

This document contains restricted materials of IBM. LY21-0571-6

Command
Analyzer

Command
Processing
Program'

QDDDMBR

Remove
Member

QDMROUTE

Common Data
Management

' QDDMDF handles the CHGDSPF, CHGPRTF, CHGDKTF, CHGSAVF,
CHGCRDF, and CHGTAPF commands. QDDMCMF handles the
CHGCMNF, CHGBSCF and CHGMXDF commands.

Figure DD-4. Change Device File/Remove Member
Overview

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

9

J

C

Single Line Syntax Checker Overview

Figure DD-5 and the following text describe the syntax
check file description function.

The caller specifies the type of single line syntax
check desired via the ?CALLDDS macro. The caller
passes a logical source line. Returned to the
source entry utility are:

« A return code that indicates if any errors were
found.

- A message stack for the errors, if any, that
were detected.

« A string, highlighted on the display, indicating
the fixed columns that were in error.

The ?CALLDDS macro invokes the module QDDSEU
and, based upon the type of checker desired, one of the
following single line syntax checkers is invoked with a
transfer of control.

O QDDCKDB is called to perform the actual
syntax checking functions for physical file
and logical file DDS source.

© QDDCKDV s called to perform the actual
syntax checking functions for device file DDS
source.

u QDDINIT-The QDDINIT module stores the device
and data base keyword tables in the
program-associated space of QDDSEU.

Source

Entry

Utility
QDDSEU a QDDINIT
Single Line ' . Keyword Table
Syntax Checker Initialization

o o

QDDCKDB QDDCKDV

Data Base File
Syntax Checker

Device File

Syntax Checker

Figure DD-5. Syntax Check File Description Overview

Data Description DD-13

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Screen Design Aid DDS Parser

Figure DD-6 and the following text describe the screen
design aid DDS parser function.

n The caller specifies if printing is desired via the
?CALLDDS! macro, along with other required
information. This operation allows the caller to
block an entire set of DDS source into one space,
providing the caller has described the space by
specifying the number of records and the length of
each (92 to 102 characters).

The information returned is a parsed space
described by the ?WWDFDDSI macro.

The screen design aid uses this interface to ignore
invalid DDS and build from the parsed output back
to the source file.

El The module QDDSIDP is invoked via the
?CALLDDSI macro. This module emulates the
DDS create display command processing program
and the QDDREAD module function.

QDDSIDP provides an interface to the function
described in . B, and Bl of Figure DD-1.

DD-14
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

C

Screen
Design
Aid

QDDSIDP

Interface to
Display and Print

QDDSPRDV

Device File
Syntax Processor

QDDINIT

Keyword Table
Initialization

QDDCDF
CDFDV QDDPRINT
Device IMS

DDS Print
Processor

QDDREFER

Field Reference
Processor

QDDCKDV

Device File
Syntax Checker

QDDESPEH (D]
Extend Space
Exception
Handler

Note: See Figure DD-1 II , , and for a description of , II , and above.

Figure DD-6. Screen Design Aid DDS Parser Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Data Description DD-15

J

DD-16
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

C

INTRODUCTION

The device file definition component of the CPF (control
program facility) creates, changes, deletes, and extracts
information from device files. It also retrieves the
current release/modification level for device files, and if
necessary, converts device files to the current

release /modification level. Device file definition also
provides the following subset of operations:

« Move device files from one library to another library
- Retrieve the size of a specific device file

« Rename a device file

- Grant authority to a device file

« Revoke authority to a device file

- Transfer ownership of a device file

« Add and remove device entries from a mixed file

- Save/restore an online save file

Create a duplicate online save file

« Dump a device file

GENERAL OVERVIEW

Device File Definition Modules

The device file definition component consists of the
following modules:

Note: An arrow (-->) identifies a module as being an
entry module into the component. Indentation of a
module shows its dependency on a previous module.

-->QDFCDF-Create Device File: This module creates a
device file.

QDFVDLST-Validate Device List: This module
ensures that the device descriptions match the
device file type.

QDFBLDDF—-Build Device File: This module
controls the building of the device file.

Device File Definition

QDFDFTPR-Build Nonfield-Level Device File: This
module controls the building of device files that
are created without data description specifications.

QDFLVLGN-Level Check Generator: This module
generates ihe ievel check values for the device file.

QDFCDFPR—-Create Printer Device File: This
module processes the record formats for printer
files created with data description specifications.

QDFRCDPR-Record Processor: This module
processes the record formats for display,
communications, and mixed files created with data
description specifications.

QDFKWDPR-Keyword Processor: This
module processes the keywords specified
through the data description specifications
for device files.

QDFCRTWU-Create Where-Used Section:
This module creates the extract and
where-used section for device files.

-->QDFMDF-Modify Device File: This module changes
the attributes of a device file.

QDFVDLST-Validate Device List: This module
ensures that the device descriptions match the
device file type.

-->QDFDDF-Delete Device File: This module deletes
the device file.

-->QDFEDF-Extract Device File: This module extracts
file attributes, the format name list, field descriptions,
and record formats from a device file.

-->QDFCNVPP-Retrieve/Update Current
Release/Modification Level: This module either
retrieves or updates the release/modification level
used for creating and converting files.

-->QDFMOVE—Move Device File: This module transfers
addressability from one library to another library.

-->QDFRENAM-Rename Device File: This module
changes the name of a device file.

Device File Definition DF-1

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

-->QDFSIZE-Device File Size: This module retrieves
the size of a device file for the Display Object
Description command.

-->QDFGRANT-Grant Authority: This module is used
to grant authority to a device file.

-->QDFREVOK-Revoke Authority: This module is used
to revoke the authority of a user to a device file.

QDFCHKFL—Check File Status: This module is
called by QDFMOVE, QDFRENAM, QDFDDF,
QDFSIZE, QDFRSTDF, QDFDUPDF, and QDFMDF
to handle the status checking of the device file as
well as locking and unlocking.

-->QDFXOWNR-Transfer Ownership: This module
transfers device file ownership from one owner to
another owner.

-->QDFCVALL-Convert Files: This module controls the
conversion of files that are not at the current
release /modification level.

QDFCNVPP—-Retrieve/Update Current File
Release/Modification Level: This module retrieves
and updates the release/maodification level used
for file creation and file conversion.

-->QDFCNVF-Convert Device File: This module
converts a device file to the current
release/modification level.

QDFMATR1-Materialize Display and Printer Files:
This module materializes display and printer files
to provide source for file creation process.

QDFMATR2-Materialize Communications and BSC
Files: This module materializes communications
and BSC files to provide source for the file
creation process.

DF-2

This document contains restricted materials of IBM. LY21-0571-6

QDFBLDDF-Build Device File: This module
controls the building of the device file.

QDFDFTPR-Build Nonfield-Level Device File: This
module controls the building of device files that
are created without data description specifications.

QDFLVLGN-Level Check Generator: This module
generates the level check values for the device file.

QDFCDFPR—-Create Printer Device File: This
module processes the record formats for printer
files created with data description specifications.

QDFRCDPR—-Record Processor: This module
processes the record formats for display,
communications, and mixed files created with data
description specifications.

QDFKWDPR-Keyword Processor: This module
processes the keywords specified through the
data description specifications for device files.

ODFCRTWU-Create Where-Used Section: This
module creates the extract and where-used
section for device files.

-->QDFDMPDF-Dump Device File: This module dumps
a device file. For an online save file, it dumps the
dump space also.

-->QDFDUPDF-Duplicate Device File: This module
creates a duplicate of an online save file. The
contents of the dump space are not duplicated.

-->QDFSAVDF-Save Device File: This module saves
the description of an online save file. The contents of
the dump space are not saved.

-->QDFRSTDF-Restore Device File: This module
restores an online save file. If the file does not
already exist on the system, an empty dump space is
created.

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Device File Definition Overview Components that
Use Device File

Figure DF-1 shows an overview of the relationship of Definition

other CPF components to the device file definition

component. Common

Data

Bl Ccommon data management is invoked during Management
create and change to build the prototype ODP Device
(open data path). File

Definition

~ -

n Data description: The data description component
is the primary user of device file definition. It uses Data o ﬂ
the device file definition component to complete Description
the creating, and changing of device files.

n Librarian: The librarian component uses the device
file definition component to delete, move, and
rename files. It also is used to retrieve the size of) _ n
device files and to create a duplicate of an online Librarian
save file.

n Security: The security component uses the device
file definition component to grant and revoke
authority for device files and to transfer ownership

of device files. . ﬂ
Security

B High-level languages and utilities: They use the
device file definition to extract, create, change, and
delete device files.

H Service: The service component is used by the High-Level B
device file definition component to build the Languages
service information stored with the device file and Utilities
object.

Common data management invokes device file
definition to retrieve the current
release /modification level for device files.

Service

B save/restore, reclaim/damage notification, and
installation invoke device file definition to
determine if a device file is at the current
release/modification level, and if not, device file
definition will convert the device file when
nec‘e§s_,ary. Save/restore also invokes device fllg Notification and
definition to handle the save and restore of online Installation
save files. PAAB046-0

Save/Restore
Reclaim/Damage n

n Service invokes device file definition to dump the Figure DF-1. Device File Description Overview
device file.

Device File Definition DF-3
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Create Device File Definition

Figure DF-2 and the following text describe the device
file definition create operation.

[~

QDMROUTE is called by the ?CRTDEVF macro. A
parameter list is passed that contains pointers to
the file attributes and if a field level file is being
created, the record formats and file-level keyword
information. The qualified name of the file to be
created is also passed.

When a device file is to be created, QDMROUTE
transfers control to QDFCDF to create the file.

QDFCDF calls QDFBLDDF to build the device file.

if any device descriptions are associated with this
file, QDFCDF call QDFVDLST to validate the list.

Control is returned to the caller.

Common data management is invoked to initialize
the prototype ODP (open data path) contained in
every device file.

Librarian is invoked to assign the authority of the
file and build the OIR {object information
repository) information.

Service is invoked to build the service information
stored in the OIR for a device file.

QDFBLDDF calls QDFLVLGN to generate the level
check values for the device file.

QDFBLDDF calls QDFRCDPR to process the
record formats.

QDFRCDPR calls QDFKWDPR to process any
keywords specified through the data description
specifications.

QDFRCDPR calls QDFCRTWU to create the
where-used section used by extract.

QDFLVLGN calls QDFINIT to initialize keyword
tables.

QDFBLDDF calls QDFCDFPR to create and
process the record formats, fields, and keywords
for the externally described printer files.
QDFCDFPR also builds the where-used section
used by the extract function.

QDFBLDDF calls QDFDFTPR to build files that are
not externally described.

C

DF-4
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Created
Caller Device
File ﬁ
Parameter
List 1] B [comrouTE
‘_
QDMROUTE Common Data
M t
Common Data anagernen
Management
n l Librarian P
QDFCDF <
Create Device [«
QDFVDLST File 4—_n’
Service
Validate I
Device List ﬂ
QDFBLDDF
Build Device
QDFDFTPR File QODFLVLGN
Build Non-field Level Check
Level Device File Generator
QDFRCDPR QDFCDFPR QDFINIT
Record Create Printer —> Initialize
Processor Device File Keyword Table

QDFCRTWU QDFKWDPR
Create Where- Keyword
Used Section Processor

rPAAB043.0

Figure DF-2. Create Device File Definition Overview

Device File Definition DF-5
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Change Device File Definition

Figure DF-3 and the following text describe the device
file definition change operation.

n QDFMDF is called by the ?MDFDEVF macro. A
parameter list is passed that contains a pointer to
the modify information and the qualified name of
the device file being changed.

n Control is returned to the caller.

Caller

Parameter

List [1]

QDFMDF

Common data management is invoked to build a

new prototype ODP.

Librarian is invoked to change OIR information.

QDFMDF calls QDFCHKFL to check authority and
lock the object involved in the change device file.

QDFMDF calls QDFVDLST to ensure the device
descriptions specified for this file are valid.

Modified

Modify Device

a File

Librarian
QDFVDLST QDFCHKFL
Validate List Check File
Status

Figure DF-3. Change Device File Definition Overview

DF-6

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Device
File

Common
Data
Management

<

3

Delete Device File Definition | Bl QDFDDF calls QDFCHKFL to check file status and

lock the object involved in the delete.
Figure DF-4 and the following text describe a delete

device file definition operation. B The ?DLTOIR macro is issued to invoke the
librarian component to delete the OIR entry and
n The librarian or some other function calls the update the library.
QDMROUTE module of common data
management. A parameter list is passed that B control is returned to the caller.

contains a pointer to the qualified name of the file
being deleted.

El 1 a device file is to be deleted, QDMROUTE calls
QDFDDF to delete the device file. A resolved
system pointer to the file is passed to QDFDDF.

/ Caller

Parameter H
List

QDMROUTE

Common Data

Management
Parameter
List
I r——==—=—=—= =
QDFDDF
DFDD : Deleted :
——————— -~ Devi
Delete Device | aviee !
File 1 File |
e J
3] II\
QDFCHKFL
?DLTOIR
Check File Macro
Status

Figure DF-4. Delete Device File Definition Overview

Device File Dzfinttion DF-~7
This document contains restricted materials of IBM. LY21-0571-6
© Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Device File Definition Extract Operation

Figure DF-5 and the following text describe a device file
definition extract information operation.

DF-8

The file reference function component, high-level
languages, and other functions call the
QDMROUTE module of common data
management via the ?EXTFILED macro. A
parameter list is passed that contains a pointer to
a structure that contains either a null pointer or a
user-defined pointer. When control is returned to
the caller, this pointer will point to a space that
contains the extracted information. The input
structure must identify the type of extract to be
processed:

+ File attributes

+ Name list of all record formats in the file

» Specific record format description

- Specific field description in a record format

The qualified name of the file from which the
information is to be extracted is also in the
parameter list.

If information is to be extracted from a device file,
QDMROUTE calls QDFEDF to extract the
information. The parameter list that was passed to
QDMROUTE is passed to QDFEDF as well as a
resolved system pointer to the file that contains
the information to be extracted.

Librarian is invoked to extract the file text from
the OIR.

This document contains restricted materials of IBM. LY21-0571-6
© Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Parameter
List

Parameter
List

Librarian

Figure DF-5. Device File Definition Extract Operation

Overview

Caller

QDMROUTE

Common Data
Management

QDFEDF

Extract
Device File

Extracted
Data

9

This page is intentionally left blank.

C

Device File Definition DF-9
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Convert Device File Definition QDFBLDDF calls QDFLVLGN to generate the level

check values for the device file.
Figure DF-6 and the following text describe the device

file definition convert operation. n QDFBLDDF calls QDFRCDPR to process the

record formats.
Bl QDFCVALL is called by the 2CNVFILES macro. A

parameter list is passed that contains pointers to n QDFRCDPR calls QDFKWDPR to process any
the files to be converted. This generally occurs at keywords specified through the data description
installation time. specifications.
n QDFCNVPP is invoked to maintain the current m QDFRCDPR calls QDFCRTWU to create the
release / modification level for the device files on where-used section used by extract.
the system.
m QDFLVLGN calis QDFINIT to initialize keyword
Bl QDFCNVF is called by the ?CNVDF macro. tables.
QDFCNVF is invoked for each device file that is
converted to the current release/modification level. BB QDFBLDDF calls QDFCDFPR to create and
This is generally performed by save/restore and process the record formats, fields, and keywords
reclaim/damage notification. for the externally described printer and display
files. QDFCDFPR also builds the where-used
B QDFMATR1 or QDFMATR2 is invoked to section used by the extract function.
materialize device files not at the current
release /modification level into a form that can be QDFBLDF calls QDFDFTPR to create non-field
used in the remainder of the process. QDFMATR1 level device files.

is invoked for display and printer files.
QDFMATR2 is invoked for communications and
BSC files.

B QDFCNVP calls QDFBLDDF to build the device
file.

n Common data management is invoked to initialize
the prototype ODP (open data path) contained in
every file.

DF-10
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Caller
‘— —
Parameter
List [1]
— QDFCVALL
n r O ert Files
QDFCNVPP
Converted
Update File H Device File ‘7
Level QDFCNVF P
Convert Device
QDFMATR1 File g QDMROUTE
Materialize a P
Display and Common Data
Printer Files B Management
QDFBLDDF
QDFMATR2 Build Device
Materialize File QDFLVLGN
Communications
and Mixed Files Level Check
Generator
QDFRCDPR QDFDFTPR QDFCDFPR QDFINIT
Record Create Non-field Create Printer Initialize
Processor Level Device File Device File Keyword Table
QDFCRTWU QDFKWDPR
Create Where- Keyword
Used Section Processor

PAABD4A-0

Figure DF-6. Convert Device File Definition Overview

Device File Definition DF-11
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Device File Definition Subset Operations

Figure DF-7 and the following text describe the
functions of the subset of operations for device file

definition.

n The security, librarian, or service component and
other functions call the QDMROUTE module of
common data management. If the operation is to
be performed on a device file, QDMROUTE
transfers control to:

QDFMOVE if a device file is to be moved
QDFRENAM if a device file is to be renamed

QDFSIZE if the size of a device file is to be
determined

QDFGRANT if authority is to be granted to a
device file

QDFREVOK if authority is to be revoked to a
device file

QDFXOWNR if ownership of a device file is
to be transferred

QDFDDF if a device file is to be deleted

QDFDMPDF if a device file is to be dumped

B QoDFMOVE, QDFRENAM, QDFSIZE, and QDFDDF,
calls QDFCHKFL to status check and
obtain/release locks on objects involved in the
requested operation.

Control is returned to the calier.

DF-12

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

9

Caller

QDFCHKFL

Check File Status
and Lock File

QDMROUTE OIR
Manipulation
Common Data
Management
QDFMOVE
Device File
Move Device Moved
File
QDFRENAM
Device File
Rename Device Renamed
File
QDFSIZE))
Size of Device
Device File File
Size
QDFGRANT _
Authority
Grant Granted
Authority
QDFREVOK
Authority
Revoke Revoked
Authority
QDFXOWNR]
Ownership
Transfer Transferred
Ownership
QDFDDF?®
Delete Device
File
QDFDMPDF
Dump Device File Dumped
File

8 See Figure DF-4.

Figure DF-7. Device File Definition Subset Operations Overview

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

PAABOJ8-0

Device File Definition

DF-13

Duplicate Device File Operation

Figure DF-8 and the following text describe a duplicate ’
device file operation.

Bl The librarian calls QDFDUPDF to duplicate an
online save file. A parameter list is passed that
contains a pointer to a structure containing a
pointer to the file to be duplicated and the new file
and library names.

The ?EXTFILED macro is invoked to extract the file
level attributes of the online save file.

The ?CRTDEVF macro is invoked to create a new
online save file.

QDFDUPDF calls QDFCHKFL to return a lock on
the newly created file.

Control is returned to the caller.

Caller
Parameter List I I FillJep icate Device
QDFDUPDF

Duplicate Device
File

? EXTFILED ? CRTDEVF QDFCHKFL

Macro Macro Lock the File

PAAB0OQ2-0

Figure DF-8. Duplicate Device Flle Operation

J

DF-14
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Save/Restore of an Online Save File

Figure DF-9 and the following text describe the
save/restore handling of an online save file. a

Bl Ssave calls QDFSAVDF to save the file level
attributes of an online save file. A parameter list is
passed that contains a pointer to a structure
containing the file and library names and a pointer
to the file.

The ?EXTFILED macro is invoked to extract the file
level attributes of the online save file.

Control is returned to the caller. The parameter list
structure is updated to contain a pointer to the
extract space.

n Restore calls QDFRSTDF to create a new or to
modify an existing online save file. A parameter
list is passed containing a pointer to the file (if it
exists), a pointer to the new owner’s user profile,
and a pointer to the extract space.

The ?CRTDEVF macro is invoked to create a new
online save file.

QDFRSTDF calls QDFCHKFL to lock the newly
created file. This lock will be returned to the
caller.

QDFRSTDF calls QDFREVOK to revoke all
authority from the process user profile and private
authority of the original owner.

QDFRSTDF calls QDFXOWNER to transfer
ownership to the requested owner.

QDFRSTDF calls QDFGRANT to grant public
authority, if any, to the file.

Control is returned to the caller. The parameter list
structure is updated to contain a pointer to the
newly created file.

Caller
Parameter List
n Updated
Parameter
QDFSAVDF List
? EXTFILED
n Save Device
Macro File
Caller
Updated
Parameter List n ' m I Parameter
List
QDFRSTDF
Restore Device
File
? CRTDEVF QDFCHKFL QDFREVOK QDFXOWNR QDFGRANT
Macro Lock File Revoke Transfer Grant Public
Authority Ownership Authority

Figure DF-9. Save/Restor of an Online Save File

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

PAAB0O3-0

Device File Definition DF-15

9

DF-16
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

C

INTRODUCTION

The diskette function manager component of the CPF
(control program facility) provides the support for the
diskette device on System/38.

The diskette is a magnetic diskette storage device that
is supported as a system |/O device, data interchange
device, and save/restore device. It contains two
magazines, each of which can contain ten diskettes, and

three slots for individual diskettes.

The following diskette functions are supported by the
diskette function manager:

« Initialize volume

« Display volume

« Duplicate a volume

« Rename volume

« Clear volume

« Delete diskette file

« Check volume for a specific volume and file label
« Open diskette file for processing
« Close diskette file to processing
« Read data from a diskette file

« Write data to a diskette file

« End-of-volume processing

Diskette Function Manager

GENERAL OVERVIEW

Diskette Function Manager Modules

The diskette function manager component consists of
the following modules:

Note: An arrow (-->) identifies a module as being an
entry module into the component. Indentation of a
module shows its dependency on a previous module.

-->QDKDSPY-Display Volume (DSPDKT)': This module
displays the diskette volume and file labels.

-->QDKDUP-Duplicate Diskette (DUPDKT)': This
module duplicates diskette volume(s).

-->QDKOPEN-Diskette Open: This module opens a file
VTOC or opens a file for input or output processing.

-->QDKINZFY-This module is called by QDKOPEN to
initialize a diskette during volume open. It will check
for active files and initialize the diskette to a usable
format and volume identifier.

-->QDKGET-Diskette Get: This module retrieves one or
more records from a BASIC or H exchange file for
the user.

QDKEOV-Diskette End-of-Volume Processing:
This module closes the current volume when an
end-of-volume condition is detected and then
opens the next volume for a multivolume
operation.

-->QDKGETI-Diskette Get: This module retrieves one
or more records from an | exchange file for the user.

QDKEQV-Diskette End-of-Volume Processing:
This module closes the current volume when an
end-of-volume condition is detected and then
opens the next volume for a multivolume
operation.

'This module is a CPP (command processing program).

Diskette Function Manager DK-1

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

-->QDKPUT-Diskette Put: This module writes one or
more records of user data to a BASIC or H exchange
file on the diskette.

QDKEQV-Diskette End-of-Volume Processing:
This module closes the current volume when an
end-of-volume condition is detected and then
opens the next volume for a multivolume
operation.

-->QDKPUTI-Diskette Put: This module writes one or
more records of user data to an | exchange file on
the diskette.

QDKEOV-Diskette End-of-Volume Processing:
This module closes the current volume when an
end-of-volume condition is detected and then
opens the next volume for a multivolume
operation.

-->QDKCLOSE-Diskette Close: This module closes a
file to input or output processing.

QDKEOV-Diskette End-of-Volume Processing:
This module closes the current volume when an
end-of-volume condition is detecied and then
opens the next volume for a multivolume
operation.

-->QDKFEOD-Forced End-of-Data: This module
signals the end-of-file for an input file. It has no
function for an output file.

QDKEOV-Diskette End-of-Volume Processing:
This module closes the current volume when an
end-of-volume condition is detected and then
opens the next volume for a multivolume
operation.

-->QDKUTIL-Diskette Utilities': This module provides
the support for the following commands:

Initialize a Diskette (INZDKT)
» Rename a Diskette (RNMDKT)
+ Clear a Diskette (CLRDKT)

+ Delete a Diskette File Label (DLTDKTLBL)

'This module is a CPP (command processing program)

DK-2

QDKERROR-Diskette Errors: This module signals
exceptions and sends messages for conditions
detected by the diskette function manager.

QDKLUDIN-Diskette LUD Initialization: This
module resets the user-defined portion of the
LUD-associated space.

-->QDKCHECK-Check Diskette (CHKDKT)': This
module is used to check for the first occurrence of a
specific diskette volume, file label, or file on a
specified volume within a given diskette.

QDKCHEXT-Diskette Invocation Exit Program:
This module is invoked to close a diskette file if
QDKCHECK is bypassed because of normal
exception handling, or process termination.

Diskette Operation

Figure DK-1 and the following text describe a diskette
operation.

n A high-level language program, the spooling, copy,
or save/restore component, through the
QDMCOPEN module of common data
management, calls QDKOPEN to open a diskette
file for input or output processing.

o An argument list is passed that contains a
pointer to the UFCB (user file control block).

The diskette to be used is selected by the value in
the LOC parameter specified by the caller of
common data management. The volume label
identifier field is verified if the caller specified a
volume ID.

If the file is being opened for input:

« The diskette file labels are searched for a match
to the file name specified by the caller. If a
creation date is specified, the labels are
searched for a match of both the file name and
creation date specified by the caller.

o A message is sent to the system operator
console if the file cannot be found. The
operator can insert another diskette and retry
the operation or the job can be canceled.

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

C

» The file record length, as specified in the file
HDR1 label, is compared to the value specified
by the caller. If the record length specified by
the caller is longer than the record length of the
file, a diagnostic is signaled to the caller.
Processing of the file continues, but each record
read will be padded with blanks on the end. If
the record length specified by the caller is
shorter than the record length of the file, a
diagnostic is not signaled to the caller.
Processing of the file is continued, but each
record read will be truncated.

Note: For files in basic exchange and H-exchange,
the file record length is determined by the block
length field in the file label. For files in I-exchange
and E-exchange, the file record length is determined
by the record length field in the file label.

© Request 1/0s are issued to fill both buffers.

« Two buffers are used by the diskette function
manager. Each buffer holds one diskette track
of data. For |-exchange files, additional space
preceding or following the buffer may be used
to hold spanning records.

If the file is being opened for output:

« All expired files are deleted from the VTOC
(volume table of contents) of the selected
diskette. A file is considered to be expired if n
the file expiration date (in the file HDR1 label) is
less than or equal to the system date.

« The file labels on the diskette are searched to
verify that the name of the file to be written
(specified by the caller in the LABEL parameter)
is unigue.

o If a file name having the same name as the
file to be written is found on the diskette, a
message is sent to the system operator
queue. The operator can insert another
diskette and retry the operation or the job
can be canceled.

» Space for the new file is allocated immediately
following the last unexpired file on the diskette.
(The last unexpired file is the one having the
highest diskette address.)

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

If space is not available for the new file, a
message is sent to the operator. The
operator can insert another diskette and retry
the operation or the job can be canceled.

A label for the new file is built for the diskette
VTOC but is not written to the diskette until the
file is closed or an EOV (end-of-volume)
occurs. Space allocated for the file is noted in
the label BOE (beginning of extent) and EOE
(end of extent) fields as occupying all of the
space from the last unexpired file to the end of
the diskette. When the file is closed, the EOE
field is updated to show the actual end of the
file.

For files in basic exchange or H-exchange, the
diskette sector size is compared to the record
length specified by the caller. If that record
length is longer than the diskette sector size, a
diagnostic message is signaled to the caller.
Processing of the file continues, but each record
written will be truncated. If the record length is
shorter, a diagnostic message is not signaled.
Processing is continued, but each record written
is padded with zeros. For files in |-exchange,
the records span sectors up to a record length
of 4 096. Records are written contiguously in a
sector, regardless of the size of the record or
the size of the sector.

After the file has been opened, information is
written to the file by calling QDKPUT or QDKPUTI.

An argument list is passed that contains
pointers to the UFCB, an option list, and
control information.

The option list and control information are
ignored to the extent that a put wait
operation can be requested; other requests
result in an error message being sent to the
caller.

Request 1/Q0s are issued to the diskette 1/0
manager when the user has sent the diskette
function manager enough records to write a
diskette track of data.

Note: The save/restore component does not use
this interface. Save/restore issues special request
I/Os to put data to a diskette. See Save/Restore.

Diskette Function Manager DK-3

After the file has been opened, information can be

retrieved from the file by calling QDKGET or
QDKGETI.

o An argument list is passed that contains
pointers to the UFCB, an option list, and
control information.

e The option list and control information are
ignored to the extent that a get next wait
operation can be requested; other requests
result in an error message being sent to the
caller.

o Request |1/0Os are issued when the caller has
emptied a buffer. There are two buffers;
each buffer contains a diskette track of data.

Note: The save/restore component does not use
this interface. Save/restore issues special request
I/Os to retrieve data from a diskette. See
Save/Restore.

After a file has been processed, it is closed by
calling QDKCLOSE through QDMCLOSE.

° An argument list is passed that contains
pointers to the ODP (open data path), an
index to the device being closed, and the
type of close to perform (permanent or
temporary).

If the file being closed had been opened as an
output file:

» The data remaining in the buffers is written to
the file.

« The file HDR1 label in the VTOC buffer is
updated to reflect the true end of the file, and
is written to the diskette. (This frees up space
past the end of the file being closed so that the
space remaining can be allocated to subsequent
output files.)

If the file being closed had been opened as an
input file:

» The diskette |/O manager is instructed by a
Reset command to stop processing any current
or pending request |/0Os.

» The VTOC is not updated because it is not
necessary to do so for an input file.

if a permanent close is requested, all objects
created by the diskette function manager are
destroyed.

When a forced end of data is requested,
QDKFEOD is called and the following occurs:

° An argument list is passed that points to the
UFCB.

G If the file is opened for input, an end-of-file
exception is signaled to the user. (For
multivolume files, the end-of-file exception
is signaled after the last volume of the file
has been located.)

If the file is opened for output, the operation is
ignored.

End-of-volume switching occurs automatically
within the diskette function manager when it is
processing a multivolume file.

If a file is open for output, QDKPUT or QDKPUTI
calls QDKEOQV to perform the volume switch. If a
file is open for input, QDKGET or QDKGETI calls
QDKEQV to perform the volume switch. If a file is
being closed, QDKCLOSE calis QDKEOV to
perform the volume switch when there is not
enough space to write the data remaining in the
buffers.

The save/restore component calls QDKEOV when
it detects an end-of-volume condition during input
or output save/restore operations or if a media
error occurs during output.

DK-4
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

C

C

If a file is open for output, QDKEOV:

» Calls QDKCLOSE to update the file label in the
VTOC of the current volume to reflect that the
file is being continued on another diskette
volume.

« Calls QDKOPEN to increment the diskette
magazine and load the next diskette.
QDKOPEN performs the checks as described
for output files and builds the file HDR1 label in
the VTOC. The HDR1 label also contains a
volume sequence number that will be one unit
higher than the number written in the previous
volume of the file.

« The portion of the buffer that could not be
written to the previous volume is now written to
the new volume.

If the file is open for input, QDKEQV:

« Calls QDKOPEN to increment the diskette
magazine and load the next diskette. The VTOC
of the new diskette is searched for the HDR1
label of the continued file.

« The volume sequence number in the HDR1
label is checked to verify that the next volume
of the file is in proper sequence.

e A message is sent to the operator console if

the test fails. The operator can insert
another diskette and retry the operation,
ignore the condition and process the diskette
with incorrect volume sequence number, or
the job can be canceled.

« QDKOPEN causes a seek to the start of the file.

« The record obtained from the new diskette
volume is returned to the caller of QDKGET.

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

End-of-volume processing causes a notify
message to be sent to the caller of get or put.
The message, which can be ignored, informs the
user that a volume switch occurred and processing
continued on the next diskette.

End-of-file processing causes a status message to
be sent to the caller of get. If this message is
ignored, an escape message is sent to the caller of
get.

G The message handler is called to send
messages to the operator console and to
signal exceptions to the user. Information is
also written to the job log that pertains to a
particular error or exception.

o Request |/Os communicate to the diskette
1/0 manager the desired action. The
diskette 1/0 manager indicates its success or
failure in performing the request by returning
a message in the machine interface response
queue.

QDKERROR signals all operator messages and
program exceptions. |t is also called to analyze
I/0 errors to determine what recovery action is to
be performed.

Diskette Function Manager DK-5

High-Level Language Program, System Utility, or Save/Restore

Argumenf
List

QDKINZFY

Initialize
Diskette

Save/Restore

QDKERROR

Diskette Error
Handler

QDKEOV

End-of-Volume

Processing

QDMCOPEN QDMCLOSE
Common Common
Open Close

1] 2] 4]
QDKOPEN QDKPUT QDKGET QDKCLOSE QDKFEOD

or or

Diskette QDKPUTI QDKGET! Diskette Forced
Open Diskette Put Diskette Get Close End-of-Data

Message
Handfer

Job
Log

Operator
Console

Machine Interface

Figure DK-1. Diskette Operation Overview

DK-6

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Machine
Interface
Response
Queue

Request
1/0

Diskette 1/0
Manager

9

INTRODUCTION

The common data management component of the CPF
(control program facility) is used to help manage data
that is to be processed by programs. Common data
management can be used to format data into records,
organize data records into files, and transfer the records
of a file between a program and the file.

The functions that make up the common data
management component are:

« The common parts of open and close that are
common across device support and the data base or

across different devices

« The common data management macros—?OPEN,
?CLOSE, ?GET, ?PUT, ?UFCB and so forth

« ODPs (open data paths)

« Overrides

o Acquire program devices

« Release program devices

o Locking

» Unlocking

« Accept input

« Routing common functions

» Pass device

Common data management is first invoked during
device file and member creation to construct the inactive
ODP. The inactive ODP is created as a part of the
complete device file or as a part of the interactive data

base cursor/member. Figures DM-1 and DM-2 show
the ODP structure after file or member creation.

Common Data Management

GENERAL OVERVIEW

Common Data Management Modules

The common data management component consists of
the following modules:

Note: An arrow (-->) identifies a module as being an
entry module into the component. Indentation of a
module shows its dependency on a previous module.

-->QDMACQDV-Acquire Program Device: This module
activates a program device in an open device file
ODP and creates a lock acknowledgement event
handler.

-->QDMNODEV-Signal Program Device Not Found:
This module signals an escape exception if the
program device specified on an 1/0 macro cannot be
found in the device name list in the ODP.

-->QDMACCIN—-Accept Input: This module accepts
input from the first invited program device in an open
device file that has data available.

-->QDMACQDP-Acquire Display: This module adds
and activates a display device to an open display file
ODP.

-->QDMACKEH-Lock Acknowledgement Event Handler
Program: This module handles the lock
acknowledgement event for QDMACQDV and
QDMLOCK, cancels the event monitor that invoked
QDMACKEH, and unlocks the associated device.

-->QDMCOPEN-Data Management Common Open:
This module establishes an ODP between the calling
program and a data base file, physical device, or
logical (spooled) device.

QDMGETOV-Get Overrides: This module is

used to find any overrides that might exist for
the file being opened.

Common Data Management DM-1

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

QDMEHDES—-Resolve Processing: This module
gets addressability to devices for device files
after the device file has been saved and
restored or after the device has been destroyed
and re-created.

QDMMINIT—Merge Initialization: This module
initializes the tables necessary to merge
parameters from the UFCB (user file control
block) or an override when a file is opened.

QDMSIGNL-Send Escape Message: This
module sends an escape message to the caller
of QDMCOPEN, if an error occurs while
opening a file.

-->QDMOVERD-Create Override Control Block
(OVRBSCF, OVRCMNF, OVRCRDF, OVRDBF,
OVRDKTF, OVRDSPF, OVRMSGF, OVRMXDF,
OVRSAVF, OVRPRTF, OVRTAPF)': This module
creates an OCB (override control block) with the
parameter values specified on the command.

-->QDMDSPOV-Display Override {(DSPOVR)': This
module displays the override information and the
invocation level in which the command was
submitted. It displays either the override parameters
for a single OCB or a list of all the override file
names. This module is also invoked when option 11
is taken on the DSPJOB display.

-->QDMDELOV-Delete Override (DLTOVR)': This
module deletes either a single OCB or all the OCBs
specified in the same invocation level or in a CL
program.

-->QDMLOCK-Lock Data Management and System
Objects: This module allocates to a process any
system object or all of the required objects to
process a data base file member or a device file, and
creates a lock acknowledgement event handler.

-->QDMTCLSE-Data Management Termination Close:
This module closes all open files at process
termination and resets the DMCQ (data management

communications queue) and MIRQ (machine interface

request queue).

'"This module is a CPP (command processing program).

DM-2

-->QDMUNLCK-Unlock Data Management and System
Objects: This module deallocates any system object
or all of the required objects needed 0 process a
data base file member or a device file.

-->QDMCRODP-Create ODP: This module creates an
inactive ODP.

-->QDMROUTE-Extract Override and Route: This
module provides a single common data management
interface used for creating, modifying, deleting,
renaming, moving, transferring ownership of, granting
authority to, and extracting both data base and device
files.

-->QDMIFERR-Interface Error: This module gets
control and signals an exception when an operation
that is not valid is attempted to a file.

-->QDMPASS—Pass Device: This module transfers the
allocation of a device from one process to another
process.

-->QDMBKOUT-Backout: This module closes files or
releases program devices after an error is detected
and the escape message was not monitored.

-->QDMRLSDV-Release Program/Display Device: This
module releases a program or display device from an
open device file ODP.

-->QDMCLOSE-Data Management Common Close:
This module closes the files specified by the ?CLOSE
macro.

-->QDMERRHP-Error Handler Program: This module
supplies message data for all escape and notify
messages and sets the ODP to the error state for all
escape messages.

-->QDMRCLSE-Reclaim Close: This module closes all
files open in a process that were opened at an
invocation number greater than the invocation number
passed to the module.

-->QDMDSPOF-Display Open Files: This module
displays information about the files that are currently
open in the specified routing step. This module is
invoked when option 10 is used on the DSPJOB
display.

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Open » Cancels the event monitors for those files that have
been specified NOWAIT (*YES) or were created with

Open is the process of making an inactive ODP active the INVITE keyword

L and preparing it so that it can perform 1/O operations.
When a file is opened, common data management « Updates the UFCB to show the file is closed if the
performs the following functions: interface is through the ?CLOSE macro or the

RCLRSC command
« Determines if overrides are to be applied to the file

« Gets addressability to the file to be opened Device File Definition
« Creates a copy of the inactive ODP in the process The Create Device File commands (CRTBSCF,
access group CRTSAVF, CRTCMNF, CRTCRDF, CRTDKT, CRTDSPF,
CRTMXDF, CRTTAPF) cause a device file to be created.
» Applies the parameters from the UFCB and the The first section of a device file space object is the
override, if they exist inactive ODP. Figure DM-1 shows a device file space
object.
« Allocates a device or data spaces to the process for
the file
Device File
« Performs level checking
Inactive ODP
« Sets the event monitors for those files that have been
specified NOWAIT(*YES) or were created with the
INVITE keyword Device File Attributes

« Updates the UFCB and open feedback area

Record Format Descriptions
« Invokes the device or data base open routine

Extract Information
Close

Close is the process of deactivating an active ODP and

destroying the temporary objects. There are three Figure DM-1. Device File Space Object (Before Open)
interfaces to the close routines. One is invoked in a

program by the ?CLOSE macro (QDMCLOSE). The

second one is invoked either by the user via the Reclaim

Resources (RCLRSC) command or by the system via the

?RCLFILE macro (QDMRCLSE). The third one is invoked

on behalf of the user by the system (QDMTCLSE).

Close performs the following functions:

« Invokes the device or data base close routines
« Signals switched lines closed event

« Deallocates the objects allocated by open

C

Common Data Management DM-3
This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Data Base File Definition

The Create Physical File (CRTPF), Create Logical File
(CRTLF), Add Physical File Member (ADDPFM) and Add
Logical File Member (ADDLFM) commands create the
FCB (file control block) and the prototype
cursor/ODP/member. Figure DM-2 shows the structure
of a data base file or member before open.

FCB

Prototype Cursor Cursor Associated Space

Inactive ODP

Member Control
Block

N

Prototype Cursor Cursor Associated Space

Inactive ODP

. Member Control
Block

Figure DM-2. Data Base File/Member Structure (Before
Open)

DM-4

Structure of the Common Data Management Objects
after Opening a Device File

Figure DM-3 and the following text describe the
structure of the common data management objects after
a device file is opened.

The UFCB for the file can reside in a separate space
that is either permanent or temporary, or it can be
declared in the program and reside in static (PSSA) or
automnatic (PASA) storage.

Includes for the ODP for all file types are provided by
common data management. Data description
specifications provide includes for device file attributes
section of the ODP (existing includes for device file
attributes).

The space objects that contain the source/sink request
and the source/sink data should specify a transfer size
based on the number of source/sink requests and
source/sink data in the object.

The MIRQ is an extendable queue that is outside the
process access group because it is referenced by both
CPF tasks and the machine. File-dependent opens get
addressability to the queue for the source/sink requests
from the WCB (work control block).

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

WCBT SCB

‘ WCBTE o

Process Access Group

Device
File

PCS Associated
Space (WCB)

Work Area
L

From
Prototype
ODP

Attributes

User 1|
Buffer |

|
Device :
|

Function
Manager

Data
Management
EPTAB Indexes

Figure DM-3. Structure after Opening a Device File)

C

LUD L
Source/
D1 Sink
Requests
Source/
LUD ok
Associated ata
Space or Dump
Space for Online
Save Files

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

PAAB048-0

Common Data Management

DM-5

Structure of the Common Data Management Objects
after Opening a Multi-Device File

Figure DM-4 and the following text describe the
structure of the common data management objects after
a multi-device file is opened.

The number of devices that can be attached to a device
file is specified on a create command and can be
changed by a Change Device File command. A change
in the number of devices causes a re-creation of the
ODP. This number is used at open time and when a
device is added to the file.

The device open routines calculate the space for the
function manager work areas and must get one user
buffer for the file, one function manager work input
area, and optionally a user output buffer for each device
connected to the file.

The device-dependent open routines will be called for
each device specified in the open parameters. Devices
are activated one at a time to an open device file using
acquire program device. Acquire program device will
attach the specified program device if the file is open.

DM-6

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

9

WCBT

SCB

WCBTE

Process Access Group

Device
File

PCS PSSA

PCS Associated
Space (WCB) PASA

UFCB

File(X)

DMCQ

OoDP

From
Prototype

/ N

From
Device
Attributes

User
Input
Buffer

Function
Manager

Work Area 1 and
Output Buffer

Function
Manager
Work Area 2 and

Output Buffer
4

LUD

Source/
D1 Sink

Requests
MIRQ

Source/
Sink
Data

LUD

Data

LUD

)

D2

Asso-
ciated
Space

Management
EPTAB
Indexes

Figure DM-4. Structure after Opening a Muiti-Device File)

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

LUD

Source/
Sink
Requests

Source/
Sink
Data

Asso-
ciated
Space

Common Data Management

DM-7

Common Data Management Macros

The common data management macros are used to
invoke the related common data management functions.
The ?OPEN, ?CLOSE, and ?UFCB macros interface with
common data management functions directly. The
?GET, ?PUT, ?PUTGET, and similar macros interface
with the function managers for the file. These macros
are common data management macros because they
interface to more than one type of file.

Override

The override commands (OVRBSCF, OVRCMNF,
OVRCRDF, OVRDBF, OVRDKTF, OVRDSPF, OVRMSGF,
OVRMXDF, OVRPRTF, OVRSAVF, OVRTAPF, DSPOVR,
and DLTOVR) provide a full range of functions to let the
user control overrides active in the invocation or CL
program.

Acquire Program Device

Acquire program device adds a program device to an
opened file and opens the device.

Release Program Device

Release program device will disconnect a device from an
opened ODP. To release a device, the device is closed.
All devices of a file can be released, leaving the ODP
opened but set to a condition where |/O operations are
not allowed. Releasing a device can also deallocate the
device from the process.

Locking/Unlocking

Common data management locking provides an interface
for a user to lock/unlock the complex objects of
common data management as an atomic operation. (An
atomic operation is an operation that, once started, must
continue to completion without interruption.) Also, if a
device belongs to another process and that device can
be obtained, the lock function will obtain the device.

DM-8

This document contains restricted materials of IBM. LY21-0571-6

Accept Input

The common data management accept input waits on
data. The data arrives from a request by a get nowait, a
put-get nowait, or a put with invite. The nowait
functions overlap program execution with the user |/0
requests.

Pass Device

The pass device is used to transfer a device from one
process to another process without losing allocation to a
third process.

Routing Common Function

The common data management routing function allows
all CPF commands that have a generic function for data
management objects to be routed to the correct module
to perform the function.

Install Object

Common data management will ship with the system an
install object that contains the file-dependent indexes to
the system entry point table. This object is the data
management entry point table. The install object is a
space object that contains a header and an entry for
each type of file and device supported by the system.

The install object is created by common data
management and accessed by common data
management open to provide file redirection and device
independence. It is also accessed when devices are
defined. Addressability to the install object is provided
through a pointer in the header of the DMCQ.

Figure DM-5 shows how this object fits with the system
EPTAB (entry point table).

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

QDMEPTB

Table 1 Data Base Table 2 Console
(Funct 1) (Funct 2) (Funct 3) (Funct 1) (Funct 2)
[Index 7, Index 2, Index 4, | Index 3, Index 3, |
| Table 3 Work Station | Table 4 Printer |

The data management entry point table consists of multiple file-dependent tables.
Each table contains indexes corresponding to data management functions (for
example, put, get) and are used to index into QINSEPT(system entry point table).

QINSEPT

SYSPTR
SYSPTR (ODBGETDR)
SYS PTR (ODMIFERR)
SYS PTR (QDBGETKY)
SYSPTR
SYS PTR
SYS PTR (QDBGETSQ)
SYS PTR
SYS PTR
SYSPTR

POONOIAO A WN

The system entry point table is an
array of system pointers for all
CPF modules.

Figure DM-5. Entry Point Table Structure

Common Data Management DM-9
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Data Management Communications Queue

During the start CPF process, work management invokes
the common data management ?CRTDMAQS macro to
create the DMCQ (data management communications
queue) and the MIRQ {machine interface request queue).
The DMCQ is a temporary space object created inside
the PAG (process access group). It is used to keep
track of all the files opened or temporarily closed in the
process, and to also keep track of devices passed to the
process, file overrides that exist in the process, and
common data management information for the process.
The DMCQ consists of a header section and a number
of fixed length entries that are chained together based
on the type of entry.

The DMCQ header contains:

« A pointer to the PAG (used by common data
management open)

« A pointer to the process control space

« A pointer to the install object containing EPTAB
indexes

« A pointer to the PASA header
« A pointer to the data base logging control biock

« A pointer to the data base space containing the list
of UFCBs for the OPNDBF command

« An offset to open entries—not shared

« An offset to open entries—shared

« An offset to the user file override entries
« An offset to the spool file override entries
« An offset to passed device entries

« An indicator that the process is monitoring the 1/0
completion event for the console

« An indicator that the process is monitoring for the
controlled cancel event

The type of entries that can be on the DMCQ are:
« Open files—shared ODPs

« QOpen files—nonshared ODPs

« User file overrides

« Spool overrides

« Passed devices

DM-10

Machine Interface Request Queue

The MIRQ (machine interface request queue) is a
machine interface queue used by all of the devices in a
process that perform 1/0. The queue is created
extendable, with four initial entries and resides outside
the PAG (process access group). The |/Q feedback
record is retrieved from the queue by a keyed dequeue.
The key is 16 characters in length that contains:

« Component ID—char(2)

« Device name—char(10)

« Request |/0 sequence number—char(2)
« Reserved—char(2)

Addressability to the MIRQ is provided by a pointer in
the WCB (work control block).

Device Definition

The create device description commands create an LUD
(logical unit description) and an associated space for
each device. The LUD contains machine information, as
defined by the machine. CPF materializes and modifies
selected fields in the LUD. The associated space
contains CPF-defined information. That information
consists of two parts: common information and
device-dependent information. The common information
consists of a pointer to the process control space to
which the device is allocated, obtain flags, the
temporary close count, active session count, an offset
(into the data management install object) to the index
for the device, and so forth. The device-dependent
information consists of a pointer to source/sink requests
and source/sink data for passed data, the record
format, and device suspended flag for display devices.
For printer devices it contains the current print image,
forms type, lines per inch to print, and so forth.

Device File Definition

The Create Device File command creates one space
object consisting of two rairts. The first n bytes are the
inactive ODP (open data path) and the remainder of the
object contains device file information.

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Inactive Open Data Path

The inactive ODP (open data path) consists of the
following:

Root Section

« Length of the inactive ODP

« Pointer to the buffer area

« Offset to lock list

« Offset to open feedback section
« Offset to I/0 feedback

« Offset to spooling area

« Offsets to output BPCA (buffer processing
communications area)

« Offsets to input BPCA

« Offsets to device file information
« ODP status bits

« Offset to DMCQ entry

« Open/close completion level

« Failing device number

Source sequence number
Open Feedback Section

« File open count

« File type

» File Name

« Library name

« Spooling file number

« Device name and linkage list

« Overflow

1/0 Feedback Section (Common)

« Offset to component-dependent section

« 1/0 statistics (humber of gets, puts, and so forth)

« Record format name

« Device class (display)

« Device type (5251)

« Program device name

« Transaction identifier and data (80 bytes)

I/0 Feedback Section (component-dependent)

Spoolable Device Spooling Area

« Variable area of the UFCB (user file control block)
with parameters specified by the create device file
command

Input BPCA

« Blocked record input

Output BPCA

« Blocked record output

Lock List For the File

The information contained in the device file consists of:

File attributes

« Image name

« Lines per inch

Record format descriptions

Note: The layout of the Data Base open data path is

described in Section DB under The Structure of Data
Base Files.

Common Data Management DM-11

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Y

J

DM-12
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

INTRODUCTION

The 3270 device emulation component allows the
System/38 to appear as a 3270 Control Unit with
attached devices to a remote host computer. When
attached to a BSC 3270 network, the System/38
appears as a 3271 Model 2 Cluster Control Unit with
attached devices. When attached to an SNA network,
the System/38 appears as a 3270 controller with
attached devices. The System/38 supports 50
emulation sessions for SNA, but only 32 for BSC.

System/38 emulates a 3270 Control Unit on
SNA/SDLC lines. Using this support, a user at a 5250
Display Station on a System/38 may be connected to
an application in a System/370 by nonswitched or
switched PU2 lines.

System/38 emulates the 3271 Model 2 Control Unit on
BSC multipoint lines. Using this support, a user at a
5250 Display Station on a System/38 may be
connected to an application in a System/370.

System /38 emulates the 3277 Model 2 (1920 character)
keyboard/display. In addition, it emulates the 3270 PF
keys 13 through 24.

The 3284, 3286, and 3288 Printers are emulated as
printers associated with the 3271 Model 2 Control Unit
-on BSC lines.

The 3284, 3286, 3287, and 3288 Printers are emulated
as printers associated with the 3270 Control Unit on
SNA lines.

GENERAL OVERVIEW

3270 emulation consists of two functions; display
emulation and printer emulation. The interface with
3270 emulation is primarily by commands.

3270 Emulation

DISPLAY EMULATION MODULES

The 3270 emulation component consists of the following
modules:

Note: Modules identified by an arrow (-->) are entry
modules into the component. Indentation of a module
shows its dependency on a preceding module.

-->QEM3270-Display Emulation Main Routine: This
module starts 3270 emulation using parameters
entered on the EML3270 command.

QEMWSEH-BSC Work Station Data Available Event
Handler.

QEMSWSEH-SNA Work Station Data Available
Event Handler: These modules handle most input
entered by the user and pass it along to the host
after translating the 5250 data streams into a 3270
data stream. It handles the HELP key and presents
the HELP text. This module also allows the user to
terminate the 3270 display emulation session.

QEMATTN-Attention Event Handler: This module
handles the Attention Key Event {signaled when the
Attention key is pressed) by unlocking the work
station keyboard. This module can execute only when
the process is not masked by another module. If the
process is masked, the request is stacked and will
execute when the process is unmasked.

QEMBSCEH-BSC Host Data Event Handler: This
modaule receives 3270 data from the BSC host
system, translates it to 5250 format, and sends it to
the work station. It also recognizes 3270 Read Buffer
and Read Modified commands, translates the
contents of the 5250 Display Station to the proper
3270 response, and sends the response to the host
system.

3270 Emulation EM-1

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

QEMSNAEH-SNA Host Data Available Event
Handler: This module receives 3270 data from the
SNA host system, translates it to 5250 format, sends
it to the work station, and sends a positive response
to the host. QEMSNAEH also recognizes 3270 Read
Buffer, Read Modified, and Read Modified All
commands, translates the contents of the 5250
display to the proper 3270 response, and sends the
response to the host system. In addition, keeps track
of the BIND/UNBIND status of the LU-LU session,
keeps track of the ownership of the CD bit, sends the
CD bit to the host when the host requests it, and
sends negative responses to the host when errors are
detected.

QEMTSTRQ-~BSC Test Request Event Handler: This
module handles the 5250 Test Request Key Event for
BSC 3270 display emulation. It reads the work
station screen, translates the 5250 data stream to a
3270 Test Request Read format, and sends it to the
host.

QEMSYSRQ-SNA Test Request Handler: This
module handles the 5250 Test Request Key Event for
SNA 3270 display emulation. It switches the user
back and forth between the SSCP-SLU and LU-LU
sessions on the SNA device.

QEMSPEND-Suspend Emulation Display File Routine:
This module is invoked by the work station function
manager when the 3270 emulation display file is
about to be suspended. It saves the contents of the
work station screen.

QEMRST-Restore Emulation Display File Routine:
This module is invoked by the Work Station FM
when the 3270 emulation display file has been
restored. It writes any new host data to the work
station.

EM-2

QEMIOERR-1/0 Error Message Routine: This module
is invoked by the display and printer emulation
mainline routines when an 1/0 error occurs. It
handles errors from the host, work station, and
printer files and issues the correct error message.

QEMIEXIT-Invocation Exit Routine, Display: This
module cleans up after display emulation when it is
terminated by a cancel job, cancel request, or an
escape message.

QEMWEFCEH-Work Station Function Complete Event
Handler: This module completes writing any data to

the work station that was temporarily held up due to
an extended work station function in progress (such

as, handling the print key).

Figure EM-1 shows the Display Emulation operation.

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

EML3270
Command

Quit Emulation Event
(from any event handler

QEM3270

including Option 99
on the key map screen)

ATTN Key Event

QEM3270

(from display)

Unlock the

Work Station

Write New Data to

QEMATTN

Work Station

Read Work Station Screen

QEMBSCEH

Establish All Event Handlers
and Write the ‘In Progress’ Screen

Call
QEMIOERR

If Any
Unrecoverable
I/O Errors

3270 BSC Data Available Event

(data from host)

Screen Contents

Figure EM-1 (Part 1 of 5). Display Emulation Overview

C

This document contains restricted materials of IBM. LY21-0571-6

QEMBSCEH

Host INVITE'd

3270 BSC Data Available Event

(READ type command from host)

Data Sent to Host and

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Host INVITE'd

3270 Emulation EM-3

Read Work
Station Screen

Screen Contents

Write New Data
to Work Station

Write New Data
to Work Station

QWSPEND

QEMSPEND

QWSRST

QEMRST

QEMSNAEH

QEMSNAEH

Figure EM-1 {Part 2 of 5). Display Emulation Overview

EM-4

This document contains restricted materials of IBM. LY21-0571-6

{before suspending the
emulation display file)

{after restoring the
emulation file)

SNA Unsolicited Expedited
Flow Data Event
(BIND,UNBIND,SDT,CLEAR
SIGNAL,SHUTD)

CD Sent to Host
(if signal request to send)

3270 SNA Data Available Event
(data from host)

+ RSP Sent to Host

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

<

C

C

Read Work
Station Screen

3270 SNA Data Available Event
(read type command)

Data and CD Sent to Host and

QEMSNAEH
Screen Contents
QEMSNAEH
QEMSNAEH
Work Station Data
Available Event
(from display) QEMWSEH or
QEMSWSEH

Figure EM-1 (Part 3 of 5). Display Emulation Overview

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Host INVITE'd

3270 SNA Data Available Event
- RSP Sent to Host

(if errors detected)
and Host INVITE'd

3270 SNA Data Available Event
(CD bit, no data)

+ RSP Sent to Host

Data Sent to Host
(SNA: if BETB or we have CD)
and Host INVITE'd

3270 Emulation EM-5

Work Station Data for

HELP Text
(from display) QEMWSEH or
QEMSWSEH

HELP or Other Menus
Written to Display

TEST REQUEST Event
(from display)

QEMTSTRQ

TEST REQUEST Event
(from display)

QEMSYSRQ
Clear Display
Screen

Given Control by

the Machine When

the Invocation Level
is Destroyed Due to QEMIEXIT
Normal Exception

Handling or Due to
Any Process Termination

Figure EM-1 (Part 4 of 5). Display Emulation Overview

EM-6

This document contains restricted materials of IBM. LY21-0571-6

Test Request Read Data
Sent to Host and Host
INVITE'd

LUSTAT Sent to Host
(when returning to LU-LU
session if BETB or we
have CD)

Clean Up After Abnormal

Termination or Cancel Request

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

)

J

C

Work Station
Print Key

Attempt to Write
Data to Screen Fails

Function in
Progress \

Due to Extended Work
Station Function
(activates QEMWFCEH)

Work Station Print Key
Function Completes

Write New Data to
Work Station When
Extended Work
Station Function

Is Completed

Figure EM-1 (Part 5 of 5). Display Emulation Overview

QEMBSCEH or
QEMSNAEH

QEMWFCEH

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

3270 Emuilation

Data from Host

INVITE Host

EM-7

Printer Emulation Modules

3270 Printer Emulation consists of the following
Modules:

Note: Modules identified by an arrow (-->) are entry
modules into the component. Indentation of a module
shows its dependency on a preceding module.

-~->QEMPESTR-Start Printer Emulation CPP: This
module checks the input parameters and uses them
to start printer emulation by one of the following
methods:

« Transfer control to either the printer emulation
BSC or SNA routines to request emulation in the
current job.

« Submit a batch job request with the request data
to call either the printer emulation BSC or SNA
routines.

-->QEMPCNTL-Terminate Printer Emulation, Eject
Emulation Output, and Emulate Printer Keys CPP:

This module signals the terminate accept input event
to the process that is performing printer emulation to

end printer emulation, to eject the printer emulation
output, or to emulate a PA1 or PA2 key.

-->QEMPEBSC-Printer Emulation BSC Routine: This

module checks the existence of specified devices and

files, initializes printer emulation, and repeatedly
accepts input from the BSC file, translating the data
to System/38 format. When the write control
character indicates Start Print, QEMPRINT is called.
If a 3270 read type command is received,
QEMPEBSC sends the proper response to the host.
When the terminate accept input event is received,
QEMPEBSC performs the requested functions. On
any type of termination request (TRMPRTEML or
CNLJOB controlled), QEMPEBSC will close files and
end printer emulation.

QEMPRINT-Printer Emulation 3270 Print Routine:

This module is called by QEMPEBSC or QEMPESNA
to print data sent by the host (in a 3270 data stream

format).

EM-8

-->QEMPESNA-Printer Emulation SNA Routine: This

module checks the existence of specified devices and
files, initializes printer emulation, and then accepts
input from the communications file, translating the
data to System/38 format. If the session type is
LU-1, QEMPESCS is called to print the data. If the
session type is LU3, QEMPRINT is called to print the
data when the Write Control character indicates Start
Print. If a read command is received during an LU-3
session, a negative response is sent to the host.
When the CD bit is received during an LU-1 session,
it is treated as a request from the host for a PA-1 or
PA-2 key. If the terminate accept input event is
received, QEMPESNA performs the requested
function. When an |/0 error is detected, QEMIOERR
is called. On any type of termination request
(TRMPRTEML or CNLJOB controlled), QEMPESNA
will close files and end printer emulation.

QEMPESCS-Printer Emulation SCS Print Routine:
This module is calied by QEMPESNA to print the
SCS data stream sent by the host.

QEMPESEH-3270 Printer Emulation SNA Event
Handler: This module handles the SNA unsolicited
data available event (expedited flow). The SNA
commands that are handled by this module are BIND,
UNBIND, SIGNAL, and SHUTD. The CLEAR and SDT
commands are ignored.

QEMPEXIT-Invocation Exit Routine, Printer: This
module cleans up after printer emulation.

Figure EM-2 shows the printer emulation overview.

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

STRPRTEML
Command

QEMPESTR

Submit Job

Job Queue
BSC Data SNA Data
from Host or from Host or
Terminate — QEMPEBSC QEMPESNA Terminate
Accept Input Accept Input
Event Event
Data to a Data to a
System/38 <— QEMPRINT QEMPESCS —> System/38
Printer File Printer File

Figure EM-2 (Part 1 of 2). Printer Emulation Overview

This document contains restricted materials of IBM. LY21-0571-6

Unrecoverable
1/0 Errors

Unrecoverable
1/0 Errors

QEMIOERR

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

3270 Emulation EM-9

TRMPRTEML EMLPRTKEY EJTEMLOUT
Command Command Command

2

-

Terminate Accept Input Event
Signaled to the Printer
Emulation Process
(QEMPEBSC/QEMPESNA)

QEMPCNTL

SNA Unsolicited Data
Available {(expedited flow) QEMPESEH
Event

Figure EM-2 (Part 2 of 2). Printer Emulation Overview

<

EM-10
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

INTRODUCTION

The Finance Support (FN) component of CPF provides
for the attachment of 4701 and 3694 finance control
units to the System/38 on an SNA/SDLC
communications link. The communications link can be
point-to-point or multipoint and can be switched or
nonswitched.

The 4701 and 3694 control units can share the same
communications line with APPC sessions, 5251 Model
12, 5294, and 3274 remote control units. Control unit
descriptions can be created for the 4701 and 3694.
Device descriptions can be created for the 4704, 3624,
and 3694.

The Finance Support offers a choice of interfaces:
« Submit Finance Job command (SBMFNCJOB)
« Finance |/0 Manager (FIOM)

« User Defined Data Stream (UDDS)

. System/38 3270 SNA Remote Attach Support

GENERAL OVERVIEW

The following modules make up the Finance Support
component.

-->QFNMNTBL-Manage Tables: This is the
command-processing program invoked for any of the
Finance Support manage table commands
(MNGDEVTBL, MNGPGMTBL or MNGUSRTBL). It
also handles the table selection display, allowing
users to select a table to be added, updated, or
removed. When a new table name is entered or
when an existing table name is selected for update,
QFNMNTBL invokes QFNMNMBR to display the
requested table.

QFNMNMBR—-Manage Table Member: This
program is responsible for managing a specific
finance device, or program, or the user table
requested for update by any of the manage table
commands (MNGDEVTBL, MNGPGMTBL or
MNGUSRTBL). It displays table entries currently
defined and provides additional fields for input of
new entries.

Finance Support

-->QFNSBMJB-Submit Finance Job (SBMFNCJB):
This is the command-processing program for the
SBMFNCJOB command. This program verifies that
the finance device, or program, and the user tables
specified as parameters on the SBMFNCJOB
command do in fact exist, and that the user is
authorized to objects given as command parameters.
It then submits a batch job to the QFNC subsystem.
This job calls QFNROUTE to establish and manage
communications with the finance devices, as
explained below.

QFNROUTE-Finance Router: This program
provides a router function for the SBMFNCJOB
interface. It acquires devices specified in the
finance device table, invites those devices, accepts
and verifies user IDs received with SNA
INIT-SELFs, and calls the requested System/38
application programs to process financial
transactions. Upon receiving a TERM-SELF, this
module releases and then reacquires the device
requesting session termination, allowing a new
session to be established with that device.

Finance 1/0 Managers

The following modules constitute FIOM support; these
modules are the Finance |/0 Managers. They are
provided as an alternative to UDDS communications for
those Finance Support users who desire direct
communications between their System/38
transaction-processing programs and the finance control
unit application.

Note: An arrow (-->) identifies the modules that can be
called as external subroutines of the user's application
program.

-->QFNWRT—Write: This program will allow users to
write up to 512 bytes of application data to a
specified finance device. The user supplies as input
to QFNWRT an indicator relating the type of data to
be written, the length of that data, the data itself, and
the finance device to which to write. QFNWRT
accepts these input parameters and invokes
QFNIOMGR to handle the |/O operation.

Finance Support FN-1

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

-->QFNWRTI-Write Invite: This program will write up
to 512 bytes of application data to a specified finance
device in a manner similar to that of QFNWRT. In
addition, QFNWRTI will invite the device for
communications. This program should be used in
conjunction with the program QFNREAD or
QFNREADI to allow reading of the data received as a
result of the write invite issued to the finance device.

-->QFNREAD-Read: Reads up to 512 bytes of data
from a specified finance device. Prior to calling
QFNREAD, the device must be invited by the
program QFNWRTI. The user supplies as input to
QFNREAD the name of a device from which to read.
This program calls QFNIOMGR to perform the read
operation, then returns to the user’s application
program the data received, along with the length and
the type of that data.

-->QFNREADI-Read From Invite: This program will
read up to 512 bytes of data from any invited finance
device. Prior to calling QFNREADI, the devices must
be invited by the program QFNWRTI. This module
functions in a manner similar to that of QFNREAD,
with the name of the finance device, from which data
is received, returned as an additional output
parameter to the user’'s application program, rather
than supplied as input to QFNREADI.

QFNIOMGR-Finance |/0 Manager: This is the
primary finance 1/0 manager. it acts as an external
subroutine of QFNREAD, QFNREADI, QFNWRT and
QFNWRTI. This program accepts any input
parameters supplied by the user and performs the
requested input or output operation to the finance
devices.

FN-2

Submit Finance Job (SBMFNCJOB) Command
Interface

Figure FN-1 and the following text describe the module
flow for the SBMFNCJOB interface.

n QFNSBMJB is the command processor for the
SBMFNCJOB command. This module submits a
batch job that calls QFNROUTE to establish and
manage communications with finance devices.

n QFNROQUTE provides a router function for the
SBMFNCJOB interface. It acquires and releases
devices, and handles communications between
your System /38 transaction processing programs
and the finance control unit application.

n QFNMNTBL is the command processor for the
Manage Table commands. It handles the table
selection display and invokes QFNMNMBR when a
specific table is selected.

n QFNMNMBR manages the specific device
program, or the user table selected for display or

update.
MNGDEVTBL
MNGUSRTBL
SBMFNCJOB MNGPGMTBL
Command Commands
(1] B
QFNSBMJB QFNMNTBL
Command Command
Processor Processor
n QFNROUTE n QFNMNMBR
Router Manage
Tables

PAABOD4-O

Figure FN-1. Submit Finance Job Interface

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Finance 1/0 Manager Interface

Figure FN-2 and the following text describe the Finance
I/O Manager interface.

n QFNWRT accepts user parameters such as
devices, data type, data length, and the data itself,
and then invokes QFNIOMGR to handle 1/0
operations.

QFNWRTI handles writes similar to QFNWRT. In
addition, it invites the device for communications.

QFNREAD reads data from a finance device. The
device must be previously invited by QFNWRTI.
The user program supplies the name of the device.

Bl OFNREADI reads similar to QFNREAD except that
the name of the device, from which data was
received, is returned to the user program.

QFNIOMGR acts as an external subroutine for the
read and write commands. It performs the
requested |/O operations to finance devices.

User’'s Application
(CALL)

QFNWRT

Write

QFNWRTI

Write

Invited

Finance
QFNREAD I/0O Manager

QFNIOMGR

Read

QFNREADI

Read
Invited

Figure FN-2. Finance 1/0 Manager Interface

PAABO0S-0

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Finance Support

FN-3

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 19282, 1983, 1984, 1985

INTRODUCTION

CPF graphics allows the user to add color and pictures
to application programs. High level language programs
call CPF graphic routines to help construct the pictures.
Each of the routines is like a small, self-contained
program. The routines are organized in two groups:

« Graphic data display manager routines (GDDM)

« Presentation graphics routines (PGR)

GDDM Routines

GDDM routines perform basic graphic tasks, such as
drawing a line from point A to point B. A series of
these line drawing routines in an application program
can produce a more complex picture. Also, GDDM
routines are called in an application program to perform
such tasks as initializing and terminating the graphics
environment, defining characteristics for functions that
other GDDM routines will perform (such as setting the
color and width of a line that another GDDM routine will
draw), and sending the picture to the work station.

PGR Routines

PGR routines provide a fast and efficient way to convert
numeric data into color charts in an application program.
One PGR routine will specify the type of chart used to
present the data, while other PGR routines will label the
data and specify chart headings.

PGR routines are built with sets of GDDM routines. An
application can have any mixture of GDDM and PGR
routines.

Graphics

GENERAL OVERVIEW

Graphics Modules

Figure GD-1 and the following text show the structure
of the graphics component.

n The purpose of the application interface (Al) is to
provide the interface between the user and
GDDM. This includes:

« Conversion of application calls to an internal format

« Invocation of the appropriate GDDM unit to process
application calls

« Building and sending of error messages
« Invocation of specified user error exit

« Initialization

« Normal termination

The application interface is the top layer within GDDM
and PGR. All GD and entry point PGR modules are in
this unit.

The full screen manager contains the
subcomponents responsible for graphic data
manipulation and control.

The presentation graphics routines are a set of
routines that access the GDDM primitives but
allow a higher level interface. For example, a
single PGR routine will draw a VENN diagram by
calling several other GDDM routines.

n The terminal services interface is a subset of

GDDM that provides subsystem/device dependent
functions such as 1/0.

Graphics GD-1

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

The common services interface (CSl) performs
general functions such as allocation and
deallocation.

n The environmental services interface (ESI) is a
subset of GDDM that provides subsystem
dependent control functions such as storage
management.

Application Interface (Al)

—

Full Screen Manager (FSM)

| General Device. } b } [Presentation
I General Device | | Graphic Device | .

: Supervisor I : Processor I — grap.hlcs

| (GDS) I | (GDP) | outines

[b } (PGR)

|
| Data Stream :
: Processor |
| (DSP5) :
|

Terminal Common Environment
Services Services Services
Interface (TSI} Interface (CSI) Interface (ESI)

PAABQ47-0

Figure GD-1. Graphics Component Structure

GD-2
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Al Modules -->QGDASCPH-Scope Message Handler: This module
ensures the cleanup of GD referenced objects and

: -->QGDACFP—Control Function Processor: This module spaces.
L is the control function processor for the application

interface and routes control to the appropriate Al
module based on the RCP code. PGR Modules

-->QGDACIN-Initialization: This module creates a -->QGDBADTM-Datum Reference or Datum Line: In
graphics control space object and storage space state 1, this module invokes ADMBSET to store the
object. The control blocks in the control space are datum reference. In state 2, this module draws the
initialized. datum line.
A scope message is sent to the first invocation below -->QDBARS-Draw Bar Graphs and Place Values: This
the request level processor/receiver or to the first module draws a bar graph.
invocation in the current request level if no
processor/receiver exists. This scope message will -->QGDBASEL-Select the Current Axis: This module
cause the scope message handler module, processes both CHXSEL and CHYSEL calls.
QGDASCPH, to be invoked if the target invocation of
the scope message is removed from the invocation -->QGDBATT-Set the Current Attributes: This module
stack.

calls general graphics to set the attributes to the

desired value.
-->QGDACTRM-Termination Function: This module

terminates a graphics instance. The exact processing -->QGDBBGS-Business Graphics Supervisor: This
depends on the reason that termination is invoked. module is the main routine for the reentry portion of
PGR. It is entered by the PGR entry modules and
after some preliminary processing invokes the
appropriate procedure.

-->QGDACO-Controller Router: This module handles all
GDDM and PGR application calls. The application
program codes calls to the GDDM entry modules,

such as FSINIT, and GSLINE. -->QGDBBLNK-Blank Area Under Character String:
L This module shades an area whose boundaries are

When an entry module has been called by an supplied by the parameters with a solid background

application program, it in turn calls QGDACO, passing shading pattern so that the characters are more
all the user-supplied parameters. legible.

-->QGDAEP—Error Processor: This module handles the -->QGDBCHRT-Route to Plotting Routine: This module
error notification and feedback. It is called to process will draw the axis and then draw the type of chart
the graphics function FSEXIT and FSQERR. It is also that was requested.
called to signal an error that has occurred somewhere
in graphics processing. -->QGDBCHSG-Set the Character Attributes: This

module sets the current color, mode, set number, and

-->QGDAINVP-Invoke User Error Exit Program: This multiplier.
module transfers control to the specified user error
exit program. -->QGDBCHVU-Set the Viewport and Window: This

module sets the viewport and window based on the
When an error occurs in GDDM, the user is notified input parameters.
via diagnostic messages. If the user has specified an
error exit, with FSEXIT, GDDM will also give control -->QGDBCRNG-Set Range Values for Autoscaling:

to that module with sufficient information to allow the

This module determines if the range has been set to
program to perform processing based on the

either axis. The minimum and maximum values are

particular error. The purpose of this module is to passed as parameters. After setting the range, the
invoke that program and pass a control block with axis will be drawn.

the error information.
-->QGDBDKEY-Legend Construction: This module

constructs a legend of specified format at a specified
‘ position within the chart area.

Graphics GD-3
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

-->QGDBDOAX-Draw Component: This module draws
axes, tick marks, grids, datum lines, reference lines,
and titles.

-->QGDBDRAW-Draw Heading and Determine Plot
Boundaries: This module sets processing to state 2
and draws the headings for the chart.

-->QGDBDRAX, QGDBDSAX, QGDBDSDO-Draw
Complete Axes, Titles, and Labels: Draw all
components of the plot area other than the plot itself.
This includes axes, axis title, labels, tick marks,
datum reference lines, and grid lines.

-->QGDBDTTL-Draw Axis Title: This module
determines the position for a title of either a vertical
or horizontal axis and draws it.

QGDBEDTX-Edit Text Strings

-->QGDBGFMT-Generate Format for Numeric Labels:
This module determines the number of integer
positions, fraction positions, sign, and if necessary,
E-format positions required for conversion to EBCDIC
and display of a label.

-->QGDBGFTX-Get/Free Storage for Text Strings:
This module frees existing storage, obtains needed
storage, and fills the storage with the text string and
header information.

-->QGDBGLBS-Generate Labels: This module
generates the EBCDIC representation of an input
value.

-->QGDBHIST-Draw Histogram

-~>QGDBLABL-Label an Axis: This module defines the
labeling parameters according to the type of labels
required by the specifications and parameters
received. It then draws each label next to the axis.

-->QGDBMAX-Determine Minimum and Maximum Axis
Values: This module finds the minimum and
maximum values passed in the array by the calling
program. |f the array is composed of multiple
components, then the maximum value will be the
sum of the individual items for that component.

-->QGDBMOVE-Process Draw Requirements for Charts

GD-4

This document contains restricted materials of IBM. LY21-0571-6

-->QGDBNOTE-Chart Annotation: This module
constructs the required notation at the location
specified by the position code and the note offset
values.

-->QGDBPIE-Draw Pie Chart
-->QGDBPLOT-Draw Line and Surface Charts
-->QGDBRNIT-Set PGR Control Blocks
-->QGDBSET-Set Values in Control Blocks
-->QGDBSTRT-PGR Supervisor

-->QGDBVENN-Draw Venn Diagram

FSM Modules

-->QGDDBCRT-Create Partition Set
-->QGDDBDEF-Create Default Partition Set
-->QGDDBDEL~Delete Partition Set
-->QGDDBFN1-Process Partition Calls
-->QGDDBSEL-Select Partition Set

-->QGDCAS—Allocate Symbol Set Table Entry: This
module is part of the FSM common device processor
(CDP). It is called by the load/define symbol set
modules to allocate a suitable entry in the symbol set
table.

-->QGDDCCD-Convert Call Definitions: This module is
called to convert call images from one format to
another.

-->QGDDCDS—Release Symbol Set: This module
handles the release symbol set functions. It is one of
the main entry points of the common device
processor. It is invoked by the main supervisor
router, and processes the GSRSS routine.

-->QGDDCES-Release Symbol Set: This module is
called by the load/define symbol set modules and by
the delete symbol set module to release a symbol
set. It is also called by the graphics device processor
to release a symbol set that is no longer required for
graphics.

-->QGDDCGS-Load/Define Graphics Symbol Set: This
module processes the GSLSS routine.

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

-->QGDDCOS—-Get Symbol Set: This module handles
an internal request to get access to symbol set
definitions. It satisfies the request either by invoking
ESI to read the symbol set or it may remember that
the required symbol set is one of the most recently
queried. In this case, this module already has access
to it.

-->QGDDCPC—-Page Control: This module handles most
of the page control routines.

-->QGDDCPU—-Query Unique Page: This module is
invoked to process a query unique page number
request. This returns a page number that is not

currently in use.

-->QGDDCQOD-Query Device Characteristics: This
module handles the FSQDEV routine.

-->QGDDCAQAS-This module handles all the query
symbol set functions of the GDDM FSM.

-->QGDDCRS—Read/Write Symbol Set
-->QGDDCTE-Initialize / terminate

-->QGDDCVS—Validate Symbol Set: This module
validates a set of symbol set definitions passed to it.

-->QGDDCWIN-Control Page Window

-->QGDDECRT—-Create Partition: This module creates a
new partition block.

-->QGDDEDEF-Create Default Partition
-->QGDDEDEL-Delete Partition
-->QGDDEFN1,2—-Process Partition Functions
-->QGDDESEL-Select Partition
-->QGDDGAR-Buffer Manager

-->QGDDGCE-Arc Simplification: This module breaks
arcs into @ monotonic arc.

-->QGDDGCL-Line Clipping: This module clips a line to
the viewport boundaries.

-->QGDDGCR-Correlation Module

-->QGDDGGI-Query Input Device Data

-->QGDDGIG-IDF Generator: This module generates
IDF orders to set the attributes of a graphic primitive.

-->QGDDG!0—Initialization: This module controls the
initialization and termination of the GDP. Initialization
is triggered internally by the GDP when the graphics
field is created. Termination is invoked by DSCLS.

This module is responsible for the loading and
unloading of the dependent modules and their
initialization and termination.

-->QGDDGI15-5292 Display Initialization: This module
handles initialization, field creation, termination, and
field deletion for the 5292 Model 2 display.

-->QGDDGI6-Plotter Initialization: This module handles
initialization, field creation, termination, and field
deletion for the 737x plotter.

-->QGDDGMM—Matrix Multiplier: This module
multiplies two matrices of given dimensions.

-->QGDDGPA-Primitive Attribute Module: This module
handles color, line width, paint, pattern, character
mode, set, box, angle, and direction.

-->QGDDGPC—Character String Module: This module
processes GSCHAP, GSCHAR, and GSQTB character
string calls.

-->QGDDGPE-Arc Primitive Module: This module
handles arc requests. Arcs may be specified by
GSARC, GSELPS, and GSPFLT. The external form of
these functions is processed and a common GDF
order is generated from them.

-->QGDDGPI-GDF Interpreter: This module interprets a
GDF string.

-->QGDDGPM-Image Processor: This module
processes image calls including GSIMG and
GSIMGS.

-->QGDDGPO-GDF Exporter: This module returns GDF
data to the application. This includes the handling of
the GSGETS, GSGET, and GSGETE functions.

-->QGDDGI4—Printer Graphics Initialization: This
module handles initialization, field creation,
termination, and field deletion for printer graphics.

Graphics GD-5

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

-->QGDDGP1-GDF Generator: This module accepts
GDF orders and saves them for GDF retrieval.

-->QGDDHI06-737x Plotter Table Builder: This module
is called by QGDDGI6 to return the graphics default
module index for plotter support.

-->QGDDHI04-522x, (10 CPIl) Printer Table Builder:
This module is called by QGDDGI6 to return the
graphics default module index for 522x, printer
support.

-->QGDDHI14-4214 Printer Table Builder: This module
is called by QGDDGI6 to return the graphics default
module index for 4214 printer support.

-->QGDDHI24-15 CPI Printer Table Builder: This
module is called by QGDDGI6 to return the graphics
default module index for printer support.

-->QGDDGCTF-Color Table Definition Selection
Function.

-->QGDDGS1-Display Segment Buffer Manager for
producing GDF.

-->QGDD1C—Data Stream Processor for Dummy Device
Support.

-->QGDDGPR-Primitive Operations: This module,
which is one of the entry points to the GDP, handles
moves, line, vector, marker, area, and end area calis.

-->QGDDGPS—Default Picture Space: This module
calculates a default picture space and converts it into
32 K bytes coordinates.

-->QGDDGP5-Data Stream Generator: This module
accepts GDF orders and generates 5292 Model 2
display data stream orders from them.

-~->QGDDGP6-737X Plotter Data Stream Generator:
This module accepts GDF orders and generates 737X
plotter (IBM-GL) data stream orders from them.

-->QGDDGAQC-Quickcell Routine: This module allocates
and frees storage for bundles of control blocks.

-->QGDDGAQI-Query Character Spacing: This module,
which is called internally, computes the relative
coordinates of the bottom right and top left corners
of a character box by considering current character
angle, mode, direction, and box attributes.

GD-6

-->QGDDGSE-Segment Operations Module: This
module, which is one of the entry points to the GDP,
handles segment creation, closure, deletion, and clear
calls. Itis also invoked by the CDP to handle page
deletion.

-->QGDDGSQ-Segment Querying Module: This
module, which is one of the entry points to the GDP,
handles the following calls: GSQCUR, GSQMAX,
GSQCEL, GSQCLP, and GSCLP.

-->QGDDGS5-5292-2 Display Segment Buffer
Manager: This module manages (creates, allocates,
deallocates, and destroys) segment buffers. A
segment buffer is the buffer into which the data
stream generators (QGDDGP5 and QGDDGPS) place
actual device graphics orders.

-->QGDDGWI-Window Definition: This module, which
is one of the entry points to the GDP, handles
segment window defining, viewport defining, picture
space defining, picture space querying, and graphics
field defining.

-->QGDDGXC—Character String and Marker Expansion:
This module expands a character string or marker
order into a series of lines.

-->GQDDGXE-Arc Expansion: This module expands
circular and elliptic arcs to a series of straight lines.

-->QGDDHI05-5292-2 Display Table Builder: This
modaule is called by QGDDGI5 to return the graphics
default module index.

-->QGDDM-AIC Alternate Entry Point: This module
serves as an entry point to GDDM/PGR, which can
be called with parameters to indicate the function
required.

-->QGDDSDO~Query Reply Processor: Provides a
common service to the processing modules for
decoding a query reply.

-->QGDDSDS-Device Services: This module handles
all device services (DS....) calls to FSM. This module
interfaces with TS| adapters for device initialization
and termination.

-->QGDDSEH-Error Handler: This module handles an
error detected by any GDDM GSM module.

This document contains restricted materials of IBM. LY21~0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

C

-->QGDDSF1-Device Family 1 Processor: This module
performs family specific processing for DSOPEN,
DSCLS, and DSRNIT.

-->QGDDSO00-Split Open Option: This module
converts between external parameters of DSOPEN
and DSQDEV (processing options and name list), and
the internal option lists.

-->QGDDSRO-Control Router: This module is the only
entry point to GDS and FSM. This module controls
the routing of external calls to the appropriate FSM
processor and performs basic processing for
initialization and termination.

-->QGDD5C-Data Stream Processor: This module
builds the data stream buffers for output to the
device. It appends all control commands for the start
and the end of the graphics mode as well as all
control commands required for each buffer sent to
the device.

ESI Modules

-->QGDEABND-Abend Termination: This module
processes the abend conditions for GDDM.

-->QGDEOSDO-Load/release GSS: This module is
called to get or release a graphics symbol set.

-->QGDEROOF-Router and Storage Manager

TSI Modules

-->QGDILASP-LUD Initialization: This module initializes
a portion of the GD device dependent section of a
display LUD associated space.

This module is called by the DC component during
vary-on processing for 5292 Model 2 devices.

-->QGDLAR1F-Acquire/release buffers: This module
acquires and releases buffers required by TSI.

-->QGDLIN1F-TSI Initialization: This module initializes
the GD component for a particular device. Each
device used has its own control blocks. This module
processes the DSOPEN routine.

Initialization functions include validity checking the
DSOPEN options, locking the specified device,
opening the QDGDDM display file, error handling and
back-out, and terminal query functions.

-->QGDLRN1F—-Reinitialization: This module reinitializes
GDDM for a particular device. This occurs when the
DSRNIT or FSRNIT routines are called. For FSRNIT,
GDS generates internal DSRNIT requests for each
open device.

-->QGDLROO0-Dummy Device Router: This module
serves as the router for GDDM requests to dummy
devices.

-->QGDLRO1F—Function Module and 1/0 Services:
This module routes all TSI requests and performs |/0
processing.

-->QGDLTM1F-Termination Function

-->QGDLTQO0C—Query Device Function: This module
returns information about the device.

-->QGDNUMER-Numerical Preprocessor: This module
generates smooth curves.

CSI Modules

-->QGDYGAQC-Quickcell Routine: This module allocates
and frees storage for bundles of control blocks.

-->QGDYINTM-Initialization/termination: This module
provides initialization and termination for the common
services interface (CSI).

-->QGDYROOO-CSI Router: This module routes the
CSI request to the appropriate module.

-->QGDYRSRL-CSI Reserve/Release Resource Handler
-->QGDYTRIG - CSI Trigonomic Functions: This

module returns the sine and cosine for the specified
angle.

Graphics GD-7

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

GD-8

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

<9

A

C

INTRODUCTION

The installation component of CPF (control program
facility) is responsible for installing and initiating CPF on
the IBM System/38.

To invoke the installation component, an operator
performs an AIPL (alternative initial program load).

GENERAL OVERVIEW

Installation Modules

The installation component consists of the following
modules:

Note: An arrow (-->) identifies a module as being an
entry module into the component. Indentation of a
module shows its dependency on a previous module.

-->QINIT-Installation Loader: This module loads
QINSTALL into the system when the installation is
from diskette.

QINSTALL-Stand-Alone Portion of Installation:
This module loads all CPF objects except for
subsystem descriptions and data base files. It also
initiates the initial CPF process.

QINCPF-Initialization Requiring CPF: This module
is executed during the start CPF process. It
controls 1/0 reconfiguration, the loading of
subsystem descriptions and data base files, and
controls any release/modification-dependent
initialization. To control the 1/0 reconfiguration, a
prompt is sent to the system console asking if the
1/0 descriptions on the save/restore medium are
to be restored. QINRIO is called if the response is
affirmative.

QINRIO-Restore 1/0 Configuration: This
module deletes all existing /0 descriptions
except for the system console and save/restore
device(s). The save/restore component is called
to restore the |/O descriptions from the
save/restore medium.

Installation

QINRIOOH—Restore |/0 Description Object
Handler: This module, after initial processing
by the save/restore component, receives the
1/0 description data and creates the
appropriate logical unit description, control
unit description, or network description.

QINFIXUP-Release Dependent Initialization: This
module creates job and output queues and grants
private authorities. In addition, this module
performs other functions that are dependent upon
the specific CPF release/modification level.

-=->QINITT-Installation Loader: This module loads
QINSTALL into the system when the installation is
from magnetic tape.

QINSTALL-Stand-Alone Portion of Installation:
This module loads all CPF objects except for
subsystem descriptions and data base files. It also
initiates the initial CPF process.

QINCPF—Initialization Requiring CPF: This module
is executed during the start CPF process. It
controls 1/0 reconfiguration, the loading of
subsystem descriptions and data base files, and
controls any release/modification-dependent
initialization. To control the 1/0 reconfiguration, a
prompt is sent to the system console asking if the
1/0 descriptions on the save/restore medium are
to be restored. QINRIO is called if the response is
affirmative.

QINRIO—Restore |/0O Configuration: This
module deletes all existing 1/0 descriptions
except for the system console and save/restore
device(s). The save/restore component is called
to restore the 1/0 descriptions from the
save/restore medium.

QINRIOOH-Restore 1/0 Description Object
Handler: This module, after initial processing
by the save/restore component, receives the
I/0 description data and creates the
appropriate logical unit description, control
unit description, or network description.

Installation IN-1

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

QINFIXUP—-Release Dependent Initialization: This
module creates job and output queues and grants
private authorities. In addition, this module
performs other functions that are dependent upon
the specific CPF release/modification level.

Installation Process Overview

Figure IN-1 and the following text describe the
relationship of the installation component to other CPF
components and functions. It also gives an overview of
the installation process.

IN-2

The AIPL machine interface source data consists
of the initial user profile template, the program
template for QINIT or QINITT, and the initial
process definition template. This data resides on
the save/restore medium as the first file. The
AIPL procedure uses this source data to create an
initial process and transfers control to the
encapsulated form of QINIT or QINITT.

The purpose of QINIT and QINITT is to load the
second file on the save/restore medium,
QINSTALL. To perform this, a logical unit
description for the diskette device is created. The
QINSTALL module is then created and loaded into
no context; control is transferred to it. Also, an
ICO (installation communication object) is created.
The ICO is used to save error messages and trace
information for QINIT, QINITT, and QINSTALL,
and contains data and pointers used by QINCPF.

if a termination error occurs, this object can be
located and displayed to provide further debugging
information along with any console messages. The
existence of the ICO indicates to the start CPF
process module that an installation is in progress
and special CPF initialization must take place. This
object is destroyed by QINCPF.

QINSTALL initially resolves to the QSYS context.
If this context is not found or is damaged, a new
one is created. The ICO is inserted into this
context.

An logical unit description for the console is
created, and some initialization of the associated
spaces for both this logical unit description and
the diskette logical unit description is performed.

QINSTALL then creates the following objects, if
they do not already exist or are damaged:

« Required system user profiles

« Authorized users table that contains entries for
the system user profiles

« Required system libraries (with the exception of
the spooling library which is created in the start
CPF process)

After the preceding objects are created, QINSTALL
displays a prompt screen requesting the type of
installation to be performed. The user may request
the destruction of existing noninstalled
CPF-created objects (cold start request) and/or
request that no objects be loaded from the
load/dump media. When objects are loaded from
the media, this is called a normal install;
otherwise, it is referred to as an abbreviated install
(it should be apparent that abbreviated installs can
only be performed on a system already containing
CPF).

If the installation is from magnetic tape, a control
unit description and a logical unit description for
the tape controller and device are created.
Initialization of the associated spaces is performed
for both the control unit description and logical
unit description.

If objects are to be loaded, QINSTALL loads or
creates and loads the CPF objects on the fourth
save/restore file and places them into the
appropriate libraries. Each object is owned by the
profile that owned it when the Save System
command was executed.

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

C

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

The system-wide entry point table is created. Any
previous entry point table is destroyed. This table
is a space object containing resolved system
pointers to those programs whose names are
specified in the space object QLINMTBL.

Finally, QINSTALL creates the process definition
template for the initial CPF process. This process
definition template is stored into the machine
attributes area and is used to both initiate CPF
during AIPL and for subsequent IMPLs. The initial
CPF process is initiated and, when QINSTALL
receives a process-initiated event from the
hardware, terminates itself.

When an installation is in progress, the ICO will
exist on the system. As a result, the start CPF
process performs some extra initialization. One of
the modules called is QINCPF.

QINCPF calls common data management to send
a display to the system console, requesting
whether or not the operator wants to restore the
1/0 configuration file to that configuration saved
with the system on the save/restore medium. If
the response is yes, QINRIO is called (see B).
QINCPF then deletes certain system-supplied data
base files and subsystem descriptions through an
interface to the librarian component. It calls
save/restore to restore data base files and
subsystem descriptions. Following this, QINFIXUP
is called (see). QINCPF then returns control to
its caller.

QINFIXUP creates job and output queues. Private
authorities are granted for certain system objects.
For objects created by QINSTALL, information text
is retrieved from the CPF message file and stored
in the QSYS library. Additionally, this module
performs other functions that are dependent on
the specific CPF release/modification level.

QINRIO is called by QINCPF when the 1/0
descriptions are to be restored from the
save/restore medium. The librarian component is
called to provide a list of logical unit descriptions,
control unit descriptions, and network descriptions.
All descriptions except the system console and
save/restore device(s) are deleted through an
interface to the device configuration component.
The save/restore component is then invoked to
restore the |1/0 descriptions saved on the
save/restore medium.

QINRIOOH is called for each 1/0 description being
restored. It interfaces with the device
configuration component to create the device
description passed from save/restore. The
security component is called to grant appropriate
authorities and to transfer ownership of the
descriptions as necessary. Save/restore is
informed of the final disposition of the description,
and control is returned to the caller.

Installation IN-3

AIPL

QINIT or
QINITT

Installation
Loader

QINSTALL
Stand-Alone
Portion of

Installation

QINCPF

Installation
Requiring CPF

IPL

QWCIINSR

Initial CPF

Process

nstallation
n Progress

Continue
with IPL

QINFIXUP
Release

Dependent
Installation

QINRIO

Restore 1/Q

n QWCISCFR

Start CPF
Process

Common
Data
Management

Save/Restore

Librarian

Message
Handler

Save/Restore

Librarian

Device
Conhiguration

Ny ¥ 3

Spool

Librarian

Message
Handler

QINRIOOH

Restore 1/0
Object Handler

Device
Configuration

Securty

Message
Handler

Figure IN-1. Installation Process Overview

This document contains restricted materials of IBM. LY21-0571~6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

9

Journal Management

INTRODUCTION

The journal management component of the CPF (control
program facility) provides the user a means of recording
changes made to data base files in an object.

The system creates a journal entry in a journal receiver
when a change is made to a physical data base file,
when a change is made to a journal object, or when the
user requests that an entry be added. Only changes to
physical files are recorded in a journal, regardless of
how the journal operation is performed.

The user controls, via commands, the following
functions:

« Command processing program: Executing the create,
change, delete, or display of a journal, and the create,
delete, or display of a journal receiver. Beginning and
ending the journaling of a physical file. Reapplying
journal entries, sending a user defined journal entry,
retrieving a journal entry, comparing journaled images,
and displaying the journal menu.

« Event/exception handling: Handling events or
exceptions associated with journaling.

« Save/restore objects: Saving and restoring a journal
or a journal receiver.

« Recovery: Recovering from an incomplete journal
operation.

C

Journal Management JO-1
This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Entry to Journal Functions

The command processing program functions are visible
to the users of journal management. The
event/exception handling functions, save/restore object
functions, and recovery functions appear automatic to
the users.

The user entry to most of the journal functions is
through the command analyzer. Figure JO-1 and the
following text describe the paths of invocation of the
journal management modules that provide the command
processing program functions, event/exception handling
functions, save/restore object functions, and recovery
functions.

n The command analyzer calls the command
processing programs.

©® QJODLTIN and QJODLTRC are called by
QLIDLOBJ.

n The event/exception handling functions,
save/restore object functions, and recovery
functions are entered via a macro of the journal
component or a call from the data base or
save/restore component.

© QDBRCIPS calls QJOJEJRC if a
corresponding data base recovery object is
found in QRECOVERY. If an entry for a
journal receiver is found on the machine
initialization status record the 2JORECVR
macro may call QJOCDRJR, QJOCHJNR, or
QJORRDIR. The ?JORECVR macro
determines if a journal entry should be
recovered by checking information stored in
the journal control block and the receiver
directory. If a create, delete, or restore of a
journal was in progress, QJOCDRJR is
called. If a change journal was in progress,
QJOCHJNR is called. If an operation on the
receiver directory was in progress,
QJORRDIR is called.

QDBRCIPS calls QJORTHRS if an entry for a

journal receiver is found on the machine
initialization status record that indicates the
receiver threshold value was exceeded.

JO-2

This document contains restricted materials of IBM. LY21-0571-6

CPF data base modules monitor for the
vertical microcode entry-not-journaled
exception. The handler defined is
QJOXENNJ.

QDBMOVFI, QDBRNMFI, QDBMVRFR, or
QDBRNMME calls QJOCHGJD and
QJOSNDJE.

The CPF save/restore component calls
save/restore object modules to handle the
saving and restoring of a journal or a journal
receiver.

The event handling modules are called to
handle events and send the messages to the
appropriate message queue.

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

C

Command
Analyzer

Journal
Management

Comand
Processing

Program
Modules

QJODLTIN

oLIDLOBY

Delete
Object

Delete
Journal

QJODLTRC

Belete Journal
Recever

QJOCDRJR
Create/Delete

Applications,
Utilities, and
CPF Components

QDBRCIPS
Data Base
Synchronous
Recovery

Restore Journal
Recovery

QJOCHJNR

I Change Journal

Recovery

QJORRDIR
Recever

Drrectory
Recovery

QJOJEJRC
Journal/End

Journal
Recovery

QJORTHRS
Threshold-

CPF
Data Base
Modules

Limit-Exceeded
Event

QJOXENNJ
Entry-Not-

QDBMOVF!L
QOBRNMFI
QDBMVRFR
QOBRNMME

tion Handler

QJOCHGJD and
QJOSNDJE

CPF
Save/Restore

Change Journal
ID and Send
Journal Entry

Save/Restore

Events

Object
Modules

Event

Figure JO-1. Entry to Journal

This document contains restricted materials of IBM. LY21-0571-6

Handling
Modules

I
|
|
|
|
|
|
|
|
|
I
I
'u
I
|
I
I
| Journaled Excep-
[
|
|
f
I
I
I
|
I
|
|
|
|
|
I

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Journal Management

JO-3

GENERAL OVERVIEW QJODSPRC—Display Journal Receiver Attributes
(DSPJRNRCVA): This module displays the

attributes of a journal receiver.
Journal Management Modules

QJODLTRC-Delete Journal Receiver

The journal management component consists of the (DLTJRNRCV): This module deletes a journal

following modules: receiver.

Note: An arrow (-->) identifies a module as being an -->QJODSPJE-Display Journal (DSPJRN)': This

entry into the component. Indentation of a module module displays the journal entries contained on one

shows its dependency on a previous module. or more of the journal receivers to the work station,
or a spooled printer output, and/or a data base
output file.

Command Processing Modules
QJODJEHP-Display Journal Help Processor: This

-->QJOCRTJN—Create Journal (CRTJRN)': This module module displays the help screens for the Display
creates a journal object and attaches journal receivers Journal command.
to it.
-->QJOJNMNU-Display Journal Menu
QJOGENJD-Generate Journal ID: This module (DSPJRNMNU)': This module displays the primary
generates a journal ID and starts journaling. journal menu, and processes user requests.
-->QJODLTJN-Delete Journal (DLTJRN): This module QJOJMNHP—Journal Help Processor: This module
detaches receivers, stops journaling on them, and is called to display the help screen.

deletes a journal.
QJOJSTAT—Journal Status: This module

-->QJOCRTRC—Create Journal Receiver {CRTJRNRCV)': processes the request for journal status, and
This module creates a journal receiver. displays the status of a journal.

-->QJODLTRC-Delete Journal Receiver (DLTJRNRCV): QJOJNRCY—Journal Recovery: This module
This module deletes a journal receiver. processes the request for recovery functions, and

displays the journal recovery menu.
-->QJOCHGJN—-Change Journal (CHGJRN)': This

module changes the operational and/or creational QJOJMNHP—-Journal Help Processor: This
attributes of a journal. Changing the operational module is called to display the help screen.
attributes involves detaching the currently attached
journal receivers and attaching new journal receivers. QJORYFIL-Recover File: This module
processes the request for forward or back-out
QJOGENJD-Generate Journal ID: This module recovery from the journal recovery menu.

generates a journal ID and starts journaling.
QJOJMNHP—Journal Help Processor: This

QJOCRTRC—Create Journal Receiver module is called to display the help screen.
(CRTJRNRCV): This module creates a journal
receiver. QJORYJRN-Recover Damaged Journal: This
module processes the request for recovery of
-->QJODSPJA-Display Journal Attributes (DSPJRNA)': damaged journals from the journal recovery
This module displays the operational and creational menu.
attributes of a journal to the work station or to a
spooled printer. Q.JORYDIR—-Recover Directory: This module

reassociates all applicable receivers on the
system with the recovered journal.

'This module is a CPP (command processing program).

JO-4
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

QJORYRCV-Recover Journal Receiver: This
module processes the request for recovery of
damaged journal receivers from the journal
recovery menu.

QJOJMNHP-Journal Help Processor: This
module is called to display the help screen.

QJOJNLST—Journal Selection List: This module
processes the request for the journal selection list
from the primary journal menu.

QJOJNCMD—-Journal Command: This module
processes the request for the journal commands
menu from the primary journal menu or journal
recovery menu.

-->QJODSPRC-Display Journal Receiver Attributes
(DSPJRNRCVA)': This module displays the attributes
of a journal receiver.

QJODSPRC-Display Journal Receiver Attributes
(DSPJRNRCVA): This module displays the
attributes of a journal receiver.

-->QJOJRNPF-Journal Physical File (JRNPF)': This
module begins journaling changes for a specific
physical file to a journal.

QJOGENJD-Generate Journal ID: This module
generates a journal ID and starts journaling.

-->QJOENDJN-End Journal (ENDJRNPF)': This
module ends journaling changes for a physical file.

-->QJORTVJE—Retrieve Journal Entry (RTVJRNE)': This
module retrieves a journal entry from a journal and
places it into a set of user-defined CL variables.

QJODSPJE-Display Journal Entry: This module
retrieves the requested journal entry from the
journal, converts the entry from internal to external
format, and returns the converted entry to
QJORTVJE.

-->QJOSNDJE-Send Journal Entry (SNDJRNE)': This
module places a journal entry on a journal.

QJOGENJD-Generate Journal ID: This module
updates the journal ID cross-reference table.

'This module is a CPP (command processing program).

-->QJOREAPY—Reapply Journal Changes
(APYJRNCHG/RMVJRNCHG)': This module
applies/removes journal changes to/from a specified
file.

QJOREEXT—-Reapply Invocation Exit: This module
provides an invocation exit for module QJOREAPY.

-->QJOCMPJE-Compare Journal Images
(CMPJRNIMG)': This module compares images of
record level changes recorded for a file.

The following module is invoked by the data base object
handler for the Move Object (MOVOBJ), Rename Object
(RNMOBJ), and Rename Member (RNMM) commands:

=-->QJOCHGJD—Change Journal ID: This module
updates object names in a journal ID cross-reference
table that exists in the associated space of a journal
receiver.

Event /Exception Handling Modules

-->QJONJEVT-Entry-Not-Journaled Event: This
module handles the entry-not-journaled events and
sends the messages to the system operator.

-->QJORTHRS-Threshold-Limit-Exceeded Event: This
module handles the threshold-limit-exceeded events
and sends the messages to the user specified
message queue. This module is also invoked by
QDBRCIPS during recovery.

-->QJORUEVT-Receiver-Unusable Event: This module
handles the receiver-unusable events and sends the
messages to the system operator.

-->QJOXENNJ—Entry-Not-Journaled Exception

Handler: This module sends an inquiry to the system
operator.

Journal Management JO-5

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Save/Restore Object Modules

-->QJORSTJN—-Restore Journal: This module performs
the object handler function necessary to restore a
journal.

QJOCRTRC—-Create Journal Receiver
(CRTJRNRCV): This module creates a journal
receiver.

QJOGENJD-Generate Journal ID: This module
generates a journal ID and starts journaling.

-->QJORSTRC—Restore Journal Receiver: This module
performs the object handler function necessary to
restore a journal receiver.

QJOGENJD-Generate Journal ID: This module
generates a journal ID and starts journaling.

-->QJOSAVJN-Save Journal: This module performs
the object handler function necessary to save a
journal.

-->QJOSAVRC-Save Journal Receiver: This module
performs the object handler function necessary to
save a journal receiver.

Recovery Modules

-->QJOCDRJR—Create/Delete/Restore Journal
Recovery: This module performs the recovery of an

interrupted create, delete, or restore journal operation.

-->QJOCHJNR-Change Journal Recovery: This module

performs the recovery of an interrupted change
journal operation.

QJOGENJD—-Generate Journal ID: This module
generates a journal ID and starts journaling.

-->QJOJEJRC—Journal/End Journal Recovery: This
module performs journal recovery, including the
backout or completion, of an interrupted journal
physical file or end journal physcial file operation.

QJOGENJD—-Generate Journal ID: This module
generates a journal ID and starts journaling.

-->QJORRDIR—Receiver Directory Recovery: This

module performs the recovery of an interrupted
modification of the receiver directory.

JO-6

This document contains restricted materials of IBM. LY21-0571-6

Journal ID Generation

A journal ID is generated the first time an object is
journaled. The journal |D associates journal entries to
the appropriate object name. This association is
maintained in a journal ID cross-reference table
contained in the associated space of a journal receiver.
A journal ID is assigned to an object for the object’s life
on the system: if journaling is ended and restarted for
the object, the same journal ID will be used. The journal
ID for an object is also preserved across a save/restore
for the object.

A journal ID is generated by using a compressed version
of the machine serial number, the segment identifier of
the journal, and a 4-byte number that automatically
increases by one. This generation scheme is used to
provide journal ID to object uniqueness for each object
journaled to a given journal, for each journal on a given
system, and for each system.

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

>

C

Receiver Directory Management

A directory of all journal receivers associated with a
journal is maintained in the associated space of the
journal. This is called the receiver directory. When a
journal receiver is associated with a journal through a
Create Journal command, a Change Journal command,
or a Restore Journal command, an entry for that journal
receiver is added to the receiver directory. An entry will
also be added to the receiver directory when a journal
receiver is restored on the system and a directory entry
does not yet exist for that journal receiver. If a journal
receiver that is associated with a journal is deleted, its
corresponding entry is removed from the appropriate
receiver directory.

Each entry in the receiver directory contains a receiver
identifier that is used to determine where each journal
receiver belongs in the receiver chain. Multiple receiver
chains are found in the receiver directory when one of
the following conditions occur:

« A journal is restored.

« A journal receiver is restored that was previously
saved while attached to the journal.

« A journal receiver is restored and its next receiver is
not on the system.

« A journal receiver is restored, without storage freed,
and its next receiver is restored, with storage freed.

« A journal receiver from another system is restored.

« A damaged journal receiver is deleted from the
middle of a receiver chain.

« An unusable set of journal receivers is detected
during journal operations.

Journal Object Locking

During journal operations, locks are obtained on the
objects involved in the operation. This ensures the
integrity of the object or the information presented
concerning the object. Figure JO-2 shows the journal
object locks, and the space location locks.

When multiple routing steps are performing operations
that reference or modify the journal ID cross-reference
table or the receiver directory table, the operations must
be controlled so that there is no conflict in modification
or reference. These operations are synchronized across
routing steps by symbolic locking. Any operation that
modifies one of the tables obtains an exclusive, no read,
space location lock on the table. Any operation that
references one of the tables obtains a shared, read only,
space location lock on the table.

If two routing steps concurrently attempt an operation
on the same table, one of the routing steps will obtain
the lock. The other routing step will enter a lock wait,
time-out loop until the first completes its operation. The
second routing step will then obtain the lock so the
desired operation can be performed.

Process Event Masking

In order to prevent undesired interruptions and
cancellation during critical journal operations, the routing
step is masked from interruption by an asynchronous
system condition. The routing step is masked only for
interruptions that could cause inconsistencies in journal
object information. Masking the routing step is
performed by QJOCRTJN, QJODLTJN, QJOCRTRC,
QJODLTRC, QJOCHGJN, QJOJRNPF, QJOENDJN,
QJORSTJN, QJOSAVRC, QJORSTRC, QJOCHGJD,
QJOGENJD, and QJORYDIR. In addition, the event
handlers QJORTHRS and QJORUEVT perform their
operations with the process masked. The event handler
QJONJEVT performs its operations with the process
unmasked since it may process several events in one
invocation.

When information is being gathered that requires a
space pointer lock on the journal ID cross-reference
table or the receiver directory table, QJOREAPY,
QJODSPJA, and QJODSPJE prohibit cancel request.
When a space pointer lock is not held, these operations
are always interruptible and a cancel request will be
allowed.

Journal Management JO-7

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Object Locks Space Location Locks
Journal Receiver |Journal ID
Library Journal Receiver File Member |Directory | Cross-Reference
QJOCHGJD LSUP LSRO. LENR
QJOCHGJN LENR LENR* LENR
QJOCMPJE LSRD LSRD LSRO LSRD LSRO
QJOCRTJN LENR LENR LENR
QJODLTJN LSUP LENR LENR
QJODLTRC LSUP LSRD? LENR LENR
QJODSPJA LSRD LSRO LSRO
QJODSPJE LSRD LSRD? LSRO LSRO
QJODSPRC LSRD
QJOENDJN LEAR LENR?3
QJOGENJD LSUP LENR LSRO LENR
QJOJNLST LSRD
QJOJNRCY LENR
QJOJRNPF LSUP LENR? LENR
QJOJSTAT LENR
QJOREAPY LSRO® LSRD LSRQO?® LSRD? LSRO
QJORSTJN LSUP LENR LENR LENR
QJORSTRC LSUP LSUP? LENR LENR? LENR
QJORUEVT LENR
QJORYDIR LENR LENR
QJORYFIL LSRQO?® LSRO
QJORYJRN LENR LENR LENR
QJORYRCV LENR
QJOSAVJN LSRO
QJOSAVRC LSUP? LSRO! LENR?
QJOSNDJE LSUP LSROS
'If save with storage freed is requested, LSRO will be LENR.
?Locks only acquired and receiver directory is updated if journal exists. The receiver directory will be locked LSRO during the
reading of QJORSTRC.
3A series of data spaces or logical file control blocks may be locked LENR if logical files exist over this physical file.
“Both receivers to be attached and detached are locked.
SFile is locked only if a specific file was requested on the command.
SLock is changed to LSRD after parameter processing in QJOREAPY is completed.
"Member's data space is locked LENR to prevent a logical defined over the member from changing entries.
8Each file selected for recovery is locked LSRO. If a damaged file is selected, its dependent logicals are locked LENR.
®Each receiver in the receiver range is locked LSRD and the receivers in the chain from the receiver range up to and including the
first receiver in the chain are also locked LSRD.

Figure JO-2. Journal Locking

JO-8
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

3

C

INTRODUCTION

The Kanji component provides the function to perform
ideographic conversion, manage ideographic dictionaries,
and provide some of the functional support for the
ideographic tables.

The first function that the Kanji component provides is
the ideographic conversion interface. The ideographic
conversion facility enables a user to enter ideographic
data to an ideographic work station with either an
alphameric or ideographic keyboard. The ideographic
conversion function extends the data entry capability of
an ideographic work station.

The second function that the Kanji component provides
is the ideographic dictionary management functions. A
user may create, display, edit, or delete an ideographic
dictionary.

The third function that the Kanji component provides is
the ideographic table support. A user may copy in or
copy out an ideographic table from or to a diskette,
check for an ideographic table, or delete an ideographic
table. The editing capability of an ideographic table is
supported through the EDTIGCTBL command function
which is part of the character generation utility function.

Kanji

GENERAL OVERVIEW

Kanji Modules
The Kanji component consists of the following modules:

-->QKJCPTBL—Copy |deographic Table: This is an
entry point module for the CPYIGCTBL command.
This module allows a user to copy an ideographic
table from or to a diskette or to copy an ideographic
table from or to the system.

-->QKJCRDCT—Create Ideographic Dictionary: This is
an entry point module for the CRTIGCDCT command.
This module allows a user to create an ideographic
dictionary.

-->QKJDSDCT-Display Ideographic Dictionary: This is
an entry point module for the DSPIGCDCT command.
This module displays the entries and their related
words from the specified ideographic dictionary.

-->QKJEDIT—-Edit ldeographic Dictionary: This is an
edit module for the EDTIGCDCT command. This
module allows a user to edit the related words of an
entry in an IGC dictionary.

-->QKJEDSEL-Display Dictionary Entries: This is a
select module of the EDTIGCDCT command. This
module displays the dictionary entries that may be
operated on by the user. The user can add entries to
the dictionary, display entries in the dictionary, and
remove entries from the dictionary.

-->QKJEROQOT-Perform Normal Completion Operations:
This is the ideographic conversion module. This
module works in conjunction with the work station
component (through the IGCCNV macro) to allow a
user to perform ideographic conversion on an
ideographic work station using either an alphameric
or ideographic keyboard.

Kanji KJ-1

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

-->QKJHNTBL-Delete Ideographic Table: This is an
entry point module for the DLTIGCTBL and the
CHKIGCTBL commands. The DLTIGCTBL command J
will delete an ideographic table. The CHKIGCTBL
command will check for the existence of an
ideographic table.

-->QKJMDWRD-Add or Replace Dictionary Entries:
This is the modify word module. This module will
either add a new entry (and related words) or replace
an existing entry (and related words) for an
ideographic dictionary. This module is invoked
through the MODWORD macro.

-->QKJRMENT-Remove Dictionary Entry: This is the
remove entry module. This module will remove an
entry (and its related words) from an ideographic
dictionary. This module is invoked through the
RMVENTRY macro.

-->QKJRTENT-Retrieve Dictionary Entry: This is the
retrieve entry module. This module will retrieve the
entries from an ideographic dictionary. This module is
invoked through the RTVENTRY macro.

-->QKJRTWRD—Retrieve Dictionary Words: This is the
retrieve word module. This module will retrieve the
related words for an ideographic dictionary. This)
module is invoked through the RTVWORD macro. J

-->QLIDLOBJ-Delete Dictionary from Library: This is
an entry point module for the generic delete function.
The DLTIGCDCT command will use this module as its
command processing program. This module will
delete an ideographic dictionary from a library. The
librarian component owns and maintains this module.

3

KJ-2
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

INTRODUCTION

The librarian component of CPF (control program facility)
lets the user group objects into named sets called
libraries. An object becomes a member of a library
when the object is created. The object can be moved
between libraries or renamed. It is always a member of
a library until it is deleted.

The librarian component provides the following
functions:

« Address resolution-related functions
— Resolves the address of an object
— Fast intermodule linkage
— Library search list

« Object manipulation functions
— Check an object
— Delete an object
— Move an object
— Rename an object
— Duplicate an object
— Other generic functions
— Clear a library
— Delete a library
— Create a library
— Object information repository and its manipulation

« Display functions
— Display the libraries on a library list
— Display an object description
— Display a library’s contents

Librarian

GENERAL OVERVIEW

Librarian Modules

The librarian component consists of the following
modules:

Note: An arrow (-->) identifies a module as being an
entry module into the component. Indentation of a
module shows its dependency on a previous module.

-->QLICHLBL-Change Library List Entry
{CHGSYSLIBL/ADDLIBLE /RMVLIBLE)!: This module
adds a library to, or removes a library from, the
system or user portion of the library list.

-->QLICHLIB—Change {replace) Library List (RPLLIBL)':
This module replaces the user portion of the library
list that is associated with a job, with a list specified
on the Replace Library List command.

-->QLICLLIB—Clear Library (CLRLIB/DLTLIB)!: This
modaule lets users delete all of the objects in a library
and the library if they have authority.

QLIDLFIL—Delete Files: This module deletes files
from a library.

-->QLICRDUP-Create Duplicate Object (CRTDUPOBJ)':
This module creates duplicate objects in a different
library or it creates duplicate objects with different
names in the same library as the original object.

-->QLICRLIB—Create Library (CRTLIB)': This module is
used to create user-defined libraries.

'This module is a CPP (command processing program).

Librarian Li-1

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985 '

-->QLIDOBJD-Display Object Description (DSPOBJD)':
This module is used to display the description of
objects to the user.

QLIOUTFL-Create/Validate Qutfile: This module
creates an outfile and outfile member, or validates
an existing outfile for any display commands in the
librarian which support the OUTFILE and OUTMBR
parameters.

-->QLIDSLIB-Display Library {DSPLIB)': This module
lets the user obtain a listing of all the objects in each
of a list of libraries. The list contains the names of
the objects as well as their basic attributes.

QLIHNCMD—-Execute Display Options: This
module gets all the objects selected from a
librarian selection display and calls the module(s)
necessary to process the option chosen for each
selected object.

-->QLIDSPLL-Display Library List {DSPLIBL)': This
module processes the Display Library List command
to display the library list.

-=->QLILIST-List Object: This module provides the way
to obtain information about the contents of libraries.

-->QLIMVOBJ-Move Object (MOVOBJ)': This module
moves an object from one library to another library.

QLIMOVE—Move Object Under Adopted User
Profile: This module moves an object from one
library to another library or removes an object from
a library while running under QSYS.

-->QLIMVOIR—Move OIR Record: This module moves
the OIR source records of an object from the OIR of
the source library to the OIR of the target library.

-->QLIDLOIR-Delete OIR Record: This module deletes
OIR records from the OIR of a library.

-->QLIMROIR—-Modify / Retrieve OIR Record: This
module adds, modifies, and retrieves object
information to or from an OIR.

-->QLIRNOBJ—Rename Object (RNMOBJ)': This
module is used to change the name of an object.

This module is a CPP (command processing program).

L1-2

This document contains restricted materials of IBM. LY21-0571-6

-->QLIRNOIR—Rename OIR Entries: This module
renames the OIR entries for an object.

-->QLICNV-Convert Object Type: This module converts
symbolic object type to machine interface
type/subtype codes and converts machine interface
type/subtype codes to symbolic object types.

-->QLIINSRT-Insert Object in Library: This module
inserts an object and its OIR data into a library.

-->QLICLNUP-Library Clean-Up Routine: This module
cleans up incompletely created or damaged libraries
caused by system malfunctions that occur during
execution of create library function.

-->QLIDLOBJ-Delete CPF Object Module: This module
processes all LU delete commands to delete CPF
objects from the system.

QLIFITYP-File Type |dentification: This module
determines the file type of each file (device,
physical, logical, or derived).

-->QLICKOBJ-Check Object (CHKOBJ)': This module
checks the existence of an object, and optionally,
checks the authorization the user has for the object.

-->QLIADOPT-Set Space Authority in System Pointer
Under Adopted User Profile: This module sets space
authority in a system pointer while running under
QsYs.

-->QLIRCLIB—Reclaim Library: This module cleans up
damaged libraries found during execution of the
RCLSTG command.

QLICNVD—Convert Library OIR: This module
converts the OIR of a library to the current
release/modification level during the RCLSTG
command. The library requiring conversion will
previously have been a floating library.

-->QLIVLOIR-Validate OIR: This module removes OIR
entries for which no object exists in the library.

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

9

C

Object

An object is a named, separately addressable unit that
has a set of attributes, a value, and a unique set of
operational characteristics. The attributes associated
with an object describe that object. The value of an
object is the contents of the object itself. The
operational characteristics of an object define how an
object can be used and what operations can be
performed against it.

Library

A library is a special type of object that is used to group
other objects into named sets. The purpose of libraries
is to provide a directory for the objects that the user
creates. All objects, other than libraries, are required to
reside in libraries. An object can only reside in one
library at a time. Duplicate named objects cannot reside
in the same library unless they have different object
types. Object type is an additional qualification on an
object.

Library List

A library list is an ordered list of libraries that is
associated with each job during its execution. The
library list determines which libraries are searched, and
controls the order in which they are searched to resolve
a reference to an object.

The library list is made up of two parts: a system part
and a user part. The system part of the library list
always precedes the user part, so it is always searched
first. The user part of the library list can be changed by
using the Replace Library List (RPLLIBL) command, the
Add Library List Entry (ADDLIBLE) command, the
Remove Library List Entry (RMVLIBLE) command, or the
Change System Library List (CHGSYSLIBL) command. It
can also be displayed using the Display Library List
(DSPLIBL) command. Whenever the library list is
changed, the change made in the list remains in effect
for the duration of the job or until another Replace
Library List command, Add Library List Entry command,
Remove Library List Entry command or Change System
Library List command is processed.

Check an Object
The existence of an object, and optionally, the

authorization a user holds for the object can be checked
using the Check Object (CHKOBJ) command.

Librarian LI-3

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Delete an Object

An object can be deleted from a library by one of the
delete object commands. The librarian supports the
DELETE generic function definition table.

Move an Object

An object can be moved from one library to another
using the Move Object (MOVOBJ) command. Control
unit descriptions, device descriptions, line descriptions,
edit descriptions, user profiles, and libraries cannot be
moved.

Rename an Object

The name of an existing object can be changed by the
Rename Object (RNMOBJ) command. However, the
IBM-supplied library (QSYS), job temporary library
(QTEMP), control unit descriptions, device descriptions,
line descriptions, and user profiles cannot be renamed.

Create Duplicate Object

An existing object can be duplicated by the Create
Duplicate Object (CRTDUPOBJ) command; however,
unit descriptions, device descriptions, edit descriptions,
journals, journal receivers, libraries, line descriptions, and
user profiles cannot be duplicated.

Other Generic Functions

The librarian component supports internal tables defining
operation applicability, object structures, and routines
performing the operations for other generic functions,
such as grant, revoke, allocate, deallocate, save, restore,
dump, suspend, display object locks, and change object
ownership.

Clear a Library
The Clear Library (CLRLIB) command is used to delete
objects from a library. The Clear Library command only

deletes objects for which the user has object existence
authority.

LI-4

Delete a Library

The Delete Library (DLTLIB) command is used to delete

a library. The library to be deleted is deleted only if all ™
objects in it can be deleted. .J
Create a Library

The user can create as many libraries as desired and use

them to hold other objects. After a library has been

created, other objects can be created or moved into it.

Object Information Repository and its Manipulations

Some of the attributes of an object are not kept with

the object. There are six types of information in this

category:

« Text information

« Service information

« Save/restore information

« Special attribute information

« File reference function information

« Journal information J

The information is stored in an OIR (object information
repository). Every library has an OIR associated with it.
The librarian provides ways to add, delete, modify, and
retrieve information in the OIR. Function is also
provided to rebuild an OIR that is damaged.

Display a Library List
The Display Library List {DSPLIBL) command displays
the name, attribute, and text of each library on the

library list. This display also distinguishes the system
and user portions of the library list from each other.

<

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

C

Display an Object Description

This function displays the attribute information
associated with an object or a set of objects. A basic,
full, or service description of an object can be
requested. The Display Object Description (DSPOBJD)
command displays descriptions for all objects of a
specified type, for all objects with a given generic name,
or for objects with a given generic name and given type.

Display the Contents of a Library

This function displays all the objects contained in each
of a list of libraries. The list of libraries can be specific
libraries or the libraries contained in the user’s library list
or all the libraries the user is authorized to use, including
those libraries publicly authorized.

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Librarian

LI-5

Librarian Relationships to Other CPF Components

Figure LI-1 shows the relationship between the librarian
component and other CPF components. The following
components use the librarian for the indicated purposes:

Security uses the GRANT/REVOKE/TRANSFER
generic function definition tables to control the
operation of its grant object authority, revoke
object authority, and change object ownership
CPPs {command processing programs).

Save/restore uses the SAVE/RESTORE generic
function definition tables to control the save and
restore functions. It uses QLILIST to obtain
objects from a library, and it uses OIR {(object
information repository) manipulation functions to
save/restore QIR information along with objects.

Service uses the DUMP generic function definition
table to perform the dump system object function.
It also uses QLILIST to obtain information about
objects in a library.

Work management uses the
ALLOCATE/DEALLOCATE generic function
definition table to perform allocate and deallocate
functions. Work management also uses QLIDSPLL
to display the library list of the job displayed by
the Display Job (DSPJOB) command. It uses the
create library function to create the QTEMP library.
It uses QLICLNUP to check for and recover from
damage to libraries during an IMPL.

All CPF components use the macros provided by
the librarian to resolve an object address, to pass
control to a8 module, and to convert symbolic
object types to their internal representations.

Instaliation uses WWLICNVO to convert a library
OIR if it is in an old format. It uses WWLIVOIR to
check for and recover from damage to libraries
QSYS, QSPL, QSRV, QGPL, and QRECOVERY. |t
also uses OIR manipulation functions to restore
OIR information for objects that are installed.

Reclaim uses QLIRCLIB to check for and recover

from damage to all libraries. It uses QLICNVO to
convert any library OIR that is in an old format. It
uses QLIVLOIR to delete old OIR entries that do

not have an object in the library.

Librarian commands use the command analyzer to
pass command parameter to the librarian CPPs.

Librarian uses work management to gain access to
library QTEMP and to job structure control blocks,
such as WCB, WCBT, and so forth.

Librarian uses security to verify, grant, and revoke
authorizations.

Librarian uses the message handler to signal
exceptions, send messages, move messages, and
to retrieve exception data.

Librarian uses data management functions to
perform |/O operations to support the display
commands in the librarian component.

LI-6
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Users of

Librarian
Security n :
Used by
Librarian
Command
Save/Restore Analyzer
. B wo
Service Management
Librarian
Work (4] B8 .
Management Security

B m Message

CPF Handler
. a Data
Installation Management
Reclaim

Figure LI-1. Relationship of Librarian to Other CPF Components

C

Librarian LI-7
This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Replace Library List Command

Figure LI-2 and the following text describe the operation
of the Replace Library List (RPLLIBL) command.

n The command analyzer decodes a Replace Library
List command and control is transferred to
QLICHLIB.

QLICHLIB verifies that the library names specified
by the user are unique and that the user is
authorized to access these libraries.

QLICHLIB replaces the user portion of library list
with the new list, if the libraries are unique, exist,
are not damaged, and if the user is authorized to
access them. Otherwise, the library list remains
unchanged.

n Control is returned to the caller.

Return to
RPLLIBL Caller
Command ﬂ
QLICHLIB
Command n I Change
Analyzer Library
List CPP

WCB

11T

Library List

Figure LI-2. Replace Library List Command Overview

LI-8
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

9

C

Clear Library Command

Bl ror other objects in the library, QLICLLIB calls
QLIDLOBJ to delete the objects.

Figure LI-3 and the following text describe the operation
of the Clear Library (CLRLIB) command.

n The command analyzer decodes a Clear Library

command and control is transferred to QLICLLIB.

Delete MPCI (master programming change index),

if any.

n Control is returned to the caller.

n QLICLLIB obtains a list of objects from the library.

If there are files in the library, QLICLLIB calls
QLIDLFIL to delete the files.

CLRLIB
Command

{

Command
Analyzer

Figure LI-3. Clear Library Command Overview

Return to
Caller
t E
QLICLLIB
Clear .
Lib PP 5
ibrary C Context
OIR
MPCI
Library
4
QLIDLFIL QLIDLOBJ
Delete Delete
File(s) Object CPP
Librarian

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

LI-9

Create Library Command

Figure LI-4 and the following text describe the operation
of the Create Library (CRTLIB) command.)

n The command analyzer decodes a Create Library
command and control is transferred to QLICRLIB.

[~

QLICRLIB creates a library recovery object in
QRECOVERY.

H

The context and the OIR of a library are created.

Text, special attribute, and service records are
added to the OIR of the library.

[

Grant public authorization to the library. Grant
authority for the library to the process group
profile.

QLICRLIB deletes the library recovery object from
QRECOVERY.

Control is returned to the caller.

Return to

Caller
CRTLIB y
Command

2] “
2

Command II QLICRLIB Library
Analyzer ﬁ Create n Recovery

Library CPP Object

QRECOVERY Library

B A

Library

Context

OIR

Figure LI-4. Create Library Command Overview

3

Li-10
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM 'Corp. 1980, 1981, 1982, 1983, 1984, 1985

This page is intentionally left blank.

C

Librarian LI-11
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

the delete function.

Delete Object Commands QLIDLOBJ calls QDCDLCD to delete a control unit
description.
Figure LI-5 and the following text describe the operation
of the following commands: B QuLIDLOBJ calls QDCDLLUD to delete a device
description.
Delete Class (DLTCLS)
Delete Command (DLTCMD) QLIDLOBJ calls QDCDLND to delete a line
Delete Control Unit Description (DLTCUD) description.
Delete Device Description (DLTDEVD)
Delete Data Area (DLTDTAARA) B QLIDLOBJ calls QSPHNSPQ to delete a job queue
Delete Edit Description (DLTEDTD) or an output queue.
Delete File (DLTF)
Delete Forms Control Table (DLTFCT) QLIDLOBJ calls QMHDLMSAQ to delete a message
Delete Job Description (DLTJOBD) queue.
Delete Job Queue (DLTJOBQ)
Delete Journal {DLTJRN) B i multiple files are being deleted, QLIDLOBJ calls
Delete Journal Receiver (DLTJRNRCV) QLIFITYP to determine the file type (device,
Delete Line Description (DLTLIND) physical, logical, or derived).
Delete Message File (DLTMSGF)
Delete Message Queue {(DLTMSGQ) H QLIDLOBJ calls QDMROUTE to delete a file.
Delete Output Queue (DLTOUTQ)
Delete Program (DLTPGM) I} QuDLOBJ calls QUODLTJN to delete a journal.
Delete Print Image (DLTPRTIMG)
Delete Subsystem Description (DLTSBSD) B QLIDLOBJ calls QJODLTRC to delete a journal
Delete Session Description (DLTSSND) receiver.
Delete Table (DLTTBL)
QLIDLOBJ deletes the object and its associated
QLIDLOBJ obtains control from the command OIR records if the object type is CLS, CMD,
analyzer. JOBD, DTAARA, EDTD, FCT, MSGF, PGM,
PRTIMG, SBSD, SSND, CHTFMT, SPADCT, GSS,
QLIDLOBJ compares the type of the object against or TBL.
the DELETE generic function definition table to
determine whether to invoke a program to perform Control is returned to the caller.

LI-12
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

DELETE

Command General
Analyzer Function
Table

QLIDLOBJ! QLIDLOIR

Return ,
To Caller - _

Delete Object
 Information

a
QDCDLLVD QDCDLND

QDCDLCD

Delete Control Delete Device ’ Delete Line
Unit Description Description i Description

QSPHNSPQ QMHDLMSQ QLIFITYP

Delete Job Queue Delete Message File Type
and Output Queue Queue Identification

QDMROUTE QJODLTIN QJODLTRC
Delete Delete Delete Journal
File(s) Journal ' Receiver

! Delete class, command, data area, edit description, forms control table, job description, message file, program, print image, session
description, subsystem description, chart format, spelling aid dictionary, or graphic symbol set.

Figure LI-5. Delete Object Commands Overview

Librarian LI-13
This dogument contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985.

Delete Library Commands

Figure LI-6 and the following text describe the operation
of the Delete Library (DLTLIB) command. J

n The command analyzer decodes a Delete Library
command and control is transferred to QLICLLIB.

QLICLLIB verifies that the library to be deleted is
not one of the libraries in any job library list and
the user has existence authority over the library.

QLICLLIB calls QLIDLOBJ to delete objects other
than object type FILE from the library being
deleted.

n QLICLLIB calls QLIDLFIL to delete object type FILE
objects.

If the library is cleared, the OIR and the context
are destroyed. Otherwise, the library is not
deleted.

ﬂ Control is returned to the caller.

Return to
DLTLIB Caller
Command ‘ * H
QLICLLIB
Command nl
Analyzer Clear/Delete t t
Library CPP
B 0 Library List

QLIDLFIL QLIDLOBJ

weB

Context

Delete Delete
Files Object

OIR

Library

MPCI

DELETE
Generic
Function
Table

Figure L1-6. Delete Library Commands Overview

LI-14

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Display Library Command B QLIHNCMD is called to process records selected
from a library or object selection display. If the
Figure LI-7 and the following text describe the operation records selected are from a library selection
‘ of the Display Library (DSPLIB) command. display, QLIHNCMD calls QLIDSLIB to display an

object selection display for each library.
n The command analyzer decodes a Display Library

command and control is transferred to QLIDSLIB. QLIDOBJD is called to display *FULL or *SERVICE
information about each object selected from an
QLILIST is called to retrieve basic information for object selection display.
the objects in a library when the output is to
printer, or for an object selection display of a H Control! is returned to the caller.

library’s contents.

The output is formatted and then printed or
displayed. Displayed output can be a library
selection display or an object selection display of a
library’s contents. Printed output can be basic
information for all objects in all specified libraries.

DSPLIB
Command

QLILIST

Command
List Analyzer
Objects

L
\v QLiDSLIB
Return

a
Display) To

Library CPP Caller

T“

QLIHNCMD

Printer

Process Commands
From Displays

IE

QLiDOBJD

Display Object
Description CPP

Figure LI-7. Display Library Command Overview

C

Librarian LI-15
This document contains restricted. materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Display Object Description Command

Figure LI-8 and the following text describe the operation
of the Display Object Description (DSPOBJD) command.)

n The command analyzer decodes a Display Object
Description command and control is transferred to
QLIDOBJD.

Bl invoke QLILIST to obtain descriptions for the
specified objects.

Information about the object or objects is
formatted and displayed or printed.

QLIHNCMD is called to process records selected
from an object selection display. QLIHNCMD calls
QLIDOBJD to display *FULL or *SERVICE
information about each selected object.

E

OUTFILE and OUTMBR are created/validated if
specified on command.

QLIOUTFL creates an empty output file.

~ I o |

QLIDOBJD puts data in the output file.

Control is returned to the caller.

‘DSPOBJD J

Command
Command
Analyzer
QLILIST
Return
List [1] To
Objects Caller
QLIDOBJD & QLIOUTFL
5
.) e Create/Validate
Display Object Output Data Base
Description CPP File and Member
ﬂ) ﬂ
QLIHNCMD
. Output
Printer Data Base
Process Commands Fi
From Displays ile/Mem ber
Figure LI-8. Display Object Description Command Overview)
LI-16

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

List Objects

Figure LI-9 and the following text describe the operation
of the list objects function.

Bl QLILIST is invoked by the ?LSTOBJ macro.
The requested information is retrieved from the

library(s) or object(s).

A system pointer is returned to the caller of the
macro pointing to the requested information.

Control is returned to the caller.

Return to
Caller

to

QLILIST
?2LSTOBJ [1] .
Macro List

Objects

Library Object

I |
- , |

Figure LI-9. List Objects Overview

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Information Space

Library
Information

Object
Information

Object
Information

Librarian

LI-17

Move Object Command

Figure LI-10 and the following text describe the
operation of the Move Object (MOVOBJ) command:

n The command analyzer decodes a Move Object
command and control is transferred to QLIMVOBJ.

n The move generic function definition table is
checked to determine function applicability, object
structure, and the routine to be called to perform
the function.

QLIMVOBJ calls QDMROUTE to move a file.

Return to
Caller

MOvVOBJ
Command a

QLIMVOBJ
Command 0 I
Analyzer Move
Object CPP

2]

Move . QDMROUTE
Gerieric Function

Definition .
Table Move File

QLIMVOBJ calls QSPHNSPQ to move a job queue
or an output queue.

QLIMVOBJ calls QMHMRCHK to move a message
queue.

If the object is a standard object and does not
need special processing, the object and its OIR
records are moved to the target library.

QLIMVOBJ calls QLIMOVE to back out any move
not completed.

Control is returned to the caller.

QLIMOVE

Move Object

Object
OIR
Records

r

Target
Library

QSPHNSPQ
Move Job
Queue or
Output Queue

Figure LI-10. Move Object Command Overview

LI-18

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

QOMHMRCHK

Move
Message Queue

<

Rename Object Command Bl QLIRNOBJ calls QMHMRCHK to rename a
message queue.

Figure LI-11 and the following text describe the

operation of the Rename Object (RNMOBJ) command. QLIRNOBJ calls QSPHNSPQ to rename a job
queue or an output queue.

n The command analyzer decodes a Rename Object

command and control is transferred to QLIRNOBJ. ﬂ if the object is a standard object and does not
need special processing, the identification of the
The rename generic function definition table is object and its OIR {(object information repository)
checked to determine function applicability, object records are renamed as requested.
structure, and the routine to be called to perform
the function. Control is returned to the caller.

QLIRNOBJ calls QDMROUTE to rename a file.

Return to
Caller
RNMOBJ
Command ‘ t
Command 1] QLIRNOBJ
——]
Analyzer Rename
Object CPP

Rename
Generic Function
Definition Table

Object

QDMROUTE QMHMRCHK QSPHNSPQ
Rename
. Rename Job Queue or
R Fil
ename Fiie Message Queue Output Queue

Figure LI-11. Rename Object Command Overview

Librarian LI-19
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Library Clean-Up During IPL

Figure LI-12 and the following text describe the _
operation of the library clean-up function during IMPL.)

Bl cControl is passed to QLICLNUP from QWCISCFR
during IPL (initial program load).

QLICLNUP examines QRECOVERY to determine if
there are library recovery objects in it. The
presence of a library recovery object indicates that
a library was not completely created.

QLICLNUP deletes those libraries that are not
completely created.

n QLICLNUP removes library recovery objects from
QRECOVERY.

QLICLNUP checks each library and pieces of that
library on the system for marked damage and
recovers the damaged pieces where possible.

H QLICLNUP sets on the immediate update flag in
the OIR index of each library on the system.

Control is returned to the caller.

QWCISCFR QLICLNUP
Start CPF ' . Clean-Up

Process B Library >

QRECOVERY
Library
Librar
Recover 1orary OIR
Library

Figure LI-12. Library Clean-Up During IPL

9

LI-20
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

C

Check Object Command

Figure LI-13 and the following text describe the
operation of the Check Object (CHKOBJ) command.

The command analyzer decodes a Check Object
command and passes control to QLICKOBJ.

QLICKOBJ resolves both the address of the
addressing library of the object whose existence is
to be verified, and the address of the object itself,
to verify that the object does exist in the library.

QLICKOBJ verifies the authorization the user has
to the object (if authorization verification is
requested and the object is not a data base file or
a member).

QLICKOBJ calls QLIADOPT to set space authority
(*SPCAUT) in the system pointer to an object.

QLICKOBJ calls QDBCHKF! if the member is to be
checked or authorization verification against a data
base file is requested.

Control is returned to the caller.

CHKOBJ
Command

QLIADOPT
Command
Analyzer Adopt
Profile
[a
QLICKOBJ Return
Check Obj t
eck Object Caller
CPP
. \
Library
BCHKFI
(e]p)
Check Data .
Base File Object

Figure LI-13. Check Object Command Overview

Librarian

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Li-21

Add Library List Entry and Remove Library List Entry
Commands

Figure LI-14 and the following text describe the
operation of the Add Library List Entry {ADDLIBLE} and
Remove Library List Entry (RMVLIBLE) commands.

n The command analyzer decodes an Add Library
List Entry or Remove Library List Entry command
and passes control to QLICHLBL.

n A library is added to or removed from the user
portion of the process’s library list.

Control is returned to the caller.

ADDLIBLE/ Return to Caller
RMVLIBLE
Command
QLICHLBL
Command ﬁn
Analyzer Add/Remove
Library List
WCB

Libray List

Figure LI-14. Add Library List/Remove Library List
Command Overview

LI-22
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

3

Create Duplicate Object Command QLICRDUP calls QSPDUPQ to duplicate job

queues and output queues.
Figure LI-15 and the following text describe the
operation of the Create Duplicate Object (CRTDUPOBJ) QLICRDUP calls QMHDUPMAQ to duplicate
command. message queues.

n The command analyzer decodes a Create Duplicate QLICRDUP calls QLIDLOBJ to delete any duplicate
Object command and passes control to objects it cannot complete.
QLICRDUP.

7 Control is returned to the caller.

n QLICRDUP creates a duplicate object in a different
library or with a different name in the same library
as the original object. OIR records are duplicated
as well as authorizations.

QLICRDUP calls QDBDUPF1 to duplicate data
base files.

QLIDLOBJ

Delete Object

Return to
Caller
CRTDUPOBJ
Command
QLICRDUP
Command Context
Analyzer Create Duplicate
Object OIR
\
2 |
Library

QDBDUPFI

QVMHDUPMQ
Objects

Duplicate Duplicate

File Message Queue

QsPDUPQ

Duplicate Spool
Queues

Figure LI-15. Create Duplicate Object Command Overview

Librarian LI-23
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Display Library List Command

operation of the Display Library List (DSPLIBL)

Figure LI-16 and the following text describe the
command. J

n The command analyzer decodes a Display Library
List command and passes control to QLIDSPLL.

n QLIDSPLL formats and prints the names,
attributes, and text for the libraries on the
process’s library list, both system and user portion.
The attribute field gives the type of the library and
whether it is on the system or user portion of the
list.

Bl QLIDSPLL calls QLIDSLIB to format and display
the names, attributes and text for the libraries on
the process’s library list, both system and user
portions.

n Control is returned to the caller.

Return to
Caller

DSPLIBL

Command a
QLIDSPLL
Command ’ Printer
Analyzer Display

Library List \/4]

QLIDSLIP

Display
Library

Figure LI-16. Display Library List Command Overview

3

L1-24
This document contains restricted materials of IBM. LY21-0571-6
©Caopyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Change System Library List Command

Figure LI-17 and the following text describe the
operation of the Change System Library List command.

n The command analyzer decodes the command,
and control is transferred to QLICHLIB.

n A library is added to or removed from the system
portion of the process library list.

Control is returned to the caller.

4 ta

QLICHLIB
Command A
Analyzer Change System
Library List
2]
WCB

||

Library List

Figure L1-17. Change System Library List Overview

System Library Cleanup During Installation

Figure LI-18 and the following text describe the
operation of the library cleanup function during
installation.

n Control is passed to WWLIVOIR from QINSTALL
during installation.

The OIR of the system libraries QSYS, QSPL,
QSRV, QGPL, and QRECOVERY are checked for
marked damage. The damaged OIR is recovered if
possible.

Control is returned to the caller.

QINSTALL [1] WWLIVOIR
Installation ‘ ' Cleanup System
Process i 5 | Library
2]
Library
OIR

Figure LI-18. System Library Cleanup During Installation

Librarian LI-25

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Library Cleanup and Conversion During Reclaim
Storage

Figure LI-19 and the following text describe the
operation of the library cleanup and conversion during
Reclaim Storage.

Bl control is passed to QLIRCLIB from QRCLAIM
along with a list of all libraries on the system.

El QRECOVERY is checked to see if any library
recovery objects are in it. The presence of a
library recovery object indicates that a library was
not completely created.

QLIRCLIB deletes those libraries that are not
completely created.

n QLIRCLIB removes library recovery objects from
QRECOVERY.

Each library on the list passed from QRCLAIM,
plus its OIR and MCPI, is checked for marked
damage. Damage recovery is performed, saving
the information if possible.

ﬂ Control is returned to QRCLAIM,

At some later time, determined by the libraries that
have not been checked, control is again passed to
QLIRCLIB, this time from QRCOMPST, from which
a pointer to an individual library is passed. At this
time the libraries passed to this module could
include libraries which were previously not
addressable through the machine context. These
libraries have not yet been checked for damage.
Only libraries not previously checked for damage
are passed at this time.

n QLICNVO is called to convert the library to the
current release/modification level if needed.

n If conversion is not required, the library, plus its
OIR and MPCI, is checked for marked damage.
Damage recovery is performed, saving the
information if possible.

m Control is returned to QRCOMPST.

LI-26
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

C

QRCLAIM

Reclaim

QLIRCLIB

Reclaim
Library

QRCOMPST

Convert

Library
Recovery
Object

QRECOVERY Library

QLICNVO

Convert
Library OIR

Context

OIR

MPCI

Library

Context

OIR

MPCI

Converted Library

Figure L1-19. Library Cleanup and Conversion During Reclaim Storage

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Librarian

LI-27

Library Conversion During Installation

Figure LI-20 and the following text describe the
operation of the library conversion function during

installation.

Bl control is passed to WWLICNVO from QINSTALL
during installation.

n Each library on the system is checked to ensure
that it is at the current release/modification level.
Any down level libraries are converted.

Control is returned to the caller.

QINSTALL

Installation
Process

Library

Figure LI-20. Library Conversion During Installation

LI-28

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

1] WWLICNVO
H Convert Context
Library
OIR
MPCI
Context
OIR
MPCI
Converted Library

B

Message Handler

INTRODUCTION » Message creation, storage, and retrieval
The message handler component of the CPF (control « Message routing and queuing

program facility) provides communications between the

system operator and work stations, system users and « Error detection and reporting

programs, work stations and other work stations, and

programs and the system. In order to supply those « Requester interface

types of communications, the message handler provides

the following functions: » System log handling

Figure MH-1 shows an overview of the message
handler functions.

Message
Handler
Message Message Error System
‘ Creation Routing Detection Requester Log
Storage and and and Interface Handling
Retrieval Queuing Reporting
Exception Interpretive
Syst
Message Message Message Command L:’s em
Files Queues Signaling and Language 9
. Processor
Monitoring Processor
i System
Stored Sending Exception Job Log Y
Message Messages Message QOutput L?g
Handling Displays
Process Defauit P
Message Receiving Exception “rogram iYstEm
Retrieval — M A g istory —
etrieva essages Message Display Log
Handler
System Command
Reply Entry ——
List Display

L Figure MH-1. Message Handler Functional Overview

Message Handler MH-1
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

MESSAGE CREATION, STORAGE, AND RETRIEVAL

The two basic types of messages handled by the
message handler components are predefined messages
and impromptu messages. Predefined messages are
stored in a message file and impromptu messages are
messages whose text is generated at the time the
message is sent.

Predefined messages are actually message descriptions
that are stored in a message file under a message
identifier. A message description can contain: first and
second level message text, message severity, default
reply. reply validity checking information, definition of
variable data that can be sent with the message, and
escape message handling and dump information.

When a stored message is sent, the message identifier
and the message file name both must be specified. The
message identifier is sent to the specified message
queue or queues. When the message is received from
the message queue, the receiver of the message can
specify that he wants the text of the message returned.
The message handler then retrieves the message text
from the message file specified when the message was
sent. The following modules support the interactive
display of predefined stored messages:

QMHDSMSF-Display Message File: This module is the
command processing program for the Display Message
File (DSPMSGF) command, which supports displays of
message |D, severity, and first level text, for a range of
messages descriptions contained in a message file. If
the output is to be printed, message descriptions in the
specified range are located in the message file and are
sent to print file QPMSGD. If the output is to be
displayed on a screen, this module manages a subfile
display of all message descriptions having IDs in the
specified range.

QMHDSMSD-Display Message Descriptions: This
module is the command processing program for the
Display Message Description (DSPMSGD) command,
which provides detailed displays of the message
descriptions contained in a message file. Displays for
both printer and interactive work station are supported.

QMHMSSFL-Message Subfile Manager: This module
provides flexible support for the display of error
messages to a message subfile record, for the message
handler display management modules QMHDSMSD and
QMHDSMSF.

MH-2

Figure MH-2 and the following text describe message
creation, storage, and retrieval functions.

n QMHCRMSF-Create Message File: This module
creates a stand-alone index with an associated
space. The size of the space and extension
attributes are determined by the size parameter of
the Create Message File (CRTMSGF) command.

ﬂ A message file is deleted without special
processing. The librarian delete object function is
called to delete message files.

QMHCRMSD-Create Message Description: This
module adds messages to the message file. The
message |D, severity, and offsets to text and
control information are stored in the index portion.
First level text, second level text, and message
data formats, along with other data, are stored in
the associated space.

n QMHCHMSD-Change Message Description: This
module changes a message description contained
in a message file.

QMHDLMSD-Delete Message Description: This
module removes all entries in the associated space
for the message specified. When entries are
removed, the space is made available for reuse
and the index entry is deleted.

B oMHMFSRH-Message File Search: This module
builds a list of message files based on the
message file overrides and it also searches the list
of files for the requested message identifier. This
module is invoked when a stored message is sent
to obtain a system pointer to a message file based
on the overrides at send time. The message file
system pointer is stored as part of the message
entry on the message queue. For messages on the
message queues, the message file system pointer
is used to retrieve the message. On other
message queues the system pointer is used as a
backup if the retrieve using the message file name
fails.

QMHRTVMS—Retrieve Message CPP Interface:
This module is the interface to the Retrieve
Message (RTVMSG) command. After doing some
preliminary command checking, QMHRTVMS calls
QMHRTMSS to perform the retrieve message
function.

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

n QMHRTMSS—Retrieve Message Description: This
module finds the specified message file and file
override. The files are then searched in override
order for the requested message identifier. Once
found, the offsets contained in the index are used
to find information about the message in the
associated space. QMHRTMSS returns the
requested message, substituting message data as
replacement values in the message text.

n Message File

QMHCRMSF Index

Associated Space

Create
Message File MSGID and Offset

Librarian Delete S —

Delete
Message File MSGID and Offset

QMHCRMSD -]
Create Message —
Description

QMHCHMSD T T 7
Change Message
Description

QMHDLMSD
Delete Message
Description

QMHMFSRH 6 |

Header Information

MSGID, Text and
Information

Free Space

Message File

Search

Message Data

QMHRTVMS, QMHRTMSS

Retrieve Message Message Information Return Fields

| I

Figure MH-2. Message Creation, Storage, and Retrieval

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Message Handler MH-3

MESSAGE ROUTING AND QUEUING

Message Routing

The valid message types are: request, scope,
completion, diagnostic, exception, information, inquiry,
reply, and sender’s copy.

Request

This type of message requests a function to be
performed. Generally request messages in CPF are
commands.

Scope

This message specifies a program to be invoked when a
program invocation of a job terminates processing. This
type of message is used by CPF to back out certain
environmental changes at the termination of the program
invocation that requested the change.

Completion

The completion message provides information on the
status of work performed.

Diagnostic and Exception

The diagnostic message provides information about
input or processing errors. Generally, an exception
message is also sent to indicate that diagnostic
messages were sent.

There are three types of exception messages: escape,
notify, and status.

« Escape: Notification of an error and unconditional
surrender of control.

« Notify: Notification of an error or exceptional
condition to which a reply can be sent. If unhandled,
the default reply is sent and control is returned to the
sender. If handled with an external handler, a reply
can be sent; control is returned to the sender.

MH-4

« Status: Notification of one program to a previous
program of some condition but no message is placed
on the message queue. If unhandled, control returns
to the sender.

Information

This type of message provides general information.

Inquiry

This type of message requires a reply.

Reply

This type of message is an answer to inquiry or notify
messages.

Sender Copy

This type of message is a copy of the inquiry or notify
message. The copy is placed on the reply to message
queue.

Message Queue Types

There are five types of message queues: user, work
station, system operator, system log, and job. The
message queues are space objects that contain a
message queue header and a control entry, followed by
variable length message entries or free space, or both.

User message queues are created, deleted, and
accessed by using the command interface of the
message handler component.

Each work station defined to the system has a message
queue associated with it. This work station message
queue is allocated to the same job or session as the
work station. The work station message queue is
created when its associated work station is defined to
the system. The message queue is also deleted or
renamed when its associated work station is deleted or
renamed.

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

The system operator message queue is created by the
system. |t can be allocated by a user with system
operator authority to a job, either at the console or a
work station, by changing its delivery mode to break or

notify.

The system creates a system log message queue
associated with each system log (QHST, QCHG, QSVC).
The Send Program Message (SNDPGMMSG) command,
Send Message (SNDMSG) command, and ?SNDPMSG
macro are used to send messages to the system log
message queue. The Display Log (DSPLOG) command
causes the messages in the system log message queue
to move to the log file before they are displayed. The
Delete Message Queue (DLTMSGQ) command deletes
the system log message queues and automatically

re-creates them.

A job message queue is created for each job. Each job
message queue consists of a set of logical message
queues (program message queues) which are created as
needed. There is one program message queue for each
active program invocation of a job to which a message
has been sent, and one *"EXT message queue which is
used to communicate with the external requester of the
job. The job message queue is the job log.

When the job ends, the messages in the job message
queue are written to a spool output file for subsequent

printing as the job log.

The following diagram shows the message type that can
be issued for each message queue type.

Message Queue Type

Message Type *EXT Program QSYSOPR | Work Station User
Information X X X X X
Inquiry X X X X
Reply X X X X
Completion X X

Diagnostic X

Escape/Exception X

Notify /Exception | X X -

Request X] X |

Scope X X

Sender Copy | X X X X
Status/Exception | X X

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Message Handler

MH-56

Message Queue Processing

Figure MH-3 and the following text describe message
queuing operations.

MH-6

QMHCRMSQ-Create Message Queue: This
module processes the Create Message Queue
(CRTMSGAQ) command by creating the space for
the message queue. QMHCRMSAQ initializes the
header with the queue name, type, size, and limits.

QMHDLMSQ-Delete Message Queue: This
module processes the Delete Message Queue
(DLTMSGQ) command. Before the message queue
is deleted, an attempt is made to answer all
outstanding inquiry messages. If errors occur, they
are ignored and the queue is deleted.

QMHMODQS-Extend Message Queues: This
module is called when a message queue or
message file needs extending. The limits of
extendability are user-defined by the size
parameters of the create commands. This module
adopts the QSYS user profile to assure authority
to extend the space.

QMHALMSQ-Allocate Message Queue: This
module is called by the Allocate Object (ALCOBJ)
command to verify that message queues can be
allocated. This is required because not all message
queue types can be allocated. Work station
message queues cannot be allocated by the
allocate command; they are implicitly allocated
wherever the work station is allocated. System log
message queues can not be allocated.

QMHCHMSQ-Change Message Queue: This
module processes the Change Message Queue
(CHGMSGQ) command. Some of the attributes of
a message queue that can be changed are the
name of the break handling program, queue
severity, and queue delivery mode. These
attributes are all placed in the message queue
header.

This document contains restricted materials of IBM. LY21-0571-6

Send Message Processing

The following modules are used to place message
entries on the message queue:

QMHSNMSG-Send Message (SNDMSG)': This
module does preliminary parameter checking and
setup for the message queueing modules. If the
message type is inquiry, this module calls
QMHSNINQ to process the inquiry message. If
the message type is informational, QMHSNSTQ is
called to process the information message.

QMHSNPGM-Send Program Message
(SNDPGMMSG)': This module does preliminary
parameter checking and setup for the message
queueing modules. If the message type is inquiry
or notify, QMHSNINQ is called; if the message
type is status, QMHSNSTA is called. If the
message type is not one of those types but is
being sent to a program message queue,
QMHSNJMQ is called. In any other case,
QMHSNSTAQ is called.

QMHSNBRK-Send Break Message
(SNDBRKMSG)': This module processes
information messages to work station message
queues. If the message type is inquiry, QMHSINQ
is called to process the inquiry message.

QMHRSEXC—-Send Resignal: This module is called
via the PRSGEXC macro. This module moves an
escape message to the next program above the
program issuing the resignal. If the next program
is not monitoring for the message, QMHUNMSG
is called to handle the unmonitored escape
message condition.

QMHSNEVT-Send Event: This module sets up
and signals an event for one of the following
conditions:

« Break message sent via the Send Break
Message command to an active work station

« Message sent to a queue in break or notify
delivery mode

'This module is a CPP (command processing program).

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

C

C

« Message sent to a queue in wait for a message,
because of a Receive Message command with
wait

« Message sent to a system log, causing the log
threshold to be exceeded

QMHSNSTQ-Send Message to Specified Queue:
This module finds the specified message queue(s).
The message is placed on the queue, and the
control entry is updated. If an event needs to be
signaled, QMHSNEVT is called to signal the event.
An alert event is signaled if an alert message is
sent to QHST while alert processing is active.

QMHSNINQ-Send Inquiry to Queue: This module
finds the to message queue and the reply to
message queue. A sender’'s copy message is
placed on the reply to queue. The inquiry or notify
message is placed on the to message queue. If an
event should be signaled, QMHSNEVT is called to
signal the event. QMHSNINQ also performs
automatic reply processing with the INQOMSGRPY
job attribute and the system reply list.

QMHSNJMQ-Send Message: This module
handles all message types, except for the inquiry
to a program message queue. If the message is to
be sent to a standard message queue,
QMHSNSTAQ is called. If the message type is
escape, the receiving program exception monitors
are examined for enqueuing and handling
instructions. If an escape message is unmonitored,
QMHUNMSG is called to perform problem
analysis and send *FC. An alert event is signaled
if an alert message is sent to QHST while alert
processing is active.

QMHSNSTA-Send Status Message: This module
handles the message if the message to be sent is
a status message. If the message is being sent to
a program that has a monitor to handle the
message, an exception is signaled to that program.
If not, control is returned to the sender and
processing continues. |f the message is sent to
*EXT (directly or indirectly by way of PREV to top
program) the status message is displayed on the
error line and processing continues.

QMHSNRQ-Send Request: This module sends a
request message to a job message queue. The
request is always placed on the *EXT message
queue. This is primarily used for spooled job input
or by the submit job function.

QMHSNRPL-Send Reply: This module processes
the Send Reply (SNDRPY) command. This

- function is used by programs to reply to inquiry
and notify messages.

System Reply List

When an inquiry message is sent to a message queue
and the inquiry'message reply job attribute is set to
system reply list INQMSGRPY (*SYSRPYL), the system
reply list is searched for the same message |ID. The
system reply list entry specifies the message reply that
is automatically sent to the message queue.

QMHCRTRL-Create Reply List: This module
creates the system reply list space.

QMHADRLE-Add Reply List Entry: This module
processes the Add Reply List Entry (ADDRPYLE)
command. Reply list entries contain data for
sequence numbers to be search ordered, a
message identifier, reply text, dump indication, and
compare data.

QMHCHRLE-Change Reply List Entry: This
module processes the Change Reply List Entry
(CHGRPYLE) command. All attributes of a reply
list entry can be changed except the sequence
number.

QMHRMRLE-Remove Reply List Entry: This
module processes the Remove Reply List Entry
(RMVRPYLE) command. Single entries or all
entries can be specified for removal. If all entries
are specified and the reply list is damaged, then
the reply list is deleted and created again.

QMHDSPRL-Display Reply List: This module
processes the Display Reply List (DSPRPYL)
command. Entries are displayed or printed.

QMHRPYLO-Handle Display Reply List Options:

This module is called to handle any reply list
functions user-defined from the display.

Message Handler MH-7

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Display Messages

QMHDSMSS-Display Messages: This module
processes the Display Messages (DSPMSG)
command, displays messages from the user, work
station, and the system operator message queues.
It will not display system log messages or
messages on the job message queue. It is also

Break/Notify Message Delivery

When a message is sent to a message queue in break

or notify delivery mode, an event is signaled to the
process that has the message queue allocated. The

event is handled by the process control event handler
which calls QMHDLVMS to handle the break or notify

message delivery.

used as the default program to handie break
messages.

Receive Message Processing

QMHRCVMS—-Receive Message Interface: This
module is the interface to the Receive Message
(RCVMSG) command. It does preliminary
command checking, then calls QMHRCMSG to
perform the receive function.

QMHRCMSS—Receive Message: This module
receives the message from the message queue.
Messages can be received by type or by key.
Various information can be returned including
resolved first and second-level text. There is also
an option on the Receive Message command to
remove the message after it has been received.

Move Message from One Program Queue to Another

B oMHMVMS-Move Message: This module is
invoked by the ?MOVPMSG macro. It moves
diagnostic, escape, informational, and completion
messages from the program invocation issuing the
macro, to an invocation above it. Escape
messages that are moved become diagnostic
messages on the new program message queue.

Remove Message from Queue

QMHDLMS-Delete Message: This module
processes the Remove Message (RMVMSG)
command. It removes messages from a message
queue. Messages can be removed individually by
key or all old messages can be removed or all new
messages can be removed or all messages can be
removed.

MH-8

This document contains restricted materials of IBM. LY21-0571-6

QMHDLVMS-Deliver Message: This module checks

the message severity to determine if the severity
satisfies a break or notify condition. This module
also activates the work station and alarm if the
message is to cause a notify condition. If the
message is to cause a break condition, the program
identified by the message queue is called to handle
the break message. When the break or notify

condition is complete, control is returned to the event

handler and normal processing continues.

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

<

9

Message Queue

‘ QMHCRMSQ, QMHMODQS, Message Queue Header

QMHDLMSQ, QMHALMSQ,

Delivery, Severity, . . .
Create or Delete Message
Queue

Control Entry (*EXT)

Offsets to First and Last
Count of Messages,

N
1~

QMHCHMSQ

Message Entry
Change Message Queue

Message Entry

QMHSNMSG,
QMHSNPGM,
QMHSNSTA, Message Entry
QMHSNRQ,

QMHSNRPL,
QMHSNINQ, Free Space
QMHSNJMQ,
QMHSNBRK,
QMHRSEXC, Message Entry
QMHSNEVT,

Free Space
Put Messages on Queue P

QMHDSMSS

Display Messages

QMHRCVMS, ,
QVIHRCMSS
Receive Message
from Queue

QMHMVMS E
Move Message

from One Program
Queue to Another

QMHDLMS
Remove Message
from Queue

(Figure MH-3. Message Queues

Message Handler MH-9
This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

ERROR DETECTION AND REPORTING

Exception Messages

There are three exception message types: escape,
notify, and status. The primary difference between
these messages and others is that control can be
transferred when an exception message is sent. In other
words, the sender of the message may not get control
back after sending the message.

Sending Exception Messages

Exception messages can be sent by the machine, by
CPF, or by user programs. Messages sent by the
machine are presented as MCHnnnn messages and
indicate an exceptional condition was encountered by a
System /38 instruction or function. Exception messages
sent by CPF or user programs are sent by way of the
send message interface.

Exception messages communicate status and conditions
between programs within a job. As such, they are not
normally sent to standard message queues (except as
system information to the service or history log). Escape
and notify messages are first placed on the job message
queue; then an exception is signaled to the program
invocation specified by the sender.

« Escape
For escape messages, control will not return to the
sender regardless of how the receiving program
handles the escape message.

« Notify
For notify messages, which are basically inquiry
messages, control can return to the sender with a
reply message available to the sender.

+ Status
For status messages, no messages are placed on the
job message queue. If the receiving program does

not monitor and handle a status message, control
returns to the sender.

MH-10

Monitoring Exception Messages

Exception messages can be listened for by declaring
exception/message monitors. If an exception message
is sent to a program with a corresponding monitor,
control is directed as specified by the monitor. If there
is no monitor, default system action is taken depending
on the type of message sent.

Default System Error Handling

When exception messages are sent to programs that do
not have a corresponding monitor, the default action is
dependent on the type of message sent.

- Escape

If an escape message is unmonitored, automatic
problem determination is performed to take dumps,
log the error condition to the service log, and call the
default program, if appropriate.

« Notify

If a notify message is unmonitored, ignored, or
deferred, the default reply for the message is placed
on the sending program’s message queue and control
is returned to the sender.

« Status

If a status message is unmonitored, ignored, or
deferred, control is returned to the sender. No
message is placed on the job message queue, no
dumps are taken, and no message is sent to the
service log.

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

C

Exception Handling

The following modules handle exceptions:

QMHPDEH-Process Default Exception Handler: This
module is invoked by the machine whenever there is an
unmonitored machine interface exception. The primary
functions of QMHPDEH are to convert raw machine
interface exceptions to MCHnnnn messages. If the
MCHnnnn message is unmonitored, QMHUNMSG is
called.

QMHUNMSG-Unmonitored Message Handler: This
module is invoked to handle unmonitored escape
messages to programs. If problem determination is
required, QMHAPD is called. The invocations stack is
then searched until a program is found that is
monitoring CPF9999. If no such program is found, the
process is terminated.

QMHAPD-Automatic Problem Determination: This
module is called by QMHPDEH when escape messages
are unmonitored. It checks to see if logging and/or
dumps are appropriate for the program receiving the
exceptional condition. If dumps are appropriate, the
priority of the job is lowered; and, if trace is active,
trace is suspended while the dump is being taken. The
default program, if specified on the message
description, is called. When the dump has completed,
trace is resumed. The priority of the job is reset by the
scope handling program QMHRSTPR.

QMHRSTPR—Reset Priority: This command processing
program is the scope handling program for message
CPF2468, which is sent by QMHAPD. This module will
reset the job priority that had previously been lowered
by QMHAPD.

QMHRTNEX—Return From External Exception: This
module is invoked only to return from an external
exception handler. It verifies the type of handler and the
type of exception. If the return is to the sender of a
notify message, a reply is sent before control is returned
to the sender.

Unmonitored Message Handling

Figures MH-4, MH-5, and MH-6 and the following text
describe the handling of unmonitored messages.

n Program B sends escape message CPF2450 to
Program A. QMHSNJMAQ is invoked to send the
message.

Program A did not monitor for a CPF2450
message, so QMHUNMSG is invoked to handle
the unmonitored escape message.

QMHAPD is invoked to send the error message to
the service log and take dumps.

n CPF9999 (the general function check message) is
sent to Program A by QMHUNMSG.

Program A did not monitor for CPF9999 so
QMHUNMSG sends the function check message
to the invocation which called Program A, in this
case QCL.

B acL has a monitor for CPF9999 and receives
control to handle the exception.

Message Handler MH-11

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Program Invocations Message Monitors

acL 6 CPF9999)
Interpretive

CL Processor

Program A CPF5720

[1]
Program B L. CPF2450
OMHSNJMQ
Send Message
QMHUNMSG

4] J
- CPF9999

Unmonitored CPFaO
Message Handler B 9999

QMHAPD
Automatic Problem
Determination

Figure MH-4. Unmonitored Escape Message

<9

MH-12
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

n Program B sends notify message CPF2460 to
Program A.

Bl QMHSNINQ is invoked to send the notify
message. Program A did not monitor for a

CPF2460 so the default reply is sent.

Control is returned to Program B, the sender.

Program Invocations Message Monitors

QcL CPF9999
Interpretive
CL Processor

Program A CPF5720
CPF2460
Program B
-
QMHSNINQ
Send Inquiry/Notify
Message

Figure MH-5. Unmonitored Notify Messages

Message Handler MH-13
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

to Program A.

Program B sends status message CPF2470

Program A did not monitor for a CPF2470

message so control is returned to Program B, the
sender. No message is put on the message queue,

no error is logged, and no dumps are taken.

Program Invocations

Message Monitors

QcL

Interpretive
CL Processor

CPF9999

Program A

Program B

CPF2470

CPF5720

QMHSNSTA

Send Status Message

Figure MH-6. Unmonitored Status Message

MH-14

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

This page is intentionally left blank.

C

Message Handler MH-15
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

REQUESTER INTERFACE

The requester interface consists of the command entry
display, QCL (the interpretive command language
processor), and the job message queue. QCL receives
requests and commands from the job message queue
and passes them to the command analyzer. In the batch
environment, requests and commands are sent to the
job message queue by the spool reader when the job is
read in. In the interactive environment, commands and
requests are entered by using the command entry
display and are then sent to the job message queue. If
specific criteria are met, then a message expansion
display will be invoked.

The following are requestor interface modules:

QCL-Interpretive Command Language Processor: QCL
is initially invoked when a process is initiated. If an
initial program is specified in the user profile, QCL
invokes it. QCL then receives a request message from
*EXT and calls the command analyzer to process the
request.

QMHGSD-General Session Display: This module
presents the command entry display. Requests entered
by way of the display are put on the job message
queue. Requests already processed are displayed along
with messages that may have been sent to the request
processor. These requests and messages are the job
log.

QMHJLOG—Write Job Log: This module is called to
write the messages on the job message queue to a
spool output file.

QMHFLTR—Job Log Filter: This module filters the
previous request and its messages, when a new request
is received, according to the logging and severity levels
specified in the job description.

QMHCLOSE-Close QDGENDSP: This module is called
to close the command entry display when a request
receiving program terminates. It is invoked by
QMHIREH (the invocation reference event handler).

QMHRPRQ-Replace Request: This module is called to
replace the old request in the job message queue when
prompting is requested and a new request is built by the
prompter.

MH-16

Initial Program Processing

When a job is initiated, QCL is invoked. QCL checks the
user profile of the job; if there is an initial program
specified, QCL gives it control. If there is no initial
program or the initial program returns control to QCL,
QCL goes on to receive a request message to process.

Program Message Display

Program message display allows a user to view the
external message queue through the normal processing
of a request. The processing of a request occurs in the
interactive environment to allow the user access to
messages.

The following module displays program messages:

QMHDSEXT-Display External Message Queue: This
module displays the external message queue. Any
informational or inquiry messages sent to the external
program message queue from an interactive job can be
displayed on the screen.

Interpretive Request Processing Overview

Figure MH-7 and the following text describe interactive
request processing.

n QCL-The interpretive CL processor issues a
receive request message.

EH QMHRCMSS and QMHGSD-If no request
message is in the job message queue (normal
condition for interactive), the command entry
display is presented for request entry. When a
request is entered, it is put on the job message
queue.

Receive message returns the request to QCL.

n QCL calls the command analyzer to process the
request.

The command analyzer syntax checks the CL and
sends any diagnostic messages to QCL. If the
command is executable, control is transferred to a
command processing program.

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

ﬂ Control is returned to QCL when the command
processing program is complete. QCL then
receives another request message which causes
the command entry display to be presented again.
This display will show the previous command with
any messages sent to QCL and allow a new
request to be entered.

QMHJLOG—-When the work station operator signs
off, the filtered job message queue messages are
written to the job log.

n QMHDSPJL-The user can display requests and
related messages for a partially completed job by
using the DSPJOBLOG command or selecting the
Display Job Log option from the Display Job

command.
Work Station
QcCL QMHRCMSS QMHGSD
Interpretive Receive General Session Display
CL Processor Message
Job Message
Queue v
Command Commaﬁd Request Message . . .
Processing
Analyzer
Program
l
7
Job Log 1—L QMHJLOG -

Write Job Log

QMHDSPJL

Display Job
Log

PAAB040-0

Figure MH-7. Request Processing Interactive

Message Handler MH-17
This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Batch Request Processing Overview

Figure MH-8 and the following text describe batch
request processing.

n The spooling reader process reads the job input
stream, syntax checks it, and then sends a
message to the job message queue.

n The batch monitor starts QCL. It receives a
request message from the job message queue and
calls the command analyzer.

The command analyzer and the command
processing programs can send or receive
messages from the program queues.

n If there are no more request messages on the job
message queue, QCL terminates the process.

Filtered messages are sent to the job log when the
process is terminated.

MH-18
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

pl
ya

Input Job
Stream

Spooling Reader Process

Job
Queue

Reader

Syntax Job
Checker CPP

Batch
Monitor

| I E————— |

Job
Message
Queue

Subprocess

QcL

Interpretive
CL Processor

Command
Analyzer

Program
Message
Queue

Command
Processing
Programs

Job
Log

e
—— e — — — S ——— — — — ——

Figure MH-8. Batch Request Processing Overview

Message Handler MH-19
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

SCOPE MESSAGE PROCESSING

When a scope message is sent to an invocation, the
invocation reference event is set to be signaled when
the invocation terminates. A scope message is placed
on the program message queue of the invocation, and
may be associated with either the program invocation or
with the invocation level. When the invocation
terminates, the event is signaled and QMHIREH is
invoked.

QMHIREH-Invocation Reference Event Handler: This
module gets control when the invocation reference event
is signaled. If an invocation was terminated by a
transfer of control, any scope messages associated with
the invocation level are moved to the program message
queue of the invocation to which control was
transferred. For all remaining scope messages, the
program specified in the scope message is called. As
each scope message is handled, it is removed. When all
scope messages have been processed, control exits the
event handler and processing continues.

SYSTEM LOGS

System Log Structure And Processing

System logs consist of system log message queues and
data base files called log versions. The message queue
is used as a temporary repository for messages until
there is a sufficient number to justify writing them to a
log version. During start CPF a check is made to ensure
all the system log message queues are available and
undamaged. An event monitor is created under the start
CPF process to listen for the write system logs to data
base event. The modules to handle system logging are:

QMHLINIT-System Logging Initializer: This module is
invoked during IPL processing. It assures the system
log message queues are available and undamaged.
When the number of messages sent to a system log
message queue reaches a predefined threshold or a
system log is displayed, an event is signaled to
indicate the messages in the system log are to be
written to a log version. An event description is set
up by QMHLINIT to monitor for this event.

MH-20

QMHLOGER-Logger: This module is an event
handler and is invoked when the write system logs
event is signaled. All entries in the system log
message queue are written to a log version and
removed from the message queue. When the queue
is empty, the module ends.

QMHCLVER-Create Log Version: This module sends
a message to the system operator to inform him of
the full log version and creates a new log version.

System Log Display
The following module handles system log displays:

QMHLDISP-Display Log: This module processes the
Display Log {(DSPLOG) command. Before a system
log is displayed, QMHLDISP signals an event to have
all current messages in the system log message
queue sent to the log version. When logging is
complete, the log versions are searched to find the
log entries requested.

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

INTRODUCTION

The menu component of the CPF (control program
facility) provides six menu displays that interface with
the CPF. The menus are as follows:

» Program call menu

« Command selection menus

« Configuration menu

» System operator menu

» Programmer menu

» System request menu

Program Call Menu

The program call menu supports the execution of four
commands:

« Call Program (CALL)

- Display Messages (DSPMSG)

« Send Message (SNDMSG)

+ Sign-Off (SIGNOFF)

A call to QCALLMENU will cause the menu to be
displayed. The QCALLMENU program is the initial

program for the QUSER profile provided with the
system.

Menu

Command Selection Menus

The command selection menus provide access to lists of
command names and command selection menu names
grouped by verb or subject functions.

Command Grouping Menu

The default menu, the command grouping menu,
displays a list of command selection menus that identify
major functions available on the System/38. The default
menu is displayed when prompting is requested without
entering a command name, when a question mark is
entered, or when the Display Menu (DSPMNU)
command is entered or selected off the programmer or
system operator menu without specifying a menu name.
An option may be selected, a command name or a
menu name may be entered, or up to 10 characters of a
command name may be specified to obtain a list of
partial command names. Succeeding displays depend
on the option selected from the command grouping
menu.

Menu MN-1

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Configuration Menu

The configuration menu supports the execution of a
group of commands during the start CPF process or
during the execution of the concurrent service monitor
component. If the configuration option is specified on
the start CPF prompt or on the service function menu,
the configuration menu is displayed. Command entry is
limited to the commands shown on the display.

System Operator Menu

The system operator menu supports the execution of
three commands through function keys, 13 other
commands via option number, and general command
entry through option 5. The menu is the initial program
zor the QSYSOPR user profile. A call to QOPRMENU
program will cause the menu to be displayed.

Programmer Menu

The programmer menu supports the execution of the
display message command through CF6, ten options
corresponding to several commands commonly used by
programmers, and general command entry through
option 5. Several of the options result in an
asynchronous batch job submission. Option 7 supports
a display of the jobs submitted from the menu. The
menu is supported on the 24x80 display only.

The menu is the initial program for the QPGMR user
profile. A call to QPGMMENU program will cause the
menu to be displayed.

System Request Menu
The system request menu supports the execution of five
commands and through option 1 provides the function

of transferring to a secondary interactive job. The menu
is displayed with the system request key.

MN-2

GENERAL OVERVIEW

Menu Modules
The menu component consists of the following modules:

Note: An arrow (-->) identifies a module as being an
entry module into the component. Indentation of a
module shows its dependency on a previous module.

-->QCALLMENU-Program Call Menu: This module
displays the program call menu and processes the
function selected.

-->QMNCMDPM-Command Selection Menu Facility:
This module displays the command selection menus
and processes commands through the command
analyzer. QMNCMDPM is also the command
processing program for the Display Menu (DSPMNU)
command.

-->QMNCONFG—Configuration Controller and Menu:
This module displays the configuration menu and
processes any of the commands selected.

-->QPGMMENU—-Programmer Menu: This module
displays the programmer menu and processing of the
commands selected.

-->QMNSYSRQ-System Request Menu: This module
displays the system request menu and processes any
of the commands selected.

-->QOPRMENU-System Operator Menu: This module
displays the system operator menu and processes
any of the commands selected.

The following module is only used within the menu
component:

QMNTXTBL-Build Menu Text Space Objects: This
module is used to build text for the command
selection menus and configuration menu displays.

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Program Call Menu Overview

Figure MN-1 describes the function of the program call

menu.

n QCALLMENU is a program without any parameters
and may be invoked as the initial program in a
user profile or by the Call (CALL) command.
QCALLMENU is coded in CL to serve as a sample

menu program.

The program call menu is shown on the user
display by using the QMNCALLM display device
file and the Send/Receive File (SNDRCVF)
command. The user selects the desired option and
enters any necessary parameters.

Program
Call Menu

Initial Program
or
CALL Command

oy

Depending on the option selected, one of the
following is executed:

Option 1: Call QCAEXEC, the high-level
language interface module of command
analyzer, to execute a call program. If the
program name is not qualified and no
parameters are used, the program is called
directly without the use of QCAEXEC.

Option 2: Execute the Display Messages
(DSPMSG) command.

Option 3: Execute the Send Message to
System Operator (SNDMSG) command.

Option 90: Execute the Sign-Off (SIGNOFF)
command.

n If an exception message is sent as a result of
executing the user-defined option, the exception
message is displayed in the error message line at
the bottom of the program call menu.

QCALLMENU

Program
Call Menu

Queue

Program
Message

QCAEXEC

Command
Analyzer

Called
Program

DSPMSG
Command

Figure MN-1. Program Call Menu Overview

SNDMSG
Command

SIGNOFF
Command

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Menu MN-3

Command Selection Menu Overview

Figure MN-2 and the following text describe the
function of the command selection menus.

QMNCMDPM is called when prompting is
requested without entering a command name,
when a question mark is entered, or when the
Display Menu (DSPMNU) command is entered or
selected off the programmer or system operator
menu. The command analyzer may have been
called for interactive command execution or for CL
source entry.

The command selection menu is built using an
index object, QMNCMDPM, that contains the text
for all command selection menus.

Each line of the command selection menu is sent
to a subfile in the QMNCMDPM display device
file. After all lines have been sent, they are
displayed. The user may select an option, enter a
command name or a command selection menu
name, or specify up to 10 characters of a
command name to obtain a list of partial
command names. The command name or
command selection menu name does not have to
be one of those on the command selection menu.

The command selection menu is built according to
the user-defined inputs and options.

If a command is selected, the command name is
passed to the command analyzer for further
processing. |f a command selection menu is
selected, the command selection menu is built
using QMNCMDPM.

Control is returned to QMNCMDPM if a command
selection menu was selected or QMNCMDPM was
called via the Display Menu command. Otherwise,
control is returned to the caller.

The command analyzer then calls the prompter to
prompt for any required parameters that are
missing (unless the CF16 key was pressed at the
command selection menu). Depending on the
environment, the command analyzer may call the
command processing program to execute the
command.

Command
Name or
Command
Caller
n ¥
QMNCMDPM .
golmm_a"d Command
election M
d Analyzer
Menu Name a Comm_an y
Selection Menu
[4|
QMNCMDPM Command
Prompter Processing
Menu Text Program

Figure MN-2. Command Selection Menu Overview

MN-4

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Configuration Menu Overview

Figure MN-3 and the following text describe the
functions of the configuration menu.

QMNCONFG is called by the start CPF program
when configuration is requested on the start CPF
prompt display or by the concurrent service
monitor when the configuration option is selected.

The configuration menu is built using a space
object, QMNCONFG, that contains the menu text.

Each line of the configuration menu is sent to a
subfile in the QMNCONFG display device file.
After all lines have been sent, they are displayed.
The user then selects the command name of the
command to be executed. The command
processing program for the command selected
must be one of those on the configuration menu.
A command other than one on the menu cannot
be entered.

QMNCONFG calls the command analyzer and
passes to it the command name or command
along with the prompt/no prompt and execute
options. The command analyzer validity checks the
command, optionally calls the prompter to prompt
for any required parameters that are missing, and
then calls the appropriate CPP to execute the
command.

If an exception message is sent as the result of
executing the user-defined command, the
exception message is displayed in the error
message line at the bottom of the configuration
menu.

Concurrent
Service Monitor
-or -
Start CPF Command
Name or
n‘ Command
QMNCONFG

T

Configuration
Menu

H

i’ Queue
OMNCONFG
Program
Menu Text Message

Configuration
Menu

Figure MN-3. Configuration Menu Overview

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Command
Analyzer

Command
Processing
Program

Prompter

Menu MN-5

System Operator Menu Overview

Figure MN-4 and the following text describe the
functions of the operator menu.

QOPRMENU is called by QCL when it is an initial
program, or it is invoked as a result of a call
command.

The system operator menu is displayed, and the
user selects an option.

When option 5, execute a command, is selected
QOPRMENU calls the command analyzer and
passes the command to it, along with the
prompt/no prompt and execute options.

The command analyzer validity checks the
command, optionally calls the prompter, and then
calls the appropriate command processing program
to execute the command. When finished, the
prompted string is returned to the command line
of the menu, if prompting was requested.

Initial Program
or
Call QOPRMENU

Vv

QOPRMENU

System Operator
Menu

When option 6, submit job, is selected and the
CF4 key is pressed, QOPRMENU calls the
command analyzer to prompt for the command,
and the request data. The command is not
executed; instead, the request data is submitted as
a batch job. If the CF4 key is not pressed, and the
enter key is pressed, the request data is syntax
checked by the command analyzer before it is
submitted as a batch job. The CF15 key allows
submitting jobs with syntax errors.

For all other options, QOPRMENU calis the
command processing program directly.

If executing the command causes an exception
message to be sent, the exception message is
displayed in the error message line at the bottom
of the system operator menu.

Command
Analyzer

System Command System Operator Command
Operator Processing Batch Job Prompter Processing
Menu Program Creation Program

Queue

Program
Message

Figure MN-4. System Operator Menu Overview

MN-6

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Programmer Menu Overview When option 6, submit job, is selected and the

CF4 key is pressed, QOPRMENU calls the
command analyzer to prompt for the command,
and the request data. The command is not
executed; instead, the request data is submitted as
a batch job. If the CF4 key is not pressed, and the
enter key is pressed, the request data is syntax
checked by the command analyzer before it is
submitted as a batch job. The CF15 key allows
submitting jobs with syntax errors.

Figure MN-5 and the following text describe the
function of the programmer menu.

Bl QPGMMENU is called when it is an initial
program, it is invoked as a result of a call
command or it is invoked by the command display
program menu (DSPPGMNNU).

The programmer menu is displayed, and the user

selects an option. n For the create command, QPGMMENU submits a

batch job to perform the create function requested."
When option 5, execute a command, is selected

QPGMMENU calls the command analyzer and
passes the command to it, along with the

prompt/no prompt and execute options. The

command analyzer validity checks the command, 6 |
optionally calls the prompter, and then calls the

appropriate command processing program to

execute the command. When finished, the

prompted string is returned to the command line

of the menu, if prompting was requested.

For all other options QPGMMENU calls the
command processing program directly.

If executing the command causes an exception
message to be sent, the exception message is
displayed in the error message line at the bottom
of the programmer menu.

Initial Program or
Call QPGMMENU or
DSPPGMNNU command

S)

QPGMMENU

Command

Programmer Analyzer

Menu

Command Programmer Menu Command
Programmer . .
Menu Processing Batch Job Prompter Processing
Program Creation Program
Queue
Program
Message
Figure MN-5. Programmer Menu Overview
Menu

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

System Request Menu Overview

Figure MN-6 and the following text describe the
functions of the system request menu.

QMNSYSRQ is called by QWTPMSRQ when the
system request key is pressed.

The system request menu is displayed. The user
can select an option number and key in
parameters. The user can bypass displaying the
system request menu on a work station by keying

QMNSYSRQ calls the command analyzer and
passes the command or command name to it,
along with the prompt/no prompt and execute
options, optionally calls the prompter to prompt for
any required parameters that are missing, and then
calls the appropriate command processing program
to execute the command.

If executing the command causes an exception
message to be sent, the exception message is
displayed in the error message line at the bottom
of the system request menu.

in, on the input line at the bottom of the screen,
an option and the parameters that are desired
and/or needed. The system request menu is
displayed again if no information was keyed in, if
an invalid option number or incorrect parameters
were keyed in, or if a message resulted when the
option was processed. If no messages result from
the requested operation when parameters are
passed in, the system request menu is not

displayed.
Work Command
Control Name or
Command
QMNSYSRQ)
Command
System Request ' — ﬁ' Analyzer
Menu
Quer Command
P ter ;
osram o rrogam
Message

System \

Request
Menu

Figure MIN-6. System Request Menu Overview

MN-8

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Build Menu Text Space Object Overview

Figure MN-7 and the following text describe the
functions of the build menu text space object.

QMNTXTBL is called to build the menu index for
the selection menus display and the menu space
for the configuration menu displays.

QMNCMDTX is used to build the displays. It
contains the names of the commands and
command selection menus, formatting information,
message |Ds for the headings and menus, and
optionally, message |Ds for commands’ prompt
text.

If the device file contains a command name
without any message |1Ds, the command definition
object for that command is used to obtain the
prompt text.

A message is retrieved from QCPFPMT for each
message ID in the device file.

A listing is produced that contains the text
received from the device file, the text for each
menu line, and error information such as,
command definition object not found, too many
options specified, or prompt text truncated.

A space object is created that contains the menu
text for either the command name prompt or
configuration menu.

Listing of
Text and

QMNCMDTX - QMNTXTBL

)
Command Menu Text
Text Build

4]
Command
Definition Message
Objects File

Figure MN-7. Build Menu Text Space Objects Overview

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Errors

~

Menu Text
Space Object

—Oor—

Menu Text
Index Object

Menu MN-9

MN-10

This document contains restricted materials of IBM. LY21-0571-6
© Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

INTRODUCTION

The Network Facilities (NF) component of the CPF is
used to provide local and remote distributions of data
files, save files, job streams, spooled files, and
messages. The NF component relies on the system
distribution directory provided by the Office Systems
{OS) component to determine the destination of the
distributions, and on the SNA Distribution Services
(SNADS) component to perform the remote
distributions.

Network File Queues

When the distribution of a network file arrives for a
user, it is placed on the network file queue. The
network file queue consists of entries on the
distribution/recipient queue created by the directory
management services of the OS component. Each entry
on the network file queue points to a network file
object, which is a space object containing the file data
plus the control information.

Network Job Entry Table

The network job entry table is used to control the
disposition of job streams sent to the system. It
contains an entry for each user or group of users who
may submit jobs to the system. It consists of a keyed
physical data base file, QANFNJE, in library QUSRSYS.

Network Facilities

GENERAL OVERVIEW

The NF component consists of the following modules:

Note: An arrow (-->) identifies a module as being an
entry module into the component. Indentation of a
module shows that it is dependent on a previous
module.

Network Job Entry Management Modules

-->QNFJOBAU-Network Job Entry Management
(ADDNETJOBE, CHGNETJOBE, RMVNETJOBE): This
module processes the Add Network Job Entry,
Change Network Job Entry, and Remove Network
Job Entry commands.

-->QNFJOBDS-Display Network Job Entries
(DSPNETJOBE): This module processes the Display
Network Job Entries command.

Distribution Modules

-->QNFSNDTA-Send Network File (SBMNETJOB,
SNDNETF): This module verifies that the request is
valid, builds the necessary distribution control blocks,
creates the network file object, and invokes the OS
component distribution function to perform the
distribution.

-->QNFSNSPL-Send Network Spooled File
(SNDNETSPLF): This module verifies that the request
is valid, builds the necessary distribution control
blocks, invokes the copy spooled file function to copy
the spooled file data into a data base file, creates the
network file object, and invokes the OS component
distribution function to perform the distribution.

Network Facilities NF-1

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

-->QNFSNMSG-Send Network Message
(SNDNETMSG): This module verifies that the request
is valid, builds the necessary distribution control
blocks, and invokes the OS component distribution
function to perform the distribution.

The following modules are referenced by several
other modules. More detail on these modules is
shown in the command overviews later in this
section.

QNFDSTRB-Perform Local Distribution: This module
is invoked by the OS component distribution function
once for each destination user. For local distributions,
QNFDSTRB is invoked in the process in which the
distribution is initiated. For remote distributions, it is
invoked in the transaction program process that runs
in the QSNADS subsystem on the remote system.
Depending on the type of distribution, the module
creates a copy of the network file object for the
recipient, submits the job stream, writes the spooled
file to an output queue, or sends the network
message to the recipient’'s message queue. It also
sends messages to notify the originator and the
recipient of the arrival of the distribution.

QNFPACK—Create Network File Object: This module
reads the file and creates the network file object,
using the SNADS general file server write functions.

QNFUNPAK-Unpack Network File Object: This
module is invoked to write the data from the network
file object into the spooled output file.

Transaction Program Modules

-->QNFSBMTP-Submit Transaction Program: This
module is invoked when the QSNADS subsystem is
started. It submits a job to the QSNADS job queue
to execute the transaction program, QNFTPDTA.

-->QNFTPDTA-Network Facilities Transaction Program:
This module executes in the SNADS subsystem and
processes incoming remote distributions received via
SNADS.

NF-2

This document contains restricted materials of IBM, LY21-0571-6

Network File Processing Modules

-->QNFDSPRC-Display Network Files {DSNPETF): This
module processes the Display Network File
command.

-=->QNFRCDTA-Receive Network Files (RCVNETF) and
Cancel Network Files CNLNETF): This module
processes the Receive Network Files command and
the Cancel Network Files command.

-->QNFBROWS-Browse Physical File Member
(BRWPFM): This module processes the Browse
Physical File Member command. It is also invoked by
QNFDSPRC to browse a network file object directly
when the browse option is selected from the display.

Recovery Modules

-->QNFRBLDQ-Rebuild Recipient Queue Message:
This module is invoked by the OS component module
that rebuilds damaged recipient queues. It
determines, based on the existence of network file
objects, which messages must be enqueued on the
new recipient queue for network files.

-->QNFRCLNF-Reclaim Network Files: This module is
invoked during execution of the RCLSTG command.
It ensures that all network file objects have a
corresponding message on the correct recipient
queue, and that all messages for network file objects
on the recipient queues have corresponding network
file objects. Damaged recipient queues are rebuilt,
and damaged network file objects are destroyed.

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

5

This page is intentionally left blank.

<

Network Facilities NF-3
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Distribution Commands and Processing

Figure NF-1 and the following text describe the
distribution function.

BB The SNDNETF and SBMNETJOB commands
invoke QNFSNDTA to perform the distribution.

O QNFSNDTA opens the file to be distributed,
and invokes QNFPACK to create the network
file object.

G The OS general distribution module is
invoked. If there are any remote
distributions, this module invokes the
SNADS distribute data function to perform
the remote distribution Q

@ ror each local distribution, QNFDSTRB is
invoked. QNFDSTRB creates a copy of the
network file object and updates the message
to be put on the recipient queue. The
general distribution module puts the message
on the queue upon return from QNFDSTRB.

n The SNDNETSPLF command invokes QNFSNSPL
to perform the distribution.

o QNFSNSPL invokes the spool component to
copy the spooled file data into a data base
file. QNFPACK is then invoked to create the
network file object.

© The 0S general fistribution module is
invoked. If there are any remote
distributions, this module invokes the
SNADS distribute data function to perform
the remote distribution Q

O For each local distribution, QNFDSTRB is
invoked. QNFDSTRB opens the spooled
output file.

o QNFUNPAK is invoked to write records from
the network file object into the spooled
output file.

The SNDNETMSG command invokes QONFSNMSG
to perform the distribution.

o The OS general distribution module is
invoked. If there are any remote
distributions, this module invokes the
SNADS distribute data function to perform
the remote distribution Q

@ For each local distribution, QNFDSTRB is

invoked. QNFDSTRB sends the network
message to the recipient’'s queue.

NF-4

QNFTPDTA is invoked when the QSNADS
subsystem is started, and until the subsystem is
terminated. It invokes the SNADS receive
distribution function, which waits for an incoming
remote distribution. If the distribution is a status
distribution, it sends a message to the recipient's
message queue.

© if the distribution is a data distribution, the
OS general distribution module is invoked.

@ ror each local distribution, QNFDSTRB s
invoked. QNFDSTRB does one of the
following, depending on the type of
distribution:

« For network files, creates a copy of network
file object and updates the recipient queue
message, which will be put on the queue by
the general distribution module upon return.

» For job streams, determines the action to be
taken. If the job stream is to be filed, the
action is the same as for network files. If
the job stream is to be submitted, QNFPACK
G is invoked to copy the data from the
network file object into a data base file.
Spooling is then invoked to submit the job
stream to a job queue.

» For spooled files, a spooled output file is
opened. QNFPACK @ is invoked to write
records from the network file object into the
spooled file.

» For messages, the message is sent to the
recipient’s message queue.

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

SNDNETF
SBMNETJOB SNDNETSPLF SNDNETMSG
‘ Commands Command Command
I B l 5l l 4] —
QNFSNDTA QNFSNSPL QNFSNDTA QNFTPDTA
QNFPACK
OS General
Distribution
Module
o SNADS Link to
QNFDSTRB — Remote System
QNFUNPAK
PAABOOG-0
Figure NF-1. Distribution Commands and Processing

C

Network Facilities NF-5
This document contains restricted materials of IBM. LY21-0571-6

«Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Figure NF-2 and the following text describe the
operation of the Network File Processing commands,
DSPNETF, RCVNETF, CNLNETF and BRWPFM.

The DSPNETF command invokes QNFDSPRC to
perform the display function.

o If the RCVNETF or CNLNETF option is
selected from the display, QNFRCDTA is
invoked. Processing continues as described
below for these commands.

G If the Browse option is selected from the
display, QNFBROWS is invoked.
QNFBROWS directly accesses the network
file object and displays the data in the
network file.

© i the Submit option is selected from the
display, QNFUNPAK is invoked to copy the
data from the network file object into a
temporary data base file. Spooling is then
invoked to submit the job stream to a job
queue.

RCVNETF
CNLNETF
Commands

DSPNETF
Command

l

QNFDSPRC

BRWPFM
Command

0,0

The RCVNETF and CNLNETF commands invoke
QNFRCDTA to receive or cancel a network file.

G For the RCVNETF only, QNFUNPAK is
invoked to copy the data from the network
file object into the user-specified data base
or save file. For both commands, the
network file object is deleted and the
corresponding message is removed from the
recipient queue.

The BRWPFM command invokes QNFBROWS to
display the contents of a data base file member.

QNFRCDTA

QNFBROWS

QNFUNPAK

Figure NF-2. Network File Processing Commands

NF-6

This document contains restricted materials of IBM. LY21-0571-6

PAABDO7-0

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

>

Figure NF-3 and the following text describe the
operation of the ADDNETJOBE, CHGNETJOBE,
RMVNETJOBE, and DSPNETJOB commands.

L Bl Module QNFJOBAU is invoked by the
ADDNETJOBE, CHGNETJOBE, and RMVNETJOBE
commands.

n QNFJOBAU adds, deletes, and updates records in
the Network Job Entry Table, which is in file
QANFNJE.

Module QNFJOBDS is invoked by the
DSPNETJOBE command.

n QNFJOBDS reads records from the Network Job
Entry Table, which is in file QANFNJE, and either
displays or prints the records.

B When the option to add, change, or remove a
network job entry is selected from the display,
module QNFJOBAU is invoked to perform the
requested function.

ADDNETJOBE
CHGNETJOBE
RMVNETJOBE DSPNETJOBE
Commands Command
“I’ I! 3 II
Network Job
QNFJOBDS Entry Table
QANFNJE
Network Job
QNFJOBAU Entry Table
QANFNJE

PAABOOB-0

Figure NF-3. Network Job Commands

C

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Network Facilities

NF-7

Figure NF-4 and the following text describe the
processing performed to rebuild the messages on the
recipient queue.

Figure NF-5 and the following text describe the
operation of the network file recovery during reclaim
storage processing.

n When a module detects a damaged recipient n
queue, it invokes QOSRCVRAQ.

During reclaim storage processing, QNFRCLNF is
invoked by QRCLENUP.

QOSRCVRQ creates a new recipient queue and ﬂ
performs the recovery for the OS component.

QNFRCLNF obtains a list of all network file objects
on the system.

.u u

QNFRBLDAQ is invoked to perform the recovery for
the NF component.

QNFRCLNF ensures that there is a message on
the recipient queue for each network file object. A
message is put on the queue if necessary.
QNFRBLDQ obtains a list of all network file
objects for the recipient queue being recovered. n QNFRCLNF obtains a list of all recipient queues on
the system. It checks each message on the queue
to determine if a network file object exists for
each message. If not, the message is removed
from the queue.

A message is put on the recipient queue for each
network file object found for the recipient.

Function
Detecting
Damage

n i
[
n I
[

QRCLENUP

QOSRCVRQ n Network
QNFRCLNF File
New Objects
Recipient
Queue I'I
[rL
Network
File
Network Objects
QNFRBLDQ File
Objects PAABO10-0

Figure NF-4. Rebuild Messages Processing

NF-8

PAABOOY-0

Figure NF-5. Network File Recovery

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

C

INTRODUCTION

The office systems component of the CPF provides
support for the Document Interchange Architecture
(DIA), provides an interface to the SNA Distribution
Services (SNADS) support for cross system DIA
services, and a variety of CL commands to set up,
maintain, and manage an office network environment.
Support is provided for the attachment of the IBM
Display Writer system, the IBM Personal Computer, and
other Office System Nodes such as System/36, other
System/38s, the 5520 Administrative System, and the
Distributed Office Support System (DISOSS) licensed
program product. DISOSS executes on System/370,
43xx, and 30xx processors. In addition, the OS
component provides these services to the
OFFICE/38-Personal Services/38 licensed program
product, which supports the 5250 and 3270 family of
display terminals that can be attached to the
System/38.

Office Systems

GENERAL OVERVIEW

The office system component functions in a variety of
environments. CL commands can be used interactively
or in batch programs to enroll, configure, authorize, and
manage the system. The primary interface to these
utilities is through the System/38 Command Analyzer.
Another group of services is provided whereby an
interactive session can be established with terminal
nodes that support the Document Interchange
Architecture. These services are provided for DIA
commands sent to the System/38 by the terminal
nodes. Devices may be attached through the Advanced
Program-to-Program Communications (APPC) support
(LU 6.2) or as emulating 5250 devices through the
System/38 Host Router Support. In a network
environment, office system component modules execute
in jobs that run within the SNADS subsystem when DIA
services are provided between various Office System
Nodes.

Office Systems 0S-1

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Terminal Node Attachment

Figure OS-1 shows the module flow to support a
terminal node such as the IBM DisplayWriter system or
the Personal Computer when those devices request
Document Interchange Services.

n A terminal node sends an LU 6.2 Evoke to the
System/38, which causes the QOSAPPC module
to be started as the Problem Phase Program in the
process initiated for the Evoke request. QOSAPPC
opens a communications file to communicate with
the device.

ﬂ A terminal node attached as an emulating 5250
device sends a request to the Host Router to
initiate a process for DIA services. The Host
Router starts a process and provides a module
that is the Problem Phase Program in the process.
This module calls QOSSERVR to establish the
environment for DIA.

n QOSIEXIT is set up as the invocation exit for
either QOSAPPC of QOSSERVR.

n QOSINIT is called to create a space object, which
contains the Office System Session Control Block
and perform other process initialization.

B Once the environment is initialized, QOSAPPC or
QOSSERVR calls QOSCTRLR. QOSCTRLR is the
Session Controller. Its function is to manage the
flow of data in and out of the system and to
manage the flow of control within the process.

H If the attached device communicates using
Advanced Program-to-Program Communications,
QOSSIIO is called to send or receive data to/from
the device. This module interacts with the
Advanced Program-to-Program Communications
Function Manager.

If the attached device communicates using 5250
emulation, QOSPCIO is called to send or receive
data to/from the device. This module interacts
with the System/38 Host Router.

0s-2

As the Document Interchange Unit is received by
the 1/0 modules, it is parsed by calling
QOSPARSE to break the data data stream down
into its constituent parts. When the entire DIU has
been parsed, control returns to QOSCTRLR to
proceed with the execution of the DIA command
just received. (QOSPARSE may call QOSPRASP to
initialize tables in the program associated space of
QOSPARSE).

QOSIGNON is called to process a DIA Sign-On
command and allow the session to continue.
QOSIGNON uses information from the command
to establish the session environment that will be
used while communicating with the terminal node.
It also changes the accounting code associated
with this process to the accounting code of the
user profile identified for the user who is

signed on.

QOSSETCV is called to process a DIA Set Control
Value command. This will provide a user with a

document password, change an existing document
password, or delete a user's document password.

QOSCHKAF is called by QOSCTRLR to perform
temporary sign on processing of affinity
processing. This is determined by the presence or
absence of the password and source/recipient
address operands on some of the DIA commands.
QOSCHKAF calls QOSVFUSR to perform
validation of the password (if present) and to
validate that the user is enrolled in DIA services.
QOSVFUSR may also lock the identified user’s
distribution /recipient queue to prevent its deletion
while a DIA command is being processed.

Distribution Services commands are processed by
DIA command processing programs shown in
Figure OS-2.

Library Services commands are processed by DIA
command processing shown in Figure 0S-3.

The DIA session and the System/38 process is
terminated when the DIA Sign Off command is
received. This command is processed by
QOSCTRLR.

If the user is enrolled in DIA services but the
user's Distribution/Recipient Queue (DRQ) is
damaged or destroyed, QOSRCVRQ is called to
re-create the queue. All messages that were on
the queue that point to distributions in progress
are re-created and put on the queue.

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

C

6 QOssITO

Host
Router

APPC Evoke

‘ QOSIEXIT t
QOSAPPC 3] . B—osservn

Invocation
. Exit .
APPC Session PC Session
Startup Startup
QOSINIT

Create/Init

Session
Controller m

APPC 1/0
Handler

Control Blocks
QOSCTRLR

APPC
Function
Manager

QOSHKAF
Distribution QOSPCIO
. . Services
Sign- t
ign 9n/Aff|n| y See 05-20 PC1/0
Checking Handler
B[cosignon B[cossetcv
DIA Sign-on DIA Set-Control-
Processor Value Processor
QOSVFUSR m QOSRCJRQ
Verify DIA [o eate
Enroliment Queue
QOSPARSE
DIU Parser
Host
QOSPRASP Router
Init Parser
PAABQ11-0

Figure 0S-1. Terminal Node Attachment

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Office Systems 0S-3

Distribution Services Modules

Figure OS-2 is a continuation of Figure 0S-1. It shows
the support provided for Function Sets 2 and 5 of the
Document Interchange Architecture—Distribution
Services.

0s-4

QOSOBTAN is called by the session controller to
execute the DIA Obtain command. It processes
any distributions waiting to be delivered to the
recipient and delivers them to the terminal node by
setting up the appropriate control blocks to allow
the 1/0 modules to send the data to the Terminal
Node.

QOSOBTAN serves as an interface with the
SNADS component to send status back to the
originator of a distribution that was sent with
Confirmation-of-Delivery and the originator of the
distribution was on a remote system.

QOSOBTAN calls QOSCKDLT once the distribution
is complete to determine if the objects used in
controlling the distribution can be deleted from the
system. The distribution and the object used to
manage the distribution may both be deleted.

QOSOBRCYV is set up as the invocation exit for the
QOSOBTAN module. It performs cleanup
functions should the process abnormally terminate.

QOSLIST is called by the session controller to
execute the DIA List command. It processes
distribution information about items sent or waiting
for delivery. It calls QOSLSTPT to build the
formatted response to the List command. It calls
QOSLSTUF to build the summary response to the
List command.

QOSLIST calls QOSCKDLT once the status is
complete to determine if the objects used in
controlling the distribution can be deleted from the
system. The object used to manage the
distribution may be deleted.

QOSLSTIX is set up as the invocation exit for the
QOSLIST module. It performs cleanup functions if
the process abnormally terminates.

QOSREQDS is called by the session controller to
execute the DIA Request Distribution command.
QOSREQDS creates a permanent space object to
save the document while it is being distributed. It
calls QOSDSTRB to perform fan out of distribution
lists, validate the recipients of the distributior, and
complete the distribution function. QOSDSTRB
places a message on the distribution/recipient
queue of each local recipient. The message points
to the document being distributed.

o QOSDSRCYV is set up as the invocation exit
for the QOSDSTRB module. It performs
cleanup functions if the process abnormally
terminates.

© QOSDSTRB calls QOSVFUSR to verify that
each local recipient is enrolled in the system
distribution directory:

QOSDSTRB serves as an interface with the
SNADS component to send a distribution to a
recipient on a remote Office System Node.

QOSRDRCYV is set up as the invocation exit for the
QOSREQDS module. It performs cleanup
functions if the process abnormaily terminates.

QOSREQDS calls QOSCKDLT if there are no valid
recipients to determine if the objects used in
controlling the distribution can be deleted from the
system. The object used to manage the
distribution may be deleted as well as the
distribution data.

QOSCNLDS is called by the session controller to
execute the DIA Cancel Distribution command.
The module cancels either a distribution that is
waiting to be delivered to the recipient or it
cancels the tracking of a distribution that was sent
to someone else.

QOSCNRCYV is set up as the invocation exit for the
QOSCNLDS modaule. It performs cleanup functions
if the process abnormally terminates.

QOSCNLDS serves as an interface with the
SNADS component to send status back to a
remote recipient when a distribution was sent with
Confirmation-of-Delivery and the originator of the
distribution was on a remote system.

QOSRCVRQ is called when a user's
Distribution/Recipient Queue is damaged or
destroyed. It re-creates the queue and rebuilds
messages to put back on the queue for
distributions that are still in progress.

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

QOSCTRLR

Session
Controller

QOSOBTAN QOSLIST B| QOsReaDS QOSCNLDS
DIA Request DIA Cancel
DIA Obtain DIA List Distribution Distribution
Processor Processor Processor Processor
4] 10

QOSOBRCV

Invocation
Exit

QOSLSTPT

Formatted
List Response

QOSLSTIX

Invocation
Exit

Invocation
Exit

QOSRDRCV

QOSCNRCV

Invocation
Exit

QOSLSTUF

Summary
List Response

Generalized
Distribution

QOSDSTRB

t to

QOSDSRCV

Invocation
Exit

i

QOSRCVRQ QOSCKDLT QOSVFUSR
Re-create Delete Verify DIA
Queue Objects Enroliment

SNADS Component

PAABO12-0
Figure OS-2. Distribution Services Modules

Office Systems 0S-5

This document contains restricted materials of IBM. LY21-0571-6
© Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Library Services Modules

Figure OS-3 is a continuation of Figure 0S-1. It shows
the support provided for Function Set 8 of the
Document Interchange Architecture—Library Services.

QOSFILE is called by the session controller to
execute the DIA File command. It creates an
object within the QDOC library and moves the
document being sent by the terminal node to this
object. It calls QOSIDPUP to perform document
profile processing.

QOSIDPUP parses the Interchange Document
Profile and adds searchable data to the System/38
data base files that make up the search index.

QOSFBKOT is set up as the invocation exit for the
QOSFILE module. It performs cleanup functions if
the process terminates abnormally. It is also called
to perform cleanup functions when QOSFILE
terminates normally.

QOSRETRYV is called by the session controller to
execute the DIA Retrieve command. Its function is
to locate the named document, using the supplied
Library Assigned Document Name or the Search
Results List name and index, and deliver it to the
terminal node.

QOSRETRV may call QOSCTDOC if the request is
for a Document Descriptors Document. The
requestor can name a document list and request
that Interchange Document Profile parameters for
documents within the list be returned.
QOSCTDOC builds the response.

QOSRTRCYV is set up as the invocation exit for the
QOSRETRV module. It performs cleanup functions
if the process abnormally terminates.

QOSEARCH is called by the session controller to
execute the DIA Search Command. QOSEARCH
builds a data base query request template and
invokes the query support to determine which
documents satisfy the selection criteria. Once the
documents are selected, the Library Assigned
Document Names (LADNs) are saved in a
document list object. If the requestor does not
want Interchange Document Profile parameters
returned, QOSEARCH builds a response with a
count of the number of documents selected.

QOSEARCH calls QOSCTDOC if Document
Descriptors {IDP parameters) are to be returned as
output from the search. QOSCTDOC builds the
response called a document descriptors document.

QOSSBKOT is set up as the invocation exit for the
QOSEARCH module. It performs cleanup functions
if the process abnormally terminates. It is also
called to perform cleanup functions when
QOSEARCH terminates normally.

QOSTLMIT is a timer event handler that is set up
if the requestor of Search puts a time limit on the
search request. If time expires before the search
completes, the event handler is invoked. It sends
an escape message to QOSEARCH to let it know
that it should terminate processing.

QOSDELET is called by the session controller to
execute DIA Delete command. [t locates the
named document in the document library and
deletes the requestor's ownership of the
document.

QOSCKDLT is called by QOSDELET to determine
if the document object can be deleted from the
document library. If the primary owner and all
secondary owners have deleted their ownership
and the document and the document is not being
distributed to anyone, the object is deleted.

QOSDLRCV is set up as the invocation exit for the
QOSDELET module. It performs cleanup functions
if the process abnormally terminates.

0S-6
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

C

B[cosFiE

DIA File
Processor

QOSCTRLR

Session
Controller

QOSRETRV

DIA Retrieve
Processor

QOSFBKOT

QOSEARCH

DIA Search
Processor

B| QosRTRcV

QOSDELET

DIA Delete
Processor

B| oossekoT

QOSDLRCV
Invocation Invocation Invocation Invocation
Exit Exit Exit Exit
06SIDPUP aosctooc |BE W[aostimiT QOSCKDLT
U Build Document
. Descriptors Time Limit Delete
IDP Modify Document Event Handler Objects

Figure OS-3. Library Services Modules

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

PAABO13-0

Office Systems 0S-7

OFFICE/38-Personal Services/38 Interface Modules

Figure OS-4 shows the modules that present the
Document Interchange interface of CPF to the
OFFICE/38—Personal Services/38 licensed program
product. These modules form a layer that is invoked
through macros and map the requests to the interface
used by the DIA command processing programs. To
simplify the interface between the two System/38
products, a Document Interchange Unit (DIU) is not
exchanged. Instead, macros are used that provide
similar types of information as the DIU.

n QOSMSCTL is called to establish a session

environment between CPF and the 0OS/38 product.

QOSMSCTL sets up control blocks and identifies
the user who requests DIA services. It also is
invoked when the session environment is to be
terminated. QOSMSCTL simulates the support
provided for the DIA Sign On and Sign Off
commands.

@ QOSVFUSR is called to verify that the
person signing onto DIA for services is
enrolled in the system distribution directory.

n QOSINIT is called to create a space object that
contains the Office Systems Session Control Block
and perform other process initialization.

O QOSIEXIT is called to delete the Office
Systems Session Control Block when the
DIA session terminates.

El QOSMLDOC is cailed for either a DIA Retrieve
function or a DIA Delete function. This module
determines which function is being requested by
parameters passed from the calling module. It
maps these parameters into the interface used by
the DIA Delete or DIA Retrieve command
processing program and transfers control to the
appropriate command processing module to
perform the requested function. Figure 0S-3
describes the flow of control when QOSRETRYV or
QOSDELET are invoked.

0S-8

QOSMDISP is called for a DIA File function, DIA
Request Distribution function, or an Interchange
Document Profile modify function. This module
determines which function is being requested by
the parameters passed from the calling module. It
maps these parameters into the interface used by
the DIA File or DIA Request Distribution or Modify
command processing program and transfers
control to the appropriate command processing
module to perform the requested function. Figures
0S-2 and 0S-3 describe the flow of control when
QOSFILE, QOSREQDS, or QOSIDPUP are invoked.

QOSMRECYV is called for either a DIA Obtain
function or a DIA Cancel Distribution function.
This module determines which function is being
requested by parameters passed from the calling
module. It maps these parameters into the
interface used by the DIA Obtain or DIA Cancel
Distribution command processing program and
transfers control to the appropriate command
processing module to perform the requested
function. Figures 0S-2 and OS-3 describe the
flow of control when QOSOBTAN or QOSCNLDS
are invoked.

QOSMSRCH is called for the DIA Search function.
It sets up the interface to QOSEARCH and invokes
that module to start the search request. The
interface between CPF and OFFICE/38—Personal
Services/38 allows a search to return some of the
information before the search actually completes.
To continue the search request,
OFFICE/38-Personal Services/38 invokes
QOSMSRCH again. QOSMSRCH can complete
returning the data without calling QOSEARCH.

QOSMLIST is called for the DIA List function. It
sets up the interface to QOSLIST and invokes that
module to perform the request. Figure 0S-2
describes the flow of control when QOSLIST is
invoked.

QOSCHKAF is called by the macro processors to
verify that one person is authorized to work in
place of another person.

QOSVFUSR is called to verify that an individual is
enrolled in the system distribution directory.

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Office /38-Personal Services/38
Licensed Program Product

n QOSMSCTL QOSMLDOC QOSMRECV ﬂ QOSMRCH QOSMLIST
Sign-on/Sign-off Delete/Retrieve Obtain/Cancel Search List
Macro Processor Macro Processor Macro Processor Macro Processor Macro Processor
°65 %) &D Cfb :
(5)
QOSINIT QOSIEXIT QOSEARCH QOSLIST
Create/ Init Invocation DIA Search DIA List
Control Blocks Exit Processor Processor

QOSRETRV QOSDELET QOSOBTAN QOSCNLDS
DIA Cancel
DIA Retrieve DIA Delete DIA Obtain Distribution
Processor Processor Processor Processor
B | aosmpisp

File, Modify and
Request-Distribute
Macro Processor

QOSCHKAF
Affinity
QOSFILE QOSIDPUP QOSREQDG Checking
DIA Request
DIA File) Modify IDP Distribution
Processor Processor Processor E
QOSVFUSR
@4—» Verify DIA
Enrollment
Figure OS-4. OFFICE/38-Personal Services/38 pAssoTe

Office Systems 0S-9
This document contains restricted materials of IBM., LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

SNADS Subsystem Modules

Figure 0S-5 shows the modules that execute within the
SNADS subsystem in support of the Document
Interchange services.

QOSSBMTR is called during the start up of the
SNADS subsystem. It submits a job to the
SNADS job queue to start execution of the DIA
transaction program. The submitter module allows
DIA dependent parameters to be set up
independently of SNADS.

QOSDIATP runs in the SNADS subsystem as a
never-ending job. It interfaces with the SNADS
support to accept and process incoming
distributions intended for DIA. It accepts
documents and status information, then calls the
appropriate module to process the data. The job is
started when the SNADS subsystem starts and the
job terminates when the SNADS subsystem is
terminated.

O QOSIEXIT is set up as the invocation exit for
QOSDIATP. It performs cleanup functions if
the process abnormally terminates.

o QOSMSCTL is called to perform process
initialization for the SNADS environment.

e QOSINIT is called to create the Office
Systems Session Control Block and perform
some common initialization.

QOSRCVDC is called when a document has been
received that must be delivered to users that are
local to this system. Its function is to perform
distribution of the document to each of the local
recipients identified on the distribution.

0Ss-10

QOSDSTRB is called by QOSRCVDC to expand
distribution lists into their individual entries and to
put messages on distribution/recipient queues that
point to the document being distributed. If the
expanded recipient list has remote users, SNADS
is not called to send to these remote users.
Expansion of distribution lists in the SNADS
environment does not support remote users.
Remote users are treated as invalid users.

O QOSVFUSR is called to verify that local
recipients are enrolled in the system
distribution directory.

QOSRCVDC may serve as an interface to the
SNADS support if some error status must be
returned to the originator of the distribution.

QOSRCVST is called to process status being
returned to the originator of the distribution. When
a distribution is sent with Confirmation-of-Delivery
or when errors are detected, status is returned to
the originating system. This module updates the
Distribution Tracking Object with the status.

QOSRCRCV is set up as the invocation exit
module for both QOSRCVDC and QOSRCVST. It
will be invoked to perform cleanup if the process
terminates abnormally.

QOSPARSE is invoked by the SNADS component
to parse SNADS Distribution Interchange Units.

QOSIFLSV is invoked by QOSPARSE to handle
incoming distributions. It creates an internal
document object to store the distribution.

QOSOFLSV is invoked by the SNADS component
when a DIA distribution is sent to another system.
QOSOFLSV moves the data to be sent into the
SNADS 1/0 buffer so that it can be transmitted.

QOSLFLSV is invoked by the SNADS component
to lock and unlock document objects to manage
them while they are in the process of being
distributed. System/38 locks are not used but a
usage count within the object serves as a logical
lock.

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

B [qossemTR

Submit
DIA Job
QOSMSCTL QOSINIT
Sign-on/Sign-off b Create/Init
e Macro Processor Control Blocks
B[cospiaTe
DIA Transaction QOSIEXIT
Program 0 Invocation
Exit
QOSIFLSV QOSRCVDC ﬂ QOSRCVST QOSOFLSV
Input File Receive Receive Output File
Server Document Status Server
QOSPARSE QOSDSTRB QOSRCRCV QOSLFLSV
DIU Generalized Invocation Lock/Unlock
Parser Distribution Exit Distributions
QOSVFUSR
n Verify DIA
Enrollment

SNADS Component

PAABO15-0

Figure 0S-5. SNADS Subsystem Modules

Office Systems 0S-11
This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Command Language (CL) Command Processing
Programs

Figure OS-6 shows the flow of control for CL
commands.

Save Document Command (SAVDOC)

QOSSAVCP is called by the command analyzer for
the SAVDOC command. It identifies and locks the
documents to be saved.

QOSSRIXT is set up as the invocation exit for the
QOSSAVCP module. It performs cleanup functions
if the process abnormally terminates.

QOSOPEN is called to open data base files that
contain the search index information associated
with the document.

If a search is required to identify the documents to
be saved, QOSSAVCP serves as an interface to
the data base query component to determine
which documents satisfy the selection criteria.

The Save/Restore component is called to save the
document objects to tape or diskette. Once the
documents are saved, control returns to
QOSSAVCP. If STG(*DELETE) was specified on
the command, the document and its data base
search index information are deleted. If
STG(*FREE) was specified on the command,
storage for the document object is freed. All
document object locks are released and a printed
listing is produced if requested.

0s8-12

Restore Document Command (RSTDOC)

E QOSRSTCP is called by the command analyzer for
the RSTDOC command.

QOSSRIXT is set up as the invocation exit for the
QOSRSTCP module. It performs cleanup functions
if the process abnormally terminates.

n The Save/Restore component is called to restore
the document objects from tape or diskette into
the QTEMP temporary library. When the
documents are restored, control returns to
QOSRSTCP where the documents are moved one
by one from the QTEMP library to the QDOC
library and search index information is updated to
match the information associated with the restored
document. If for some reason the document
cannot be moved into QDOC, a diagnostic
message is sent and the document is deleted from
QTEMP.

Delete Document Command (DLTDOC)

E QOSDLDCP is called by the command analyzer for
the DLTDOC command. It verifies the validity of
the request and locks the document objects to be
deleted.

m QOSMSCTL is called to set up DIA session control
blocks that are used to perform an IPL recovery if
the system fails in the middle of the delete
document request.

m If a search is required to identify the documents to
be deleted, QOSDLDCP serves as an interface to
the data base query component to determine
which documents satisfy the selection criteria.

Once the documents have been identified, the
documents are deleted from the QDOC library and
any information residing in the data base search
indexes is deleted.

Delete Document List Command (DLTDOCL)

QOSDLLCP is called by the command analyzer for
the DLTDOCL command. It identifies the
document list objects to be deleted and deletes
them from the QUSRSYS library. In addition, it
removes records from a cross-reference file for a
data base name.

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

SAVDOC RSTDOC DLTDOC DLTDOCL

Command Command Command Command
Command Command Command Command
Analyzer Analyzer Analyzer Analyzer
Bl [qossaver B aosrstcr B[cosbiocr QOSDLLCP
12
Save Restore . Delete Delete
Document Document Document Document List
QOSSRIXT t m tm
QOSMSCTL
Invocation Data Base
Exit Sign-on/Sign-off Query
Macro Processor Support
Save/Restore
Component

QOSOPEN

Open
Files

Data Base
Query
Support

PAABO16-0

Figure 0S-6. CL Command Processing Programs

Office Systems 0S-13
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Figure OS-7 shows the flow of control for the CL
commands.

Grant Document Authority Command (GRTDOCAUT)

n QOSGDACP is called by the command analyzer for
the GRTDOCAUT command. It sets up the
authorization for one person to work on behalf of
another person. Both individuals must be enrolled
in the system distribution directory. The
authorization is maintained in data base records.

n QOSVFUSR is called to verify that the users
named on the command are enrolled in the system
distribution directory.

Revoke Document Authority Command (RVKDOCAUT)

Bl QOSSRDACP is called by the command analyzer
for the RVKDOCAUT command. It revokes the
authorization for one person to work on behalf of
another user by deleting records from a data base
file where the authorization is stored.

B QOSVFUSR is called to verify that the users

named on the command are enrolled in the system
distribution directory.

0S-14

Display Document Authority Command (DSPDOCAUT)

QOSDDACP is called by the command analyzer for
the DSPDOCAUT command. It reads some data
base files to find the information that indicates
which users are authorized to work on behaif of
other users and either formats a display or a
printed listing with the information.

E QOSVFUSR is called to verify that the users
named on the command are enrolled in the system
distribution directory.

Change Document Owner Command (CHGDOCOWN)

QOSCHGCP is called by the command analyzer for
the CHGDOCOWN command. It updates two
objects where DIA document ownership is stored.
First, it updates the document object, then it
updates data base files where the document
search index information is stored.

B QOSVFUSR is calied to verify that the users
named on the command are enrolled in the system
distribution directory.

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

C

GRTDOCAUT
Command

!

Command
Analyzer

!

B[qosGpacr

Grant Document
Authority

!

QOSVFUSR

Verify DIA
Enroliment

RVKDOCAUT

Command

!

Command
Analyzer

DSPDOCAUT

Command

!

!

Command
Analyzer

QOSRDACP
Revoke
Document
Authority

!

!

QOSDDACP
Display
Document
Authority

QOSVFUSR

Verify DIA
Enrollment

!

Figure 0S-7. CL Command Processing Programs

QOSVFUSR

Verify DIA
Enroliment

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

CHGDOCOWN
Command

!

Command
Analyzer

!

QOSCHGCP
Change
Document
Owner

{

QOSVFUSR

Verify DIA

Enroliment

PAABO17-0

Office Systems

0S-15

Figure OS-8 shows the flow of control for the CL
commands.

Grant Access Code Authority (GRTACCAUT)

QOSGAACP is called by the command analyzer for
the GRTACCAUT command. It verifies that both
the access codes and the users involved are
defined on the system. It then authorizes use of
the access codes by updating a data base record
for each of the users being authorized to the
access codes.

Revoke Access Code Authority Command (RVKACCAUT)

QOSRAACP is called by the command analyzer for
the RVKACCAUT command. It verifies that the
users involved are defined on the system. It then
revokes use of the access codes by updating a
data base record for each of the users whose
authorization is being revoked.

Display Access Code Authority Command (DSPACCAUT)

QOSDAACP is called by the command analyzer for
the DSPACCAUT command. It reads data from
data base files to determine the access code each
user is authorized to and formats the data on a
display or a printed listing.

0S-16

This document contains restricted materials of IBM. LY21-0571-6

Add Access Code Command (ADDACC)

QOSADACP is called by the command analyzer for
the ADDACC command. It determines that the
access code is a valid number and that the access
code is not currently defined on the system. It
then adds the access code to a data base file.

Remove Access Code Command (RMVACC)

QOSRMACP is called by the command analyzer
for the RMVACC command. It determines that the
access code is a valid number and that the access
code is currently defined in the system. It then
removes the access code from all documents filed
on the system that used this code, from all users
who are authorized to this code, and finally from
the data base files where the access code is
defined.

O (QOSRMIEX is set up for the invocation exit
for QOSRMACP. It performs cleanup
functions if the command terminates
normally or abnormally.

Display Access Code Command (DSPACC)

QOSDATCP is called by the command analyzer for
the DSPACC command. It reads a data base file
where the definition of the access codes is stored
and formats the information into a display or a
printed listing.

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

<

J

C

GRTACCAUT RVKACCAUT

Command Command
Command Command
Analyzer Analyzer

!

!

B aoscaace

Grant Access
Code Authority

2 QOSRAACP

Revoke Access
Code Authority

DSPACCAUT ADDACC RMVACC
Command Command Command
Command Command Command
Analyzer Analyzer Analyzer
QOSDAACP n QOSADACP q QOSRMACP
Display Access Add Access Remove
Code Authority Code Access Code

DSPACC
Command

!

Command
Analyzer

!

B[cospatce

Display
Access Code

Figure 0S-8. CL Command Processing Programs

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

|

@ QOSRMIEX

Invocation
Exit

PAABO18-0

Office Systems

0S-17

Manage Directory Command (MNGDIR)

QOSENTCP is called by the command analyzer for
the MNGDIR command.

QOSDIRSM is called from QOSENTCP when a
user requests to view all the entries within the
system distribution directory.

QOSRTENT is called to build the subfile that
contains all the entries within the system
distribution directory.

QOSDLUSR is called from QOSDIRSM when the
user wishes to delete an entry from the system
distribution directory.

QOSVFUSR is called from QOSENTCP to verify
that a user is enrolled in the system distribution
directory.

QOSDIRDL is called from QOSENTCP when a
user's name is entered on the command. It
produces a display of the detailed information
about an entry within the system distribution
directory.

QOSDIRDL is called from QOSDIRSM when the
user wishes to view the detailed information about
an entry within the system distribution directory.

0s-18

QOSVFUSR is called from QOSDIRDL to verify
that the user profile associated with a new entry
being added is defined on the system.

QOSDLUSR is called from QOSDIRDL when the
user wishes to change the user ID associated with
an entry or when a local user is changed to a
remote user. Under these conditions, a user |ID
may have to be deleted from the system to keep
the data base files synchronized.

QOSVFUSR is called from QOSDLUSR to place an
exclusive lock on the user's distribution/recipient
queue in order to lock out all other operations
while the user is being deleted.

QOSUSRDP is called from QOSDIRDL when the
user wants to view all the user profiles on the
system.

QOSSYSDP is called from QOSDIRDL when the
user wants to view all the node IDs that have been
defined on the system.

QOSCRTRQ is called from QOSDIRDL when a
new local user is being enrolied in the system
distribution directory. It creates an internal queue
object that is used to manage distributions as they
are in progress.

QOSDIEXT is set up as the invocation exit for the
QOSENTCP module. It performs cleanup functions
when the command terminates either normally or
abnormally.

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

MNGDIR
Command

!

Command
Analyzer

of

QOSENTCP

Manage
Directory

QOSDIEXT

Invocation
Exit

QOSDIRSM
Directory
Summary
Display

QOSRTENT

Subfile
Builder

QOSDIRDL
Directory
Detail

Display

QOSVFUSR QOSUSRDP QOSSYSDP QOSCRTRQ
User Profile Node ID Create
Verify DIA Selection Selection Recipient
Enroliment Display Display Queue
(1 0] QOSDLUSR
Delete DIA
Enroliment
PAABO19-0

Figure 0S-9. Manage Directory Command

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Office Systems

0S-19

Diaplay Directory Command (DSPDIR)

QOSDSDCP is called by the command analyzer for
the DSPDIR command. It determines which
function was requested by the user, opens the
appropriate data base files, and calls the next
module to perform the request.

QOSDIEXT is set up as the invocation exit for the
QOSDSLCP module. It performs cleanup functions
when the command terminates either normally or
abnormally.

QOSDIRSM is called from QOSDSDCP when the
request is to show all the users enrolled in the
system distribution directory.

QOSRTENT is called to build the subfile that
contains all the users enrolled in the system
distribution directory.

QOSVFUSR is called from QOSDSDCP to
determine if a user is enrolled in the system
distribution directory.

QOSDIRDL is called from QOSDSDCP when a
user wants to view the details of a particular entry
within the system distribution directory. The user’s
name was entered in the command.

QOSDIRDL is called from QOSDIRM when a user
wants to view the details of a particular entry
within the system distribution directory. The user
is selected from the list of users in the directory.

0S-20

This document contains restricted materials of IBM, LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

9

C

DSPDIR
Command

!

Command
Analyzer

o

QOSDSDCP

Display
Directory

W_’

QOSDIEXT

Invocation
Exit

QOSVFUSR

Verify DIA B
QOSDIRSM Enroliment QOSDIRDL
Directory Directory
Summary Detail
Display 3 - . =5 Display
QOSRTENT
Subfile
Builder PAAB020-0

Figure OS-10. Display Directory Command

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Office Systems

0S-21

Manage Distribution List Command (MNGDSTL)

QOSDSLCP is called by the command analyzer for
the ANGDSTL command. It determines which
function was requested by the user, opens the
appropriate data base files, and calls the next
module to perform the request.

QOSLSTSM is called by QOSDSLCP when a list of
all distribution lists currently defined on the system
is requested. It produces the Manage Distribution
Lists Display.

QOSRTENT is a common function module that
builds subfiles. In this case, it is called by
QOSLSTSM to build the subfile for the Manage
Distribution Lists display.

QOSLSTDL is called from QOSLSTSM when a
user wants to view the details of a distribution list.
It displays the members of a distribution list.

QOSLSTDL is called from QOSDSLCP when the
name of a distribution list is entered on the
MNGDSTL command. QOSLSTDL produces a
display showing the members of the list.

QOSRTENT is called from QOSLSTDL to build the
subfile that contains the members of the
distribution list.

QOSLSTDP is called from QOSLSTDL when a user
wants to use another distribution list as a base for
building a new distribution list or when an existing
list is to be added to the current list being

worked on.

0S-22

QOSDIRDL is called from QOSLSTDL when a user
wants to view the details of a system distribution
directory entry.

QOSDIRDL is called from QOSSELDP when a user
wants to view the details of a system distribution
directory entry.

QOSSELDP is called from QOSLSTDL when a user
wants to use a list of system distribution directory
users to build a new distribution list or to add
users to an existing list.

QOSLSTDL is called from QOSLSTDP when a user
wants to view the details of a distribution list.

QOSRTENT is called from QOSLSTDP to build the
subfile that contains all the distribution lists on the
system.

QOSRTENT is called from QOSSELDP to build the
subfile that contains all the users enrolled in the
system distribution directory.

QOSDIEXT is set up as the invocation exit for the
QOSDSLCP module. It performs cleanup functions
when the command terminates either normally or
abnormally.

This document contains restricted materials of IBM. LY21-0571-6
© Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

C

MNGDSTL

Command
Command
Analyzer
QOSDSLCP m QOSDIEXT
Manage y Invocation
Distribution List Exit
2
QOSLSTSM n QOSLSTDL n QOSDIRDL
S —)| Directory
List Summary List Detail Detail
Display Display Display
9|
11
QOSRTENT QOSLSTDP QOSSELDP
Directory
Subfile <G> | st Selection Selection
Builder Display Display

e . 1

Figure OS-11. Manage Distribution List Command

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

PAABO21-0

Office Systems

0Ss-23

9

0S-24
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

C

INTRODUCTION

The 5211/3262/3203 function manager component of
the CPF (control program facility) provides the support
for the 5211/3262/3203 Printer on System/38.

The following printer functions are supported by the
5211/3262/3203 function manager:

« Open printer file for processing
« Close printer file for processing

« Write data to a printer file

GENERAL OVERVIEW

5211/3262/3203 Function Manager Modules

The 5211/3262/3203 function manager consists of the
following modules:

Note: An arrow (-->) identifies a module as being an
entry into the component.

-->QPNOPEN—Printer Open: This module prepares an
output file for processing by a 5211/3262/3203
Printer. The printer is initialized and the LUD (logical
unit description) is modified if any of the following
are changed:

— Print image

Forms length

Translate table name

Forms width

Lines per inch to print

If the print belt is to be changed, a message is sent
to the default message queue to change it. Open
modifies the common data management entry point
table, when field level support is specified, entering
the address for QPNPTFLD in place of QPNPUT.

When the spool writer is printing data from the spool

output queue, open modifies the common data
management entry point table, entering the address
of QPNREQIO instead of QPNPUT.

5211/3262/3203 Function Manager

QPNALLOC—Continuation of Open: This module is
part of the open process and performs those
functions common to open processing for printer
files. It is called by the 5211/3262/3203 function
manager open, the 5224/5225/5256 function
manager open, and the spool open to validate the
open parameters and establish the function manager
work area.

QPNOERRS—Error Handler: This module is called by
QPNALLOC, QPNOPEN, or QWPOPEN when an open
parameter error occurs.

-->QPNCLOSE—Printer Close: This module closes a file
to the 5211/3262/3203 Printer. Blocked records are
printed if the close is normal; records are purged if
the close is not normal. If the close is not temporary,
the space objects are destroyed.

-->QPNPUT-Put Records: This module places a single
data record into a 5211/3262/3203 printer output
file. Page formatting can be controlled by QPNPUT,
by the user program, or from information in the
device file depending on whether data records are
described in the user program, outside the user
program in a device file, or in both places. When
print records are folded or truncated, a message is
sent to the program and the job log indicating that
occurrence.

-->QPNFEOD-Forced-End-of-Data: This module
causes the printer function manager to print all data
that has been blocked in the data buffer but not yet
printed.

-->QPNEVT-Event Handler: This module handles the
operator intervention required event.

QPNLUDIN-LUD-Associated Space Initialization:
This module initializes the device-dependent area
of the LUD.

-->QPNPTFLD-Put Records: This module works the
same as QPNPUT but is used when field level
support is specified. This module formats a single
line, field by field, according to the specifications in
the device file and has the capability of editing those
fields.

5211/3262/3203 Function Manager PN-1

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

QPNPERRS—Error Handler: This module is invoked by
the put modules or spool intercept modules when a
put parameter error occurs.

QPNXTANZ—-Error Handler/Forms Alignment: This
module handles exception conditions and hardware
I/O errors as well as forms alignment.

-->QPNREQIO—-REQIO Processor: This module is the
interface to the IOM. It issues the REQIO instruction
and its related processing for the put modules, and
interfaces directly with the spool writer when a put
operation is performed.

5211/3262/3203 Print Operation

Figure PN-1 and the following text show an overview of
a 5211/3262/3203 print operation.

n A high-level language program or the spooling
component, through the QDMCOPEN module of
common data management, calls QPNOPEN to
prepare a file and, if necessary, to initialize the
printer for a print operation. n

o An argument list is passed that contains a
pointer to the UFCB (user file control block)
and an index into the ODPCB (open data
path control block) for the device-dependent
open.

G A message is sent to the default message
queue if a different print belt is to be put on
the printer. .

5

If the lines per inch, print image, translate table, or

forms length is changed from the previous file, an

MODLUD is issued to the |/O manager.

ﬂ After the file has been opened and the printer
initialized, the information to be printed can be
sent to the printer. This is done by a high-level
language program or the spooling component
invoking QPNPUT. Page formatting information
can be found either in a device file or the user
program.

o An argument list is passed that contains
pointers to the UFCB, option list, and to
control information.

e If an error is detected or the forms need to
be positioned at line 1, a message is sent to
the default message queue. When print
records are folded or truncated, a message is
sent to the job log indicating that occurrence.

PN-2

© Request 1/0s are issued to the 1/0 manager
to print the records. Up to an entire page of
print lines can be loaded into the data buffer
before a print operation is performed.

When the spool writer is putting data to the
printer, data blocks of 512 or 4096 bytes in SNA
(systems network architecture) character stream
format (data including control characters) are sent
to the function manager.

QPNFEOD is called to perform a print operation an
print lines that have been blocked in the data
buffer but not yet printed.

° An argument list is passed that contains a
pointer to the UFCB.

G If an error is detected or the forms need to
be positioned at line 1, a message is sent to
the default message queue.

An event is signaled by the |/O manager if the
printer Stop/Reset switch is pressed.

G QPNEVT causes an intervention-required
message to be sent to the default message
queue. After the appropriate action has been
taken by the default message queue and the
Ready switch on the printer has been
pressed, printing is resumed.

After all print records have been passed to the
5211/3262/3203 function manager, QPNCLOSE,
through QDMCLOSE of data management, is
called to close the file to further processing.

° An argument list is passed that contains a
pointer to the UFCB, the type of close to
perform, and an index into the ODPCB for
the device-dependent close.

B If an error is detected or the forms need to
be positioned at line 1, a message is sent to
the default message queue.

o A print operation is performed to print those
lines that have been blocked in the data
buffer but not yet printed.

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

C

High-Level Language or Spooling Component

Argument
List

o |

QDMCOPEN

Common
Open

ot

A

QDMCLOSE

Common
Close

nt

v

5211/3262/3203

\ 4 Function Manager ‘
QPNOPEN QPNPUT/ QPNFEOD QPNEVT QPNCLOSE
Printer QPNPTFLD Forced Event Printer
Open Printer Put End-of-Data Handler Close
QPNALLOC QPNXTANZ QPNPERRS
Error
Continuation Handler/Forms Error
of Open Alignment Handler
QPNREQIO QPNOERRS
Request Error
1/0 Handler
Message 521 1/326?/
Handler 3203 Receive Event
Queue
Job Operator
Log Console Request 1/0
Machine Interface
5211/3262/3203
1/0 Manager

Figure PN-1. 5211/3262/3203 Print Operation Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

5211/3262/3203 Function Manager PN-3

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

C

INTRODUCTION

The PRM (program resolution monitor) component of
the CPF (control program facility) converts programs in
the IRP (intermediate representation of a program)
language into machine interface templates, which can
then be translated into executable modules by the
machine.

The PRM supports a symbolic interface to the create
program instruction template. The PRM also supports
the CPF symbol table and the break offset mapping
table components of the program template.

The PRM does not support symbolic interfaces to the
OIR (object information repository) and associated
space. The caller of the PRM is responsible for
formatting the file reference function and user-text
information for the OIR and any information that is to go
into the associated space.

Input To The PRM

Input to the PRM is a pointer to a control block
containing data that controls the execution of the PRM.
That control block contains pointers that point to other
control blocks and data areas. They are:

« A pointer to the IRP text string to be processed

« A pointer to the UFCB (user file control block), which
describes the listing file

« Pointers to areas that describe data targeted for the
OIR

« A pointer that will contain addressability to the
program being created

« Options that control the PRM and Create Program
instruction

Program Resolution Monitor

Output From The PRM

The output from the PRM is dependent upon the
options specified. Output can consist of any or all of the
following:

« A program module suitable for execution with
addressability to the program module returned in a
control block

« An instruction stream listing and an ODT (object
definition table) summary with diagnostics

« A cross reference listing

« A dump of the machine interface program template
produced by the PRM

GENERAL OVERVIEW

Program Resolution Monitor Modules
The PRM component consists of the following modules:

Note: An arrow (-->) identifies a module as being an
entry module into the component. Indentation of a
module shows its dependency on a previous module.

-->QPRROOTP-PRM Root: This module is the interface
routine to the PRM. It creates and destroys work
areas and handles exceptions that are signaled from
other PRM modules.

QPRPHO1P-Phase 1 of the PRM: This module
performs all lexical and syntactical analysis on the
IRP source text string and it begins semantic
analysis on the IRP source text string. QPRPHO1P
builds internal tables to be used by QPRPHO2P in
building the ODT, symbol table, and break offset
mapping table portions of the program template. It
also builds the instruction stream portion of the
program template. This version of phase 1
supports 8191 ODT entries and builds the

version O program template.

Program Resolution Monitor PR-1

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

QPRPH11P-Alternate Phase 1 of the PRM: This QPRXRF-PRM Cross Reference Listing: This

module performs all lexical and syntactical analysis module produces the cross reference listing for

on the IRP source text string and it begins the named program objects in the IRP source.

semantic analysis on the IRP source text string.

QPRPH11P builds internal tables to be used by QPRPHO3P-Phase 3 of the PRM: This module

QPRPHO2P in building the ODT, symbol table, and completes the program template header, issues the

break offset mapping portions of the program Create Program instruction, adds any OIR data,

template. It also builds the instruction stream and inserts the created program’s addressability

portion of the program template. This version of into a library..

phase 1 supports 32 767 ODT entries and builds

the version 1 program template. The following two service modules are used by
QPRPHO1P, QPRISTCK, QPRODTBL, QPRISTSM,

QPRPHO2P—Phase 2 of the PRM: This module QPRMICK, QPRXREF, and QPRPHO3P:

builds the break offset mapping table of the

program template and the symbol table. QPRCRASH-PRM Fatal Termination: This module is

QPRPHO2P also uses modules QPRISTCK, called whenever the PRM finds an internal error. The

QPRODTBL, QPRISTSM, QPRMICK, QPRMICK1, parameter passed to this module describes the error

and QPRXRF. condition; QPRCRASH signals an exception that

indicates a PRM failure.
QPRISTCK-Check Internal Symbol Table

Semantics: This module performs semantic QPRLIST-Output Routine for the PRM: This module
checks on the IST built by the QPRPHQ1P is the PRM interface to the Common Data

module. It checks for inconsistent entries and Management component. Depending on the input to
relational errors between entries. All program QPRLIST, either it will print a line or it will eject a
objects have definitions in the IST. page and print two headings.

QPRODTBL-Build ODT from IST: This module Figure PR-1 shows the components and functions that
builds the ODT portion of the program template use the PRM and the components used by the PRM to
from the internal symbol table. perform its tasks.

QPRISTSM-Produce Object Summary: This
module produces a summary listing of all
program objects from the internal symbol table.
It also lists any program object errors that were
found in QPRPHO1P or QPRISTCK.

QPRMICK—Check Machine Interface Instruction
Operand Semantics for Version O Program
Template: This module performs semantic
checks on the instruction stream portion of the
program template before the Create Program
instruction is issued. QPRMICK takes each
instruction in turn and checks the operands of
that instruction for the required attributes.

QPRMICK1-Check Machine Interface
Instruction Operand Semantics for Version 1
Program Template: This module performs
semantic checks on the instruction stream
portion of the program template before the
Create Program instruction is issued.
QPRMICK1 takes each instruction in turn and
checks the operands of that instruction for the
required attributes.

PR-2
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

C

C

Components and
Functions Using
the PRM

High-Level
Language
Compilers

Interactive
Data Base
Utilities

Components Used
by the PRM

Work
Control

Control
Language
Program
Compiler

Program
Resolution
Monitor

Message
Handler

Data
Definition

Figure PR-1. PRM and CPF Component Relationship Overview

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Common
Data
Management

Librarian

Program Resolution Monitor

PR-3

PRM as Used by the RPG Compiler

Figure PR-2 and the foliowing text describe an example
of how the PRM would be used by the RPG compiler.

The RPG compiler calls QPRROOTP, passing a
pointer to a control block. The control biock
contains pointers to other control blocks and data
areas (IRP text string, options for the PRM).
QPRROOTP performs the initialization procedures
and calls QPRPHO1P.

QPRPHO1P parses and analyzes the IRP text string
and builds tables to be used by QPRPHO2P to
build the program template. QPRPHO1P produces
an IRP text code listing. Control is returned to
QPRROQTP, which then calls QPRPHO2P.

if QPRPHO1P determines that there are more than
8191 ODT entries, control is returned to

QPRROOTP with an error indication. QPRROOTP
then calls QPRPH11P to build the larger version 1
program template which supports 32 767 entries.

QPRPHO2P, depending on the options specified
and using other modules in the PRM, performs the
following:

» Relational semantics checking of the symbol
table

- Builds the ODV (object directory vector) and
OES (object entry string) portions of the ODT
using information from the internal symbol table
and related areas

= Produces an object summary table listing for
the objects in the symbol table

- Produces an IRP source cross reference listing

- Performs semantic checking on the operands,
extender fields, and branch or indicator targets
of the machine interface instructions

- Builds program template symbol table entries
for each symbol table entry not noted by the
compiler as having a temporary name

o Builds a program template break offset mapping
entry for each entry in the breakpoint table

Control is returned to QPRROOTP, which then
calls QPRPHO3P.

QPRPHO3P, if requested, resolves a system pointer
to the library. It also completes the program
template header, issues the Create Program
instruction to build the encapsulated program,
adds any OIR data, and inserts the program’s
addressability into the library. Control is returned
to QPRROOTP, which in turn returns control to its
caller.

This document contains restricted materials of 1BM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Program Resolution

Monitor _
QPRROOTP
RPG
Compiler PRM Root
B
Listing
Control
Block QPRPHO1P,
QPRPH11P
// Phase 1,
/‘ Alternate Phase 1
Tables
IRP
Text
String QPRPHO2P
Program
Phase 2 Template
Listing
QPRPHO3P "
Phase 3

Figure PR-2. PRM as Used by the RPG Compiler

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

\

Error
Summary

Encapsulated
Program

Program Resolution Monitor

PR-5

PRM Source Input and Its Associated Program
Template

Figure PR-3 shows a formatted listing of the source
input (IRP) to the PRM and the template produced by
the PRM from that source. Figure PR-4 shows a dump
of the machine interface program tempiate produced by
the PRM from the IRP shown in Figure PR-3.

5716551 RO1MO1 GENERATED OUTPUT
SEQ INST OFFSET GENERATED CODE e vee seel tee see 2 cue a0e 3 ses eee U cee ese S wae s
/% DECLARATIONS

00001 DCL DTAPTR PD INIT('B21')

00002 DCL SYSPTR PS INIT('S$PRYROO1')

00003 DCL SPCPTR PP INIT(C)

00004 DCL INSPTR PI INIT(B)

00005 DCL PTR PTR

00006 DCL SPCPTR APP(10)

00007 DCL DD T BIN(4)

00008 DCL DD CO1 CHAR(1)

00009 DCL DD €02 CHAR(2)

00010 DCL DD CO3 CHAR(3)

00011 DCL DD CO4 CHAR(U4)

00012 DCL DD CO5 CHAR(S)

00013 DCL DD CO7 CHAR(7)

00014 DCL DD GO8 CHAR(8)

00015 DCL DD C16 CHAR(16)

00016 DCL DD C32 CHAR(32)

00917 DCL DD C34 CHAR(34)

00518 DCL DD C48 CHAR(UB)

00019 DCL DD Cb6U CHAR(6U4)

00020 DCL DD C CHAR(128)

00021 DCL DD Z ZND(S,0)

00022 DCL DD P PKD(5,0)

00023 DCL DD AN(10) BIN(4)

00024 DCL DD AC{10) CHAR(S)

00025 DCL DD AI{10) BIN(U4)

00026 Program DCL DD BI BIN(2) BAS(PP)

00027 Template DCL DD BC CHAR(128) BAS(%)

/% SAMPLE INSTRUCTIONS

00028 0001 000004 3043 0007 0007 0007 B: ADDN I,I,I

00029 0002 Q0000C 1C23 1472 0014 0014 ADDLC{B) C,C,C / 2C{B),ZNTC(B),NTZC(B),NTZNTC(B)
0014 001C 001C 001C
001C

00030 0003 0O001E 1A43 1000 0016 2004 ADDM(RI)} P,4,0439 / 2C(CO1)
2187 0008

00031 0004 00002A 1193 8018 G003 0014 AND(S) Pg-°BC,C

00032 0005 000032 1011 001C B b

00033 0006 000036 1CC2 1240 0014 0007 CMPBLA(B) C,1 / HI(B),LO(B),EO0(B)
001C 001¢c 001C

00034 0007 000044 1C46 1240 0007 0015 CMPNV(B) I,Z / HI(B),LO(B},EQ(B)
001C 001C 001C

00035 0008 000052 10A3 0014 2009 001D CVTNC C,9,X'02001F00000000°

00036 0009 00005A 10B6 0007 2005 CPYBRA I,S

00037 000A 000060 1096 0007 001E CPYHEXNZ I,'4’

00038 000B 000066 1C42 1240 0015 0016 CPYNV(B) Z,P ,/ POS(R),NEG(B),ZER(R)
001C 001C 001C

00039 000C 000074 1B4F 1000 0015 200A DIV(I) Z2,10,4 7 POS(CO1)
2004 0008

00040 000D 000080 10E3 0014 0O01F 0020 EDIT C,2'99.99','B1R2"

00081 O000E 000088 10CE 0015 000C EXCHBY Z,C05)

00042 OOOF 00008E 1C9B 4000 0014 0014 XOR{B) C,C,C / ZER(B)
0014 001C

00043 0010 00009A 18D2 4000 0004 0004 CMPETRA(I) PI,PI / EQ(CO1)
0008

00044 0011 0000A4 0112 0002 0063 CRTCTX PS,PP

00045 0012 0000AA 0162 0002 0021 RENAME PS,'CHAR®

00046 0013 000080 0164 0002 0011 0000 RSLVSP PS,C34,%,C02
0009

00047 0014 0000BA 0260 PEND

Figure PR-3 (Part 1 of 3). Output and IRP Listing of the PRM

PR-6
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Symbolic Explanation of ODV/OES

57145S1 ROTMO1
ODT ODT NAME ATTRIBUTES AND ODV/OES ENTRIES /’
‘ 0001 PD POINTER OBJECT,STATIC,INITTAL VALUE,DATA PNINTER.
0400010003C2F2F1
0002 PS POINTER OBJECT,STATIC,INITIAL VALUE,SYSTEM POINTER.
oDV 1802000C,/0400010201000006085BD7D9ESDIFOFOF1
0003 pP POINTER OBJECT,STATIC,INITIAL VALUE,SPACE POINTER.
1801001D/040014
0004 PI POINTER OBJECT,STATIC,INITIAL VALUE,INSTRUCTION POINTER.
18040020 OES portion of program template
0005 PTR POINTER OBJECT,STATIC.
10000000/
0006 APP POINTER OBJECT,STATIC,ARRAY(10),SPACE POINTER.
18010023,/200000000A0000
0007 I DATA OBJECT,STATIC,BINARY(U),INTERNAL.
00000004/
0008 CO1 DATA OBJECT,STATIC,CHARACTER(1),INTERNAL.
00040001/
0009 C02 DATA OBJECT, STATIC,CHARACTER(2),INTERNAL.
00040002/
000A CO3 DATA OBJECT,STATIC,CHARACTRR(3),INTERNAL.
00040003/
0008 CO4 DATA OBJECT,STATIC,CHARACTER(U4),INTERNAL.
00040004/
000C CO5 DATA OBJECT,STATIC,CHARACTER(S), INTERNAL.
00040005/
000D CO7 DATA OBJECT,STATIC,CHARACTER(7),INTERNAL.
00040007/
000E CO08 DATA OBJECT,STATIC,CHARACTER(8), INTERNAL.
00040008/
000F C16 DATA OBJECT,STATIC,CHARACTER(16),INTERNAL.
00040010/
0010 €32 DATA OBJECT,STATIC,CHARACTER(32),INTERNAL.
00040020/
0011 C34 DATA OBJECT,STATIC,CHARACTER(34),INTERNAL.
00040022/
0012 c48 DATA OBJECT,STATIC,CHARACTER(48),INTFRNAL.
00040030/
0013 c64 DATA OBJECT,STATIC,CHARACTFR(64),INTERNAL.
\, 000400406/
0014 C DATA OBJECT,STATIC,CHARACTER(128),INTERNAL.
00040080/
0015 z DATA OBJECT,STATIC,ZONED(5,0),INTERNAL.
00020005/
0016 P DATA OBJECT,STATIC,PACKED(S,0),INTERNAL.
00030005/
0017 AN DATA OBJECT,STATIC,BINARY(4),INTERNAL,ARRAY(10).
0800002A/6000040000000A0000
0018 AC DATA OBJFCT,STATIC,CHARACTER(S),INTERNAL,ARRAY(10).
08040033/6000050000000A0000
0019 AI DATA OBJECT,STATIC,BINARY(U4),INTERNAL,ARRAY(10).
0800003C/6000040000000A0000
001A BI DATA OBJECT,BASED(PP),BINARY(2), INTERNAL.
0A000045,/5000020003

Figure PR-3 (Part 2 of 3). Output and IRP Listing of the PRM

C

Program Resolution Monitor PR-7
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

5714551 ROTHO

ouT

0018
0019
0017
0006
001c
001B
001A
0014
0008
0009
000A
000B
000C
000D
000E
000F
0010
0011
0012
0013
0007
0016
0001
0004
0003
0002
0005
0015

ODT NAME

AC
Al
AN
APP
B
BC
BX
C
Cco01
co2
co3
coy
cos
co7
cos
C16
c32
C34
cus
cou
I

P
PD
PI
pp
P3
PTR
2

2ux
25%
23*
6%

Cross Reference

4 28% 29 29 29 29 32 33 33 33 34 34 34 38 38 38 42

27¢
26%

kR

3 20% 29 29 29 31 33 35 40 42 42 4
8% 30 39 43
9% 46

10%
1=
12%
13=
10z
15%
16%
17=
18%
19%
22¢
B

4

3z

2%

5%

21

41

46

28 28 28 33 34 35 37

30 38

43 43
26 31 4y
4y 45 4e

34 38 39 41

Figure PR-3 (Part 3 of 3). Output and IRP Listing of the PRM

PR-8

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

9

C

C

5714551 RO1MO1
OFFSET

00000000
00000020
00000040
00000060
00000080
00000040
000000cC0O
000000EQ
00000100
00000120
00000140
00000160
00000180
000001A0
000001CO
000001EO
00000200
00000220
00000240
00000260
00000280
000002A0
000002C0
000002E0
00000300
00000320
00000340
00000360
00000380
00000340
000003C0
000003E0
00000400
00000420
00000440
00000460
00000480
000004A0
000004CO
000004EOQ
00000500

MI TEMPLATE DISPLAY

00000CBD
40404040
00000000
000000FC
00000000
00000000
00000000
00000000
000000BC
10000016
001c001C
10960007
10E30014
00040008
18030004
00040002
00040022
0800003cC
68040081
F1040014
60000400
FOFOFOFO
04C2F1C2
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
00000922
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
000009ESB
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF

00000000
40404040
00000000
00000000
00000000
00000000

-00000000

00000000
30430007
20042187
1C461240
001E1CU2
001F0020
01120002
1802000C
00040003
00040030
0A000045
06000088
04001¢20
00000400
FOFOFOFO
F2420004
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF

GENERATED OUTPUT

0201D7D9
40000000
00000000
0000G000
06000000
00000000
00000000
00000000
00070007
00081193
00070015
12400015
10CEQ015
00030162
18721001D
00040004
00040040
02040080
04000100
00000004
00500002
FOFOFOFO
c3Cc8C1D9
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF

DUE3CSE2
00000000
00000000
00140021
000009F1
00000000
00000000
00000000
1C231472
801B0003
001c001C
00160C1C
000C1C9B
00020021
18040020
00040005
00040080
30000001
03C2F2F1
00006000
00034200
FOFOFOFO
00000233
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF

FFFFFFFF,

Figure PR-4 (Part 1 of 2). Machine Interface Program Template

‘E3404040

00000039
00000000
00000100
000002ccC
00000000
00000000
00000000
00140014
00141011
001C10A3
001C001C
40000014
01640002
10000000
00040007
00020005
6804004A
04000102
04000000
0702001F
FOFOFOFO
FFFFFFFF
FFFEFFFF
FFFFFFFF
FFFFFFFF
FFYFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFEFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

4ou40uouo
00000000
00000000
000001RC
00000000
00000000
00000000
00000000
0014001C
001c1ccz
00142009
184F1000
00140014
00110000
18010023
00040008
00030005
68040054
21000000
0A000060
00000000
FOFOFOFO
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
000009DE
FFFFFFFF
FFFFFFFF

40u0u0uo
00000000
00000000

000002uy,

00000000
00000000
00000000
00000000
001c001C
12400014
001L10B6
0015200A
001C1802
00090260
00000004
00040010
0800002A
68020058
085BD7DY
00050000
420001¥4
FOFOF9F9
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
0000097A
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF

Program Resolution Monitor

uouououo
00000000
00000000
00000000
00000000
00000000
00000000
00000000
001C1A43
0007001C
00072005
20040008
40000004
00000088
00040001
no040020
08040033
6804007A
EED9IFOF0
000A 0000
42021FF0
F9F94200
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF

PR-9

00000520
00000540
00000560
00000580
000005A0
000005c0
000005E0
00000600
00000620
00000640
00000660
00000680
000006R0
000006C0O
000006EO
00000700
00000720
00000740
00000760
00000780
000007a0
000007CO
000007E0
00000800
00000820
00000840
00000860
00000880
000008AO0
000008CO
000008E0
00000900
00000920
00000940
00000960
00000980
00000940
000009CO
000009E0
00000A00
00000A20
00000A40
00000A60
00000A80
00000AAQ
00000ACO
00000AEO
00000800
00000820
00000840
00000B60
00000380
00000BRO
00000BCO
00000BE0
00000C00
00000c20
00000Cu0
00000C60
00000C80
00000CAQ

FFFFFFFF

FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
0000092D
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
00000986
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
00000938
FFFFFFFF
0001C002
c002p7CcY
CO01C9FF
03C3FGF3
CO03C3F0
10C003c3
0013C003
O1D7FFFF
FFFFFFFF

FFFFFFFF
0V00096F
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
0000090E
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
D7CU4FFFF
FFFFFFFF
FFFFFFO0
FFFFFFFF
FIFFFFFF
F3F2FFFF
C3F6FUFF
FFFF0017
001AC002

FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
0000094E
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
000008EY
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFPFF

‘FFFFFFFF

FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
00000959
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
000008DA
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFF0002
0005C003
08C003C3
Go0BCO0O03
FFOOOECO
FFFFO0011
FFFFFFOO0
c002C1D5
C2CI9FFFF

FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFYFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
00000917
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
00000998
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
C002D7E2
D7E3DI9FF
FOFI1FFFF
C3FOFU4FF
03C3FOF8B
C003C3F3
1wcoo1c3
FFFFFFFF
FFFF001B

Figure PR4 (Part 2 of 2). Machine Interface Program Template

PR-10

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

FFFFFFFF
FFFEFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
0000098sS
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
000008EE
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFEFFFF
000008F8
FFFFFFFF
FFFFFFFF
FFFEFFFF
FFFFFEFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFO0
FFPF0009
FFFFFFO00
FFFFFFFF
FUFFFFFF
FFFFFFFF
0018¢002
€002C2C3

FEFFFFFF
FFFFFFFF
FFFFFFFF
000009AD
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
00000943
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
000009C0O
FFFFFFFF
FFFFFFFF
FFFFFFTF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
0003cC9cC2
06C0O03C1
C003C3F0
0Ccco03c¢3
000FC003
FFN012CO
0015C001
C1C3FFFF
FFFFFFFF

FFFFFFFF
00000964
FFFFFFFF
00000903
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
000008DO
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
D7DIFFFF
D7D7FFFF
F2FFFFFF
FOFSFFFF
C3F1F6FF
03C3FuF8
E9FFFFFF
FFFF0019
00014001

FFPFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
00000990
FFFFFFFF
000009AY
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
000009DY
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
0000097 A
FFFFFFFF
FFFFO004
FFFF0007
FFO00ARO
FFFFO00ND
FFFFFF0OO0
FFFFFFEF
FF0016C0O
co02¢1c9
€200.0000

9

INTRODUCTION

The prompter component of the CPF (control program
facility) presents prompt displays to be used in building
valid CL commands. To do this, the prompter uses the
information that is in the CDO (command definition
object) of the command being entered. Pressing the
CF4 Key, entering a question mark before the command
name, or entering selective prompt characters before a
parameter invokes the prompter.

The prompter interfaces with the command analyzer to
build and validate a command that conforms to the
user-defined options. The command is usually entered
in a string format. The prompter and command analyzer,
however, build the command internally in a variable
length positional list and validate the user-defined
parameter values in that format. The prompter can then
convert the positional list back to a string format for
insertion, system logging, and displaying.

The prompter provides the following services to the
user:

« A display of each command and its parameters from
the CDO with display space provided so that the user
can enter the desired parameters

« A display of any parameter values entered, either
initially with the command or during prompting and
value entry

« An automatic or user-defined entry of default
parameter values from the CDO

Prompter

Separate display list to enter values for parameters
that can accept a variable length series of values, and
the insertion of a user-defined list of values into the
command parameter display and command analyzer
positional list

Separate display lists of allowable values from the
CDO for parameters that can have one or more fixed
values, and provides for entering and the insertion of
those values into the command parameter display and
command analyzer positional list

A display showing a list that the prompter recognizes
of the console function keys and their assigned
values

A display showing a list of each command analyzer
message pending on the command currently being
prompted for

A response to pressing a function key. The function
keys provide the following services:

CF1 Terminate the prompting cycle

CF2 Back up to previous display

CF4 A parameter display for a command
embedded within the command being
entered

CF13 A display of function key assignments

CF14 A display of the command in string
format

CF15 An error message display
CF16 Enter the completed command

CF18 A redisplay of the initial parameter
display with all default parameter values
shown. For selective prompting, a
redisplay of the initial parameter display
with all the initial rules

HELP A display of function key assignments

Prompter PT-1

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

GENERAL OVERVIEW

Prompter Modules

The prompter component consists of the following
modules:

Note: An arrow (-->) identifies a module as being an
entry module into the component. Indentation of a
module shows its dependency on a previous module.

-->QPTPARML—-Prompter Control: This module controls
the prompting cycle by calling QPTSETUP for
initialization, QPTPRCSS for the user interface cycle,
QPTCHECK for validity checking, and then transfers
control to the command analyzer for command
execution if in execute mode, otherwise returns
control to the caller.

QPTSETUP—-Main Processor Setup Routine: This
module initializes a prompting list space that
contains addressability to command definition,
positional list, and user-entered data required for
the prompting cycle.

QPTCHECK—Command Check Routine: This
module is called to housekeep the command
positional list, delete all error messages in the
queue, and to call QPTSTRNG to generate the
string form of the command. It also interfaces
with the command analyzer to validity check the
command.

QPTPRCSS—Parameter and List Screen Processor:
This module generates the parameter and list
screens for the user to enter the desired values. It
calls QPTPERMV to generate the permissible
values display. QPTPRCSS calls QPTGTINP to get
the user-defined values and QPTVLINP to
housekeep the positional list and to call the
command analyzer to syntax check the command.
QPTPRCSS calls QPTERMSG to process any error
messages.

QPTPERMV-Permissible Value Display
Processor: This module generates the
permissible value display. It calls QPTGTINP,
QPTVLINP, and QPTERMSG for the same
purposes that QPTPRCSS called them.

QPTGTINP-Get Input from Device and
Process: This module acquires user input
from the display and updates the positional
list.

QPTDFT-Build Default Entry in Positional
List: This module builds a default entry in
the positional list and supplies a default
value for the entry.

QPTVLINP-Validate Display Input Via
Command Analyzer: This clears the
positional list flags, deletes obsolete error
messages, and interfaces with the command
analyzer to validity check the command in its
current form.

QPTERMSG-Error Message Processor: This
module retrieves error messages from the
queue that are pertinent to the current
command.

QPTKYPRC-Function Key Processor: This module
responds to any user-function key by providing
the requested function, or by calling QPTPFKRYV to
generate the function key review display,
QPTERREV to generate the error message review
display, or QPTCMSRYV to generate the command
string review display.

QPTPFKRV-Function Key Review Screen
Processor: This module generates the function
key review display to remind the user of the key
functions available. QPTPFKRV also reminds
the user of special prompter operators.

QPTERREV-Error Message Review Display
Processor: This module calls QPTERMSG to
retrieve error messages pertinent to the current
command status and displays these messages
to the user.

QPTCMSRV—Command String Review Display
Processor: This module calls QPTSTRNG to
build the string form of the command and
displays this string form to the user.

QPTSTRNG—Command String Creation: This
module builds a string form of the command
based on the current command positional list.

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Prompter Invocation Paths

the prompter component; it also shows the CPF
components that support access to the console device
and to message handling.

(Figure PT-1 shows the three possible paths to invoke

Command Entry
with Prompt
Request

Command, or
Selective
Prompting

CL Program
Executed from
the Console

or Work Station

CL Program,
Command, or
Selective

Prompting

Interactive
Data Base
Utilities

Command
Analyzer

| - Console

Function
Manager

Prompter Message Handler

5251
Function
Manager

Figure PT-1. Prompter Overview

C

Prompter PT-3
This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Prompter Invocation and Control Overview After the prompting list has been initialized,
QPTPARML begins the prompting cycle by calling
Figure PT-2 and the following text describe the module QPTPRCSS. QPTPRCSS generates the primary

relationship in the invocation and control of the command prompt displays (see Figure PT-3).
prompter component.

When the prompting cycle is finished, QPTPARML

No matter how the prompter is invoked,
n promprer IS | calls QPTCHECK to reset certain flags in the

QPTPARML is called by command analyzer to

control the prompter processing. QPTPARML calls command analyzer positional list, and deletes all

QPTSETUP to perform initialization procedures. error messages in the queue for the command just
built. QPTCHECK then calls QPTSTRNG to rebuild

When QPTSETUP gets control, it creates and the command in string format from the current

initializes a prompting list space. The prompting command analyzer positional list. QPTCHECK calls

list provides access to the command definition and the command anlayzer to perform a final validity

positional list information needed to drive all check on the command.

prompter displays. It also contains a history of

user-defined data and error messages associated Control is returned to QPTPARML to destroy the

with the parameter values entered. prompting space and close the console device file.
QPTSETUP inserts any initial command analyzer If specified by the user, control is transferred to
messages in the prompting list and establishes the command analyzer to execute the command.
pointers to the positional list passed by the

command analyzer and to the CDO for the

command being built. QPTSETUP also saves the

initial input values for selective prompting.

Command
Analyzer

QPTPARML

Prompter
Control

QPTCHECK QPTPRCSS QPTSETUP
Parameter and Mainline

Command Check List Screen Processor

Routine Processor Setup Routine

QPTSTRNG

Command String
Creation

Figure PT-2. Prompter Invocation and Control Overview

PT4
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Initial Parameter Display, List of Values Display, and

Permissible Values Display Overview QPTPARML
Figure PT-3 and the following text show the module zroTpt'e'
. . . . ontro
relationship to control the primary prompt display
generation and to read and validate user-defined ; n
parameter values and value lists.
QPTPRCSS
2}
Bl QPTPARML calls QPTPRCSS to generate the L?S'f‘"s“:r‘:;na”d
parameter display based on the command Processor
definition of the command being entered. |f

requested, the list of values display is generated
by QPTPRCSS so that a list of values can be
entered for the parameter.

n The permissible values display for a keyword can

. . . QPTPERMV
be requested by using the special display symbol Permissible g::ﬁ'\;:fjp
input. QPTPRCSS calls QPTPERMV to generate Display Value from Device
this display. Processor and Process

Bl Both QPTPRCSS and QPTPERMV process
user-defined values by first calling QPTGTINP to

QPTVLINP
get the user-defined values from the device file
and to update the parameter positional list. Validate
Display Input
n QPTPRCSS and QPTPERMYV then call QPTVLINP ;
to delete the current positional list flags, to delete
any messages on the queue for the parameter QPTDFT
values being changed, and to call command Supply Command
analyzer to validate the updated command Parameter Analyzer
positional list. QPTVLINP will supply the defauit Default

value or the initial value for parameters that are
blanked out. QPTDFT is invoked to supply the
default values for all parameters that are not
selectively prompted.

QPTERMSG

Error Message
Both QPTPRCSS and QPTPERMV call QPTERMSG Processor

to process any error messages resulting from the
command build cycle.

Figure PT-3. Initial Parameter Display, List of Values
Display, and Permissible Values Display
Overview

The preceding processing cycle continues until one of
the following is signaled by pressing a function key (see
Figure PT-4):

« The user is satisfied with the command as entered.
+ The user wants to abort the processing cycle.

+ The user wants to invoke a prompter support
function.

+ The user wants to reset all command parameters to
their default values or their original values.

Prompter PT-5
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Function Key Processing

QPTKYPRC is called whenever a user interrupts the
prompt display cycle by pressing a function key. It
intercepts the key and either performs the requested
function or indicates to the calling module what function
is to be performed.

Figure PT-4 and the following text show the module
relationship when a function key is pressed.

If the Enter key is pressed and the last parameter
screen is displayed, QPTKYPRC performs the
same function as when CF16 is pressed. If the
last parameter screen is not displayed, QPTKYPRC
determines the next screen to be displayed.

If CF1 is pressed, QPTKYPRC calls QPTSTRNG to
rebuild the command string, and then signals
exception CPF6801 to the caller of the prompter.
If the command being prompted for is to be
logged, a type command message must be sent to
the program’s message queue that invoked the
command analyzer with command prompting
requested. The type command message contains
the rebuilt command string.

If CF2 is pressed, QPTKYPRC indicates that
QPTPRCSS is to display the previous screen.

If CF4 is pressed, QPTKYPRC calls the command
analyzer. The command analyzer re-invokes the
prompter to prompt for the embedded command.

If CF13 or the Help key is pressed, QPTKYPRC
calls QPTPFKRV to generate a display of the
function key options available to the user.

If CF14 is pressed, QPTKYPRC calls QPTCMSRV
to generate the command string review display.
QPTCMSRYV then calls QPTSTRNG to build the
string format from the current positional list, and
displays the command being entered in string
format.

If CF15 is pressed, QPTKYPRC calls QPTERREV to
generate an error message display.

if CF16 is pressed, QPTKYPRC checks all
previously displayed screens for errors. If an error
is found, QPTKYPRC indicates that QPTPRCSS is
to display the first screen that has an error. If no
errors are found, QPTKYPRC indicates that
prompting is complete, and that QPTPRCSS is to
return to QPTPARML for a final check of the
command by QPTCKECK.

If CF18 is pressed, QPTKYPRC calls QPTDFT to
supply default values for all parameters that are
not selectively prompted. The defaults for
selectively prompted parameters are obtained from

user-defined values stored in the positional list by
QPTKYPRC.

If the Roll Up key is pressed and a list screen is
displayed, QPTKYPRC indicates that the next list
screen is to be displayed. If not on a list screen,
QPTKYPRC indicates that the same screen is to be
displayed.

PT-6
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Function
Key

3

QPTKYPRC

Function Key
Processor

R

n Enter Key CF13
r Olr . n CF1 CF2 n CF4 or Help
Indi QPTPFKRV
Indicate Determine QPTSTRNG ndicate .
. Command to Show Command Function Key
Prompting Next . .
String Previous Analyzer Review Screen
Complete Screen
Creation Screen Processor
Escape
Message
CPF6801
a CF14 CF15 o | CF16 a CF18 [10) Roll Up
QPTCMSRV QPTERREV . Restore Initlal QPTDFT :
Indicate Value for Indicate
i i Next List
Command Error Message Prompting Selective Build Default ext Lis
. . . Complete Prompt Screen
String Review Review Parameter Entry
QPTSTRNG
Command
String
Creation

Figure PT-4. Function Key Processing

Prompter PT-7
This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Error Message Display Overview

Figure PT-5 and the following text show the module
relationship during the display of error messages.
During the command build cycle, the prompter
processes errors detected in the user-defined display
and function key use, syntax errors detected by the
command analyzer, and system errors signaled for the
prompter. The prompter makes the error messages
available to the user in two ways:

n Each display includes an error message line at the
bottom of the display; the modules and displays

are:
QPTPRCSS Initial parameter display
QPTPRCSS List of values display
QPTPERMV Permissible values display
QPTCMSRV Command string review

display

QPTPFKRV Function key review display
QPTERREV Error message review display

(This uses the entire display,
for the error message display,
not just the bottom line.)

QPTPRCSS calls QPTERMSG to retrieve all the
error messages associated with the current display
and writes them to the error block for the current
display. The top message in the error block is
displayed at the bottom of the current display. The
roll function can be used to view additional
messages associated with the display. The error
block is a message subfile.

n If all messages associated with the current display
are to be viewed, the CF15 key is pressed, which
invokes QPTERREV through QPTKYPRC to
generate the error message review display (see
Figure PT-4). QPTERREV in turn calls
QPTERMSG, which retrieves all messages from
the queue.

PT-8

This document contains restricted materials of IBM. LY21-0571-6

QPTPRCSS
Parameter and
List Screen
Processor

<-— QPTPERMV

Function
Key

QPTKYPRC

Function Key
Processor

QPTERREV

Error Message
Review

QPTERMSG

Error Message
Processor

Figure PT-5. Error Message Display Overview

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

C

INTRODUCTION

The reclaim/damage notification component of the CPF
(control program facility) is responsible for recovery of
data at the object level. The component’s primary
purpose is to give the user information on both
relational and physical object damage. To provide this
facility, this component is divided into the following
functions:

« The reclaim storage function gives the user an
interface to clean up object relationships and to
recover storage for permanent objects no longer
addressable through the CPF command interface. In
some cases, damaged objects will be deleted
(subsystem descriptions, for example), while other
damaged objects will be repaired to minimize
potential data loss for the user (libraries or data base
files, for example). Unnecessary or duplicate
IBM-supplied objects will be eliminated to free
physical auxiliary storage.

« Damage notification and logging provides the user
with identification information and probable recovery
procedures upon reference to physically damaged
objects.

GENERAL OVERVIEW OF RECLAIM

Reclaim Modules

The reclaim portion of this component consists of the
following modules:

Note: An arrow (-->) identifies a module as being an
entry module into the component. Indentation of a
module shows its dependency on a previous module.

-->QRCLAIM—Reclaim Driver: This module is
responsible for controlling the overall reclaim utility. It
creates the necessary space and index objects used
by the other modules, forms the controlling routine
for most status messages, and verifies the initial
condition requirements for undamaged libraries and
system quiesced status.

Reclaim/Damage Notification

-->QLIRCLIB-Handle Damaged Libraries: This module
checks the recovery library for library recovery objects
and deletes the partially completed libraries and their
library recovery object. It also rebuilds any library
whose context associated space is damaged. All
other objects that comprise a library will be checked
for damage. If damage is detected, the object will be
deleted and re-created, saving any usable
information.

QRCALOWN-Guarantee All Objects Are Owned:
This module verifies that all objects have a valid
owner. To perform this, all profiles are checked
for damage and are either deleted or the function
is terminated, depending on the profile that is
found to be damaged. After damaged profiles
have been eliminated, the module issues the
Reclaim Vertical Microcode instruction to return a
list of all ownerless and any duplicate machine
context objects. Duplicate machine context objects
that are libraries and profiles are deleted. Logical
unit descriptions, control unit descriptions, and line
descriptions that are not addressable through the
machine context are also deleted, and all
ownerless objects are given an owner. For most
objects the owner is determined from a table
(reclaim definition table); for message queues,the
owner is determined based on the type of
message queue. Other objects are given to the
security officer profile.

Reclaim/Damage Notification RC-1

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

QRCSEPOB-Separate Objects Into Classes: This

module separates the owned objects in a particular

profile into the various classes for handling.
Objects that are formats and directories are
processed by storing information on them into a
table which is processed after all other objects
have been handied. Information on the secondary
pieces of composite objects are stored into an
index for handling when the primary piece of the
object is processed. Those objects that have an
invalid subtype are destroyed and the system
operator is informed. Primary pieces of compaosite
objects are handled by passing information on the
object to the QRCOMPST module. All other
objects are classified as simple objects and are
processed by the QRCSIMPL module.

QRCSIMPL-Simple Object Handling: This
module verifies that objects are properly
addressable through the correct context.
Duplicates are deleted or inserted into a special
reclaim library (QRCL), depending on the
type/subtype of the object, the owner of the
object, and the necessity to retain the object on
the system (for example, save restore authority
objects can be deleted).

QRCOMPST—Composite Object Handling: This
module verifies that primary pieces of
composite objects are properly addressable and

contain the necessary pieces to be valid objects.

Improperly addressable primary pieces are
moved into a library or are deleted if they were
last in temporary libraries. The secondary
pieces are checked and information on them is
used to update the index of secondary objects.
Damaged objects are either repaired (as in the
case of libraries and certain files) or deleted (as
in the case of subsystem descriptions).
Ownership and authorities of all secondary
pieces are updated to be consistent with their
primary pieces.

QLIRCLIB—-Handle Damaged Libraries: This
module is called to repair damaged libraries.

QDBRCLMA—Verify Secondary Pieces of
Files: This module returns a list of all
secondary pieces found for a file. It updates
the ownership and authorities of all
secondary pieces to be consistent with the
primary. Also, any member control blocks
that are not in the correct library are moved
and renamed to be consistent with the

primary.

QRCLENUP-Clean Up Dangling Pieces and
Process Format and Directories: This module
processes the secondary pieces of composite
objects that do not have a primary piece
associated with them. With the exception of files,
dangling secondary pieces are deleted. For files,
those secondary pieces that contain meaningful
information are rebuilt into valid file structures that
the user can access to retrieve the data. After
dangling secondary pieces are processed, the
formats and directories are processed. Those that
no longer contain meaningful data are deleted.

QDBRCLMB-Process Dangling Pieces of Files:
This module creates valid file structures for
those pieces that contain lost user data (data
spaces or members that address indexes/data
spaces).

QDBRCLMC-Process Formats and Directories:
This module determines whether the formats
and directories contain valid file information and
deletes those that do not. Any remaining file
recovery objects that could not be processed
successfully by data base recovery are deleted
from the system.

QRCINSRT-Insert Object Into the Reclaim Library:
This module inserts object into the reclaim library.
For those objects that are duplicates in this library,
the name is changed to an alias, and the original
name information is saved as object description
text information.

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

C

QRCDEBUG-Debug Dump for Reclaim: This
module outputs a dump of the actions taken for all
objects that are destroyed, that change owners, or
that change libraries. Additionally, the profile and
libraries in the system are listed. This information
is used only for problem determination on the
reclaim function. As such, it is invoked only when
the system is servicing the arbiter process
{documentation requests that the user not use the
facility as it only provides information useful to
IBM).

Reclaim Storage Function

The reclaim storage function is used to recover physical
storage that has become unaddressable through normal
CPF interfaces. This may be due to damage to libraries
and composite objects, or due to APAR (authorized
program analysis report) conditions that cause incorrect
addressability and conditions through which certain
objects cannot be deleted from the system.

The recovery of physical storage results in two possible
object conditions. One is the case in which an object
either was residing in the wrong library, or has become
lost from a library and has been reinserted into the
proper library or inserted into a library designated by the
reclaim function. The second case occurs when
duplicate objects or certain types of damage are
detected; internal duplicate objects are deleted from the
system.

Object Addressability

Objects on the System/38 are addressable by using one
of the following schemes:

« Context interface: This scheme provides
addressability through libraries. The user (via
resolves) states what library or list of libraries are to
be searched to find and return the address of an
object in a system pointer.

« Addressing an object indirectly through an object in a
library: An object addressed through a library
contains system pointer(s) to other objects not usually
addressable through the library. This scheme is used
by composite objects; they are a collection of objects
that are logically tied together to provide some
function (for example, libraries are composite objects
consisting of the context, which is addressable
through the machine context, the object description
storage objects, and a programming change object).

« Addressing objects through the owning-user profile:
To assist in this, vertical microcode provides a
function by which any objects that are unowned can
be found (Reclaim instruction). Using the output from
this instruction and a list of owned objects for all
profiles, any object in the machine can be addressed.
This scheme is used by the reclaim storage utility to
clean up objects that are not properly addressable by
the first two schemes.

Those objects that should be addressed through a
context and are not will be placed back into the
appropriate context or a special reclaim context.
Non-context addressable pieces of composite objects
will be relinked to either the piece that is addressable or
to a reconstructed piece, or will be deleted. These
pieces are referred to as dangling.

After running the CPF reclaim utility, all objects created

prior to the last IMPL (internal microprogram load)
should be addressable through the first two schemes.

Reclaim/Damage Notification RC-3

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Reclaim Overview

Figure RC-1 and the following text describe the flow of
control when running the reclaim function. All
subsystems must be terminated; this restriction allows
the function to avoid any of the normal locking
problems.

The reclaim driver QRCLAIM gets control, checks
to determine if the system is quiesced, and if
commitment control is active; the message handler
is called to inform the user if the subsystem is not
quiesced, and if commitment control is active. The
data base and librarian components are called to
perform any recovery actions. The librarian
component is called to return a list of the libraries
on the system, and these are checked for damage.
Upon encountering a damaged library (context),
the message handler is called to inform the user.
QLIRCLIB is invoked to check all of the objects
that comprise a library for damage. If damage is
detected, the object will be deleted and
re-created. QLIRCLIB will also rebuild any library
whose associated space is found damaged. The
objects required by the reclaim function are
created next. They include a communication object
which is passed between the modules, and they
contain object processing information and pointers
to other objects. Also created is the QRCL library.
During all stages of processing, the user is
informed with status messages on the progress of
the function.

QRCLAIM calls QRCALOWN, passing a pointer to
the communication object. This module calls the
librarian component to return a list of the profiles
on the system. These are checked for damage,
and the user is informed if QSYS, QDBSHR,
QSNADS, QDOC, QSPL, or QSECOFR are
damaged. If any other profile is damaged, it is
deleted, and the operator message queue has a
message placed on it for the profile deletion. All
profiles are now undamaged. The vertical
microcode reclaim function is called to return a list
of ownerless objects. This list is processed and a
default owner is given to any object without an
owner. Additionally, duplicate profiles and
libraries, logical unit descriptions, control unit
descriptions, and line descriptions that are not
addressable through the machine context are
deleted. Control is then returned to QRCLAIM.

QRCLAIM processes the list of valid profiles that
was materialized in QRCALOWN. The current
profile pointer is stored in the communication
object. Control is then passed to QRCSEPOB.
module.

QRCSEPOB materializes the owned objects for the
current profile. Each object is then processed and
placed into one of five classifications. Objects that
are formats or directories are handled by entering
information on them into a list. The primary part
of a composite object is handled by passing
control to QRCOMPST. Information on the
secondary pieces of a composite object is saved in
an index for processing. Objects with types that
are invalid to vertical microcode or subtypes that
are invalid to CPF are handled by transferring the
invalid-typed objects to the security officer and
deleting the invalid-subtype objects. All other
objects are processed in QRCSIMPL. After all
owned objects for a profile are handled, control is
then returned to QRCLAIM.

RC-4
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

C

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

When QRCSIMPL gets control from QRCSEPOB,
the object is verified as being in the proper library.
Objects previously in a temporary library are
deleted, and any whose context cannot be found
or are duplicates of objects in a library are moved
to QRCL. This excludes internal CPF objects and
objects owned by QSYS, which are considered as
IBM-supplied system objects. These are deleted
when encountered as duplicates.

When QRCOMPST gets control from QRCSEPOB,
QLIRCLIB is called if the object is a library, to see
if the objects that comprise this library have been
checked for damage. If not, they will be checked
and, if found damaged, the object will be deleted
and re-created. If the associated space is
damaged, the library will be rebuilt. Next, the
object is verified as being in the proper library.
Objects previously in a temporary library are
deleted, and any whose context cannot be found
or are duplicates of objects in a library are moved
to QRCL. The secondary pieces of the object are
then processed, and information on the pieces is
stored into an index for later processing. For data
base files, QDBRCLMA is invoked to return a list
of secondary pieces. As secondary pieces are
processed, the ownership and authority is made
consistent with the primary piece.

Objects are inserted into the QRCL library by
calling QRCINSRT. This module inserts the object
that was passed and renames the object to an
alias if a duplicate object already exists in QRCL.
The OIR text description is updated to inform the
user of the original name and library of the object
that was inserted.

After all profiles are processed, QRCLENUP is
invoked to handle the secondary pieces of
composite objects having no associated primaries.
The list of these objects is obtained from the index
containing secondary piece information. Those
pieces of a library or subsystem description are
deleted. For files, QDBRCLMB is called to create
file structures for those pieces still containing lost
user data. After all secondary pieces are handled,
QDBRCLMC is called to clean up formats and
directories no longer containing valid information.
Extraneous data base recovery objects are also
deleted. Control is returned to QRCLAIM.

All objects on the system should be properly
addressable. QLIVLOIR is invoked for each library
to remove object description information for those
objects no longer in the library. After control is
returned to QRCLAIM, the module deletes the
internal objects created and also deletes the QRCL
library if it is empty. The message handler is
called to output completion information and the
function is terminated.

If a job is being serviced during execution of this
function, a series of dumps will be taken based on
calls from the various modules to QRCDEBUG.
The profiles and libraries on the system are listed.
Any object that is ownerless is listed with who the
default owner was. Objects moved to QRCL will
result in a call to output the information.
Secondary pieces that are not attached to a
primary are listed prior to their deletion or
recreation back into valid files. Any object being
deleted from the system is listed. This information
is also listed in the system operator's message
queue, for those objects known to the user
(external). QRCDEBUG also outputs information
for those objects internal to the system of which
the user has no knowledge.

Reclaim/Damage Notificaton RC-5

. . Message Data
n Librarian Handler Base
Function
QRCLAIM
Support
Reclaim Driver
QRCDEBUG
Security
Debug Dump
for Reclaim

QRCALOWN QRCSEPOB QRCLENUP QLIVLOIR
Guarantee
Objects Separate Objects Cleanup Remove
Are Owned into Classes Dangling Pieces OIR Record
QLIRCLIB QRCSIMPL QRCOMPST QDBRCLMB QDBRCLMC
Handle Damaged Simple Object Composite Process Process Formats
Libraries Handling Object Handling Dangling Pieces and Directories
QRCINSRT QDBRCLMA QLIRCLIB
Insert Object
into Reclaim Verify Secondary Handle Damaged
Library Pieces of Files Libraries

Figure RC-1. Reclaim Overview

RC-6

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

GENERAL OVERVIEW OF DAMAGE NOTIFICATION -->QRCPDMGL-Logging of Partially Damaged Objects
to the History Log: This module receives control from

the switched line component to handle the hex 0017
L Damage Notification Modules 0801 event for all objects excluding 1/0 descriptions
(logical unit, control unit, and line) using the data
The damage notification portion of this component passed. A CPF message is created using the data
consists of the following modules: passed via a parameter. QRCPDMGL places the
message on the system operator message queue. It
Note: An arrow (-->) identifies a module as being an also places message CPF8198 on the system
entry module into the component. Indentation of a operator message queue. This automatically places
module shows its dependency on a previous module. the messages on the system history log. Control is

returned to the switched line component.
Damage notification modules may fail due to the

conditions they are running in; however, a failure in -->QRCDMGNT-Default Program for Damage
these programs is handled by the calling program and Notification: This module acts as the default program
will have no further effect on existing processes. for any unhandled MCH1604 escape messages. It is
available to other CPF programs for use in damage
-->QRCIMPLN-Logging of Damaged Objects During notification. When called, QRCDMGNT retrieves the
IMPL to the History Log: This module receives exception data from the message queue. It
control from the work control component during an determines what type of message to send, builds the
IMPL. QRCIMPLN searches the object recovery list correct corresponding message data, and sends this
for damaged object entries placed on it by vertical message to the message queue of the program that
microcode. A CPF message is created for each entry received the original damage exception.
and sent to the history log. QRCIMPLN places
message CPF8197 on the system operator message -->QRCPDMGN-Default Program for Partial Damage
queue if it has sent any messages to the history log. Notification: This module acts as the default program
If there is not enough auxiliary storage to send all of for any unhandled MCH1668 escape messages. It is
the damaged object messages, QRCIMPLN will send available to other CPF programs for use in damage
L message CPF8196 to the system operator message notification. When called, QRCPDMGN retrieves the
queue. exception data from the message queue. It
determines what type of message to send, builds the
-->QRCDMGLG-Logging of Damaged Objects to the correct corresponding message data, and sends this
History Log: This module handles machine interface message to the message queue of the program that
event hex 0017-0401 for the event monitor, which is received the original damage exception.
established in the system arbiter. QRCDMGLG
retrieves the event data for the damage set event, The following programs are called by QRCIMPLN,
and using this data creates a CPF message. QRCDMGLG, QRCDMGNT, QRCPDMGL, and
QRCDMGLG places the message on the system QRCPDMGN:
operator message queue. It also places message
CPF8198 on the system operator message queue. QWDDMGNT-Subsystem Description Damage
This automatically places the messages on the Notification Program: This module is called by the
system history log. It returns to the system arbiter. damage notification programs to determine the

subsystem description of which the damaged
object is a piece. QWDDMGNT creates the
message data and indicates which message to
send. It returns to the calling program.

Reclaim/Damage Notification RC-7
This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

RC-8

QLIDMGNT-Librarian Damage Notification
Program: This module is called by the damage
notification programs to determine the library of
which the object is a part. QLIDMGNT then
creates the message data and indicates which
message to send. It returns to the calling program.

QDBDMGMB-Data Base File-Member Damage
Notification Program: This module is called by the
damage notification programs to determine which
file member has been damaged. It also determines
the type of piece {cursor, data space, or data
space index for example). QDBDMGMB creates
the message data and indicates the message to be
sent. It returns to the calling program.

QDMDMGNT-Data Management File Damage
Notification Program: This module is called by the
damage notification programs to determine the file
and the type of file that is damaged.
QDMDMGNT creates the message data and
indicates the message to be sent. |t returns to the
calling program.

QMHDMGNT-Message Queue Damage
Notification Program: This module is called by the
damage notification programs to determine the
type of message queue that is damaged.
QMHDMGNT creates the message to be sent. It
returns to the calling program.

QSPDMGNT-Spool Control Block Damage
Notification Program: This module is called by the
damage notification programs to determine the job
that is using the damaged spool control block.
QSPDMGNT creates the message data and
indicates the message to be sent. It returns to the
calling program.

QJODMGNT-Journal Receiver Damage
Notification Program: This module is called by the
damage notification programs to determine full or
partial damage of the damaged journal receivers.
QJODMGNT creates the message data and
indicates the message to be sent. It returns to the
calling program.

QWCDMGNT-Local Data Area Damage
Notification Program: This module is called by the
damage notification programs to determine the
name of the job that is using the damaged local
data area. QWCDMGNT creates the message data
and indicates the message to be sent. It returns to
the calling program.

QDFDMGNT-Save File Damage Notification: This
module is called by the damage notification
programs to determine which save file is damaged.
QDFDMGNT controls the message to be sent. It
returns to the calling program.

Damage Notification Function

The CPF damage notification and logging functions
handle the entry of damaged objects placed on the
object recovery list if the system went through directory
recovery during IMPL, and the signaling of machine
interface damage events and exceptions. This results in
the following facilities:

« During IMPL, a damage notification module searches
the object recovery list for entries placed on it by
vertical microcode. This module creates and sends a
message to the history log for each damaged object
entry it encounters.

« The damaged object event is signaled when the
machine interface object is marked as damaged by
the machine. A damage notification module handles
this event and sends two damage messages to the
system operator message queue and two damage
messages to the history log.

« When the machine signals an object-damaged
exception that is not handled by the proper program
in a process, a module is invoked to interrogate and
notify the system user of the damaged object
{(internal or external).

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Concepts

Most CPF components are not expecting to find
damaged objects. Therefore, most of the
machine-signaled damage exceptions go unmonitored.
This causes the message handling component to issue
the function check escape message to the process. This
usually causes the process to forego normal completion
of the function being performed. From the information
returned with the machine exception, an operator or
user may be unable to determine which object is
damaged or what corrective actions to take.

« Some CPF objects are composite, that is, composed
of more than one machine interface object. Only the
primary machine interface object of the compaosite is
addressed through a context and only the primary
object must follow naming standards. The end user
may not be aware of the use of a composite object.
Returning the name of any piece of the composite
would only confuse the user.

« The machine interface exception data contains a
pointer to the damaged object. From the pointer, the
name of the object, its type and subtype codes, the
name of the library that contains the object, and the
owning user profile can be found.

« Many of the objects are known only to CPF. These
objects can also become damaged and cause
processes in the system to behave in unusual ways.
The user must be notified in these cases to determine
the proper corrective procedures.

« The user must be able to relate a particular object’s
damage to the means of correcting the damage.

Assumptions

If any of the assumptions are not met, it is possible that
the damage notification modules will not be invoked
properly. Therefore, the results in these cases are
unpredictable.

Exception Handling Program Assumptions

« The input parameters are correct regardless of the
method of invocation; that is, there is always a valid
message queue and it contains the message

identified on the invocation of the program.

« The message queue that contains the message is not
the damaged object.

« The damaged object is not the message file being
used for message handling in the process.

» The damage is not to any module that may be
involved in determining the damaged object or
sending the resulting messages.

« The resulting messages exist in the specified CPF
message file and contain the proper data.

Event Handling Program Assumptions

« The program only executes when the machine
interface damage set event occurs.

« The system history log or system operator message
queue is not the damaged object.

« The messages appear on the appropriate CPF
message file and contain the proper text and data.

« The same messages are placed on the history log as
appear for damage notification.

Reclaim/Damage Notification RC-9

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Damage Notification During IMPL Overview

[

QRCIMPLN calls QDBRCIPS to handle data base

recovery.
Figure RC-2 shows an overview of the logging of

damage notification during IMPL. After QDBRCIPS has completed data base

recovery, it returns control to QRCIMPLN.
n During an IMPL, QWCISCFR calls QRCIMPLN.

.U.‘ H

QRCIMPLN calls QTNIPL to handle commitment
B When QRCIMPLN is called, it searches the object control initial program load recovery.

recovery list for physically damaged object entries

placed on it by vertical microcode during directory After QTNIPL completes recovery, it returns
recovery. QRCIMPLN then determines which control to QRCIMPLN.

message to send and then sends it to the history
log. If QRCIMPLN has sent any messages to the
history log, it also sends message CPF8197 to the
system operator message queue. If there is not
enough auxiliary storage to send all of the
damaged object messages, QRCIMPLN will send
message CPF8196 to the system operator
message queue.

[~

QRCIMPLN then returns control to QWSISCFR.

QWCISCFR

Start CPF
Process

History Log and
n System Operator
Message Queue

QRCIMPLN B
Messages
IMPL
Notification
a
4]
QDBRCIPS QTNIPL
Data Base
Synchronous Commitment
Recovery Control IPL

Figure RC-2. Damage Notification During IMPL Overview

RC-10
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Damage Notification Overview

Figure RC-3 shows an overview of damage notification
for damage exceptions.

A process is executing all kinds of instructions and
suddenly incurs a damaged machine interface
object. The machine signals a hard damage
exception (hex 1004). The same would hold for
partial damage except that control would pass to
QRCPDMGN instead of QRCDMGNT.

The process does not listen for any machine
interface exceptions directly, so the exception gets
to the PDEH (process default exception handler).
PDEH places the exception data in the message
queue and signals an MCH1604 escape message
to the proper invocation of the process.

If this exception is not handled by the program,
and depending on the module, message severity,
and the setting of the service log indicator in the
message description, PDEH may send the
unhandled escape message to the service log.

PDEH invokes the default program identified in the
message file for this unhandled exception, in this
case QRCDMGNT.

QRCDMGNT obtains addressability to the
damaged object and determines the user or
system object that has been damaged as a resulit.
Then QRCDMGNT sends an escape message to
the message queue of the program that was
originally signaled for the damage exception. This
places another escape message on the message
queue, a message that defines the damage by the
use of symbolic names. The user can listen
explicitly for this CPF message.

If the user does not listen for the new message,
PDEH signals a function check back through his
program.

Process
A
P r;yess Exception Default_
roc (hex 1004) Exception
n Handler

Figure RC-3. Default Program for Damage Notification Overview

This document contains restricted materials of IBM. LY21-0571-6

Object Damaged

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Service
Log
QRCDMGNT Message
Queue
Damage
Notification New Message

e e — e —— — — —— — e e e — e e o — — — — — — — ——

Machine Interface

Reclaim/Damage Notification RC-11

Logging of Damaged Objects on the History Log
Overview

Figure RC-4 shows an overview of the logging of
damaged objects on the history log.

n As the system is brought up and the system
arbiter process is established, the system arbiter
starts monitoring for the machine interface event
for the system object damage set event. Once the
arbiter establishes QRCDMGLG as the program to
handle this event, QRCDMGLG will be executed.
Iin the case of partial damage events, the arbiter
establishes QRCPDMGL as the handling program
to be executed.

n When QRCDMGLG is invoked, it retrieves the
event-related data and use it to obtain
addressability to the damaged object. QRCDMGLG
then determines which message to send to the
system operator and system history log. It also
sends message CPF8198 to the system operator
and system history log.

After sending the messages, the program returns to the
system arbiter.

Partial damage events (hex 0017 0801) are handled
similarly; the damage notification module is
QRCPDMGL, and QSWERP, the switched line module,
is called between the system arbiter and QRCDMGLG.
QSWERP handles the partial damage event for logical
unit, control unit, and line descriptions.

RC-12

System Operator

Message Queue

New
Message

QRCDMGLG

Damage
Log

System
Arbiter

Machine Interface

Event {(hex 0017 0401 and 0017 0801)

Figure RC-4. Damaged Objects on the History Log

Overview

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

>

Special Case Programs Overview

Figure RC-5 shows an overview of special case
L programs.

n Each of the special case modules is invoked in the
same way. One of the damage notification
programs (QRCIMPLN, QRCDMGLG, QRCPDMGL,
QRCDMGNT, or QRCPDMGN) is notified of
damage.

a It calls one of the special case programs to
determine the proper message and data to send.

When the program has determined which message
and data to send, it returns these values to the
calling routine and returns in the normal way.

QMHDMGNT n QWCDMGNT
é ———
(message (local data
queues) Damage areas)
Notification
Program
QWDDMGNT QJODMGNT
(subsystem (journal
\ descriptions) receivers)
QDBDMGMB B QSPDMGNT
(data base (spool control
members) blocks)
QDMDMGNT QDFDMGNT
(data base (save files)
files)

Figure RC-5. Special Case Programs Overview

C

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

PAABQ34-0

Reclaim/Damage Notification

RC-13

<

RC-14
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

INTRODUCTION

The service component of the CPF (control program
facility) provides aids and tools to assist the user
(primarily the service personnel) in problem
determination, analysis, reporting, and repair of system
program troubles within the CPF. An interface to the
internal machine product diagnostics and service aids is
also provided by the concurrent service monitor
component.

The service aids and tools are accessible through CL
commands and an internal macro interface. They are:

« Alert messages

e Dumps

« Trace

« Interjob servicing

« Programming changes
« Programming patches

« APAR (authorized program analysis report) data
preparation

« Programming change log
« Service log
« Internal service facility

« System verification facilities

Service

GENERAL OVERVIEW

Service Modules

The service component consists of the following
modules:

Note: An arrow (-->) identifies a module as being an
entry module into the component. Indentation of a
module shows its dependency on a previous module.

-->QSCAEVTH-Alert Event Handler: This module
formats and sends an alert to the network host.

-->QSCAPAR—-Prepare APAR (PRPAPAR)': This module
saves objects needed for the resolution of CPF
programming problems on the save/restore device. It
builds a list of objects to be saved along with the
system logs and programs, data base files, and
spooled files that were specified on the Prepare
APAR command.

QSCCOPY—Copy APAR Files: This module
performs the copy function which copies spool
files into data base files.

-->QSCAPC—Apply Programming Change
(APYPGMCHG)': This module performs the validity
checking and program change prerequisite checking
prior to calling QSCARPC to apply the program
change.

QSCARPC-Apply/Remove Programming Change:
This module is used by all of the programming
change and patch functions. QSCARPC performs
the apply program change or remove program
change function (if programming change exit
programs exist, they are called after the
programming change is applied or removed). It is
called by QSCAPC, QSCLPC, QSCPP, QSCRPC, or
QSCCPFI.

'This module is a CPP (command processing program).

Service SC-1

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

QSCAUTCK-Authority Checker: This module
checks if the user is authorized to perform
programming changes in the library chosen.

-->QSCCLNPT—Clean Print Train (CLNPRT)': With the

print train ribbon removed on the 3203, this module
causes a ripple pattern to be imprinted on a special

form, which cleans the print train.

-->QSCCCNPA-Change CSNAP Attributes

(CHGCNPA)': This module changes the CSNAP short
term statistics attributes which are set in the system.

-->QSCCPFI|-Start CPF Interface: This module is

invoked during the start CPF process. It lets the user

apply or remove deferred programming changes. A
display, containing the modifiable deferred

programming changes, is presented to the user. The

user can then modify the status of the program
changes. QSCARPC is called to perform any
changes.

-->QSCCPYLG-List Error Log (LSTERRLOG)': This

module causes error log information to be written to
a spooled printer file.

-->QSCCRTPG-Encapsulate Program: This module is

invoked to create a program from the materialized
program template in a data base file.

-->QSCDCNPA-Display CSNAP Attributes

(DSPCNPA)': This module displays or lists the
CSNAP short term statistics attributes set in the
system.

-->QSCDJI-Dump Job Internal (DMPJOBINT)': This

module gets an SCO (service communications object),
by creating one or resolving to one if it already exists,

to determine if a different job is being serviced. If a
different job is being serviced, a message is sent to

the other job and QSCDH is called. If a different job

is not being serviced, control is transferred to
QSCGJI to produce the dump.

'This module is a CPP {command processing program).

SC-2

-->QSCGJI-Get Internal Job Dump: This module
performs an internal job dump and sends a message
to the requestor containing the dump identifier.

-->QSCDJOB-Dump Job (DMPJOB)': This module
gets an SCO by creating one or resolving to one if it
already exists, and it copies the command parameters
to the SCO of the job being serviced. If another job
is being serviced, a message is sent to the other job
and QSCDH is called. If a different job is not being
serviced, control is transferred to QSCGJOB to
produce the dump.

QSCDH-Service Data Handler: This module opens
and closes the printer device file when a job is in
service mode. It also sends, to the printer dump,
data that was sent to a servicing job by its
serviced job.

QSCGJOB-Get Job Storage Dump: This module
opens and closes the printer device file, sends out
dump heading lines, creates a common
materialization space, and then calls QSCJSDMP.

-->QSCDOBJ-Dump Object (DMPOBJ)': An object to
be dumped can be selected by qualified object name,
and object type. This module gets an SCO by
creating one or resolving to one if it already exists,
and copies the command parameters to the SCO of
the job being serviced. If another job is being
serviced, a message is sent to that job and QSCDH is
called. If another job is not being serviced, control is
transferred to QSCGSO to produce the dump.

QSCDH-Service Data Handler: This modules
opens and closes the printer device file when a job
is in service mode. It also sends, to the printer
dump, data that was sent to a servicing job by its
serviced job.

QSCGSO—-Get System Objects: This module gets
system objects for the Dump System Object and
Dump Object commands. QSCGSO opens and
closes the printer device file, outputs dump
heading lines, creates a common materialization
space, and calls QSCOBJDM to dump the
specified objects.

-->QSCDMPPS—-Dump Pointer in a Space: This module
dumps materialization of the pointer in a space for
the ?DMPDTA macro.

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

-->QSCDSO-Dump System Object (DMPSYSOBJ)': -~->QSCJSDMP-Dump Job Storage Area: This module

A system object to be dumped can be selected by dumps the PASA, PSSA, object mapping table for
context, generic name, and type. The object to be observable programs, job structure objects, and all
Q— dumped can also be selected by specifying a base spaces addressed by space pointers in the PASA and

object and a list of offsets to pointers which chain to PSSA for a specific job.

the object to be dumped. A portion of the object’s

associated space can be selected instead of a dump -->QSCLCNPD-List CSNAP Data (LSTCNPDTA)': This

of the full object. This module gets an SCO by module lists the CSNAP short term data in the

creating one or resolving to one if it already exists, system.

and copies the command parameters to the SCO of

the job being serviced. If a different job is being ~->QSCLCNPH-List CSNAP History (LSTCNPHST)':

serviced, a message is sent to it and QSCDH is This module lists the CSNAP history data in the

called. If a different job is not being serviced, control system.

is transferred to QSCGSO to produce the dump.
-->QSCLID-List Internal Data (LSTINTDTA)}': This

QSCDH-Service Data Handler: This module opens module lists the requested internal machine data

and closes the printer device file when a job is in areas.

service mode. It also sends, to the printer dump,

data that was sent to a servicing job by its -->QSCLCPR-Load Programming Change Authority

serviced job. Checking (LODPGMCHG)': This module checks if the
user is authorized to load programming changes to

QSCGSO-Get System Objects: This module gets the library specified.

system objects for the Dump System Object and

Dump Object commands. QSCGSO opens and QSCLPC-Load Programming Change:

closes the printer device file, outputs dump Programming changes are read into the system

heading lines, creates a common materialization from the program change media by a restore

space, and calls QSCOBJDM to dump the operation requested by this module. It is called by

specified objects. QSCLCPR.

L -->QSCDSS-Display Service Status (DSPSRVSTS)': -->QSCMATPG-Materialize Program: This module is
This module displays the names of the serviced and called to materialize a program, and place the
servicing jobs, and information about the CPF trace if materialized program template in a data base file.
it is active.

-->QSCMMCTX-Materialize and Dump Machine
-->QSCEND-End Service (ENDSRV)': This module Context: This module materializes and dumps the
takes a job out of the service mode by destroying the attributes of the machine context, including the
SCO, the service queues, and resetting the flags in identifications of all objects addressed through the
the work control block. context.

-->QSCFSODD-Format and Send Qut Dump Data: This
module formats and sends out lines of hexadecimal
data.

-->QSCINTDD-Internal Dump Data: This module
performs an internal job dump for the ?DMPDTA
macro.

L’ 'This module is a CPP {command processing program).

Service SC-3
This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

-->QSCOBJDM-0Object Dump: This module routes a
dump object or dump system object request to the
proper materialize and dump routine. QSCOBJDM
also outputs the object heading, dumps the object’s
associated space (if it has one) and dumps the
object’s OIR (object information repository) data.

SC-4

QSCMAG-Materialize and Dump Access Group:
This module dumps the attributes of an access
group and the identification of all objects
contained in that access group.

QSCMCB-Materialize and Dump Commitment
Block: This module materializes and dumps the
attributes of a commitment block, including the
commitment block status, the commitment
description, and objects associated with the
commitment block.

QSCMCD-Materialize and Dump Controller
Description: This module materializes and dumps
the attributes of a controller description, including
backward and forward object lists and the network
description candidate list if one is present.

QSCMCTX-Materialize and Dump Context: This
module materializes and dumps the attributes of a
context and the identification of the objects
addressed through the context.

QSCMCUR-Materialize and Dump Cursor: This
module materializes and dumps the attributes and
operational statistics of a cursor, including the
identification of all data space indexes that the
cursor is over.

QSCMDMPS—Materialize and Dump Dump Space:
This module materializes and dumps the attributes
and size values for a dump space.

QSCMDS-Materialize and Dump Data Space: This
module materializes and dumps the attributes and
operational statistics of a data space, including the
identification of the data space index if there is
one over the data space.

QSCMDSI-Materialize and Dump Data Space
Index: This module materializes and dumps the
attributes and operational statistics of a data space
index, including the identification of any data
spaces addressed by the index.

QSCMIDX-Materialize and Dump Index: This
module materializes and dumps the attributes and
entries in an independent index.

QSCMJPRT-Materialize And Dump Journal Port:
This module materializes and du the attributes of a
journal port, including attached iournal spaces and
objects being journaled.

QSCMJSPC—-Materialize and Dump Journal Space:
This module materializes and dumps the attributes
of a journal space, including the associated journal
port.

QSCMLUD-Materialize and Dump Logical Unit
Description: This module materializes and dumps
the attributes of the logical unit description
including the identification of the object addressed
by the forward object pointer.

QSCMND-Materialize and Dump Network
Description: This module materializes and dumps
the attributes of a network description, including
the identifications of objects in the backwards
object list.

QSCMPGM—Materialize and Dump Program: This
module materializes and dumps the program
template. Only the program components that can
be materialized as observable will be dumped.

QSCMQ-Materialize and Dump Queue: This
module materializes and dumps the attributes of a
machine interface queue.

QSCMSP—Materialize and Dump Space: This
module materializes and dumps the attributes of a
system space.

QSCMUP-Materialize and Dump User Profile: This
module materializes and dumps a user profile and
its list of authorized objects.

-->QSCSPCDM-S<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>