
Z77-7007

OPERATING SYSTEM/360 PRINCIPLES

Mr. J. K. Boggs, Jr .
IBM Corporation
6900 Fannin Street
Houston, Texas 77025

IBM Corporation, Technical Publications Dept., 112 E. Post Road, White Plains, N .Y . 10601

January 30, 1967

Two principles are basic to understanding Operating System/360
(OS/360). The first is that of a queue. The important function
to be accomplished is resource allocation. In order to improve
the throughput of the system, maximum use of limited resources
must be accomplished. A method to accomplish this is the queue,
The queue is a way of requesting a resource so that my request
is filled at the earliest possibility.

The second principle is that of events. A dynamic system must
manage multiple requests for resources. When resources later
become available some way to grant unrelated requests must be
accomplished. The event is a way to accomplish this .

For IBM Internal Use Only

IBM
EDUC 10-1
J. K. Boggs 12/8/66

Operating System/360 Principles

Two principles are basic to understanding Operating System/360 (OS/360).
The first is that of a queue. The important function to be accomplished is
resource allocation. Inactive resources waste time and, thus, cost money. In
order to improve the efficiency (throughput) of the system, maximum use of
limited resources may be accomplished through use of the queue. The queue is a
way of requesting a resource so that my request is filled at the earliest possible
moment. A familiar example of the queue is a waiting line at a ticket booth. The
resource to be allocated is the ticket seller's time and, one by one, those who
wait get the resource.

The second principle is that of events. A dynamic system must manage
multiple requests for resources. When resources later become available some way
to grant unrelated requests must be accomplished. The event is a way to accom
plish this wait. We have events occurring daily. "Has the mail come yet?" is a
question about an event which must occur before we can pay the bills or read over
our favorite magazine.

Waiting must be Implemented in a complex system using multiprogramming.
Two ways to accomplish this are queueing and eventing. This paper discusses how
both apply to OS/360.

1. INTRODUCTION

The advent of very powerful hardware computing systems has placed a new
emphasis of the Programming Systems — the limitations have become less hardware
oriented. Rather, performance of a system, as measured by throughput, has become
dependent upon the software monitor which coordinates activities. It has become
apparent that it is necessary to use a multiprogramming environment in order to
get the most out of the system. But multiprogramming places a new demand upon
the software; that of waiting without stopping.

"Waiting without stopping" means that Program-1 can be put into a software
wait state while the CPU switches to Program-2 which is ready to execute. To
determine the magnitude of the problem, consider the event that placed Program-1
in the software wait state. Program-1 had control first for some good reason and
should assume control again. How can this be done? (Event means only that "some
thing happens." This something could be an I/O interrupt or a normal program
termination.) Multiprogrammed systems must have a way of waiting on resources
which are not available and a way of responding to events (things that happen).

1

IBM
EDUC 10-1
J. K. Boggs 12/8/66

The two principles basic to multiprogramming are also basic to OS/360.
These principles are Queues and Events.

2. WHAT IS A QUEUE?

The queue is a method whereby one resource may be requested and/or used.
When the resource becomes available, the queue can be used to decide what request
should be satisfied next.

A familiar queue is a waiting line at a ticket booth. The line of people
waiting is itself the queue: the ticket booth is the resource.

There are three types of resources:

1. Immediately usable (re-entrant)
2. One-time usable (self modifying/destroying)
3. Serially reusable (self-initializing)

For the approach to be consistent and flexible, it will be convenient to
create a piece of control information which can "represent" or "stand for" the
resource to be queued upon. In OS/360, this control information is called a
Queue Control Block (QCB). The QCB is one full word of core. Bit 0 of the QCB
is a one when the resource it represents is being used (i.e., Bit 0 is the busy
bit).

The type of the resource affects how many QCB's are required, Only one QCB
is required for a re-entrant resource because any request can immediately be
satisfied. However, a non-reusable resource requires a "new copy" of the resource
for every request. For example, when a rocket is fired, the rocket is destroyed.
If we require two rockets to meet in space, then we need two resources even though
they might be identical twins. Every request for a non-reusable resource will thus
require a new, additional QCB.

Finally, the serially-reusable resource brings us back to the ticket booth.
This is a resource upon which we can really queue and only one QCB is necessary
for any number of requests.

2.1 HOW ARE REQUESTS MADE?

A queue requires not only a resource (Fig. l) which can be allocated, but
also requests for the resource. The basic function of a request is to specify
what resource is being requested. This function can be implemented using a full
word in core to address the resource being requested. The physical implementation
of a request is called a Simple Queue Element (QEL) i.e., a part of a queue.
(Fig. 2)

QEL's can be located in core in two different ways: (l) the elements can
be fixed in number and in consecutive core locations in a contiguous set of QEL's
(Fig. 3); or (2) variable in number and distributed in core in a distributed set
of QEL's (Fig. U and 5).

2

IBM
EDUC 10-1
J. K. Boggs 12/8/66

-Full Word-

Figure 1. Queue Control Block (QCB)

Link Address
(address of next)

-Full Word-

Figure 2. Simple Queue Element (QEL)

QCB #1

"ACTIVE”
QUEUE
ELEMENT

NEXT
QUEUE
ELEMENT

LAST
QUEUE
ELEMENT

3

IBM
EDUC 10-1
J. K. Boggs

Request 01 — Points To

Request #2 — Points To-

-►Request #3 — Points To-

► ZERO

12/8/66

Figure k. Chain of Requests

EDUC 10-1
J. K. Boggs 12/8/66

Figure 5* Forward Chaining

IBM
EDUC 10-1
J. K. Boggs 12/8/66

In addition to the forward (Fig. 5) chain of the QEL's mentioned, one can
implement requests so that a search can be made in either direction. To imple
ment this, a second word is required to address the request "behind" each request.
This QEL is now called an Expanded QEL. (Fig. 6 and T)
2.3 HOW IS QUEUE BUILT? SERVICED?

It is important to note the difference between the way the queue is built
and the way that requests are granted (Fig. 8). The way that a queue is built
refers to how addresses are placed into the QEL's. There are three common rules
used to order a queue: a. LIFO (last in, first out) — the latest request is
placed ah~ad of all other requests. This is like "cutting in" at the head of the
ticket line, b. FIFO (first in, first out) — the latest requested is placed behind
all other requests. This is the normal way of adding to the ticket line, c. PRIO
(priority) — the order of requests is according to some numeric priority regard
less of chronological order. There is a parallel between this method and the mayor
walking into a movie while the rest of us wait at the ticket booth.

The manner in which requests are satisfied in a queue depends upon the
resource. The QCB will contain, in bytes 2, 3, and k, the address of the request
being satisfied (or the request which presently has the resource).

When the present request is finished with the resource, the address of the
next request in the queue is obtained from the then-finshed QEL and the chained
QEL is made active. From this viewpoint, the queue is being serviced in a
manner. Simple QEL's will always be serviced on a first in, first out basis.

Expanded QEL's may use the second word to allow requests to be serviced
LIFO. Using this strategy, word Number 2 of the QEL is used to service the queue
and word Number 1 is used to build the queue.

For example:
EQEL #1

Address of
EQEL #2

EQEL #2

ZERO

6

EDUC 10-1
J. K. Boggs 12/8/66

Link Address Back-chain Address
(address of next) (address of previous)
queue element queue element

0 1 2 3 1+ 5 6 7

-Double Word-

Bit 0 = Last QEL Bit

if = 0, then more
qel's in queue

if = 1, the this qel
is last in queue

Figure 6. Expanded Queue Element (EQEL)

-Link Address- -Back-chain-
Address

Figure 7* Backward Chaining

IBM
EDUC 10-1
J. K. Boggs 12/8/66

QCB #1

X'80' QEL #1

V QEL #1

ZERO
(X'000000')

'ACTIVE”
QUEUE
ELEMENT

Figure 8. One-Request Queue

Figure 9• Basic Queue

8

IBM
EDUC 10-1
J. K. Boggs

QEL #1

QEL §2

QEL #3

Figure 10. Basic Queue With Added Request

12/ 8/66

9

IBM
EDUC 10-1
J. K. Boggs 12/8/66

When another request is made, add it on in a FIFO manner.

EQEL #1

Address of
EQEL #2 ><! C

o
O

Address of
QCB #1

EQEL #2

Address of
EQEL #3

Address of
EQEL #1

EQEL #3

ZERO Address of
EQEL #2

t

m

10

EDUC 10-1
J. K. Boggs 12/ 8/66

2 . k ADVANTAGES

Contiguous QEL's are less flexible than distributed QEL's and require that
core be permanently allocated. The major reason for using contiguous QEL’s is
that it is time consuming to allocate and de-allocate core. For input/output
operations, the time demands are very heavy (literally thousands of records per
minutes) and thus contiguous QEL’s are used. For queues that are less demanding,
distributed QEL's allow more freedom to accomplish new approaches (Fig. 11).

2.5 A NOTE ON USE

The QEL's and QCB's discussed in the preceding section are directly involved
in the queueing function. In order to really "do something", additional informa
tion is required (Fig. 12). The convenient method seems to be to add additional
storage to the control block.

The total of the information in the control block can now be made useful by
way of a control program. The next topics describe how queueing is accomplished
under OS/360 for the following queueing control blocks:

TASK CONTROL BLOCK - TCB
CPU QUEUE

REQUEST BLOCK - RB
TASK QUEUE

PROGRAM QUEUE

3. PROGRAM MANAGEMENT

Requests for load modules are numerous in any computing system. In an
environment where many assignments can be given the CPU, the multiple use of load
modules becomes very attractive in order to conserve core. For example: in the
FORTRAN shop, the square root routine (SQRT) is called upon. However, if ten
FORTRAN programs are simultaneously executed, it is possible to have ten requests
for the SQRT routine. If the routine is 100 words, we can, through multiple copies,
find ourselves with 1000 words (10 x 100) allocated to SQRT (Fig. 13). If, however,
requests are queued according to some rule, we can reduce the core overhead. Notice
that this is a trade-off, because it will require CPU time to do management functions.

Consider three queuing rules: (l) first in, first out (FIFO); (2) last in,
first out, (LIFO); (3) priority, highest priority first (PULL). The rule itself
will not affect our queueing technique (QCB and QEL). In a FIFO queue for SQRT:

IBM
EDUC 10-1
J. K. Boggs 12/8/66

QEL #1

(B) Expanded Queue Elements

Figure 11. Distributed Queues

IBM
EDUC 10-1
J. K. Boggs

QCB #1/QEL #N

address of
active QEL or
ZERO or link

Additional
"Do Something"
Information

Figure 12. Relation Between Queue and Resource

12/ 8/66

13 14

EDUC 10-1
J. K. Boggs

QCB address of "TOP"
QEL

LIST -<

address of entry
point to SQRT

Resource

12/ 8/66

Figure 13. Program Management Queing Control Block

IBM
EDUC 10-1
J. K. Boggs 12/8/66

QCB #1

oCO Address of
QEL #1___________

Address of
entry point of
SQRT

QEL §1

QEL #2

Address of
QEL #2_____

ZERO

Resource

1st Request
(Active)

2nd Request

The rule which is used to order the queue does not affect our activation of
the top queue element. En-queing then is just placing our request (QËL) in its
position in the QEL chain. De-queing is just changing the addresses in the QEL's
so that the chain no longer knows my QEL exists (Fig. ll+).

A request is granted, usually, by placing the QEL address into the QCB; thus
activating that request. We can talk about a queue describing the manner in
which requests are granted, not the way the queue is built, e.g., even though the
RB's are serviced LIFO, the RB queue on a task in built FIFO.

Returning to the management of our square root route (SQRT), the QCB and a
list are established as shown in Figure 13.

With this kind of arrangement, we can easily add or delete requests in our
queue. Suppose a third request occurs. We must scan the queue for the last QEL
and insert in the second word the address of QEL 3. We must then create QEL 3
as follows:

QCB #1 X ’80f Address of
QEL #1

Address of
entry point to
SQRT

QEL #1

QEL §2

Address of
QEL #2

Address of
QEL #3

QEL #3

1st Request

2nd Request

3rd Request

15

IBM
EDUC 10-1
J. K. Boogs

QCB #1

QEL #1

QEL #3

X'80’ address of
QEL #1

address of
entry point to
SQRT

address of
QEL #3

1 1
1 j address of *
• ! QEL #3 j

ZERO

1st Request

2nd Request

Figure lU. Program Management Queing

12/8/66

16

IBM
EDUC 10-1
J . K . Boggs 12/3/66

Suppose that now we find that we do not need to satisfy our second request
because the job abnormally ended. To de-enqueue, all that needs to be done is to
look at request 2 and "chain” around it. This process is simplified since, in
fact, expanded QEL's are used.

BEFORE DE-ENQUEING

QEL 1 Request 1

QEL 2 Request 2

QEL 3 Request 3

AFTER DE-ENQUEING

QEL 1 Request 1

QEL 2 Request 2

QEL 3 Request 3

Address of QEL 3 Address of QCB

Address of QEL 3 Address of QEL 1

ZERO Address of QEL 1

Address of QEL 2 Address of QCB

Address of QEL 3 Address of QEL 1

ZERO Address of QEL 2

Now, if we start at QEL 1, the chain ends on the second element — QEL 3.
QEL 2 has been chained around. The advantage of this approach includes some fast
executing codes.

Program management can thus be implemented using QEL information and QCB
information. Under 0S/360, the list of load module QCB's is called the Contents
Directory — the QEL is part of the request block (RB). The contents directory
stands for the load modules. The RB consists of a double queue with two resources:
the load module via the contents directory, and task time via the TCB.

The Task is a set of control information, the resource for which is CPU time.
(See Section H, Task Management)

To get some useful work done by the computing system, we need at least two
resources: Task time (TCB), and a program (Load Module-Contents Directory). The
queue elements, which request these resources, are in the RB.

17

IBM
EDUC 10-1
J. K. Boggs 12/8/66

Let's see how this might appear in core:

Contents Directory

QCB to manage Load Module
having name of 'CAT'.

Task Control Block

As you might imagine, it is possible for a given Load Module to request the
services of another. All that must be done is to create another RB containing
appropriate QEL's.

However, we know that only One load module at a time can have CPU time. We
must have a rule, therefore, for building our QEL's that reference the TCB. A
good choice appears to bfe FIFO. Therefore, a request by CAT for DOG would appear

t

RB 01__________^ |
0 Address of

CAT entry
QEL referencing 'CAT'

RB 02
address

TCB
address QEL referencing CPU time

RB §2
|

0 Address of
DOG entry

QEL referencing 'DOG'
0 RB 01

address QEL referencing CPU time

*>

18

IBM
EDUC 10-1
J. K. Boggs 12/8/66

Note that, for load modules, though the RB queue is built FIFO; it is
serviced LIFO.

With this queue of RB's, we can now decide quickly which load module to
activate. All we need to do is maintain, in the TCB-QCB, the address of the
top RB. There:

TCB - ASK

RB n

Address of
BB §2

0 Address to
CAT 4 —

RB #2
address

TCB
address 4

QEL for
-CAT

-QEL for
TASK time

QCB to manage TASK
Time

RB #2

0 Address of
DOG

0 RB #1
address

QEL for
DOG

QEL for
TASK time

To add and delete RB's, we issue in our problem program macro statements
LINK or XCTL. The LINK macro adds another RB (RB #3) to our present chain making
it the top RB, i.e., the program that will have the next task time. The XCTL
macro creates an RB to replace the RB for the load module that issued the macro.
For example, if load module "DOG” issued a LINK to "BONE" we will have a third
RB. And the three would appear as:

RB #1 RB #2
-------QËL for "DOG"-------
/ ____________3

Address of Address of
RB #3 RB #1_______

QEL for ’’CAT"
/

Address of Address of
RB #2 TCB

RB #3
QEL for "BONE"

______________________A___________________/_____________

0 Address of
RB #2

19

IBM
EDUC 10-1
J. K. Boggs 12/8/66

If "BONE" now issues the XCTL to "HOME," a fourth RB is created and replaces the
the third RB. It would appear as:

RB #1

QEL fo£ "CAT"

RB #2 TCB
address address

RB #1

QEL fo£ "BONE"

0 RB #2
address

RB #2

QEL for^'DOG"

RB
address

RB #1
address

RB #2

QEL for^"H0ME"

0 RB #2
address

A short cut method for describing this sequence in the RB que is:

RB #1 RB #2
0 0

CAT DOG

RB-2 RB-^

TCB RB-1

RB #3 RB

0 0

BONE HOME

0 0

RB-2 RB-2

(This notation will be used in referring to RB's)

20

IBM
EDUC 10-1
J. K. Boggs 12/8/66

Notice that if "HOME" were to have a LINK to DOG, and if DOG is serially
reusable, we can queue up this request. In fact, OS/360 will queue in a FIFO-
queue requests for serially reusable load modules (within a JOB). We now have:

RB #1 RB #2

0 0

CAT DOG

RB-2 RB-k

TCB RB-1

RB #3 RB #U
0 0

BONE HOME

0 RB-5
RB-2 RB-2

RB #5

RB-2

DOG

0

RB-U

Note: This QEL (request for a load module)
portion references its QCB indirectly
i.e., is queued (in the contents
directory)

OS/360 has two macros which will give the problem programmer the ability to
create his own FIFO queues. The programmer need only define a full word as a QCB
and allocate a double word as a QEL every time he uses the macro. Thus:

ENQ QCB = NAME,QEL = FIRST

DEQUE QCB = NAME,QEL = FIRST

NAME DC F'0'

FIRST DS D

The problem programmer can use this ability if the address of the QCB and
QEL are known.

21

IBM
EDUC 10-1
J. K. Boggs 12/8/66

h . TASK MANAGEMENT

The task is that control block which controls the CPU. In previous systems
this was called multiprogramming. For instance, the J0 9 0 and lUlO Operating
Systems both had options which included SPOOL (Simultaneous Peripheral Operations
On-Line). This option allowed two tasks in the system — problem program, and
utility operations (card-to-tape, etc.). When the problem program was not using
CPU time, the operating system switched tasks until the problem program was again
ready to execute. Under OS/360 there may be many tasks in the system at any given
time. To efficiently manage these tasks, remember our old friends — the QCB and
QEL's. The task control block is itself a QEL which looks like this: m

Address of Next-ICB---
Address of Previous TCB

Expanded QEL
(Double Word)

So we might consider three tasks in our queue:

TASK A TASK B TASK C

TCB-B TCB-C 0

Address of QCB TCB-A TCB-B

In this case, the QCB is located from the Communication Vector Table (CVT). The
CVT is a scratch pad the system uses to communicate with itself. The QCB for task
management looks like any other QCB:

1 Word___________________________________ A _____________________________________/ V
Address of
Active QEL I

All that needs to be done to switch tasks is to change the address in the task
QCB which is called "OLD." It turns out that we use this location to tell us one
of two things: (l) if an interrupt occurs and the TASK which requested the inter
rupt is different, and a higher priority, then the higher priority TCB address is
placed in OLD and activated. Consider this decision table:

OLD = TCB address in Task QCB

NEW = TCB address requesting interrupt.

22

IBM
EDUC 10-1
J. K. Boggs 12/8/66

Give control Consult
Decision to "OLD" Table #2
Table #1

OLD = NEW X
OLD f NEW X

Decision
Scans

___TCB's
Give control
to "OLD"

Give control
to "NEW"Table #2

OLD - ZERO X

Priority
OLD > NEW X

Priority
NEW > OLD X

When the operating system scans the TCB's, it gives control to the highest priority
TCB which is ready, If none are ready, the system enters the WAIT state and sets
"OLD" equal to ZERO.

Just a brief review of what Ready means. Since the TCB controls the CPU, it
must also reflect several states. A TCB can be in the READY, WAIT, or ACTIVE state,
one at a time.

ACTIVE: The task has CPU control.

READY: The task is prepared to immediately use CPU
time when it becomes available.

WAIT: The task is waiting for an event to occur and
cannot use CPU time until the event does occur.

These several states have to do with the rules which activate or dispatch a task.
These states do not affect the queueing technique. 0S/360 builds the TCB queue
by priority. This priority is called Dispatching Priority because it is used in
dispatching a TASK. There is also a limit Priority established for the task which
cannot be changed by the task itself. The task may; however, change its own Dis
patching Priority at any time. (Dispatching Priority <_ Limit Priority).

23

IBM
EDUC 10-1
J. K. Boggs 12/8/66

Let's review for a moment....the queues for task and program management are:

The management of resources is based on the concept of a control QCB which is
referenced by QEL's. The system is built this way, and the user has available a
control program service to create queues. Now let's consider events.

5. EVENTS

An event is simple from the viewpoint that the event has either occurred or
it hasn't. Considering an event as the completion of the reading of a card record
into an input area, it either has been done or it hasn't. Thus, logically, an
event is binary and can be considered a logical switch. In addition, when an event
occurs, the control program must know what CPU job was concerned with the event.
Events don't just happen, they are caused. Thus, we must know who caused it...and
who is waiting on it. The WHO is 0S/360; the requester of CPU time is a task. Thus
an event must be associated with a task. The implementation of an event is through
an Event Control Block (ECB). The ECB must have a bit to indicate whether the event
has occurred and the address of the RB which requested the event. Thus, we have
defined:

24

IBM
EDUC 10-1
J. K. Boggs 12/8/66

ECB is one full word of core.

Low-order 3 bytes axe the address of the RB
or the code posted upon completion of the
event.

Lower order byte

(Note that the TCB can be found by way of the back chain in the expanded QEL
in the RB.)

There are three types of ECB's that must be considered. First, there is an
ECB in supervisor core that is created for every ATTACH done by the Initiator/
Terminator. This means that for every Job Step which is initiated in the System,
there is an ECB in supervisor core with the I/T address. As a result, the Initi
ator /Terminator need only WAIT on the completion of that ECB (and my job step)
before continuing. When the ECB is placed in the wait state, the wait bit is
turned on, and the address of the RB which is waiting is placed in the ECB.

The second type of event is one created by the use of the interval timer.
The STIMER and WAIT macro can create an ECB to wait on a time event. The imple
mentation of this is similar to the ATTACH.

We must have ECB's for I/O or Data. The Data Event Control Block (DECB) is
created for the set of requests by a job step for a data set. This DECB is then
manipulated and used by the access methods that obtain the data.

Three types of events were discussed separately because they are separate
logical chains which the control program services. Their use, however, is logically
the same.

25

IBM
EDUC 10-1
J. K. Boggs 12/8/66

SUMMARY

The many control blocks of OS/360 appear at first to be confusing and
illogical. However, two concepts are basic to their understanding and to the
appreciation of OS/360.

The first concept is that of a queue. The queue is a management method
which allows concurrent but unrelated requests to be satisfied in/logical order.
Two basic control blocks are used. The QCB represents the resource and QEL's for
requests. Flexibility in the use of queues allows a consistent and powerful tool
for developing as well as implementing OS/360.

The second basic concept is that of the.event. The event, or occurrence of
an interrupt, can best be satisfied by making a note in the bits of an ECB to the
effect that "something" is going to happen. When that "something" does happen,
the binary switch — ECB -- is tripped so that tasks may coordinate their activities.

OS/360 has taken a fresh and logical approach to the multiprogramming problems
of data processing. The present consistent approach allows many varied possibilities
for compatible growth. The concepts of queues and events will become as basic as the
Hollerith Card Code.

26

IBM
EDUC 10-1
J. K. Boggs 12/8/66

APPENDIX A

QUEUE UTILITIES

The following routines perform service functions in the manipulation of
queues. These functions are:

(1) Adding simple QEL’s in a PIF0 manner.

(2) Adding simple QEL’s in a LIFO manner.

(3) Adding simple QEL’s in a PRIORITY manner.

(k) DELETING the TOP QEL.

(5) DELETING a specific QEL.

27

* IJP(:I\j V M T P Y

* R E G I S T E R 4 = QEL ADDRESS
❖ r e g i s t e r H = QCH A D U R F S S
* r f g i s t e k 14 = RETURN ADDRESS

* T H I S R O U T I N E . USES REGISTERS 6 , 7 AND 9 .

* R F G I 5»T F R A - W O R K
£ r e g i s t e r 7 = WORK AND RETURN I N H I C A T O R
£ . r e g i s t e r a * B A S E —R E - G IS TER
*

28

♦ FRRÜÉL. CÜNDlMONS AND INOICATIQNS
*

-UNCLEAR ..CHECK
81TS 3-7 OF BYTE ADDRESSED BY REG 4 . ALL

____ RE G IS TERS L E FT UNCHANGED.

PEG 7 = 2 ATTEMPT MADE TO DROP A QFL FROM AN INACT IV
RESOURCE. THE QCQ IS ZERQ»D. ALL...
REGISTERS LEFT UNCHANGED.

REG . 1 - 4 ATTEMPT MADE TO DROP A QFL WHICH IS NOT
CHAINED IN THE QUEUE• ALL REGISTERS
LEFT UNCHANGED.________________________ ...

REG 7- 8 PREVIOUSLY BUSY RFSOURCE HAS NOW bFCOMF
INACTIVE DUE TO THE DELETION OF A QFl .
CTHIS INDICATOR IS NOT ON BY IT S E L F .

R E G . 7= 1^ _______ PREVlOUSLt 1NAC.TIV L RESOURCE HAS JUST
BECOME ACTIVE DUF TO SUCESSFUL ADDITION
Qf_A ftEL. i THIS INDICATOR IS NOT ON
BY I T S E L F . |

REG ..7= 32 INDICATES THE SUCESSFUL ADDITION OF A Q F L •

RFG 7= 48 ~ SEE REG 7» i6 AND REG 7= 3? .

RE.G_-7*_. A4

RFG 7= 72

INDICATES THE SUCESSFUL DELETION OF A QFL

SEE REG 7* 8 AND REG 7= 64 .

REG 7 - 1 2 8 INDICATES- A. PREVIOUSLY ACTI VF QFL has
BEEN MADE ACTIVE.

RFG 7= 192 SEE REG 7* 64 AND RFG 7= 128 .

29

BAIR
U S I N G * t 8
L A 7« ' SET R F G 7= TO I N D I C A T E I N V A L I D

qiJPUF « F Q i l F R T -
TM '•(4), D«dqoOODQ1# TEST F O R A D D I N G F I F U .
BC 1 9AÜ D F I F O ~ BRANCH. I f Y LS .
TM 0 4 1 , B ^ Q O D O O O I O » TEST F O R A D D I N G L I F O .
BC I t A D D L I E Q BRANCH I f Y ES .
TM ̂(4) , B» Q D D 0D 100* TEST F O R A D D I N G PR 1 0 .

............ B C l .A nn pR rn A S A M P H IF VFS-
TM M 4) » h •00091000• TEST F O R D E L E T I N G T O P Q F L .
BC 1 t D E L T O P .BRANCH I F Y L S .
TM o (4 | , BtDODiODDO* TEST F O R D E L E T I N G S P r f i F l c Q F l .
BC 1 1 D E L S P E C BRANCH I F Y E S .
acR 15f 14

AiOFIFO

F I R)

TM
BC
L
L

0(S | f Bf l
8 , L ASTAD
5, >(S|
6 * M 5)

0000» TEST IF QCP IS POSY.
.................... .BRANCH IF ..NOT BUSY.

RFG 5= ADDRESS NEXT Of f. L i CHA IN .

LA 6 , M 6 1
- LT* 6 .6 _____

BC 71 F IFO BRANCH IF NOT LAST QFL IN CHAIN.
ic 6 , \(6) SAVE FIRST B Y T E FROM L AS I QFL IN

* CHAIN.
ST 4 .0 (5 1 . STORE NEW OELADDRESS INTO LAST QCI
STC 6, M 5) STORE SAVED BYTE.

LAST SR 6xS_ _______ GET. A--EJJLL..-WU.RO OF ZERO.
ST 6 , n (* | CLEAR NEN DEL TU ZERO.
LA _7j.32.._........ SET. REG ,7» 32 TO INO IC ATF A SüCF S SFUL

* ADDITION OF A QEL.
BCR . LS-il.4__________

30

V*
\

o f l SPFC TM
. BC
L

1 A

M 5) , B • IOOOOODO
R , N0TBU$Y

i « TEST TO SEE IF QCB IS BUSY.
BRANCH IF ..NOT BUSY.
GET F IR S T QFL ADDRESS.
r j f l B H I OH ORDER RYTF.

6 , 6 (5)
6 ,6 f 61

C.R 6 ,4 TEST TO SFF IF OFLFTING FIR
BC . .« ♦ IO P Ü N EBRANCH I F Y ES ,
LR 7 ,5 SAVE QC5 ADDRESS.

SEARCH L.R JS*i> _____ • ______ ________
L 6 , 6 (5) GET NEXT QFL ADDRESS.
1 A 6,0161 n F A Q H T OH OR DPR RVTF.
CR 4 ,6 SEE IF FOUND
BC ___ S , i i l T E QLLAL_____
L 5 , 0 (6)
LA 3 , 6 (5)
LTR 5 ,5
RE. 7 f S F A R C H

NOTFOUND LP 5 ,7 RESTORE ORIGINAL VALUE OF RF G5.
LA U 4 -SEJL R-EG 7-4 TO INDICATE ATTEMPT •

TO D E L E T E A Q F L NOT I N T H E Q U E U E ,

9 E L .

B C R 1 5 , 1 4 ______________________________________ ________
BC 1 5 , 1 4 R E T U R N TO C A L L E D .

H T T F OUAI MVC. M B , 5 1 , 0 (4 1 ____________________ MfltfP D F i F T f H ÜF1 i ï MK A D D R E S S I NTH
* p r o c e e d i n g q e l .

...........L _____7 * 6 . 4 __________________________ S E X - i L E G 7 = £ 4 ...I Q I N D I C A T E A
* SLICES S F U L D E L E T I O N

......................B C R 1 5 , 1 4
BC 1 5 , 1 4

...... END____ TE.&tFJEft...

ADOLTFO

a m “

T H
. ÖC.......
L
ST

M 5 1 * B• \ r
_ auLASTAD

6 , 0 (5)
6 ,6 (4 1

<000000* TEST IF QCB IS BUSY.
_________ _______BRANCH IF NUT BUSY.

HnVF r.fllSlTFNTS DF Of.H TO NFW QEL.
f

LA
..SI -

4 , 6 (4) CLEAR HIGH ORDER BYTE.
__________STORE NFW QF1 ADDRESS INTO QCB.

1

01
PA .

° (5) , x «b :
.2^321 7 1_.

<* TURN ON BUSY BIT OF QC8 .
__________SFT REG 7= 3? TO 1NDICATE A SUCESSFUL

*
Rf.R 15. ..LA______

ADDITION OF A QFL.

31

ADDPR I) TM ' (5) , 8
BC w , L A S I ,
L 6 , M 5)
C.LC 4 1 1 * 4 1 .
DC ? , HIGH
L * 5 , 6
L 7 , 6 (6)
L A 7 , M 7)
L T R 7 , 7

- B C — Ja-PR.ia.
H I G H I C 7 , M 5)

ST 4 , (6)
S T C 7 , M S)
BC 8 , L A S T
I C . . _ . 7 a . 1 4 1
ST 6 , M 4)

$
S T C 7 , 6 (4)
L A 7 , 3 ?

BCR L 5 . » 1 4 __
L A S T A D L A 7 , 16

1'"'OOOOPO • TF S T I F O CR I S R O S Y .
iD BRANCH I F NUT B U S Y .

G E T N E X T J C L A D D R E S S I N C H A I N .
A 1 5 J _________ C O M P A R E P R I O R 1 1 1 L S *

B R A N C H IF NFN QFL i s H I G H E R P R I O R I T Y .
..... REG 5- P R E V I O U S DEL A D D R E S S .

-BRANCH I F NOT L A SI_Q EL IN CHAIN.
SAVE F IRST BYTE FROM HIGHER. PRIORITY
PREVIOUS QFL.
STORE NEW QEL A D D R E S S INTO P R E V I O U S Q F L .
STORE SAVED b y t e .
B R A N C H I F P R E V I O U S Q F L WAS L A S T ON C H A P
S A V E FIRST B Y T E FROM NEW Q L L •
STORE AOOR F S S UP L C P E R P R I O R I T Y Q F L
I N T O NEW QEL.
STORE SAVED BYTE.
SET REG. 7= 32 Tfl INDICATE A SU< F SSrUl
ADDITION OF A Q E L .

I N O I C A T F R F S O Ü P . C F H A S J U S T 8FC. DMF
3USY.

BC 1 5 , ADO?

I

32

■*
 r

r

i) h L T n p

TD-po^E-

W ASR US Y

TM
BC
L
i

'M 5 1 , 8 • 1 nnopoo0 •
8 ,NUT3USY
4 , ^ (5)
7 r .1 f 4 1

TFST I F OCR I S BUSY,
BRANCH IF NÜT BUSY.
GET TOP QRL ADDRESS.

LA
LTk
BC
L
L

_ S i -

7 , ^ (7)
7 , 7
R, f OU A L
6 , 0 (4) _____
7 , p (6)
7 T 0 I «5 1

BRANCH I F DE L ETI NG LAST UFL IN CHAIN
GET NEXT j E L ADDRESS .
MOVF CONTENTS OF QFL INTO OCR.

TM ° I 6) , R • ÏOOOOOOO» TEST TU SFF I F 9EL HAH AT UNE T IMF
BEEN AC T I V AT E D. I F I T HAD, TH^N B I T S
2 - 7 MAY HE S I G N I F I C A N T .

BC UWASBUSY BRANCH I F Y E S .
LA 7 , 6 4 SET REG 7 = 64 TO INDICATE ‘A SUCFSSFUL

DFI F T I DN fIF A OFI .
0 I 5) , B ' l ooonoo^* TURN ON BUSY B I T .
BCR 1 5 , 1 4 .
LA

BCU

7 , 1 9?

1 5 , 1 4

SET REG 7=64+1?R TO INOTCATF A
SUCESSFUL DEL ETI ON AND THAT THE
NFWLY ACTIVATED 3 FL HA5 PREVIOUSLY

. BEEN ACI I .VJ-^................

LA 7 , 2 SET REG 7=2 TO INDICATE ATTEMPT
MADE TO DROP A QFL FROM AN
LNACTIVE RESOURCE.

BC 1 5 , SUB GO CL FAR QCR TO /.FRO.
LA ..._2j .22 . . S £ I—H EG- 7 = 1 2 —LLL I NDI CATE THAT A

PREVI OUSLY BUSY RFSOUBCF HAS
WOW BECOME I N A C T I V E .

SU* sr* 6 y 5 OBTAIN A NURD OF Z ER
ST i (5) CLEAR QCB TO ZERO.
BC° 1 5 , 1 4

______BC. .. _ 1 5 , 1 4 RJL.TTJRN. T.Ü C A L L E R .

* GUNSTANTS
*
CONj IK CUN = T HR FF 7FRO BYTC S .

______ ilC________X2-132.__________________________H l_ü £ —LiSdEiL-fLOR.. NUN S P E C I F I C DEL F Ti ; .

33

<*
\

f

\

