a
. /

“ICON

ICON/UXV-NET

Networking Tools Guide

ICON
INTERNATIONAL
764 East Timpanogos Parkway

Orem, Utah 84057-6212

(801) 225-6888

TOOLS GUIDE

ICON/UXV-NET
Networking
Software

© Copyright 1988, 1989
Icon International, Inc.
All rights reserved worldwide.

The information contained within this manual is the property of Icon International, Inc. This
manual shall not be reproduced in whole nor in part without prior written approval from Icon
International, Inc.

Icon International, Inc. reserves the right to make changes, without notice, to the specifications and
materials contained herein, and shall not be responsible for any damages (including consequential)

caused by reliance on the material as presented, including, but not limited to, typographical,
arithmetic, and listing errors.

Order No. 172-054-001 A1

Trademarks

The ICON logo is a trademark of Icon International, Inc.
UNIX is a registered trademark of AT&T.
Ethernet is a registered trademark of Xerox Corporation.

ii ICON/UXV-NET

Record of Changes

ICON/UXV-NET
Administrator’s Guide & Programmer’s Reference Manual
Order No. 172-054-001

Date Updatet Change Entered By *
Sep 1988 A0 Initial publication of Revision A
Mar 1989 Al Addition of new manual pages and appendices F and G

i) An update number has two parts: a capital letter and an Arabic numeral. (See update number AQ above.) The capital letter refers to the
revision of the manual and the Arabic numeral refers to the sequence of changes made to that particular revision.

The first publication of all manuals is always designated as Revision A and is presented as AQ. After the number of changes made to a
particular manual warrants a new edition, the revision letter is changed to the next capital letter. For example, the revision after
Revision A will be Revision B, and the publication will be represented as BO.

The second pant of the update number, the Arabic numeral, gives the consecutive order of changes made to each revision. Update

number A1 represents the first change made to Revision A, update A2 is the second change, and so forth. When a new revision is
issued, the numbering starts over (BO, B1, B2).

The person who entered the updated pages into this manual.

Networking Tools Guide iii

ICON/UXV-NET

A,

SANYO

%ICON

Dear Customer,

The enclosed Update Package contains updated replacement pages
for the ICON/UXV-NET Networking Tools Guide, formerly known as
the ICON/UXV-NET Administrator Guide.

Instructions are provided to help you insert the replacement
pages. There is also a new “Record of Changes” page that provides you
with a history of the changes that have been made to this manual since
it was first published.

If you have any questions concerning this update to your
ICON/UXV-NET Networking Tools Guide, or any previous updates (as
you review the change history on the “Record of Changes” page),
please contact the Sanyo/Icon Customer Service Department toll free at
1-800-777-ICON.

Sincerely,
Stephen Raff
Technical Publications

ICON INTERNATIONAL, Inc.
764 East Timpanogos Parkway
Orem, UT 84057-6212
1-800-777-ICON

Fax: 801 226-0651

Telex: 323938 ICONSYS

S
A

Change Instructions

Update this manual as follows:

ICON/UXV-NET
Networking Tools Guide
Order No. 172-054-001
Update Al

1. Remove the old pages and insert the new pages as indicated below.
2. For future reference, file these instructions in front of the manual after “Record of Changes.”

NOTE: All holders of this manual should incorporate these changes into their copies.

Remove Old Pages

Front Cover

Front Matter, comprising the Title Page and pages ii -
vi, which includes the Copyright page, Record of
Changes page, and Table of Contents

Section 1, “Introduction”, pages 1-1 through 14

Section 2, “Installation and Power Up”, pages 2-3
through 2-6

All of Section 3, “Configuration and Maintenance”
Section 4, “Network Setup”, pages 4-3 through 4-6
The “Appendices” preface, pages A-i and A-ii

All of Appendix A, “Manual Pages”

Back Cover

Insert New Pages

Front Cover

Front Matter, comprising the Title Page and pages ii - vi,
which includes the Copyright page, Record of Changes
page, and Table of Contents

Section 1, “Introduction”, pages 1-1 through 1-4

Section 2, “Installation and Power Up”, pages 2-3 through
2-6

All of Section 3, “Configuration and Maintenance”
Section 4, “Network Setup”, pages 4-3 through 4-6
The “Appendices” preface, pages A-i and A-ii

All of Appendix A, “Manual Pages”

Appendix F, “An Introductory Interprocess Communication
Tutorial”

Appendix G, “An Advanced Interprocess Communication
Tutorial”

Table of Contents

T INEFOAUCTION ..o et e e eee e es et s s 1-1
MaANUAI OVEIVIBW ...ttt et se st et e s e sasabe s eesessssbesaesseaesanns 1-1
Who Should Read This ManNUALcooiiiiiiiiiiiiieie ettt e ee s e e e e eenes 1-1

What IS 1IN This MANUAL ..ottt e e e e ee e e e e e e seaes 1-1
Managing The NetWOrK ...t 1-3

1D F=1=1 11107 o ISP 1-3
311 £V 1 €T 1-3

(07 0] o} 1o BT - (o] o I = [T SRS 1-3

ET=1 g o o To | £-1 1 11 TR 1-4

ADMINISIration PrOGramSccoiiiiiiiiiiiiiir e eieritiie e se e e e e e seiera e rrearaeeeaereee e s saassaasessasenans 1-4

Reference Manual GUIAe ... 1-5
2 INSTAlAION ..o 2-1
INEFOAUCTION oo ettt et et et ee et et eens 2-1
Overview of INSTAHAIONouveiiiiici it e s e e eesr e eenneesaneenes 2-1
System Preparation ... 2-1
Maintaining A SYSTEmM Map ...ccoiiiiiiiiii ettt e 2-2
Preparing Your ICON System FOr NetWOTKiNGccoooeiiiiiiiiiiiieiieicieee e 2-3
Ethernet CONNECHIONS ..ottt e e e e e e e ee e et e e aans 2-4
Serial-Link CONNECHIONScuiiivii ettt ee e et ee e rebeeseee s ceesnnnesees 2-4
Software Installation Information ... 2-5
Installing ICON/UXV-NET SOftWAreccccceiiiiiiimieiiieiieiiieie et ce e e 2-5
Configuring the System for Networkingc.ouioviviiiii e, 2-5

3 Configuration and Maintenanceieeeeeenne, 3-1
INTFOAUCTION .ottt ettt 3-1
Software Configuration ... 3-1
=T e 1o][] o | T PUPURRTOP 3-1
TRhe “JeICINOSES” FilB uvvienieiiiiiiiiiieee et ert e e ee et ee e aaneaes eeerrirrnernressearessenes 3-2
The “/etC/NEIWOTKS FIlE oeueiiiiiieiiieiiee i ee e ee e e e et s e bt saaneesaenas 3-3
The “/etc/gateways” File ... 3-4
The “/etc/hostS.eqQUIV” FIl8 .ivvviieieie ettt sve e e e s e e e —— 3-5
LR 2= (o7 Y1 2 = o N 1 1 T U U 3-6
LRI = (o] (o [Yo L 1 1= S 3-6

LI I (7T (ol 11 TP 3-6
The “/usr/ib/sendmail.Cf” File ..ot e e e e e anns 3-7
RebDOOt anNd T oSt oottt et et etae e 3-7

Networking Tools Guide v

4 Network Set UP .ttt 4-1

Local SUDNEIWOTKS ..ot 4-1
Internet Broadcast AdAressSes ... 4-2
ROUTING oottt s sa s st s st st s s s 4-3
NEIWOIK SEIVEIS ...ttt sttt ae e anes 4-4
NetWOrK Data BasSesS ...ttt e s seeraeteesesbesse e snsane 4-4
Regenerating “/etc/hosts” and “/etCnetworks”coovvievriririuiinieciie e, 4-5
URICINOSES. EQUIV” «.enieitee et ee e e e e te s e te e e e e tneasan s s ar e s een et rn s arn sesnra e rnaanss 4-5
L=) (o] (o Lo Yo | A OO SRR PPTPUPPRIPPRt 4-6
B A=L (oTa1 (o U E=T =1 £ PR P PRSPPI 4-7
Appendix A — Manual Pages ... A-1
Appendix B — Internetwork Mail Routing ..o, B-1
Appendix C — SENDMAIL Installation and
Operating GuUIde ..., C-1
Appendix D — Introduction to the Internet Protocols D-1
Appendix E — Networking Implementation Notes E-1

Appendix F — An Introductory Interprocess
Communication Tutorial ..o, F-1

Appendix G — An Advanced Interprocess
Communication Tutorial ... G-1

vi ICON/UXV-NET

Introduction 1

The ICON/UXV-NET product enables your ICON system running ICON/UXYV to use a subset
of the networking utilities originally developed for use at the Advance Research Projects
Agency (ARPA) and the University of California at Berkeley (UCB). The utilities that
originate from UCB are based on Berkeley's Software Distribution of UNIX®, version 4.3
(4.3BSD).

These networking utilities enable you to transfer files, log into remote hosts, execute
commands remotely, and send mail to and receive mail from remote hosts on the network.

The ICON/UXV-NET Administrator’s Guide provides specific information about the operation
and maintenance of the ICON/UXV-NET networking utilities for the ICON 2000, 3000, 4000,
and 5000 systems. This manual also provides detailed information about the internetwork mail
routing facility provided with this product, as well as supplementary documents and “manual
pages” that will prove useful to the network administrator.

Manual Overview

Who Should Read This Manual

This manual is intended to cover all aspects of the ICON/UXV-NET Networking Tools. The
following areas of interest are covered:

. network software installation and configuration
. routine network administration

. operation of network commands

. use of the networking software development library

A working knowledge of ICON/UXYV commands and directory structures as well as the ability
to become a super-user and manipulate files with an editor, such as vi, is required. You should
have access to the ICON/UXYV Reference Manuals and Guides and be comfortable in your
knowledge of the ICON/UXYV operating system. You should also be familiar with the
Operator’s Manual for your ICON computer system.

In the case of Ethernet® networking, familiarity with board installation and removal procedures
is necessary. This manual assumes that ICON/UXYV, version 3.30 or later, has been installed
on the ICON systems which are networked.

What Is In This Manual

The list that follows briefly describes the contents of each section and appendix in this manual.

Introduction Change 1 — March 1989 11

Section 1: Introduction

The remaining part of this section provides a list of reference manuals that you may need and a 7N
quick-reference list of the daemons, libraries, security and configuration files that will help you N
manage the ICON/UXV-NET utilities and services. Obtaining an Internet domain name and

obtaining information about Request for Comment documents (RFC) and Military Standards

(MIL-STD) is also explained.

Section 2: Installation

This section describes the installation of the ICON/UXV-NET utilities on an ICON system.
Information is also presented about maintaining a system networking map and the parts that
make up the Ethernet and Serial-Link network connections.

Section 3: Configuration and Maintenance

This section describes how to configure and maintain the ICON/UXV-NET network. Also
presented is a discussion on the files that must be altered to properly configure your system for
networking.

Section 4: Network Setup
This section provides general information on setting up networks using the ICON/UXV-NET
networking environment and an ICON computer system.

Appendix A - Manual Pages

This appendix provides the documentation for each of the utilities supported in the

ICON/UXV-NET product. These pages are the same as the manual pages that are

electronically on-line in your ICON system. N

Appendix B — SENDMAIL - An Internetwork Mail Router o
This document describes sendmail, the internetwork mail routing facility provided with the

ICON/UXV-NET product. Included are guidelines for deciding whether to install sendmail,

details about sendmail and its configuration file, installation instructions, and guidelines for

modifying the supplied sendmail configuration file.

Appendix C — SENDMAIL Installation and Operating Guide

This document describes how to install and operate a basic version of SENDMAIL, the
Internetwork Mail Routing program. It is a logical extension of the document found in
Appendix B.

Appendix D - Introduction to the Internet Protocols

This document provides an introduction to the facilities and capabilities of the Internet
Protocols. Information is provided that describes other documents, referred to as “RFC” and
“IEN” documents, and how to obtain a copy of those documents.

Appendix E — Networking Implementation Notes
This document describes the internal structure of the networking facilities.

Appendix F - An Introductory 4.3BSD Interprocess Communication

Tutorial. This document describes the use of pipes, socketpairs, sockets, and the use of

datagram and stream communication. The intent is to present a few simple example programs,

not to describe the networking system in full. AN

1-2 Change 1 — March 1989 ICON/UXV-NET

Appendix G — An Advanced 4.3BSD Interprocess Communication
Tutorial. This document provides an introduction to the interprocess communication
facilities included in the ICON/UXYV operating system, discusses the overall model for
interprocess communication, and introduces the interprocess communication primitives which
have been added to the system. A working knowledge of the C programming language is
expected as all examples are written in C.

Managing the Network

The daemons (server processes that run continuously, in the the background, to provide
services to users), servers, configuration files, user and administration programs that will help
you manage the ICON/UXV-NET utilities are briefly described in the following quick-
reference list.

Daemons
letclinetd master server process; initiates servers below
letcirouted network route information server
letc/rwhod network user information server

lusr/lib/sendmail mail server, network mail router, local mail delivery

letc/syslogd system error log facility

Servers
letc/ftpd File Transfer Protocol (ftp) server
letclremshd remote shell server
letc/rexecd remote program execution server
letcirlogind remote login server
letcltelnetd DARPA Telnet Protocol server
letc/ntalkd new talk protocol server
letc/talkd old talk protocol server
letcltfipd Trivial File Transfer Protocol (tftp) server

Configuration Files
lusr/liblaliases mail alias data base

letclftpusers if present, contains list of users allowed to use fip
letc/gateways routing information to gateway hosts
letcl/hosts internet host address table (remote hosts)

Introduction Change 1 — March 1989 1-3

Configuration Files (Continued)

letc/hosts.equiv
letclinetd.conf
letc/networks
letclprotocols
letc/services
letc/syslog.conf

User Programs

fip
mail
rcp
rdist
remsh
rlogin
ruptime

rwho
talk
telnet

tfip

list of “trusted” hosts

inetd configuration file
networks known to this host
protocols known to this host
services available through inetd
syslogd configuration file

File Transfer Protocol program
network mail program

network copy program

remote file distribution program
run a command on a remote host
login to a remote host

provides information on length of time remote hosts have
been up, how many users, and host load average

who is logged in on remote hosts
converse with a local or remote user
user interface to the TELNET protocol
Trivial File Transfer Protocol program

Administration Programs

gettable
htable
ifconfig
netstat
newaliases
ping

route
slattach

pt

get NIC format host tables from a host
conver NIC standard format host tables
configure network interface parameters
show network status

rebuild the data base for the mail aliases file
test availability of other network hosts
manually manipulate the routing tables
attach serial lines as network interfaces
transliterate protocol trace

Change 1 — March 1989 ICON/UXV-NET

Reference Manual Guide

For more information on the following subjects, refer to the publications listed in the right

column.

For Information On:
ICON/UXYV Administration

Installing Ethernet hardware
on ICON systems
C Programming Language

ICON/UXY operating system

Read:

ICONIUXV Administrator Guide
ICON/IUXV Release Documentation Package

ENET Controller Board in the ICON System
Reference Manual

The C Programming Language, Brian W.

Kernighan, Dennis M. Ritchie; Prentice-Hall, Inc.

C Programming Guide, Jack Purdum,
Que Corporation, Indianapolis, Indiana

ICON/UXYV User Guide

ICON/UXV User Reference Manual
ICON/UXV Editing Guide

ICONIUXV Administrator Guide

ICONIUXV Administrator Reference Manual
ICONIUXV Programmer Guide

ICON/UXV Programmer Reference Manual
Exploring the UNIX System, Kochan & Wood,
Hayden Book Company

Details on the various protocols used in ICON/UXV-NET are discussed in technical
publications know as “Request For Comments”. The following is a partial list of those

publications.

For Information On:
Address Resolution Protocol

Domain Requirements

File Transfer Protocol

Internet Control Message Protocol

Internet Protocol

Simple Mail Transfer Protocol

Introduction

Read:
RFC 826

RFC 920

MIL-STD 1780
RFC 959

RFC 792

MIL-STD 1777
RFC 791

MIL-STD 1781
RFC 821

Standard for the Format of RFC 822
ARPA Internet Text Messages

Telnet MIL-STD 1782

To obtain information about available RFCs, contact:

Network Information Center (NIC)
SRI International

333 Ravenswood Avenue

Menlo Park, CA 94025
1-800-235-3155

To obtain information about available MIL-STD specifications, contact:
Department of the Navy
Naval Publications and Forms Center

5801 Tabor Avenue
Philadelphia, PA 19120-5099

1-6 ICON/UXV-NET

Installation 2

Introduction

Networking in ICON computer systems is implemented with standard hardware and software
configurations for maximum compatibility in a multi-vendor environment. Two interfaces are
currently supported: Ethernet and Serial-Link. ICON machines can support both interfaces

simultaneously if desired. The TCP/IP protocol standard is used on both Ethernet and
Serial-Link connections. '

This section includes information on how to:
* set up and maintain a network map;
» make sure the proper hardware is installed on your computer system;
« install the ICON/UXV-NET software; and

+» add your computer system to the network.

Overview of Installation

The list below is an overview of the installation procedure described in this section. To install
and power up the ICON/UXYV network on your ICON computer system:

* set up a network map;

» make sure the network hardware is properly installed;
« install the ICON/UXYV network software;

* choose an internet address and host name;

* assign host names and internet addresses.

System Preparation

* Preparing your ICON system for networking requires setting up and maintaining a network

map and installing the necessary networking hardware within your system's configuration.
The rest of this section describes what you must do to set up your ICON computer system to

operate on the network.

Installation and Power Up . 2-1

Maintaining a Network Map

As you install a new computer node on your network, it is important to take the time to update
your network map. If you have not previously created a map, it is strongly recommended that
you create one now. A network map provides you with information about the location and

configuration of the computers on the network. As network administrator, it is your
responsibility to keep the network map up-to-date when you add or delete computers or make

cable changes. -
Your network map should contain the location of:
« the coaxial cable, including terminators and repeaters;
« the network Transceiver or Fan-out Unit and Controller cables;
« the taps into the coaxial cable;
» the networking equipment; and
« each node on the network, including the:
* complete node (host) name;
« internet address;

The example shown on the next page is a sample network map using both Ethernet and Serial-
Link hookups.

2-2 ICON/UXV-NET

Local Network Remote Network

ICON ICON
3000 3000 ICON
,_L, 2000 SUN
i
ICON
G 4000
ICON ICON
VAX
2000 2000
e
ICON ICON
3000 3000
ol l gomollo'r | .4
E—0)
@© s} I
ICON
. 3000
Legend: ——— 10 Mbisec Ethemet Fan Out Unit
......... 56 Kb/sec High Speed Modem =] Transceiver Unit
Serial Link @ Terminator

Figure 1. Sample Network Map

Preparing Your ICON System for Networking

Several components are required to prepare your ICON computer system for operation on the
network. Those components include hardware for Ethernet and Serial-Link connections and
networking software.

Setting up hardware for networking consists of configuring jumpers on boards and installing
boards and cables in the proper locations within the computer system configuration.

Ethernet Connections

The Ethernet connection for networking is made by installing the ICON ENET option (PN
§40-026-001), which includes:

* MBA1 (Multibus Adapter) Board

* ENET Controller Board

* ENET Controller Cable

» ENET Transceiver Cable - 33 feet long

* ENET Transceiver (for connecting to N-type coaxial cables), or

« ENET Transceiver Fan Out Unit (for connecting up to 8 hosts on a single hub)

Installation and Power Up Change 1 — March 1989 2-3

For directions on how to install the MBA1 and ENET Controller boards in your ICON system
and how to correctly configure the necessary jumper settings, refer to the following manuals:

* Multibus Adapter Board MBAI PN 170-022-001
e ENET Controller Board PN 170-024-001

Serial-Link Connections

Serial-Link connections for networking use conventional RS-232C cables between serial ports
on the Peripheral Communications Processor (PCP16) board in an ICON system. Serial-Link
networks can be configured in various topologies such as stars or rings, with the understand-
ing that each physical link between two machines is considered a separate network and that a
maximum of five Serial-Links can be connected to any one machine. Computer systems that
are not directly connected may still communicate through any number of gateway machines.
To avoid line-ringing problems, it is recommended that inter-machine serial connections not be
made until the ports that are to be connected are made non-login ports by changing the entries
for those ports in the /etc/inittab file. Systems with PCP16 boards installed should use the
PCP serial ports rather than any port on the CPU board to obtain the highest possible
performance.

Serial-Link components include:

* PCP16 Processor Board
* RS-232C Software Handshake Cable

NOTE: Although the DCS (Distributive Communication System) option provides
additional serial and parallel communication ports in an ICON computer system,
it is not recommended to be used for Serial-Link connections because of a
noticeable degradation of communication performance.

2-4 Change 1 — March 1989 ICON/UXV-NET

Software Installation Information

Your ICON system must have version 3.30 of the ICON/UXYV operating system (or later)
installed and running before the ICON/UXV-NET software can properly be installed.
ICON/UXV-NET networking software, version 3.30 or greater, provides all of the necessary
utilities to implement networking under the ICON/UXY operating system on your ICON
computer system.

You will need an internet address number for each host on your network to properly configure
your network. Unregistered, but reserved Class C internet address are available from:

Icon Customer Service

Internet Network Address Coordinator
764 East Timpanogos Parkway
Orem, UT 84057

Registered internet addresses are available from:

Network Information Center
SRI International

333 Ravenswood Avenue
Menlo Park, CA 94025

Unless you plan on connecting your netwrok directly to other TCP/IP networks, the default
internet addressess supplied with ICON/UXV-NET are adequate.

Installing ICON/UXV-NET Software

The software for ICON/UXV-NET is in zar format. Once the release media is loaded into the
appropriate drive mechanism, log in to the operating system root account (in response to the
“login” prompt), by entering:

login: «root
The login program will prompt you to enter the password to the root account. After entering
the password and receiving the login information, extract the ICON/UXV-NET software from

the release media into the root account by entering:

cd / (positioned in root account)
tar xvp (extract software files from tape)

The contents of the release media will be extracted into the root account and all appropriate

permissions will be assigned. When the extraction, installation, and configuration process is
complete, you may log out of the root account and log back into your user account.

Installation and Power Up Change 1 — March 1989 2-5

Configuring the System for Networking
Once the ICON/UXV-NET software is on your system, it is necessary to configure your

system for networking. Chapter 3, Configuration and Maintenance, explains in detail the
necessary steps to take so that networking will function properly on your ICON system.

2-6 Change 1 — March 1989 ICON/UXV-NET

Configuration and Maintenance 3

Introduction
This section describes how to configure and maintain your ICON/UXYV network, including:
« how to set up the configuration files;
+ a description of network daemons and servers;
* how the security algorithms work for each network service;
« guidelines on network connections; and

* how to perform maintenance tasks.

Software Configuration

The discussion that follows describes the steps necessary to configure the ICON/UXV-NET
software on an ICON computer system for networking. The Ethernet and Serial-Link
interfaces are discussed together because much of the software configuration applies to both
and in many instances both will be present on the same machine. The files discussed below
should be altered only by a system administrator with super-user privileges on each of the
machines to be connected. Files can be changed while others are using the machines. But
ultimately, shutdown and reboot of each machine in the network configuration will be
necessary as a final step to bring up the networks.

Topology

The figure below shows a sample topology of a network configuration for the purposes of this
discussion. Three systems, with hostnames doc, sleepy, and dopey, have connections to an
Ethernet network. In addition, doc has Serial-Link connections to grumpy and sneezy.
Sneezy has, in turn, a Serial-Link to happy.

Configuration and Maintenance Change 1 — March 1989 3-1

dopey .

sleepy

doc sheezy happy

grumpy

Figure 2. Sample Topology

The /etc/hosts File

Each of the six hosts in our sample topology has an /etc/hosts file which specifies the internet
address chosen for each host, its name, and an indication of which system is the loghost
(which is simply the name of the host on which the file resides). Each of the six hosts should
have identical information in the /etc/hosts file except for the specification of the loghost. The
following is an example /etc/hosts file for doc :

#

Example hosts file

#

192.41.100.1 dopey
192.41.100.2 sleepy
192.41.100.3 doc loghost

192.41.99.1 grumpy
192.41.98.1 sneezy
192.41.97.1 happy
127.1 localhost
#

Except for the 1ocalhost entry, each host has a Class C internet address composed of four
numeric values separated by periods. The leftmost three values together (e.g., 192.41.100)
comprise the network number and the rightmost value is the host number.

In the Class C internet address schema, the network number may range from 192.1.1 to
223.254.254 and the host number may range from 1 to 254. If more than 254 hosts are

3-2 Change 1 — March 1989 ICON/UXV-NET

required on a given network, class B internet addresses may be used. In this case, the leftmost
two values are the network number and range from 128.1 through 191.254, while host
numbers range from 1.1 to 254.254.

The network portion of an internet address corresponds to the network to which that host

is primarily connected. Each host has only one internet address, even if it has connections to
several other networks. In our sample case, network number 192.9.200 is the Ethernet
connection between doc, sleepy, and dopey. Each of the systems has the same network
number (192.41.100) but different host numbers, dopey being “1”, sleepy being “2”,
and doc being “3”.

Each Serial-Link connection constitutes a separate network and therefore must have a separate
network number. Network number 192.41. 99 is assigned to the connection between
grumpy and doc. It has been chosen as grumpy 's primary connection, so the internet
address for grumpy is “192.41.99.1”. Network number 192.41.98.1 is assigned to
the connection between sneezy and doc, and appears in sneezy 's address. Network
number 192.41.97.1 is assigned to the connection between happy and sneezy and
appears in the address for happy.

The network number also appears in the /etc/networks file. Each hostname should appear only
once in the /etc/hosts file. Keep in mind that internet addresses assigned can be arbitrary within
the above constraints unless the host is attached to the “official” internet. In that case, addresses
must be obtained from the controlling authority. The entry for “127.1 localhost”is
always present in the /etc/hosts file.

The /etc/networks File

Each host must have an /etc/networks file which specifies the network names, the internet
addresses, and the networks that are directly accessible to that host. Each host system
letcinetworks file should have identical information except for the indications of directly
accessible networks via the localnet specifier. A sample /etc/networks file for sneezy would
be as follows:

#

Example networks file
#

loopback 127

doc-ether 192.41.100
sl-grumpy 192.41.99

sl-sneezy 192.41.98 localnet
sl-happy 192.41.97
#

Configuration and Maintenance Change 1 — March 1989 3-3

Note that the internet address for each network corresponds to the values in the /etc/hosts file.

In this case, there are two localnet specifiers because sneezy can directly access two of the
Serial-Link networks, one to happy and one to doc. Similarly, the /etc/networks file on doc a
will have three localnet entries and dopey will have only one. The network names are s
arbitrarily chosen strings without embedded spaces. The “loopback 127" entry is always

present in the /etc/networks file.

The /etc/gateways File

The /etc/gateways file is only necessary for systems having Serial-Link connections; Ethernet
connections do not require this file. It is required for Serial-Links because currently it is not
possible to share routing information across Serial-Link interfaces as it is with Ethernet. Thus,
your ICON system has no way of determining which Serial-Link interface to use to get to
another host. The routes are established when the system boots and the routed daemon begins
execution. The /etc/gateways file is read by routed to build routing table entries for Serial-Link
connections.

There are two kinds of entries in the /etc/gateways file, those for hosts and those for networks.
They are distinguished by the first word in the entry, either “host” or “net”. Host entries are
used to establish a route to a particular host and net entries establish routes to networks. A host
entry is of the form:

host hostname gateway gatename metric hopcount passii:e

“Hostname” is the name of the destination host, “gatename” is the name of the host Y
gateway, and “hopcount” is a value (0,1,2...) which indicates how many “hops” to the _J
destination host. This number does not need to be accurate, as it is only used for routing path

decisions in the case of multiple available paths to a destination. If the hopcount total exceeds

16, however, the destination will be considered “too far”” and connection attempts will be

abandoned.

Systems with Serial-Link connections must have a host entry in their /etc/gateways file for each
non-primary Serial-Link connection. A non-primary connection is defined as any Serial-Link
connection to that host which has a network number in the /etc/networks file which is different
than the network number portion of the host's internet address as found in the /etc/hosts file.
Thus, a system with only one Serial-Link connection does not require a host entry in this file
because the only connection it will have will be a primary connection. An example of this in
our sample topology is the connection to happy (see Figure 2). The primary connection for
sneezy is the link to doc, so the /etc/gateways file on sneezy must have a host entry only for
happy. Routing information for a primary connection is established with the ifconfig
command in the /etc/rc.local file discussed later.

The “gatename” is the name of the directly connected host which will act as a gateway to get
to the destination. If the destination is a directly connected host, as is most common, the
“gatename” is the name of the host on which the /etc/gateways file resides. In other words,
you must “gateway”’ through “yourself” to get to an adjacent host on a non-primary network.

3-4 Change 1 — March 1989 ICON/UXV-NET N

Net entries are of the form:
net netname gateway gatename metric hopcount passive

“Netname” is the name of the destination network as defined in the /etc/networks file and
“gatename” and “hopcount” are as defined above. Net entries inthe /etc/gateways file are
typically only used to establish a default routing path. This can reduce the amount of
information that must be expressed in /etc/gateways. The default routing path will be used for
any destination hosts or networks not explicitly defined in /etc/gateways. A default path is
established with a net entry using the value O for “net name” and an accessible host to use as
the gateway in “gatename”. Systems with only a single Serial-Link will usually have a single
net entry of this form in their /etc/gateways file. An example of this is grumpy. The
following is a sample /etc/gateways file for grumpy :

net 0 gateway doc metric 1 passive
A more complicated set of entries is required for doc , as shown below:

host grumpy gateway doc metric 0 passive
host sneezy gateway doc metric 0 passive
host happy gateway sneezy metric 1 passive

One more example is shown from sneezy :

host happy gateway sneezy metric 0 passive
net 0 gateway doc metric 1 passive

The /etc/hosts.equiv File

The /etc/hosts.equiv file is simply a list of known and recognized hosts. These hosts will be
allowed to rlogin and exchange other services, such as rcp, without password checking if an
equivalent username is found on the local host. In our example network, all systems are
allowed these privileges, so the /etc/hosts.equiv files on all six machines are the same:

doc
sleepy
dopey
grumpy
sneezy

happy

If allowing equivalent usernames free access between machines is not acceptable, password
checking for rlogin may be invoked by leaving the source hostname out of the destination's
letc/hosts.equiv file. The root user is always restricted from performing rcp commands and is
password checked with rlogin in every case.

After the /etc/hosts.equiv file is in place, running the MAKEHOSTS script in /usr/hosts will
create a set of symbolic links to remsh for each host. By placing the file /usr/hosts in your

Configuration and Maintenance Change 1 — March 1989 3-5

search path, remote execution can be invoked by simply typing the hostname on the command

line, as in:

doc troff -ms < myfile.ms

This command invokes a “troff” on doc using “ms” macros with input from myfile.ms on the

local host. An rlogin can be invoked with just the hostname, as in:

doc
The /etc/inittab File

The /etclinittab file must be configured so that all ports connected to Serial-Link networks are
non-login ports. This is done by changing the third field (fields are separated by *“:” (colon)

characters) in the entry for the port to “off”, as in:

14:2:0ff:/etc/getty ttyaa 9600 dt1200 # PCP O line 10

which prevents a login from being allowed on port ttyaa.

The /etc/rc.local File (For ICON/UXV Software Release 3.3X Only)

The /etc/rc.local file must contain commands which initialize network interfaces when the
system boots. Serial-Link interfaces each require two lines in this file and Ethernet interfaces

require one. The following is a sample /etc/rc.local file entry for doc :

example /etc/rc.local for doc

Don't forget to change “/etc/hosts” if you change your hostname!

hostname doc

/etc/ifconfig 1o0 localhost
/etc/route add “hostname' localhost 0
Initialize the network hardware

/etc/ifconfig ex0 ‘“hostname' ~-trailers up # for Ethernet
/etc/slattach /dev/ttyaf 19200 # Serial-Link to grumpy

/etc/ifconfig sl0 doc grumpy -trailers up
/etc/slattach /dev/ttyae 19200 # Serial-Link to sneezy
/etc/ifconfig sll doc sneezy -trailers up
other stuff for initializing the system follows...

The loopback interface is initialized first and then the Ethernet interface for doc is initialized,
the name of the Ethernet interface being “ex0”. The Serial-Link to grumpy is then allocated

3-6 Change 1 — March 1989

ICON/UXV-NET

by the /etc/slattach command. The port to be used is /dev/ttyaf and the baud rate is set
to 19200, the maximum baud rate available. The interface just allocated is then configured by
the /etc/ifconfig command. The interface name is “s10,” the connection is from doc to
grumpy, no “trailer” link-level encapsulation is supported, and the interface is marked as
“up”. The first /etc/slattach command sets up interface “s10,” the second, “s11,” and so
on. The subsequent /etc/ifconfig command must use the interface name for that Serial-Link.

The /etc/uxrc File

The /etc/uxrc file is used at system boot time to determine the modem control and hardware
handshaking configurations of each port on the PCP16 board. Normally, ports used for
Serial-Link connections are not set for modem control nor hardware handshaking. This is the
default setting for all ports in the ICON/UXY release. If the /etc/uxrc file has been changed
from the default, use the ICON/UXY operating system reference manuals to learn how to
adjust the file for your environment.

The /usr/lib/sendmail.cf File

The /usr/lib/sendmail.cf file is used to determine how to send mail among hosts. It is
somewhat cryptic and can be configured in different ways. The /usr/lib/sendmail.cf file
provided with ICON/UXV-NET software is usually sufficient. Further information can be
obtained by referring to the appendices.

Reboot and Test

After modifying the files described above, the following steps must be taken:

o perform a system shutdown
* connect any yet unconnected cables
« reboot the system

The network can then be tested by attempting rlogin, remsh, netstat, and other network
commands. The ping command is also useful for testing network configurations. If any
problems are found after the above files have been configured, review the installation
procedures outlined above and make sure the entries to each file are correct. If problems still
persist, or you have questions concerning the configuration procedure, contact ICON
Customer Service on the toll-free hot-line number: 1-800-444-ICON.

Configuration and Maintenance Change 1 — March 1989 : 3-7

Change 1 — March 1989

ICON/UXV-NET

Network Setup 4

ICON/UXYV provides support for the DARPA standard Internet protocols IP, ICMP, TCP, and
UDP. These protocols may be used on top of a variety of hardware devices. Network
services are split between the kernel (communication protocols) and user programs (user
services such as TELNET and FTP). This section describes how to configure your system to
use the Internet networking support.

All network interface drivers including the loopback interface, require that their host
address(es) be defined at boot time. This is done with ifconfig(8C) commands included in the
letc/rc.local file. Interfaces that are able to dynamically deduce the host part of an address may
check that the host part of the address is correct. The manual page for each network interface
describes the method used to establish a host’s address. Ifconfig(8) can also be used to set
options for the interface at boot time. Options are set independently for each interface, and
apply to all packets sent using that interface. These options include disabling the use of the
Address Resolution Protocol; this may be useful if a network is shared with hosts running
software that does not yet provide this function. Alternatively, translations for such hosts may
be set in advance or “published” by a ICON/UXYV host by use of the arp(8C) command. Note
that the use of trailer link-level is now negotiated between ICON/UXYV hosts using ARP.

To use the pseudo terminals just configured, device entries must be created in the /dev
directory. (These entries may already have been created on your system.) To create 32 pseudo
terminals (plenty, unless you have a heavy network load) execute the following commands.

cd /dev
MAKEDEV pty0 ptyl

More pseudo terminals may be made by specifying pty2, pty3, etc. The kernel normally
includes support for 32 pseudo terminals unless the configuration file specifies a different
number. Each pseudo terminal really consists of two files in /dev: a master and a slave. The
master pseudo terminal file is named /dev/ptyp?, while the slave side is /dev/ttyp?. Pseudo
terminals are also used by several programs not related to the network. In addition to creating
the pseudo terminals, be sure to install them in the /etc/inittab file (with an ‘off’ in the third field
SO no getty is started).

Local Subnetworks

| NOTE: This section may be skipped on most systems. |

In ICON/UXYV the DARPA Internet support includes the notion of “subnetworks”. This is a
mechanism by which multiple local networks may appears as a single Internet network to off-
site hosts. Subnetworks are useful because they allow a site to hide their local topology,
requiring only a single route in external gateways; it also means that local network numbers
may be locally administered. The standard describing this change in Internet addressing is
RFC-950.

Network Setup 4-1

To set up local subnetworks one must first decide how the available address space (the Internet
“host part” of the 32-bit address) is to be partitioned. Sites with a class A network number .
have a 24-bit address space with which to work, sites with a class B network number have a (
16-bit address space, while sites with a class C network number have an 8-bit address space.
To define local subnets you must steal some bits from the local host address space for use in
‘extending the network portion of the Internet address. This reinterpretation of Internet
addresses is done only for local networks; i.e. it is not visible to hosts off-site. For example,
if your site has a class B network number, hosts on this network have an Internet address that
contains the network number, 16 bits, and the host number, another 16 bits. To define 254
local subnets, each possessing at most 255 hosts, 8 bits may be taken from the local part. (The
use of subnets 0 and all-1’s, 255 in this example, is discouraged to avoid confusion about
broadcast addresses.) These new network numbers are then constructed by concatenating the
original 16-bit network number with the extra 8 bits containing the local subnetwork number.

The existence of local subnetworks is communicated to the system at the time a network
interface is configured with the netmask option to the ifconfig program. A “network mask” is
specified to define the portion of the Internet address that is to be considered the network part
for that network. This mask normally contains the bits corresponding to the standard network
part as well as the portion of the local part that has been assigned to subnets. If no mask is
specified when the address is set, it will be set according to the class of the network. For
example, at Berkeley (class B network 128.32) 8 bits of the local part have been reserved for
defining subnetworks; consequently the /etc/rc.local file contains lines of the form

/etc/ifconfig ex0 netmask Oxffffff00 128.32.1.7

This specifies that for interface “ex0”, the upper 24 bits of the Internet address should be used —
in calculating network numbers (netmask Oxffffff00), and the interface’s Internet address is :
“128.32.1.7” (host 7 on network 128.32.1). Hosts m on sub-network » of this network
would then have addresses of the form “128.32.n.m”; for example, host 99 on network 129
would have an address “128.32.129.99”. For hosts with multiple interfaces, the network
mask should be set for each interface, although in practice only the mask of the first interface
on each network is actually used.

Internet Broadcast Addresses

The address defined as the broadcast address for Internet networks according to RFC-919 is
the address with a host part of all 1’s. The address used by 4.2BSD was the address with a
host part of 0. ICON/UXY uses the standard broadcast address (all 1’s) by default, but
allows the broadcast address to be set (with ifconfig) for each interface. This allows networks
consisting of both 4.2BSD and ICON/UXYV hosts to coexist. In the presence of subnets, the
broadcast address uses the subnet field as for normal host addresses, with the remaining host
part set to 1’s (or O’s, on a network that has not yet been converted). ICON/UXYV hosts
recognize and accept packets sent to the logical-network broadcast address as well as those sent
to the subnet broadcast address, and when using an all-1’s broadcast, also recognize and
receive packets sent to host 0 as a broadcast.

4-2 ICON/UXV-NET

Routing

If your environment allows access to networks not directly attached to your host you will need
to set up routing information to allow packets to be properly routed. Two schemes are
supported by the system. The first scheme employs the routing table management daemon
letc/routed to maintain the system routing tables. The routing daemon uses a variant of the
Xerox Routing Information Protocol to maintain up to date routing tables in a cluster of local
area networks. By using the /etc/gateways file, the routing daemon can also be used to
initialize static routes to distant networks (see the next section for further discussion). When
the routing daemon is started up (usually from /etc/rc) it reads /etc/gateways if it exists and
installs those routes defined there, then broadcasts on each local network to which the host is
attached to find other instances of the routing daemon. If any responses are received, the
routing daemons cooperate in maintaining a globally consistent view of routing in the local
environment. This view can be extended to include remote sites also running the routing
daemon by setting up suitable entries in /etc/gateways; consult the routed manual page for a
more thorough discussion.

The second approach is to define a default or wildcard route to a smart gateway and depend on
the gateway to provide ICMP routing redirect information to dynamically create a routing data
base. This is done by adding an entry of the form

/etc/route add default smart-gateway 1

to /etc/rc; see routed(8C) for more information. The default route will be used by the system
as a “last resort” in routing packets to their destination. Assuming the gateway to which
packets are directed is able to generate the proper routing redirect messages, the system will
then add routing table entries based on the information supplied. This approach has certain
advantages over the routing daemon, but is unsuitable in an environment where there are only
bridges (i.e. pseudo gateways that, for instance, do not generate routing redirect messages).
Further, if the smart gateway goes down there is no alternative, save manual alteration of the
routing table entry, to maintaining service.

The system always listens, and processes, routing redirect information, so it is possible to

combine both of the above facilities. For example, the routing table management process might
be used to maintain up to date information about routes to geographically local networks, while
employing the wildcard routing techniques for “distant” networks. The netstat(1) program may

be used to display routing table contents as well as various routing oriented statistics. For
example,

netstat -r
will display the contents of the routing tables, while
netstat -r -s

will show the number of routing table entries dynamically created as a result of routing redirect
messages, etc.

Network Setup Change 1 — March 1989 4-3

Network Servers

In ICON/UXYV most of the server programs are started up by a “super server”, the Internet
daemon. The Internet daemon, /etc/inetd, acts as a master server for programs specified in its
configuration file, /etc/inetd.conf, listening for service requests for these servers, and starting
up the appropriate program whenever a request is received. The configuration file contains
lines containing a service name (as found in /etc/services), the type of socket the server expects
(e.g. stream or dgram), the protocol to be used with the socket (as found in /etc/protocols),
whether to wait for each server to complete before starting up another, the user name as which
the server should run, the server program’s name, and at most five arguments to pass to the
server program. Some trivial services are implemented internally in inetd, and their servers are
listed as “internal.” For example, an entry for the file transfer protocol server would appear as

ftp stream tcp nowait root /etc/ftpd ftpd

Consult the inetd manual page for more detail on the format of the configuration file and the
operation of the Internet daemon.

Network Data Bases

Several data files are used by the network library routines and server programs. Most of these
files are host independent and updated only rarely.

File Manual reference Use

Jetc/hosts hosts host names

fetc/networks networks network names

fetc/services services list of known services
fetc/protocols protocols protocol names

fetc/hosts.equiv remshd list of “trusted” hosts

Jetc/rc.local rc command script for starting servers
[etc/ftpusers fipd list of “unwelcome” ftp users
/etc/hosts.lpd Ipd list of hosts allowed to access printers
fetc/inetd.conf inetd list of servers started by inetd
fetc/gateways routed default router information

The files distributed are set up for ARPANET or other Internet hosts. Local networks and
hosts should be added to describe the local configuration. Network numbers will have to be
chosen for each Ethernet. For sites not connected to the Internet, these can be chosen more or
less arbitrarily, otherwise the formal channels mentioned in Section 2 should be used for
allocation of network numbers.

4-4 Change 1 — March 1989 ICON/UXV-NET

Regenerating /etc/hosts and /etc/networks

NOTE: The following information applies only to those system directly
connected to the ARPA internet.

When using the host address routines that use the Internet name server, the file /etc/hosts is
only used for setting interface addresses and at other times that the server is not running, and
therefore it need only contain addresses for local hosts. There is no equivalent service for
network names yet. The full host and network name data bases are sometimes derived from a
file retrieved from the Internet Network Information Center at SRI. To do this you should use
the program /etc/gettable to retrieve the NIC host data base, and the program htable(8) to
convert it to the format used by the libraries. You should change to the directory where you
maintain your local additions to the host table and execute the following commands.

/etc/gettable sri-nic.arpa
Connection to sri-nic.arpa opened.
Host table received.

Connection to sri-nic.arpa closed.
/etc/htable hosts.txt

Warning, no localgateways file.

#

The htable program generates three files in the local directory: hosts, networks and gateways.
If a file “localhosts” is present in the working directory its contents are first copied to the output
file. Similarly, a “localnetworks” file may be prepended to the output created by htable, and
“localgateways” will be prepended to gateways. It is usually wise to run diff(1) on the new
host and network data bases before installing them in /etc. If you are using the name server for
the host name and address mapping, you only need to install networks and a small copy of
hosts describing your local machines. The full host table in this case might be placed
somewhere else for reference by users. The gateways file may be installed in /etc/gateways if
you use routed for local routing and wish to have static external routes installed when routed is
started. This procedure is essentially obsolete, however, except for individual hosts that are on
the Arpanet or Milnet and do not forward packets from a local network. Other situations
require the use of an EGP server.

If you are connected to the DARPA Internet, it is highly recommended that you use the name
server for your host name and address mapping, as this provides access to a much larger set of
hosts than are provided in the host table. Many large organization on the network, currently
have only a small percentage of their hosts listed in the host table retrieved from NIC.

/etc/hosts.equiv

The remote login and shell servers use an authentication scheme based on trusted hosts. The
hosts.equiv file contains a list of hosts that are considered trusted and, under a single
administrative control. When a user contacts a remote login or shell server requesting service,
the client process passes the user’s name and the official name of the host on which the client is
located. In the simple case, if the host’s name is located in hosts.equiv and the user has an
account on the server’s machine, then service is rendered (i.e. the user is allowed to log in, or
the command is executed). Users may expand this “equivalence” of machines by installing a

Network Setup Change 1 — March 1989 4-5

.rhosts file in their login directory. The root login is handled specially, bypassing the

hosts.equiv file, and using only the /.rhosts file. SN
Thus, to create a class of equivalent machines, the hosts.equiv file should contain the official e
names for those machines. If you are running the name server, you may omit the domain part

of the host name for machines in your local domain. For example, several machines on our

local network are considered trusted, so the hosts.equiv file is of the form:

dopey
doc
sneezy

happy

grumpy
sleepy

/etc/rc.local

Most network servers are automatically started up at boot time by the command file /etc/rc (if
they are installed in their presumed locations) or by the Internet daemon (see above). These
include the following:

Program Server Started by

/etc/remshd shell server inetd

fetc/rexecd €XeC server inetd P
fetc/logind login server inetd o
fetc/telnetd TELNET server inetd S~
fetc/fipd FTP server inetd

fetc/fingerd Finger server inetd

fetc/tftpd TFTP server inetd

fetc/frwhod system status daemon [etc/rc

Jetc/syslogd error logging server fetc/rc

fust/lib/sendmail SMTP server Jetc/rc

/etc/routed routing table management daemon /etc/rc

Consult the manual pages and accompanying documentation (particularly for sendmail) for
details about their operation.

To have other network servers started up as well, the appropriate line should be added to the
Internet daemon’s configuration file /etc/inetd.conf, or commands of the following sort should
be placed in the file /etc/rc.

if [-f /etc/routed]; then
/etc/routed & echo ’ routed\c”
fi

4-6 Change 1 — March 1989 ICON/UXV-NET

/etc/ftpusers

The FTP server included in the system provides support for an anonymous FTP account.
Because of the inherent security problems with such a facility you should read this section
carefully if you consider providing such a service.

An anonymous account is enabled by creating a user ftp. When a client uses the anonymous
account a chroot(2) system call is performed by the server to restrict the client from moving
outside that part of the file system where the user ftp home directory is located. Because a
chroot call is used, certain programs and files used by the server process must be placed in the
ftp home directory. Further, one must be sure that all directories and executable images are
unwritable. The following directory setup is recommended. (Note: The csh shell is used in
the following examples.)

cd ~ftp

chmod 555 .; chown ftp .; chgrp ftp .
mkdir bin etc pub

chown root bin etc

chmod 555 bin etc

chown ftp pub

chmod 777 pub

cd bin

cp /bin/sh /bin/ls

chmod 111 sh 1s

cd ../etc

cp /etc/passwd /etc/group .
chmod 444 passwd group

BT JE S I S R R

When local users wish to place files in the anonymous area, they must be placed in a
subdirectory. In the setup here, the directory ~ftp/pub is used.

Another issue to consider is the copy of /etc/passwd placed here. It may be copied by users
who use the anonymous account. They may then try to break the passwords of users on your
machine for further access. A good choice of users to include in this copy might be root,
daemon, uucp, and the ftp user. All passwords here should probably be “*”.

- Aside from the problems of directory modes and such, the ftp server may provide a loophole

for interlopers if certain user accounts are allowed. The file /etc/fipusers is checked on each
connection. If the requested user name is located in the file, the request for service is denied.
This file normally has the following names:

uucp
root

Accounts with nonstandard shells should be listed in this file. Accounts without passwords
need not be listed in this file, the ftp server will not service these users.

Network Setup 4-7

4-8

ICON/UXV-NET

(

Appendices

The following Appendices contain manual pages pertaining to commands and utilities contained
in the ICON/UXV-NET networking package, a document on SENDMAIL, the Internetwork
Mail Sender, and documents on the Internet Protocols, SENDMAIL Installation and Operation,
and 4.3BSD Notes on Network Implementation.

Appendix
Appendix
Appendix
Appendix
Appendix
Appendix

Appendix

Appendices

A-
B -

Manual Pages

Internetwork Mail Routing

SENDMAIL Installation and Operating Guide
Introduction to the Internet Protocols
Networking Implementation Notes

An Introductory 4.3BSD Interprocess
Communication Tutorial

An Advanced 4.3BSD Interprocess
Communication Tutorial

Change 1 — March 1989 A-i

A-ii

Change 1 — March 1989

ICON/UXV-NET

N
{]

Appendix A — Manual Pages

The following appendix contains manual pages pertaining to the ICON/UXV-NET commands
and utilities that make up the networking package described in the previous sections. The
pages are divided into four classes:

Section Section Number
User Commands 1 and 1C
Maintenance Commands iM

System Calls 2

Subroutines 3

Network Functions 3N

File Formats 4

Miscellaneous 5

Networking Protocol Families 7N

Networking Protocols 7P

The following is a list of the commands and utilities that are contained in each section.

User Commands (1 and 1C)

ftp ARPANET file transfer program

netstat show network status

newaliases rebuild the data base for the mail aliases file

rcp remote file copy

rdist remote file distribution program

rlogin remote login

remsh remote shell

ruptime show host status of local machines

rwho who’s logged in on local machines

talk talk to another user

telnet , user interface to the TELNET protocol

titp trivial file transfer program
Maintenance Commands (1M)

ftpd DARPA Internet File Transfer Protocol server

gettable get NIC format host tables from a host

htable convert NIC standard format host tables

ifconfig configure network interface parameters

inetd internet “super-server”

ping send ICMP ECHO_REQUEST packets to network hosts

rexecd remote execution server

rlogind remote login server

route manually manipulate the routing tables

routed network routing daemon

remshd remote shell server

rwhod system status server

sendmail send mail over the internet

Manual Pages Change 1 — March 1989 A-1

slattach
syslogd
talkd
telnetd

tftpd
trpt

System Calls (2)

accept
bind
connect
fchmod
fchown
gethostid
gethostname
getpeername
getsockname
getsockopt
gettimeofday
listen
readv
‘recv
recvfrom
recvmsg
select
send
sendto
sendmsg
sethostid
sethostname
setsockopt
settimeofday
shutdown
socket
socketpair
viork
writev

Subroutines (3)

remd
rexec
rresvpon
ruserok

Change 1 — March 1989

Maintenance Commands (1M) (Continued)

attach serial lines as network interfaces

log systems messages

remote user communication server

DARPA TELNET protocol server

DARPA Trivial File Transfer Protocol server
transliterate protocol trace

accept a connection on a socket

bind a name to a socket

initiate a connection on a socket
change mode of file

change owner and group of a file

get unique identifier of current host
get name of current host

get name of connected peer

get socket name

get options on sockets

get date and time

listen for connections on a socket
read input

receive a message from a socket
receive a message from a socket
receive a message from a socket
synchronous I/O multiplexing

send a message from a socket

send a message from a socket

send a message from a socket

set unique identifier of current host
set name of current host

set options on sockets

set date and time

shut down part of a full-duplex connection
create an endpoint for communication
create a pair of connected sockets
spawn new process in a virtual memory efficient way
write output

routines for returning a stream to a remote command
return stream to a remote command

routines for returning a stream to a remote command
routines for returning a stream to a remote command

ICON/UXV-NET

“/—\\
N

27N

_ Network Functions (3N)
‘ endhostent

' endnetent
endprotoent
endtservent
gethostbyaddr
gethostbyname
gethostent
getnetbyaddr
getnetbyname
getnetent
getprotoent
getprotoentbyname
getprotoentbynumber
getservbyname
getservbyport
getservent
herror
htonl
htons
inet_addr
inet_Inaof
inet_makeaddr
inet_network
inet_netof
inet_ntoa
ntohl
ntohs
sethostent
setnetent
setprotoent
setservent

P

File Formats (4)
aliases
hosts
networks
protocols
services

Miscellaneous (5)
hostname
mailaddr
resolver

Manual Pages

end network host entry

end network entry

end protocol entry

end service entry

get network host entry by address

get network host entry by name

get network host entry

get network entry by address

get network entry by name

get network entry

get protocol entry

get protocol entry by name

get protocol entry by number

get service entry by name

get service entry by port

get service entry

get network host entry error

convert values between host and network byte order
convert values between host and network byte order
Internet address manipulation routine

Internet address manipulation routine

Internet address manipulation routine

Internet address manipulation routine

Internet address manipulation routine

Internet address manipulation routine

convert values between host and network byte order
convert values between host and network byte order
set network host entry

set network entry

set protocol entry

set service entry

aliases file for sendmail
host name data base
network name data base
protocol name data base
service name data base

host name resolution description
mail addressing description
resolver configuration file

Change 1 — March 1989 A-3

Networking Protocols (7N)

networking intro introductin to networking facilities
Networking Protocol Families (7P)

arp Address Resolution Protocol

icmp Internet Control Message Protocol

ip Internet Protocol

tcp Internet Transmission Control Protocol

udp Internet User Datagram Protocol

A-4 Change 1 — March 1989

ICON/UXV-NET

AN
W/

FTP(1C) USER COMMANDS FTP(1C)

NAME

ftp - ARPANET file transfer program

SYNOPSIS

ftp[-v][-d][-i][-n][-g][host]

DESCRIPTION

Frp is the user interface to the ARPANET standard File Transfer Protocol. The program
allows a user to transfer files to and from a remote network site.

The client host with which fip is to communicate may be specified on the command line. If
this is done, fip will immediately attempt to establish a connection to an FTP server on that
host; otherwise, fip will enter its command interpreter and await instructions from the user.
When fip is awaiting commands from the user the prompt *‘ftp>’’ is provided to the user. The
following commands are recognized by fip:

! [command [args]]
Invoke an interactive shell on the local machine. If there are arguments, the first is
taken 1o be a command to execute directly, with the rest of the arguments as its argu-
ments.

$ macro-name [args)
Execute the macro macro-name that was defined with the macdef command. Argu-
ments are passed to the macro unglobbed.

account [passwd]
Supply a supplemental password required by a remote system for access to resources
once a login has been successfully completed. If no argument is included, the user
will be prompted for an account password in a non-echoing input mode.

append local-file [remote-file]
Append a local file to a file on the remote machine. If remote-file is left unspecified,
the local file name is used in naming the remote file after being altered by any ntrans
or nmap setting. File transfer uses the current settings for type, format, mode, and
structure .

ascii Set the file transfer type to network ASCII. This is the default type.
bell Arrange that a bell be sounded after each file transfer command is completed.
binary Set the file transfer type to support binary image transfer.

bye Terminate the FTP session with the remote server and exit fip. An end of file will also
terminate the session and exit.

case Toggle remote computer file name case mapping during mget commands. When case
is on (default is off), remote computer file names with all letters in upper case are
written in the local directory with the letters mapped to lower case.

cd remote-directory
Change the working directory on the remote machine to remote-directory .

cdup Change the remote machine working directory to the parent of the current remote
machine working directory.

close Terminate the FTP session with the remote server, and return to the command inter-
preter. Any defined macros are erased.

icon International, Inc. 1

FTP(1C) USER COMMANDS - FTP(1C)

cr Toggle carriage return stripping during ascii type file retrieval. Records are denoted
by a carriage return/linefeed sequence during ascii type file transfer. When cr is on
(the default), carriage returns are stripped from this sequence to conform with the
UNIX single linefeed record delimiter. Records on non-UNIX remote systems may
contain single linefeeds; when an ascii type transfer is made, these linefeeds may be
distinguished from a record delimiter only when cr is off.

delete remote-file
Delete the file remote-file on the remote machine.

debug [debug-value]
Toggle debugging mode. If an optional debug-value is specified it is used to set the
debugging level. When debugging is on, fip prints each command sent to the remote
machine, preceded by the string ‘‘-->"".

dir [remote-directory][local-file]
Print a listing of the directory contents in the directory, remote-directory , and, option-
ally, placing the output in local-file. If no directory is specified, the current working
directory on the remote machine is used. If no local file is specified, or local-file is -,
output comes to the terminal.

disconnect
A synonym for close.

form format
Set the file transfer form to format. The default format is *‘file’’.

get remote-file [local-file |
Retrieve the remote-file and store it on the local machine. If the local file name is not
specified, it is given the same name it has on the remote machine, subject to alteration
by the current case, ntrans, and nmap settings. The current settings for type, form,
mode, and structure are used while transferring the file.

glob Toggle filename expansion for mdelete, mget and mput. If globbing is turned off
with glob, the file name arguments are taken literally and not expanded. Globbing for
mput is done as in csh(1). For mdelete and mget, each remote file name is expanded
separately on the remote machine and the lists are not merged. Expansion of a direc-
tory name is likely to be different from expansion of the name of an ordinary file: the
exact result depends on the foreign operating system and ftp server, and can be pre-
viewed by doing ‘mls remote-files -°. Note: mget and mput are not meant to transfer
entire directory subtrees of files. That can be done by transferring a tar(1) archive of
the subtree (in binary mode).

hash Toggle hash-sign (‘‘#’’) printing for each data block transferred. The size of a data
block is 1024 bytes.)

help [command]
Print an informative message about the meaning of command. If no argument is
given, ftp prints a list of the known commands.

led [directory]
Change the working directory on the local machine. If no directory is specified, the
user’s home directory is used.

Is [remote-directory 1[local-file]
Print an abbreviated listing of the contents of a directory on the remote machine. If
remote-directory is left unspecified, the current working directory is used. If no local

Icon International, Inc.

FTP(1C) USER COMMANDS FTP(1C)

file is specified, or if local-file is -, the output is sent to the terminal.

macdef macro-name

Define a macro. Subsequent lines are stored as the macro macro-name; a null line
(consecutive newline characters in a file or carriage returns from the terminal) ter-
minates macro input mode. There is a limit of 16 macros and 4096 total characters in
all defined macros. Macros remain defined until a close command is executed. The
macro processor interprets '$’ and '\’ as special characters. A ’$’ followed by a
number (or numbers) is replaced by the corresponding argument on the macro invoca-
tion command line. A ’$’ followed by an ’i’ signals that macro processor that the
executing macro is to be looped. On the first pass ’$i’ is replaced by the first argument
on the macro invocation command line, on the second pass it is replaced by the
second argument, and so on. A "\’ followed by any character is replaced by that char-
acter. Use the '\’ to prevent special treatment of the ’$’.

mdelete [remote-files]
Delete the remote-files on the remote machine.

mdir remote-files local-file
Like dir, except multiple remote files may be specified. If interactive prompting is
on, fip will prompt the user to verify that the last argument is indeed the target local
file for receiving mdir output.

mget remote-files
Expand the remote-files on the remote machine and do a get for each file name thus
produced. See glob for details on the filename expansion. Resulting file names will
then be processed according to case, ntrans, and nmap settings. Files are transferred
into the local working directory, which can be changed with ‘led directory’; new local
directories can be created with ‘! mkdir directory’.

mkdir directory-name
Make a directory on the remote machine.

mls remote-files local-file
Like Is, except multiple remote files may be specified. If interactive prompting is on,
Jtv will prompt the user to verify that the last argument is indeed the target local file
for receiving mls output.

mode [mode-name |
Set the file transfer mode t0 mode-name. The default mode is ‘‘stream’” mode.

mput local-files
Expand wild cards in the list of local files given as arguments and do a put for each
file in the resulting list. See glob for details of filename expansion. Resulting file
names will then be processed according to ntrans and nmap settings.

nmap [inpattern outpattern]
Set or unset the filename mapping mechanism. If no arguments are specified, the
filename mapping mechanism is unset. If arguments are specified, remote filenames
are mapped during mput commands and put commands issued without a specified
remote target filename. If arguments are specified, local filenames are mapped during
mget commands and get commands issued without a specified local target filename.
This command is useful when connecting to a non-UNIX remote computer with
different file naming conventions or practices. The mapping follows the pattern set by
inpattern and outpattern. Inpattern is a template for incoming filenames (which may
have already been processed according to the ntrans and case settings). Variable

Icon International, Inc. 3

FTP(1C)

USER CQMMANDS FTP(1C)

templating is accomplished by including the sequences ’$1°, ’$2’, ..., ’$9’ in inpat-
tern. Use "\’ to prevent this special treatment of the ’$’ character. All other charac-
ters are treated literally, and are used to determine the nmap inpattern variable
values. For exmaple, given inpattern $1.$2 and the remote file name "mydata.data”,
$1 would have the value "mydata”, and $2 would have the value "data". The outpat-
tern determines the resulting mapped filename. The sequences *$1°, ’$2’, ..., "$9’ are
replaced by any value resulting from the inpattern template. The sequence *$0’ is
replace by the original filename. Additionally, the sequence ’[seql,seq2]’ is replaced
by seq! if seql is not a null string; otherwise it is replaced by seq2. For example, the
command "nmap $1.$2.$3 [$1,$2].[$2,file]" would yield the output filename
"myfile.data" for input filenames "myfile.data" and "myfile.data.old", "myfile.file" for
the input filename "myfile", and "myfile.myfile" for the input filename ".myfile"
Spaces may be included in outpattern, as in the example: nmap $1 Ised "s/ *$//" > $1
. Use the '\’ character to prevent special treatment of the °$’, ’[’, ’]’, and °,’ characters.

ntrans [inchars [outchars]]

Set or unset the filename character translation mechanism. If no arguments are
specified, the filename character translation mechanism is unset. If arguments are
specified, characters in remote filenames are translated during mput commands and
put commands issued without a specified remote target filename. If arguments are
specified, characters in local filenames are translated during mget commands and get
commands issued without a specified local target filename. This command is useful
when connecting to a non-UNIX remote computer with different file naming conven-
tions or practices. Characters in a filename matching a character in inchars are
replaced with the corresponding character in outchars. If the character’s position in
inchars is longer than the length of outchars, the character is deleted from the file
name.

open host [port]

prompt

Establish a connection to the specified host FTP server. An optional port number may
be supplied, in which case, fip will attempt to contact an FTP server at that port. If
the auto-login option is on (default), fip will also attempt to automatically log the user
in to the FTP server (see below).

Toggle interactive prompting. Interactive prompting occurs during multiple file
transfers to allow the user to selectively retrieve or store files. If prompting is turned
off (default is on), any mget or mput will transfer all files, and any mdelete will
delete all files.

proxy fip-command

Execute an ftp command on a secondary control connection. This command allows
simultaneous connection to two remote ftp servers for transferring files between the
two servers. The first proxy command should be an open, to establish the secondary
control connection. Enter the command "proxy ?" to see other ftp commands execut-
able on the secondary connection. The following commands behave differently when
prefaced by proxy: open will not define new macros during the auto-login process,
close will not erase existing macro definitions, get and mget transfer files from the
host on the primary control connection to the host on the secondary control connec-
tion, and put, mput, and append transfer files from the host on the secondary control
connection to the host on the primary control connection. Third party file transfers
depend upon support of the ftp protocol PASV command by the server on the secon-
dary control connection.

Icon International, Inc.

o

g /
LS

FTP(1C) USER COMMANDS FTP(1C)

put local-file [remote-file]
Store a local file on the remote machine. If remote-file is left unspecified, the local
file name is used after processing according to any ntrans or nmap settings in naming
the remote file. File transfer uses the current settings for type, format, mode, and
structure.

pwd Print the name of the current working directory on the remote machine.
quit A synonym for bye.

quote argl arg2 ...
The arguments specified are sent, verbatim, to the remote FTP server.

recv remote-file [local-file
A synonym for get.

remotehelp [command-name]
Request help from the remote FTP server. If a command-name is specified it is sup-
plied to the server as well.

rename [from][t0]
Rename the file from on the remote machine, to the file zo.

reset Clear reply queue. This command re-synchronizes command/reply sequencing with
the remote ftp server. Resynchronization may be neccesary following a violation of
the ftp protocol by the remote server.

rmdir directory-name
Delete a directory on the remote machine.

runique

Toggle storing of files on the local system with unique filenames. If a file already
exists with a name equal to the target local filename for a get or mget command, a
".1" is appended to the name. If the resulting name matches another existing file, a
".2" is appended to the original name. If this process continues up to ".99", an error
message is printed, and the transfer does not take place. The generated unique
filename will be reported. Note that runique will not affect local files generated from
a shell command (see below). The default value is off.

send local-file [remote-file]
A synonym for put.

sendport

Toggle the use of PORT commands. By default, fip will attempt to use a PORT com-
mand when establishing a connection for each data transfer. The use of PORT com-
mands can prevent delays when performing multiple file transfers. If the PORT com-
mand fails, ftp will use the default data port. When the use of PORT commands is
disabled, no attempt will be made to use PORT commands for each data transfer.
This is useful for certain FTP implementations which do ignore PORT commands but,
incorrectly, indicate they’ve been accepted.

status Show the current status of fip.

struct [struct-name |
Set the file transfer structure to struct-name. By default ‘‘stream’’ structure is used.

sunique
Toggle storing of files on remote machine under unique file names. Remote ftp server
must support fip protocol STOU command for successful completion. The remote

icon International, Inc. 5

FTP(1C) USER COMMANDS FTP(1C)

server will report unique name. Default value is off.
tenex Set the file transfer type to that needed to talk to TENEX machines.
trace Toggle packet tracing.

type [type-name] .
Set the file transfer type to type-name. If no type is specified, the current type is
printed. The default type is network ASCII.

user user-name [password] [account]

Identify yourself to the remote FTP server. If the password is not specified and the
server requires it, fip will prompt the user for it (after disabling local echo). If an
account field is not specified, and the FTP server requires it, the user will be prompted
for it. If an account field is specified, an account command will be relayed to the
remote server after the login sequence is completed if the remote server did not
require it for logging in. Unless fip is invoked with ‘‘auto-login’’ disabled, this pro-
cess is done automatically on initial connection to the FTP server.

verbose
Toggle verbose mode. In verbose mode, all responses from the FTP server are
displayed to the user. In addition, if verbose is on, when a file transfer completes,
statistics regarding the efficiency of the transfer are reported. By default, verbose is
on.

? [command]
A synonym for help.

Command arguments which have embedded spaces may be quoted with quote (") marks.

ABORTING A FILE TRANSFER
To abort a file transfer, use the terminal interrupt key (usually Ctrl-C). Sending transfers will
be immediately halted. Receiving transfers will be halted by sending a ftp protocol ABOR
command to the remote server, and discarding any further data received. The speed at which
this is accomplished depends upon the remote server’s support for ABOR processing. If the
remote server does not support the ABOR command, an "ftp>" prompt will not appear until
the remote server has completed sending the requested file.

The terminal interrupt key sequence will be ignored when ftp has completed any local pro-
cessing and is awaiting a reply from the remote server. A long delay in this mode may result
from the ABOR processing described above, or from unexpected behavior by the remote
server, including violations of the ftp protocol. If the delay results from unexpected remote
server behavior, the local fip program must be killed by hand.

FILE NAMING CONVENTIONS
Files specified as arguments to fip commands are processed according to the following rules.

1) If the file name *‘-’’ is specified, the stdin (for reading) or stdout (for {vﬂting) is used.

2) If the first character of the file name is ‘‘I’’, the remainder of the argument is inter-
preted as a shell command. Fip then forks a shell, using popen(3) with the argument
supplied, and reads (writes) from the stdout (stdin). If the shell command includes
spaces, the argument must be quoted; e.g. ‘“"l 1s -1t"”’. A particularly useful example
of this mechanism is: ‘‘dir Imore”’.

3) Failing the above checks, if ‘‘globbing’’ is enabled, local file names are expanded

6 lcon International, Inc.

.

FTP(1C) USER COMMANDS FTP(1C)

according to the rules used in the csh(1); c.f. the glob command. If the fip command
expects a single local file (.e.g. put), only the first filename generated by the "glob-
bing" operation is used.

4) For mget commands and get commands with unspecified local file names, the local
filename is the remote filename, which may be altered by a case, ntrans, or nmap set-
ting. The resulting filename may then be altered if runique is on.

5) For mput commands and put commands with unspecified remote file names, the
remote filename is the local filename, which may be altered by a ntrans or nmap set-
ting. The resulting filename may then be altered by the remote server if sunique is
on.

FILE TRANSFER PARAMETERS

The FTP specification specifies many parameters which may affect a file transfer. The type
may be one of ‘‘ascii’’, ‘‘image’’ (binary), ‘‘ebcdic’’, and *‘local byte size’’ (for PDP-10’s and
PDP-20’s mostly). Fp supports the ascii and image types of file transfer, plus local byte size
8 for tenex mode transfers.

Fip supports only the default values for the remaining file transfer parameters: mode, form,
and struct.

OPTIONS

Options may be specified at the command line, or to the command interpreter.

The -v (verbose on) option forces fip to show all responses from the remote server, as well as
report on data transfer statistics.

The -n option restrains ftp from attempting ‘‘auto-login’’ upon initial connection. If auto-
login is enabled, fip will check the .netrc (see below) file in the user’s home directory for an
entry describing an account on the remote machine. If no entry exists, fip will prompt for the
remote machine login name (default is the user identity on the local machine), and, if neces-
sary, prompt for a password and an account with which to login.

The -i option turns off interactive prompting during multiple file transfers.
The -d option enables debugging.
The -g option disables file name globbing.

THE .netrc FILE

The .netrc file contains login and initialization information used by the auto-login process. It
resides in the user’s home directory. The following tokens are recognized; they may be
separated by spaces, tabs, or new-lines:

machine name
Identify a remote machine name. The auto-login process searches the .netrc file for a
machine token that matches the remote machine specified on the fip command line or
as an open command argument. Once a match is made, the subsequent .netrc tokens
are processed, stopping when the end of file is reached or another machine token is
encountered.

login name

Identify a user on the remote machine. If this token is present, the auto-login process
will initiate a login using the specified name.

icon International, Inc. 7

FTP(1C) USER COMMANDS FTP(1C)

BUGS

password string
Supply a password. If this token is present, the auto-login process will supply the
specified string if the remote server requires a password as part of the login process.
Note that if this token is present in the .netrc file, fip will abort the auto-login process
if the .netrc is readable by anyone besides the user.

account string
Supply an additional account password. If this token is present, the auto-login pro-
cess will supply the specified string if the remote server requires an additional
account password, or the auto-login process will initiate an ACCT command if it does
not.

macdef name
Define a macro. This token functions like the fip macdef command functions. A
macro is defined with the specified name; its contents begin with the next .netrc line
and continue until a null line (consecutive new-line characters) is encountered. If a
macro named init is defined, it is automatically executed as the last step in the auto-
login process.

Correct execution of many commands depends upon proper behavior by the remote server.

An error in the treatment of carriage returns in the 4.2BSD UNIX ascii-mode transfer code
has been corrected. This correction may result in incorrect transfers of binary files to and
from 4.2BSD servers using the ascii type. Avoid this problem by using the binary image type.

lcon International, Inc.

Ve TN

7

™.
(//’"

NETSTAT (1) USER COMMANDS NETSTAT (1)

NAME

netstat - show network status

SYNOPSIS

netstat [-Aan] [-f address_family][system][core]
netstat [-himnrs] [-f address_family][system][core]
netstat [-n] [-Linterface]interval [system][core]

DESCRIPTION

The netstat command symbolically displays the contents of various network-related data
structures. There are a number of output formats, depending on the options for the informa-
tion presented. The first form of the command displays a list of active sockets for each proto-
col. The second form presents the contents of one of the other network data structures accord-
ing to the option selected. Using the third form, with an interval specified, netstat will con-
tinuously display the information regarding packet traffic on the configured network inter-
faces.

The options have the following meaning:

-A With the default display, show the address of any protocol control blocks associated
with sockets; used for debugging.

-a With the default display, show the state of all sockets; normally sockets used by
server processes are not shown.

-h Show the state of the IMP host table.

-i Show the state of interfaces which have been auto-configured (interfaces statically
configured into a system, but not located at boot time are not shown).

-1 interface
Show information only about this interface; used with an interval as described below.

-m Show statistics recorded by the memory management routines (the network manages
a private pool of memory buffers).

-n Show network addresses as numbers (normally netstar interprets addresses and
attempts to display them symbolically). This option may be used with any of the
display formats.

-S Show per-protocol statistics.
-r Show the routing tables. When -s is also present, show routing statistics instead.
-f address_family .

Limit statistics or address control block reports to those of the specified
address family. The following address families are recognized: inet, for AF_INET,
ns, for AF_NS, and unix, for AF_UNIX.

The arguments, system and core allow substitutes for the defaults ‘‘/vmunix’’ and
‘‘/dev/kmem’’.

The default display, for active sockets, shows the local and remote addresses, send and
receive queue sizes (in bytes), protocol, and the internal state of the protocol. Address for-
mats are of the form ‘host.port’’ or ‘‘network.port’’ if a socket’s address specifies a network
but no specific host address. When known the host and network addresses are displayed sym-
bolically according to the data bases /etc/hosts and /etc/networks , respectively. If a symbolic

lcon International, Inc. Last change: March 1989 1

NETSTAT (1) USER COMMANDS NETSTAT (1)

name for an address is unknown, or if the -n option is specified, the address is printed numeri-
cally, according to the address family. For more information regarding the Internet *‘dot for-
mat,”” refer to inet(3N). Unspecified, or ‘‘wildcard’’, addresses and ports appear as ‘‘*’’,

The interface display provides a table of cumulative statistics regarding packets transferred,
errors, and collisions. The network addresses of the interface and the maximum transmission
unit (‘‘mtu’’) are also displayed.

The routing table display indicates the available routes and their status. Each route consists
of a destination host or network and a gateway to use in forwarding packets. The flags field
shows the state of the route (‘“U’’ if ‘‘up’’), whether the route is to a gateway (*‘G’’), and
whether the route was created dynamically by a redirect (‘‘D’’). Direct routes are created for
each interface attached to the local host; the gateway field for such entries shows the address
of the outgoing interface. The refent field gives the current number of active uses of the route.
Connection oriented protocols normally hold on to a single route for the duration of a connec-
tion while connectionless protocols obtain a route while sending to the same destination. The
use field provides a count of the number of packets sent using that route. The interface entry
indicates the network interface utilized for the route.

When netstat is invoked with an interval argument, it displays a running count of statistics
related to network interfaces. This display consists of a column for the primary interface (the
first interface found during autoconfiguration) and a column summarizing information for all

_interfaces. The primary interface may be replaced with another interface with the -/ option.

The first line of each screen of information contains a summary since the system was last
rebooted. Subsequent lines of output show values accumulated over the preceding interval.

SEE ALSO

BUGS

hosts(4), networks(4), protocols(4), services(4), trpt(1M)

The notion of errors is ill-defined. Collisions mean something else for the IMP.

Last change: March 1989 lcon International, Inc.

N

NEWALIASES (1) USER COMMANDS NEWALIASES (1)

NAME
newaliases - rebuild the data base for the mail aliases file

SYNOPSIS
newaliases

DESCRIPTION
Newaliases rebuilds the random access data base for the mail aliases file /usr/lib/aliases. It
must be run each time /usr/lib/aliases is changed in order for the change to take effect.

SEE ALSO
aliases(4), sendmail(1M)

Icon International, Inc. . Last change: March 1989 1

RCP(1C) USER COMMANDS RCP (1C)

NAME

rcp - remote file copy

SYNOPSIS

rep [-p] filel file2
rcp [-p][-r]file ... directory

DESCRIPTION

Rcp copies files between machines. Each file or directory argument is either a remote file
name of the form ‘‘rhost:path’’, or a local file name (containing no ‘:’ characters, or a ‘/’
before any ‘:’s).

If the -r option is specified and any of the source files are directories, rcp copies each subtree
rooted at that name; in this case the destination must be a directory.

By default, the mode and owner of file2 are preserved if it already existed; otherwise the
mode of the source file modified by the umask(2) on the destination host is used. The -p
option causes rcp to attempt to preserve (duplicate) in its copies the modification times and
modes of the source files, ignoring the umask.

If path is not a full path name, it is interpreted relative to your login directory on rhost. A
path on a remote host may be quoted (using \, ", or “) so that the metacharacters are interpreted
remotely.

Rcp does not prompt for passwords; your current local user name must exist on rkost and
allow remote command execution via remsh(1C).

Rep handles third party copies, where neither source nor target files are on the current
machine. Hostnames may also take the form ‘‘rname@rhost’’ to use rmame rather than the
current user name on the remote host. The destination hosmame may also take the form
‘‘rhost.rname’’ to support destination machines that are running 4.2BSD versions of rcp.

SEE ALSO

BUGS

cp(1), ftp(1C), remsh(1C), rlogin(1C)

Doesn’t detect all cases where the target of a copy might be a file in cases where only a direc-
tory should be legal.

Is confused by any output generated by commands in a .login, .profile, or .cshrc file on the
remote host.

lcon International, Inc. 1

TN

N\ ,"
N

TN

S

RDIST (1) USER COMMANDS RDIST (1)

NAME

rdist - remote file distribution program

SYNOPSIS

rdist [-ngbRhivwy] [-f distfile] [-d var=value] [-m host] [name ...]
rdist [-ngbRhivwy] -c name ... [login@ Jhost[:dest]

DESCRIPTION

Rdist is a program to maintain identical copies of files over multiple hosts. It preserves the
owner, group, mode, and mtime of files if possible and can update programs that are execut-
ing. Rdist reads commands from distfile to direct the updating of files and/or directories. If
distfile is ‘-’, the standard input is used. If no -f option is present, the program looks first for
‘distfile’, then ‘Distfile’ to use as the input. If no names are specified on the command line,
rdist will update all of the files and directories listed in distfile. Otherwise, the argument is
taken to be the name of a file to be updated or the label of a command to execute. If label and
file names conflict, it is assumed to be a label. These may be used together to update specific
files using specific commands.

The -c option forces rdist to interpret the remaining arguments as a small distfile. The
equivalent distfile is as follows.

(name ...) -> [login@]host
install [dest] ;

Other options:

-d Define var to have value. The -d option is used to define or override variable
definitions in the distfile. Value can be the empty string, one name, or a list of names
surrounded by parentheses and separated by tabs and/or spaces.

-m Limit which machines are to be updated. Multiple -m arguments can be given to limit
updates to a subset of the hosts listed the distfile.

-n Print the commands without executing them. This option is useful for debugging
distfile.
-q Quiet mode. Files that are being modified are normally printed on standard output.

The -q option suppresses this.

-R Remove extraneous files. If a directory is being updated, any files that exist on the
remote host that do not exist in the master directory are removed. This is useful for
maintaining truely identical copies of directories.

-h Follow symbolic links. Copy the file that the link points to rather than the link itself.

-i Ignore unresolved links. Rdist will normally try to maintain the link structure of files
being transfered and warn the user if all the links cannot be found.

-y Verify that the files are up to date on all the hosts. Any files that are out of date will be
displayed but no files will be changed nor any mail sent.

-W Whole mode. The whole file name is appended to the destination directory name.
Nommally, only the last component of a name is used when renaming files. This will
preserve the directory structure of the files being copied instead of flattening the
directory structure. For example, renaming a list of files such as (dirl/f1 dir2/f2) to

Icon International, Inc. 1

RDIST (1) USER COMMANDS RDIST (1)

dir3 would create files dir3/dir1/f1 and dir3/dir2/f2 instead of dir3/f1 and dir3/f2.

-y Younger mode. Files are normally updated if their mtime and size (see stat(2))
disagree. The -y option causes rdist not to update files that are younger than the mas-
ter copy. This can be used to prevent newer copies on other hosts from being
replaced. A warning message is printed for files which are newer than the master
copy.

-b Binary comparison. Perform a binary comparison and update files if they differ rather
than comparing dates and sizes.

Distfile contains a sequence of entries that specify the files to be copied, the destination hosts,
and what operations to perform to do the updating. Each entry has one of the following for-
mats.

<variable name> ‘=" <name list>
[1abel:] <source list> ‘->’ <destination list> <command list>
[1abel:] <source list> ‘::* <time_stamp file> <command list>

The first format is used for defining variables. The second format is used for distributing files
to other hosts. The third format is used for making lists of files that have been changed since
some given date. The source list specifies a list of files and/or directories on the local host
which are to be used as the master copy for distribution. The destination list is the list of
hosts to which these files are to be copied. Each file in the source list is added to a list of
changes if the file is out of date on the host which is being updated (second format) or the file
is newer than the time stamp file (third format).

Labels are optional. They are used to identify a command for partial updates.

Newlines, tabs, and blanks are only used as separators and are otherwise ignored. Comments
begin with ‘#’ and end with a newline.

Variables to be expanded begin with ‘$’ followed by one character or a name enclosed in
curly braces (see the examples at the end).

The source and destination lists have the following format:

<name>
or
‘(’ <zero or more names separated by white-space> ‘)’

The shell meta-characters ‘[, ‘]’, ‘{’, ‘}’, ‘*’, and ‘?" are recognized and expanded (on the
local host only) in the same way as csh(1). They can be escaped with a backslash. The =
character is also expanded in the same way as csh but is expanded separately on the local and
destination hosts. When the -w option is used with a file name that begins with ‘™, everything
except the home directory is appended to the destination name. File names which do not
begin with */* or *’ use the destination user’s home directory as the root directory for the rest
of the file name.

The command list consists of zero or more commands of the following format.
‘install’ <options> opt_dest_name °;’

‘notify’ <name list>‘;’
‘except’ <name list>;’

Icon International, Inc.

&

RDIST (1) USER COMMANDS RDIST (1)

‘except_pat’ <pattern list>*;’
‘special’ <name list>string ‘;’

The install command is used to copy out of date files and/or directories. Each source file is
copied to each host in the destination list. Directories are recursively copied in the same way.
Opt_dest_name is an optional parameter to rename files. If no install command appears in the
command list or the destination name is not specified, the source file name is used. Direc-
tories in the path name will be created if they do not exist on the remote host. To help prevent
disasters, a non-empty directory on a target host will never be replaced with a regular file or a
symbolic link. However, under the ‘-R’ option a non-empty directory will be removed if the
corresponding filename is completely absent on the master host. The options are ‘-R’, ‘-I’,
“i°, -v’, ‘-w’, ‘-y’, and ‘-b’ and have the same semantics as options on the command line
except they only apply to the files in the source list. The login name used on the destination
host is the same as the local host unless the destination name is of the format *‘login@host".

The notify command is used to mail the list of files updated (and any errors that may have
occured) to the listed names. If no ‘@’ appears in the name, the destination host is appended
to the name (e.g., name1@host, name2@host, ...).

The except command is used to update all of the files in the source list except for the files
listed in name list. This is usually used to copy everything in a directory except certain files.

The except_pat command is like the except command except that pattern list is a list of regu-
lar expressions (see ed(1) for details). If one of the patterns matches some string within a file
name, that file will be ignored. Note that since \’ is a quote character, it must be doubled to
become part of the regular expression. Variables are expanded in pattern list but not shell file
pattern matching characters. To include a ‘$’, it must be escaped with ‘\'.

The special command is used to specify sh(1) commands that are to be executed on the
remote host after the file in name list is updated or installed. If the name list is omitted then
the shell commands will be executed for every file updated or installed. The shell variable
‘FILE’ is set to the current filename before executing the commands in string. String starts
and ends with "’ and can cross multiple lines in distfile. Multiple commands to the shell
should be separated by ‘;’. Commands are executed in the user’s home directory on the host
being updated. The special command can be used to rebuild private databases, etc. after a
program has been updated.

The following is a small example.
HOSTS = (matisse root@arpa)

FILES = (/bin /lib /usr/bin fusr/games
fusr/include/{ *.h, {stand,sys,vax*,pascal,machine }/*.h}
fusr/lib fusr/man/man? fusr/ucb fusr/local/rdist)

EXLIB = (Mail.rc aliases aliases.dir aliases.pag crontab dshrc
sendmail.cf sendmail.fc sendmail.hf sendmail.st uucp vfont)

$(FILES} -> ${HOSTS}
install -R ;
except /ust/lib/${EXLIB} ;
except /usr/games/lib ;
special fusr/lib/sendmail "/usr/lib/sendmail -bz" ;

Icon International, Inc. 3

RDIST (1) USER COMMANDS RDIST (1)

Srcs:
fusr/src/bin -> arpa
except_pat (\.o\$ /SCCS\$) ;

IMAGEN = (ips dviimp catdvi)

imagen:

fusr/local/$ {IMAGEN} -> arpa
install fusr/local/lib ;
notify ralph ;

${FILES} :: stamp.cory
notify root@cory ;

FILES
distfile input command file
/tmp/rdist* temporary file for update lists

SEE ALSO
sh(1), csh(1), stat(2)

DIAGNOSTICS /a
A complaint about mismatch of rdist version numbers may really stem from some problem ‘
with starting your shell, e.g., you are in too many groups.

BUGS
Source files must reside on the local host where rdist is executed.

There is no easy way to have a special command executed after all files in a directory have
been updated.

Variable expansion only works for name lists; there should be a general macro faciliiy.
Rdist aborts on files which have a negative mtime (before Jan 1, 1970).

There should be a ‘force’ option to allow replacement of non-empty directories by regular
files or symlinks. A means of updating file modes and owners of otherwise identical files is
also needed.

4 Icon International, Inc.

RLOGIN(1C) USER COMMANDS RLOGIN (1C)

NAME

rlogin - remote login

SYNOPSIS

rlogin rhost [-ec][-8][-L] [-]l username]
rhost[-ec 1[-8][-L][-] usemame]

DESCRIPTION

Rlogin connects your terminal on the current local host system lAhost to the remote host system
rhost.

Each host has a file /etc/hosts.equiv which contains a list of rhost’s with which it shares
account names. (The host names must be the standard names as described in remsh(1C).)
When you rlogin as the same user on an equivalent host, you don’t need to give a password.
Each user may also have a private equivalence list in a file .rhosts in his login directory. Each
line in this file should contain an rhost and a username separated by a space, giving additional
cases where logins without passwords are to be permitted. If the originating user is not
equivalent to the remote user, then a login and password will be prompted for on the remote
machine as in login(1). To avoid some security problems, the .rhosts file must be owned by
either the remote user or root.

‘The remote terminal type is the same as your local terminal type (as given in your environ-

ment TERM variable). The terminal or window size is also copied to the remote system if the
server supports the option, and changes in size are reflected as well. All echoing takes place
at the remote site, so that (except for delays) the rlogin is transparent. Flow control via "S and
"Q and flushing of input and output on interrupts are handled properly. The optional argument
-8 allows an eight-bit input data path at all times; otherwise parity bits are stripped except
when the remote side’s stop and start characters are other than “S/°Q. The argument -L allows
the rlogin session to be run in litout mode. A line of the form ‘**.’ disconnects from the
remote host, where ‘"’ is the escape character. Similarly, the line ““*"Z’’ (where “Z, control-
Z, is the suspend character) will suspend the rlogin session. Substitution of the delayed-
suspend character (normally “Y) for the suspend character suspends the send portion of the
rlogin, but allows output from the remote system. A different escape character may be
specified by the -e option. There is no space separating this option flag and the argument
character.

SEE ALSO

FILES

BUGS

remsh(1C)

fusr/hosts/* for rhost version of the command

More of the environment should be propagated.

Icon International, Inc. 1

REMSH (1C) USER COMMANDS REMSH (1C)

NAME

remsh - remote shell

SYNOPSIS

remsh host [-1 usemame] [-n] command
host [-1 usename][-n] command

DESCRIPTION

FILES

Rsh connects to the specified host, and executes the specified command. Rsh copies its stan-
dard input to the remote command, the standard output of the remote command to its standard
output, and the standard error of the remote command to its standard error. Interrupt, quit and
terminate signals are propagated to the remote command; remsh normally terminates when
the remote command does.

The remote username used is the same as your local username, unless you specify a different
remote name with the -1 option. This remote name must be equivalent (in the sense of

rlogin(1C)) to the originating account; no provision is made for specifying a password with a

command.

If you omit command, then instead of executing a single command, you will be logged in on
the remote host using rlogin(1C).

Shell metacharacters which are not quoted are interpreted on local machine, while quoted
metacharacters are interpreted on the remote machine. Thus the command

remsh otherhost cat remotefile >> localfile

appends the remote file remotefile 10 the localfile localfile, while
remsh otherhost cat remotefile ">>" otherremotefile

appends remotefile 10 otherremotefile.

Host names are given in the file /etc/hosts. Each host has one standard name (the first name
given in the file), which is rather long and unambiguous, and optionally one or more nick-
names. The host names for local machines are also commands in the directory /usr/hosts; if
you put this directory in your search path then the remsh can be omitted.

fetc/hosts
fusr/hosts/*

SEE ALSO

BUGS

rlogin(1C)

If you are using csh(1) and put a remsh(1C) in the background without redirecting its input
away from the terminal, it will block even if no reads are posted by the remote command. If
no input is desired you should redirect the input of remsh to /dev/null using the -n option.

You cannot run an interactive command (like rogue(6) or vi(1)); use rlogin(1C).

Stop signals stop the local remsh process only; this is arguably wrong, but currently hard to
fix for reasons too complicated to explain here.

Icon International, Inc. 1

RUPTIME (1C) USER COMMANDS RUPTIME (1C)

NAME
ruptime - show host status of local machines

SYNOPSIS
ruptime [-a][-r][-1][-t][-u]

DESCRIPTION

Ruptime gives a status line like uptime for each machine on the local network; these are
formed from packets broadcast by each host on the network once a minute.

Machines for which no status report has been received for 11 minutes are shown as being
down.

Users idle an hour or more are not counted unless the -a flag is given.

Normally, the listing is sorted by host name. The -1, -t, and -u flags specify sorting by load
average, uptime, and number of users, respectively. The -r flag reverses the sort order.

FILES
fusr/spool/rwho/whod.* data files

SEE ALSO
rwho(1C)

Icon International, Inc. 1

RWHO (1C) USER COMMANDS RWHO (1C)

NAME
rwho - who’s logged in on local machines

SYNOPSIS
rwho [-a]

DESCRIPTION
The rwho command produces output similar to who, but for all machines on the local network.
If no report has been received from a machine for 5 minutes then rwho assumes the machine
is down, and does not report users last known to be logged into that machine.

If a users hasn’t typed to the system for a minute or more, then rwho reports this idle time. If
a user hasn’t typed to the system for an hour or more, then the user will be omitted from the
output of rwho unless the -a flag is given.

FILES
fusr/spool/rwho/whod.* information about other machines

SEE ALSO
ruptime(1C), rwhod(1M)

BUGS
This is unwieldy when the number of machines on the local net is large.

lcon International, Inc. Last change: March 1989 1

TALK (1) USER COMMANDS TALK (1)

NAME

talk - talk to another user

SYNOPSIS

talk person [ttyname]

DESCRIPTION

Talk is a visual communication program which copies lines from your terminal to that of
another user.

If you wish to talk to someone on you own machine, then person is just the person’s login
name. If you wish to talk to a user on another host, then person is of the form :

host!user or
host.user or
host:user or
user@host

though host@user is perhaps preferred.

If you want to talk to a user who is logged in more than once, the tfyname argument may be
used to indicate the appropriate terminal name.

When first called, it sends the message

Message from TalkDaemon@his_machine...
talk: connection requested by your_name@your_machine.
talk: respond with: talk your_name@your_machine

to the user you wish to talk to. At this point, the recipient of the message should reply by typ-
ing
talk your_name@your_machine

It doesn’t matter from which machine the recipient replies, as long as his login-name is the
same. Once communication is established, the two parties may type simultaneously, with
their output appearing in separate windows. Typing control L will cause the screen to be
reprinted, while your erase, kill, and word kill characters will work in talk as normal. To exit,
just type your interrupt character; talk then moves the cursor to the bottom of the screen and
restores the terminal.

Permission to talk may be denied or granted by use of the mesg command. At the outset talk-
ing is allowed. Certain commands, in particular nroff and pr(1) disallow messages in order to
prevent messy output. '

FILES
/etc/hosts to find the recipient’s machine
fetc/utmp to find the recipient’s tty

SEE ALSO

mesg(1), who(1), mail(1), write(1)

lcon International, Inc. Last change: March 1989 1

TELNET (1C) USER COMMANDS TELNET(1C)

NAME

telnet - user interface to the TELNET protocol

SYNOPSIS

telnet [host [port]]

DESCRIPTION

Telnet is used to communicate with another host using the TELNET protocol. If telnet is
invoked without arguments, it enters command mode, indicated by its prompt (‘‘telnet>""). In
this mode, it accepts and executes the commands listed below. If it is invoked with argu-
ments, it performs an open command (see below) with those arguments.

Once a connection has been opened, telnet enters an input mode. The input mode entered will
be either ‘‘character at a time’’ or ‘‘line by line’” depending on what the remote system sup-

ports.

In ‘“‘character at a time’’ mode, most text typed is immediately sent to the remote host for pro-
cessing.

In “‘line by line’’ mode, all text is echoed locally, and (normally) only completed lines are
sent to the remote host. The ‘‘local echo character’’ (initially ‘‘"E’’) may be used to tumn off
and on the local echo (this would mostly be used to enter passwords without the password

‘being echoed).

In either mode, if the localchars toggle is TRUE (the default in line mode; see below), the
user’s quit, intr, and flush characters are trapped locally, and sent as TELNET protocol
sequences to the remote side. There are options (see toggle autoflush and toggle autosynch
below) which cause this action to flush subsequent output to the terminal (until the remote
host acknowledges the TELNET sequence) and flush previous terminal input (in the case of
quit and intr).

While connected to a remote host, telner command mode may be entered by typing the zelnet
‘‘escape character’’ (initially ‘*"]”’). When in command mode, the normal terminal editing
conventions are available.

COMMANDS

The following commands are available. Only enough of each command to uniquely identify
it need be typed (this is also true for arguments to the mode, set, toggle, and display com-
mands).

open host [port]
Open a connection to the named host. If no port number is specified, telnet will
attempt to contact a TELNET server at the default port. The host specification may
be either a host name (see hosts(5)) or an Internet address specified in the ‘‘dot nota-
tion’’ (see inet(3N)).

close
Close a TELNET session and return to command mode.

quit
Close any open TELNET session and exit telnet. An end of file (in command mode)
will also close a session and exit.

z

Suspend telnet. This command only works when the user is using the csh(1).

Icon International, Inc. 1

£

N

TELNET(1C) USER COMMANDS TELNET (1C)

mode type
Type is either line (for ‘‘line by line’’ mode) or character (for ‘‘character at a time’’
mode). The remote host is asked for permission to go into the requested mode. If the
remote host is capable of entering that mode, the requested mode will be entered.

status
Show the current status of telnet. This includes the peer one is connected to, as well
as the current mode.

display [argument...)
Displays all, or some, of the set and toggle values (see below).

? [command]
Get help. With no arguments, telnet prints a help summary. If a command is
specified, telnet will print the help information for just that command.

send arguments
Sends one or more special character sequences to the remote host. The following are
the arguments which may be specified (more than one argument may be specified at a

time):

escape
Sends the current relnet escape character (initially **"]”").

synch
Sends the TELNET SYNCH sequence. This sequence causes the remote
system to discard all previously typed (but not yet read) input. This sequence
is sent as TCP urgent data (and may not work if the remote system is a 4.2
BSD system -- if it doesn’t work, a lower case ‘‘r’’ may be echoed on the ter-
minal).

brk
Sends the TELNET BRK (Break) sequence, which may have significance to
the remote system.

ip
Sends the TELNET IP (Interrupt Process) sequence, which should cause the
remote system to abort the currently running process.

ao
Sends the TELNET AO (Abort Output) sequence, which should cause the
remote system to flush all output from the remote system to the user’s termi-
nal.

ayt
Sends the TELNET AYT (Are You There) sequence, to which the remote
system may or may not choose to respond.

ec
Sends the TELNET EC (Erase Character) sequence, which should cause the
remote system to erase the last character entered.

el
Sends the TELNET EL (Erase Line) sequence, which should cause the
remote system to erase the line currently being entered.

ga

Sends the TELNET GA (Go Ahead) sequence, which likely has no

2 Icon International, Inc.

TELNET(1C)

nop

?

USER COMMANDS TELNET (1C)

significance to the remote system.
Sends the TELNET NOP (No OPeration) sequence.

Prints out help information for the send command.

set argument value
Set any one of a number of relnet variables to a specific value. The special value
“‘off’” tumns off the function associated with the variable. The values of variables may
be interrogated with the display command. The variables which may be specified

are:
echo

escape

This is the value (initially ‘“"E’’) which, when in ‘‘line by line’’ mode, tog-
gles between doing local echoing of entered characters (for normal process-
ing), and suppressing echoing of entered characters (for entering, say, a pass-
word).

This is the telnet escape character (initially ‘“*[*”) which causes entry into tel-
net command mode (when connected to a remote system).

interrupt

quit

If telnet is in localchars mode (see toggle localchars below) and the interrupt
character is typed, a TELNET IP sequence (see send ip above) is sent to the
remote host. The initial value for the interrupt character is taken to be the
terminal’s intr character.

If telnet is in localchars mode (see toggle localchars below) and the quit
character is typed, a TELNET BRK sequence (see send brk above) is sent to
the remote host. The initial value for the quit character is taken to be the
terminal’s quit character.

Sflushoutput

erase

kill

eof

Icon International, Inc.

If telnet is in localchars mode (see toggle localchars below) and the flushout-
put character is typed, a TELNET AO sequence (see send ao above) is sent
to the remote host. The initial value for the flush character is taken to be the
terminal’s flush character.

If telnet is in localchars mode (see toggle localchars below), and if telnet is
operating in ‘‘character at a time’’ mode, then when this character is typed, a
TELNET EC sequence (see send ec above) is sent to the remote system.
The initial value for the erase character is taken to be the terminal’s erase
character. .

If telnet is in localchars mode (see toggle localchars below), and if telnet is
operating in ‘‘character at a time’’ mode, then when this character is typed, a
TELNET EL sequence (see send el above) is sent to the remote system. The
initial value for the kill character is taken to be the terminal’s kill character.

If telnet is operating in ‘‘line by line’’ mode, entering this character as the

TELNET(1C)

USER COMMANDS TELNET(1C)

first character on a line will cause this character to be sent to the remote sys-
tem. The initial value of the eof character is taken to be the terminal’s eof
character.

toggle arguments...
Toggle (between TRUE and FALSE) various flags that control how telnet responds to

events.

More than one argument may be specified. The state of these flags may be

interrogated with the display command. Valid arguments are:

localchars

If this is TRUE, then the flush, interrupt, quit, erase, and kill characters (see
set above) are recognized locally, and transformed into (hopefully) appropri-
ate TELNET control sequences (respectively ao, ip, brk, ec, and el; see
send above). The initial value for this toggle is TRUE in ‘“‘line by line”’
mode, and FALSE in ‘‘character at a time’’ mode.

autoflush

If autoflush and localchars are both TRUE, then when the ao, intr, or quit
characters are recognized (and transformed into TELNET sequences; see set
above for details), telnet refuses to display any data on the user’s terminal
until the remote system acknowledges (via a TELNET Timing Mark option)
that it has processed those TELNET sequences. The initial value for this
toggle is TRUE if the terminal user had not done an "stty noflsh", otherwise
FALSE (see stty(1)).

autosynch

crmod

debug

options

netdata

If autosynch and localchars are both TRUE, then when either the intr or quit
characters is typed (see set above for descriptions of the intr and quit charac-
ters), the resulting TELNET sequence sent is followed by the TELNET
SYNCH sequence. This procedure should cause the remote system to begin
throwing away all previously typed input until both of the TELNET
sequences have been read and acted upon. The initial value of this toggle is
FALSE.

Toggle carriage return mode. When this mode is enabled, most carriage
return characters received from the remote host will be mapped into a car-
riage return followed by a line feed. This mode does not affect those charac-
ters typed by the user, only those received from the remote host. This mode is
not very useful unless the remote host only sends carriage return, but never
line feed. The initial value for this toggle is FALSE.

Toggles socket level debugging (useful only to the superuser). The initial
value for this toggle is FALSE.

Toggles the display of some internal telnet protocol processing (having to do
with TELNET options). The initial value for this toggle is FALSE.

Toggles the display of all network data (in hexadecimal format). The initial
value for this toggle is FALSE.

Displays the legal toggle commands.

lcon International, Inc.

TELNET(1C) USER COMMANDS TELNET (1C)

//\\
BUGS N
There is no adequate way for dealing with flow control.
On some remote systems, echo has to be turned off manually when in ‘‘line by line’’ mode.
There is enough settable state to justify a .telnetrc file.
No capability for a .telnetrc file is provided.
In “‘line by line’’ mode, the terminal’s eof character is only recognized (and sent to the remote
system) when it is the first character on a line.
/"/ -
i:\;, -
-
\

i
|

icon International, Inc. 5

TFTP(1C)

NAME

USER COMMANDS TFTP(1C)

tftp - trivial file transfer program

SYNOPSIS

tftp [host]

DESCRIPTION
Tftp is the user interface to the Internet TFTP (Trivial File Transfer Protocol), which allows
users to transfer files to and from a remote machine. The remote host may be specified on the
command line, in which case tfip uses host as the default host for future transfers (see the con-
nect command below).

COMMANDS

Once tftp is running, it issues the prompt tftp> and recognizes the following commands:

connect host-name [port]

Set the host (and optionally port) for transfers. Note that the TFTP protocol, unlike
the FTP protocol, does not maintain connections betweeen transfers; thus, the connect
command does not actually create a connection, but merely remembers what host is to
be used for transfers. You do not have to use the connect command; the remote host
can be specified as part of the ger or put commands.

mode transfer-mode

put file

Set the mode for transfers; transfer-mode may be one of ascii or binary. The default
is ascii.

put localfile remotefile
put filel file2 ... fileN remote-directory

Put a file or set of files to the specified remote file or directory. The destination can be
in one of two forms: a filename on the remote host, if the host has already been
specified, or a string of the form host:filename to specify both a host and filename at
the same time. If the latter form is used, the hostname specified becomes the default
for future transfers. If the remote-directory form is used, the remote host is assumed
to be a UNIX machine.

get filename
get remotename localname
get filel file2 ... fileN

quit

Get a file or set of files from the specified sources. Source can be in one of two
forms: a filename on the remote host, if the host has already been specified, or a
string of the form host:filename to specify both a host and filename at the same time.
If the latter form is used, the last hosmame specified becomes the default for future
transfers.

Exit ¢ftp. Anend of file also exits.

verbose

Toggle verbose mode.

trace Toggle packet tracing.
status Show current status.

Icon International, Inc. 1

TFTP(1C) USER COMMANDS TFTP(1C)

BUGS

rexmt retransmission-timeout
Set the per-packet retransmission timeout, in seconds.

timeout total-transmission-timeout
Set the total transmission timeout, in seconds.

ascii Shorthand for "mode ascii"
binary Shorthand for "mode binary"

? [command-name ...]
Print help information.

Because there is no user-login or validation within the TFTP protocol, the remote site will
probably have some sort of file-access restrictions in place. The exact methods are specific to
each site and therefore difficult to document here.

Icon International, Inc.

FTPD (1M) MAINTENANCE COMMANDS FTPD (1M)

NAME
fipd - DARPA Internet File Transfer Protocol server

SYNOPSIS
letc/ftpd [-d] [-1] [-ttimeout]

DESCRIPTION
Fipd is the DARPA Internet File Transfer Prototocol server process. The server uses the TCP
protocol and listens at the port specified in the *‘ftp’’ service specification; see services (5).

If the -d option is specified, debugging information is written to the syslog.
If the -1 option is specified, each ftp session is logged in the syslog.

The ftp server will timeout an inactive session after 15 minutes. If the -t option is specified,
the inactivity timeout period will be set to timeout.

The ftp server currently supports the following ftp requests; case is not distinguished.

Request Description

ABOR abort previous command
ACCT specify account (ignored)
ALLO allocate storage (vacuously)

-APPE append to a file

CDUP change to parent of current working directory
CWD change working directory

DELE delete a file

HELP give help information

LIST give list files in a directory (‘‘ls -1g’*)

MKD make a directory

MODE specify data transfer mode
NLST give name list of files in directory (‘‘1s’")
NOOP do nothing

PASS specify password

PASV prepare for server-to-server transfer
PORT specify data connection port
PWD print the current working directory
QUIT terminate session

RETR retrieve a file

RMD remove a directory

RNFR specify rename-from file name
RNTO specify rename-to file name
STOR store a file

STOU store a file with a unique name
STRU specify data transfer structure

TYPE specify data transfer type

USER specify user name

XCUP change to parent of current working directory
XCWD change working directory

XMKD make a directory

XPWD print the current working directory

XRMD remove a directory

Icon International, Inc. Last change: March 1989 1

FTPD (1M) MAINTENANCE COMMANDS FTPD (1M)

The remaining ftp requests specified in Internet RFC 959 are recognized, but not imple-
mented.

The ftp server will abort an active file transfer only when the ABOR command is preceded by
a Telnet "Interrupt Process" (IP) signal and a Telnet "Synch” signal in the command Telnet
stream, as described in Internet RFC 959.

Ftpd interprets file names according to the ‘‘globbing’’ conventions used by c¢sh(1). This
allows users to utilize the metacharacters “‘*?[1{}™"".

Ftpd authenticates users according to three rules.

1) The user name must be in the password data base, /etc/passwd, and not have a null
password. In this case a password must be provided by the client before any file
operations may be performed.

2) The user name must not appear in the file /etc/ftpusers .
3) The user must have a standard shell returned by getusershell (3).
4) If the user name is ‘‘anonymous’ or ‘‘ftp’’, an anonymous ftp account must be

present in the password file (user ‘‘ftp’’). In this case the user is allowed to log in by
specifying any password (by convention this is given as the client host’s name).

In the last case, ftpd takes special measures to restrict the client’s access privileges. The
server performs a chroot(2) command to the home directory of the ‘‘ftp’’ user. In order that
system security is not breached, it is recommended that the ‘‘ftp’’ subtree be constructed with
care; the following rules are recommended.

“ftp) Make the home directory owned by ‘‘ftp’’ and unwritable by anyone.
“ftp/bin)
Make this directory owned by the super-user and unwritable by anyone. The program

Is(1) must be present to support the list commands. This program should have mode
111.

“ftp/etc)
Make this directory owned by the super-user and unwritable by anyone. The files
passwd(4) and group(4) must be present for the /s command to work properly. These
files should be mode 444.

“ftp/pub)
Make this directory mode 777 and owned by ‘‘ftp’’. Users should then place filcs
which are to be accessible via the anonymous account in this directory.

SEE ALSO

BUGS

ftp(1C), getusershell(3), syslogd(1M)

The anonymous account is inherently dangerous and should avoided when possible.

The server must run as the super-user to create sockets with privileged port numbers. It main-
tains an effective user id of the logged in user, reverting to the super-user only when binding
addresses to sockets. The possible security holes have been extensively scrutinized, but are
possibly incomplete.

Last change: March 1989 icon International, Inc.

GETTABLE (1M) MAINTENANCE COMMANDS GETTABLE (1M)

NAME

gettable - get NIC format host tables from a host

SYNOPSIS

letc/gettable [-v] host [outfile]

DESCRIPTION

Gettable is a simple program used to obtain the NIC standard host tables from a ‘‘nicname’’
server. The indicated host is queried for the tables. The tables, if retrieved, are placed in the
file outfile or by default, hosts.txt.

The -v option will get just the version number instead of the complete host table and put the
output in the file outfile or by default, hosts.ver.

Gettable operates by opening a TCP connection to the port indicated in the service
specification for ‘‘nicname’’. A request is then made for ‘‘ALL"’ names and the resultant
information is placed in the output file.

Gettable is best used in conjunction with the hrable(1M) program which converts the NIC
standard file format to that used by the network library lookup routines.

NOTE: When connecting directly to the ARPA intemnet network, refer to the information on
page 4-5, ‘‘Regenerating /fetc/hosts and /etc/networks’’, in the ICON/UXV-NET Networking
Tools Guide.

SEE ALSO

BUGS

intro(3N), htable(1M), named(1M)

If the name-domain system provided network name mapping well as host name mapping, gez-
able would no longer be needed.

Icon International, Inc. Last change: March 1989 1

HTABLE (1M) MAINTENANCE COMMANDS HTABLE (1M)

NAME

htable - convert NIC standard format host tables

SYNOPSIS

/etc/htable [-¢ connected-nets] [-1 local-nets] file

DESCRIPTION

Htable is used to convert host files in the format specified in Internet RFC 810 to the format
used by the network library routines. Three files are created as a result of running htable:
hosts, networks, and gateways. The hosts file may be used by the gethostbyname (3N) rou-
tines in mapping host names to addresses if the nameserver, named(1M), is not used. The net-
works file is used by the getnetent (3N) routines in mapping network names to numbers. The
gateways file may be used by the routing daemon in identifying ‘‘passive’’ Internet gateways;
see routed(1M) for an explanation.

If any of the files localhosts, localnetworks , or localgateways are present in the current direc-
tory, the file’s contents is prepended to the output file. Of these, only the gateways file is
interpreted. This allows sites to maintain local aliases and entries which are not normally
present in the master database. Only one gateway to each network will be placed in the gate-
ways file; a gateway listed in the localgateways file will override any in the input file.

If the gateways file is to be used, a list of networks to which the host is directly connected is
specified with the -c flag. The networks, separated by commas, may be given by name or in
Internet-standard dot notation, e.g. -c arpanet,128.32,local-ether-net. Htable only includes
gateways which are directly connected to one of the networks specified, or which can be
reached from another gateway on a connected net.

If the -1 option is given with a list of networks (in the same format as for -c), these networks
will be treated as ‘‘local,”” and information about hosts on local networks is taken only from
the localhosts file. Entries for local hosts from the main database will be omitted. This allows
the localhosts file to completely override any entries in the input file.

Htiable is best used in conjunction with the gertable (IM) program which retrieves the NIC
database from a host.

SEE ALSO

BUGS

intro(3N), gettable(1M), named(1M)

If the name-domain system provided network name mapping well as host name mapping,
htable would no longer be needed.)

Icon International, Inc. Last change: March 1989 1

IFCONFIG (1M) MAINTENANCE COMMANDS IFCONFIG (1M)

NAME

ifconfig - configure network interface parameters

SYOPNSIS

letc/ifconfig interface address_family [address [dest_address |1 [parameters]
letc/ifconfig interface [protocol_family]

DESCRIPTION

Ifconfig is used to assign an address to a network interface and/or configure network interface
parameters. Ifconfig must be used at boot time to define the network address of each interface
present on a machine; it may also be used at a later time to redefine an interface’s address or
other operating parameters. The interface parameter is a string of the form ‘‘name unit’’, e.g.
“ex0’’.

Since an interface may receive transmissions in differing protocols, each of which may require
separate naming schemes, it is necessary to specify the address_family, which may change
the interpretation of the remaining parameters. The address families currently supported are
“inet’’ and ‘‘ns’’.

For the DARPA-Internet family, the address is either a host name present in the host name
data base, hosts(4), or a DARPA Internet address expressed in the Internet standard ‘‘dot
notation’’. For the Xerox Network Systems(tm) family, addresses are net:a.b.c.d.ef, where
net is the assigned network number (in decimal), and each of the six bytes of the host number,
a through f, are specified in hexadecimal. The host number may be omitted on 10Mb/s Ether-
net interfaces, which use the hardware physical address, and on interfaces other than the first.

The following parameters may be set with ifconfig:

up Mark an interface ‘‘up’’. This may be used to enable an interface after an
*‘ifconfig down.”” It happens automatically when setting the first address
on an interface. If the interface was reset when previously marked down,
the hardware will be re-initialized.

down Mark an interface ‘‘down’’. When an interface is marked ‘‘down’’, the sys-
tem will not attempt to transmit messages through that interface. If possi-
ble, the interface will be reset to disable reception as well. This action
does not automatically disable routes using the interface.

trailers Request the use of a *‘trailer’’ link level encapsulation when sending
(default). If a network interface supports trailers, the system will, when
possible, encapsulate outgoing messages in a manner which minimizes the
number of memory to memory copy operations performed by the receiver.
On networks that support the Address Resolution Protocol (see arp(7P);
currently, only 10 Mb/s Ethemet), this flag indicates that the system should
request that other systems use trailers when sending to this host. Similarly,
trailer encapsulations will be sent to other hosts that have made such
requests. Currently used by Internet protocols only.

-trailers Disable the use of a *‘trailer’’ link level encapsulation.

arp Enable the use of the Address Resolution Protocol in mapping between net-
work level addresses and link level addresses (default). This is currently
implemented for mapping between DARPA Internet addresses and 10Mb/s
Ethernet addresses.

Icon International, Inc. Last change: March 1989 1

IFCONFIG (1IM)

-arp
metric n

debug

-debug
netmask mask

dstaddr

broadcast

MAINTENANCE COMMANDS IFCONFIG (1M)

Disable the use of the Address Resolution Protocol.

Set the routing metric of the interface to n, default 0. The routing metric is
used by the routing protocol (routed(1M)). Higher metrics have the effect
of making a route less favorable; metrics are counted as addition hops to
the destination network or host.

Enable driver dependent debugging code; usually, this tuns on extra con-
sole error logging.

Disable driver dependent debugging code.

(Inet only) Specify how much of the address to reserve for subdividing net-
works into sub-networks. The mask includes the network part of the local
address and the subnet part, which is taken from the host field of the
address. The mask can be specified as a single hexadecimal number with a
leading Ox, with a dot-notation Internet address, or with a pseudo-network
name listed in the network table networks(4). The mask contains 1’s for
the bit positions in the 32-bit address which are to be used for the network
and subnet parts, and O’s for the host part. The mask should contain at least
the standard network portion, and the subnet field should be contiguous
with the network portion.

Specify the address of the correspondent on the other end of a point to
point link.

(Inet only) Specify the address to use to represent broadcasts to the net-
work. The default broadcast address is the address with a host part of all
I’s.

Ifconfig displays the current configuration for a network interface when no optional parame-
ters are supplied. If a protocol family is specified, Ifconfig will report only the details specific
to that protocol family.

Only the super-user may modify the configuration of a network interface.

DIAGNOSTICS

Messages indicating the specified interface does not exit, the requested address is unknown,
or the user is not privileged and tried to alter an interface’s configuration.

SEE ALSO

netstat(1), intro(7N), rc(1M)

Last change: March 1989 lcon International, Inc.

INETD(1IM) MAINTENANCE COMMANDS INETD (1M)

NAME

inetd - internet *‘super-server”’

SYNOPSIS

/etc/inetd [-d] [configuration file]

DESCRIPTION

Inetd should be run at boot time by /etc/rc.local. It then listens for connections on certain
internet sockets. When a connection is found on one of its sockets, it decides what service the
socket corresponds to, and invokes a program to service the request. After the program is
finished, it continues to listen on the socket (except in some cases which will be described
below). Essentially, inetd allows running one daemon to invoke several others, reducing load
on the system.

Upon execution, inetd reads its configuration information from a configuration file which, by
default, is /etc/inetd.conf. There must be an entry for each field of the configuration file, with
entries for each field separated by a tab or a space. Comments are denoted by a “‘#’’ at the
beginning of a line. There must be an entry for each field. The fields of the configuration file
are as follows:

service name

socket type

protocol

wait/nowait

user

server program

server program arguments

The service name entry is the name of a valid service in the file /etc/services/. For ‘‘internal’’
services (discussed below), the service name must be the official name of the service (that is,
the first entry in /etc/services).

(R]

The socket type should be one of ‘‘stream’, ‘‘dgram’, ‘‘raw’’, ‘‘rdm’’, or ‘‘seqpacket’’,
depending on whether the socket is a stream, datagram, raw, reliably delivered message, or
sequenced packet socket. :

The protocol must be a valid protocol as given in /etc/protocols. Examples might be *‘tcp’” or
‘6udp? Q.

The wait/nowait entry is applicable to datagram sockets only (other sockets should have a
‘‘nowait’’ entry in this space). If a datagram server connects to its peer, freeing the socket so
inetd can received further messages on the socket, it is said to be a ‘‘multi-threaded’’ server,
and should use the ‘‘nowait’’ entry. For datagram servers which process all incoming
datagrams on a socket and eventually time out, the server is said to be ‘‘single-threaded’’ and
should use a ‘‘wait’’ entry. ‘‘Comsat’” (‘*‘biff’’) and ‘‘talk’’ are both examples of the latter
type of datagram server. Tftpd is an exception; it is a datagram server that establishes
pseudo-connections. It must be listed as ‘‘wait’’ in order to avoid a race; the server reads the
first packet, creates a new socket, and then forks and exits to allow inetd to check for new ser-
vice requests to Spawn Nnew Servers.

The user entry should contain the user name of the user as whom the server should run. This
allows for servers to be given less permission than root. The server program entry should
contain the pathname of the program which is to be executed by inetd when a request is found
on its socket. If inetd provides this service internally, this entry should be ‘‘internal’’.

icon International, Inc. Last change: March 1989 1

INETD (1M) MAINTENANCE COMMANDS INETD (1M)

The arguments to the server program should be just as they normally are, starting with
argv[0], which is the name of the program. If the service is provided intemally, the word
‘‘internal’’ should take the place of this entry.

Inetd provides several ‘‘trivial’’ services internally by use of routines within itself. These ser-
vices are ‘‘echo’’, ‘‘discard’’, ‘‘chargen’’ (character generator), ‘‘daytime’’ (human readable
time), and ‘‘time’’ (machine readable time, in the form of the number of seconds since mid-
night, January 1, 1900). All of these services are tcp based. For details of these services, con-
sult the appropriate RFC from the Network Information Center.

Inetd rereads its configuration file when it receives a hangup signal, SIGHUP. Services may
be added, deleted or modified when the configuration file is reread.

SEE ALSO
comsat(1M), ftpd(1M), rexecd(1M), rlogind(1M), remshd(lvM), telnetd(1M), tftpd(1M)

2 Last change: March 1989 lcon International, Inc.

.‘/{/ ‘ \

P

PING (1IM) MAINTENANCE COMMANDS PING(IM)

NAME
ping - send ICMP ECHO_REQUEST packets to network hosts

SYNOPSIS
letc/ping [-r] [-v] host [packetsize) [count]

DESCRIPTION

The DARPA Internet is a large and complex aggregation of network hardware, connected
together by gateways. Tracking a single-point hardware or software failure can often be
difficult. Ping utilizes the ICMP protocol’s mandatory ECHO_REQUEST datagram to elicit
an ICMP ECHO_RESPONSE from a host or gateway. ECHO_REQUEST datagrams
(‘‘pings’’) have an IP and ICMP header, followed by a struct timeval, and then an arbitrary
number of ‘‘pad’’ bytes used to fill out the packet. Default datagram length is 64 bytes, but
this may be changed using the command-line option. Other options are:

-r Bypass the normal routing tables and send directly to a host on an attached network.
If the host is not on a directly-attached network, an error is returned. This option can
be used to ping a local host through an interface that has no route through it (e.g.,
after the interface was dropped by routed(1M)).

-v Verbose output. ICMP packets other than ECHO RESPONSE that are received are
listed.

When using ping for fault isolation, it should first be run on the local host, to verify that the
local network interface is up and running. Then, hosts and gateways further and further away
should be ‘‘pinged’’. Ping sends one datagram per second, and prints one line of output for
every ECHO_RESPONSE returned. No output is produced if there is no response. If an
optional count is given, only that number of requests is sent. Round-trip times and packet loss
statistics are computed. When all responses have been received or the program times out
(with a count specified), or if the program is terminated with a SIGINT, a brief summary is
displayed.

This program is intended for use in network testing, measurement and management. It should
be used primarily for manual fault isolation. Because of the load it could impose on the net-
work, it is unwise to use ping during normal operations or from automated scripts.

AUTHOR
Mike Muuss

SEE ALSO
netstat(1), ifconfig(1M)

Icon International, Inc. Last change: March 1989 1

REMSHD (1M) MAINTENANCE COMMANDS REMSHD (1M)

NAME

SYNOPSIS

remshd - remote shell server

/etc/remshd

DESCRIPTION

Rshd is the server for the rcmd(3) routine and, consequently, for the remsh(1C) program. The
server provides remote execution facilities with authentication based on privileged port
numbers from trusted hosts.

Rshd listens for service requests at the port indicated in the ‘‘cmd’’ service specification; see
services (4). When a service request is received the following protocol is initiated:

1y

2)

3)

4)

5)
6)

7)

8)

9)

The server checks the client’s source port. If the port is not in the range 0-1023, the
server aborts the connection.

The server reads characters from the socket up to a null ("\0’) byte. The resultant
string is interpreted as an ASCII number, base 10.

If the number received in step 1 is non-zero, it is interpreted as the port number of a
secondary stream to be used for the stderr. A second connection is then created to
the specified port on the client’s machine. The source port of this second connection
is also in the range 0-1023.

The server checks the client’s source address and requests the corresponding host
name (see gethostbyaddr (3N), hosts (4) and named(1M)). If the hostname cannot be
determined, the dot-notation representation of the host address is used.

A null terminated user name of at most 16 characters is retrieved on the initial socket.
This user name is interpreted as the user identity on the client’s machine.

A null terminated user name of at most 16 characters is retrieved on the initial socket.
This user name is interpreted as a user identity to use on the server’s machine.

A null terminated command to be passed to a shell is retrieved on the initial socket.
The length of the command is limited by the upper bound on the size of the system’s
argument list.

Rshd then validates the user according to the following steps. The local (server-end)
user name is looked up in the password file and a chdir is performed to the uscr’s
home directory. If either the lookup or chdir fail, the connection is terminated. If the
user is not the super-user, (user id 0), the file /etc/hosts.equiv is consulted for a list of
hosts considered ‘‘equivalent’’. If the client’s host name is present in this file, the
authentication is considered successful. If the lookup fails, or the user is the super-
user, then the file .rhosts in the home directory of the remote user is checked for the
machine name and identity of the user on the client’s machine. If this lookup fails,
the connection is terminated.

A null byte is returned on the initial socket and the command line is passed to the nor-
mal login shell of the user. The shell inherits the network connections established by
remshd.

icon International, Inc. Last change: March 1989 1

REMSHD (1M) MAINTENANCE COMMANDS REMSHD (1M)

-~

DIAGNOSTICS

Except for the last one listed below, all diagnostic messages are returned on the initial socket,
after which any network connections are closed. An error is indicated by a leading byte with
a value of 1 (0 is returned in step 9 above upon successful completion of all the steps prior to
the execution of the login shell).

“‘locuser too long”’
The name of the user on the client’s machine is longer than 16 characters.

‘‘remuser too long”’
The name of the user on the remote machine is longer than 16 characters.

‘‘command too long ”’
The command line passed exceeds the size of the argument list (as configured into the sys-
tem).

““Login incorrect.”
No password file entry for the user name existed.

“No remote directory.”
The chdir command to the home directory failed.

‘‘Permission denied.”
The authentication procedure described above failed.

‘“Can’t make pipe.”’

The pipe needed for the stderr, wasn’t created.
“Try again.”

A fork by the server failed.

‘‘<shellname>: ...””

The user’s login shell could not be started. This message is returned on the connection associ-
ated with the stderr, and is not preceded by a flag byte.

SEE ALSO

BUGS

remsh(1C), rcmd(3)

The authentication procedure used here assumes the integrity of each client machine and the
connecting medium. This is insecure, but is useful in an “‘open’’ environment.

A facility to allow all data exchanges to be encrypted should be present.
A more extensible protocol should be used.

Last change: March 1989 Icon International, Inc.

REXECD (1M) MAINTENANCE COMMANDS REXECD (1M)

NAME

rexecd - remote execution server

SYNOPSIS

fetc/rexecd

DESCRIPTION

Rexecd is the server for the rexec (3) routine. The server provides remote execution facilities
with authentication based on user names and passwords.

Rexecd listens for service requests at the port indicated in the ‘‘exec’’ service specification;
see services (4). When a service request is received the following protocol is initiated:

1) The server reads characters from the socket up to a null ("\0’) byte. The resultant
string is interpreted as an ASCII number, base 10.

2) If the number received in step 1 is non-zero, it is interpreted as the port number of a
secondary stream to be used for the stderr. A second connection is then created to
the specified port on the client’s machine.

3) A null terminated user name of at most 16 characters is retrieved on the initial socket.

4) A null terminated, unencrypted password of at most 16 characters is retrieved on the
initial socket.

5) A null terminated command to be passed to a shell is retrieved on the initial socket.
The length of the command is limited by the upper bound on the size of the system’s
argument list.

6) Rexecd then validates the user as is done at login time and, if the authentication was
successful, changes to the user’s home directory, and establishes the user and group
protections of the user. If any of these steps fail the connection is aborted with a
diagnostic message returncd.

7 A null byte is returned on the initial socket and the command line is passed to the nor-
mal login shell of the user. The shell inherits the network connections established by
rexecd.

DIAGNOSTICS

Except for the last one listed below, all diagnostic messages are returned on the initial socket,
after which any network connections are closed. An error is indicated by a leading byte with
a value of 1 (0 is returned in step 7 above upon successful completion of all the steps prior to
the command exccution).

‘‘username too long”’
The name is longer than 16 characters.

‘‘password too long”’
The password is longer than 16 characters.

‘“‘command too long *’
The command line passed exceeds the size of the argument list (as configured into the sys-
tem).

Icon International, Inc. Last change: May 9, 1986 1

REXECD (1M) MAINTENANCE COMMANDS REXECD (1M)

““Login incorrect.”
No password file entry for the user name existed.

‘“‘Password incorrect.”’
The wrong was password supplied.

‘‘No remote directory.”

The chdir command to the home directory failed.
“Try again.”

A fork by the server failed.

‘‘<shellnames>: ...”’
The user’s login shell could not be started. This message is returned on the connection associ-

ated with the stderr, and is not preceded by a flag byte.

SEE ALSO
rexec(3)

BUGS
Indicating ‘*Login incorrect’’ as opposed to ‘‘Password incorrect’’ is a security breach which

allows people to probe a system for users with null passwords.
- A facility to allow all data and password exchanges to be encrypted should be present.

2 Last change: May 9, 1986 lcon International, Inc.

RLOGIND (1M) MAINTENANCE COMMANDS RLOGIND (1M)

NAME

rlogind - remote login server

SYNOPSIS

letc/rlogind [-d]

DESCRIPTION

Rlogind is the server for the rlogin(1C) program. The server provides a remote login facility
with authentication based on privileged port numbers from trusted hosts.

Rlogind listens for service requests at the port indicated in the ‘‘login’’ service specification;
see services(4). When a service request is received the following protocol is initiated:

1) The server checks the client’s source port. If the port is not in the range 0-1023, the
server aborts the connection.

2) The server checks the client’s source address and requests the corresponding host
name (see gethostbyaddr (3N), hosts(4) and named(1M)). If the hosmame cannot be
determined, the dot-notation representation of the host address is used.

Once the source port and address have been checked, rlogind allocates a pseudo terminal (see
pty(4)), and manipulates file descriptors so that the slave half of the pseudo terminal becomes
the stdin , stdout , and stderr for a login process. The login process is an instance of the
login(1) program, invoked with the -r option. The login process then proceeds with the
authentication process as described in remshd(1M), but if automatic authentication fails, it
reprompts the user to login as one finds on a standard terminal line.

The parent of the login process manipulates the master side of the pseduo terminal, operating
as an intermediary between the login process and the client instance of the rlogin program. In
normal operation, the packet protocol described in pty(4) is invoked to provide “S/°Q type
facilities and propagate interrupt signals to the remote programs. The login process pro-
pagates the client terminal’s baud rate and terminal type, as found in the environment vari-
able, “TERM"’; sce environ(7). The screen or window size of the terminal is requested from
the client, and window size changes from the client are propagated to the pseudo terminal.

DIAGNOSTICS

BUGS

All diagnostic messages are returned on the connection associated with the stderr, after
which any network connections are closed. An error is indicated by a leading byte with a
valuc of 1.

“Try again.”’
A fork by the server failed.

“/bin/sh: ...’
The user’s login shell could not be started.

The authentication procedure used here assumes the integrity of each client machine and the
connecting medium. This is insecure, but is useful in an ‘‘open’’ environment.

A facility to allow all data exchanges to be encrypted should be present.

Icon International, Inc. Last change: March 1989 1

RLOGIND (1M) MAINTENANCE COMMANDS

A more extensible protocol should be used.

2 Last change: March 1989

RLOGIND (1M)

Icon International, Inc.

ROUTE(1M) MAINTENANCE COMMANDS ROUTE (1M)

NAME
route - manually manipulate the routing tables

SYNOPSIS
letc/route [-f] [-n] [command args]

DESCRIPTION
Route is a program used to manually manipulate the network routing tables. It normally is not
needed, as the system routing table management daemon, routed(1M), should tend to this
task.

Route accepts two commands: add, to add a route, and delere, to delete a route.
All commands have the following syntax:
letc/route command [net | host] destination gateway [metric]

where destination is the destination host or network, gateway is the next-hop gateway to
which packets should be addressed, and metric is a count indicating the number of hops to the
destination. The metric is required for add commands; it must be zero if the destination is on
a directly-attached network, and nonzero if the route utilizes one or more gateways. If adding
a route with metric 0, the gateway given is the address of this host on the common network,
indicating the interface to be used for transmission. Routes to a particular host are dis-
tinguished from those to a network by interpreting the Internet address associated with desti-
nation. The optional keywords net and host force the destination to be interpreted as a net-
work or a host, respectively. Otherwise, if the destination has a ‘‘local address part’’ of
INADDR_ANY, or if the destination is the symbolic name of a network, then the route is
assumed to be to a network; otherwise, it is presumed to be a route to a host. If the route is to
a destination connected via a gateway, the metric should be greater than 0. All symbolic
names specified for a destination or gateway are looked up first as a host name using
gethostbyname (3N). If this lookup fails, getnetbyname (3N) is then used to interpret the name
as that of a network.

Route uses a raw socket and the SIOCADDRT and SIOCDELRT ioctl’s to do its work. As
such, only the supcr-user may modify the routing tables.

If the -f option is specified, route will *‘flush’’ the routing tables of all gateway entries. If this
is used in conjunction with one of the commands described above, the tables are flushed prior
to the command’s application.

The -n option prevents attempts to print host and network names symbolically when reporting
actions.

DIAGNOSTICS
‘‘add [host | network] %s: gateway %s flags %x’’
The specified route is being added to the tables. The values printed are from the routing table
entry supplied in the ioct! call. If the gateway address used was not the primary address of the
gateway (the first one returned by gethostbyname), the gateway address is printed numerically
as well as symbolically.

‘‘delete [host | network] %s: gateway %s flags %x’”’
As above, but when deleting an entry.

Icon International, Inc. Last change: March 1989 1

ROUTE (1M) MAINTENANCE COMMANDS ROUTE (1M)

““%s %s done’’
When the -f flag is specified, each routing table entry deleted is indicated with a message of

this form.

‘‘Network is unreachable”’

An attempt to add a route failed because the gateway listed was not on a directly-connected
network. The next-hop gateway must be given.

‘‘not in table”’
A delete operation was attempted for an entry which wasn’t present in the tables.

“‘routing table overflow”’
An add operation was attempted, but the system was low on resources and was unable to allo-

cate memory to create the new entry.

SEE ALSO
intro(7N), routed(1M),

2 Last change: March 1989 lcon International, Inc.

ROUTED (1M) MAINTENANCE COMMANDS ROUTED (1M)

NAME

routed - network routing daecmon

SYNOPSIS ‘

letc/routed [-d] [-g][-s]1[-q1[-t][logfile]

DESCRIPTION

Routed is invoked at boot time to manage the network routing tables. The routing daemon
uses a variant of the Xerox NS Routing Information Protocol in maintaining up to date kernel
routing table entries. It used a generalized protocol capable of use with multiple address
types, but is currently used only for Internet routing within a cluster of networks.

In normal operation routed listens on the udp(7P) socket for the route service (sec ser-
vices(4)) for routing information packets. If the host is an internetwork router, it periodically
supplies copies of its routing tables to any directly connected hosts and networks.

When routed is started, it uses the SIOCGIFCONEF ioctl to find those directly connected inter-
faces configured into the system and marked ‘‘up’ (the software loopback interface is
ignored). If multiple interfaces are present, it is assumed that the host will forward packets
between networks. Routed then transmits a request packet on each interface (using a broad-
cast packet if the interface supports it) and enters a loop, listening for request and response
packets from other hosts.

When a request packet is received, routed formulates a reply based on the information main-
tained in its internal tables. The response packet generated contains a list of known routes,
each marked with a ‘“‘hop count’” metric (a count of 16, or greater, is considered ‘‘infinite’’).
The metric associated with each route returned provides a metric relative to the sender.

Response packets received by routed are used to update the routing tablcs if one of the fol-
lowing conditions is satisfied:

(H No routing table entry exists for the destination network or host, and the metric indi-
cates the destination is “‘reachable’” (i.e. the hop count is not infinite).

2) The source host of the packet is the same as the router in the existing routing table
entry. That is, updated information is being received from the very intermctwork
router through which packets for the destination are being routed.

3) The existing entry in the routing table has not been updated for some time (defined to
be 90 seconds) and the route is at least as cost effective as the current route.

@) The new route describes a shorter route to the destination than the one currently
stored in the routing tables; the metric of the new route is compared against the one
stored in the table to decide this.

When an update is applied, routed records the change in its internal tables and updates the
kernel routing table. The change is reflected in the next response packet sent.

In addition to processing incoming packets, routed also periodically checks the routing table
entries. If an entry has not been updated for 3 minutes, the entry’s metric is set to infinity and
marked for deletion. Deletions are delayed an additional 60 seconds to insure the invalidation
is propagated throughout the local intemet.

Hosts acting as internetwork routers gratuitously supply their routing tables every 30 seconds
to all directly connected hosts and networks. The response is sent to the broadcast address on
nets capable of that function, to the destination address on point-to-point links, and to the

Ilcon International, Inc. Last change: March 1989 1

N
NS

ROUTED (1M) MAINTENANCE COMMANDS ROUTED (1M)

router’s own address on other networks. The normal routing tables are bypassed when send-
ing gratuitous responses. The reception of responses on each network is used to determine
that the network and interface are functioning correctly. If no response is received on an
interface, another route may be chosen to route around the interface, or the route may be
dropped if no alternative is available.

Routed supports several options:
-d Enable additional debugging information to be logged, such as bad packets received.

-g This flag is used on internetwork routers to offer a route to the ‘‘default’’ destination.
This is typically used on a gateway to the Internet, or on a gateway that uses another
routing protocol whose routes are not reported to other local routers.

-s Supplying this option forces routed to supply routing information whether it is acting
as an interetwork router or not. This is the default if multiple network interfaces are
present, or if a point-to-point link is in use.

-q This is the opposite of the -s option.

-t If the -t option is specified, all packets sent or received are printed on the standard
output. In addition, routed will not divorce itself from the controlling terminal so that
interrupts from the keyboard will kill the process.

Any other argument supplied is interpreted as the name of file in which routed’s actions -
should be logged. This log contains information about any changes to the routing tables and,

“if not tracing all packets, a history of recent messages sent and received which are related to

the changed route.

In addition to the facilities described above, routed supports the notion of *‘distant’’ passive
and active gateways. When routed is started up, it reads the file /etc/gateways to find gate-
ways which may not be located using only information from the SIOGIFCONF ioct!. Gate-
ways specified in this manner should be marked passive if they are not expected to exchange
routing information, while gateways marked active should be willing to exchange routing
information (i.e. they should have a routed process running on the machine). Passive gate-
ways are maintained in the routing tables forever and information regarding their existence is
included in any routing information transmitted. Active gateways are treated equally to net-
work interfaces. Routing information is distributed to the gateway and if no routing informa-
tion is received for a period of the time, the associated route is deleted. External gateways are
also passive, but are not placed in the kernel routing table nor are they included in routing
updates. The function of external entries is to inform routed that another routing process will
install such a route, and that alternate routes to that destination should not be installed. Such
entries are only required when both routers may learn of routes to the same destination.

The /etc/gateways is comprised of a series of lines, each in the following format:
< net | host > namel gateway name2 metric value < passive | active | external >
The net or host keyword indicates if the route is to a network or specific host.

Namel is the name of the destination network or host. This may be a symbolic name located
in /etc/networks or /etc/hosts (or, if started after named(1M), known to the name server), or an
Internet address specified in ‘‘dot’’ notation; see inet(3N).

Name?2 is the name or address of the gateway to which messages should be forwarded.
Value is a metric indicating the hop count to the destination host or network.

Last change: March 1989 icon International, Inc.

ROUTED (1M) MAINTENANCE COMMANDS ROUTED (1M)

FILES

One of the keywords passive, active or external indicates if the gateway should be treated as
passive or active (as described above), or whether the gateway is external to the scope of the
routed protocol.

Internetwork routers that are directly attached to the Arpanet or Milnet should use the Exte-
rior Gateway Protocol (EGP) to gather routing information rather then using a static routing
table of passive gateways. EGP is required in order to provide routes for local networks to the
rest of the Internet system. Sites needing assistance with such configurations should contact
the Computer Systems Research Group at Berkeley.

fetc/gateways for distant gateways

SEE ALSO

BUGS

Ilcon International, Inc. Last change: March 1989 3

udp(7P), htable(1M)

The kernel’s routing tables may not correspond to those of routed when redirects change or
add routes. The only remedy for this is to place the routing process in the kernel.

Routed should incorporate other routing protocols, such as EGP. Using separate processes for
each requires configuration options to avoid redundant or competing routes.

Routed should listen to intelligent interfaces, such as an IMP, and to error protocols, such as
ICMP, to gather more information. It does not always detect unidirectional failures in net-
work interfaces (e.g., when the output side fails).

~

£
\\ J

RWHOD (1M) MAINTENANCE COMMANDS RWHOD (1M)

NAME

rwhod - system status server

SYNOPSIS

letc/rwhod

DESCRIPTION

Rwhod is the server which maintains the database used by the rwho(1C) and ruptime (1C) pro-
grams. Its operation is predicated on the ability to broadcast messages on a network.

Rwhod operates as both a producer and consumer of status information. As a producer of
information it periodically queries the state of the system and constructs status messages
which are broadcast on a network. As a consumer of information, it listens for other rwhod
servers’ status messages, validating them, then recording them in a collection of files located
in the directory /usr/spool/rwho.

The server transmits and receives messages at the port indicated in the ‘‘rwho’’ service
specification; see services (5). The messages sent and received, are of the form:

struct outmp {
char out_line([8]; /* tty name */
char out name[8]; /* user id */
long out _time; /* time on */

}s

struct whod {
char wd_vers;
char wd type;
char wd fill([2];
int wd_sendtime;
int wd recvtime;
char wd_hostname[32];
int wd_loadav([3];

int wd_boottime;

struct whoent {
struct outmp we_utmp;
int we_idle;

} wd_we[1024 / sizeof (struct whoent)];
b

All fields are converted to network byte order prior to transmission. The load averages are as
calculated by the w(1) program, and represent load averages over the 5, 10, and 15 minute
intervals prior to a server’s transmission; they are multiplied by 100 for representation in an
integer. The host name included is that returned by the gethostname (2) system call, with any
trailing domain name omitted. The array at the end of the message contains information
about the users logged in to the sending machine. This information includes the contents of
the utmp(4) entry for each non-idle terminal line and a value indicating the time in seconds
since a character was last received on the terminal line.

Messages received by the rwho server are discarded unless they originated at an rwho server’s
port. In addition, if the host’s name, as specified in the message, contains any unprintable
ASCII characters, the message is discarded. Valid messages received by rwhod are placed in
files named whod.hostname in the directory /usr/spool/rwho. These files contain only the

Icon International, Inc. Last change: March 1989 1

RWHOD (1M) MAINTENANCE COMMANDS RWHOD (1M)

most recent message, in the format described above.

Status messages are generated approximately once every 3 minutes. Rwhod performs an
nlist(3) on /vmunix every 30 minutes to guard against the possibility that this file is not the
system image currently operating.

SEE ALSO
rwho(1C), ruptime(1C)

BUGS
There should be a way to relay status information between networks. Status information
should be sent only upon request rather than continuously. People often interpret the server
dying or network communtication failures as a machine going down.

2 Last change: March 1989 Icon International, Inc.

SENDMAIL (1M)

NAME

MAINTENANCE COMMANDS SENDMAIL (1M)

sendmail - send mail over the intemet

SYNOPSIS

fusr/lib/sendmail [flags] [address ...]
newaliases
mailq [-v]

DESCRIPTION

Icon International, Inc.

Sendmail sends a message to one or more recipients , routing the message over whatever net-
works are necessary. Sendmail does intermetwork forwarding as necessary to deliver the mes-
sage to the correct place.

Sendmail is not intended as a user interface routine; other programs provide user-fricndly
front ends; sendmail is used only to deliver pre-formatted messages.

With no flags, sendmail reads its standard input up to an end-of-file or a line consisting only
of a single dot and sends a copy of the message found there to all of the addresses listed. It
determines the network(s) to use based on the syntax and contents of the addresses.

Local addresses arc looked up in a file and aliased appropriately. Aliasing can be prevented
by preceding the address with a backslash. Nommally the sender is not included in any alias
expansions, e.g., if ‘john’ sends to ‘group’, and ‘group’ includes ‘john’ in the expansion, then

the letter will not be delivered to ‘john’.

Flags are:

-ba Go into ARPANET mode. All input lines must end with a CR-LF, and all
messages will be gencrated with a CR-LF at the end. Also, the “‘From:”
and ‘‘Sender:”’ ficlds are examined for the name of the sender.

-bd Run as a daemon. This requires Berkeley IPC. Sendmail will fork and run
in background listening on socket 25 for incoming SMTP connections.
This is normally run from /etc/rc.

-bi Initialize the alias database.

-bm Deliver mail in the usual way (default).

-bp Print a listing of the queue.

-bs Use the SMTP protocol as described in RFC821 on standard input and out-
put. This flag implies all the operations of the -ba flag that are compatible
with SMTP. -

-bt Run in address test mode. This mode rcads addresses and shows the steps
in parsing; it is used for debugging configuration tables.

-bv Verify names only - do not try to collect or deliver a message. Verify
mode is normally used for validating users or mailing lists.

-bz Create the configuration freeze file.

-Cfile Use alternate configuration file. Sendmail refuses to run as root if an alter-
nate configuration file is specified. The frozen configuration file is
bypassed.

-dX Set debugging value to X.

Last change: March 1989 1

SENDMAIL (1M)

-Ffullname
-fname

-hN

-n
-ox value
-qltime]

-rname
-t

-V

MAINTENANCE COMMANDS SENDMAIL (1M)

Set the full name of the sender.

Sets the name of the ‘‘from’’ person (i.e., the sender of the mail). -f can
only be used by ‘‘trusted’’ users (normally root, daemon, and network) or
if the person you are trying to become is the same as the person you are.

Set the hop count to N. The hop count is incremented every time the mail
is processed. When it reaches a limit, the mail is returned with an error
message, the victim of an aliasing loop. If not specified, ‘‘Received:”’
lines in the message are counted.

Don’t do aliasing.
Set option x to the specified value. Options are described below.

Processed saved messages in the queue at given intervals. If time is omit-
ted, process the queue once. Time is given as a tagged number, with ‘s’
being seconds, ‘m’ being minutes, ‘h’ being hours, ‘d’ being days, and ‘W’
being weeks. For example, ‘‘-q1h30m’’ or ‘*-q90m’’ would both set the
timeout to one hour thirty minutes. If time is specified, sendmail will run
in background. This option can be used safely with -bd.

An alternate and obsolete form of the -f flag.

Read message for recipients. To:, Cc:, and Bcc: lines will be scanned for
recipient addresses. The Bcc: line will be deleted before transmission.
Any addresses in the argument list will be suppressed, that is, they will not
receive copies even if listed in the message header.

Go into verbose mode. Alias expansions will be announced, etc.

There are also a number of processing options that may be set. Normally these will only be
used by a system administrator. Options may be set either on the command line using the -0
flag or in the configuration file. These are described in detail in the Sendmail Installation and
Operation Guide. The options are:

Afile
c

dx

€x

Fmode

gN

Use alternate alias file.

On mailers that are considered ‘‘expensive’’ to connect to, don’t initiate
immediate connection. This requires queueing.

Set the delivery mode to x. Delivery modes are ‘i’ for interactive (synchro-
nous) delivery, ‘b’ for background (asynchronous) delivery, and ‘q’ for
queue only - i.e., actual delivery is done the next time the queue is run.

Try to automatically rebuild the alias database if necessary.

Set error processing to mode x. Valid modes are ‘m’ to mail back the error
message, ‘w’ 10 ‘‘write’” back the error message (or mail it back if the
sender is not logged in), ‘p’ to print the errors on the terminal (default), ‘q’
to throw away error messages (only exit status is returned), and ‘e’ to do
special processing for the BerkNet. If the text of the message is not
mailed back by modes ‘m’ or ‘w’ and if the sender is local to this machine,
a copy of the message is appended to the file ‘‘dead.letter’” in the sender’s
home directory.

The mode to use when creating temporary files.
Save UNIX-style From lines at the front of messages.
The default group id to use when calling mailers.

Last change: March 1989 Icon International, Inc.

TN
/

| |
N’

=\
N

N

SENDMAIL (1M)

Hfile
i

Ln
m

0

Qqueuedir
rtimeout

Sfile
S

Ttime

tstz,dtz
uN

MAINTENANCE COMMANDS SENDMAIL (1M)

The SMTP help file.

Do not take dots on a line by themselves as a message terminator.
The log level.

Send to ‘‘me’’ (the sender) also if I am in an alias expansion.

If set, this message may have old style headers. If not set, this message is
guaranteed to have new style headers (i.e., commas instead of spaces
between addresses). If set, an adaptive algorithm is used that will
correctly determine the header format in most cases.

Select the directory in which to queue messages.

The timeout on reads; if none is set, sendmail will wait forever for a
mailer. This option violates the word (if not the intent) of the SMTP
specification, show the timeout should probably be fairly large.

Save statistics in the named file.

Always instantiate the queue file, even under circumstances where it is not
strictly necessary. This provides safety against system crashes during
delivery.

Set the timeout on undelivered messages in the queue to the specified
time. After delivery has failed (e.g., because of a host being down) for this
amount of time, failed messages will be returned to the sender. The
default is three days.

Set the name of the time zone.
Set the default user id for mailers.

In aliases, the first character of a name may be a vertical bar to cause interpretation of the rest
of the name as a command to pipe the mail to. It may be necessary to quote the name to kcep
sendmail from suppressing the blanks from between arguments. For example, a common alias

182

msgs: "l/usr/ucb/msgs -s"

Aliases may also have the syntax ‘‘:include:filename’’ to ask sendmail to read the named file
for a list of recipients. For example, an alias such as:

poets: ":include:/usr/local/lib/poets.list"

would read /usr/local/lib/poets.list for the list of addresses making up the group.

Sendmail returns an exit status describing what it did. The codes are defined in <sysexits.h>

EX_OK

EX_NOUSER

Successful completion on all addresses.
User name not recognized.

EX_UNAVAILABLE Catchall meaning necessary resources were not available.

EX_SYNTAX Syntax error in address.

EX_SOFTWARE Internal software error, including bad arguments.
EX_OSERR Temporary operating system error, such as ‘‘cannot fork’’.
EX_NOHOST Host name not recognized.

EX_TEMPFAIL

Message could not be sent immediately, but was queued.

If invoked as newaliases, sendmail will rebuild the alias database. If invoked as mailq, send-
mail will print the contents of the mail queue.

Icon International, Inc.

Last change: March 1989 3

SENDMAIL (1M)

FILES

MAINTENANCE COMMANDS SENDMAIL (1M)

Except for /usr/lib/sendmail.cf, these pathnames are all specified in /usr/lib/sendmail.cf. Thus,
these values are only approximations.

Jusr/lib/aliases
fusr/lib/aliases.pag
fusr/lib/aliases.dir
fust/lib/sendmail.cf
fust/lib/sendmail.fc
fusr/lib/sendmail.hf
Jusr/lib/sendmail.st
fusr/spool/mqueue/*

SEE ALSO

raw data for alias names

data base of alias names
configuration file
frozen configuration
help file

collected statistics
temp files

binmail(1), mail(1), mail(1), syslog(3), aliases(4), sendmail.cf(4), mailaddr(5), rc(8);
DARPA Internet Request For Comments RFC819, RFC821, RFC822;

Sendmail - An Internetwork Mail Router

Sendmail Installation and Operation Guide

Last change: March 1989 Icon International, Inc.

o

N

S

SN

NS

SLATTACH (1M) MAINTENANCE COMMANDS SLATTACH (1M)

NAME
slattach - attach serial lines as network interfaces

SYOPNSIS
letc/slattach ttyname [baudrate]

DESCRIPTION
Slattach is used to assign a tty line to a network interface, and to define the network source
and destination addresses. The ttyname parameter is a string of the form “‘ttyXX’’, or
“‘/dev/ttyXX’’. The optional baudrate parameter is used to set the speed of the connection. If
not specified, the default of 9600 is used.

Only the super-user may attach a network interface.

To detach the interface, use ‘ifconfig interface-name down’ after killing off the slattach pro-
cess. interface-name is the name that is shown by netstat(1)

EXAMPLES
fetc/slattach ttyh8
[etc/slattach /dev/tty01 4800

DIAGNOSTICS
Messages indicating the specified interface does not exit, the requested address is unknown,
the uscr is not privileged and tried to alter an interface’s configuration.

SEE ALSO
rc(8), intro(7N), netstat(1), ifconfig(1M)

icon International, Inc. Last change: March 1989 1

SYSLOGD (1M) MAINTENANCE COMMANDS SYSLOGD (1M)

NAME
syslogd - log systems messages

SYNOPSIS
letc/syslogd [-fconfigfile] [-mmarkinterval][-d]

DESCRIPTION
Syslogd reads and logs messages into a set of files described by the configuration file
fetc/syslog.conf. Each message is one line. A message can contain a priority code, marked by
a number in angle braces at the beginning of the line. Priorities are defined in <sys/syslog.h>.
Syslogd reads from the UNIX domain socket /dev/log, from an Internet domain socket
specified in /etc/services, and from the special device /dev/klog (to read kernel messages).

Syslogd configures when it starts up and whenever it receives a hangup signal. Lines in the
configuration file have a selector to determine the message priorities to which the line applies
and an action. The action field are separated from the selector by one or more tabs.

Selectors are semicolon separated lists of priority specifiers. Each priority has a facility
describing the part of the system that generated the message, a dot, and a level indicating the
severity of the message. Symbolic names may be used. An asterisk selects all facilities. All
messages of the specified level or higher (greater severity) are selected. More than one facil-
ity may be selected using commas to separate them. For example:

* emerg;mail,daemon.crit
Selects all facilities at the emerg level and the mail and daemon facilities at the crit level.

Known facilities and levels recognized by syslogd are those listed in syslog(3) without the
leading ‘‘LOG_"". The additional facility ‘‘mark’’ has a message at priority LOG_INFO sent
to it every 20 minutes (this may be changed with the -m flag). The ‘“‘mark’’ facility is not
enabled by a facility field containing an asterisk. The level ‘‘none’’ may be used to disable a
particular facility. For example,

*.debug;mail.none
Sends all messages except mail messages to the selected file.

The sccond part of each line describes where the message is to be logged if this line is
selected. There are four forms:

* A filename (beginning with a leading slash). The file will be opened in append mode.

* A hostname preceeded by an at sign (“‘@’’). Selected messages are forwarded to the sys-
logd on the named host.

e A comma separated list of users. Selected messages are written to those users if they are
logged in.

e Anasterisk. Selected messages are written to all logged-in users.
Blank lines and lines beginning with ‘#’ are ignored.

For example, the configuration file:

kern,mark.debug /dev/console

* . notice;mail.info /usr/spool/adm/syslog
*,.crit /usr/adm/critical
kern.err Qucbarpa

lcon International, Inc. Last change: March 1989 1

SYSLOGD (1M) MAINTENANCE COMMANDS SYSLOGD (1M)

* _emerg *
*.alert eric,kridle
* ,alert;auth.warning ralph

logs all kernel messages and 20 minute marks onto the system console, all notice (or higher)
level messages and all mail system messages except debug messages into the file
fusr/spool/adm/syslog, and all critical messages into /usr/adm/critical; kernel messages of
error severity or higher are forwarded to ucbarpa. All users will be informed of any emer-
gency messages, the users ‘‘eric’’ and ‘‘kridle’’ will be informed of any alert messages, and
the user “‘ralph’’ will be informed of any alert message, or any warning message (or higher)
from the authorization system.

The flags are:
-f Specify an alternate configuration file.
-m Select the number of minutes between mark messages.

-d Tum on debugging.

Syslogd creates the file /etc/syslog.pid, if possible, containing a single line with its process id.
This can be used to kill or reconfigure syslogd.

To bring syslogd down, it should be sent a terminate signal (e.g. kill “cat /ctc/syslog.pid™).

FILES
fete/syslog.conf the configuration file
: /etc/syslog.pid the process id
(/dev/log Name of the UNIX domain datagram log socket
/dev/klog The kernel log device
SEE ALSO

logger(1), syslog(3)

2 Last change: March 1989 Ilcon International, Inc.

TALKD (1M) MAINTENANCE COMMANDS TALKD (1M)

NAME

talkd - remote user communication server

SYNOPSIS

letc/talkd

DESCRIPTION

Talkd is the server that notifies a user that somebody else wants to initiate a conversation. It
acts a repository of invitations, responding to requests by clients wishing to rendezvous to
hold a conversation. In normal operation, a client, the caller, initiates a rendezvous by send-
ing a CTL_MSG 1o the server of type LOOK_UP (see <protocols/talkd.h>). This causes the
server to search its invitation tables to check if an invitation currently exists for the caller (to
speak to the callee specified in the message). If the lookup fails, the caller then sends an
ANNOUNCE message causing the server to broadcast an announcement on the callee’s login
ports requesting contact. When the callee responds, the local server uses the recorded invita-
tion to respond with the appropriate rendezvous address and the caller and callee client pro-
grams establish a stream connection through which the conversation takes place.

SEE ALSO

talk(1), write(1)

Icon International, Inc. Last change: March 1989 1

TELNETD(1M) MAINTENANCE COMMANDS TELNETD(1M)

NAME

telnetd - DARPA TELNET protocol server

SYNOPSIS

fetc/telnetd

DESCRIPTION

Telnetd is a server which supports the DARPA standard TELNET virtual terminal protocol.
Telnetd is invoked by the internet server (see inetd(8)), normally for requests to connect to the
TELNET port as indicated by the /etc/services file (see services (4)).

Telnetd operates by allocating a pseudo-terminal device (see pty(4)) for a client, then creating
a login process which has the slave side of the pseudo-terminal as stdin, stdout, and stderr.
Telnetd manipulates the master side of the pseudo-terminal, implementing the TELNET pro-
tocol and passing characters between the remote client and the login process.

When a TELNET session is started up, telnetd sends TELNET options to the client side
indicating a willingness to do remote echo of characters, to suppress go ahead, and to receive
terminal type information from the remote client. If the remote client is willing, the remote
terminal type is propagated in the environment of the created login process.

Telnetd is willing to do: echo, binary, suppress go ahead, and timing mark. Telnetd is wil-

-ling to have the remote client do: binary, terminal type, and suppress go ahead.

SEE ALSO

BUGS

telnet(1C)

Some TELNET commands are only partially implemented.

The TELNET protocol allows for the exchange of the number of lines and columns on the
user’s terminal, but trelnetd doesn’t make use of them.

Because of bugs in the original 4.2 BSD relnet(1C), telnetd performs some dubious protocol
exchanges to try to discover if the remote client is, in fact, a 4.2 BSD telnet (1C).

Binary mode has no common interpretation except between similar operating systems (Unix
in this case).

The terminal type name received from the remote client is converted to lower case.

The packet interface to the pseudo-terminal (see pry(4)) should be used for more intelligent
flushing of input and output queues.

Telnetd never sends TELNET go ahead commands.

Icon International, Inc. Last change: March 1989 1

TFTPD (1M) MAINTENANCE COMMANDS TFTPD (1M)

NAME
tftpd - DARPA Trivial File Transfer Protocol server

SYNOPSIS
letc/tftpd

DESCRIPTION
Tftpd is a server which supports the DARPA Trivial File Transfer Protocol. The TFTP server
operates at the port indicated in the ‘‘tftp”’ service description; see services(4). The server is
normally started by inetd(1M).

The use of #ftp does not require an account or password on the remote system. Due to the lack
of authentication information, #fipd will allow only publicly readable files to be accessed.
Files may be written only if they already exist and are publicly writable. Note that this
extends the concept of *‘public’’ to include all users on all hosts that can be reached through
the network; this may not be appropriate on all systems, and its implications should be con-
sidered before enabling tftp service. The server should have the user ID with the lowest pos-
sible privilege.

SEE ALSO
tftp(1C), inetd(1M)

Icon International, Inc. Last change: March 1989 1

A

o

TRPT (1M) MAINTENANCE COMMANDS TRPT (1M)

NAME

trpt - transliterate protocol trace

SYNOPSIS

trpt[-a][-s] [-t]1[-f]1[-j][-phex-address][system [core]]

DESCRIPTION

FILES

Trpt interrogates the buffer of TCP trace records created when a socket is marked for ‘‘debug-
ging’’ (see setsockopt(2)), and prints a readable description of these records. When no
options are supplied, ¢rpt prints all the trace records found in the system grouped according to
TCP connection protocol control block (PCB). The following options may be used to alter
this behavior.

-a in addition to the normal output, print the values of the source and destination
addresses for cach packet recorded.

-S in addition to the normal output, print a detailed description of the packet sequencing
information.

-t in addition to the normal output, print the values for all timers at each point in the
trace.

-f follow the trace as it occurs, waiting a short time for additional records each time the
end of the log is reached.

-j just give a list of the protocol control block addresses for which there are trace
records.

-p show only trace rccords associated with the protocol control block, the address of

which follows.

The recommended use of #rpt is as follows. Isolate the problem and enable debugging on the
socket(s) involved in the connection. Find the address of the protocol control blocks associ-
ated with the sockets using the -A option to netstat(1). Then run trpt with the -p option, sup-
plying the associated protocol control block addresses. The -f option can be used to follow
the trace log once the trace is located. If there are many sockets using the debugging option,
the -j option may be useful in checking to see if any trace records are present for the socket in
question.

If debugging is being performed on a system or core file other than the default, the last two
arguments may be used to supplant the defaults.

/vmunix

/dev/kmem

SEE ALSO

setsockopt(2), netstat(1), trsp(1M)

DIAGNOSTICS

“‘no namelist’” when the system image doesn’t contain the proper symbols to find the trace
buffer; others which should be sclf explanatory.

Icon International, Inc. Last change: March 1989 1

TRPT (1M) MAINTENANCE COMMANDS

BUGS

TRPT(1IM)

Should also print the data for each input or output, but this is not saved in the race record.

The output format is inscrutable and should be described here.

Last change: March 1989

Icon International, Inc.

T

\‘l’}\
N

N

’ﬁ(u =

ACCEPT (2) SYSTEM CALLS ACCEPT (2.)

NAME
accept - accept a connection on a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

ns = accept(s, addr, addrlen)
int ns, s;

struct sockaddr *addr;

int *addrlen;

DESCRIPTION

The argument s is a socket that has been created with socket(2), bound to an address with
bind(2), and is listening for connections after a listen(2). Accept extracts the first connection
on the queue of pending connections, creates a new socket with the same properties of s and
allocates a new file descriptor, ns, for the socket. If no pending connections are present on the
queue, and the socket is not marked as non-blocking, accept blocks the caller until a connec-
tion is present. If the socket is marked non-blocking and no pending connections are present
on the queue, accept returns an error as described below. The accepted socket, ns, may not be
used to accept more connections. The original socket s remains open.

The argument addr is a result parameter that is filled in with the address of the connecting
entity, as known to the communications layer. The exact format of the addr parameter is
determined by the domain in which the communication is occurring. The addrlen is a valuc-
result parameter; it should initially contain the amount of space pointed to by addr; on return
it will contain the actual length (in bytes) of the address returned. This call is used with
connection-based socket types, currently with SOCK_STREAM.

It is possible to select(2) a socket for the purposes of doing an accept by selecting it for read.

RETURN VALUE
The call returns -1 on error. If it succeeds, it returns a non-negative integer that is a descriptor
for the accepted socket.

ERRORS
The accept will fail if:
[EBADF] The descriptor is invalid.
[ENOTSOCK) The descriptor references a file, not a socket.]
[EOPNOTSUPP] The referenced socket is not of type SOCK_STREAM.
[EFAULT] The addr parameter is not in a writable part of the user address
space.
[EWOULDBLOCK] The socket is marked non-blocking and no connections are present to
be accepted.
SEE ALSO

bind(2), connect(2), listen(2), select(2), socket(2)

Icon International, Inc. Last change: March 1989 1

BIND (2) SYSTEM CALLS ~ BIND (2)

NAME
bind - bind a name to a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

bind(s, name, namelen)
int s;

struct sockaddr *name;
int namelen;

DESCRIPTION
Bind assigns a name to an unnamed socket. When a socket is created with socket(2) it exists
in a name space (address family) but has no name assigned. Bind requests that name be
assigned to the socket.

NOTES
Binding a name in the UNIX domain creates a socket in the file system that must be deleted
by the caller when it is no longer needed (using unlink(2)).

The rules used in name binding vary between communication domains. Consult the manual
entries for Networking Protocols in Appendix A for detailed information.

RETURN VALUE
If the bind is successful, a O value is returned. A return value of -1 indicates an error, which is
further specified in the global errno.

ERRORS
The bind call will fail if:
[EBADF] S is not a valid descriptor.
[ENOTSOCK] S is not a socket.
[EADDRNOTAVAIL] The specified address is not available from the local machine.
[EADDRINUSE] The specified address is already in use.
[EINVAL] The socket is already bound to an address.
[EACCES] The requested address is protected, and the current user has inade-
quate permission to access it.
[EFAULT] The name parameter is not in a valid part of the user address space.

The following errors are specific to binding names in the UNIX domain.
[ENOTDIR] A component of the path prefix is not a directory.
[EINVAL)] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]
A component of a pathname exceeded 255 characters, or an entire path
name exceeded 1023 characters.

[ENOENT] A prefix component of the path name does not exist.

Icon International, Inc. Last change: March 1989 1

&

BIND (2) SYSTEM CALLS BIND (2)

[ELOOP] Too many symbolic links were encountered in translating the pathname.
[EIO] An I/O error occurred while making the directory entry or allocating the
inode.
[EROFS] The name would reside on a read-only file system.
[EISDIR] A null pathname was specified.
SEE ALSO

connect(2), listen(2), socket(2), getsockname(2)

2 Last change: March 1989 Icon International, Inc.

CONNECT (2)

NAME

SYSTEM CALLS CONNECT(2)

connect - initiate a connection on a socket

SYNOPSIS

#include <sys/types.h>

#include <sys/socket.h>

connect(s, name, namelen)

int s;

struct sockaddr *name;

int namelen;

DESCRIPTION

The parameter s is a socket. If it is of type SOCK_DGRAM, then this call specifies the peer
with which the socket is to be associated; this address is that to which datagrams are to be
sent, and the only address from which datagrams are to be received. If the socket is of type
SOCK_STREAM, then this call attempts to make a connection to another socket. The other
socket is specified by name, which is an address in the communications space of the socket.
Each communications space interprets the name parameter in its own way. Generally, stream
sockets may successfully connect only once, datagram sockets may use connect multiple
times to change their association. Datagram sockets may dissolve the association by connect-
ing to an invalid address, such as a null address.

RETURN VALUE

If the connection or binding succeeds, then O is returned. Otherwise a -1 is returned, and a
more specific error code is stored in errno.

ERRORS .
The call fails if:

[EBADF]
[ENOTSOCK]
[EADDRNOTAVAIL]
[EAFNOSUPPORT]

[EISCONN]
[ETIMEDOUT]

[ECONNREFUSED]
[ENETUNREACH]
(EADDRINUSE]
[EFAULT]

[EINPROGRESS]

Icon International, Inc.

S is not a valid descriptor.
S is a descriptor for a file, not a socket.
The specified address is not available on this machine.

Addresses in the specified address family cannot be used with this
socket.

The socket is already connected.

Connection establishment timed out without establishing a connec-
tion.

The attempt to connect was forcefully rejected.
The network isn’t reachable from this host.
The address is already in use.

The name parameter specifies an area outside the process address
space.

The socket is non-blocking and the connection cannot be completed
immediately. It is possible to select(2) for completion by selecting
the socket for writing.

Last change: March 1989 1

/*{ TN
NS

CONNECT (2) SYSTEM CALLS CONNECT(2)

[EALREADY] The socket is non-blocking and a previous connection attempt has
not yet been completed.

The following errors are specific to connecting names in the UNIX domain. These errors may
not apply in future versions of the UNIX IPC domain.

[ENOTDIR] A component of the path prefix is not a directory.
[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]
A component of a pathname exceeded 255 characters, or an entire path
name exceeded 1023 characters.

[ENOENT] The named socket does not exist.

[EACCES] Search permission is denied for a component of the path prefix.

[EACCES] Write access to the named socket is denied.

[ELOOP] Too many symbolic links were encountered in translating the pathname.
SEE ALSO

accept(2), select(2), socket(2), getsockname(2)

2 Last change: March 1989 Icon International, Inc.

FCHMOD (2) SYSTEM CALLS FCHMOD (2)

NAME

fchmod - change mode of file

SYNOPSIS

int fchmod (fildes, mode)
int fildes;
int mode;

DESCRIPTION

Fildes is a file descriptor for an open file that may have been returned from a open(2) or
dup(2) call. Fchmod sets the access permission portion of the named file’s mode according to
the bit pattern contained in mode.

Access permission bits are interpreted as follows:

center; 1111. 04000 Set user ID on execution. 02000 Set group ID on execution.
01000 Save text image after execution. 00400 Read by owner. 00200 Write by
owner. 00100 Execute (search if a directory) by owner. 00070 Read, write, exe-
cute (search) by group. 00007 Read, write, execute (search) by others.

The effective user ID of the process must match the owner of the file or be super-user to
change the mode of a file.

If the effective user ID of the process is not super-user, mode bit 01000 (save text image on
execution) is cleared.

If the effective user ID of the process is not super-user and the effective group ID of the process
does not match the group ID of the file, mode bit 02000 (set group ID on execution) is cleared.

If an executable file is prepared for sharing then mode bit 01000 prevents the system from
abandoning the swap-space image of the program-text portion of the file when its last user ter-
minates. Thus, when the next user of the file executes it, the text need not be read from the
file system but can simply be swapped in, saving time.

Fchmod will fail and the file mode will be unchanged if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.
[ENOENT] The named file does not exist.
[EACCES] Search permission is denied on a component of the path prefix.
[EPERM] The effective user ID does not match the owner of the file and the effective
user ID is not super-user.
[EROFS] The named file resides on a read-only file system.
[EFAULT] Path points outside the allocated address space of the process.
RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO

chmod(2), chown(2), fchown(2), mknod(2).

Icon International, Inc. Last change: March 1989 1

FCHOWN (2) SYSTEM CALLS FCHOWN (2)

NAME
fchown - change owner and group of a file

SYNOPSIS
int fchown (fildes, owner, group)
int fildes;
int owner, group;

DESCRIPTION
Fildes is a file descriptor for an open file that may have been returned from a open(2) or
dup(2) call. The owner ID and group ID of the named file are set to the numeric values con-
tained in owner and group respectively.

Only processes with effective user ID equal to the file owner or super-user may change the
ownership of a file.

If fchown is invoked by other than the super-user, the set-user-ID and set-group-ID bits of the
file mode, 04000 and 02000 respectively, will be cleared.

Fchown will fail and the owner and group of the named file will remain unchanged if one or
more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.
[ENOENT] The named file does not exist.
[EACCES] Search permission is denied on a component of the path prefix.
[EPERM] The effective user ID does not match the owner of the file and the effective
user ID iS not super-user.
[EROFS] The named file resides on a read-only file system.
[EFAULT] Path points outside the allocated address space of the process.
RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO
chmod(2), chown(2), fchmod(2).
chown(1) in the ICON/UXV User Reference Manual.

Icon International, inc. Last change: March 1989 1

GETHOSTID (2) SYSTEM CALLS GETHOSTID (2)

NAME
gethostid, sethostid - get/set unique identifier of current host

SYNOPSIS
hostid = gethostid()
long hostid;

sethostid(hostid)
long hostid;

DESCRIPTION
Sethostid establishes a 32-bit identifier for the current processor that is intended to be unique
among all UNIX systems in existence. This is normally a DARPA Internet address for the
local machine. This call is allowed only to the super-user and is normally performed at boot
time.
Gethostid returns the 32-bit identifier for the current processor.

SEE ALSO
gethostname(2)

Icon International, Inc. Last change: March 1989 1

&

GETHOSTNAME((2) SYSTEM CALLS GETHOSTNAME((2)

NAME
gethostmame, sethostame - get/set name of current host

SYNOPSIS
gethostname(name, namelen)
char *name;
int namelen;

sethostname(name, namelen)
char *name;
int namelen;

DESCRIPTION
Gethostname returns the standard host name for the current processor, as previously set by
sethostname. The parameter namelen specifies the size of the name array. The returned name
is null-terminated unless insufficient space is provided.

Sethostname sets the name of the host machine to be name, which has length namelen. This
call is restricted to the super-user and is normally used only when the system is bootstrapped.

RETURN VALUE
_If the call succeeds a value of 0 is returned. If the call fails, then a value of -1 is returned and
an error code is placed in the global location errno.

ERRORS
The following errors may be returned by these calls:
[EFAULT] The name or namelen parameter gave an invalid address.
[EPERM] The caller tried to set the hostname and was not the super-user.
SEE ALSO
gethostid(2)

BUGS
Host names are limited to MAXHOSTNAMELEN (from <sys/param.h>) characters,
currently 64.

Ilcon International, Inc. Last change: March 1989 1

GETPEERNAME ((2) SYSTEM CALLS GETPEERNAME(2)

NAME
getpeemame - get name of connected peer

SYNOPSIS
getpeername(s, name, namelen)
int s;
struct sockaddr *name;
int *namelen;

DESCRIPTION
Getpeername returns the name of the peer connected to socket s. The namelen parameter
should be initialized to indicate the amount of space pointed to by name. On return it con-
tains the actual size of the name returned (in bytes). The name is truncated if the buffer pro-
vided is too small.

DIAGNOSTICS
A Ois returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

[EBADF] The argument s is not a valid descriptor.
[ENOTSOCK] The argument s is a file, not a socket.
[ENOTCONN] The socket is not connected.

[ENOBUFS] Insufficient resources were available in the system to perform the opera-
tion.
[EFAULT] The name parameter points to memory not in a valid part of the process

address space.

SEE ALSO
accept(2), bind(2), socket(2), getsockname(2)

lcon International, Inc. Last change: March 1989 1

GETSOCKNAME((2) SYSTEM CALLS GETSOCKNAME (2)

NAME
getsockname - get socket name

SYNOPSIS
getsockname(s, name, namelen)
int s;
struct sockaddr *name;
int *namelen;

DESCRIPTION
Getsockname returns the current name for the specified socket. The namelen parameter
should be initialized to indicate the amount of space pointed to by name. On return it con-
tains the actual size of the name returned (in bytes).

DIAGNOSTICS
A Qis returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:
[EBADF] The argument s is not a valid descriptor.
[ENOTSOCK] The argument s is a file, not a socket.
[ENOBUFS] Insufficient resources were available in the system to perform the opera-
tion.
[EFAULT] The name parameter points to memory not in a valid part of the process

address space.

- SEE ALSO
bind(2), socket(2)

BUGS

Names bound to sockets in the UNIX domain are inaccessible; getsockname returns a zero
length name.

lcon International, Inc. Last change: March 1989 1

GETSOCKOPT (2) SYSTEM CALLS GETSOCKOPT (2)

/7
NAME .

getsockopt, setsockopt - get and set options on sockets -
SYNOPSIS

#include <sys/types.h>

#include <sys/socket.h>

getsockopt(s, level, optname, optval, optlen)
int s, level, optname;

char *optval;

int *optlen;

setsockopt(s, level, optname, optval, optlen)
int s, level, optname;

char *optval;

int optlen;

DESCRIPTION
Getsockopt and setsockopt manipulate options associated with a socket. Options may exist at
multiple protocol levels; they are always present at the uppermost ‘‘socket’’ level.

When manipulating socket options the level at which the option resides and the name of the
option must be specified. To manipulate options at the ‘‘socket’’ level, level is specified as
SOL_SOCKET. To manipulate options at any other level the protocol number of the
appropriate protocol controlling the option is supplied. For example, to indicate that an
option is to be interpreted by the TCP protocol, level should be set to the protocol number of
TCP; see getprotoent (3N).

The parameters optval and optlen are used to access option values for setsockopt. For get-
sockopt they identify a buffer in which the value for the requested option(s) are to be returned.
For getsockopt, optlen is a value-result parameter, initially containing the size of the buffer
pointed to by optval, and modified on return to indicate the actual size of the value returned.
If no option value is to be supplied or returned, optval may be supplied as 0.

Optname and any specified options are passed uninterpreted to the appropriate protocol
module for interpretation. The include file <sys/socket.h> contains definitions for ‘‘socket’’
level options, described below. Options at other protocol levels vary in format and name;
consult the appropriate manual entries for section 7P in Appendix A.

Most socket-level options take an int parameter for optval. For setsockopt, the parameter
should non-zero to enable a boolean option, or zero if the option is to be disabled.
SO_LINGER uses a struct linger parameter, defined in <sys/socket.h>, which specifies the
desired state of the option and the linger interval (see below).

The following options are recognized at the socket level. Except as noted, each may be
examined with getsockopt and set with setsockopt.

SO_DEBUG toggle recording of debugging information
SO_REUSEADDR toggle local address reuse
SO_KEEPALIVE toggle keep connections alive
SO_DONTROUTE toggle routing bypass for outgoing messages
SO_LINGER linger on close if data present

s
_/

Icon International, Inc. Last change: March 1989 1

¢

GETSOCKOPT (2) SYSTEM CALLS GETSOCKOPT (2)

SO_BROADCAST toggle permission to transmit broadcast messages
SO_OOBINLINE toggle reception of out-of-band data in band

SO_SNDBUF set buffer size for output

SO_RCVBUF set buffer size for input

SO_TYPE get the type of the socket (get only)
SO_ERROR get and clear error on the socket (get only)

SO_DEBUG enables debugging in the underlying protocol modules. SO_REUSEADDR
indicates that the rules used in validating addresses supplied in a bind(2) call should allow
reuse of local addresses. SO_KEEPALIVE enables the periodic transmission of messages on
a connected socket. Should the connected party fail to respond to these messages, the con-
nection is considered broken and processes using the socket are notified via a SIGPIPE signal.
SO_DONTROUTE indicates that outgoing messages should bypass the standard routing facil-
ities. Instead, messages are directed to the appropriate network interface according to the net-
work portion of the destination address.

SO_LINGER controls the action taken when unsent messags are queued on socket and a
close(2) is performed. If the socket promises reliable delivery of data and SO_LINGER is set,
the system will block the process on the close attempt until it is able to transmit the data or
until it decides it is unable to deliver the information (a timeout period, termed the linger
interval, is specified in the setsockopt call when SO_LINGER is requested). If SO_LINGER
is disabled and a close is issued, the system will process the close in a manner that allows the
process to continue as quickly as possible.

The option SO_BROADCAST requests permission to send broadcast datagrams on the
socket. Broadcast was a privileged operation in earlier versions of the system. With proto-
cols that support out-of-band data, the SO_OOBINLINE option requests that out-of-band data
be placed in the normal data input queue as received; it will then be accessible with recv or
read calls without the MSG_OOB flag. SO_SNDBUF and SO_RCVBUF are options to
adjust the normal buffer sizes allocated for output and input buffers, respectively. The buffer
size may be increased for high-volume connections, or may be decreased to limit the possible
backlog of incoming data. The system places an absolute limit on these values. Finally,
SO_TYPE and SO_ERROR are options used only with setsockopt. SO_TYPE returns the
type of the socket, such as SOCK_STREAM; it is useful for servers that inherit sockets on
startup. SO_ERROR returns any pending error on the socket and clears the error status. It
may be used to check for asynchronous errors on connected datagram sockets or for other
asynchronous errors.

RETURN VALUE

A 0Ois returned if the call succeeds, -1 if it fails.

ERRORS

The call succeeds unless:

[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK] The argument s is a file, not a socket.

[ENOPROTOOPT] The option is unknown at the level indicated.

[EFAULT] The address pointed to by optval is not in a valid part of the process

address space. For getsockopt, this error may also be returned if
optlen is not in a valid part of the process address space.

Last change: March 1989 Iicon international, Inc.

GETSOCKOPT (2) SYSTEM CALLS GETSOCKOPT (2)

SEE ALSO
ioctl(2), socket(2), getprotoent(3N)

BUGS
Several of the socket options should be handled at lower levels of the system.

Ilcon International, Inc. Last change: March 1989 3

N

GETTIMEOFDAY (2) SYSTEM CALLS GETTIMEOFDAY (2)

NAME
gettimeofday, settimeofday - get/set date and time

SYNOPSIS
#include <sys/time.h>

gettimeofday(tp, tzp)
struct timeval *tp;
struct timezone *tzp;

settimeofday(tp, tzp)
struct timeval *tp;
struct timezone *tzp;

DESCRIPTION
The system’s notion of the current Greenwich time and the current time zone is obtained with
the gettimeofday call, and set with the settimeofday call. The time is expressed in seconds
and microseconds since midnight (O hour), January 1, 1970. The resolution of the system
clock is hardware dependent, and the time may be updated continuously or in ‘‘ticks.”” If tzp
is zero, the time zone information will not be returned or set.

The structures pointed to by tp and tzp are defined in <sys/time.h> as:

struct timeval {
long tv_sec; /* seconds since Jan. 1, 1970 */
long tv_usec; /* and microseconds */

}5

struct timezone {
int tz_minuteswest; /* of Greenwich */
int tz_dsttime; /* type of dst correction to apply */
3
The timezone structure indicates the local time zone (measured in minutes of time westward
from Greenwich), and a flag that, if nonzero, indicates that Daylight Saving time applies
locally during the appropriate part of the year. '

Only the super-user may set the time of day or time zone.

RETURN
A O return value indicates that the call succeeded. A -1 return value indicates an error
occurred, and in this case an error code is stored into the global variable errno.

ERRORS
The following error codes may be set in errno:
[EFAULT] An argument address referenced invalid memory.
[EPERM] A user other than the super-user attempted to set the time.
SEE ALSO

date(1), ctime(3)

Ilcon International, Inc. Last change: March 1989 1

LISTEN(2) SYSTEM CALLS LISTEN(2)

NAME
listen - listen for connections on a socket

SYNOPSIS
listen(s, backlog)
int s, backlog;

DESCRIPTION
To accept connections, a socket is first created with socket(2), a willingness to accept incom-
ing connections and a queue limit for incoming connections are specified with listen(2), and
then the connections are accepted with accept(2). The listen call applies only to sockets of
type SOCK_STREAM or SOCK_SEQPACKET.

The backlog parameter defines the maximum length the queue of pending connections may
grow to. If a connection request arrives with the queue full the client may receive an error
with an indication of ECONNREFUSED, or, if the underlying protocol supports retransmis-
sion, the request may be ignored so that retries may succeed.

RETURN VALUE

A 0 return value indicates success; -1 indicates an error.
ERRORS

The call fails if:

[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK] The argument s is not a socket.

[EOPNOTSUPP] The socket is not of a type that supports the operation listen.
SEE ALSO

accept(2), connect(2), socket(2)

BUGS
The backlog is currently limited (silently) to 5.

icon International, Inc. Last change: March 1989 1

READV (2) SYSTEM CALLS READV (2)

NAME
readv - read input

SYNOPSIS
#include <sys/types.h>
#include <sys/uio.h>

cc = readv(d, iov, iovent)
int cc, d;

struct iovec *iov;

int iovent;

DESCRIPTION
Readv performs the same action, but scatters the input data into the iovcnt buffers specified by
the members of the iov array: iov[0], iov[1], ..., iov[iovcnt - 1].

For readv, the iovec structure is defined as

struct iovec {
caddr_t iov_base;
int iov_len;
b
Each iovec entry specifies the base address and length of an area in memory where data
should be placed. Readv will always fill an area completely before proceeding to the next.

On objects capable of seeking, the read starts at a position given by the pointer associated
with d (see Iseek(2)). Upon return from read, the pointer is incremented by the number of
bytes actually read.

Objects that are not capable of seeking always read from the current position. The value of
the pointer associated with such an object is undefined.

Upon successful completion, readv returns the number of bytes actually read and placed in
the buffer. The system guarantees to read the number of bytes requested if the descriptor
references a normal file that has that many bytes left before the end-of-file, but in no other
case.

If the returned value is O, then end-of-file has been reached.

RETURN VALUE
If successful, the number of bytes actually read is returned. Otherwise, a -1 is returned and
the global variable errno is set to indicate the error.

FRRORS
Readv will fail if one or more of the following are true:
[EBADF] D is not a valid file or socket descriptor open for reading.
[EIO] An I/O error occurred while reading from the file system.
[EINTR] A read from a slow device was interrupted before any data arrived by the
delivery of a signal.
[EINVAL] The pointer associated with d was negative.

Icon International, Inc. Last change: March 1989 1

READV (2)

SYSTEM CALLS READV (2)

[EWOULDBLOCK]

The file was marked for non-blocking I/O, and no data were ready to be
read.

In addition, readv may return one of the following errors:

[EINVAL]
[EINVAL]
[EINVAL]
[EFAULT]

SEE ALSO

lovent was less than or equal to 0, or greater than 16.

One of the iov_len values in the iov array was negative.

The sum of the iov_len values in the iov array overflowed a 32-bit integer.
Part of the iov points outside the process’s allocated address space.

dup(2), fentl(2), open(2), pipe(2), select(2), socket(2), socketpair(2)

Last change: March 1989 Icon International, Inc.

)

RECV (2) SYSTEM CALLS RECV (2)

NAME
recv, recvfrom, recvmsg - receive a message from a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

cc = recv(s, buf, len, flags)
int cc, s;

char *buf;

int len, flags;

cc = recvfrom(s, buf, len, flags, from, fromlen)
int cc, s

char *buf;

int len, flags;

struct sockaddr *from;

int *fromlen;

cc = recvimsg(s, msg, flags)
int cc, s;

struct msghdr msg(];

int flags;

DESCRIPTION
Recv, recvfrom, and recvmsg are used to receive messages from a socket.

The recv call is normally used only on a connected socket (see connect(2)), while recvfrom
and recvmsg may be used to receive data on a socket whether it is in a connected state or not.

If from is non-zero, the source address of the message is filled in. Fromlen is a value-result
parameter, initialized to the size of the buffer associated with from, and modified on return to
indicate the actual size of the address stored there. The length of the message is returned in
cc. If a message is too long to fit in the supplied buffer, excess bytes may be discarded
depending on the type of socket the message is received from (see socket (2)).

If no messages are available at the socket, the receive call waits for a message to arrive,
unless the socket is nonblocking (see ioct!(2)) in which case a cc of -1 is returned with the
external variable ermo set to EWOULDBLOCK.

The select(2) call may be used to determine when more data arrives.
The flags argument to a recv call is formed by or’ing one or more of the values,

#define MSG_OOB 0x1l /* process out-of-band data */
#define MSG_PEEK 0x2 /* peek at incoming message */

The recvmsg call uses a msghdr structure to minimize the number of directly supplied param-
eters. This structure has the following form, as defined in <sys/socket.h>:

Icon International, Inc. Last change: March 1989 1

RECV (2) SYSTEM CALLS RECV (2)
N
struct msghdr { \\,/
caddr_t msg_name; /* optional address */
int msg_namelen; /* size of address */
struct iovec #*msg_iov; /#* scatter/gather array */
int msg_iovlen; /* # elements in msg_iov */
caddr_t msg_accrights; /* access rights sent/received */
int msg_accrightslen;
}:
Here msg_name and msg_namelen specify the destination address if the socket is uncon-
nected; msg_name may be given as a null pointer if no names are desired or required. The
msg_iov and msg_iovlen describe the scatter gather locations, as described in readv(2). A
buffer to receive any access rights sent along with the message is specified in msg_accrights,
which has length msg_accrightslen. Access rights are currently limited to file descriptors,
which each occupy the size of an int.
RETURN VALUE
These calls return the number of bytes received, or -1 if an error occurred.
ERRORS
The calls fail if:
[EBADF] The argument s is an invalid descriptor.
[ENOTSOCK] The argument s is not a socket. P
[EWOULDBLOCK] The socket is marked non-blocking and the receive operation would N
block.
[EINTR] The receive was interrupted by delivery of a signal before any data
was available for the receive.
[EFAULT] The data was specified to be received into a non-existent or protected
part of the process address space.
SEE ALSO
fentl(2), read(2), send(2), select(2), getsockopt(2), socket(2)
\\‘t‘/

Last change: March 1989 Ilcon International, Inc.

SELECT(2) SYSTEM CALLS ‘ SELECT (2)

NAME
select - synchronous I/0 multiplexing

SYNOPSIS
#include <sys/types.h>
#include <sys/time.h>

nfound = select(nfds, readfds, writefds, exceptfds, timeout)
int nfound, nfds;

fd_set *readfds, *writefds, *exceptfds;

struct timeval *timeout;

FD_SET(fd, &fdset)
FD_CLR(fd, &fdset)
FD_ISSET(fd, &fdset)
FD_ZERO(&fdset)
int fd;

fd_set fdset;

DESCRIPTION
Select examines the I/O descriptor sets whose addresses are passed in readfds, writefds, and
~exceptfds to see if some of their descriptors are ready for reading, are ready for writing, or
have an exceptional condition pending, respectively. The first nfds descriptors are checked in
each set; i.e. the descriptors from O through nfds-1 in the descriptor sets are examined. On
" return, select replaces the given descriptor sets with subsets consisting of those descriptors
‘ that are ready for the requested operation. The total number of ready descriptors in all the sets
is returned in nfound.

The descriptor sets are stored as bit fields in arrays of integers. The following macros are pro-
vided for manipulating such descriptor sets: FD_ZERO(&fdset) initializes a descriptor set
fdset 1o the null set. FD SET(fd, &fdset) includes a particular descriptor fd in fdset.
FD_CLR(fd, &fdset) removes fd from fdset. FD _ISSET(fd, &fdset) is nonzero if fd is a
member of fdset, zero otherwise. The behavior of these macros is undefined if a descriptor
value is less than zero or greater than or equal to FD_SETSIZE, which is normally at least
equal to the maximum number of descriptors supported by the system.

If timeout is a non-zero pointer, it specifies a maximum interval to wait for the selection to
complete. If timeout is a zero pointer, the select blocks indefinitely. To affect a poll, the
timeout argument should be non-zero, pointing to a zero-valued timeval structure.

Any of readfds, writefds, and exceptfds may be given as zero pointers if no descriptors are of
interest.

RETURN VALUE
Select returns the number of ready descriptors that are contained in the descriptor sets, or -1 if
an error occurred. If the time limit expires then select returns 0. If select returns with an
error, including one due to an interrupted call, the descriptor sets will be unmodified.

(

Icon International, Inc. Last change: March 1989 1

SELECT(2) SYSTEM CALLS SELECT(2)

AN
ERRORS N
An error return from select indicates:
[EBADF] One of the descriptor sets specified an invalid descriptor.
[EINTR] A signal was delivered before the time limit expired and before any of the
selected events occurred.
[EINVAL] The specified time limit is invalid. One of its components is negative or
too large.
SEE ALSO
accept(2), connect(2), read(2), write(2), recv(2), send(2)
A
\\k’/

2 Last change: March 1989 lcon International, Inc.

SEND (2) SYSTEM CALLS SEND (2)

NAME
send, sendto, sendmsg - send a message from a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

cc = send(s, msg, len, flags)
int cc, s;

char *msg;

int len, flags;

cc = sendto(s, msg, len, flags, to, tolen)
int cc, s;

char *msg;

int len, flags;

struct sockaddr *to;

int tolen;

cc = sendmsg(s, msg, flags)
int cc, s;

struct msghdr msg[];

int flags;

DESCRIPTION
Send, sendto, and sendmsg are used to transmit a message to another socket. Send may be
used only when the socket is in a connected state, while sendto and sendmsg may be used at
any time.
The address of the target is given by to with tolen specifying its size. The length of the mes-
sage is given by len. If the message is too long to pass atomically through the underlying pro-
tocol, then the error EMSGSIZE is returned, and the message is not transmitted.

No indication of failure to deliver is implicit in a send. Return values of -1 indicate some
locally detected errors.

If no messages space is available at the socket to hold the message to be transmitted, then
send normally blocks, unless the socket has been placed in non-blocking I/O mode. The
select(2) call may be used to determine when it is possible to send more data.

The flags parameter may include one or more of the following:

#define MSG_OOB 0x1l /* process out-of-band data */
#define MSG_DONTROUTE O0x4 /* bypass routing, use direct interface */

The flag MSG_OOB is used to send ‘‘out-of-band’’ data on sockets that support this notion
(e.g. SOCK_STREAM); the underlying protocol must also support ‘‘out-of-band’’ data.
MSG_DONTROUTE is usually used only by diagnostic or routing programs.

See recv(2) for a description of the msghdr structure.

RETURN VALUE
The call returns the number of characters sent, or -1 if an error occurred.

Icon International, Inc. Last change: March 1989 1

SEND(2)

ERRORS

[EBADF]
[ENOTSOCK]
[EFAULT]
[EMSGSIZE]

(EWOULDBLOCK]
[ENOBUFS]

[ENOBUFS]

SEE ALSO
fentl(2), recv(2), select(2), getsockopt(2), socket(2), write(2)

SYSTEM CALLS SEND(2)

An invalid descriptor was specified.
The argument s is not a socket.
An invalid user space address was specified for a parameter.

The socket requires that message be sent atomically, and the size of
the message to be sent made this impossible.

The socket is marked non-blocking and the requested operation
would block.

The system was unable to allocate an internal buffer. The operation
may succeed when buffers become available.

The output queue for a network interface was full. This generally
indicates that the interface has stopped sending, but may be caused
by transient congestion.

Last change: March 1989 lcon International, Inc.

()

O

SHUTDOWN(2) SYSTEM CALLS SHUTDOWN (2)

NAME
shutdown - shut down part of a full-duplex connection

SYNOPSIS
shutdown(s, how)
int s, how;

DESCRIPTION
The shutdown call causes all or part of a full-duplex connection on the socket associated with
s to be shut down. If how is 0, then further receives will be disallowed. If how is 1, then
further sends will be disallowed. If how is 2, then further sends and receives will be disal-

lowed.
DIAGNOSTICS

A 0 is returned if the call succeeds, -1 if it fails.
ERRORS

The call succeeds unless:

[EBADF] S is not a valid descriptor.

[ENOTSOCK] Sis a file, not a socket.
[ENOTCONN] The specified socket is not connected.

SEE ALSO
connect(2), socket(2)

Icon International, Inc. Last change: March 1989 1

SOCKET(2) SYSTEM CALLS SOCKET (2)

NAME
socket - create an endpoint for communication

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

s = socket(domain, type, protocol)
int s, domain, type, protocol;

DESCRIPTION
Socket creates an endpoint for communication and returns a descriptor.

The domain parameter specifies a communications domain within which communication will
take place; this selects the protocol family which should be used. The protocol family gen-
erally is the same as the address family for the addresses supplied in later operations on the
socket. These families are defined in the include file <sys/socket.h>. The currently under-
stood formats are

PF_UNIX (UNIX internal protocols),
PF_INET (ARPA Internet protocols),

The socket has the indicated type, which specifies the semantics of communication. Currently
defined types are:

SOCK_STREAM
SOCK_DGRAM
SOCK_RAW
SOCK_SEQPACKET
SOCK_RDM

A SOCK_STREAM type provides sequenced, reliable, two-way connection based byte
streams. An out-of-band data transmission mechanism may be supported. A
SOCK_DGRAM socket supports datagrams (connectionless, unreliable messages of a fixed
(typically small) maximum length). SOCK_RAW sockets provide access to internal network
protocols and interfaces. The types SOCK_RAW, which is available only to the super-user, is
not described here.

The protocol specifies a particular protocol to be used with the socket. Normally only a sin-
gle protocol exists to support a particular socket type within a given protocol family. How-
ever, it is possible that many protocols may exist, in which case a particular protocol must be
specified in this manner. The protocol number to use is particular to the ‘‘communication
domain’’ in which communication is to take place.

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to pipes. A stream
socket must be in a connected state before any data may be sent or received onit. A connec-
tion to another socket is created with a connect(2) call. Once connected, data may be
transferred using read(2) and write(2) calls or some variant of the send(2) and recv(2) calls.
When a session has been completed a close(2) may be performed. Out-of-band data may also
be transmitted as described in send(2) and received as described in recv(2).

The communications protocols used to implement a SOCK_STREAM insure that data is not
lost or duplicated. If a piece of data for which the peer protocol has buffer space cannot be
successfully transmitted within a reasonable length of time, then the connection is considered
broken and calls will indicate an error with -1 returns and with ETIMEDOUT as the specific

lcon International, Inc. Last change: March 1989 1

N

SOCKET(2) SYSTEM CALLS SOCKET(2)

code in the global variable ermo. The protocols optionally keep sockets ‘‘warm’’ by forcing
transmissions roughly every minute in the absence of other activity. An error is then indi-
cated if no response can be elicited on an otherwise idle connection for a extended period
(e.g. S minutes). A SIGPIPE signal is raised if a process sends on a broken stream,; this causes
naive processes, which do not handle the signal, to exit.

SOCK_DGRAM and SOCK_RAW sockets allow sending of datagrams to correspondents
named in send(2) calls. Datagrams are generally received with recvfrom(2), which returns
the next datagram with its return address.

The operation of sockets is controlled by socket level options. These options are defined in
the file <sys/socket.h>. Setsockopt(2) and getsockopt(2) are used to set and get options,

respectively.
RETURN VALUE
A -1 is returned if an error occurs, otherwise the return value is a descriptor referencing the
socket.
ERRORS
The socket call fails if:
[EPROTONOSUPPORT]
The protocol type or the specified protocol is not supported within
this domain.
[EMFILE] The per-process descriptor table is full.
{ [ENFILE] The system file table is full.
[EACCESS] Permission to create a socket of the specified type and/or protocol is
denied.
[ENOBUFS] Insufficient buffer space is available. The socket cannot be created
until sufficient resources are freed.
SEE ALSO

accept(2), bind(2), connect(2), getsockname(2), getsockopt(2), ioctl(2), listen(2), read(2),
recv(2), select(2), send(2), shutdown(2), socketpair(2), write(2)

‘“‘Appendix F: An Introductory 4.3BSD Interprocess Communication Tutorial.”” ‘‘Appendix
G: An Advanced 4.3BSD Interprocess Communication Tutorial.”’

2 Last change: March 1989 Ilcon International, Inc.

SOCKETPAIR (2) SYSTEM CALLS SOCKETPAIR (2)

NAME
socketpair - create a pair of connected sockets

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

socketpair(d, type, protocol, sv)
int d, type, protocol;
int sv[2];

DESCRIPTION
The socketpair call creates an unnamed pair of connected sockets in the specified domain d,
of the specified zype, and using the optionally specified protocol. The descriptors used in
referencing the new sockets are returned in sv[0] and sv[1]. The two sockets are indistin-
guishable.

DIAGNOSTICS
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

[EMFILE] Too many descriptors are in use by this process. J
[EAFNOSUPPORT] The specified address family is not supported on this machine.

[EPROTONOSUPPORT]
The specified protocol is not supported on this machine.

[EOPNOSUPPORT] The specified protocol does not support creation of socket pairs.

[EFAULT] The address sv does not specify a valid part of the process address
space.

SEE ALSO
read(2), write(2), pipe(2)

BUGS
This call is currently implemented only for the UNIX domain.

Icon International, Inc. Last change: March 1989 1

£

VFORK (2) SYSTEM CALLS VFORK (2)

NAME
vfork - spawn new process in a virtual memory efficient way

SYNOPSIS
pid = vfork()
int pid;

DESCRIPTION
Vfork can be used to create new processes without fully copying the address space of the old
process, which is horrendously inefficient in a paged environment. It is useful when the pur-
pose of fork(2) would have been to create a new system context for an execve. Vfork differs
from fork in that the child borrows the parent’s memory and thread of control until a call to
execve (2) or an exit (either by a call to exit(2) or abnormally.) The parent process is
suspended while the child is using its resources.

Vfork returns 0 in the child’s context and (later) the pid of the child in the parent’s context.

Vfork can normally be used just like fork. It does not work, however, to return while running
in the childs context from the procedure that called vfork since the eventual return from vfork
would then return to a no longer existent stack frame. Be careful, also, to call _exit rather
than exit if you can’t execve, since exit will flush and close standard I/O channels, and thereby
mess up the parent processes standard I/O data structures. (Even with fork it is wrong to call
exit since buffered data would then be flushed twice.)

SEE ALSO
fork(2), execve(2), sigvec(2), wait(2),

DIAGNOSTICS
Same as for fork.

BUGS
This system call will be eliminated when proper system sharing mechanisms are imple-
mented. Users should not depend on the memory sharing semantics of vfork as it will, in that
case, be made synonymous to fork.

To avoid a possible deadlock situation, processes that are children in the middle of a vfork are
never sent SIGTTOU or SIGTTIN signals; rather, output or ioctls are allowed and input
attempts result in an end-of-file indication.

Icon International, Inc. Last change: March 1989 1

WRITEV (2) SYSTEM CALLS WRITEV (2)

NAME
writev - write output

SYNOPSIS
#include <sys/types.h>
#include <sys/uio.h>

cc = writev(d, iov, iovent)
int cc, d;

struct iovec *iov;

int iovent;

DESCRIPTION

Writev performs the same action, but gathers the output data from the iovcnt buffers specified
by the members of the iov array: iov[0], iov[1], ..., iov[iovent - 1].

For writev, the iovec structure is defined as

struct iovec {
caddr_t iov_base;
int iov_len;
B
Each iovec entry specifies the base address and length of an area in memory from which data
should be written. Writev will always write a complete area before proceeding to the next.

On objects capable of seeking, the write starts at a position given by the pointer associated
with d, see Iseek(2). Upon return from write, the pointer is incremented by the number of
bytes actually written.

Objects that are not capable of seeking always write from the current position. The value of
the pointer associated with such an object is undefined.

If the real user is not the super-user, then write clears the set-user-id bit on a file. This
prevents penetration of system security by a user who ‘‘captures’’ a writable set-user-id file
owned by the super-user.

When using non-blocking I/O on objects such as sockets that are subject to flow control, write
and writev may write fewer bytes than requested; the return value must be noted, and the
remainder of the operation should be retried when possible.

RETURN VALUE

Upon successful completion the number of bytes actually written is returned. Otherwise a -1
is returned and the global variable errno is set to indicate the error.

ERRORS

Write and writev will fail and the file pointer will remain unchanged if one or more of the fol-
lowing are true:

[EBADF] D is not a valid descriptor open for writing.

[EPIPE] An attempt is made to write to a pipe that is not open for reading by any
process.

[EPIPE] An attempt is made to write to a socket of type SOCK_STREAM that is

Ilcon International, Inc. Last change: March 1989 1

WRITEV (2) SYSTEM CALLS WRITEV (2)

not connected to a peer socket.

[EFBIG] An attempt was made to write a file that exceeds the process’s file size limit
or the maximum file size.

[EFAULT] Part of iov or data to be written to the file points outside the process’s allo-
cated address space.

[EINVAL] The pointer associated with d was negative.

[ENOSPC] There is no free space remaining on the file system containing the file.

[EDQUOT] The user’s quota of disk blocks on the file system containing the file has
been exhausted.

[EIO] An 1/O error occurred while reading from or writing to the file system.

[EWOULDBLOCK]
The file was marked for non-blocking I/O, and no data could be written
immediately.

In addition, writev may return one of the following errors:

[EINVAL] Tovent was less than or equal to 0, or greater than 16.

[EINVAL] One of the iov_len values in the iov array was negative.

[EINVAL] The sum of the iov_len values in the iov array overflowed a 32-bit integer.
SEE ALSO

fentl(2), 1seek(2), open(2), pipe(2), select(2)

2 Last change: March 1989 Ilcon International, Inc.

RCMD (3) SUBROUTINES RCMD (3)

NAME

rcmd, rresvport, ruserok - routines for returning a stream to a remote command

SYNOPSIS

rem = rcmd(ahost, inport, locuser, remuser, cmd, fd2p);
char **ahost;

int inport;

char *locuser, *remuser, *cmd;

int *fd2p;

s = rresvport(port);

int *port;

ruserok(rhost, superuser, ruser, luser);
char *rhost;

int superuser;

char *ruser, *luser;

DESCRIPTION

Rcmd is a routine used by the super-user to execute a command on a remote machine using an
authentication scheme based on reserved port numbers. Rresvport is a routine which returns a
descriptor to a socket with an address in the privileged port space. Ruserok is a routine used
by servers to authenticate clients requesting service with remd. All three functions are
present in the same file and are used by the rshd(1M) server (among others).

Rcmd looks up the host *ahost using gethostbyname (3N), returning -1 if the host does not
exist. Otherwise *ghost is set to the standard name of the host and a connection is established
to a server residing at the well-known Internet port inport.

If the connection succeeds, a socket in the Internet domain of type SOCK_STREAM is
returned to the caller, and given to the remote command as stdin and stdout. If fd2p is non-
zero, then an auxiliary channel to a control process will be set up, and a descriptor for it will
be placed in *fd2p. The control process will return diagnostic output from the command (unit
2) on this channel, and will also accept bytes on this channel as being UNIX signal numbers,
to be forwarded to the process group of the command. If f@2p is O, then the stderr (unit 2 of
the remote command) will be made the same as the stdout and no provision is made for send-
ing arbitrary signals to the remote process, although you may be able to get its attention by
using out-of-band data.

The protocol is described in detail in rshd(1M).

The rresvport routine is used to obtain a socket with a privileged address bound to it. This
socket is suitable for use by rcmd and several other routines. Privileged Internet ports are
those in the range 0 to 1023. Only the super-user is allowed to bind an address of this sort to a
socket.

Ruserok takes a remote host’s name, as returned by a gethostbyaddr (3N) routine, two user
names and a flag indicating whether the local user’s name is that of the super-user. It then
checks the files /etc/hosts.equiv and, possibly, .rhosts in the current working directory
(normally the local user’s home directory) to see if the request for service is allowed. A 0 is
returned if the machine name is listed in the ‘‘hosts.equiv’’ file, or the host and remote user
name are found in the *‘.rhosts’’ file; otherwise ruserok returns -1. If the superuser flag is 1,
the checking of the ‘‘host.equiv’’ file is bypassed. If the local domain (as obtained from
gethostname (2)) is the same as the remote domain, only the machine name need be specified.

Icon International, Inc. Last change: March 1989 1

RCMD (3) SUBROUTINES RCMD (3)

SEE ALSO
rlogin(1C), rsh(1C), intro(2), rexec(3), rexecd(1M), rlogind(1M), rshd(1M)

DIAGNOSTICS
Rcemd returns a valid socket descriptor on success. It returns -1 on error and prints a diagnos-
tic message on the standard error.

Rresvport returns a valid, bound socket descriptor on success. It returns -1 on error with the
global value errno set according to the reason for failure. The error code EAGAIN is over-
loaded to mean *‘All network ports in use.”’

2 Last change: March 1989 Icon International, Inc.

REXEC(3) SUBROUTINES REXEC(3)

NAME
Texec - return stream to a remote command

SYNOPSIS
rem = rexec(ahost, inport, user, passwd, cmd, fd2p);
char **ahost;
int inport;
char *user, *passwd, *cmd;
int *fd2p;

DESCRIPTION

Rexec 100ks up the host *ahost using gethostbyname (3N), returning -1 if the host does not
exist. Otherwise *ahost is set to the standard name of the host. If a username and password
are both specified, then these are used to authenticate to the foreign host; otherwise the
environment and then the user’s .netrc file in his home directory are searched for appropriate
information. If all this fails, the user is prompted for the information.

The port inport specifies which well-known DARPA Internet port to use for the connection;
the call *‘getservbyname(“exec", "tcp")’’ (see getservent(3N)) will return a pointer to a struc-
ture, which contains the necessary port. The protocol for connection is described in detail in
rexecd (1M).

If the connection succeeds, a socket in the Internet domain of type SOCK_STREAM is
returned to the caller, and given to the remote command as stdin and stdout. If fd2p is non-
zero, then an auxiliary channel to a control process will be setup, and a descriptor for it will
be placed in *fd2p. The control process will return diagnostic output from the command (unit
2) on this channel, and will also accept bytes on this channel as being UNIX signal numbers,
to be forwarded to the process group of the command. The diagnostic information returned
does not include remote authorization failure, as the secondary connection is set up after
authorization has been verified. If fd2p is 0, then the stderr (unit 2 of the remote command)
will be made the same as the stdout and no provision is made for sending arbitrary signals to
the remote process, although you may be able to get its attention by using out-of-band data.

SEE ALSO
rcmd(3), rexecd(1M)

icon International, Inc. Last change: March 1989 1

/TN

N

INTRO (3N) NETWORK FUNCTIONS INTRO(3N)

NAME
intro — introduction to the networking library

SYNOPSIS
cc [flags] file [...] -Inet [...]
DESCRIPTION
The networking library contains the following facilities:

Routine Man Page Description
endhostent GETHOSTBYNAME (3N) end network host entry
endnetent GETNETENT (3N) end network entry
endprotoent GETPROTOENT (3N) end protocol entry
endservent GETSERVENT (3N) end service entry
htonl BYTEORDER (3N) convert host and network byte order values
htons BYTEORDER (3N) convert host and network byte order values
gethostbyaddr GETHOSTBYNAME (3N) get network host entry by address
gethostbyname GETHOSTBYNAME (3N) get network host entry by name
gethostent GETHOSTBYNAME (3N) get network host entry
getnetbyaddr GETNETENT (3N) get network entry by address
getnetbyname GETNETENT (3N) get network entry by name
getnetent GETNETENT (3N) get network entry
getprotobyname GETPROTOENT (3N) get protocol entry by name
getprotobynumber GETPROTOENT (3N) get protocol entry by number
getprotoent GETPROTOENT (3N) get protocol entry
getservbyname GETSERVENT (3N) get service entry by name
getservbyport GETSERVENT (3N) get service entry by port
getservent GETSERVENT (3N) get service entry
herror GETHOSTBYNAME (3N) get network host entry error message
inet_addr INET (3N) Internet address manipulation routine
inet_lnaof INET (3N) Internet address manipulation routine
inet_makeaddr INET (3N) Internet address manipulation routine
inet_netof INET (3N) Internet address manipulation routine
inet_network INET (3N) Internet address manipulation routine
inet_ntoa INET (3N) Internet address manipulation routine
ntohl BYTEORDER (3N) convert host and network byte order values
ntohs BYTEORDER (3N) convert host and network byte order values
sethostent GETHOSTBYNAME (3N) set network host entry
setnetent GETNETENT (3N) set network entry
setprotoent GETPROTOENT (3N) set protocol entry
setservent GETSERVENT (3N) set service entry

The above synopsis applies to all of the networking library facilities. Please note this as you
refer to the man pages and use the facilities in your networking routines.

Icon International, Inc. Last change: March 1989 1

BYTEORDER (3N) NETWORK FUNCTIONS BYTEORDER (3N)

NAME
htonl, htons, ntohl, ntohs - convert values between host and network byte order

SYNOPSIS
#include <sys/types.h>
#include <netinet/in.h>

netlong = htonl(hostlong);
u_long netlong, hostlong;

netshort = htons(hostshort);
u_short netshort, hostshort;

hostlong = ntohl(netlong);
u_long hostlong, netlong;

hostshort = ntohs(netshort);
u_short hostshort, netshort;

DESCRIPTION
These routines convert 16 and 32 bit quantities between network byte order and host byte

order. On machines such as ICON, these routines are defined as null macros in the include
file <netinet/in.h>.

These routines are most often used in conjunction with Internet addresses and ports as
returned by gethostbyname (3N) and getservent (3N).

SEE ALSO
gethostbyname(3N), getservent(3N)

Icon International, Inc. Last change: March 1989 1

GETHOSTBYNAME ((3N) NETWORK FUNCTIONS GETHOSTBYNAME (3N)

NAME

gethostbyname, gethostbyaddr, gethostent, sethostent, endhostent, herror - get network host

entry

SYNOPSIS
#include <netdb.h>

extern int h_errno;

struct hostent *gethostbyname(name)
char *name;

struct hostent *gethostbyaddr(addr, len, type)

char *addr; int len, type;
struct hostent *gethostent()

sethostent(stayopen)
int stayopen;

endhostent()

herror(string)
char #*string;

DESCRIPTION

Gethostbyname and gethostbyaddr each return a pointer to an object with the following struc-
ture describing an internet host referenced by name or by address, respectively. This structure
contains either the information obtained from the name server, named(1M), or broken-out
fields from a line in /etc/hosts. If the local name server is not running these routines do a

lookup in /etc/hosts .

struct hostent {
char *h name; /*
char **h_aliases; /*
int h_addrtype; /*
int h_length; /*
char **h_addr_list; /*

b
#defineh_addr h_addr_list[0]/*

The members of this structure are:

official name of host */

alias list */

host address type */

length of address */

list of addresses from name server */

address, for backward compatibility */

h_name Official name of the host.

h_aliases A zero terminated array of alternate names for the host.
h_addrtype The type of address being returned; currently always AF_INET.
h_length The length, in bytes, of the address.

h_addr_list A zero terminated array of network addresses for the host. Host
addresses are returned in network byte order.
h_addr The first address in h_addr_list; this is for backward compatiblity.

When using the nameserver, gethostbyname will search for the named host in the current
domain and its parents unless the name ends in a dot. If the name contains no dot, and if the
environment variable ‘‘HOSTALIASES’’ contains the name of an alias file, the alias file will
first be searched for an alias matching the input name. See hostname(5) for the domain search

lcon International, Inc. Last change: March 1989 1

GETHOSTBYNAME (3N) NETWORK FUNCTIONS GETHOSTBYNAME (3N)

procedure and the alias file format.

Sethostent may be used to request the use of a connected TCP socket for queries. If the stayo-
pen flag is non-zero, this sets the option to send all queries to the name server using TCP and
to retain the connection after each call to gethostbyname or gethostbyaddr. Otherwise,
queries are performed using UDP datagrams.

Endhostent closes the TCP connection.

DIAGNOSTICS

FILES

Error return status from gethostbyname and gethostbyaddr is indicated by return of a null
pointer. The external integer h_errno may then be checked to see whether this is a temporary
failure or an invalid or unknown host. The routine herror can be used to print an error mes-
sage describing the failure. If its argument string is non-NULL, it is printed, followed by a
colon and a space. The error message is printed with a trailing newline.

h_errno can have the following values:
HOST_NOT_FOUND No such host is known.

TRY_AGAIN This is usually a temporary error and means that the local
server did not receive a response from an authoritative
server. A retry at some later time may succeed.

NO_RECOVERY Some unexpected server failure was encountered. This is a
non-recoverable error.
NO_DATA The requested name is valid but does not have an IP address;

this is not a temporary error. This means that the name is
known to the name server but there is no address associated
with this name. Another type of request to the name server
using this domain name will result in an answer; for exam-
ple, a mail-forwarder may be registered for this domain.

Jetc/hosts

SEE ALSO

resolver(3), hosts(4), hostname(5), named(1M)

CAVEAT

BUGS

Gethostent is defined, and sethostent and endhostent are redefined, when libc is built to use
only the routines to lookup in /etc/hosts and not the name server.

Gethostent reads the next line of /etc/hosts, opening the file if necessary.

Sethostent is redefined to open and rewind the file. If the stayopen argument is non-zero, the
hosts data base will not be closed after each call to gethostbyname or gethostbyaddr. Endhos-
tent is redefined to close the file.

All information is contained in a static area so it must be copied if it is to be saved. Only the
Internet address format is currently understood.

Last change: March 1989 Icon International, Inc.

b

GETNETENT(3N) NETWORK FUNCTIONS GETNETENT(3N)

NAME

getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent - get network entry

SYNOPSIS

#include <netdb.h>
struct netent *getnetent()

struct netent *getnetbyname(name)
char *name;

struct netent *getnetbyaddr(net, type)
long net;

int type;

setnetent(stayopen)

int stayopen;

endnetent()

DESCRIPTION

FILES

Getnetent , getnetbyname , and getnetbyaddr each return a pointer to an object with the follow-
ing structure containing the broken-out fields of a line in the network data base, /etc/networks .

struct netent {
char *n_name; /* official name of net */
char **n_aliases; /* alias list */
int n_addrtype; /* net number type */
unsigned long n_net; /* net number */

}:

The members of this structure are:
n_name The official name of the network.
n_aliases A zero terminated list of alternate names for the network.
n_addrtype The type of the network number returned; currently only AF_INET.

n_net The network number. Network numbers are returned in machine byte
order.

Getnetent reads the next line of the file, opening the file if necessary.

Setnetent opens and rewinds the file. If the stayopen flag is non-zero, the net data base will
not be closed after each call to getnetbyname or getnetbyaddr .

Endnetent closes the file.

Getnetbyname and getnetbyaddr sequentially search from the beginning of the file until a
matching net name or net address and type is found, or until EOF is encountered. Network
numbers are supplied in host order.

Jetc/networks

Icon International, Inc. Last change: March 1989 1

GETNETENT(3N) NETWORK FUNCTIONS GETNETENT(3N)

SEE ALSO N
networks(4)

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

BUGS
All information is contained in a static area so it must be copied if it is to be saved. Only
Internet network numbers are currently understood. Expecting network numbers to fit in no
more than 32 bits is probably naive.

2 Last change: March 1989 lcon International, Inc.

GETPROTOENT(3N) NETWORK FUNCTIONS GETPROTOENT(3N)

NAME
getprotoent, getprotobynumber, getprotobyname, setprotoent, endprotoent - get protocol entry

SYNOPSIS
#include <netdb.h>

struct protoent *getprotoent()

struct protoent *getprotobyname(name)
char *name;

struct protoent *getprotobynumber(proto)
int proto;

setprotoent(stayopen)

int stayopen

endprotoent()

DESCRIPTION
Getprotoent, getprotobyname, and getprotobynumber each return a pointer to an object with
the following structure containing the broken-out fields of a line in the network protocol data
base, /etc/protocols.

struct protoent {
char *p name; /* official name of protocol */
char **p aliases; /* alias list */
int p_proto; /* protocol number */

}:

The members of this structure are:
p_name The official name of the protocol.
p_aliases A zero terminated list of alternate names for the protocol.
p_proto The protocol number.

Getprotoent reads the next line of the file, opening the file if necessary.

Setprotoent opens and rewinds the file. If the stayopen flag is non-zero, the net data base will
not be closed after each call to getprotobyname or getprotobynumber .

Endprotoent closes the file.

Getprotobyname and getprotobynumber sequentially search from the beginning of the file

until a matching protocol name or protocol number is found, or until EOF is éncountered.
FILES

fetc/protocols

SEE ALSO
protocols(4)

Icon International, Inc. Last change: March 1989 1

GETPROTOENT(3N) NETWORK FUNCTIONS GETPROTOENT (3N)

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

BUGS
All information is contained in a static area so it must be copied if it is to be saved. Only the

Internet protocols are currently understood.

2 Last change: March 1989 Icon International, Inc.

GETSERVENT(3N) NETWORK FUNCTIONS GETSERVENT(3N)

NAME

getservent, getservbyport, getservbyname, setservent, endservent - get service entry

SYNOPSIS

#include <netdb.h>
struct servent *getservent()

struct servent *getservbyname(name, proto)
char *name, *proto;

struct servent *getservbyport(port, proto)
int port; char *proto;

setservent(stayopen)
int stayopen

endservent()

DESCRIPTION

FILES

Getservent, getservbyname , and getservbyport each return a pointer to an object with the fol-
lowing structure containing the broken-out fields of a line in the network services data base,
letc/services .

struct servent {
char *s_name; /* official name of service */
char **s aliases; /* alias list */
int s_port; /* port service resides at */
char *s proto; /* protocol to use */

};
The members of this structure are:
s_name The official name of the service.
s_aliases A zero terminated list of alternate names for the service.

Ss_port The port number at which the service resides. Port numbers are returned
in network byte order.

s_proto The name of the protocol to use when contacting the service.
Getservent reads the next line of the file, opening the file if necessary.

Setservent opens and rewinds the file. If the stayopen flag is non-zero, the net data base will
not be closed after each call to getservbyname or .IR getservbyport .

Endservent closes the file.

Getservbyname and getservbyport sequentially search from the beginning of the file until a
matching protocol name or port number is found, or until EOF is encountered. If a protocol
name is also supplied (non-NULL), searches must also match the protocol.

Jetc/services

Icon International, Inc. Last change: March 1989 1

GETSERVENT(3N) NETWORK FUNCTIONS GETSERVENT (3N)

SEE ALSO N
getprotoent(3N), services(4)

DIAGNOSTICS
Null pointer (0) returned on EQF or error.

BUGS
All information is contained in a static area so it must be copied if it is to be saved. Expecting
port numbers to fit in a 32 bit quantity is probably naive.

2 Last change: March 1989 icon International, Inc.

C

INET (

NAME

3N) NETWORK FUNCTIONS INET (3N)

inet_addr, inet_network, inet_ntoa, inet_makeaddr, inet_Inaof, inet_netof - Internet address
manipulation routines ‘

SYNOPSIS

#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

unsigned long inet_addr(cp)
char *cp;

unsigned long inet_network(cp)

char *cp;

char *inet_ntoa(in)

struct in_addr in;

struct in_addr inet_makeaddr(net, Ina)
int net, Ina;

int inet_Inaof(in)

struct in_addr in;

int inet_netof(in)

struct in_addr in;

DESCRIPTION

The routines inet_addr and inet_network each interpret character strings representing
numbers expressed in the Internct standard ‘‘.”’ notation, returning numbers suitable for use
as Internet addresses and Internet network numbers, respectively. The routine inet_ntoa takes
an Internet address and returns an ASCII string representing the address in ‘*.”” notation. The
routine inet_makeaddr takes an Internet network number and a local network address and
constructs an Internet address from it. The routines inet_netof and inet_Inaof break apart
Internet host addresses, returning the network number and local network address part, respec-
tively.

All Internet address are returned in network order (bytes ordered from left to right). All net-
work numbers and local address parts are returned as machine format integer values.

INTERNET ADDRESSES

Values specified using the **.”’ notation take one of the following forms:

ab.cd

ab.c

ab

a
When four parts are specified, each is interpreted as a byte of data and assigned, from left to
right, to the four bytes of an Internet address.

When a three part address is specified, the last part is interpreted as a 16-bit quantity and
placed in the right most two bytes of the network address. This makes the three part address
format convenient for specifying Class B network addresses as ‘‘128.net.host’’.

icon International, Inc. Last change: March 1989 1

INET (3N) NETWORK FUNCTIONS INET(3N)

When a two part address is supplied, the last part is interpreted as a 24-bit quantity and placed
in the right most three bytes of the network address. This makes the two part address format
convenient for specifying Class A network addresses as ‘‘net.host’’.

When only one part is given, the value is stored directly in the network address without any
byte rearrangement.
All numbers supplied as ‘‘parts’” in a *‘.”’ notation may be decimal, octal, or hexadecimal, as

specified in the C language (i.e., a leading Ox or OX implies hexadecimal; otherwise, a leading
0 implies octal; otherwise, the number is interpreted as decimal).

SEE ALSO
gethostbyname(3N), getnetent(3N), hosts(4), networks(4),

DIAGNOSTICS
The value -1 is returned by inet_addr and inet_network for malformed requests.

BUGS
A simple way to specify Class C network addresses in a manner similar to that for Class B
and Class A is needed. The string returned by inet_ntoa resides in a static memory area.
Inet_addr should return a struct in_addr.

2 Last change: March 1989 Icon International, Inc.

ALIASES (4) FILE FORMATS ALIASES (4)

NAME
aliases - aliases file for sendmail

SYNOPSIS
fusr/lib/aliases

DESCRIPTION
This file describes user id aliases used by /usr/lib/sendmail. 1t is formatted as a series of lines
of the form
name: name_1l, name2, name_3, ...
The name is the name to alias, and the name_n are the aliases for that name. Lines beginning
with white space are continuation lines. Lines beginning with ‘#’ are comments.

Aliasing occurs only on local names. Loops can not occur, since no message will be sent to
any person more than once.

After aliasing has been done, local and valid recipients who have a ‘‘.forward’’ file in their
home directory have messages forwarded to the list of users defined in that file.

This is only the raw data file; the actual aliasing information is placed into a binary format in
the files /usr/lib/aliases.dir and /usr/lib/aliases.pag using the program newaliases(1). A
newaliases command should be executed each time the aliases file is changed for the change
to take effect.

SEE ALSO
newaliases(1), sendmail(1M)
SENDMALIL Installation and Operation Guide.
SENDMAIL An Internetwork Mail Router.

BUGS
Because of restrictions in the database routines, a single alias cannot contain more than about
1000 bytes of information. You can get longer aliases by ‘‘chaining’’; that is, make the last
name in the alias be a dummy name which is a continuation alias. :

Icon International, Inc. Last change: March 1989 1

HOSTS (4) FILE FORMATS HOSTS (4)

NAME

hosts - host name data base

DESCRIPTION

FILES

The hosts file contains information regarding the known hosts on the DARPA Internet. For
each host a single line should be present with the following information:

official host name
Internet address
aliases

Items are separated by any number of blanks and/or tab characters. A *‘#’’ indicates the
beginning of a comment; characters up to the end of the line are not interpreted by routines
which search the file. This file is normally created from the official host data base maintained
at the Network Information Control Center (NIC), though local changes may be required to
bring it up to date regarding unofficial aliases and/or unknown hosts.

Network addresses are specified in the conventional *‘.’’ notation using the inet_addr() rou-
tine from the Internet address manipulation library, inet(3N). Host names may contain any
printable character other than a field delimiter, newline, or comment character.

fetc/hosts

SEE ALSO

BUGS

gethostent(3N)

A name server should be used instead of a static file. A binary indexed file format should be
available for fast access.

icon International, Inc. Last change: March 1989 1

NETWORKS (4) FILE FORMATS NETWORKS (4)

NAME
networks - network name data base

DESCRIPTION
The networks file contains information regarding the known networks which comprise the
DARPA Internet. For each network a single line should be present with the following infor-
mation:

official network name
network number
aliases

Items are separated by any number of blanks and/or tab characters. A *‘#’’ indicates the
beginning of a comment; characters up to the end of the line are not interpreted by routines
which search the file. This file is normally created from the official network data base main-
tained at the Network Information Control Center (NIC), though local changes may be
required to bring it up to date regarding unofficial aliases and/or unknown networks.

Network number may be specified in the conventional *‘.’’ notation using the inet_network()
routine from the Internet address manipulation library, inet(3N). Network names may contain
any printable character other than a field delimiter, newline, or comment character.

FILES
Jetc/networks

SEE ALSO
getnetent(3N)

BUGS
A name server should be used instead of a static file.

Icon International, Inc. Last change: March 1989 1

PROTOCOLS (4) FILE FORMATS PROTOCOLS (4)

NAME
protocols - protocol name data base

DESCRIPTION
The protocols file contains information regarding the known protocols used in the DARPA
Internet. For each protocol a single line should be present with the following information:

official protocol name
protocol number
aliases

Items are separated by any number of blanks and/or tab characters. A ‘‘#’’ indicates the
beginning of a comment; characters up to the end of the line are not interpreted by routines
which search the file.

Protocol names may contain any printable character other than a field delimiter, newline, or
comment character.

FILES
[etc/protocols

SEE ALSO
getprotoent(3N)

BUGS
A name server should be used instead of a static file. A binary indexed file format should be
available for fast access.

icon International, Inc. Last change: March 1989 1

—-_—

RESOLVER (4) FILE FORMATS RESOLVER (4)

NAME

resolver - resolver configuration file

SYNOPSIS

fetc/resolv.conf

DESCRIPTION

FILES

The resolver configuration file contains information that is read by the resolver routines the
first time they are invoked by a process. The file is designed to be human readable and con-
tains a list of name-value pairs that provide various types of resolver information.

On a normally configured system this file should not be necessary. The only name server to
be queried will be on the local machine and the domain name is retrieved from the system.

The different configuration options are:

nameserver

followed by the Internet address (in dot notation) of a name server that the resolver
should query. At least one name server should be listed. Up to MAXNS (currently 3)
name servers may be listed, in that case the resolver library queries tries them in the
order listed. If no nameserver entries are present, the default is to use the name
server on the local machine. (The algorithm used is to try a name server, and if the
query times out, try the next, until out of name servers, then repeat trying all the namc
servers until a maximum number of retries are made).

domain
followed by a domain name, that is the default domain to append to names that do not
have a dot in them. If no domain entries are present, the domain returned by gethost-
name (2) is used (everything after the first “.’). Finally, if the host name does not con-
tain a domain part, the root domain is assumed.

The name value pair must appear on a single line, and the keyword (e.g. nameserver) must
start the line. The value follows the keyword, separated by white space.

letc/resolv.conf

SEE ALSO

gethostbyname(3N), resolver(3), named(1M)

Icon International, Inc. Last change: March 1989 1

SERVICES (4) FILE FORMATS SERVICES (4)

NAME N
services - service name data base

DESCRIPTION
The services file contains information regarding the known services available in the DARPA
Internet. For each service a single line should be present with the following information:
official service name
port number
protocol name
aliases

Items are separated by any number of blanks and/or tab characters. The port number and pro-
tocol name are considered a single item; a *‘/”’ is used to separate the port and protocol (e.g.
““512/tcp’’). A “‘#” indicates the beginning of a comment; characters up to the end of the line
are not interpreted by routines which search the file.

Service names may contain any printable character other than a field delimiter, newline, or
comment character.

FILES
fetc/services

SEE ALSO
getservent(3N)

BUGS o
A name server should be used instead of a static file.

Ilcon International, Inc. Last change: March 1989 1

HOSTNAME(S) MISCELLANEOUS HOSTNAME(5)

NAME
hostname - host name resolution description

DESCRIPTION
Hostnames are domains, where a domain is a hierarchical, dot-separated list of subdomains;
for example, the machine monet, in the Berkeley subdomain of the EDU subdomain of the
ARPANET would be represented as
monet.Berkeley. EDU
(with no trailing dot).

Hostnames are often used with network client and server programs, which must generally
translate the name to an address for use. (This function is generally performed by the library
routine gethostbyname (3).) Hostnames are resolved by the internet name resolver in the fol-
lowing fashion.

If the name consists of a single component, i.e. contains no dot, and if the environment vari-
able ‘““HOSTALIASES” is set to the name of a file, that file is searched for an string matching
the input hostname. The file should consist of lines made up of two white-space separated
strings, the first of which is the hostname alias, and the second of which is the complete host-
name to be substituted for that alias. If a case-sensitive match is found between the hostname
to be resolved and the first ficld of a line in the file, the substituted name is looked up with no
further processing.

If the input name ends with a trailing dot, the trailing dot is removed, and the remaining name
is looked up with no further processing.

If the input name docs not end with a trailing dot, it is looked up in the local domain and its
parent domains until cither a match is found or fewer than 2 components of the local domain
remain. For cxample, in the domain CS.Berkeley.EDU, the name lithium.CChem will be
checked first as lithium.CChem.CS.Berkeley. EDU and then as
lithium.CChem.Berkeley. EDU. Lithium.CChem.EDU will not be tried, as the there is only
one component remaining {rom the local domain.

SEE ALSO
gethostbyname(3), resolver(4), mailaddr(5), named(1M), RFC883

Icon International, Inc. Last change: March 1989 1

MAILADDR (5) MISCELLANEOUS MAILADDR (5)

NAME

mailaddr - mail addressing description

DESCRIPTION

Mail addresses are based on the ARPANET protocol listed at the end of this manual page.
These addresses are in the general format

user@domain
where a domain is a hierarchical dot separated list of subdomains. For example, the address
eric@monet.Berkeley. ARPA

is normally interpreted from right to left: the message should go to the ARPA name tables
(which do not correspond exactly to the physical ARPANET), then to the Berkeley gateway,
after which it should go to the local host monet. When the message reaches monet it is
delivered to the user “‘eric’’.

Unlike some other forms of addressing, this does not imply any routing. Thus, although this
address is specified as an ARPA address, it might travel by an alternate route if that were
more convenient or efficient. For example, at Berkeley the associated message would prob-
ably go directly to monet over the Ethernet rather than going via the Berkeley ARPANET
gateway.

Abbreviation.

Under certain circumstances it may not be necessary to type the entire domain name. In gen-
eral anything following the first dot may be omitted if it is the same as the domain from which
you are sending the message. For example, a user on ‘‘calder.Berkeley.ARPA’’ could send to
“‘eric@monet’’ without adding the ‘‘.Berkeley. ARPA™ since it is the same on both sending
and receiving hosts.

Certain other abbreviations may be permitted as special cases. For example, at Berkeley
ARPANET hosts can be referenced without adding the ‘. ARPA’ as long as their names do
not conflict with a local host name.

Compatibility.

Certain old address formats are converted to the new format to provide compatibility with the
previous mail system. In particular,

host:user
is converted to
user@host
to be consistent with the rep(1C) command.
Also, the syntax:
host!user
is converted to:

user@host. UUCP

This is normally converted back to the ‘‘host!user’’ form before being sent on for compatibil-
ity with older UUCP hosts.

Icon International, Inc. Last change: March 1989 1

N

MAILADDR(5) MISCELLANEOUS MAILADDR(5)

The current implementation is not able to route messages automatically through the UUCP
network. Until that time you must explicitly tell the mail system which hosts to send your
message through to get to your final destination.

Case Distinctions.

Domain names (i.e., anything after the “‘@’’ sign) may be given in any mixture of upper and
lower case with the exception of UUCP hosmames. Most hosts accept any combination of
case in user names, with the notable exception of MULTICS sites.

Differences with ARPA Protocols.

Although the UNIX addressing scheme is basecd on the ARPA mail addressing protocols,
there are some significant differences.

At the time of this writing DARPA is converting to real domains. The following rules may be
useful:

e The syntax ‘‘user@host.ARPA’’ is being split up into ‘‘user@host.COM”’,
“‘user@host.GOV”’, and ‘‘uscr@host. EDU”’ for commercial, government, and educational
institutions respectively.

¢ The syntax ‘‘uscr@host’’ (with no dots) has traditionally referred to the ARPANET. In the
future this semantic will not be continued — instead, the host will be assumed to be in your
organization. You should start using one of the syntaxes above.

¢ Host names of the form ‘*ORG-NAME”’ (e.g., MIT-MC or CMU-CS-A) will be changing to
“NAME.ORG.XXX" (where ‘XXX’ is COM, GOV, or EDU). For example, MIT-MC will
change to MC.MIT.EDU. In some cases names will be split apart even if they do not have
dashes. For example, USC-ISIF will probably change to F.ISI.USC.EDU.

Route-addrs.
Undcr some circumstances it may be necessary to route a message through several hosts to
get it to the final destination. Normally this routing is done automatically, but sometimes it is

desirable to route the message manually. Addresses which show these relays are termed
‘‘route-addrs.”” These use the syntax:

<@hosta,@hostb:user@hostc>

This specifies that the message should be sent to hosta, from there to hostb, and finally to
hostc. This path is forced even if there is a more efficient path to hostc.

Route-addrs occur frequently on return addresses, since these are generally augmented by the
software at each host. It is generally possible to ignore all but the ‘‘user@host’’ part of the
address to determine the actual sender.

Postmaster.

Every site is required to have a user or uscr alias designated ‘‘postmaster’’ to which problems
with the mail system may be addressed.

Other Networks.

Some other networks can be reached by giving the name of the network as the last component
of the domain. This is not a standard feature and may not be supported at all sites. For exam-
ple, messages to CSNET or BITNET sites can often be sent to ‘‘user@host. CSNET”’ or
‘“‘user@host. BITNET”’ respectively.

Last change: March 1989 Icon International, Inc.

MAILADDR (5) MISCELLANEOUS MAILADDR (5)

BUGS
The RFC822 group syntax (‘‘group:userl,user2,user3;’’) is not supported except in the special
case of ‘‘group:;”’ because of a conflict with old berknet-style addresses.

Route-Address syntax is grotty.
UUCP- and ARPANET-style addresses do not coexist politely.

SEE ALSO

mail(1), sendmail(1M); Crocker, D. H., Standard for the Format of Arpa Internet Text Mes-
sages, RFC822.

Icon International, Inc. Last change: March 1989 3

INTRO (7N) NETWORKING PROTOCOL FAMILIES INTRO (7N)

NAME

networking - introduction to networking facilities

SYNOPSIS

#include <sys/socket.h>
#include <net/route.h>
#include <net/if.h>

DESCRIPTION

This section briefly describes the networking facilities available in the system. Documenta-
tion in this part of section 4 is broken up into two areas: protocol families (domains), and pro-
tocols. Entries describing a protocol family are marked “*7N,”” while entries describing proto-
col use are marked “‘7P.”

All network protocols are associated with a specific protocol family. A protocol family pro-
vides basic services to the protocol implementation to allow it to function within a specific
network environment. These services may include packet fragmentation and reassembly,
routing, addressing, and basic transport. A protocol family may support multiple methods of
addressing, though the current protocol implementations do not. A protocol family is nor-
mally comprised of a number of protocols, one per socket(2) type. It is not required that a
protocol family support all socket types. A protocol family may contain multiple protocols
supporting the same socket abstraction.

A protocol supports one of the socket abstractions detailed in socket(2). A specific protocol
may be accessed either by creating a socket of the appropriate type and protocol family, or by
requesting the protocol explicitly when creating a socket. Protocols normally accept only one
type of address format, usually determined by the addressing structure inherent in the design
of the protocol family/network architecture. Certain semantics of the basic socket atasiric-
tions are protocol specific. All protocols are expected to support the basic iriodel for their par-
ticular socket type, but may, in addition, provide non-standard facilities or extensions to a
mechanism. For example, a protocol supporting the SOCK_STREAM abstraction may allow
more than one byte of out-of-band data to be transmitted per out-of-band message.

A network interface is similar to a device interface. Network interfaces comprise the lowest
layer of the networking subsystem, interacting with the actual transport hardware. An inter-
face may support one or more protocol families and/or address formats. The SYNOPSIS sec-
tion of each network interface entry gives a sample specification of the related drivers for usc
in providing a systcm description to the config(1M) program. The DIAGNOSTICS section
lists messages which may appear on the console and/or in the system error log,
lusrladm/messages (scc syslogd(1M)), due to errors in device operation.

PROTOCOLS

The system currently supports the DARPA Internet protocols. Raw socket interfaces are pro-
vided to the IP protocol layer of the DARPA Internet, and to the IMP link layer (1822). Con-
sult the appropriate manual pages in this section for more information regarding the support
for each protocol family.

ADDRESSING

Associated with each protocol family is an address format. The following address formats are
used by the system (and additional formats are defined for possible future implementation):

Icon International, Inc. Last change: March 1989 1

INTRO(7N) NETWORKING PROTOCOL FAMILIES INTRO (7N)

#define AF_UNIX
#define AF_INET
#define AF_IMPLINK
#define AF_PUP
#define AF_NS
#define AF_HYLINK

/* local to host (pipes, portals) =*/
/* internetwork: UDP, TCP, etc. */
/* arpanet imp addresses */
/* pup protocols: e.g. BSP */
/* Xerox NS protocols */

5 /* NSC Hyperchannel */

o d W

ROUTING

The network facilities provided limited packet routing. A simple set of data structures
comprise a ‘‘routing table’’ used in selecting the appropriate network interface when transmit-
ting packets. This table contains a single entry for each route to a specific network or host. A
user process, the routing daemon, maintains this data base with the aid of two socket-specific
ioctl(2) commands, SIOCADDRT and SIOCDELRT. The commands allow the addition and
deletion of a single routing table entry, respectively. Routing table manipulations may only
be carried out by super-user.

A routing table entry has the following form, as defined in <net/route.h>;

struct rtentry {
u_long rt_hash;
struct sockaddr rt dst;
struct sockaddr rt_gateway;
short rt_flags:;
short rt_refcnt;
u_long rt_use;
struct ifnet *rt_ifp;
}i

with rt_flags defined from,

#define RTF_UP 0x1 /* route usable */

#define RTF_GATEWAY O0x2 /* destination is a gateway */
#define RTF_HOST 0x4 /* host entry (net otherwise) =*/

#define RTF DYNAMIC 0x10 /* created dynamically (by redirect)

Routing table entries come in three flavors: for a specific host, for all hosts on a specific net-
work, for any destination not matched by entries of the first two types (a wildcard route).
When the system is booted and addresses are assigned to the network interfaces, each proto-
col family installs a routing table entry for each interface when it is ready for traffic. Nor-
mally the protocol specifies the route through each interface as a ‘‘direct’’ connection to the
destination host or network. If the route is direct, the transport layer of a protocol family usu-
ally requests the packet be sent to the same host specified in the packet. Otherwise, the inter-
face is requested to address the packet to the gateway listed in the routing entry (i.e. the
packet is forwarded).

Routing table entries installed by a user process may not specify the hash, reference count,
use, or interface fields; these are filled in by the routing routines. If a route is in use when it is
deleted (rt_refent is non-zero), the routing entry will be marked down and removed from the
routing table, but the resources associated with it will not be reclaimed until all references to
it are released. The routing code returns EEXIST if requested to duplicate an existing entry,

Last change: March 1989 Icon International, Inc.

*/

INTRO (7N) NETWORKING PROTOCOL FAMILIES INTRO (7N)

ESRCH if requested to delete a non-existent entry, or ENOBUFS if insufficient resources
were available to install a new route. User processes read the routing tables through the
/devikmem device. The rt_use field contains the number of packets sent along the route.

When routing a packet, the kernel will first attempt to find a route to the destination host.
Failing that, a search is made for a route to the network of the destination. Finally, any route
to a default (‘‘wildcard’’) gateway is chosen. If multiple routes are present in the table, the
first route found will be used. If no entry is found, the destination is declared to be unreach-
able.

A wildcard routing entry is specified with a zero destination address value. Wildcard routes
are used only when the system fails to find a route to the destination host and network. The
combination of wildcard routes and routing redirects can provide an economical mechanism
for routing traffic.

INTERFACES
Each network interface in a system corresponds to a path through which messages may be
sent and received. A network interface usually has a hardware device associated with it,
though certain interfaces such as the loopback interface, lo(4), do not.

The following ioctl calls may be used to manipulate network interfaces. The ioctl is made on
a socket (typically of type SOCK_DGRAM) in the desired domain. Unless specified other-
wise, the request takes an ifrequest structure as its parameter. This structure has the form

struct ifreq {
char ifr name([16]; /* name of interface (e.g. "ecO") */
union {
struct sockaddr ifru_addr;
struct sockaddr ifru dstaddr;
struct sockaddr ifru broadaddr;
short ifru flags;

int ifru metric;
} ifr ifru;
#define ifr_ addr ifr ifru.ifru_addr /* address */
#define ifr dstaddr ifr ifru.ifru dstaddr /* other end of p-to-p link */
#define ifr broadaddr ifr ifru.ifru broadaddr /* broadcast address */
#define ifr flags ifr ifru.ifru flags /* flags */
#define ifr metric ifr ifru.ifru metric /* routing metric */

}:

SIOCSIFADDR
Set interface address for protocol family. Following the address assignment, the *‘ini-
tialization’’ routine for the interface is called.

SIOCGIFADDR

Get interface address for protocol family.
SIOCSIFDSTADDR

Set point to point address for protocol family and interface.
SIOCGIFDSTADDR

Get point to point address for protocol family and interface.

SIOCSIFBRDADDR

Icon International, Inc. Last change: March 1989 3

INTRO(7N) NETWORKING PROTOCOL FAMILIES INTRO (7N)

Set broadcast address for protocol family and interface.

SIOCGIFBRDADDR
Get broadcast address for protocol family and interface.

SIOCSIFFLAGS
Set interface flags field. If the interface is marked down, any processes currently rout-
ing packets through the interface are notified; some interfaces may be reset so that
incoming packets are no longer received. When marked up again, the interface is
reinitialized.

SIOCGIFFLAGS
Get interface flags.

SIOCSIFMETRIC
Set interface routing metric. The metric is used only by user-level routers.

SIOCGIFMETRIC
Get interface metric.

SIOCGIFCONF
Get interface configuration list. This request takes an ifconf structure (see below) as a
value-result parameter. The ifc_len field should be initially set to the size of the
buffer pointed to by ifc_buf. On return it will contain the length, in bytes, of the
configuration list.

* Structure used in SIOCGIFCONF request.

* Used to retrieve interface configuration
* for machine (useful for programs which
* must know all networks accessible).

*/

struct ifconf {
int ifc_len; /* size of associated buffer */
union {

caddr_t ifcu_buf;
struct ifreq *ifcu_req;
} ifc_ifcu;
#define ifc buf ifc ifcu.ifcu buf /* buffer address */

Y

#define ifc_req ifc_ifcu.ifcu_req /* array of structures returned */

}s

SEE ALSO
socket(2), ioctl(2), config(1M), routed(1M)

4 : Last change: March 1989 icon International, Inc.

ARP (7P) NETWORKING PROTOCOLS ARP (7P)

NAME

arp - Address Resolution Protocol

SYNOPSIS

pseudo-device ether

DESCRIPTION

ARP is a protocol used to dynamically map between DARPA Internet and 10Mb/s Ethemnet
addresses. It is used by all the 10Mb/s Ethemnet interface drivers. It is not specific to Internet
protocols or to 10Mb/s Ethemet, but this implementation currently supports only that combi-
nation.

ARP caches Internet-Ethernet address mappings. When an interface requests a mapping for
an address not in the cache, ARP queues the message which requires the mapping and broad-
casts a message on the associated network requesting the address mapping. If a response is
provided, the new mapping is cached and any pending message is transmitted. ARP will
queue at most one packet while waiting for a mapping request to be responded to; only the
most recently ‘‘transmitted’’ packet is kept.

To facilitate communications with systems which do not use ARP, ioctls are provided to enter
and delete entries in the Internet-to-Ethernet tables. Usage:

#include <sys/ioctl.h>
#include <sys/socket.h>
#include <net/if.h>
struct arpreq arpreq;

ioctl(s, SIOCSARP, (caddr_t)&arpreq);

ioctl(s, SIOCGARP, (caddr_t)&arpreq);

ioctl(s, SIOCDARP, (caddr_t)&arpreq);
Each ioctl takes the same structurc as an argument. SIOCSARP scts an ARP cntry,
SIOCGARP gets an ARP entry, and SIOCDARP deletes an ARP entry. These ioctls may be
applicd to any socket descriptor s, but only by the super-user. The arpreq structure contains:

/*

* ARP ioctl request

*/

struct arpreq {
struct sockaddr arp_pa; /* protocol address */
struct sockaddr arp_ha; /* hardware address */
int arp_flags; /* flags */

bi
/* arp_flags field values */

#define ATF_COM 0x02 /* completed entry (arp ha.valid) */
#define ATF_PERM 0x04 /* permanent entry */
#define ATF_PUBL 0x08 /* publish (respond for other host) */

#define ATF_USETRAILERS 0x10 /* send trailer packets to host */

The address family for the arp_pa sockaddr must be AF_INET; for the arp_ha sockaddr it
must be AF_UNSPEC. The only flag bits which may be written are ATF_PERM, ATF_PUBL
and ATF_USETRAILERS. ATF_PERM causes the entry to be permanent if the ioctl call
succeeds. The peculiar nature of the ARP tables may cause the ioctl to fail if more than 8
(permanent) Internet host addresses hash to the same slot. ATF_PUBL specifies that the ARP

Icon International, Inc. Last change: March 1989 1

ARP (7P) NETWORKING PROTOCOLS ARP (7P)

code should respond to ARP requests for the indicated host coming from other machines.
This allows a host to act as an ‘‘ARP server,”” which may be useful in convincing an ARP-
only machine to talk to a non-ARP machine.

ARP is also used to negotiate the use of trailer IP encapsulations; trailers are an alternate
encapsulation used to allow efficient packet alignment for large packets despite variable-sized
headers. Hosts which wish to receive trailer encapsulations so indicate by sending gratuitous
ARP translation replies along with replies to IP requests; they are also sent in reply to IP
translation replies. The negotiation is thus fully symmetrical, in that either or both hosts may
request trailers. The ATF_USETRAILERS flag is used to record the receipt of such a reply,
and enables the transmission of trailer packets to that host.

ARP watches passively for hosts impersonating the local host (i.e. a host which responds to an
ARP mapping request for the local host’s address).

DIAGNOSTICS

duplicate IP address!! sent from ethernet address: %x:%x:%x:%x;:%x:%x. ARP has
discovered another host on the local network which responds to mapping requests for its own
Internet address.

SEE ALSO

BUGS

-inet(7P), arp(1M), ifconfig(1M)

‘“An Ethernet Address Resolution Protocol,”” RFC826, Dave Plummer, Network Information
Center, SRI.

*“Trailer Encapsulations,”” RFC893, S.J. Leffler and M.J. Karels, Network Information Center,
SRI.

ARP packets on the Ethemnet use only 42 bytes of data; however, the smallest legal Ethernet
packet is 60 bytes (not including CRC). Some systems may not enforce the minimum packet
size, others will.

Last change: March 1989 Icon International, Inc.

e

ICMP (7P) NETWORKING PROTOCOLS ICMP (7P)

(NAME

icmp - Internet Control Message Protocol

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>

s = socket(AF_INET, SOCK_RAW, proto);

DESCRIPTION

ICMP is the error and control message protocol used by IP and the Internet protocol family. It
may be accessed through a ‘‘raw socket’’ for network monitoring and diagnostic functions.
The proto parameter to the socket call to create an ICMP socket is obtained from
getprotobyname (3N). ICMP sockets are connectionless, and are normally used with the
sendto and recvfrom calls, though the connect(2) call may also be used to fix the destination
for future packets (in which case the read(2) or recv(2) and write(2) or send(2) system calls
may be used).

Outgoing packets automatically have an IP header prepended to them (based on the destina-
tion address). Incoming packets are received with the IP header and options intact.

DIAGNOSTICS
A socket opcration may {ail with one of the following errors returned;
[EISCONN] when trying to establish a connection on a socket which already has one, or
;{ when trying to send a datagram with the destination address specified and
the socket is already connected;

[ENOTCONN] when trying to send a datagram, but no destination address is specified, and
the socket hasn’t been connected;

[ENOBUFS] when the system runs out of memory for an internal data structure;

[EADDRNOTAVAIL]
when an attempt is made to create a socket with a network address for
which no network interface exists.

SEE ALSO
send(2), recv(2), intro(7N), inet(7P), ip(7P)

«

icon International, Inc. Last change: March 1989 1

IP(7P) NETWORKING PROTOCOLS IP(7P)

NAME
ip - Internet Protocol

SYNOPSIS

#include <sys/socket.h>
#include <netinet/in.h>

s = socket(AF_INET, SOCK_RAW, proto);

DESCRIPTION
IP is the transport layer protocol used by the Internet protocol family. Options may be set at
the IP level when using higher-level protocols that are based on IP (such as TCP and UDP). It
may also be accessed through a ‘‘raw socket’” when developing new protocols, or special pur-
pose applications.

A single generic option is supported at the IP level, IP_OPTIONS, that may be used to pro-
vide IP options to be transmitted in the IP header of each outgoing packet. Options are set

with setsockopt (2) and examined with getsockopt(2). The format of IP options to be sent is.

that specified by the IP protocol specification, with one exception: the list of addresses for
Source Route options must include the first-hop gateway at the beginning of the list of gate-
ways. The first-hop gateway address will be extracted from the option list and the size
adjusted accordingly before use. IP options may be used with any socket type in the Internet
family.

Raw IP sockets are connectionless, and are normally used with the sendto and recyfrom calls,
though the connect(2) call may also be used to fix the destination for future packets (in which
case the read(2) or recv(2) and write(2) or send(2) system calls may be used).

If proto is 0, the default protocol IPPROTO_RAW is used for outgoing packets, and only
incoming packets destined for that protocol are received. If proto is non-zero, that protocol
number will be used on outgoing packets and to filter incoming packets.

Outgoing packets automatically have an IP header prepended to them (based on the destina-
tion address and the protocol number the socket is created with). Incoming packets arc
received with IP header and options intact.

DIAGNOSTICS
A socket operation may fail with one of the following errors returned:

[EISCONN] when trying to establish a connection on a socket which already has one, or
when trying to send a datagram with the destination address specified and
the socket is already connected;

[ENOTCONN] when trying to send a datagram, but no destination address is specified, and
the socket hasn’t been connected;

[ENOBUFS] when the system runs out of memory for an internal data sm;cture;

[EADDRNOTAVAIL]
when an attempt is made to create a socket with a network address for
which no network interface exists.

The following errors specific to IP may occur when setting or getting IP options:
[EINVAL] An unknown socket option name was given.

Icon International, Inc. Last change: March 1989 1

IP(7P) NETWORKING PROTOCOLS IP(7P)

[EINVAL] The IP option field was improperly formed; an option field was shorter than
the minimum value or longer than the option buffer provided.

SEE ALSO
getsockopt(2), send(2), recv(2), intro(7N), icmp(7P), inet(7P)

2 Last change: March 1989 Icon International, Inc.

TCP(7P) NETWORKING PROTOCOLS TCP(7P)

NAME
tcp - Internet Transmission Control Protocol

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>

s = socket(AF_INET, SOCK_STREAM, 0);

DESCRIPTION
The TCP protocol provides reliable, flow-controlled, two-way transmission of data. It is a
byte-stream protocol used to support the SOCK_STREAM abstraction. TCP uses the stan-
dard Internet address format and, in addition, provides a per-host collection of *‘port
addresses’’. Thus, each address is composed of an Internet address specifying the host and
network, with a specific TCP port on the host identifying the peer entity.

Sockets utilizing the tcp protocol are either ‘‘active’ or ‘‘passive’. Active sockets initiate
connections to passive sockets. By default TCP sockets are created active; to create a passive
socket the listen(2) system call must be used after binding the socket with the bind(2) system
call. Only passive sockets may use the accept(2) call to accept incoming connections. Only
active sockets may use the connect(2) call to initiate connections.

Passive sockets may ‘‘underspecify’’ their location to match incoming connection requests
from multiple networks. This technique, termed ‘‘wildcard addressing’’, allows a single
server to provide service to clients on multiple networks. To create a socket which listens on
all networks, the Internet address INADDR_ANY must be bound. The TCP port may still be
specified at this time; if the port is not specified the system will assign one. Once a connec-
tion has been established the socket’s address is fixed by the peer entity’s location. The
address assigned the socket is the address associated with the network interface through
which packets are being transmitted and received. Normally this address corresponds to the
peer entity’s network.,

TCP supports one socket option which is set with setsockopt (2) and tested with getsockopt (2).
Under most circumstances, TCP sends data when it is presented; when outstanding data has
not yet been acknowledged, it gathers small amounts of output to be sent in a single packet
once an acknowledgement is received. For a small number of clients, such as window sys-
tems that send a stream of mouse events which receive no replies, this packetization may
cause significant delays. Therefore, TCP provides a boolean option, TCP_NODELAY (from
<netinet/tcp.h> , to defeat this algorithm. The option level for the setsockopt call is the proto-
col number for TCP, available from getprotobyname (3N).

Options at the IP transport level may be used with TCP; see ip(4P). Incoming connection
requests that are source-routed are noted, and the reverse source route is used in responding.

DIAGNOSTICS
A socket operation may fail with one of the following errors returned:
[EISCONN] when trying to establish a connection on a socket which alrcady has
one;
[ENOBUFS] when the system runs out of memory for an internal data structure;
[ETIMEDOUT] when a connection was dropped due 10 excessive retransmissions;
[ECONNRESET] when the remote peer forces the connection to be closed;

Icon International, Inc. Last change: March 1989 1

s

TCP(7P) NETWORKING PROTOCOLS TCP(7P)

[ECONNREFUSED] when the remote peer actively refuses connection establishment
(usually because no process is listening to the port);

[EADDRINUSE] when an attempt is made to create a socket with a port which has
already been allocated;

[EADDRNOTAVAIL] when an attempt is made to create a socket with a network address
for which no network interface exists.

SEE ALSO
getsockopt(2), socket(2), intro(7N), inet(7P), ip(7P)

s

2 Last change: March 1989 Icon International, Inc.

UDP(7P) NETWORKING PROTOCOLS UDP (7P)

N
NAME
udp - Internet User Datagram Protocol
SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>
s = socket(AF_INET, SOCK_DGRAM,0);
DESCRIPTION
UDP is a simple, unreliable datagram protocol which is used to support the SOCK_DGRAM
abstraction for the Internet protocol family. UDP sockets are connectionless, and are nor-
mally used with the sendto and recvfrom calls, though the connect(2) call may also be used to
fix the destination for future packets (in which case the recv(2) or read(2) and send(2) or
write(2) system calls may be used).
UDP address formats are identical to those used by TCP. In particular UDP provides a port
identifier in addition to the normal Internet address format. Note that the UDP port space is
separate from the TCP port space (i.e. a UDP port may not be ‘‘connected’’ to a TCP port). In
addition broadcast packets may be sent (assuming the underlying network supports this) by
using a reserved ‘‘broadcast address’’; this address is network interface dependent.
Options at the IP transport level may be used with UDP; see ip (4P).
DIAGNOSTICS TN
A socket operation may fail with one of the following errors returned: W
[EISCONN] when trying to establish a connection on a socket which already has one, or
when trying to send a datagram with the destination address specified and
the socket is already connected;

[ENOTCONN] when trying to send a datagram, but no destination address is specified, and
the socket hasn’t been connected;

[ENOBUFS] when the system runs out of memory for an internal data structure;

[EADDRINUSE] when an attempt is made to create a socket with a port which has already
been allocated;

[EADDRNOTAVAIL]
when an attempt is made to create a socket with a network address for
which no network interface exists.

SEE ALSO
getsockopt(2), recv(2), send(2), socket(2), intro(7N), inet(7P), ip(7P)

£

lcon International, Inc. Last change: March 1989 1

Appendix B —SENDMAIL - An
Internetwork Mail Router

The following appendix contains a document by Eric Allman titled “SENDMAIL — An
Internetwork Mail Router”. This document provides and overview of the SENDMAIL
program as well as the functional theory behind the program as it was originally developed for
use at the University of California at Berkeley.

This document is taken in whole from the System Manager's Manual for the 4.3BSD version

of the UNIX® operating system, which is a subset of the ICON/UXYV implementation of
AT&T's UNIX System V operating system.

Internetwork Mail Router B-i

ICON/UXV-NET

o

\/

_~\

SENDMAIL — An Internetwork Mail Router

Eric Allmant

Britton-Lee, Inc.
1919 Addison Street, Suite 105.
Berkeley, California 94704.

ABSTRACT

Routing mail through a heterogenous internet presents many new problems. Among
the worst of these is that of address mapping. Historically, this has been handled on
an ad hoc basis. However, this approach has become unmanageable as internets grow.

Sendmail acts a unified "post office” to which all mail can be submitted. Address
interpretation is controlled by a production system, which can parse both domain-
based addressing and old-style ad hoc addresses. The production system is powerful
enough to rewrite addresses in the message header to conform to the standards of a
number of common target networks, including old (NCP/RFC7<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>