
T E C H N I C A L
I N F O R M A T I O N
E X C H A N G E

6507-0173
August 30, 1965
19 Pages

EL

PACKING ALPHABETIC INFORMATION
INTO FOUR BITS

Robert E. Hanson
IBM Corp.
1049 Asylum Avenue
Hartford, Conn.

FOR IBM INTERNAL USE ONLY

This paper Is in the author's original form.
The objective in providing this copy is to
keep you informed in your field of interest.
Please do not distribute this paper to persons
outside the Company.

Distributed by
DPD Program Information Department
IBM Corporation
112 East Post Road
White Plains, New York 6507-0173

ABSTRACT

This paper proposes a new technique for alphabetic
data representation. A reduction in storage space
of 40 to 45 percent should be easily achieved.

A general program flow chart for encoding and de
coding the data is also provided. A case is pre
sented for hardware implementation of this method.

TABLE OF CONTENTS

ABSTRACT

I. Introduction 1

II. The Method 2

III. Implementation via Software 5

IV. Implementation via Hardware 6

V. Application Areas Impacted 9

VI. Conclusions and Recommendations 10

VII. Illustrations (figures 1 - 5) 11

VIII Cited References 18

I. Introduction

The IBM System /360 introduced the eight bit byte as the standard unit
of data representation. The reasons for its selection are noted e lse
where. This media is quite satisfactory for numeric data as two digits
may be represented in a single byte. Each four bit half byte, which
has a capacity of sixteen sta tes , carries one decimal digit thereby
wasting only 3 /8 (1 6 -1 0 /1 6) of the theoretical information power of the
byte.

Alphameric data for display purposes is another matter. The current
line printers print about fifty graphics comprised of the alphabet, num
bers, special characters, and blank. Therefore, this type of data
could be contained in six bits, which will hold 64 different characters.
This means that the byte is only 1 /4 (64/256) utilized, an unsatisfactory
factor.

This paper presents a method that permits the use of hexidecimal (4 bit)
coding to represent fifty -five graphics. Theoretically, reductions of
50 per cent are possible , however, in practice 40 to 45 per cent are
to be expected over one character per byte storage. Clearly there
are profound implications on storage requirements on tape and direct
access volumes, and on data transfer rates.

The method is unique in that by using four bit coding the stream pro
cessing instructions of System /360 are available to assist encoding
and decoding the data. Further, the user is able to optimize the method
for his own data sets .

1

II. The Method

To understand this method, one must not think of data as static, residing
in storage or on a printed page, but rather as a dynamic stream flowing
past an observation point. Using hexidecimal coding, we have only 16
possible codes to represent all the desired graphics. Therefore, it is
clear that we must re-use some of these 16 symbols several times to
achieve full data representation. So, we will reserve one character,
the hexidecimal F, to designate that a new coding structure will be used
for all the following characters until another hexidecimal F is encountered.
We will call this hexidecimal F a shift code.

Shift codes do not signify what the new coding structure is to be so that
this information must be taken from the hexidecimal character following
the shift code. We will call this character the table designator cod e ,as
it designates the new coding table. This means that if, in the stream of
data, we find a character not available in the current set of 15 (the 16
possible four bit codes minus the shift code), we must insert a shift code
and table designator to put us in a set which does contain the desired
character.

As our objective is to increase data packing efficiency and since shift
and table designators do not carry useful information, we must try to re
duce their frequency or find a way to make them carry significant informa
tion to increase packing efficiency.

To this end, it is well to study the usage of the characters of the alphabet
in the construction of ordinary English language text. Figure 1 illustrates
these relative usages. We see that the first thirteen characters of this
table account for 85 percent of all usage. Therefore, we will call these
the prime text characters, and the remaining 13, the residue characters.

If we combine the prime text characters with a blank and one of the 13
residue characters, we can create thirteen coding tables (using 15 codes
each), that cover the entire alphabet in one table or another, each table
containing the prime text characters. Further, we can make the hexi
decimal code for the residue character contained in each table identical
to the table designator. This will allow the table designator, as it appears
in the data stream following a shift code, to also designate the actual
graphic desired, thereby eliminating the loss of the table designator as a
vehicle for information. Figure 2 is an illustration of this kind of table.
Note that in this figure, 13 separate coding structures are indicated for
the 15 available hexidecimal codes. The coding tables are arrayed
vertically to correspond to the hexidecimal code indicated on the left axis.

2

II. The Method (continued)

If we are receiving a stream of alphabetic information coded in hexi-
decimal characters from some source and wish to decode it, we must
know which table to use first. So, we will establish the following
conventions:

a. The first character is always encoded or decoded from
table zero.

b. If the first character is a residue character not contained
in table zero, there will be a shift code followed by a
table designator to shift us to a table containing the
desired residue character.

To illustrate decoding, let us take the hexidecimal stream D3BB3F465F5.
If we begin at table zero, we find that D decodes to F, 3 to alphabetic O,
B to L, B to L, 3 to W. We then encounter a shift code which says that
the next hexidecimal character is a table designator for a new coding
structure, as well as the hexidecimal code for the next alphabetic
character. Therefore, we shift to table 4 where 4 decodes to W, 6 to I,
5 to N. Then, finding another shift code, we shift to table 5 where 5
decodes to G, giving a decoded message of FOLLOWING. Note that
this message would require nine bytes to store in EBCDIC but requires
only 11 half bytes to store using this method, a 39 percent reduction.

Let us encode the message JOE. The J _s not to be found in table zero,
so we insert a shift code followed by the table designator A, which is
the table containing J. The O and E are also on table A, so that the
hexidecimal representation for messages is FA20.

We have now created a method capable of handling the alphabet and
blanks, however, we still need to handle numerics and the special
characters required for ordinary text or names and addresses. For this
purpose, three additional tables may be provided using the three unused
table designator codes. These table designators are special, in that
they do not represent the next, data character in the stream, so that it
takes a whole byte to shift into one of these tables (shift code plus
table designator). This is not a severe restriction, as numerics will
usually occur as groups, and both numcr ' : and special characters are
relatively infrequent in text or names a - undresses. Table D is used
to contain the numbers and the three c s . r . c . r special characters. Table
E is composed of the prime text characters and a blank. This is provided
to permit an exit from Table D or F where the- first following text character

3

II. The Method (continued)

is not a residue char actor, filed i s , ii the nrst character led lowing a
punctual ion no: rk is a no. <. on muter or bl ink, there in n > table
designator «.* >d- • to p- -t m.t a si .ft to a table containing mu- '•hnracters,
so k a o , '0 ■ . lf ’> . T b- ' t J* <l„ •- > 1 l V,

_ t a m - ' ' a, : ' • . ,,

r ;n i : : : u s c Lb 1 '• ' ■ ■ w n . r . ;ricr if v U! rim bo cc - ... ; . with «
■him e •«’ , ■ 1 : s . • p- ■ ■ ---h by shift < cow, Gx o m ss

• ui b , t;-o ad >. . . dei. i iouna in f o b ie D . IF- • - g in re ' esh
o.i'uctü;> iz f n -we m jrc I

Lei us t. y a sample and. stream using numbers and sp e e ch w uargr-; - .

k /eA . ST LG Firs r MO. 17542

i - xid wsim,,j reen. uenubjon:

A 2 F B 3 0 6 A F D A E F 1 3 F E C E 1 7 5 s 2
3 T b L G Ii J f , b Ivl O . b 1 7 5 4. 2

Tins mm . ecu. c c n o . . of . r- i \ s o f data and 24 he.xib • 1 •1 Fan' F
(13 byfeu’) fo* on ;r ’ ' . u * • i l p ercen t . This i t m >

n: ' ;!•, •; 11 is' is - • eem m - d oase and that this cate,: • a- * go F.i;
be recorded as:

8 2 E B 3 0 6 8 E F 1 3 E F D 1 7 5 4 2
S T b L O U I S b MO b 1 7 5 4 2

which lias 17 bytes » G i ' 'V -s for an improvemen.t ox 41 percent *

One sallowing w:xi c c e n o is s bably fairly representative of the packing
tc be expect*, a . 10 ' ’ to le. ■ streams that im o > . .]. •• <t 1 , ,.
tab les :

n 3 7 E 1 4 C 9 E 4 C C 1 8 8 E (D 1 0 2 9 3 ft (? g A E
r O R b E A C 3 b A C C E S S b M E T H O , b

0 7 3 B 0 R 0 1 0 Z A 6 8 0 2 3 8 6 1 6 5 L 6 8 E 8 3 0 C
" V O 1. l W ' i l b D i 3 P O S I I I N L I S b 3 F E C

II The Method (continued)

6 D 6 0 A E 4 8 E 0 6 1 9 0 7 E 3 D E 1 9 0 E D 3 B B 3 0 4 6 5 0 5
I F I E D b A S b E I T H E R b O F b T H E b F O L L O WI N G

This message is 82 bytes long in EBCDIC and 91 half bytes long in
hexidecimal, a saving of 47 percent.

It would also be well to point out that a large volume of numeric data
(particularly small fields) could be represented more efficiently with
5 is method than with packed decimal, because the sign position would

..ut be required for each byte.

ïh is method provides a method of representing 54 graphics with a six
teen bit structure. This will handle most standard printer arrangements.
However, some applications, such as text printing, may require both
upper and lower case alphabet, and additional special characters. This
could be provided if we were to let one of the special characters in table
F tell us to shift to an entirely new set of coding tables, representing
lower case alphabet and additional special characters (they could be the
same as the original set if desired).

III. Implementation via Software

The stream of coded half bytes will not have a predictable length due
to the variable packing percentage inherent in this system. Therefore,
it is suggested that the first byte of each coded text be the length of the
coded field in binary representation. This format will make it possible
to use the length directly in instructions, or via an execute instruction
with a general register.

To facilitate encoding and decoding data, the format of the coded bytes
should be stored as follow s. The first half of the coded message should
be stored in the numeric portion of consecutive byte locations. The re
maining half of the message could then be stored in the zone portion of
the same bytes. The format is shown below with consecutive half bytes
numbered starting at 1.

5

Bytes

Zone L
e 11 12 13 14 15 16 17 18 19 20
n

Numeric 1 1 2 3 4 5 6 7 8 9 10

= 20 in binary

Note that the length specified is the length of the stream of half bytes
not including the length byte.

While these encode and decode routines have not been coded, a general
flow chart for each is included as figures 4 and 5 . These routines will
make extensive use of the four bit data handling ability of System /360
to stack and unstack the coded stream with the m ove'zones, move
numeric and move with offset instructions. The stream may be searched
for shift codes or characters not present in the current table with the
translate and test instruction, and the actual translation performed by a
translate instruction. Of course, the speeds of these routines are not
determinate at this time, but the time necessary for translation might be
more than compensated for by a reduction in I/O transfer time, particular
ly if inactive records were not decoded at a ll.

IV. Implementation via Hardware

The read only storage and microprogramming ability of the System /360
would suggest that instructions other than those in the current set could
be implemented in the hardware. If this could be done in the case of an
encode alpha and decode alpha instruction, the time necessary for the
translation could be significantly reduced, as well as eliminating the sub
routine storage requirement.

By using the suggested instruction formats, the user would supply the
encode and decode tables for the instructions. This provides the user
with the ability to analyze the frequency distribution of the characters
of each data set, and thereby optimize the packing. Also, using separate
tables could provide a measure of security for confidential data sets or
in data transmission.

6

It would seem advantageous to change the stacking format for hardware
implementation to an over and under arrangement as shown below:

Bytes

Zone L 2 4 6 8 10 12 14 16 18 20

Numeric
G

H 1 3 5 7 9 11 13 15 17 19

Suggested formats for these instructions are shown below:

Encode Alpha Instruction

jo p ___ jJR1_ R2_ j ____B1 [D1 B2

SS Format

Operand 1 is the field to receive the packed information (length byte
position).

Operand 2 is the field to be packed (length byte position).

R1 is the register containing the address of the user supplied 256 byte
encoding table.

Length of the data to be coded is taken from the first byte of operand 2.
Output length is developed and inserted in the first byte of operand 1.

R2 not used.

The area to receive the packed data should be as long as the area con
taining the source data, as it is possible that no packing could take place.

Decode Alpha Instruction

| OP | R1 R2 j B1 | PI |b2 j D2

Operand 1 is the area to receive the unpacked information (length byte
position).

Operand 2 is the data to be unpacked (length byte position).

7

R l, the general register which contains the address of the user supplied
256 byte decode table, may be the same as the encode table.

Length of the coded data is supplied by the first byte of Operand 2 . The
length of the decoded alphameric information is placed in the first byte
of Operand 1.

R2, not used.

The area to receive the unpacked data should be twice as long as the
coded data area, as it is theoretically possible for this much expansion
to take place.

Timing

If these instructions could be made to operate 1 /2 as fast as a trans
late and test instruction (102 + 16N microseconds on a Model 30, where
N is the number of bytes processed) then using 30KB tapes, we would
have only to save four bytes of information to break even, and we would
gain 2 8 .4 microseconds for each additional byte saved.

4 4 .4N = 102 + 16N
28.4N = 102
N 4 bytes to break even

Of course, each device and CPU must be evaluated for its impact on
thruput speed under this assumption. We must also remember that in
many jobs, not every record is active and need not be decoded, pro
viding a pure thruput bonus. A lso, records that are decoded but not
altered need not be encoded to be returned to the data set.

8

V. Application Areas Impacted

Below are suggested some of the more obvious application areas that
could be impacted by reduction of 40 to 45% in alpha storage require
ment. The readers will probably think of many others.

1 . Text Storage
a . Administrative Terminal Systems
b . Computer Aided Instruction

2 . Name and Address Files

3 . The Insurance Alpha Index (MIB) File

4 . Historical Data Storage

5 . Information Retrieval Systems

6 . Data Transmission (to increase effective line speed)

9

VI. Conclusions and Recommendations

IBM should seriously consider implementing an alphabetic encode and
decode instruction on the System /360. This could give us a strong
competitive edge in thruput and direct access storage capacity. It
could also open some new application areas that are currently marginal
because of the cost of storage of alphabetic text.

10

^
<

D
3Q

^
K!

tT
3̂

d
^

O
!H

Ö
K

co
^

w
5

!
>

0
^

M

Usage of the Alphabet in English Language Text

Cumulative Usage
Usage per 1000 per 1000

131
90 .221
82 303
78 381
73 454
68 522
67 ' 589
65 654
59 713
44 757
36 793
29 822
28 850
28 878
26 904
22 926
15 941
15 956
14 970
13 983
10 993
04 997

X 01 998
J 01 999
C 01 1000
Z 01 1001

Source: See Reference I

Figure 1

11

H
E

XI
D

E
C

IM
A

L
CO

DE

TABLE DESIGNATOR CODE

0 1 2 3 4 5 6 7 8 9 A B C

0 U E E E E E E E E E E E E

1 E M T T T T T T T T T T T

2 T T P 0 0 0 0 0 0 0 0 0 0

3 0 0 0 Y A A A A A A A A A

4 A A A A W N N N N N N N N

5 N N N N N G I I I I I I I

6 I I I I I I B R R R R R R

7 R R R R R R R V S S S S S

8 S S S S S S S S K H H H H

9 H H H H H H H H H X D D D

A D D D D D D D D D D J L L

B L L L L L L L L L L L Q C

C C C c C C C C C C C C G Z

D F F F F F F F F F F F F F

E b b b b b b b b b b b b b

F i g u r e 2

TABLE DESIGNATOR Flowcharting Worksheet PRINTED IN U.S.A.

Program m er:.......................... ...
Chart ID :______ Chart Nam e: Encode Routine

Program N o . : __ D ate :_

■ Al — 4- -----

I______

r 81
4
i
i
L__

-4 - -------- ,
I
I
4
l
!

4------- 1

-C l-----h-

r Di-

I------------L--------

"~1
I
I
tI
I

r E1
t
i

4
I
I

• 4-----

r A2 - H----

C Start

B 2 — - -

>

Pick up
Length and

Distributee

- C2 ----
TLT to find

Length under
current
table

-D2----

1
Set length

for
translate / 1

- E 2 ---------

Translate
as much

as
possible

Program Nam e:
Pag e :.

1— A3 —
I

-4-------1
i

r A 4 - 4 -
i !

r A5 -
I

- 4- - --- 1
1

-1
!

1
4
!

i
4

i 1
4
1

1
4-i

1
1_______

1
-4________ 1

L - - —

i
____1

1
1______ • 4- —

1
_ J

[- B 3 -
1

4------ ,
i

r B4 - h— - n [— B5 —
1

4---
i

4
! 4 4

i
4
1

1
4
1

!
4

1 4------ i
I I

____1
1
1_______. -4---

!
____S

r C 3- 4 ------,
1

1— C4 — 4- -— 1
1

r C5 -
1

4— ■ 1
1

i
4i

1
t

i
+
!

r
+
f

1
+
1

1
4
11

1_______
!

-+------- 1
1
i------- 1— ____ i

i
1_______ 4---

1
____ !

iroO1___ + ----- 1
1

|— D4 — H---
1

— i
i

j— 05 —
|

— 1
1

!
4
1

1
t
1

1
+

l
4

l
t

1
4
1

I
i_______

1
i------

I 1
1_______ 4---

1
____!

r E 3 -
1

4-------
1

|— E4 — -1---
1

-----1
1 r E5~

i
4---- 1

11 ■
!

1
4

l 1
4

i
4
1

1
ii

i_______
i

i______
1 1

1_______ 4---
i

_

13

r

Fold under at dotted line.

r F!-

-G1

+II

r-m— *------

______I

r Ji - + -------- 1i i
i i
4 4

i :
1_________ i

i— K 1---- 1-----------1

4 +
I I
I f
I------------1------- 1

Adjust
Addresses am

remaining
length

-F3-

1C

1 Y e s 1Stack field j
in output !

>l * Insert j

J Length Byte \
_J L

i r
i 1I i

- G3 -

_________ l

-------- (
l

Exit

__1

---------1

J 3 --- 1-------

r~ K3 — -
Insert table j
designator & f
Bump start i

by one

r~ F4 -
I
I
+
l
i
i_____

64 -
I
4
I
I
L_

4
I
I

__ I

- H4 - h-------

I______

• J4 - 4--

- K 4 ---1-----

I
!
+
I

. J

4
I
I

__l

r F 5 ----- 1--

p G 5 •

I
t
I
1_____

-H5 ■

'H
I
I
4

"1
I
I
4

(— J5 -

4
I
I

__J

-K5 - •

I_______ ____ 1

T

Figure 4

I M □ T) N/“3
ccUc/ilvlb Flowcharting Worksheet

P: onir irn m e r:___________

O .art ID :______ Chart Nam e:
Program N o . :_

Decode Routine
D a te :_

Program Nam e:

Pag e :.

I
I
!_ . ._J

-A2- +-

Start

I_______
3
. J

- A3 - - A4 - - A5 - -

- B1
I
I
4
I
l

■ B2 - ■
Pick up

Length and
distribute

r~ B 3 — -t— —

l
+

B4--- h --- - B5 -

- C l - I— C2
Unstack

to a
Hexidecimal

Stream

I— C3 -
I
I
+I
I_____

----- n C 4 ---i------- j— C5 -

I___ _ .J

‘ “ I

_____I

r 02-
! TLT to find
t Shift and
' Length

- 03 - - D4 -

I_______

- 05

r E1
i
i
-t
i
i

" 1
i
i
4
I
I

[̂ ■E 2.m
Translate

to
Alpha

' 4- — —

j— E3 •
I
I
4
l
I
I_____

’ ~I
I
4
l
I

r E4 - -h - E5- ' ”1

Fold under at dotted line,

Fold lintei

r
I
!
+II

I
I
4I
I

(—G1---- h
I
I

- F 4 ---I------

4
I
I
1__

- G4 -

I
I
+
Il

1“ HI — -»----------- 1

I
II--------+ _

I
I

_J

r J! -------1i i
i i

4I
I
1___

4
II

r ~KI - •I
I
4
I
I
I_______

' “ II
I

4-
I
I

r - K 2 -
I
I
+
I
I

I— K3 —
I
I

“ I
I
I

4
I
I

_J

Figure 5

(—F 5 •--------1
I . I
I I
4- 41 l
I II-------- -̂--------- 1

G5 —

+
I
L_______

!
I
4
I
I
J

VIII. Cited References

1. W . W . Rouse Ball, Mathematical Reactions and Essays.
The MacMillan C o ., New York, Eleventh Edition, 1962,
Library of Congress No. 39-2762.

+

I
I
4
I
I

r_ j5 — ,---------1
i II i
4 4
I I
I I
1______ ,______ I

r K5 - + ------1
I Last Page

18

t

r

