
Z77-6358

■Sim '4 « B i■

■
Ik
Mp

OPERATING SYSTEM/360 CONVERSION AND

INSTALLATION INFORMATION FOR PROGRAMMERS
SI

Miss Sylvia S. Murphey
IBM Corporation
1439 Peachtree Street, N. E.
Atlanta, Georgia 30309

IBM Corporation, Technical Publications Dept., 112 E. Post Road, White Plains, N. Y. 10601

Sept. 30, 1966

This paper centers around an example program intended to
demonstrate what can be included in a program for the
Operating System. Covered in detail is a description of
register conventions, including SAVE and RETURN macros;
description of data sets, including Data Control Blocks and
Data Definition statements; operator communication, includ
ing Write to Operator with Reply (WTOR), Write to Operator
(WTO), and usage of the PARAM entry in the EXEC job
control card; and a description of control characters. There
is also a section on documentation covering program docu
mentation and a scheme for naming jobs, job steps, Data
Definition statements, Data Control Blocks, data sets and
programs. A helpful list of topics is provided with reference
to specific O/S manuals and page numbers. Although this
paper is focused on the Queued Sequential Access Method '
(QSAM), most information can be applied to other access
methods.

Far IBM Internal Use Only

1.

TABLE O F CO NTENTS

General Introduction

Page

1

A . Prerequisites 1
B. Source Manuals 2
C . Topic References 2

II. Program Example 4

A . Introduction 4
B. Program 5

111. Description of Data Sets 9

A . Data Definition Statements 9

1 . Introduction 9
2. DD Cards 10
3. Explanation 12

B. Data Control Blocks 16

1 . Program Chart 16

IV . Register Conventions 17

A . SAVE and RETURN 17
B. Register Restrictions 18

V . Operator Communication • 19

A . Write to Operator with Reply (WTOR) 19
B. Write to Operator (WTO) 20
C . PARAM 20

V I. Control Characters 21

A .
B.

ASA
Machine Codes

21
21

Page

A . Program Organization 22
B. Program Folder 24

1 . Table of Contents 24
2. Configurator 25

C . Naming Conventions 26

V I I . Documentation 22

IN TRODUCTION

S/360 Operating System offers the user a myriad of facilities and options. The
system creates a new environment for data processing in that one of its main
objectives is to maintain a constant work flow through the computing system.
Keywords, such as turn-around time and throughput, are given new significance
and meaning by minimizing setup time and computer time lost on job-to-job
transition. The concept of a JOB is expanded from being one program only to
a broader idea of a unit of work to be done encompassing many programs and
several job steps.

However, with enlarged capability comes complexity. Most novices in the
Operating System find that the volume of information written about the system
is quite large. The evergrowing and constantly changing storehouse of informa
tion can be quite overpowering. Systems Engineers and IBM customers must
somehow sift out of a ll of the information available what they must know in
order to begin the programming effort. It must be emphasized that there is
N O substitute for reading the manuals. However, in an attempt to aid
programmers get some idea of what is necessary to write a program for the
Operating System, a skeleton example program may be very helpful. Often
a concrete example helps the programmer to obtain a firm grasp on some of
the things that he needs to know. An example may show many details which
the programmer may otherwise overlook. If he sees something used, he may then
return to his manuals to pursue the write-up of the macro or instruction in depth.

Documentation and program organization become even more important as the
complexity of a program grows. Therefore, included in the example program
is an illustration of one way a program may be organized. We have found that
the important thing with documentation is that whatever may be agreed upon
should be strictly enforced if it is to be effective.

The program was written for an installation which planned initially to use in
most of its programs the Primary Control Program, the Queued Sequential Access
Method (QSAM), the move mode of GET and PUT, and Assembler Language.
These four limitations narrow the focus of this paper.

A . PREREQUISITES

1 . A basic understanding of Assembler Language.

2 . Familiarity with Introduction to O /S , C28-6534, and Concepts and
Facilities, C28-6535 .

1

B. SOURCE MANUALS

Introduction C 28-6534 (INTRO)

Concepts & Facilities C 28-6535 (CF)

Job Control Language C 28-6539 (JCL)

Control Program Services C28-6541 (CPS)

Data Management C 28-6537 (DM)

Linkage Editor C28-6538 <LE)

C . TOPIC REFERENCES

Topics are listed in order of presentation in paper.

Topic Page Manual

QSAM 132 (CPS)

OPEN 133 (CPS)
122 (CPS)

CLOSE 124 (CPS)

GET * Move Mode 143 (CPS)

PUT * Move Mode 146 (CPS)

DD Statements 18 (JCL)

Generation Data Sets 12 (DM)

Data Control Block * QSAM 134 (CPS)

SAVE 44 (CPS)
29 (CPS)
30 (CPS)

RETURN 46 (CPS)

Register Usage 27 (CPS)

2

ManualTopic Page

WTOR 112

Event Control Block 91

WTO 111

PARAM in EXEC Card 36
15

Control Characters ASA 333

Machine Code 29
12

(CPS)

(CPS)

(CPS)

(CPS)
(JCL)

(CPS)

IBM 2821 Control Unit A24-3312
S/360 Reference Data Card X20-1 703-3

3

II. PROGRAM EXAMPLE

A . PROGRAM INTRODUCTION

The following program example contains:

1 . Comment cards used to organize the program into basic sections

a . Housekeeping
b. Main Line
c . Sub-routines
d . Special Routines
e . Constants, Accumulators, and Working Storage
f . Input and Output Areas
g. Data Control Blocks

2. The example is designed to use the Queued Access Method with
the Move Mode of GET and PUT.

3. There are three input files and four output files. Input from tape,
curd, and disk--Output to tape, card, disk, and printer.

4. Examples of WTOR, G ET, PUT are given.

4

L MAH F.

PGM
PROGi
♦

4 START

ASTRSK

*

AOCON1
ADCON?

*
BFGIN

*

MSG I

*
MSG2A
MSG2

1

SUGGESTED GENERAL PROGRAM OUTLINE

10 OP 16 OPERAND
PAGE 5

7?

T I T L E 'GENERAL PROGRAM OUTLINE FOR 0 / S '
START

* * * HOUSEKEEPING * * *
SAVE (1 4 , 1 2) , , PROGI SAVE REGI STER S 1 4 , 1 5 , 0 - 1 2
BALR 1 2 , 0
USING * , l ?
USING * * 4 0 9 6 , 1 1
USING * * 8 1 9 2 , 1 0
L 11, AOCONl
L 10 , ADC0N2
ST 13 , SAVE+4 STORE ADDR OF CALl ING PROG'S SAVE AREA

IN YOUR SAVE AREA
LA 5 , SAVE STORE ADDR OF YOUR SAVE AREA IN
ST 5 , 8 (0 , 1 3) CALLING PROG'S SAVE AREA
ft BEGIN
DC A(ASTRSK+4096)
DC A (A S T R S K * 8 192)
EJ ECT

* * * MAIN L I NE PROGRAM * * *
OPEN (T A P E I N , (INPUT)> OPEN ALL DCB'S
OPEN (D I S K I N , (I N P U T))
OPEN (C A R D I N , { INPUT))
OPEN (TA PE O UT , (O UT P U T))
OPEN (01 S KO UT , (O UTP UT))
OPEN (CARDOUT, (OUTPUT))
OPEN (PR IN TER , (OUT-PUT) Ï

INSTRUCTIONS
INSTRUCTIONS

BAL 3 * GETCARD BRANCH AND LINK TO COMMON GET ROUTINFS
BAL 3 ,GF TD IS K
BAL 3 , GETTP

INSTRUCTIONS
INSTRUCTIONS

ISSUE MESSAGE TO OPERATOR VIA CONSOLE
NI EC B I , X • B F •
WTOR ' G I V E CURRENT PROCESSING D A T E ' , C U « D T , 6 , ECBl
WAIT E CR -ECB l

ANSWER I S PI ACED IN STORAGE CUROT
NI E C B 1 , X ' 8 F '
WTOR ' I S THIS A WE
WAIT ECB=eCftl
CLC ANS,NOT
BE DAILY
CLC ANS,YES
8F WEEKLY
Ö MSG2A

INSTRUCTIONS
INSTRUCTIONS

BAL 3 , HEADRTN
ÖAL 3 , PUTTP
BAL 3 , PUTDSK
BAL 3 , PUTCD
BAL 3 , WRITEPRT
CLOSE (TAPE IN)

FKLY RIJN* , ANS, 3 , ECBl

DEPENDING ON REPLY A BRANCH
I S TAKEN

R EI SS UE MESSAGE IF WRING RFPLY

BRANCH ANO L INK TO COMMON PUT

CLOSE A l t DCB'S

1 NAME 10 OP 16 OPERAND
PAGE

*

GETCARD

GETTP

GETOSK

PUTTP

PUTOSK

PUTCD

WRITEPRT

*

SKIP

PUT P RT

HEADRTN

*
ERROR

*

*

*

72

CLOSE (D I S K I N)
CLOSE (CARDIN)
CLOSE (TAPEOUT)
CLOSE (DISKOUT)
CLOSE (CARDOUT)
CLOSE (PRINTER)
L 1 3 , SAVE*4
RETURN (1 4 , 1 2)
EJ ECT

LOAD ADDR OF Y)UR SAVE AREA IN REG 13
RESTORE SAVED REGISTERS
END OF MAIN LINE OF PROGRAM

* * * SUBROUTINES * * *
S P A C E 2
G E T C A R D I N , W R K R E A D G E T MOVE P L A C E S A L O G I C A L R E C O R D
B R 3 I N S P E C I F I E D WORK A R E A
G E T T A P F I N , W R K T P I N
B R 3
G E T D l S K I N , W R K D S K I N
B R 3
P U T T A P E O U T , W R K T O Q U T A L L P O T R O U T I N E S A R I P U T MOVE
B R 3 D A T A M U S T H A V E R E C N MO V E D V I A
P U T D I S K O U T , W R K D S K O U P R O G R A M M I N G TO T H E O U T P U T WORK A R E A
B R 3
P U T . C A R D O U T , W R K P U N C H
B R 3
C P C O U N T , M A X J E S T . F O P N U ^ B F l o r L I N E S -> R I N T E)
B E S K I P
MV I C N T R L , X ' 4 0 ' C A R R I A G E C O N T R O L r-OR S P A C E ONE L I N ^

B E F O R E P R I N T I N G - S E E P . 3 3 3 C P S
AP C O U N T , O N F f J C W E M T M |. I N p f DUNT c R B Y ONE
B A L 5 , P U T P R T
B R 3
MV I CN T R I . , X ' 4 0 *
Z A P C O U N T , C L E A R C L E A R C O U N T E R
B A L 5 , P U T P R T
B H E A D R T N
P U T PR I N T E R , W R K P H T
MVC W R K P R T , C L E A R P R T C L E A R EM I NT ARIA-
BR 5
MV I C N T R l , X ' F l • S K I P TO C H A N N E L ONE
MVC W R K P R T * 3 2 (7) , H F A D I N G - M O V E H E A D I N G Tfi W0 R< A R E A
B A L 5 , P U T P R T
BR 3
C J L C T

* * * S P E C I A L R O U T I N E S * * *
WTO • A N I N P U T O U T P U T E R R O R MAS O C C U R E o - J O O E N D E D '
BR 1 4

* * * CONST ANTS-ACCUMJLA TOR S-W IRK I NG ST -RAGE * * *
SPAC E 2

* * HALE WORD AL IG,n h f n t * *
ns OH

* * FULL WORD ALIG NMEM **
DS or
DS 18 F
DC r * o'1

* * DOUR L E WO-tD AL IGNMEMT
DS on
SPAC E ?

SAVE
ECBl
*

PAGE
NAME 10 OP 16 OPERAND

* * * NO ALIGNMENT * *
* ♦ CONSTANTS *
MAX DC X10 5 0 C • MAXIMUM NUMBER OF L INES PER PAGE
CLEAR DC X« 0C'
ANS DS CL 3 WEEKLY OR DAILY RUN
CURDT DS CL 6 CURRENT DATF
♦ ♦ COUNTERS *
COUNT DC P L ? ' ') * L I NE COUNTFP
ONE DC pi 1 1
♦ * SWITCHES *
SWITCH DC X'00* ONE BYTE CAN REPRESENT MANY
* * HEADINGS *
HEADING DC C • HPAD ING *
♦ * EDIT WORDS *
* * ACCUMULATORS *
* INVOICE D ES CR IP TI VE COMMENTS

DC STATEMENTS DEFINE ACCUMULATORS AS ZERO
DC STATEMENTS CONSTANTS WITH A GOOD SIGN

* F I L E
DC STATEMENTS
DC STATEMENTS

* * WORKING STORAGE *
DS STATEMENTS

SPACE 2
*

LTORG
EJ ECT

* * l ;

♦ * * * I!
SPACE 2

♦ * * I!
WRKREAD DS OClflO
CDFL01 DS CL 20
CDFLOP DS CL 40
CDFLO 3 DS CL 20

SPACE 2
WR.KTPIN OS 0C1 so
TPFLD1 DS CL 25
TPFL02 DS CL 25

SPACE 2
WRKOSKIN DS 0C150
DKFLDl DS CL 20
DKFLD2 DS CL 20
DKFL03 DS CL 10

SPACE 2
* * * Ol
WRKPUNCH DS 0C180
PUFLOi DS CL 20
PUFLD2 DS CL 40
PUFL03 DS CL 20

SPACE 2
WRKTPOUT DS 0CL50
TPFLD1A DS CL 25
TPFL02A OS CL 25

SPACE 2
WRKDSKQU DS 0CL50
DKFLDl A DS CL 25

AREAS * *

PAGF 3
7? *1 NAME 10 OP 16 OPERAND

DKFLD1A OS CL 25
DKFLD2A DS CL 25

SPACE 2
CLEARPRT DC C' »
WRKPRT DS 0CL133
CNTRL DS CL 1
PRT DS

EJ E CT
CL 132

*
SPACE

* * * DATA CONTROL BLOCKS * * *
2

♦ * * INPUT DC3S * *
TAPE IN DCB DSORG=PSfMACRF = GMf DONA MF = T AP E ï N *

EODAD=ENDTAPE,SVNAD=ERROR
SPACE 2

DISKIN DCB d s o r g =p s , m a c r f =g m , d d n a m f =d i s k i n ,
FODAD=ENi)DI SK, SYNAD=ERROR

SPACE 2
CARDIN DCB DS 0 R G= P S , M AC R F = G M , DON A m F = C A R 0 1 N,

EOOAD= ENDCAR 0 » SYNAD=ERROR»E °3PT=SK p ,
RF.CFM=FBSf BLKSI ZF=BO,LRECL)*BFTFK = St
BU FNO=2 , BU FL = 3 0 , B F AL N=F

SPACE 7
* * * ÜUTPUT DCB S * *
TAPE-JUT DCB OS 0 R G= P S , M AC R F = M » 0 ON A M F = T A P R) 0 T , S v M V) ■= E «) R

SPACE 2
DISKOUT DCB OSORG=PSt M ACRE- PM , OQNAMF = () I SKOUT , Svn Ai'^ERP OR

SPACE 2
CARDGUT DCB !)SORG=PS , M ACRF = PM , ODNA MF =C AR JOUT , 3* \! A* ' = r R R OR

SPACE 2
PRINTER DCB DSORG= P S , M ACRE = <>M,DDNAMF = PR INTER , RTf FK =S ,

8 UFN0=l f fl'JFL = 133, HEAL N = F f EROPT = ACC
END START

1

♦

III. DESCRIPTION O F DATA SETS

The two sources of information used to describe the data sets in,the example
m program are the Data Definition (DD) statement and the Data Control Block

(DCB). The following are provided.

Data Definition Statements

A . The DD cards as they might be coded.

B. An example of the DD parameters chosen.

Data Control Blocks

A . The DCB's themselves are shown in the example program.

B. A chart is given of all of the DCB parameters showing

1 . What each entry is in the example program.

2 . Which entries were actually put in the DCB and which ones
were put in the DD card.

A . DATA D EFIN ITIO N STATEMENTS

1. IN TRO DUCTION

O f the various parameters available in the DD statement, some fall into the category
of being "necessary to make the job run." As an introduction to Operating System
coding, a good approach was to concern the programmer in depth, at least in itia lly ,
with only those options which he must include. This by no means indicates that the
many other options are not useful, or, as the programmers progress, necessary to
obtain optimum efficiency. However, as a basic introduction, in keeping with
the effort to give the programmer a feel for what can be included in a DD statement,
the following DD statements were given as examples of what is needed to complete
the description of the data sets used in the example program.

♦

9

2. DATA DEFINITION CONTROL CARDS

I . Output Data Sets

A . Disk

1. Data set is catalogued

//D ISK O U T DD DSNAME=MASTER(+1), DC B=(, EROPT=SKP, RECFM=FBS, X

/ / BLKSIZE=250, LRECL=50,BFTEK=S, BUFNO=2,BUFL=250, X

/ / BFALN=F),SPACE=(TRK,(50,10),RLSE), X

/ / VOLUM E-REF=*. D ISKIN , DISP=(,CATLG)

2. Data set is passed

//D ISK O U T DD DSNAME=MASTER,DCB=(, EROPT=SKP,RECFM=FBS, X

/ / BLKSIZE=250, LRECL=50, BFTEK=S, BUFNO=2, BUFL=250, X

/ / BFALN=F),SPACE=(TRK,(50,10),RLSE), X

/ / VOLUME=REF=*. D ISKIN , DISP=(, PASS)

B. Tape

//TAPEOUT DD DSNAME=DETAIL(+l),DCB=(,EROPT=SKP,DEN=2, X

/ / RECFM=FBS, BLKSIZE=250, LRECL=50, BFTEK=S, X

/ / BUFNO=2,BUFL=250,BFALN=F),UNIT=TAPE, X

/ / LABEL=(,SL,RETPD 0004),DISP=(,CATLG)

C . Card

//CA RD O U T DD DSNAME=CARD,DCB=(, EROPT=SKP,RECFM=FBS, X

/ / BLKSIZE=80, LRECL=80, BFTEK=S, BUFNO=2, BUFL=80 X

/ / BFALN=F), UNIT=PUNCH

10

D . Printer

//PRINTER DD DSNAME=REPORT,DCB=(,RECFM=FSA,BLKSIZE=l 33, X

/ / LRECL=133),SYSOUT=A

II. Input Data Sets

A . Disk

//D ISK IN DD DSNAME=MA$TER(0),DCB=(,EROPT=SKP,RECFM=FBS, X

/ / BLKSIZE=250, LRECL=50,BFTEK=S,BUFNO=2,BUFL=250, X

/ / BFALN =F),UNIT=DISK,DISP=(OLD,CATLG)

B. Tape

1.

//TA PEIN DD

Data set is catalogued

DSNAME=DETAIL(0),DCB=(EROPT=SKP,DEN=2, X

/ / RECFM=FBS, BLKSIZE=250, LRECL=50, BFTEK=S, BUFNO=2, X

/ / BUFL=250,BFALN=F),UNIT=TAPE,DISP=(OLD,CATLG)

2 . Data set is not catalogued

//TA PEIN DD DSNAME=DETAIL,DCB=(,EROPT=SKP,DEN=2,RECFM=FBS, X

/ / BLKSIZE=250, LRÊCL=50, BFTEK=S, BUFNO=2, BUFL=250, X

/ / BFALN=F), UN IT =TAPE, D ISP=(OLD, CA TLG), X

/ / VOLUME=SER=l 23456

C . Card

//CA R D IN DD *

CARD DATA HERE

/*

11

3. EXPLAN ATION

Output Data Sets

A . DISKOUT *

When writing a new data set on disk, as done in the example program,
the SPACE parameter is included. In our example, we reserved 50 tracks
in itia lly , specified that if there was insufficient space for the data set
on these 50 tracks, space was to be allocated in increments of 10 tracks
each. At the end of this step, if all of the space allocated was not used,
the unused tracks were to be released (RLSE) for use by other data sets.

Also specified was the request that the output MASTER(+1) data set be
placed on the same physical unit as MASTER(O) defined in the DD state
ment DISKIN in this same job step. VOLUME=REF=* .D ISKIN

The disk output data set is to be made a new member of its data set.
Therefore, the disk data set name is MASTER(+1). At the completion of
this job step, it is to be catalogued. Since it is new, the first parameter
of the DISP (disposition) does not have to be specified since NEW is
assumed by default. When this data set is catalogued, it is automatically
made the most current generation or 'son'. Accordingly, its element is
changed from (+1) to (0) at disposition time and will be the input data
set the next time the job step is run. At this time its serial number is
recorded in the catalogue along with its element.

An additional DD statement is included for DISKOUT showing the parameters
required if this data set is not to be catalogued but instead passed to the
next job step where more processing can be done and then the disposition
specified. An example of where this method might be used is a job in which
the first job step creates a file on disk, passes it to the next job step, and
then this file is printed, possibly with some additional processing.

B. TAPEOUT

The tape output data set is also catalogued as described under the explana
tion of D ISKO U T. DETAIL(+1) is to have standard labels and a retention
period of 4 days.

C . CARDOUT ♦

The parameters required to complete the DCB are shown. No disposition,
DISP, is necessary because the data set is new, and it is to be deleted at
the end of the job step. f

4»

12

D . PRINTER

For a file that.is to be put on the printer, the DD parameter, SYSOU T,
is used to specify the standard output class. At the sequential scheduler

4 level, the UNIT parameter must be omitted if SYSOUT is specified.

*

{> 13

A . DISKIN

DISKIN is an OLD data set, for it was previously created. MASTER(O)
is the data set name under which the disk data set is now catalogued.
MASTER(O) indicates that the input should be the most current generation
of the data set. When the disposition is executed at the end of the step,
the generation number or ‘element1 of this data set will become (-1),
indicating that it is now the 'father1 version of the MASTER data set,
the 'son' being the most current version.

At System Generation time the addresses of the disk units were all equated
to 'D ISK'. Therefore, the DD statement does not have to specify a particu
lar device address, but may specify UNIT=DISK. In this way 'drive inde
pendence' is obtained.

We complete the information needed for the DCB by specifying DCB=
(parameter list). Note that in neither the DCB nor the DD statement is
the DEVD or type of device parameter specified. This omission is made
for an important reason. When the DCB is expanded, its length depends
upon the type of device specified. If no DEVD parameter is given, the
DCB is expanded to a maximum length. This is important when the data
set being defined is a printer because a printer DCB expands into a shorter
length than does a disk or tape device. Therefore, if a printer happened
to be 'down', the printer data set could be temporarily written on disk or
tape only if the DCB expansion assembled in the program were large enough
to describe a disk or tape data set. Consequently, if you always allow the
maximum length of the DCB by omitting the DEVD parameter, you may
change the UNIT on the DD statement and be sure that the DCB is large
enough to handle the file description.

B. TAPEIN

DETAIL is the data set name of the input tape. This data set is also
catalogued. DETAIL is a generation data set and therefore the input
data set name is DETAIL(O). It is important to note that the volume
serial number does not have to be specified if the data set is catalogued
because the serial number is kept by generation number in the catalogue
with the data set name. In addition to the DD example of TAPEIN as a
catalogued data set, another example is given of DETAIL as an uncata
logued data set. In this case, the programmer would have to call for
the data set by serial number.

As with the disk data set, we do not call for a specific unit but say
UNIT=TAPE.

II. Input Data Sets

14

o

Oi

*
i

o
:

Q
<

O.
 :

Q
! .

cd
 o 3

O > 70 O z

n Q 3 CD üT

2T <D O n co o o 3 cd O O Q CD 3 CD 3 CD O < O

DA
TA

 S
ET

 C
H

AR
AC

TE
RI

ST
IC

S

*
In

di
ca

te
s

pa
ra

m
et

er
s

le
ft

fo
r

DD
 s

ta
te

m
en

t

Na
m

e
of

Da

ta

Co
nt

ro
l

Bl
oc

k

I/
O

Da
ta

 S
et

 D
es

cr
ip

tio
n

Ty
pe of De
vi

ce

Na
m

e
of

En

d
of

Da

ta

I/
O

 E
rro

rs
Bu

ffe
rs

M
ac

ro

\
Fo

rm
! O

rg
an

i
za

tio
n

Na
m

e
DD

Re
co

rd
Fo

rm
Bl

oc
k

Si
?e

Le
ng

th
Re

co
rd

Er
ro

r
Ro

ut
in

e
Er

ro
r

Op
tio

n
Te

ch
.

N
o.

Le
ng

th
Al

ig
n

m
en

t

DC
B

M
AC

RF
DS

OR
G

DD
N

AM
E

RE
CF

M
BL

KS
IZ

E
LR

EC
L

DE
VD

EO
DA

D
SY

N
AD

ER
OP

T
1 B

FT
EK

BU
FN

O
BU

FL
JU

FA
LN

TA
PE

 IN
GM

PS
TA

PE
 IN

FB
S

*
25

0
*

50
 *

*
DE

N=
2

EN
DT

AP
E

ER
RO

R
SK

P
*

S
*

2*
25

0
*

F
*

DI
SK

IN
GM

PS
DI

SK
IN

FB
S

*
25

0
*

50
 *

om
it

EN
DD

IS
K

ER
RO

R
SK

P
*

S
*

2*
25

0
*

F
*

CA
RD

IN
GM

PS
CA

RD
IN

FB
S

80
80

om
it

EN
DC

AR
D

ER
RO

R
SK

P
S

2
80

F

TA
PE

OU
T

PM
PS

TA
PE

OU
T

FB
S

*
25

0
*

50
 *

DE
N=

2*
om

it
ER

RO
R

SK
P

*
S

*
2*

25
0*

F
*

DI
SK

O
UT

PM
PS

DI
SK

O
UT

FB
S

*
25

0
*

50
 *

om
it

om
it

ER
RO

R
SK

P
*

S
*

2*
25

0
*

F
*

CA
RD

O
UT

PM
PS

CA
RD

O
UT

FB
S

*
80

 *
80

 *
om

it
om

it
ER

RO
R

SK
P*

S
*

2*
80

*
F

*

PR
IN

TE
R

PM
PS

PR
IN

TE
R

FS
A

*
13

3*
13

3*
om

it
om

it
om

it
AC

C
S

1
13

3
F

16

IV . REGISTER C O N V EN TIO N S

>

«

A . EXPAN SIO N O F SAVE AND RETURN MACROS

+ Indicates Expansion

(PROG I)

SAVE (14,12), ID
+ DS OH
+ STM 14,12,12(13)

The calling program must load register 1 3 with the address of its save area.
Therefore, when your program (the called program) issues the SAVE macro,
you are storing the calling program’s registers in the calling programs save
area. Note that the store multiple instruction uses register 1 3 as a base
register with a displacement of 12. One register needs 4 bytes of storage.

Calling program's save area: 1 word = 4 bytes

SAVEAREA DS 18F SAVEAREA is 18 full words

WORD 1 WORD 2 WORD 3
Addr.Called

Prog's Save area

WORD 4
Register 14

WORD 5
Register 15

WORD 6
Register 0

WORD 7
Register 1

WORD 8
Register 2

WORD 9
Register 3

WORD 10
Register 4

WORD 11
Register 5

WORD 12
Register 6

WORD 13
Register 7

WORD 14
Register 8

WORD 15
Register 9

WORD 16
Register 10

WORD 17
Register 11

WORD 18
Register 12

The called program issues the following instructions:

LA 5, SAVE
ST 5,8(13)

Save is the address-ot rnc called program's save area. This address is placed
in the third word ^ t f ie calling program's save area. Note that register 1 3
still has the address of the calling program's save area and that register 13
is used as a base register in the store instruction above.

The called program issues the following instruction:

ST 1 3, SAVE+4

è
17

This instruction places the contents of register 1 3 in the second word of
its (the called program's) save area. This is necessary because the called
program must reload register 13 with this address before it issues a return.

L 13, SAVE+4
RETURN (14,12)

+ LM 14,12,12(1 3) restore the registers
+ BR 14

The expansion of the RETURN macro indicates clearly why the address of
register 13, containing the address of the calling program's save area,
must be stored and then reloaded. As with the SAVE macro, register 1 3
is used as a base register. Note that the return branch is on the address
in register 14 which had been loaded by the calling program before the
called program was given control in itia lly .

Note that if the calling program is not a program as we may normally
think of one, but is instead the control program, these conventions of
linkage must still be observed.

B. REGISTER RESTRICTIONS

There are five registers which should not be used by the problem program.
They are registers 0, 1, 13, 14, 15.

18

V . CO M M U N ICATIO N WITH THE OPERATOR

The three ways selected for communication with the operator are via the two macros,
WTOR (Write to Operator with Reply) and WTO (Write to Operator), and the PARAM
entry in the EXEC job control card.

A . WRITE TO OPERATOR WITH REPLY

Nl ECB1 ,X 'BF'

MSG1 WTOR •GIVE CURRENT PROCESSING DATE",CURDT,6 ,ECB1

WAIT ECB=ECB1

CURDT DS CL6

ECB1 DC F '0'

The WTOR macro must specify:

1 . The message to be wri tten.

2 . The storage location reserved by the program where the control program
is to place the answer.

3. The length of the answer.

4 . The name of the Event Control Block (ECB) which the supervisor may use.
This ECB must be defined as a full word zero constant. Format of the
Event Control Block:

0 1 2 31 * i

| W < C ; Post Code
i------- i------ i--

After the WTOR is issued, the programmer must issue a WAIT, if his program logic depends
upon the reply. When the WAIT is issued, the supervisor sets bit zero of the ECB specified
to 1 . When the action has occurred, the supervisor issues a POST which turns bit zero of
the ECB, the completion code to 1 . The problem program is then given control. It is the
programmer's responsibility to be sure that the completion flag is zero before the WTOR
is issued again. An "And Immediate", Nl , instruction before the WTOR will always
insure that the completion flag is zero.

19

B. WRITE TO OPERATOR------------------------------------ L

M SG2 WTO 'JULY 25 IS THE DATE'

In the expansion of this macro, the message in quotes is found at the address
MSG2+8. Therefore, if the programmer wanted to alter the message, he could >
move into this address the new information. For instance, suppose you had the
current date in CURDT. To place this information in the message, you would
write as follows:

MV C MSG2+8(7),CURDT

MSG2 WTO ' IS THE DATE'

C . PARAM

PARAM="JULY 25'

The above would be written in the EXEC card. The PARAM entry may be up
to 40 characters. When the program is given initial control, Register 1 points
to the address of the parameter list. The parameter list has the address of the
data area where the control program has placed 'JU LY 25'.

. ----full word boundaryN/
. - ; ^ ; A
:------- :_______ i_______!____

Register 1

r~ half word boundary

c c July 25

The programmer would write as follows:

Parameter list
AAA=addres$ of data area

Data Area
cc=count of characters

(max 40)

L 5,0(1) Load contents of Reg. 1 into Reg. 5
Reg. 5 now has address of data area

MVC CURDT, 2(5)

These instructions would place the information put in the PARAM entry into the
reserved core location CURDT.

20

V I. CO N T R O L CHARACTERS

Instead of using the CNTRL macro and PRTOV macro for direct printer control,
control characters may be used. One advantage of this is that it enables the
print file to be stored temporarily on disks and then later written on the printer
as a SPO O L operation. There are two choices available for control characters.

A . ASA

The example program used ASA control characters as follows:

blank Space one line before printing
0 Space two lines before printing
- Space three lines before printing
+ Suppress space before printing
1 Skip to channel 1
2-C Skip to channel N

When these characters are used the RECFM specified in either the DCB or
DD statement must be ^ S A 1.

Note that the ASA codes present one drawback in that they do not allow
spacing or skipping after print.

B. Machine Codes

To obtain space or skip after print, machine codes should be used.

The RECFM would then be 'FM1.

Hex
01
09
11
19
89
91
99
A1
A9

* B1
B9
Cl
C9

0 D1
D9
El

Operation
W rite, no space
W rite, space 1 after print
W rite, space 2 after print
W rite, space 3 after print
W rite, skip to channel 1 after print
W rite, skip to channel 2 after print
W rite, skip to channel 3 after print
W rite, skip to channel 4 after print
W rite, skip to channel 5 after print
W rite, skip to channel 6 after print
W rite, skip to channel 7 after print
W rite, skip to channel 8 after print
Write, skip to channel 9 after print
W rite, skip to channel 10 after print
W rite, skip to channel 11 after print
W rite, skip to channel 12 after print

21

VII. DOCUMENTATION

A . PROGRAM O RG A N IZA TIO N

The program example illustrates one suggested way to organize the various
sections of a program.

1 . A TITLE card is used to

a . Identify the assembly listing.

b . Provide identity for the object deck from the name field of
the TITLE card.

2 . H OUSEKEEPING should contain all of the necessary register set-up
including SAVE and base register allocation.

3. The MAIN LINE PROGRAM contains the basic logi^ flow ending with
> RETURN.

4 . SUBROUTINES may be either closed or open. A closed routine branches
on a register. An open routine branches to a specific address. GET and
PUT macro instructions are put under subroutines. The GET and PUT are
placed here so that, no matter how many different places in the program a
given file may be read or written, the macro is expanded only once.

5 . SPECIAL ROUTINES may consist of SYNAD routines to handle I/O errors.
In the example program ERROR is the SYNAD routine. It is suggested that
a common error routine be written for the installation as a whole which
can be inserted in each program with little, if any, modification.

6 . CO N STA N TS, ACCUMULATORS AND W ORKING STORAGE is a general
division which can be further subdivided to suit the needs of the program.
It is suggested that all areas which need special alignment such as full or
half word be grouped together and labeled as such.

Accumulators, as a general rule, should be defined as zero with a good
sign. They may be grouped according to the level, be it minor, inter
mediate or major (invoice, client, f ile). Each accumulator should be
followed by a comment which clearly explains what it is used for even
though the name of the accumulator may be neumonic.

Switches may be grouped together. It is suggested that bit switches be
used instead of byte switches in order to conserve core. However, this
means that comment cards should explain specifically what each bit
represents.

22

7. INPUT AND OUTPUT WORK AREAS need to be grouped together.
Each work area should clearly Indicate which DCB It applies to.

DCB's are the last division. They are organized by input and output.8.
The use of EJECT and SPACE instructions to the assembler help to organize the
source listing into a more readable format.

23

B. PROGRAM FOLDER

1. TABLE OF CO N TEN TS

A program folder should contain all of the information which is needed to
describe the program. Suggested contents are:

1. Brief program summary

2. Configurator

3. Layouts or formats of input and output records

4 . A sample printout

5. A general block diagram

6. The source or assembler listing

7. A copy of the operator's instruction sheet

8. Samples of all job control cards

9. History of changes

The history of changes is a running documentary beginning with the original
programmer and date. As a change is made to the program, the name of the
programmer who made the change, the date, and a brief synopsis of the change
made is entered.

The configurator is a handy way of giving a picture of the input and output units
used by the program. A configurator of the sample program is included in this paper

24

2. CONFIGURATOR

C ircle the appropriate direction and darken the arrow.

25

C . N AM IN G CO N V EN TIO N S

The method of naming jobs, programs and data sets varies greatly from installation
to installation. With O /S 360 some way of relating jobs to job steps, and programs
and of relating DD statements to DCB's is not only helpful, but almost mandatory.
Within one installation there are many types of applications programmed for the
computer, i . e . , PAYRO LL, DEMAND DEPOSIT A C C O U N T IN G , S A V IN G S .
These applications offer a natural way of organizing programs. For instance, a
program written for PAYROLL would begin with the key letters ‘PAY*.

There are three types of control cards needed— the JOB card, the EXEC card or
job step card, and the DD cards. In the card you need a name with a maximum
of 8 characters, which becomes the job name or step name. Since a step is part
of some job, it easily follows that the stepname should relate to the jobname.
The following is one suggested naming convention for JOB and EXEC cards:

JOB card
Application Job Number Step Number

(PAY A 1 -F 0
DDA

l SAV;
Example: 1st job in payroll PAY10

2nd job in savings SAV20
11th job in demand deposits DDABO

EXEC card
Application Job Number Step Number

(PAY]1 1 -F 1-F
V d d a
I.S A V J

Example: 1st step in 1st job in payroll PAY11
3rd step in 2nd job in savings SAV23
15th step in 11th job in demand deposit DDABF

The name of the DD card must be specified in the DCB parameter, DDNAM E.
Therefore, to simplify the naming process, it is suggested that the name of the
DD statement be the same as the
name of the corresponding DCB in the program.

Programs relate in most cases to one job step. Therefore, their names can relate
to the step name as follows:

26

Application Job Number Step Number neumonic
(P A Y \ 1-F 1 -F
VDDA /
(SAVj

Example: the posting program which is used by the 1st step
in the 1st job in payroll

PAY11PST
the dividend program which is used by the 3rd step
in the 2nd job in savings

SAV23DIV
the statement program which is used by the 15th step
in the 11th job in demand deposit accounting

DD ABF STM

There is no attempt to relate these data set names to a specific job or program since
one data set may be used by many different jobs.

For temporary data sets a T prefix on the data set name helps to separate these data
sets from those which are permanent.

27

I

1

