
- - - SC21-7730-0 - - -- - - - -- -- File No. S38-36 - ----- - - ---- - --- - • -

I 8M System/38

IBM System/38
Control Program Facility
Programmer's Guide

First Edition (January 1979)

Changes are periodically made to the information herein; changes will be reported
in technical newsletters or in new editions of this publication.

This publication is for planning purposes only. The information herein is subject
to change before the products described become available. Also, this publication
contains examples of data and reports used in daily business operations. To
illustrate them as completely as possible, the examples include the names of
individuals, companies, brands, and products. All of these names are fictitious
and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

Use this publication only for the purposes stated in the Preface.

Publications are not stocked at the address below. Requests for copies of IBM
publications and for technical information about the system should be made to
your IBM representative or to the branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. Use
the Reader's Comment Form at the back of this publication to make comments
about this publication. If the form has been removed, address your comments to
IBM Corporation, Publications, Department 245, Rochester, Minnesota 55901.
IBM may use and distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever. You may, of
course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1979

This publication elaborates on the concepts presented in
the IBM System/38 Control Program Facility Concepts
Manual, GC21-7729, explains how to use commands
described in the IBM System/38 Control Program
Facility Reference Manual- Control Language,
SC21-7731, and explains how to use data description
specifications (DDS) described in the IBM System/38
Control Program Facility Reference Manual- Data
Description Specifications, SC21-78(36. This guide
instructs the programmer in how to use the control
program facility (CPF) functions.

This publication is organized into the following parts:

Part 1. Introduction, which includes a summary of the
main CPF functions.

Part 2. Control Language, which includes a description
of the System/~8 control language.

Part 3. Objects, which includes a discussion of objects.

Part 4. Application Development, which includes control
language programs, data management, message
handling, command definition, documentation, source
files, data areas, and testing.

Part 5. Work Management, which includes jobs,
SUbsystems, job and output queues, and classes.

Part 6. System Management, which includes system
values, security, save/restore, and service.

Each chapter contains the following:

• A summary of the concepts covered in the CPF
Concepts Manual and additional topics not covered in
the CPF Concepts Manual.

• Coding examples

• A list of commands associated with the major
function so that the reader can determine which
command he needs to use alld to find in the CPF
Reference Manual- CL.

Preface

A glossary at the back of this publication defines data
processing terms introduced in this publication and other
System/38 terms applicable to this publication.

Note: This publication follows the convention that he
means he or she.

Prerequisite Publications

The reader should have read the following publications:

• IBM System/38 System Introduction, GC21-7728,
which contains an overview of the System/38 CPF,
language, and utility functions as well as the system
configurations.

• IBM System/38 Controi Program Facility Concepts
Manual, GC21-7729, which contains the basic
concepts of the control program functions.

Related Publications

The following publications contain information related to
this publication:

• IBM System/38 Control Program Facility Reference
Manual- Control Language, SC21 - 7731, which
describes commands and parameters that are used
for the various CPF functions.

• IBM System/38 Control Program Facility Reference
Manual- Data Description Specifications, SC21 - 7806,
which describes the data description specifications
that are used for describing files.

• IBM System/38 Message Guide: CPF, RPG III, and
/OU, which contains additional information about CPF,

RPG III, and IOU messages issued on System/38.

• IBM System/38 Guide to Publications, GC21-7726,
which contains information about related publications.

iii

(
\

(

c
iv

)

')
. ./

)

PART 1. INTRODUCTION

CHAPTER 1. INTRODUCTION
The Control Language
Objects
Developing Applications on System/38
Work Management .
System Management

PART 2. CONTROL LANGUAGE

CHAPTER 2. CONTROL LANGUAGE
Coding Commands

Continuation
Comments
Command Character Set
Types of Parameter Values and How
to Specify Them

Submitting Commands .

PART 3. OBJECTS ..

CHAPTER 3. OBJ ECTS
Security Considerations
Libraries
Placing Objects in Libraries .
Displaying Object Descriptions
Moving Objects From One Library to Another .
Renaming Objects.
Allocating Resources'
Deleting and Clearing Libraries
Displaying Libraries . .'
Displaying a Library List
Command List

Objects
Libraries
Other Commands

3
3
3
4
4
4

5

7
8
9

10
11

13
18

19

21
26
26
27
28
29
30
30
32
32
33
34
34
35
36

Contents

PART 4. APPLICATION DEVELOPMENT. 37

CHAPTER 4. CONTROL LANGUAGE PROGRAMS 39
Control Language Program Variables 39
Controlling Logic Flow . 41
Substring Built-in Function 42
Writing Control Language Programs . 42

Writing a Program ·to Control a Menu 44
Writing a Program to Simplify Work

Station Operations 46
Sending and Receiving Information from

Data Areas. 47
Retrieving System Values 48
Monitoring for Messages in Programs 48
Retrieving Job Attributes 48

Compiling Control Language Programs 49
Invoking Control Language Programs 50
Command List 52

Program Commands 52
Commands Within Programs. 52
Other Commands 54

CHAPTER 5. DATA BASE. 55
Record Format 56
Access Path 58

Arrival Sequence Access Path 58
Keyed Sequence Access Path 58

Data Location 60
Name Restrictions. 61
Data Description Specifications 61
Creating a Physical File 62
Creating a Logical File 65
Creating a Field Reference File 67
Creating a Logical File With More
Than One Record Format 71

Selecting and Omitting Records 73
Sharing Record Formats 73
Sharing an Access Path 74
Concatenating Fields 76
Handling Duplicate Key Values 77
Adding Members to Files 79

Physical File Members 82
Logical File Members 83

Reorganizing Physical File Members 85
Command List 86

General 86
Data Base. 86
Other Commands 87

Keyword Summary 88

Contents v

CHAPTER 6. DEVICE SUPPORT 93 CHAPTER 9. COPYING FILES ,163 /-

Program Described Data Device Files 94 Copy Commands 165 \,,-
Example of Creating a Program Described Copying to an Undefined File 166

Data Device File 97 Mapping Fields 166
Externally Described Data Device Files . 97 Command List 167

Display Data Description Specifications 98
Printer Data Description Specifications 98 CHAPTER 10. SOURCE FILES 169
Name Restrictions 100 Creating a Source File 170
Keywords 100 Creating an Object Using a Source File 171
Option Indicators . 100 Changing a Source File 173

Miscellaneous Functions 102
Print Images . 102 CHAPTER 11. DATA AREAS 175
Translate Tables 103 Command List 176
Field Translation 104 Within Control Language Programs 177
Edit Descriptions 104

Using Printer Files in Programs 106 CHAPTER 12. MESSAGE HANDLING 179
Command List 107 Message Descriptions 180

General 107 Message Identifier 180
Display 107 Severity Code 181
Card Device 107 First- and Second-Level Messages 181
Printer 107 Substitution Variables and Their Associated
Diskette. 108 Message Data Formats 182
Edit Codes 108 Validity Checking for Replies . 183
Print Images 108 Default Values for Replies . 183
Translate Tables 109 Default Message Handling for Escape
Other Commands 109 and Notify Messages 183

Keyword Summary 110 Example of Describing a Message 184
Message Files 184

CHAPTER 7. DISPLAY DEVICE SUPPORT. 113 Retrieving Message Text 185
Formatting Displays 113 Message Queues 185

Record Formats 113 Receiving Messages from a Message Queue . 187
/

Placement of Records . 116 Removing Messages from a Message Queue 188 I

Display Attributes . 119 Sending Messages to a Message Queue 188 "-
Validity Checking Functions 120 Messages Sent by a System User 189
Screen Management Functions 122 Messages Sent by a Program 189
Subfiles 123 Job Message Queues. 191
Message Support 127 Request Messages 193
Indicators and Condition Names 127 Completion and Diagnostic Messages . 193
Creating Display Files 129 Escape and Notify Messages 193

Formatting a Menu 129 Monitoring and Handling Escape Messages 194
Formatting a Prompt 130 Monitoring and Handling Notify Messages 196
Formatting an Information Display 131 Message Logging 197
Creating a Display File 133 Job Log. 197

Using Display Device Files in Programs 133 System Logs. 198
Command List 135 Command List 199

General 135 Messages 199
Display 135 Message Queues 200
Other Commands 135 Message Files 200

Keyword Summary 136 Commands Within Programs . 200

CHAPTER 8. OVERRIDING FILES 153 CHAPTER 13. DEFINING COMMANDS 201
Overriding File Attributes . 153 How to Define Commands 201
Overriding Which File is Used in a Program 154 Defining Parameters 202
Applying Overrides 154 Defining the Prompt for the Command Name 204
Deleting Overrides 155 Creating Commands 204
Data Base File Considerations 156 Writing a Command Processing Program. 205
Shared Files 156 Redefining IBM-Supplied Commands 207
Securing Files 157 Commands to Which New Special Values
File Redirection 158 Cannot be Added 208
Command List 161 Command List and Statement Summary 208

(

vi

)
CHAPTER 14. APPLICATION DOCUMENTATION 211 CHAPTER 18. SECURITY . 271
Displaying Data Base Relations 214 User Identification . 271
Displaying File Descriptions 215 Security Officer User Profile (QSECOFR) 274
Displaying File Field Descriptions 216 Object Ownership . 274
Displaying Program References 218 Object Authority 276
Other Documentation Aids 219 Granting Object Authority 277
Command List 221 Running a Program Under an

Owner's User Profile 281
CHAPTER 15. TESTING 223 Creating User Profiles 281
Entering Debug Mode 223 Revoking Object Authority 283
Adding Breakpoints to Programs 225 Displaying Security Information 283

Returning to a Breakpoint in One Program Authorized Users Display 283
from Another Program . 228 User Profile Display 284

Adding Traces to Programs 228 Object Authority Display 285
Dumping Objects and Jobs . 230 Command List 285
Command List 231 User Profile 286

Debug Program 231 Object Authority 286
Program Variable 231
Program Pointer 231 CHAPTER 19. SAVE/RESTORE 287
Breakpoint 232 Restoring an Application 289
Trace . 232 Security Considerations 289
Dumps 232 Diskette Considerations 289

Saving a Library 290
PART 5. WORK MANAGEMENT 233 Restoring a Library 290

Saving and Restoring a Group
CHAPTER 16. WORK MANAGEMENT. 235 of Objects 291

Work Entries and Routing Entries 238 Saving a Single Object . 291
Ways Jobs are Initiated on the System 240 Saving and Restoring an Entire System 292

Interactive Jobs, Executing QCL for Command List 293
the Routing Step 241 Object 293

Interactive Jobs, Executing a User Program Library 293

) for the Routing Step . 242
Interactive Jobs, Prompting for Routing Data 243 CHAPTER 20. SERVICE 295
Batch Jobs, Queuing Jobs 245 Copying the Error Log 295
Batch Jobs, Using Autostart Jobs 247 Tracing a Job and the Internal

Submitting a Job From Another Job . 248 Machine Processing 296
Rerouting and Transferring Jobs 248 Starting a Confidence Check 297
Pools ~ 248 Verifying a 5256 Printer 298
Activity Levels 249 Starting the Problem Determination Procedures 298
Subsystem Descriptions 250 Command List 298

Routing Entries 251
Work Entries 252 LIST OF ABBREVIATIONS 299
Creating a Batch Subsystem Description 253
Creating an Interactive Subsystem Description 254 GLOSSARY 301

Job Descriptions 254
Command List 255 INDEX. 307

Subsystem Descriptions and Classes 256
System and Job Control 258
Subsystems 258
Spooling 260
Other Commands 262

PART 6. SYSTEM MANAGEMENT 263

CHAPTER 17. SYSTEM VALUES 265
Command List 269

Contents vii

viii

Part 1. Introduction
)

)

)

Introduction

/

'\

\.

2
(

)

)

)

Chapter 1. Introduction

Before you use this programmer'S guide you should have read the System/38
Control Program Facility Concepts, SC21-7729. The Concepts manual presents
a high-level description of the functions of CPF. This chapter serves as a
reminder of these functions. Detailed information about the individual
commands and the data description specifications can be found in the IBM
System/38 Control Program Facility Reference Manual-Control Language,
SC21-7731 and the IBM System/38 Control Program Facility Reference
Manua/- Data Description Specifications, SC21-7806, respectively.

THE CONTROL LANGUAGE

The System/38 control language is a consistent set of system commands.
Commands are used to request that the system perform functions such as
calling a program or holding jobs on an output queue. Commands can be
entered either interactively at a display work station or in a batch job. In
addition, groups of commands can be compiled into control language
programs.

OBJECTS

Objects are the basic elements upon which commands perform operations.
Files and programs are objects, as are print images and job queues. One type
of object, the library, is useful in locating other types of objects. These other
objects are placed in libraries. You can locate objects by name instead of by
their actual addresses in storage.

Introduction 3

4

DEVELOPING APPLICATIONS ON SYSTEM/3S

Your detail-level application programs are usually written in a high-level
language such as RPG. However, many CPF functions are used in developing
applications:

• Creating control language programs to cfmtrol the application

• Defining data
Defining the data base
Defining devices to the system
Overriding files for program execution
Copying files
Creating and using source files

• Defining messages

• Defining commands

• Documenting applications

• Testing application programs

WORK MANAGEMENT

Work management involves managing jobs on the system, allocating resources
for use within jobs, and scheduling jobs for execution. Each job has a job
description, which contains descriptive information such as job queue, job
p~iority, initial library list, output queue, and job date.

Interactive jobs can be managed independently of batch jobs. This is
accomplished through subsystems. A subsystem is an operating environment
that defines a set of system resources and functions that can be used for a
group of jobs.

SYSTEM MANAGEMENT

The following are CPF functions that you can use to tailor the system to your
installation's needs.

• Observing and changing system values

• Securing objects against unauthorized use

• Saving and restoring objects

• Servicing System/38

/
(
\

(

(
'--

)
Part 2. Control Language

Control Language 5

6

)

I

.-/'

Chapter 2. Control Language

The System/38 control language is a consistent set of commands through
which you can communicate with the system. Commands are specialized in
that they each perform one function. For example, there is a command to
create a particular type of file and a command to create a particular type of
program. Commands can also be used in writing a control language program.
(See· Chapter 4, Control Language Programs for more information.)

All System/38 commands follow the same set of rules for abbreviations and
coding. For example, all create commands begin with the letters CRT; all
change commands begin with the letters CHG. All other abbreviations are used
consistently throughout the commands. Generally, abbreviations are three
letters. There are exceptions such as F for file and Q for queue. Some words
are not abbreviated (for example, the TEXT parameter).

For example, one System/38 command looks like this:

CRTLIB L1B(-------) TYPE(-----) PUBAUT(-------) TEXT(------)

CRTLIB is the coded form of the command's descriptive name, which, in this
case, is Create Library. The coded name was formed from three letters of
create, CRT, and three letters of library, LIB. L1B(-------) is a parameter. LIB
is a keyword that indicates that a library name should be coded within the
parentheses. The library name is a parameter value. Commands consist of two
parts: a command name and parameters. The command name identifies the
function to the system and the parameters provide additional information to
tailor the function request. Some commands have no ·parameters. For example,
the End Program command looks like this: ENDPGM

In addition, a command can be labeled by placing a label directly in front of
the command name:

START:
~

Label

SNDRCVF
~

Command
Name

RCDFMT(------)
~

Parameter

Labels are useful for branching within control langu~ge programs and for
adding breakpoints and traces to programs. (See Chapter 15, Testing for more
information about breakpoints and traces.)

Control Language 7

8

CODING COMMANDS

Labels and names follow the same naming conventions. (See How to Specify
Names in this chapter for more information.) Both can contain as many as 10
characters. A label is followed by a colon (no blanks can appear between the
label and the colon). A command name is usually separated from a label, if
there is a label, by at least one blank. However, the blank is optional. Both of
the following' are correct:

START: SNDRCVF

START:SNDRCVF

A command name and the first parameter in the command must be separated
by at least one blank.

Parameters can be specified in two ways:

• As a keyword parameter, that is, a keyword with a parameter value:

LlB(DSTPRODLB) TYPE(*PROD)

• As a positional parameter, that is, just a parameter value with no keyword:

DSTPRODLB *PROD

Keyword parameters can be specified in the command in any order:

CRTLIB TYPE(*PROD) LlB(DSTPRODLB) PUBAUT(*NORMAL)
TEXT(' Distribution library')

CRTLIB LlB(DSTPRODLB) TYPE(*PROD) TEXT(,Distribution library')
PUBAUT(*NORMAL)

Positional parameters must be specified in the order in which they are
described in the CPF Reference Manual-CL:

CRTLIB DSTPRODLB *PROD *NORMAL 'Distribution library'

If you specify parameters positionally and you want to omit a parameter,
specify *N in the position of the parameter:

CRTLIB DSTPRODLB *N *NORMAL

If none of the parameters following a specified parameter are specified, *N
does not have to be specified. For example, in the preceding command, if the
parameter value *NORMAL is omitted, the command looks like this:

CRTLIB DSTPRODLB

(
......

(r-

1\

)

)

)

You can mix positional and keyword parameters in a command. If you do so,
once you use a keyword parameter all following parameters in the same
command must be keyword parameters:

CRTLIB DSTPRODLB PUBAUT(*NONE) TEXT(,Distribution library')

Some parameters can have more than one value. This is called a list. For
example, an ALLOW parameter might look like this:

ALLOW(*BATCH *INTERACT)

The parameter values must be separated by at least one blank; no other
separators are allowed. If you specify such a parameter positionally, you must
still specify the parentheses:

(*BATCH *INTERACT)

The parentheses indicate that the parameter has more than one value.

For some parameter~ y,?u can also specify a list within a list. For example,

STMT((START RESPND) (ADDDSP CONFRM))

Each parameter value and each list must be separated from the others by at
least one blank. If you specify such a parameter in the positional form, you
must still specify all parentheses:

((START RESPND) (ADDDSP CONFRM))

No matter what parameter form you use, you must leave one or more blanks
between all parameters.

Continuation

If you cannot get a comple"te command on one line or record, you can use
command continuation. There are two command continuation characters: +
(plus) and - (minus). A continuation character must be the last non blank
character i~ a record.

A + indicates that the command continues with the first non blank character on
the next line. For example,

CRTLIB LlB(DSTPRODLB) TEXT('Dist+
ribution library')

is equivalent to

CRTLIB LlB(DSTPRODLB) TEXT('Distribution library')

If a blank had preceded the +, the word Distribution would have looked like
this:

Dist ribution

Control Language 9

10

A - indicates that the command continues with the first character on the next
line. For example,

CRTLIB LlB{DSTPRODLB) TEXT{' Dist
ribution library')

is equivalent to

CRTLIB LlB{DSTPRODLB) TEXT{'Distribution library')

A blank before the - or at the beginning of the next line would have made the
word Distribution look like this:

Dist ribution

Comments

Comments must be preceded by the symbols /* and followed by the symbols
* /. For example, /*Create library for distribution files* /. Comments can
appear as separate records or as part of a command. Within a command
comments can appear anywhere a blank is used except in a quoted string. For
example, comments can appear in the following places:

• As a separate record

/*Create library for distribution files* /

• After the last parameter

If (&RESP='02') CALL ITM210 /*Item inquiry* /

• Between a command name and a parameter

CRTLIB /*Create library for distribution files* / LlB{DSTPRODLB)

• Between parameters

LlB{DSTPRODLB) /*Production library* / TEXT{'Distribution library')

• Between parameter values

ALLOW{*BATCH /*Batch and interactive* / *INTERACT)

To avoid misplacing continuation characters because of comments, you should
enter the comments as separate records.

/"
I

(
..... ,

)

)

Command Character Set

The extended binary coded decimal interchange code (EBCDIC) character set is
used in System/38 commands. All 256 EBCDIC characters can be used in
comments and quoted strings. However, only the following characters can be
used in commands other than comments and quoted strings.

• 26 letters (A through Z, lowercase translated to uppercase)

• 10 digits (O through 9)

• 3 alphabetic extenders ($, #, and @)

• 20 special characters (Figure 1)

Note: Alphameric characters are A through Z, 0 through 9, and the alphabetic
extenders.

Control Language 11

Character Symbol Purpose
/

Blank tJ Syntactical separator \"

Comma Decimal point for countries
using the comma as a decimal
point

Equal Relational equal operator
Plus + Addition operator,

continuation character,
and prefix plus

Minus Subtraction operator,
continuation character,
and prefix minus

Asterisk * Multiplication operator,
suffix for generic name,
prefix for predefined
value, and part of
comment symbols (/* * /)

Slash / Division operator and
part of comment
symbols (/* * /)

Left Delimiter for param~ter
parenthesis values and lists, and

defines order of
expressions

Right Delimiter for parameter
parenthesis values and lists, and /

defines order of \,
expressions

Apostrophe Character literal delimiter
Not Logical negation operator
Or Logical OR operator

and concatentation
operator when
paired II

Less than < Relational less than operator
Greater than > Relational greater than operator
Period Decimal point and

connector for qualified
name

Ampersand & Logical AND operator
and prefix for
symbolic variable

Percent % Prefix for built-in
function

Colon Delimiter for command
labels

Underscore Standard alphabetic
character

Question ? Prompt request
mark

/'
Figure 1. Special Characters \

\..

12

)

)

Types of Parameter Values and How to Specify Them

Four types of values can be specified for parameters:

• Constant
Character
Decimal
Logical
Hexadecimal

• Variable
Decimal
Character
Logical

• Expression
- Built-in function

Arithmetic
Logical
Character
Relational

For information about variables and expressions, see Chapter 4, Control
Language Programs.

The following sections explain how to specify parameters using constant data.
The types of constants discussed are:

• Character
Character string
Name
Date
Time

• Decimal

• Logical

Control Language 13

14

How to Specify Character Strings

There are two types of character strings: quoted and unquoted. The difference
between' the two types is determined by the use of apostrophes and characters
allowed in the string. A quoted string contains any EBCDIC characters
enclosed in apostrophes:

'Bob Smith-Accounting dept 512'

Note: When the apostrophe (') is used within a quoted string, it must be
specified as two single apostrophes ("):

'Bob"s accounting files'

An unquoted string can contain only alphameric characters, a leading plus (+)

or minus (-), and one period (.) or comma (,) as a decimal point:,

+2.1
FILEA

An unquoted string can consist of all numeric characters or all alphameric
characters. A numeric unquoted string can be preceded by a + or - sign, and
contain a decimal point (. or,). An unquoted string with at least one alphabetic
character cannot contain a plus, minus, or comma. An alphameric unquoted
string can contain a name or an * (asterisk) followed by a name. A period can
only be used for a qualified name.

(

(

The following table shows which characters can be used in which character
~'l strings . (X iftdicates what is valid.)
./

Decimal
String or
Numeric

Character Value Unquoted String Quoted String

Letters X

A-Z X X

a-z X, X

Alphabetic
extenders

& X X

@ X X

X X

X

" X

c X

Underscore X X

Digits 0-9 X X X

Comma, X2 X

Period. X2 X

Blank b X

) Parentheses () X

Apostrophe' X3

Colon X

Percent % X

Question mark ? X

Relational
operators

X

< X

> X

Logical operators

I X

& X

--, X

Arithmetic
operators

+4 X X
_4 X X

/ X

* X5 X

Notes:
'Translated to uppercase letters.

"l 20nly one allowed.
3Must be specified as two apostrophes but is still considered one character .

./ 4Except on the CALL command and in an expression, a numeric unquoted string
can have a leading plus or minus sign.

5Can only be the first or last character; only one allowed.

Control Language 15

16

How to Specify Names

A name is a special form of an unquoted character string. Names are used to
identify objects such as files and programs. Names are restricted to a
maximum of ten characters. The first character must be alphabetic and the
remaining characters alphameric:

ORD040C
ORDHDRP

If a name is followed by an asterisk (*), the name is generic. A generic name

identifies a group of objects. A generic name consists of one or more letters
that are common to the beginnings of a group of object names, and is
followed by an *. For example, ORD* identifies ORDHDRP, ORD040C, and
ORDFILL. For example, ORD* might be specified in the Display Object
Description (DSPOBJD) command to display the descriptions of more than one
object at a time.

Another form of a name is a qualified name. A qualified name is an object
name, followed by a period, followed by a library name:

ORDFI LL. DSTPRODLB

The library name qualifies the object name by indicating in what library the
referenced object is located. This helps you get the exact object you want.
(See Chapter 3, Objects for more information.)

How to Specify Date and Time

Date and time are both special forms of an unquoted or quoted character
string. When date and time are specified as unquoted strings, they cannot
contain special characters to delimit the parts of the value. When date and
time are specified as quoted strings, they can contain special characters.

When date is specified as an unquoted string, the date contains six digits.
When date is specified as a quoted string, the date contains six digits with
day, month, and year separated by date separators. The separator is specified
in the system value QDATSEP. For a quoted date string, leading zeros for day
and month can be dropped. For example, when the date format is month, day,
and year in that order, a date can look like this:

Unquoted

060380

Quoted

'06/03/80' or
'6-03-80' or
'6/3/80'

\

(
\ ...

)

)

" . 'j
/

Date can be specified in anyone of the following formats, whichever is
specified as the format for your system (ODATFMT system format):

• Year, month, day

• Month, day, year

• Day, month, year

• Julian (year, day)

(See Chapter 17, System Values for how the date format is specified.)

Time of day is always specified in this order: hours, minutes, and, optionally,
seconds. When time is specified as an unquoted string, the time contains no
separators. When time is specified as a quoted string, colons are used as
separators and leading zeros for hours can be dropped.

Unquoted Quoted

100215 '10:02:15'

0806 '8:06'

Note: The system date and time are contained in the system values ODATE
and OTIME.

How to Specify Decimal Values

Decimal constants specify parameter values such as block length and priority
level. A decimal constant can contain from one through 15 digits optionally
preceded by a plus (+) or minus (-). In addition, a decimal constant can
contain a decimal point (. or ,), but no more than nine digits can be to the right
of the decimal point. Examples a~e:

123
-123
12.3
-.123

How to Specify Logical Values

Logical constants can only be '0' or '1'. A logical 0 or 1 must always be
enclosed in apostrophes.

Control Language 17

18

SUBMITTING COMMANDS

Commands can be submitted to the system through two environments:
interactive and batch. Interactive commands are entered at a work station on
the command entry display. You can enter an entire command or a partial
command. By entering a partial command, you request that the system help
you. You can request menus from which you fan select command names. In
addition, you can request that the system prompt you for parameter values.
Another way of executing commands interactively is to compile a group of
commands into a .control language program and then to use the CALL
command to execute the program. The following displays show a partial
command CRTLIB entered on the command entry display and the prompt for
the same command.

CmlttAHD ENTRY DISPLAY

•. CRTLIB lIB(DSTPROOlB) TEXT('Distribution library')

CREATE LIBRARY (CRTLIB) PROMPT
Enter the following:

Li brary name: LIB R
Type (*PROD or *TEST): TYPE
Public authority: PUBAUT
Text description: TEXT

DSTPRODlB
*PROD
*HOm-1Al
'Distribution library'

See the Work Station User's Guide for a complete discussion of entering

commands interactively.

In the batch environment, commands are entered from card readers, diskettes,
or data base source files. These commands can be interpretively executed or
compiled into a control language program that is executed by using the CALL
cOMmand.

,I"

(

"

) Part 3. Objects

)

,
)

Objects 19

(

20

)

)

Chapter 3. Objects

Objects are the basic units upon which commands perform operations. For
example, programs and files are objects. Objects are placed in libraries, which
are themselves objects. You can use objects by identifying them by name, and
optionally by a library name. You do not know the storage address of an
object.

The valid object types for System/38 are:

• Class

• Command definition

• Control unit description

• Data area

• Device description

• Edit description

• File

• Job description

• Job queue

• Library

• Line description

• Message file

• Message queue

• Output queue

• Print image

• Program

• Subsystem description

• Table

• User profile

Objects 21

22

Each of these types of objects has a set of attributes that describes the object.
The common attributes are:

• Name. The name given to the object when it was created.

• Type. The 'type of object it is .•

• Owner name. The name of the user who owns the object; that is, the user
who created the object or who received ownership of the object. (Only one
user at a time can own an object.)

• Creation date. The date on which the object was created.

• Save date. The date on which the object was last saved.

• Volume identifier for save. The volume on which the object was last saved.

• Free storage indicator. Whether the object's storage was freed when the
object was saved.

• Text description. Up to 50 characters that describe the object. The user
specifies the text when he creates the object.

The following is a list of functions that apply to objects in general. There are
also specific functions such as create, change, and display for each object
type. The specific functions are described in other sections of this publication
that describe the object type (for example, Chapter 4, Control Language
Programs describes creating programs).

• Renaming objects

Moving objects between libraries

• Displaying object descriptions

• Allocating and deallocating objects (see Chapter 16, Work Management)

• Changing ownership of an object (see Chapter 18, Security)

• Granting and revoking authority for objects (see Chapter 18, Security)

• Saving and restoring objects (see Chapter 19, Savel Restore)

• Dumping objects (see Chapter 15, Testing)

(

All objects are identified by names and types. Sometimes the object type is
implied in the command; the type is not specified. For example, the CRTLIB
(Create Library) command implies that the object type is library. Sometimes the
command does not imply the object type, and the object type can be specified
in the OBJTYPE parameter. For example, the DSPOBJD (Display Object
Description) command applies to any type of object. In addition, objects can
be identified by their libraries. All objects except libraries, device descriptions,
line descriptions, control unit descriptions, and user profiles are in libraries. By
specifying a library name with a,n object name you provide a ur.ique name for
each object on the system. Object names except libraries can have two parts:
an object name followed by a library name. When both parts are specified, the
name is said to be a qualified name. For example, if you are entering a
command in which you must specify an object name, the object name could
be:

ORD040C.DSTPRODLB

The order entry program ORD040C is in the library DSTPRODLB.

Note: When you specify an edit description other than when you create it, you
cannot specify a library name.

If you are using prompting during command entry, you receive two prompts,
one for object name and one for library name:

Objects 23

In most commands you can specify an object name without specifying a library
name. The system searches the job's list of libraries, the library list, to find the
object. However, if two or more objects of the same type exist in the library
list with the same name, you get the first object (for which you have authority)
with the specified name and type encountered in the list. If you want to make
sure you get a particular object, you can either (1) specify the correct library
when you specify the object name or (2) place the library with the object you
want in the library list before other "libraries containing an object with the same
name and type. The following shows the searches made for an object both
when no library name is specified and when a library name is specified.

FI LE (ORDHDRP) OSYS FI LE (ORDHDRP.DSTPRODLB)

Library List Library List

System { OSYS
Part

OSYS
} System

}

Part

User
Part

24

OGPL

OTEMP

DSTPRODLB

DSTTESTLB

The libraries are searched
in their order of occurrence
in the library list until the
file ORDHDRP is found.

DSTPRODLB

ORDHDRP

OGPL

OTEMP

-I-

T
... ~

T

User
Part

The system searches the library
DSTPRODLB for the file ORDHDRP.
The library DSTPRODLB does not have
to be in the library list.

,/

)

)

A library list consists of two parts: a system part and a user part. Initially, the
system part of the library list contains QSYS and the user part contains QGPL
and QTEMP. These can be changed in two ways:

• For all jobs you can change the initial library list by changing the system
values QSYSLlBL and QUSRLlBL. These system values control what the
initial library list is for all jobs on the system. Use the Change System Value
(CHGSYSVAL) command to change either value. QSYSLlBL can contain five
libraries; QUSRLlBL can contain 10 libraries.

• For individual jobs you can change, after the job has started, the user part
of the library list, but not the system part. You can use any of the following
commands to change the user part of the library list.
- Replace Library List (RPLLlBL) command
- Create Job Description (CRT JOBD) command
- Job (JOB) command

For example, you want to use objects in DSTPRODLB, but you do not want to
specify the library name every time you reference an object in the library. The
initial library list for.a job is always (if QSYSLlBL and QUSRLlBL have not
changed and the job description for a job does not specify a different initial .
library list):

1. System library (QSYS)

2. General purpose library (QGPL)

3. Temporary library (QTEMP)

By issuing an RPLLlBL command you can change the user part of the library
list for your job:

RPLLlBL L1BL(DSTPRODLB QGPL)

The library list for your job becomes:

1. QSYS (system part)

2. DSTPRODLB (user part)

3. QGPL (user part)

This change affects only one job; it is not permanent; it exists only as long as
the job is executing. The initial library list is (1) QSYS, (2) QGPL, and (3)
QTEMP again for each new job (or whatever is specified in QSYSLlBL and
QUSRLlBL).

Objects 25

26

SECURITY CONSIDER~TIONS

When you create objects you can specify through the PUBAUT parameter the
public authority for an object. Public authority is the authority granted to all
users. Public authority can be specified as:

• Normal (all users have some authority to use the object)

• None (only the owner can use the object)

• All (every user can use an object as if he were the owner)

Also, an owner can grant authority for his object to specific users. Chapter 18,
Security explains in detail the types of authority for an object.

LIBRARIES

Libraries let you group objects according to application, user, department, or
anything you want. For example, you might place all your order entry files and
programs into. an order entry library DSTPRODLB, or you might place all the
files that a user JOE can use in a library JOELIB. If you placed all your order
entry files and programs in DSTPRODLB, you need only add one library to the
library list to ensure that all your order entry files and programs are in the list.
This is advantageous if you do not want to specify a library name every time
you use an order entry file or program. Also, it is advantageous when you are
testing (see Chapter 15, Testing).

What you want to put in a library determines which type of lib'rary it is. There
are two types of libraries: production and test. A production library is for
normal processing. A test library is used in debug mode. In debug mode, you
can either update:

• Any data base file, whether in a test or production library, or

Only data base files in a test library. You can use files and programs in a
production library, but you cannot update them. (See Chapter 15, Testing
for more information.)

In addition, multiple libraries make it easier to use objects. For example, you
can have two files with the same name but in different libraries so that one
can be used for testing and the other for normal processing. AsJong as you
do not specify the library name in your program the file name in the program
does not have to be changed for testing or normal processing.

Note: Objects of the same type can have the same names only if they are in
different libraries.

To create a library, you use the Create Library (CRTLlB) command. The
following CRTLIB command 'creates a library to contain all your order entry
files and programs. The library is named DSTPRODLB and is a production
library.

CRTLIB LlB(DSTPRODLB) TYPE(*PROD)
PUBAUT(*NORMAL) TEXT('Distribution library')

(
\

(

)

)

PLACING OBJECTS IN LIBRARIES

When you create an object (other than a library, user profile, device
description, line description, or control unit description), you must place it in a
library. If you do not specify a library, the object is placed in the IBM-supplied
general purpose library QGPL. To specify a library you specify a qualified
object name, that is, an object name and a library name. For example, you
create an order entry physical file ORDHDRP, which you want to place in
DSTPRODLB. In the Create Physical File (CRTPF) command, you specify in the
name of the file as:

FILE(ORDHDRP.DSTPRODLB)

Note: If you are using prompting instead of command entry, you receive two
prompts, one for object name and one for library name.

Phys;cal f;le name: FILE

Llbrary name: gGPL

Objects 27

28

DISPLAYING OBJECT DESCRIPTIONS

You can display descriptions of objects. If you are using batch processing, the
descriptions are printed. If you are using interactive processing, the
descriptions can be displayed or printed.

You can display basic or full object descriptions. The basic and full
descriptions for objects are:

Basic

Object name
Library name
Object type
Extended
attributes

Online status
Text description

(partial)

Full

Object name
Object type
Creation date
Object size
Online status
Owner name
Library name
Date saved
Saved location
Extended attributes
Text description

Using the Display Object Description (DSPOBJD) command, you can list the
objects in a library by:

• Name

• Generic name

• Type

• Name or generic name within object type

The objects are listed according to type. Within object type the objects are
listed in alphameric order.

In the following example, you display the descriptions of your order entry files
(that is, the files in DSTPRODLB) whose names begin with ORD. ORD* is the
generic name.

DSPOBJD OBJ(ORD*.DSTPRODLB) OBJTYPE(FILE)
DETAIL(*BASIC) OUTPUT(*)

/
!

\.

\

""\
)

../

r

The resulting basic display is:

07/07/80 OBJECT DESCRIPTION DISPLAY-BASIC
OBJECT LIBRARY OBJECT EXTENDED ON-
NAME NAtIE TYPE ATTR LINE TEXT DESCRIPTION
ORDDTLP DSTPRODLB FILE PUYS YES Order detail physic
ORDUDRP DSTPRODLB FILE PHYS YES Order header physic

If you specify *FULL instead of *BASIC, the resulting full display is:

07/07/80 OBJECT DESCRIPTION DISPLAY - FULL

Object name: ORDDTLP Type: FILE
Creation date: 06/08/80 Size: 20000
Owner name: RDROSS Library name:
Date saved: 07/01/80 Saved location:
Extended attributes: PHYSICAL

Online: YES
DSTPRODlB
DSTBKP

Text description: Order detail physical file

MOVING OBJECTS FROM ONE LIBRARY TO ANOTHER

All objects except libraries, user profiles, line descriptions, control unit
descriptions, device descriptions, and edit descriptions can be moved between
libraries. However, you can only move an object if you have object
management rights for the object, delete rights for the library the object is
being moved from, and add rights to the library the object is being moved to.

In the following example, you move a file from QGPL (where it was placed by
default when you created it) to your order entry library DSTPRODLB so that it
is grouped with your other order entry files.

QGPL (before)

ORDFILL Move

DSTPRODLB

ORDFILL

QGPL (after!

(ORDFILL
is gone)

Objects 29

30

To move the object you must specify the to library as well as the object type.

MOVOBJ OBJ(ORDFILL.OGPL) OBJTYPE(FILE) TOLlB(DSTPRODLB)

RENAMING OBJECTS

All objects except OTEMP, user profiles, line descriptions, control unit
descriptions, device descriptions, and edit descriptions can be renamed.
However, you can only rename an object if you have object management rights
for the object and update rights for the library containing the object.

To rename an object you must specify the current name of the object, the
name to which the object is to be renamed, and the object type.

You rename an object using the Rename Object (RNMOBJ) command. The
following RNMOBJ command renames the object ORDERL to ORDFILL.

RNMOBJ OBJ(ORDERL.OGPL) OBJTYPE(FILE) NEWOBJ(ORDFILL)

Note that you do not specify a qualified name for the new object name
because the object remains in the same library.

ALLOCATING RESOURCES

Generally, objects are allocated on demand; that is, when a routing step needs
an object it obtains (locks) the object, uses the object, and deallocates
(unlocks) the object so another routing step can use it. Sometimes you want to
allocate an object for a job before the job that is processing needs the object.
This is called preallocating an object. You would preallocate an object so that
you would be ensured of the availability of the object. A function that has only
partially completed would not have to wait for an object.

Objects are allocated on the basis of their intended use (read or update) and
whether they can be shared (used by more than one job). A lock- state
identifies the use of the object and whether it is shared. The five lock states
are:

• Exclusive. The object is reserved for the exclusive use of the requesting
routing step; no other routing steps can use the object. However, if the
object is already allocated to another routing step, your routing step cannot
get exclusive use of the object.

• Exclusive allow read. The object is allocated to the routing step that
requested it, but other routing steps can read the object if they request a
shared for read lock state or a shared no update lock state for the same
object.

• Shared for update. The object can be shared either for update or read with
another routing step. That is, another routing step can request either a
shared for read lock state or a shared for update lock state for the same
object.

',-

"-.
'I

/

• Shared no update. The object can be shared with another routing step if the
routing step requests either a shared no update lock state, a shared for read
lock state, or an exclusive allow read lock state.

• Shared for read. The object can be shared with another routing entry if the
routing entry does not request exclusive use of the object. That is, another
routing step can request an exclusive allow read, shared for update, shared
for read, or shared no update lock state, or an exclusive allow read lock
state.

The following shows the valid lock state combinations for an object:

If One
Another Routing Step Can Obtain This Lock State:

Routing Step
Obtains This Exclusive. Shared Shared Shared
Lock State: Exclusive Allow Read for Update No Update for Read

Exclusive

Exclusive
Allow Read X

Shared
for Update X I X

Shared
No Update X X

Shared
for Read, X X X X

To allocate an object use the Allocate Object (ALCOBJ) command. To·
deallocate an object use the Deallocate Object (DLCOBJ) command. Allocated
objects are automatically deallocated at the end of a routing step.

The following example is a batch job that needs two files for updating.
Members from either file can be read by another program while being updated,
but no other programs can update these members while this job is executing.
The first member of each file is preallocated with a shared no update lock
state.

/ / JOB JOBD(ORDER)
ALCOBJ OBJ((FILEA FILE *SHRNUP) (FILEB FILE *SHRNUP))

CALL PROGX
/ /ENDJOB

Deallocate Object (DLCOBJ) commands do not have to be specified; the
objects are automatically deallocated at the end of the routing step.

If the first members of FILEA and FILEB had not been preallocated, the shared

no update restriction would not have been in effect.

Objects 31

32

DELETING AND CLEARING LIBRARIES

When you delete a library, you delete the objects in the library, the library
description, and the library itself. When you clear a library, you delete objects
in the library without deleting the library. To delete or clear a library all you
need specify is the library name (for example, DLTLIB LlB(DSTPRODLB)).

To delete a library you must have object exigtence ri~hts for both the library
and the objects within the library. If you try to delete a library but do not have
object existence rights for all the objects in the library, the library and all
objects for which you do not have authority are not deleted. All objects for
which you have authority are deleted. If you want to delete a specific object
(for which you have object existence rights), you can use a delete command for
that type of object (such as the Delete Program command).

To clear a library you must have object existence rights f~r the objects within
the library. If you try to clear a library but do not have object existence rights
for all the objects in the library, the objects you do not have rights for are not
deleted from the library.

DISPLAYING LIBRARIES

You can display the objects contained in one or more libraries. All authorized
objects' names and types are listed. If you are using batch processing, the list
is printed. If you are using interactive processing, the list can be displayed or
printed.

In the list, the objects are grouped by library; within each library, they are
grouped by object type; within each type, they are listed in alphameric order.
The order of the libraries matches the library list (*LlBL) or the order of the
libraries specified in the display command.

For example, the following Display Library (DSPLlB) command displays a list of
the objects contained in DSTPRODLB.

DSPLIB LlB(DSTPRODLB) OUTPUT(*)

(
\

)

)

)

,.

The * (asterisk) for the OUTPUT parameter means that the list is to be
displayed if in interactive processing and printed if in batch processing. (To
print a list when in interactive processing, specify *LlST instead of taking the
default *.)

The resulting display is:

11/14/78 LIBRARY DISPLAY
Library: DSTPRODlB

OBJECT NAME OBJ TYPE OBJECT NAME OBJ TYPE
ORD005C PGM
ORDOIOC PGH
ORD040C PGM

DISPLAYING A LIBRARY LIST

,.

\..

You can display the user part of the library list for a job currently executing.
The display is a list of all the libraries in the library list in the order in which
they appear in the library list. If you are using batch processing, the library list
is printed. If you are using interactive processing, the library list can be
displayed or printed.

You use the Display Library List (DSPLlBL) command to show the list. The
following is an example of a display of a library list.

09/11/81

POSITION
01
02

USER LIBRARY LIST DISPLAY
LIBRARY NAME
DSTPRODLB
QTEMP

POSITION LIBRARY NAME

Objects ·33

34

COMMAND LIST

This is a list of commands related to objects in general. It is presented here to
help you select the appropriate command for the function you want and to
help you determine which command you might need to reference in the CPF
Reference Manual-CL.

Objects

Descriptive Name Command Name Function

Rename Object RNMOBJ Changes the name of an
object. However, device
descriptions, control unit
descriptions, line
descriptions, edit
descriptions, and user
profiles cannot be
renamed.

Move Object MOVOBJ Moves an object from one
library to another.

Display Object DSPOBJD Displays descriptions
Description of specified objects.

Allocate Object ALCOBJ Reserves an object
for use. by a job.

Deallocate Object DLCOBJ Frees an object from
reserved use by a job.

c

(
,,'"

Libraries

)
Descriptive Name Command Name Function

Create Library CRTLIB Creates a library.

Delete Library DLTLIB Deletes a library
and al\ objects in
the library. However,
the user must have
object existence rights
to the library and all
its objects.

Clear Library CLRLlB Deletes all objects
to which the user
has object existence
rights from a specified
library. However,
the library is not
deleted.

Display Library DSPLIB Displays a list of the
names and object types
of all objects in a
specified library.

) Replace Library RPLLlBL Replaces the user part
List of the library list

with a new set of
library names.

Display Library DSPLlBL Displays a list of all
List libraries in the user

part of the library
list.

)

Objects 35

Other Commands

This is a list of commands that are also related to objects in gener'al but are
(

not part of the functions presented in this chapter.

Descriptive Name Command Name Chapter

Change Object CHGOBJOWN Chapter 18,
Owner Security

Grant Object GRTOBJAUT Chapter 18,
Authority Security

Revoke Object RVKOBJAUT Chapter 18,
Authority Security

Display Object DSPOBJAUT Chapter 18,
Authority Security

Save Object SAVOBJ Chapter 19,
Save / Restore

Restore Object RSTOBJ Chapter 19,
Save / Restore

Dump Object DMPOBJ Chapter 15,
Testing

("

Save Library SAVLlB Chapter 19,
\\,

Save / Restore

Restore Library RSTLIB Chapter 19,
Save / Restore

(

36

)
Part 4. Application Development

)

Application Development 37

c

(

c
38

)

)

Chapter 4. Control Language Programs

You can group together most commands and compile them so that they can
be invoked by a single command. The compiled commands are called a
control language program. You can perform functions with a control language
program that you cannot perform with simple command entry. Some of these
functions are:

• Manipulating variables and data areas

• Executing commands conditionally

• Grouping commands for conditional execution

• Using a built-in function

• Monitoring for messages

• Sending and receiving information to and from a device

• Passing parameters to called programs

CONTROL LANGUAGE PROGRAM VARIABLES

A variable is a named changeable value that can be accessed or changed by
referring to its name. Variables can be used as substitutes for parameter
values on control language commands. When a CL program variable is used as
a parameter value and the command containing it is executed, a value is
substituted for the variable. Every time the command is executed a different
value can be substituted for the variable.

CL program variables can exist only within control language programs.
Program variables are not stored in libraries; they are not objects; and their
values are destroyed when the program that contains them is no longer
invoked.

CL program variables are defined by Declare (DCL) commands, a Declare Data
Area (DCLDTAARA) commands, or Declare File (DCLF) commands.

When a DCLF command is used, the control language compiler declares CL
variables for each field and option indicator in each device file record format.
For a field, the CL variable name is the field name preceded by an ampersand
(&). For an option indicator, the CL variable name is the indicator preceeded by
&IN.

When a DCLDT AARA command is used, a variable is defined with the same
attributes as the data area. The variable name is the same as the data area but
is preceded by an &.

Control Language Programs 39

40

When a DCL command is used, the following restrictions must be followed:

• The CL variable name must begin with an ampersand (&) followed by as
many as 10 characters. The first character must be alphabetic and the
remaining characters alphameric. For example, &PART.

• The CL variable value must be either character, decimal, or logical.
- A character string as long as 2000 characters
- A decimal value as long as 15 digits with as many as nine decimal

positions
- A logical value :0' .or '1', where '0' can mean off, false, or no; and '1'

can mean on, true, or yes

• If you do not specify an initial value, the following is assumed:
- 0 for decimal
- Blanks for character
- '0' for logical

For example, variables can be used when you create objects. A variable can be
used in place of the object name or the library name or both:

CRTPF FILE(&FILE.DSTPRODLB) ...
CRTPF FILE(ORD040C.&LlB) .. .
CRTPF FILE(&PFILE.&LlB) .. .

You can change the value of a CL program variable using the Change Variable
(CHGVAR) command. The value can be changed:

• To a constant:

CHGVAR VAR(&INVCMPLT) VALUE(O)

&INVCMPLT is set to o.

• To the value of another variable:

CHGVAR VAR(&A) VALUE(&B)

&A is set to the value of. the variable &B.

• To the value of an expression after it is evaluated:

CHGVAR VAR(&A) VALUE(&A + 1)

The value of &A is increased by one.

• To the value produced by the built-in function %SUBSTRING:
/

CHGVAR VAR(&A) VALUE(%SUBSTRING(&B 1 5))

&A is set to the first five characters of the value of the variable &B. (See
Substring Built-in Function in this chapter for more information.)

The variable and the value to which the variable is to be changed must be of
the same type (character, logical, or decimal).

(

(

c

)

)

')
./

CONTROLLING LOGIC FLOW

Logic flow within a control language program can be controlled conditionally
and unconditionally. Conditional execution is based on a logical expression and
is accomplished using the I F command. If an expression is true, the command
following the THEN keyword is executed. If the expression is false, the
command following the THEN keyword is not executed, but the ELSE
command (if specified) is executed. The THEN keyword does not have to be
specified. When there is no ELSE command or when the command following
the THEN keyword has executed, the next executable command is executed.
The following is an example of conditional execution.

IF (&RESP=l) THEN(CALL CUS210)

If the variable &RESP equals one, (then) call the program CUS210.

Commands can be grouped for conditional execution after the THEN keyword,
after the IF expression if THEN is not specified, after the ELSE command, or
after you use a DO command to group the commands. The following is an
example of a DO command.

IF (&A=YES)
DO

CHGVAR VAR(&B) VALUE(l)
CHGVAR VAR(&C) \(ALUE('Z')

ENDDO

Do groups can be nested (embedded) ten levels. A nested do group is a do
group that is contained within another do group:

DO

DO

ENDDO

ENDDO

Control Language Programs 41

42

Unconditional branching is accomplished using the GOTO command. To use a
GOTO command, the command you are branching to must have a label:

START: SNDRCVF RCDFMT{MENU)
IF (&RESP=1) THEN{CALL CUS210)

GOTO START

SUBSTRING BUILT-IN FUNCTION

The substring built-in function (%SUBSTRING) produces a character string
that is a subset of an existing character string. It can only be used in the.
Change Variable (CHGVAR) and IF commands, and can only be used within a
control language program. In a CHGVAR command %SUBSTRING can be
specified in place of the variable (VAR parameter) to be changed or the value
(VALUE parameter) to which the variable is to be changed. In an IF command
% SUBSTRING can be specified in the expression.

The format of the substring built-in function is:

% SU BSTRI NG(character-variable-name start length)

The following is an example of %SUBSTRING usedin an IF command.

IF (% SUBSTRING{&NAME 1 2) *EQ 'IN')
THEN(CALL INV210 &NArytE)

ELSE CHGVAR &ERRCODE 99

If the first two positions in the variable &NAME are IN, the program INV210 is
called. The entire value of &NAME is passed to INV210. Otherwise, the value
of &ERRCODE is set to 99.

WRITING CONTROL LANGUAGE PROGRAMS

Control language programs can be written for many purposes, including:

• To call a series of HLL batch programs

• To display a menu and determine the programs to be called as a result of
options selected from the menu

• To simplify work station and system operations by placing a commonly used
sequence of commands in a control language program

• To control the sequence of processing

• To automate a series of functions for use as an initial program (see Chapter
18, Security) or as a program for a routing step (see Chapter 16, Work

Management)

)

As you write control language programs you should keep in mind the following
information.

• A control language program can contain only control language commands.

• A control language source program should begin with a Program (PGM)
command and end with an End Program (ENDPGM) command. If not
specified, PGM and ENDPGM are assumed. Only one PGM command can
be in a source program; nested (embedded) programs are not allowed.

• All declare commands must follow the PGM command, if specified, and
precede any other commands in the program.

• The following commands can be used only in control language programs:
- Cancel Receive (CNlRCV)
- Change Variable (CHGVAR)
- Declare (DCl)
- Declare Data Area (DClDTAARA)
- Declare File (DClF)
- Do (DO)
- Else (ELSE)
- End Do (ENDDO)
- End Program (ENDPGM)
- Go To (GOTO)
- If (IF)
- Monitor Message (MONMSG)
- Program (PGM)
- Receive Data Area (RCVDTAARA)
- Receive File (RCVF)
- Receive Message (RCVMSG)
- Remove Message (RMVMSG)
- Retrieve Job Attributes (RTVJOBATR)
- Retrieve Message (RTVMSG)
- Retrieve System Value (RTVSYSVAl)
- Send Data Area (SNDDTAARA)
- Send File (SNDF)
- Send Program Message (SNDPGMMSG)
- Send Reply (SNDRPY)
- Send/Receive File (SNDRCVF)
- Transfer Control (TFRCTl)
- Wait (WAIT)

• The following commands cannot be used in control language programs:
- Data (DATA)
- Display Service Status (DSPSRVSTS)
- Display Spooled File (DSPSPlF)
- End Job (ENDJOB)
- Job (JOB)
- Prepare APAR (PRPAPAR)

Control Language Prpgrams 43

Writing a Program to Control a Menu

f

In this example you write a control language program, ORD040C, that controls
the displaying of the order department general menu and determines which
HLL program to call based on the option selected from the menu.

The order department general menu looks like this:

Order Dept General Menu

1 Inquire into customer file
2 Inqu;re into item file
3 customer name search
4 Inquire into orders for a customer
5 Inquire into an existing order
6 Order entry

98 End of menu

Option: _

The data description specifications (DDS) for the display file look like this:

r--------------------------.... - .. -... --------------------,
DATA DESCRIPTION SPECIFICATIONS

GX21· 7754· UM/050·
!~f~~ International Business Machines Corporation Printed in U.S.A.

t-F_ile _______ r-____ --ll Keying I Graphic I I I I I I I I
I Date J Instruction I Key I I I I I I I I

I Description of

Programmer

Sequence
Number

Conditioning
~ z
>:

Condition Name ~
~~~~~~~ : 
- ~a: Name Length Ui i 

~ ~ ~ 

Location 

E ~ § "':::: 
! ~ s 0 0 ~ ~ _~ ~ _ ~ ~ Line Pos 

§ ~ ~ rl ~ ~ .~ E ~ : ~ ~ ~ i 
~ ~ ~ ] ~ E ~ ] Z &: a: 0 c~ ::; 

Functions 

1 2 3 4 5 6 7 8 9 1011121314151617 lS 19202122 23 24 2526 27 28 29pO 3132333435363738394041424344 45 46 47 46 49 505152535455565758596061626364 656667 68 69 70 7172 73 74 7576 77 78 7980 

A~ MENU IORD:~lq0CD ORDEIR DEPT 6ENERIAL MENIU .••••• , •.• .'.', , , , • " • " '. 

A IR MENU rrE~T{I(jeheral menu' . • ' , , • ' , , • 
'A •. Z' OrderOebt General MeV\u.':' .. · -'-

A 3' '?1 tll. ~+ome.r na.meseo..rCh?· ."" 
. A' ~ 3'~ Ih~ tLirei n+o Ordet"S +or ~·c:.lA.stom+ 

A et'"" . " '" ,', ~.'~ 
A 3 '5Ina~it'e into an e;x.i eti nq 0 rcter ' 
A ~ 3' b Or~·er et1tr,,'· · . • •..•.•. - . 
A ·c 'l 'qS 6t\do~ m~iH1. 1. • •••• • 

A •• 1 'l'ObTion:'·'· ..••.• . •.•• • .. 
A • IRE.SP · 'l. iI 1 lOIVA'lU~Sr' l' ·'2' .' .~'. "110"5' '{," qS' ) 
A • • • •• ICHECK (telE , •..••••• • • . . . .~ 
A· • ....'..' .:'.........:..... 

A • • •• . . • • • •• ••• ; •• •••.••• •• • 

A • •. •• • • ....' ••• • •• •••• •••. •• 

A • • ..' •••••.•••••.•• • • _. .•• _ _ '-,-

44 

/'. 
( 

'\....... 

,,-

(" 



) 

) 

) 

The source program for ORD040C looks like this: 

PGM /*ORD040C Order Dept General Menu* / 
DCLF FILE(ORD04QCD) 

START: SNDRCVF RCDFMT(MENU) 
IF (&RESP=1) THEN(CALL CUS210) 
/*Customer inquiry* / 
ELSE 

IF (&RESP=2) THEN(CALL ITM210) 
/*Item inquiry* / 
ELSE 

IF (&RESP=3) THEN(CALL CUS220) 
/*Cust name search* / 
ELSE 

IF (&RESP=4) THEN(CALL ORD215) 
/*Orders by cust* / 
ELSE 

ENDPGM 

IF (&RESP=5) THEN(CALL ORD220) 
/*Existing order* / 
ELSE 

IF (&RESP=6) THEN(CALL ORD410C) 
/ *Order er;ltry* / 
ELSE 

IF (&RESP=98) THEN(RETURN) 
GOTO START 

The DCLF (Declare File) command indicates which fils contains the field 
attributes the system needs to format the order department general menu 
when the SNDRCVF command is executed. The system automatically declares 
a variable for each field in the record format in the specified file. The variable 
name for each field automatically declared is an ampersand (&) followed by the 
field name. For example, the variable name of the response field RESP in 
ORD040C is &RESP. There can only be one DCLF command in each program. 

The SNDRCVF (Send/Receive File) command is used to send the menu to the 
display and to receive the option selected from the display. 

If the option selected from the menu is 98, ORD040C returns to the program 
that called it. 

Control Language Programs 45 



46 

Writing a Program to Simplify Work Station Operations 

In this example you write a control language program, PARTPGM, to update a 
parts file. A work station user updates a part in a parts file by entering the 
part number and the number of parts to add or subtract. 

The source program for PARTPGM looks like this: 

PGM &PARTFllE 
/*PARTPGM Parts file update program* / 
DClF FllE(PARTS) RCDFMT(RCD1 RCD2) 
DCl VAR(&PARTFllE) TYPE(*CHAR) lEN(37) 

/*Parameter variable* / 
DCl VAR(&QOH) TYPE(*CHAR) lEN(5) 
/*Quantity on hand* / 
DCl VAR(&X) TYPE(*lGl) 

lOOP: SNDRCVF DEV(PARTS) RCDFMT(RCD1) 
IF (&PARTNBR~O) THEN(GOTO OUT) 
CAll PARTUPDT (&PARTFllE &PARTNBR &QTY &QOH &X) 
IF &X THEN(CHGVAR &IN32 (1)) 
SNDF DEV(DSP1) RCDFMT(RCD2) 
CHGVAR &IN32 (0) 
GOTO lOOP 

OUT: RETURN 
ENDPGM 

The DClF command indicates that the record formats RCD1 and RCD2 in the 
file PARTS contain the field attributes the system needs to format the part 
number prompt when the SNDRCVF command is executed. (The record 
formats are defined through DDS.) The variables &PARTNBR and &QTY are 
variables automatically declared for the fields PARTNBR and QTY in the record 
format RCD1. The variable &IN32 is a variable automatically declared for the 
indicator 32 in the file. Indicator 32 conditions the displaying of RCD2. The 
three DCl (Declare) commands declare three variables-&PARTFllE, &QOH, 
and &X-to the system. 

( 

( 

( 



\ 
... ) 

If the part number is less than or equal to zero, the program returns control to 
the program that called it. If the part number is greater than zero, the HLL 
program PARTUPDT is called and the variables &PARTFILE, &PARTNBR, 
&QTY, &QOH, and &X are passed to it. PARTUPDT performs the necessary 
operations to update the number of parts on hand. Within PARTUPDT the 
variables &QTY and &QOH are compared to determine if there is enough 
quantity on hand to fill the order. If not, the value of &X is set to 1. When 
control returns to PARTPGM, &X is tested (IF command) to determine if 
quantity ordered exceeded quantity on hand. If so, indicator 32 is set to 1 and 
record format RCD2 is displayed. RCD2 contains a message indicating the 
condition. After the message is displayed and the user performs any necessary 
action, indicator 32 is reset to 0 and the part number prompt is displayed 
again. 

Sending and Receiving Information from Data Areas 

A data area is an object used to communicate data such as control language 
variable values between jobs and between programs within a job. (Normally, 
parameters are used to pass information between programs within the same 
job.) For example, you can pass a customer number or part number to a 
program in a different job through a data area. See Chapter 11, Data Areas for 
more information about creating, changing, and deleting data areas. The 
following paragraphs describe sending and receiving data areas in control 
language programs. 

When you use a data area in a program, you must declare it to the program. 
When the data area is declared, a control language variable is automatically 
declared with the same attributes that the data area has. (The name of the CL 
variable is the data area name preceded by &.) Data can then be moved 
between the data area and the CL variable. The Send Data Area 
(SNDDTAARA) command moves the contents of the CL variable to the data 
area. The RCVDTAARA command moves the contents of the data area to the 
CL variable for use by the ~program. 

In the following example the contents of the data area INVCMPLT are moved 
into the CL variable &INVCMPLT. INVCMPLT is tested through the use of an 
IF command to determine if invoicing is complete. 

DCLDTAARA INVCMPLT 
RCVDT AARA I NVCM PL T 
/*Check for completion of invoicing* / 
IF &INVCMPLT=1 

DO 
CALL CUS680 
CALL CUS681 
CALL CUS0682 

ENDDO 
ELSE 

Control Language Programs 47 



48 

Retrieving System Values 

A system value contains control information for the operation of certain parts 
of the system. See Chapter 17, System Values for a list of the IBM-supplied 
system values and how you can change and display them. The following 
paragraphs describe retrieving system values for use in control language 
programs. 

To retrieve a system value for use in a control language program, you place the 
value in a control language variable using the Retrieve System Value 
(RTVSYSVAl) command. The value and the variable must be of the same type 
(character, decimal, or logical) and length. 

In the following example the system value QDATSEP (date separator) is moved 
into the Cl variable &DATSEP, which was declared in the program. 

DCl &DATSEP *CHAR 6 
RTVSYSVAl SYSVAl(QDATSEP) RTNVAR(&DATSEP) 

Monitoring for Messages in Programs 

Using the Monitor Message (MONMSG) command, you can monitor for certain 
. types of messages sent to programs. Messages can be monitored according to 
the command that results in the message being sent or according to the 
prowam in which the message is sent. If you monitor on a command, the 
MONMSG command cannot follow a DO, RETURN, ENDDO, IF, ELSE, GOTO, 
or ENDPGM command. If you monitor for messages over an entire program, 
the MONMSG command must immediately follow the PGM command or the 
last declare command. 

For more information about monitoring messages, see Chapter 12, Message 
Handling. 

• Retrieving Job Attributes 

You can retrieve the following job attributes and place their values in a control 
language variable . 

• Job date 

• Job switches 

• User name for job 

You can use these attributes to control your applications. The formats of these 
job attributes are: 

• Job date. A six-character value whose format is defined by the system 
value QDATFMT. 

• Job switches. An eight-character value; each character (switch) is either a 1 
or a O. 

• User name. A 10-character value. 

( 

( 
, ...... 



) 

) 

) 

To retrieve job attributes, you use the Retrieve Job Attribute (RTVJOBATR) 
command. You can only retrieve one job attribute in each RTVJOBATR 
command. 

In the following control language program, a RTVJOBATR command retrieves 
the name of the user who called the program. 

PGM 
/*ORD410C Order entry program * / 
DCl &ClKNAM TYPE(*CHAR) lEN(10) 
DCl &NXTPGM TYPE(*CHAR) lEN(3) 

RTVJOBATR JOBA(*USER) RTNVAR(&ClKNAM) 
BEGIN:CAll ORD410S2 PARM(&NXTPGM &ClKNAM) 

/*Customer prompt* / 
IF(&NXTPGM *EO 'END') THEN(RETURN) 

The variable *ClKNAM, in which the user name is to be passed, is first 
declared using a DCl command. The RTVJOBATR command follows the 
declare commands. When the program ORD410S2 is called, two variables, 
&NXTPGM and &ClKNAM, are passed to it. 

COMPILING CONTROL LANGUAGE PROGRAMS 

A control language source program must be compiled before it can be 
executed. When you compile a control language source program you can 
specify 

• Whether a compiler listing is to be generated 

• Whether space is to be reserved in the compiled program for a patch area 

• Whether the program should operate under the program owner's user 
profile 

A control language program can execute using either the owner's user profile 
or the user's user profile. See Running a Program Under an Owner's User 

Profile in Chapter 18, Security for more information. 

To compile a control language program, you use the Create Control language 
Program (CRTClPGM) command. The following CRTClPGM command 
compiles the program ORD040C and places it in DSTPRODlB. 

CRTClPGM PGM(ORD040C.DSTPRODLB) SRCFllE(OClSRC) 
TEXT('Order dept general menu program') 

The source program for ORD040C is in the source file OClSRC. By default, a 
compiler listing is generated. 

Control Language Programs 49 



50 

INVOKING CONTROL LANGUAGE PROGRAMS 

To invoke a control language program, you can use a CALL command, a 
Transfer Control (TFRCTL) command, or a command you create. (See Chapter 
13, Defining Commands.) 

When a CALL command is used, the program called returns control to the 
program containing the CALL command. When a TFRCTL command is used, 
control returns not to the program containing the TFRCTL command but to the 
statement after the most recently executed CALL in the program that invoked 
the transferring program. 

Program B 

Program A Program C 

PGMA --~--------~~PGMC 

TFRCTL PGMD 
RETURN 

Program 0 

PGMD 

RETURN 

( 

( 



) 

'\ 
) 

) 

When you use either a CALL or TFRCTL command, you can specify parameter 
values on the command to be passed to the program being called. For the 
CALL command, these values can be constants or variables. For the TFRCTL 
command, these values are variables received as parameters. 

The parameter values in the CALL and TFRCTL commands must have the 
same order as the corresponding parameters of the called program. In a CL 
program, the parameters are specified in the order they appear on the PGM 
command. In addition, the parameters must be of the same length and type. 
For example, you write the following control language program: 

PGM PARM(&P1 &P2)/*PROG* / 
DCL VAR(&P1) TYPE(*CHAR) LEN(32) 
DCL VAR(&P2) TYPE(*DEC) LEN(15 5) 
IF (&P1 *EQ 'DATA') THEN(CALL MYPROG &P2) 
ENDPGM 

The source program is placed in a member in the IBM-supplied source file 
QCLSRC. The member name is the same as the program name. 

You compile this program (the member name is the same as the program 
name, so SRCMBR need not be specified): 

CRTCLPGM PGM(PROG) SRCFILE(QCLSRC) 

Then, when you want to call this program, you specify: 

CALL PROG (DATA 136) 

DATA is referenced by the variable &P1; 136 is referenced by the variable 
&P2. 

Control Language Programs 51 



52 

COMMAND LIST 

This is a list of commands related to control language programs. It is 
presented here to help you select the appropriate command for the function 
you want and to help you determine which command you might need to 
reference in the CPF Reference Manual-CL. 

Program Commands 

Descriptive Name Command Name Function 

Create Control CRTClPGM Creates (compiles) a 
language Program control language 

program. 

Delete Program DlTPGM Deletes a program. 

Call CAll Invokes a program. 

Commands Within Programs 

Descriptive Name Command Name Function 

Program PGM Indicates the start 
of control lang-
uage program source. 

End Program ENDPGM 'Indicates the end of 
control language 
program source. 

Declare DCl Declares a program 
variable to a program. 

Change Variable CHGVAR Changes the value of 
a control language 
program variable. 

If IF Executes commands 
based on the result 
of a logical expres-
sion. 

Else ELSE Defines the action to 
be taken for the else 
(false) condition of 
an IF command. 

(' 

"-

( 

I" 



", Commands Within Programs (continued) 
\\ 

--) 
Descriptive Name Command Name Function 

Do DO Indicates the start 
of a do group. 

End Do ENDDO Indicates the end of 
a do group. 

Go To GOTO Branches to another 
command. 

Declare File DCLF Declares a file to a 
program. 

Send File SNDF Writes a record to a 
display device file. 

Send / Receive File SNDRCVF Writes a record to a 
display device file 
and receives a reply. 

Receive Data Area RCVDTAARA Moves the contents of 
a data area to a 
control language 

""\ variable. 
) 

,/' 

Receive File RCVF Reads a record from 
a display device file. 

Cancel Receive CNLRCV Cancels a request for 
input previously is-
sued by a RCVF or 
SNDRCVF command. 

Wait WAIT Waits for a RCVF or 
SNDRCVF command to be 
executed. 

Declare Data Area DCLDTAARA Declares a data area 
to a program. 

Send Data Area SNDDTAARA Moves the contents 
of a control language 
variable to a data 
area. 

Return RETURN Returns to the com-
mand following the com-
mand that caused a 

) 
program to be exe-
cuted (called the 
program). 

Control Language Programs 53 



Commands Within Programs (continued) 
( 

Descriptive Name Command Name Function 
\ ..... -

Transfer Control TFRCTL Transfers control to 
a program. 

Monitor Message MONMSG Monitors for escape 
and notify messages 
sent to a program's 
program message queue. 

Retrieve System RTVSYSVAL Retrieves a system 

Value value and places 
it into a control 
language variable. 

Retrieve Job RTVJOBATR Retrieves the value of 
Attributes one of the job 

attributes date, 
switches, or user 
name and places 
the value in a CL 
variable. 

Other Commands 
/" 

This is a list of commands that are also related to control language programs \". 
in general but are not part of the functions presented in this chapter. 

Descriptive Name Command Name Chapter 

Send Program SNDPGMMSG Chapter 12, Message 
Message Handling 

Receive Message RCVMSG Chapter 12, Message 
Handling 

Send Reply SNDRPY Chapter 12, Message 
Handling 

Retrieve RTVMSG Chapter 12, Message 
Message Handling 

Display Program DSPPGMREF Chapter 14, Application 
References Documentation 

Display Data Base DSPDBR Chapter 14, Application 
Relations Documentaton 

Display File DSPFD Chapter 14, Application 
Description Docu mentation ( 
Display File Field DSPFFD Chapter 14, Application 
Description Documentation 

54 



) 

Chapter 5. Data Base 

You can create a data base in which the same data is used by many programs 
in different ways. This can be done by creating many logical files over a single 
physical. file. Logical files can access the data in the physical file in different 
orders with different attributes or selectively exclude data. 

A file must be defined to the system (that is, created) before you can use it in 
your programs. Records in data base files can be described in two ways: 

• Externally described. The fields are described using DDS (data description 
specifications) and the field attributes are known to the data base. 

• Program described. The fields are described in the program that processes 
the file. DDS are not used to define the fields. The record appears to the 
data base as one field. 

Note: If you use a program described data base file, the field descriptions in 
your program must be compatible with the field attributes in your data base 
file. 

To use an externally described file in a program, you must specify in the 
program the name of the file and the member, if more than one, to be 
processed. (A member is a group of records. For more information see Adding 
Members to Files in this chapter.) When the application program is compiled, 
the compiler extracts the file description and it becomes part of the compiled 
program. The application program must open the file before issuing get (read), 
and put (write) requests to the file. An open request connects a file to a 
program and a close request disconnects a file from a program. 

A data base file contains a file description. The file description contains: 

• A description of the record format, which is a description of the fields and 
the order of the fields in the file's records 

• A description of the access path, which is a description of the order in 
which records are to be retrieved 

• Where th~ data associateq with the file is, which is the location of the data 
for a logical file and alloca~ion parameters for a physical file 

This information is specified through DDS (data description specifications) and 
a create file comrTland. The DDS describes the record format, access paths, 
and part of where the data is located. The create file command contains the 
remainder of where the data is located (DTAMBRS parameter for logical file 
members and allocation parameters for physical files), and additional fi!e . 
attributes. 

Data Base 55 



56 

RECORD FORMAT 

The record format describes the fields in the records of a file and the order of 
the fields in the records. The field description includes the field name, data 
type (binary, packed decimal, zoned decimal, or character), and length 
(including decimal positions). The following example shows the relationship 
between the record format specifications and the records in a file. 

Record Format Specifications: 

Field 

ITEMNO 
ITEMDC 
PRICE 

Records: 

ITEM NO 

Description 

Numeric, six digits, no decimal positions 
Character, 20 positions 
Numeric, six digits, two decimal positions 

ITEMDC PRICE 
----;, ---_ ....... _---,----
354068HAM M E RL?L?L?L?L?lzH6L?L?L?L?L?kH6001486 
922011 SC R EWD R I V E RL?L?L?L?L?L?L?L?L?000649 

For logical files, the record format describes the needed transformation of data 
from its physical representation in the data base to the format defined in the 
logical file. For a physical file, the data is actually stored according to the 
specifications of the record format. A physicaUile can have only one record 
format. That is, all records in a physical file are fixed length and have the 
same field descriptions. 

A logical file contains no data. Logical files are used to order data from one or 
more physical files into different organizations for different uses. If more than 
one physical file is referenced by a logical file, more than one record format 
can be specified so that different data records (from different physical files) 
with varying lengths can be processed. 

/ 
I \,-

( 



) 

The following example shows the relationship of the record formats for a 
physical file and a logical file. In this example, a program needs to have the 
fields in the physical file changed for the logical file it uses. The changes 
made are: 

• The fields are placed in a different order. 

• The fields in the logical file format are a subset of the fields in the physical 
file format. 

• The data types are changed for some fields. 

• The field lengths are changed for some fields. 

Physical File 

Field A Field B Field C Field D 

Data type: Data type: Data type: Data type: 
Zoned decimal Character Binary Character 

Length: 8,2 Length: 32 Length: 2 Length: 10 

~ / 
Logical File y~ 

Field D Field A Field C 
Data type: Data type: Data type: 

Zoned decimal Zoned decimal Zoned decimal 
Length: 10,0 Length: 8,2 Length: 5,0 

The data from the physical file is transformed to the format used by the logical 
file so that the data can be sent to the program in a different order for the 
program's use. 

Data Base 57 



58 

ACCESS PATH 

An access path describes the order in which records are to be retrieved. 
Records in a physical or logical file can be retrieved using an arrival sequence 
access path or a keyed sequence access path. For logical files, you can also 
select and omit records based on the value of one or more fields in each 
record. (This is specified through DDS.) 

Arrival Sequence Access Path 

The arrival sequence access path is based on the order in which the records 
are stored in the file. For retrieval or updating, records can be accessed: 

• Sequentially, where each record is taken from the next sequential position in 
the file. 

• Directly by relative record number, where the record is identified by its 
position from the beginning of the file. 

An arrival sequence access path is valid only for the following: 

• One physical file member 

• A logical file in which each member of the logical file is based on only one 
physical file member. An arrival sequence access path does not span the 
members in a file. The path applies to each member individually. 

(For a discussion of members, see Adding Members to Files.) 

Keyed Sequence Access Path 

For a keyed sequence access path, the sequence of the records in a file are 
based on the contents of the key fields as defined in DDS. This type of 
access path is updated whenever records are added, deleted, or modified and 
the contents of a key field changes. The keyed sequence access path is valid 
for any data base file. The sequencing of the records in the file is defined 
when the file is created and is automatically maintained for the file by data 
base data management. 

( 
\..... 

( 



) 

"\ 
) 

A key field is a field whose contents are used to access records in a file in a 
defined sequence. The records in the file can be in either ascending or 
descending sequence. Consider the following records: 

Fields 

Record EMPNBR CLSNBR CLSNME CPDATE 

1 56218 412 WELDING I 032178 
2 41322 412 WELDING I 011378 
3 64002 412 WELDING I 011378 
4 23318 412 WELDING I 032178 
5 41321 412 WELDING I 051878 
6 62213 412 WELDING I 032178 

If EMPNBR is the key field, there are two possibilities for sequencing these 
records: 

1. If the access path uses EMPNBR as the key field in ascending sequence, 
the order of the records in the access path is: 

Record 4, Record 5, Record 2, Record 1, Record 6, Record 3 

2. If the access path uses EMPNBR as the key field in descending 
sequence, the order of the records in the access path is: 

Record 3, Record 6, Record 1, Record 2, Record 5, Record 4 

You can use more than one key field to sequence a file. Both key fields do not 
have to use the same order of sequencing. That is, when you use two key 
fields, one field can use ascending sequence while the other uses descending 
sequence. Consider the following records: 

Fields 

Record ORDER ORDATE LINE ITEM QTYORD EXTENS 

1 52218 063078 01 88682 425 031875 
2 41834 062878 03 42111 30 020550 
3 41834 062878 02 61132 4 021700 
4 52218 063078 02 40001 62 021700 
5 41834 062878 01 00623 . 50 025000 

If the access path uses ORDER, then LINE as the key field, both in ascending 
sequence, the order of the records. in the access path is: 

Record 5, Record 3, Record 2, Record 1, Record 4 

If the access path uses the key field ORDER in ascending sequence, then 
ITEM in descending sequence, the order of the records in the access path is: 

Record 2, Record 3, Record 5, Record 4, Record 1 

Data Base 59 



60 

A file can be defined as having unique key vall!es. To do so, use the UNIQUE 
DDS keyword. To define the retrieval order of records in a physical file 
member that has duplicate key values, use the LIFO (last-in-first-out) DDS 
keyword or use the default of FIFO (first-in-first-out). The records with 
duplicate keys can be retrieved in arrival order or in reverse order. 

The number of fields that make up a key is restricted in that the total key 
length cannot exceed 120 bytes. 

In a logical file with more than one record format you can use multiple key 
fields to merge the records of the different formats. Each record format does 
not have to contain every key field in the key. Consider the following records: 

Header Record Format: 

Fields 

Record ORDER CUST ORDATE 

41882 41394 052478 
2 32133 28674 060278 

Detail Record Format: 

Fields 

Record ORDER LINE ITEM QTYORD EXTENS 

A 32133 01 46412 25 125000 
B 32133 03 12481 4 001000 
C 41882 02 46412 10 050000 
0 32133 02 14201 110 454500 
E 41882 01 08265 40 008000 

If the access path uses ORDER as the first key field and LINE as the second 
key field, both in ascending sequence, the order of the records in the access 
path is: 

Record 2, Record A, Record 0, Record B, Record 1, Record E, Record C 

DATA LOCATION 

For a physical file, the description of the location of the data describes how 
the data is stored in the physical file, which includes how large each member 
is and, optionally, where the data is stored. For a logical file, the description 
identifies the physical files from which data is used for the logical file. This 
information is defined in a create file command, either Create Physical File 
(CRTPF) or Create Logical File (CRTLF). (For a logical file, this information is 
also taken from the PFILE keyword in the DDS for the file.) See Adding 

Members to Files, in this chapter, for specific data location information. 

( 
',,-,. 



"", 
,/ 

\ 
I 

./ 

I 

I 

NAME RESTRICTIONS 

The file name, record format name, and field names can be as long as 10 
characters and must follow all CPF naming conventions (see How to Specify 
Names in Chapter 2, Control Language), but you should limit them to the 
number of characters allowed by the high-level language (HLL) you are using; 
otherwise, other names must be equated to them in the HLL program. Also, 
these names should follow any other requirements of the high-level language. 

Field names must be unique within a record format. Field names created as a 
result of concatenating fields or renaming fields cannot be used as select/omit 
fields or key fields. Record format names and member names must be unique 
within a file; file names must be unique within a library. 

DATA DESCRIPTION SPECIFICATIONS 

Externally described data files are described using DDS (data description 
specifications). DDS is used to name record formats, name and describe fields, 
and designate key fields. The following shows the DDS form. Note that 
specific positions are designated for name type (position 17), record format 
and field names (positions 19 through 28), field length (positions 30 through 
34), data type (position 35), and decimal positions (positions 36 and 37). 

,-----------------------------_ .. _._._ .. _ •..•. _----------------------, 
GX21-7754· UM/050· 

1~~~ International Business Machines Corporation DATA DESCRIPTION SPECIFICATIONS Printed in U.S.A. 

I Description I Page of File 

Programmer Date 

rJ Conditioning 
Location 

Condition Name 
6 

Sequence "" Name Length Functions 12 
Number Ci: 

~ 

~ ~ ~ Line Pos 
f- a N B f-

j 
§ 

~ ~ ~ ~ ~ ~ ~ .= z 
123456 8 9 10 111213 14151617 19202122232425262728 3031 3233 34 394041 424344 45 46 47 48 49 5051 52 53 54 5556 57 585960 61 62 63 64 6566 67 68 69 70 71 72 73 74 7576 77 78 79 80 

A 
, , 1--:'-1 ••.••.••• · ••.••••••.•. 

A --
• • • ••••••••••••••• · .. • 

A 
· 

• 

.... . 
• • · . · • 

· .... 
• • • 

A 
, '.' -- :- , " .... · -:-. 

· • 
A 

• •• 
• 

:--
• • 

• 

· · 

...... 
• 

A 
, -

• •• · . 
· . 

• • · 
• • 

A 
• 

:-. . . · ..... 
· • 

· A · 
· 

.. 
· • · .. 

· 
· · A 

, 
· · . 

• • 

A 
• • · 

• 
• • · 

· · .. • 
• · .. 

A :- · · 
.:-

· · . • • 
· 

· · 
• 

A · .. . . . 
• · 

· .. 
· . • • · . 

A 
. 

· 
• • · .. . . 

· 

• ••• 
• · 

A 
· 

:- .. -: -: 
. 

-: ...... 
· • · 

A · .. 
• 

· . 
• • • 

• 

· ..... 
· 

A 
· 

-; " • • •• • • 
· .. · 

• 

A 
• 

· .... . . · .. 
• • 

. 

• 

· . 
· . • 

• 

A · · - .................. 
· • •• 

A · ..... , ,...,., .. -:- . 
• • • • • • • • 

· 
..... 

A . . . 
• ••••••••••••••••••• 

• ••• • • • • 

Data Base 61 



62 

Comments can be used in DDS. An * (asterisk) in position 7 of the form 
indicates that a line is a comment. C0rt:lments can be written only in positions 
8 through 80. 

Keywords on the DDS form let you supply information that is specified less 
frequently than the information supplied in specific positions on the form. For 
example, the keyword DESCEND changes the sequencing of records from 
ascending (the normal sequence used by the system) to descending for a 
particular key field. Keywords are specified in the functions positions (positions 
45 through 80) .. 

A complete list of keywords is in the section Keyword Summary in this chapter. 

Before DDS can be used to create a file, it must be placed in a source file. 
See Chapter 1 0, Source Files for how source is placed in source files. 

For complete information about DDS, see the CPF Reference Manual- DDS. 

CREATING A PHYSICAL FILE 

A physical file contains data stored in fixed-length records and has only one 
record format. Each record in a physical file matches the field descriptions in 
the DDS for the physical file. 

Records are stored in a physical file in the order in which they are placed in 
the file, that is, in arrival sequence. However, the records can be retrieved in 
any order specified by a valid access path. 

The DDS for a physical file must be in the following order (Figure 2): 

.. File level keywords 

B Record format name and, for a newly described record format, text 
description 

EI For a newly described record format, name and description of each field 

III Key fields 

( 
'" 

.r 
\. 

( 



Comment 
D File Level I 

I' , , • '" I' 1-1- '"1"1""" """"" ~"" ,,,. " "" ""'"" """" L .. " .",M"".,,,,, 00"" ~oo"" 0000" ,n, """""" '"""",. """"""" 
· ••• Af*t IOrllnJ;~ HE ~O ER FIl E 1(0 IROHDREJ J • 

/ ..... · . 
• •• 

· .... . 

· A .. 
•• · 

l' , 
• ••• 

• 

• •••• 
• • • • 

EJ Record Format 
· 

• UNIQUe..' • • i·' • • .. · ..... 
• • 

. . 
· . 

~~Ir< ORDHD~ TEXT(' Orderkea.derrecord' ) · · . · 

Level CUST .'i IZ TEXTC' c.u5totnerl1u.mbe..-s') . · .. . 
· .c • 

ORDER ~ CZ TEXT( 'OrdernlLmber') • • • · . 
· 

• ••• A · ... · 
• 

· .. . 

· • •••• -

· .. · • 
• •• • ~ 'i • • . ••• 

· . 
• • 

· ... . 

~IJ Field .. · • •• · .. · 
· . . ..... . . 

• ---,--
.. · . 

· ... · . • · 
• 

. .. 
• •••• 

· .. Level ) 
· 

----- · · j.. ~ .... ~ .... . 
· .. 

• •• 
. .. 

• •••. A · · " . · · ' 
• 

· · ....... 
• • · ... 

• • • • • •• 
• A 

· · ·C· .. • · · 
· · ...... · . 

• 

• ••• . 

· 

• A 
· 

• II • • • • 

· . 
· 

· .. · ... · .. 
· A 

· · 
II( IrUST l Key Field · 

• • 
• 

· . 
• 

• ••••••••••• 
.. 

· . A 

•• 

.. II< O~nER f Level · • • • · ... · .. • •••• 
..... 

· A 
• · • • • . 

· · 
• • • ••••• 

• 
• •• • •••••• • • 

· . A 
· 

.. . . . 
· • 

. . . . . · 

• • · • • • • • • • •• • ••• • •• 

• ••• A • · • • 
•• 

• • 

.. 
• 

ill • • 
L 

• J • • ••••• · .. 
• ••• A 

· • · .. .,-
• 

-

. 
~ ... · 

. 

· • • • •• • 
~ 1 i 1 · . 

Figure 2. Order of DDS for a Physical File 

Data Base 63 



In the following example, you are creating a physical file ORDHDRP (an order 
header file) that has an arrival sequence access path. Figure 3 describes the 
fields in the records and shows how they are coded in DDS. 

Record Format (ORDHDR): 

Customer 
Number 
(CUST) 

5 bytes 
Numeric 
(packed) 

Order 
Number 
(ORDER) 

5 bytes 
Numeric 
(packed) 

Order 
Date 
(ORDATE) 

6 bytes 
Numeric 
(packed) 

Purchase 
Order 
Number 
(CUSORD) 

15 bytes 
Numeric 
(packed) 

No decimals No decimals No decimals No decimals 

~ Ship o rj:J er 
Code Status 
(SHPVIA) (ORDSTS) ••• 

1 5 bytes 1 byte 
Character Character 

1234567891011/1213141516171819202122232425262728 293031 32333 435 363 738 394041 424344 4546 47 48 49 5051 525354 55565758596061 626364 6566 67 68 69 70 71 72 73 74 7576 77 78 7980 

, A~ OR DiEt<! HE~,D ERFll E I( 0 IROHORP ) · ."..,....'.. .' .. ' 

A ' If< 020HDti! TEXTC' Orde.rke.ade.trecord I 1 ' .' " 
A 

• 

C.U5T E; 
" , ' ',',., . 

'. 
• 

' , 
• 

· 

' . ' 

• A OROER I) , 

• 

• •• • • ••• • 

A , OgOATI ~ 
, , 

, ' . 
• · . 

, 

• 

· , 

· , A 
, SUSORI l.Ci , 

· ' 
• 

. ' 

· ' 

, , 

, A l"HPVI~ Ie:; • 
, . , .. , 

· . , 
· 

. , . ' · , .. , 

• 

A RDST5 1 ' -'~-
, , ' . 

, 
, ' 

• 

• A 
· 

PRNME ' lG 
• 

• 

, , , . 
' . 

· A 

· 

, ROAMT ( 1. 
• 

. ' 
· ' . , 

• 
',,' , 

~ 

A 
• • c..UEPI .I •••• • 

• 

, 

• 

, 
- ' 

, • A [INVNBI , (l 
• . ' , , ' 

- . , , ' . , 
, , 

• 

A PRTOA ~ CZ • • , '. 
' . ' . 

• • . ' .... ' .... 
, A SEQNB I (l 

• 

,'", ..... 
• 

' ' . 
• •• 

, , , 

A OPNSTS . ' . . , , . . . . . ' , . . . . . , . ' . ' . , 

• 

. 

A 

· 
LINES 

• 
e · , ... . 

· 
· . , ... . 

• 

, ' 

A ~CTMLH , I (2 . , 

• 

, . ' , . ". : , · . , 
· . 

A , 
· ~CTYR . (2 

· 

j , • . , . 
• •••••• 

· , ...... ' ... , , 

A 
• ISTATE . . 

• 

' . '~Lu' · · . , .. . . . . -- · ' , ... 
• 

A 
· 

• 
• 

.. -, , 
• 

, 

· . . . ' ' . ' . . , . . . . , . . 
• • • • ••• 

Figure 3. DDS for a Physical File 

64 

The R in position 17 indicates that you are defining a record format. The 
record format name ORDHDR is specified in positions 19 through 28. You 
make no entry in this position when you are describing a field; a blank 
indicates field. 

If the data type (position 35) is not specified, the decimal positions entry is 
used to determine the data type. If the decimal positions (positions 36 through 
37) are blank, the data type is assumed to be character (A); if these positions 
contain a number 0 through 31, the data type is assumed to be packed 
decimal (P). 

If a packed or zoned decimal field is to be used in an HLL program, the field 
length must be limited to the length allowed by the high-level language you 
are using. The length is not the length ot the field in storage but the number 
of digits or characters specified externally from storage. For example, if a 
field's length in storage is 3 in packed form and its length is 5 in unpacked 
form, 5 is specified as the field's length in DDS. 

Note: System/38 performs arithmetic operations more efficiently for packed 
decimal than for zoned decimal. Packed is the default for numeric data in data 
base files. 

,(~ 

I 
'\. ....... . 



) 

) 

'\ 

) 

To actually create the physical file ORDHDRP, you must enter a Create 
Physical File (CRTPF) command like the following. Your DDS was entered into 
the IBM-supplied source file QDDSSRC. By default, the system uses 
QDDSSRC to find your source because the SRCFILE parameter was not 
specified. 

CRTPF FILE(ORDHDRP.DSTPRODLB) 
TEXT('Order header physical file') 

The file ORDHDRP is placed in the library DSTPRODLB. This file has one 
member, which is also named ORDHDRP. (See Adding Members to Files in this 
chapter for more information about members.) 

CREATING A LOGICAL FILE 

1 2 3 4 5 6 7 8 9 10 111213 

A 
• 

, A 
• 

, A 

A 

1 2 3 4 5 6 7 8 9 10111213 

• A · 

A 

A 

A 

A 

A 

A 

A 

• 

A 

A logical file cannot be created unless all physical files on which it is based 
exist. Record formats in a logical file can be 

• A new record format based on a physical file record format 

• The same record format as in a previously described physical or logical file 

If you use the same format as the associated physical file, a change to the 
physical file record format requires a change in the logical file record format, 
and any program using the logical file must be recompiled. If your logical file 
record format is independent of the physical file record format, a change to the 
physical file record format might not create a change to the logical file record 
format. The program using the logical file must be recompiled only if the 

logical file record format changes. 

The three ways of specifying a logical file record format are: 

1. Use the PFI LE keyword to specify the physical files associated with the 
logical file and specify only the key fields. The record format of the first 
physical file specified in PFILE is used. The format name specified must 
be the same as the format name used in the physical file. 

141516 17 18 192021 22 23 24 252627 28 293031 32 33 34 353637 38394041 424344 4546 47 48 49 5051 5253 54 55565758596061 626364 6566 67 68 69 70 71 72 73 74 757677 78 7980 

, . .. : . ' . ' .. : .... : .. , . : .. · ' : 
I~ ORDHO~ . PFILE(ORoOHDRP) · · · . · · '.' · . : • • • • 

• 

k ORDER 
••• 

· 
. . . . . . ..... , . · ... ' ....... 

' . · • • • 

. . . 
• • 

.. ' , . ' , . ' 

2. Use the PFILE keyword to specify the physical file associated with the 
logical file and specify field names and the key fields if key fields are to 
be used. The record format is new and not the same as the physical file 
record format. 

14 1516 17 18 192021 22 23 2425262728 29 30 31 32 33 34 353637 38394041 424344 4546 47 48 49 5051 52 53 54 5556 57 58 59 60 61 6263 64 6566 67 68 69 70 71 72 73 74 7576 77 78 79 80 

, 
. , .: - ' . . . ' .. · ...... . : .. · . · .. 

· If< IORDHD~ P.EILE (OROHQRP 1 · • • · . ••• • • 
• 

ORDER . 
• 

.. 
· 

· • • 
· . 

, . 
• tUST 

• • • 

, 

· 
· , . , . . . · ..... · 

· 

· • 

......... , . , 

• 

. , .' .. 
• 

· . , 
• • • • • • • · 

• 

' . · . , • • · · • · . 
. 

• 

. · 
. . 

• • · • 

~ IORDER 
• • • • 

. , .. ' ... 
• 

• 

· , . . 
• •••• · .. · .. , 

· : 
• 

· ,. 

Data Base 65 



1 2 3 4 5 6 7 8 9 10 11 1213 , 
A ; . 

, 

· 
: ' A 

, . ; A 
, 

• 

A 

· A . 
· ,: A . 

3. Use the FORMAT keyword to name a previously described record format. 
The previously described record format can be in a physical or logical file. 
The format name specified must be the same as the format name used 
in the file specified by the FORMAT keyword. 

141516 1718 19202122232425262728 29 0 31 32 33 34 353637 38394041 424344 4546 47 48 49 505152535455565758596061626364 6566 67 66 697071727374757677 78 7980 

• 

. 
•• :' .. , :i1111. ; .. : 

10< ICUSReD . 
; IREILE(C.USMSTPT 1 ! • • 

• 

, IFOKMATCCUSM STll 
• 

k I~IP , ' . ; ; .. ; . · ""~ 
k ISEARCH ; . : . : 

· : 
· .... : 

-: 
• 

~: ii' .• , 

The DDS for a logical file must be in the following order (Figure 4): 

.. File level keywords 

For each record format: 

II Record format name, associated physical file name, and for a newly 
described record format, optional text description 

lEI For a newly described record format, name and description of each field 

II Key fields (optional) 

II Select/ omit fields (optional) 

r Comment 

• ••• 

• ••• 

· ; : : 
• •••• 

; 
• · : 

• 

. ; . 

• • 

· : : .. ... 
• • 

I' , , • "." ,.,_ '"',,',,""""""" ~,,~ n" """" ~'o" """ ''''''''" ..... ,,' ~L" "" ,L ~.~~:: ~:~e.: ~~ '"" n"" Th" ,,,. "" 
AI* OR/O'ER HEIA10ER L06ICAL 'FILE I(ORCHDRL)' •. : • .; V' i:,::: ••••• :... • 

. . . . : : . : ... · .... : : . UNIQUE) fI Record Format ~ IR ORDHDR IPEILE({ I?DHO~ Pl · . : .. . . . ; · : ; .. 
ORDER j , ... -

· : : Level 
: .. : ' · : : .. '; . 

tUST ' , . ; , . 

• • • 

.. . 
• 

: .. 
• • 

: : 
• ...--' --" . 

( .. . : , , : --:-
• · ; 

: , : 
• II Field 

: 
• ~ 

~ , . 
• 

: . 
• 

...... ' . · 
: . : . 

~ 
Level I II Key Field : .. : . . 

• 

• 
• • 

: 
• • 

, .. 
• 

~ I---
I ~Ioo" Level ' . 

• 

-: .. 
• 

· .. ; ; , ; 

• 

' . ; 

A , (. /'" '.: . ' . 
; 

,: : , . ' . ; 
; ; ; 

A ~ bRDER"'- ~T ( II Select/Omit 
· .. ; ; ; . 

A OPNSTS :'MPlEG'N')\ ; ; ; 

• 
A 5 , I*Al..l. ' . ' · ; 1 Field Level 

.... .j , 

A 

• 

; . 

• 

, :' · ; .. , 

; 

A : 
• 

' . ; . ' . ; ; . . , 

• ••• 
· , ' 

, . ; 

Figure 4. Order of DDS for a Logical File 

66 

( 



) 

\ 
) 

1 2 3 4 5 6 7 8 9 1011121314 

.. AI~ OR IDER , . A 
A . 

• 

A 

In the following example, you create a logical file ORDHDRL (an order header 
file) that uses the key field ORDER (order number) to define the access path. 
The record format is the same as the associated physical file ORDHDRP. The 
record format name for the logical file must be the same as the record format 
name in the physical file because no field descriptions are given. Figure 5 
shows how the DDS for ORDHDRL is coded. 

15161718192021 22 23 24 25 26 27 28293031 323334 353637 38394041 424344 4546 47 48 49 5051 52535455565758596061 626364 6566 67 66 69 70 71 72 73 74 757677 78 79 80 

HE AD ER LOC:: Ie AL FILE If OR ICHOR L} · . • • • • • • • • • • • • • • • • • • • • • • 

• 

. ... 
•• 

I< ORDHD~ . IPFILE{ OrlDHDRPl • • • • ••• . 
• • 

. .. 
'~ JROER · . . i . . i . . 

• • •••• . .. 
• •• •• 

•• 1'j~-~-· 
• 

. . . . 

Figure 5. DOS. for a Logical File 

To actually create the logical file ORDHDRL, you must enter a Create Logical 
File (CRTLF) command like the following. Your DDS was entered into the 
IBM-supplied source file QDDSSRC. By default, the system uses QDDSSRC 
to find your source; the member name is ORDHDRL. 

CRTLF FILE(ORDHDRL.DSTPRODLB) 
TEXT('Order header logical file') 

The file ORDHDRL with one member of the same name is placed in the library 
DSTPRODLB. (See Adding Members to Files in this chapter for more 
information. ) 

CREATING A FIELD REFERENCE FILE 

To simplify record format descriptions and to ensure that fields are used 
consistently, you can define all the fields you need for an application or any 
grouping in one file, a field reference file. The field reference file is a physical 
file containing no data. You create this file using DDS and the Create Physical 
File (CRTPF) command. 

Once the field reference file has been created, you can build physical formats 
from this file without describing the characteristics of each field in each file. 
When you build physical files, all you need do is reference the field reference 
file (using the REF and REFFLD keywords) and specify any modifications. Any 
mod,ifications to the field descriptions and keywords specified override the 
referenced field descriptions. You can also specify an access path for the 
physical files. 

Note: The field reference file can also be referenced to build externally 
described data device files. 

In the following example, you create a field reference file DSTREF for your 
distribution applications. Figure 6 shows the DDS needed to create DSTREF. 

Data Base 67 



1 2 3 4 5 6 7 8 9 1011121314151617 18 19202122232425262728293031323334 3536 37 38394041424344 4546 4748 49 50515253545556 57 58 596061626364 6566 67 68 69 70 7172 73 74 7576 77 76 7980 

T·. A~ FIELD I~EFERENCE FILE (t>STRiEF .' •• , , , : : : • : , : • : ! ! ! ! ! ! ' • : • 
- : A • I< IOSTREF : ' • • , EXTf' Pi e.ld:re-4!e .... e"·ce; ~i' ~ I' , 

, ..... A·'··.'· , .', .. , · •... , : ' : ' · .;. ..!! 
· ., AfJ/ FI E L[ SC ElF INED 8~ CUSifOME~ MAIC:;TE~ RE 1..0RD( CUSMST) ••• : ,::' • 
T . , · A , ' • CUST,' ,Ii (l . reXT( JCU:STbmpl'": ~u.mbe~5' : : 
: .: A • , , : , •• OLH06C'CUSTOMER.' .'NUME 81< ') 
, ! A , • ,NAME . · ZQl EXT C' CusTomer ·no.me \! Y , , , , 
· -. A' · AOOR.·' IR . . . .' ~EFFLD(NAME *'SRC)~ · • • ': ••. 
• A· •• ' ••• • EXT('tustomer o.ddress' • : 
• • A •• CLTY I~ REFFLD (NAME *~CT -:, • 
: A ". .. • • TEXT' Custowt@1'" l'i.J.'J!I.) • 

• • A .! ... . .. 'HEC t, eMF). : ' : ' .' :"': •••• 
• '. A' ~.I2.ECHI< • . ··E· :'cred'j T, c.h~clt':) • • : 
~ , , A.... · .. .. .I' Y" " '1\1" • , • : • : •• : • • 

• A Ic;EA~~CI-l • • I-l. .F.' < us, DIn~ 'V\<Ur\e search"') 
• • A • • • .' • n M (' SEARCH CO])E")' : • '. • , ••• 
• •• A I~r.~"~ ~. '6 C' 'l.U, :cdde'.) • • ' · ' 
, •• A : • .' ""HECK CM F 1 : • • : • : : : : : • :. ::. • • 
· •• A ,,-UTYF~e ' 1 : . . C.O~HDG(':CU5'ToMER': :'TVPE' ) .' • 

1 2 3 4 5 6 7 8 9 1011 12 13 14 1516 17 18 19 20 21 22232425262728 2913031 323334 35363738394041 424344 4546 47 48 49 5051 52535455565758596061 626364 6566 67 68 69 70 71 72 73 74 757677 78 79 80 

• " A 
· • . , • • • • •. . .• .. IRANGE(l :ii) : : : • ! • : : · - •• A · . ' ,,' . '.' . . . . . .. ::... .. • • 

• •• A~ FIlE tillS D ElflINEOSIY III EM MAsrr ER IRECOIl 0 (ITMASTl : -r 
• • • 

, •• A • . [rEM 5 EXT('Item rnunbet'" 1 
· · . 

'. A • OLHD6f' ITEM' "NUMBER') , • 
, . 

• • A 
· .;..' HECK(M101' "':'" •••• , . 

: '. A 
• • • 

.' A • . PRICE. . .1:;2 I EXTC' Pri c.e :D'er u.ni t' 1 -: • 
• · . 

•.• A. • •. • EDTC.OE JT • • • . •• .•• • • • • • T 
• -: A • • • • C,MP(GT 0) - .... :..... • · 
•. • A. • ..' • • ' . COLHOG .' PRICE' .), •• • • 

• • 

- A • . ONHANO' SO.l rrexmp Ot1htihd a«t.tn+i +,,' ) · ". 
• .' A • •. .. • EOTCOE(l.) • • • • :'~ • • • . • • · 
• A 

, . • . . • . · CMP(6E01 . • .• • • • ••••. 
• •• • A , . •. , •. COLHD6 .1 ON HAND'E ..... • • ..' • • . • • • 

• • A 
• · • WHSLOC.·. .~ .. ' . ITEXTT'W(lreh()u~Pl' oc.a.+i riM' 1 • •. ". 

A • • • ., •. .' • · , '. ~MECK( MF): ! • • • . • . : 
• • A •• • •• .' • ••.. • irOLHDG "BIN ~O') • • • '.. . •• 

• •• A • ALLoe·. IR . · • • .•.. REFFLD ONHAND ~SRC) . : ., • 

• ••• A • 
• • · • .• •• · . • .'.. rreXT C' ~ H oc,a.ted: ~:u:aJn+' +\1:' ) . · · ' 

1 2 3 .4 5 6 7 8 9 10 11 1213 141516 1718 19 20 21 22 23 24 25 26 27 28 29 po 31 32 33 34 353637 38394041 424344 4546 47 48 49 5051 5253 54 5556 57 58 596061 6263 64 6566 67 68 69 70 71 72 73 74 7576 77 78 79 80 

• ••• 
A • • 

• ••• · • 

. . 
· 

CMP(6E0) : ... 
•• 

• •• -: , : 
• • • •• • 

• ••• A 
· · · · .... · 

• C,OLHDC:j(' ALLOCATED nr -. 
• ••• 

• 
• 

• · .. A 

· • • • 
. . . . . . . . . '. : . ... ~ . -: 

• • • ••••• • 
· 

•• 
AiE il=I ELCIS DE FINED E IY OR OER HE ~DEIR RE COR OCORDHOR) , 

. . . 
, . ., ... 

· • · 
• 

A tlRDER 5 fZ rreXT (' Ordet" nu.mber.') 
• 

•• • 

• • 

A · 
: 

• 
""OLHOC, (' ORDER' • 'NUMBER') ••• • • • •• • 

· .' A 
· · ORDATE t e rrEXT (lOrd et' date.') • - . . 

• •• · 
• •• A 

• 
· 

· 
. E.01CDE(Y) • ': -: 

• 
••• 

· · 
• 

A. · · COLHD6 (' DAlE" ORDER£O') •.• 
· · 

· 

• 
· • 

A 
• CUSORC 

· 
It; TEXT ('Cust omerblLrc h Q.se order nu.mbe+ 

: .. A 
• 

• 
· 1'"') .. ' •• ' 

• • • • 

- . 
• • · . · 

• ••• 
A · . 

· 
Ic'OL"fDt:H ' P.O." ·'NOMBE.ll':Y • 

• 
• • • ~ A · 

· 
5HPvtA '1'1 reXT{I Shlb~lnllit1strl.lc.t'i OhS') 

· 
• •• A 

• 
ORDSTS 1 

· 
'-EXT (' 0 t"d e r S1-a.TU.5~ode.' .) 

• 
· . · . 

~ A 
· 

. 
· .... OLH06 C' ORDER'·' STATUS' J ...• ••• 

• : A 
· DPRNME le · '-EXT (,Ope.rdtor nQ.Wle; , :) • • • • 

• 
• • 

. A · 
• 

· .. , . 
· COL HOG ( 'OPERATOR NAME',) . · . · 

• 

· 
A ORDAMT 

· 
q 2 rreXT (' Tot((I' ot"de.r\l<llu.e' l· • •••• • • 

A 
• • 

· . . . 
· 

· 
· 

• · COLHObC' ORDER'. .' AMOUNT') • ' . • . 
• • · " A 

· · 
• ••• 

· 
• 

•••• · .......... ': : -r-; •• • • 
• • • • • • • •• 

(' 

\ 
Figure 6 (Part 1 of 2). DDS for a Field Reference File 

68 



) 

1 2 3 4 5 6 7 8 9 10 111213 141516 17 18 19 20 21 n 23 24 25262728 293031 32 33 34 353637 38394041 424344 4546 47 48 49 5051 52535455565758596061 626364 6566 67 68 69 70 71 72 73 74 757677 78 79 80 

A INVNBR 5 flJ TEXT('Invoice~~mberl ) 
A C.OLHD6(' INVOICE.' 'NUMBER' J 
A PRTDAT ·0 .~ E.OTC DE ( '( ) 
A (OLHD6(' PRI]!TE.D' , DATE') 
A SEGNSR '5 {l EXT('SeQuenCe "u~ber') 
A COLHO(; (' SEQ' 'NUMBER' ) , 

A OPNSTS ! rrEXT(' O~eh stQ.tU.S· ) 
, 

A [(OJ..!" )&( 'OPEN' 'STATUS'l 
A LINES 3 (ij ["EXT I ' Total lines on i n~o i ce' ) 
A )c,(' TOTAL' C.O.LH( , LINES' ) 
A ACTMTH 2 C.?J r-E.XT ' Acc.ou.n..-ti hq.month ' 1 
A :OLH )(; ('ACCT' 'MONTH') 
A ACTYR 2 fll r-EXT ' Acc.ou."tl nq'le.a.r' ) 
A OLH )G('ACCT' '~E~R' 1 
A , 

A 
, , 

A 

A , 
'. ...c' • • •• 

A 
• 

: , ' . , , 
• 

: 
• · .. 

A 
, , : 

, , . ' 
• 

, 
• . : 

• • 

, 

1 2 3 4 5 6 7 8 9 10 111213 141516 1718 19 20 21 22 23 24 2526 27 28 293031 323334 353637 38394041 424344 4546 47 48 49 5051 52535455565758596061 626364 6566 67 68 69 70 71 72 73 74 757677 78 7980 

Af1E IFI IELO S 0 IEF INEO 8 Y 02 PER DE trA.I LilLI NE ITEM RECOR.D (O~DDTL) , ' . , , 

A LINE ~ Q TE.)(.TC' Line ttlLmber of tkis orc:tered \ .f-
A teJft' ) . : , 

, 

• 

A COLHO<?H' LINE~O' ) 
A QTYOfU 3 Cl TEXT('Qu.a.ntit"y orde\""ed') 
A rOLHDG(' GT'f" ORDERED' ) · , 
A tMP(6E 0) , 

· 
A EXTENS 6 1.. [[EXT{' EXTe.ns iOK of QTYORD x PRICE') 
A EDTCD£-.iI) , 

A COLH06('EXTENSrON' ) 
A , , 

AI~ I~I IELl) IS [ IEF INED B IV AC ~OUNTS RE ~EIV ABL E: , , 

A IARBAl 8 'l. rrEXT{'A/R balQ.t\c.e du.e') , 

A IEDrc.DE (J ) .. .. . . 
. 

, · . 

A · 
• •• 

. . 
• 

: : 
• 

· . , 
, 

A~ IWO iRK ~RE IA~ AND a TH E~ FIELO c; T HAT OCC URLN MULTI.PLE PROGRAMS • · : ..... 
A STATUS 11- rT'EXT(' status describtion' ) , 

• 

, 

A . . · . • • 
........ ' ... · 

: 

A . . · .. 1 • - .' : 
• • 

A . , 

-'- • • · .. ..... . . . --- ' .... ~ - ... 
• 

Figure 6 (Part 2 of 2). DDS for a Field Reference File 

To actually create the field reference file, you must use a Create Physical File 
(CRTPF) command like the following. Assume that your DDS was entered into 
the source file FRSOURCE; the member name is DSTREF. 

CRTPF FILE(DSTREF.DSTPRODLB) 
SRCFILE(FRSOURCE.QGPL) MBR(*NONE) 
TEXT(' Distribution field reference file') 

Note: The files used in the remaining sections of this chapter are based on this 
field reference file. 

Data Base 69 



1 2 3 4 5 6 7 8 9 10 111213 

A~ JR DE~ 
A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

If the physical file ORDHDRP were built from DSTREF, the DDS would be as 
shown in Figure 7. 

14 1516 1718 192021222324252627282 93031 323334 353637 38394041 424344 4546 47 48 49 505152535455565758596061626364 6566 67 68 69 70 7172 73 74 75,76 77 78 7980 

HE ~u ER FILE (0 DHDRF - PHV SIt AL FILE RECORDDEFINtTION 
REF(OSTREF) • 

, , 

• 

: , 

IR :>RDHO~ TE~T{' Orderhea.de .... recot'"d t ) 

:U5T 
, 

DRDER 
:lR.DATE 
CUSORC , 

• 

, 
, 

SHPVIA , : 

DRDSTS • 

, 

OPRNME , , 

Ol~OAMT 
• 

• 

, . 
, , 

~UTYPE •• 
: : : ' : 

· ' 
: : 

[NVNBR : : : 
, . , : . 

IPRTDAT . ' . ' , ' , ... : : , , , 

SE.G.NBR ' . ' . . : 

• OPNST5 ' . : , , ' , : : , 
, 

, 
, 

LINES : 
, 

· : : : : 
, 

IAC.TMTH 
• 

, 
• • • 

: 
· . : . 

• 

, 
• 

• ~CT~Y'R : , : : . : .. ' . ' : : , , . 
• 

: : 

STATE ' . . ' , . ' . . . ' , . . . . ' . . . , : , , 
• 

Figure 7. DDS for a Physical File (ORDHDRP) Built from a Field Reference File 

70 

The REF keyword (positions 45 through 80) with the field reference file name 
indicates the file from which field descriptions are to be used. The R in 
position 29 indicates that the field description is to be taken from the reference 
file and that the fields have the same name. 

( 



) 

"\ 
) 

./ 

CREATING A LOGICAL FILE WITH MORE THAN ONE RECORD FORMAT 

A logical file can have more than one record format. A logical file with more 
than one record format lets you use related records (physical files) by 
referencing only one logical file. 

Each record format is always associated with one or more physical files. In a 
single logical file you can use the same physical file in more than one record 
format. 

In the following example, you are creating a logical file ORDFILL with two 
record formats. One record format is defined for order header records from 
the physical file ORDHDRP; the other is defined for order detail records from 
the physical file ORDDTLP. Figure 8 shows the DDS for the physical file 
ORDDTLP. (Figure 7 shows the DDS for the physical file ORDHDRP). Figure'9 
shows the DDS for the logical file ORDFILL. 

1 2 3 4 5 6 7 8 9 10 " 1213 141516 1718 19 20 21 22 23 24 2526 27 28 2 9PO 31 323334 353637 38394041 424344 4546 47 48 49 5051 52535455565758596061 626364 6566 6768 69 70 71 72 73 74 7516 77 78 7980 

• • AI~ tr~ Ir E~ DE. triP ILFIL E I(OR DDTLP) - P~'r SIC AL -FILE RECORDDEFINLTION ' .. -.. ~. 

, 
• • A • REF(OSTREF) , . -: 

• • • • • • • 
• • •••• 

... 
· , ' • A : 1f.C ORDOTl 

· 
rrExtl' Orae.r ae.~a.i I re.c.orQ I) •.• : • . , 

. : A CUST ' . · . ' 
. : 

• • 

.. 
• 

' . , , 
• 

· A , 
• 

• 
ORDER 

, 
: 

• ••• · : . ' 
, . . : 

, ' , . A L!NE , , -;-
• 

• 

-. : . 
• • •• 

• 
... 

· 

, 
A 

-

ITEM , 

· 
' . , 

- -:-: . -. · . , ' 
- , 

A 
• 

Q,.YORD ,~ 

• •• 
' . ' · ' · , ' 

. , 
• 

• • • : A OES('R.P · .. -... 
· . · - . . -. 

• 

-, 

· 

· 

A 

· 
P )tCI:- • • 

.... · 
• • 

... , •• . , 

• 
: 

· . 
.• A -;- E. TENS · 

· 
• • • • · . : ...... ' .. 

· . · -:-
• • A • W ~SlOC · -: -: : .. 

• 
. · . : · : : · . 

• • , A 
· 

· 
)1 DATE · .. "" :- , -. - - -- -

· 

• A · ... UrY'PE 
· 

· : : •• : · 
• • 

- , . , . : .. ' . 
. 

• • A 
• · ;TATE ' , T , .. -, , . ., - · , , 

: . : . 
· . A 

, :-
~CTMTH : · .. 

• • • · .. , . -;- : 

• 

• • • 
• 

· : 
• '. ' A , 

· !:\CTYR · . •• • ':T:-T 
• 

-c-- • - • -.-- :- : - :- - .- : 
-

. : .. 
· • A • · 

•• 
: 

• 

. 
, . . c • : . • T - T • T • : T_, • · . : : ... : · : .... 

• : • • A • • 
: . : : 

• 
• · . 

• • 
• .' •••• 11 •• -: , T· • : . : 

· • • A · · 
, 

••••• 
· : • • 

. ' · ' • • • • · : ..... • 
: ' .. 

Figure 8. DDS for Physical File ORDDTLP 

1 2 3 4 5 6 7 8 9 10" 12131415161718192021222324252627 28 29~0 3132333435363738394041424344 45 46 47 48 49 505152535455565758596061626364 6566 67 68 69 70 7172 73 74 7516 77 78 1980 

: • • , AI~ ORIEE~ ITRA!NSAc.TION LO~[C.AL FILE (ORDFILL) .: ...... :: -: ... -: . . ': .: .. . 
• . • A : I~ I0!20UOC • . IP FILE (OIlOHOR.P --;-....... ..::. .:. " 

· : • ,A • :1< IORDER : · .. : • -; . •.•. · : •••• : ::.. • : ' 
--;-. .• A- •. ". .' • • • • • " f -.-' •• • • • •• 

• .' A' • II'< ORDDTL . PF1LE(OR.DDTWP • · ...: :" '. . 
• •• A ' : I~ ORDER . .' .. •. : : ••..• • • •. . . .' 
• .' A • I~ LINE. ' . . . ' .:- - -.. - '. ..:.. ::..... . 

- • A ..:. ... • :- -f :-.:::.. ••. :' • :. .' 

Figure 9. DDS for the Logical File ORDFILL 

Data Base 71 



72 

The logical file record format ORDHDR uses one key, ORDER, for sequencing; 
the logical file record format ORDDTL uses two keys, ORDER and LINE, for 
sequencing. 

To create the logical file ORDFILL with two associated physical files, use a 
CRTLF command like the following: 

CRTLF FILE(ORDFILL.DSTPRODLB) 
DTAMBRS((ORDHDRP(ORDHDRP)) (ORDDTLP(ORDDTLP))) 
TEXT('Order transaction logical file') 

The DDS source is in the member ORDFILL in the file QDDSSRC. The file 
ORDFILL with a member of the same name is placed in the DSTPRODLB 
library. The access path for the logical file member ORDFILL sequences 
records from both the ORDH DRP and ORDDTLP files (and mert:lbers of the 
same names). Duplicate keys within each physical file are retrieved in FIFO 
order. Because record formats for both physical files are keyed 'On ORDER as 
the common field, and because of the order in which they were specified in 
the DTAMBRS parameter, they are merged in ORDER sequence with 
duplicates between files retrieved first from the header file ORDHDRP and 
second from the detail file ORDDTLP. 

When you create a logical file with more than one record format, you might 
want to write a format selector. The format selector is a program to determine 
where a record should be placed in the data base. The format selector is used 
only when no record format name is given by the application program for 
records that must be inserted into the data base. 

When you write a format selector, you should keep in mind the following 
information: 

• A format selector can be a control language program or any high-level 
language program. 

• The format selector cannot be created with the parameter option (*USER 
specified for the USRPRF parameter) of using the owner's user profile to 
execute. 

• It is not necessary to specify a format selector for a logical file or logical file 
member with only one record format. 

The name of the format selector is specified in the Create Logical File (CRTLF) 
command, in the FMTSLR parameter. 

( 
"-

( 
'-

c 



) 

) 

) 

1 2 3 4 5 6 7 8 9 10 

, ' , A 
, 

, , 
A 

A 
, 

A 

.' A , 
, 

• 

A , 

SELECTING AND OMllTlNG RECORDS 

For a logical file with a keyed sequence access path, you can select and omit 
records from the file. The select function selects records from a physical file 
instead of using all physical file records in the logical file. The omit function 
specifies which records from a physical file are to be omitted from the logical 
file. Selecting and omitting records is based on comparisons specified in the 
DDS for the logical file. For example, in a logical file that contains order detail 
records, you can specify that the only records you want to use are those where 
the quantity ordered is greater than the quantity shipped. All other records are 
omitted from the access path. The records remain in the physical file but are 
not retrieved for the logical file. 

Note: Field names used for selecting and omitting records must be physical file 

field names. 

In Figure 10, you select all (ALL keyword) of the records from a record format 
except those from Department 12 (DPTNBR compared to 12). For Department 
12, only those records containing an item number (tTMNBR) of 112505, 
428707, or 480100 are selected. 

111213 141516 1718 19 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 3S 36 37 38394041 424344 4546 47 48 49 5051 52535455565758596061 626364 6566 67 68 69 7071 72 73 74 757677 78 7980 

'r.::J DPTNB~ , , , 
\.MP(EG 1'2.> ' • • • • 

' , .... , , , 

[lMNB~ , VALUES(.Ll.2~QJ? '4-2.81 014-80100) , . ' ' 
n DPTN8~ CMPCEG. ill' ' - , , , 

• 

- , 
- ~ 

ICj ~Ll . , 

• 

, , ' - , ' , 
' , ' , - , 

• 

-

.'. , '.' . 
' , 

, 

Figure 10. DDS for Selecting and Omitting Records 

1 2 3 4 5 6 7 8 9 10 

, 
, A '* CU 
, A 

A 

A 

A 

A 

A 

If ALL is not specified as the last select or omit specification, it is automatically 
generated. If a select was specified last, an omit with ALL is generated; if an 
omit was specified last, a select with ALL is generated. 

SHARING RECORD FORMATS 

A record format can be described once and can be used (shared) by many 
files. The file originally describing the record format can be deleted without 
affecting the files sharing the record format. But as soon as the last file using 
the record format is deleted, the record format is deleted. 

In Figure 11, you describe a logical file CUSMSTL 1 that shares record formats 
with another logical file CUSMSTL. 

111213 141516 17 18 19 20 21 22 23 24 2526 27 28 29303132 33 34 353637 38394041 424344 45 46 47 48 49 5051 52 53 54 5556 57 58 59 60 61 62 63 64 6566 67 68 69 70 71 n 73 74 7576 77 78 79 80 

srro IMER NAME SE AR CH ILOGle. ML FILE (C USMSTL!) , 
- , . 

• 

, 

II< CUSREC PFILE(CU5MSTP l . , 

FORMAT(C.U5MSTL) , 

il< lIP , .- , , . , ' 

II< SEARCH 

, 

Figure 11. DDS for a File that Shares Record Formats 

Data Base 73 



74 

CUSMSTL 1 uses the record format CUSREC from CUSMSTL: The FORMAT 
keyword indicates that a previously described record format is to be used. 

If a logical file is defined but no field descriptions are specified and the 
FORMAT keyword is not specified, the record format of the first physical file 
(specified first on the PFI LE keyword for the logical file) is automatically 
shared. You can save time defining a file if you share record formats, but you 
have less data independence if the shared format is changed. If the based on 
format is changed (by deleting all related files and creating the based-on file 
again), it is changed for all files that share it. 

SHARING AN ACCESS PATH 

When two or more files use the same data (are based on the same set of 
physical files) and the same organization of the data, they can share the same 
keyed sequence access path. When access paths are shared, the amount of 
system activity required to maintain access paths is reduced. The amount of 
auxiliary storage used by the files is also reduced. Two users can access the 
same physical file with different record formats. That is, two use'; can use the 
same data and access paths but use different logical files. However, the two 
formats can be using different fields in the data. 

When an access path is shared, the file that references the access path must 
be a logical file and is dependent on the file (physical or logical) that describes 
(creates) the access path. The file describing the access path cannot be 
deleted unless the file referencing the access path is deleted first. 

When an access path is shared and the file describing the access path is a 
physical file, the file referencing (sharing) the access path must be a logical file 
with only one record format. If the file describing the access path is a logical 
file, the logical file sharing the access path can contain more than one record 
format. The following illustrates these concepts. 

Describes Access Path: Shares Access Path: 

Physical File A 

Logical File 0 

Logical File B 

Logical File C 

" Has only one record format 

/ 

because it is sharing with 
a physical file. 

Logical File E ~ Can have more than 
one record format. 



) 

) 

When an access path is shared, the file describing the access path must not 
be sharing an access path that is already being shared from another file. That 
is, there is only one level of access path sharing. The following illustrates how 
access paths cannot be shared. 

Describes Access Path: Shares Access Path: Invalid Sharing of Access Path: 

Physical File F Logical File G Logical File H 

Valid Sharing 
of Access Path: 

Logical File H 

When files share an access path, the fields in the file sharing the access path 
must follow the same rules that are applied to any field description for a logical 
file. 

The file sharing the access path must have the same number of physical files 
(specified using PFILE keywords) as the file describing the access path, and 
the physical files must be specified in the same order. The record formats 
used in the referencing file must contain the key fields and select/omit fields 
used in the file describing the access path. 

The fields in the record formats of the file sharing the access path can be a 
subset of the fields in the physical file describing the access path, or the 
record format of the file sharing the access path can include more fields from 
the physical file record format than are described in the file describing the 
access path. 

The ACCPTHMBR parameter must be specified on the CRTLF command when 
the file shares an access path (the ACCPTH DDS keyword is used) and a 
member is to be created: 

CRTLF FILE(ORDHDRL 1.DSTPRODLB) 
ACCPTHMBR(ORDHDRL) 
TEXT('Order header logical file') 

The DTAMBRS parameter defaults to the one member of the file ORDHDRP. 

Data Base 75 



76 

In the following example, you are creating a logical file ORDHDRL 1 that shares 
an access path with another logical file ORDHDRL (see Creating a Logical File). 
Figure 12 shows the DDS needed to create ORDHDRL 1. 

1 2 3 4 5 617 8 9 10111121314'151617 18 1920212223 24 2526 27 28 29 30 3132 33 34 35 36 37 38 39 4041424344 4546 47 46 49 505152535455565758596061626364 6566 67 66 69 70 7172 73 74 7576 77 78 7980 

.. AI* ORDER HE~DE.R LOGICAL FILE OR!(HD~LJ..)· :~~_l:;.:.·:.·········· .. : . ... 
A • • ~CCEIHfOROHORL:r;5TPRODLB) •••. · . • • .. 
A I~ ORDHOr< IPFIL~ORDHDRP). ••.. ..' ••.•. : .. 
A • • ..: ••• ............:. 

A • •• ••••••••••• ...::, • _.i.· 

Figure 12. DDS for a File Sharing Access Paths 

CONCATENATING FIELDS 

When you concatenate fields, you combine two or more fields from a physical 
file record format to make one field in a logical file record format. For 
example, a physical file record format contains the fields ADDR, CITY, and 
STATE (customer address, city, and state). For a logical file, you concatenate 
these fields into one field, ADDRESS. 

The field length for a concatenated field is the sum of the field lengths of the 
fields included in the concatenated field. This field length cannot be changed. 
However, when you concatenate fields, you can specify the following 
information for the new field. 

• Edit code or edit word 

• Column headings 

• Validity checking data 

• Text description 

Note: This editing and validity checking information is not used by the data 
base but is retrieved when field specifications from the data base file are used 
in a device file. 

When fields are concatenated, the data types could change. The following 
shows what data types result: 

Fields Being 
Concatenated 

Binary 
Zoned decimal 
Packed decimal 
Character 
Character and 
numeric (alphameric) 

Concatenated 
Field 

Zoned decimal 
Zoned decimal 
Zoned decimal 
Character, 
Character 

( 



) 

"'-\ 

) 
./ 

....., 
\ 

~) 

When numeric fields are concatenated, the sign of the last field is used as the 
sign of the concatenated field. 

Notes: 
1. Fields containing nonzero decimal positions cannot be included in a 

concatenated field. 

2. A concatenated field name cannot be used as a key, select, or omit field 
name. 

The following shows the field description in DDS for concatenation. The 
CONCAT keyword is used to concatenate fields. 

1 2 3 4 5 6 7 8 9 1011 12 13 14 1516 17 18 192021 22232425262728 29 flO 31 3233343536 37 38 394041 424344 45 46 47 48 49 5051 52535455565758596061 626364 6566 6768 69 70 71 72 73 74 757677 78 7980 

· -'- A •. •• : . •. ". .' • • .; ...:. ••••• •• ; • 

· . A" • NAME:' .. '. • : • •• • :::.. ..:..... · · 
• • A ; • • Annl2~55 . CONCAT(ACIDI< CITYC:;TATE ; • •. 

• A' • ~lP'" · .• : •• ••• : :. • •••. .' 
• • A • • • • ..•• .: ~ ... ' • • •. . • l • • • : .' .• • .' ':" •• 

• A • • .: .'- • '. • • •••••• • •••••• •••• • ;.... • 1 1 

HANDLING DUPLICATE KEY VALUES 

Duplicate key values are two or more key values that are the same and are 
entered or passed in the same key field for different records in the same file. 
Duplicate key values apply across all key fields for a record. For example, if a 
record format has two key fields ORDER and ORDATE, duplicate key values 
occur when the combination of these fields is the same in two or more 
records. Figure 13 shows duplicate key values . 

First Second 
Key Field Key Field 
~ ~ 

ORDER ORDATE LINE ITEM QTVORD EXTENS 

41834 062880 03 42111 30 020550 
41834 062880 02 61132 4 021700 
41834 062880 01 00623 50 025000 

Figure 13. Duplicate Key Values 

In Figure 13 if either ORDER or ORDATE had varied or if LINE had b,een used 
as a third key field, the records would not have had duplicate key values (see 
Figure 14). 

First Second Third 
Key Field Key Field Key Field 
~ ~ -"--

ORDER ORDATE LINE ITEM QTVORD EXTENS 

41834 062880 03 42111 30 020550 
41834 062880 02 61132 04 021700 
41834 062880 01 00623 50 025000 

Figure 14. No Duplicate Key Values 

Data Base 77 



1 2 3 4 5 6 7 8 9 10 11 1213 

, Af* OR DER 
, . A 

A 
. 

A 
. , 

, A 

A 
. , , A . 

A 

• 
A 

A 

You can prevent duplicate key values in your files by specifying that key values 
must be unique. That is, a record cannot be entered into a file if its key value 
is the same as the key value of a record already existing in the file. If UNIQUE 
is specified for a file, no other files sharing data can add records to the file 
that would result in duplicate keys. Figure 15 shows the DDS for a logical file 

that requires unique key values. 

141516 1718 192021 22232425262728 293031 323334 353637 38394041 424344 4546 47 48 49 5051 5253 54 5556 57 58 59 60 61 6263 64 6566 67 sa. 69 70 71 72 73 74 7576 77 78 7980 

rrR ~N SACTION LO :GIeAt FIILJE (0 RDF IILLD: : : ; : : , 
: : . 

, . ' . : . 
, . 

~NIQL E; 
• • 

' . : . : . ; . · . 
rR O~DHDR 

, !PFrL(; TOR.r ~HDI< ~p ) ; ; : 
• • 

:1< ORDER : . : : : : : 
• 

· 

-; . 

, , , 

• 
: .. • l .: 

• 
t. 

lfoj KJRDDTL IPF '!LE (OR .l DTLP) : . 
, : : . 

I< ORDER --; ; ; : , : : 

-:- II< crNE . , .. :- : . , , : 
• 

: . 
. , , 

• 
• • 

. : . , 

· 
: : . 

-

, , , . , : . : . . : · · . 

Figure 15. DDS for Unique Key Values 

78 

Note: When UNIQUE is used, you must specify immediate maintenance (on 
the CRTPF or CRTLF command) for the access path so that attempts to add 
nonunique keys can be detected and rejected immediately. 

If you allow duplicate key values and they occur, you can handle the records 
with duplicate key values in one of the following orders: 

1. First-in-first-out (FIFO). This is the default order for duplicates in one 
physical file member. 

2. Last-in-first-out (LIFO). This can be used for duplicates within one 
physical file member. 

3. If duplicate key values occur within records that are from different 
physical file members, the system retrieves the records in the order in 
which the files and members are specified in the DTAMBRS parameter 
on the CRTLF or ADDLFM command. 

If UNIQUE is specified for a logical file, a record with a duplicate key value 
cannot be added to a physical file that the logical file is based on. For 
example, two logical files LF1 and LF2 are based on the physical file PF1. 
UNIQUE is specified for LF1. If you are using LF2 and as a result are adding a 
record to PF1, you cannot add the record if it causes a duplicate key value in 

LF1. 

( 

( 
\ 

'-. 



) 

) 

\ 

) 

ADDING MEMBERS TO FILES 

A member is the operational part of a file. If there is more than one member 
in a file, each member is a subset of the data for the" file. The following 
illustrates the concept of members. 

Data 
Portion 

File 
File description 

{ 

Member A 
Member B 
Member C 

Each member has its associated data and its own access path for that data. 
The access paths conform to the same rules in the file description. 

Before you can perform any input or output (I/O) operations with a file, you 
must add a member to the file. All I/O requests are made to members. There 
are two ways to add members to files: 

• Add the member when you create the file using the create file command. 
You can name the member using the MBR parameter or let it default to the 

same name as the file. 

• Add the member after the file is created using the add member (ADDPFM 
or ADDLFM) command. 

Some information about members is specified when the file is created (CRTLF 
or CRTPF command) instead of when the member is created (ADDPFM or 
ADDLFM command). This information relates to all members of the file. The 
following lists the information that is common to all members of both logical 
and physical files. (Parameters are given in parentheses.) 

• The maximum number of members that can be contained in the file 
(MAXMBRS parameter). You can specify a number from one through 
32767. 

• The maintenance (immediate or rebuild) of the keyed sequence access paths 
for the members (MAINT parameter). 

Once a keyed sequence access path has been created, it must be 
maintained so that it reflects any change made to the data it is associated 
with. When a file member is being processed (is open), its access path is 
maintained as changes are made to the file member. However, because 
data can be shared by more than one file and more than one access path 
can exist to the same data, updating data in one file might require changes 
to be made in other access paths. As changes are made to the data, the 
access paths for all the related active (open) files on the system a~e also 
updated. This is true even though the data is being changed through 
another file or access path. 

Data Base 79 



80 

The type of access path maintenance to specify depends on the size of the 
members (number of records) and frequencies of adds, deletes, and updates 
to a file. Access paths for files not currently being processed (not open) are 
normally rr:'aintained as if in use (immediately maintained). However, when 
you create a file, you can specify that the access path should be rebuilt 
when the file is going to be processed. In this case, the access path for the 
file is created when a program starts using the file. While this file is active 
(open), the access path is updated as changes are made to the data. When 
the file is closed, its access path is invalidated to eliminate constantly 
maintaining the access path. When the file is opened again, the access path 
is rebuilt and reflects the current status of the data. 

The following is a comparison of immediate and rebuild maintenance. 

Immediate 

Fast open because 
the access path 
is current. 

Slower input/output 
operations because 
the access path m.ust 
be updated immediately. 

Rebuild 

Slow open because 
access path must 
be rebuilt. 

Faster input/output 
operations to other 
files because this 
access path is not 
updated immediately. 

Note: An access path cannot be created for a file with rebuild maintenance 
if another concurrently executing user is changing records in the same 
physical file. Therefore, the file is not opened until the other user has 
finished changing records. Record retrievals do not interfere with access 

path creation. 

• When an access path with immediate maintenance should be rebuilt for 

recovery (RECOVER parameter). 

If your system goes down abnormally, when you start it again your access 
paths are rebuilt as part of your data base recovery. Only access paths that 
have immediate maintenance and that were changing when the system went 
down are rebuilt. Such a file cannot be used until the access path has been 
rebuilt. Therefore, it is important that files that are required by most 
programs or that are needed immediately after CPF startup be rebuilt during 
CPF startup. You can rebuild the access path either during CPF startup, 

after CPF startup, or at first use. 

( 

( 

( 



) 

) 

) 

The following shows the relationship among duplicate key options, 
maintenance options, and recovery options. 

Duplicate Maintenance Recovery 
Key Options Options Options 

Unique keys Immediate Rebuild during CPF 
startup (*STRCPF) 

Rebuild after CPF 
startup (*AFTSTRCPF) 

Rebuild at first use 
(*NO,default) 

Nonunique Immediate Rebuild during CPF 
keys (FIFO startup (*STRCPF) 
or LIFO) Rebuild after CPF startup 

startup (*AFTSTRCPF) 
Rebuild at first use 
(*NO,default) 

Nonunique Rebuild Rebuild at first use (*NO,default) 
keys (FIFO 
or LIFO) 

If the default recovery option for a file with unique keys is overridden and 
non unique keys are entered before the first user open of the file, the access 
path cannot be rebuilt until the user eliminates the duplicate key records. 

• What disk unit the data (for a physical file) or access paths are on (UNIT 
parameter). 

You can request that all members of a file be on the same disk unit. If 
there is not enough space on the unit for initial allocation, the records are 
placed on different units, and a message is issued. 

• Whether you want the system to determine how many new and updated 
records are to be written to the disk unit (FRCRATIO parameter). 

When records are updated or added to the data base, they are not directly 
written to the disk unit. You can indicate how many are to be written to the 
disk unit. This is called forcing records to be written to the data base. If 
you do not specify forcing, the system determines how many reco~ds' are 

written. 

Data Base 81 



82 

Physical File Members 

Besides the previously listed information, you can also specify for physical file 
members the following (parameters are given in parentheses): 

• An expiration date for each member in the file (EXPDATE parameter). If the 
expiration date is reached, the system operator is notified when the file is 
opened. He can then override the expiration date and continue or terminate 
the job. You can then remove the member if you want to. Eac~ member 
can have a different expiration date, which is specified when the member is 
added to the file. (The expiration date can be overridden; see Chapter 8, 
Overriding Files.) 

• The maximum number of records that can be placed in each member (SIZE 
parameter). The following formula can be used to determine the maximum: 

R + (I.N) 

Where R 
I 

N 

is the initial record count 
is the number of records 
(increment) to add each time 
is the number of times 
to add records 

The defaults for R, I, and N are 10000, 1000, and 3, respectively. 

For example, you specify R as 5000, I as 1000, and N as 3. When a 
member reaches the initial maximum of 5000, the system automatically adds 
another 1000 to the maximum. 1000 can be added to the initial record 
count of 5000 three times to make the total maximum 8000. When the total 
maximum is reached, the operator either terminates or adds an increment 
and continues. 

Instead of taking the default size or specifying a size, you can specify that 
there is no maximum size. 

• Whether storage is allocated for members when they are added to the file 
(ALLOCATE parameter). The storage allocated would be big enough to 
contain the initial record count for a member. If you do not allocate storage 
when the members are added, the storage is allocated as records are 
written to the member. You can only allocate storage if you specified a 
maximum size for members. 

• Whether the records for a member are to physically reside together (CONTIG 
parameter). If you allocate storage, you can request that the storage be 
contiguous. That is, all the records in a member are to physically reside 
together. If there is not enough contiguous storage, noncontiguous 
allocation is used and an information m~ssage is issued to the system 
operator. 

( 



) 

) 

You can use the CRTPF command to create the first member when you create 
the physical file. Subsequent members must be added using the Add Physical 
File Member (ADDPFM) command. The following example of adding a 
member to a physical file uses the CRTPF command used earlier in this 
chapter in Creating a Physical File. 

CRTPF FILE(ORDHDRP.DSTPRODLB)· 
MBR(*FILE) EXPDATE(*NONE) 
TEXT('Order header physical file') 

*FILE is the default for the MBR parameter and means that the name of the 
member is the same as the name of the file. There is no expiration date for 
the member. The text description of the file is also the text description of the 
member. 

The following example uses the field reference file created previously in this 
chapter. You do not want a member created. The CRTPF command for the 
field reference file would be: 

CRTPF FILE(DSTREF.DSTPRODLB) SRCFILE(FRSOURCE.QGPL) 
MBR(*NONE) TEXT('Distribution field reference file') 

Logical File Members 

Logical file members allow logical grouping of data through access paths that 
access different subsets of associated physical file members. One logical file 
member can be associated with a single physical file member or several 
physical file members. The following illustrates this concept. 

LFl LFl 

Ml \ M2\ M3 

P~2 

Ml \ fv12 \ M3 

LFl 

Data Base 83 



84 

Note that the record formats used with all logical members with a logical file 
must be defined through DDS when the file is created. If new formats are 
needed, another logical file must be created. However, if all attributes of an 
existing logical file's access path are the same, new logical file members can 
share the access path with an existing logical member in a different logical file. 

The attributes of an access path are determined by information specified when 
the logical file was created and the logical file member was added t6 the file. 
This information is specified on the CRTLF and Add Logical File Member 
(ADDLFM) commands and through the DDS for the file. 

When you add a member to a logical file, the access path can be created in 
four ways: 

• Specify no associated physical file members (DTAMBRS parameter) and no 
access path sharing (no ACCPTHMBR parameter and no ACCPTH keyword). 
The member is associated with all the physical file members of all physical 
files in all PFILE keywords specified in the logical file's DDS. 

• Specify the associated physical file members (DTAMBRS parameter), but 
specify no access path sharing (no ACCPTHMBR parameter and no 
ACCPTH keyword). If you do not specify library names, the library names 
are obtained from the logical file. If more than one physical file with the 
same name is specified, you must specify the library names. When more 
than one physical file member is specified for a physical file, the member 
names are specified in the order in which records are presented when 
duplicate key values occur across those members. 

• Specify no associated physical file members (DTAMBRS parameter), but do 
specify access path sharing (ACCPTHMBR parameter and ACCPTH 
keyword). The data associated with the logical file member is the same as 
the data associated with the member specified in the ACCPTHMBR 
parameter. 

• Specify the associated physical file members (DTAMBRS parameter) and 
access path sharing (ACCPTHMBR parameter and ACCPTH keyword). 

When you define a record format for a logical file that shares an access path, 
you can use any fields from the associated physical file record format. The 
fields do not have to be used in the file that describes the access path. 
However, all key fields used in the file that describes the access path must be 
used in the new record format, and the key fields must be specified in the 
same order. 

You can use the CRTLF command to create the first member when you create 
the logical file. Subsequent members must be added using the Add Logical 
File Member (ADDLFM) command. The following example of adding a member 
to a logical file uses the CRTLF command used earlier in this chapter in 

Creating a Logical File. 

CRTLF FILE(ORDHDRL.DSTPRODLB) 
MBR(*FILE) DTAMBRS(*ALL) 
TEXT(' Order header logical file') 



*FILE is the default for the MBR parameter and means that the name of the 
member is the same as the name of the file. All the members of the 
associated physical file (ORDHDRP) are used in the logical file (ORDHDRL) in 
the logical file member. The text description of the file is also the text 
description of the member. 

REORGANIZING PHYSICAL FILE MEMBERS 

You can reorganize the members in your physical file to: 

• Get rid of deleted records to make the space occupied by deleted records 
available for more records. 

• Put the records of a file in the sequence in which you normally access them, 
thereby minimizing the time required to retrieve records. This is usually not 
required because System/38 maintains access paths for you. 

Members can be reorganized using either of the following: 

1. Key fields of the physical file 

2. Key fields of a logical file based on the physical file 

To reorganize a member, use the Reorganize Physical File Member (RGZPFM) 
command. 

The following RGZPFM command reorganizes a physical file using an access 
path from a logical file. 

RGZPFM FILE(ORDHDRP.DSTPRODLB) KEYFILE(ORDFILL.DSTPRODLB) 

The physical file ORDHDRP has an arrival sequence access path. It has been 
reorganized using the access path in the logical file ORDFILL. The key field is 
ORDER. The following illustrates how the records were reordered. 

ORDHDRP originally: 

CUST 

41394 
28674 
56325 

ORDER 

41882 
32133 
38694 

ORDATE 

072480 
060280 
062780 

ORDHDRP reorganized using ORDER (ascending sequence): 

CUST 

28674 
56325 
41394 

Notes: 

ORDER ORDATE 

32133 060280 
38694 062780 
41882 072480 

1. If a file with an arrival sequence access path is reorganized with a keyed 
access path, the arrival sequence access path is lost. 

2. Reorganizing a file compresses deleted records, which changes subsequent 

relative record numbers. 
Data Base 85 



COMMAND LIST (-
This is a list of commands related to data base files. It is presented here to '---

help you select the appropriate command for the function you want and to 
help you determine which command you might need to reference in the CPF 
Reference Manua/-CL. 

General 

Descriptive Name Command Name Function 

Delete File OLTF Deletes a logical 
or physical file and 
its members. 

Data Base 

Descriptive Name Command Name Function 

Create Physical CRTPF Creates a physical file 
File optionally using a 

physical file 
description (DDS), 
and, optionally, a 
member. ( 

"-
Initialize INZPFM Initi~lizes a physical 
Physical File file member to the 

Member record type specified 
in the command. 

Reorganize RGZPFM Reorganizes one or more 
Physical File members in a physical 
Member file according to its 

access path. 

Clear Physical CLRPFM Removes the data from 
File Member a specified member of a 

physical file. 

Create Logical CRTLF Creates a logical file 
File from a logical file 

description (DDS), and, 
optionally, a member. 

Add AOOPFM Adds a member to a 
Physical File physical file 
Member 

Add Logical AOOLFM Adds a member to r 
File Member a logical file. (, 
Remove RMVM Removes a member from 

Member a logical or physical file. 

86 



) 

) 

Other Commands 

This is a list of commands that are also related to data base files but are not 
part of the functions presented in this chapter. 

Descriptive Name 

Copy File 

Copy File 
Interactive 

Display File 
Description 

Display File 
Field 
Description 

Override Data 
Base File 

Command Name 

CPYF 

CPYFI 

DSPFD 

DSPFFD 

OVRDBF 

Chapter 

Chapter 9, Copying 
Files 

Chapter 9, Copying 
Files 

Chapter 14, Application 
Documentation 

Chapter 14, Application 
Documentation 

Chapter 8, Overriding 
Files 

Data Base 87 



KEYWORD SUMMARY 

This is a list of DDS keywords used for describing physical and logical files. ( 
Keyword Function Where Used 

ABSVAL Ignore the sign Physical file, key field 
of the field when level '" 
sequencing values Logical file, key field 
(use absolute values). level. 

ACCPTH Share the access Logical file, file 
path of a level 
previously created 
logical or 
physical file. 

ALL Select or omit all Logical file, select/omit 
records not meeting field level 
the select/omit 
rules. 

ALTSEQ Use an alternate Physical file, file 
collating sequence level 
for the key. Logical file, file 

level 

r 

CHECK Specifies the following Physical file, field ( 
check algorithms that level 
a field value must meet Logical file, field 
to be valid: level 

· Mandatory enter or fill 

· Validate name 

· IBM modulus 10 or 11 
self check 

CMP Specifies a comparison Physical file, field 
or relation, such as level 
equal to, that a field Logical file, field 
value must meet to be level and select/omit 
valid or selected. field level 

COLHDG Specifies a column Physical file, field 
heading for a field level 
(used by the Query Logical file, field 
Utility and other level 
utilities but not 
by data base man-
agement). 

CONCAT Concatenate fields Logical file, field 
from a physical file level ( 
into a field in a \~ 

logical file. 

88 



KEYWORD SUMMARY (continued) 

) 
Keyword Function Where Used 

DESCEND Retrieve values in a Physical file, key 
key field in field level 
descending sequence. Logical file, key field 

level 

DIGIT Fill the zone portion Physical file, key field 
(high-order 4 level 
bits) of each byte of Logical file, key field 
the key field with level 
zeros to build a key 
value. 

EDTCDE Specifies the edit Physical file, field 
code by which field level 
values are to be Logical file,. field 
displayed. level 

EDTWRD Specifies an edit word Physical file, field 
that describes the level 
form in which field Logical file, field 
values are to be level 
displayed. 

'" \ FORMAT Use a previously Physical file, record ) ,..., 
described record format level 
format. Logical file, record 

format level 

LIFO Process records with Physical file, file 
duplicate key values level 
in a last-in-first-out Logical file, file 
(LIFO) order. level 

NOALTSEQ Specifies that no Physical file, key 
alternate collating field level 
sequence is to be Logical file, key 
used for the key field level 
field. 

PFILE Specifies the physical Logical file, record 
files on which the format level 
logical file record 
format is to be based. 

) 

Data Base 89 



KEYWORD SUMMARY (continued) 

Keyword Function Where Used ( 
RANGE The field value must Physical file, field 

be within the limits level 
specified by the Logical file, field 
range to be valid level and select/omit 
or selected. field level 

REF Retrieve field Physical file, record 
specifications from format level and 
the referenced file. file level 

REFFLD Retrieve field spec- Physical file, 
ifications from the field level 
referenced field 
(optionally file). 

RENAME Change a physical Logical file, field 
file field name for level 
use in a logical 
file record format. 

SIGNED Consider. the sign Physical file, key field 
of a field when level 
sequencing values. Logical file, key field ./ 

level 
! 

\ 

TEXT Specifies a text Physical file, record 
description of a new format level and 
record format or of field level 
a field in a new Logical file, record 
record format. format level and 

field level 

( 

90 



) 

') 
./ 

"-, 
\ 
) 

./ 

KEYWORD SUMMARY (continued) 

Keyword 

UNIQUE 

VALUES 

ZONE 

Function 

No duplicate key 
values allowed. 

The field value must 
be one of the values 
specified to be valid 
or selected. 

Fill the digit por
tion (low-order 4 
bits) of each byte 
of the key field with 
zeros to build a key 
value. 

Where Used 

Physical file, file 
level 
Logical file, file 
level 

Physical file, 
field level 
Logical file, 
field level and select/ 
omit field level 

Physical file, key 
field level 
Logical file, key 
field level 

Note: The CHECK, EDTCDE, and EDTWRD keywords are not used by the data 
base but are retrieved when field specifications from the data base are used in 
a device file. 

Data Base 91 



( 

( 
\,. 

92 



) 

Chapter 6. Device Support 

Before a device can be used on System/38, the system must have at least 
two types of information. First, a device description must exist for the device; 
that is, the device must be described to the system. A device description 
contains information such as device address, device name, device type, model 
number, and features. Second, a device file must exist for the device. A 
device file describes data on the device and some of the processing of that . 
data. Any number of device files can be associated with a device, but only one 
device description can exist for a device. 

For some devices, such as remote work stations, corresponding line and 
control unit descriptions must exist in addition to the device descriptions. See 
the Program Product Installation Guide for more information about line, control 
unit, and device descriptions. 

Note: The device and any associated lines or control units must be varied on. 
This function is usually performed when the system is started or using the 
appropriate vary command. 

When a device description is created for a device, a device file is created by 
the system. A system-created device file has the following characteristics: 

• The device file name and device name are identical. The name is taken from 
the Create Device Description (CRTDEVD) command. 

• The device file is placed in the system library OSYS. 

• The device file is program-described. 

• The record format has the same name as the device file and contains one 
field. The using program describes the field specifications. 

• The device file contains default values for device dependent information (for 
example, for printer files print six lines per inch, and for display files the 
number of devices associated with the file is one). 

The names of the system-created device files are: 

• OSYSPRT (printer device file) 

• OCARD96 (card device file) 

• ODKT (diskette device file) 

• OCONSOLE (console device file) 

You can create additional device files to fit your needs (such as a card file for 
jobs needing a special card form). 

Device Support 93 



94 

Device files can be created at any time for: 

• Card devices 

• Diskette devices 

• Printers 

• Displays (both display work station and system console) 

There are two types of device files: externally described data device files and 
program described data device files. Both types of files contain file and record 
format level information. The difference in the two types of files is at the field 
level. For externally described data device files, the fields are described using 
DDS (data description specifications). For program described data device files, 
the fields are described in the program that processes the file; the fields are 
not described in the file itself. The record is processed as one field. 

Both types of device files apply to printers and displays. Only program 
described data device files are valid for diskette and card devices. 

The system-created device files are program described data device files. 

PROGRAM DESCRIBED DATA DEVICE FILES 

A program described data device file tells the system where the output should 
go and where the input comes from. Device files have many common 
attributes, which are specified on the create device file command for the 
respective devices: 

• Spooling information for the output for the file (does not apply to display 
files): 

The output queue name 
The number of copies 
The maximum number of records that can be spooled for the file 
The number of file separators 
When output is scheduled (at job end, at file end, or immediately as it is 
spooled) 

Whether the output is to be held on the output queue until the system 
operator specifically releases it 
Whether the output is to be saved after it is produced 

• Devices on which the file can be used. On the create device file command 
you can specify that no device is specifically associated with the file. The 
device can be specified in an override file command (see Chapter 8, 
Overriding Files) or in a change device file command. 

( 

( 



.... ~, , 

... 
\ 
I 

J 

Wait device allocation. The number of seconds the system is to wait for the 
file resources to be allocated when the file is opened. 

• Whether an open data path (OOP) can be shared by different opens of the 
same file. (An OOP is the path or internal control block through which all 
I/O operations for a file are performed.) If a file is opened more than once 
and an OOP is still active for it, the files c(Jn share the OOP; a new OOP 
does not have to be created. Once the shared option is specified for an 
active OOP for a file, other files can share the OOP. 

For each device there are device dependent attributes. Again, these attributes 
are specified on the create device file commands. 

For a card file the device dependent attributes are: 

• The hopper (1 or 2) that cards are read from 

• The form (card) type 

For a diskette file the device dependent attributes are: 

• The volume identifiers of the diskettes to be used for the file 

• The data file labels on the diskettes 

• The location of the diskettes (magazine or slot and starting and ending 
diskette positions) 

• The character code (EBCDIC or ASCII) for the data on the diskettes 

• The creation date of an input data file on diskette. If the creation date 
written on the diskette does not match the date specified in the file 
description, a message is sent to the system operator, who determines what 
should be done. The format of the date is the format specified in the 
system value QOATFMT. 

• The expiration date of an output data file on diskette. The expiration date 
means that the data file cannot be written over until the date has expired. 
The file is considered to be protected. The format of the date is the format 
specified in the system value QOATFMT. 

The diskette magazine drive can hold two magazines, each containing 10 
diskettes, and three slots for manually inserting diskettes. 

Before you can use a diskette on the system it must be initialized and have a 
volume label written on it. When you originally get your diskettes, they are 
initialized. If a diskette must be reinitialized or its sector size changed to 
accommodate save/restore, you can use ,the Initialize Diskette (lNZOKT) 
command . 

Device Support 95 



96 

To use the diskette magazine for other than saving and restoring, the following 
conventions must be followed (the save/restore considerations are documented 
in Chapter 19, Save/Restore): 

• Each volume identifier can be from one to six alphameric characters. 

• A volume identifier can apply to more than one volume. That is, you can 
have multivolume files. (However, you are not required to use the same 
volume identifier for every volume in a multivolume file.) A multivolume file 
occupies more than one volume (diskette). 

• Within a magazine, the volumes can be in any order, and have no 
relationship to one another as long as the volumes do not have multivolume 
files on them. 

If you use multivolume files, the following conventions must be followed: 

• All volumes must be contained on the same type (one-sided or two-sided) 
of diskette that contains the first volume of the file. 

• All volumes are written to and read from physically sequential diskette 
locations in the magazine. A multivolume file cannot be split between slots 
and magazines. 

• All volumes must have the same physical record length. 

• All volumes must be written in the same character code (EBCDIC or ASCII). 

• All volumes after the first volume must be written to diskettes that do not 
contain active files. (An active file has an expiration date greater than the 
system date.) 

• No volume can be written to a diskette having an extended la~el area. 

For a printer file the device dependent attributes are: 

• The type of form to be used for spooled output. 

• The form length and width. The system default is 66 lines by 132 positions. 

• The number of lines to be printed per inch (either 6 or 8 lines). 

• The overflow line. The system default is 60. 

• The print image for the file. The system default is the standard system print 
image QSYSIMAGE. 

• The replacement character and whether notification is required for an 
unprintable character. The replacement character is printed in place of any 
unprintable character detected. For the 5256 Printer, you can specify a 
character; for the 5211 or 3262 Printer, a blank is always printed. 

• Whether forms alignment is required before the output is printed. If it is 
. required, the system operator is sent a message telling him to align the 

forms. 

I 

\ 
'-... 

\ .. 

( 
" 



) 

) 

) 

• Whether a record is to be folded jf it does not fit on one line of the form. If 
a record is folded, it continues on the next line of the form. If it is not 
folded, it is truncated at the end of one line. 

• Whether a translate table is needed to produce the output. The translate 
table is used for a character-for-character translation of the user program 
record data into printable characters. For example, a translate table can be 
used to translate lowercase letters to uppercase letters. If a translate table 
is specified, any replacement character that is specified is not used. 

For a display file the device dependent attributes are: 

• The maximum number of display work stations that can be used with the 
file 

• Whether the device associated with the file can be the requester. 

Example of Creating a Program Described Data Device File 

In the following example you create a card file, CRD25, for output that is 
punched on preprinted cards. 

CRTCRDF FILE(CRD25.QGPL) 
DEV(*NONE) HOPPER(2) 
OUTQ(PUNCH2) FORMTYPE(CRD25) 
TEXT('Punch file for special card form CRD25') 

The device associated with this file is defined as being the device specified in 
your high-level language program, on an Override Card File (OVRCRDF) 
command, or on a Change Card File (CHGCRDF) command. 

The cards used are special preprinted cards and are fed from hopper 2. Output 
is spooled to the spooling queue PUNCH2. 

EXTERNALLY DESCRIBED DATA DEVICE FILES 

An externally described data device file for a printer or display includes the 
same attributes as the program described data device file plus a description of 
the fields in the records in the file. DDS are used to describe the record 
format and its fields. Through the record format you can describe file 
characteristics such as skipping before and after printed lines and field 
characteristics such as underlining. 

For externally described data device files, there is another attribute in the file 
description besides the attributes listed in Program Described Data Device Files. 

This attribute specifies whether you want the record format checked to 
determine if the program is using the current record format. Each record 
format is assigned a level identifier when the file it is associated with is 
created. When the file is opened, the level identifier can be checked to 
determine if the record format the program was compiled with is the current 
record format. 

Device Support 97 



98 

Display Data Description Specifications 

See Chapter 7, Display Device Support for information about externally 
described data device files for displays. 

Printer Data Description Specifications 

Generally, program described data device files are used for printers, and printer 
control information is specified in the program using the file. However, you 
can use DDS for a printer file to define fields and control the printing of 
information through spacing and skipping. One record format can control the 
printing of more than one line. When you enter the DDS, you can specify 
which line each field should be printed on as well as where the field should be 
printed on that line. The data description specifications can specify: 

• Indicators to condition the printing of a field 

• Edit words and edit codes 

• Fields that should be underlined 

• Spacing between fields of a record 

• Spacing between lines 

You can also specify system functions that should be performed when a file is 
printed. These functions print page numbers, the system date, and the system 
time. 

Field. specifications can be retrieved from a previously described field. The 
previously described field (referenced field) can be in a data base file or can 
already be defined in the DDS source for the file. 

Note: When field specifications are being used from a data base file, binary 
and packed decimal fields are changed to zonecf decimal fields. 

The order in which fields are specified for the record format determines the 
order in which they must be used in the record for a using program. However, 
the fields need not be specified in the order in which they appear on the 
printed page. 

For complete information about DDS, see the CPF Reference Manual-DDS. 

( 
\ 

( 

'" 

( 



) 

Spacing and Skipping Lines 

The printing of lines can be controlled by spacing and skipping through an 
externally described data printer file or through an H LL program (using a 
program described data printer file). Spacing means to advance one line at a 
time and skipping means to jump from one line to another. 

In the DDS for a printer file, you specify spacing and skipping through 
keywords: 

• SPACEA. Spaces a specified number of lines (one through three) after 
printing one or more lines. SPACEA can be specified at the record form~ 
level or the field level. At the record format level, spacing occurs after all 
lines associated with the record are printed. At the field level, spacing 
occurs after the line containing the field is printed. Space one line is 
assumed if you do not use the SPACEA keyword. To specify no spacing, 
specify a zero as the value for the keyword. 

• SPACEB. Spaces a specified number of lines (one through three) before 
printing one or more lines. SPACEB can be specified at the record format 
level or the field level. At the record format level, spacing occurs before any 
lines associated with the record are printed. At the field level, spacing 
occurs before the line containing the field is printed. 

• SKIPA. Skips a specified number of lines (one through 112) after printing 
one or more lines. SKI PA can be specified at the file level, record format 
level, or field level. At the file level, SKIPA must be conditioned with one or 
more option indicators and skipping occurs after all lines associated with the 
file are printed. At the record format level, skipping occurs after all lines 
associated with the record are printed. At the field level, skipping occurs 
after the line containing the field is printed. 

• SKIPB. Skips a specified number of lines (one through 112) before printing 
one or more lines. SKIPB can be specified at the file level, record format 
level, or field level. At the file level, SKI PB must be conditioned with one or 
more option indicators and skipping occurs before any lines associated with 
the file are printed. At the record format level, skipping occurs before all 
lines associated with the record are printed. At the field level, skipping 
occurs before the line containing the field is printed. 

The SPACEA and SPACEB keywords, and the SKIPA and SKIPB keywords at 
the record format and field levels can only be specified for records that have 
no line numbers specified in the DDS. 

Device Support 99 



1 2 3 4 5 6 7 8 9 10 

• •• 
A 

, 

• ••• A 
• 

• • 
A 10~ 

; .. A ; 

, :--T A . 

100 

Name Restrictions 

The file name, record format name, and field names should be limited to the 
number of characters allowed by the high-level language you are using or 10 
characters, whichever is smaller; otherwise, another name must be equated to 
them in the HLL program. Also, these names should follow any other 
restrictions the high-level languages require. 

Field names must be unique within a record format. Record format names 
must be unique within a file. 

Keywords 

Keywords on the DDS form let you supply information that is specified less 
frequently than the information for which specific positions are provided on the 
form. For example, the keyword UNDERLINE underlines a field on a listing. 

A complete list of keywords for printer DDS is contained in the section 
Keyword Summary in this chapter; for display DDS see the Keyword Summary 
in Chapter 7, Display Device Support. 

Option Indicators 

11 1213 

MZI~ 

An option indicator passes information from an application program to CPF. 
CPF tests the indicator before the information associated with the indicator is 
used. Using option indicators you can condition such things as spacing, 
skipping, and underlining. 

Option indicators can be specified at the file level, record format level, and 
field level. A decimal value of one for an indicator means that the indicator is 
on; a decimal value of zero means that the indicator is off. These indicators 
are one-character fields in the output record but are never printed or displayed. 

You can condition a field or keyword using more than one indicator. You can 
use an AND relationship or an OR relationship. The following illustrates the 
concept of an AND relationship in printer DDS. 

141516 17 18 19 20 21 22 23 24 252621 28 29 po 31 32 33 34 353637 38394041 424344 45 46 47 48 49 5051 52 53 54 5556 57 58 59 60 61 62 63 64 6566 67 66 69 70 71 72 73 74 7S 76 77 78 7980 

• 

. . 
• 

, 
• ••• · 

•• 
• • 

• 
• 

· : 
: . 

· lOt LlOC : 
• 

I~ • : •• 
· 

11 11 
• • • • 

:: 
· .' . 

. 

· 
, .. 

· 
. . L""It"' 'Jo\.\' it~CZ ) • 

'TT 

· ••••• · · 
: . 

· 

. . 
• 

• 
: . : 

• 

• 

. : : . : • · .. : : 
· . : • 

Both 03 and 04 must be on before two lines are spaced after printing the 
record containing the field ALLOC. 

( 
'-. 

(' 
\ 



) 

) 

An A or blank is specified in position 7 for each additional line required to 
specify indicators: 

1 2 3 4 5 6 7 8 9 1011121314151617 18 19202122 23 24 2526 27 28 29 30 31323334 35 36 37 38 39 4041424344 45 46 47 46 49 505152535455565758596061626364 656667 68 69 70 71727374757677 78 79 80 

1 

1 

'- -'- A· • 
: ... . . 

• • 

. . : 
• • A •• ALLOC· I~ . . 17 11 • • ••••••.• • •• • 

•. • A .0" 104 0(: 
• • 

• •••••••••• • 

• A 

•. A . . 

• • SPACE('t) • .• • 
• • 

• • •• ! ... -' 
• • •• •• 

· 

: . . . . . . . . .. .. • . ·l,- -'- • • 

Indicators 03, 04, 06, and 09 must be on before two lines are spaced after 
printing the record containing the field ALLOC. 

You can use as many as nine indicators for each AND relationship; each AND 
relationship is one condition. 

The following illustrates the concept of an OR relationship. 

• 

•• • •• ... , 
. 

•• • 

• 

2 3 4 5 6 7 8 9 1011 1213 14 1516 17 18 192021 2223 2425262728 29 po 31 32 33 34 353637 38394041 424344 4546 47 48 49 5051 52 53 54 5556 57 58 596061 62 63 64 6566 67 68 69 70 71 72 73 74 7576 77 78 79 80 

· ... A 
• 

• · · 
• · 

--,- .. 
• • • 

. 

• • • • •• •• 1· 
• • • • i· 1 i 

• ••• 
A 

• • 

ALLOt · · I~ · 

. 11 Ll 
• • • • • • 

• • • • 
• • • • • L 

• • 
. A '0" · • 

... • ~ · • 
. 

• • • • 
• ••• A,v 04 · 

• 

• · . 
· ISP ACElll 

• • • ••• 
: · 

• • • • • 

• 

A 
· · 

• 

· 

. 
• ••• • • • • • •• • 

• 
• · . : • • 

--'- ... A · • • • 

• 

· 
· · .' · : i· . · 

_. 
• j 1 . 

• • • 

2 3 4 6 6 7 8 9 10 11 1213 

• •• 
A : 

• •• A 
• 

· .. A Nlfl2 
1 • . 

A 
• 

• •• 
A 

• 

The 0 in position 7 indicates that either 03 or 04 must be on before two lines 
are spaced after printing the record containing the field ALLOC. Each OR 
relationship constitutes a new condition. You can use as many as nine 
conditions (with nine indicators each) for each field or keyword to be selected. 

When option indicators are used for field conditioning, the last or only indicator 
must be on the same line as the field specification. Any keyword on the field 
specification line cannot be conditioned. 

When option indicators are used for keyword conditioning, the last or only 
indicator must be on the same line as the associated keyword. 

If a condition is based on an indicator being off instead of on, you must 
specify N before the indicator: 

· . 

141516 17 18 192021 222324 25262728 29pO 31323334 353637 38394041 424344 4546 47 48 49 5051 52 53 54 5556 57 58 59 60 61 62 63 64 6566 67 68 69 70 71 72 73 74 7576 77 78 79 80 

· .. • • 
• •••• 

: 
• • • • 

• • ••• J • 1 • 
: : · .. i 1 

• ALLOC 
• • 

R 
• 

17 1.1 ; . 
• · i 1 • • • • 

• 
· : ... · • 

• • 
• 

.. SP 'ACE.{:'Z.i)· 
• 

• 
· ... 

· · c 
• 

. . . 
• • · . : .. 

· : 
· 

--'- • . .c · 
· 

. . 

• • • • • • • • • • • 

Keyword Summary indicates which keywords can use or require indicators. 

Device Support 101 



102 

MISCELLANEOUS FUNCTIONS 

Related to device descriptions and files are: 

• Print images 

• Translate tables 

• Edit descriptions 

Print Images 

A print belt image must be described to System/38 before printing can be 
performed. When you get your system, the print image for the print belt you 
ordered is already described to System/38. You get two forms of the print 
image: one as source in a source file and one as the print image object in the 
general purpose library QGPL. To change a print image you must change the 
source and create a new print image. 

The source for a print image must contain a header record and input records. 
Each record must contain 48 or 64 characters (depending on print image size). 
Only the first 14 characters are used in a header record: 

Characters 

1 through 5 
6 

7 through 10 
11 

12 through 14 

15 through 48 
or 15 through 64 

Contents 

IMAGE 
Blank 
CHAR or HEX (right-justified) 
, (comma) 

04~ 06~ 09~ 12~ or 192 
(number of characters in print image) 
Unused (can be used for comments) 

The input records can be entered as either hexadecimal or character. For 
hexadecimal, the number of input records, according to the size of the 
character set, is: 

Chara"cter Number Length of 
Set Size of Records Each Record 

48 2 48 
64 2 64 
96 4 48 

128 4 64 
192 6 64 

( 
"-. 

/" 
I, 

( 



) 

For character, the number of input records, according to the size of the 
character set, is: 

Character Number Length of 
Set Size of Records Each Record 

48 48 
64 64 
96 2 48 

128 2 64 
192 3 64 

The print image is specified as an attribute of a printer file on the CRTPRTF 
command. 

Translate Tables 

A translate table is used for a byte-for- byte translation of data. The tables are 
used when reading input from a device or producing output for a device, for 
alte'rnate sequencing, and field translation. 

The IBM-supplied translate tables are used for printer output only. 

The source for a translate table must be in a source file. For each table, you 
must enter eight records, each of which must contain 64 characters. The entire 
table must be 512 characters. 

The following shows the source for a translate table that translates lowercase 
characters to uppercase characters. 

000102030405060708090AOBOCODOEOFIOll12131415161718191AIBICIDIEIF 
202122232425262728292A2B2C2D2E2F303132333435363738393A3B3C3D3E3F 
404142434445464748494A4B4C4D4E4F505152535455565758595A5B5C5D5E5F 
606162636465666768696A6B6C6D6E6F707172737475767778797A7B7C7D7E7F 
COCIC2C3C4C5C6C7C8C98A8B8C8D8E8F90DID2D3D4D5D6D7D8D99A9B9C9D9E9F 
AOAIE2E3E4E5E6E7E8E9AAABACADAEAFBOBIB2B3B4B5B6B7B8B9BABBBCBDBEBF 
COCIC2C3C4C5C6C7C8C9CACBCCCDCECFDODID2D3D4D5D6D7D8D9DADBDCDDDEDF 
EOEIE2E3E4E5E6E7E8E9EAEBECEDEEEFFOFIF2F3F4F5F6F7F8F9FAFBFCFDFEFF 

• The characters CO through C9 replace the characters 80 through 89. 

• The characters D1 through D9 replace the characters 91 through 99. 

• The characters E2 through E9 replace the characters A2 through A9. 

The Create Table (CRTTBL) command to create this table looks like this: 

CRTTBL TBL(TABLE1) SRCFILE(QTBLSRC) SRCMBR(TABLE1) 
TEXT('Translate lowercase to uppercase') 

Device Support 103 



104 

Field Translation 

Translate tables can be used for field translation. A field of contiguous 
characters up to a specified length is translated byte-for-byte. To use the field 
translate function you must call the translate module ODCXLA TE. The CALL 
command looks like this: 

CALL PGM{ODCXLATE) PARM{LEN INPUT TBL LIB) 

Where: 

• LEN is a five-digit decimal field containing the length of the field to be 
translated. 

• INPUT is a character field containing the data to be translated. 

• TBL is a 10-character field Icontaining the name of the translation table to 
be used. (The table name must be left-adjusted.) 

• LI B is a 10-character field containing the name of the library that contains 
the translation table. (The library name must be left-adjusted.) If this field 
is not specified, the library list is used to find the translate table. 

When the field has been translated, the input (untranslated) data is replaced 
with the translated data. 

A translate table can be specified as an attribute of a printer file on the 
CRTPRTF command. In this case, tiie translate module ODCXLATE is not 
invoked. Printable characters within the range X' 40' through X' FF' are 
automatically translated. 

Edit Descriptions 

For System/38 you can define five edit codes, which are called user-defined 
edit codes in DDS and high-level languages. These edit codes are named 
using numbers (5, 6, 7, 8, and 9) and can be referenced in DDS or an HLL 
program by number. 

These edit codes are created as a result of creating edit descriptions. An edit 
description can contain (besides its number): 

• Integer mask. Describes the editing of the integer portion of a field. All 
characters except blank, zero, and ampersand (&) are treated as constants: 

Blank means to replace the blank with a digit. 
The leftmost zero means to replace the zero with a digit and terminate 
zero suppression. All other zeros are treated as constants. 
Ampersand means to replace the & with a blank. 

• Decimal point. Defines what character is used as the decimal point. By 
default, a period (.) is used. 

( 



''\ 

) 

) 

'\ 
;' 

• Fraction mask. Describes the editing of the fraction portion of a field. Blank 
and ampersand are the same as for the integer mask. All zeros are treated 
as constants. 

• Fill character. Defines what character is used in each position of a result 
that is zero-suppressed. By default, a blank is used. 

• Floating currency symbol. Defines the floating currency symbol to be used 
to edit the field. 

• Zero balance. Specifies how zero values are to be edited. They can be 
edited using the fill character or the integer and fraction masks. 

• Negative status. Defines the characters that are to follow the edited result 
of a field if the field is negative. 

• Positive status. Defines the characters that are to follow the edited result of 
a· field if the field is positive or zero. 

• Left constant. Defines a constant that is to be the leftmost pdrtion of the 
edited result of a field. 

• Right constant. Defines a constant that is to be the rightmost portion of the 

edited result of a field. 

The following are rules you should be aware of when using edit descriptions. 
These rules are affected by the length and decimal positions of the field being 
edited. 

• The field to be edited is aligned according tp the integer and fraction maSKS. 

• The entire integer mask is not always used. The integer mask is truncated 
immediately to the leftmost digit replace character that CQuid be used, which 
is based on the number of integers in the field to be edited. Zero 
suppression termination is remembered from the truncated position. 

• The decimal point immediately follows the integer mask and the fraction 
mask immediately follows the decimal point. If no decimal point is used, the 
fraction mask immediately follows the integer mask. 

• The entire fraction mask is not always used. The fraction mask is truncated 
immediately to the rightmost digit replace character that could be used, 
which is based on the number of decimal positions in the field to be edited. 

• The width of the edited result is equal to the total of the followi,lg: 
- Length of left constant 
- Length of floating currency symbol 
- Length of truncated integer mask 

Length of decimal point (which is always 1 unless no decimal point is 
used) 

- Length of truncated fraction mask 
- Length of negative or positive status value 
- Length of right constant 

Device Support 105 



106 

• If either the integer mask or fraction mask does not contain enough digit 
replace characters for the field to be edited, the field is not edited and is 
ignored. 

• Changing an edit description does not affect previously created record 
formats. 

The file containing the record formats must be created again if the new edit 
description is to be used. 

In the following Create Edit Description (CRTEDTD) command, you are creating 
an edit description to edit a numeric field and indicate whether the value is a 
credit or debit. . 

CRTEDTD EDTD(5) INTMASK(,flflfl,flflfl,nflO') 
FRACMASK('flflflfl') NEGSTS('DEBITfl') 
POSSTS('CREDIT) LFTCNS('$') RGTCNS('fl**') . 

The field BALNCE contains the value 001234 and has two decimal positions. 
The edited field looks like this: 

$flflfl12.34CREDITfl** 

USING PRINTER FILES IN PROGRAMS 

To use an externally described data device file in a program, you must specify 
in the program the name of the file and what records are to be processed. 
When the application program is compiled, the compiler extracts the file 
description, and it becomes part of the compiled program. The application 
program must open and close the file, and issue get (read) and put (write) 
requests to the file. (Simply stated, an open request connects a file to a 
program and a close request disconnects a file from a program. See the 
appropriate HLL reference manual for more information on I/O operations.) 

( 
\ 



') 
--

COMMAND LIST 

This is a list of commands related to nondisplay device files. It is presented 
here to help you select the appropriate command for the function you want 
and to help you determine which command you might need to reference in the 
CPF Reference Manual- CL. 

General 

Descriptive Name 

Delete File 

Display 

Descriptive Name 

Create Display File 

Change Display File 

Card Device 

Descriptive Name 

Create Card File 

Change Card File 

Printer 

Descriptive Name 

Create Printer 
File 

Change Printer 
File 

Command Name Function 

DLTF Deletes a device file. 

Command Name Function 

CRTDSPF Creates a display file. 

CHGDSPF Changes the description 
of a display file. 

Command Name Function 

CRTCRDF Creates a card file. 

CHGCRDF Changes the description 
of a card file. 

Command Name Function 

CRTPRTF 

CHGPRTF 

Creates a printer file 
optionally using a 
device file description (DDS). 

Changes the description 
of a printer file. 

Device Support 107 



Diskette 
;/ 

~ 
Descriptive Name Command Name Function ., ..... 

Create Diskette CRTDKTF Creates a diskette 
File file. 

Change Diskette CHGDKTF Changes the description 
File of a diskette file. 

Delete Diskette DLTDKTLBL Deletes a file label 
Label from a diskette. 

Initialize Diskette INZDKT Initializes a diskette. 

Rename Diskette RNMDKT Changes the name of a 
diskette. 

Clear Diskette CLRDKT Deletes all files from 
a diskette and defines 
a single file called 
DATA for the entire 
diskette. 

Display Diskette DSPDKT Displays the names of 
the files on a diskette. 

( 
I, 

" ,-Edit Codes 

Descriptive Name Command Name Function 

Create Edit CRTEDTD Creates a description of 
Description a user-defined edit code. 

Delete Edit DLTEDTD Deletes an edit code 
Description description. 

Print Images 

Descriptive Name Command Name Function 

Create Print CRTPRTIMG Creates a print image. 

Image 

Delete Print DLTPRTIMG Deletes a print image. 

Image 

( 
'" 

108 



Translate Tables 

) 
Descriptive Name Command Name Function 

Create Table CRTTBL Creates a table. 

Delete Table DLTTBL Deletes a table. 

Other Commands 

This is a list of commands that are also related to files but are not part of the 
functions presented in this chapter. 

Descriptive Name' Command Name Chapter 

Copy File CPYF Chapter 9, Copying Files 

Display File DSPFD Chapter 14, Application 
Descr.iption Docu mentation 

Display File DSPFFD Chapter 14, Application 
Field Description Documentation 

Send File SNDF Chapter 4, Control 
Language Programs 

-"1 
Send / Receive SNDRCVF Chapter 4, Control 

" / 

File Language Programs 

Receive File RCVF Chapter 4, Control 
Language Programs 

Cancel Receive CNLRCV Chapter 4, Control 
Language Programs 

Wait WAIT Chapter 4, Control 
Language Programs 

Override OVRDSPF Chapter 8, Overriding 
Display File Files 

Override OVRCRDF Chapter 8, Overriding 
Card File Files 

Override OVRPRTF Chapter 8, Overriding 
Printer File Files 

Override OVRDKTF Chapter 8, Overriding 
Diskette File Files 

/ 

Device Support 109 



KEYWORD SUMMARY 

This is a list of DDS keywords used for describing printer files. 
( 
,-

Option 
Keyword Function Where Used Indicator 

BLKFOLD Fold a record Field level Optional 
at the last 
blank before the 
end of the line 
instead of folding 
at the actual end 
of the line. If 
no blank, break 
at end of line. 

DATE Use the job Field level 
date as a field 
in the file and, 
optionally, edit 
it according to 
an edit word. 

DFT Initialize a field Field level 
to a constant 
value that is /-
the default value I 

fo'r the field. '--

DLTEDT Do not duplicate Field level 
edit information 
when duplicating 
a field 
specification. 

EDTCDE Specifies the edit Field level 
code by which 
field values are 
to be displayed. 

EDTWRD Specifies an edit Field level 
word that 
describes the 
form in which 
values are to 
be printed. 

INDTXT Describes the use All levels 
of an option 
indicator. 

(' 
" 

" 

110 



KEYWORD SUMMARY (continued) 

'\ Option 
~ 

Keyword Function Where Used Indicator 

PAGNBR Print a system- Field Level Optional 
supplied page 
number in this 
field (a 4-
digit zoned 
decimal field). 

REF Retrieve field File Level 
specifications 
from a refer-
enced data base 
file. 

REFFLD Retrieve field Field level 
specifications 
from a data 
base file (other 
than the file 
.specified in 
the REF keyword, 
if specified). 

'-. SKIPA Specifies a line All levels Optional -
,/ 

) 
to skip to after Field level 
printing a line Record format 
(file level), level 
after printing an 
entire record Required -
(record format File level 
level), or after 
printing the line 
containing the 
field associated 
with this keyword 
(field level). 

SKIPB Specifies the line All levels Optional -
to skip to to· print Field level 
the next line of Record format 
output (file level), level 
to print the lines Required -
associated with a File level 
record (record 
format level), or 
to print the line 
containing the 
field associated 

) 
with this field 
(field level). 

Device Support 111 



KEYWORD SUMMARY (continued) 

Option 
(-

Keyword Function Where Used Indicator 

SPACEA Specifies the Field level Optional 
number of lines Record 
to space after format 
printing an level 
entire record 
(record format 
level) or to 
space after 
printing the 
line containing 
the field 
associated with 
this keyword 
(field level). 

SPACEB Specifies the Field level Optional 
number of lines Record 
to space before format 
printing the level 
lines associated 
with a record 
(record format ,,-
level) or before I 

" 

printing the line 
containing the 
field associated 
with this key-
word (field level). 

TEXT Specifies a text Field level 
description of Record 
the record format format 
or field. level 

TIME Use the system Field level 
time as a field (constant 
in the file and, field only) 
optionally, 
edit it according 
to an edit word 
(default is 
OfdJfdJiJ). 

UNDERLINE Underline the Field level Optional 

field. 

/' 

\, 
'-

112 



) 

) 

'\ 
) 

Chapter 7. Display Device Support 

Display device files are used to format the display. They describe input and 
output fields, constants, the use of command function and command attention 
keys, and the handling of errors. 

FORMATTING DISPLAYS 

The design of display formats includes describing fields (record formats) and 
the placement of records on the display device. 

Record Formats 

The record format is used both for formatting information at a display work 
station and for passing information to an application program. The record 
format can contain three types of fields: 

• Input fields. Fields that are passed from the device to the program when the 
program reads a record. Input fields can be initialized with a default value 
(specified in the record format for the device file). If you do not change the 
field, thi~. data (default value) is passed to the program as input. Input fields 
that are not initialized are displayed as blanks into which the work station 
user can enter data. By default, input fields are underlined on the display. 

• Output fields. Fields that are passed from the program to the device when 
the program writes a record to a display. Output fields can be provided by 
the program or from the record format in the device file. Output fields that 
are provided from the device file are unnamed and are used to display 
constant information. 

• Output/input fields. Fields that are passed from the program when the 
program writes a record to a display and passed to the program when the 
program reads a record from the display. An output/input field is an output 
field that is also an input field. Output/input fields are indicated as both 
fields (B) in DDS. By default, these fields are underlined on the display. 
Output/input fields are usually used when the program displays data that 
can be changed by a work station user. 

The following record shows output fields and input fields. It was displayed in 
response to a request (in the form of entering a customer number in an input 
field) from a work station user. 

CUST: 41394 
ORDER: 41882 
ORDATE: 5/24/80 
ORDAMT: $580.00 
ARBAL: $580.00 
ENTER NEXT CUSTOMER NUMBER: 

Display Device Support 113 



DDS for Display File: 

CUST, ORDER, ORDATE, ORDAMT, ARBAL, and ENTER NEXT CUSTOMER 
NUMBER are constants. The data associated with these fields (41394, 41882, 
5/24/80, $580.00, and $580.00) is displayed in output fields. The data is 
passed from the application program to the CPF, and CPF displays it. The data 
associated with the output field ENTER NEXT CUSTOMER NUMBER is an 
input field. The work station user must enter data into this field (the cursor is 
positioned at the beginning of the input field). 

A record format for a display file describes the format of the record used in 
the application program and the format of the record when it is displayed (see 
Figure 16). The fields in the record passed to the program are arranged in the 
order in which the fields are described in DDS. The order in which the fields 
are displayed is based on the display positions assigned to the field in the 
DDS. A field's description contains the field's location on the display, the 
length of the field, the type of data contained in the field (character or zoned 
decimal), and the field type (output, input, or output/input). 

Field Length Line Position 

l l l I 
1 2 3 4 5 6 7 8 9 10 111213 141516 17 18 19202122 23 24 25262728 291303132 33:i4 353637 38394041 424344 45 46 47 48 49 5051 52 53 54 5556 57 58 59 60 61 62 63 64 6566 67 66 69 70 71 72 73 74 7576 77 78 7980 

; ; .. A · ; . : , 

• 

, ; . ; : 
, 

.3 Z'CUSTOMER NUMSER~' • • 
: : ; . ; : 

.. : A · : : C.UST ' . : , 5 0 3 2m • . ; ; . : 
• • · 

; : . ; . ; 

: 
• 

A 
· 

, : . . : 3 Z1 'NAME:' · . 
•• • • 

: 
. ' .- A , , NAME , ZClJ 3 3.5 L-'.· • : :- ::- iT :T ; : · . 

, . : A • 
. 

· 

' . ' : , II 1.1 'ADOR~J :- -: T: :: ; : 

· : A 

· 
~DDR :'/. 

'" 
~S ' . . 

· : 
: 

• 

: 
• • • • , 

A : ':ITY 'Z.. S 31;; 
· : 

. . : . : : .. 
• • • ': A : 

• • 
5TATE . 5 5"1 · : ' 

· . : : 
• • 

, : , .' •• : A : i!IP Q: 5 61 
• • 

· . . 
• 

• • 
· 

· : 
: 

• 
• • -. . 

A 
• 

, 
· 

, , : : .. , 
: ; .. : 

• • 
A 

• • 
•• 

· . 
• • 

• 

· 
. : : : . 

Record Format Used by the Program: 

I CUST I NAME I ADDR CITY STATE ZIP 

Record Format on the Display: 

Customer Name , 
//~--------.... 

CUSTOMER NUMBER: 41394 NAME: Sorensen and Walton 

A~~~ ~~~kAvenue 

Address City 

NY 

/ 
State 

Figure 16. Record Formats in the Program and on the Display Device 

114 

( 
I, 
" 



) 

'\ 
) 

'\ 
) 

Location is required for each field except when the field is a hidden field or a 
message field (H or M specified in usage position in DDS). Line 1, position 1 
cannot be entered for location. 

The maximum length of a character field is the number of positions remaining 
(relative to the field's start location) on the display minus one (line 1, position 1 
cannot be used). The maximum length of a numeric (zoned decimal) field is 31. 

Field specifications can be retrieved from a previously described field. The 
previously described field (referenced field) can be either in a data base file or 
already defined in the DDS source for the file. When field specifications are 
being used from a data base file, binary and packed decimal fields are changed 
to zoned decimal fields. 

Selection of fields can be used to display different data on different output 
operations instead of defining a different record format for each combination of 
fields. 

Fields in the same record can be defined (in DDS) to overlap each other. That 
is, two fields could be defined to occupy the same positions on the display. 
Option indicators can be used to select which of the overlapping fields is to be 
displayed (see Indicators, later in this chapter). If more than one overlapping 
field is selected, only the first field selected is displayed. 

Note: Overlapping cannot be used for subfiles unless the subfile size equals 
the records per page (see Subfiles later in this chapter). 

Each field displayed has a beginning attribute character and an ending attribute 
character associated with it that defines the displayed field. The beginning 
character precedes the first character of a field and is displayed as a blank. 
The ending character follows the last character of a field and is displayed as a 
blank. For example, if you specify a field for positions 2 through 8, the 
beginning attribute character is in position 1 and the ending attribute character 
is in position 9. A beginning attribute character can overlay an ending attribute 
character; that is, they can occupy the same position on the display. These 
characters are not included in the field length you specify in DDS. No other 
fields can overlay the beginning attribute character. Therefore, when you 
design a display you must allow space for each field's beginning attribute 
character. However, you can use the blank (attribute character) to space between 
fields when they are displayed. 

For complete information about DDS, see the CPF Reference Manual-DDS. 

Display Device Support 115 



116 

Placement of Records 

,. 

One record format can occupy an entire screen or the screen can be divided to 
display more than one record format. (Only a beginning attribute character can 
occupy line 1, position 1.) Figure 17 shows how a screen can be divided. 
Figure 18 shows invalid divisions of the screen. 

Record 'format A 

~-------------------------------I----------------------------------
Record format 8 

1 
Record format A 

--------------------------------t----------------------------------
Record format 0 

~-------------------------------~-----------------------------------
Record format B 

Record formJt A 

Figure 17. Valid Placement of Records on a Screen 

/' 
\ 
\, 

( 
\ 



) 

..... \ 
; 

./ 

I-

Record 
format 

A 

! 

Record 
format 

B 

i-Record format A--------
I~-~------Record format B--------------~I~I 

Record format A -I 
I- Record format 8 II 

I- Record format A II 

Figure 18. Invalid Placement of Records on a Screen 

Display Device Support 117 



118 

The formats displayed can change while a file is being processed because 
information in a display can be erased when new formats are displayed. For 
example, fields from record format A occupy lines 1 through 4, fields from 
record format B occupy lines 5 through 7, and fields from record format C 
occupy lines 8 through 10. Figure 19 shows what happens when record format 
D, which occupies lines 5 through 9, is displayed when A, B, and C were 
previously displayed. (The OVERLAY keyword must have been specified for 
record D; otherwise, record A would be erased also.) 

Record Format A 

Record Format B 

Record Format C 

~ Record format D is displayed 

Record Format A 

Record Format 0 

----- ------ ----------.------- ---------

Figure 19. Replacing Record Formats 

Records containing input fields should be sent to the display device in the 
order in which they appear on the display. For example, both records A and B 
contain input fields and appear on the same display. Record A is displayed on 
line 3, and record B is displayed on lines 6 and 7. Record A should be sent to 
the display first. This technique can be used for better performance than if 
records are sent randomly or in some other order. (~ 

\.... 



) 

) 

) 

DISPLAY ATTRIBUTES 

You can emphasize a field of a record on the display by specifying certain 
display attributes in the DDS for a file. However, any function not supported 
for your display device is ignored. The display attributes are: 

• Underlining a field (DSPATR(UL) keyword), which is the default for input 
fields. 

• Placing vertical separators between the characters in a field (DSPATR(CS) 
keyword). The DSPATR(CS) keyword is ignored for the system console. 

• Highlighting a field by displaying it with greater intensity than is normally 
used on the display (DSPATR(HI) keyword). The DSPATR(HI) keyword is 
ignored for the system console. 

• Reversing the image of a field from light on dark to dark on light or from 
dark on light to light on dark (DSPATR(RI) keyword). The DSPATR(RI) 
keyword is ignored for the system console. 

• Placing the cursor at a specific field (DSPATR(PC) keyword). 

• Blinking the cursor when a record is displayed (BLINK keyword) or when a 
field is displayed (DSPATR(BL) keyword). Thp. DSPATR(BL) keyword is 
ignored for the system console. 

• Sounding the audible alarm at the display device (ALARM keyword) when a 
record is displayed. 

Display Device Support 119 



120 

VALIDITY CHECKING FUNCTIONS 

You can have CPF check the validity of data entered at the display work 
station. If errors are found, a message is issued to the user so that the user 
can correct the input before the record is passed to the application program. 
The validity checking functions are: 

• Detecting fields in which at least one character must be entered 
(CHECK(ME) keyword). Blanks are valid characters. The CHECK(ME) 
keyword is ignored for the system console. 

• Detecting fields in which every position must contain a character 
(CHECK(MF) keyword). Blanks are valid characters. The CHECK(MF) 
keyword is ignored for the system console. 

• Detecting incorrect data types where character, numeric, or signed numeric 
data is required. 

• Detecting data that is not within the range specified for the field (RANGE 
keyword). 

• Performing comparison checking between data entered and specified 
constant value (CMP keyword). 

• Comparing the data entered to a specific list of valid entries (VALUES 
keyword). 

• Detecting whether a valid name was entered (CHECK(VN) keyword). 

• Performing modulus 10 or 11 check digit verification (CHECK(M10) or 
CHECK(M11) keyword). 

Note: If the Dup key is specified (DUP keyword), any validity checking for the 
field containing the DUP keyword is ignored. 

( 

( 

(' 
\, 



) 

) 

The following shows the valid combinations of validity checking keywords that 
you can use in DDS (V means valid). 

Keywords Subsequently Specified 

-w ...... 
u.. Z ...... 

U'J a w i=" :J W ~ 
~ > ~ 

w w i=" W (!) ;z ~ ;z ~ Keyword (!) ::> w Z ...J (!) ...J Z Z (!) 
U U U U 

Specified z ...J a.. a:- a.. a.. a.. a:- a:- a:- w w w w « « ~ ~ ~ ~ ~ ~ ~ ~ :::r: :::r: :::r: :::r: 
First a: > u u u u u u u u u u u u 

RANGE V V V 

VALUES V V 

CMP(EQ) V V 

CMP(NE) V V V 

CMP(LT) V V V 

CMP(GT) V V V 

CMP(LE) V V V 

CMP(NL) V V V 

CMP(NG) V V V 

CMP(GE) V V V 

CHECK(ME) V V V V V V V V V V V V V 

CHECK(MF) V V V V V V V V V V V V V 

CHECK(VN) V V V 

CHECK(M11 ) V V V V V V V V V V 

CHECK(M10) V V V V V V V V V V 

When an error is detected by a validity checking function, the keyboard is 
locked, the field in error is displayed in reverse image (except on the system 
console), the cursor is positioned at the beginning of the field in error, and an 
error message is displayed on the error line. 

0 ...... 
~ 
~ 
U 
w 
:::r: 
u 

V 

V 

V 

V 

V 

V 

V 

V 

V 

V 

V 

Display Device Support 121 



122 

SCREEN MANAGEMENT FUNCTIONS 

When a new record format is displayed for output or to allow input, the 
existing display is usually erased before the new record format is displayed. If 
three record formats are on the display at the same time, all three would be 
erased. 

On an output operation you can control certain functions of the display before 
a new record format is di.splayed: 

• Overlaying a display but not erasing the entire display (OVERLAY keyword). 
Only records that are completely or partially overlaid are erased; all other 
records remain on the display. 

• Erasing specified records on a display before displaying the next record 
(ERASE keyword). The ERASE keyword can only be used with the 
OVERLAY keyword. 

• Protecting all input-capable fields on the display not erased before 
displaying the next record (PROTECT keyword). All input-capable fields are 
changed to output only fields. The PROTECT keyword can only be used 
with the OVERLAY keyword. The PROTECT keyword is ignored for the 
system console. 

• Erasing all input and output/input fields on the display not protected before 
displaying the next record (ERASEI N keyword). (Fields are protected using 
the DSPATR keyword.) The ERASEIN keyword can only be used with the 
OVERLAY keyword. For the display work station, if an input field has a 
modified data tag off or is protected, it is not erased. Also, for the display 
work station, if the PROTECT keyword is used, ERASEIN is ignored. 

• Resetting the modified data tags associated with a displayed record before 
displaying the next record (MDTOFF keyword). The MDTOFF keY':"'ord can 
only be used with the OVERLAY keyword. 

Note: An input-capable field has an attribute that is set on when data is 
entered into the field. This attribute is called a modified data tag. 

• Retaining a record or field on a display (PUTRETAIN keyword) so that it 
does not have to be retransmitted to the display. 

• Locking the keyboard until the last record is displayed so that data cannot 
be entered into input fields (LOCK keyword). 

( 
\ ... 

( 
" 



Also, on an input operation you can control certain functions of the display: 

• Initializing a record on the display before reading it (INZRCD keyword). That 
is, the record does not have to be written to the display before it can be 
read by the program. 

• Unlocking the keyboard so that data can be entered into input fields while 
the program is processing previously entered input data (UNLOCK keyword). 
Normally data in all input fields on the display is erased and the modified 
data tags are reset before the keyboard is unlocked for input. 

• Retaining input data on a display (GETRETAIN keyword). The GETRETAIN 
keyword can only be used with the UNLOCK keyword. 

• Setting on a response indicator when data is entered into an input field or 
data is changed in an output/input field. 

SUBFILES 

A subfile is a group of records that have the same record format and are read 
from or written to a display device in one operation. For example, a program 
reads records from a data base file and writes a subfile of output records. 
When the entire subtile has been written, the program sends the entire subtile 
to the display device in one write operation. The work station user enters data 
in the subfile, then the program reads the subfile and processes each record in 
the subtile individually, updating the data base file. 

A subfile is useful for writing and reading a group of records ot the same 
record format to and from a display. If a subfile is not used, a single record is 
used; this record contains unique field names for each field on the display. 
The user program would have to separate the unique combinations of fields 
into separate records. It is especially useful when the number of records in the 
group exceeds the number of lines available on the display or where the 
number of records in the group cannot be determined in advance. For 
example, a program reads all the line items for an order from a data base file, 
writes them to a subtile, and displays the first page (group) of line items. The 
user can scan through the subfile using Roll Up and Roll Down keys and the 
user can change the records. When the user presses the Enter key, the entire 
order is read. 

You specify what records are to be in a subtile in the DDS for the file. You 
also specify how many records can be included in one subfile. You can have 
more than one subfile within the same file. However, only two subfi~es can be 
displayed concurrently. 

Records in a subtile can be displayed horizontally and vertically. A horizontally 
displayed record is complete on one line (see Figure 20). More than one record 
is displayed on one line. A vertically displayed record is displayed on one or 
more lines (see Figure 21). Each record begins a new line. Figur,e 22 shows an 
example of a vertical subfile and a horizontal subfile being displayed 
concurrently. 

Display Device Support 123 



124 

, 
Record 1 
Record 2 
Record 3 
Record 4 

Record 5 

Record 6 

Record 7 

Record 8 

(some other record) 

Record 9 

Record 10 

Record 11 

Record 12 

Figure 20. Horizontally Displayed Subfile 

,. Record 1 -I I. Record 2 _I ,. Record 3 .1 
I • Record 4 -I 

Figure 21. Vertically Displayed Subfile 

Record 1 
Record 2 
Record 3 
Record 4 

Record 5 
Record 6 
Record 7 
Record 8 --------------... 1 .... ---------- Record A _ I 

1-01 .... ---------- Record B - I 
1-0,.---------- Record C -I 
I· Record 0 • I 
\..11-.----------- Record E -I 

Figure 22. Horizontally and Vertically Displayed Subfiles Displayed Concurrently 

( 
I 

"'-. 

( 
I 

( 



--. 

If a subfile is larger than the space allowed for the subfile on the screen, the 
work station user can roll the display from one group of records in the subfile 
to another. Each group of records displayed concurrently is called a page. 
When you create a display file with a subfile, you must specify the size of the 

\ 

page for a subfile by specifying the number of records in the page (SFLPAG 
keyword). Usually page size is based on the number of lines available on the 
display. You must also specify the size of the subfile by specifying the number 
of records in the subfile (SFLSIZ keyword). Page size and subfile size can be 
the same; that is, all records in the subfile fit on one page. When page size 
equals subfile size, variable length records are supported. One record can take 
up only a single line while another record can take up more than one display 
line. Each record is placed in the first record position available in the subfile; 
this position is always a new line. 

You can specify the following for subfiles: 

• That the subfile is to be cleared of records before new records are written 
(SFLCLR keyword). The subfile is not deleted. 

• That the subfile is to be deleted (SFLDL T keyword). 

• That a command key be used to fold or truncate records in a subfile 
(SFLDROP keyword). If page size equals subfile size or the subfile is 
displayed horizontally, SFLDROP is ignored. 

• When to begin displaying the records in a subfile (SFLDSP keyword). 

• When to display a subfile control record (SFLDSPCTL keyword). 

• That the Enter key be used as the Roll Up key and that a command key be 
used to return to the using program (SFLENTER keyword). 

• That a + (plus sign) be displayed in the lower rightmost corner of the subfile 
display area (page) when there are more records than fit on the display and 
that the + be replaced by a blank when the last record is displayed 
(SFLEN D keyword). 

• The number of spaces between each record on a line when more than one 
record is displayed on a line (SFLLlN keyword). This is used for a 
horizontally displayed subfile. 

• That you want to roll by a specified number of records instead of by page 
(SFLROLVAL keyword). 

• That a record is to be returned to a program whether or not it was changed 
by the work station user (SFLNXTCHG keyword). 

• That all records in a subfile are to be initialized according to the field 
descriptions in the device file (SFLlNZ keyword). 

• That a page of a subfile is to be selected for displaying according to a 
record number (SFLRCDNBR keyword). 

Display Device Support 125 



126 

Each subfile needs a subfile record format and a corresponding subfile control 
record format. The subfile record format defines the fields in each subfile 
record and performs input (read a subfile record) and output (write new records 
in the subfile) operations to the subfile. 

A subfile control record format controls the normal subfile record that 
describes the record that is repeated on the display. In addition, heading 
information can be contained in the subfile control record format (associated 
with the SFLDSPCTL keyword). 

The subfile control record format (indicated by the SFLCTL keyword) requires 
the SFLSIZ, SFLPAG, and SFLDSP keywords. The following keywords can be 
used in a subfile control record format but are not required. 

• SFLLlN 

• SFLEND 

• SFLDSPCTL 

• SFLCLR 

• SFLlNZ 

• SFLDLT 

• SFLDROP 

• SFLENTER 

• SFLRCDNBR 

• SFLROLVAL 

• SFLMSG (see Message Support, later in this chapter) 

• SFLMSGID (see Message Support) 

• SFLPGMQ (see Message Support) 

If any input data validity checking is specified for the subfile record, the validity 
checking is performed before any roll function is performed. If the data fails 
validity checking, the roll function is not performed. 

You can control the positioning of the cursor when a page is displayed. 

• The DSPATR(PC) keyword can be used to position the cursor at any field in 
the first displayed page. 

• The DSPATR(PC) keyword can be used to position the cursor at a field of 
the subfile control record. 

• The SFLRCDNBR keyword can be used to position the cursor at the first 
input field of the specified record to select which page is to be displayed 

first. The SFLRCDNBR keyword can only be used with the SFLDSP 
keyword. 

( 
\ 



-""1 
) 

./ 

I 

) 
,,/ 

If neither DSPATR(PC) nor SFLRCDNBR is used, the cursor is positioned at 
the first input field on the display. 

MESSAGE SUPPORT 

The following are the message handling functions for display support. (DDS 
keywords are shown in parentheses.) 

• Changing the line on which messages are displayed for validity check errors, 
invalid keys, and user-defined messages (MSGLOC keyword). Initially, the 
message line is the last line on the display. 

• Specifying that messages are contained on a program message queue 
(SFLMSGRCD and SFLPGMQ keywords). Message keys of messages on 
the program message queue can be specified to be contained in a field 
(SFLMSGKEY keyword). Each message is displayed on a separate line and 
is truncated, if necessary. Position 2 of each line contains an * (asterisk)' 
followed by two blanks, followed by the message (60 characters on the 
system console, and 76 characters on the display work station, exclusive of 
the * and the blanks). Second-level text and substitution text are 
supported. 

• Specifying that a message is to be displayed in the standard data 
management messages method (ERRMSG and ERRMSGID keywords or, for 
a subfile, SFLMSG and SFLMSGID keywords). The message can be a 
predefined message in a message file (SFLMSGID keyword) or defined as a 
constant on the SFLMSG keyword. Substitiution text is not supported. For 
a message defined as a constant, second-level text is not supported. 

See ,Chapter 12, Message Handling for more information. 

INDICATORS AND CONDITION NAMES 

You can use indicators to pass information from a program to CPF or from 
CPF to a program. You specify how indicators are to be used through the DDS 
for the display file. 

There are two types of indicators for display files: 

• Option indicators. Pass information from an application program to CPF. 

• Response indicators. Pass information from CPF to an application program 
after the program made an input request. Response indicators can pass 
information from the work station user to the program by indicating which 
function keys were pressed by the user or whether data was entered by the 
user. 

Display Device Support 127 



Both option and response indicators can be specified at the file level, record 
format level, and field level. Indicators specified at the file level apply to all 
record formats within the file. Indicators specified at the record format level or 
field level are only recognized when the record format name is used in the I/O 
request. Each indicator occupies a one-character position in the user program 
record area for the appropriate operation (input response indicators and output 
option indicators only). A value of 1 for an indicator means that the indicator is 
on; a value of 0 means that the indicator is off. 

See Option Indicators in Chapter 6, Device Support for how to code option 
indicators. 

Keyword Summary indicates which keywords can use or require option 
indicators. 

In some cases, condition names can be used to select keywords and display 
locations based on screen size: 

• *OS1 (Console, 16 by 64) 

• *OS2 (5251, 12 by 80) 

• *OS3 (5251, 24 by 80) 

Normally, the display files are set up for a 24 by 80 screen. The OSPSIZ 
keyword specifies which display sizes are valid for a file and indicates which 
sizes are the primary and secondary screen sizes. (The primary screen size is 
the first or only OSPSIZ value.) 

The screen size condition names let you optimize the use of a single display 
file for any size screen. 

For example, when you are using subfiles, you specify 10 records per page for 
a 12 by 80 screen and 22 records per page for a 24 by 80 screen: 

1 2 3 4 5 6 7 8 9 1011121314151617 1S 19202122 23 24 2526 27 28 29 303132 33 34 3536 37 38 39 4041424344 45 46 47 46 49 505152535455565758596061626364 6566 67 66 69 70 7172 7 74757677 78 79 80 

• [. A 
· 

[ 
[ . .. . . : .. .. [ [ . [ : :: • !.. [ [ ! ! ! ' • ! • 

• • • • A . *DSI2. ' .. ' , 
. ISFLPA6(J,0 ) : !:: :: : ' •• :!! [ ,! .' 

• • [ : A . ~FLPA6(7..7.. ' . : ... . .. . '.'. [ . . . . . . 

• ' •• A · 
. !- '! [ ! [ .• ' , ' ! •.. ':,! •• !.! • 

• • A • 

. ... . . .. [ .'. 
• ••• 

. . . . . . .: ,[ ...'.. 

Note: These condition names cannot be used to reorder fields on the display. 

128 

.,," 



) 

) 

1 

CREATING DISPLAY FILES 

A display device file is created using the Create Display File (CRTDSPF) 
command. For externally described data device files, the DDS for formatting 
the display is specified on the command. In addition, the CRTDSPF command 
tells CPF how many and what devices can use the file. 

This section contains examples of creating menus, prompts, and information 
displays. 

Formatting a Menu 

r 

In this example you describe the record format for the order department clerk 
menu for your order entry application. Your order department clerk menu 
looks like this: 

Order Dept Clerk Menu 

1. General menu 
2. 5i gn-off 

Option: _ 

Figure 23 shows the DDS to format this menu. 

2 3 4 5 6 7 8 9 1011 121314151617 18 19202122232425262728293031323334 35 36 37 38 39"4041424344 45 46 47 46 49 5051525354 5556 57 58 596061626364 6566 67 66 69 70 7172 73 74 7576 77 78 7980 

, A~ OP IN (lJ{Z I'3CD vROER 0 EPT rLERK MEN U' 
• 

; 

••• 
; , ; 

•• ••• • • 
• 

; ; A 
• • 

, 
• 

' . 
, 

• 

; 

• • • • 

; ; . ; .. ; , 

• 
A 

• 

, Ir< MENU , , 
• TEXT(.' C. 'e~1< si an·on' "l 

• 

, 

A 

• 

; ; ; ; .L 2 'Order De.pf CI ~ ... K Me.t\u. ' 
• 

A 
• 

• 
' , . ; , , ; 3 . '1. Getter,,1 mettu. '• ; • 

• A 
• 

, 

· ; 

II- '2.Sian-o.J:.f1 • • • ; • 
• 

• 
; 

• • 

A 
• 

, 
, 

• 
b I O~Ti oil':' I " . " . ; ; 

-'- 1 
; 

• 
" . A ; IRE5P' 

• 

1 01 C 11 IRA'NGE(l 2) " 
; . 

• • 
• 

• 
; A , , ; 

· ' 
, HECKlMEl • •••• • 

• 
•• 

· ; 

A 
; 

• 

; 
· .. ' 

", 
" , 

• • 
• 

• 

; . 
•• 

· " 

A ; , ; ; ; , . . ; 
••• " 

•• • • • 
•• •• 

, 

Figure 23. DDS that Formats a Menu 

The valid options are 01 through 02 as indicated by the RANGE keyword for 
the RESP input field. The CHECK keyword indicates at least one character 
must be entered in the field. 

Display Device Support 129 



1 2 3 4 5 6 7 8 9 10 

· ... A~ 01 
• • ! • A 

• 

. : . A · 
· . 

. 
A · 

· ... A •• 

• •• 
A 

· 
• ••• A · 

• • • 
A 

Formatting a Prompt 

r 

In this example, you describe the record format for the customer name search 
prompt. This prompt is used to search the customer name search logical file 
CUSMSTL 1. The search is performed using a zip code. The prompt looks like 

this: 

customer Harne Search 

Search code: 

Figure 24 shows the DDS to format this prompt. 

11 1213 141516 17 18 19 20 21 22 23 24 25 26 27 28 29PO 31323334 353637 38394041 424344 4546 47 46 49 5051 52 53 54 5556 57 58 59 60 61 6263 64 6566 67 66 69 70 71 72 73 74 7576 77 78 7980 

5Pl 'AIY CU S'L20D CU ST OIMER N~ ME SEA RCH •• 
.' . iT 

· . : • 
: : .. ': 

• 

.. .• ! 
•• • .. · . 

• 
~EF(OSTReF : !i • • 

T : 1 :: 
• 

· I~ IN AMEc;R . 
• ••• • 

• • • 

: 
• 

: 1. Z ICu~tome'" :~ arne 5e a.ye h' 
• • 

· 
. . . 

· 
~ '2 'SeCAl~ck cod e:·'· 

• • 
! 

~~El).RC~ ~ [ .3 l.Ii . . 
• •• 

-;- , 
· .- . . ::' .' . -;- .. · : •• : 

· 
· . . . . 

· 
. '1: • 

• •• ••• · 

Figure 24. DDS that Formats a Prompt 

130 

The zip code is entered into the search code field, which is underlined by 
default. The R in position 29 indicates that the field description of SEARCH is 
contained in another file - the file DSTREF, which is referenced in the REF 
keyword. By default, the display size is 24 by 80. This prompt cannot be 
displayed on any other size screen. 

( 
/' 

\, 

/ 
( 

( 
\ 



~) 

) 

) 

1 2 3 4 5 6 7 8 9 10 

· 
• • A~ IDI 

: 
• • 

A 
• 

· 

A · 

· . · 
A 

· 

• 

A 
· 

· ... A 

: A 

· . A 

• 

A 

: . A 

· A 
· 

: : A : 

• 

A 
· 

· A : 

A 

· 

· 
A : 

• 

A 

· . 
A 

· 
· A 

· . A · 

Formatting an Information Display 

, 

111213 

I~IPL 

• 

· 

· 

· 
• 

· 

· 

• 

· 

· 

• 

: 

• 

• 

• 

In this example you describe the record format for the customer name search 
display, which is displayed as the result of entering a search code. It is 
displayed on the same display as the search code prompt, which is retained. 
The records are grouped in a subfile. The complete customer name search 
display looks like this: 

Customer Name Search 

Search code: 

Number Name Address CHy State 

xxxxx xxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx XXXXXXXXXXXXXXXXXXXX XX 

Figure 25 shows the DDS to format this prompt. 

141516 17 18 192021 22 23 24 252627282 9 30 31 32 33 34 353637 38394041 424344 4546 47 48 49 5051 52 53 54 5556 57 58 59 60 61 6263 64 6566 67 66 69 70 71 72 73 74 7576 77 78 7980' 

IAIY cu SZ10D ~U 5T ~MER N '~ME SEA RCH ' .. ... : · : 
: 

• •• 
. 

• · : 
, 

· 
· . 

. 
· : IREF( OSTR.E F 

• 
: , : . 

• I< INAMES~ · . -: .. · : . 
• •• 

• • : 1 Z I CUSiomer ~ ame 5eA.~c'" : · : 
: 

· · . 
. ; 'l'Searckcod e:· 1 

· · .. : : • 
: ISEARCI- IR iT 3 Ie; · .. · . : ... . . : 

· 
. · : ... 

• 

: .. 
• • 

• 

: . : : ... : : 

· IR ISUSr=Ill · ~L : · 
• 

'- . 

· • •• 
: 

· 
TEXT ( 'e:: ub.f= 'if P. Record I ) 

· 
• • 

.. : 

C.UST 7 · .. 
• 

. ' 
• •• 

. 

· • •• • 

~AME · 7 l( 
• •• · : 

· 
: 

· · : • 

· 
;oDOR · 7~ 

-- .. . 
· · ....... 

".ITY · .. '7 51 • •• .' 
. '. - · . • • 

· : . : .... 
STATE : : 

• 
7 l' · .. 

• 

· . 
• 

: 
• 

• • 
. 

· . · . · ' . · 

· 
• • 

. : .. 
: · .. · 

• 

· • · : . : : 
• • 

: . 
• • : 

· · : . : 
• 

· . · · • • 
. 

• 

· .. · . 
. 

• • • • • • • ••• • • . 

• 

· : . 
• 

· : .. 
· · . • 

• • 
• ••• 

: 
• 

: · 

• 
• ••• 

· · 
. , : . · • • 

• • 
• • : · 

• 

Figure 25 (Part 1 of 2). DDS that Formats an Information Display 

Display Device Support 131 



1 2 3 4 5 6 7 8 9 1011121314151617 18 192021222324252627 28 29~0 3132 3334 3536 37 38 394041424344 45 46 4746 49 505152535455565758596061626364 656667 68 69 70 7172 73 74757677 78 7980 

• •• A ' .1< FILCTLl 
• • • 

. • ~FLCTL(SUBFtllL) ": 
• • . )FLtNZ :: : : . 

• • A mZl , ,. . • FtOSPCTL • .,.... : 
• 

• : A 111 . FlDSp· •• •• : •• '... .:. :: . 

· ,A • , , 

•• 
, •... A • , . . . . FlPAGC(8) , 

• 
, ••• A • · .. 

• A • • •• • )VERLAY ,. • , • ' ; •• '. : 
A 111 : '. '. 

• ••• A • 
• •• 

. , , 
• 

• 
, , , • ~EL'P{ ,q. :' HeLD. ke.tl':Y-·' :' . 

· : " . . 
· , ,: "E fl .~ol :1'U;D+o _r.ct'rt·L"ttes~llJ",l'..~+ 

• • A • · . .. . , 
, .. , 

· ... , . , : . 

, , • '. A • · ... . , . ' 

• 
• ~ Jll '~a.tfie' , 

• , A • · ' .. , . , :' 
• •• A , , ." , 

• •• A • : .. , 
:' r b 'iST4te.;' • 

• ,. A 
• 

· .' 
.. , 

• •• A , ... 
• 

• • 

Figure 25 (Part 2 of 2). DDS that Formats an Information Display 

132 

The fields for FILCTL 1 are to overlay what is currently on the display 
(OVERLAY keyword). 

The Roll Up key is used to continue searching in the subfile (ROLLUP 
keyword). The response indicator 97 is set on and passed back to the using 
program to signal that the Roll Up key is being used. The command attention 
key 12 sets on indicator 98, which is passed back to the using program to 
signal that the program is to end. The Help key sets on indicator 99, whic~ is 
passed back to the using program to signal the help request. 

You specify the column headings to be displayed and where (line and position) 
they are to be displayed. 

The record format SUBFIL 1 describes the fields in a subfile and the line on 
which records in the subfile are to begin being displayed. SUBFIL 1 is the 
subfile record fromat (SFL keyword). 

The record format FI LCTL 1 describes the subfile control for the records in 
SUBFIL1 (SFLCTL keyword). The subfile size and the page size are both 18 
records. All records in the subfile appear on one page. 

If indicator 70 is not on, the records in the subfile are initialized according to 
the DDS for the display file. If indicator 70 is on, the subfile control record is 
displayed. If indicator 71 is on, the records in the subfile are displayed. 



) 

Creating a Display File 

To actually create a display file, you must enter a Create Display File 
(CRTDSPF) command. The following CRTDSPF command creates the display 
file ORD005CD, which contains the order department clerk menu (see 
Formatting a Menu, earlier in this chapter). 

CRTDSPF FILE(ORD005CD.DSTPR'ODLB) 
SRCFILE(QDDSSRC) 
DEV(*REQUESTER) 
TEXT('Order department clerk menu') 

The DDS source for this file is in the source file QDDSSRC. Because a source 
member is not specified, the source memeber name is assumed to be the 
same as ORD005CD. 

The device associated with this display file (*REQUESTER) is defined as being 
the device specified in your high-level language program, in an Override 
Display File (OVRDSPF) command, or in a Change Display File (CHGDSPF) 
command. 

USING DISPLAY DEVICE FILES IN PROGRAMS 

A program communicates with a display device by opening the appropriate 
display device file to the device. The program can then receive input from and 
send output to the device. The file should be closed when the program and 
device have finished communicating. The functions available for 
communicating with a display device depends on: 

• The kind 'of display device file used: program described data or externally 
described data. 

• The functions supported by the language in which the program is written. 

Note: For control language programs, see Chapter 4, Control Language 
Programs; for other programming languages, see the appropriate HLL reference 
manual. 

CPF provides the device control information necessary for performing input and 
output operations for the device. 

When using a program described data device file to communicate with a 
display device, only simple display formatting can be performed. A maximum 
of two display device files can be opened to the same device at the same time 
within the same program. A file can be opened for input only or output only 
or both input and output. When a file is opened for either input only or output 
only, another file can be opened for input only or output only, but it must be 
the opposite of the other file. 

Display Device Support 133 



r 

134 

When a program described data device file is opened, the input or output area 
on the display is treated as a single field on the display. That is, the field 
length is the same as the record length. The space on the display is assigned 
as shown in the following. Records for the first file used by the program 
appear on the first (top) part of the display. Records for the second file appear 
on the display immediately following the area used by records in the first file. 

Records from file A } First File Used By Program 

Records from file B } Second File Used By Program 

I Unused Area 

When using an externally described data device file to communicate with a 
display device, the display functions that are supported are those specified 
through DDS. When the application program is compiled, the compiler extracts 
the file description and it becomes part of the compiled program. During 
program execution, input and output operations specify record formats that 
cause: 

• The appropriate data to be sent to or received from the device 

• The display related functions specified through DDS (for example, validity 
checking) to be performed. 

When a display file is processed, the CPF transforms data from the program to 
the format specified for the file and displays the data. When data is passed to 
the program, the data is transformed to the format used by the program. 

When you use display files, CPF provides device control information for 
performing input/output operations with the device. When an input record is 

'. 
requested from the device, CPF issues the request, then removes device 
control information When you use display files, CPF provides device control 
information for performing input/output operations with the device. When an 
input record is requested from the device, CPF issues the request, then 
removes device control information from the data before passing the data to 
the application program. In addition, for externally described display files, CPF 
can pass indicators to the program indicating which fields in the record have 
been changed by the user. 

When your program requests an output operation, it passes the output record 
to CPF. CPF provides the necessary device control information to display the 
record. For externally described display files, CPF also adds any constant 
information specified for the record format when the record is displayed. 



) 

COMMAND LIST 

This is a list of commands related .to display device files. It is presented here 
to help you select the appropriate command for the function you want and to 
help you determine which command you might need to reference in the CPF 
Reference Manual-CL. 

General 

Descriptive Name Command Name Function 

Delete File DLTF Deletes a device file. 

Display 

Descriptive Name Command Name· Function 

Create Display File CRTDSFPF Creates a display file. 

Change Display File CHGDSPF 

Other Commands 

Changes the description 
of a display file. 

This is a list of commands that are also related to display files but are not part 
of the functions presented in this chapter. 

Descriptive Name Command Name Chapter 

Override Display File OVRDSPF Chapter 8, Overriding 
Files 

Copy File CPYF Chapter 9, Copying Files 

Display File DSPFD Chapter 14, Application 
Description Documentation 

Display File Field DSPFFD Chapter 14, Application 
Description Documentation 

Send File SNDF Chapter 4, Control Language 
Programs 

Send/Receive File SNDRCVF Chapter 4, Control Language 
Programs 

Receive File RCVF Chapter 4, Control Language 
Programs 

Cancel Receive CNLRCV Chapter 4, Control Language 
Programs 

Wait WAIT Chapter 4, Control Language 
Programs 

Display Device Support 135 



KEYWORD SUMMARY 
(' 

This is a list of DDS keywords used for describing display files. \ 
'-" 

Where Option 
Keyword Function Used Indicator 

ALARM An audible Record Optional 
alarm is format 
set on level 
when a 
record 
is displayed. 

ASSUME Assume that Record 
the record format 
is currently level 
on the display 
when the file 
is opened. 

AUTO Specifies Field Optional -
automatic level record 
data functions advance 
for fields: only 

· Record 
advance (RA) ,/ 

· Right (, 
adjust 
with 
blank 
fill (RAB) 

· Right 
adjust 
with zero 
fill (RAZ) 

BLINK Blink the Record Optional 
cursor. format 

level 

( 

136 



KEYWORD SUMMARY (continued) 
') 
./ 

Where Option 
Keyword Function Used Indicator 

BLKFOLD Fold a field Field 
at the last level 
blank before 
the end of 
the line 
instead 
of folding 
at the 
actual end 
of the line. 

CAnn The command File Optional 
key specified level 
by nn is an Record 
attention key. format 

level 

CFnn The command File Optional 
key specified level 
by nn is a Record 

) function key. format 
,- level 

CHANGE Set on a Field 
response level 
indicator Record 
when data format 
is changed level 
in a field. 

CHECK Specifies the Field Optional -
following level mandatory 
check enter only 
algorithms 
that a field 
value must 
meet to be 
valid: 

· Mandatory 
enter (ME) or 
fill (MF) 

· Field exit 
check (FE) 

· Valid 
name (VN) 

) · IBM modulus 
10 (M10) or 

11 (M11) 
self check 

Display Device Support 137 



KEYWORD SUMMARY (continued) 
( 

Where Option \, 

Keyword Function Used Indicator 

CHGINPDFT Change the Field 
input-capable level 
field to not 
be underlined, 
blinked, 
intensified, 
and not to 
have its image 
reversed. 

CLEAR The user File Optional 
program level 
receives Record 
control format 
when the level 
Clear key 
is pressed. 

CMP Specifies a Field 
comparison, level 
such as equal 
to, that a ,/ 

field value \ 

'-. 

must meet to 
be valid. 

DATE Use the Field 
job date level 
as a field 
on the 
display, and, 
optionally, 
edit it 
according 
to an edit 
word. 

DFT Initialize Field 
an input level 
field to a 
constant 
value. 

138 



~,~ 
KEYWORD SUMMARY (continued) 

) 
Where Option 

Keyword Function Used Indicator 

DLTCHK Ignore Field 
(delete) the level 
field valid-
ity checking 
keywords 
when 

referencing 
field 
specifications 
from a 
data base 
file. 

DLTEDT Ignore the Field 
edit level 
information 
when 
referencing 
field 
specifications 
from a data' 

) base file. 

\ 
I 

) 

Display Device Support 139 



KEYWORD SUMMARY (continued) /" 

Where Option 
C 

Keyword Function Used Indicator 

DSPATR Specifies Field Optional -
display level not used 
attributes for select 
for fields: by light 

· Column pen or 
separator operator 

(CS) identification 

· High 
intensity 
(HI) 

· Underline 
(UL) 

· Blink field 
(BL) 

· Reverse 
image (RI) 

· Protect (PR) 

· Set 
modified 
data tag 
(MDT) 

· Nondisplay I' 
I 

(ND) ", 
· Select by 

light pen 
(SP) 

· Position 
cursor (PC) 

· Operator 
identification 
(OlD) 

DSPSIZ Specifies File 
the primary level 
display size 
and any 
additional 
display sizes. 

DUP Allows the Field Optional 

the use level 

of the 
Dup key. 

/ 
I 

\ 

140 



) 
KEYWORD SUMMARY (continued) 

Where Option 
Keyword Function Used Indicator 

EDTCDE Specifies Field 
the edit level 
code by 
which field 
values are 
to be 
displayed. 

EDTWRD Specifies Field 
an edit level 
word that 
describes 
the form 
in which 
values are 
to be 
displayed. 

ERASE Erase one Record Optional 
or more format 
records. level 

') 
ERASEINP Erase all Record Optional ./ 

input format 
fields. level 

ERRMSG Specifies Field Optional 
the text of level 
the message 
that should 
be displayed 
in the standard 
data manage-
ment messages 
method. 

ERRMSGID Specifies Field Optional 
the message level 
identifier 
of the 
message that 
should be 
displayed 
in the 
standard 
data in,the 

) 
standard data 
management 

messages 
method. 

Display Device Support 141 



KEYWORD SUMMARY (continued) 

Where Option ( 
Keyword Function Used Indicator 

GETRETAIN Retain all Record 
input data format 
on the level 
display 
(valid for 
input only). 

HELP The using File Optional 
program level 
receives Record 
control when format 
the Help level 
key is 
pressed. 

HOME The using File Optional 
program level 
receives Record 
control format 
when the level 
Home key 
is pressed. 

(~ 

\ 
"-INDTXT Describes All levels 

the use of 
an option 
indicator. 

INZRCD Write a Record 
record on format 
the display level 
before it 
is read. 

KEEP Prevent Record 
erasing of format 
the display level 
when a 
file closes. 

LOCK The keyboard Record Optional 
is not to format 
be unlocked. level 

LOGINP Copy (log) Record 
the input format 
record to level 
the job log. e 

LOWER Allow Field 
lowercase level 
input. 

142 



KEYWORD SUMMARY (continued) 
\ 

,) 
Where Option 

Keyword Function Used Indicator 

LOGOUT Copy (log) Record Optional 
the output format 
record to level 
the job log. 

MDTOFF Reset all Record Optional 
modified format 
data tags level 
on the 
display. 

MSGLOC Specifies File 
what line level 
messages are 
to be 
displayed 
on. 

OPENPRT The print File 
file is level 
to remain 

"\ open until 

,/ 
I the display 

file is 
closed. 

OVERLAY Do not Record Optional 
erase the format 
entire level 
display 
before 
writing 
this record. 

PASSRCD Specifies File 
the record level 
format to 
be used 
when 
unformatted 
data is 
passed. 

PRINT The Print File Optional 
key can level 
be used 

" 
to print 

) the display. 

Display Device Support 143 



KEYWORD SUMMARY (continued) 

( 
Where Option 

Keyword Function Used Indicator 

PROTECT Protect Record Optional 
all input- format 
capable level 
fields not 
erased on 
an overlay. 

PUTRETAIN Retain a Field Optional 
record (at level 
the record Record 
format level) format 
or field level 
(at the 
field level) 
on the 
display. 

RANGE The field Field 
value must level 
be within 
the limits 
specified (' 
in the 

I 

\ .. 
entry 
position. 

REF Field File 
specifications level 
for a device 
file are to 
be retrieved 
from a data 
base file. 

REFFLD Field Field 
specifications level 
for a field 
are to be 
retrieved from 
a data base 
file (other 
than the file 
specified 
in the REF 
keyword, if 
specified). 

( 

144 



"\ 
KEYWORD SUMMARY (continued) 

./ Where Option 
Keyword Function Used Indicator 

ROLLDOWN The using File Optional 
program level 

receives Record 
control format 
when the level 
Roll Down 
key is 
pressed. 

ROLLUP The using File Optional 
program level 
receives Record 
control format 
when the level 
Roll Up 
key is 
pressed. 

RTGAID Place the Record 
AID byte format 
(command key level 

"- indication) 
) into the ... 

routing 
data 
as a 2-byte 
identifier. 

RTGCON Place the Record 
specified format 
literal level 
into the 
routing 
data at 

a specified 
location. 

RTGDEV Place the Record 
10-character format 
device level 
name into 
the routing 
data. 

RTGDEVCLS Place the Record 
10-character format 
device name level 

) into the 
routing 
data. 

Display Device Support 145 



KEYWORD SUMMARY (continued) ( 
I 
\ 
"-

Where Option 
Keyword Function Used Indicator 

RTGFIRST Specifies Record 
that the format 
first field level 
received 
be placed 
in the 
routing 
data. 

RTGFLD Specifies Field 
that the level 
field data 
be placed 
in the 
routing 
data. 

RTGFMT Place the Record 
format name format 
into the level 
routing 
data ... 

/' 

\, 

RTGPOS Place data Record 
received from format 
a device level 
into the 
routing 
data. 

SETOFF Set off Record 
a response format 
indicator. level 

SFL The record Record 
is a format 
subfile. level 

SFLCLR Clear the Record Required 
subfile format 
of data level 
but do not 
delete the 
subfile. 

r 
\ 

146 



''' . KEYWORD SUMMARY (continued) 

. ) 
Where Option 

Keyword Function Used Indicator 

SFLCTL The record Record 
is a subfile format 
control level 
record. 

SFLDLT Delete the Record Required 
subfile. format 

level 

SFLDROP Assign a Record 
command key format 
to be used level 
to fold or 

truncate 
records 

of a 
subfile. 

SFLDSP Specifies Record Optional 

when to format 

begin level 

) displaying 
subfile 
records. 

SFLDSPCTL Specifies Record Optional 

when to format 

display a level 

subfile 

control 
record. 

SFLEND Display a Record Required 

+ (plus sign) format 

when there level 

are more 
records 
than can fit 
on a display 
page and 
replace a 
+ with a 
blank when 
the 'last 

record 
in the 

') 
subfile 
is on the 

/ 
display. 

Display Device Support 147 



KEYWORD SUMMARY (continued) /' 

/ 

Where Option 
Keyword Function Used Indicator 

SFLENTER The Enter Record 
key is format 
used as level 
the Roll 
Up key, 
and a 
command 
key is 
used to 
return to 
the using 
program. 

SFLlNZ Initialize Record Optional 

all records format 
within the level 
subfile. 

SFLLlN Specifies Record 
the number format 
of spaces level 
between ( 
each record ,-

on a line. 
This number 
is used 
to calculate 
the 
subsequent 
field 
positions 
for records 
displayed 
on the 
same line. 

SFLMSG Specifies Record Optional 
the text of format 
the message level 
that should 
be displayed 
in the standard 
data management 
messages 
method. 
Used for 
subfiles. t 

I 

" 

148 



) 
KEYWORD SUMMARY (continued) 

Where Option 
Keyword Function Used Indicator 

SFLMSGID Specifies Record Optional 
the message format 
identifier level 
of the 
message 
that should 
be displayed 
in the 
standard 
data 
management 
messages 
method. 
Used for 
subfiles. 

SFLMSGKEY The specified Field 
field contains level 
a message key 

of a message 
on a program 

..... ' ... , 
message queue. ) 

SFLMSGRCD Specifies that Record 
the subfile format 
contains level 
messages from 
a program 
message queue. 

SFLNXTCHG Return a Record Optional 

record to format 

a using level 
program 
whether or 
not the 
fields in 
the record 
format 

. were 
changed 
by the work 
station 
user. 

) 

Display Device Support 149 



KEYWORD SUMMARY (continued) 
/~ 

Where Option \, 
Keyword Function Used Indicator 

SFLPGMQ Specifies the Field 
name of the level 
program mes-
sage queue for 
displaying 
messages. 

SFLPAG Specifies Record 
how many format 
records level 
can be 
displayed 
in a subfile 
at one 
time. 

SFLRCDNBR Display a Field 
page of a level 
subfile 
according to 
a record 
number. 

\ 

SFLROLVAL The Record '- .. 

specified format 
field and level 
appropriate 
roll key 
are used to 
roll the 
subfile 
records 
that are 
displayed. 

SFLSIZE Specifies Record 
the number format 
of records level 
that can be 
contained 
in a subfile 
storage 
area. 

TEXT Specifies Field 
a text level 
description Record 
for a format (' 
record level I", 

format 
or field. 

150 



·.'~ 
. KEYWORD SUMMARY (continued) 

~) Where Option 
Keyword Function Used Indicator 

TIME Use the Field 
system time level 
as a field 
on the 
display and, 
optionally, 
edit it 
according 
to an edit 
word or 
edit code 
(default is 
Of> :f>f> :f>f». 

UNLOCK Unlock Record 
the format 
keyboard level 
so the 
next record 
can be 
entered. 

'" USRDFN The data Record ) 
" is a format 

user-defined level 
data stream. 

VALUES The field Field 
value must level 
be one of 
the values 
specified 
in the 
entry 
position. 

VLDCMDKEY Set a File 

response level 

indicator Record 

on if a format 

valid level 
command key 
(a key 
associated 
with a 
keyword) 

" 
is pressed 

I 

J 
to return 

/ control to 
the program. 

Display Device Support 151 



152 



) 

) 

) 

Chapter 8. Overriding Files 

When you create an application program, files are associated with it by the file 
names specified in the program. System/38 lets you override these file names 
and the attributes of the specified file when you compile a program or execute 
a program. Because files are defined outside an application program, the 
program can be written so that it is independent of which file is being used. 

Overriding a file is different from changing a file in that an override does not 
permanently change the attributes of a file or which file is used in a program. 
For example, if you override the number of copies for a print file by requesting 

six copies instead of two, the file description for the print file would still 
specify two copies, but six copies are printed. A file override lasts either as 
long as the program that contains the override command is executing or, if the 
override command was entered interactively, as long as the routing step is 
executing. (See Chapter 16, Work Management for information about routing 
steps.) 

File override commands can be entered as part of a batch job, as a command 
in an interactive job, and as part of a control language program. 

OVERRIDING FILE AlTRIBUTES 

The simplest form of overriding a file is to override some attributes of the file. 
File attributes are established as a result of the following: 

• Create file and add member commands. Initially, these commands establish 
the file attributes. 

• Program using the files. At compile time, the using program can override 
(change or add to) the file attributes. 

• Override commands. At program execution time, these commands can 
override the file attributes previously established by the create commands 
and the using program. 

For example, you created a printer file OUTPUT whose attributes are: 

• Form size of 66 by 132 

• Six lines per ir:tch 

• Two copies of printed output 

• Two pages for file separators 

Overriding Files 153 



154 

The Create Printer File (CRTPRTF) command looked like this: 

CRTPRTF FILE(OUTPUT.QGPL) DEV(PRINTER) 
FORMSIZE(66 132) LPI(6) 
COPIES(2) FILESEP(2) 

This printer file is referenced in your application program. However, before you 
run the application program you want to change the number of printed copies 
of output to three. The override command looks like this: 

OVRPRTF FILE(OUTPUT) COPIES(3) 

Then you call the application program, and three copies of the output are 
printed. 

OVERRIDING WHICH FILE IS USED IN A PROGRAM 

Another simple form of overriding a file is to change which file is used in a 
program. For example, you want the output from your application program to 
be printed using the printer file' REPORTS instead of the printer file OUTPUT 
(OUTPUT is specified in the application program). Before you run the program 
you enter the following command: 

OVRPRTF FILE(OUTPUT) TOFILE(REPORTS) 

Note: The file REPORTS must have been created by a CRTPRTF command 
before it can be used. 

APPLYING OVERRIDES 

When you have more than one override for the same file in a series of 
programs (nested programs), there is a certain order in which the overrides are 
applied to the file. For example: 

OVRPRTF FILE(OUTPUT) COPIES(6) SPOOL(*YES) 

CALL PGM(A2 

Program A 

OVRPRTF F I LE(OUTPUT) COPI ES(2) LPI (6) 
CALL PGM(X) 

( 



) 

) 

When program X opens the file OUTPUT, the following overrides are used: 

• COPIES(6) 

• SPOOL(*YES) 

• LPI(6) 

The override COPIES(2) is not used because it was overridden by COPIES(6). 
The first override command (issued before the call to program A) overrides the 
second override command (embedded in program A). If there had been a third 
override for OUTPUT embedded in program X, it would have been overridden 
by the second and first overrides, respectively. 

A similar situation exists when you change the name of the file to be used in 
the program and you also override some of the attributes of the file. For 
example: 

OVRDBF FI LE(PAYROLL) MBR(CURRENT) 

CALL PROG12 

Program PROG1 

OVRDBF FILE(lNPUT) TOFILE(PAYROLL) 
CALL PROG2 

When program PROG2 goes to open INPUT, it opens PAYROLL instead. Also, 
the member used for processing is CURRENT. The file override that changes 
the file used by the program is applied first. Then, all subsequent file overrides 
in the same or prior invocations of programs referencing the file are applied 
(inverse invocation order). 

DELETING OVERRIDES 

You can delete active file overrides that no longer apply to your job. You can 
delete a specified override or all overrides. To identify an override, use the file 
name specified in the FI LE parameter of the override command. For example, 

OVRPRTF F I LE(OUTPUT) COPI ES(6) SPOO L( *YES) 

CALL PGM(A2. 

Program A 

OVRPRTF FI LE(OUTPUT) 

~CALL 

DL TOVR F I LE(OUTPUT) 

PGM(X) 

COPI ES(2) LPI(6) 

The Delete Override (DLTOVR) command deletes the overrides for file OUTPUT 
before another program is called that uses OUTPUT. 

Overriding Files 155 



156 

DATA BASE FILE CONSIDERATIONS 

For a data base file, you can change (override) some attributes that are not 
present in the file description (from the create file command) but were 
specified in the program using the file. These attributes are: 

• Member name. The member from the file you want to use in the program. 
If not specified, the first (oldest) member in the file is used. 

• Position. The position in the file at which processing is to begin. Your 
options are: 
- At the beginning of the file (default) 
- At the end of the file 
- At a specified record, using a relative record number 
- At a specified record, using a specific record format and· key field value 

• Record format lock. The lock state for a specified record format. Your 
options are: 

Shared for read 
Shared for update 

- Shared no update 
- Exclusive allow read 
- Exclusive 

(See Allocating Resources in Chapter 16, Work Management for an 
explanation of the lock states.) 

• Expiration check. The expiration date of the member can be checked to 
determine if the date has expired. If the date has expired, the override is 
not applied and the system sends you a message. You can then have the 
override applied or not. If you do not have the date checked but the date 
has expired, the system sends you a warning message but the override is 
applied. 

• Inhibit write. You can inhibit (stop) insertions and updates to a file or 
deletion from a file. Inhibit write is useful when using production libraries in 
test mode. 

SHARED FILES 

The SHARE parameter on the override commands allows an open data path 
(ODP) to be shared between two or more programs executing in the same 
routing step. If not specified otherwise, every time a file is opened a new ODP 
is created. (An ODP is the path through which all I/O operations for the file 
are performed.) You can specify on an override command that, if a file is 
opened more than once and an ODP is still active for it, the active ODP for the 
file can be used with the current open of the file and a new ODP does not 
have to be created. SHARE(*YES) must be specified for the first open and 
other opens of the same file for the ODP to be shared. 

By default, data base allows one file to be concurrently accessed and changed 
by many users. The SHARE parameter allows even closer sharing in a job such 

as sharing the file, its status, its position, "and its buffer. Two programs using a 
shared file can pass the file back and forth automatically. 

( 

( 



) 

) 

J 

,./ 

SECURING FILES 

When you grant other users the authority to execute a program using your (the 
owner's) user profile, you may want to protect your files from unwanted 
overrides. In addition, when you have several levels of nested programs, you 
may want to protect files from unwanted overrides. 

You can prevent file overrides for a program by specifying the SECURE(*YES) 
parameter on the file override command in the program for each file needing 
protection. This protects your files from subsequent overrides and prevents the 
use of files not specified in the program. 

The following shows an example of a protected file. 

OVRPRTF FILE(PRINT1) SPOOL(*NO) 
OVRDBF FILE(NEWEMP) TOFILE(OLDEMP) MBR(N67) 
CALL PGM(CHECK) 

• (CHECK program) 

OVRDBF FILE(lNPUT) TOFILE(NEWEMP) MBR(N77) SECURE(*YES) 

CALL PGM(NEMPRPT) 

• (NEMPRPT program) 
• (INPUT and PRINT1 are opened) 

DLTOVR FILE(*ALL) 
CALL PGM(NEMPLST) 

• (NEMPLST program) 
• (NEWEMP and PRINT1 are opened) 

Because the OVRDBF command within the program CHECK specifies 
SECURE(*YES), the first OVRDBF command referencing NEWEMP is not 
applied. Therefore, OLDEMP is not used in the program CHECK. The 
OVRPRTF command is applied for the file PRINT1 every time PRINT1 is 
opened. The DLTOVR command within the program CHECK deletes only the 
overrides specified in the program CHECK. 

Overriding Files 157 



158 

FILE REDIRECTION 

File redirection means that you changed the file or the type of file to be 
processed in a program when you overrode a file. For example, you change 
from one data base file to another data base file or change from a card input 

file to a display file. 

When you change the file that is used in a program but do not change the 
type of file, the file changed to is processed in the same manner as the original 
file would have been as long as the record format the program was compiled 
with matches the file changed to. If you change to a different type of file, the 
device dependent characteristics of the file are ignored and certain defaults 
taken. The following summarizes the defaults taken and what is ignored. 

From 

Printer 

Card input 

To 

Card: The first 
96 characters of the record are punched 
and printed on cards. Printer control 
information is ignored. 

Diskette: The first 128 characters of 
each record are written on diskette. If 
a two-sided diskette allows 256-byte 
records, the first 256 characters are 
written on diskette. Diskette label 
information must be provided on the over
ride command. Printer control informa
tion is ignored. 

Display: Records are written to the 
display with each record overlaying the 
previous record. You request each record 
with the Enter key. Printer control 
information is ignored. 

Data base: Records are written to the 
data base in sequential order. Printer 
control information is ignored. 

Data base: Records are retrieved from 
the data base. One record is read as a 
single field. Card control information 
is ignored. 

Display: Records are 
retrieved from the display one at a time. 
Card control informatio,n is ignored. 

(: 

( 
\. 



FILE REDIRECTION (continued) 

From 

Card output 

To 

Printer: Punch records are printed. 
Card control information is ignored. 

Diskette: Records are written on diskette. 
Diskette label information must be pro
vided on the override command. Card 
control information is ignored. 

Display: Punch records are written to 
the display with each record overlaying 
the previous record. You request each 

output record with the Enter key. Card 
control information is ignored. 

Data base: Records are written to the 
data base in sequential order. Card 
control information is ignored. 

Diskette input Card: Only records of at the most 96 
characters are transferred to the program. 
Diskette label information is ignored. 

Data base: Records are retrieved in 
sequential order. One record is read as 
a single field. Diskette label informa
tion is ignored. 

Display: Records are retrieved from 
the display one at a time. A nonfield
level device file must be specified. 
Diskette label information is ignored. 

Diskette output Printer: Records are printed. 

Card: The first 96 character of each 
record are punched and printed. 

Data base: Records are written to the 
data base in sequential order. 

Display: Records are written to the 
display' with each record overlaying the 
previous record. You request each output 
record with the Enter key. 

Overriding Files 159 



160 

FILE REDIRECTION (continued) 

From 

Display input 

Data base 
input 
(sequentially 
processed) 

Data base 
output 
(sequentially 
processed) 

To 

Card: Up to 96 characters of the input 
record are read. If less than 96 charac
ters are read, the record is padded with 
blanks until 96 characters are reached. 

Diskette: Up to 128 character of the 
input record are read. If less than 128 
characters are read, the record is 
padded with blanks until 128 characters 
are reached. If a two-sided diskette 
allows 256- byte records, 256 characters 
are read. 256-byte records are also 
padded with blanks. Diskette label 
information must be provided on the 
override command. 

Data base: Input records are retrieved. 

Card: Only records of at the most 96 
characters are transmitted to a program. 

Display: Records are retrieved from the 

display one at a time. A nonfield-Ievel 
device file must be specified. 

Diskette: Records are retrieved from 
diskettes. Diskette label information 
must be provided on the override command. 

Card: Only the first 96 characters are 
punched and printed. 

Printer: The first 132 characters are 
printed when no folding is specified. 
If folding isspecified, all of a record 
is printed. 

Diskette: The first 128 characters are 
written on diskette. If a two-sided 
diskette allows 256-byte records, 
56 characters are written on diskette. 
Diskette label information must be 
specified on the override command. 

Display: Records are written to the 
display with each record overlaying the 
previous record. You can request each 
output record using the Enter key. 

( 

/' 
( 

\. 



) 

) 

) 

The following chart summarizes valid file redirections. I means input file; 0 
means output file; 0/1 means output/input file. 

To From File 

File Printer Card Diskette Display Data Base 

Printer 0* 0 0 0 

Card 0 0 0 0 0 

Diskette 0 0 0 0 0 

Display 0 0 0 0/1 0 

Data Base 0 0 0 0 0 

* Redirected to a different type of printer. 

There is no redirection for card combined files or nonsequentially processed 
data base files other than to a file of the same type. 

COMMAND LIST 

This is a list of commands related to overriding files. It is presented here to 
help you select the appropriate command for the function you want and to 
help you determine which command you might need to reference in the CPF 
Reference Manual- CL. 

Descriptive Name Command Name Function 

Override Card OVRCRDF Overrides a 

File card file. 

Override Data OVRDBF Overrides a data 

Base File base file. 

Override OVRDKTF Overrides a 

Diskette File diskette file. 

Override OVRDSPF Overrides a 

Display File display file. 

Override OVRPRTF Overrides a 

Printer File print file. 

Delete DLTOVR Deletes previous 

Override override commands. 

Display DSPOVR Displays active 

Override override 
information. 

Overriding Files 161 



\ 

"" 

( 
" 

( 
\ 

162 



) 

) 

) 

Chapter 9. Copying Files 

On System/38 you can copy both data base files and device files. As you 
copy files you can copy the whole file; or you can copy only a portion of a file 
by selecting a subset of the records. 

You can copy an entire file or only part of a file. Besides specifying members 
to be copied, you can select the parts of a file to be copied by specifying: 

• From and to record numbers 

• From and to record keys 

• A character value to be present in a field or record 

• A value to be present in a field 

• A record format 

• A number of records 

• That fields be dropped from the file being copied 

You can copy from: 

• A data base file to a data base file 

• A device file to a data base file 

• A data base file to a device file 

• A device file to a device file 

The following is a more detailed version of the preceding list. 

From 
To File 

File Physical Undefined Printer Diskette Card 

Physical X X X X X 

Logical X X X X X 

Diskette X X X 

Card X X X X 

Note: An undefined file is a file that has not been created. It is created as a 
result of a copy operation. 

Copying Files 163 



164 

The following shows what copy functions are used for copying part of a file 
and what type of copy the function is used for (DB=data base file, DEV=device 
file). 

Type of Copy 

Copy Function 

Select records by 

Record number 

Record key 

Record character 

Field content 

Record format 

Number of records 

DB to DEV 
DB to DB 

X 

X 

X 

X 

X 

X 

x 

X 

X 

Map and drop fields X 

Insert sequence number X 
and date 

Print excluded records 

Add and replace 
records 

X 

X 

X 

X 

DB to 
DEV 

x 
X' 

X 

X 

X 

X 

DEV to 
DEV 

X 

X 

X 

X 

Note: For DEV to DB and DB to DEV, sequence numbers and dates are 
automatically inserted. 

The simplest form of copying is copying an entire file. For example, you copy 
physical file EMP1 to physical file EMP1T. EMP1T is used for testing. Each 
file contains one member that is named the same as the file. 

CPYF FROMFILE(EMP1.PERSONNEL) 
TOFILE(EMP1 T.TESTLlB1) 

You can also copy part of a file to another file. For example, you copy part of 
a physical file EMP1 to a printer file for the system printer, which is indicated 
by the predefined option *LlST. You print a listing of all part-time employees. 

CPYF FROMFILE(EMP1.PERSONNEL) 
TOFI LE(*LlST) 
INCREL(TIME *EQ P) 

The copy is based on selecting records by the contents of a field. If the field 
TIME indicates part-time (equals P), the record is copied to the system printer. 

( 
" 

( 
\, 



) 

'\ 
) 

./ 

.... , 

" ) 

COPY COMMANDS 

There are two commands for copying files: Copy File (CPYF) and Copy File 
Interactive (CPYFI). The CPYF command can be used interactively or in a batch 
job. It provides the full function for copying files. The CPYFI command 
provides the same functions as the CPYF command, but it provides a way for
you to see only the parameters that are applicable to the type of copy you 
want. When you enter the CPYFI command, you specify a from file and a to 
file. System/38 determines what type of fields are involved in the copy and 
then only prompts you for the parameters that are valid for the type of copy. 
For example, you enter the following CPYFI command: 

CPYFI FROMFILE(EMP1) TOFILE(*LlST) 

EMP1 is a data base file. You are copying it to the system printer, which is 
indicated by the predefined option *LlST. 

This CPYFI command causes the prompts in Figure 26. You are only prompted 
for the parameters that apply to a data base to printer type of copy. The 
INCREL parameter prompt is filled in to show how the previous copy example 
for copying part of a file to another file is done using interactive copy. The 
previous example used a CPYF command to print a list of all parttime 
employees. 

COPY PHYSICAL FILE TO PRINTER PROMPT 
Enter the follo~ing: 

From physical file member name: FROHt1ER *FIRST 
From record number: FRotlRCD _1 __ 

To record number: TORCD *EOF 
Number of records: NBRRCDS *EOF 
Character test for inclusion 

Field in file to test: 
INCCHAR ~HmNE 

Character pOSition in field: 
Orerator: 
Character: 

COPY PHYSICAL FILE TO PRINTER PROMPT 

Field level relational tests: INCREL 
Relation (*IF t *AND or *OR): 
Field name: 
Ope.·ator: 
Value: 

Records to print: 
Print format (*CHAR or *HEX): 

+ for more 
PRINT 
PRTHIT 

Figure 26. Examples of Copy File Interactive Prompts 

TINE 

Copying Files 165 



166 

COPYING TO AN UNDEFINED FILE 

You can copy a data base file to a file that has not been created. The 
undefined file is cre:ated when the copy is performed. The undefined file is 
created as a physical file and has the same record format as the file from 
which the copy was made. 

You could use this method of copying for the files EMP1 and EMP1T: 

CPYF FROMFILE(EMP1) TOFILE(EMP1T) 
C RTFI LE(*YES) 

Member names do not have to be specified because they are always the same 
as the file names when copying to an undefined file. 

MAPPING FIELDS 

When copying to a file 'with a different record format, you can map (copy and 
convert) the fields to the record format of the file being copied to. For fields 
that have the same name and attributes, the position of the field in the record 
format can be changed to the position of the field in the record format it is 
being copied to. For example, the field CUSNO is in the first position (is the 
first field) in the record format ORDHDR, but it is in the second position in the 
record format ORDHD1. When the field is copied, it is mapped into position 
two of ORDHD1. 

If the fields have different attributes but the same names, the fields are 
mapped according to the following rules. 

Originating 
Field Data Allowable 
Type Length 

Character 1-9999 

Zoned 1-15 
decimal digits 

Packed 
, decimal 

Binary 
No 
decimals 

With 
decimals 

1-15 
digits 

1-9 
digits 

1-9 
digits 

Decimal 
Positions 

None 

0-9 
digits 

0-9 
digits 

Mapped 
To 

Character 

Zoned decimal, 
packed 
decimal, or 
binary 

Zoned decimal, 
packed 
decimal, or 
binary 

None Zoned decimal, 
packed 
decimal, or 

1-9 
digits 

binary 
Binary with 
decimals 



When mapping character fields, the field being copied is truncated on the right 
if it is longer than the field into which the copy is made. For example, a 
character field of length 10 is copied into a character field of length six; 
ABCDEFGHIJ becomes ABCDEF. If the field being copied is shorter than the 
field into which it is copied, the field is padded on the right with blanks. For 
example, a character field of length 10 is copied into a character field of length 
12; ABCDEFGHIJ becomes ABCDEFGHIJb b (b=blank). 

When mapping numeric fields and the field being copied is longer than the 
field into which the copy is made, the field being copied is truncated on the 
left and right of the decimal point. For example, a zoned decimal field of 
length nine with four decimal positions is copied to a zoned decimal f.ield of 
length six with three decimal positions; 00115.1109 becomes 115.110. 

When mapping numeric fields and the field being copied is shorter than the 
field into which the copy is made, the field being copied is padded with zeros 
on the left and right of the decimal point. For example, a packed decimal field 
of length seven with five decimal positions is copied to a packed decimal field 
of length 10 with six decimal positions; 99.99998 becomes 0099.999980. 

COMMAND LIST 

This is a list of commands related to copying files. It is presented here to help 
you select the appropriate command for the function you want and to help you 
determine which command you might need to reference in the CPF Reference 
Manual-CL. 

Descriptive Name 

Copy File 

Copy File 
Interactive 

Command Name Function 

CPYF 

CPYFI 

Copies all or part of 
a file. 

Copies all or part of 
a file interactively. 

Copying Files 167 



/,r-

( 
"--

( 
'-

168 



) 

Chapter 10. Source Files 

A source file is used when a command alone is not sufficient for creating an 
object. For example, to create a control language program, you must use a 
source file containing source statements. To create a logical file, you must use 
a source file containing data description specifications (DDS). 

To create the following objects, you can use source files: 

• Control language programs (required) 

• Files: physical, logical (required)' display, and printer 

• High-level language programs (required) 

• Commands (required) 

• Translate tables (required) 

• Print images (required) 

A source file can be a data base file, card file, diskette file, or inline data file. 
The file must be defined to contain source and conform to a specific record 
format. 

Note: An inline data file is included as part of a job when the job is read from 
an input device by a reader program. 

For your convenience, CPF and other program products provide a data base 
source file for each type of source. These source files are: 

File Name 

OCLSRC 
OCMOSRC 
OOOSSRC 
OIMGSRC 
ORPGSRC 
OTBLSRC 
OTXTSRC 

Used to Create 

Control language program 
Command definition statements 
File 
Print image 
RPG program 
Translate tables 
Text 

You can either add your source members to these files or create your own 
source files. 

Source is processed using a create command to create an object. To create an 
object you use a create command. For example, to create a physical file you 
use the Create Physical File (CRTPF) command. A create command specifies 
through a SRCFILE parameter where the source is stored. Each set of source 

in a source file is contained in a separate member. 

Source Files 169 



170 

CREATING A SOURCE FILE 

To create a source file other than an in line data file you specify the source file 
type (*SRC) on a create file command: 

FILETYPE(*SRC) 

You do not have to describe the' record format (through DDS). All source files 
have the same minimum record format, which consists of three fields: 

Field Name 

SRCSEQ 

2 SRCDAT 

3 SRCDTA 

Data Type 
and Length 

Zoned 
decimal, 6 
digits, 
2 decimal 
positions 

Zoned 
decimal, 6 
digits, 
no decimal 
positions 

Character, 
any length 

Description 

Sequence number 
for record 

Date of last update 
of record 

Data portion of the 
record 

When you create a ptlYsical data base source file without using DDS source 
but by specifying record length (RCDLEN parameter), the source created 
contains the three fields SRCSEQ, SRCDAT, and SRCDTA. (The record length 
must include 12 characters for sequence number and update date.) SRCDTA 
can be defined to contain more than one field (each of which must be 
character or zoned decimal). If you want to define SRCDTA as containing more 
than one field, you must define the fields using DDS. 

You can use the Source Entry Utility (SEU) Licensed Program 5714-UT1 to 
enter and update source in a data base file. If you use SEU to enter source in 
a data base file, SEU adds the sequence number and date to each source 
record. If you use device files, the system adds them to the source file. In 
either case, they are generated for you. 

When records from a source file are processed, the sequence number and date 
fields are processed as part of the record. These fields are included in the data 
received by a program and are included in the data written by a program. 

The first sequence number is 0001.00; the next number is 0002.00; and so on. 
The sequence number is always increased by 1. If you use SEU to update a 
source file, you can add records between existing records. For example, you 
add a record between records 0003.00 and 0004.00. The sequence number of 
the added record is 0003.10. 



) 

\ 

) 

Source files must be created as keyed sequence files. The sequence number 
field SRCSEO is the key field for the source file. Duplicates are sequenced in 
first-in-first-out (FIFO) order. 

When records are intially placed in a source file, the date field is all zoned 
decimal zeros. If you use SEU, the date field changes in a record as you 
update the record. If you use device files, the date field is always zeros. 

For IBM-supplied data base source files, the data portion length is 80 bytes. 
For IBM-supplied device source files, the data portion length is the maximum 
record length for the associated device. 

The following Create Physical File (CRTPF) command creates a data base 
source file: 

CRTPF FILE(FRSOURCE.OGPL) RCDLEN(92) FILETYPE(*SRC) 

The record length of 92 includes the 12 characters for the sequence number 
and date. By default, one member is created for the source file and has the 
same name as the .file. 

Source can be placed in the source file by using SEU or by copying from·a 
device file to a physical file. See the IBM System/38 Source Entry Utility 
Reference Manual and User's Guide, SC21-7722, for how to use SEU to enter 
source. 

The following is an example of copying source from a card file to a physical 
file. The source is on cards in the M FCU. When the source is copied to the 
file FRSOURCE, sequence numbers and dates are added to the records. 

CPYF FROMFILE(CARD.OGPL) TOFILE(FRSOURCE.OGPL) 

CREATING AN OBJECT USING A SOURCE FILE 

A create command can create an object using a source file. When you create 
an object using a source file, you must specify the name of the source file. 

The following Create Physical File (CRTPF) command creates the file DSTREF 
using the data base source file FRSOURCE. The source member is named 
DSTREF. Because the SRCMBR parameter is not specified, the system 
assumes that the member name is the same as the file name. 

CRTPF FILE(DSTREF.OGPL) SRCFILE(FRSOURCE.OGPL) 

If you specify a device file name as the source file name, source is read from 
the device (such as cards). 

If your create request is spooled, you can use an inline data file as the source 
file for the request. The inline data file can be either named or unnamed. 
Named in line data files have a unique file name that is specified on the / / DATA 
command. 

Source Files 171 



172 

Unnamed in line data files are files without unique file names; they are all 
named OINLlNE. The following is an example of an inline data file as a source 
file. 

/ /JOB 
CRTPF FILE(ORD199.DSTPRODLB) SRCFILE(OINLlNE) 
/ /DATA FILETVPE(*SRC) 

• (source statements) 

/ /ENDJOB 

In this example, there was no file name specified on the / /DATA command. 
An unnamed spooled file was created when the job was processed by the 
spooling reader. The CRTPF command must specify OINLlNE as the source 
file name to access the unnamed file. The / / DATA command also specifies 
that the inline file is a source file (*SRC specified for the FILETVPE parameter). 

If you specify a file name on the / /DATA command, you must specify the 
same name in the SRCFILE parameter on the CRTPF command. For example, 

/ /JOB 
CRTPF FILE(ORD199.DSTPRODLB) SRCFILE(ORD199) 
/ /DATA FILE(ORD199) FILETYPE(*SRC) 

/ /ENDJOB 

If a program requests a spooled file, the file that is read is the first inline file of 
the specified name. If that file cannot be found, the program reads the first file 
that is unnamed (OINLlNE). 

If you do not specify a source file name, an IBM-supplied source file is 
assumed to contain the needed source data. For example, you are creating a 
control language program but you did not specify a source file name. The 
IBM-supplied source file OCLSRC is used. You must have placed the source 
data in OCLSRC. 

If a source file is a data base file, you can specify a source member that 
contains the needed source data. If you do not specify a source member, the 
source data must be in a member that has the same name as the object being 
created. 

I 
\ 
'-

( 
\,,-, 



) 

CHANGING A SOURCE FilE 

If you are using SEU to maintain data base source files, see the SEU Reference 

Manual and Guide for how to update data base files. If you are not using SEU 
to maintain data base source files, you have to delete the old source file and 
create a new source file. 

If your source file is on a diskette, you can copy it to a data base file, change 
it using SEU, and copy it back to a diskette. If you do not use SEU, you have 
to delete the old source file and create a new source file. 

If you change a source file, the object created from the source file does not 
match the current source. The old object must be deleted, and a create 
command must be specified to create the object using the changed source file. 
For example, if you change the source file FRSOURCE, you have to delete the 
file DSTREF that was created from the original source file and create it again 
using the new source file so that DSTREF matches the changed FRSOURCE 
source file. 

Source Files 173 



174 

( 
\ 

/ 



) 
," 

\ 

) 

I 
,,/ 

Chapter 11. Data Areas 

A data area is an object used to pass data between programs within a job and 
between jobs. 

Unlike program variables, data areas are objects and must be created before 
they can be used in a program or job. A data area can be created as: 

• A character string that can be as long as 2000 characters 

• A decimal value that can be as long as 15 digits and can contain the digits 
a through 9 with as many as nine decimal positions 

• A logical value '0' or '1', where '0' can mean off, false, or no and '1' can 
mean on, true, or yes 

When you create a data area, you can also specify an initial value for the data 
area. If you do not specify one, the following is assumed: 

• a for decimal 

• Blanks for character 

• '0' for logical 

To create a data area you use the Create Data Area (CRTDTAARA) command. 
In the following example you create a data area to pass a customer number 
from one program to another. 

CRTDTAARA DTAARA(CUST) TYPE(*DEC) 
LEN(5 0) TEXT('Customer number data area') 

To send or receive a data area in a program, you must declare it to the 
program with a Declare Data Area (DCLDTAARA) command. When the data 
area is declared, a control language variable is automatically declared with the 
same attributes as the data area. The variable name is the data area name 
preceded by an ampersand (&). For example, the variable declared for the data 
area CUST is &CUST. 

The Send Data Area (SNDDTAARA) and Receive Data Area (RCVDTAARA) 
commands can be used within your programs to move (send) a variable value 
to a data area and to move (receive) a data area value to a variable for use by 
your programs. See Chapter 4, Control Language Programs for more 
information about sending and receiving data areas. 

Data Areas 175 



176 

You can display the attributes (name, library, type, length, and text description) 
of and the value of a data area. The following Display Data Area 
(DSPDTAARA) command displays the attributes and value of the data area 
CUST. 

DSPDTAARA DTAARA(CUST) 

The resulting display is: 

09/25/80 10:36:12 DATA AREA DISPLAY 
Data area: CUST library: QGPl 
Type: *DEC length: 5 

Text: Customer number data area 
Value: 34123 

The Change Data Area (CHGDTAARA) command changes the current value of 
a data area; it cannot change the other attributes of the data area. 

COMMAND LIST 

This is a list of commands related to data areas. It is presented here to help 
you select the appropriate command for the function you want and to help you 
determine which command you might need to reference in the CPF Reference 

Manual-CL. 

Descriptive Name Command Name Function 

Create Data Area CRTDTAARA Creates a data area. 

Delete Data Area DLTDTAARA Deletes a data area. 

Change Data Area CHGDTAARA Changes the value of 
a data area. 

Display Data Area DSPDTAARA Displays the value 
and attributes of a 
data area. 

~ 



) 

) 

Within Control Language Programs 

Descriptive Name Command Name Function 

Declare Data Area DCLDTAARA 

Send Data Area SNDDTAARA 

Receive Data Area RCVDTAARA 

Declares a data area 
to a program. 

Moves the contents 
of a control language 
variable to a data 
area. 

Moves the contents 
of a data area to 
a control language 
variable. 

Data Areas 177 



178 

/ 
I 
\. 

\ ...... 



) 

\ 
) 

/ 

Chapter 12. Message Handling 

Messages communicate data between programs, between jobs, between users, 
and between users and programs. Messages can either be stored 
independently of or within the programs that use them. 

Using System /38 message handling functions, you can: 

• Create message files and store messages in them 

• Create message queues 

• Send messages 

• Reply to messages 

A message is a communication sent from one system user or program to 
another. For example, CPF sends a message to the system operator to inform 
him of some condition that exists in the system, or the system operator sends 
a message to another work station user to inform him of conditions that affect 
him. The length, format, content, senders, and receivers of messages vary. 
Each message is independent of other messages. Unlike records in a data 
base file, messages in a message file are not related. 

There are two types of messages (which are defined in relation to when the 
messages are created and sent): 

• Predefined messages. A message that is created and exists outside of the 
program that uses it. Predefined messages are stored in message files as 
message descriptions and have unique identifiers for referencing by the 
program. 

• Impromptu messages. A message that is created by the sender. An 
impromptu message is not stored in a message file because it is usually a 
message that is sent only once. An example of an impromptu message is: 

System going down at 11 :00, please sign off 

Messages can be defined as: 

• Informational (*INFO). A message that conveys information about the 
condition of a function. 

• Inquiry (*INQ). A message that conveys information but also asks for a 
reply. 

• Reply (*RPV). A message that is a response to a received inquiry message. 

• Sender's copy (*COPV). A copy of an inquiry message that is kept by the 
sender. 

Message Handling 179 



180 

• Request (*RQS). A message that requests a function from the receiving 
program. (For example, a control language command can be a request 
message.) 

• Completion (*COMP). A message that conveys completion status of work. 

• Diagnostic (*DIAG). A message about ~rrors in the execution of a system 
function, in an application program, or in input data. 

• Escape (*ESCAPE). A message that describes a condition for which a 
program must terminate abnormally. A program can monitor for the arrival 
of escape messages from the program it calls or from the machine. 

• Notify (*NOTIFY). A message that describes a condition for which a 
program requires corrective action, or a repry, from its caller. A program can 
monitor for the arrival of notify messages from the programs it calls. 

MESSAGE DESCRIPTIONS 

Every predefined message has an associated message description, which is 
created using the Add Message Description (ADDMSGD) command. The 
message description can contain: 

• Message identifier (required) 

• Severity code 

• First-level message text (required) with optional substitution variables 

• Second-level message text with optional substitution variables 

• Description of the format of the message data to be used for the 
substitution variables 

• Validity checking criteria for a reply 

• Default value for a reply 

• Default message handling action for escape and notify messages 

Message Identifier 

The message identifier is used to reference the message and is the name of 
the message description. The message identifier consists of seven characters: 

pppmmnn 

ppp is the product or application code and mmnn is the assigned number 
of the message within the product code. The number specified as mm can be used 
to further divide a set of product or application messages. 

I 
( 
'-



'\ 
For example, 

CPF1234 

is message 1234 of CPF. 

When you create your own messages, the product code should begin with the 
letter U. For example, 

USR3567 

The product code must always be alphabetic; the number must always be 
numeric. 

Severity Code 

The severity of a message indicates how important the message is. The 
severity codes used by CPF for error ,conditions are: 

Code 

00 
10 
30 
35 
40 
50 
70 
80 

Description 

Information only 
Warning, possible error 
Input value error, condition ignored or default taken 
Input value error, requested function terminated 
Input syntax error, requested function terminated 
Execution error, requested function terminated 
Execution error, job terminated 
System (subsystem, device, or configuration) conditions 

99 System termination conditions 

First- and Second-Level Messages 

A message can consist of two levels of text. The first level is required and 
identifies the error. The second level is optional and explains the error further 
or explains the corrective action for the error. 

Message Handling 181 



182 

Substitution Variables and Their Associated Message Data Formats 

Either level of a message can contain substitution variables. For example, 

File &1 not found 

contains the substitution variable &1. When the message is sent, the variable 
& 1 is replaced with the name of the file that could not be found. This name is 
supplied by the sender. For example, 

File ORDHDRP not found. 

Compare this to: 

File not found 

Substitution variables can make a message more specific. 

The substitution variable must begin with & (ampersand) and be followed by 
any number from 1 to 9. 

You must specify the message data format for the substitution variable by 
specifying data type and length. The valid data types are: 

• Quoted character string (*QTDCHAR). A string of character data to be 
enclosed in apostrophes. 

• Unquoted character string (*CHAR). A string of character data not to be 
enclosed in apostrophes. Trailing blanks are deleted. 

• Hexadecimal (*HEX). A string to be preceded by the character X and 
enclosed in apostrophes; each byte of the string is to be converted into two 
hexadecimal characters (0 through 9 and A through Z). 

• Binary (*BIN). A binary integer (either 2 or 4 bytes long) formatted as a 
signed decimal integer. 

• Decimal (*DEC). A packed decimal number to be formatted as a signed 
decimal number with a decimal point. 

• Time of day (*DTS). An a-byte system date and time stamp for which the 
date is to be formatted as specified in the QDATFMT system value and the 
time is to be formatted as hh :mm :ss. 

• System pointer (*SYP). A 16-byte pointer to a system object (see Glossary). 

In a first- or second-level message, the name of the object is formatted the 
same as the *CHAR type data. 

• Space pointer (*SPP). A 16-byte pointer to a program object (see Glossary). 

In a first- or second-level message, the data in the object is formatted the 
same as the *HEX type data. 

Note: The data types *DTS, *SYP, and *SPP are defined to support 
IBM-supplied messages. You cannot use these types in messages you define. 



\ 

) 

Validity Checking for Replies 

If you create a notify or inquiry message that requires a reply, the reply must 
be a single value. You can specify validity checking for: 

• Type of reply 
Decimal (*DEC) 
Character (*CHAR) 
Alphabetic (*ALPHA) 
Name (*NAM E) 

• Maximum length of reply 
For decimal, 15 (9 decimal positions) 
For character and alphabetic, 32 
For name, 10 

• Values that can be used for the reply 
A list of values 
A list of special values 
A range of values 
A simple relation that the reply value must meet 

Default Values for. Replies 

In addition, you can specify a default value for a reply. A default reply must 
meet the same validity checking cr!teria as the other replies for the message or 
be specified as a special value in the message description. A default value is 
used when there is no one to reply to a message or when a user has indicated 
that all message replies are to be defaulted (default delivery) instead of being 
displayed to him immediately. 

DE!fault Message Handling for Escape and Notify Messages 

For each escape or notify message you can set up a default message handling 
action for your programs to use if they receive an escape or notify message for 
which they were not monitoring or for which handling is not specified. 

Default message handling. actions can consist of: 

• Default program name. A program to be called that takes default action to 
handle a message. 

• Dump list. A list of message data field numbers (the same numbers as the 
substitution variables) that indicate which objects are to be dumped. In 
addition, you can specify that an entire job structure be dumped. 

• Service log indication. Whether the message is to be logged to the service 
log (see Message Logging later in this chapter). 

If you do not specify default actions in message descriptions or in your 
programs, CPF provides standard default actions. 

Message Handling 183 



184 

Example of Describing a Message 

The content of the message description is specified in the Add Message 
Description (ADDMSGD) command. In the following example you create a 
message, to use in your applications such as order entry, that is issued when a 
customer number entered on the display was not found. The message is: 

Customer number & 1 not found 

The ADDMSGD command for this message is: 

ADDMSGD MSGID(USR4310) 
MSGF(USRMSG.OGPL) 
MSG('Customer number &1 not found') 
SECLVL(,Change customer number') 

SEV(40) 
FMT((*CHAR 8))· 

MESSAGE FILES 

Predefined messages are stored in message files. (Note the MSGF parameter 
on the preceding ADDMSGD command.) By using predefined messages you 
can change and translate them into languages other than English without 
affecting the program that uses them. If messages were within a program, the 
program would have to be recompiled when the messages were changed. 

When you get your system, the CPF messages are stored in the message file 
OCPFMSG in the library OSYS. In addition, there are message files for each 
program product you order. All of these message files are in the system library 
OSYS. You can create message files to contain messages you create. 
Message file names follow the System/38 naming conventions. 

When you create a message file, you can specify the maximum size in K bytes. 
The following formula can be used to determine the maximum: 

S + (I.N) 

Where S is the initial amount of storage 
is the amount of storage (increment) 

to add each time 
N is the number of times to add storage 

The defaults for. S, I, and N are 10, 2, and 3, respectively. 

For example, you specify S as 5, I as 1, and N as 2. When the file reaches the 
maximum of 5K, the system automatically adds another 1 K bytes to the initial 
storage. 1 K bytes can be added to the storage two times to make the total 
maximum of 7K bytes. 

You use the Create Message File (CRTMSGF) command to create the message 
file. For example, the following CRTMSGF command creates the message file 
USRMSG referenced in the preceding ADDMSGD command. 

CRTMSGF MSGF(USRMSG.OGPL) 
TEXT('Message file for user-created messages') 

( 
\,. 

( 

( 



) 

) 

\ 
) 

Retrieving Message Text 

You can use the Retrieve Message (RTVMSG) command to retrieve for your 
program the text of a message from a message file. By doing this, you can 
write the message to an output listing or handle it in other ways. Besides 
specifying the message identifier and message file name" you can specify: 

• Message data fields. The message data for the substitution variables. 

• A group of control language variables into which the following information is 
placed (each corresponds to one variable). 

First-level message text (character variable) 
Length of first-level message, including length of substitution variable 
data (decimal variable) 
Second-level message text (character variable) 
Length of second-level message, including length of substitution variable 
data (decimal variable) 
Severity code (decimal variable) 

The following RTVMSG command copies first-level message text into a CL 
variable. 

RTVMSG MSGID(USR1000) MSGF(USRMSG.QGPL) 
MSGDTA(&FILE &LlB) MSG(&MSG) 

The message USR1000 is: 

File &1 not found in library &2 

The data for &1 is contained in the program variable &FILE and the data for 
&2 is contained in the program variable &LI B. The message is placed in the 
CL variable &MSG. 

MESSAGE QUEUES 

When a message is sent, it is sent to a message queue. The system user or 
program associated with the message queue receives the message from the 
queue. Similarly, a reply to a message is sent back to the message queue of 
the user or program requesting the reply. 

The types of message queues are: 

• Work station message queues. For sending and receiving messages 
between work station users and between work station users and the system 
operator. The name of the queue is the same as the name of the work 
station. The queue is created when the work station is described to the 
system. 

• System operator message queue (QSYSOPR). For receiving and replying to 
messages 'from the system, work station users, and application programs. 

Message Handling 185 



186 

• System log message queues. For sending information to the system history 
log and service log from any job in the system. 

~ Job message queues. For receiving input to be processed (such as 
commands) and for sending messages that result from processing the input; 
the messages are sent to' the requester of the job. Job message queues 
exist for each job and only exist for the life of the job. 

• User message queues. For sending messages to system users and between 
application· programs. You must create these queues. 

The attributes of a message queue are: 

• The maximum amount of storage that can be used for the message queue. 
The same formula as was used to determine the size of a message file can 
be used for a message queue (see Message Files earlier in this chapter). 
Size is specified in the Create Message Queue (CRTMSGQ) command. 

• How the senders of messages are to be identified. Senders can be 
identified by ~ny combination of the following or not at all: 

Job name, user name, and job number. (For interactive jobs, the work 
station name is used as the job name.) 
Name of the program sending the message and the instruction number in 
the program. 
System date and time stamp. 

The CRTMSGQ command specifies how senders are identified. 

• Whether changes to the message queue must be written immediately to the 
disk unit. This is specified in the CRTMSGQ command. 

• The method of delivery for messages arriving at a message queue. When a 
message queue is created, the method of delivery is defined as hold 
delivery. The Change Message Queue (CHGMSGQ) command must be used 
to define delivery as anything other than hold. The types of delivery are: 

Break delivery. A job is interrupted and the message is delivered. 
Notify delivery. A work station user is notified by means of the Attention 
light or audible alarm (or by both) that a message is on the queue. He 
gets the message by using the Display Message (DSPMSG) command. 
Hold delivery. The message queue holds the messages until the user 
asks for them with the Display Message (DSPMSG) command. 
Default delivery. All messages are ignored, and any messages requiring a 
reply are sent the default reply for the message. 

• How to handle messages for break delivery. 

Automatically execute the Display Messages (DSPMSG) command. For 
an interactive job, the messages are displayed at the work station. For a 
batch job, the messages are listed to a spooled printer file. 
Invoke a program to handle the messages. 

• What the severity code is for filtering messages for break and notify delivery 
or when the Display Messages (DSPMSG) command is entered. Messages 
with severity equal to or greater than the minimum severity code specified 
are displayed. The minimum severity code is specified in the CHGMSGQ 
command. 

( 

( 
..... 



) 

) 

\ 
) 

/ 

Receiving Messages from a Message Queue 

A program receives messages through a' Receive Message (RCVMSG) 
command. Messages can be received according to a message reference key or 
message type or both. A message reference key is assigned to each old 
message on a message queue. This key is passed as variable data because it 
is nonprintable. You must declare this variable in your program. 

To receive a message you can specify: 

• Message queue. Where the message is to be received from. 

• Message type. Either a specific message type can be specified or all types 
can be specifi'ed. 

• Whether to wait for the arrival of a message. After the wait is over and no 
message is received, control returns to the requester. 

• Whether to remove the message from the message queue after it is 
received. If it is not removed, it becomes an old message on the message 
queue and can only be received through its message reference key. (See 
Removing Messages from a Message Queue for more information.) 

• A group of control language variables into which the following information is 
placed (each corresponds to one variable). 

Message reference key of the message in the message queue 
First-level message text (character variable) 
Length of first-level message, including length of substitution variable 
data (decimal variable of length 5) 
Second-level message text (character variable) 
Length of second-level message, including length of substitution variable 
data (decimal variable of length 5) 
Message data for the substitution variables provided by the sender of the 
message (character variable) 
Length of the message data (decimal variable of length 5) 
Message identifier (character variable at least seven characters long) 
Severity code (decimal variable of length 2) 

Sender of the message (character variable can be as long as 54 
characters) 

Type of reply message received (character variable at least two characters 
long) 

Command function key that was pressed in replying to the message 
(character variable) 

Message Handling 187 



188 

The following RCVMSG command specifies that any new message on the 
program message queue of the requesting program invocation is to be 
received. 

RCVMSG PGMO{*} MSGTYPE{*ANY} MSG{&MSG} 

The message received is placed in the variable &MSG. * and *ANY are default 
values for the PGMO and MSGTYPE parameters, respectively. 

Removing Messages from a Message Queue 

Messages are held on a message queue until they are removed using a 
Remove Message {RMVMSG} command, the RMV parameter on the Rece~ve 
Message {RCVMSG} and Send Reply {SNDRPY} commands, or the remove 
option of the display messages display. You can remove: 

• A single message 

• All messages 

• All old messages 

• All new messages 

To remove a single message using the RMVMSG command or the RCVMSG 
command, you specify the message reference key of the message to be 
removed. A unique message reference key is assigned to every old message 
on a message queue. This key is passed as a variable because it is a 
non printable value. You must declare this variable in your program. 

Note: The message reference key can also be used to receive a message and 
to reply to a message. 

In the following RMVMSG command you are removing a message from the 
user message queue JONES. The message reference key is in the control 
language variable &MRKEY. 

RMVMSG MSGO{JONES) MSGKEY{&MRKEY} 

Sending Messages to a Message Queue 

Messages can be sent: 

• From one system user to another system user, even if the receiver of the 
messages is not currently using the system 

• From one program to another program 

• From a program to a system user, even if the receiver of the messages is 
not currently using the system 

System users can send only impromptu messages and replies. Programs can 
send impromptu messages, predefined messages, and user-defined data. 

( 



) 

) 

Messages Sent by a System User 

The command you use to send impromptu messages is Send Message 
(SNDMSG). 

The SNDMSG command sends an information or inquiry message to the 
system operator message queue (OSYSOPR), a work station message queue, 
or a user message queue. You can send an information message to more than 
one message queue at a time. But you can only send an inquiry message to 
one message queue at a time. The message is delivered according to the 
delivery type specified for the message queue. 

If an inquiry message is sent, you can specify that the reply be sent to a 
message queue other than that of the work station of the sender of the inquiry 
messages. 

The following SN DMSG command is sent by a work station user to the system 
operator. 

SNDMSG MSG(,Mount dkt vol ABCDE1 through ABCDE5') 
TOMSGO(OSYSOPR) 

Messages Sent by a Program 

The Send Program Message (SNDPGMMSG) command is used by a program 
to send a 'message. 

The SNDPGMMSG command sends the following types of messages: 

• Information 

• Inquiry 

• Completion 

• Diagnostic 

• Escape 

• Notify 

Messages can be sent by a program to the following types of queues: 

• External message queue (of the requester of the job) 

• Program message queue (of a program invoked by the job) 

• System operator message queue 

• Work station message queue 

• User message queue 

Message Handling 189 



190 

To send a message from a program, you can specify the following on the 
SNDPGMMSG command: 

• Message identifier or message text. The message identifier is the name of 
the message description. 

• Message file. The name of the message file containing the message 
description. 

• Message data fields. If a predefined message is sent, these fields contain 
the values for the substitution variables in the message. The format of each 
field must be described in the message description. If an impromptu 
message is sent, there are no message data fields. 

• Message queue to receive the message. 

• Message type. The following indicates which types of messages can be 
sent to which types of queues (V = valid). 

Message Message Queue Type 

Type External Program QSYSOPR Work Station 

Information V V V V 

Inquiry V V V 

Completion V 

Diagnostic V 

Escape V 

Notify V 

• Reply message queue. The name of the message queue to receive the reply 
to an inquiry message. By default, the reply is sent to the program message 
queue of the program invocation that sent the inquiry message. 

• Whether the message is to be sent to an active (allocated) queue only .. 

• Key variable name. The name of the control language variable to contain the 
message reference key for an inquiry message. 

( 
' ........ 

User 

V 

V 
,r 

(,' 

( 



j 

-\ 

j 

To send the message in Example of Describing a Message (earlier in this 
chapter), you would use the following command. 

SNDPGMMSG MSGID(USR4310) MSGF(USRMSG.OGPL) 
MSGDTA(&CUSNO) TOPGMO(*EXT) 
MSGTYPE(*INFO) 

The substitution variable for the message is the customer number. Because the 
customer number varies, you cannot specify the exact customer number as a 
message data field in the MSGDATA parameter. Instead, in your program you 
declare a program variable for the customer number &CUSNO and then specify 
this variable as the message data field. When the message is sent the current 
value of the variable is passed in the message. 

In addition, you do not always know which work station is using the program, 
so you cannot specify the exact work station message queue that the message 
is to be sent to (TOPGMO parameter). You specify the external message 
queue *EXT. 

Job Message Queues 

Job message queues are created for each job on the system to handle all the 
message requirements of the job. Job message queues for a single job consist 
of an external message queue (*EXT) and a set of program message queues. 
The external message queue is used to communicate with the external 
requester (such as a work station user) of the job. Messages sent to the 
external message queue of a job are also written to the job log. 

Program message queues are used to send messages between programs of a 
job. These messages can be request messages, completion messages, 
diagnostic messages, escape messages, or notify messages. A program 
message queue is created for each invocation of a program and is given the 
same name as the program invocation. However, if a program is invoked more 
than once, only the program message queue of the most current invocation can 
be used for message handling. That is, when program A sends a message to 
program B, the message goes to the program message queue for the last 
invocation of program B. 

A message can be sent to the caller of a program without specifying either the 
caller or the program. name. The caller is always the previous program 
invocation in the invocation stack. In addition, a message can be sent to the 
caller of a specified program. In which case, the program name must be 
specified. 

A program message queue for a program is deleted when an invocation is 
deleted and is no longer available for use. 

Message Handling 191 



192 

Figure 27 shows the relationship of program invocations, the job message 
queue, and the program message queues. The dashed line (----) indicates which 
message queue is associated with which invocation of a program. 

Program Invocation Job Message Queue 

Stack 
External message queue 

Program A ~------------------ Program A message queue 

Program B -------------------- Program B message queue 
t t Caller ~ Messages Sen 0 

Program C - ------- Program D message queue ----------
Program D 

~ 
Program B message queue 

------- ca\\er Program B sent to 

Program C 
N\essages 

Figure 27. Relationship of Program Invocations and the Job Message Queue 

In Figure 27 program B has two program message queues, one for each 
invocation of the program. There are no message queues for program C 
because no messages were sent to C. 

The following are the types of messages that can be sent to a program 
message queue. 

• Information messages 

• Request messages 

• Completion messages 

• Diagnostic messages 

• Escape and notify messages 

i/ 
I 

\,-



) 

) 

Request Messages 

Receiving request messages is a simple method for a control language program 
to obtain input from a work station and to display resulting diagnostics and 
completion messages. A program receives a request from its program 
message queue and sends messages that result from the request to the 
program message queue. The program displays these messages and prompts 
the work station user from the next request. 

Request messages can only be received interactively. A work station user is 
prompted to enter a request for the execution of some function by your 
program. The request is placed on the program's message queue. 

The syntax of the data in the request must be defined by your program. Your 
program must interpret the request and diagnose errors. For example, the 
control language commands are requests that are received by the CPF 
interpretive control language processor for interpretation and diagnostics. 

Completion and Diagnostic Messages 

A control language program can send diagnostic and completion messages to 
, its caller's program message queue. These messages tell the caller of errors 

detected by the program and tell the caller the status of work being done by 
the program. Normally, an escape message is sent to ,the caller's program 
message queue to tell the caller that diagnostic messages were sent. For a 
completion message, an escape message is not sent because the requested 
function was performed. 

Escape and Notify Messages 

A control language program can send escape and notify messages to its 
caller's program message queue. An escape message tells the caller that the 
program terminated abnormally and why. The caller does not return control to 
the program. See Monitoring and Handling Escape Messages for more 
information about using escape messages. 

A notify message tells the caller that the program will terminate processing 
unless a reply to the condition is returned to the program. If the caller returns 
control to the program, the program can receive the reply. See Monitoring and 
Handling Notify Messages later in this chapter. 

Message Handling 193 



194 

Monitoring and Handling Escape Messages 

You can monitor for escape messages that are sent to your control language 
program's program message queue. Escape messages can be sent by the 
commands in your program or by the programs your program calls. Escape 
messages are sent by these programs to tell your program of an error 
condition that forced the sender to terminate. By monitoring for escape 
messages, you can take corrective actions or clean up and terminate your 
program. 

The Message Guide contains information about each IBM-defined escape 
message. You should keep a list of all messages that you have defined. 

Use the Monitor Message (MONMSG) command to monitor for escape 
messages. To monitor escape messages you must specify message identifiers 
for the messages in one of the following ways: 

• pppmmnn 

Monitors for a specific message. For example, MCH1211 is the message 
identifier of the zero divide escape message . 

• pppmmOO 

Monitors for any ,message with an identifier that begins with a specific 
program product (ppp) and the digits specified by mm. 

• pppOOOO 

Monitors for every message with an identifier that begins with a specific 
program product (ppp). For example, CPFOOOO indicates that all escape 
messages beginning with CPF are monitored. 

• Special value 

Monitors for all escape messages based on a special value. For example, 
*ZRODVD indicates that the escape message for the zero divide condition 
(MCH1211) is to be monitored for. 

( 
\ 



) 

In addition to monitoring for escape messages by message identifier, you can 
compare a character string, which you specify in the MONMSG command, to 
data sent in the message. For example, the following command monitors for 
an end-of-file escape message for the file MYFllE. The name of the file is 
sent as message data. 

MONMSG MSGID(*ENDF) CMPDTA(MYFllE) EXEC(GOTO EOJ) 

The compare data can be as long as 28 characters, and the comparison starts 
with the first character of the first field of the message data. If the compare 
data matches the message data, the action specified in the EXEC parameter is 
executed. The message data fields are documented in the Message Guide for 
each message. 

You can monitor for an escape message sent by a specific command in your 
program by specifying the MONMSG command immediately following the 
command. You can use as many as five MONMSG commands for a single 
command. This lets you handle different escape messages in different ways. 

The EXEC parameter specifies how an escape message is to be handled. Any 
command except PGM, ENDPGM, IF, ELSE, DCl, ENDDO; and MONMSG can 
be specified in the EXEC parameter. You can specify a DO command in the 
EXEC parameter, in which case, the commands in the do-group are executed. 
When the command or do-group (in the EXEC parameter) has been executed, 
control returns to the command in your program that is after the command that 
sent the escape message. However, if you specify a GOTO or RETURN 
command, control does not return .. If you do not specify the EXEC parameter, 
the escape message is ignored and your program continues. 

You can also monitor for an escape message sent by any command in your 
program by specifying the MON MSG command immediately following the last 
declare command in your-program. This lets you handle the same escape 
message in the same way for all commands. The EXEC parameter must be 
specified. Only the GOTO command can be specified in the EXEC parameter. 

You can also monitor simultaneously for the same escape message to be sent 
by a specific command in your program and by any command. This requires 
two MONMSG.commands. One MONMSG command follows the command 
that needs special handling for the escape message; for that command, this 
MONMSG command is used when the escape message is sent. The other 
MONMSG command follows the last declare command so that for all other 
commands, this other MONMSG command is used. 

Message Handling 195 



196 

The following shows an example of a CHGVAR (Change Variable) command 
being monitored for a zero divide escape message, message identifier 
MCH1211. 

CHGVAR VAR(&A) VALUE(&A/&B) 
MONMSG MSGID(MCH1211) EXEC(CHGVAR VAR(&A) VALUE(1)) 

The value of the variable &A is changed to the \(alue of &A divided by &B. If 
&B equals 0, the divide operation cannot be done and the zero divide escape 
message is sent to the program. When this happens you change the value of 
&A to 1 (as specified in the EXEC parameter). 

Many escape messages can be sent to your program by commands and 
programs it calls. Probably, you will not want to monitor for and handle all of 
these. Normally, only a few escape messages pertain to the function of your 
program; the rest of those that can be sent should never actually be sent. CPF 
provides default monitoring and handling of any messages you do not monitor. 

Default handling assumes that an error has been dete~ted in your program. If 
you are debugging the program, the message is sent to your work station. 
Then you can enter commands to analyze and correct the error. If you are not 
debugging the program, a dump is taken and the function check escape 
message (CPF9999) is sent to your program. You can monitor for function 
check escape messages so that you can either: 

1. Clean up and terminate the program 

2. Continue with some other aspect of your program 

If you do not monitor for a function check escape message, your program is 
terminated by CPF and the function check message is sent to the program's 
caller. 

Monitoring and Handling Notify Messages 

Besides monitoring for escape messages, you can monitor for notify messages 
that are sent to your control language program's program message queue by 
the commands in your program or by the programs it calls. Notify messages 
are sent by these programs to tell your program of a condition that is not 
typically an error. By monitoring for notify messages, you can specify an action 
different from what you would specify if the condition had not been detected. 

Monitoring and handling notify messages is similar to monitoring and handling 
escape messages .. The difference is in what happens if you do not monitor 
and handle messages. Unlike escape messages, unmonitored notify messages 
are not considered an indication of an error in your program. Instead, for notify 
messages, the default reply stored in the message description is used to tell 
the sender of the message what to do. 

/' 

\ ..... , 



\ 

I 
/ 

") 
,/ 

MESSAGE LOGGING 

There are two types of logs for messages: 

• Job log 

• System log 

A job log contains information related to requests entered for a job. System 
logs contain system data such as security and service information. 

Job Log 

Each job has an associated job log. The job log can contain: 

• The commands in the job (not commands in control language programs) 

• All messages sent to the requester 

• All replies to the messages sent to the requester 

• All completion and diagnostic messages sent to and not removed from the 
program message queue 

At the end of the job, the job log is written to an output file so that it can be 
printed. After the job log is written to the output file, the job log is deleted. 

You can control what is written in the job log by specifying the message 
logging level, message logging severity, and message text logging level in the 
job description. (See Job Descriptions in Chapter 16, Work Management.) There 
are five message logging levels: 

Level 

o 

2 

3 

4 

Description 

No data is logged 

All messages sent to the external message queue 
including indications of when the job started and ended 
and the status of completion 

Logging level 1, any message with a severity 
greater than or equal to the specified severity, 
and any request for which a diagnostic message 
was issued that has a severity greater than 
or equal to the specified severity 

Logging level 1, all requests, and any message 
with a severity greater than or equal to 
the specified severity 

All requests and all messages 

You can log only the first-level message or both the first- and second-level 
messages. 

Message Handling 197 



198 

System Logs 

There are three system logs: 

• History log 

• Service log 

• Programming change log 

The history log contains system, subsystem, and job information, device status, 
and system operator messages. The service log contains information about 
errors detected in IBM program products. The program change log contains 
information about the application of program changes to IBM products. 

The sizes of the history and service logs are specified in the system values 
OSRVLOGSIZ and OHSTLOGSIZ, respectively. When a log is full, that version 
of the log can be saved. (See Chapter 19, Savel Restore for information on 
how to save an object.) A new version of the log is automatically created. 
Each version is a physical file that is named in the following manner: 

Oxxxyydddn 

Where xxx is a three-character description of 
the log type (HST for history; SRV for 
service; CHG for programming change) 

yyddd is the Julian date on which the log 
version was created 

n is a sequence number within the Julian 
date (0 through 9 or A through Z) 

You can display or print the information in a log using the Display Log 
(DSPLOG) command. You can select the information you want displayed or 
printed by specifying any combination of the following: 

• Log (OHSTLOG, OSRVLOG, or OCHGLOG) 

• Period of time 

• Name of job for which entries are to be displayed 

• Message identifiers of entries that are to be displayed 

/' 
( 

,/ 

( 
\ .... 



) 

The following DSPLOG command displays all the available entries for the job 
OEDAIL Y in the current day. 

DSPLOG JOB(OEDAIL Y) 

The resulting display is: 

SYSTEM QHSTLOG LOG 10/24/80 08:35 

JOB HAt1E USER NUMBER DATE TIME MSGIO 
OEDAILY RSHHH 17 10/23/80 12:20 ,CPF1201 

JOB STARTED 
OEDAILY RSt1ITH 17 10/23/80 12:40 CPF1202 

JOB ENDED 

COMMAND LIST 

This is a list of commands related to message handling. It is presented here to 
help you select the appropriate command for the function you want and to 
help you determine which command you might need to reference in the CPF 
Reference Manual- CL. 

Messages 

Descriptive Name Command Name 

Send Message SNDMSG 

Remove Message RMVMSG 

Display Message DSPMSG 

Function 

Sends an impromptu message 
to a message queue. 

Removes a message from a 
message queue. 

Displays messages from a 
message queue. 

Message Handling 199· 



Message Queues / 

I, 

Descriptive Name Command Name Function ""-" 

Create Message CRTMSGQ Creates a message queue. 

Queue 

Delete Message DLTMSGQ Deletes a message queue. 

Queue 

Change Message CHGMSGQ Changes the attributes of a 

Queue message queue. 

Message Files 

Descriptive Name Command Name Function 

Create Message CRTMSGF Creates a message file. 
File 

Delete Message DLTMSGF Deletes a message file. 
File 

Add Message ADDMSGD Adds a message description to 
Description a message file. 

r 
Remove Message RMVMSGD Removes a message description 

( 

""--
Description from a message file. 

Commands Within Programs 

Descriptive Name Command Name Function 

Send Program SNDPGMMSG Sends a message from within 
Message a program to a message queue. 

Receive Message RCVMSG Receives a message from 
a message queue. 

Send Reply SNDRPY Sends a reply for a message 
to a message queue. 

Retrieve Message RTVMSG Retrieves a message from a 
message file. 

Monitor Message MONMSG Monitors for escape and notify 
messages sent to a program's 
program message queue. 

C" 

200 



) 

" .J 

) 

Chapter 13. Defining Commands 

You can define your own commands to call your applications. By defining your 

own commands, you can set up default values for parameters, perform validity 
checking outside of your application programs, and define prompt text for 

using commands interactively. You can also create your own versions of 

IBM-supplied command,s. 

The alternative to defining commands is to use the CALL command to call your 
applications. However, validity checking is not performed on the parameters 

passed in the CALL command when the call is entered. A program would have 
to do the validity checking. If you define your own commands, CPF performs 

the validity checking. 

All commands entered using spooling or the Source Entry Utility (Licensed 

Program 5714- UT1) are checked syntactically using the command definition. 

You can do additional parameter checking by including the checking in the 

command processing program (CPP) you write for th,e command (see Writing a 
Command Processing Program later in this chapter) or by writing a program 

called a validity checker. If you use a validity checker, the command is 

checked before it is passed to the CPP for processing. If an error is found, a 

message is issued to the user so errors can be corrected immediately. The 

CPP can assume that the data passed to it is correct. 

Validity checking using the command definition can ensure that: 

• The required parameters are entered. 

• Each parameter value meets data type and length requirements. 

• Each parameter value meets the requirements of: 
A list of valid values 
A range of values 

A relational comparison to a value 

• Conflicting parameters are not entered. 

HOW TO DEFINE COMMANDS 

To create a command you must first define the command through command 
definition statements. Command definition statements let you: 

• Define the keyword and parameter values for a parameter (PARM • statement) 

• Define prompt text for the command prompt (CMD statement) and for the 
parameters (PARM stat,ement) 

Defining Commands 201 



202 

The statements are entered into a source file so they can be used with the 
Create Command (CRTCMD) command to create a command. See Chapter 10, 
Source Files for entering source statements. 

Defining Parameters 

You can define as many as 50 parameters for each command. To define a 
parameter you must use the Parameter (PARM) statement. You name the 
keyword for the parameter and the type of parameter value that can be 
passed. The keyword can be up to 10 alphameric ,characters, the first of which 
must be alphabetic. The basic parameter types are (TYPE parameter value 
given in parentheses): 

• Decimal (*DEC). The parameter value is a decimal number. 

• Logical (*LGL). The parameter value is a logical value, '1' or '0'. 

• Character (*CHAR). The parameter value is a character string, which can be 
enclosed in apostrophes. 

• Name (*NAME). The parameter value is a character string of which the first 
character is alphabetic and the remaining characters are alphameric. 

• Generic name (*GENERIC). The parameter value is a generic name. A 
generic name consists of a set of characters that identify a group of objects 
and ends with an * (asterisk). For example, INV* identifies the objects INV, 
INVOICE, and INVENTORY. 

• Variable name (*VARNAME). The parameter value is a variable name 
passed as a character string. A variable is a name that references an actual 
data value during execution. A variable name can be, as long as 10 
alphameric characters (the first of which must be alphabetic) preceded by an 
& (ampersand)-for example, &PARM. 

• Date (*DATE). The parameter value is a character string that is passed to 
the CPP in the format gyymmdd (g = guard digit, y = year, m = month, d = 
day). CPF sets the guard digit based on the year in the specified date. The 
guard digit is 0 if yy equals a number from 70 through 99; it is 1 if yy 
equals a number from 00 through 69. The system values ODATFMT and 
ODATSEP determine what format the date must be specified in on the 
command. 

• Time (*TIME). The parameter value is a character string that is passed to 
the CPP in the format hhmmss (h = hour, m = minute, s = second). 

You can also specify a length for any parameter value except date or time. 
(Date is always 7 cha~acters and time is always 8 characters.) There are 
restrictions as to the maximum length that can be specified for a value and 
there are default lengths if you do not want to specify a length. The following 
shows the maximum and default lengths for each parameter type that you can 
specify a length for. 

\" 

( 



) 

) 

) 

Data Default Maximum 
Type Length Length 

*DEC 15 15 
5 decimal 9 decimal 
positions positions 

*LGL 1 1 
*CHAR 32 2000 
*NAME 10 256 
*GENERIC 10 256 
*VARNAME 11 11 

If you are defining an optional parameter, you can define a value to be used if 
the parameter value is not specified on the command; This value is called a 
default value. The default value must meet all the value requirements for that 
parameter (such as type, length, and special values). If you do not specify a 
default value for an optional parameter, the following default values are used: 

Data Default 
Type Value 

*DEC 0 
*LGL '0' 
*CHAR Blanks 
*NAME Blanks 
*GENERIC Blanks 
*VARNAME Blanks 
*DATE Zeros 
*TIME Zeros 

The following is information you must consider when defining parameters. The 
associated PARM statement parameter is given in parentheses. 

• Whether a value is returned by the CPP (RTNVAL) 

• Whether the parameter is not to appear externally to the user but is to be 
passed to the CPP as a constant (CONSTANT) 

• Whether the parameter is restricted (RSTD) to specific valid values or can 
include any value that matches the parameter type, length, value range, and 
a specified relationship 

• What the specific valid parameter values are (VALUES, SPCVAL, and 
SNGVAL) 

• What tests should be performed on the parameter value to determine its 
validity (REL and RANGE) 

• Whether the parameter is optional or required (MIN) 

• How many values can be specified for a parameter that requires a list (MIN 
and MAX) 

• Whether the value is a file name (FI LE) 

Defining Commands 203 



204 

• Whether the value must be the exact length specified (FULL) 

• Whether the length of the value should be returned with the value (VARY) 

• Whether attribute information should be returned about the value passed for 
the parameter (PASSATR) 

• What the prompt text for the parameter is (PROM PT) 

In the following example you define a parameter OETYPE for a command to 
call your order entry application. 

PARM KWD(OETYPE) TYPE(*CHAR) RSTD(*YES) 
VALUES(DAILY WEEKLY MONTHLY) MIN(1) 
PROMPT('Type of order entry:') 

The OETYPE parameter is required (MIN parameter is 1) and its value must be 
DAILY, WEEKLY, or MONTHLY. 

Defining the Prompt for the Command Name 

V"hen a user chooses to be prompted for a command instead of entering the 
command, the command name (such as ORDENTRY) and the word PROMPT 
are automatically displayed on line 1. You can specify an additional character 
string, called prompt text, to appear on line 1 before the command name. The 
prompt text must be a character string of, at the most, 30 characters. 

The Command (CMD) statement is used to define the prompt. For example, 
you enter the following for the user-defined ORDENTRY. 

CMD PROMPT('ORDER ENTRY') 

Line 1 of the prompt looks like this: 

ORDER ENTRY (ORDENTRY) PROMPT 

Creating Co~mands 

You use the Create Command (CRTCMD) command to create a command. 
When you create a command, you can define the following attributes of the 
command. 

• The validity checker 

• What mode the command can execute in: 
- Production 

Debug 
- Service 

( 



", 
I 

/ 

I 
) 

• Where the command can be used: 
Batch job stream 
I nteractive job 
Control language program in a batch job stream 

- Control language program in an interactive job 
As a command interpretively.executed by the system through the 
QCAEXEC interface 

• What file the prompt text is kept on 

For example, you define a command named ORDENTRY to call your order 
entry application. The Create Command (CRTCMD) command defines the 
preceding attributes for ORDENTRY and creates the command using the 
parameter definitions contained in the IBM-supplied source file QCMDSRC. 

CRTCMD CMD(ORDENTRY.DSTPRODLB) 
PGM(ORDENT.DSTPRODLB) 
PUBAUT(*NONE) 
TEXT('Calls order entry application') 

The resulting command is: 

ORDENTRY OETYPE(value) 

where the value can be DAILY, WEEKLY, or MONTHLY. 

WRITING A COMMAND PROCESSING PROGRAM 

Writing a command processing program (CPP) is much like writing any HLL or 
control language program. Messages issued as a result of executing the CPP 
can be sent to the job message queue and automatically displayed. You can 
send displays to the requesting display work station. 

Notes: 
1. The parameters defined in the command are passed in a parameter list in 

the order they were defined (the PARM statement order). 
2. Decimal values are passed as packed decimal values of the length specified 

in the PARM statement. 
3. Character, name, and logical values are passed as a character string of the 

length defined in the PARM statement. 

Figure 28 shows the relationship between the Create Command (CRTCMD) 
command, the command definition statements, and the CPP. 

Defining Commands 205 



Creation of DSPORD Command: 

CRTCMD CMD (DSPORD) PGM(DSPORDPGM) 

Definition for DSPORD Command: 

CMD 'DISPLAY ORDER' 
PARM, KvJD (ORDER) 

TYPE (*DEC) 
LEN(6 0) 
RANGE(lOOOOO 600000) 
PROMPT ( , Order number:') 

Command Processing Program for DSPORD Command (DSPORDPGM): 

PGM ( &ORDER) 
DCL &ORDER 

TYPE (*DEC) 
LEN(6 0) 

Figure 28. Command Relationships 

206 

\ .. 

( 
\ 



) 

) 

If the CPP is a control language program, the variables that receive the 
parameter values must be declared to correspond to the type and length 
specified for each PARM statement. The following shows this correspondence. 
(Note the declare for the parameter ORDER in Figure 28.) 

PARM Statement DCl (Declare) Command 

Type length Type length 

*DEC xy *DEC xy 
*LGL 1 *LGL 1 
*CHAR n *CHAR $n' 
*NAME n *CHAR $n' 
*GENERIC n *CHAR $n' 
*DATE n *CHAR $n' 
*TIME n *CHAR $n' 

'Must equal n if RTNVAL(*YES) is specified. 

REDEFINING IBM-SUPPLIED COMMANDS 

You can redefine IBM-supplied commands to conform to a language other 
than English or to terminology that suits your installation better. You cC!n 
change the command name, the keyword name, some of the parameter values, 
and the prompt text. Ev~n though you can change some parts of the 
commands, you cannot change the attributes of the parameters passed to the 
CPP. No matter what part of a command you are changing, you must use 
command definition statements to redefine it and the CRTCMD command to 
create the new command. If the command name does not change, the 
command must be placed in a different library from the IBM-supplied 
command. The CPP used for the IBM-supplied command is the same one 
used for the new command. 

Note: If you change the prompt text for the command, you must compile again 
programs that contain the command. 

You can change the name of a command without changing anything else in the 
command. If you do so, you specify a different command name on a CRTCMD 
command and use the same source member as was used for the IBM-supplied 
command. The source member name for an IBM-supplied command is the 
same as the command name. 

CRTCMD CMD(MOVE) PGM(QUMVOBJ) SRCFILE(QCMDSRC) 
SRCMBR(MOVOBJ) TEXT('Move object') 

The IBM-supplied MOVOBJ (Move Object) command was changed to MOVE. 
The source member MOVOBJ is in the IBM-supplied source file QCMDSRC. 

Besides changing command names you can change keyword names. To 
change a keyword name, you specify a new keyword name on a PARM 
statement and change all references to the keyword name on other command 
definition statements. 

Defining Commands 207 



208 

Similarly, if you want to change a parameter value to a constant value so that 
you never need to enter the parameter, you specify the constant value on the 
CONSTANT parameter of the PARM statement. 

You can specify that if a certain value is entered for a parameter value that 
another value actually be sent to the CPP. Primarily, this is useful for 
translating IBM-supplied commands into a language other than English. You 
can translate a command without rewriting the CPP to handle non-English 
words. The English version can be passed to the CPP. The SPCVAL parameter 
is used to define what values can be specified and what values are actually 
passed to the CPP. 

You can also restrict parameter values using the VALUES parameter on the 
PARM statement and change default values using the DFT parameter on the 
PARM statement. 

Commands to Which New Special Values Cannot Be Added 

New special values (SPCVAL parameter) cannot be added to the following 
commands. (These commands are handled specifically by the control language 
compiler.) 

CALL IF 
CHGVAR MONMSG 
CNLRCV PGM 
DCL RCVDTAARA 
DCLDTAARA RCVF 
DCLF RETURN 
DO SNDDTAARA 
ELSE SNDF 
ENDDO SNDRCVF 
ENDPGM TFRCTL 
GOTO WAIT 

COMMAND LIST AND STATEMENT SUMMARY 

This is a list of commands related to defining commands. It is presented here 
to help you select the appropriate command for the function you want and to 
help you determine which command you might need to reference in the CPF 
Reference Manual- CL. 

Descriptive Name 

Create Command 

Delete Command 

Change Command 

Command Name Function 

CRTCMD 

DLTCMD 

CHGCMD 

Creates a command from a 
command definition. 

Deletes a command. 

Changes the attributes of 
a command definition. 

~ 
( 
\,-

( 



) This is a list of command definition statements related to defining commands. 

Descriptive Name Statement Name Function 

Command CMD Specifies the prompt text 
for a command name. 

Dependent DEP Defines the relationship 
between parameters. 

Element ELEM Defines the elements in a 
list used as a parameter value. 

Parameter PARM Defines a parameter for a 
command. 

Qualifier QUAL Defines a qualified name used 
as a parameter value. 

) 

"\) 
j 

Defining Commands 209 



/ 
" 

\. 

It' 

\. 

210 



~) 

) 

) 

Chapter 14. Application Documentation 

Documentation aids provided on Systemf38 are useful when designing and 
maintaining application programs. 

The following commands provide information on the description, organization, 
and usage of data base and device files. 

• Display Data Base Relations (DSPDBR) 

• Display File Description (DSPFD) 

• Display File Field Description (DSPFFD) 

• Display Program References (DSPPGMREF) 

The information provided by these commands can be used to determine what 
effect changes in an application might have on files and programs: 

• What DDS and program source needs to be changed 

• What files have to be created again 

• What files are used by a given program 

The output from the DSPDBR, DSPFFD, and DSPPGMREF commands can be 
placed in a physical file member for which you can build your own access path 
for analysis of the output. The physical file is created for you when you 
request that output be placed in the file. (The request is made using the 
OUTFILE parameter on the DSPDBR, DSPFFD, and DSPPGMREF commands.) 
The record format for the file is one supplied by CPF (Figure 29). Initially, the 
file is created with private authority. Only the owner can use it. However, you 
can authorize other users to use the file (see Granting Authority in Chapter 18, 
Security). 

Once the physical file has been created, you can use it again for the same 
command. However, the file is cleared before new output is entered. For 
example, you specify a DSPDBR command with the output going to the file 
OUTANYLS. Later, you specify another DSPDBR command with the output 
going to OUTANLYS. OUTANLYS is cleared before the output is entered; the 
output from the first DSPDBR command is gone. 

Application Documentation 211 



Data Base Relations: 

1 2 3 4 5 6 7 8 9 10 111213 14 1516 17 18 1 9 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 353637 38394041 424344 4546 47 48 49 5051 52535455565758596061 626364 6566 6766 69 70 71 72 73 74 757677 78 7980 

A~ • • •••• · 
... 

• • 
• • 

• •••• 

A~ DA TA IBA~ E IRELATI ON 5 IOUTPUT RE CORC GW HDRDBR . , . . . . . . 
• 

. 
•• • ••• . 

Aif 
• • 

: .. 
· · . 

A R . WHDRD tBR T E)(T(,OAiA BASE RELATIONS') . · ... 
A AlHBRFI 1. !J COLHD6( , FILE' J 

· 
. 

· A HBRLI 1 'rOLHD6c ' LI.8&ARY:'.) .. · 
• • · . • • 

A HBRMB 1 C.OLHDG 'MEMBER' ) • · . • 

· 

. 

A HBRRC 1 IC.OLHD6 'RE.CORD FORMAT' ) • 

A HBNO CD .. OLJ-I06 'DEPENDENT COUNT' 1 .. · 
· A HBDTM 1- (OLHD6 ' DA TEITIME. ,.) 

· 
· . 

A HBREFI 1 ~ COL HOC, 'DEPENDENT FILE I). 
· 

. 
• 

A IHBRELII 1 t COLHOfJ 'LIBRARY'} 
• 

... 
• · 

A HaRENI8~ 1. ~ COLHD61 ' ME.MBER') .. 
• 

• • .. 
· A HBTYPE LA COLHOG I 'TYPE OF 0 EPE~DENCY' ) 

· 
· 

A · ... 
• • • 

. .. 
• • • • • • • • • ••• 

A 
• •••• 

· .... 
• • 

· .. 1 ... L • .' 
A 

• 
••••• • 

. . · . 
• • 

• •• · 
. ... · 

A 
• • 

. . 
• •••• • • • 

· .' - ' ........... 
A 

• 
· .. · ..... 

• • • • 
• ••• 

. 

• • • • • 

A 
. 

I .L ~ 1 . · ; · · .... 
• • 

· . 
• ••• 

· : 

Program References: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2526 27 28 29 3031 32 33 34 35 36 37 38 39 4041 42 43 44 45 46 47 48 49 5051 52 53 54 5556 57 58 59 60 61 62 63 64 6566 67 66 69 70 71 72 73 74 7576 77 78 7980 

A~ ID~:r[A IBASE. RECORD FORNiAT nl, · . ..................... '.' 
A,* ; . .. ... .... .. . 

A IR llWDDRPPR rrE.XTC' PR06RAMREFERENCES') . .. .. 
A ~HPLI 1 ICO H06 I l IBRA ~y' ) · . . .. .... . •. 
A lA HPPN M 1 ICO HDC; 'PR06R IN') .• . • ..•••• 
A ~ HPTE r CD HD6 'reXI j Ec;.C.J~,IPTION') •. 
A WHPFN COtH ,.' OBJEC" COUNT I ). '.. '. 

A l4JHPDT' COLH ,'DATE TI~E') · • .. . .•• 
A ~HPFNA 11 C.OlH ),1 OBJECT' ) · ... · .. . · . 
A ~HPLA 11 COLH I LIBRARY' }. ... . .. .. · 
A :OLH ' SOURC.E.FIL.~NAME' J · • 
A AHPR N C:OLHD 'RECORD FORMAT COUtJT"J .., 
A A. HPF~S L ro HD ,I FILE U5A6EI) • • •.•. 
A A.HPRFN CO H[ C::J 'RECORD FORMAT' ) ••. ' •• 
A ~'"PRFS COLH [C; 'SEGUENCE'l. .' · J. •.••• 
A lLHPRFF COL~ 0 C':J 'FIE LDCOUNT' ". .. .•.•. 
A 

• •• ••••••••••• • •• ••• • 

A . . . ... .. . · .. ......., .. ., ..... 
. 

. A 

Figure 29 (Part 1 of 2). Record Formats for Output File 

212 



'\ 
) 

./ 

File Field Descriptions: 

1 2 3 4 5 6 7 8 9 1011 121314 15161718192021 22232425262728293031 32 333435363738394041424344 45 46 47 48 49 505152535455565758596061626364 6566 67 68 69 7071 72 73 74 757677 78 7980 

A~ • • • • •••••. •• .:. •• •• 

A~ FOIRM~"I/FIIELO DA1A IBASE' REC~RD GW"ORFFD. · • · · 
A~ • • •• 

A IR lWHOR Ft iTEX r'('FORDr7FI-EIU DB RECORD' ) 
A • It l-IFI lC tOL 01i 'Fr.L~' 1 . · 
A ~IHl.IB l( COL 06 'LI8r2ARV I. ) •• 

A • HCRT r.DL DG 'FrLECREATrONDATE 1 J 
A • HCNT liE QJ "OL 106 'RECOR-O FORMAT COUNT' ) 
A HDTT~ 1- COL mc; 'DATElTIME') 
A ~ HNAME 1 COlHD6 'Rec.ORD FOR~AT' ) . . 
A. ~ HSEG 1 ~OL e; 'S£QUENCE') •. 
A U I t:AIi Ot IC, I TEX10E!\CR:lPTrON 1 ) • 

A • ~ FLO !8 a ~Ol 1(., 'F!ELD COUNT' 1 • . 
A RLE. '8 Q ",OL 1(1 r 'REC.ORD LENGTH' ) • 
A [FH COL 06 r'INTERNAL FIELD ~AME') .. 
A • F JJ. • IC L 06 'E.~T!;'RMAl F!ElD MAME'l·· 
A • FD I 8 C. L D6 'OUTPUT BUFFER O~FSET' l 
A • I R . L IA L il(, '1 NPUT BUFFER OF~S~T') 
A •• FL 18·. · llA ."')l )6 'FIEL'DLEN6TH'} •.. •• . 
A • FL 11) • ·L 18 •. "'OLH ~G rnrreCI:MAL DIGITS' ) · • • 

123456 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980 

• A· WHFLDP ijlE (2 ICOLH067''DECrMAt PRECISION' 1 
A • ~HFT)CT ,12 ICOl.Hl)G1'TEXT 1)ESC.RIPTION' 
A ILU~Rc.nE LlII" Gl COLHD6('('!-IANGE CODE') TEXT(' J.-OTHER-
A 1-VALIDITY .. ~-EDIT,.8-0ECIMALS .. 1-
A b- LENGTH • "''':TYPE. hq.-NAME. !28-lEN-
A \ ~TH' . -:- . 
A H FIL ... OtH[ (; I EFERENCE FILE') . 
A IH rtol ..,OLH[)(,' EFE.RENC.E LIBRARY' ) 
A H ~' .,OLHlfG, I ~FER:ENCE R£CORD FORMAT') 
A ~ J ... OlHDG' EF~RENCI:: FIELD') 
A ~ l rOLJ.fD6 ':oLUMN !-IE.ADING I' 
A .. >: "OLHD6 I "()UJMN HEAOIN61.. ' 
A ~ C~ 3 cOLliDe; 'COLUMM HEADING 3' 
A ~ 1= IT r:OL '.fD~ 'FTElD TVPE') reXT 'B- BINARY-

A LOHFIOB ! ".OL.HOG '1/0 ATTRtBUTE I') TEXT ( 'I- INP-
A UT. O-{WTPUT. B-80TH') • . • 
A • WHECOE 1 ':.01.1-10(, 'EDI'" c.OnE'~l· . 
A WHVCiEijlB OJ .. OlHOt,'-VALrITrT'V CHECK COl NT') . . 
A • • • ••• • • • • •• •• 

Figure 29 (Part 2 of 2). Record Formats for Output File 

Application Documentation 213 



214 

DISPLAYING DATA BASE RELATIONS 

, 

\.. 

,. 

You can display or print the following information about the organization of 
your data base. 

• A list of all data base files (physical and logical) that use a record format 

• A list of all data base files (physical and logical) that depend on the 
specified file for data sharing or access path sharing 

• A list of all members (physical and logical) that depend on the specified file 
for data sharing or access path sharing 

In the following example, you display a list of all authorized data base files 
associated with physical file ORDHDRP, and use the record format ORDHDR. 
You need this information because you are going to make changes in the 
record format and you want to ensure that the files affected can use the 
changed record format. You use the Display Data Base Relations (DSPDBR) 
command to display the list. 

DSPDBR FILE(ORDHDRP.DSTPRODLB) RCDFMT(ORDHDR) 

The resulting display is: 

10/23/80 DATA BASE RELATIONS 
Command input: 

Generic file name: FILE ORDHDRP 
Ubrary name: DSTPRODlB 
Member name: MBR *Not~E 

Generic record format name: RCDFMT ORDHDR 
OUtJ:ut file name: OUTFILE '*NONE 
U brary name: *HO!fE 
Out rut: OUTPUT '* 

File name: ORDliDRP li brary: DSTPRODLB 
Member name: ORDHDRP 

Record format name: ORDHDR 
Number of dependencies: 3 

FORMAT DEPENDENT: 
Dependent file name: l'ibrary: 

ORDFILL OSTPRODLB 
ORDllDR L DSTPRODLB 
ORDHDRL1 DSTPRODLB 

( 
\ 
'-

(~ 

"-

..A 

." 

(" 
\ 
'-



;' 

DISPLAYING FILE DESCRIPTIONS 

You can display or print file descriptions for a single file in a specified library 
or all files of the same name in all libraries. The types of displays for a file are 

• File attributes 

• Access path specifications (logical and physical files only) 

• Select/omit specifications (logical files only) 

( 

• Alternate collating sequence specifications (physical and logical files only) 

• Record format specifications 

• Member attributes (logical and physical files only) 

• Spooling attributes (device files onlyJ 

In the following example you display the file attributes for the physical file 
ORDHDRP. You use the Display File Description (DSPFD) command. 

DSPFD FILE(ORDHDRP.DSTPRODLB) TYPE(*ATR) 

The resulting display is: 

DATA BASE FILE ATTRIBUTES: 
Access path type: 
Share the file: SHARE 

ARRIVAL 
*NO 

Maintenance: MAINT *IMMED 
Alternate collating sequence:ALTSEQ-DDS NO 
Duplicate rule: UNIQUE-DDS NO 
Key order: LIFO-DDS FIFO 

Application Documentation 215 



216 

Recover access path: 
Maximum wait time for file: 
Force ratio: 
Deleted records threshold: 
Check level of format: 
Maiimum number of members: 
Member count: 
Maximum key length: 
Key position count: 
Allocate space: 
Contiguous space: 

r 

Un i tid e n t i fie r : 
Size of members: 

Initial number of records: 
Increment value: 
Maximum times to increment: 

Record capacity: 

RECOVER 
WAITFILE 
FRCRATIO 
DLTPCT 
LVLCHK 
MAXMBRS 

ALLOCATE 
CotHIG 

UNIT 
SIZE 

*NO 
*IMMED 
*HOI~E 

*NONE 
*VES 
1 

1 

*NO 
*NO 

*ANY 

10000 

1000 

3 

13000 

DISPLAYING FILE FIELD DESCRIPTIONS 

You can display field information for both data base and device files: 

• A single file 

• A group of files 

• All files in a single 'library 

• All files in all libraries 

This field information can be placed in a data base file for which you can build 
your own access path for the analysis of data. 

In the following example you display the field information for your field 
reference file DSTREF. You use the Display File Field Description (DSPFFD) 
command. 

DSPFFD FILE(DSTREF.DSTPRODLB) 
( 
\ 



) 

r 

The resulting display for one of the fields is: 

10/23/80 FILE FIELD DESCRIPTION 
Command input: 

Generic file name: FILE 
Library name: 
Output file name: OUTFILE 
Library name: 
Output: OUTPUT 

File name: DSTREF library: 
Record format count: 
File creation date: 
File text description: TEXT 

Distribution field reference file 
Format name: 

format level identifier: 
Format text description: 

Field reference file 
Number of fields: 
Record length: 

TEXT-DDS 

D,STREF 
DSTPRODLB 
*NDtIE 

*t~mIE 

* 

DSTPRODLB 
1 

05/14/80 

DSlREF 
0781023103000 

34 

238 

Application Documentation 217 



218 

Attributes changed: None 
Fi el d tn'e: 5 

I/O attribute: 
Column heading 1: CUSTOMER 
Column heading 2: NUttBER 
Column heading 3: 

DISPLAYING PROGRAM REFERENCES 

You can display or print file usage and other object (data areas and programs) 
usage information for: 

A single program 

• A group of programs 

• All programs in a library 

• All programs in all libraries 

This information can be placed in a data base file for which you can build your 
own access for analysis of data. 

In the following example you display the file usage of the program CUS210. 

DSPPGMREF PGM(CUS210.DSTPRODLB) 

The resulting display is: 

10/23/80 PROGRAM REFERENCES 
Command inrut: 

Program name: 
Library name: 
Output file name: 
Li brary name: 
out put: 

Program name: CUS210 
Program text description: 

Customer inquiry 
Program reference count: 

PGH 

OUTFILE 

OUTPUT 
Library: 

CUS210 
DSTPRODLB 
*UOIJE 
*NONE 

* 
DSTPRODLB 

1 

.J 

/ 



) 

) 

\ 
) 

r 

Object name: CUS2100 

Object type: 
Fl1e name in source: 
Usage: 
Record format count: 
Record format name: 

DISPLAY 

li brary: OSTPROOLB 
FILE 

1 
Format level 10: 

0781023110230 

Fleld count: 
7 

This information is displayed for each file used by CUS210. 

OTHER DOCUMENTATION AIDS 

The following are additional documentation aids: 

• The TEXT and COLHDG keywords for description of record formats and 
fields in DDS. 

• The * (asterisk) for comments in DDS. 

• The TEXT parameter on the create commands. 

• The /* * / for comment statements in your programs. 

The TEXT keyword can be used to describe a record format or a field within 
the DDS for a file. The text description cannot exceed 50 characters in length 
and must be enclosed in apostrophes. This text is used by compilers and by 
utilities such as the Query Utility (part of the Interactive Data Base Utilities, 
licensed program 57J 4- UT1 ). 

The COLHDG keyword is used to specify a column heading on a display for a 
field. You can specify three lines of column headings for a field; each line can 
contain 20 characters. Each heading Ii~e must be enclosed within apostrophes. 
Column headings are used by the Query Utility. 

An * in position 7 of the DDS form indicates that the line is a comment. 
Comments can appear anywhere in the file description. 

Application Documentation 219 



The following shows the use of an *, the TEXT keyword, and the COLHDG 
keyword. The TEXT keywords describe a record format and a field. 

1 2 3 4 5 6 7 8 9 1011 1213141516171819202122232425262728 293031 323334 353637 38 394041 424344 4546 47 48 49 5051 52535455565758596061 626364 6566 67 68 69 70 71 72 73 74 7576 77 78 7980 

A~ FI IE L{; 
A 

A 

A~ Fl IELD 
A 

A 

A 

A 

220 

RE FE RENeE. FI LE I( DSTI< IE F' :~ 

II< TE~T('Fi e I dre+'ere.nce, -Cil e. I ) 

I~ t IElf INE.D E IV c.u srrOMEF IM~ ISrr:E~ RE CORD ( CUSMST 1 
,rUST 'i C2 rrE~Tll cu~torner 't'\t.lanbet"s' ) 

~OLHUC:;( I (USTOMEIl' 'NUMBERS' J 

The TEXT parameters on the create commands are also used to document 
. your application. For example, when you create an object you specify a text 
description: 

CRTPF FILE(DSTREF.DSTPRODLB) SRCFILE(FRSOURCE.QGPL) 
TEXT(' Distribution field refer~nce file') 

This text description becomes part of the object description. You can display 
this object description to find out the attributes of the object (in this case, the 
distribution field reference file). 

When you want to write comments in your control language programs or 
append comments to commands in your programs, use the symbols /* * /. 
The comment is written between t~ese symbols and must not exceed 50 
characters. For example, in the program created in Chapter 4, Control 
Language Programs, comments were written on commands: 

PGM /*ORD040C Order dept general menu* / 
DCLF FILE(ORD040CD) 

START: SNDRCVF RCDFMT(MENU). 
IF(&RESP=1) THEN(CALL CUS210) 
/*Customer inquiry* / 
ELSE 

IF(&RESP=2) THEN(CALL ITM210) 
/*Item inquiry* / 
ELSE 

IF(&RESP=3) THEN(CALL CUS210) 
/*Customer name search* / 
ELSE 

IF(&RESP=4) THEN(CALL ORD215) 
/*Orders by cust* / 
ELSE 

IF(&RESP=5) THEN(CALL ORD220) 
/*Existing order* / 
ELSE 

GOTO START 
ENDPGM 

IF(&RESP=6) THEN(CALL ORD410C) 

/*Order entry* / 
ELSE 

IF(&RESP=7) THEN(RETURN) 

(' 

I 



) 

" \ ) ., 

'-. 

) 

COMMAND LIST 

This is a list of commands related to documentation aids. It is presented here 
to help you select the appropriate command for the function you want and to 
help you determine which command you might need to reference in the CPF 
Reference Manual-CL. 

Descriptive Name Command Name Function 

Display Program DSPPGMREF Displays a list of files 
References and objects used by a 

specified compiled 
program. 

Display Data DSPDBR Displays data base cross 
Base Relations reference information: 

· What data base 
files use a 
specified record 
format. 

· What data base 
files depend on a 
specified file. 

· What data base 
members depend on 
a specified member. 

Display File DSPFD Displays a description 
Description of a file: 

· File attributes 

· Access path 
specifications 

· Select/omit 
specifications 

· Alternate collating 
sequence 
specifications 

· Record format 
specifications 

· Member attributes 

· Spooling attributes 

Display File DSPFFD Displays field 
Field Description descriptions 

for a specified file. 

Application Documentation 221 



\. 

222 



Chapter 15. Testing 

Testing lets you debug your programs in an environment identical to your 
normal processing environment without modifying files in production libraries 
and without modifying a program specifically for testing. 

You can use objects in production libraries while you are in debug mode. You 
do not have to create and store in a test library a special copy of an object 
such as a program, message queue, or data area to use it in debug mode. The 
program you are testing can· be in a production library. 

No special commands specifically for testing are contained within the program 
being tested. The same program being tested can be run normally without 
modification. All test commands are specified within the job the program is in, 
not as a permanent part of the program being tested. In addition, the test 
functions are only applicable to the job they are set up in. The same program 

can be used concurrently in another job without being affected by the testing 
functions set up. 

There are three major testing functions you can use on your programs: 

• Setting breakpoints to halt program execution 

• Specifying traces to trace H LL statement execution 

Displaying and modifying the values of program variables 

A breakpoint is a place in a program where the system halts execution of the 
program and gives control to the user (at a work station or through a batch 
program). At a breakpoint the user can enter commands to request other 
functions such as displaying and changing program variables. A trace is the 
process of recording the sequence in ,which the statements in a program are 
executed. In addition, a record can be kept of the values of the program 
variables used in the statements. 

ENTERING. DEBUG MODE 

To begin testing you must use the ENTDBG command. This command places 
you in debug mode and also specifies: 

• Which programs are to be debugged 

• Which program serves as the default program for the debug job 

Testing 223 



224 

• Whether a record of the breakpoints is to be written to the job log 

• How many statements can be traced for a job and what action the system 
should take when the maximum number is reached 

• Whether production files can be updated during debug 

For a program to be debugged it must either be specified on the ENTDBG 
command or added to the debug job with an Add Program (ADDPGM) 
command. You can specify as many as 10 programs to be debugged 
simultaneously in a job. 

If you specified 10 programs for debug (using either the ENTDBG or ADDPGM 
command or both commands) and you want to add more programs to the 

debug job, you will have to remove some of the previously specified programs. 
Use the Remove Program (RMVPGM) command. All breakpoints and traces 
defined for a program being removed are also removed. 

When you enter debug mode you can specify that a program be a default 
program. By specifying a default program you can use breakpoint and trace 

commands without having to specify a program name each time a command is _ 
used. This is helpful if you are only debugging one program. For example, in 
the Add Breakpoint (ADDBKP) command you would not specify a program 

name for the PGM parameter because the default program is assumed to be 
the program the breakpoint is being added to. The default program name must 
be specified in the list of programs to be debugged (PGM parameter). If more 
than one program is listed to be debugged, you can specify the default 
program in the DFTPGM parameter. If you do not, the first program in the list 
in the PG M parameter is assumed to be the default program. 

The default program can be changed by using either the Change Debug 
(CHGDBG) or the Add Program (ADDPGM) command. 

If you log a record of the breakpoints in the job log, the information logged is 
a condensed form of the breakpoint display~. The job log can be used for 
offline debugging. The logging level in the job description for the job must be 
level 3, which means that all information is kept. If the level is other than 3, 
this information is not kept. You can change the logging level using the 
Change Job (CHGJOB) command. 

You can specify a maximum number of statement executions that can be 
traced for a job. You can change this maximum using the Change Debug 
(CHGDBG) command. As long as the maximum has not been reached, you can 
lower the maximum; otherwise, you can only raise the maximum. If you do 

not specify a maximum, only 200 statement executions are traced. 

/ 
( 
"-

( 
\. 



) 

\ 
\ 

) 

When the maximum is reached, the system performs one of the following 
actions (depending upon what you specify). 

• Stops the trace (*STOPTRC). 
For an interactive job, control is given to you (a breakpoint occurs), and 
you can remove some of the trace definitions (RMVTRC command) or 

clear tt"!e trace data (CLRTRCDTA command). 

For a batch job, the trace definitions are removed and the program 
continues to execute. . 

• Continues the trace but only the last maximum number of traces can be 
viewed in the trace output I*WRAP). 

By protecting production files from being updated, you can avoid unintentional 
modification of the files. To protect files you must specify *YES in the 

UPDPROD parameter. 

The following ENTDBG command places the high-level language program 
CUS310 in debug mode. (CUS310 is a customer master file maintenance 

program.) CUS310 is also the default program. Data base files in production 

libraries cannot be updated. The default of 200 statements that can be traced 

is taken, and the system is to stop tracing but continue executing. 

ENTDBG PGM(CUS310.DSTPRODLB) 

Note: You can end debug mode at any breakpoint by entering the End Debug 

(ENDDBG) command. 

ADDING BREAKPOINTS TO PROGRAMS 

After you have entered debug mode you can add breakpoints to the program 

you want debugged. Adding a breakpoint to a program consists of specifying 
either the statement label or the statement number. When you add a 

breakpoint to a program, you can also specify program variables whose values 

you want to display when the breakpoint is reached. 

When. a breakpoint is about to execute, program execution stops. For an 

interactive job, the system displays what breakpoint the program has stopped 

at and, if requested, the values of the program variables. After you get this 

information (in a display) you can enter commands to request other functions 

such as changing a variable (CHGPGMVAR command)' adding a breakpoint 
(ADDBKP command)' or adding a trace (ADDTRC command). You can enter 

any control language command that can be used interactively. If you entered a 

command, you must enter the Resume Breakpoint (RSMBKP) command to 

resume program execution. If you did not enter a command, you can use 

command function key 10 to resume execution. 

For a batch job, a breakpoint program can be invoked when a breakpoint is 

reached. You must create this breakpoint program to handle the breakpoint 

information. The breakpoint information is passed to the breakpoint program. 
The breakpoint program can invoke another user-created program such as a 
control language program that can contain the same commands (requests for 

function) that you would have entered interactively for an interactive job. Any 

function valid in a batch job can be requested. When the breakpoint program 
completes executing, the program being debugged continues executing. 

Testing 225 



Statement 
Numbers 

• 
• 
• 

(0006) 
0007 
0008 
0009 
0010 

0011 

0012 
0013 
0014 
0015 

0016 
(0017) 
0018 
·0019 
0020 
0021 
0022 
0023 

• 
• 
• 

226 

i~~~~ 

To add a breakpoint to a program, use the Add Breakpoint (ADDBKP) 
command. You can specify 10 statement numbers in one ADDBKP command. 
The program variables specified on an ADDBKP command apply only to the 
breakpoints specified on the same command. Only 10 variables can be 
specified in one ADDBKP command. 

In the ADDBKP command you can also specify the breakpoint program name 
for a breakpoint reached in a batch job, and the name of the program to which 
the breakpoint is added. If you do not specify the name of the program to· 
which the breakpoint is added, the breakpoint is added to the default program 
specified in the ENTDBG or CHGDBG command. 

The following ADDBKP commands add breakpoints to the program CUS310. 
The value of the variable ARBAL is to be displayed when the second 

breakpoint is reached. 

ADDBKP STMT(6) 
ADDBKP STMT(17) PGMVAR(ARBAL) 

CUS310 is the default program, so it did not have to be specified. 

The specifications for CUS310 look like this: 

RPG CALCULATION SPECIFICATIONS 
==-= ~ = International BUSiness Machmes CorporatIon 

1 2 

GX21·909J. UM/050' 
Printed in U.S.A. 

75 76 77 78 79 80 
Program J Keying I Graphic I I I Card Electro Number I 

Page OJ of ~~~~~f:ation I I I I I I I Date I I n$truction I Key I I I Programmer 

C Indicators Result Field 
He~ultlng 

~ 
IndIcators 

~-
6 _ 

AL I ArithmetIC 
..Jcr Plus IM,nusllero ::0 Ami Factor 1 Operation . Factor 2 Compare Comments 

Lme 
~ ~~. Name Length 1.> 211 .... 211 '·2 
l-oCI: 

E ~ Ul ..... 
Lookup(Factur 21is 

o 0 a: 0 a a High Low Equal u.. u...J Z Z Z 

34 l) G , H ~J 1 0 1117 1314 1~ 16 11 1H ,~ 10 71 n n 24 75 26 ,}1 7H 19 30 31 37 33 34 3~ 36 31 38 39 40 41 47 43 44 4~ 46 41 48 41 50 ~1 ~4 5~ 56 'J7 58 59 60 61 62 63 64 65 66 61 68 69 10 11 12 13 14 

U 1 C 

o 2 c I"IT AR'T rr~~ 
1----- _.- --

IEI)( F~ II'1P II_ i o 3 C I t' I~u 

ql8 
.. c-r·· -_ . . -

5ErT IN U~ ~~ ::.~ NO OF PIR ~~ o 4 C 
1--

~12 
--

IRIErr I<IN o ~ c 
q~ 

-I--- J GIQT SirA T ~q =J.I ~L~ f'f o 6 c 
- -- .-- - .. -

o 7 C 
--.- - - - _.- -,. 

~C;T CHIA liN c~ SR EC ~1 161 =N OT FO UNO o 8 c \,.. 

o 9 C 

1 0 c Nqll I~l r· f ~IT AKT N FC' N 
1 I C }C.r.- ~l I<!t: L SIE lot IClll<: L.l1J: 

"" Ir. 
1 ] c I'll N~'l 

J-
[~ tr ~IT ~ RT nrl L I tlA 17 ~ 1< el, I\"j 

Iqil 
-f- - - I-r-. 

!T ~IO 10 I'ISIF Ale NIEI~ ~E Ol~ 10 I ,3 C ~. 

1 4 C 

1 5 c~ lIN QU IR 1'1. UP ID~ ITEI" DE ~ E r<IEIG ES IT~ 
1 6 c " ~R le~All ~r"\ 1"112 In 1~IAlr ,Tu rn8 AL ITO AL Ali OM. ED 
17 c I 

t e--~ E~ IPN 0 T ~ ~~ I =- I-X Sp INIS IE _. f-1 8 c IIY T ~It: --f-f- .1-
q~ 

f- - f-I--f-- -f-- -
·~CIT RIE "Ie 

.- .-
IqQ =H IELI= "EV 1 9 C SI- I ---- - Nq ZN (r~ 

- 1-- - - - - -_. -- .-

~ SIT iA ,<1 [N GU IIRIY 2 0 c 
C C 511 TIt..! ,. J 5< EIC Ii: 1 I'=!= INOT FO UN,D 
c ~1 '., SIT ART - + 
c --j-c ~ -- - - -~- - - - - . __ .- - - - - I--~-

I 

'/. 
I 

\ .. 

/ 
I 



) 

, 

) 

"-
'I 

) 

The first breakpoint just tells where you are in the program. The following is 
displayed as a result of reaching the first breakpoint. 

BREAKPOI~T DISPLAY 
Stmt: 0006 pgm: ClIS310 LvI: 

CFIO - Resume program execution ENTER - Command entry display 

The following is displayed as a result of reaching the second breakpoint. 

Stmt: 0017 
Variable: ARBAL 

Type: Numer i c 

Value: '610' 

BREAKPOINT DISPLAY 
pgm: CUS310 LvI: 

CFlO - Resume program execution ENTER - Command entry display 

At this point you could change the value of one of these variables to alter your 
program's execution. You use the Change Program Variable (CHGPGMVAR) 
command to change the value of a variable. 

Testing 227 



228 

Returning to a Breakpoint in One Program from Another Program 

When you are executing a program in debug mode, you may find yourself in 
the following situation. 

• You reached a breakpoint in one program. 

• At that breakpoint you called another program that was also in debug mode. 

• You reached a breakpoint in the second program. 

• Now you want to return to the first program. 

To return to the breakpoint you specify the name of the first program. For 
example, a breakpoint occurred in the control language program ORD045C. At 
the breakpoint you called another program CUS310. At a breakpoint in 
CUS310 you want to go back to the breakpoint in ORD045C. The following 
command gets you back to the breakpoint in ORD045C. 

RTNBKP PGM(ORD045C) 

The invocation of CUS310 disappears when this RTNBKP command is 
executed. At the breakpoint you returned to, you can request more functions 
or resume program execution (RSMBKP command). 

ADDING TRACES TO PROGRAMS 

A trace differs from a breakpoint in that yo;u are not given control during the 
trace. The system records the traced statements executed. However, the trace 
information is not automatically displayed when the program completes 
execution. You must request a display of the trace information. The display 
shows the sequence in which the statements were executed and, if requested, 
the va~ues of the variables used in the statements. 

Adding a trace consists of specifying what statements are to be traced and, if 
you want, the names of program variables used in the statements. When a 
traced statement executes and a specified variable is in that statement, the 
value of the variable is recorded. Also, you can specify that the values of the 
variables are to be recorded only if they have changed from the last time a 
traced statement was executed. 

To specify which statements are to be traced, you can specify 

• The statement number at which the trace is to start and the statement 
number at which the trace is to stop 

• That all statements in the program are to be traced 

• A single statement number of a statement to be traced 

However, you can only specify a total of five statement ranges for a single 
program, which is a total taken from all the Add Trace (ADDTRC) commands 
for the program. In addition, only ten variables can be specified for each 
statement range. 

f 
I 

\" 

( 



""\ 
I 

Statement 
Numbers • 

• • 
• • 
• 
0006 
0007 
0008 
0009 . 
0010 

0011 

3 4 5 

o 1 

o 2 

o 3 

o 4 

o 5 

o 6 

o 7 

o 8 

o 9 

• 
• 
• 

,,) 0016 11 

'\ 
I 

) 

0017 
0018 
0019 
0020 
0021 
0022 
0023 

0031 
0032 
0033 
0034 
0035 
0036 
0037 

0038 
0039 
0040 
0041 

1 2 

1 3 

1 4 

1 5 

1 6 

1 7 

1 8 

1 9 

• 
o 
o 

o 6 

o 7 

o 8 

o 9 

1 0 

11 

1 2 

1 3 

1 4 

1 5 

1 6 

17 

1 8 

1 9 

6 7 8 

C 

c 
c 
C 

c 
c 
c 
C 

C 

cf* 
c 
c 
C 

C 

c 
c 
c 
C 

C 

c~ 
c 
c 
c 
c 
C 

C 

c 
ci7' 
C 

C 

c 
C 

9 10 1112 

q~ 
qE 
ql.l 

The following Add Trace (ADDTRC) command adds a trace to the program 
CUS310. The value of the variable TOT~AL is to ~e recorded only if its value 
changes between the times each traced statement is executed. 

ADDTRC STMT(6 41) PGMVAR(TOTBAL) OUTVAR(*CHG) 

CUS310 is the default program, so it did not have to be specified. 

The specifications for CUS310 look like this: 

1314 15 16 17 18 19 2021 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52" ,4 55 56 :37 5859 6061 626364 65.66616 

ST IART IJAG 
lEX FfJ IF RO MPT ! 

SE TON LI< '"4S =E NO OF PR 
1'<1: I~N 
GO TO ~T Al<T qq =H ELP KEY 

,.u 51 rH AI Nr Ie. DJ:( hi! ~:l =N OT FO UNO 

05 

[N (;U [IR VI, IP iriEI• OiE IEll Iclt: ~ Ia::~ ITS 
IQ~ II ~I[ rc Irir: In IclJ\l. r~ lit: I-l,L T~ rr~ L IPltJ IT IC~ lEO 
E~ Nlo T~rc: 

F IT ~ ~5 r""tN 1<::11= 

q~ IT 1<1- S ~NID ~I' =J.t EL P I<IE~ 
NA ~N ~3 r'lir )T A l1 tI) QU [IRY 

"IU~ A IN .. S :Elc ~I 161J =N KJrr FO UNr 
'" .;J 

,,",v 

hI r~ T ~ ~T A T 

lAD!C 
IA l) on l,Sp TiA~ 

~X F~ IT~ L .1:.,,-
qq ~ICiT ~ 0 SF ~C:; =11 EL 
q~ ~of 5 A iT .~ -". = ClAN E 

1.- '"l U., (0. rtJrl CR DL MT I] N IT IA RE DIT 
~I~ TE \... 5 Et t t ~ NEIJ. I<E CO IRIO 

CO NF IR MIA TI bN f<E CO 'RO 
r" NF RN lAC: "-v 

~!< IT E",,,,,, M&.,; .T 
''''; T~ s: A :T 

Testing 229 



230 

The following display results from this trace and is displayed using the Display 
Trace Data (DSPTRCDTft..) command. 

Stmt: 0017 
Variable: T01BAL 

Type: Numer'i c 

Value: '700.00' 

Stmt: 0018 
Stmt: 0019 
Stmt: 0020 
Stmt: 0021 

TRACE DATA DISPLAY 
pgm: CUS310 .. LvI: 1 1 

Len9~h: 5 Decimals: 2 

pgm: CUS310 LvI: I, 2 

pgm: CUS310 LvI: 1 3 

pgm: CUS310 LvI: 1 4 

pgm: CUS310 LvI: 1 5 

On the DSPTRCDTA command you can specify whether the trace information 
is to be removed from the system or left on the system after the information is 
displayed. If you leave the trace information on the system, any other traces 
are added to it. The information remains on the system until the debug job 
has completed execution. You can also use the Clear Trace Data 
(CLRTRCDTA) command or the clear option on the Display Trace Data 
(DSPTRCDTA) command to remove trace information from the system. 

Breakpoints can be used within a trace: If a variable changes at a breakpoint 
and the program resumes execution after the breakpoint, the trace information 
contains the value of the variable at the time the breakpoint occurred instead 
of at the time the statement was executed. 

DUMPING OBJECTS AND JOBS 

To help debug programs you can dump objects and jobs. You can dump the 
contents of any CPF object stored in a library. The dump is written to a 
spooled printer file. To dump an object use the Dump Object (DMPOBJ) 
command and specify the object name and type. When you dump a job you 
use the Dump Job (DMPJOB) command (it has no parameters). You get a 
dump of the program activation and invocation stacks, various objects 
associated with the job, and any temporary work spaces used by the job. 

.J 

"' ....... 



COMMAND LIST 

/ 
I This is a list of commands related to testing. It is presented here to help you -

select the appropriate command for the function you want and to help you 
determine which command you might need to reference in the CPF Reference 
Manual-CL. 

Descriptive Name Command Name Function 

Enter Debug ENTDBG Indicates the beginning 
of debug mode. 

End Debug ENDDBG Indicates the end of 
debug mode. 

Change Debug CHGDBG Changes the debug 
characteristics of a 
debug job. 

Display Debug DSPDBG Displays a list of the 
programs being debugged and 
other debug information. 

Debug Program 

" 
Descriptive Name Command Name Function 

j 
Add Program ADDPGM Adds a program to debug 

mode'. 

Remove Program RMVPGM Removes a program from 
debug mode. 

Program Variable 

Descriptive Name Command Name Function 

Change Program CHGPGMVAR Changes the value of a 
Variable program variable. 

Display Program DSPPGMVAR Displays the value of 
Variable a program variable. 

Program Pointer 

Descriptive Name Command Name Function 

Change Pointer CHGPTR Changes the value of a 
pointer. 

" 
) 

Testing 231 



Breakpoint 
("'-

Descriptive Name Command Name Function -' .... 

Add Breakpoint ADDBKP Adds a breakpoint to a 
program in debug mode. 

Remove RMVBKP Removes a breakpoint from 
Breakpoint a program in debug mode. 

Return RTNBKP Returns execution from one 
Breakpoint breakpoint to a previous 

breakpoint. Used when there 
is more than one program 
at a breakpoint. 

Resume RSMBKP Resumes execution of a 
Breakpoint program after a breakpoint 

has been displayed. 

Display DSPBKP Displays breakpoint 
Breakpoint information. 

Trace 

Descriptive Name Command Name Function /' 

\, 

Add Trace ADDTRC Adds a trace to a 
program in debug mode. 

Remove Trace RMVTRC Removes a trace from a 
program in debug mode. 

Display Trace DSPTRC Displays a list of traces 
defined for a program. 

Clear Trace CLRTRCDTA Removes data from previous 
Data trace operations. 

Display Trace DSPTRCDTA Displays trace information 
Data from a previously gen-

erated trace. 

Dumps 

Descriptive Name Command Name Function 

Dump Job DMPJOB Dumps the basic data 
structure of a job. 

Dump Object DMPOBJ Dumps a CPF object. /' 
( 
", 

232 



) 

'\ 
) 

Part 5. Work Management 

Work Management 233 



234 



) 

\ 
) 

Chapter 16. Work Management 

Work management functions manage jobs on the system, allocate resources 

for use within jobs, and schedule jobs for execution. You can tailor these 
functions to meet your installation's needs. 

The basic unit of work on System/38 is a job. An interactive job is a job in 
which the processing actions are performed by the system in response to input 
provided by a work station user. During the job, a dialog exists between the 
user and the system. For example, between sign-on and sign-off you could 
create a physical file, delete a display file, and call a program. Each is a single 
command, but together they are a job. 

A batch job is a job in which the processing actions are submitted as a 
predefined series of actions to be performed without a dialog between the user 
and the. system. The job consists of all the processing actions that result from 
input contained within the job. Basically, a batch job is all the commands 
between a Job command and an End Job command or the next Job 
command. For example, the following shows three jobs: 

/ /JOB OEDAILY 

/ / JOB OEWEEKLY 
CALL PGMA 
CALL PGMB 

CALL PGMC 

/ /JOB OEMONTHLY 
CALL PGME 

/ /DATA 

/ /ENDJOB 

I 
Job: No other commands besides 

Job command. 

Job: Commands included in job. 

Job: Inline data file used in job. 

An autostart job, a reader, a writer, and a job submitted using the SBMJOB 
command are also considered batch jobs although there are no JOB 
commands associated with them. 

Work Management 235 



236 

The following shows the basic objects CPF needs to control a subsystem and 
run a job: 

Subsystem 
Description 

CPF 

Job 
Description 

User 
Profile 

Subsystem 

On System/38, jobs execute in subsystems.; A subsystem is an operating 
environment through which CPF coordinates work flow and resource usage. 
The specifications that define a subsystem and that-CPF uses to control the 
subsystem are contained in an object known as a subsystem description. The 
subsystem description contains routing information necessary for determining 
what program must be invoked for a job and what the execution parameters 
are. The subsystem description references another object known as a class. A 
class specifies the execution parameters for a job. (See Routing Entries in this 
chapter for more information about classes.) 

Each job in a subsystem must have an associated job description, but more 
than one job can use the same job description. A job description is an object 
in which the attributes of a job are predefined and stored. The job description 
references another object known as a user profile. A user profile represents a 
particular user or users to the system. It identifies which objects and functions 
the user is authorized to use. (See Chapter 18, Security for more information 
about user profiles.) 

You can run your jobs using the IBM-supplied objects or objects that you 
create. IBM supplies objects needed for batch jobs, interactive jobs, and 
spooling. You can use these objects as thyy are or tailor them to your 
installation's needs. 

/ 
I 

\ 

/ 
\ 



) 

) 

When you get your system, you get the following IBM-supplied subsystem 

descriptions: 

• QCTL 1 and QCTL2 (interactive subsystems) 

• QBATCH (batch subsystem) 

• QSPL (spooling subsystem) 

All these subsystem descriptions are in the general purpose library (QGPL). 

The IBM-supplied interactive subsystem (QCTL 1 or QCTL2) supports all the 
interactive jobs processed through the display work stations (including the 
system console) on the system. Either QCTL 1, QCTL2, or some other 
subsystem defined by your installation can be the controlling subsystem. A 
controlling subsystem is the subsystem automatically started when the system 
is started. There are two copies (QCTL 1 and QCTL2) of the IBM-supplied 
interactive subsystem. You can make changes to the subsystem by changing 
an inactive copy. The controlling subsystem is specified in the system value 
QCTLSBSD. The class specified in the routing entries for this subsystem is 
QCTL. 

After QCTL 1 or QCTL2 is started you do not have to enter a user password to 
sign on; the QUSER user profile is the specified default. The routing data is 
QCMDI, which causes the IBM-supplied control language processor to be 
invoked for the routing step. 

The IBM-supplied batch subsystem (QBATCH) supports all the batch jobs 
processed on the system. The batch subsystem· must be started by a Start 
Subsystem (STRSBS) command and terminated explicitly by a Terminate 
Subsystem (TRMSBS) command, a Terminate CPF (TRMCPF) command, or a 
Power Down System (PWRDWNSYS) command. Batch jobs are placed on the 
QBATCH job queue for processing. The batch subsystem does not have to be 
started for jobs to be placed on the queue. When the subsystem is st~rted, 
the jobs on the queue are processed. The routing data QCMDB causes the 
routing entry to invoke IBM-supplied control language processor for the 
routing step. The class specified in the routing entries for this subsystem is 
QBATCH. 

The spooling subsystem (QSPL) supports reading jobs and job streams and 
writing the output from the jobs. Jobs are placed on a job queue, eith,er 
QBATCH or a designated job queue, by a reader (a CPF program) and the 
output is written from a spooled file on the QPRINT output queue to a device 
by a writer (a CPF program). To submit a job to a job queue using the Submit 
Job (SBMJOB) command, the spooling subsystem does not have to be active. 
The class specified in the routing entries for this subsystem is QSPL. 

• 

Work Management 237 



238 

In addition, you get the following IBM-supplied job descriptions: 

• QCTL (interactive job) 

• QBATCH (batch job) 

• QSPLDBR (data base spooling reader) 

QSPLCRDR (card read spooling reader) 

• QSPLDKTR (diskette spooling reader) 

• QSPLPRTW (printer spooling writer) 

• QSPLCRDW (card punch spooling writer) 

• QSPLDKTW (diskette spooling writer) 

All these job descriptions are in the general purpose library (QGPL). 

The most commonly used IBM-supplied user profiles needed to perform jobs 
are: 

• For a batch job, the programmer user profile QPGMR. QPGMR is 
referenced in the IBM-supplied batch job description QBATCH. 

• For an interactive job, the work station user profile QUSER. QUSER is 
referenced in the IBM-supplied interactive job description QCTL. 

Work Entries and Routing Entries 

Before you can understand how a subsystem executes your jobs, you must 
understand work entries and routing entries, which are contained in the 
subsystem description. 

A work entry defines a source of jobs for a subsystem: 

• From a work station when a user signs on or when a user transfers into a 
subsystem (work station entry) 

• From a job queue (job queue entry) 

• Automatically started when the subsystem is started (autostart job entry) 

See Work Entries in Subsystem Descriptions in this chapter for what needs to 
be specified to define each type of work entry. 

(~ 

/" 
I 



) 

\ 
./ 

A routing entry specifies what program must be invoked for a job's routing 
step to execute in the subsystem. Which routing entry is used is determined 
by comparing routing data for a job to a compare value specified in the routing 
entry. For batch jobs, routing data comes from the job description or from the 
RTGDTA parameter of the JOB or SBMJOB command. For interactive jobs, 
routing data comes from the job description or from a display in which the 

user enters data. When a match is fOUlOld, a routing step is initiated. A routing 
step consists of the execution of the program specified in the routing entry. 

The following illustrates the concept of routing entries. The routing data for job 
JOBA is contained in the job description PRJOBD. The routing data PAY 
matches the routing entry with sequence number 1012 and the program 
PRPROC is executed in the subsystem QBATCH. 

Job Queue 

JOBA ~ 
...... ---r-_.....J ~ Subsystem QBATCH 

Routing Entry 

Job Description 

PRJOBD '0 
.... CI> .... 
W C. w 
.0 w :.;: 
E ci) .;; 

w 
~ 

c: 
(,) .... ·E ::l OJ w 

RTGDTA = PAY ~ 
c: w co 

~ Q) 
z c: ~ w.o c. Q) 

~ E . e;; 
::l E E~ OJ E x ::l "0 C" ::l . 0 co o co ..!!1 co co 0 
~Z u> ctz uz :2!a: 0 

a.. 

1012 I PAY I PRPROC I QBATCH I I 3 1 
Match j Found 

Routing Step 

PRPROC 
Executes 

See Routing Entries in Subsystem Descriptions in this chapter for what needs to 
be specified to define a routing entry. 

Work Management 239 



240 

WAYS JOBS ARE INITIATED ON THE SYSTEM 

There are a number of ways that jobs can be initiated on System/38. For 
interactive jobs, those ways are: 

• Using routing data from the job description to automatically route jobs. 
Which programs are executed depends on what work station is being used. 
The following can be specified for the routing step: 
- The IBM-supplied command processor QCL is specified in the routing 

entry and no initial program is specified in the user profile. The 
command entry display is displayed to the user. No changes are made to 
the IBM-supplied objects. (See Interactive Jobs, Executing QCL for'the 
Routing Step.) 

- The IBM-supplied command processor QCL is specified in the routing 
entry but an initial program is specified in the user profile. This initial 
program can be the IBM-supplied program QCALLMENU or a user 
program. The initial program is executed for the routing step. If a user 
program is specified as the initial program, only the user profile need be 
changed. For QCALLMENU, no changes need be made. (See Interactive 
Jobs, Executing QCL for the Routing Step.) 

- A user program is specified in the routing entry and is executed for the 
routing step. You must add a routing entry specifying the user program to 
the subsystem description. (See Interactive Jobs, Executing a User 
Program for the Routing Step.) 

• Using input from a display as routing data. This input can come from an 
IBM-supplied display or a user-defined display. You must add a work 
station entry specifying the device file containing the display format to the 
subsystem description. (See Interactive Jobs, Prompting for Routing Data.) 

For batch jobs, the ways jobs are initiated are: 

• Using a spooling reader or a SBMJOB command to place jobs on job 
queues. The routing data comes from the job description or JOB or 
SBMJOB command. You need not make any changes to the IBM-supplied 
objects. (See Batch Jobs, Queuing Jobs.) 

• Using autostart job entries. A job is automatically started when the 
subsystem is started. You must add an autos tart job entry and a routing 
entry to the subsystem description. (See Batch Jobs, Using Autostart Jobs. 

( 



'\ 

) 

) 

Interactive Jobs, Executing QCL for the Routing Step 

In the following illustration, the routing data matches a routing entry specifying 

that QCL be executed for the routing step. 

Subsystem QCTL 1 

Job Description 
Work Station Entry QCTL 

~ 
User profile = 

Sign-on \ ~ 
QUSER 

QUSER J 
Job description = QCTL 

r-
Routing data = 
QCMSI 

-Routing Entry '-

a .... .... c. OJ .~ 
OJ .0 OJ '+-

OJ E E ci5 .;:; 

~- c: u ... E co ::J C') OJ c: OJ co Z Z c: 32 OJ .0 a. OJ e OJ .0';; 
::J E E ~ C') E III 

III X ::J "0 0" ::J o co o co co co 0 
bJz u> d:z U :2:0: 0 a.. 

10 I QCMDI I QCL I QCTL I *NOMAX I 1 

t 

User Profile QUSER 

Initial program = 
QCALLMENU, 
user program, 
or none 

Routing Step iut;ng Step Routing Step 

QCL QCALLMENU User 
Executes Executes Program 

Work Management 241 



242 

The work stati0':1 entry contains the job description name for the interactive 
job. After sign-on, the system searches the routing entries in the subsystem 
description to find a mat~h for the routing data in the job description. The 
routing data is QCMDI, and it matches the routing entry that specifies the 
program QCL. QCL checks the user profile to determine if an initial program 
has been specified for this user. If none is found, QCL displays the command 
entry display to the user. If an initial program is found, it is executed. This 
initial program can be QCALLMENU or an application program. 

The initial program can be used to establish the environment in which other 
commands are executed. For example, the library list can be changed or 
message files can be overridden so that messages in a non- English language 
can be used. In addition, the initial program can be used to restrict the user to 
a specific set of functions. As long as the initial program does not return 

. normally to the program QCL, the command entry display is not displayed and 
the user cannot enter commands. The IBM-supplied call menu program 
(QCALLMENU) uses this technique to restrict users to the options of the menu 
it displays. . 

Interactive Jobs, Executing a User Program for the Routing Step 

In the following illustration, the routing data matches a routing entry specifying 
that a user program be executed for a routing step. 

Subsystem 

Job Description OR D 
Work Station Entry 

/ 
/ 

Routing data = 

~ 
Job description = ORDER r- ORDER 

/ 
Sign-on 

./ 

Routing Entry f 
1133 \ ORDER \ORDPROC 

\ .~ 

Routing Step 

ORDPROC 
Executes 

. 

/ 

/ 

ER 



) 

./ 

The routing data in the job description is ORDER, and it matches to routing 
entry 1133, which invokes the user program ORDPROC. 

For this type of execution, the routing data in the job description is 
user-defined. A routing entry must be created by the user. The routing entry 
can be added to an IBM-supplied subsystem or to a user-defined subsystem 
description. 

Interactive Jobs, Prompting for Routing Data 

In the following illustration, the routing data in the job description specifies that 
the routing data must be prompted for. 

Subsystem 

Work Station Entry 

c: 
o 

";:; 
!9 en 
~ E 
o co· 
3i:z 

Routing Entry 

c: 
o 

";:; 
a. 
".: 
&1 
Q) o Q) 

.0 E 
o co 
""")Z 

'0 
.... 
Q) 

.0 V> 

E .0 
::l-Sl 
Z Q) 

. > 
x ";:; 
~~ 

Routing Step 

Program 
Executes 

Q) 

a. 
~ 
.0 
o 

""") 

.... 
co 
E 
o 
u. 
>co 

~ 
i:S 

When the subsystem checks for routing data in the job description, it finds 
*G ET. The work station entry contains the name of the record format for a 
display and the name of the device file containing the record format. This 
display is a prompt that requests routing data. The display can be an 
IBM-supplied display or a user-defined display . 

Job Description ORDJOB 

Routing data = 

*GET 

Work Management 243 



244 

In the case of the preceding illustration, the IBM-supplied display is used 
(indicated by *SYSRTGFMT): 

The data entered by a user goes into a record called the data management 
feedback area. The routing data from this feedback area used by the 
subsystem contains 80 characters: 

• Ten-character device name 

• Two-character command key identifier 

• First 68 characters of data entered on the display 

For a user-defined display, you must define the routing data format in the file 
description for the device file using the routing field DDS keywords. \ 

/ 
\. 



) 

) 

Batch Jobs, Queuing Jobs 

The following illustrates ~ow jobs on a job queue are. initiated. 

Job Queue 
QBATCH 

JOBC 

Job Description 
QBATCH 

Routing data = 

QCMDB 

Subsystem QBATCH 

Job Queue Entry 

QBATCH 

Routing Entry 

Routing Step 

QCL 
Executes 

Job Message Queue 

CALL __ _ 

CALL--_ 
CALL __ _ 

Spooled Inline Files 

Work Management 245 



246 

Jobs are placed on a job queue: 

• When a reader (a. CPF program) processes a JOB command 

• Through a SBMJOB command 

• Through a TFRJOB command 

For discussions of submitting a job and transferring a job, see Submitting a Job' 
from Another Job and Rerouting and Transferring Jobs, respectively. 

A reader reads jobs from cards, diskettes, or a data base file and places the 
jobs on a job queue. A job can contain request data and in line data files. The 
request data is placed on a job message queue. Any inline data files are 
spooled for access when the job executes. Normally, the request data for a job 
is one or more commands. 

The location of the request data is determined by the ROSDTA parameter on 
the JOB, SBMJOB, or TFRJOB command. The ROSDTA parameter can 
specify anyone of the following: 

• The actual request data 

• That the request data is in the job description 

• That the request data follows the JOB command 

When OCL executes, it retrieves the request data (commands) from the job 
message queue and executes it, using spooled inline data files if any exist for 
the job. 

When a subsystem is started, a job queue entry in the subsystem description 
tells the subsystem what queue to look on for jobs to process. There can only 
be one job queue entry in a subsystem description. More than one subsystem 
description can. reference a single job queue but only one subsystem 
description can use the job queue at a time. 

The routing data used to route a job can come from the job description or 
from a JOB, SBMJOB, RRT JOB, or TFRJOB command. 

In the preceding illustration the routing data OCMDB comes from the 
IBM-supplied job description OBATCH. The routing data matches the 
IBM-supplied routing entry 10, and OCL is executed. 

/ 

i 

\ 



"\ 
j 

) 

Batch Jobs, Using Autostart Jobs 

The following illustrates how autostart jobs are executed. 

Subsystem 

Routing Step 

START 
Executes 

Job Description STRJOBD 

Routing data = 

AUTOSTR 

An autostart job is automatically started when the subsystem is started. For 
each autostart job, an autostart job entry must be added to a subsystem 
description. All that is specified in the routing entry is the job name and job 
description name. The subsystem uses the routing data specified in the job 
description to find the program to be executed. 

Work Management . 247 



248 

SUBMITIING A JOB FROM ANOTHER JOB 

You can submit a job from within an executing job (for example, submit a 
batch job from a display work station even though you are in an interactive 
subsystem). The submitted job is placed on a job queue. 

To submit a job in this manner, use the Submit Job (SBMJOB) command. 
Submitting a job consists of specifying a job description name and, if 
necessary, overriding the parameters in the job description for the job. A job 
name can be specified but if it is not, it is assumed to be the same as the 
simple job description name. 

REROUTING AND TRANSFERRING JOBS 

Rerouting jobs is similar to transferring jobs except that rerouting initiates a 
new routing step within the same subsystem while transferring initiates a new 
routing step ini:;another subsystem. In both cases, file overrides are removed, 
allocated objects except the work station and job message queues are. 
deallocated, and files are closed. The library list stays the same because it is 
specified at the job level. The temporary library QTEMP is not deleted, and all 
job attributes remain the same. 

If you are signed on and want. to get to another subsystem, you can transfer 
your job to another subsystem. However, to transfer a job you must have 
operational rights to both the job queue and the subsystem description of the 
subsystem being transferred to. 

To transfer an interactive job, the subsystem being transferred to must be 
active. When the interactive job is placed on the job queue it is given the 
highest job queue priority to prevent its being held too long on the job queue. 

Rerouting a job is a method of changing processing attributes for a job. By 
rerouting a job, you can invoke a different program. to process the job. For 
example, a job is executing. The next part of the job needs to execute in a 
different storage pool. You reroute the job at this time to execute the job in a 
different storage pool. 

POOLS 

Routing steps execute within storage pools. A pool is a logical division of main 
storage. Pools are used to reduce contentions between programs for main 

storage. For example, a high-performance application executes in '" pool 
separate from other applications. Routing steps executing in the same pool 
only contend with each other for main storage requirements; they only contend 
with routing steps executing within other pools for resources other than main 
storage. 

The attributes of a storage pool are its size and its activity level. Its size is 
measured in K bytes. The activity level of a pool indicates how many routing 
steps can execute in the pool at the same time. Excess jobs are automatically 
queued. 

~ 
I 
\ ... 

/' 
( 
\. 

/ 
." 



) 

) 

) 

IBM-supplied subsystem descriptions contain· defined pools. You might want 
to change the size of these pools to tailor them to your needs. 

In addition to the pools defined in the subsystem descriptions, there are two 
other pools on the system: 

• A base pool (*BASE) that can be shared between subsystems. This pool 
contains the unassigned storage on the system plus the amount specified in 
the system value QBASPOOL. This is the pool for the IBM-supplied batch 
subsystem (QBATCH). 

• A machine pool used by the machine for ~ts processing. The storage for this 
pool is specified in the system value QMCHPOOL. 

You could set up the storage pools in either of the following ways: 

1. Use the base pool as the pool for an interactive subsystem, set up a pool 
for a batch subsystem, and keep the machine and spooling pools as they 
are. 

2. Use the base pool and two or three application pools. 

There is a maximum of 16 pools on the system, two of which are the base and 
machine pools. Therefore, you can define as many as 14 pools for active 
subsystems, but only 10 for a subsystem. 

ACTIVITY LEVELS 

An activity level defines how many jobs can be active concurrently within an 
area such as a subsystem or pool. Activity levels can be specified for: 

• System. The maximum number of jobs, initially 100 jobs, that can be active 
concurrently in the system. You can change this by changing the system 
value QMAXACTLVL. 

• Subsystem. The maximum number of jobs that can be active concurrently in 
the system. The maximum can be changed using the Change Subsystem 
Description (CHGSBSD) command. 

• Job queue entry. The maximum number of jobs that can be act!ve 
concurrently for ajob queue entry. The maximum can be changed using the 
Change Job Queue Entry (CHGJOBQE) command. 

• Work station type entry. The maximum number of jobs that exist for the 
work station type entry. The maximum can be changed using the Change 
Work Station Entry (CHGWSE) command. 

• Routing entry. The maximum number of routing steps that can be active 
concurrently for the routing entry. The maximum can be changed using the 
Change Routing Entry (CHGRTGE) command. 

• Pool. The maximum number of routing steps that can execute concurrently 
in a pool. The maximum can be changed using the Change Subsystem 
Description (CHGSBSD) command. 

Work Management 249 



250 

SUBSYSTEM DESCRIPTION"S 

A subsystem description consists of three parts: 

• Subsystem attributes 
- Storage pool definitions (sizes and activity levels) 
- Maximum number of jobs that can be active in a subsystem concurrently 
- Public authority 
- Text description 

• Routing entries 

• Work entries 

The subsystem attributes are supplied through the Create Subsystem 
Description (CRTSBSD) command. The routing entries are added to the 
description as a result of the Add Routing Entry (ADDRTGE) command. The 
work entries are added as a result of the following commands: 

• Add Autostart Job Entry (ADDAJE) 

• Add Work Station Entry (ADDWSE) 

• Add Job Queue Entry (ADDJOBQE) 

You can change the IBM-supplied subsystem descriptions or any user-created 
subsystem descriptions by using the following commands. 

• Add Autostart Job Entry (ADDAJE) 

• Add Job Queue Entry (ADDJOBQE) 

• Add Work Station Entry (ADDWSE) 

• Add Routing Entry (ADDRTGE) 

• Change Subsystem Description (CHGSBSD) 

• Change Autostart Job Entry (CHGAJE) 

• Change Job Queue Entry (CHGJOBQE) 

• Change Work Station Entry (CHGWSE) 

• Change Routing Entry (CHGRTGE) 

• Remove Autostart Job Entry (RMVAJE) 

• Remove Job Queue Entry (RMVJOBQE) 

• Remove Work Station Entry (RMVWSE) 

• Remove Routing Entry (RMVRTGE) ( 



" 
\ 

) 
~ 

) 

Routing Entries 

A routing entry defines how a routing step is to be initiated. A routing entry 
contains the following: 

• A routing entry sequence number 

• A routing data compare value and starting position for the comparison 

• The name of the program to be invoked 

• The name of the class to be used for the routing step 

• The maximum number of routing steps that can be active concurrently for 
the entry 

• The identifier of the pool in which the routing step is to execute 

When you add a routing entry to a subsystem description, you assign a 
sequence number to the entry. This sequence number tells the subsystem the 
order in which routing entries are to be searched for a routing data match. For 
example, you have five routing entries for the subsystem description IOESBSD 
(the order in which they were added to the subsystem is the order in which 
they are listed here). 

Sequence Number Compare Value 

0010 1 
0030 2 
0040 3 
0020 5 
0050 4 

These routing entries are searched in sequence number order. If the routing 
data was 2, the search ends with routing entry 0030. 

You can specify a compare value (*ANY) on the highest numbered routing 
entry. *ANY means that a match is forced. 

In addition to indicating which program is to be invoked, the routing entry 

specifies which class is to be used to execute the routing step. A class 
contains parameters to control execution in a routing step: 

• Machine execution priority. The priority the routing step has when 
competing with other routing steps for machine resources. 

• Time slice. A quantity of processor time allowed for the routing step before 
other waiting routing steps are given the opportunity to execute. 

Work Management 251 



252 

• Purge .. Whether a job is to be moved from main storage to auxiliary storage 
either at the end of a time slice or when entering a long wait. 

• Default maximum instruction wait time. The maximum time an instruction is 
to wait for completion. 

• Maximum CPU time. The maximum time the processor can execute a 
routing step before the routing step is canceled. 

• Maximum temporary storage. The maximum amount of temporary auxiliary 
storage that a routing step can use before the routing step is canceled. 

The default maximum instruction wait time, maximum CPU time, and maximum 
temporary storage can help stop an erroneous program from impairing system 
performance. 

Work Entries 

Work entries identify the sources for jobs that are processed in a subsystem. 
There are three types of work entries: 

• Autostart. The job is automatically started when the subsystem is started. 

• Job queue. Jobs to be processed are taken from the specified job queue. 

• Work station. The iob processed when a work station user signs on or 
when he transfers a job from another subsystem. 

The descriptions of these work entries (which are part of the subsystem 
description) are: 

• For an autostart job entry: 
Job name 

- Job description name 

• For a job queue entry: 
Job queue name 

- Maximum number of jobs that can be active concurrently from the queue 

• For a work station entry: 
Work station name or type 
Job description name 
Maximum number of jobs that can exist for the entry 
Job type (demand sign-on or entry) 
Format of the display used to obtain the routing data if the routing data 
is not specified in the job description 

Note: A demand sign-on job type results from a user signing on at a display 
work station. An e'ntry job is an interactive job transferring to a subsystem 
from another subsystem. 

,/ 

/ 
( 
'\., 



) 

) 

Creating a Batch Subsystem Description 

The following is an example of creating a batch subsystem description. This 
example shows creating the subsystem description, creating a job queue and 
adding it to the subsystem description, and adding a routing entry to the 
subsystem description. 

NIGHTO is the subsystem description for the concurrent nighttime jobs. One 
pool (pool 1) is specified for the subsystem and is defined as the base pool 
(*BASE). There is no maximum on the number of jobs that can execute 
concurrently in the subsystem. The following Create Subsystem Description 
(CRT5.BSD) command creates NIGHTO: 

CRTSBSD SBSD(NIGHTO) POOLS((1 *BASE)) 
TEXT('Concurrent nighttime jobs') 

NIGHTO is placed in the general purpose library (OGPL) by default. 

The job queue for the subsystem description NIGHTO is also named NIGHTO 
and, by default, is placed in the library OGPL. The following Create Job Oueue 
(CRTJOBO) command creates the NIGHTO queue: 

CRTJOBO JOBO(NIGHTO) 
TEXT('Concurrent nighttime job queue') 

Any user profile having job control authority can control the jobs on the job 
queue. Also, you can control your own jobs. 

The NIGHTO job queue is defined to the subsyste,m through a job queue entry. 
The following Add Job Oueue Entry (ADDJOBOE) command adds the job 
queue entry for the NIGHTO job queue to the subsystem description NIGHTO: 

ADDJOBOE SBSD(NIGHTO) JOBO(NIGHTO) MAXACT(3) 

For this entry, three jobs from the queue can be active concurrently within the 
subsystem. 

The routing entry for the NIGHTO subsystem description indicates that the 
IBM-supplied control language processor OCL (in library OSYS) is to be 
invoked to process the routing step, that the routing step is to execute in pool, 
1 (which in this case is the l;>ase poo!), a'nd that the class OCLASSB is to be 
used to execute the routing step. There is no maximum on the number of 
routing steps that can be active for this routing entry. The following Add 
Routing Entry (ADDRTGE) command adds the routing entry to the NIGHTO 
subsystem description: 

ADDRTGE SBSD(NIGHTO) SEONBR(10) 
CMPVAL (OCMDB) PGM(OCL.OSYS) 
CLS(OCLASSB) POOLlD(1) 

Work Management 253 



254 

Creating an Interactive Subsystem Description 

The following is an example of creating an interactive subsystem description 
that automatically starts up and shuts down a group of display work stations. 
This example shows creating the subsystem description and adding a work 
station entry to the description. 

ORDER is the subsystem description for order entry jobs. Two pools (pools 1 
and 2) are defined for the subsystem. Pool 1 is to contain 60K bytes of 
storage and have an activity level of 1; pool 2 is to contain 150K bytes of 
storage and have an activity level of 3. The following CRTSBSD command 
creates ORDER. 

CRTSBSD SBSD(ORDER) POOLS((1 60 1) (2 1503)) 
TEXT('Order entry jobs') 

The work st~tion entry for the ORDER subsystem description specifies that all 
work stations that are 5251 Display Stations are to be allocated to the 
subsystem when the subsystem is started. Likewise, the work stations are 
deallocated when the subsystem is terminated. By default, the sign-on prompt 
is displayed on the allocated work stations. The following Add Work Station 
Entry (ADDWSE) command adds this entry to the subsystem description: 

ADDWSE SBSD(ORDER) WRKSTNTYPE(5251) JOBD(ORDER) 

JOB DESCRIPTIONS 

A job description can contain the following job attributes: 

• User name. What user profile the job is to use. 

• Job queue. The job queue on which the job is placed (batch job only). 

• Job priority. Priority of the job on the job queue '(batch job only). 

• Output priority. Priority of the spooled output files produced by the job 
(batch job only). 

• Routing data. Data used to determine which routing entry to use for the job. 

• Request data. Data to be put in the job message queue and passed to the 
program that is invoked. 

• Syntax checking. Whether the reader is to syntactically check the input and 
at what message severity (for syntax errors) the system should prevent 
processing of the job (batch job only). 

• Initial library list. What the user part of the initial library list for the job is. 

• Cancel severity. At what message severity (for job execution) the job should 
stop processing (batch job only). 

I~ 

/ 



" , What to log in the job log. The level of information to be sent to the job log, 
the messages to be sent to the job log (determined by a severity code), and 
the level (first-level or first- and second-level) of message text to be sent 
to the job log. 

• Output queue. The default output queue on which the spooled output files 
produced by. the job are to be placed (batch job only). 

• Hold on queue. Whether a job being placed on the job queue is to be held 
on the job queue until it is released (batch job only). 

• Job date. The date to be used for the job (if different from the system 
date). 

• Job switches. The switch settings to be used for the job. 

When you submit a job you can use the job description in one of two ways: 

• Use a specified job description without changing it for a specified job. For 
example, 

/ /JOB JOBD(QBATCH) JOB(OEDAILY) 

• Use a specified job description but override some of the attributes (using 
the JOB or SBMJOB command) for a specified job. For example, to change 
the cancel severity for a job you enter: 

/ /JOB JOBD(QBATCH) JOB(OEDAILY) CNLSEV(35) 

Note: For autostart or work station jobs, the job description cannot be 
overridden. 

COMMAND LIST 

This is a list of commands related to jobs, subsystem descriptions, classes, 
and queues. It is presented here to help you select the appropriate command 
for the function you want and to help you determine which command you 
might need to reference in the CPF Reference Manual-CL. 

Work Management 255 



r 
Subsystem Descriptions and Classes 

'-, 

Subsystem Descriptions 

Descriptive Name Command Name Function 

Create Subsystem CRTSBSD Creates a subsystem 
Description description. 

Delete Subsystem DLTSBSD Deletes a subsystem 
Description description. 

Change Subsystem CHGSBSD Changes the attributes 
Description of a subsystem description. 

Display Subsystem DSPSBSD Displays a subsystem 
Description description. 

Subsystem Autostart Job Entries 

Descriptive Name Command Name Function 

Add Autostart ADDAJE Adds an autostart 
Job Entry job entry to a / 

subsystem description. 
" 

Remove Autostart RMVAJE Removes an autostart 
Job Entry job entry from a 

subsystem description. 

Change Autostart CHGAJE Changes an autostart 
Job Entry job entry. 

Subsystem Work Station Entries 

Descriptive Name Command Name Function 

Add Work ADDWSE Adds a work station entry 
Station Entry to a subsystem description. 

Remove Work RMVWSE Removes a work station 
Station Entry entry from a subsystem 

description. 

Change Work CHGWSE Changes a work 
Station Entry entry. 

,r 
I 

r 

256 



) 
Subsystem Job Queue Entries 

Descriptive Name Command Name Function 

Add Job Queue ADDJOBQE Adds a job queue entry 
Entry to a subsystem 

descri ption. 

Remove Job RMVJOBQE Removes a job 
Queue Entry entry from a subsystem 

description. 

Change Job CHGJOBQE Changes a job queue 
Queue Entry entry. 

Subsystem Routing Entries 

Descriptive Name Command Name Function 

Add Routing ADDRTGE Adds a routing entry 
Entry to a subsystem 

description. 

Remove Routing RMVRTGE Removes a routing 
Entry entry from a subsystem 

\ description. 

) 
Change Routing CHGRTGE Changes a routing 
Entry entry. 

Job Descriptions 

Descriptive Name Command Name Function 

Create Job CRTJOBD Creates a job 
Description description. 

Delete Job DLTJOBD Deletes a job 
Description descri ption. 

Display Job DSPJOBD Displays a job 
Description description. 

') 
/ 

Work Management 257 



Classes 
~ 

/ 

Descriptive Name Command Name Function " 

Creates Class CRTCLS Creates a class. 

Delete Class DLTCLS Deletes a class. 

Display Class DSPCLS Displays the contents 
of a class. 

System and Job Control 

System 

Descriptive Name Command Name Function 

Terminate CPF TRMCPF Puts CPF in service 
only mode. 

Power Down PWRDWNSYS Direct the system 
System to power down. 

Display System DSPSYS Displays the status of 
each subsystem and /' 
system job in the 1\ 

"-
system. 

Display System DSPSYSSTS Displays the status of 
Status the system (such as 

storage allocation). 

\ Subsystems 

Descriptive Name Command Name Function 

Start Subsystem STRSBS Starts a subsystem 
f,or processing. 

Terminate TRMSBS Terminates a 
Subsystem subsystem. 

Display Subsystem DSPSBS Displays information 
about each job 
being processed by a 
subsystem. 

( 
I 

\ 

258 



Jobs 
~ 

\ 
) 

Descriptive Name Command Name Function _/ 

Job / /JOB Identifies the beginning 
of a batch job. 

End Job / /ENDJOB Identifies the 
end of a batch 
job. 

Submit Job SBMJOB Submits a job to 
a job queue. 

Cancel Job CNLJOB Cancels a job and 
removes it from the 
system. 

Change Job CHGJOB Changes the attributes 
of a job. 

Hold Job HLDJOB Holds a job from 
being processed. 

Release Job RLSJOB Releases a held job. 

) 
Reroute Job RRTJOB Reroutes a job to within 

the current subsystem. 

Transfer Job TFRJOB Transfers a job to 
another subsystem. 

Display Job DSPJOB Displays information 
about a job. 

System Values 

Descriptive Name Command Name Function 

Change System CHGSYSVAL Changes the value of 
Value a system value. 

Display System DSPSYSVAL Displays a system value 
Value and its attributes. 

') 
I 

Work Management 259 



Spooling 
,,--

Job Queues 

Descriptive Name Command Name Function. 

Create Job CRTJOBQ Creates a job 
Queue Queue. 

Delete Job DLTJOBQ Deletes a job 
Queue queue. 

Clear Job CLRJOBQ Removes jobs 
Queue from a job queue 

without deleting the queue. 

Hold Job HLDJOBQ Holds the entries on 
Queue a job queue from 

being processed. 

Release Job RLSJOBQ Releases a held job 
Queue queue. 

Display Job DSPJOBQ Displays the status of 
Queue jobs on a 

job queue. 
/ 

260 



-) 
Output Queues 

Descriptive Name Command Name Function 

Create Output CRTOUTQ Creates an output 
Queue queue. 

Delete Output DLTOUTQ Deletes an output 
Queue queue. 

Change Output CHGOUTQ Changes the attributes of 
Queue an output queue.· 

Clear Output CLROUTQ Removes files 
Queue from an output queue 

without deleting the queue. 

Hold Output HLDOUTQ Holds the entries on an 
Queue output queue from being 

processed. 

Release Output RLSOUTQ Releases a held output 
Queue queue. 

Display Output DSPOUTQ Displays the status of 
Queue files on an 

) output queue. 

Spooled Files 

Descriptive Name Command Name Function 

Change Spooled CHGSPLFA Changes the attributes 
File Attributes of a spooled output 

file. 

Hold Spooled HLDSPLF Holds a spooled file 
File from being written. 

Display Spooled DSPSPLF Displays the data rec<;>rds 
File in a spooled file. 

Work Management 261 



262 

Readers 

Descriptive Name Command Name Function 

Start Card STRCRDRDR Starts a reader to a 
Reader card device. 

Start Data STRDBRDR Starts a reader to a 
Base Reader data base file. 

Start Diskette STRDKTRDR Starts a reader to a 
Reader diskette device. 

Cancel Reader CNLRDR Cancels a reader. 

Hold Reader HLDRDR Holds a reader. 

Release Reader RLSRDR Releases a held reader. 

Writers 

Descriptive Name Command Name Function 

Start Card STRCRDWTR Starts a writer to 
Writer a card device. 

Start Diskette STRDKTWTR Starts a writer to a 
Writer diskette device. 

Start Print ·STRPRTWTR Starts a writer to a 
Writer printer. 

Cancel Writer CNLWTR Cancels a writer. 

Hold Writer HLDWRT Holds a writer. 

Release Writer RLSWTR Releases a held writer. 

Other Commands 

This is a list of commands that are also related to work management but are 
not part of the functions presented in this chapter. 

Descriptive Name Command Name 

Display Log DSPLOG 

Function 

Chapter 13, 
Message Handling 



Part 6. System Management 

~) 

) 

') 
/ 

System Management 263 



( 

( 

264 



) 

, 

) 

Chapter 17. System Values 

System values specify attributes of the system such as system date. System 
values are not objects and cannot be passed as parameter values like CL 
variables. However, system values can be retrieved and placed in a CL variable 
as long as the retrieving is performed by a CL program. 

System values can be displayed and changed using the Display System Value 
(DSPSYSVAL) and Change System Value (CHGSYSVAL) commands. The 
following is an example of a displayed system value. 

11/30/80 10:23:12 SYSTHf VALUE - QOECFMT 

Value: J 

The following CHGSYSVAL command changes the value of QUSRLlBL. This 
system value defines the system default for the user portion of the initial 
library list. The change does not take effect until after the next CPF startup. 

CHGSYSVAL SYSVAL(QUSRLlBL) VALUE(DSTPRODLB QGPL QTEMP) 

You added the library DSTPRODLB to your initial library list for your jobs and 
placed DSTPRODLB before QGPL and QTEMP. 

A system value can be placed in a CL variable for' use in a CL program. The 
Retrieve' System Value (RTVSYSVAL) command places the value in a CL 
variable. (See Chapter 4, Control Language Programs for more information.) 

System values are provided by IBM. You cannot create them. The following is 
a list of system values. 

System Values 265 



266 

QTlME. Time of day. Its value is set when CPF is started. QTIME is a 
six-character value composed of the following two-character values (each of 
which can be referenced). 

• QHOUR. Hour of the day. Its value can range from 00 through 23. 

• QMINUTE. Minute of the hour. Its value can range from 00 through 59. 

• QSECOND. Second of the minute. Its value can range from 00 through 59.· 

QDATE. System date. Its value is set when CPF is started. QDATE is a 
six-character value (five characters for Julian) composed of the following 
two-character values (each of which can be referenced). 

• QYEAR .. Year. Its value can range from 0 through 99. 

• QMONTH. Month of the year. Its value can range from 1 through 12. (Not 
valid for Julian.) 

• QDAY. Day of the month. Its value must be a valid day of the specified 
month. (001 through 356 for Julian.) 

The format of the date is as specified in the system value QDATFMT. 

QDATFMT. System date format. QDATFMT is three characters whose value 
can be YMD, MDY, DMY, or JUL (Julian format). (Y = year; M = month; D = 
day.) This is the format in which the date is displayed. 

QHSTLOGSZ. Maximum size of each version of the history log. QHSTLOGSZ 
is decimal and is initialized to 5000 records. 

QSRVLOGSZ. Maximum size of each version of the service log. QSRVLOGSZ 
is decimal and is initialized to 5000 records. 

QMAXACTLVL. Maximum activity level for the system. This is the number of 
jobs that can execute concurrently. QMAXACTLVL is decimal and is initialized 
to 100. 

QDBRCDWT. Default wait time for obtaining a lock on a data base record. 
QDBRCDWT is numeric (no decimal positions allowed), is specified in 
milliseconds, and is initialized to zeros. 

QHSTUPDF. Number of history log messages to be enqueued to the history 
log queue before the history file is updated. QHSTUPDF is numeric and is 
initialized to 10. 

QSRVUPDF. Number of service log messages to be enqueued to the service 
log queue before the service log is updated. QSRVUPDF is numeric and is 
initialized to 10. 

QSCPFCONS. Start CPF console indicator. Indicates whether Start CPF is to 
continue unattended or terminate when a console failure occurs during Start 
CPF. QSCPFCONS is one character that can be '0' (terminate) or ' l' (continue 
unattended). It is initialized to ' 1'. 

'... 

( 



) 

) 

QBADPGFRM. Maximum number of bad page frames allowed before Start CPF 
is terminated. QBADPGFRM is numeric and is initialized to five. 

QDATSEP. Character separator for dates displayed by the system. QDATSEP 
is anyone-character value. It is initialized to / (slash). 

QDECFMT. Decimal format. It is one of the following characters: 

• n: Use a period for a decimal point and zero suppress to the left of the 
decimal point. QDECFMT is initializ'ed to n. 

• J: Use a comma for a decimal point and zero suppress in the second 
position to the left of the decimal point. 

• I: Use a comma for a decimal point and zero suppress to the left of the 
decimal point. 

QSCPFS/GN. Maximum number of Start CPF sign-on attempts allowed. 
QSCPFSIGN is numeric and is initialized to 15. 

QDBRCVYWT. Wait for data base recovery operations during start CPF 
indicator. QDBRCVYWT is one character that can be 'a' (no wait) or '1' (wait). 
It is initialized to '0'. 

QTOT JOB. Initial number of jobs that storage is allocated for at start CPF. The 
number of jobs is the number supported by the system at anyone time, which 
includes the jobs on the job queue, active jobs, and jobs having output on ·an 
output queue. QTOT JOB is numeric and is initialized to 100. 

QADLTOT J. Additional number of jobs that storage can be allocated for during 
system operation. The storage is allocated after the initial number of jobs 
(QTOTJOB) is reached. QADLTOTJ is numeric and is initialized to 20. 

QCTLSBSD. Controlling subsystem for start CPF. The value of QCTLSBSD is a 
list of two 1 a-character values in which the first is the subsystem description 
name and the second is the library name. QCTLSBSD is initialized to the 
subsystem QCTL 1 in the library QSYS. 

QSYSLIBL. Default for system portion of library list. Its value is a list of 
libraries with each library a 1 a-character value. The list can contain as many 
as five names. QSYSLlBL is initialized to QSYS. 

QUSRLlBL. Default for user portion of library list. Its value is a list of libraries 
with each library a 1 a-character value. The list can contain as many ~s 10 
names. QUSRLlBL is initialized to QGPL and QTEMP in that order. 

QBASPOOL. Minimum size of base storage pool in K bytes. QBASPOOL is 
numeric and is initialized to 150 K bytes. 

QMCHPOOL. Initial size of machine storage pool in K bytes. QMCHPOOL is 
numeric and is initialized to 175 K bytes. 

QBASACTLVL. Default activity level for base storage pool. QBASACTLVL is 
numeric and is initialized to five. 

System Values 267 



268 

QABNORMSW. System running after abnormal or normal termination indicator. 
It is one character that can be '0' (normal) or '1' (abnormal). It is initialized to 
'0'. You cannot change QABNORMSW. 

QACT JOB. Initial number of active jobs that storage is allocated for at start 
CPF. An active job is a job that has been initiated but not terminated or 
canceled. QACT JOB is numeric and is initialized to 50. 

QADLACT J. Additional number of active jobs that storage can be allocated for 
during system operation. The storage is allocated after the initial number of 
active jobs (QACT JOB) is reached. QADLACT J is numeric and is initialized to 
10. 

QAUTOIMPL. Start CPF after auto-IMPL indicator. It is one character that can 
be '0' (no auto-IMPL) or '1' (auto-IMPL). QAUTOIMPL is initialized to O. You 
cannot change QAUTOIMPL. 

QJOBSPLA. Initial size of the spooling control block for the job. The spooling 
control block tracks inline spooled files and output spooled files. This size 
should be specified in multiples of storage increments (page size). QJOBSPLA 
is numeric and is initialized to 1024 bytes. 

QADLSPLA. Additional storage to extend the spooling control block. 
QADLSPLA is numeric and is initialized to 1024 bytes. 

QSPLOUTF 1. Number of containers for spooled inline files with record lengths 
of 96. QSPLOUTF1 is numeric and is initialized to 10. 

QSPLOUTF2. Number of containers for spooled inline files of file type source 
and record lengths of 10S. QSPLOUTF2 is numeric and is initialized to 5. 

QSPLOUTF3. Number of containers for spooled inline files with record lengths 
of 12S. QSPLOUTF3 is numeric and is initialized to 10. 

QSPLOUTF4. Number of containers for spooled inlinefiles of file type source 
and record lengths of 140. QSPLOUTF4 is numeric and is initialized to 5. 

QSPLOUTF5. Number of containers for spooled in line files with record lengths 
of 256. QSPLOUTF5 is numeric and is initialized to 10. 

QSPLOUTF6. Number of containers for spooled in line files of file type source 
and record lengths of 26S. QSPLOUTF6 is numeric and is initialized to 5. 

QSPLOUTF7. Number of containers for spooled output files. QSPLOUTF7 is 
numeric and is initialized to 40. 

QAUXSTGTH. Threshold, in terms of a percentage, of unallocated auxiliary 
storage. QAUXSTGTH is numeric and is initialized to 10. 

QSRVONLY. Service mode and nonservice mode indicator. It is one character 
that can be '0' (standard CPF) or '1' (service only). QSRVONLY is character 
and is initialized to '0'. 

,/ 



'. 

... / 

) 

QJOBMSGQSZ. Initial size of the job message queue. OJOBMSGOSZ is 
numeric and is initialized to 16 K bytes. 

QJOBMSGQTL. Truncation level for the job message queue. OJOBMSGOTL is 
numeric and is initialized to 24 K bytes. 

QCURSYM. Currency symbol. QCURSYM is character and can be any 
character except -, &, *, or O. It is initialized to $. 

COMMAND LIST 

This is a list of commands related to system values. It is presented here to 
help you select the appropriate command for the function you want and to 
help you determine which command you might need to reference in the CPF 
Reference Manual- CL. 

Descriptive Name 

Change System. 
Value 

Retrieve System 
Value 

Display System 
Value 

Command Name Function 

CHGSYSVAL 

RTVSYSVAL 

DSPSYSVAL 

Changes the value 
of a system value. 

Retrieves a system 
value and places it 
into a control 
language variable. 

Displays a system 
value and its 
attributes. 

System Values 269 



,/ 

( 
\. 

270 



) 

) 

) 

Chapter 18. Security 

Security controls who can use the system, who can use objects, and what 
rights of access each user has. Security is" the prevention of access to objects 
by unauthorized persons. Integrity is the protection of objects from accidental 
destruction or alteration. 

Security controls: 

• Access to the system by optionally requiring the user to identify himself 
through the use of a password when signing on or through the use of job 
descriptions for running batch jobs 

• Resources on the system by requiring that users be authorized to use 
system resources such as commands and devices 

• Data in the system by requiring that users be authorized to use objects such 
as files and programs 

This control is accomplished through security at the system level and the user 
level. The system level of security is controlled by the security officer of your 
system installation. Only the security officer has full authority (all object and 
special authority) across the system and is the only user authorized to control 
the installation's security procedures. The security officer controls the creating 
and maintaining of the basic unit of security, the user profile. The user profile 
is the user's authority to use the system; it represents the user to the system. 
If a user profile is deleted from the system, the user no longer has the 
authority to use the system. 

The user level of security consists of authorizing users to use objects and 
system resources. Either the security officer or an object's owner can authorize 
nonowners to use objects. (An owner is the user who creates the object or 
who has been given ownership of the object.) 

USER IDENTIFICATION 

When a user signs on to the system he must use a password. (For a batch job 
the user name is in the job description.) The user is prompted to sign on: 

Enter user password to sign on: 

This user password tells the system who the user is and what user profile to 
use to initiate the job. 

Security 271 



272 

The user profile contains the following information: 

• User name. The name by which the system identifies the user profile. When 
users are granted authority to objects, the user name is the name to which 
authority is granted. The security officer assigns this user name when the 
user profile is created. This name never changes. 

• Owned objects. A list of all objects owned by this user profile. 

• Authorized objects. A list of all objects privately authorized to this user and 
what authority the user has for the objects. 

• Special authority. Whether the user can perform save/restore operations, 
save the system, or control the operation of other users' jobs. 

• Storage. The maximum amount (K bytes) of storage the user can use for 
storing permanent objects owned by the user. 

The following information is associated with the user profile but is not 
contained in it. 

• User password. The name by which the user signs on the system and by 
which the system determines which user profile is to be used. The security 
officer assigns this user password. 

• Priority limit. The highest scheduling priority and output priority available for 
the user's jobs. 

• Initial program. The program to be invoked automatically when the user 
uses the IBM-supplied control language processing program. 

A user profile can be created for each user of the system, or a user profile can 
be created for several users. In addition, you can use the user profiles shipped 
with your system: 

• Security officer user profile (OSECOFR) 

• Programmer user profile (OPGMR) 

• Work station user profile (OUSER) 

• System operator user profile (OSYSOPR) 

• Programming service representative user profile (OPSR) 

• Customer engineer user profile (OCE) 

( 



~) 

) 

') 
J 

The QPGMR user profile is specified as the user profile for the IBM-supplied 
batch job description QBATCH. It contains the authority necessary for system 
and applications programmers. This profile can be modified or deleted. The 
initial user password is PGMR. 

The QUSER user profile is specified as the user profile for the IBM-supplied 
interactive job description QCTL. It contains the authority necessary for the 
work station user. This profile can be modified or deleted. The initial user 
password is USER and the initial program is QCALLMENU. 

The IBM-supplied system operator user profile QSYSOPR has the special 
authority of save/restore authority for all objects, save system authority, and 
job control authority. The system operator can save and restore all objects and 
change, cancel, display, hold, and release all jobs and spooling queues (if the 
queues can be controlled by the operator). This profile can be modified or 
deleted. The initial user password is SYSOPR. 

The IBM-supplied programming service representative (PSR) user profile QPSR 
has the authority needed by. the PSR to service the system's programming. 
The PSR should not be revoked from the system console and must be 
individually authorized to all display work stations. When a work station is 
authorized to all users (*ALL), the PSR is not included. You cannot delete the 
PSR user profile. The initial user password is PSR. 

The IBM-supplied customer engineer (CE) user profile QCE has the authority 
needed by the CE to perform diagnostics and service the machine. The CE 
should not be revoked from the system console and must be individually 
authorized to all display work stations. When a work station is authorized to all 
users (*ALL), the CE is not included. You cannot delete the CE user profile, 
nor can you have more than one CE user profile. The initial program for QCE 
is the concurrent service monitor, which is used to diagnose system problems. 
The initial user password is CEo 

You should restrict who can use the system by changing the user passwords 
for QPGMR, QUSER, QSYSOPR, QPSR, and QCE. However, only the security 
officer can make these changes. If you change the password for QCE, you 
should contact the customer engineer. For example, the security officer enters 
the following Change User Profile (CHGUSRPRF) commands: 

CHGUSRPRF USRPRF(QUSER) PASSWORD(BRONZE) 
CHGUSRPRF USRPRF(QPGMR) PASSWORD(SILVER) 
CHGUSRPRF USRPRF(QSYSOPR) PASSWORD(GOLD) 

To use the QPGMR user profile, a user would sign on as SILVER. 

In addition to the five IBM-supplied user profiles QPGMR, QUSER, QSYSOPR, 
QPSR, and QCE, your system is shipped with a security officer user profile 
(QSECOFR). 

Security 273 



274 

Security Officer User Profile (QSECOFR) 

The user password for this user profile is SECOFR, and it should be changed 
to maintain integrity and security. 

The security officer is the only user authorized to: 

• Enroll users on the system by creating a user profile 

• Change a user profile 

• Display a list of user names and passwords 

In addition, the security officer can: 

• Remove a user from the system by deleting a user profile 

• Grant and revoke authority for all system resources such as devices, objects, 

and commands 

• Display the contents of other uS,ers' user profiles 

• Display object authority information for all objects 

You cannot delete the security officer user profile, nor can you have more than 
one security officer user profile. No other user profile can be granted all object 
authority. 

Although the security officer has all object authority, he must be privately 
authorized to and revoked from all work stations other than the system 
console. When a work station is authorized to all users (*ALL), the security 
officer is not included. (This controls the power of the security officer.) The 
security officer cannot be revoked from the system console because he would 
be prevented from signing onto the system. 

The following commands are authorized to the QSECOFR user profile only. No 
other user profile can use these commands. 

Change User Profile (CHGUSRPRF) 

Create User Profile (CRTUSRPRF) 
Display Authorized Users (DSPAUTUSR) 

OBJECT OWNERSHIP 

All objects have owners. Initially, the user who creates the object is the owner. 
However, the owner, the security officer, or a user with object existence rights 
can transfer ownership to another user. The owner and the user with object 
existence rights must have add rights for the user profile to which ownership is 
being transferred and delete rights to the current owner's user profile. See 
Object Authority for an explanation of the types of authority. 

( 
\ 



'" ) 

If a user profile is being deleted because a user is no longer authorized to use 
the system, the objects owned by that user must be assigned to new owners. 
Otherwise, the objects must be deleted, because an object cannot exist on the 
system without an authorized owner and a user profile cannot be deleted if it 
owns objects. 

The Change Object Owner (CHGOBJOWN) command is used to transfer 
ownership; In the following example the present owner is changing the owner 
of the order department general menu program ORD040C. 

CHGOBJOWN OBJ(ORD040C.DSTPRODLB) OBJTYPE(PGM) 
NEWOWN(BWALTON) 

The object description changes like this: 

Old Object Description New Object Description 

Object name: ORD040C Object name: ORD040C 

Owner: HANDERSON Owner: BWALTON 

Secu rity 275 



276 

The user profiles change like this: 

Old User Profiles New User Profiles 

User name: HANDERSON User name: HANDERSON 

Owned objects: Owned objects: 
ORD040C CUSMSTP1 
CUSMSTP1 

! ~ 
User name: BWAL TON User name: BWALTON 

Owned objects: Owned objects: 
None ORD040C 

Authorized objects Authorized objects 

~ } l ~ 

OBJECT AUTHORITY 

Object use can be authorized privately or publicly. Objects that are privately 
authorized are available only to specific users. Object rights that are publicly 
authorized are available to all users. 

An object's owner and the security officer have all authority for an object. 
They can both grant authority for an object to other users of the system and 
revoke authority from other users of the system. 

,/ 

/ 

I 
\ 
" 



\ 
/ 

) 

) 

There are two major groups of rights: object rights and data rights .. 

Object rights control how the user can use the entire object: 

• Object existence rights. The right to delete, save, free the storage of, 
restore, and transfer ownership of an object. For example, to delete a 
program you must have object existence rights for the program. 

• Object management rights. The right to move,' rename, grant authority to, 
revoke authority from: and change the attributes of an object. For example, 
to move an object from one library to another you must have object 
management rights for the object. 

• Operational rights. The right to use an object and look at its description. 
These rights vary according to object type. For example, to compile a 
program using an externally described data file, you must have operational 
rights to the file. To execute the program and read records from the file, 
you must also have read rights to the file. 

Data rights control how the user can use the data contained in the object: 

• Read rights. The right to read the entries in an object. For example, to read 
records from a file you must have read rights for the file. 

• Update rights. The right to change the entries in an object. For example, to 
update a record in a file you must have update rights for the file. 

• Add rights. The right to add an entry to an object. For example, to place a 
program in a library you must have add rights for the library. 

• Delete rights. The right to delete an entry from an object. For example, to 
delete a record from a file you must have delete rights for the file. 

Note: Each user profile is granted object management, read, add, and delete 
rights for itself so that the user can perform functions such as creating objects, 
deleting objects, transferring ownership of objects, and displaying authorized 
objects. Because a user has these rights, the user can grant and revoke to and 

from other users the read, add, and delete rights to his user profile. 

GRANTING OBJECT AUTHORITY 

Both object rights and data rights can be granted to users through the Grant 
Object Authority (GRTOBJAUT) command. To grant object and data rights, the 

user mus~ be the security officer, the owner, or a user with object management 
rights and any right to be granted. Only the security officer and object owner 
can grant object management rights. In the following example you want to 
authorize RSMITH, BJONES, TBROWN, and WDOUGLAS to use the order 
department general menu. These users are to be given operational rights, 
which means they can execute the program that displays the menu. 

GRTOBJAUT OBJ(ORD040C.DSTPRODLB) OBJTYPE(PGM) 

USER(RSMITH BJONES TBROWN WDOUGLAS) 
AUT(*OPER) 

Security 277 



278 

When an object is created, the authority to it can be designated as public, 
private, or normal. A publicly authorized object is one for which all users have 

all authority. A privately authorized object is one restricted to the use of the 
owner, security officer, and other users to whom authority was granted 

privately through the Grant Object Authority (GRTOBJAUT) command. Rights, 

other than publicly authorized rights, are kept in the user profile to which the 

rights are granted. Publicly authorized rights for the object are kept in the 
object. An object designated as normal is an object for which all users have 
only partial authority. Normal authority varies according to object type. The 

following chart shows what rights are granted when an object is designated as 

normal (indicated by N) and what rights (indicated by X and N) apply to each 

object type. Normal authority includes operational and any data rights needed 
to perform common functions on an object. Object existence and object 

management rights are never granted as part of normal authority. 

Object Rights Data Rights 

Object 
Object Manage- Opera-

Object Type Existence ment tional Read Add Update 

Class X X N 
Command X X N 
Control unit 

description X X N 
Data area X X N X 
Device description X X N 
Edit description X X N 
File 

Device X X N 
Logical X X N N N N 
Physical X X N N N N 

Job description X X N 
Job queue X X N N N X 
Library X X N N X N 
Line description X X N 
Message file X X N N N X 
Message queue X X N N N X 
Output queue X X N N N X 
Program X X N 
Print image X X N 
Subsystem 

J 

description X X N 
Table X X N X 
User profile X X X X 

Delete 

,/ 

N 
N 

X 
N 

X 
N 
X 

X 

( 



) 

) 

The following chart shows what rights a user needs to perform certain CPF 
functions. The objects listed under the Rights columns indicate which objects 

require the rights. 

Rights 

Object Object Opera-
Function Existence Management tional Add Read Update 

Create object USRPRF LIB 
LIB 

Delete object D OBJ LIB 

Move object OBJ To LIB LIB 

Rename object OBJ LIB LIB 

Grant authority OBJ or be LIB 
owner of 
OBJ 

Revoke authority OBJ or be LIB 
owner of 
OBJ 

Transfer OBJ To LIB 
ownership USRPRF 

Display object fJ OBJ LIB 
OBJ 
if 
PGM 

Display object D 
description LIB 

Display object 
authority OBJ LIB 

Change object II OBJ .• f LIB 

Call to progra m PGM LIB 

Save II OBJ or be DEVD LIB 
owner of LIND 
OBJ CUD 

Free storage II OBJ or be LIB 
owner of 
OBJ 

Restore D OBJ or be DEVD LIB 
owner of LIND 
OBJ CUD 

Delete 

From 
LIB 

Owner's 
USRPRF 

Security 279 



280 

Legend: 

USRPRF User profile 
LIB Library 
OBJ Object 
PGM Program 
DEVD Device description 
LIND Line Description 
CUD Control unit description 

D To delete libraries, device descriptions, control unit descriptions, line 
descriptions, and user profiles, no authority is needed for a library. 

B To display device descriptions, control unit descriptions, line descriptions, 
and user profiles, no authority is needed for a library. 

II Any or some authority is needed for the object. 

II To change user profiles, device descriptions, control unit descriptions, 
and line descriptions, no authority is needed for library. 

II You must have save/restore authority (*SAVRST) or save system 
(*SAVSYS) authority. 

Note: Because libraries are often public and objects being used are often 
public or owned by you, you should usually have the authority required for any 
reasonable function. Unusual functions executed on another user's private 
object requires that the user privately grant you authority. 

The PUBAUT parameter on the create object commands indicates what 
authority the public (all users) has for an object·. For example, the following 
command gives normal authority to all users for a physical file ORDHDRP. 

CRTPF FILE(ORDHDRP) SRCFILE(QDDSSRC) PUBAUT(*NORMAL) 

The object description for ORDHDRP is: 

Object name: ORDHDRP 

Owner: QPGMR 

Authorized users 

*ALL *NORMAL 

Consists of read, add, update, 
delete, and operational rights. 

r-
1\ 

' •.. 

,/ 
I 

I\. 

( 

\ 
\ 



) 

) 

) 

Specific rights instead of all rights can be given to the public. In this case, 
public authority (*ALL) should not be specified in the PUBAUT parameter; 
instead, normal authority (*NORMAL) or private authority (*NONE) is specified. 
Then, the GRTOBJAUT command is used to grant a specific right publicly to 
users. The USER parameter in the GRTOBJAUT would be *PUBLIC and the 
AUT parameter would indicate which right is being authorized publicly. 

RUNNING A PROGRAM UNDER AN OWNER'S USER PROFILE 

When you create a program to be used by other users, you must authorize the 
user not only to the program but also to the objects (such as files) associated 
with the program. You can grant each user the specific rights he needs to the 
objects. However, by specifying, when the program is created, that the 
program is to always run under the owner's user profile, private authority does 
not have to be granted. Other users have authority for the objects only when 
they are executing the program and then only within the program or in 
subsequent programs invoked by the program. 

To specify that a program is to run under an owner's user profile, you specify 
the following parameter and value on a create program command: 

USRPRF(*OWNER) 

Only the security officer can transfer ownership of a program that executes 
under the owner's user profile. 

CREATING USER PROFILES 

Only the security officer can create and change a user profile. He uses the 
Create User Profile (CRTUSRPRF) command to create the profile. 

In the following example, the security officer creates a user profile for a work 
station user. 

CRTUSRPRF USRPRF(RSMITH) PASSWORD(PRIZE) 
SPCAUT(*NONE) MAXSTG(*NOMAX) 
PTYLMT(5) INLPGM(ORD040C.DSTPRODLB) 
TEXT(' Bob Smith - Order dept 348') 

Secu rity 281 



282 

Initially, the user profile for RSMITH looks like this: 

User name: RSMITH 

Owned objects 

None 

Authorized objects 

None 

~ 
Initial program: ORD040C.DSTPRODLB 

User description: Bob Smith -
order dept 348 

As RSMITH is given object authority or creates objects, the objects he is 
authorized to and owns and the type of rights given are recorded in his profile. 

To change a user profile and its associated information, the security officer 
uses the Change User Profile (CHGUSRPRF) command. The password, special 
authority, storage, priority limit, initial program, and text can be changed. In 
the following example, the security officer changes the user profile of RSMITH. 
The initial program changes from ORD040C to QCALLMENU. 

CHGUSRPRF USRPRF(RSMITH) INLPGM(QCALLMENU) 
TEXT('Bob Smith - Accounting dept 512') 

However, RSMITH still must be authorized to QCALLMENU through the Grant 
Object Authority (GRTOBJAUT) command and can have his authority for 
ORD040C revoked (see Revoking Object Authority). 

After all changes are made, including authority changes, the user profile for 
RSMITH looks like this: 

User name: RSMITH 

Owned objects 

None 

Authorized objects 

QCALLMENU *NORMAL 

f f 
~ 

Initial program: QCALLMENU 

User description: Bob Smith -
accounting dept 512 

( 
\, 

( 



\, 
) 

) 

REVOKING OBJECT AUTHORITY 

Object authority can be revoked from a user by the security officer, the 
object's owner, or a user having object management rights. However, only the 
security officer or the object's owner can revoke public authority and object 
management rights .. A user with object management rights can revoke only his 
rights. 

In the following example you revoke the authority RSMITH has for the order 
department general menu. 

RVKOBJAUT OBJ(ORD040C.DSTPRODLB) OBJTVPE(PGM) 
USER(RSMITH) AUT(*NORMAL) 

DISPLAYING SECURITY INFORMATION 

Three displays contain security information: 

• Authorized users display 

• User profile display 

• Object authority display 

Authorized Users Display 

, 

The authorized users display is a list of user names and their associated 
passwords that only the security officer can ask for. The Display Authorized 
Users (DSPAUTUSR) command is used to display or print the list alphabetically 
by user name or user password. The following is an example of the authorized 
users display in which the user names are listed alphabetically. 

07/07/80 AUTHORIZED USERS DISPLAY 
USER NAME PASSWORD USER NAt1E PASS~10RD 

BJOt~ES ElfPTY KMILLER PRETTY 
BSCOTT GAS RPEARSON CAT 
CSIHPSON TEt~NIS RSHITH PRIZE 
DPETERS DOOR TBROWN SKATE 
EJOHNSON BRICK nlARTHAN SUMMER 
JKING DOLLAR nlILLIAHS EASY 

WDOUGLAS TREE 

Security 283 



284 

User Profile Display 

, 

You can display the entire contents of a user profile or only one of the 
following parts of a user profile: 

• Basic part: User name, special authority authorized to user, storage, priority 
limit, initial program name, text description, number of objects owned by the 
user, and number of objects authorized to the user 

• Commands to which the user is privately authorized 

• Devices to which the user is privately authorized 

• Objects to which the user is privately authorized and what his authority for 
"each object is 

• Objects owned by the user 

Any user who is authorized to the Display User Profile (DSPUSRPRF) 
command and has read rights for the user profile can ask" for the user profile 
display. The information can also be printed. The following is an example of 
the user profile display in which a basic display for BJONES is displayed. 

08/24/81 USER PROFILE - BJONES 

Special authority: Uone 
Maximum storage: 20000 
Number of objects - owned: 5 
Priority hmits: 
InHial program: 

5 

ORD040C 

Authorized: 25 

Library: DSTPRODLB 
Text description: Bob Jones - Dept 522 

/' 

/ 
I, 



) 

'\ 
\ 

) 

Object Authority Display 

r 

The security officer, the object's owner, or a user with object management 
rights can ask for a display of: (1) the rights that have been granted for a 
specific object, and (2) to whom those rights were given. This display can be 
printed. 

The following is an example of the object authority display for the object 
ORD040C in the library DSTPRODLB. 

08/25/80 OBJECT AUTHORITY DISPLAY 
Object name: ORD040C Library: DSTPRODLB 
Owner name: QPGHR Obj ect type: FILE 

OBJECT AUTHORITY DATA AUTHORITY 
USER NAME OPER MGT EXIST READ ADD UPD DLT 
BJONES X 

COMMAND LIST 

This is a list of commands related to security. It is presented here to help you 
select the appropriate command for the function you want and to help you 
determine which command you might need to reference in the CPF Reference 
Manua/-CL. 

Descriptive Name 

Change Object 
Ovyner 

Display Authorized 
Users 

Command Name 

CHGOBJOWN 

DSPAUTUSR 

Function 

Transfers ownership 
of an object to 
a new oyvner. 

Displays a list 
of user names and 
their user passwords. 

Security 285 



User Profile / 
,r-

( 
\ ... 

Descriptive Name Command Name Function 

Create User Profile CRTUSRPRF Identifies a user 
to the system by 
creating his user 
profile. 

Delete User Profile DLTUSRPRF Deletes a user 
from the system 
by deleting his 
user profile. 

Change User Profile CHGUSRPRF Changes the 
attributes of a 
user profile'. 

Display User Profile DSPUSRPR Displays the contents 
of a user profile. 

Object Authority 

Descriptive Name Command Name Function 

Grant Object GRTOBJAUT Grants authority / 
I 

Authority for objects to users. 

Revoke Object RVKOBJAUT Revokes authority for 

Authority objects from users. 

Display Object DSPOBJAUT Displays the list of 

Authority users authorized to 
use an object and the 
rights to that object. 

/' 
( 
\, 

286 



) 
-'" 

Chapter 19. Save/Restore 

Save/restore lets you save backup copies of all objects on your system so that 
you can recover from program or system failure. Save/restore can also be 
used to keep infrequently used objects offline so that online storage is 
available for more frequently used objects. 

You can save and restore: 

• A single object in a library 

• A group of objects by generic name 

• A group of objects by generic name and object type: 
Command definitions 
Message files 
Tables 
Programs 
Print images 
Classes 
Edit descriptions 
Subsystem descriptions 
Files 
Job descriptions 
Data areas 

• An entire library , 

• The system (QSYS, device configuration, and user profiles) 

When an object is saved the following information is saved: 

• Label 
Object name 
Object type 
Date and time of the save 
Storage required in the system 
Text description 

• Owner name 

• Any public authority 

• The object itself 

You can save and restore objects while normal system operation continues. 
However, if an object is being used for updating or is allocated exclusively to a 
job, it cannot be saved or restored while being used. In addition, an object 
cannot have its storage freed if it is being used in a job. 

Save/Restore 287 



288 

If you are saving the entire system, the system must be dedicated to the save. 
Other functions cannot be performed at the same time. 

When an object is saved, it is not removed from the system. The object still 
exists on the system. That is, it still occupies storage on the system and can 
be used normally. Only a copy of it is saved. 

If you do not want to keep a data b.ase file or a program on the system, you 
can make the storage it occupies available for other use. This is called freeing 
storage. You free the storage when you save the object by using the 
STG(*FREE) parameter. 

Notes: 
1. If you free storage, the object is offline and must be restored to be used. 
2. Freeing storage is different from deleting an object in that when you delete 

an object all information about the object is removed from the system. To 
use the object again you must create it again and, if the object is private, 
grant authority to users. 

You can restore objects to a system on which the object still exists and on 
which the object does not exist online. The object might have had its storage 
freed or been deleted or might have never existed on the system you are 
restoring it to. By restoring objects from one system onto another system, you 
can move objects from one system to another. 

When an object is restored for which its storage has not been freed, the object 
existing on the system is replaced by the saved object. If the object does not 
exist on the system, the system allocates storage for it and restores it. If only 
selected objects from a library were saved, only those objects, not the entire 
library, can be restored from a library that has been saved. 

In addition, you can restore objects to a library other than the library from 
which they were saved. 

The save/restore history information contains the following about each object: 

• Date and time of the last save 

• Date and time of the last restore 

• Volume identifiers of volumes containing the most current saved version 

• The number of intermediate magazines used in the last save (the number of 
magazines used between the first and last magazines) 

,. 

r 
I" 



) 

) 

) 

Restoring an Application 

To move an application from one system to another, use the restore function. 
The following shows the order in which you must restore the application. 

1. Enroll users on the system. 

2. Restore the libraries containing !he application. Either" the system 
operator or a user who owns all the objects involved can restore the 
libraries. If the system operator restores the objects, the security officer 
becomes the owner of any object whose owner does not exist on the 
system. 

You may have to change the library names if the names are also names 
of libraries on the new system. Or, you can delete the libraries that 
already exist on the system. If you change the library names, the 
programs must be changed to reflect the new library names. 

3. Authorize users to the necessary objects. 

4. Use override commands to change the programs to reflect changes due 
to the new system. 

Security Considerations 

To save, free the storage of, and restore all objects on the system, you must 
have save system authority. To save, free the storage of, and restore objects 
to which your user profile has object existence rights, you must have 
save / restore authority. Both save system and save / restore authority are 
special authority that can be granted by the security officer when a user profile 
is created or changed. 

When an object is restored to the system but its owner no longer exists on the 
system, the security officer becomes the owner of the object. 

If a private object is being restored and the object's storage was freed, the 
owner does not have to grant authority again to the users to use the object. If 
the object was saved as a public object, it is restored as a public object. If an 
object is- restored that had been deleted or never existed on the system, all 
private authority must be granted again. 

Diskette Considerations 

Diskettes are the save/restore medium. Objects are saved on diskettes in the 
diskette magazine drive. They are then taken out of the drive and stored 
offline. 

The diskette magazine drive can hold two magazines, each containing ten 
diskettes, and three slots for manually inserting diskettes. The magazines are 
called *M 1 (first magazine) and *M2 (second magazine). The diskettes in a 

magazine are numbered from one through ten. The slots are called *S 1 (first 
slot), *S2 (second slot), and *S3 (third slot). 

Save/Restore 289 



290 

Before you can use a diskette on the system, it must be initialized and have 
volume labels written on it. The Initialize Diskette (lNZDKT) command does 
this for you. 

To use the diskette magazines for saving and restoring, the following 
conventions are followed: 

• The volume identifier consists of two through six characters of which the 
first one through five characters are the magazine identifier and must be the 
same for all diskettes in a magazine. The last character identifies the 
position of the diskette in the magazine and must be one through ten, 
where ten is designated as O. 

• A magazine is assumed to be full (contains 10 diskettes). 

• Before a diskette magazine is used in a save operation, all of the diskettes 
in the magazine, beginning with the first diskette on which the saved copy 
is to be written, must be clear. (Use the Clear Diskette (CLRDKT) 
command.) 

SAVING A LIBRARY 

You can save all libraries or a single library. 

The following example shows how to save a single library. In this example, the 
general purpose library QGPL is saved. 

SAVLlB LlB(QGPL) LOC(*M12) VOL(*MOUNTED) STG(*KEEP) 

The library is saved on magazines 1 and 2 on the volumes mounted. The 
storage for QGPL is not freed; therefore, QGPL still exists on the system. 

If you had wanted to save all libraries with the exception of the system library 
QSYS, you would have specified *ALL for the library name. 

RESTORING A LIBRARY 

You can restore a library or all libraries (except QSYS) to the system. Objects 
in the library can be either old or new. Old objects are those that were saved 
on your system and have not been deleted. New objects are those that were 
saved on another system or were deleted from your system after they were 
saved. You have four options concerning new and old objects when you 
restore a library. 

1. Only old objects are replaced in a library. 

2. Only new objects are added to a library. The old objects are not 
replaced. 

3. Old objects are replaced and new objects are added to a library. 

4. Only those objects whose storage has been freed are restored. 
(' 
\ 



) 

) 

"-
) 

/ 

If you specify a volume identifier, you can specify a save date and save time. 
This lets you specify exactly which saved version you want. If you do not 
specify a save date or save time, the first version encountered on the volume 
is restored. 

When you restore a library, you do not have to specify the specific volume on 
which the library was saved. You ·can specify that the most current saved 
version be used for the restore. 

In the following example, you restore the general purpose library OGPL. 

RSTLIB SAVLlB(OGPL) LOC(*M12) 
VOL(*GURRENT) OPTION(*MIXED) RSTLlB(*SAVLlB) 

The saved library is on magazines 1 and 2. The most current version is 
restored. If thl3 most current version was not mounted, a message is issued to 
the system operator to mount the correct volume (diskette). Old objects are 
replaced, and new objects are added to the library (*M IXED). 

SAVING AND RESTORING A GROUP OF OBJECTS 

You can save a group of objects by a generic name or by generic name and 
type. However, all the objects must be from the same library. 

In the following example, you save some of your order entry files that are in 
library DSTPRODLB. 

SAVOBJ OBJ(ORD*) LlB(DSTPRODLB) OBJTYPE(FILE) 
LOC(*M12) VOL(*MOUNTED) STG(*KEEP) 

The files are saved on magazines. 1 and 2 on the volumes mounted. The 
storage for these files is not freed. The objects still exist in DSTPRODLB. 

When you restore this group of objects you use the generic name ORD* again. 
If you do not have a record of the location of a saved object, you can get this 
information by displaying the object description. You must use the Display 
Object Description (DSPOBJD) command and ask for a full description 
(DETAIL(*FULL)). See Chapter 3, Objects for a description of the command 
and the resulting display. 

SAVING A SINGLE OBJECT 

You can save a single object or more than one object (not a generic group). 

In the following example, you save a single object, your field reference file. 

SAVOBJ OBJ(DSTREF) LlB(DSTPRODLB) OBJTYPE(FILE) 
LOC(*S1) VOL(SVVOL 1) STG(*KEEP) 

The file is in DSTPRODLB and remains there because its storage is not freed. 
It is saved on volume SWOL 1, which was placed in slot 1 (*S1). If SVVOL 1 is 
not in slot 1 when the save request is entered, the system operator receives a 
message to mount the volume in the slot. 

Save/Restore 291 



292 

SAVING AND RESTORING AN ENTIRE SYSTEM 

To save an entire system you must save all the user libraries (including QGPL) 
and the system library (OSYS). 

Use the Save Library (SAVLlB) command to save all user libraries and the 
general purpose library OGPL (LlB(*ALL)). 

Use the Save System (SAVSYS) command to save the system library OSYS, 
the system's device configuration, and all user profiles. 

SAVSYS LOC(*M12) VOL(*MOUNTED) 

The system is saved on the volumes mounted in magazines 1 and 2. When 
the diskettes are full, the system operator receives a message to take the full 
diskettes out and to mount more diskettes. 

Note: The magazine on which the system is saved must be cleared. 

To restore an entire system you must do the following (in the same order): 

1. Install the CPF 

2. Restore the user profiles 

3. Restore all the user libraries and OGPL 

4. Restore object authority 

After the CPF is installed, the user profiles must be restored before the 
libraries can be restored. An object or library can'not be restored unless an 
owner exists on the system for the object or library; Besides restoring the user 
profiles, this command loads the object authority information needed to restore 
object authority. The object authority part of the user profiles is not restored 
when the profiles are restored. 

To restore the user profiles, use the Restore User Profiles (RSTUSRPRF) 
command and specify the location and volume. 

RSTUSRPRF LOC(*M12) VOL(*MOUNTED) 

After the user libraries are restored, the user authority for objects must be 
restored to the user profiles. User authority could not be restored previously 
because you cannot give authority for an object that does not exist on the 
system. 

To restore authority, use the Restore Authority (RSTAUT) command. There are 
no parameters on this command. 

(' 
\, 

/ 



) 
COMMAND LIST 

This is a list of commands related to savel restore. It is presented here to help 
you select the appropriate command for the function you want and to help you 
dete~mine which command you might need to reference in the CPF Reference 
Manual-CL. 

Descriptive Name Command Name Function 

Save System SAVSYS Saves the· IBM-supplied 
libraries (except QG PL), the 
the device configuration, and 
all user profiles on the 
savel restore medium. 

Restore Authority RSTAUT Restores user profile 
authority to objects. 

Restore User RSTUSRPRF Restores user profiles 
Profile to the system. 

Object 

Descriptive Name Command Name Function 

Saves objects on the " 

) Save Object SAVOBJ 
savelrestore medium. 

Restore Object RSTOBJ Restores objects to the 
system. 

Library 

Descriptive Name Command Name Function 

Save Library SAVLlB Saves a single library or 
all libraries on the 
savel restore medium. 

Restore Library RSTLIB Restores a single library 
or all libraries 
to the system. 

) 
/ 

Save/Restore 293 



( 

294 



) 

'\ 
) 

Chapter 20. Service 

In most cases, service personnel can service your system while the system 
performs normal data processing activities. Most service functions are primarily 
designed for service personnel, but some functions are available to you and are 
described in this chapter. 

If you are authorized to the system operator user profile, you can perform the 
following service functions to help determine the nature of the problem and 
whose problem it is (18M's or yours): 

• Copy the error log 

• Trace a job and the internal machine processing 

• Start a confidence check of devices 

• Verify a printer 

• Start the problem determination procedures 

For information about applying program changes, see the Program· Product 

Installation Guide. 

COPYING THE ERROR LOG 

Error log data consists of machine checks, device errors, and volume statistical 
data. You can print a copy of this data for service personnel so they can 
analyze it without tying up your sy~tem. You can continue using your system 
while the copy is executing. 

The error log can be copied by type of error log data: 

• All error log data 

• A summary of error log data 

• Only machin~ check data 

• Only device error data 

• Only volume statistical data 

If only device error data is copied, you can specify that the data for all devices 
or only for a particular device is to be copied. 

If only volume statistical data is copied, you can specify that the data is to be 
deleted from the error log after it is copied. 

Service 295 



296 

In addition, you can select error log data (except volume statistical data) to be 
copied by specifying a start time and end time. The start time is the time and 
day the first piece of data to be copied was placed in the error log. The end 
time is the time and day the last piece of data to be copied was placed in the 
error log. 

Use the Copy Error Log (CPYERRLOG) command to copy the data. The 
following CPYERRLOG command copies all !l1achine check data placed in the 
error log on 10 January 1981. Because all data for that day is copied, * AVAI L 
was specified for time. 

CPYERRLOG TYPE(*MCH) PERIOD((*AVAIL 01 :10:81) (*AVAIL 01 :11 :81)) 

TRACING A JOB AND THE INTERNAL MACHINE PROCESSING 

Traces collect information necessary to analyze a problem. You can trace a job 
or trace internal machine activities. 

Tracing a job involves recording the calls and returns of programs. The trace 
records contain: 

• Operation 
Call 
Return 
Transfer control 
Event handler 
External exception handler 
I nvocation destroyed 

• Program name of the program on which the operation was performed (such 
as the program called or returned to) 

• Name of the library containing the program 

• Invocation number 

• Instruction number of the program receiving control 

• Instruction number of the program giving control 

• Time stamp 

• Relative record number 

When a trace record is generated, it can be sent to a user exit program for 
handling (examining and altering). You must create this program if you want it. 

By using such a program you can suppress a trace record by filling it with 
blanks. The trace record is passed to the program in the form of a single 
character string. The exit program can contain the dump commands (see 
Chapter 15, Testing); output from dump commands is spooled to the job 
requesting the trace. Output from other commands that create spooled output 

is spooled to the job executing the command. 

( 

( 
\ .. 

( 
\ 



) 

) 

'\ 
) 

When you start tracing a job you can set up storage to contain the trace 
records and specify what is to happen when all the storage has been used. 
Two things can happen: 

• The trace stops 

• Old trace records are replaced with new records (this is called wrapping) 

The Trace Job (TRCJOB) command starts a trace. You can also use it to stop 
a trace. The following TRCJOB command stops a trace. 

TRCJOB SET(*OFF) 

To trace the internal activities of the machine, use the Trace Internal (TRCINT) 
command. However, service personnel should tell you what to specify in the 
command. 

STARTING A CONFIDENCE CHECK 

You can use a confidence check to ensure that the I/O devices, the machine, 
and CPF are functioning together. A confidence check does the following: 

• For MFCU input, cards are read; for MFCU output, cards are punched and, 
optionally, printed. 

• For a 5211 Printer, pages are printed. 

• For diskettes, diskettes are written on and then read. A diskette must be in 
manual slot one. This diskette must be initialized and have a volume label. 

You can put a time limit on how long the devices are to run. Also, you can 
specify which devices are to run. You use the Start Confidence Check 
(STRCNFCHK) command to start the check and specify the devices and time. 

The following STRCNFCHK command starts the printer PRINTER and runs it . 
for 1200 seconds. 

STRCNFCHK DEV(PRINTER) TIME(1200) 

Service 297 



298 

VERIFYING A 5256 PRINTER 

To determine if a 5256 Printer is functioning properly, you run a test pattern. 
This test pattern is printed as many times as you want. 

Use the Verify Printer (VFYPRT) command. All you need specify is the printer 
name and, optionaily, how many'times you want the test pattern printed. By 
default, the test pattern is printed once. The following VFYPRT command 
verifies the 5256 Printer PRINTER2 by printing the test pattern twice. 

VFYPRT DEV(PRINTER2) TIMES(2) 

STARTING THE PROBLEM DETERMINATION PROCEDURES 

To determine the nature of a problem and whose problem it is (yours or 
IBM's), use the IBM-supplied problem determination procedures. The Start 
Problem Determination Procedures (STRPDP) command starts the initial 
procedures. 

COMMAND LIST 

This is a list of commands related to service. It is presented here to help you 
select the appropriate command for the function you want and to help you 
determine which command you might need to reference in the CPF Reference 
Manual-CL. 

Descriptive Name 

Copy Error Log 

Start Confidence 
Check 

Start Problem 
Determination 
Procedures 

Trace Internal 

Trace Job 

Verify Printer 

Command Name 

CPYERRLOG 

STRCNFCHK 

STRPDP 

TRCINT 

TRCJOB 

VFYPRT 

Function 

Prints a copy of 
the error log data. 

Starts a confidence 
check. 

Starts the problem 
determination 
procedures. 

Traces the internal 
activities of the 
machine. 

Traces a job. 

Verifies that a printer 
is functioning 
properly by running 
a test pattern. 

(,/'" 

\ 
'---

( 

( 
I 
\, 



) 

) 

1 
J 

ASCII 

CE 
CL 
CPF 
CPP 
DDS 
EBCDIC 

American National Standard Code for 
Information Interchange 
Customer engineer 
Control language 
Control Program Facility 
Command processing program 
Data description specifications 
Extended binary coded decimal 
interchange code 

FIFO First-in-first-out 

HLL High-level language 
I/O Input/output 
LIFO Last-in-first-out 
ODP Open data path 

PSR Programming service representative 
SEU Source Entry Utility 

List of Abbreviations 

List of Abbreviations 299 



/' 

( 

/ 
I 

300 



access path: The means by which the Control Program 
Facility provides a logical organization to the data in a 
data base file so that the data can be processed by a 
program. See also arrival sequence access path and 
keyed sequence access path. 

activity level: An attribute of a storage pool that 
specifies the maximum number of jobs that can execute 
concurrently in. the storage pool. 

add rights: The authority to add an entry to an object. 

arrival sequence access path: An access path that is 
based on the order in which records are stored in a 
physical file. 

attribute character: A character associated with a field 
in a display device file that defines how the field is 
displayed (such as underlined, blinking, or high 
intensity). This character is displayed as a blank and 
usually precedes the first displayed character of the 
field. 

authority: The right to access objects, resources, or 
functions. 

autostart job: A job that is automatically initiated when 
a subsystem is started. Autostart jobs are specified for 
a subsystem by autostart job entries in the subsystem 
description. 

autostart job entry: A work entry in a subsystem 
description that specifies a job to be automatically 
initiated each time the subsystem is started. 

auxiliary storage: All addressable storage space other 
than main storage. Auxiliary storage is located on the 
system's nonremovable disk enclosures. 

batch job: A group of processing actions submitted as 
a predefined series of actions to be performed without a 
dialog between the user and the system. 

breakpoint: A place in a program (specified by a 
command or a condition) where the system halts 
execution so that the user can display variables, modify 
variables, or modify the execution sequence of the 
program. The user can use breakpoints to test his 
programs. 

Glossary . 

CL variable: A program variable that is declared in a 
control' language program and is available only to that 
program. 

class: An object that specifies the execution parameters 
for a routing step. The class object is specified in the 
routing entry in a subsystem description. 

command: A statement used to request a function of 
the system. A command consists of the command 
name, which identifies the requested function, a!1d 
parameters. 

command definition: An object that defines a 
command (including the command name, parameters, 
and validity checking information) and identifies the 
program that performs the function requested by the 
command. 

control language: The set of all commands with which 
a user requests functions of the CPF. 

control language program: An executable object that 
is created from source consisting entirely of control 
language commands. 

control unit description: An object that describes, to 
the ~ystem, the features of a control unit that is either 
directly attached to the system or attached to a 
communications line. 

controlling subsystem: The interactive subsystem that 
is started automatically when the system is started and 
through which the system operator controls the system. 

data area: An object used to communicate data such as 
CL variable values between the programs within a job 
and between jobs. 

data base: The collection of all the files stored in a 
system. Files in the data base are called data base files. 
See also physical file and logical file. 

data description specifications: A description of data 
base or device files entered using a fixed-form syntax. 
The descriptio" is used to create files. Abbreviated 
DDS. 

Glossary 301 



data rights: The authority that controls how a system 
user can use the data contained in an object. 

data transformation: Changing the form of data 
according to specific rules as data is moved between 
the data base and the using program. Includes changing 
the data type and length, and protecting only certain 
fields. 

data type: An attribute used for defining data as either 
numeric or character. 

delete rights: The authority to delete an entry from an 
object. 

device description: An object that contains information 
describing a particular device that is attached to the 
system .. 

device file: A file that is processed on an external input 
or output device attached to the system, such as a work 
station, a card read and punch unit, a printer, or the 
diskette magazine drive. 

edit code: A letter or number indicating that editing 
should be done according to a predefined pattern. 
Editing can include zero suppression and punctuation. 

edit description: An object that describes a 
user-defined edit code. 

edit word: A word indicating how editing should be 
done. 

entry job: A job that is the result of a user transferring 
from one subsystem to another. 

external storage: Data storage other than main or 
auxiliary storage. 

externally described data file: Data contained in a file 
for which the fields in the records are described to the 
Control Program Facility through the use of the data 
description specifications, when the file is created. The 
field descriptions can be used by the program when the 
file is, processed. 

field: A portion of a data record that serves as the 
basic unit of data transfer to and from files. 

field reference file: A physical file whose record 
format describes the fields used by a group of files but 
which contains no members. The field descriptions in 

the field reference file can be referred to when data 
description specifications for other files are written. 

302 

file: A set of related records treated as a unit and 
including descriptive information about the records. 

file description: The information contained in the file 
that describes the file and its contents. The data in the 
file can be described to the record level (see program 
described data) or to the field level (see externally 
described data). 

file overrides: Parameters, specified when a file is 
used, that temporarily change parameters specified 
when the file was created. 

first-level message: The initial message presented to 
the user containing general information or designating 
an error. 

general purpose library: The library provided by the 
Control Program Facility to contain user-oriented, 
IBM-provided objects and user-created objects that are 
not explicitly placed in a different library when they are 
created. 

high-level language: A programming language that 
relieves the programmer from the rigors of machine level 
or assembler level programming. RPG III is an example 
of a high-level language. Abbreviated HLL. 

history log: A log of information about system status 
and events. 

horizontally displayed records: Records that are 
grouped in a display so that more than one record of 
the same record format is displayed on each display 
line. 

impromptu message: A message' created when it is 
sent. Contrast with predefined message. 

inline data file: A data file that is included as part of a 
job when the job is read from, an input device by a 
reader program. 

integrity: The protection of data and programs from 
inadvertent destruction or alteration. 

interactive: Pertaining to a program or system that 
alternately accepts input and then responds. An 
interactive system is conversational, that is, a continuous 
dialog exists between the user and the system. 



'\ 
) 

interactive job: A job in which the processing actions 
are performed in response to input provided by a work 
station user. During the job, a dialog exists between the 
user and the system. 

internal storage: All main and auxiliary storage in the 
system. 

job: A single identifiable sequence of processing actions 
that represents a single use of the system. A job is the 
basic unit by which work is identified on the system. 

job description: An object in which the attributes of a 
job can be predefined and stored. 

job log: A record of requests submitted to the system 
by a job and the messages related to them. The job log 
is maintained by the CPF. 

job queue: A queue on which batch jobs are placed 
when they are submitted to the system and from which 
they are selected for execution by the Control Program 
Facility. 

job queue entry: A work entry in a subsystem 
description that specifies the job queue from which the 
subsystem can accept batch jobs. 

key field: A field, contained in every record in the file, 
whose contents are used to sequence the records when 
the file is used. 

keyed sequence access path: An access path that is 
based on the contents of key fields contained in the 
records. 

library: An object that serves as a directory to other 
objects. A library is used to group related objects and to 
find objects by name when they are used. 

library list: An ordered list of library names indicating 
which libraries are to be searched, and the order in 
which they are searched, to find an object. 

line description: An object that describes a 
communications line to the system. 

logical file: A data base file through which data that is 
stored in one or more physical files can be accessed by 
means of record formats and / or access paths that are 
different from the physical representation of the data in 
the data base. 

main storage: All storage in a computer from which 
instructions can be executed directly. 

member: An identifiable group of records that i~ a 
subset of the data base file to which it belongs. Each 
member conforms to the characteristics of the file and 
ha~ its own access path. 

menu: A type of work station display in which a list of 
options is shown to the user. From this menu the user 
selects the options he wishes. 

message: A communication sent from one person or 
program to another. 

message description: A definition of a message that 
provides descriptive information about the message and 
contains the text of the message. 

message file: A file that contains message 
descriptions. 

message queue: A queue (associated with a person or 
program) on which messages are placed when they are 
sent to the person or program. The person or program 
obtains the message by receiving it from the message 
queue. 

modified data tag: An indicator, associated with each 
input or output/input field in a displayed record, that is 
set on when data is keyed into the field. The modified 
data tag is maintained by the display device and can be 
used by the program using the file. 

modulus 10, 11: A technique for validity checking that 
involves the association of digits with data. It is used in 
entering or updating fields in a data record. 

multivolume file: A file that is contained on more than 
one diskette. 

object: A named unit that consists of a set of attributes 
(that describe the object) and data. The term object is 
anything that exists in and occupies space in storage on 
which operations can be performed .. Some examples of 
objects are programs, files, and libraries. 

object authority: The right to use or control an object. 
See object rights and data rights. 

object existence rights: The authority to delete, save, 
free the storage of, restore, and transfer ownership of 
an object. 

Glossary 303 



object management rights: The authority to move, 
rename, grant authority to, revoke authority from, and 
change the attributes of an object. 

object owner: A user who creates an object or to 
whom the ownership of an object has been transferred. 
The object owner has complete control over the object. 

object rights: The authority that controls what a 
system user can do to an entire object. For example, 
object rights can let a user delete, move, or rename an 
object. 

object user: A user who has been authorized by the 
object owner to perform certain functions on an object. 

operational rights: Any combination of data rights 
authorized to a user. 

option indicator: A one-character field passed from a 
program to the CPF with an output data record that is 
used to control the output function, such as controlling 
which fields in the record are displayed. 

output/input field: A field in a display device file that 
is used for both output and input operations. 

output queue: A list of output files that are ready to be 
written to an output device by a writer. 

password: A unique string of characters that a system 
user enters to identify himself to the system. 

physical file: A data base file that contains data 
records. All the records have the same format; that is, 
they are all fixed-length records and they all contain the 
same fields. 

predefined message: A message whose description is 
created independently of when it is sent and is stored in 
a message file. Contrast with impromptu message. 

print image: An object that dE1scribes, to the system, 
the print belt on a printer. 

priority: The relative significance of one program to 
other programs. Priority specifies the relative order of 
resource allocation when competition for a resource is 
experienced. 

program described data: Data contained "in a file for 
which the fields in the records are not described through 
the Control" Program Facility. The fields must be 
described in the program that processes the file. 

304 

program object: One of two Ml object classifications. 
It includes those objects used in programs that get their 
definition from DDT entries. (Contrast with system 
object.) 

prompt: A request for information or user action. The 
work station user must respond to proceed. 

public authority: The authority to an object granted to 
all users unless overridden by specific user authority. 

read rights: The authority to read the entries in an 
object. 

reader: A Control Program Facility program that reads 
jobs from an input device and places them on the job 
queue. 

record: An ordered set of fields that make up a single 
occurrence of a record format. 

record format: The definition of how data is structured 
in the records contained in a file. The definition includes 
the record name and field descriptions for the fields 
contained in the record. The record formats used in a 
file are contained in the file's description. 

response indicator: A one-character field passed from 
the CPF to a program with an input record to provide 
information about the data record or actions taken by 
the work station user. 

routing data: A character string that the Control 
Program Facility compares with character strings in the 
subsystem description routing entries to select the 
routing entry that is to be used to initiate a routing step. 
Routing data can be provided by a work station user, 
specified in a command, or provided through the work 
entry for the job. 

routing entry: An entry in a subsystem description that 
specifies the program to be invoked to control a job that 
executes in the subsystem. 

routing step: The processing performed as a result of 
invoking a program specified in a routing entry. 

security: The prevention of access to or use of data or 
programs by unauthorized persons. 

security officer: The individual at an installation who 
can define and control the installation's security 
procedures. 

I 
( 
\ 

'"" 

( 
\ .. 

( 
\. 



) 

) 

security officer profile: The user profile that allows the 
security officer to control the security of an installation. 

second-level message: Provides additional information 
to that already provided in a first-level message. 
Second-level messages are obtained by pressing the 
Help key while a first-level message is displayed. 

service log: A log of information about the application 
of program changes and program patches, and the 
symptom strings resulting from errors. 

shared access path: An access path used by more 
than one file to provide access to data common to the 
files. The access path specifications are contained in the 
description of each file that uses the access path. 

shared record format: A record format that is used in 
more than one externally described data file. 

source file: A file created to contain source statements 
for such items as high-level language programs and 
data description specifications. 

space pointer: Contains addressability to an MI 
program object. 

spooled file: A device file that is not intended for direct 
access to a device but that provides access to data 
processed by the readers and writers. 

spooling: The reading and writing of input and output 

streams on an intermediate storage device, concurrently 
with job execution, and in a format convenient for later 
processing or output operations. 

spooling subsystem: The subsystem that provides the 
operating environment needed by the CPF programs that 
read jobs onto job queues and write files from the 
output queues. The subsystem description for the 
spooling subsystem is provided as part of the CPF. 

storage pool: A quantity of main storage available for 
use by jobs executing in the storage pool. The storage 
pool does not consist of a given block of storage; rather 
it specifies an amount of storage that can be used. 

subfile: A group of records of the same record format 
that can be displayed concurrently at a work station. 
The system sends the entire group of records to the 
work station in a single operation and receives the group 
in another operation. 

subsystem: A predefined operating environment 
through which the Control Program Facility coordinates 
work flow and resource usage. 

subsystem attributes: Specifications in a subsystem 
description that specify the amount of main storage 
available to the subsystem and the number of jobs that 
can execute concurrently in the subsystem. 

subsystem description: An object that contains the 
specifications that ~efine a subsystem aOnd that the 

Control Program Facility uses to control the subsystem. 

system console: That part of a computer used for 
communication between the operator or maintenance 
personnel and the computer. 

system library: The library provided by the Control 
Program Facility to contain system-oriented objects 

provided as part of the Control Program Facility. 

system object: One of two MI object classifications. It 
includes those MI objects whose formats are not visible 
above MI and all objects that are defined during 
execution time from attribute template operands on 
Cr~ate instructions. These objects are referred to 
through system pointers. (Contrast with program object.) 

system operator: The individual who operates the 
system from the system console and looks after the 
peripheral equipment necessary to initiate computer runs 
or finalize the computer output in the form of completed 
reports and documents. 

system pointer: Contains addressability to an M I 
system object. 

system value: A value that contains control information 
for the operation of certain parts of the system. A user 
can change these values to tailor the system to his 
working environment. System date and library list are 
examples of system values. 

temporary library: A library that is automatically 
created for each job to contain objects that are created 
by that job and that are not specifically placed in 
another library. The objects in the temporary library are 
deleted when the job ends. 

trace: The process of recording (1) the sequence in 
which the statements in a program are executed and (2) 
optionally, the values of the program variables used in 

the statements. 

Glossary 305 



update rights: The authority to change the entries in an 

object. 

user name: The name by which a particular user is 

,known to the system. 

user profile: An object that represents a particular user 
or group of users to the Control Program Facility. The 
user profile identifies which objects and functions the 

user is authorized to. 

validity checker: A program that tests commands for 
errors in the parameter values. This validity checking is 
done in addition to the checking done by the command 

analyzer. 

variable: A named modifiable value. The value can be 
accessed or "modified by referring to. the name of the 
variable. 

vertically displayed records: Records that are grouped 
in a display so that more than one record of the same 
record format is displayed concurrently, with each record 
beginning in the first position of a line and occupying 
one or more adjoining lines. 

work entry: An entry in a subsystem description that 
specifies a source from which jobs can be accepted to 
be executed in the subsystem. 

work station: A device that lets a person transmit 
information to or receive information from a computer, 
or both, as needed to perform his job. 

work station entry: A work entry in a subsystem 
description that specifies the work stations from which 
users can sign on to the subsystem or from which 
interactive jobs can transfer to the subsystem. 

writer: A Control Program Facility program that writes 
spooled output files from an output queue to an external 

device, such as a printer. 

306 

( 



\ 
) 

./ 

) 

) 

- (minus) 10 
+ (plus) 9 
* (asterisk), use in DDS 62 
abbreviation rules for commands 7 
ABSVAL keyword 88 
access paths 

arrival sequence access path 58 
creating for a logical file member 84 
general 58 
keyed sequence access path 58 
sharing 74 

ACCPTH keyword 88 
ACCPTHMBR parameter, CRTLF command 75, 84 
activity levels 

general 249 
job queue entry 249 
pool 249 
routing entry 249 
subsystem 249 
system 249 
work station type entry 249 

Add Autostart Job Entry (ADDAJE) 
command 256 

Add Breakpoint (ADDBKP) command 232 
Add Job Queue Entry (ADDJOBQE) 
command 257 

Add Logical File Member (ADDLFM) 
command 86 

Add Message Description (ADDMSGD) 
command 200 

Add Physical File Member (ADDPFM) 
command 86 

Add Program (ADDPGM) command 231 
add rights 277 
Add Routing Entry (ADDRTGE) command 257 
Add Trace (ADDTRC) command 232 
Add Work Station Entry (ADDWSE) 
command 256 

ADDAJE (Add Autostart Job Entry) 
command 256 

ADDBKP (Add Breakpoint) command 232 
adding a job queue entry 252 
adding a logical file member to a file 83 
adding a physical file member to a 
file 82 

adding a routing entry 252 
adding a work station entry 252 
adding breakpoints to programs 225 
adding members to files 79 
adding traces to programs 228 

ADDJOBQE (Add Job Queue Entry) 
command 257 

ADDLFM (Add Logical File Member) 
command 86 

ADDMSGD (Add Message Description) 
command 200 

ADDPFM (Add Physical File Member) 
command 86 

ADDPGM (Add Program) command 231 
ADDRTGE (Add Routing Entry) command 257 
ADDTRC (Add Trace) command 232 
ADDWSE (Add Work Station Entry) 
command 256 

ALARM keyword 136 
alarm, sounding 119 
ALCOBJ (Allocate Object) command 34 \ 
ALL keyword 88 ) 
Allocate Object (ALCOBJ) command 34 
ALLOCATE parameter 82 
allocating contiguous storage for 
members 82 

allocating objects 30 
allocating storage for members 82 
alphabetic extenders 

$ 11 
# 11 
@ 11 

AL TSEQ keyword 88 
AN D relationship of option indicators 100 
application development 4, 37 
application documentation 211 
application documentation command 
list 221 

application restoring 289 
applying overrides 154 
arrival sequence access path 58 
assigning members to a disk unit 81 
ASSUME keyword 136 
audible alarm, sounding 119 
authority 

granting 22 
private 276 
public 276 
restoring 292 
revoking 22 
special 272 

authority needed to perform certain 
functions 279 

authorized users 
displaying a list of 283 

Index 

Index 307 



authorized users display 283 
AUTO keyword 136 
autostart job 

using to initiate a job 247 
autostart job entry 252 

base pool (*BASE) 249 
batch job 

breakpoint program 225 
general 235 
initiating 245 
ways initiated 240 

beginning field attribute character 115 
BLINK keyword 136 
blinking the cursor 119 
BLKFOLD keyword 

display file 137 
printer 110 

branching. unconditional 42 
break delivery 

general 186 
handling messages 186 

breakpoint 
adding to program 225 
logging in the job log 224 
resuming program execution after 225 
returning to a breakpoint in one program 
from another 228 

using within a trace 230 
what happens 225 
what happens at a breakpoint 225 

breakpoint display 
with program variable 227 
without program variable 227 

breakpoint program for a batch job 225 

CALL (Call) command 52 
Call (CALL) command 52 
Cancel Job (CNLJOB) command 259 
Cancel Reader (CNLRDR) command 262 
Cancel Receive (CNLRCV) command 53 
Cancel Writer (CNLWTR) command 262 
CAnn keyword 137 

308 

card file device dependent attributes 
form type 95 
hoppers 95 

card files 
common device attributes 94 
device dependent attributes 95 

CFnn keyword 137 
Change Autostart Job Entry (CHGAJE) 
command 256 

Change Card File (CHGCRDF) command 107 
Change Command (CHGCMD) command 208 
Change Data Area (CHGDTAARA) command 176 
Change Debug (CHGDBG) command 231 
Change Diskette File (CHGDKTF) 
command 108 

Change Display File (CHGDSPF) command 135 
Change Job (CHGJOB) command 259 
Change Job Queue Entry (CHGJOBQE) 
command 257 

CHANGE keyword 137 
Change Message Queue (CHGMSGQ) 

. command 200 
Change Object Owner (CHGOBJOWN) 
command 285 

Change Output Queue (CHGOUTQ) command 261 
Change Pointer (CHGPTR) command 231 
Change Printer File (CHGPRTF) command 107 
Change Program Variable (CHGPGMVAR) 
command 231 

Change Routing Entry (CHGRTGE) 
command 257 

Change Spooled File Attributes (CHGSPLFA) 
command 261 

Change Subsystem Description (CHGSBSD) 
command 256 

Change System Value (CHGSYSVAL) 
command 269 

Change User Profile (CHGUSRPRF) 
command 286 

Change Variable (CHGVAR) command 52 
Change Work Station Entry (CHGWSE) 
command 256 

changing a data area 176 
changing a source file 173 
changing a user profile 282 
changing command names of IBM-supplied 
commands 207 

changing data types of a field 57 
changing keyword names on IBM-supplied 
commands 207 

changing object owners 275 
changing ownership '22' 
changing parameter values on IBM-supplied 
commands 207 

changing passwords 273 
changing system values 265 
changing the length of a field 57 
changing the line on which error messages 
are displayed 127 

( 
'", 

( 
" 



changing the value of a variable 
to a constant 40 
to the value of an expression after it is 
evaluated 40 

to the value of another variable 40 
to the value produced by the built-in 
function %SUBSTRING 40 

character codes 95 
character constants 

character strings 13 
date 13 
name 13 
time 13 

character string constants 
how to specify 14 
quoted string 14 
unquoted string 14 
valid characters 15 

CHECK keyword 
data base 88 
display file 137 

CHGAJE (Change Autostart Job Entry) 
command 256 

CHGCMD (Change Command) command 208 
CHGCRDF (Change Card File) command 107 
CHGDBG (Change Debug) command 231 
CHGDKTF (Change Diskette File) 
command 108 

CHGDSPF (Change Display File) command 135 
CHGDTAARA (Change Data Area) command 176 
CHGINPDFT keyword 138 
CHGJOB (Change Job) command 259 
CHGJOBQE (Change Job Queue Entry) 
command 257 

CHGMSGQ (Change Message Queue) 
command 200 

CHGOBJOWN (Change Object Owner) 
command 285 

CHGOUTQ (Change Output Queue) command 261 
CHGPGMVAR (Change Program Variable) 
command 231 

CHGPRTF (Change Printer File) command 107 
CHGPTR (Change Pointer) command 231 
CHGRTGE (Change Routing Entry) 
command 257 

CHGSBSD (Change Subsystem Description) 
command 256 

CHGSPLFA (Change Spooled File Attributes) 
command 261 

CHGSYSVAL (Change System Value) 
command 269 

CHGUSRPRF (Change User Profile) 
command 286 

CHGVAR (Change Variable) command 52 
CHGWSE (Change Wo~k Station Entry) 
command 256 

CL program command list 52 
class 

contents 
general 

251 
21, 236 

Clear Diskette (CLRDKT) command 108 
Clear Job Queue (CLRJOBQ) command 260 
CLEAR keyword 138 
Clear Library (CLRUB) command 35 
Clear Output Queue (CLROUTQ) command 261 
Clear Physical File Member (CLRPFM) 
command 86 

Clear Trace Data (CLRTRC) command 232 
cleating libraries 32 
clearing records in a subfile 125 
CLRDKT (Clear Diskette) command 108 
CLRJOBQ (Clear Job Queue) command 260 
CLRUB (Clear Library) command 35 
CLROUTQ (Clear Output Que~e) command 261 
CLRPFM (Clear Physical File Member) 
command 86 

CLRTRC (Clear Trace Data) command 232 
CMD (Command) statement 209 
CMP keyword 

data base 88 
display file 138 

CNLJOB (Cancel Job) command 259 
CNLRCV (Cancel Receive) command 53 
CNLRDR (Cancel Reader) command 262 
CNLWTR (Cancel Writer) command 262 
coding commands 

character set 11 
alphabetic extenders 11 
special characters. 12 

command name 8 
comments 10 
continuation 9 

- (minus) 10 
+ (plus) 9 

general 8 
label 8 
parameters 8 

coding parameters 
general 8 
keyword parameter 8 
lists 9 
mixing 9 
omitting 8 
order 8 
positional parameter 8 

COLHDG keyword 88 
Command (CMD) statement 209 
command attributes 204 
command character set 11 

alphabetic extenders 11 
special characters 12 

command definition 21 
command definition command list 208 
command definition statement list 208 
command definition statements 

CM D statement 201 
PARM statement 201 

command key 
using to fold or truncate records in a 
subfile 125 

Index 309 



command lists 
application documentation 221 
command definition 208 
data area 176 
data base 86 
device support 107 
display device support 135 
libraries 35 
message -handling 199 
objects 34 
overriding files 161 

Isavel restore 293 
security 285 
service 298 
system value 269 
testing 231 
work management 255· 

command names 
changing 207 
coding 8 
defining prompt text 204 
general 7 

command processing program (CPP) 
general 201 
writing 205 

commands (see also command lists) 
abbreviation rules 7 
coding (see coding commands) 
command name 7 
conditional execution 41 
for which new special values cannot be 
added 208 

general 7 
keywords 7 
labels 7 
parameter values 7 
parameters 7 

commands not valid in a control language 
program 43 

commands that can appear only in a control 
language program 43 

commands to which new special values cannot 
be added 208 

comment statements 219 
comments in DDS, *(asterisk) 62 
comments, coding 10 
common object attributes 22 
comparison of immediate and rebuild 
maintenance 80 

compiling control language programs 49 
completion messages 180, 193 
CONCAT keyword 88 
concatenated field 

length 76 
sign 76 

concatenating fields 
general 76 
resulting data types 76 

condition names 
screen size 128 

310 

conditional execution of commands 41 
conditioning based on indicators being 
off 101 

confidence check 
general 297 
starting 297 

CONSTANT parameter, PARM statement 203 
constant value 

defining for a parameter 203 
CONTIG parameter 82 
contiguous storage 

allocating for members 82 
continuation 

- (minus) 10 
+ (plus) 9 
general 9 

control language 3, 7 
control language program variables 39 
control language programs 

commands not valid in 43 
commands that can only appear in 43 
compiling 49 
functions perform 39 
general 39 
invoking 50 
variables 39 

control unit description 21, 93 
controlling logic flow 41 
controlling the positioning of the cursor, 
displaying pages 126 

Copy Error Log (CPYERRLOG) command 298 
Copy File (CPYF) command 167 
Copy File Interactive (CPYFI) command 167 
copying source from a card file to a 
physical file 171 

copying the error log 295 
CPF naming conventions 61, 100 
CPP (command processing program) 201 
CPU time, maximum 252 
CPYERRLOG (Copy Error Log) command 298 
CPYF (Copy File) command 167 
CPYFI (Copy File Interactive) command 167 
Create Card File (CRTCRDF) command 107 
Create Class (CRTCLS) command 258 
Create Command (CRTCMD) command 208 
Create Control Language Program (CRTCLPGM) 
command 52 

Create Data Area (CRTDTAARA) command 176 
Create Diskette File (CRTDKTF) 
command 108 

Create Display File (CRTDSPF) command 135 
Create Edit Description (CRTEDTD) 
command 108 

Create Job Description (CRT JOBD) 
command 257 

Create Job Queue (CRT JOBQ) command 260 
Create Library (CRTLlB) command 35 
Create Logical File (CRTLF) command 86 

( 
I. 
\ 

......... 

/' 

~. 

( 
'. 



) 
/ 

Create Message File (CRTMSGF) command 200 
Create Message Queue (CRTMSGQ) 
command 200 

Create Output Queue (CRTOUTQ) command 261 
Create Physical File (CRTPF) command 86 
Create Print Image (CRTPRTIMG) 
command 108 

Create Printer File (CRTPRTF) command 107 
Create Subsystem Description (CRTSBSD) 
command 256 

Create Table (CRTTBL) command 109 
Create User Profile (CRTUSRPRF) 
command 286 

creating a batch subsystem 
description 253 

creating a card file 97 
creating a data area 175 
creating a data base source file 171 
creating a display file 133 
creating a field reference file 67 
creating a job queue 253 
creating a logical file 65 
creating a logical file with a key 
field 67 

creating a logical file with more than one 
record format 71 

creating a message file 184 
creating a physical file 62 
creating a physical file using a data base 
source file 171 

creating a physical file using an inline 
data file 172 

creating a physical file with an arrival 
sequence access path 64 

creating a physical file with no 
members 83 

creating a program described data device 
file 97 

creating a source file 170 
creating a translate table 103 
creating a user profile 281 
creating an access path for. a logical file 
member 84 

creating an edit description 104 
creating an interactive subsystem 
description 254 

creating an object using a source 
file 171 

creating commands 
command attributes 204 
general 204 

creating display files 129 
creation date of an input data file on a 
diskette 95 

CRTCLPGM (Create Control Language Program) 
command 52 

CRTCLS (Create Class) command 258 
CRTCMD (Create Command) command 208 
CRTCRDF (Create Card File) command 107 

CRTDKTF (Create Diskette File) 
command 108 

CRTDSPF (Create Display File) command 135 
CRTDTAARA (Create Data Area) command 176 
CRTEDTD (Create Edit Description) 
command 108 

CRT JOBD (Create Job Description) 
command 257 

CRT JOBQ (Create Job Queue) command 260 
CRTLF (Create Logical File) command 86 
CRTLIB (Create Library) command 35 
CRTMSGF (Create Message File) command 200 
C~TMSGQ (Create Message Queue) 
command 200 

CRTOUTQ (Create Output Queue) command 261 
CRTPF (Create Physical File) command 86 
CRTPRTF (Create Printer File) command 107 
CRTpRTIMG (Create Print Image) 
command 108 

CRTSBSD (Create Subsystem Description) 
command 256 
CRTTBL(~reate Table) command 109 
CRTUSRPRF (Create User Profile) 
command 286 

currency symbol 269 
cursor 

blinking 119 
controlling positioning 126 
placing 119 

DATA (Data) command 43 
Data (DATA) command 43 
data area 

changing 176 
command list 176 
declaring 175 
declaring a variable for 39 
displaying 176 
general 21 
initial value 175 
receiving 47 
sending 47, 175 
valid types 175 

data area command list 176 
data base 55 
data base command list 86 
data base DDS keyword summary 88 
data base DDS keywords 62 
data base file considerations when 
overriding files 156 

data base file contents 55 
data base file description 55 
data base files 

adding members to 79 
data base relations display 214 
data base relations displaying 214 

Index 311 



data description specifications 
data base 61 
printer' 98 

Data Description Specifications form 61 
data file labels 95 
data management feedback area 244 
~ata rights 

add rights 277 
delete rights 277 
read rights 277 
update rights 277 

date and time constants 
general 13, 16 
how to specify 16 

date constant 
date separator 16 
formats 17 
general 13, 16 
Julian date format 17 
QDATFMT system value 17 
QDATSEP system value 16 
quoted string 16 
unquoted string 16 

date format 
guard digit 202 
QDA TFMT system value 17 

DATE keyword 
display file 138 
printer 110 

date separator 
general 16 
QDATSEP system value 16 

DCL (Declare) command 52 
DCLDTAARA (Declare Data Area) command 177 
DCLF (Declare File) command 53 
DDS keyword summaries 

data base 88 
display file 136 
printer 110 

DDS keywords (see DDS keyword summaries) 
Deallocate Object (DLCOBJ) command 34 
deallocating objects 30 
debug mode, entering 223 
decimal parameter values 

decimal point 17 
general 13, 17 
how to specify 17 

decimal point 
edit description 104 
in parameter values 17 

Declare (DCL) command 52 
Declare Data Area (DCLDTAARA) command 177 
Declare File (DCLF) command 53 
declaring a data area 39, 175 
declaring a variable for a data area 39 
declaring variables 38 
declaring variables for a file 

312 

field names 38 
general 38 
indicators 38 

default delivery 186 
default handling and monitoring of escape 
messages 194 

default maximum instructioh wait time 252 
default program, used in testing 223 
default value 

defining for a parameter 203 
for replies 183 

defining a return value for a 
parameter 203 

defining commands 201 
defining optional parameters 203 
defining parameters 

constant value 203 
default value 203 
defining optional parameters 203 
defining required parameters 
determining valid values 203 
file name as a value 203 
general 202 
number of values in a list 203 
parameter value length 203 
passing attribute information for a 
parameter 204 

restricted value 203 
return value 203 
specifying prompt text 204 
specifying that length must be returned 
with value 204 

specifying value must be exact 
length 204 

valid parameter values 203 
defining prompt text for a command 
name 204 

defining prompt text for a parameter 204 
defining required parameters 203 
defining restricted values for a 
parameter 203 

defining valid parameters 203 
Delete Class (DL TCLS) command 258 
Delete Command (DLTCMD) command 208 
Delete Data Area (DLTDTAARA) command 176 
Delete Diskette Label (DLTDKTLBL) 
command 108 

Delete Edit Description (DL TEDTD) 
command 108 

Delete File (DLTF) command 86 
Delete Job Description (DLTJOBD) 
command 257 

Delete Job Queue (DLTJOBQ) command 260 
Delete Library (DLTLlB) command 35 
Delete Message File (DLTMSGF) command 200 
Delete Message Queue (DLTMSGQ) 
command 200 

Delete Output Queue (DLTOUTQ) command 261 
Delete Override (DLTOVR) command 161 
Delete Print Image (DLTPRTIMG) 
command 108 

( 



" \ 
) 

) 

Delete Program (DLTPGM) command 52 
delete rights 277 
Delete Subsystem Description (DL TSBSD) 
command 256 

Delete Table (DLTTBL) command 109 
Delete User Profile (DLTUSRPRF) 
command 286 

deleting a subfile 125 
deleting libraries 32 
deleting overrides 155 
demand sign-on job 252 
DEP (Dependent) statement 209 
Dependent (DEP) statement 209 
DESCEND keyword 89 
describing a message 184 
determining valid values for 
parameters 203 

device dependent attributes 
card files 95 
device files 95 
diskette files 95 
printer file 96 

device description 21, 93 
device file keywords 100 
device files 

common attributes 94 
device dependent attributes 95 
externally described data 94, 97 
general 93 
program described data 94 
sharing files 95 
spooling information 94 
system-created 93 
what devices can be used for a device 
file 94 

device support 
card files 93 
diskette files 93 
display files 113 
general 93 
printer files 93 

device support command list 107 
devices, varying 93 
OFT keyword 

display file 138 
printer file 110 

diagnostic messages 180, 193 
DIGIT keyword 89 
disk unit 

assigning members to 81 
diskette 

creation date of an input data file 95 
initializing 95 
multivolume files 96 

diskette considerations 
for other than savel restore 96 
for savel restore 289 

diskette file device .. dependent attributes 
character codes for data 95 
creation date of an input file 95 
data file labels 95 
expiration date of an output file 95 
location of diskettes 95 
volume identifiers 95 

diskette files 
common device attributes 94 
device dependent attributes 95 
general 93 

diskette locations 96 
diskette magazine drive 96, 289 
diskette magazine volume identifier 

for other than savel restore 96 
for savel restore 289 

display attributes 
blinking the cursor 119 
highlighting a field 119 
placing the cursor 119 
reversing the image of a field 119 
sounding the audible alarm 119 
underlining a field 119 
using vertical separators 119 

Display Authorized Users (DSPAUTUSR) 
command 285 

Display Breakpoint (DSPBKP) command 232 
Display Class (DSPCLS) command 258 
Display Data Area (DSPDTAARA) command 176 
Display Data Base Relations (DSPDBR) 
command 221 

Display Debug (DSPDBG) command 231 
display device support 113 
display device support command list 135 
Display Diskette (DSPDKT) command 108 
display -tile DDS keyword summary 136 
Display File Description (DSPFD) 
command 221 

Display File Field Description (DSPFFD) 
command 221 

display file record format 
field length 115 
field location 115 
general 113 

display files 
common device attributes 94 
creating 129, 133 
device dependent attributes 97 
general 93 
message handling 127 
order of fields 114 
using in programs 133 

Display Job (DSPJOB) command 259 
Display Job Description (DSPJOBD) 
command 257 

Display Job Queue (DSPJOBQ) command 260 
Display Library (DSPLlB) command 35 

Index 313 



Display Library List (DSPLlBL) command 35 
Display Log (DSPLOG) command 262 
Display Message (DSPMSG) command 199 
Display Object Authority (DSPOBJAUT) 
command 286 

Display Object Description (DSPOBJD) 
command 34 

Display Output Queue (DSPOUTQ) 
command 261 

Display Override (DSPOVR) command 161 
Display Program References (DSPPGMREF) 
command 221 

Display Program Variable (DSPPGMVAR) 
command 231 

Display Service Status (DSPSRVSTS) 
command 43 

Display Spooled File (DSPSPLF) 
command 261 

Display Subsystem (DSPSBS) command 258 
Display S~bsystem Description (DSPSBSD) 
command ·256 

Display System (DSPSYS) command 258 
Display System Status (DSPSYSSTS) 
command 258 

Display System Value (DSPSYSVAL) 
command 269 

Display Trace (DSPTRC) command 232 
Display Trace Data (DSPTRCDTA) 
command 232 

Display User Profile (DSPUSRPRF) 
command 286 

displaying a library list 33 
displaying a list of authorized users 283 
displaying a user profile 284 
displaying data areas 176 
displaying data base relations 214 
displaying file descriptions 215 
displaying file field descriptions 216 
displaying libraries 32 
displaying object authority 285 
displaying object descriptions 28· 
displaying program references 218 
displaying records in a subfile according 
to a record number 125 

displaying security information 
displaying a list of authorized 
users 283 

displaying object authority 285 
displaying user profile 284 
general 283 

displaying system logs 198 
displaying system values 265 
displaying trace data 230 

314 

displays 
authorized users display 283 
breakpoint display 

with program variable 227 
without program variable 227 

data base relations display 214 
file description display 215 
file field description display 217 
formatting 113 
library 33· 
library list 33 
object authority 285 
object description 29 
program reference 218 
routing data 244 
system value 265 
trace data 230 
user library list 33 
user profile 284 

DLCOBJ (D~allocate Object) command 34 
DLTCHK keyword 139 
DLTCLS (Delete Class) command 258 
DLTCMD (Delete Command) command 208 
DLTDKTLBL (Delete Diskette Label) 
command 108 

DLTDTAARA (Delete Data Area) command 176 
DL TEDT keyword 

display file 139 
printer 110 

DL TEDTD (Delete Edit Description) 
command 108 

DLTF (Delete File) command 86 
DLT JOBD (Delete Job Description) 
command 257 

DLTJOBQ (Delete Job Queue) command 260 
DLTLIB (Delete Library) command 35 
DLTMSGF (Delete Message File) command 200 
DL TMSGQ (Delete Message Queue) 
command 200 

DLTOUTQ (Delete Output Queue) command 261 
DLTOVR (Delete Override) command 161 
DLTPGM (Delete Program) command 52 
DLTPRTIMG (Delete Print Image) 
command 108 

DLTSBSD (Delete Subsystem Description) 
command 256 

DLTTBL (Delete Table) command "109 
DLTUSRPRF (Delete User Profile) 
command 286 

DMPJOB (Dump Job) command 232 
DMPOBJ (Dump Object) command 232 
DO (Do) command 53 
Do (DO) command 53 
do groups 

general 41 
nested 41 

( 



) 

documentation aids 
* (asterisk) on DDS form 219 
COLHDG keyword 219 
comment statements 219 
file reference function 211 
general 211 
TEXT keyword 219 
TEXT parameter 219 

DSPATR keyword 140 
DSPAUTUSR (Display Authorized Users) 
command 285 

DSPBKP (Display Breakpoint) command 232 
DSPCLS (Display Class) command 258 
DSPDBG (Display Debug) command 231 
DSPDBR (Display Data Base Relations) 
command 221 

DSPDKT (Display Diskette) command 108 
DSPDTAARA(Display Data Area) command 176 
DSPFD (Display File Description) 
command 221 

DSPFFD (Display File Field Description) 
command 221 

DSPJOB (Display Job) command 259 
DSPJOBD (Display Job Description) 
command 257 

DSPJOBQ (Display Job Queue) command 260 
DSPLIB (Display Library) command 35 
DSPLlBL (Display Library List) command 35 
DSPLOG (Display Log) command 262 
DSPMSG (Display Message) command 199 
DSPOBJAUT (Display Object Authority) 
command 286 

DSPOBJD (Display Object Description) 
command 34 

DSPOUTQ (Display Output Queue) 
command 261 

DSPOVR (Display Override) command 161 
DSPPGMREF (Display Program References) 
command 221 

DSPPGMVAR (Display Program Variable) 
command 231 

DSPSBS (Display Subsystem) command 258 
DSPSBSD (Display Subsystem Description) 
command 256 

DSPSIZ keyword 140 
DSPSPLF (Display Spooled File) 
command 261 

DSPSRVSTS (Display Service Status) 
command 43 

DSPSYS (Display System) command 258 
DSPSYSSTS (Display System Status) 
command 258 

DSPSYSVAL (Display System Value) 
command 269 

DSPTRC (Display Trace) command 232 
DSPTRCDTA (Display Trace Data) 
command 232 

DSPUSRPRF(Display User Profile) 
command 286 

DTAMBRS parameters, CRTLF command 72, 84 
Dump Job (DMPJOB) command 232 
Dump Object (DMPOBJ) command 232 
dumping jobs 230 
dumping objects 22, 230 
DUP keyword 140 
duplicate key values 

general 60, 77 
handling 77 
preventing 78 

edit codes, user-defined 104 
edit descriptions 

general 21, 104 
rules 105 
zero balance 105 

EDTCDE keyword 
data base 89 
display file 141 
printer 110 

EDTWRD keyword 
data base 89 
display file 141 
printer 110 

ELEM (Element) statement 209 
Element (ELEM) statement 209 
Else (ELSE) command 52 
ELSE (Else) command 52 
End Debug (ENDDBG) command 231 
End Do (ENDDO) command 53 
End Job (ENDJOB) command 43 
End Program (ENDPGM) command 52 
ENDDBG (End Debug) command 231 
ENDDO (End Do) command 53 
ending field attribute character 115 
ENDJOB (End Job) command 43 
ENDPGM (End Program) command 52 
ENTDBG (Enter Debug) command 231 
E~ter Debug (ENTDBG) command 231 
Enter key 

using as the Roll Up key 125 
entering debug mode 223 
entering source 

using SEU 170 
entry job· 252 
ERASE keyword 141 
ERASEINP keyword 141 
erasing on a display 122 
ERRMSG keyword 141 
ERRMSGID keyword 141 
error log data, types 295 
error log, copying 295 

Index 315 



escape messages 
default handling 196 
default monitoring 196 
general 180, 193 
handling 194 
monitoring 194 

examples 
adding a job queue entry 253 
adding a logical file member with same 
name as file 84 

adding a physical file member with same 
name as file 83 

adding a routing entry 253 
adding a trace to a program 228 
adding a work station entry 254 
adding breakpoints to a program 225 
changing a user profile 282 
changing data types of a field 57 
changing object owners 275 
changing passwords 273 
changing the length of a field 57 
concatenating fields 76 
copying source from a card file to a 
physical file 171 

copying the error log 295 
creating a batch subsystem 
description 253 

creating a card file 97 
creating a command 205 
creating a data area 175 
creating a data base source file 171 
creating a display file 133 
creating a field reference file 67 
creating a job queue 253 
creating a logical file with a key 
field 67 

creating a logical file with two record 
formats 71 

creating a message file 184 
creating a physical file using a data 
base source file 171 

creating a physical file using an inline 
data file 172 

creating a physical file with arrival 
sequence access path 64 

creating a physical file with no 
members 83 

creating a program described data device 
file 97 

creating a translate table 103 
creating a user profile 281 
creating an edit description 104 
creating an interactive subsystem 
description 254 

declaring data areas 47 
defining a parameter 204 
defining prompt text for a command 
name 204 

316 

examples (continued) 
deleting overrides 155 
describing a message 184 
displaying a data area 176 
displaying a list of authorized 
users 283 

displaying a user profile 284 
displaying data base relations 214 
displaying file descriptions 215 
displaying file field descriptions 216 
displaying object authority 285 
displaying program references 218 
displaying system values 265 
duplicate key values 77 
entering debug mode 223 
formatting a menu 129 
formatting a prompt - 130 
formatting an information display 131 
granting object authority 277 
invalid placement of records on a 
screen 117 

merging record formats using key 
fields 60 

monitoring for a message for a specific 
command 194 

monitoring for messages within a 
program 194 

option indicators 100 
ordering records using more than one key 
field 59 

ordering records using one key field 59 
overriding the attributes of a printer 
file 154 

overriding which printer file is used in 
a program 154 

receiving data areas 47 
receiving new messages 187 
redefining an IBM-supplied command 207 
removing a message from a message 
queue 188 

reordering fields for a logical file 56 
reorganizing a physical file member 85 
replacing record formats on a 
display 118 

restoring a library 291 
restoring user profiles 292 
retrieving a message from a message 
file 185 

returning to a breakpoint 228 
revoking object authority 283 
routing entry 238, 251 
saving a group of objects 291 
saving a library 290 
saving a single object 291 
saving an entire system 292 
securing files 157 
selecting and omitting records for a 
logical file 73 

sending a message 188 



", 
\ 

) 

examples (continued) 
sending a program message 189 
sharing an access path 74 
sharing record formats 73 
starting a confidence check 297 
subsetting a physical file in a logical 
file 56 

tracing a job 296 
unique key values 77 
use of FORMAT keyword 66 
use of PFI LE keyword 65 
valid placement of records on a 
screen 116 

verifying a 5256 Printer 298 
ways to set up storage pools 249 
writing a program to simplify work 
station operations 46 

writing a source program to control a 
menu 44 

EXPDATE parameter 82 
expiration date of an output data file on a 
diskette 95 

expiration date of physical. file 
members 82 

external message queue (*EXT) 191 
externally described data 

data base 55 
device files 94, 97 

externally described data base file 
using in a program 55 

field attribute character 
beginning 115 
ending 115 

field reference file 
creating 67 
general 67 

field translation using translate 
tables 104 

fields 

file 

declaring variables for 39 
highlighting 119 
input 113 
reversing the image of 119 
underlining 119 

declaring variables for 
general 21 
inline data file 169 
multivolume files 96 
overriding 153 
securing 
shared 

157 
156 

source files 169 

~9 

file description display, data base file 
attributes 215 

file descriptions 
data base 55 
displaying 215 

file field description display 217 
file field descriptions, displaying 216 
file name 

using as a parameter value 203 
file redirection 

card input 158 
card output 159 
data base input 160 
data base output 160 
diskette input 159 
diskette output 159 
display input 160 
general 158 
printer 158 
summary 161 

file reference function 
general 211 
record formats for file 211 

fill character, edit description 105 
first-level message 181 
floating currency symbol, edit 
description 105 

folding print lines 97 
form length, printer 96 
form type 

card file 95 
printer 96 

form width, printer 96 
FORMAT keyword 89 
format selector 72 
formatting, a menu 129 
formatting a prompt 130 
formatting an information display 131 
formatting displays '113 
forms alignment, printer 96 
fraction mask, edit description 105 
FRCRATIO parameter 81 
freeing storage 288 
functions restricted to the security 
officer 274 

general functions that apply to 
objects 22 

GETRETAIN keyword 142 
Go To (GOTO) command 53 
GOTO (Go To) Command 53 
Grant Object Authority (GRTOBJAUT) 
command 286 

Index 317 



granting authority 22 
granting object authority 277 
GRTOBJAUT (Grant Object Authority) 
command 286 

guard digit of date 202 

handling duplicate. key values 77 
handling escape messages 194 
handling messages for break delivery 186 
handling notify messages 196 
HELP keyword 142 
highlighting a field 119 
history log 

general 198 
size 198 

history log size 198 
HLDJOB (Hold Job) command 259 
HLDJOBQ (Hold Job Queue) command 260 
HLDOUTQ (Hold Output Queue) command 261 
HLDRDR (Hold Reader) command 262 
HLDSPLF (Hold Spooled File) command 261 
HLDWTR (Hold Writer) command 262 
hold delivery 186 
Hold Job (HLDJOB) command 259 
Hold Job Queue (HLDJOBQ) command 260 
Hold Output Queue (HLDOUTQ) command 261 
Hold Reader (HLDRDR) command 262 
Hold Spooled File (HLDSPLF) command 261 
Hold Writer (HLDWTR) command 262 
HOME keyword 142 
hoppers, card file 95 
horizontally and vertically displayed 
subfiles, concurrently 123 

horizontally displayed subfile 123 
how to define commands 201 
how to specify date constants 16 
how to specify decimal parameter 
values 17 

how to specify time constants 16 

IBM-supplied commands 
changing 207 
changing keyword names 207 
changing parameter values 207 

IBM-supplied job descriptions 238 
IBM-supplied message files 184 
IBM-supplied routing data display 244 

318 

I BM-supplied source files 
QCLSRC (control language program) 169 
QCM DSRC (command definition 
statements) 169 

QDDSSRC (DDS source file) 169 
QIMGSRC (print image) 169 
QRPGSRC (RPG program) 169 
QTBLSRC (translate table) 169 
QTXTSRC (text) 169 

IBM-supplied subsystem descriptions 
QBATCH 237 
QCTL1 237 
QCTL2 237 
QSPL 237 

IBM-supplied user profiles 
customer engineer user profile 
(QCE) 273 

programmer user profile (QPGMR) 273 
programming service representative user 
profile (QPSR) 273 

security officer user profile 
(QSECOFR) 274 

system operator user profile 
(QSYSOPR) 273 

work station user profile (QUSER) 273 
identifying message senders 186 
identifying objects 23 
IF (If) command 52 
If (IF) command 52 
immediate maintenance 

comparison to rebuild maintenance 80 
immediate maintenance of keyed sequence 
access paths 

general 79 
rebuilding for recovery 80 

impromptu messages 179 
indicating that there are more records in a 
subfile 125 

indicators 
conditioning based on being off 101 
declaring variables for 39 
option indicators 127 
response indicators 127 

IN DTXT keyword 
display file 142 
printer 110 

information display, formatting 131 
informational messages 179 
initial program 272 
Initialize Diskette (lNZDKT) command 108 
Initialize Physical File Member (lNZPFM) 
command 86 

initializing a diskette 95 
initializing a record on a display 123 
initializing records in a subfile 125 
initiating batch jobs 

queuing jobs 245 
using autostart jobs 247 

( 
\, 



) 

) 

initiating interactive jobs 
executing a user program for the routing· 
step 242 

executing an initial program for the 
routing step 241 

executing QCL for the routing step 241 
prompting for routing data 243 

inline data file 
general 169 
named 172 
unnamed 172 

input data file 
creation date 95 

input fields, display file 113 
inquiry messages (*INQ) 179 
integer mask, edit description 104 
interactive job 

general 235 
initiating 240 

invalid placement of records on a 
screen 117 

invoking control language programs 50 
INZDKT (Initialize Diskette) command 108 
INZPFM (Initialize Physical File Member) 
command 86 

INZRCD keyword 142 

Job (JOB) command 259 
JOB (Job) command 259 
job attributes 

retrieving 48 
job description 

contents 254 
general 4, 238 
IBM-supplied 238 
use of 255 

job log 
logging breakpoint information 224 
message logging 191 
message logging levels 197 

job message queues 
external message queue (*EXT) 191 
general 186, 191 
program message queues 191 

job queue 21 
job queue entry 

activity level 249 
contents 252 

jobs 
batch 235 
demand sign-on 252 
dumping 230 
entry job 252 
rerouting 248 
tracing 296 
transferring 248 

Julian date format 17 

KEEP keyword 142 
key field, definition 59 
key values 

duplicates 59, 77 
unique 60, 77 

keyed sequence access path 58 
keyword names, changing 207 
keyword parameter, coding 8 
keyword, in commands 7 
keywords for subfile use only 125 

label 
coding 8 
general 7 

left constant, edit description 105 
length of a concatenated field 76 
level checking 

device files 97 
libraries 

clearing 32 
command list 35 
deleting 32 
displaying 32 
general 3, 26 
placing objects in 27 
production 26 
restoring 290 
saving a single library 290 
saving all libraries 290 
test 26 

libraries command list 35 
library· display 33 
library list 

changing 25 
displaying 33 
QSYSLlBL 25 
QUSRLlBL 25 
system part 25 
user part 25 

LI Fa keyword 89 
line description 21, 93 
list of abbreviations 299 
lists, coding 9 
location of diskettes 96 
LOCK keyword 142 
locking the keyboard 122 
logging breakpoint information in the job 
log 224 

Index 319 



logical file members 
adding to a file 83 
creating an access path for 84 
general 83 

logical file record formats 
how to specify 65 
origin 65 

logical file with more than one record 
format 71 

logical files 
adding members to 83 
creating 65, 71 
omit function 73 
select function 73 

logical parameter values 13, 17 
LOGINP keyword 142 
LOGOUT keyword 143 
LOWER keyword 142 

machine execution priority 251 
machine pool 249 
magazines 96, 289 
MAl NT parameter 79 
maintenance of keyed sequence access paths' 

general 79 
immediate 80 
rebuild 80 

maximum CPU time 252 
maximum instruction wait time, 
default 252 

maximum number of members allowed in a 
file 79 
ma~imum number of pools 249 
maximum number of records in a member 82 
maximum number of statement executions for 
tracing 224 

maximum size of message file 184 
maximum storage for message queue 186 
maximum temporary storage 252 
MAXMBRS parameter 79 
MDTOFF keyword 143 
members 

adding to files 79 
allocating contigious storage for 82 
allocating storage for 82 
assigning to a disk unit 81 
definition 79 
logical file 83 
maximum number in a file 79 
maximum number of records in 82 
physical file 82 

menu, formatting 129 
merging record formats using key 
fields 60 

320 

message data format 182 
message delivery methods 

break delivery 186 
default delivery 186 
hold delivery 186 
notify delivery 186 

message descriptions 
default message hanaling for escape and 
notify messages 183 

default values for replies 183 
first-level message 181 
general 180 
message data format 182 
message identifier 180 
second-level message 181 
severity code 181 
substitution variables 182 
validity checking for replies 183 

message files 
general 21, 179 

. IBM-supplied 184 
maximum size 184 

message handling 179 
message handling command list 199 
message handling functions for display 
files 

changing the line on which error messages 
are displayed 127 

general 127 
specifying how messages are to be 
displayed 127 

specifying that message keys are 
contained in a field 127 

specifying that messages are on a program 
message queue 127 

message identifier 180 
message logging 

job log 197 
system logs 198 

message logging levels for job log 197 
message queue attributes 

delivery methods 186 
hanciling messages for break 
delivery 186 

identifying senders 186 
maximum amount of storage 186 
minimum severity code 186 
writing changes immediately to the disk 
unit 186 

message queue types 
job 186 
system log 186 
system operator 185 
user 186 
work station 185 

( 
\ 



\. 
~J 

j 

,/ 

I 

message queues 
attributes 186 
general 21 
receiving messages from 187 
removing messages from 188 
sending a message to 188 
types 185 
what types of messages can be sent to 
which type of queue 190 

message reference key 197 
message support 

display support 127 
message text, retrieving 185 
message types 

completion (*COMP) 180 
diagnostic (*DIAG) 180 
escape (*ESCAPE) 180 
impromptu 179 
informational (*INFO) 179 
inquiry (*INQ) 179 
notify (*NOTIFY) 180 
predefined 179 
reply (*RPY) 179 
request (*RQS) 180 
sender's copy (*COPY) 179 

messages 
general 179 
retrieving from a message file 185 
sending to a message queue 188 
what types can be sent to which type of 
message queue 190 

messages sent by a program 189 
messages sent by a system user 189 
miscellaneous device support functions 

edit descriptions 104 
general 102 
print images 102 
translate tables 103 

mixing parameter types in a command 
Monitor Message (MONMSG) command 
monitoring escape messages 194 
monitoring for a message for a specific 
command 194 

monitoring for messages in 
programs 48, 194 

monitoring notify messages 196 
MONMSG (Monitor Message) command 
Move Object (MOVOBJ) command 34 
moving objects between libraries 22 
moving objects from one library to 
another 29 

MOVOBJ (Move Object) command 34 
MSGLOC keyword 143 
multivolume file conventions 96 

8 
200 

200 

multivolume files 
conventions 96 
general 96 

I'lPme constants 
general 13, 16 
generic name 16 
how to specify 1 6 
qualified name 16 

name restrictions 
data base field names 61 
data base file name 61 
data base member names 61 
data base record format name 61 
device file field names 100 
device file name 100 
device file record format name 100 

named inline data files 172 
naming a member the same as the file 19 
negative status, edit description 105 
nested do groups 41 
new messages, receiving 187 
new objects, restoring 290 
NOALTSEQ keyword 89 
normal authority 278 
notify delivery 186 
notify messages 

general 180, 193 
handling 196 
monitoring 196 

number of programs that can be debugged 
simultaneously 224 

number of records in a subfile 125 
number of statement ranges for a 
trace 228 

number of values in a list 203 

object attributes, common 22 
object authority 

data rights 277 
displaying 285 
general 276 
granting 277 
object rights 277 
revoking 283 

object authority display 285 
object description display 

basic 28 
full 28 

Index 321 



object descriptions, displaying 22 
object existence rights 277 
object management rights 277 
object owners, changing 275 
object ownership 274 
object rights 

object existence rights 277 
object management rights 277 
operational rights 277 

object types 21 
objects 

allocating 22 
common attributes 22 
deallocating 22 
dumping 22, 230 
general 3, 22 
general functions that apply 22 
identifying 23 
placing objects in libraries 27 
renaming 22, 30 
restoring 22. 
restoring a group of objects 291 
rights applicable to 278 
saving 22 
saving a group of objects 291 
saving a single object 291 
security considerations 26 
types 22 

objects command list 34 
objects needed by CPF to control a 
subsystem and run a job 236 

objects that are created using source 
files 169 

old objects, restoring 290 
omit function for logical files 73 
omitting parameters, coding 8 
open data path (ODP) 

device files 95 
general 156 

OPENPRT keyword 143 
operational rights 277 
option indicators 

AN D relationship 100 
general 100, 127 
OR relationship 101 

optional parameters, defining 203 
OR relationship of option indicators 101 
order of coding parameters 8 
order of fields in a display file 114 
order of parameters on CALL and TFRCTL 
commands 51 

order of specification in DDS 
logical file 66 
physical file 62 

order of volumes in a magazine 

322 

for other than savel restore 96 
save/restore 290 

ordering records using more than one key 
field 59 

ordering records using one key field 59 
output data file 

expiration date 95 
output fields, display file 113 
output/input fields, display file 113 
output queue 21 
overflow print line 96 
overlapping fields on a display 115 
OVERLAY keyword 143 
overlaying a display 122 
Override Card File (OVRCRDF) command 161 
Override Data Base File (OVRDBF) 
command 161 

Override Diskette File (OVRDKTF) 
command 161 

Override Display File (OVRDSPF) 
command 161 

Override Printer File (OVRPRTF) 
command 161 

overrides 
applying 154 
deleting 155 

overriding file attributes 153 
overriding files 

data base file considerations 156 
general 153 

overriding files command list 161 
overriding which file is used in a 
program 154 

OVRCRDF (Override Card File) command 161 
OVRDBF (Override Data Base File) 
command 161 . 

OVRDKTF (Override Diskette File) 
command 161 

OVRDSPF (Override Display File) 
command 161 

OVRPRTF (Override Printer File) 
command 161 

owner 271 
owner name 22 
ownership, changing 22 

PAGNBR keyword 111 
Parameter (PARM) statement 209 
parameter types 

character (*CHAR) 202 
date (*DATE) 202 
decimal (*DEC) 202 
generic name (*GENERIC) 202 
logical (*LGL) 202 
name (*NAME) 202 
time (*TIME) 202 
variable names (*VARNAME) 202 



) 
-'" 

"\ 
) 

parameter value length 202 
parameter value types 

constant 13 
character 13 
decimal 13 
hexadecimal 13 
logical 13 

expressions 13 
arithmetic 13 
built-in function 13 
character 13 
logical 13 
relational 13 

variable 13 
character 13 
decimal 13 
logical 13 

parameter values 
changing 207 
general 7 
logical values 13, 17 

parameters 
coding (see coding parameters) 
defining (see defining parameters) 
general 7 

PARM (Parameter) statement 209 
passing attribute information for a 
parameter 204 

PASSRCD keyword 143 
passwords, changing 273 
PFILE keyword 89 
PGM (Program) command 51 
physical file 

adding members to 82 
creating 62 
definition 62 

physical file members 
adding to a file 82 
general 79 
reorganizing 85 

placement of records 116 
placement of records on a screen 

invalid 117 
valid 116 

placing objects in libraries 27 
placing the cursor 119 
positional parameter, coding 8 
positioning the cursor 126 
positive status, edit description 105 
Power Down System (PWRDWNSYS) command 258 
predefined messages 179 
Prepare APAR (PRPAPAR) command 43 
preventing duplicate key values 78 
print image source format 

general 102 
header record 102 
input records 102 
number of input records 102 

print images 
general 21, 102 
source format 102 

PRINT keyword 143 
print lines per inch 96 
printer data description 
specifications 98 

printer DDS keyword summary 110 
printer file device dependent attributes 

folding 97 
form length 97 
form type 97 
form width 97 
forms alignment 96 
lines per inch 96 
overflow line 96 
print image 96 
replacement character for unprintable 
character 96 

translate table 97 
truncating 97 

printer files 
common device attributes 94 
device dependent attributes 96 
general 93 
using in programs 106 

priority limit 272 
private authority 277 
privately authorizing users 277 
problem determination procedures, 
starting 298 

production library 26 
Program (PGM) command 51 
program described data 55 
program ,described data device files 94 
program message queues 191 
program references display 218 
program references, displaying 218 
program variables 

control language programs 39 
programming change log 198 
programs 

adding breakpoints to 225 
adding traces to 228 
breakpoint program 225 
command processing program (CPP) 201 
default program 223 
initial program 273· 
messages sent by a program 189 
monitoring for messages in programs 48 
number of programs that can be debugged 
simultaneously 224 

running a program under an owner's user 
profile 281 

using a packed decimal field in a HLL 
program 64 

using a zoned decimal field in a HLL 
program 64 

Index 323 



program (continued) 
using an externally described data base 
file in a program 55 

using display device files in 
programs 133 

using printer files in programs 106 
writing a command processing 
program 205 

writing a program to control a menu 44 
writing a program to simplify work 
station operations· 46 

writing control language programs 42 
prompt text 

defining for a command name 204 
defining for a parameter 204 

prompt, formatting 130 
prompting for routing data 243 
PROTECT keyword 144 
protecting fields on a display 122 
protecting files from unintentional 
modification, testing 225 

PRPAPAR (Prepare APAR) command 43 
public authority 277 
publicly authorizing specific rights 281 
publicly authorizing users 277 
purge 252 
PUTRETAIN keyword 144 
PWRDWNSYS (Power Down System) command 258 

QABNORMSW system value 268 
QACT JOB system value 268 
QADLACT J system value 268 
QADLSPLA system value 268 
QADLTOT J system value 267 
QAUTOIMPL system value 268 
QAUXSTGTH system value 268 
QBADPGFRM system value 267 
QBASACTLVL system value 267 
QBASPOOL system value 267 
QBATCH (IBM-supplied batch subsystem 
description) 237 

QCARD96 (card device file) 93 
QCE user profile 273 
QCLSRC (control language program source 
file) 169 

QCMDSRC (command definition 
statements) 169 

QCONSOLE (console device file) 93 
QCTLSBSD system value 267 
QCTL 1 (IBM-supplied interactive subsystem 
description) 237 

QCTL2 (IBM-supplied interactive subsystem 
description) 237 

QCU RSYM system value 269 

324 

QDATE system value 266 
QDATFMT system value 17,266 
QDATSEP system value 16, 267 
QDA Y system value 266 
QDBRCDWT system value 266 
QDBRCVYWT system value 267 
QDDSSRC (DDS source file) 169 
QDECFMT system value 267 
QDKT (diskette device file) 93 
QHOUR system value 266 
QHSTLOGSZ system value 266 
QHSTUPDF system value 266 
QIMGSRC (print image source file) 169 
QJOBMSGQSZ system value 269 
QJOBMSGQTL system value 269 
QJOBSPLA system value 268 
QMAXACTLVL system value 266 
QMCHPOOL system value 267 
QMINUTE system value 266 
QMONTH system value 266 
QPGMR user profile 273 
QPSR user profile 273 
QRPGSRC (RPG program source file) 169 
QSCPFCONS system value 266 
QSCPFSIGN system value 267 
QSECOFR user profile 274 
QSECON D system value 266 
QSPL (IBM-supplied spooling subsystem 
description) 237 

QSPLOUTFl system value 268 
QSPLOUTF2 system value 268 
QSPLOUTF3 system value 268 
QSPLOUTF4 system value. 268 
QSPLOUTF5 system value 268 
QSPLOUTF6 system value 268 
QSPLOUTF7 system value 268 
QSRVLOGSZ system value 266 
QSRVONLY system value 268 
QSRVUPDF system. value 266 
QSYSIMAGE (system default print image) 96 
QSYSLlBL system value 267 
QSYSOPR user profile 273 
QSYSPRT (printer device file) 93 
QTBLSRC (translate table source file) 169 
QTI M E system value 266 
QTOT JOB system value 267 
QTXTSRC (text source file) 169 
QUAL (Qualifier) statement 209 
Qualifier (QUAL) statement 209 
queues 

external message (*EXT) 191 
job 21 
job message 191 
message 21 
output 21 
program message 191 

( 
\ 



) 

) 

) 

queuing jobs 245 
quoted string 

date constant 16 
QUSER user profile 273 
QUSRLlBl system value 267 
QYEAR system value 266 

RANGE keyword 
data base 90 
display file 144 

RCVDTAARA (Receive Data Area) command 177 
RCVF (Receive File) command 53 
RCVMSG (Receive Message) command 200 
read rights 277 ' 
rebuild maintenance 

comparison to immediate maintenance 80 
of keyed sequence access paths 79 

rebuilding an access path for recovery 80 
Receive Data Area (RCVDTAARA) command 177 
Receive File (RCVF) command 53 
Receive Message (RCVMSG) command 200 
receiving a data area· 47, 175 
receiving messages from a message 
queue 187 

receiving new messages 187 
record format 

display file 113 
sharing 73 

RECOVER parameter 80 
recovery 

rebuilding an access path 80 
redefining I BM-supplied commands 

changing command names 207 
changing keyword names 207 
changing parameter values 207 
general 207 

REF keyword 
data base 90 
display file 144 
printer 111 

REFFLD keyword 
data base 90 
display file 144 
printer 111 

relationship of PARM statement and DCl 
command 206 

relationship of physical file and logical 
file record formats 56 

relationship of record format in a program 
and on a display· 114 

relationship of records and record 
format 56 

relationship of the parts of command 
definition 206 

Release Job (RlSJOB) command 259 
Release Job Queue (RlSJOBQ) command 260 
Release Output Queue (RlSOUTQ) 
command 261 

Release Reader (RlSRDR) command 262 
Release Writer (RlSWTR) command 262 
Remove Autostart :.lob Entry (RMVAJE) 
command 256 

Remove Breakpoint (RMVBKP) command 232 
Remove Job Queue Entry (RMVJOBQE) 
command 257 

Remove Member (RMVMBR) command 86 
Remove Message (RMVMSG) command 199 
Remove Message Description (RMVMSGD) 
command 200 

Remove Program (RMVPGM) command 231 
Remove Routing Entry (RMVRTGE) 
command 257 

Remove Trace (RMVTRC) command 232 
Remove Work Station Entry (RMVWSE) 
command 256 

removing messages from a message 
queue 188 

removing trace data from the system 230 
Rename Diskette (RNMDKT) command 108 
RENAME keyword 90 
Rename Object (RNMOBJ) command 34 
renaming objects 22, 30 
Reorganize Physical File Member (RGZPFM) 
command 86 

reorganizing physical file members 85 
Replace Library. List (RPlLlBl) command 35 
replacement character for unprintable 
character 96 

replacing record formats on a display 118 
replies 

default values 183 
validity checking 183 

reply messages (*RPY) 179 
request data 246 
request messages 180, 193 
required parameters 

defining 203 
Reroute Job (RRT JOB) command 259 
rerouting jobs 248 
resetting modified data tags 122 
response· indicators 127 
restore 

command list 293 
history information 
what can be restored 

288 
287 

when objects can be restored 287 
Restore Authority (RSTAUT) command 293 
Restore Library (RSTLlB) command 293 
Restore Object (RSTOBJ) command 293 

Index 325 



Restore User Profiles (RSTUSRPRF) 
command 293 

restoring a group of objects 291 
restoring a library 290 
restoring an application 289 
restoring an entire system 292 
restoring authority 292· 
restoring new objects 290 
restoring objects 22 
restoring old objects 290 
restoring user profiles 292 
Resume Breakpoint (RSMBKP) command 232 
resuming program execution after a 
breakpoint 225 

retaining a record or field on a 
display 122 

retaining input data on a display 123 
Retrieve Job Attributes (RTVJOBATR) 
command 54 

Retrieve Message (RTVMSG) command 200 
Retrieve System Value (RTVSYSVAL) 
command 269 

retrieving a message from a message 
file 185 

retrieving job attributes 48 
retrieving message text 185 
retrieving system values 48, 265 
Return (RETURN) command 53 
RETURN (Return) command 53 
Return Breakpoint (RTNBKP) command 232 
returning records in a subfile to a 
program 125 

returning to a breakpoint in one program 
from another program 228 

reversing the image of a field 119 
Revoke Object Authority (RVKOBJAUT) 
command 286 

revoking authority 22 
revoking object authority 283 
RGZPFM (Reorganize Physical File Member) 
command 86 

right constant, edit description 105 
rights applicable to objects 278 
RLSJOB (Release Job) command 259 
RLSJOBQ (Release Job Queue) command 260 
RLSOUTQ (Release Output Queue) 
command 261 

RLSRDR (Release Reader) command 262 
RLSWTR (Release Writer) command 262 
RMVAJE (Remove Autostart Job Entry) 
command 256 

RMVBKP (Remove Breakpoint) command 232 
RMVJOBQE (Remove Job Queue Entry) 
command 257 

RMVMBR (Remove Member) command 06 
RMVMSG (Remove Message) command 199 
RMVMSGD (Remove Message Description) 
command 200 

326 

RMVPGM (Remove Program) com'mand 231 
RMVRTGE (Remove Routing Entry) 
command 257 

RMVTRC (Remove Trace) command 232 
RMVWSE (Remove Work Station Entry) 
command 256 

RNMDKT (Rename Diskette) command 108 
RNMOBJ (Rename Object) command 34 
ROLLDOWN keyword 145 
rolling records in a subfile 125 
rolling records in a subfile by a specified 
number of records 125 

ROLLUP keyword 145 
routing data 

general 239 
prompting for 243 

routing data display 
IBM-supplied 244 

routing entry 
activity level 249 
contents 251 
general 239, 251 

routing step 
executing a user program for 242 
executing an initial program for 241 
executing QCL for 241 
general 238 

RPLUBL (Replace Library,Ust) 
command 35 

RRT JOB (Reroute Job) command 259 
RSMBKP (Resume Breakpoint) command 232 
RSTAUT (Restore Authority) command 293 
RSTD parameter, PARM statement 203 
RSTUB (Restore Library) command 293' 
RSTOBJ (Restore Object) command 293 
RSTUSRPRF (Restore User Profiles) 
command 293 

RTGAID keyword 145 
RTGCON keyword 145 
RTGDEV keyword 145 
RTGDEVCLS keyword 145 
RTGFIRST keyword 146 
RTGFLD keyword 146 
RTG FMT keyword 146 
RTGPOS keyword 146 
RTNBKP (Return Breakpoint) command 232 
RTNVAL parameter, PARM statement 203 
RTVJOBATR (Retrieve Job Attributes) 
command 54 

RTVMSG (Retrieve Message) command 200 
RTVSYSVAL (Retrieve System Value) 
command 269 

rules for using edit descriptions 105 
running a program under an owner's user 
profile 281 

/ 
( 



) 
./ 

,) 

RVKOBJAUT (Revoke Object Authority) 
command 286 

save 
command list 293 
history information 288 
what can be saved 287 
what is saved with an object 287 
when objects can be saved 287 

Save Library (SAVLlB) command 293 
Save Object (SAVOBJ) command 293 
savel restore 287 
savel restore command list 293 
savel restore diskette considerations 289 
save! restore history information 288 
Save System (SAVSYS) command 293 
saving a group of objects 291 
saving a library 290 
saving a single object 291 
saving all libraries 290 
saving an entire system 292 
saving objects 22 
SAVLlB (Save Library) command 293 
SAVOBJ (Save Object) command 293 
SAVSYS (Save System) command 293 
SBMJOB (Submit Job) command 259 
screen management functions 

erasing all input and output/input fields 
not protected 122 

erasing specified records 122 
initializing a record 123 
locking the keyboard 122 
overlaying a display 122 
protecting all input-capable fields 122 
resetting the modified data tags 122 
retaining a record or field on a 
display 122 

retaining input data on a display 123 
setting on a response indicator 123 
unlocking the keyboard 123 

screen size condition names 128 
second-level message 181 
SECURE parameter, override commands 157 
securing files 157 
security 

command list 285 
considerations for objects 26 
considerations for save/restore 289 
general 271 
system level 271 
user level 271 

security command list 285 
security considerations for 
save/restore 289 

security considerations, objects 26 
security information, displaying 283 
security officer 

functions restricted to 274 
select function for logical files 73 
selecting and omitting records 73 
Send Data Area (SNDDTAARA) command 177 
Send ~ile (SNDF) command 53 
Send Message (SNDMSG) command 199 
Send Program Message (SNDPGMMSG) 
command 200 

Send/Receive File (SNDRCVF) command 53 
Send Reply (SNDRPY) command 200 
sender's copy of message 179 
sending a data area 175 
sending and receiving information from data 
areas 47 

sending messages to a message queue 188 
sequence numbers in source files 170 
service 

command list 298 
general 295 

service command list 298 
service log 

general 198 
size 198 

service log size 1 98 
SETOFF keyword 146 
setting on a response indicator 123 
severity code 

minimum 186 
00 181 
10 181 
30 181 
35 181 
40 181 
50 181 
70 181 
80 181 
99 181 

SFL keyword 146 
SFLCLR keyword 146 
SFLCTL keyword 147 
SFLDLT keyword 147 
SFLDROP keyword 147 
SFLDSP keyword 147 
SFLDSPCTL keyword 147 
SFLEND keyword 147 
SFLENTER keyword 148 
SFLlNZ keyword 148 
SFLLI N keyword 148 
SFLMSG keyword 148 
SFLMSGID keyword 149 
SFLMSGKEY keyword 149 
SFLMSGRCD keyword 149 
SFLNXTCHG keyword 149 
SFLPAG keyword 150 
SFLPGMQ keyword 150 

Index 327 



SFLRCDNBR keyword 150 
SFLROLVAL keyword 150 
SFLSIZE keyword 150 
SHARE parameter, override commands 156 
shared files 156 
sharing an access path 74 
sharing device files 95 
sharing record formats 73 
sign of a concatenated field 76 
SIGNED keyword 90 
SIZE parameter 82 
skip after function 99 
skip before function 99 
SKIPA keyword 111 
SKIPB keyword 111 
skipping lines on a printer 99 
slots 95 
SNDDTAARA (Send Data Area) command 177 
SNDF (Send File) command 53 
SNDMSG (Send Message) command 199 
SNDPGMMSG (Send Program Message) 
command 200 

SNDRCVF (Send/Receive File) command 53 
SNDRPY (Send Reply) command 200 
sounding the audible alarm 119 
source file record format 

general 170 
SRCDAT field 170 
SRCDTA field 170 
SRCSEQ field 170 

source files 
changing 173 
creating 170 
general 169 
IBM-supplied 169 
sequence numbers 170 

space after function 99 
space before function 99 
SPACEA keyword 112 
SPACEB keyword 112 
spacing horizontally displayed 
records 125 

spacing lines on a printer 99 
special authority 272 
special characters 12 
specifying how messages are to be 
displayed 127 

specifying length be returned with the 
parameter value 204 

specifying that a parameter value must b~ 
an exact length 204 

specifying that message keys are contained 
in a field 127 

specifying that messages are on a program 
message queue 127 

specifying what devices can be used for a 
device file 94 

spooling information for a device file 94 

328 

SRCDAT field, source file record 
format 170 

SRCDTA field, source file record 
format 170 

SRCSEQ field, source file record 
format 170 

Start Card Reader (STRCRDRDR) command 262 
Start Card Writer (STRCRDWTR) command 262 
Start Confidence Check (STRCNFCHK) 
command 298 

Start Data Base Reader (STRDBRDR) 
command 262 

Start Diskette Reader (STRDKTRDR) 
command 262 

Start Diskette Writer (STRDKTWTR) 
command 262 

Start Print Writer (STRPRTWTR) 
command 262 

Start Problem Determination Procedures· 
(STRPDP) command 298 

Start Subsystem (STRSBS) command 258 
starting a confidence check 297 
starting the problem determination 
procedures 298 

storage 
allocating for members 82 
freeing 288 

storage pools 
activity level 249 
base pool (*BASE) 249 
general 248 
machine pool 249 
maximum number 249 
ways to set up 249 

STRCNFCHK (Start Confidence Check) 
command 298 

STRCRDRDR (Start Card Reader) command 262 
STRCRDWTR (Start Card Writer) command 262 
STRDBRDR (Start Data Base Reader) 
command 262 

STRDKTRDR (Start Diskette Reader) 
command 262 

STRDKTWTR (Start Diskette Writer) 
command 262 

STRPDP (Start Problem Determination 
Procedures) command 298 

STRPRTWTR (Start Print Writer) 
command 262 

STRSBS (Start Subsystem) command 258 
subfile control record format 126 
subfile functions 

clearing records 125 
deleting a subfile 125 
displaying records according to a record 
number 125 

indicating that there are more records to 
be displayed 125 

/ 



) 

) 

) 

subfile functions (continued) 
initializing records in a subfile 125 
returning records to a program 125 
rolling by a specified number of 
records 125 

spacing horizontally displayed 
records 125 

using a command key to fold or truncate 
records 125 

using the Enter key as the Roll Up 
key 125 

when to begin displaying records 125 
when to display a subfile control 
record 125 

subfile page 125 
subfile page size 125 
subfile record format 126 
subfiles 

functions 125 
general 123 
horizontally displayed 123 
horizontally /vertically displayed 
subfiles, concurrently 123 

keywords for subfile use only 
number of records in 125 
rolling records 125 

125 

subfile control record format 
vertically displayed 123 

126 

Submit Job (SBMJOB) command 
submitting a job from another job 
submitting commands 

batch 18 
command entry display 18 
general 18 
interactive 18 
prompting 18 
sample prompt 18 

259 
248 

subsetting a physical file in a logical 
file 56 

substitution variables 
general 182 
valid data types 182 

substring built-in function 
(%SUBSTRING) 42 

subsystem descriptions 
contents 250 
general 4, 236 
IBM-supplied 237 
subsystem attributes 250 

subsystems 
activity level 249 
general 236 

summary of valid file redirections 161 
system 

activity level 249 
restoring an entire system 292 
saving an entire system 292 

system-created device files 
general 93 
QCARD96 (card device file) 93 
QCONSOLE (console device file) 93 
QDKT (diskette device file) 93 
QSYSPRT (printer device file) 93 

system date 266 
system date format 266 

. system decimal format 267 
system level of security 271 
system log message queue 186 
system logs 

displaying 198 
general 198 
history log 198 
message logging 198 
naming versions 198 
programming change log 198 
service log 198 
versions 198 

system management 4, 263 
system operator message queue 185 
system time 266 
system value command list 269 
system value display 265 
system values 

changing 265 
command list 269 
displaying 265 
QABNORMSW 268 
QACTJOB 268 
QADLACTJ 268 
QADLSPLA 268 
QADLTOTJ 267 
QAUTOI M PL 268 
QAUXSTGTH 268 
QBADPGFRM 267 
QBASACTLVL 267 
QBASPOOL 267 
QCTLSBSD 267 
QCURSYM 269 
QDATE 266 
QDATFMT 266 
QDATSEP 267 
QDAY 266 
QDBRCDWT 266 
QDBRCVYWT 267 
QDECFMT 267 
OHOUR 266 
QHSTLOGSZ 266 
QHSTUPDF 266 
OJOBMSGQSZ 269 
QJOBMSGQTL 269 
QJOBSPLA 268 
QMAXACTLVL 266 
QMCHPOOL 267 
QMINUTE 266 

Index 329 



system values (continued 
QMONTH 266 
QSCPFCONS 266 
QSCPFSIGN 267 
QSECOND 266 
QSPLOUTF1 268 
QSPLOUTF2 268 
QSPLOUTF3 268 
QSPLOUTF4 268 
QSPLOUTF5 268 
QSPLOUTF6 268 
QSPLOUTF7 268 
QSRVLOGSZ 266 
QSRVONLY 268 
QSRVUPDF 266 
QSYSLlBL 267 
QTIME 266 
QTOTJOB 267 
QUSRLlBL 267 
QYEAR 266 
retrieving 48, 265 

table 21 
temporary storage, maximum 252 
Terminate CPF (TRMCPF) command 258 
Terminate Subsystem (TRMSBS) command 258 
test library 26 
testing 

command list 231 
default program 223 
general 223 

testing command list 231 
TEXT keyword 

data base 90 
display file 150 
printer 112 

TFRCTL (Transfer Control) command 54 
TFRJOB (Transfer Job) command 259 
time constants 

general 13, 16 
quoted string 17 
time format 17 
unquoted string 17 

time format 17 
TI M E keyword 

display file 151 
printer 112 

time slice 251 
trace data display 230 
trace data, displaying 230 
Trace Internal (TRCINT) command 298 
Trace Job (TRCJOB) command 298 
trace records 

contents 296 

330 

traces 
general 223 
maximum number of statement 
executions 224 

number of statement ranges for 228 
removing trace data 230 
using breakpoints within a trace 230 

tracing a job 296 
tracing the internal machine 
processing 296 

Transfer Control (TFRCTL) command 54 
Transfer Job (TFRJOB) command 259 
transferring jobs 248 
translate table source format 103 
translate tables 

field translation 103 
general 103 
source format 103 

TRCINT (Trace Internal) command 298 
TRCJOB (Trace Job) command 298 
TRMCPF (Terminate CPF) command 258 
TRMSBS (Terminate Subsystem) command 258 
truncating print lines 97 
types of error log data 295 
types of messages that can be sent to a 
program message queue 192 

unconditional branching 42 
UNDERLINE keyword 112 
underlining a field 119 
unique key values 60, 78 
UNIQUE keyword 91 
UNIT parameter 81 
UNLOCK keyword 151 
unlocking the keyboard 123 
unnamed inline data files 172 
unquoted string 

date constant 16 
update rights 277 
updating source using SEU 173 
use of the job description 255 
user-defined edit codes 104 
user identification 271 
user level of security 271 
user library list display 33 
user message queue 186 
user name 272 
user password 271 

( 
\ ...... 

( 

( 



) 

) 

) 

user profile 
changing 282 
contents 272 
creating 281 
displaying 284 
IBM-supplied 273 
restoring 292 
use with work management 236 

user profile display, basic 284 
using a command key to fold or truncate 
records in a subtile 125 

using a packed decimal field in a H LL 
program 64 

using a zoned decimal field in a HLL 
program 64 

using an externally described data base 
file in a program 55 

using breakpoints within a trace 230 
using display device files in 
programs 133 

using printer files in programs 106 
using SEU to enter and update source 173 
using the Enter key as the Roll Up 
key 125 

using variables to create objects 40 
using vertical separators 119 
USRDFN keyword 151 

valid combinations of validity checking 
keywords 121 

valid data types, substitution variables 
binary (*BIN) 182 
decimal (*DEC) 182 
hexadecimal (*HEX) 182 
quoted character string (*QTDCHAR) 182 
space pointer (*SPP) 182 
system pointer (*SYP) 182 
time of day (*DTS) 182 
unquoted character string (*CHAR) 182 

valid placement of records on a 
screen 116 

validity checker 201 
validity checking 

replies 183 
validity checking functions 

checking for a valid name 120 
comparison checking to a constant 
value 120 

comparison checking to a list of valid 
entries 120 

detecting data not within a range 120 
detecting fields requiring at least one 
character 120 

validity checking functions (continued) 
detecting fields requiring every position 
filled 120 

detecting incorrect data types 120 
modulus 10 or 11 check digit 
verification 120 

validity checking keywords 
valid combinations 121 

VALUES keyword 
data base 91 
display file 151 

variables 
changing value to a constant 40 
changing value to an expression 40 
changing value to the value of another 
variable 40 

changing value using the built-in 
function %SUBSTRING 40 

declaring 39, 40 
using to create objects 40 

varying devices 93 
Verify Printer (VFYPRT) command 298 
verifying a 5256 Printer 298 
versions of system logs 

general 198 
naming versions 198 

vertical separators 119 
vertically displayed subfile 123 
VFYPRT (Verify Printer) command 298 
VLDCMDKEY keyword 151 
volume identifiers 

other than save/restore 96 
savel restore 290 

Wait (WAIT) command 53 
WAIT (Wait) command 53 
wait device allocation 95 
ways jobs are initiated on the system 

batch jobs 240 
general 240 
interactive jobs 240 

ways to set up storage pools 249 
yvhat can be restored 287 
what can be saved 287 
what happens at a breakpoint 225 
what information is saved with an 
object 287 

what types of messages can be sent to which 
type of queue 190 

when objects can be restored 287 
when objects can be saved 287 
when to begin displaying records 125 
when to display a subfile control 
record 125 

Index 331 



work entries 
autostart job entry 252 
general . 238 
job queue entry 252 
work station entry 252 

work management 4, 235 
work management command list 255 . 
work station entry, contents 252 
work station message queue 185 
work station type entry 

activity level 249 
writing a command processing program 205 
writing a program to control a menu 44 
writing a program to simplify work station 
operations 46 

writing changes immediately to the disk 
unit 186 

. writing control language programs . 42 
writing records to a disk unit 81 

zero balance, edit description 105 
ZONE keyword 91 

5256 Printer 
verifying 298 

332 

/ 
f 



\ ' ,-__ J READER'S CL .... v1ENT FORM 

Please use this form only to identify publication errors or request changes to publications. Technical questions about I BM systems, changes in I BM programming 
support, requests for additional publications, etc, should be directed to your I BM representative or to the I BM branch office nearest your location. 

Error in publication (typographical, illustration, and so on). No reply. 

Page Number Error 

IBM may use and distribute any of the information you supply in any way 
it believes appropriate without incurring any obligation whatever. You may, 
of course. continue to use the information you supply. 

• No postage necessary if mailed in the U.S.A. 

Inaccurate or misleading informationin this publication. Please tell us 
about it by using this postage-paid form. We will correct or clarify the 
publication, or tell you why a change is not being made, provided you 
include your name and address. 

Page Number Comment 

Name ______________________________________ __ 

Address 

\~ 

aog ffi 
~ ;a s: 
Q) a en 
3 --< 
3 "'O!!1. 
CD -. CD -'. g 3 
en -.-ciQ)W 
c: 3 OJ 

0:" CD Q) 
~. 
~ 
-< 

en 
('") 
I\J 
-" 

.:... 
-...J 
W o 
6 



SC21-7730-0 

Fold and Tape Please Do Not Staple 

111111 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

Fold and Tape 

--- ------ --------- ----- - - -------------
(!) 

POSTAGE WILL BE PAID BY ••• 

I BM Corporation 
General Systems Division 
Development Laboratory 
Pu bl ications, Dept. 245, 
Rochester, Minnesota 55901 

Please Do Not Staple 

International Business Machines Corporation 

General Systems Division 
4111 Northside Parkway N.W. 
P.O. Box 2150 
Atlanta, Georgia 30301 
(U.S.A. only) 

General Business Group/International 
44 South Broadway 
White Plains, New York 10601 
U.S.A. 
(International) 

Fold and Tape 

FIRST CLASS 
PERMIT NO. 40 
ARMONK, N. Y. 

Fold and Tape 

l> 
o 
::s 
co 
r 
5· 
CD 

OJ 
s: 
en 
< 
l!t 
CD 

3 
W 
en 

bl 
~ 
£ 
-0 
a co 
iil 
3 
-n 
Q) 

~ 
-< 
~ 
o , 

~ 
5' ... 
CD a 
5 
c 
Cr. 

~ 

... 
c: c 
C:: 

( 



) 

) 

) 



-~- ------ ------ ----- ~ ---- - - ---==-=':'= ® 

International Business Machines Corporation 

General Systems Division 
4111 Northside Parkway N.W. 
P.O. Box 2150 
Atlanta, Georgia 30301 
(U.S.A. only) 

General Business Group/International 
44 South Broadway 
White Plains, New York 10601 
U.S.A. 
(International) 

SC21-7730-0 

( 

OJ 
s: 
en 
-< 
~ 
CD 

3 -w 
00 
("") 
0 
::! a 
"C a 

(Q 

@ 
3 
-n 
Q) 

~ 

( ~' 

"C a 
~ 
Q) 

3 
3 
~ 
en' 

G> 
c: 
c: 
CD 

-n 
CD 
2 
? 
en 
w 
00 
W 
~ 

~ 
a' 
CD 
Q. 

5' 
c 
en 
l> 

en 
("") 
I\) .... 
~ 
-....I 
W 
0 
b 

( 


