
c _

(-

ICON/UXV
User
Guide

ICON
INTERNATIONAL
764 East Timpanogos Parkway
Orem, Utah 84057
(801) 225-6888

()

c

c

USER GUIDE

ICON/UXV
Operating
System

© Copyright 1988
Icon International, Inc.
All rights reserved worldwide.

The information contained within this manual is the propeny of Icon International, Inc. This
manual shall not be reproduced in whole nor in part without prior written approval from Icon
International, Inc.

Icon International, Inc. reserves the right to make changes, without notice, to the specifications
and materials contained herein, and shall not be responsible for any damages (including
consequential) caused by reliance on the material as presented, including, but not limited to,
typographical, arithmetic, and listing errors.

The UNIX~ Software and Text Source for this manual is under license from AT&T.

Order No. 172-036-003 A (Manual Assembly)
Order No. 171-063-003 A (Manual Pages only)

Trademarks

The Icon logo is a registered trademark of Icon International, Inc.
UNIX is a registered trademark of AT&T.
DEC, PDP, UNIBUS, and MASSBUS are trademarks of Digital Equipment Corporation.
HP is a trademark of Hewlett-Packard, Inc.
DIABLO is a trademark of Xerox Corporation.
TEKTRONIX is a registered trademark of Versatec Corporation.
TELETYPE is a trademark of AT&T Teletype Corporation.
3B and DOCUMENTER'S WORKBENCH are trademarks of AT&T Technologies.

i ICON INTERNATIONAL

Change Reco~ Page

ICON/UXV User Guide

Manual Pages Part No. 171-063-003

Date Revision Description Pages Affected

Mar. 1988 AO Initial production release All

Aug. 1988 A1 Add Appendix G "An ix, Appendices contents,
Introduction to the C Appendix G, Glossary

c Shell" and renumber the
Glossary

c
ICON/UXV USER GUIDE iii

iv ICON INTERNATIONAL o

c
CONTENTS

HOW TO READ THIS GUIDE .••..•••...•••.•..•••••.••••. _ .••.• _._ •••• _ .. _..:....;, •.......•..•.•••.......................... x

PART 1. UNIX SYSTEM OVERVIEW

CHAPTER 1. WHAT IS THE UNIX SYSTEMf

What The UNIX System Is •••.•••••••••••••••••••••••• _.. 1-1

How The UNIX: System Works... 1-2

CHAPTER 2. BASICS FOR UNIX SYSTEM USERS

Getting Started••......••..•.....••••••.••....••••....•.•..•....•...•.•••..••••.•••.••••.••••.•.•..•.••..•....••••.•••...•....•.•..•..•...... 2-1

About The Terminal.. 2-2
Obtaining A Login Name ... _.. 2-8

Establishing Contact With The UNIX System ... _.. 2-8

CHAPTER 3. USING THE FILE SYSTEM

IntroductIon••.....•.........•..•..............•......•. _•.....•..•. _ _ .•. _.. 3-1

How The File System Is Structured ... _ •••• _ •• _... 3-3

Your Place In The File System Structure ... _... 3-4

Organizing A Directory Structure •••.•.••••••••..••••••••••••••••••.••.••••••.•••.•••••••.••••••.• _ •••••••••••••••••••••.•••••••••••••••••... 3-11

Aceesslng And Manipulating Flles•.••.•.••...•..........•.......••..••.•.... _ ••...•.•.....• _ •••.•..•.•.••..••......................... 3-22

Summary•......•....•........••.•••.•..•••.•....•..•.•..•.••••••.••.••.••..•..••.•.......•••••.••.•.....•....•.•••......................... 3-50

CHAPTER 4. UNIX SYSTEM CAP ABILITIES

IntroductIon .•••••••••••.••..•••••••.••..•••.•..•.•••••..•..•.•.•.....•••.•....••••.••.•.•• _

Text EditIng ... _• _ •...

WorkIng In The Shel) .. ,.•......................••......
Communicating Electronically _ fl. ___ .H.~ •..•.•.... _ .. _ ••... ~ •.....•..................................
Programming In The System•.......•...•................•••...•..••....•••.• _

ICONfUXV USER GUIDE

4-1

4-1

4-6

4-14

4·16

v

CONTENTS

PART 2. UNIX SYSTEM TUTORIALS

CHAPTER 6. LINE EDITOR TUTORIAL (ed)

introducIng The Line Editor •••••••••.•••••••.••.•••.••••••••••••••••••.•.•••••..•.••••••...•... 0-1

How To Read This TutorIal ..•.••••.••••....•.•.•••...••••••••••••••.••••••••.•.••••• _ •...••••••••.••••••.•••••..•...•••.•......•................ 6-2

Getting Started 6-3

Exercise 1 •..•.•......•..............•......•.•••.. _ .. . 6-U

General Format or ed Command •••.••..••••.•.••.•••••••••••••••••..••••.•••••••••...•.•.•••.....•••••••.•.•..•••...•••.••••••..........•.... S-12

LIne Addressing .•.•••..•....•.•........•.••••....•.•..••.•••..•••••••••••••••••••••.•••••.••••••.........•.••.•.•...••.•••••....•.•...•..•..•........... 6-13

Exercise 2 ••.•.••..•••.•••••••••..•.••••.•.•.•••.••.••••.••.••••••••••.••••••••••.••••••••.••••••.••••.•...•.•••••....••••••••••..•••••.••••••.............. 6-20

Display Lines In A FIle S-21

Creating Text ••••.•••.•..•.•••..••..•••.••.•.••.•..•.••••..••.•.••.••.••.••••••..•.••..•.••......•.............••••..•.•..•..•.•........•................ 6-30

Exerelse 3 ••.••••••.••..•.......•..•.•..•..•..•..•.•.•..••..•.•....•.•••.....•.••.•.••.•••••.••.•..•.....•..•••.....••....••.•••.•••••••.•.•........••.••... 6-30

DeletIng Text .••.•••..•.••....••...•••.•.••.•.••••.•••.••.•••••.••••••••••.•••••••••••••••••.••..•••••••••••••.•.••••••••••••..••.••••...•.••..•...•..•.•. 6-31

Substituting Text .••••..•......•.•••.•••••••.•••..•......••..••••..•.•.••••.•••••.•••..••.•.••.•..•.••••.•...•••••••••.•••••••......•.•................ 6-43

Exercise 4•..•...................................•.•..•..••.•...••.••.••••.•...•.•..•...•.•......•••..•...•....•.••...••....•.............•........... 6-S0

Special Charaeters ...•.•.••••••.•.•..•.•••..•••••.••...•.•••••.••••••••.••...•...•••••••.•••••.•.••••.•...•.....•....••..•••.•..•.•••.....••........... 6-lil

Exercise 6 •••••••••••••••••••••.••.•••••••••••••••••••••••••••••••.•••.•••••.•..•. 6-62

Moving Text .. . 6-63

Exercise 6 ••.•••.•••.••••••••••.•...•.•••••••••••••••.•.••.••••....•••..•.•••.•••.••••.•.•..•.•...••.••••.•..•.••....•••.••.•.•.••.••••••..•................ 6-72

Other Useful Commands And information •..•.••.••.•••••.•.•..••...••...••.•••••...•••..•.•...•..•.•....••.•••••.•.•.••.................. 6-13

Exercise '1 ••••.••.••••••••••.••••••••• 6-S1

Answers to Exercises•.....•..•.............................•.•..••.........•..........•...............•.••••..•............................. 6-S2
(-~

:
"-_/

CHAPTER o. SCREEN EDITOR TUTORIAL (vi)

Getting Acquainted WIth vI ..•............••.••..••..•.•..••..•......•.••..•..•..••...•••.••.•..•..••.•..••...•.•....•.•.......................... 6-1

How To Read This TutorIal 0-2

GettJng Started •....•••.••.•••.••••...•••.••.•••.•.......•.•..•..•..•.•.••.•••••••.•••........•...••...•....••••........••...•...•...................... 0-4

Exercise 1 •.••••••••••••••••••••••.••••••••.••••.••••.••••••••.••.•••.•.•••••••••••••••••.•...••••.•.•.. 0-13

PosItIonIng The Cursor In The 'Vlndow•..•....••..•....•...........••..• :-••••..••••••••.••.••••..••••••..•..••.•....................... 0-14

Positioning The Cursor In The File .. . 6-31

ExercIse 2 ..••.•.•••••••••••....•••.••.....•...•....••........•..•.....•....••...••••••••••.••..••..•.•••....••.....•..........•..•......................... 6-42

Creating Text •••.••..•..••••••••.••..••••..•...•••.••....•..•••.•••.•..•••....••••••••.•••••.•••.••••••••••••••.••••.•••••.•••.•••....................... 0-43

Exe,.else 3 ..•••.•••..••.......•......•....•...•.......•......•......•.•.••••.•...••.•.•......•...•....•.•.•.••••.•.•••....•.•...•...•••.......••....•....... 0-46

Deleting Text •..•...••..••....•......•...••.••••••.•.•........•.•...••.•.••.....•........•.•....•...•.••.•.•••••••..•.•••.•...••.......•....•............. 0-41

ExercIse 4 •••.•••••••••••••••••.•••..•••••••••••••••••.••.••••••••••••.••••••.•••.••••.•.••••••••••.•••.••.•.••••••••.••.•..•••.•.•.••••...•.•.••.•••.••.•.. 0-66

Chanctnc Text•••.•..••..•.••.............•...•......•...•.....••...•••••••••.•...•...••....••..•.........••.•...•....•.......•.•.•............. 0-61

Cutting And Pasting Text Electronically •.•...•.•.•..••...•..•.•••.•.••.••.••.••••.••.••.......••••••.••••.••••••.••.•.....••.............. 0-62

Exercise 5 •••.•.•.....••....•..•....••....•.....•....••..........•..•..•.•.....•.....•.•..•..•.•............•....•........•••...•••.............•.•......... 0-66

Special Commands •••.••••••••..•...•••••••••..••.•.•.••.•.•••..•.•.•••••••••••••••••••••••••••••••••••••••.••••.••••••.•.•••.....••.•.•••.•..•........ 0-66

LIne EdIting Commands ..•.•....•.............•.•.•.•.•....•..•••..•.•....................... _ O-OD

QuittIng vI .•.•.••..•.•••....•.••••.••.•.....••.•••.•••.•...••...•...•••.•.••••..••••••••••..•••...•.•••••.••••...•••••.•••.••.•.•.•...•..•••.....•...•..... 0-14

SpecIal Options For vI •••.....•.•••......•.•...•..••..•......•.•...•..••••.......•.......•..•..••.•...............••.......•.•....................... 0-10

Exercise 8••.•..••..............••.......•..•......•......•......•...•.•.•..•.••.....••.....•.••.•..•.......•...•..•.•••.•••.•.•.•.•..........••......... 0-1S

Changing Your Environment •..•.•.•••.••.•.•...•....•••..•.....•••••••..••...•••.••••.•..••.•••..•........•.•.•••••••.••••••.•..•..•..•......•.. 0-1D

Answers to Exercises .•.•..•....•..••..•...•....•...•••.••.....•••...•••.••••.....•..•..•.•.••..•.•••.........••••.••.•. _ •••....•..••.••...••.•...... O-SO
,r -~,

I

Gi
vi

ICON INTERNATIONAL

(

c'

CONTENTS

CHAPTER 7. SHELL TUTORIAL

MakIng Life Easler In The Shell •.••.••....•.•.•...••.••..•......•..••.••••••••••••••••.•••••••••••••••••• _.................................... T-l

How To Read This Tutorial•..........•.......•.•...............••..••..••.•.•..•.......••••.••.• _................................... 7-1

Shell Command Language•.••.••.•..••••••••••.•••.••.•••••••••••.•.•••••..••••••••••••••••••••.••••••..• _.................................... 7'-3

Command Language Exerelses •..•.•.••.•..••••••.••••••••••.•••••••.••••..•••.••••••••.•••...••••.••.•.•• _..................................... ';-27

Shell ProgrammIng .. 7-28
Shell Programming Exe,.elses•••••••••••••••••••.•••.•••••••••...••••••••••••••••••••••••••••••••••••• __ ••..••.•..•.•••••.••••.•••.•••.•••. 1-72

Answe,.. to Exercises ..•••.••••.•.•..•..•.•••••••.••••.••••••••.••••...•.•••••••.•••••••••••.•••.•••.•••••.••• _................................... 7'-73

CHAPTER 8. COMMUNICATION TUTORIAL

Introduction ••..•.•..•......•.•.•...•....•.........••....•...............•.................•...••........•••••••••••••••...•••••••..•••••.••••••••........ 8-1

CommunIcatIng On The UNIX System... 8-1

How Can You Communleate!•....•......................•.....................•..••....•..•.•.•.••......•••..•••.....•......... 8-2
Sending And ReceivIng Messages.. 8-3

Sending And Reeelving FlIes •.•.......••.••......••.•..•••.•••.•..•.••.••.••.••..•••.......•.••••.•••...•.•.••.•..••....•.•.•••......••.•..•...... 8-14

Advanced lofessage And Ftle Handltng .. _ 8-25

PART 3. SHELLCO~S

CHAPTER g. USING SHELL COMMANDS

Introduction •• _..................................... 9·1

ExecutIng Simple Shell Commands... 9·1

Input/Output Redirection.. 9·1

Plpeltnes and Ftlters .. 9·2

Permlsston ~1odes •• 0 .. 3

File Name Generation.. 0-4

Quottng•.•••..•...••.•••.•.••••......•...••••••••.•...•.•...••....••..•.••••••••.••••••...•.•••••••..•••.. _..................................... 0-5

Executing Commands In The Background ..•.•...•.•.••.•.•••.•••.••••••.•••••••.•••••••••••.••..•. _.................................... Q-6

Shell Variables •.•...•.••••••.......•...•••.•...•.....•.....•....•....•.•...••.•••••••..••••••.••••••••••..••..•••• _.................................... Q·8

Spectal Commands••............•.•••..•....•...........•.....•..•.••..••..•.•...•••.•..•.••...••••••• _ •••.••.••••.•.••..•......•. :•.. 0-15

Restrleted Shell•....•..•.•....••.••.•...••.•.•.•••..•.•••••...•.•.•••.••••••••••••••••.••••••••.•••••••••••••••.•••••••••••••.•••••••••••••.•.•.• 0-1 g

CHAPTER 10. SHELL PROGRAMMING

IntroductIon ••......•...•••••...••.••.•...•.......•••••••••.•••.....••..••..•..•..••••.......••.••.•••...••...... _....................................... l()"}

Invoking The SheIl •.••••••..•........•.•...•..••••.•......•••.•..•.••••••..••••.••••..••.•...••.•...••..•.••... _....................................... 10-1

Input/Output .•.•....•...•..•............•......•....••••...•.•.•..•.•••..••.••••••........•.••••.•..•.........••...•..•....•••..••..•..••.•..•.........• 16-1

Shell VarIables ••.•.•.••••••..•.•..•••.••.•..•.•••••••••..•••••••••••••••••••.••••••••..•..•••.•••••••••••••.•••• _...................................... 10-3

Conditional Substitution•..••...•••••••...••.•..•....•.•.•....••••.....•.••.•.••••••...•••.•..•....•• _...................................... 10-6

Control Commands •.•..•........•.............•.....•••••••..••••••••••••••••••.••..••..••.•••.•....••.••••.•••.••..••••••.••..................•..... 10-8

Spectal Commands ...•.••.•....••..•..•..•....••••..•..•..•••••..•..•.••..••••..•...................••..•.•.....•.........•....••...................... 100IS

Command Grouping •..•...•...•......•...•.....•••••••...••.....•••.............•••••...•..•••....•••••.•••..••..••..•••••••..••..•..........•.•..... 16-30

A Command's Environment ...•..................•...•.. 10-31
Debugging Shell Procedures ... 10-32

ICON/UXV USER GUIDE
vii

CONTENTS

CHAPTER 11. EXAMPLES OF SHELL PROCEDURES ('
0

eopypalrs •••••••••.•••.•.•.••..•...••..••••••••••••••••••••••••••••••.•••••••.•••••••••••• _ ••••••••••.••••.••••••••••.•••••••• _ •••••••.•.••••....••..••••• 11·1
eopyto •.•••••••••••••••..•••.•.•••.•.••• _ ••••••••••••••••••••••••••••••••••••••.••••••.•••••••••••.... 11·2
dIstInct .. . 11·2
dr-aft .. _ ••••••••••••••••••••••••• _ 11·3
edftnd ••••.••••••••••••••••••••.•••.•• 11-4
edlast ... _ •..•..•.••..•...•..•••• _ 11-4
fspllt••••••••••••••••••••••••••••.••..•••••.••••.••••••••••••••••••••••••••••••••••••.••••••••••••••••••••••••.••••••••••••••••••• _ 11-6

Inltvars •••.•• _ 11-6
merge ••••..••••••••••••••••••••••••.•••.. 11-7
mkftles •••••••••••••••••••••••••••••.••.••.••••••••••••••••••••••••••••••••••••• _ •••.•••••• 11-8
mmt•...•...•.........•.•••••••••..••..••••••••.•••••••.•••••••••••••.•.••.•••••••••••••••••••••••••.••...•.•••••.••.•.••••••...•..••..... 11·g

null ..•..................................... _ 11-10
phone .••.••.••••••••••.••..••....•..••..•...•••••.••••••••••••••.•••••••••••••••••••••.••••.•.••••••••••••••••••.••.•••••••••••••••.•••••.•••••••.•..••..••.• 11·11
wrltemall .. . 11-11

PART 4. GRAPIDCS

CHAPTER 12. GRAPHICS OVERVIEW

Chapter Introd.uetlon... 12-1
Baste Concepts •.••••••••.....•...•..••••••••...•.•....•...••..•...•••..•.•••••..•.••••.••.•••••••...••.••.•••••••••••••••••••.•..••••••...••••..•.•..... 12·1

Getting Started•...•....••..•..•.•..•.••••.•.............•..............••...•...........•.••...•..••..•••.••.•••••••••••..•.••••.•••.•....•..•..... 12·3

Examples or What You Can Do... 12·4
Where To Go From Here .•..•..•...•.•..••••.•..•...•.••.•.••••.••.••.•.•..••••.•..•.••••••.••..•..••..•••.••••••••••••.••.••..•.•.•.••.........•.. 12-8

CHAPTER 13. STAT-A TOOL FOR ANALYZING DATA

Chapter In trod uctlon ... 13-1
Basic Concepts ••••••••.•..•.•••.•••..•.•.•••••.••.••.••...•.•..••••••..•••...•.•••••.•.•••.•.•••••••.•.•.••.•...•••...••••••••••.•.••••.....•....•.....• 13-1

Node DescrIptIons.. 13 .. g
Examples ••••••.••••••••.••.•••••.••••...•.•••••.••.•.•••.•.•.•••.••••••.•..•••.••..•••••.••.•.•••••••.•••••••.•.•.•••.•••••••••.•....•••••••••.•.. /> •••••••• 13-23

CHAPTER 14. GRAPHICS EDITOR

Chapter Introduetlon... 14-1
Commands •••......•.••••...•.••.....••••.••.......•.•.••...•.•.••.....•........•••••.•••...•.•.••.•.....••.....•.•.•••...•..•••.•••••••••••••••..•••.•... 14·2
Command Summary ... 14 .. 16

Some Examples or What Can Be Done •.•..•.....••••••••.••..•••••••••••••••••••.•••.•••..•••••.•.••••• ~ •••••••.•.•......•.••••.••••••••.... 14-1Q

C)
viii

ICON INTERNATIONAL

c

CONTENTS

CHAPTER 15. ADMINISTRATIVE INFORMATION

Chapter Introductlon... 15-1

Graphics Structure.. 15-2

Installing Graphics .. 15-2

Hewlett-Packard Plotter ... 15-2

TEKTRONIX Terminal.. 15-2

Miscellaneous Information ... 15-2

PART 5. SUPPLEMENTARY INFORMATION AND REFERENCE TOOLS

Appendix A. Selected UNIX System Documentntlon .. A-I

Appendix B. File System OrganizatIon .. B-1

Appendix C. Sumnlary of UNIX System Commands .. C-I

Appendix D. Quick Reference to ed Commands ... D-I

Appendix E. Quick Reference to vi Commands .. E-I

Appendix F. SUlllmary of Shell Programming Ingredients ... F-I

Appendix G. An Introduction to the C Shell .. G-I

Glossary .. ~ ... GL-I

ICON/UXV USER GUIDE
ix

CONTENTS

x
ICON INTERNATIONAL

(j

c

HOW TO READ TmS GUIDE

The UNIX~ system is a family of computer operating systems developed by AT&T Bell Laboratories
and licensed by AT&T Technologies, Inc. Because it can run on many sizes and types of computers
and because of all it can do, the UNIX system has gained wide popularity since it was introduced in
the late 1960s. Now, either by choice or by fate, you are interested in learning something about it.

This guide is written to help you, the user, understand how the ICON/UXV system works and what
it can do for you. It introduces you to ICONjUXV, Release 3.2. New versions of the ICON/UA'V
system, called releases, will be offered as changes are made or as improvements are added.

Who Should Read This Guide

Whether you are a newcomer to the world of computers or an experienced computer user who is
unfamiliar with the ICONjUXV system, this guide is for you. Although it contains technical
materhil, it can be understood by either a newcomer or an expert. You will find that learning to
use the ICONjUXV system requires some thought and time, but you will be rewarded with power
and flexibility unattainable with other operating systems.

This guide assumes that you are one of a number of people using a 'Computer on which the
ICONjUXV system is running, and that there is a person responsible for monitoriD"g and controlling
the ICONjUXV system you are using. This person is the 8y8tem admini8trator. If necessary, you
also act as the system administrator. In this case, in addition to this guide, you should consult the
documents you received when the ICONfUXV system programs were delivered to you. (See
Appendix A for information on how to order additional copies.)

How This Guide Is Organized

The material in this guide is organized into three major parts: IOONI UXV SY8tem Overview,
IOON/UXV SY8tem Tutorial8, and Supplementary In/ormation and Re/erenee Tool8. Both the major
parts and the chapters in each part are separated by tab dividers.

The following list summarizes the contents of each major part:

• IOONI UXV S,8tem Overview- This part introduces you to the basic principles of the
ICONjUXV operating system. The material in this part is organized into four chapters, each
chapter building on information presented in preceding chapters. Therefore, it is recommended
that you read chapters 1 through 4 in order. The chapters that make up this part are:

Ohapter 1, What i8 the IOON/UXV Sy8tem?--Acquaints you with the ICONjUXV
system and explains how it works.

Ohapter 2, Ba8ic8 lor IOON/ UXV SY8tem U8er8- Covers topics related to using your
terminal, obtaining a system account, and establishing contact with the ICONfUXV
system.

ICON/UXV USER GUIDE xi

HOW TO READ THIS GUIDE

Chapter 9, U,ing the File S"tem- Explains what the file system is, how you can
organize information (data, text, and programs) using the file system, and how you can
store and retrieve this information using appropriate commands.

- Chapter 4, ICON/UXV S,atem Capabilitie,-Builds on material and terminology
presented in the first three chapters. It highlights ICONjUXV system capabilities, such
as command execution, text editing, electronic communication, programming, and aids
to software development .

• ICON/ UXV S,stem Tuton'al,- Each chapter in this part takes a step-by-step approach to
teach you about one aspect of the ICONjUXV system. You will gain the greatest benefit from
them if you work through the examples and exercises at a terminal connected to the
ICONjUXV system you will be using. The tutorials assume that you understand the concepts
introduced in chapters 1 through 4. For example, before reading either the Line Editor
Tutorial or the Screen Editor Tutorial, read the explanation of text editors in Chapter';. The
chapters that make up this part are:

Chapter 5, Line Editor Tutorial- Teaches you how to use the ed text editor to create
and to modify text on a paper printing or a video display terminal.

Ohapter 6, Screen Editor Tutorial- Teaches you how to use the vi· text editor to
create and to modify text on a video display terminal.

Ohapter 7, Shell Tutorial-- Teaches you how to use the shell to automate repetitive
jobs. The shell is the part of the ICONfUXV system that interprets the commands you
type.

Ohapter 8, Oommunication Tutorial-Teaches you how to send information to others,
whether they are working on your ICONfUXV system or on a different ICONfUXV
system .

• Shell Command,- Each chapter in this part is intended to provide information on how to use
the shell provided with ICONfUXV based on UNIX System V Release 2. Knowledge of another
programming language is not required when reading this document. Some examples are based
on the DOCUMENTER'S WORKBENCHdi> Software which is available independently for the
ICONjUXV system. Make sure that the system has DOCUMENTER'S WORKBENCH
Software available before trying any of those examples. The chapters that uake up this part
are:

xii

Ohapter 9, U,ing Shell command,- Builds on Ohapter 7 of this guide or the "hands-on"
experience some have acquired. It is intended for those users who have some basic
familiarity with shell but desire more detailed information.

ChapterlO, Shell Programming-Provides information for programming with shell.
Those users that intend to do shell programming should read Chapter 9 as well as
Chapter 10.

ICON INTERNATIONAL

c

c

c

HOW TO READ THIS GUIDE

- Ohapter 11, Examples 0/ Shell Procedures- Contains examples of shell programs.

It is important to note a few things about shell. The shell functions as a
Command language-The shell reads command lines entered at a terminal and
interprets the lines as requests to execute other programs.
Programming language-The shell is a programming language just like BASIC,
COBOL, Fortran, and other languages. The shell is a high-level programming
language that is easy to learn. The programs written using the shell programming
language are called shell scripts, procedures, or commands. These programs are stored
in files and executed just like commands. The shell provides variables, conditional
constructs, and iterative constructs.

- Working environment-The shell also provides an environment that can be tailored to
an individual's or group's needs by manipulating environment variables.

All command names in this document are in bold font.

Normally when the system is ready for a command from a terminal, a prompt is displayed on
the terminal (1 by default). With certain commands, the system expects more than one line of
terminal input. When this is the case, a secondary prompt is displayed (> by default). To
avoid confusion with what the system displays and what the user types, this document· does not
show prompts displayed by the system unless noted otherwise .

• Graphics- This part provides numerical and graphical commands used to construct and edit
numerical data plots and hierarchy charts. This part is designed for individuals experienced in
using the ICONjUXV system, in a variety of ways, within the office environment (electronic
mail, document preparation, data analysis, and so on). These individuals are not expected to
know programming languages to use the ICON/UXV Graphics, but may write shell procedures
for general purposes.

Chapter 12, Overview-- Provides a general description of and an introduction to the
ICONjUXV system graphic facility.

Ohapter 19, Statistical Network (statJ-- Describes a collection of routines that. can be
interconnected using the ICONjUXV operating system shell to form numerical
processing networks.

Chapter 14, Graphics Editor (gedJ- Describes an interactive editor used to display, edit,
and construct drawings on TEKTRONlXt 4010 series display terminals.

Ohapter 15, Administrative In/ormation-Is a reference guide for system administrators.
Specific information is contained about directory structure, installation, makefiles,
hardware requirements, and miscellaneous facilities of the graphics package.

ICON fUXV USER GUIDE xiii

HOW TO READ TmS GUIDE

• Supplementary Information and Reference Toole- This part is organized into six appendices, a
glossary, and an index. This material contains additional inC ormation that you may find useful
in learning about the ICONfUXV system. The appendices are:

- Appendix A, Selected ICON/UXV Syatem Documentation-Lists -additional ICONfUXV
system documentation that enhani:6 or elaborates on the information presented in this
guide. This appendix gives documem. titles, reference numbers, and information on how
to obtain the documents.

- Appendix B, File SY8tem OrgaRi:&tion-Dlustrates how information is stored in the
ICONjUXV operating system.

- Appendix C, Summary of ICONlfJXV S,8tem Commande Describes, in alphabetical
order, each ICONfUXV system command discussed in this guide.

- Appendix D, Quick Reference to ed Command8-Describes the commands used with the
line editor (ed), first in alphabetical order, and then organized by topic, such as
creating text, deleting text, and displaying text.

- Appendix E, Quick Reference to vi Oommands-- Describes the commands used with the
screen editor (vi), first in alphabetical order, and then organized by topics, such as
creating text, changing text, and cutting and pasting text.

- Appendix F, Summar, of Shell Programming Ingredient8- Describes shell command
language concepts and shows how:to use shell programming language statements.

Other sections in this part of the guide are:

Glo"arll- Defines technical words and terms used in this book.

Index- Gives an alphabetical listing of topics, together with the page numbers on which
they appear in this guide.

Throughout this section, each reference of the form name(lM), n&nl'e(7), or name(8) refers to
entries in the ICON/UXV Admini8trator Reference Manual. Each reCerence of the form name(l)
and name(6) refers to entries in the ICON/UXV Ueer Reference Manual. All other references to
entries of the form name(N), where a letter, TeCer to entry name in section N of the ICON/UXV
Programmer Reference Manual.

The text of this guide was prepared using lCONfUXV system text editors described in this guide,
formatted using the ICONfUXV System DOCUMENTER'S WORKBENCH troft", tbl, and mm
macros, and produced on an IMAGEN, 800j51aser printer operating under the ICONfUXV system.

* The visual editor is based on software developed by The University of California,
Berkeley, California; Computer Service Division, Department of Electrical
Engineering and Computer Science, and such software is owned and licensed by the
Regents of the University of California.

xiv ICON INTERNATIONAL

(j

Chapter 1

WHAT IS THE ICON/UXV SYSTEM!

PAGE

WHAT "THE ICON/U'/f:II SYSiEM IS .. 1-1

HOW "THE ICON/U'/f:II SYSiEM WORKS... 1-2
Kernel.. 1-3
Shell •••••••••.•••••.•.•••••••••••••••••••••••.••••••••.••.•• 1-7

Commands •••.•••••••••...•.•••••.••••.••••••.•..•••••.••••.••••••••••••••••••••••••••••••••••.••.••••••••••. 1-7
What Commands Do ••• 1-8
How Commands Execute.. 1-8

(\

o

Chapter 1

~TISTHEICON/UXVSYSTEM?

WHAT THE ICON/UXV SYSTEM IS

The ICONjUXV system is a set of programs, called software, that acts as the link between
a computer and you, its user. The ICONjUXV system is designed to control the computer
on which it is running so the computer can operate efficiently and smoothly and to provide
you with an uncomplicated, efficient, and flexible computing environment.

ICON/UXV system software does three things:

• It controls the computer,

• It acts as an interpreter between you and the computer, and

• It provides a package of programs or tools that allows you to do your work.

The ICON/UXV system software that controls the computer is referred to as the operating
system. The operating system coordinates all the details of the computer's internals, such
as allocating system resources and making the computer available for general purposes.
The nucleus of this operating system is called the kernel.

In the ICON/UXV system, the software that acts as a liaison between you and the
computer is called the shell. The shell interprets your requests and, if valid, retrieves
programs from the computer's memory and executes them.

The ICON/UXV system software that allows you to do your work includes programs and
packages of programs called tools for electronic communication, for creating and changing
text, and for writing programs and developing software tools.

Put simply, this package of services and utilities called the ICON/UXV system offers:

• A general purpose system that makes the resources and capabilities of the computer
available to you for performing a wide variety of jobs or applications, not simply one
or a few specific tasks.

• A computing environment that allows for an interactive method of operation so you
can directly communicate with the computer and receive an immediate response to
your request or message.

• A technique for sharing what the system has to offer with other users, even though you
have the impression that the ICON/UXV system is giving you its undivided attention.
This is called timesharing. The ICON/UXV system creates this feeling by allowing you
and other users-multiusers--slots of computing time measured in fractions of seconds.

ICON/UXV USER GUIDE 1-1

~T~THEICON~SYSTEMr

The rapidity and effectiveness with which the ICONjUXV system switches from I
working with you to working with other users makes it appear that the system is \.~ /
working with all users simultaneously .

• A system that provides you with the capability of executing more than one program
simultaneously, this feature is called multitasking.

The ICONjUXV system, like other operating systems, gives the computer on which it runs
a certain profile and distinguishing capabilities. But unlike other operating systems, it is
largely machine-independent; this means that the ICONjUXV system can run on
mainframe computers as well as microcomputers and minicomputers.

From your point of view, regardless of the size or type of computer you are using, your
computing environment will be the same. In fact, the integrity of the computing
environment offered by the ICONjUXV system remains intact, even with the addition of
optional ICON/UXV system software packages that enhance your computing capabilities.

HOW THE ICON/UXV SYSTEM WORKS

After reading the past few pages, you know that the ICON/UXV system offers you a set of
software that performs services--some automatically, some you must request. You also
know that the system creates a certain environment in which you can use its software. But
before you can ask the ICON/UXV system to do something, you need to know what it is
capable of doing.

Look at Figure 1-1. It shows a set of layered circles m graduated SIzes. Each circle
represents specific ICON/U~" system software, such as:

• Kernel,

• Shell, and

• Programs/tools that run on command.

1-2 ICON INTERNATIONAL

c

(.~

o

Figure 1-1.

HOW THE ICON/UXV SYSTEM WORKS

Programming
Environment

ICON /UXV system model

You should know something about the major components of ICON/UXV system software to
communicate with the ICON/UXV system. Therefore, the remainder of this chapter
introduces you to each component: the kernel, the shell, and user programs or commands.

Kernel

The heart of the ICON/UXV system is called the kernel. Figure 1-£ gives an overview of
the kernel's activities. Essentially, the kernel is software that controls access to the
computer, manages the computer's memory, and allocates the computer's resources to one
user, then to another. From your point of view, the kernel performs these tasks
automatically. The details of how the kernel accomplishes this are hidden from you. This
arrangement lets you focus on your work, not on the computer's.

On the other hand, you will become increasingly familiar with another feature of the
kernel; this feature is referred to as the file system.

The file system is the cornerstone of the ICONjUXV operating system. It provides you
with a logical, straightforward way to organize, retrieve, and manage information
electronically. If it were possible to see this file system, it might look like an inverted tree
or organization chart made up of various types of files Figure 1-9. The file is the basic unit
of the ICON/UXV system and it can be anyone of three types:

• An ordinary file is simply a collection of characters. Ordinary files are used to store
information. They may contain text or data for the letters or reports you type, code
for the programs you write, or commands to run your programs. In the ICON/UXV
system, everything you wish to save must be written into a file.

ICONjUXV USER GUIDE 1-3

WHAT IS THE ICONfUXV SYSTEM!

Manages
memory

Allocates
system

resources

Controls
access to
computer

Maintains
file system

Figure 1-2. Functional view of kernel

o -Directories

o . Ordinary Files

V - Special Files

Figure 1-3. Branching directories and files give the ICON fUXV system
its treelike structure

In other words, a file is a place for you to put information for safekeeping until you
need to recall or use its contents again. You can add material to or delete material
from a file once you have created it, or you can remove it entirely when the file is no
longer needed .

• A directory is a file maintained by the operating system for organIzmg the treelike
structure of the file system. A directory contains files and other directories as
designated by you. You can build a directory to hold or organize your files on the
basis of some similarity or criterion, such as subject or type.

For example, a directory might hold files containing memos and reports you write
pertaining to a specific project or client. Or a directory might hold files containing
research specifications and programming source code for product development. A

1-4 ICON INTERNATIONAL

o

(- ':
_./

c

HOW THE ICONfUXV SYSTEM WORKS

directory might hold files of executable code allowing you to run your computing jobs.
Or a directory might contain files representing any combination of these possibilities.

• A special file represents a physical device, such as the termina.l on which you do your
computing work or a disk on which ordinary files are stored. At least' one special file
corresponds to each physical device supported by the ICON/UXV system.

In some operating systems, you must define the kind of file you will be working with and
then use it in a specified way. You must consider how the files are stored since they can be
sequential, random-access, or binary files. To the ICON/UXV syst1ml, however, all files are
alike. This makes the ICONjUXV system file structure easy to use. For example, you need
not specify memory requirements for your files since the system automatically does this for
you. Or if you or a program you write needs to access a certain device, such as a printer,
you specify the device just as you would another one of YOUT files. In the ICON/UXV
system, there is only one interface for all input from you and output to you; this simplifies
your interaction with the system.

The source of the ICON/UXV system file structure is a directory known as root, which is
designated with a slash (/). All files and directories in the file system are arranged in a
hierarchy under root. Root normally contains the kernel as well as links to several
important system directories that are shown in Figure 1-4:

/bin

/dev

fete

/lib

/tmp

/usr

Many executable programs and utilities reside in this directory.

This directory contains special files that represent ~ripheral devices, such
as the console, the line printer, user terminals, and disks.

Programs and data files for system administrat.imu can be found In this
directory.

This directory contains available program and language libraries.

This directory is a place where anyone can create temporary files.

This directory holds other directories, such as 'mail (which further holds
files storing electronic mail), news (which _. contains files holding
newsworthy items), rje (which contains files needed to send data via
something called the remote job entry communication link), and games
(which contains files holding electronic games).

In summary, the directories and files you create comprise the portion of the file system that
is structured and, for the most part, controlled by you. Other parts of the file system are
provided and maintained by the operating system, such as bin, dev, etc, lib, tmp and
usr, and have much the same structure on alllCON/UXV systems.

Chapter 3 shows how to organize a file system directory structure and how to access and
manipulate files. Chapter 4 gives an overview of ICON/UXV system capabilities. The
effective use of these capabilities depends on your familiarity with the file system and your
ability to access information stored within it. Chapter 5 and Chapter 6 are tutorials
designed to teach you how to create and edit files to meet your computing and information

ICON/U).."V USER GUIDE 1-5

WHAT IS THE ICONjUXV SYSTEM!

o = Directories

o = Ordinary Files

V = Special Files

date cat

1-6

Figure 1-4. Sample of typical fue system structure

ICON INTERNATIONAL

o

c

c

HOW THE ICONjUXV SYSTEM WORKS

management needs.

Shell

The shell is a unique ICONjUXV system program or tool that is central to most of your
interactions with the ICON/UXV system. Figure 1-1 illustrates how the shell works. The
drawing shows the shell as a circle containing arrows pointing away from the kernel and
the file system to the outer circle that contains programs and then back again. The arrows
indicate that a two-way flow of communication is possible between you and the computer
via the shell.

When you enter a request to the ICONjUXV system by typing on the terminal keyboard,
the shell translates your request into language the computer understands. If your request
is valid, the computer honors it and carries out an instruction or set of instructions.
Because of its job as translator, the shell is called the command language interpreter.

As the command language interpreter, the shell can also help you to manage information.
The shell's ability to manage information stems from the design of the ICON/UXV system.
Each program in the ICONjUXV system is designed to do one thing well. In a sense, a
ICON/VA\! system program is a building block or module that you can use in tandem with
other programs to create even more powerful tools.

In addition to acting as a command language interpreter, the shell is a programming
language complete with variables and control flow capabilities.

A section of Chapter 4 describes each of the shell's capabilities. Chapter 7 teaches you how
to use these capabilities to write simple shell programs called shell scripts and how to
custom-tailor your computing environment.

Commands

A program is a set of instructions that the computer follows to do a specific job. In the
ICON/UA\! system, programs that can be executed by the computer without need for
translation are called executable programs or commands.

As a typical user of the ICONjUXV system, you have many standard programs and tools
available to you. If you also use the ICONjUXV system to write programs and to design
and develop software, you have system calls, subroutines, and other tools at your disposal.
And you have, of course, the programs you write.

This book introduces you to approximately 40 of the most frequently used programs and
tools that you will probably use on a regular basis when you interact with the ICON/VA\!
system. If you need additional information on these or other standard ICON/UXV system
programs, check the ICON/UXV System User Reference Manual. If you want to use tools
and routines that relate to programming and software development, you should consult the
ICON/UXV System Programmer Reference Manual and the ICON/UXV System Support
Tools Guide. Appendix A provides you with information on how to obtain copies of these
manuals.

ICON/UXV USER GUIDE 1-7

WHAT IS THE ICON/UXV SYSTEM!

The details contained in the two reference manuals may also be available via your terminal
in what is called the on-line version of the ICONjUXV system reference manuals. This on- i- \
line version is made up of formatted text files that look exactly like the printed pages in\....~,j
the manuals. You can summon pages in this electronic manual using the command man,
which stands for manual page. If the electronic version of the manuals is available on your
computer, the man command is documented in your copy of the ICON/UXV System User
Reference Manual.

What Commands Do

The outer circle of Figure 1-1 organizes ICONjUXV system programs and tools into
general categories according to what they do. The programs and tools allow you to:

• Process text. This capability includes programs, such as, line and screen editors (which
create and change text), a spelling checker (which locates spelling errors), and optional
text formatters (which produce high-quality paper copies that are suitable for
pu blication).

• Manage information. The ICON/UXV system provides many programs that allow you
to create, organize, and remove files and directories.

• Communicate electronically. Several programs, such as mail, provide you with the
capability to transmit information to other users and to other ICON/VA\! systems.

• Use a productive programming and software development environment. A number of
ICON/VAry system programs establish a friendly programming environment by
providing ICON/UXV-to-programming-Ianguage interfaces and by supplying numerous
utility programs.

• Take advantage of additional system capabilities. These programs include graphics, a
desk calculator package, and computer games.

How Commands Execute

Figure 1-5 gives a general idea of what happens when the ICON/UXV system executes a
command.

YOUR
REOUEST

b '''')T.
'II\I\'I\I\I·OUTPUT

1Ij}')

SHEll

(COMMAND
LANGUAGE

INTERPRETER

DIRECTORY
SEARCH

PROGRAM PROGRAM
EXECUTION RETRIEVAL

Figure 1-5. Flow of control between you and computer when
you request program to run

When the shell signals it is ready to accept your request, you type in the command you
wish to execute on the keyboard. The command is considered input, and the shell searches

1-8 ICON INTERNATIONAL

HOW THE ICON/UXV SYSTEM WORKS

one or more directories to locate the program you specified. When the program is found,
the shell brings your request to the attention of the kernel. The kernel then follows the
program's instructions and executes your request. After the program runs, the shell asks
you for more information or tells you it is ready for your next command.

This is how the ICON/UXV system works when your request is in a format that the shell
understands. The structure that the shell understands is called a command line. Chapter:3
explains what you need to know about the command line so you can request a program to
run.

This chapter has outlined some basic principles of the ICON/UXV operating system and
explained how they work. The following chapters will help you begin to apply these
principles according to your computing needs.

ICON/UXV USER GUIDE 1-9

o

(

c

Chapter 2

BASICS FOR ICONjUXV SYSTEM USERS

PAGE

GETTING STARTED

ABOlJT THE TERMINAL ••••.••••••••.•••.•.••••.••.•.••.••.••••..•.•••.••••••..••..••••••.••••••.••.••••.•••...•..........•••••.•.••••.•••.••••••••.
Required Terminal Settings
Keyboard Characteristics •••

Typing Conventions •••••••••••••••••••••.•••
Responding to the Command Prompt
Correcting Typing Errors •••••.•..••••••••..••....••.•.••••••••••••.•••••••••••••••••••••••••.••.•••••••••.•.•••••••••••••••••••••

Typing Speed •••••••••.•••.•••.••••••••••••••••••••••••••••••••...•••••••••••••••••••••••••••••.•.•••••...•••••••••••••.•••••••••••••••
Stopping a Command ••..•••••••••••••.•••.••
Using Control Characters .. .

OBTAINING A LOGIN NAME

ESTABUSHING CONTACT WITH THE ICONjUXV SySTEM
Login Procedure
Password .••.•...••••••.••••••••••..••.••••.•••••••••.•••••••••••••••••••.•..•..••..•.•••...••.•••••••••.••....••••••••••••••••••••••••••••.•••••••
External Security Code
Possible Problems When Logging In

2-1

2·2
2-3
2·3
2-6
2·6
2-6
2·1

2·8

2·8
2-D

2·9
2·11

2-11

Simple Commands... 2-12
Logging orr .. 2·13

(~

\)
"'----..

(;

c

Chapter 2

BASICS FOR ICON/UXV SYSTEM;, USERS

GETTING STARTED

There are general rules and guidelines with which you should be familiar before you begin
to work on the ICONjUXV operating system. For example, you need information about
your terminal and how to use its keyboard and about how to begin and end a computing
session.

This chapter acquaints you with these rules and guidelines and presents you with
information to help to make your first encounter with the ICON/UXV operating system
understandable and to lay the groundwork for future computing sessions. Since the best
way to learn about the ICONjUXV operating system is to use it, this chapter helps to get
you started by providing examples of how to use these rul~s and guidelines to establish
contact with the ICONjUA'V operating system and to respond to its reqmests and prompts.

For your convenience, an outline of a terminal display screen is "Used to set off examples of
interactions between you and the ICONjUXV opel'.a.tingsyst~. These examples apply
regardless of the type of terminal you use. Inside the screen, what the ICON/U:>.."V
operating system prompts and its responses are printed in italic. The commands you type
in response to the system prompts and your other input and data a~e]printed in boldface
type. These include the commands you type that do not appear on tibe screen (such as, a
carriage return), which are enclosed in angle brackets < >. The following screen
summarizes these conventions.

italic(ICON/UXV system,;prompts and
responses)

bold(Your commands)

<>(Your commands or parts
of commands that do not
appear on the screen)

Without further ado, let's begin.

ICONjUXV USER GUIDE 2-1

BASICS FOR ICON/UXV USERS

To establish contact with the ICON/UXV operating system, you need:

• A terminal,

• An identification name, called a login name, by which the ICON/UXV operating
system recognizes you as one of its authorized users,

• A password with which the ICON/UXV operating system double-checks and verifies
your identity after you log in and before it allows you to use its resources, and

• The telephone number to the ICONjU}.."V operating system to which your login name
is assigned if your terminal is not directly connected or wired to the computer.

ABOUT THE TERMINAL

A terminal is an input/output device: through it you input a request to the ICON/UXV
operating system and the system, in turn, outputs a response to you. The terminal is
equipped with a keyboard, a monitor or display unit (much like the screen on a television
set), a control unit, and a link that allows it to communicate with the computer (Figure £-
1).

Figure 2-1. Video display terminal (DT1200~);

These terminals differ in how they monitor or display input/output. The video display
terminal uses a display screen, whereas the printing terminal uses continuously fed paper.

\!iii Trademark of ICON International

2-2 ICON INTERNATIONAL

c

c
ABOUT THE TERMINAL

Required Terminal Settings

Regardless of the type of terminal you use, you must set it up or configure it in a certain
way to insure proper communication with the ICON/UXV operating system.

If you have not set terminal options before, you might feel more comfortable seeking help
from someone who has. Or you can, of course, be adventurous.

How you configure a terminal depends on the type of terminal that you are using. Some
terminals are configured with switches, whereas other terminals are configured directly
from the keyboard using a set of function keys. To determine how to configure your
terminal, consult the owner's manual provided by the manufacturer.

Following is a list of configuration checks to be performed on any terminal before
attempting to establish contact with the ICON/UXV operating system.

• Turn on the power.

• Set the terminal to ON-LINE or REMOTE operation. This setting insures that the
terminal is under direct control of the computer.

• Set the terminal to FULL DUPLEX mode. The full duplex mode insures two-way
communication or input/output between you and the ICON/UXV operating system.

• If your terminal is not directly connected or hard wired to the computer, make sure
the acoustic coupler or data phone set you are using is set to the FULL DUPLEX
mode.

• Set character generation to LOWERCASE. If the terminal, however, generates only
uppercase letters, the ICON/UXV operating system will accommodate it by printing
everything that transpires during the computing session in uppercase letters.

• Set the terminal to NO PARITY.

• Set the speed or rate at which the computer communicates with the terminaL This
rate of communication is called the baud rate. Typical terminal speeds are 30 and 120
characters per second or 300 and 1,200 baud, respectively. Occasionally, speeds such
as 240, 480, and 960 characters per second or 2,400, 4,800, and 9,600 baud,
respectively, are available.

Keyboard Characteristics

If you have seen or had some experience with a typewriter, the keyboard shown in
Figure f-f should look somewhat familiar.

ICON/UXV USER GUIDE 2-3

BASICS FOR ICONjUXV USERS

(,. ill ,. ill __ LM LM La. _ ClNLNi WNIa\ CUIIR)
• • • • - EI\P DlP\AY ...,.

Figure 2-2. Example of keyboard layout (DT1200)

Its keys correspond to:

• Letters of the English alphabet a through z and A through Z when you are holding
down a shift key,

• Numeric characters 0 through 9, ,
• A variety of symbols, such as ! @ # $ % A & () _ - + = '" {}[] \:;"'<>,?/

• Words, such as RETURN and BREAK, and abbreviations, such as DEL (delete), CTRL
(control), and ESC (escape).

2-4 ICON INTERNATIONAL

r\
~

c

o

(.~.

ABOUT THE TERMINAL

Many of the keys corresponding to symbols, words, and abbreviations have been added to
the keyboard layout and the placement of these characters or symbols on a keyboard may
vary from terminal to terminal.

Consequently, there is not a truly standard layout for terminal keyboard characters.
There is, however, a standard set of characters that keyboards ha~, consisting of 128
characters, called the ASCII character set. ASCII is pronounced .. as kee" and is the
abbreviation for American Standard Code for Information Interchange. When you depress
a key or combination of keys, the appropriate ASCII code is sent to the computer for
translation from the alphabetic and numeric characters that we understand to electronic
signals that the computer can decode.

Typing Conventions

To interact effectively with the ICONjUXV system, you should be familiar with certain
typing conventions. An example of a ICONjUXV typing convention is using lowercase
letters when you issue commands. Other typing conventions require that you use specific
characters to erase letters and delete lines, or combinations of characters to stop the
ICON/VA\! from printing output on your terminal monitor temporarily.

The next few pages introduce you to these conventions. Table 2-1 lists these special
characters, keystrokes, and their meanings for your quick reference.

Responding to the Command Prompt

The standard ICONjUXV operating system command prompt is the dollar sign, $. When the $
appears on your terminal monitor, it means that ICONjUXV is waiting for you to tell it to do
something. Your response to the $ prompt is to issue commands followed by depressing the carriage
return key, designated as <CR> throughout this guide.

The $ is the default value for the command prompt. Chapter 7 explains how to change the default
value to another prompt.

Correcting Typing Errors

You can correct typing errors in two ways providing you have not pressed <CR>. The:# symbol
allows you to erase previously typed characters on a line, and the @ sign allows you to delete the
line on which you are working. The # and the @ characters are default values for character and
line deletion, respectively.

Pressing the # key erases the character previously typed, whereas repetitive use of the :# sign erases
any number of characters back to the beginning of the line, but not beyond that. For example,
typing

helo#lo

on your terminal keyboard is interpreted by the ICONjUXV operating system as "hello" correctly
typed.

ICONjUXV USER GUIDE 2-5

BASICS FOR ICONfUXV USERS

Key(s)

$

@

BREAK*

DEL *
ESC*

RETURN *
Control d*

Control h*

Control i*

Control s*

Control q*

TABLE 2-1

ICON/UXV Typing Conventions

Meaning

System's command prompt (your cue to respond)

Erase a character

Erase or kill an entire line

Stop execution or a program or command

Delete or kill the current command line

Use with another character to perform specific
function (called escape sequence)

OR

Use to indicate end of create mode when usmg
screen editor (vi)

End a line of typing; designated as <CR>

Stop input to system or log off; designated as
<Ad>
Backspace for terminals without a backspace key;
designated as <Ah>
Horizontal tab for terminals without a tab key;
designated as <Ai>
Temporarily stops output from printing on screen;
designated as <AS>
Resumes printing after typing <AS>; designated as
<A q>

NOTE: All control characters are sent by holding down the control key and pressing the appropriate letter.

• Nonprinting cha.ra.cters.

To delete the entire line on which you are working, press the @ key. When you do, the ICONjUXV
system moves you to the beginning or the next line.

If you want to use the # or the @ characters literally, that is, you would like a file to contain the
line

2-6 ICON INTERNATIONAL

(
I

"'-- ,

ABOUT THE TERMINAL

Only one # appears on this sheet of music.

or

I purchased three books @ S15.75 per book.

you would have to press,th~ backslash (\) key before pressing t.h-e 4F .key. Otherwise, the # would
erase the space after th~.:'IVOrd "on~" ;and the line would print as

Only one appearsnnthis sheet of music.

If you press the @ key without fil'St prt!SSing the \ key "While typing -the second example, the @
would erase the entire line. On the other hand, the leading \ removes the special meaning attached
to characters like # and @ so that they can be understood literally by the computer.

Typing Speed

Alter the $ appears on your terminal monitor you can type as fast as you want, even during periods
when the ICONjUXV system is responding to or executing a command. The printout on your
terminal monitor will appear garbled because your input is intermixed with the system's output.
The ICONjUXV system, however, has what is referred to as read-ahead capability, which allows it
to separate input from output and to respond to your command properly.

With read-ahead capability, the lCONfUXV system stores YOUT next request while the system is
outputting information on your terminal monitor in response to a previous"request.

Stopping a Command

If you wish to stop the execution of a command, simply depress the BREAK or DEL key. In turn,
you will receive the $ prompt indicating that the ICONfUXV system terminated the running of the
program and is ready to accept your next command.

Using Control C1la.raeters

Locate the control key on your terminal keyboard. The key may be labeled CTRL or CONTROL
and is probably to the left of the A key or below the Z key. The control character is used in
combination with other keyboaTd charActers to initiate a physical controlling action across a line of
typing, such as backspacing or tabbing. In addition, some control characters define ICONjUXV
system-specific commands, such as temporarily halting output from prmting on a terminal monitor.

Type a control charActer by holding down the CTRL key and d~pTessing an appropriate alphabetic
key. Control characters do not print on t~terminal when typed. In this book, control characters
are designated with a preceding carat ("'), such as <"'s> for control s, to help identify them.

Let's take a look at the capabilities of the control character combinations you will be using
regularly when working with the ICONfUXV system.

Temporaril, Slopping 0.".,. At times, you may wish to stop the ICONjUXV system
temporarily from printing output on your terminal monitor. This could surely be the case when
you wish to keep information from rolling off the screen monitor on a video display terminal. If you

ICONjUA"V USER GUIDE 2-7

BASICS FOR ICONfUXV SYSTEM USERS

type <AS>, printing of output ceases; typing <Aq> causes the printing to resume.

Terminating a Oom,.tin, Seuion. When you have completed a session with the ICONjUXV
operating system, you should type <Ad>. This is the recommended way to log oft' the system and is
described in detail later in this chapter.

Addition.1 Oontrol Olaraeter Oa,dilitiee. The ICONfU,XV system furnishes other control
character capabilities. For instance, if your terminal keyboard does not have a backspace key,
typing <Ah> gives you a backspace. Typing <Ai> gives you a tab key if your terminal is set
properly. (Refer to the section entitled Possible Problems When Logging 1n for information on how
to set the tab key.)

After you configure the terminal and survey its keyboard, you are ready to establish communication
with the ICONfUXV system if you have a login name.

OBTAINING A LOGIN NAME

Generally speaking, a log contains a record of information or data that notes a series of events or
measures progress or performance.

The ICONfU,XV system procedure for logging in is based on this idea. When you attempt to
establish contact with the system, the ICONjUXV system verifies that you are an authorized user.
If you pass the system's security checks, the ICONfUXV system allows you to log in. After you are
logged in, the system maintains a record of the resources you use, the way in which you use them,
and for how long. This log helps the people who manage and maintain the system by giving them
complete user and resource allocation information.

To receive a login name, set upa ICONjUXV system account through your local system
administrator or the person in charge of your ICONjU).." system installation. When the account is
approved you should receive notification of your login name and the telephone number of the system
to which your login is assigned.

Your login name is determined by local practices. Possible examples are your last name, your
nickname, or a ICONjUXV system account number. Typically, a login name is three to eight
characters in length. It can contain any combination of alphanumeric characters, as long as it
starts with a letter. It cannot, however, contain any symbols. According to these rules, the
following examples are legal ICONfU,XV system login names: star8hip, mary£, and imrB.

ESTABLISHING CONTACT WITH THE ICONjUXV SYSTEM

When you attempt to contact the ICONfUXV system, you will typically be using a terminal that is
directly wired to a computer or a terminal that communicates with the system via a telephone
connection.

If your terminal has a direct-wired connection, turn on the power and the message login should
appear on the upper left side of the screen monitor or paper display.

2-8 ICON INTERNATIONAL

c

o
ESTABLISHING CONTACT WITH THE ICONjUXV SYSTEM

Login Procedure

When the connection is made and the ICONfUXV system prompts for your login name, type in your
login name and depress <CR>. In the following examples, starship is the login name.

login: starship<CR>

Remember to type in lowercase letters. If you use uppercase letters, the ICONfUXV system will
also use uppercase letters until you log out and log in again.

Password

After typing in your login name, the ICONfUXV system prompts you for your password. In a
typical session, you would simply type in your password followed by <CR>. For security reasons,
the ICONfUXV system will not print (echo) your password on the terminal monitor.

If both your login name and password are acceptable to the ICONfUXV system, the system prints
newsworthy messages for users. These items might include details about a new system tool or
furnish a schedule for system maintenance. The news items are followed by the ICONfUXV system
command prompt, which is the $ symbol.

Your terminal monitor should look something like the one that follows when you complete the login
sequence successfully:

login: starship<CR>
password:
ICON/UXV system news
$

If you made a typing mistake that you did not correct before depressing <CR>, the ICONfUXV
system displays the message login incorrect on your terminal monitor and asks you to try again by
printing the login prompt. It is also possible that your communication link with the ICONjUA"V
system might be dropped in which case you would have to try to log in again.

ICONjUXV USER GUIDE 2-9

BASICS FOR ICONjUXV SYSTEM USERS

login: ttarship<CR>
pa88word:
login incorrect
login:

If you have never logged into the ICONfUXV system, your login procedure will differ somewhat
from the typical one just described. This is because as a first-time user you were probably assigned
a temporary password when your system account was set up and the system will not allow you to
access its resources until you choose a new one.

This extra step maintains a security requirement, which is that you choose a password for your
exclusive use. Protection of system resources and your personal fil~ depends on you keeping the
password you select private.

The actual procedure you will follow is determined according to administration procedures at your
computer installation site. A typical example of what you might be expected to do if you have a
new ICONfUXV system account and you are logging in for the first time follows.

1. The ICONfUXV system displays the login prompt when you establish contact with it. You
should type in your login name followed by <CR>.

2. When the ICON/UA'V system prints the password prompt, you should type in your temporary
password and depress <CR>.

3. At this point, the system tells you the temporary password has 1!:xpired and that it is time to
select a new one.

4. The ICONjUXV system asks you to input the old password again. Type in your temporary
password.

5. The system prompts you to input your new password. Type in th-e password you choose.

The password you select is usually six to eight characters in length and contains at least one
numeric character. In addition, you can also use special characters. Examples of valid
passwords are: mar84ch, JonathOn, and BRA vas.

The ICONjUXV system you are using may have different requirements to consider when
choosing a password. Ask another system user or contact the system administrator if you are
not sure of the specifics.

6. For verification, the system requests that you re-enter your new password. Type in the new
password once again.

This is a valuable check for you and the ICONjUXV system since .a password is not printed on
the terminal monitor.

2-10 ICON INTERNATIONAL

ESTABLISHING CONTACT WITH THE ICON/UXV SYSTEM

7. If you do not re-enter the new password exactly as you typed it the first time, the system tells
you that the passwords do not match and asks you to try the procedure again. On some
systems, however, the communication link may be dropped if you do not re-enter the password
exactly as you typed it the first time. If this is the case, you must begin the login procedure
again.

When the passwords match, the system displays the S command prompt.

The following screen summarizes this procedure for first-time ICONjUXV system users.

login: starship
password:

<CR>
<CR>

Your pauword has e:tpired.
Choose a new one.
Old password:
New password:
Re-enter new password:
ICON/UXV system news
S

<CR>
<OR>
<OR>

(. External Security Oode

c

If you are able to access the ICONjUXV system from outside your computer installation site, you
may need additional information to establish contact with the ICONfUXV system, such as a special
telephone number or another security code. To determine if this feature is available to you, contact
your system administrator.

Possible Problems When Logging In

A terminal usually behaves predictably providing you have configured it properly. Sometimes,
however, it may act peculiarly. For example, each character you type may appear twice on the
terminal monitor or the carriage return may not work properly.

Some problems can be corrected by simply logging off the system and logging on again. If logging on
a second time does not remedy the problem, you should first check the following and try logging in
once again:

• Keyboard-Keys that are marked CAPS, LOCAL, BLOCK, and so on should not be enabled,
that is, in the locked position. You can usually disable these keys simply by depressing them.

• Data phone set or modem- If your terminal is connected to the computer via telephone lines,
verify that the baud rate and duplex settings are correctly specified.

• Switches- Some terminals have several switches that must be set to be compatible with the
ICONjUXV system. If this is the case with the terminal you are using, make sure they are set
properly.

ICONjUXV USER GUIDE 2-11

BASICS FOR ICON/UXV SYSTEM USERS

Refer to the section Required Terminal Settin,s in this chapter if you need information to verify the
terminal configuration. If you need additional information about the keyboard, terminal, and data
phone or modem, check the owner's manuals for the equipment.

Table 2-2 presents a list of procedures you can follow to detect, diagnose, and correct some problems
you may experience when trying to establish contact with the ICONjUXV system. If none of the
possibilities covered in the table helps you, contact the system administrator or the person in charge
of the ICONjUXV installation at your location.

TABLE 2-2
Troubleshooting Problems When Logging in·

Problemt

Stream of meaningless characters when
logging in

Input and output is printed in
uppercase letters

Input is printed in UPPERCASE letters,
output in LOWERCASE

Input is printed (echoed) twice

Tab key does not work properly

Communication ·link cannot be
established in spite of receiving high
pitched tone when dialing in

Communication link between terminal
and UNIX system is repeatedly
dropped on logging in

POISible C .. use

UNIX system attempting to
communicate at wrong speed

Terminal configuration includes
UPPERCASE setting

Key marked CAPS or CAPS LOCK is
locked or enabled

Terminal is set to HALF DUPLEX mode

Tabs are not set to advance to next

Terminal is set to LOCAL or OFF-LINE
mode

Terminal is set to LOCAL or OFF-LINE
mode

Ac:tion I Remedy

Depress RETURN or BREAK key

Log off, set character generation to
LOWERCASE, and log in again

Depress the CAPS or CAPS LOCK key
to disable setting

Change setting to FULL DUPLEX mode

Type stty -t .. bs*
Set terminal to ON-LINE operation and
try logging in again

Call system administrator

• Numerous problems can occur if your terminal is not configured properly. To eliminate these possibilities before attempting to log in,
perform the configuration checks listed on page 2-4.

t Some problems may be specific to your terminal, data set, or modem, check the owner's manual for this equipment if suggested actions do
not remedy the problem. * Typing sUy -tabs corrects tab setting only for your current computing session. To insure correct tab setting for all sessions, add the line
atty -tabs to your profile (see Chllpter 7).

Simple Commands

When the $ command prompt is displayed on your monitor, you know that the ICONjUXV system
recognizes you as an authorized user. Your response to the $ command prompt is to request
ICONjUXV system programs to run.

Type in the command date and press <CR> after the command prompt. When you do this, the
ICONjUXV system retrieves the date program and executes it . .As a result, your terminal monitor
should look something like the following.

2-12 ICON INTERNATIONAL

c

(\

(J

ESTABLISHING CONTACT WITH THE ICONjUXV SYSTEM

$ date<CR>
Wed Oct le 09:49:.U ODT 1989
$

As you can see, the ICONjUXV system prints the date and the time. In this example, the CDT
stands for Central Daylight Time. Your terminal monitor will display the appropriate time for your
geographical location.

Now type the command who and depress <CR>. Your screen will look something like this.

$who<CR>
starship
marye ttyOe
acct128
imrs tty06
$

ttyOOOct 12 8:59
Oct 12 8:56
tty050ct 12 8:54
Oct 12 8:56

The who command lists the login names of everyone currently working on your system. The tty
designations refer to the names of the special files that correspond to the terminals on which you
and other users are currently working. The login date and time for each are also given.

Logging Off

When you have completed a session with the ICONjUXV system, you should type <Ad> after the $
command prompt. (Remember that control characters such as the <"'d> are typed by holding
down the control key and depressing the appropriate alphabetic key.) Since they are nonprinting
characters, they do not appear on the terminal monitor. In a few seconds, the ICONjUXV system
should display the login message again. This indicates you have logged off successfully and someone
else can log in at this time. Your terminal monitor should look like the one that follows.

ICONjUXV USER GUIDE 2-13

BASIOS FOR IOONfUXV SYSTEM USERS

r S <Ad>
login:

It is strongly recommended that you log off the system using <Ad> before turning off the terminal
or hanging up the phone. It is the only way to assure you have been logged off the ICONjUXV
system.

2-14 ICON INTERNATIONAL

(
\~ ..

(

o

Chapter 3

USING THE FILE SYSTEM

PAGE

IN"'TRODlJCTI 01'1 •••

HOW THE FILE SYSTEM IS SmUCTURED .. .

YOUR PLACE IN THE FILE SYSTEM SmUCTURE
Your Hartle Direc't()ry •••
Your WorkinE Direc'tory •••
Path NarrteS ••••••••••.••••..•••.•.•.•••••.••.•••••••••.••••••.••.•..••.•.••.•••••••••.••.•••••••••••••.•••••••••••••••.•••••••••••••••.•••••.•••.

Full Path Names ••••••••••••..•••••••••••••••••••.••.••.•••.•...•.•••••••••••••••.•••.•••••.•••••.•••••••..•..•••••..•..•.•••••••••••
Relative Path Names•...•...•....•••...................................

ORGANIZING A DIRECTORY SmuCTURE.
Creat.inlt Directories {mkdir}
Listing the Contents of a Directory (18}

Frequently Used /8 Opt.ions .. .
Changing Your Working Directory (cd} .. ~
Removing Directories (rmdir)

ACCESSING AND MANIPULATING FILES .. .
Basic Commands .. .

Displaying a File's Contents (eGt, PI, prj .. .
Requesting a Paper Copy of a File (Ip} .. .

Making a Duplicate Copy of a File (epj
Moving and Renaming a File {mv}
Removing a File {rm} .. .
Counting Lines, Words, and Characters in a File (we)
Protecting Your Files (chmod)

Advanced Commands •••••••••••••••••..••••••.•••••••••••••••••••••••••••••••.•••••••••••.••••••••••••••••••••••••.••••••..••••.••••••.••••••
Identifying Differences Between Files {diJ!} .. .
Searching a File for a Pattern (grep}
Sort.ing and Merging Files (8ort)

SUMMARY ••••••••••••••••.•••••••••••••••••••••••••••••••..•••.••••••••• : •••

3-1

3-3

3-4

3-4

3-4

3-7

3-7

3-8

3-11

3-12

3-14

3-16

3-19

3-21

3-22

3-23

3-23

3-30

3-32

3·34

3-36

3-37

3-40

3-44

3-44

3-46

3·48

3-60

(J

c

Chapter 3

USING THE FILE SYSTEM

INTRODUCTION

To use the file system effectively you must be familiar with its structure, know something
about your relationship to this structure, and understand how the relationship changes as
you move around within it. Reading this chapter serves as preparation to use this file
system.

The first ten or so pages should help to give you a working perspective of the file system.
These pages contain information on the makeup of the file system and on how you fit into
its organization. The remainder of the chapter introduces you to a number of ICON/UXV
commands. Some you can use to build your own directory structure, whereas others allow
you to access and manipulate the subdirectories and files you organize within it. And
others still allow you to examine the contents of other directories in the system that you
have permission to look at or to use.

Each command is discussed in a separate subsection in a way that will allow you to use it
effectively. Many of the commands presented in this section have additional, sophisticated
uses; these, however, are left for more experienced users and are described in other
ICON/U),.'"\' documentation. You can choose to read these sections in the order in which
they are presented in the text or you can opt to read about the commands and their
capabilities in the order that best suits your interests and purpose. Nevertheless, all the
commands presented are basic to using the file system efficiently and easily. It is
recommended that you read through them thoroughly and then try them out. Before
viewing how the file system is structured, however, let's take a look at the structure of a
command.

For the ICON/U),.'"\' operating system to understand your intentions when using commands,
you must take care to see that you input commands using the correct format, called the
command line syntax. The command line syntax provides a procedure for ordering
elements in a command line. It serves the same purpose as putting words in a certain
sequence or order so that you can meaningfully express your ideas and thoughts to others.
Without sentence structure, people would have difficulty interpreting what you mean.
Similarly, without command line syntax, the ICON/~" shell cannot interpret your
request.

Command line syntax consists of one or more of the following elements separated by a
blank or blanks and followed by pressing the carriage return <CR> key:

command option(s) argument(s}

where

command is the name of the program you wish to run,

ICON/UXV USER GUIDE 3-1

USING THE FILE SYSTEM

option modifies how the command runs, and

argument specifies data on which the command is to focus or operate (usually a
directory or file name).

A command line can simply contain a command name followed by <CR>, or it can list
options and/or arguments in addition to the command. If you specify options and
arguments on the command line, you must separate them with at least one blank. Blanks
can be typed by pressing the space bar or the tab key. If a blank is part of the argument
name, enclose the argument in double quotation marks, for example, "sample I".

Some commands allow you to specify multiple options and/or arguments on a command
line. Consider the following command line:

A~f At. '\

wc-l -wile! file2 file3

In this example, wc is the name of the command and two options -1 and -w have been
specified. (The ICON/U:A"V system usually allows you to group options such as these to
read -lw if you prefer.) In addition, three files-- filet, file2, and file8-- are specified as
arguments. Although most options can be grouped together, arguments cannot.

The following examples show the proper sequence and spacing in command line syntax:

Incorrect

wcfile
wc-lfile
wc -I w file

wc filelfile2

Correct

wc file
wc -I file
we -lw file

or
we -1 -w file
wc filel file2

You can refer back to the ground rules on command line syntax as you read and work
through the chapter.

3-2 ICON INTERNATIONAL

(-
\) '-..

c

HOW THE FILE SYSTEM IS STRUCTURED

HOW THE FILE SYSTEM IS STRUCTURED

The file system is comprised of a set of directories, ordinary files, and special files. These
components provide you with a way to organize, retrieve, and manage information
electronically. Chapter 1 introduced you to directories a.nd files, but let's review what they
are before learning how to use them to tap the resources of the file system.

In general, a directory is a collection of files and other directories. Specifically, it contains
the names of these files and directories. You ca.n build a directory to organize the files you
create on the basis of some similarity. An ordinary file is a collection of characters that is
stored on a disk. Such a file may contain text for a status report you type or code for a
program you write. Any information you wish to save must be written into a file. And a
special file represents a physical device, such as your terminal.

The set of all the directories and files is organized into a treelike structure. Figure 8-1
helps you to visualize this. It shows a single directory called root as the source of a sample
file structure. By descending the branches that extend from root, several other major
system directories can be reached. By branching down from these, you can, in turn, reach
all the directories and files in the file system. In this hierarchy, files and directories that
are subordinate to a directory have what is called a parent/child relationship. This type of
relationship is possible for many generations of files and directories, giving you the
capability to organize your files in a variety of ways.

() 0 = Directories

o = Ordinary Files

'\l = Special Files

date cat

Figure 3-1. Sample file system o
ICONjUXV USER GUIDE 3-3

USING THE Fll.E SYSTEM

YOUR PLACE IN THE FILE SYSTEM STRUCTURE

When you are interacting with the ICONjUXV system, you will be doing so from a location
in its file system structure. The ICONjUXV system automatically places you at a specific
point in its file system every time you log in. From that point, you can move through the
hierarchy to work in any of the directories and files you own and to access those belonging
to others that you have permission to use.

The following sections describe your place in relation to the file system structure and how
this relationship changes as you move through the file system.

Your Home Directory

When you successfully complete the login procedure, the ICONjUXV system positions you
at a specific point in its file system structure called your login or home directory. The login
name that was assigned to you when your ICONjUXV account was set up is usually the
name of this home directory. In fact, every user with an authorized login name has a
unique home directory in the file system.

The ICONjUXV system is able to keep track of all these home directories by maintaining
one or more system directories that organize them. For example, let's say that the name of
one of these system directories is userJ, and that it contains the home directories of the
login names starship, mary2, and jmrs. Figure 9-2 shows you how a system directory like
userl ranks in relation to the other important ICONjUXV directories you read about in
Chapter 1.

Within your home directory, you can create files and additional directories (sometimes
called subdirectories) to organize them, you can move and delete these files and directories,
and you can control who can access your files and directories. You have full responsibility
for everything you create in your home directory because you own it. Your home directory
is a vantage point from which to view all the files and directories it holds. It is also a point
from which to view the file system all the way up to root.

Your Working Directory

A1s long as you continue to work in your home directory, it is considered your current or
working directory. If you move to another directory, that directory becomes your new
working directory.

There is a ICONjUXV command called pwd, which stands for print working directory,
that you can use to verify the name of the directory in which you are currently working.
For example, if your login name is starship and you issue the pwd command in response to
the first $ prompt after logging in, the ICON/UXV system should respond as follows:

3-4 ICON INTERNATIONAL

r~.

U

(~j

(

o

YOUR PLACE IN THE Fll..E SYSTEM STRUCTURE

o - Directories

o -Ordinary Files

'\l • Special Files

list

outline table sanders johnson isplay

Figure 3-2. A directory that organizes home directories is equivalent
to directories like bin and tmp in the file system

ICON/UXV USER GUIDE 3-5

USING THE FILE SYSTEM

$ pwd<CR>
luser 1/ starship
$

The system reply indicates that your working directory is /user1/starship. Technically,
/user1/starship is the full or complete name of the working directory. The name of a
directory like /userJ/starship or a file is also referred to as a path name.

Printing the complete or full path name of your working directory in response to a pwd
command is a courtesy that the ICON/UXV system extends to you. The full path name
indicates your exact position in terms of the file system structure.

We will analyze and trace this path name in the next few pages so you can start to move
around in the file system. For now, it is sufficient to say that what /userl/starship tells
you is that the root directory / (indicated by the leading slash in the line) contains the
directory userl, which in turn contains the current working directory, which is starship. All
other slashes in the path name are simply used to separate names of directories and files.

Remember, you are never more than issuing a pwd command away from determining
where you are in the file system. Issuing the pwd command will be especially helpful if you
try to read or copy a file and the ICON/UXV system tells you that the file you are trying
to access does not exist. You may be surprised to find that you are in a different directory
than you thought.

To provide you with a quick summary of what you can expect the pwd command to do, a
recap of how to use it follows.

ICON INTERNATIONAL

(

YOUR PLACE IN THE Fll..E SYSTEM STRUCTURE

Path Names

Command Recap

pwd - print full name of working directory

command

pwd

Description:

Remarks:

options arguments

none none

pwd prints the full path name of the directory in
which you are currently working.

U the system responds with messages, such as,
cannot open directory or read error in directory,
there may be problems with the file system. Inform
the system administrator.

Every file and directory in the ICONflJArv system is identified by a unique path name. The path
name tracks or indicates the location of the file or directory relative to the structure of the system.
In addition to identifying the location of a file or directory in the file system structure, a path name
provides directions to that file or directory. Knowing how to follow the directions the path name
gives is your key to moving around the directory structure successfully.

In the file system, there are two types of path names-- full and relative. Let's take a closer look at
both types.

Full Path Names

A full path name (sometimes called an absolute path name) gives you directions that take you from
the root directory down through a unique sequence of directories that leads to a particular directory
or file. You can use a full path name to reach any file or directory in the ICON{UXV system in
which you are working. A full path name always starts at the root of the file system and its leading
character is a / (slash). The final name in a full path name can be either a file name or a directory
name. All other names in the path must be directories.

To understand how a full path name is constructed and where it can lead you, let's use the sample
file system (Figure 9-t) and say that you are in the directory starship. U you issue the pwd
command, the system responds by printing the full path name of your working directory, which is
/ user 1/ starship.

We can analyze the elements of this path name using the following diagram.

ICONjUXV USER GUIDE 3-7

USING THE FILE SYSTEM

Root

where:

System
Directory

Delimit!
rJr,
~er l,8tarship

Home
Directory

I (leading) = Root of the file system when it is the first character in the path name,

user 1 = System directory one level below root in the hierarchy to which root points or
branches,

I (subsequent) == Slash that separates or delimits the directory names, userl and starship, and

starship = Current working directory, which is also the home directory.

Now look at Figure 9-9, it traces the full path to luserllstarship through the sample file system we
are using.

Relative Path Names

A relative path name is the name of a file or directory that varies with relation to the directory in
which you are currently working. From your working directory, you can move "down" in the file
system structure to access files and directories you own or you can move "up" in the hierarchy
through generations of parent directories to the grandparent of all system directories, the root. A
relative path name begins with a directory or file name, with a • (dot), which is a shorthand
notation for the directory in which you are currently located, or a •• (dot dot), which is a shorthand
notation for the directory immediately above your current working directory in the file system
hierarchy. The •• (dot dot) is called the parent directory of the one in which you are currently
located, which is the current directory or • (dot).

For example, if you are in the home directory starship in the sample system and starship contains
directories named draft, letters, and bin and a file named mbox, the relative path name to any of
these is simply its name, be it draft, letters, bin, or mbox. Figure 9-4 traces the relative path name
from starship to draft.

Now, let's say the draft directory belonging to starship contains the files outline and table. Then, the
relative path name from starship to the file outline is written as draftloutline.

Figure 9-5 traces this relative path. Notice that the slash in this path name separates the directory
named draft from the file named outline. Here, the slash is a delimiter that indicates that outline is
subordinate to draft; that is, outline is a child of its parent, draft.

3-8 ICON INTERNATIONAL

r
I "'-)

c

(~~)

f

0 - Directories

0 - Ordinary Files

V • Special Files

YOUR PLACE IN THE Fll.E SYSTEM STRUCTURE

list

outline sanders johnson isplay

Figure 3-3. Heavy bold lines trace the full path name
of the directory /userl/starship

Thus far, the discussion of relative path names covered how to specify names and directories of files
that belong to, or are children of, your current directory -- in other words, to descend the system
hierarchy level by level until you reach your destination. You can also, however, ascend the levels
in the system structure or ascend and subsequently descend into other files and directories.

To ascend to the parent of your working directory, you can use the •• notation. This means that if
you are in the directory named draft in the sample file system,.. is the path name to starship, and
.. / .. is the path name to starship's parent directory userl. From draft, you could also trace a path
to the file sanders in the sample system by using the path name .. /Ietters/sanders (.. brings you up
to starship, then down to letters, and finally sanders).

Keep in mind that you can always use a full path name in place of a relative one.

ICON(OXV USER GUIDE

USING THE FILE SYSTEM

3-10

o · Directories

o = Ordinary Files

list

outline table sanders johnson dsplay

Figure 3-4. Relative path name for the draft directory is
traced with heavy bold lines

o = Directories

o = Ordinary Files

list

outline table johnson dsplay

Figure 3-5. The rela.tive path draft/outline is traced in bold lines

ICON INTERNATIONAL

r
I
.~

c

(

o

YOUR PLACE IN THE FD..E SYSTEM STRUCTURE

In summary, some examples of full and relative path names would be:

Path Name Meaning

/ Full path name of the root directory for
the file system.

/bin Full path name of the bin directory
that contains most executable programs
and utilities.

/userl/starship/bin/too/s Full path name of the directory called
tOO/1l belonging to the directory bin that
belongs to the directory starship
belonging to ullerl that belongs to root.

bin/tools Relative path name to the file or
directory tools in the directory bin. Ir
the current directory is I, then the
ICONfUXV system searches for
/bin/too/s. But, if the current directory
is Iltarship, then the system searches the
full path / user 1/ starshipl binI too/so

tools Relative path name of a file or
directory tools in the working directory.

Knowing how to follow path names, such as in these examples, and move about in the file system is
a skill tantamount to being able to read and follow a map when you are traveling in a new or
unfamiliar place.

It might take some practice to move around in the file system with confidence. But this is to be
expected when learning a new concept and the techniques to use it.

To give you a chance to try your hand at moving about in the system's structure, the remainder of
the chapter introduces you to the ICONfUXV commands that make it possible for you to peruse the
file system. If you lose track of where you are in the system's structure, use the pwd command to
identify your location.

ORGANIZING A DIRECTORY STRUCTURE

This section introduces you to four ICON fUXV commands that make it possible for you to organize
and use a directory structure. These commands and what you can expect them to do are as follows:

mkdir -- Allows you to create or make new directories and subdirectories within your current
directory,

ICONfUXV USER GUIDE 3-11

USING THE Fn.E SYSTEM

Is Allows you to list the names of all the subdirectories and files in a directory,

cd Provides you with the ability to change your location from one directory to another
in the file system, and

rmdir - Lets you remove a directory when you no longer have a need for it.

All of the commands can be used with path names-full or relative-when organizing a directory
structure and when moving to the directories and subdirectories you organize, as well as when
navigating to directories in the file system that belong to others that you have permission to access.
Two of the commands-Is and ed-can also be used without a path name.

Each of the commands is described more fully in the four sections that follow. In addition, a
summary called a command recap is given for each command. The command recaps allow you to
review quickly the command line syntax and the capabilities of each command.

Creating Directories (mkdir)

It is recommended that you create subdirectories in your home directory according to some logical
and meaningful scheme to help you retrieve information you will keep in files. A convenient way to
organize your files is to put all files pertaining to one subject together in a directory.

To create a directory, the ICONjUXV system provides you with the mkdir command, which stands
for make directory. In the sample file system, the draft subdirectory in the home directory starship,
for example, may have been built by inputting the following while located in starship:

draft<CR>

The $ response to the mkdir command indicates that a directory named draft was successfully
created.

Similarly, the other subdirectories named letters and bin were created with the same command, as
indicated in the following screen:

3-12

$ mkdir letters<CR>
$ mkdir bin<CR>
$

ICON INTERNATIONAL

()

ORGANIZING A DIRECTORY STRUCTURE

All the subdirectories (draft, letter8, bin) could have been created in one command with the same
results, as the following screen shows:

S mkdir draft letters bin<CR>
S

You can also move to a subdirectory you created and build additional directories if necessary and
reasonable. When you build directories, or create files for that matter, you can name them
anything you wish as long as you keep in mind the guidelines presented in the following list.

• The name of a directory (or file) can be from one to fourteen characters in length.

• All characters other than / are legal.

• Some characters are best avoided, such as a blank or space, a tab, or a backspace, and the
following:

" [] \ ; ... < >

If you use a blank or tab in a directory or file name, you must enclose the name in quotation
marks on the command line.

• Avoid using the +, - or • as the first character in names.

• Uppercase and lowercase characters are distinct to the ICONjUXV system. For example, the
directory or file named draft would not be the same as the directory or file named DRAFT.

Examples of legal directory or file names would be:

memo
file .c

MEMO
chap3+4

section2
iteml-lO

ref:list
outline

See the command recap that follows for a quick reference to mkdir's capabilities.

command

mkdir

Description:

Remarks:

ICONjUXV USER GUIDE

Command Recap
mkdir - make a new directory

option8 argument8

none directoryname{ s)

mkdir creates a new directory (subdirectory).

The system returns the $ prompt if the directory is
successfully created.

3-13

USING THE Fn.E SYSTEM

Listing the Contents of a Directory (Is)

All directories in the file system have information about the files and directories they contain, such
as name, size, and the date last modified. You can obtain this information about what your
working directory and other system directories contain by using the Is command.

The Is command, which stands for list, lists the names of the files and subdirectories of the directory
you specify by path name. If you do not specify a path name, Is lists the names of files and
directories in your working directory. To demonstrate how the Is command works, let's use the
sample file system (Figttre S.£) once again.

You are logged into the ICONfUXV system and the shell responds to your pwd command with the
line /ttserl/starship. To display the names of files and directories in the working directory, you
would type Is<CR>. Mter this sequence, your terminal should read:

$ pwd<CR>
$ /ttserl/ starship
$ Is<CR>
bin
draft
letters
list
mbox
$

As you can see, the system responds by listing the names of files and directories in the working
directory starship in alphabetical order. If the first character of any of the file or directory names
was a number, or a capital letter, it would have been printed first.

Now, if you want to print the names of files and subdirectories in a directory other than your
working directory without moving from your working directory, you should use the command
format:

Is direetoryname<CR>

where the directory name is the full or relative path name of the desired directory. This means that
you can print the contents of draft while you are working in starship by inputting Is draf't<CR>.

3-14 ICON INTERNATIONAL

c

(

ORGANIZING A DmECTORY STRUCTURE

$ Is dratt<CR>
outline
table
$

In the example, draft is a relative path name from ,tar,hip to draft. By the same token, you could
print the contents of the userl directory, which is the parent of the star,hip by typing:

$ Is •• <CR>
jmr,
mary2
,tar,hip
$

where .. is the relative path name from star,hip to userl. You could also list the contents of v,er 1
by typing Is luserl<CR> (since Iv,erl is the full path name from root to user 1) and get the
identical listing.

Similarly, you can list the contents of any system directory that you have permission to access using
the Is command and a full or relative path name.

The Is command is particularly useful if you have a long list of files and you are trying to determine
whether one of them exists in your working directory. For example, if you are in the directory draft
and you wish to determine if the files named outline and notes are there, you can use the Is
command as follows:

$ Is outline notes< CR>
outline
notes not found
$

The output on the terminal monitor shows that the system acknowledges the existence of outline by
printing its name, but says that the file note, is not found.

ICON(lJX"V USER GUIDE 3-15

USING THE FILE SYSTEM

By the way, the la command will not print the contents of a file. If you wish to see what a file
contains, you can use the eat, pg, or pr command, which are described in the section of this
chapter entitled Aeee"ing and Manipulating File,.

Frequently Used 18 Options

The Is command also a.ccepts options that cause specific attributes of a file or subdirectory to be
listed. There are more than a dozen available options for the Is commands. Of these, the -a and
-I will probably be most valuable in your basic use of the ICONfUXV system. Refer to the
IOON/ u.xv U8er Reference Manual for information and details on the other options.

Li.tin, All Name. in «File. Some important file names in your home directory begin with a _
(dot), such as _profile, _ (the current directory), and __ (the parent directory). The Is command
will not print these names unless you use the -a option in the command line. Thus, to list all files
in your working directory 8tar8hip, including those that start with a _ (dot), type Is -a<OR>.
The terminal should look something like this:

$ Is -a<OR>

.profile
bin
draft
letters
list
mbox
$

Lidin, Oontent8 in Lon, Format. Probably the most informative Is option is -I. If you type
Is -I<OR> while in the starship directory, you would get the following:

3-16 ICON INTER~ATIONAL

c

(

(

o

$ Is -I<CR>
total SO
drwzr·zr·z
drwzr·zr·z
drwzr·zr·z
• rwz······
• rw·······
$

S
£
2
2
1

ORGANIZING A DIRECTORY STRUCTURE

8tar8hip project 960ct 270B:16bin
Btar8hip project 6-lNof) lLI:19draft
8tar8hip project BONo'/} BOB:-ll lett ers
8tarship project 12S01No'/} 210:151iBt
8tarship project -lOOet £710:00mboz

After the command line, the first line of output, total SO, shows the amount of memory used, which
is measured in chunks called blocks. Next is one line for each directory and file. The first character
in each of these lines tells you what kind of file is listed, where:

d = Directory,

- = Ordinary disk file,

b = Block special file, and

e = Character special file.

The next several characters, which are either letters or hyphens, describe who has permlSSlon to
read and use the file or directory. (Permissions are discussed with the ehmod command in the
section entitled Accessing and Manipulating Files in this chapter.) The following number is the link
count, which in the case of a file, equals the number of directories it is in, or in the case of a
directory, also includes the number of directories immediately under it in the file system structure.
Next is the login name of the owner of the file, which is starship, and then the group name of the file
or directory, which is project. The following number indicates the length of the file or directory
entry measured in units of information (or memory) called bytes. Then there is the month, day, and
time that the file was last modified. Finally, the file or directory name is given.

Figure S-6 sums up what you get when you list the contents of a directory in long format.

ICONjUXV USER GUIDE 3-17

USING THE FILE SYSTEM

File
type

Number of
blocks used

Owner
name

Number
of linkB

total 90

~~~u •• d rwxr-xr-x 
-. d rwxr-xr-x 

- rwx------
- rw-------

'-v-J 

I 
Permi88ion8 

~ 
9 
e 
e 
e 
1 

Btarship 
starship 
starship 
Btar8hip 
star8hip 

Group 
name 

~ 
project 
proiect 
project 
project 
project 

Number of 
characters 

/ Name 

~ 
96 Oct e7 08:16 bin 
64 Nov 1 14:19 draft 
80 Nov 8 08:41 letter8 

1e901 Nove 10:15 li8t 
40 Oct e7 10:00 mbox 

'--v--J 

I 
Time/ date la8t 

modified 

Figure 3-6. Description of output produced by the Is -I command 

Oommand S.mmar,. Following is a recap of capabilities provided by the Is command and two 
available options. See the IOON/UXV U8er Reference Manual for information on other available 
options. 

3-18 ICON INTERNATIONAL 



I( 

ORGANIZING A DIRECTORY STRUCTURE 

command 

18 

Description: 

Options: 

Remarks: 

Command Recap 

Is - list contents of a directory 

option8 argument8 

-a, -I, and others· directoryname{ 8) 

Is lists the names of the files and subdirectories in 
the specified directories. If no directory name is 
given as an argument, the contents of your 
working directory are listed. 

-a Lists all entries, including those beginning with 
• (dot). 

-1 Lists contents of a directory in long format 
furnishing mode, permissions, size in bytes, and 
time of last modification. 

If you want to read the contents of a file, use the 
cat command. 

* See the ICON/ UXV U8er Reference Manual for all available options and an explanation of their capabilities. 

Changing Your Working Directory (cd) 

When you first log into the ICONjUXV system, you are placed in your home directory, which 
becomes your current or working directory. You may, however, wish to work in a different directory 
for any number of reasons. For example, you might want to create a file in a specific directory, you 
may need to make corrections to a file in another directory, or you may wish to obtain information 
by reading a file in a different directory. 

Whatever the reason, the ICONjUXV system provides you with the cd command that allows you to 
move around in its directory structure. When you use the cd command to move to a new directory, 
that directory becomes your working directory. 

To use the cd command, enter the command: 

cd newdirectory-pathname<CR> 

where the path name, whether full or relative, to the new directory is optional. Any valid path 
name of a directory can be used as an argument to the cd command. If you use the cd command 
without specifying a path name, it will move you to your login directory regardless of where you are 
in the file system. 

When you specify a valid directory path name on the command line, the ICONjUXV system moves 
you to that directory. For example, to move from the 8tar8hip directory to the child directory draft 
in the sample file system, type cd draft<CR>. In this example, draft is the relative path name to 
the desired directory. When you get the 9: prompt, verify your new location by typing pwd<CR>. 
Your terminal monitor should look something like the following after going through this sequence: 

ICONjUXV USER GUIDE 3-19 



USING THE FD..E SYSTEM 

S cd draft<CR> 
S pwd<CR> 
/user 1/ starship/ draft 
$ 

Now that you are in the draft directory you can access the files and directories in it, in this case, the 
files outline and table. You can also create subdirectories in draft with mkdil' and additional files 
with the ed and vi commands. (See Ohapter 4 Cor general inCormation on the ed and vi commands 
and Ohapter 5 and Ohapter 6 for tutorials on using the ed and vi commands, respectively.) 

You may also use full path names with the cd command. For example, to move to the letters 
directory from the draft directory, you could use the command 

cd /userl/starship/letters<CR> 

where /user1/starship/letters is the full path name to letters. 

Or, since letters and draft are both children of starship, you could use the cd command with the 
relative path name .. /Ietters. The •• notation moves you to the directory starship, and the 
remainder of the path name moves you to letters. 

If you wish to return to your home directory after perusing the file system, simply type cd<CR>. 
The cd command with no arguments returns you to your login directory. 

3-20 ICON INTERNATIONAL 

/' 
I 

c 



f 

C\ 
. / 

ORGANIZING A DmECTORY STRUCTURE 

Command Recap 

cd - change your working directory 

command 

cd 

. Description: 

Remarks: 

Removing Directories (rmdir) 

options arguments 

none directoryname 

cd changes your position in the file system from 
the current directory to the directory specified. If 
no directory name is given as an argument, the cd 
command places you in your home directory. 

When the shell places you in the directory 
specified, the $ prompt is returned to you. You will 
also receive a $ prompt when you issue the cd 
command with no argument. To access a directory 
that is not in your working directory, you must 
substitute the full or relative path name in place of 
a simple directory name. 

If you decide you no longer need a directory, you can remove it with the rmdir command. The 
rmdir command, which stands for remove a directory, removes a directory if that directory does 
not contain subdirectories and files, or, in other words, if the directory is empty. 

If the directory you are attempting to remove is not empty, rmdir will not remove it unless you 
remove the contents of the directory first. In addition, you are not allowed to remove directories 
belonging to other system users unless you have permission to do so. 

The standard format for the rmdir command is: 

rmdir direetoryname(s )<CR> 

where one or more directory names can be specified. 

If you were to attempt to remove the directory bin in the sample file system, the ICONjUXV system 
would respond in the following manner: 

ICONjUXV USER GUIDE 3-21 



USING THE Fn.E SYSTEM 

$ rmdir bin<CR> 
rmdir: bin not empty 
$ 

To remove the directory bin with the rmdir command, you would first have to remove the files 
display and list and the subdirectory tools. If you wish to remove files, see the section entitled 
Accessing and Manipulating Files in this chapter. To remove any subdirectories like tools, use the 
rmdir command. The system will return the $ prompt in response to the rmdir command when 
the directory specified in the command line is empty. 

The command recap that follows summarizes how rmdir works. 

command 

rmdir 

Description: 

Remarks: 

Command Recap 

rmdir - remove a directory 

options arguments 

none directoryname( s) 

rmdir removes named directories if they do not 
contain files and/or subdirectories. 

If the directory is empty, the system returns the $ 
prompt when the directory is removed. If the 
directory contains files or subdirectories, the 
message, rmdir: directory name not empty is 
returned to you. 

ACCESSING AND MANIPULATING FILES 

This section introduces you to several ICONjUXV commands that access and manipulate files in the 
file system structure. Information in this section is organized into two parts- basic and advanced. 
The part devoted to basic commands is fundamental to your using the file system; the advanced 
commands offer you more sophisticated information processing techniques when working with files. 
You may skip reading the advanced section if you do not need to use the commands it covers. 

3-22 ICON INTERNATIONAL 

( 
\ ) 

'-- / 

c 



f 

ACCESSING AND MANIPULATING FILES 

Basic Commands 

This section discusses ICONfUXV commands that are important to your being able to access and 
use the files in your directory structure. Specifically, these commands and their capabilities are: 

eat Outputs the contents of a file you name, 

pg Prints on a video display terminal the contents of a file you name in chunks or pages, 

pr Prints on your terminal a partially formatted version of the file you name, 

Ip Allows you to request a paper copy of a file from a device called the line printer, 

ep Makes a duplicate copy of an existing file, 

mv -- Moves and renames a file, 

rm -- Permanently removes a file when you no longer need it, 

we -- Counts the lines, words, and characters in a file, and 

chmod --Changes permission modes for a file (and a directory). 

Each command is covered in one of following sections. A command recap follows the discussion of 
each command allowing you to review quickly the command line syntax and command capabilities. 

Displaying a File's Contents (cat, pg, prj 

The ICONfUXV system provides three commands that allow you to display and print the contents 
of a file or files-- cat, pg, and pro The cat command, which stands for concatenate, outputs the 
contents of files you specify by name on the command line, and displays the result on your terminal 
unless you tell cat to direct the output to another file or a new command. The pg command is 
particularly useful when you wish to read the contents of a lengthy file or a number of files because 
the command displays the text of a file in chunks or pages, a screenful at a time at your direction 
on a video display terminal. The pr command partially formats and outputs the files you specify on 
your terminal unless you direct the output to a paper printing device (see the Ip command in this 
chapter). 

The following three sections describe how to use these commands. 

COfu:Gfentde .nll Print Content. of • File (cat). The eat command displays the contents of a file 
or files. For example, if you are located in directory ietter6 in the sample file system and you wish 
to display the contents of the file john6on, you would type cat johnson<CR> and the following 
output would appear on the terminal. 

ICONfUXV USER GUIDE 3-23 



USING THE FILE SYSTEM 

$ cat johnson<CR> 
This file contains a letter 
to Mr. Johnson on the topic 0/ 
office automation. 
S 

As you can see, the contents of the file are displayed after the command line and are followed by 
the $ prompt. 

To display the contents of two (or more) files, like johnson and sanders, simply type 
$ cat johnson sanders<CR> and the cat command reads johnson and sanders and displays 
their contents in that order on your terminal. 

$ cat johnson sanders<CR> 
This file contains a letter 
to Mr. Johnson on the topic 0/ 
office automation. 
This file contains a letter 
to Mrs. Sanders inviting her to 
speak at our departmental 
meeting. 
S 

To direct the output of the cat command to another file or to a new command, see the section in 
Chapter 7 that discusses redirecting input and output. 

The command recap that follows summarizes what you can expect the cat command to do. 

3-24 ICON INTERNATIONAL 



c' 

( 

ACCESSING AND MANIPULATING FILES 

Command Recap 

cat - concatenate and print a file's contents 

command 

eat 

Description: 

Remarks: 

option6 argument6 

available· filename( 8) 

eat reads the name of each file given on the 
command line and displays the contents of the files. 

H the file(s) exist, the contents are displayed on the 
terminal monitor; if not, the message cat: cannot 
open filename is returned to you. 

H you wish to display the contents of a directory, 
use the 18 command. 

• See the ICON/ UXV UBer Reference Manual for all available options and an explanation of their capabilities. 

Paging Through the Oontenb 0/ • File (pg). The pg command, short for page, allows you to 
examine the contents of a file or files screenful by screenful on a video display terminal. The pg 
command displays the text of a file in chunks or pages followed by a colon (:). AIter displaying the 
colon, the system pauses and waits for your instructions to proceed. For example, your instructions 
can request pg to continue displaying the file's contents a page at a time or you can ask pg to 
search through the file(s) to locate a specific character pattern. Table 9·1 summarizes some of the 
instructions you can give pg after the colon is displayed. 

ICONfUXV USER GUIDE 3-25 



USING THE FILE SYSTEM 

TABLE 3-1 

Summary of Selected Commands for pg* 

Commandt 

h 

q or Q 

<OR> 

1 

d or Ad 

. or Al 

f 

n 

p 

$ 

/pattern/ 

ApatternA 

Meaning 

Help; display list of available pg commands 

Quit pg perusal mode 

Display next page of text 

Display next line of text 

Display additional half page of text 

Redisplay current page of text 

Skip next page of text, and display following one 

Begin displaying next file you specified 
on command line 

Display previous file specified on command line 

Display last page of text in file currently displayed 

Search forward in file for specified character 
pattern 

Search backward in file for specified character 
pattern 

• See the ICON/VXV V,er Reference Manual for a detailed explanation of all available pg commands. 

t Most commands can be typed with a number preceding them: +1 (display next page), -1 (display previous page), or 
1 (display first page of text). 

The pg command is especially useful when you wish to peruse a long file or a series of files because 
the system pauses after displaying each page allowing you as much time as you need to examine it. 
The size of the page displayed depends on the terminal you are using. For example, on a video 
display terminal with a window capable of showing 24 lines, 23 lines of text and a line containing 
the colon will be displayed as a page. However, if the file is less than 23 lines long, the page size 
will be the number of lines in the file plus the line containing the colon. 

To peruse the contents of a file with pg, use the following command line format: 

pg filename(s)<OR> 

For example, to display the contents of the file outline in the sample file system, type 
pg outline<OR> and the first page of the file will appear on the screen. Since the file has more 
lines in it than can be displayed in one page, the colon indicates there is more to be looked at when 
you are ready. Pressing the <OR> key will print the next page of the file. 

The following screen summarizes what has been done thus far. 

3-26 ICON INTERNATIONAL 

\ ) 
'---

r-, 
'~ 



ACCESSING AND MANIPULATING FILES 

S pg outline<OR> 
After you analyze the subiect for your 
report, you must consider organizing and 
arranging the material you wish to use in 
writing it. 

An outline is an effective method of 
organizing the material. The outline 
is a type of blueprint or skeleton, 
a framework for you the builder-writer 
of the report; in a sense it is a recipe 
:<OR> 

After pressing the <OR> key, the pg program will resume outputting the file's contents on the 
screen as follows: 

that contains the names of the 
ingredients and the order in which 
to use them. 

Your outline need not be elaborate or 
overly detailed; it is simply a guide you 
may consult as you write, to be varied, 
if need be, when additional important 
ideas are suggested in the actual writing. 
(EOF): 

In addition to the remainder of the file's contents, a line with the output (EOF): is displayed. The 
EOF designates that you have reached the end of the file and the colon is your cue for the next 
instruction. 

When you have completed examining the file, you can type q or Q followed by pressing the <OR> 
key and the $ prompt will appear on your screen. Or you can choose to use one of the other 

ICONfUXV USER GUIDE 3-27 



USING THE Fn.E SYSTEM 

available commands given in Table 9-1 depending on your needs. 

In addition, there are a number of options that can be specified on the pg command line. Refer to 
the ICON/UXV User Reference Manual if you are interested in learning more about them. 

The following command recap summarizes the highlights of pg's capabilities. 

Command Recap 

pg - display a file's contents in chunks or pages 

command 

pg 

Description: 

Remarks: 

options arguments 

available* filename{ s) 

pg reads the name of each file given on the 
command line and displays the contents of the 
file(s) in chunks or pages, screenful by screenful. 

After displaying a screenful of text, the pg 
command awaits your instruction to continue to 
display text, to search for a pattern of characters, 
or to exit the pg perusal mode. In addition, a 
number of options are available for you to use with 
pg on the command line. For example, you can 
start to display the contents of file at a specific 
line or at a line containing a certain sequence or 
pattern or you can opt to go back and review text 
that has already been displayed. 

* See the ICON/UXV User Reference Manual for all available options and an explanation of their capabilities. 

Print Partiall, Formatted Conten13 of a File {prj. The pr command is typically used to prepare 
files for printing. You can expect the pr command to title, paginate, supply headings, and print a 
file according to varying page lengths and widths on your terminal monitor unless you specify that 
it prints on another output device, such as a line printer (read the discussion on the Ip command in 
this section), or you direct the printing to a different file (see the section on redirecting input and 
output in Chapter 7). 

If you choose not to specify any of the available options, the pr command produces output that is in 
a single column with 66 lines per page and is preceded by a short heading .. The heading consists of 
five lines-two blank lines; a line containing the date, time, file name, and page number; and two 
more blank lines. And the formatted file is followed by five blank lines. (Complete sets of text 
formatting tools, called nroff and troff, are available on ICONjUXV systems equipped with the 
appropriate application software. Check with your system administrator to see if this software is 
available to you.) 

Typically, the pr command is used in tandem with the Jp command to provide a paper copy of text 
as it was entered into a file. (See the section discussing the Ip command for details.) However, you 
can also use the pr command to format partially and print the contents of a file on your terminal. 

3-28 ICON INTERNATIONAL 

c 



( 

c 

ACCESSING AND MANIPULATING FILES 

For example, to review the contents of the file john80n in the sample file system, type in the 
command pr johnson<CR>. The following screen summarizes this activity. 

$ pr john.son<CR> 

Nov t9 09:19 1989 john80n Pagel 

Thi8 file contain8 a letter 
to Mr. John80n on the topic 0/ 
office automation. 

$ 

Note that the ellipses after the last line in the file stand for the remaining B lines (all blanks in 
this case) that pr formatted into the output. H you are working on a vide61 ~ay terminal, which 
typically allows you to view about 24 lines at a time, the entire 66 lines rdf the .formatted file will 
print continuously and rapidly to the end of file. This means that the.first 41 lines will "roll" off the 
top of your screen making it impossible for you to read them unless you have tbr ability to "roll" or 
"page" back a screen or two. If you are looking at a particularly long file, too feature might not 
solve the problem. 

In this case, you should use the control-s <"8> combination to stop printing on your terminal 
temporarily and control-q <" q> to resume the printing. 

The command recap that follows summarizes what you can expect the pr command to do. 

ICONjUXV USER GUIDE 3-29 



USING THE FILE SYSTEM 

Command Recap 

pr - print partially formatted contents of a file 

command 

pr 

Description: 

Remarks: 

options arguments 

available· filename{ s) 

pr produces a partially formatted copy of a file(s) 
on your terminal monitor unless otherwise 
specified. The program prints the text of the file(s) 
on 66-line pages and places five blank lines at the 
bottom of each page and a five-line heading at the 
top of each page. The heading consists of two 
blank lines; a line containing the date, time, file 
name and page number; and two additional blank 
lines. 

If the specified file(s) exists, the contents are 
partially formatted and displayed on the screen; if 
not, the message pr: can't open filename is returned 
to you. 

The pr command is most commonly used with the 
Ip command when a paper copy of a file is needed. 
However, when using the pr command to review a 
file on a video display terminal, use <AS> and 
< A q> to temporarily stop and start printing the 
file. 

• See the ICON/ UXV U,er Reference Mantlal for all available options and an explanation of their capabilities. 

Requesting a Paper Copy of a File (Ip) 

At some point in time, you may want a paper copy or a file. Some terminals have built-in 'printers 
that allow you to get paper copies of files. In this case you simply need to turn the printer on and 
then use cat or pr to print the file. If, however, you wish to obtain a higher quality paper copy, 
you should consider using the Ip command. The lp command, which stands for line printer, allows 
you to request a line-printing device to furnish you with a paper copy of a file or files. 

The line printer or types of line printers that you have access to depends on what your UNIX 
system facility has to offer. You should ask your system administrator for the names of the line 
printers available to you. Or you can type lpstat -v<CR> to obtain a complete listing of every 
accessible line-printing device. 

The basic format for the command is: 

Jp file<CR> 

For example, to print the file letters on a line printer, you would type Ip letters<CR> on the 
command line. In turn, the system would provide you with the name of the device or type of device 
on which the file will be printed and an identification (id) number indicating your request. The 

3-30 ICON INTERNATIONAL 

( 
I ) 

~ 

c 



(/ 

( 

ACCESSING AND MANIPULATING FILES 

following screen summarizes this activity. 

S Ip letters<CR> 
Requeaf id is laser-6885 1 file 
S 

The system response indicates that your job is to be printed on a laser line-printing device (the 
system default), has a request id number of 6885, and is to include the printing of one file. 

Using the -ddest (destination) option on the command line would cause your file to be printed on 
another available device that you name in place of deaf. Using the -m option would cause mail to 
be sent to you indicating when the job is completed. 

If you would like to cancel the request to Ip to print the file letters, type cancel laser-6885<CR>, 
where laser-6885 is the request id. The Ipstat command gives the status and request id of the line 
printer jobs. 

A command recap follows that summarizes what you can expect of the lp command. 

ICONjUXV USER GUIDE 3-31 



USING THE FILE SYSTEM 

Command Recap 

Ip - request paper copy of file from a line printer 

command 

Ip 

Description: 

Options: 

Remarks: 

option8 argument8 

-d, -m, and others* B1e(s) 

Ip requests that specified files be printed by a line 
printer, thus providing paper copies of the 
contents. 

-ddeBt Allows you to choose deBt as the printer or 
type of printer that is to produce the 
paper copy. H you do not use this option, 
the Ip program specifies the printer for 
you. 

-m Sends a message to you via mail after the 
printing is complete. 

You can cancel a request to the line printer by 
typing cancel and the request id furnished to you 
by the system when the request was acknowledged. 

Check with the system administrator for 
information on additional and/or different 
commands for printers that may be available at 
your location. 

* See the lCON/ VXV Veer Reference Manual for all available options and an explanation of their capabilities. 

Making a Duplicate Copy or a File (ep) 

When using the ICONfUXV system, you may wish to make a copy of a file. For example, you might 
want to revise a file while leaving the original version intact. The ICONfUXV system provides you 
with the cp command, short for copy, which copies the complete contents of one file into another. 
The cp command also allows you to copy one or more files from one directory into a different 
directory while leaving the original file or files in place. 

To copy the file named outline to a file named new. outline in the sample directory, simply type 
cp outline new.outline<CR>. The system returns the S prompt when the copy is made. To 
verify the existence of the new file, you can type Is<CR>, which lists the names of all files and 
directories in the current directory, in this case draft. The following screen summarizes the activity. 

3-32 ICON INTERNATIONAL 

c 



() 

( 

ACCESSING AND MANIPULATING FILES 

S ep outline new.outline<CR> 
S ls<CR> 
new. ou tline 
outline 
table 
$ 

You know from looking at the sample file system that the file new. outline did not exist before the ep 
command to copy outline to new. outline was given. However, if it had, it would have been replaced 
by a copy of the file outline and the previous version of new. outline would have been deleted. 

IT you had tried to copy the file outline to another file named outline in the same directory, the 
system would have told you that the file names were identical and returned the $ prompt to you. IT 
you listed the contents of the directory to determine exactly how many copies of outline exist, the 
terminal monitor would look something like the following: 

$ ep outline outline< CR> 
cp: outline and outline are identical 
$ Is<CR> 
outline 
table 
$ 

.As you can see, the ICONjUXV system does not allow you to have two files with the same name in 
a directory. 

You could, however, copy the file named outline from the directory draft to another file named 
outline in the directory named letters by using any of the following command lines assuming you are 
currently in draft: 

ep outline •• /letters/outline<CR> 
ep outline •. /letters<CR> 
ep outline /userl/starship/letters/outline<CR> 
ep outline /userl/starship/letters<CR> 

A copy of the file outline would reside in both directories draft and letters after using one of these 
commands since each of them contains a legal path name to the file outline. From this example, you 
can see that the ICONjUXV system allows you to have files with identical names as long as they 

ICONjUXV USER GUIDE 3-33 



USING THE FILE SYSTEM 

are in different directories. 

If you would like to copy the file outline in the directory draft to a file named outline. verse in the 
directory letters, you could use either of the following command lines: 

cp outline •• /letters/outline.vers2<CR> 
cp outline /user l/starship/letters/outline.vers2<CR> 

Keep in mind the conventions for naming-dftctories and files given in the section entitled Oreating 
Directories in this chapter. 

The following recap summarizes how tbe cp command works. 

command 

cp 

Description: 

Remarks: 

Command Recap 

cp - make a copy of a file 

options arguments 

filel ftle2 
Bone file( s ) directory 

cp'a1lows you to make a copy of file! and call it 
file2 leaving file! intact, or to copy one or more 
files into a different directory. 

Wh~ copying fi/e1 to file2 and file2 already exists, 
the .ep tlOlnlDand will overwrite the first version of 
filet with a eopy of filel calling it file2. The first 
version ofjile2 is deleted. 

You cannot copy directories with the cp command. 

Moving and Renaming a File (m1!) 

The mv command allows you to rename a file in the same directory or to move a file from one 
directory to another. If you move a file to a different directory, the file can be renamed or it can 
retain its original name. 

To rename a file in a directory, use the following command: 

mvJi1el ft1e2<CR> 

The mv command changes a file's name from fild to file2. Remember that the names file! and file2 
can be any valid names, including path names. 

3-34 ICON INTERNATIONAL 

I 
i "'-_. 

o 



ACCESSING AND MANIPULATING FILES 

For example, if you are in the directory draft in the sample file system and you would like to rename 
the file table as new. table, simply type my table new.table<CR>. You should receive the $ 
command prompt if the command executed successfully. To verify that the file new. table exists, you 
can list the contents of the directory by typing Is<CR>. In turn, the terminal should read: 

$ my table new.table<CR> 
$ Is<CR> 
new. table 
outline 
$ 

You can also move a file from one directory to another keeping the file's name the same or changing 
it to a different one. To do so, use the following command line. 

my file(s) direetory<CR> 

where the file and directory names can be any valid names, including path names. 

To move the file table from the current directory named draft (whose full path name is 
/u6erl/6tar6hip/draft) to a file with the same name in the directory letters (whose relative path 
name from draft is . .Jletter6 and whose full path name is /userl/star6hip/letters), anyone of several 
command lines can be used, including the following: 

my table /userl/starship/letters<CR> 
my table /userl/starship/letters/table<CR> 
my table •• /letters<CR> 
my table •• /letters/table<CR> 
my /userl/starship/draft/table /userl/starship/letters/table<CR> 

The file table could have been renamed table!! when moving it to the directory letters using any of 
the following: 

my table /userl/starship/letters/table2<CR> 
my table •• /letters/table2<CR> 
my /user l/starship / draft/table2 luser l/starship /letters/table2<CR> 

You can verify that the command worked by listing the contents of the directory with the Is 
command. 

Refer to the recap that follows for a summary of how the my command works. 

ICONjUXV USER GUIDE 3-35 



USING THE FILE SYSTEM 

command 

mv 

Description: 

Remarks: 

Removing a File (rm) 

Command Recap 

mv - move or rename files 

options 

none 

arguments 

fUel file2 
fUe(s) directory 

mv allows you to change the name of a file or to 
move a file(s) into another directory. 

When changing the name of filel to filee and filee 
already exists, the mv command will overwrite the 
first version of filet with filel and rename it filet. 
The first version of filet is deleted. 

When you no longer need a file, you can get rid of it by using the rm command, which is short for 
remove. 

To remove one or more files, use the format: 

rm file(s)<CR> 

After the command executes, the file(s) you specified are removed permanently. 

To remove a file named new.out/ine in the current directory type rm new.outline<CR> and list 
the contents of the directory with the Is command to verify that the file new. outline no longer 
exists. 

To remove more than one file, such as the files outline and table, type rm outline tabl~<CR> 
and list the contents of the directory by typing Is<CR>. 

$ rm outline table<CR> 
$ Is<CR> 
$ 

The $ response indicates that the files named outline and table were removed permanently. 

The following recap summarizes how the rm command works. 

3-36 ICON INTERNATIONAL 



() 

( 

c 

ACCESSING AND MANIPULATING FILES 

command 

rm 

Description: 

Remarks: 

Command Recap 

rm - remove a file 

options 

available'" 

arguments 

file(s) 

rm allows you to remove one or more files. 

Files specified as arguments to the rm command 
are removed permanently. 

• See the ICON/ UXV U.er Reference Manual ror all available options and an explanation or their capabilities. 

Counting Lines, Words, and Characters in a File (we) 

The wc command, which stands for word count, reports the number of lines, words, and characters 
there are in a file that you specify by name on the command line. If you name more than one file, 
the wc program counts the number of lines, words, and characters in each specified file and then 
totals the counts. In addition, you can direct the wc program to give you only a line, a word, or a 
character count by using the -I, -w, or -e options, respectively. 

To determine the number of lines, words, and characters in a file, use the following format on the 
command line: 

we filel<CR> 

When you do, the system responds with a line in the format: 

w e fUel 

where 

= Number of lines in fild, 

w = Number of words in fild, and 

e == Number of charac~ers in filel. 

For example, to count the lines, words, and characters in the file :johnson in the current directory 
letters, type we johnson<CR>. The terminal monitor would show the following output: 

ICONjUXV USER GUIDE 3-37 



USING THE FILE SYSTEM 

S we johnson<CR> 
9 14 78 johnson 

$ 

The system response displays the line count (S), the word count (14), and the character count (78) 
for the file johnson. 

To determine the number of lines, words, and characters in more than one file, use the following 
format: 

we file1 tlle2<CR> 

In turn, the system responds with the following format: 

I w 
I w 
I w 

c filel 
c file2 
c total 

where line, word, and character counts are displayed for filel and file2 on separate lines and the /'- , 
combined counts appear on the last line called total. i",-.-/ 

If you request that the we program count lines, words, and characters in the files johnson and 
sanders in the current directory, the system would respond as follows: 

S we johnson 
9 14 
4 16 
7 SO 

S 

sa.nders<CR> 
78 johnson 
95 sanders 

179 total 

In this case, the first line of the system response shows the line, word, and character counts for the 
file johnson. The second line of output gives line, word, and character counts for sanders. The last 
line of output shows combined line, word, and character counts for both files in the line labeled 
total. 

If you prefer to get only a line, a word, or a character count, select the appropriate format from the 
following lines: 

3-38 ICON INTERNATIONAL 

o 



c~ 

ACCESSING AND MANIPULATING FILES 

we 
we 
we 

-I file1<CR> 
-w filel<CR> 
-e filel<CR> 

(line count) 
(word count) 
(character count) 

For instance, by typing we -1 sanders<CR> on the command line you would obtain the 
following output: 

$ we -I sanders<CR> 
4 aandera 

$ 

The system tells you that the number of lines in the file sanders is 4 in answer to specifying -I. If 
the -w or -e option was specified for that file, the ICONjUXV system would have responded with 
the number of words or number of characters, respectively, in the file. 

The command recap that follows summarizes how the we command works. 

Command Recap 

we - count lines, words, and characters in a file 

command 

we 

Description: 

Options 

Remarks: 

ICONjUXV USER GUIDE 

options arguments 

-1, -w,-e file(s) 

we counts lines, words, and characters in the file(s) 
named keeping a total count of all tallies when 
more than one file is specified. 

-I Counts the number of lines in the specified 
file(s). 

-w Counts the number of words 10 the specified 
file(s). 

-e Counts the number of characters in a specified 
file(s). 

When a file name is specified in the command line, 
it is printed with the count(s) requested. 

3-39 



USING THE Fn.E SYSTEM 

Protecting Your Files (chmod) 

The chmod command, short for change mode, allows you to decide who can read, alter, and use 
your files and who cannot. Because the ICONjUXV operating system is a multiuser system, you are 
not working alone in the file system: you and other system users can follow path names and run 
system commands to move to various directories and to read and use files belonging to one another 
if you have permission to do so. 

If you own a file, then you are able to determine who has the right to read that file, to make 
changes to or write the file, and to run or execute the file if it is a program. These permissions are 
defined as: 

r == Allows system users to read a file or to copy its contents, 

w == Allows system users to write changes into a file or copy of a file, and 

x == Permits system users to run an executable file. 

Specifically, you can determine who in the population of ICONjUXV users is entitled to these 
various permissions and who is not according to the following classifications: 

11 == You, the user and login owner of your files and directories, 

g == Members of the group to which you belong (the group could consist of team members 
working on a project, members of a department, or a group arbitrarily designated 
by the person who set up your ICON,IUX\' account), and 

o = All other system users. 

When you create a file or a directory, the system automatically grants or denies permISSIon 
specifically to you, members of your group, and other system users. You can alter this automatic 
action to some extent by modifying your environment, which is discussed in Chapter 7. Regardless 
of how the permissions are granted when a file is created, as the owner of the file or directory it is 
up to you to allow current permissions to remain in effect or to change them to suit your purposes 
and the situation. For example, you may wish to keep certain files private and for your use only. 
Or you may wish to grant permission to read and to write changes into a file to members of your 
group and all other system users as well. Or you may share a program with members of your group 
by granting them permission to execute it. 

How to Determine Exiatin, Permiaaiona. You can determine what permissions are currently in 
effect on a file or a directory by using the command that produces a long listing of a directory's 
content, which is Is -1. For example, typing Is -I<CR> while in the directory named 8tar8hip/bin 
in the sample file system would produce the following output: 

3-40 ICON INTERNATIONAL 



() 

( 

ACCESSING AND MANIPULATING FILES 

• Is -I<CR> 
total 95 
- rwzr-zr-z 
- rw%--%--% 
drw%--%--% 

• 
1 
1 
e 

atarahip project9946Nof) 108:06diapiay 
atarahip project64e8Dec tl0:241iBt 
atarship project geNo'IJ 815:92tools 

Permissions for the files di8play and li8t and the directory tools are shown on the left of the terminal 
monitor under the line total 95, and look like: 

rwxr-xr-x 
rwx--x--x 
rwx--x-x 

(file display) 
(file 1i8t) 
(directory tools) 

These nine characters represent three groups of three characters. The first set of three characters 
refers to your (or the user's/owner's) permissions, the second set to members of the group,. the last 
set to all other system users. Within each set of characters, the r, w, and % indicate the permission 
currently enabled for the groups. If a dash appears instead of an r, w, or %, permission to read, 
write, or execute is denied. 

The following diagram summarizes this breakdown for the file named display. 

User Group Others 

\1/ 
rwxr-xr-x /1 ~ Permission to write to 
~ the file denied to 

read group and other 

write 
e%ecute 

As you can see, the owner has r, w, and x permissions and members of the group and other system 
users have rand % permissions. 

ICONjUXV USER GUIDE 3-41 



USING THE FILE SYSTEM 

HoVl to Ch4",e Ezilltin, Permiuio"lI. After you have determined what permissions are in effect, 
you can change them using the following format: 

ehmod who + (or -) permission ftle(s)<CR> 

where: 

chmod == Name of program, 

who == One of three user groups v, I, 0: 

v == User, 
,== Group, and 

0== Other. 

+ - == Instruction that grants (+) or denies (-) permission. 

permission == Authorization to r, w, or x: 

r == Read, 
W =: Write, and 

x == Execute. 

filers) = File (or directory) name(s) listed; assumed to be branches from your working 
directory, unless you use full path (names). 

This may sound a bit confusing. But, a few examples on how to use the ehmod command should 
help to make permission possibilities clear. 

Let's use the permissions for the file display to experiment with ehmod. You can see from the 
permissions that as the user and owner of display you can read, write, and run this executable file. 
You can protect the file against accidentally changing it by denying yourself write (w) permission by 
typing the command line ehmod u-w display<CR>. After receiving the $ prompt, type in 
Is -I<CR> to verify the permission has changed. 

$ ehmod u-w display<CR> 
$ Is -I<CR> 
total 95 
-r-zr-zr-z 
-rwz--z--:z; 
drwz--z--:z; 
$ 

1 
1 
f! 

starship project9946Nov 108:06display 
.tarship project64t8Dec f!10:f!4Iist 
lItarahip project 9f!Nov 815:9f!tools 

From this output, you can see that you no longer have permission to write changes into the file, that 
is, unless you change the mode back to include write permission. 

Now, let's consider another example. Notice that permission to write into the file display has been 
denied to members of your group and other system users. These users, however, have read 

3-42 ICON INTERNATIONAL 



c 

ACCESSING AND MANIPULATING FILES 

permission, which means that any of these users can copy the file into their own directories and then 
make changes to it. To prevent all system users from copying this file, you could deny them read 
permission by typing ehmod go-r display<CR>. The, and 0 stand for group members and all 
other system users, respectively, and the -r denies them permission to read or copy the file. Check 
the results with the Is -I command. 

S ehmod go-r display<CR> 
S Is -1<CR> 
total 35 
-rwz--z--z 
-rwz-·z··z 
drwz--z--z 
$ 

1 
1 
2 

,tar,hip project9346Nov 108:06disp[a1l 
,tar8hip project6428Dec 210:241i8t 
,tar8hip project 32Nov 815:32too[8 

A Note on Permi"ion. and Directorie,. If you read the preceding pages describing the ehmod 
command, you might have gathered that you can use this command to grant or deny permission for 
directories as well as files. It is true, you can. To do so, simply use the directory name instead of a 
file name on the command line. 

The impact, however, of granting or denying permissions for directories to various system users is 
worth considering. For example, if you grant read permission for a directory to yourself (u), 
members of your group (g), and other system users (0), every user who has access to the system can 
read the names of the files that directory contains by using the Is -I command. Similarly, granting 
write permission allows the designated users to create new files in the directory and change and 
remove existing ones. And granting permission to execute the directory allows the designated users 
the ability to move to that directory (and make it their working directory) by using the ed 
command. 

An Alternate Method. The ehmod method described in the preceding pages is one of two ways to 
change permissions to read, write, and execute files and directories. The method previously 
described uses symbols, such as r, w, z and u, g, 0, to specify instructions to ehmod. Hence, it is 
called the symbolic method. 

The alternate method uses a number system called octal that is different than the decimal number 
system we typically use on a day-to-day basis. This method uses three octal numbers ranging from 
o through 7 to assign permissions. If you wish to use the octal method when changing permission, 
see the description of ehmod in the IOON/UXV U8er Reference Manual. 

S"mm,.,.,. The command recap that follows provides a quick reference on how chmod works. 

ICONjUXV USER GUIDE 3-43 



USING THE Fn.E SYSTEM 

Command Recap 

chmod - change permission modes for files (and directories) 

command 

chmod 

Description: 

Remarks: 

instruction 

who + - permission 

arguments 

fllename( s) 
directoryname( s) 

cbmod gives (+) or removes (-) read, write, and 
erecute permissions ror three types or system users: 
user (you), group (members or your group), and 
other (all other users able to access the system on 
which you are working). 

The instruction set can be represented in either 
octal or symbolic terms. 

Advanced Commands 

You will become more and more familiar with the file system as you use the commands thus far 
discussed in this chapter. .As this familiarity increases so might your need or interest for more 
sophisticated information processing techniques when working with files. This section introduces you 
to three commands that give you just that. These commands and their capabilities are listed as 
rollows: 

diff -- Finds difference between two files, 

grep -- Searches a file for a pattern, and 

sort -- Sorts and merges files. 

The following discussion only scratches the surface on information processing techniques available 
with the ICONjUXV system. You may refer to the ICON/UXV User Reference Manual for 
additional information. 

Identifying Differences Between Files (diff) 

The diff command locates all the differences between two files and proceeds to tell you how to 
change the first file to be a carbon copy of the second. It reports all differences between the files. 

The basic format ror the command is: 

dift' filel file2<CR> 

3-44 ICON INTERNATIONAL 

( 
"'-- / 

c 



( 

ACCESSING AND MANIPULATING FILES 

U fUd and filet are identical, the system returns the S prompt to you. If not, the diff command 
instructs you on how to bring the first file into agreement with the second by using line editor (ed) 
commands. (See Ohapter 5 for details on the line editor.) The ICONfUXV flags lines in file1 with 
the < symbol and filet with the > symbol. 

For example, if you use the diff command to identify differences between the files iohnson and 
sanders, the system would respond as follows: 

$ diff johnson sanders<CR> 
t,9c£,4 
< to Mr. Johnson on the topic of 
< office automation. 

> to Mrs. Sanders inviting her to 
> speak at your departmental 
> meeting. 
S 

The first line of the system response is 

t,9ct,4 

which means lines 2 through 3 in the file iohnson must be changed (designated by c) to lines 2 
through 4 in the file sanders. The system then displays lines 2 through 3 in the file iohnson as 
follows: 

< to Mr. Johnson on the topic of 
< office automation. 

and lines 2 through 4 in the file sanders 

> to Mrs. Sanders inviting her to 
> speak at our departmental 
> meeting. 

If you make these changes (using the ed or the vi text editing program), the file iohnson will be 
identical to the file 8anders. Remember, the diff command tells you exactly what the differences are 
between the named files. If you simply want an identical copy of a file, use the ep command. Refer 
to the recap that follows for a summary of what you can expect the diff command to do when no 
options are specified. See the reference to the ICON/UXV User Reference Manual for details on 
available options. 

ICONfUXV USER GUIDE 3-45 

~~------ -------- ----



USING THE FILE SYSTEM 

Command Recap 

dift' - finds differences between two files 

command 

dift' 

Description: 

Remarks: 

options arguments 

available· fUel file2 

dift' reports what lines are different in two files and 
what you must do to make the first file identical 
with the second. 

Instructions on how to change a file to bring it into 
agreement with another file are line editor (ed) 
commands: a (append), c (change), or d (delete). 
Numbers given with a, c, or d indicate the lines to 
be modified. Also used are the symbols < 
(indicating a line from the first file) and > 
(indicating a line from the second file). 

• See the ICON/ UXV User Reference Manual for all available options and an explanation of their capabilities. 

Searching a File for a Pattern (grep) 

You can request the ICONfUXV system to search through files for a specific word, phrase, or group 
of characters by using the grep command. Technically, grep means globally search through a file 
or files to locate a regular expression and print the lines that contain the regular expression. A 
regular expression is the pattern of characters-- be it a word, a phrase, or an equation-- that you 
stipulate. 

The basic format for the command line is: 

grep pattern flle(s)<CR> 
Thus, to locate the line containing the word automation in the file john6on, you would type: 

grep automation johnson<CR> 

and the system would respond as follows: 

$ grep automation johnson<CR> 
office automation 
$ 

The output gives you all the lines in the file johnson that contain the pattern for which you were 
searching, which is the word automation. 

3-46 ICON INTERNATIONAL 



( 

ACCESSING AND MANIPULATING FILES 

If the pattern contains multiple words or any characters that have a special meaning to the 
ICONfUXV operating system, such as $, :, ., T, and so on, the entire pattern must be enclosed in 
single quotes. (For an explanation of the special meaning for these and other characters see the 
section entitled Metacharacters in Ohapter 1, Shell Tutorial.) For example, if you are interested in 
locating the lines containing the pattern office automation, the command line and system response 
would read: 

, 
S grep office automation' johnson<CR> 
office automation. 
S 

But what if you could not recall to whom you sent a letter on the topic of office automation in the 
first place -- Mr. Johnson or Mrs. Sanders? You could type: , 

grep office automation' johnson sanders<CR> 
If you did, the system would respond in the following manner: 

, 
$ grep office automation' johnson sanders<CR> 
iohnson:office automation. 
$ 

The output tells you that the pattern office automation is found once in the file iohnson. 

In addition to the capabilities of the grep command that are summarized in the recap that follows, 
the ICONfUXV system provides variations to the basic grep command, called egrep and fgrep, 
along with several options that further enhance the searching powers of the command. See the 
ICON/ UXV User Reference Manual if you are interested in learning more. 

ICON fUXV USER GUIDE 3-47 



USING THE Fn.E SYSTEM 

Command Recap 

grep - searches a IDe for a pattern 

command 

grep 

Description: 

Remarks: 

options arguments 

available· pattern flle( s) 

grep searches tIN! file or files you name for lines 
containing a pattern and then prints the lines that 
match. If you name more than one file, the name 
of the file containing the pattern is given also. 

If the pattern you give contains multiple words or 
special characters, enclose the pattern in single 
quotes on the command line. 

• See the lCON/ UXV U,er Reference MIJnuIJI for all available options and an explanation of their capabilities. 

Sorting and Merging Files (sort) 

The ICONjUXV system provides you with an efficient tool called sort for sorting and merging files. 
The basic form of the command line is: 

sort file(s)<CR> 

which causes lines in the specified files to be sorted and merged in the order defined by the ASCII 
representations of the characters in the lines. 

• Lines beginning with numbers are sorted by digit and listed before letters in the output, 

• Lines beginning with uppercase letters are listed before lines beginning with lowercase letters, 
and 

• Lines beginning with symbols, such as ., %, or@, are sorted on the basis of the symbol's ASCII 
representation. 

To get an idea of how the Bort command works, let's say that you have two files, named phase1 and 
phase2, each containing a list of names that you wish to sort alphabetically and finally interfile into 
one list. First, display the contents of each file using the cat command. 

3-48 ICON INTERNATIONAL 



ACCESSING AND MANIPULATING Fn.ES 

$ eat phase1<CR> 
Smith, Allyn 
Jones, Barbara 
00 ok, Karen 
Moore, Peter 
Wolf, Robert 
$ eat phase2<CR> 
Frank, M. Jay 
Nelson, James 
West, Donna 
Hill, Ohar/es 
Morgan, Kristine 
$ 

(Note: we could have used t.he command line eat phase! phase2<CR> instead of listing the 
contents of each file separately.) 

Now, sort and merge the contents of the two files using the sort command. Note that the output of 
the sort program will print on the terminal monitor unless you specify otherwise. 

$ sort phase! phase2<CR> 
00 ok, Karen 
Frank, M. Jay 
Hill, Ohar/es 
Jones, Barbara 
A{oore, Peter 
Morgan, Kristine 
Nelson, James 
Smith, Allyn 
West, Donna 
Wolf, Robert 
$ 

In addition to putting together simple listings as in the previous examples, the sort command can 
rearrange the lines and parts of lines (called fields) according to a number of other specifications you 
can designate on the command line. The possible specifications are complex and are not within t.he 
scope of this text. You should consult the IOONjUXV User Reference Manual for a full rundown on 
the available options. 

ICONjUXV USER GUIDE 3-49 



USING!rBE FILEHWSTEM 

However, the following command recap sum.m.a.rUes ~ca.pa.bilitiesoI thfl sort program. 

command 

sort 

DeseJ"iptiom 

Remarks: 

Oommandlteeap 

sort -sorts and merges files 

optitm8 

available'" ftle(s) 

sort sorLs .. arui m.er,ges JmuCrl)JIl the Jileor files you 
name aDd~1'JU.he~asuit.on ·:your~nal. 

IT no options are specified on the command line, 
lines are sorted and merged in the order defined by 
the ASCn representations of the characters in the 
lines. 

• See the ICON/ UXV User Reference Manual for all available options and an explanation of their capabilities. 

SUMMARY 

This chapter described the structure of the file system and presented ways to use and to navigate 
through the file system via ICONjUXV commands. The next chapter gives you an overview of a 
variety of ICONjUXV capabilities, such as text editing, using the shell as a command language, 
communicating electronically with other; system users, .and programming and developing software. 

3-50 ICON INTERNATIONAL 



Chapter 4 

ICONjUXV SYSTEM.CAPABILITlES 

PAGE 

IN"T'Roc.lJCTION ••••••••••••••••••••••••••••••••••••••• ' _______ ••• _ ••••••••••••••••••••••••• __ •••••••••••••••••••••••••••••••• 

T'EXT' EDITING ................................................................................................. ___.. •.•••.•.••..•••••.••.••••....••.. 
wtlat Is a Text Edi'tor? ..............•..............•......•.................................•..•....•......•................................ 
I-iow Does a Text Edi'tor Work? .•••.•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

Text Editing: Buffers ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
~es of Operation .•••••••••••.•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••.••••••••••••••••••••• 

Line Editor .•••••.•••.•••.••••••••••••••.•••••••••••••••••••.••••••••••.••••••••••••••••••••••..••••••••••••••••••••••••••••••••••••••••••••••••••• 
Screen Editor •••••••••.••••.•••••.••.••••••••••••.••••••••••••••••••••••••••••••••••.••••••••••••••••••••••••••••••.•••••••••.••••..•••..•••••••• 

WORKING IN THE SHELL •.••.••.•..•..•..•..•..•..•......•..••••••.•••.•.••••••.•••.••.•••.•.•.•••••••••••••...•...........•.•.•....•••••••••••••. 
Using Shell Shorthand ••••••••••••••••••••••••••••••••.••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
Redirecting the Flow or Input and Output ••••••••••••.••••••••••.••••••••••••.•••••••••••••• ___ •••••••••••••••••••••••••••••••• 

Redirecting the Standard Output (> ) ..................................................................................... . 
Redirecting and Appending the Standard Output (») .......................... _ ............................... . 
Redirecting the Standard Input «) ................................................. _ ................................. . 
Connectin&: Commands with the Pipe (:) ............................................................................... . 
Summary ..•••••••••••••••.•.••••.••.•••••••• _ •••••••••••••.••••• _ .••.••••.•••..••..••••••••• _ ••••••••••••••••••••••••••••••••.•.••• 

Running Multiple Programs ........................................................................ __ ............................... . 
Executing Commands in Sequence .......................................................................................... . 
Executing Commands Simultaneously ._ .................................................. _ ............................... . 

Customizing Your Computing Environment ...... _ ................................................................................ . 

COMMUNICATING El..ECl'RONICALL Y ...................... _ .............................................................................. . 

PROGRAMMING IN THE SySTEM ............................................................................................................ .. 
Programming in the Shell .................................................................................. , ................................ . 
Programming in the C Language ••••.••••••••••••••••••••••••••••••••••••••.••••••••..•••••••••••••••••••••.••••••••.•••••••••••••••••••• 
Other Prog-ramminE Languar;es •••••••••.•••••••• _ •••••••••••••••• _ ••••••••••••••••••••••••••••••••••• _ •••••••••••••••••••••••••••••••• 
Tools t,o Aid Software Developrrtent •••••••••••• _ ••••••••••••••••••••••••••••••••••••••••••••••••• _ •••••••••••••••••••••••••••••••• 

Source Cocie Control System ................................................................................................... . 
RerTlC>te .Job Entry .................................................................................................................. . 
Maintaining Programs ............... _ .................................................. _ .............................. . 
Generating PrografTlS for Lexical Tasks ••••••• _ ................................. _._ ••••••••••••••• _ ••••••••.•••• ~ ••. 
·Generating Parser Programs ••• _ ............ __ ............................ _ .. _ .................................. . 

4-1 

4-1 
4-1 
4-2 
4-2 
4-3 
4-3 
4-3 

4-S 
4-S 
4-6 
4-7 
4-V 
4·V 

4-10 
4-11 
4-11 
4-11 
4-13 
4-13 

4-14 

4-1S 

4-1S 
4-16 

4-17 
4-17 
4-18 
4-18 

4-18 
4-1V 
4-1V 





( 

Chapter 4: 

ICON/UXV SYSTEM CAPABILITIES 

INTRODUCTION 

This chapter serves as a transition between the first three chapters in the overview part of 
this guide and the four tutorials that follow. The material in this chapter combines basic, 
fundamental concepts about the ICONfUXV system covered in the first three chapters of 
this guide with information about system capabilities that you may use to do your 
computing work efficiently and effectively. 

This chapter provides an overview of the following ICON/UXV capabilities: text editing, 
working in the shell, communicating electronically, and programming in the ICON/UXV 
environment. In addition, it serves as an introduction to chapters 5, 6, 7, and 8-- Line 
Editor Tutorial, Screen Editor Tutorial, Shell Tutorial, and Communication Tutorial, 
respectively. 

TEXT EDITING 

You have read a good deal about files up to this point simply because using the file is a way 
of life in a ICON/UXV environment. The information in this section will enhance your 
knowledge about manipulating files by introducing you to a software tool called a text 
editor. A text editor provides you with the ability to create and modify files: it will help 
you to fare well in the ICON/UXV system since a considerable amount of your computing 
time may be spent writing and revising letters, memos, reports, or source code for programs 
that will be stored in files. 

This section contains information that tells you what a text editor is and how it works. In 
addition, this section acquaints you with two types of text editors supported .on the 
ICON/UXV system: the line editor and the visual, or screen, editor. Since you will 
probably come to prefer one of these editing programs over the other -- even if you learn to 
use them equally well-- the line editor and the screen editor are briefly compared to help 
you to assess their capabilities. For detailed information on the line editor and the screen 
editor, see Chapter 5 and Chapter 6. 

What Is a Text Editor! 

When you write or type letters, memos, and reports and then decide to change what you 
have written or typed, you will use skills required in text editing. These skills include 
inserting new or additional material, deleting unneeded material, transposing material 
(sometimes called cutting and pasting), and finally preparing a clean, corrected copy. Text 
editors perform these tasks at your direction making writing and revising text much easier 
and quicker than if done by hand or on a typewriter. 

ICON/UXV USER GUIDE 4-1 



ICON/UXV SYSTEM CAPABILITIES 

In the ICON/UXV system, a text editor is much like the ICON/UXV shell. Both a text ( 
editor and the shell are programs that accept your commands and then perform the ~/ 
requested functions-- essentially, they are both interactive programs. A major difference 
between a text editor and the shell, however, is the set of commands that each recognizes. 
All the commands you have learned up to this point belong to the shell's command set. A 
text editor, on the other hand, has its own distinct set of commands that allow you to 
create, move, add, and delete text in files, as well as acquire text from other files. 

How Does a Text Editor Workf 

To understand how a text editor works you need information about the environment 
created when you use an editing program and the modes of operation understood by a text 
editor. 

Text Editing Buffers 

To create a new file, you must ask the shell to put the editor in control of your computing 
session. When you do, a temporary work space is allocated to you by the editor. This 
work space is called the editing buffer, in it you can enter information you want the file to 
hold and modify it if you wish. 

Because you are in a temporary work space when using a text editor, the file you are 
creating along with the changes you make to it are also temporary. This work space 
allotment and what it is holding will exist only as long as you work in the editing program. 
If you wish to save the file, you must tell the text editor to write the contents of the buffer 
into a storage area. If you do not tell the editor to write or record what you have done 
during the editing session, the buffer's contents will disappear when you leave the editing 
program. If you forget to write a new file or update an existing one, the text editors 
remind you to do so when you attempt to leave the editing environment. 

To modify an existing file, the procedure is almost identical to the one you follow when 
creating a new file. First, call the editor and give it the name of the file you wish to 
change. In turn, the editor makes a copy of the file that is in the storage area and places it 
in the buffer so you can work on it. 

When you finish editing the file, you can write the buffer's contents into storage and leave 
the editing program knowing the file is updated and ready to be recalled when you need it 
again. Or you can chose to leave the editor without writing the file if you have made a 
critical mistake or you are unhappy with the edited version. This step leaves the original 
file intact and the edited copy disappears. 

Regardless of whether you are creating a new file or updating an existing one, the text you 
put in the buffer is organized into lines. A line of text is simply the series of characters 
that appears horizontally across a row of typing that is ended by pressing the <CR> key. 
Occasionally, files may contain a line of text that is too long to fit on the terminal monitor. 
Some terminals will automatically display the continuation of the line on the next row of 
the monitor, whereas others will not. 

4-2 ICON I:\TERNATIONAL 



( 

o 

TEXT EDITING 

Modes of Operation 

Text editors are capable of understanding two modes of operation: the command mode and 
the text input mode. 

When you begin an editing session, you will automatically be placed in command mode. In 
command mode, all your input is interpreted as a command. Typical editing commands 
allow you to move about in a file, search for patterns in the file's contents, or print a 
portion of a file on the terminal monitor. The input mode is entered when you use a 
command to create text. Once in input mode, what you type on the keyboard is placed 
into the buffer as part of the text file until you send the appropriate instruction to the 
editor that returns you to command mode. 

You may occasionally lose track of the mode in which you are working by attempting to 
enter text while in command mode or by trying to enter a command while in input mode. 
This is something even experienced users do from time to time. It will not take long to 
recognize the mistake and it will be apparent what to do to remedy these situations as you 
work through the tutorials in Chapter 5 and Chapter 6. 

Line Editor 

The line editor, accessed by the ed command, is a fast, versatile program for preparing text 
files. This editor gets its name because it operates on the lines of text a file holds. For 
example, to change a single character in a file, you specify the line of the file that contains 
the character you wish to change and then specify the change. 

Put simply, you manipulate text on a line-by-line basis with the line editor. Commands for 
this text editor can change lines, print lines, read and write files, and initiate text entry. In 
addition, you can specify the line editor to run from a shell program; something you cannot 
do with the screen editor. (See Chapter 7 for information on basic shell programming 
techniques. ) 

The line editor works equally well on paper printing terminals and video display terminals. 
It will also obligingly accommodate you if you are using a slow-speed telephone line. 

Refer to Chapter 5, Line Editor Tutorial, for instructions on how to use this editing tool. 
Also see Appendix D for a summary of line editor commands. If you are interested in a 
comparison of line editor (ed) and screen editor (vi) features, see Table .1-1. 

Screen Editor 

The screen editor, accessed by the vi command, is a display-oriented, interactive software tool. 
When you use the screen editor, your terminal acts as a window to let you view the file you are 
editing a screenful or page at a time. This editor works most efficiently and effectively when used 
on a video display terminal operating at 1,200 or higher baud. 

For the most part, modifications to a file (such as, additions, deletions, and changes) are 
accomplished by positioning the cursor at the point in the window where the modification is to be 
made and then making the change. In other words, the screen editor displays the effects of editing 

ICONjUXV USER GUIDE 4-3 



ICONjUXV SYSTEM CAPABn.ITIES 

TABLE 4-1 

Comparison or Line (ed) and Screen (vi) Editors 

Feature 

Recommended 
terminal type 

Speed 

Versatility 

Sophistication 

Power 

* VDT - video display terminal 

Line Editor (etl) 

Paper-printing or VDT· 

Accommodates high
and low-speed data 
transmission lines. 

Can be specified to run 
from shell scripts as 
well as used during 
editing sessions. 

Changes text quickly. 
Uses comparatively 
small amounts of 
processing time. 

Provides a full set of 
editing commands. 
Standard ICON/UXV 
text editor. 

Screen Editor {vi} 

VDT 

Works best via high
speed data 
transmission lines 
(1,200+ baud). 

Must be used 
interactively during 
editing sessions. 

Changes text easily. 
However, can make 
heavy demands on 
computer resources. 

Provides its own 
editing commands 
and recognizes all line 
editor commands as 
well. 

changes in the context in which you make them. Because of this feature, the screen editor in 
considered to be much more sophisticated than the line editor. 

Furthermore, the screen editor offers a replete collection of commands. For example, a number of 
screen editor commands allow you to move the cursor around within the window to a file. Other 
commands move the window up or down through a page or more of the file. Still other commands 
allow you to change existing text or to create new text. In addition to its own set of commands, the 
screen editor has access to all the commands offered by the line editor. This arsenal of commands 
accounts for the screen editor's tremendous power. 

There is, however, a trade-off for the screen editor's speed, visual appeal, efficiency, and power, 
which is the heavy demand that it places on the computer's processing time. For example, a simple 
change might cause an entire screen to need updating. Moreover, if simple changes lead to long 
delays while you wait for a screen to be updated, the pleasant experience of using a visual-oriented 
editor can be somewhat diminished. 

Refer to Ohapter 6, Screen Editor Tutorial, for instructions on how to use this software. And see 
Appendix E, which contains a summary of screen editor commands. IT you wish to compare the 
features of the line editor (ed) and the screen editor (vi) see Table 4-1. 

ICON INTERNATIONAL 

c 



(-/ 

( 

WORKING IN THE SHELL 

WORKING IN THE SHELL 

Every time you log into the ICONfUXV system you will be communicating directly with a program 
called the shell. You will continue to interact with the shell until you log off the system, unless you 
use a program, such as a text editor, that temporarily suspends your dealings with the shell until 
you are finished using that particular program. 

The shell is much like other programs, except that instead of performing one job, as eat or Is does, 
it is central to most of your interactions with the ICONfUXV system. This is because the shell's 
primary function is to act as an interpreter between you and the computer on which the 
ICONfUXV system is running. As an interpreter, the shell translates your requests into language 
the computer understands, calls requested programs into memory, and executes them. 

This section acquaints you with some of the ways you can use the shell as the command language 
interpreter to simplify a computing session and to enhance your ability to use system features. In 
addition to running a single program for you, you can also use the shell to: 

• interpret the name of a file or a directory you input in an abbreviated way using a type of 
"shell shorthand," 

• redirect the flow of input and output of the programs you run, 

• execute multiple programs, and 

• tailor your computing environment to meet your individual needs and preferences. 

In addition to being the command language interpreter, the shell is also a programming language. 
If you would like an overview of shell programming capabilities, see the section entitled 
Programming in the S1J8tem at the end of this chapter. Or refer to Ohapter 7, Shell Tutorial, for 
detailed information on how to use the shell as a command language interpreter and as a 
programming language. For complete, unabridged information on shell programming Part 9 of this 
manual should be consulted. 

Using Shell Shorthand 

Many ICONfUXV commands require that you name a file or a directory as an argument to it on a 
command line, such as mkdir directory name(s)<CR> or rm filename(s)<CR>. Easy enough! 
But suppose you have 12 files to remove corresponding to monthly reports for 1983 named reptl, 
rept2, reptS, rcpt4, and so on? Or suppose you need to move 24 files corresponding to file names 
.cetl, .tet2, 0" .tet24 to a different directory? 

Typing the file name for each monthly report after the rm command or the file name for each 
section after the mv command is still easy, but all the repetition gets tedious after inputting four or 
five names. 

In instances like these, you should consider using shorthand notation when specifying file or 
directory name"S. If the file or directory names have some part in common, you can use a type of 
shorthand to tell the shell that you are referring to all of them on the basis of the similarity without 
specifying each one individually. Or, if a file has a unique character or sequence of characters 
within a group of similarly named files, you can use this shorthand notation to locate the file on the 
basis of the difference. 

The ICONfUXV operating system recognizes several characters as having special meanings when 
they are used in place of a directory name or when they appear as part of a file or directory name 

ICONfUXV USER GUIDE 4-5 



ICONfUXV SYSTEM CAP ABR.ITIES 

on a command line. These characters allow you to specify the names of files and directories in a 
rapid, abbreviated way. Some of the characters are referred to as metacharacters because of their 
special meanings to the shell. 

The special characters are ••• 1 • ( ] - \ and their meanings are summarized in Table 4-2. When 
you specify file or directory names, you can substitute various characters within them with the 
appropriate shorthand abbreviation. Any part of the name that is not a special character is taken 
at its literal value. 

TABLE 4-2 

Shorthand Notation for File and Directory Names 

Special Detailed 
Character Meaning Reference 

Current directory Chapter 9 

Parent directory Chapter 9 

1 Match any single character Chapter 7 

• Match any number of characters Chapter 7 

( ) Designate a sequence of characters to 
be matched, such as [abcJ or [628J Chapter 7 

Specify a character range within 
[ J, such as A-Z Chapter 7 

\ Remove meaning of special characters Chapter8 2, 7 

For example, for the possibilities described at the beginning of this section, typing rm rept·<CR> 
would remove all the files in the current directory starting with the characters rept followed by any 
other characters corresponding to monthly reports for 1983, and typing 
mv sect· •• /chapter3<CR> would move all the files from the current directory beginning with 
the letters 8eet and followed by any other characters to another directory named chapterS belonging 
to its parent directory. 

Details on how to use the special characters appear in other chapters of this guide as indicated in 
Table 4-2. Refer to that chapter for the information you need. 

Redirecting the Flow of Input and Output 

Up to this point in the ICON/UXV V,er Guide, any request to ask the shell to execute a command 
was done by inputting the command and the necessary argument(s) on the terminal keyboard. In 
turn, the output, if any, was displayed on the terminal monitor. This pattern illustrates the idea of 
standard input and standard output. 

In general, the place from which a program expects to receive its input is called the standard input. 
A ICONjUXV command called mail, which you will learn more about in Chapter 8, provides a good 
example of this and warrants mentioning here. For example, to use mail, you would simply type 
mail jmrs<CR> and the mail command takes everything you type on your keyboard after 
<CR> until you type <d> as input. After you type <d>, mail sends your input to the person 

4-8 ICON INTERNATIONAL 

i---', 
( 

" 



( 

WORKING IN THE SHELL 

with the login name jmrll. The plaee to whieh a program writes its results, in this ease the login 
name jmrll, is referred to as the standard output. 

In the ICONfUXV system, most eommands expeet to reeeive their input from the keyboard and 
then display output on the terminal monitor. By deFault, then, the standard input is the keyboard 
and the standard output is the terminal monitor (Figure -4-1). 

Figure 4-1. Standard input/output flow. A program's standard 
input and standard output are usually assigned to your terminal. 

You ean, if you wish, use a feature ealled redirection to change these defaults. Put simply, 
redirection is a ICONfUXV feature that allows you to request the shell to reassign standard input 
and/or standard output to other files or devices. 

With the redirection feature, you can request the shell to do the Following: 

• reassign to a file any output that a program would ordinarily send to your terminal, 

• have a program take its input From a file rather than from your terminal keyboard, or 

• use a program as the source of data for another program. 

You request the shell to redirect input and output using a set of operators, whieh are> (greater 
than sign), » (two greater than signs), < (less than sign), and: (a pipe). Now let's take a look at 
what each of these operators can do for you. 

Redirecting the Standard Output (» 

The> operator allows you to redirect the output of a command (or program) into a file (Figure 4-
f). 

ICONfUXV USER GUIDE 4-7 



ICONjUXV SYSTEM CAPABILITIES 

Figure 4-2. Standard output can be redirected 
from your terminal to a file. 

To use the> operator, follow the command line format: 

command> newfile<CR> 

in which you can choose to surround the > operator with spaces as indicated in the command line 
or leave the spaces out (command>newfile<CR»; either method is correct. 

For example, if you have two files, named groupl and groupe each containing a list of names with 
telephone extension numbers that you would like to sort alphabetically and then interfile into a 
separate file called members, you would type: 

sort group 1 group2 > members<CR> 

When you do, the ICONfUXV system first alphabetically sorts and then interfiles the contents of 
the files groupl and group2 and redirects the output into the file called members rather than 
displaying it on your terminal. If you wish to read the contents of the members file, you could use 
the cat or pg command. 

Therefore, if the contents of the file groupl is: 

and the contents of the file group2 is: 

Smith, Allyn 101 
Jones, Barbara 203 
Cook, Karen 521 
Moore, Peter 180 
Wolf, Robert 125 

Frank,M. Jay 118 
Nelson, James 210 
West, Donna 333 
Hill, Charles 256 
Morgan, Kristine 175 

ICON INTERNATIONAL 

c 



(-

( 

WORKING IN THE SHELL 

then the file members would appear as follows on your terminal when displayed with the cat 
command. 

$ sort phasel phase2 > members<CR> 
$ cat members<CR> 
00 ok, Karen 5!!1 
Frank, M. Jay 118 
Hill, Oharles !!56 
Jones, Barbara !!09 
Moore, Peter 180 
Morgan, Kristine175 
Nelson, James !!10 
Smith, Allyn 101 
West, Donna 999 
Wolf, Robert 125 
$ 

Keep in mind that if the file to which you are redirecting the standard output already exists, its 
contents will be replaced with the output of the redirection command. 

Redirecting and Appending the Standard Output (> » 

Occasionally, you might like to add information to the end of an existing file. You can use the > > 
operator to do so. Simply input the following command line: 

command» file<CR> 

For example, if the file members that was created in the previous section was subject to additions 
and deletions, it might be a good idea to date the list so you know at a glance what version of the 
list you are using. You could do so by typing 

date» members<CR> 

on the command line and the date and time would be printed at the end of the file members. Or 
instead of adding the date to the end of the file members, you could have appended another file 
containing even more names. 

Redirecting the Standard Input «) 
Standard input can be redirected as well as standard output with the < operator. The general 
command line format for input redirection is: 

command < file<CR> 

in which the < operator informs the command (or program) to take input from the file you specify 
rather than from the terminal keyboard (Figure 4-9). 

ICONfUXV USER GUIDE 4-9 



ICONjUXV SYSTEM CAP ABn..ITIES 

Figure 4-3. You can ask the shell to take a program's 
input from a file rather than from your terminal. 

For example, if you would like to send a copy of the file members to co-workers who work on your 
ICONjUXV system and who have the login names marV2 and imrs, typing 

mail mary2 jmrs < members<CR> 

will accomplish the task. The mail command, however, does not know whether it received its input 
from the file members (which it did) or from your keyboard. Rather, input/output redirection is a 
service provided by the ICONjUXV shell and is available to every program. (You will learn more 
about the mail command in Chapter 8.) 

Connecting Commands with the Pipe (I) 

The pipe operator is a powerful, yet flexible, mechanism for doing computing tasks quickly and 
without the need to develop special purpose tools. You can use it to redirect the standard output of 
one program to be the standard input of another (Figure 4-4). Generally, the format for using the 
pipe is: 

command I command<CR> 

4-10 ICON INTERNATIONAL 



( 

( 

WORKING IN THE SHELL 

L.--ST-=~:;.:..:~..:.:AR_D _> CD STANOARD 
INPUT 

Figure 4-4. You ean use the output trom one 
program to be the input tor another. 

A popular example of this is taking the output of the who command (which you were introduced to 
in Ohapter e) and using it as input to the we command (which counts lines, words, and/or 
characters) as follows: 

who i we -I<CR> 

This example shows that the standard output of the who command was passed to the we -I 
command (-I is the option that counts the number of lines output by the who command, each 
corresponding to a user who is logged into your ICONjUXV system.) 

Summary 

Table 4-9 summarizes which operator performs which redirection task and what general format 
should be followed in using it. Refer to the section on redirection in Ohapter 7 for details on how to 
use them. 

Running Multiple Programs 

There are two methods for running multiple programs: you can specify more than one command to 
execute in sequence from a single command line or you can run commands simultaneously. 

Exeeuting Commands in Sequenee 

Up to this point, the command lines to which you have been introduced and examples for using 
them have dealt with asking the shell to run a single request or program. For example, each of the 
command lines eat fliename<CR>, date<CR>, and Is -I direetoryname<CR> requests the 
shell to perform one task. You can, however, ask the shell to execute more than one request per 
command line. Sequential execution allows you to enter as many commands as you wish on one 
command line and have them execute in the order in which you input them. 

ICON~'V USER GUIDE 4-11 



ICONfUXV SYSTEM CAP ABD..ITIES 

TABLE 4-3 

Options for Redirecting Input and/or Outputt 

Action 

Redirecting output to a file 

Redirecting and appending 
output to a file 

Redirecting input from a file 

Redirecting output of first 
command to be input for 
second 

Operator General Format 

> command> filename 

> > command> > filename 

< command < filename 

command: command 

• See Chapter 7/or complete delllil. on how to a.e there option •. 

t Blank .pace. immediate/II be/ore and a/Ier redirection operatore Ire optional. 

To do so, you should first be familiar with the general rules for command line syntax given in 
Chapter 9. Briefly, command line syntax orders elements in the command line so that the command 
name, any options you wish to specify, and the data on which the command is to operate (usually 
the name of a file or directory) follow one another. 

To execute more than one command on a line, simply separate the request sequences with 
semicolons (j) as follows: 

command option(s) argument(s); command option(s) argument(s); ••. <OR> 

For example, to determine where you are in the file system and then list the contents of the 
directory in which you are working, you can type pwd; ls<CR> and the terminal monitor might 
read: 

$pwd; ls<CR> 
/userJ/darship/bin 
dir 
lid 
tools 
S 

As you can see, the output of the multiple commands is ordered the same way the input is: first, 
the current working directory is given (in response to pwd) and, then, the names of the files and/or 
directories it holds follow (in response to Is). 

You could just as easily type who am i; date; who<CR> or mkdir directoryabc; cd 
directory abe; pwd<CR> or any combination of commands that you wish to use. 

4-12 ICON INTERNATIONAL 



( 

( 

o 

WORKING IN THE SHELL 

Executing Commands Simultaneously 

In addition to running programs sequentially, you can choose to run them simultaneously. To do so, 
you need to know the difference between foreground and background commands. When a program 
runs in the background, the computer is executing that program concurrently with the commands 
that you enter or with the program that you run in the foreground. However, the computer 
considers your foreground work more important, in a sense, than your bat:kground program. This 
difference has no perceivable effect on the eK~cution of most programs, but running a job in the 
background is a useful technique when you wish to run a lengthy or time-consuming job without 
tying up your terminal. 

All the command lines used in this guide until now have been examples of foreground commands. 
This means that they were initiated and run to completion before other commands could be 
executed and before the shell would return the S prompt for you to continue. However, you also 
have the option of running a command in the background so you can continue to work in the 
foreground. 

You can run a command in the background by placing an ampersand (&) at the end of the 
command line as follows: 

command option(s) argument(s) &<CR> 

When the shell reads the &, it starts running the program, prints an identification number, and 
displays the $ prompt so you can use the terminal immediately for other work. 

To save the output from the job you are running in the background, you must redirect the results of 
the execution into another file so you can look at or use the output when you are ready. For 
example, if you input the command cat filel. file2 > file3 &<CR>, the shell would first give 
you an identification number, and then the prompt. It will also save the results of cat filel file2 
in a file named file9. When you are ready to peruse fileS, simply use cat or pg. IT you do not 
redirect the output, then no output is saved. 

When a program is running in the background, it ignores interrupt and break signals, but if you log 
off, the shell terminates the background program along with the computing session. IT you would 
like to stop a background command while you are still logged into the ICONfUXV system, type 
kill id<CR>, where id is the identification number of the command. On the other hand, to have a 
program continue to run after you log off, you can use the nohup command (which stands for "no 
hang up") in the following way 

nohup eommand &<CR> 

When you do, the command will continue to Tun until completion and its output is saved in a file 
called nohup.out (which stands for nohup output). 

Customizing Your Computing Environment 

The information in this section deals with another dimension of control provided to you by the shell 
called your environment. When you log into the ICONfUXV system, the shell automatically sets up 
a computing environment for you. You can choose to use it as supplied by the system or you can 
tailor it to meet your needs. 

By default, the environment set up by the shell includes the variables: 

ICONfUXV USER GUIDE 4-13 



ICONfUXV SYSTEM CAPABILITIES 

HOME == your login directory, 

PATH == route the shell takes to search for executable files or commands (typically 
PATH=:/bin:/uar/bin), and 

LOGNAME == your login name. 

If you find the default environment satisfactory, simply leave it as it is and go on with your work. 
However, if you would like to modify it, you must have a file in your login directory named .profile. 
If you do not, you can create one with a text editor like eel or vi. 

To determine if you have a .profile, move to your login directory and type cat .pl'ofile<CR> and 
its contents should appear on the terminal monitor. Typically, the .profile tests for mail and sets 
data parameters, system variables, and terminal settings. 

Possible modifications to your login environment might include changing your login prompt, setting 
tab stops, and changing erase and kill characters. If you would like to customize your .profile, see 
the section entitled Modifying Your Login Environment, in Ohapter 7. 

COMMUNICATING ELECTRONICALLY 

Before the days of office automation, you would probably have thought of relaying a message or 
information to someone either personally or by way of a letter, note, or telephone conversation. 
Now as a ICON/UXV user, you can choose to communicate electronically with other ICON/UXV 
users by way of the computer. 

You can send messages or transmit information stored in files to other users who work on your 
system or on another ICON/UXV system. To do so, your ICON/UXV system must be able to 
communicate with the ICON/UXV system to which you wish to send information. In addition, the 
command you use to send information depends on what you are sending. 

This guide introduces you to these communication programs: 

mail -- This command is typically used for sending messages to others and reading the 
messages sent to you. You can use mail to send messages or files to other 
roON/UXV users using their login names as addresses. And, at your convenience, 
you can use the mail command to read messages sent to you by other users. With 
mail, the recipient can choose when to read it. 

uuto/uupiek - These commands are used to send and retrieve files. You use the uuto command to 
send a file(s) to a public directory; when its available to the recipient, the person is 
sent mail telling him/her that the file(s) has arrived. The recipient then can use the 
uupick command to copy the file(s) from the public directory to the directory of 
choice. 

mailx - This command is a sophisticated, more powerful spin-off of mail. It offers a number 
of options for managing the electronic mail you send and receive. 

Ohapter 8 teaches you how to use the mail, uuto, and uupick commands. It also introduces you to 
the mailx command so you can begin to use it. 

4-14 ICOt\ I?\TERNATIONAL 

C·" .> 



( 

c' 

PROGRAMMING IN THE SYSTEM 

PROG~GINTHESYSTEM 

The ICONfUXV system provides an efficient, effective, and convenient environment for 
programming and software development. This section briefly describes the environment and your 
programming options when working in it. 

If you are not a programmer, your immediate reaction might be to skip this section. But you need 
not be a programmer or software developer to enjoy some of the capabilities that fall under the 
realm of programming. 

For example, you can use the shell as a command level programming language as well as the 
command line interpreter. Shell programming capabilities are useful and usable techniques that 
allow you to take simple, existing programs and make them more powerful. So why not read on. 

On the other hand, if you're interested in sophisticated programming and software development 
capabilities, this section can serve as a springboard to using them. 

What you can expect to find in the next few pages is an overview of shell and C language 
programming and a mention of other languages that can be used on the ICONfUXV system. In 
addition, an overview of some ICONfUXV tools for software development is included. 

Programming in the Shell 

Most interactive users of the ICONfUXV system think of the shell solely as the command language 
interpreter. The shell, however, is also a command level programming language. What this means 
is that you can let the shell continue to act as your liaison with the computer or you can program 
the shell to repeat sequences of instructions and to test certain considerations for you automatically. 
When you program the shell to perform a task, you use the shell to read and to execute commands 
that you place in an executable file. These files are sometimes called shell scripts or shell 
procedures. 

When you use the shell in this manner, it provides you with features, like variables, control 
structures, subroutines, and parameter passing that are very similar to those offered by 
programming languages. These features provide you with the ability to create your own tools by 
linking together system commands. 

For example, you can write a simple shell procedure from existing ICONfUXV system programs that 
tells you the date and time along with the number of users working on your ICONfUXV system. 
One way to do so is illustrated in the following screen: 

ICONfUXV USER GUIDE 

Scat> users<CR> 
date; who I we -I<CR> 
<Ad> 
$ chmod u+x users<CR> 
$ 

4-15 



IOONfUXV SYSTEM OAP ABn.ITIES 

A file called users is created using the> redirection operator. In the example, eat is taking as 
input everything you type after <OR> on the command line and placing it in a file named users. 
Then the file is made executable with the ehmod command. If you type the command 
uaer8<OR>, your terminal monitor would look something like the next screen. 

S uaers<OR> 
Tues May tt 10:t9:09 ODT 198-1 

7 
$ 

The output tells you that seven users were logged into the system when you typed the command at 
approximately 10:30 A.M. on Tuesday, May 22. 

For additional information on shell procedures and for more sophisticated shell programming 
techniques, see Ohapter 7, Shell Tutorial, for step-by-step instructions. 

Programming in the 0 Language 

C is a general purpose programming language. It is a relatively "low level" language, which means 
that C deals with the same sort of objects that most computers do, namely characters, numbers, 
and addresses. These may be combined and moved about with the usual arithmetic and logic 
operators. 

C is closely associated with the ICONfUXV system because it was developed on the ICONfUXV 
system and because ICONfUXV system software is largely written in C. 

Although the C programming language is implemented on many computers, it is independent of any 
particular machine architecture. With a little care, it is easy to write portable programs, that is, 
programs that can be run without change on a variety of computers if the machine supports a 
C compiler. 

The C programming language comprises the following main elements: 

• Types, operators, and e:rpressions-Constants and variables are the basic data objects 
manipulated in a program. Constants are data objects that do not change during the 
execution of a program, while variables are assigned new values throughout execution. 
Declarations list variables, state type, and perhaps initial values. Operators specify what is to 
be done on them. Expressions combine variables and constants to produce new values . 

• Control flow-Control flow statements of a language specify the order in which computations 
are done. In C, these include if-else, else-if, and switch statements, and while, for, and do-while 
loops. In addition, break, continue, and goto statements can be used. Labels can be used as 
well. ( " 

~j 

4-16 ICON INTERNATIONAL 



( / 

PROGRAMMING IN THE SYSTEM 

• Function& and program ,tructure-C programs generally consist of numerous small functions 
rather than a few big ones. These functions break large computing tasks into smaller ones and 
enable you to build on what others have done. 

• Pointer& and array&-A pointer is a variable that contains the address of another variable. 
Pointers are frequently used when programming in C because oftentimes they provide the only 
way to express a computation and partly because their use typically leads to more compact and 
efficient code than can be obtained in other ways. 

• Structure,-A structure is a collection of one or more variables, possibly of tie-rent types, that 
are grouped together under a single name for convenient handling. Structures help to organize 
complicated data because they permit a group of related variables to be treated as a unit 
instead of separate entities. 

• Input and output-A standard I/O libra1'.f containing a set of functioos designed to provide a 
standard input and output system is availialle for C programs. This lihrary is a ICONjUXV 
feature available for programming in C. 

These elements are covered in detail in The C Programming Lan,uage by 9., W. Kernighan and 
D. M. Ritchie (Prentice-Hall, 1978). Additional imormatiov is also availablt in the ICON/UXV 
Programming Guide. 

Other Programming Languages 

In addition to C, other programming languages ve available for use on the ICONjUXV system, 
such as FORTRAN-77, BASIC, Pascal, COBOL, APL, LISP, and SNOBOL. 

You can obtain details on FORTRAN and itli variations in the lOON/ UXV Programming Guide. Or 
contact your AT&T Technologies Account Roep!'esentative for document ava.iJ.a.mMt,y and ordering 
information on the others. 

Tools to Aid Software Development 

This section highlights some sophisticated software development tools available on t&a.e ICONjUXV 
system. The tools are designed to make development of software easier and to provide you with a 
systematic approach to programming. 

There are numerous software development aids provided by the ICONjUXV operating system. This 
section introduces you to five of them to give you an idea of what you can expect development 
utilities to do. They are: 

sces -- Source Code Control System, 

RJE -- Remote job entry, 

make - Maintaining programs, 

lex - Generating programs for simple lexical tasks, and 

!lace - Generating parser programs. 

Refer to the ICON/UXV Support Tool& Guide and the ICON/UXV Programming Guide for more 
information. 

ICONjUXV USER GUIDE 



IOONfUXV SYSTEM CAPABn.ITIES 

Source Code Control System (5005) 

The Source Code Control System (SCCS) is a collection of ICONfUXV system commands that helps 
you to control and report changes to source code files or text files. SCCS allows you to access 
different versions of the same file while maintaining only one file. The way this works is that SCCS 
stores the original file on a disk. Whenever modifications are made to the file SCCS stores only 
those changes as a set in something called a delta. Each delta or set of changes is numbered to 
reflect the different versions of a file. You can then choose to retrieve either the original file or a 
version of the original file. 

By allowing SCCS to store and control all iterations of a file, space allocations for storage are 
minimized and administration of different versions of the same program or document is efficient and 
simplified. Updates to files can be made quickly and the original version of a program or document 
is retained if you should need to recall it later. 

For additional information, see the lOON/ UXV Support Tool8 Guide. Most of the commands needed 
to use SCCS are documented in the IOON/UXV U8er Reference Manual. 

Remote Job Entry (RJE) 

Remote job entry (RJE) is a software package designed to facilitate communication between a 
ICONfUXV operating system and an IDM System/360 or an IDM System/370 computer. The RJE 
software allows the ICONfUXV operating system to communicate with the IDM Job Entry 
Subsystem by mimicking an IDM System/360 remote multileaving work station. A set of 
background processes support RJE, and the ICONfUXV system uses these processes to submit jobs 
for remote execution on the networked IDM system. 

When RJE software runs, it does so in the background. It transmits jobs (consisting of job control 
statements [JCLl and input data) that you queue with the send command and status reports you 
request with the rjestat command. In turn, the RJE software subsystem receives print and punch 
data sets and message output from the IDM system. 

For more information on RJE software, see the IOON/UXV Support Tool8 Guide. Commands to be 
used with RJE are covered in the IOON/UXV U8er Reference Manual and the IOON/UXV 
Admini8trator Reference Manual. 

Maintaining Programs (make) 

The make command is a tool for maintaining, supporting, and regenerating large programs or 
documents on the basis of smaller ones. Since it is easier to handle and modify small programs, it is 
recommended that if you wish to develop a large program, you start by creating a series of smaller 
ones that work together to produce the large one. 

The make command provides you with a method to store all the information you need to assemble 
small programs or modules into a large, more sophisticated one. A file called a makefile holds the 
file names of the small programs, the steps necessary to generate the large program, and specifies 
the dependencies among the files. 

When make executes the makefile, the date and time you last modified any of the small programs 
are checked and the operations needed to update them are performed in sequence. Then, make 
goes on to create the overall large program. 

4-18 ICON INTERNATIONAL 



( 

o 

PROGRAMMING IN THE SYSTEM 

For details on the operation of make, see the IOON/UXV Support Tools Guide. Or, for a quick 
reference, see the entry for make in the IOON/UXV User Reference Manual. 

Generating Programs for Lexical Tasks (lex) 

The lex utility generates programs to be used in simple lexical analysis of text. Lexical analysis is 
done by evaluating a stream of characters and constructing the forms that are acceptable to the 
language. Proper Corms are defined in the lex program and usable forms can be defined by lex 
defaults or by you. Lex produces a subroutine as output that must be compiled and combined with 
other programs to use the lexical analyzer. 

The processing done by the lex command can be the first step in creating a compiler-type program. 
In addition, it can be useful as a preprocessing tool for many different software generation Cunctions. 

For additional information on the lex command, see the IOON/UXV Support Tools Guide. A brief 
description of how lex operates and an explanation of its options can be found in the IOON/UXV 
User Reference Manual. 

Generating Parser Programs (1/atc) 

The "acc program, short for "et another compiler compiler, is primarily used in the generation of 
software compilers. Essentially, "acc is a utility for creating parser subroutines. The' way this 
works is that first "acc uses specified syntax and produces source code Cor a parser subroutine. 
Then, the parser subroutine is compiled, and finally used with a program that calls it to parse 
input. In this way, structure can be imposed on the input to a program and the desired language 
can be created from defined rules. 

See the IOON/U>..'V Support Tools Guide for details on the "acc command. Or refer to the 
IOON/ UXV User Reference Manual for some general guidelines on how to use it. 

ICONjUXV USER GUIDE 4-19 





( Chapter 5 

LINE EDITOR TUTORIAL (ed) 

PAGE 

INTRODUCI"-IG 1l-IE U~ EDITOR. •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

HOW TO READ THIS TUTORIAL ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

ae:-rn-~ STARTED •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
..-.ow to Access ed •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

f-tow to Create Text ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
How to Display a Line of Text ............................................................................................................ . 
How 'to Delete a Line of Text ............................................................................................................. . 
How to t.4ove Up or Down a Line in the File ......................................................................................... . 
How to Save the Buffer Contents in a File ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
How to Quit the Edi'tor ...................................................................................................................... . 

EXERCISE 1 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

GENERAL FORMAT OF ed COtIMv1ANDS .................................................................................................... . 

UI\IE. ADDRESSING ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
Number Line Addresses .••••••••••••.•••.•••••••.•••••••••••••••••••••••••••••••.•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
Special Symbols Addres.ses ••••••••••••••••••••••••••..••••••.•••••••••••••••••••••••.•••••••••••••.••••••••••••••••••••••••••••••••••••••• 

Current Line Address Character .............................................................................................. . 
Last Line Address Character .................................................................................................. . 
Address for the First Line Through the Last Line ................................................................. . 
Address for the Current Line Through the Last Line ............................................................ .. 

6-1 

0-2 

6-3 

0-3 

6-4 
6-0 

0-7 

0-8 

o-v 
0-10 

6-11 

0-12 

0-13 

6-13 
0-14 

0-14 

6-10 

0-18 

6-18 

Relative Addressing. Adding or Subtracting Lines from the Current Line ................................................ 0-17 

Character String Addresses................................................................................................................ 5-10 
SpeCifying 8 Ranie of Lines................................................................................................................ 5-22 
Specifying a Global Search •••••.•••••.•.•.•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••.•••••••.••••.•••••••. 5-23 

EXERCISE 2 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 0-26 

DISPLA,Y U~ IN A FILE......................................................................................................................... 0-27 
Display Lines of Text......................................................................................................................... 6-27 
Display Lines of Text Preceded by the Line Address Number ................................................................. 0-28 

CREA n~ TEXT .................. •••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ................ •••••••••••••••••• i·30 
Appending Text................................................................................................................................. 6-30 
Inserting Text................................................................................................................................... 5-33 
Changing Text................................................................................................................................... 5-34 

EXERCISE 3 ............................................................................................................................................... 5-36 

DELETING TEXT ........................................................................................................................................ 6-37 
Deleting Lines or Text........................................................................................................................ 6-37 

Undo the Last ComrTl8nd •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 5-30 

Deleting Commands in the Text Input t.4ode ........................................................................................ 6-40 

Deleting the Current Line........................................................................................................ 6-40 

Deleting the Last Characters Typed........................................................................................ 6-41 

SUBSTITUTING TEXT............................................................................................................................... 0-43 

Substituting on the Current Line ........................................................................................................ 0-44 

Substituting on One Line ................................................................................................................... 0-40 

Substituting on a Range or Lines ........................................................................................................ 6-48 
Global Substitution ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 5-47 



EXERCISE ... ............................................................................................................................................... 5-60 

SPECIAL CtiARACl"ERS ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 5-61 

EXERCISE 6 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

MOVI~ l"EXT •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
tw4()ye Unes of Text •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
Copy LinG of Text ••••••••••••••••••••••••••••••••••••••••••••••••••••• _ ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
.bininl Contiluous Unes •••••• _ •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
Write Unes of Text 1;0 a File ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
Read in the Con'ten'ts of a File •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

EXERCISE 6 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

OTHER USEF'UL C~S At-C I~~l1Of\1 ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
Help Comrraands ................................................................................................................................ . 
Display ~nprintin' Characters •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
The Current File Nar1l8 ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
Escape 'to t.he Sheil •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
Recover From a System Interrupt ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
Concl usion •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

EXERCISE 7 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

ANS~RS TO EXERCISES •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
Exercise 1 ••••••••••••••••••••••.••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••.••••••••••••••••••••••••••••••••••••.•••••••• 
Exercise 2 ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

Exercise g ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
Exercise 4 ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

5-8% 

6-83 

6-84 

6·87 
6-80 

6-70 

6·11 

6·7% 

6-73 

6·73 
6·78 
6-77 

6-70 

6-80 

6·80 

6·8% 

5-82 

5-83 

6·81i 

5·88 

Exercise S ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 1i-80 

Exercise 6 ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 6·01 

Exercise 7 ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 6-03 

o 

(j 



( 

c 

Chapter 5 

LINE EDITOR TUTORIAL (ed) 

INTRODUCING THE LINE EDITOR 

This tutorial is an introduction to the line editor, ed. The advantages of the line editor are 
speed and versatility. ed requires very little computer time to perform editing tasks. The 
line editor commands can be typed in by you at a terminal, or they can be used in a shell 
program. (See Chapter 7, Shell Tutorial.) 

When you enter ed, you are placed in a temporary buffer. The buffer is like a piece of 
scratch paper for you to work on until you have finished creating or correcting your text in 
this scratch pad buffer. If you are creating a new file, you enter commands from your 
terminal that tell ed how to create or modify your text in this scratch pad buffer. If you 
are editing an existing file, a copy of that file is placed in the buffer. Changes are made to 
the copy of the file. The changes have no effect on the original file until you instruct ed, 
using the "write command", to move the contents of the scratch pad buffer into the file. 

You can create text in a file line by line, just as you would on a typewriter. However, ed is 
easier to use than a typewriter because it gives you commands that allow you to change, 
delete, or add text on several lines in the file, and then display those lines of text on your 
terminal. You can also add text from another file. 

After you have read through this tutorial and have done the examples and exercises, you 
will have a good working knowledge of ed. The following basics will be covered: 

• A brief introduction to ed, accessing the line editor, creating some text, displaying the 
lines of text, deleting lines, writing the text to a ICONjUXB file, and quitting ed, 

• How to address those lines of the file that you want to work on, 

• How to display lines of text, 

• How to create text, 

• How to delete text, 

• How to substitute new text for old text, 

• How to use special characters as shortcuts for search and substitute patterns, 

• How to move text around in the file, and 

• Some other useful commands and information. 

ICONjUXV USER GUIDE 5-1 



LINE EDITOR TUTORIAL (ed) 

HOW TO READ TIDS TUTORIAL 

In this tutorial, commands printed in bold should be typed into the system exactly as 
shown. The system responses to those commands are shown in italic. Text that you type 
into a file is not shown in bold. You should assume that each line you type in at your 
terminal ends in a carriage return unless the text directs you to do something else. The 
carriage return is denoted by <CR>. As you read the text, you may want to glance back 
to this section for a quick recap of these conventions. 

bold command(Type in exactly as shown.} 

italic response(The system's response to the command.) 

roman (Text that is being typed into a file.) 

<CR> (Carriage return.) 

A display screen or partial screen, like the one above, will be used to illustrate the 
commands. Because ed is versatile and can be used on any type of terminal, you may not 
be working on a video display terminal. However, the lines you type in, and the system 
responses are the same whether you are working with a video display terminal or a paper 
printing terminal. 

The ed commands are introduced by depicting the corresponding key on your keyboard. 
The key will appear as shown below in the example of the "a" key. 

Notice that the letter on the key appears as it does on your keyboard. However, when you 
press the key, the letter will appear in lowercase on your terminal. If you need an 
uppercase letter, the example will include the SHIFT key. 

The commands discussed in each section are reviewed at the end of that section. A 
summary of the ed commands discussed in this chapter is found in Appendix D, where they C~ ~ " 
are listed in alphabetical order, as well as by topic. 

5-2 ICON INTERNATIONAL 



(/ 

( 

GETTING STARTED 

At the end of some sections, exercises are given so you can experiment with the commands. 
The answers to all of the exercises are at the end of this chapter. 

GETTING STARTED 

Let's get started. The best way to learn ed is to log into the ICON/UXB system and try 
the examples as you read this tutorial, do the exercises, and do not be afraid to experiment 
with the ed commands. The more you experiment with ed commands, the sooner these 
commands will become second nature to you, and you will have a fast and versatile method 
of editing text. 

In this section, you will learn the bare essentials on how to: 

• Access ed, 

• Append some text, 

• Move up or down in the file to display a line of text, 

• Delete a line of text, 

• Write the buffer to a file, and 

• Quit ed. 

How to Access ed 

To access the line editor, type in ed and then a file name. The general format for the ed 
command line is: 

ed filename< CR> 

Choose a file name that reflects what will be in the file. The system will respond with a 
question mark if this is a new file. 

$ ed new-file<CR> 
? new-file 

If you are going to edit an existing file, ed will respond with the number of characters in 
the file. 

ICON/UXV USER GUIDE 5-3 



LINE EDITOR TUTORIAL (ed) 

r $ ed old-flle<CR> 
£85 

In the above example, the existing file, old-file, has 235 characters. 

How to Create Text 

If you have just accessed ed, you are in the command mode of the line editor. ed is 
waiting for your commands. How do you tell ed to create some text? Press the "a" key 
and then a carriage return. 

Append text. 

If a is the only character on a line, it tells the editor that the next characters typed in 
from the terminal are text for the file. You are now in the text input mode of ed. After 
you have added all the text that you want to the file, type in a period on the line by itself. 
This takes you out of the text input mode and returns you to the command mode of ed, so 
that you can give ed other commands. 

The next example shows how to enter ed and begin creating text in the new file, try-me. 
The text input mode is then ended with a period. 

5-4 

$ ed try-me<OR> 
? try-me 
a<OR> 
This is the first line of text. <OR> 
This is a second line,<OR> 
and this is the third line.<OR> 
.<OR> 

ICON INTERNATIONAL 



( 

GETTING STARTED 

Notice that ed does not give you a response to the period. It just waits for you to enter a 
new command. If ed is not responding to your commands, you may have forgotten to type 
in the period. Even experienced users sometimes forget to end the text input mode with a 
period. Type in a period at the beginning oi the line. Now ed should respond to your 
commands. If you have added some unwanted characters or lines to your text, you can 
delete them once you are back in the command mode. 

Bow to Display a Line of Text 

How can you display what is in the file? Type in p, for print, on a line by itself. 

Display text. 

Since you have not specified any line number, or line address, p will display the current 
I( line, that is, the line that was last touched or worked on by ed. 

ICONjUXV USER GUIDE 

$ ed try-me<OR> 
? try-me 
a<OR> 
This is the first line of text. <OR> 
This is a second line, <OR> 
and this is the third line.<CR> 
.<OR> 
p<OR> 
and this is the third line. 

5-5 



LINE EDITOR TUTORIAL (ed) 

If you want to see all the lines of text in the file, type in 1,$p. The 1 and the $ are the line 
addresses for the first line and the last line of the file. These will be discussed in detail in 
the section on Line Addressing. 

Problem: 

1,$p<CR> 
This is the first line of text. 
This is a second line, 
and this is the third line. 

If you forgot to end the text input mode with the period, you would have added a line of 
text that you did not want. Try to make this mistake. Add another line of text to your 
try-me file and then try the p command without ending the text input mode. Now, end the 
text input mode and press "p". What did you get? How do you get rid of that line? 

5-6 

p<CR> 
and this is the third line. 
a<CR> 
This is the fourth line. <CR> 
p<CR> 
.<CR> 
1,$p<CR> 
This is the first line of text. 
This is a second line, 
and this is the third line. 
This is the fourth line. 
p 

ICON INTERNATIONAL 



( 

GETTING STARTED 

How to Delete a Line of Text 

If you are in the command mode of ed, press d to dele~ the current line. 

Delete text. 

To get rid of the line with the "p" on it, in the last example, delete the line with the d 
command. The next example displays the current line, deletes th~ current line, and then 
displays all the lines in the file. 

p<CR> 
p 
d<CR> 
1,$p<CR> 
This is the first line of text. 
This is a second line, 
and this is the third line. 
This is the fourth line. 

After you press d, ed deletes the current line, but it does so quickly and quietly. It is not 
evident to you that anything has happened unless you press p and find that the current line 
has been deleted. 

ICON /UXV USER GUIDE 5-7 

--~~~~ -.~ .-. __ ... 



LINE EDITOR TUTORIAL (ed) 

How to Move Up or Down a Line in the File 

To display the line below the current line, press <OR>. 

RETURN Display the next line 
of text. 

If there is no line below the current line, ed will respond with a ? and the current line will 
remain the last line of file. Pressing <OR> is a good way to move down through the 
buffer. 

How do you display the line above the current line? Use the minus key, - . 

Display the line of text above the 
current line. 

The next screen demonstrates how to display a line of text, above or below the current line 
in the file. 

5-8 

p<OR> 
This is the fourth line. 
-<OR> 
and this is the third line. 
-<OR> 
This is a second line, 
-<OR> 
This is the first line of text. 
<OR> 
This is a second line, 
<OR> 
and this is the third line. 

ICON INTERNATIONAL 



( 

( 

GETTING STARTED 

If you pressed the -<CR> or <CR>, you noticed that the line was displayed without 
having to press the lOp" key. You were addressing a line. If you give a line address and do 
not follow it with a command, ed assumes you want the p command, which is the default 
command for a line address. 

Experiment with these comma.nds, create some text, delete a line, and display your file. 

How to Save the Buffer Contents in a File 

If you have finished editing your text, how do you move it from the buffer, your scratch 
pad, into a file? To save your text, write the contents of the buffer into a file with the w 
command. 

Write the contents or the buffer to 
a file. 

ed will remember the file name you gave when you accessed ed, and will write the contents 
of the buffer to a file with that name. If the file did not already exist, ed will create it and 
then write the contents of the buffer into it. 

r w<CR> 107 

If the write command is successful, the character count is displayed. In the last example, 
there are 107 characters of text. When you write a file, you copy the contents of the buffer 
into the file. The text in the buffer is not disturbed. You can add more text to it. It is a 
good idea to write the buffer text into your file frequently. If an interrupt occurs (such as 
an accidental loss of power to your terminal), you may lose the material in the buffer, but 
you will not lose the copy written to your file. You can also write to another file name that 
is different from the one YOll entered in the ed command line. The file name will be a 
parameter to the w command. In the following example, the new file name is stuff. 

ICON/UXV USER GUIDE 5-9 



LINE EDITOR TUTORIAL (ed) 

r wotulf<CR> 
107 

When you return to the shell command mode, display the contents of stuff and try-me. Are 
they the same file? 

How to Quit the Editor 

You have completed editing your file, and have written the editing buffer to the file. To 
leave the editor and return to the shell command mode, type in the quit command, q. 

w<CR> 
107 
l<CR> 

Quit the editing buffer. 

The system responds with your shell prompt. At this point, the editing buffer vanishes. 
Unless you have used the write command, your text in the buffer has also vanished. Since 
this could be a serious problem, ed warns you with a ? the first time you type in q without 
having written any new changes to a file. 

5-10 ICON INTERNATIONAL 



c) 

GETTING STARTED 

q<CR> 
f 
w<CR> 
107 
q<CR> 
$ 

If you insist on typing in a second q, ed assumes you do not want to write the changes to 
the buffer into your file, and returns you to the shell command mode. Your file is left 
unchanged and the buffer contents are wiped out. 

You now know the basic commands to create and edit a file. 

SUMMARY OF COMMANDS FOR GETTING STARTED 

ed filename 

a 

P 

d 

<CR> 

w 

q 

Enter ed to edit the file called filename. 

Append text after the current line. 

End the text input mode, and return to the 
command mode of ed. 

Display text on your terminal. 

Delete text. 

Display the next line in the buffer. 

Display the line above the current line In 

the buffer. 

Write the buffer to the file. 

Quit ed and return to shell command mode. 

EXERCISE 1 

The answers to all the exercises throughout this chapter are found at the end of this 
chapter. However, if your method works, if it performs the task even though it does not 
match the answer given, it is a correct answer. 

1-1. Enter ed with the file named junk. Create a line of text "Hello World", write to the 
file and quit ed. 

ICONfID..\T USER GUIDE 5-11 



LINE EDITOR TUTORIAL (ed) 

r-" 1-2. Reenter ed with the file named junk. What was the system response? Was it the • \ 
same character count as the response to the w command in Exercise I-I.? "-- / 

Display the contents of the file. Is that your file junk? 

How do you get back to the shell command mode? Try q without writing the file. 
Why do you think the editor allowed you to quit without writing to the buffer? 

1-3. Enter ed with the file junk. Add a line: 

This is not Mr. Ed, there is no horsing around. 

Since you did not specify a line address, where do you think the line was added to the 
buffer? Display the contents of the buffer. Try quitting the buffer without writing to 
the file. Try writing the buffer to a different file stuff. Notice that ed does not warn 
you that the file stuff already exists. You have erased the contents of stuff and 
replaced it with new text. 

GENERALFORMATOFedCO~S 

The commands in ed have a simple and regular format. Commands are of the form: 

[addressl,address2]command [parameter ]<CR> 

The brackets around the addresses and parameter denote that these are optional. The 
brackets are not part of the command line. 

address! ,address2 

command 

The addresses give the position of lines in the buffer. Addressl through 
address2 gives you a range of lines that will be affected by the command. 

The command is one character and tells the editor what task to perform. 

parameter 
The parameters to a command are those parts of the text that will be 
modified, or a file name, or another line address. 

This general format will become clearer to you when you begin to experiment with the 
commands in ed. 

5-12 ICON INTEHNATIONAL 



(/ 

LINE ADDRESS 

LINE ADDRESSING 

Line addresses are very important to ed. To add text before or after a line, to delete, 
move, or change a line, ed must know the line address. 

[address 1 ,address2)command<CR> 

Address2 is given only if you are specifying a range of lines. If addressl is not given, ed 
assumes that the line address is the current line. 

A line address is a character or group of characters that identify a line of text. The most 
common ways to address a line in ed are: 

• Line numbers, 1 being the first line of the file, 

• Special symbols for the current line, last line, and a range of lines, 

• Adding or subtracting a number of lines from the current line, and 

• A character string or word on that line. 

You can access one line, a range of lines, or make a global search for all lines containing a 
specified character string. A character string is a group of successive characters, such as a 
word. 

Number Line Addresses 

ed gives a number address to each line in the buffer. The first line of the buffer is 1, the 
second line of the buffer is 2 and so on for each line in the buffer. Each line can be accessed 
by ed with the line address number. If you want to see how line numbers address a line, 
enter ed with the file try-me and type in a number of a line. 

$ ed try-me<CR> 
107 
I<CR> 
This is the first line of text. 
3<CR> 
and this is the third line. 

Remember that p is the default command for ed. Since you gave a line address, ed 
assumes you wanted that line displayed on your terminal. 

ICON/UXV USER GUIDE 5-13 



LINE EDITOR TUTORIAL (eel) 

Problem: 
Later in this tutorial you will create lines in the middle of the text, or delete lines, or move 
a line to a different position. This will change the address number of a line. The number of 
a specific line is always the current position of that line in the editing buffer. If you add 
five lines of text between line 5 and line 6, once the lines have been added, line 6 becomes 
line 11. If you delete line 5, line 6 becomes line 5. 

Special Symbols Addresses 

Current Line Address Character 

The address of the current line. 

The current line is the line that was most recently acted upon by ed, either displayed, 
created, or moved. If you have just accessed ed with an existing file, the current line is the 
last line of the buffer. The address for the current line is a period. If you want to display', ./ 
the current line, type in: • 

If you access ed with your file try-me, you will find that the current line is the last line. 
Try it. 

$ ed try-me<CR> 
107 
.<CR> 
This is the fourth line. 

The ..... is the address. Since no command is given, ed assumes the default command p 
and displays the line addressed by ... ". 

If you want to know the line number of the current line, you can type in the command: 

ed will respond with the line number. In the last example the current line is 4. 

5-14 ICON INTERNATIONAL 



.<OR> 
This is the fourth line . 
. =<OR> 
4 

Last Line Address Character 

The address of the last line. 

LINE ADDRESS 

The last line of the file can be addressed by $. It does not matter how many lines are in 
the file, the last line can always be addressed by $. If you access ed with the try-me file, 

r( you can see that when you first enter ed the current line is the last line. 

$ ed try-me<OR> 
107 
.<OR> 
This is the fourth line. 
$<OR> 
This is the fourth line. 

Remem ber that the $ address within ed is not the same as the $ prompt of the shell. If 
this gets confusing and you want to change your prompt, see Changing Your Environment in 
Chapter 7, Shell Tutorial. 

ICON/UXV USER GUIDE 5-15 



LINE EDITOR TUTORIAL (eci) 

Address for the First Line Through the Last Line ( ... 

The , used as an address will refer to all lines of the file, the first line through the last ~ ) 
line. 

Address all lines of the file. 

If you wanted to display all lines of the file, you could use, as a shortcut address for 1,$. 

,p<CR> 
This is the first line of text. 
This is a second line, 
and this is the third line. 
This is the fourth line. 

Address for the Current Line Through the Last Line 

The ; addresses the current line through the last line of the file. 

Address the range of lines from the 
current line through the last line. 

The is the same as addressing .,$. 

5-16 ICON INTERNATIONAL 



( 

LINE ADDRESS 

.<OR> 
This is a second line, 
;p<OR> 
This is a second line, 
and this is the third line. 
This is the fourth line. 

Relative Addressing, Adding or Subtracting Lines from the Current Line 

If you are in a long file, you may want to address lines with respect to the current line. 
You can do this by adding or subtracting the number of lines from the current line, thus 
giving a relative line address. 

Add a number of lines to 
the current line address. 

Subtract a number of lines from 
"the current line address. 

To see relative line addressing, 1l.dd several more lines to your file try-me. Each line should 
contain the number of the line. 

ICONjUXV USER GUIDE 5-17 



LINE EDITOR TUTORIAL (ed) 

$ ed try-me<OR> 
107 
.<OR> 
This is the fourth line. 
a<OR> 
five 
six 
seven 
eight 
nine 
ten 
.<OR> 

Now try adding and subtracting line numbers from the current line. 

4<CR> 
This is the fourth line. 
+3<CR> 
seven 
-5<CR> 
This is a second line, 

What happens if you ask for a line address that is greater than the last line, or you try to 
subtract a number greater than the current line number? Experiment with a relative line 
addressing. See what happens. 

5-18 ICON INTERNATIONAL 

/' ' 



( 

c 

5<CR> 
five 
-8<CR> 
? 
.==<CR> 
5 
+7<CR> 
? 

LINE ADDRESS 

Notice in the above example that the current line remains at line 5 of the buffer. The 
current line only changes if you give ed a correct address. The ? response indicates an 
error. The section on Other Useful Commands and Information at the end of this chapter, 
will discuss getting a help message which describes the error. 

Character String Addresses 

You can search forward or backward in the file for a line containing a specified character 
string. The line address is the search delimiter and the character string. 

A delimiter gives the boundaries of the character string. Delimiters tell ed where a 
character string starts and ends. The most common delimiter is /. You may also use!. If 
/ is used at the beginning of an address ed will search forward or down the buffer for the 
next line containing the specified character string. 

Type in: /pattern 

Search down or forward in the buffer and 
address the first line with a specified 
pattern of characters. 

ed will search the current line and then down the buffer for the first line that contains the 
characters pattern. If the search reaches the last line of the buffer, ed will then wrap 
around and start searching down the buffer from line 1. 

The rectangle below represents the editing buffer. The path of the arrows shows the search 
initiated by / . 

ICONjUXV USER GUIDE 5-19 



LINE EDITOR TUTORIAL (ed) 

r---' 
I 
I 
I 
I 
I 
t 
I 
t 

~ 
1 

1 
L ___ .J 

First Line 

Current line 

Last line 

If r is used at the beginning of an address, ed will search backward or up in the buffer for 
the specified character string. 

Type in: rpattern 

Search up or backward in the buffer and 
address the first line containing a specified 
pattern of characters. 

ed searches backward from the current line for the first line containing the characters 
pattern. If the search reaches the first line of the file, it will wrap around and continue 
searching upward from the last line of the file. The next rectangle represents the editing 
buffer. The path of the arrows shows the search initiated by r . 

5-20 ICON INTERNATIONAL 

c' 



( 

( 

LINE ADDRESS 

,.---, 
I I 

I 

1 
I First line 
I 
I 
I 
I 
I Current line , 
I 

1 
I 
I 
I 
I 
I 
I Last line I 
I L ___ .J 

Experiment with these two search address requests on the file try-me. What happens if ed 
does not find the search pattern? 

$ ed try-me<CR> 
107 
.<CR> 
ten 
rfirst<CR> 
This is the first line of text. 
/fourth<CR> 
This is the fourth line. 
/junk<CR> 
? 

Once again, since no command was given, ed assumes it is the p command and displays the 
line. In the above example when ed was asked to search for the pattern junk, it could not 
find junk and responded with a ? . 

ICON/UXV USER GUIDE 5-21 



LINE EDITOR TUTORIAL (ed) 

Try the following sequence of commands. 

Type in: /line<CR> 
j<CR> 

What happened? 

.<CR> 
This is the first line of text. 
/line<CR> 
This is the second line, 
j<CR> 
and this is the third line. 
j<CR> 
This is the fourth line. 

ed remembers the pattern of the last search and looks for that pattern until it is given a 
new pattern. 

Specifying a Range of Lines 

There are two ways to address a range of lines. You can specify a range of lines such as 
address! through address2, or you can specify a global search for all lines containing a 
specified pattern. 

The simplest way to specify a range of lines is to use the line number of the first line 
through the line number of last line of the range. These numbers are separated by a 
comma and placed before the command. If you want to display lines four through ten of 
the editing buffer, you would give addressl as 4 and address2 as 10. 

Type in: 4,lOp<CR> If you are editing the file try-me, how would you display lines one 
through five? 

5-22 ICON INTERNATIONAL 

c' 



( 

( 

1,5p<OR> 
This is the first line of text. 
This is a second line, 
and this is the third line. 
This is the fourth line. 
five 

LINE ADDRESS 

Did you try typing in 1,5 without the p? What happened? If you do not add the p 
command, ed only prints out address2, the last line of the range of addresses. 

You can also use relative line addressing for a range of lines. Be careful, address! must 
come before address2 in the buffer. The relative addresses are calculated from the current 
line. 

Specifying a Global Search 

.<OR> 
This is the fourth line 
-2,+3p<OR> 
This is a second line, 
and this is the third line. 
This is the fourth line. 
fi~e 
SIX 

seven 

There are two commands that do not follow the general format of the ed commands. They 
are the global search commands that specify the addresses with a character string. 

ICONjUXV USER GUIDE 5-23 



LINE EDITOR TUTORIAL (ed) 

The global search command searches the entire 
file lor lines that contain a specified pattern 
of characters. 

The global search command searches the entire 
file for lines that do NOT contain a specified 
pattern of characters. 

The general format for these two commands gives the command, a delimiter, the search 
pattern, a delimiter, and a command. 

g/pattern/command<CR> 
v /pattern/command<CR> 

Tryout these commands on try-me. 

5-24 

g/line/p<CR> 
This is the first line of text. 
This is a second line, 
and this is the third line. 
This is the fourth line 

ICON INTEn~ATIONAL 



( 

( 

v /line/p<CR> 
five 
six 
seven 
eight 
nine 
ten 

LINE ADDRESS 

p will act as a default command for the lines addressed by g or v. If you just want to 
display the lines, you do not need the last delimiter or p. 

g/line<CR> 
This is the first line of text. 
This is a second line, 
and this is the third line. 
This is the fourth line 

If the lines are used as addresses for other ed commands, you will need the beginning and 
ending delimiters. All of these methods of addressing a line can be used as addresses for ed 
commands. 

ICON/UXV USER GUIDE 5-25 



LINE EDITOR TUTORIAL (eel) 

1,2 ... 

.-

SUMMARY OF LINE ADDRESSING 

The number of the line in the buffer. 

The current line, the last line ed touched. 

The command that gives the line number of the 
curren t line. 

$ The last line of the file. 

Addresses lines 1 through the last line. 

Addresses the current line through the last line. 

+ n Add a number of lines n to the current line address. 

- n Subtract a number of lines n from the current line 
address. 

label 

fabc! 

g/abel 

v/abel 

Search forward in the buffer and address the first 
line containing the pattern of characters abc. 

Search backward in the buffer and address the first 
line containing the pattern of characters abc. 

Address all lines containing the pattern abc. 

Address all lines that do NOT contain the pattern 
abc. 

EXERCISE 2 

2-1. Create a file towns with the following lines: 

5-26 

My kind of town is 
Chicago 
Like being no where at all in 
Toledo 
I lost those little town blues in 
New York 
I lost my heart in 
San Francisco 
I lost $$ in 
Las Vegas 

ICON INTERNATIONAL 



( 

( 

( 

EXERCISE 2 

2-2. Display line 3. 

2-3. What lines are displayed for the relative address range -2,+3p ? 

2-4. The current line number is? Display the current line. 

2-5. The last line says? 

2-6. What line is displayed by the search: 

!town<CR> 

Now type in: 

!<CR> 

alone on a line. What happened? 

2-7. Address all lines that contain the pattern "in". Then address all lines that do NOT 
contain the pattern "in". 

DISPLAY LINES IN A F~E 

The two commands that display lines of text in the editing buffer are p and n. 

Display Lines of Text 

Print or display lines of text in the editing buffer 
on your terminal. 

You have already used the p command in several examples. 

The general form of the print command is: 

addressl,address2p<CR> 

p does not have parameters. However, it can be combined with the substitute command 
line. This will be discussed later in this chapter. 

ICON/UXV USER GUIDE 5-27 



LINE EDITOR TUTORIAL (ed) 

Experiment with different line addresses and the p command on a file in your directory. 
Tryout the following types of addresses. 

Type in: 1,$p<CR> 

The entire file should have been displayed on your terminal. 

Type in: -op<CR> 

The editor should have subtracted 5 from the current line and displayed that line. 

Type in: +2p<CR> 

The editor should have added 2 to the current line and displayed that line. 

Type in: 1,/a/p<CR> 

Did you figure out what happened? The editor searched for the next "a" from the current 
line, and then displayed lines 1 through the first line that contained "a" after the current 
line. 

It is very important to delimit the search pattern to avoid errors in ed. You have to 
delimit the search pattern "a" (enclose "a" between slashes) so that ed can tell the 

(~ 
, I 

~/ 

difference between the search pattern address "a" and an ed command a. ;" 

Display Lines of Text Preceded by the Line Address Number 

Display the line address number with 
the line of text. 

The n command is a convenient command when you are deleting, creating, or changing 
lines. Besides displaying the lines of text, n precedes each line with the line address 
number. 

The general format for n is the same as p. 

[addressl,address2]n<CR> 

Also, like p, n does not have parameters, but it can be combined with the substitute 
command. Tryout n on your test file try-me. 

5-28 ICON INTERNATIONAL 

"'-.j 



(/ 

$ ed try-me<CR> 
197 
1,$n<CR> 

DISPLAY LINES IN A FILE 

1 This is the first line of text. 
e This is a second line, 
9 and this is the third line. 
4 This is the fourth line. 
5 five 
6 six 
7 seven 
8 eipht 
9 nme 
10 ten 

Experiment with n using different line addresses. In the next example, the relative line 
addresses -5 and +2 are used. Also, the range of lines addressed from line 1 through the 
first line after the current line that contains an "ne" is also displayed. 

ICON/UXV USER GUIDE 

-5n<CR> 
5 five 
+2n<CR> 
7 seven 
1,/ne/n<CR> 
1 This is the first line of text. 
e This is a second line, 
9 and this is the third line 
4 This is the fourth line. 
5 five 
6 six 
7 seven 
8 eight 
9 nine 

5-29 



LINE EDITOR TUTORIAL (ed) 

SUMMARY OF DISPLAY COMMANDS 

p Displays on your terminal the specified lines of text 
in the editing buffer. 

n Displays on your terminal the line address numbers 
with the specified lines of text in the editing buffer. 

CREATING TEXT 

ed has three basic commands for creating new lines of text: 

a Append text, 

i Insert text, and 

c Change text. 

Appending Text 

Create text after the specified line 
in the buffer. 

You have already used the append command in the Getting Started section of this tutorial. 
The general format for the append command is: 

[address1]a<CR> 

The default for address! is the current line. If you do not give. a an address, ed will make 
address! the current line. 

You have used the default address for a, now try using different line numbers for addressl. 
In the next example, a new file called new-file is created. The first append command uses 
the default address. The second append command uses address! as 1. The lines are 
displayed with n so that you can see the line addresses. 

5-30 ICON INTERNATIONAL 

----------- --~--- .. 



(-

( 

(" 

CREATING TEXT 

$ ed new-ftle<CR> 
fnew-jile 
a<CR> 
Create some lines 
of text in 
this file . 
. <CR> 
1,$n<CR> 
1 Create some lines 
f! of text in 
9 this file. 
la<CR> 
This will be line 2<CR> 
This will be line 3<CR> 
.<CR> 
1,$n<CR> 
1 Create some lines 
f! This will be line f! 
9 This will be line 9 
.f of text in 
5 this jile. 

Notice that the address of the line "of text in" changes from two to four after you append 
the two new lines. 

Tryout the following special addresses. 

. a<CR> 

$a<CR> 

Oa<CR> 

Append after the current line . 

Append after the last line of the file. 

Append text before the first line of the file. 

Each of these addresses is used to append text in the following examples. 

ICONjUXV USER GUIDE 5-31 



LINE EDITOR TUTORIAL (ed) 

5-32 

.<OR> 
This is the current line 
.a<OR> 
This line is after the current line.<OR> 
.<OR> 
-l,.p<OR> 
This is the current line. 
This line is after the current line. 

$a<OR> 
This is the last line now.<OR> 
.<CR> 
$<CR> 
This is the last line now. 

Oa<CR> 
This is the first line now.<CR> 
This is the second line now.<CR> 
The line numbers change<CR> 
as lines are added.<CR> 
.<CR> 
1,4n<CR> 
1 This is the first line now. 
~ This is the second line now. 
9 The line numbers change 
4 as lines are added. 

ICON INTERNATIONAL 



(-

( 

CREATING TEXT 

The Oa command can be replaced by the next command, the insert command. 

Inserting Text 

The insert command creates text before a specified line in the editing buffer. 

Insert text before the specified line. 

The general format for i is the same as for a. 

[addressl]i<CR> 

Ai3 with the append command, you can insert one or more lines of text. The text input 
mode is always ended with a period alone on a line. 

The example that follows inserts a line of text above line two; inserts a line of text above 
the first line; and displays all the lines of the buffer with n. 

ICON/UXV USER GUIDE 5-33 



LINE EDITOR TUTORIAL (ed) 

2i<CR> 
Now this is line 2.<CR> 
.<CR> 
1,$n<CR> 
1 Line 1 
£ Now this is line £ 
9 Line £ 
./ Line 9 
5 Line./ 
li<CR> 
In the beginning<CR> 
1,$n<CR> 
1 In the beginning 
£ Line 1 
9 Now this is line £ 
./ Line £ 
5 Line 9 
6 Line./ 

Take a few minutes to experiment with the insert command. Tryout the special line 
addresses. 

Type in: .i<CR> 

or 

Type in: $i<CR> 

Changing Text 

The change text command erases all of the specified lines and creates new text beginning at 
address!. You can create one or more lines of text. The change command puts you in the 
text input mode, so you must end the text input mode by a period alone on a line. . 

Erase specified lines and 
create new text. 

Since c can erase a range of lines, the general format for the change command gives both 
address! and address2. 

5-34 ICON INTERNATIONAL 

(\ 
~ .. ) 

C' 
, ' 



( 

OREATING TEXT 

[addressl,address21c<OR> 

Addressl is the first line to be erased, and address2 is the last line of the range of lines to 
be replaced by new text. If you only want to erase one line of text, you would use only 
address!. If you do not type in addressl, ed assumes the current line is address!. 

The next example changes a range of lines. The first five lines are displayed with n. Then 
lines one through four (1,4c) are changed. The lines in the buffer are displayed after the 
change. 

1,5n<OR> 
1 Line 1 
~ Line ~ 
9 Line 9 
4 Line 4 
5 Line 5 
1,4c<OR> 
Change line 1 <OR> 
and line 2 through 4<OR> 
.<OR> 
1,$n<OR> 
1 Change line 1 
e and line e through 4 
9 Line 5 

Now experiment with c. Try changing the current line . 

• <OR> 
This is the current line. 
c<OR> 
I am changing the current line.<OR> 
.<OR> 
.<OR> 
I am changing the current line. 

If you are not sure you have left the text input mode, it is a good idea to type in the period 
a second time. If the current line is displayed, you know you are in the command mode of 
ed. 

ICONjUXV USER GUIDE 5-35 



LINE EDITOR TUTORIAL (ed) 

SUMMARY OF CREATE COMMANDS 

a Append text after the specified line in the buffer. 

i Insert text before the specified line in the buffer. 

c Change the text on the specified lines to new text 

End the text input mode with a period a.lone on a line, 
and return to ed command mode. 

EXERCISE 3 

3-1. As an experiment, create a new file ex8. Instead of using the append command to 
create new text in the empty buffer, try the insert command. What happened? 

3-2. Enter the file towns into ed. What is the current line? 

Insert above the third line: 

Dlinois<CR> 

Insert above the current line: 

or<CR> 
Naperville<CR> 

Insert before the last line: 

hotels in<CR> 

Display the text in the buffer preceded by line numbers. 

3-3. In the file towns, display lines one through five and replace lines two through five 
with: 

London<CR> 

Display lines one through three. 

3-4. Mter you have completed exercise 3-3, what is the current line? 

Find the line of text containing: 

Toledo 

Replace: 

5-36 ICON INTERNATIONAL 



EXERCISE 3 

Toledo 
with: 

Peoria 

Display the current line. 

3-5. With one command line search for and replace: 

New York 
with: 

Iron City 

DELETING TEXT 

This section of the tutorial discusses the delete commands: 

d Delete lines in the command mode; 

u Undo the last command; 

# or <BACK SPACE> Delete characters in the text input mode; and 

@ Delete a line of text in the text input mode or delete the 
current command line. 

Deleting Lines of Text 

You have already deleted lines of text with the delete command d in the section of Getting 
Started. 

Delete one or more lines of text. 

The general format for d is: 

[address1,address2]d < CR> 

You can delete a range of lines, addressl through address2, or you can delete one line using 
only address!. If no address is given, ed assumes you want to delete the current line. 

ICONjUXV USER GUIDE 5-37 



LINE EDITOR TUTORIAL (ed) 

The next example displays lines one through five and then deletes the range of lines two 
through four. 

1,5n<CR> 
1 1 horse 
e e chickens 
9 9 ham tacos 
-I -I cans of mustard 
5 5 bails of hay 
2,4d<CR> 
1,$n<CR> 
1 1 horse 
e 5 bails of hay 

How would you delete only the last line of a file? 

( $d<CR> 

How would you delete the current line? One of the most common errors in ed is forgetting 
to end the create mode with a period. A line or two of text that you do not want may be 
added to the buffer. In the next example, the print command is accidentally added to the 
text before the create mode is ended. Then the current line, the print command, is deleted. 

a<CR> 
Last line of text<CR> 
1,$p<CR> 
.<CR> 
p<CR> 
l,$p 
.d<CR> 
p<CR> 
Last line of text. 

Remember that 1,$p prints every line of the buffer. 

5-38 ICON INTERNATIONAL 



( 

{ 

(~ 

DELETING TEXT 

Before you do much experimenting with the delete command, you may first want to learn 
about the u command. 

Undo the Last Command 

The undo command will erase the effect of the last command and restore any text that had 
been added, changed, or deleted by that command. 

Undo the last command. 

If you create new text, change lines of text, delete lines of text, or read new lines into the 
file, u undoes the effect of these commands. (The read command will be discussed in the 
section on Moving Text). Since u undoes the last command, it does not have any addresses 
or arguments. The general form is: 

u<CR> 

u does not undo the write command or the quit command. However, u will undo an undo 
command. 

One example of the u command is restoring deleted lines. If you delete all the lines in the 
file and then type in p, ed will respond with a ? since there are no more lines in the file. 
Type in u and all lines of the file will be restored. 

1,$d<CR> 
p<CR> 
? 
u<CR> 
p<CR> 
This is the last line 

Now try u on the append command. 

ICON IUXV USER GUIDE 5-39 



LINE EDITOR TUTORIAL (ed) 

.<CR> 
This is the only line of text 
a<CR> 
Add this line<CR> 
.<CR> 
1,$p<CR> 
This is the only line of text 
Add this line 
u<CR> 
1,$p<CR> 
This is the only line of text 

Deleting Commands in the Text Input Mode 

Deleting the Current Line 

The @ will delete the current line of typing. The line will not be erased from your 
terminal, but will end with an @ sign and the cursor will move to the next line. When you 
end the create mode and display the lines of text, the deleted line will not appear. 

5-40 

Delete the current line 
in the text input mode. 

" 

ICON INTERNATIONAL 



DELETING TEXT 

a<CR> 
I don't want to add this @ 
a new line of text<CR> 
.<CR> 
1,$p<CR> 
a new line of text 

The above example begins creating a new file. The first line is deleted in the text input 
mode, therefore, only the second line is displayed by the l,$p command. @ will also delete 
the current command line. If you make an error typing in a command, type in @ instead 
of <CR> and ed will ignore the command. In the next example, an incorrect address is 
given, so the command line is cancelled with @. 

r 1,$d@ Id<CR> 

Deleting the Last Characters Typed 

If you only made a mistake in typing the last few characters, the # or 
<BACK SPACE> can delete those characters if you have not pressed <CR>. 

ICON/UXV USER GUIDE 

Delete the last character 
just typed into the buffer. 

5-41 



LINE EDITOR TUTORIAL (ed) 

~ 
~ 

Delete the last character just 
typed into the buffer. 

The <BACK SPACE> key will delete characters if you have changed your environment 
to include this command. (See Chapter 7, Shell Tutorial for changing your environment.) 

a<CR> 
This is a typoo#<CR> 
.<CR> 
.<CR> 
This is a typo 

In the above example, the extra 0 in typo was deleted by #. When the line is displayed the 
error is gone. 

You must enter a # for each character that needs to be erased or retyped. In the following 
example, the error is corrected and new characters follow the last #. (The 
<BACK SPACE> will back up over the characters.) 

a<CR> 
To the IRS, I mail a check<CR> 
for one hun###thousand dollars.<CR> 
.<CR> 
.<CR> 
lor one thousand dollars. 

If you press <CR> before you correct the error, it is too late to correct the error in the 
text input mode. However, once you have left the text input mode, the substitute 
command, discussed in the next section, can solve your problem. 

5-42 ICON INTERNATIONAL 

(' , , 
\ ) 
"----



(/ 

DELETING TEXT 

Create a junk file and practice each of these four commands until you are comfortable with 
them. 

SUMMARY OF DELETE COMMANDS 

In the command mode: 

d 

u 

@ 

Delete one or more lines of text. 

Undo the last command. 

Delete the current command line. 

In the text input mode: 

@ Delete the current line. 

#or 
<BACK SPACE> Delete the last character ty~d in. 

SUBSTITUTING TEXT 

( You can modify your text with the substitute command s. 

Replace a pattern of characters with new text. 

The substitute command replaces the first occurrence of a string of characters with new 
text. The general format is: 

[addressl,address2]s/old text/new text/[command]<CR> 

Since this is a more complicated format than the preceding commands, let's look at it piece 
by piece. 

address 1 and address2 
The range of lines being addressed by s. The address can be one line, 
address!, a range of lines address! through address2 or the global search 
address. If no address is given, ed will make the substitution on the 
current line. 

ICON /UXV USER GUIDE 5-43 



LINE EDITOR TUTORIAL (ed) 

a 

fold text/ 

The substitute command, which is positioned right after the line address. 

The text to be replaced. It is usually delimited by backslashes, however, it 
can be delimited by other symbols such as r or a period. The old text 
matches the first occurrence of the words or characters to be replaced. 

/new text/ 

command 

The text that replaces the old text. It is placed between the second and 
third delimiters and replaces the old text between the first and second 
delimiters. 

This may be one of four commands that can be placed after the last 
delimiter. The commands are: 

g Change all occurrences of old text on the specified lines. 

I Display the last line of substituted text including nonprinting 
characters. (See last section of this chapter entitled Other Useful 
Commands and Information.) 

n Display the last line of the substituted text preceded by the line 
number. 

p Display the last line of substituted text. 

Substituting on the Current Line 

The simplest example of the substitute command is making a change to the current line. 
You do not need to give the line address for the current line. 

a/old text/new text/<CR> 

In the next example, a typing error was made on the current line. The example displays 
the current line, then makes the substitution to correct the error. The old text is the ai of 
airor, the new text is er. 

5-44 ICON INTERNATIONAL 

/ ." 



( 

( ) 

SUBSTITUTING TEXT 

.p<CR> 
In the beginning, I made an airor 
s/ai/er /<CR> 
.p<CR> 
In the beginning, I made an error 

Did you tryout the example? Did you notice ed was quiet and gave no response to the 
substitute command? You either have to display the line with p or n, or place p or n on 
the substitute line. The example below substitutes file for toad . 

. p<CR> 
This is a test toad 
s/toad/file/n <CR> 
1 This is a test file 

ed has a short cut for you. If you leave off the last delimiter of the substitute command, 
the line will automatically be displayed . 

Substituting on One Line 

. p<CR> 
This is a test file 
s/file/frog<CR> 
This is a test frog 

To substitute on a line that is not the current line, use addressl. 

[address1]s/old text/new text/<CR> 

In this example, the current line is line three. Line one will be corrected. 

ICON/UXV USER GUIDE 5-45 



LINE EDITOR TUTORIAL (ed) 

1,3p<CR> 
This is a pest toad"", .. 
testing testing 
come in toad 
.<CR> 
come in toad 
ls/pest/test<CR> 
This is a test toad 

Notice that the last delimiter was omitted and ed printed out the line. 

Substituting on a Range of Lines 

If you want to make a substitution on a range of lines, you can specify the first address, 
address!, through the last address, address2. 

[address1,address2]s/old text/new text/<CR> 

'"\ 

If ed does not find the pattern to be replaced on one of the lines, no changes are made to " j 

that line. In the next example, all the lines in the file are addressed for the substitute 
command. However, only the lines that contain the old text, es, are changed. 

1,$p<CR> 
This is a test toad 
testing testing 
come in toad 
testing 1 e, 8 
1,fB/es/ES/n<CR> 

.f tESting 1, 2, 8 

When you specify a range of lines, p or n on the substitute line only prints out the last line 
changed. 

To display all the text that was changed use n or p alone in a command line. 

5-46 ICON INTERNATIONAL 

r
I 
\ ; ""-/ 



. ( 

SUBSTITUTING TEXT 

1,$n<CR> 
1 This is a tESt toad 
f! tESting testing 
9 come in toad 
4 tESting 1, f!, 9 

Notice only the first occurrence of "es" is changed on line 2. How do you change every 
occurrence? 

Global Substitution 

One of the most versatile tools in ed is global substitution . 

Global substitution or search. 

If you place the g command after the last delimiter of the substitute command, you will 
change every occurrence on the specified lines. Try changing every occurrence of es in the 
last example. If you are following along, doing the examples as you read this, remember 
you can use u to undo the last substitute command. 

ICON/UXV USER GUIDE 5-47 



LINE EDITOR TUTORIAL (ed) 

u<CR> 
1,$p<CR> 
This is a test toad 
testing, testing 
come in toad 
testing 1 t, S 
1,$a/es/ES/g<CR> 
1,$p<CR> 
This is a tESt toad 
tESting tESting 
come in toad 
tESting 1, t, S 

Another way to do the above example is to use the global search as an address instead of 
the range of lines one through the last line (1,$). 

1,$p<CR> 
This is a test toad 
testing testing 
come in toad 
testing 1, t, S 
g/test/s/es/ES/g<CR> 
1,$p<CR> 
This is a tESt toad 
tESting tESting 
come in toad 
tESting 1, t, S 

If the global search pattern is unique, and is the same as the old text to be replaced, you 
can use an ed shortcut. You do not need to repeat the pattern for the old text. ed 
remembers the search pattern and uses it again as the pattern to be replaced. 

g/oid text/sf/new text/g<CR> 

5-48 ICON INTERNATIONAL 



( 

c 

1,$p<CR> 
This is a test toad 
testing testing 
come in toad 
testinp 1, fl, 8 
g/es/s/ /ES/g<CR> 
1,$p<CR> 
This is a tESt toad 
tESting tESting 
come in toad 
tESting 1, e, 8 

Experiment with the other search pattern addresses: 

/pattern<CR> 
fpattern<CR> 
v/pattern<CR> 

SUBSTITUTING TEXT 

See how they react with the substitute command. In the example below, the v /pattern is 
used to locate the characters in that are NOT in the word testing. 

v /testing/s/in/out<CR> 
This is a test toad 
come out toad 

If you leave off the last delimiter all search addresses will print out including the ones 
where no substitution occurs. 

g/testing/s/ /jumping<CR> 
jumping testing 
jumping 1, fl, 8 

Notice that the global search substitutes for only the first occurrence of testing in each 
ICONjUXV USER GUIDE 5-49 



LINE EDITOR TUTORIAL (ed) 

line. The lines are displayed on your terminal beca.use the last delimiter is missing. 

EXERCISE 4 

4-1. In your file towns change town to city on all lines but the line with little town on it. 

The file should read: 

My kind of city is 
London 
Like being no where at all in 
Peoria 
I lost those little town blues in 
Iron City 
I lost my heart in 
San Francisco 
I lost $$ in 
hotels in 
Las Vegas 

4-2. Try using r as a delimiter. Change the current line 

Las Vegas 
to 

Toledo 

You could also use the change command c, since you were changing the whole line. 

4-3. Try searching backward in the file for the word 

lost 

and substitute 

found 

using the r as the delimiter. Did it work? (The last line of the file is the current line.) 

4-4. Search forward in the file for 

no 

and substitute 

NO 

for it. What happens if you try to use r as a delimiter? 

5-50 ICON INTERNATIONAL 



(J 

( / 

EXERCISE 4 

Experiment with the various combinations of addressing a range of lines and global 
searches. 

What happens if you try to substitute for the $$? Try to substitute for the $ on line nine 
of your file. 

Type in: 9s/$/Big $<CR> 

What happened? 

9s/$/Big$<CR> 
I found $$ in Big $ 

The substitution did not work correctly because $ is a special character in ed. It will be 
discussed next in the section on special characters. 

SPECIAL CHARACTERS 

If you tried to substitute for the $ in the line 

I lost my $ in Las Vegas 

you would find that instead of replacing the $, the new text was placed at the end of the 
line. The $ is a special character meaning the end of the line. 

ed has several special characters that give you a shorthand for search patterns and 
substitution patterns. The characters act as wild cards. If you have tried to type in any of 
these characters, the result was probably different than what you had expected. 

ICON/UXV USER GUIDE 5-51 



LINE EDITOR TUTORIAL (ed) 

The special characters are: 

• 

• 

Match anyone character . 

Match zero or more occurrences of the preceding 
character . 

Match zero or more occurrences of any character 
following the period. 

Match the beginning of the line. 

$ Match the end of the line. 

\ Take away the special meaning of the special 
character that follows. 

Repeat the old text to be replaced in the new text of 
the replacement pattern. 

[ ••• ] Match the first occurrence of a character lD the 
brackets. 

[A ••• ] Match the first occurrence of a character that is NOT 
in the brackets. 

Match anyone character. 

The period will represent anyone character in a search or substitute pattern. In the next 
example, a list of animals is searched for the pattern of any letter followed by at. 

5-52 ICON INTERNATIONAL 

',_/ 



( 

f 

SPECIAL CHARACTERS 

1,$p<CR> 
rat 
cat 
turtle 
cow 
goat 
g/.at<CR> 
rat 
cat 
goat 

Notice that the characters oat in goat match .at. 

The combination of the period and the * is a very potent wild card for the substitution 
pattern. (See below) 

~atch zero or more occurrences 
of the preceding character. 

The * is shorthand for a character that is repeated several times in a row in a search or 
substitute pattern. For example, if you were creating some text and held down a key a 
little too long, the character would be entered several times into your text. The * is an 
easy way to substitute one character for those extra characters. 

p<CR> 
brrroke . 
s/br*/br<CR> 
broke 

It is important to include the b in the substitute pattern since * will substitute for zero or 
more occurrences of r. Below is an example of using only r*. 

ICON/UXV USER GUIDE 5-53 



LINE EDITOR TUTORIAL (ed) 

p<CR> 
brrroke 
s/I'* /I'<CR> 
rbrrroke 

The first zero or more occurrences of r is at the beginning of the line where there are no 
occurrences of r. 

Match zero or more 
occurrences of any 
character after the 
period. 

If you combine the period and the *, the combination will match all characters after the /--" 
period. With this combination you can replace all characters on the last part of a line. ~. j 

p<CR> 
Toads are slimy, cold creatures 
s/are. * fare wonderful and warm<CR> 
Toads are wonderful and warm 

The • * can also replace all characters between two patterns. 

5-54 

p<CR> 
Toads are slimy, cold creatures 
s/are.*cre/are wonderful and warm cre<CR> 
Toads are wonderful and warm creatures 

ICON INTERNATIONAL 



( ) 

SPECIAL CHARACTERS 

Match the beginning of a line. 

If you want to insert a word at the beginning of a line, use the" for the old text to be 
substituted. This is very helpful when you want to insert the same pattern in the front of 
several lines. The next example places the word all at the beginning of each line. 

1,$p<CR> 
creatures great and small 
things wist and wonderful 
things bright and beautiful 
1,Ssj"" lall I<CR> 
1,$p<CR> 
all creatures great md small 
all things wise ani wonderful 
all things bright flnd beautiful 

Matcla the end of the line. 

This character is useful for adding characters at the end of a line or a range of lines. 

ICONjUXV USER GUIDE 5-55 



LINE EDITOR TUTORIAL (ed) 

1,$p<CR> 
I love 
I need 
I use 
The IRS wants my 
1,$&/$/ money.<CR> 
1,$p<CR> 
I love money. 
I need money. 
I use money. 
The IRS wants my money. 

Did you tryout the last two examples? Did you remember to put a space after the all or 
before many? ed adds the characters to the very beginning or the very end of the 
sentence. If you forgot the space before money, your file looks like the following: 

l,$s/$/money /<CR> 
1,$p<CR> 
I lovemoney 
I needmoney 
I usemoney 
The IRS wants mymoney 

The $ is a good way to add punctuation to the end of the line. 

5-56 ICON INTERNATIONAL 



( 

( 

1,$p<CR> 
I love money 
I need money 
I use money 
The IRS wants my money 
1,t./$/./<CR> 
1,$pfl/<CR> 
I love money. 
I need money. 
I use money. 
The IRS wants my money. 

SPECIAL CHAaACTERS 

Since. is not matching a character, but replacing a character, it does not have a special 
meaning in this case. How could you change a period in the middle of a line to another 
punctuation? You must take away the special meaning of the period in the old text. 

Take away the special meaning 
of the following special character. 

If you want to substitute or search for some of the special characters, you must precede 
them by a \. To change a period, precede the. with a \ . 

p<CR> 
Way to go. Wow! 
s/ \. /!<CR> 
Way to go! Wow! 

Because the backslash is a special character, it too must be preceded by a \ if it is used in 
the old text. 

ICONjUXV USER GUIDE 5-57 



LINE EDITOR TUTORIAL (ed) 

p<CR> 
Way to go\ Wow! 
s/ \\ /!<CR> 
Way to go! Wow! 

Repeat the old text to be replaced 
in the new text of the replacement 
pattern. 

If you want to add text without changing the rest of the line, the & is a useful shortcut. 
The & repeats the old text in the replacement pattern, so you do not have to worry about 
typing the correct pattern twice. The next screen shows an example of this. 

p<CR> 
The neanderthal skeletal remains 
a/thaI/&. man's/<CR> 
The neanderthal man's skeletal remains 

Repeat the last replacement pattern. 

ed automatically remembers the last pattern of characters in a search pattern or the old 
text in a substitution. But, you must tell ed to repeat the replacement characters in a 
substitution with the %. The % pattern is very useful if you do not want to make a 

/" I I 

global change, but you do want to make the same substitution on several different lines. If ( 
you want to change money into gold for yourself, but not the IRS, you would repeat the ~ j 
last substitution from line one on line three, but not on line four. 

5-58 ICON INTERNATIONAL 



( 

( 

( 

1,$p<CR> 
I love money 
I need food 
I use money 
The IRS wants my money 
la/money /gold<CR> 
I love gold 
3s//%<CR> 
I use gold 
1,$p<CR> 
I love gold 
I need food 
I use gold 
The IRS wants my money 

SPECIAL CHARACTERS 

ed automatically remembers money, the old text to be replaced, so it does not have to be 
repeated between the first two delimiters. The % tells ed to use the last replacement 
pattern, gold. 

~atch the first occurrence 
of a character in the bracket. 

ed will try to match one of the characters enclosed in the brackets and substitute the 
specified old text with new text. The brackets can occur anywhere in the pattern to be 
replaced. 

To conceal the large appetite of the anteater, the zoo keeper quietly altered his file on the 
animal's dietary habits as shown in the following screen. 

ICON/UXV USER GUIDE 5-59 



LINE EDITOR TUTORIAL (ed) 

1,$p<OR> 
MondayBB,OOO ants 
Tuesday75,OOO ants 
Wedncsday88,OOO ants 
Thursday6e,OOO ants 
1,$e/f6789]/4<OR> 
Mon/ayBB,OOO ants 
Tuesday-l5,OOO ants 
WednesdaY-l8,OOO ants 
Thursday-le,OOO ants 

In the example above, the first occurrence of 6, 7, 8, or 9 was changed to 4 on each line 
that ed found a match. 

The next example deletes the Mr or Ms from a list of names. 

1,$p<OR> 
Mr Arthur Middleton 
Mr Matt Lewis 
Ms Anna Kelley 
Ms M. L. Hodel 
1,$s/Mrrsl //<OR> 
1,$p<dR> 
Arthur Middleton 
Matt Lewis 
Anna Kelley 
M. L. Hodel 

Match the first 
occurrence of a character 
that is not in 
the brackets. 

If the caret is placed as first character in the brackets it tells ed to replace characters that 
are NOT one of these characters. However, if the caret is placed at any other position 
other than the first character, it will stand for the character ~. 

5-60 ICON INTERNATIONAL 



SPECIAL CHARACTERS 

If a copy of John's grades were sent to him as a file in his login, he could enter the file into 
ed and make the following changes to correspond with his own evaluation of his 
performance. 

1,$p<CR> 
grade A Computer Science 
grade B Robot Design 
grade A Boolean Algebra 
grade D Jogging 
grade C Tennis 
1,$s/grade [" AB]/grade A<CR> 
1,$p<CR> 
grade A Computer Science 
grade B Robot Design 
grade A Boolean Algebra 
grade A Jogging 
grade A Tennis 

Whenever you use special characters as wild cards in the old text to be changed, remember 
to use a unique pattern of characters. In the above example, if you had used only 

1,$s/['" AB]/A<CR> 

you would have changed the g in grade to A. Try it. 

As with all commands in ed, experiment with these special characters. Find out what 
happens (or does not happen) if you use them in different combinations. 

ICON/UXV USER GUIDE 5-61 



LINE EDITOR TUTORIAL (ed) 

SUMMARY OF SPECIAL CHARACTERS 

• 

• . 

Match anyone character in a search or substitute 
pattern . 

Match zero or more occurrences of the preceding 
character in a search or substitute pattern . 

Match zero or more occurrences of any characters 
following the period. 

Match the beginning of the line in the substitute 
pattern to be replaced or in a search pattern. 

$ Match the end of the line in the substitute pattern 
to be replaced. 

\ Take away the special meaning of the special 
character that follows in the substitute or search 
pattern. 

% 

Repeat the old text to be replaced in the new text 
replacement pattern. 

Repeat the last replacement pattern. 

[ .•• ] Match the first occurrence of a character in the 
brackets. 

r ... ] Match the first occurrence of a character that is 
NOT in the brackets. 

EXERCISE 5 

5-1. Create a file that contains the following lines of text. 

A Computer Science 
D Jogging 
C Tennis 

What happens if you try the command line: 

\ 
, / "'-.. 

/\ 

\ .. ) 

(~ 

Undo the above command. How would you make the C and D unique? (Hint: they are ~. /' 

5-62 ICON INTERNATIONAL 



( 

( 

EXERCISE 5 

at the beginning of the line ~.) Do not be afraid to experiment! 

5-2. Insert the following line above line 2: 

These are not really my grades 

Using brackets and the beginning of the line character ~, create a search pattern that 
you could use to locate the line you inserted. There are several ways to address a 
line. When you edit text, use the way that is quickest and easiest for you. 

5-3. With one command, change the next three lines 

I love money 
I need money 
The IRS wants my money 

to the following lines: 

It's my money 
It's my money 
The IRS wants my money 

Using two command lines: change the first line from money to gold, change the last 
two lines from money to gold without using the characters money or gold. 

5-4. How would you change the line 

1020231020 

to 

10202031020 

without repeating the old digits in the replacement pattern? 

5-5. Create a line of characters 

Substitute a letter for each character. Did you need to use the backslash for every 
substitution? 

MOVING TEXT 

You have now learned to address lines, create and delete text, and make substitutions. ed 
has one more set of versatile and important commands. You can move, copy, or join lines 
of text in the editing buffer. You can also read in text from a file that is not in the editing 
buffer, or write lines of the file in the buffer to another file in the current directory. The 
commands that move text are: 

ICON/UXV USER GUIDE 5-63 



LINE EDITOR TUTORIAL (ed) 

m Move lines of text. 
t Copy lines of text. 
j Join contiguous lines of text. 
w Write lines of text to a file. 
r Read in the contents of a file. 

Move Lines of Text 

You can move paragraphs of text to another place in the file, or you can move an entire 
subroutine of a program to another place in the computer program you are creating in ed. 

Move one or more lines of text. 

The general format for the move command is: 

[address 1 ,address2]m [addres8S] < CR> 

addressl,address2 
The range of lines to be moved. If only one line is moved, only addressl is 
given. If no address is given, the current line is moved. 

m The move command. 

addressS Place the text after this line. 

The following lines are in a file. 

I want to move this line. 
I want the first line 
below this line. 

Type in: lmS<CR> 

ed will move line 1 below line 3. 

5-64 ICON INTERNATIONAL 

/ ~ 
f , 



(-

~ I want to move this line. 

I want the first line 
below this line. 

~ I want to move this line. 

The next screen shows how this will appear on your terminal. 

1,$p<CR> 
I want to move this line. 
I want the first line 
below this line. 
Im3<CR> 
1,$p<CR> 
I want the first line 
below this line. 
I want to move this line. 

MOVING TEXT 

If you want to move a paragraph of text, address1 and address2 would be the range of lines 
of the paragraph. 

The following example depicts moving a block of text. Line 8 through line 12 are moved 
below line 65. 

ICON/UXV USER GUIDE 5-65 



LINE EDITOR TUTORIAL (ed) 

This is line 8 
It is the beginning of a 
very short paragraph. 
This paragraph ends 
on this line. 

Move the block of text 
below this line. 
This is line 8 
It is the beginning of a 
very short paragraph 
This paragraph ends 
on this line. 

The next screen shows how the command would appear on your terminal. The n command 
is used so that you can see how the line numbers change. 

5-66 

8,12n<CR> 
8 This is line 8. 
9 It is the beginning of a 
10 very short paragraph. 
11 This paragraph ends 
1 e on this line. 
64,65n<CR> 
64 Move the block of text 
65 below this line. 
8,12m65<CR> 
59,65n<CR> 
59 Move the block of text 
60 below this line. 
61 This is line 8. 
6e It is the beginning of a 
69 very short paragraph. 
64 This paragraph ends 
65 on this line. 

ICON INTERNATIONAL 



( 

MOVING TEXT 

How do you think you would move lines above the first line of the file? Try the following 
command. 

Type in: 3,4mO<CR> 

When address3 is 0, the lines are placed at the beginning of the file. 

Copy Lines of Text 

The copy command t acts like the m command except that the block of text is not deleted 
at the original address of the line. A copy of that block of text is placed after a specified 
line of text. 

Copy lines of text and place them 
after a specified line. 

The general format of the t command also looks like the m command. 

[addressl,address2]t[address3]<CR> 

address 1 ,address2 
The range of lines to be copied. If only one line is copied, only address! is 
given. If no address is given, the current line is copied. 

t The copy command. 

address3 Place the copy of the text after this line. 

You may want to reiterate a set of directions. You can place a copy of those lines of text 
below another line in the file. In the next example you want to copy three lines of text 
below the last line. 

ICONjUXV USER GUIDE 5-67 



LINE EDITOR TUTORIAL (ed) 

Safety procedures: 

If there is a fire in the building: 
Close the door of the room to seal off the fire 

Break glass of nearest alarm 
Pull lever 
Locate and use fire extinguisher 

A chemical fire in the lab requires that y ou: 

Break glass of nearest alarm 
Pull lever 
Locate and use fire extinguisher 

The commands and ed's responses to those commands are displayed in the next screen. 
The n command displays the line numbers. 

5,8n<CR> 
5 Close the door of the room, to seal off the fire. 
6 Break glass of nearest alarm 
7 Pull lever 
8 Locate and use fire extinguisher 
30n<CR> 
80 A chemical fire in the lab requires that you: 
6,8t30<CR> 
30,$n<CR> 
80 A chemical fire in the lab requires that you: 
81 Break glass of nearest alarm 
8e Pull lever 
88 Locate and use fire extinguisher 
6,8n<CR> 
6 Break glass of nearest alarm 
7 Pull lever 
8 Locate and use fire extinguisher 

The text in lines six through eight remain in place. A copy of those three lines is placed 
after line 50. 

5-68 ICON INTERNATIONAL 

r\ 
~- / 



( / 

MOVING TEXT 

Experiment with m and t on one of your files. 

Joining Contiguous Lines 

The j command joins the line below the current line with the current line. 

Join the line below the cu-rrent 
line with the current line. 

The j command does not accept an address, so the general format for the j command is: 

j<CR> 

If the current line is not the line you want joined, the easiest way to make it the current 
line is to display it with p or n. 

1,2p<CR> 
Now is the time to join 
the team. 
p<CR> 
the team. 
Ip<CR> 
Now is the time to join 
j<CR> 
p<CR> 
Now is the time to jointhe team. 

Notice that there is no space inserted between the last word join and the first word of the 
next line the. You will have to place the space between them with the 8 command. 

ICONjUXV USER GUIDE 5-69 



LINE EDITOR TUTORIAL (ed) 

Write Lines of Text to a File 

If you are writing the same letter to several different people, you may want to keep the 
body of the text in a special file to use over again. Those lines of text can be written to the 
special file with the w command. 

Write a copy of the contents of the 
editing buffer to a file. 

The general format for the w command is: 

[addressl,address2]w [filename]<CR> 

addressl,address2 
The range of lines to be placed into another file. If you do not use 
addressl or address2, the entire file is written into a new file. 

w The write command. 

filename The name of the new file that contains a copy of the block of text. 

In the next example the body of the letter is saved in a file called memo, so that it can also 
be sent to other people. 

1,$n<CR> 
1 March 17, 1985 
e Dear Kelly, 
9 There is a meeting in the 
4 green room at 4:90 P.M. 
5 today. Refreshments will 
6 be served. 
3,6w memo<CR> 
87 

The w command has placed a copy of lines three through six into a new file memo. ed 
responds to the w command with the number of characters in the new file. 

5-70 ICON INTERNATIONAL 

c 



( 

MOVING TEXT 

Problem: 
If there was a file called memo in the eurrent directory, it has been erased. The w 
command will overwrite, that is, erase the current file called memo, and put the new block 
of text in the file without giving any warning. In the next section of this tutorial on SpeCial 
Commands, you will learn how to execute shell commands from ed. Then, you can list the 
file names in the directory to make sure that you are not overwriting a file. 

Problem: 
You cannot write other lines to the file memo. If you tried to add lines 13 through 16, the 
existing lines (3 through 6) would be erased and the file would only contain the new lines 13 
through 16. 

Read in the Contents of a File 

The body of your memo is in a file called memD. How do you copy it from that file into the 
editing buffer? 

Read in.lL copy of the contents of another file 
into the current editing buffer. 

The general format for the read command is: 

[addftSs1]r filename<CR> 

address! The text will be placed after the line addressl. If address 1 is not given, 
the file is added to the end of the buffer. 

r The read command. 

filename The name of the file that will he copied into the editing buffer. 

Using the example from the write command, the next screen depicts editing a new letter 
and then reading in the contents of the file memD. 

ICON/UXV USER GUIDE 5-71 



LINE EDITOR TUTORIAL (ed) 

1,$n<CR> 
1 March 17, 1985 
e Dear Michael, 
9 Are you free later today'? 
4 Hope to see you there. 
3r memo<CR> 
87 
3,$n<CR> 
9 Are you free later today'? 
4 There is a meeting in the 
5 green room at 4:90 P.M. 
6 today. Refreshments will 
7 be served. 
8 Hope to see you there. 

ed responds to the read command with the number of characters in the file memo that are 
now added to the editing buffer. 

It is always a good idea to display new or changed lines of text to be sure that they are 
correct. / ~ 

SUMMARY OF COMMANDS TO MOVE TEXT 

m Move lines of text. 
t Copy lines of text. 
j Join contiguous lines. 
w Write text into a new file. 
r Read in text from another file. 

EXERCISE 6 

6-1. There are two ways to copy lines of text in the buffer, one is the copy command, the 
other is writing the lines of text to a file and then reading the file into the buffer. 
Writing to a file and then reading the file into the buffer is a longer process. Can you 

"'_/ 

think of an example where this would be more practical? What commands would (~-, 
copy lines 10 through 17 of file exer into the file exer6 at line 7? ~j 

5-72 ICON INTERNATIONAL 



OTHER USEFUL COMMANDS AND INFORMATION 

6-2. Lines 33 through 46 give an example that you want placed after line 3, and not after 
line 32. What command does this task? 

6-3. If you are on line 10 of a file and you want to join lines 13 and 14, what commands 
would you issue? 

OTHER USEFUL COMMANDS AND INFORMATION 

There are four other commands and a special file that will be useful to you when you are 
editing your files. They are the following: 

h,H The help commands that give error messages. 

I Display characters that are not normally displayed. 

f Display the current file name. 

Temporarily escape ed to execute a shell command. 

ed.hup When a system interrupt occurs, the ed buffer is saved in a special file named 
ed.hup. 

Help Commands 

You may have noticed when you were editing a file that ed responds to some of your 
commands with a ? The ? is a diagnostic message indicating there is an error. The help 
commands give you a short message to explain the reason for the most recent diagnostic. 

There are two help commands. 

Display a short error message to explain 
the r diagnostic. 

h Display a short error message that explains the reason for the most recent ? 

H Place ed in a help mode that displays the short error message each time ? is 
displayed. The next H turns off the help mode. 

Let's look at an example of h first. At the beginning of this tutorial, you learned that if 
you tried to quit ed without writing the changes in the buffer to a file, you would get a ? 
Try it now using h to find out what the problem is. When the ? is displayed, type in h. 

ICONjUXV USER GUIDE 5-73 



LINE EDITOR TUTORIAL (ed) 

q<CR> 
? 
h<CR> 
warning: expecting 'w' 

The f is displayed when you give a new file name to the ed command line. Examine that 
f with h to see what the error message is. 

ed newfile<CR> 
f new file 
h<CR> 
cannot open input file 

This error message is telling you there is no file called new file, or if there is a file named 
newfile ed is not allowed to read the file. 

Now let's examine the H command. This command will respond to the ? and then turn 
on the help mode of ed, so that ed will give you an explanation each time the f is 
displayed until you turn off the help mode with a second H. The next screen shows the help 
mode turned on by II. The various error messages are displayed in response to some 
common mistakes. 

5-74 ICON INTERNATIONAL 

(~ .. 



(" 

OTHER USEFUL COMMANDS AND INFORMATION 

e newfile<CR> 
? newfile 
H<CR> 
cannot open input file 
/hello<CR> 
? 
search string not found 
1,22p<CR> 
? 
line out oj range 
a<"CR> 
T:l.l i" is line one . 
• <CR> 
8/$ end of line<CR> 
'? 
illegal or missing delimiter 
,$8/$/ end of line<CR> 
? 
unknown command 
H<CR> 
q<CR> 
? 
b<CR> 
warning expecting 'w' 

In the preceding example, the help mode is turned on by H and displays the error message 
for ? new file. Then it displays some of the error messages you may encounter in an editing 
session. 

/hello<CR> There is no search pattern hello since the buffer is empty. 

search string not found 

1,22p<CR> There are no lines in the buffer so ed cannot print the lines. 

line out of range 

A line of text is appended to the buffer to show you some error messages associated with 
the 8 command. 

8/$ end of line<CR> 
The delimiter between the old text to be replaced and the new text is missing. 

illegal or missing delimiter . 

,$s/$/end of line<CR> 
addressl was not typed in before the comma, ed does not recognize ,$. 

ICON/UXV USER GUIDE 5-75 



LINE EDITOR TUTORIAL (ed) 

unknown command 

The help mode is then turned oft' and h was used to discover the meaning of the last f. 
While you are learning ed, you may want to leave the help mode turned on so you will use 
H. However, once you become more adept at editing in ed, you will only need to see the 
error message occasionally and so you will use h. 

Display Nonprinting Characters 

If you are typing in a tab character, normally the terminal will display up to eight spaces 
to the next tab setting. (Your tab setting may be more or less than eight spaces. See 
Chapter 7, Shell Tutorial, on setting stty-tabs.) 

If you want to see how many tabs you have inserted into your text, you would use the I 
command. 

Display nonprinting characters. 

The general format for the 1 command is the same as for nand p. 

[address1 ,address2]1< OR> 

address1,address2 
The range of lines to be displayed. If no address is given, the current line 
will be displayed. If only address! is given, only that line will be displayed. 

1 The command that displays the non printing 
characters along with the text. 

The 1 command denotes tabs with a > character. 1 displays some control characters. 
These characters are typed in by holding down the CTRL key and pressing another 
character key. The key that sounds the bell is control g. It is displayed as \07 which is the 
ASCII hexadecimal representation (the computer's code) for control g. 

Type in two lines of text that contain a control g, denoted in the text by <A g>, and a tab 
denoted by <tab>. Then use the 1 command to display the lines of text on your terminal 
as shown below. 

5-76 ICON INTERNATIONAL 

(/ 



( 

OTHER USEFUL COMMANDS AND INFORMATION 

a<CR> 
Type in <Ag> control g.<CR> 
Type in a <tab> tab.<CR> 
.<CR> 
1,21<CR> 
Type in \07 control 9 
Type in a > tab. 

Did the bell sound when you typed in <Ag>! 

The Current File Name 

In a long editing session, you may forget the file name. The f command will remind you 
which file is currently in the buffer. 

Or, you may want to preserve the original file that you entered into the editing buffer and 
write the contents of the buffer to a new file. In a long editing session, you may forget, and 
accidentally overwrite the original file with the customary wand q command sequence. 
You can prevent this by telling the editor to associate the contents of the buffer with a new 
file name while you are in the middle of the editing session. This is done with the f 
command and a new file name. 

Displays or changes the current file name. 

The general format to display the current file name is just f alone on a line. 

f<CR> 

To see how f works, enter a file into ed and then use the f command. The file old file is 
entered into ed in the example. 

ICON/UXV USER GUIDE 5-77 



LINE EDITOR TUTORIAL (ed) 

ed oldfile<CR> 
s~s 
f<CR> 
old file 

The general format to associate the contents of the editing buffer with a new file name is: 

{ newfile<CR> 

If no file name is given to the write command, ed remembers the file name given at the 
beginning of the editing session and writes to that file. If you do not want to overwrite the 
original file, you must either use a new file name with the write command, or change the 
current file name using the {command followed by the new file name. Since you can use f 
at any point in the editing session, you can immediately change the currently remembered 
file name, thus protecting the original file. You can then continue with the editing session 
without worrying about overwriting the original file. 

The next screen shows the commands for entering the editor with old file and then changing 
the current file name to new file. A line of text is added to the buffer and then the write 
and quit commands are given. 

ed oldfile<CR> 
ses 
{<CR> 
old file 
{ newfile<CR> 
new file 
a<CR> 
Add a line of text.<CR> 
.<CR> 
w<CR> 
S49 
q<CR> 

'\ 

./ 

Once you have returned to the shell command mode, you can list your files and see that 
thlere his a new file named new file. new file should contain a copy of the contents of oldfile C_: 
pus t e new line of text. 

5-78 ICON INTERNATIONAL 



( 

( 

c 

OTHER USEFUL COMMANDS AND INFORMATION 

Escape to the Shell 

How can you make sure you are not overwriting an existing file when you write the 
contents of the editor to a new file name? You need to return to the shell command mode 
and list your files. The! allows you to temporarily return to the shell and execute a shell 
command line and then return to the current line of the editor. 

Temporarily escape to the shell. 

The general format for the escape sequence is: 

! shell command line<CR> 
shell response to the command line 
! 

When you type in the! as the .first character on a line, the shell command must follow on 
that same line. The response to the shell command line will be displayed. When the shell 
command is finished executing, the twill ~ displayed alone on a line. This tells you that 
you are back in the editor at the current line. 

If you want to return to the shell to find out the correct date, you could type in ! and the 
shell command date. 

ICON/UXV USER GUIDE 

p<CR> 
This is the current line 
! date<CR> 
mon Apr 1 14:f4:ff CST 1988 
! 
p<CR> 
This is the eurrent line. 

5-79 



LINE EDITOR TUTORIAL (ed) 

The screen first displays the current line. Then, the command is given to temporarily leav~ 
the editor and display the date. After the date is displayed, you are returned to the (' 
current line of the editor.~_/ 

If you want to execute more than one command on the shell command line, see the ; in the 
section on Special Characters in Chapter 7, Shell Tutorial. 

Recover From a System Interrupt 

What happens if you are creating text in ed and there is an interrupt to the system, you 
accidentally hung up on the system, or your terminal was unplugged? Is all lost? When 
there is an interrupt to the system, the ICON/UXB system trys to save the contents of the 
editing buffer in a special file named ed.hup. You can either use the shell command to move 
ed.hup to another file name, or you can put ed.hup back into ed and use the r command to 
associate the contents of the editing buffer with a new file name. The next screen shows 
placing ed.hup in ed and giving it a new file name. 

Conclusion 

ed ed.hup<CR> 
928 
r myfile<CR> 
myfile 

You now are familiar with many useful commands in ed. The commands that were not 
discussed in this tutorial, such as G, P, Q and the use of ( ) and { }, are discussed in the 
Editing Guide. Their functions are also listed under the ed command in the ICONjUXB 
User Reference Manual. (See Appendix A.) You can experiment with these commands and 
try them out to see what tasks they perform. 

5-80 ICON INTERr\ATIONAL 



( 

EXERCISE 7 

SUMMARY OF OTHER USEFUL COMMANDS 
AND INFORMATION 

h 

H 

1 

f 

f newfile 

! emd 

ed.hup 

Display a short error message for the preceding 
diagnostic ? 

Turn on the help mode. An error message will 
be given with each diagnostic ? The second H 
turns off the help mode. 

Display non printing characters in the text. 

Display the current file name. 

Change the current file name associated with 
the editing buffer to newfile. 

Temporarily escape to the shell to execute a 
shell command emd. 

The editing buffer is saved in ed.hup if the 
terminal is hung up before a write command. 

EXERCISE 7 

7-1. Create a new file newfile1. Once you have entered ed, change the current file name 
to currentl. Create some text and write and quit ed. If you do the shell command Is 
you will see the directory does not contain a file called newfilel. 

ICON/UXV USER GUIDE 5-81 



LINE EDITOR TUTORIAL (ed) 

7-2. Create a file named fUeL Append some lines of text to the file. Leave the append~' 
mode. Do not write the file. Turn off your terminal. Turn on your terminal and log (_/ 
in again. Do an Is in the shell. Is there a new file ed.hup? Place ed.hup in ed. How 
do you change the current file name to filel? Display the contents of the file. Are the 
lines the same lines you created before you turned off your terminal? 

7-3. While you are in ed, temporarily escape to the shell and send a mail message to 
yourself. 

ANSWERS TO EXERCISES 

Exercise 1 

1-1. 

1-2. 

6-82 

$ ed junk<CR> 
~ junk 
a<CR> 
Hello world.<CR> 
.<CR> 
w<CR> 
If 
q<CR> 
$ 

$ ed junk<CR> 
1f 
1,$p<CR> 
Hello world.<CR> 
q<CR> 
$ 

The system did not respond with the warning question mark because you did not make any changes to the 
buffer. C) 

ICON INTERNATIONAL 



1-3. 

( 

Exercise 2 

2-1. 

( 

ICON(tJXV USER GUIDE 

ANSWERS TO EXERCISES 

S ed junk<CR> 
1S 
_<CR> 
This is not Mr. Ed, there is no horsing around<CR> 
_<CR> 
1,Sp<CR> 
Hello world. 
Thi8 i8 not Mr. Ed, there i8 no hor8ing around 
q<CR> 
? 
w stuft'<CR> 
60 
q<CR> 
S 

S ed towns<CR> 
? towns 
_<CR> 
My kind of town is<CR> 
Chicago<CR> 
Like being no where at all in<CR> 
Toledo<CR> 
I lost those little town blues in<CR> 
New York<CR> 
I lost my heart in<CR> 
San Francisco<CR> 
I lost $S in<CR> 
Las Vegas<CR> 
.<CR> 
w<CR> 
164 

.,_. " ~~~-~~' ,-.- ... _,--._-

5-83 



LINE EDITOR TUTORIAL (ed) 

2-2. 

( 
2-3. 

2-4. 

r 
2-5. 

( 
2-6. 

5-84 

3<CR> 
Like being no where at all in 

-2,+3p<CR> 
My kind of town is 
Chicago 
Like being no where at all in 
Toledo 
I lost those little town blues in 
New York 

.-<OR> 
6 

6<CR> 
New York 

$<OR> 
Las Vegas 

Ttown<CR> 
I lost those little town blues in 
!<oo> 
My kind of town is 

ICON INTERNATIONAL 



( 
2-7. 

Exercise 3 

3-1. 

g/in<CR> 
My kind of town is 
Like being no where at all in 
I lost those little town blue8 in 
I lost my heart in 
I lost SS in 

v/in<CR> 
Chicago 
Toledo 
New York 
San Francisco 
La8 Vega8 

$ ed ex3<CR> 
'?ex9 
i<CR> 
'? 
q<CR> 

ANSWERS TO EXERCISES 

The '? after the i indicates there is an error in the command. There is no current line to insert text before 
that line. 

ICON/UXV USER GUIDE 5-85 



LINE EDITOR TUTORIAL (ed) 

3-2. 

5-86 

$ ed towns<CR> 
164 
.n<CR> 
10 Las Vegas 
3i<CR> 
lIlinois<CR> 
.<CR> 
.i<CR> 
or<CR> 
Naperville<CR> 
.<CR> 
$i<CR> 
hotels in<CR> 
.<CR> 
1,$n<CR> 
1 my kind of town is 
2 Chicago 
9 or 

4 Naperville 
5 fllinois 
6 Like being no where at all in 
7 Toledo 
8 I lost those little town 
9 New York 
10 I lost my heart in 
11 San Francisco 
12 I lost $$ in 
19 hotels in 
14 Las Vegas 

blues in 

ICON INTERNATIONAL 



( 

c 

3-3. 

3-4. 

3-5. 

1,5n<CR> 
1 My kind 0/ town i8 
e Chicllgo 
9 or 
4 Nlll'erville 
5 Rlinoi8 
2,5c<CR> 
London<CR> 
.<OR> 
1,3n<OR> 
1 My kind 0/ town i8 
e London 
9 Like being no where at all 

.<CR> 
Like being no where at all 
/Tol<OR> 
Toledo 
c<OR> 
Peoria<OR> 
.<OR> 
.<OR> 
Peon'a 

.<OR> 
/New Y /c<OR> 
Iron City<OR> 
.<OR> 
.<OR> 
[ron City 

ANSWERS TO EXERCISES 

Your search string need not be the entire word or line. It only needs to be unique. 

ICONjUXV USER GUIDE 5-87 



LINE EDITOR TUTORIAL (ed) 

Exercise 4 

4-1. 

The line 

v /llttle/a/town/eity<OR> 
My kind of city is 
London 
Like being no where at all in 
Peoria 
Iron City 
I lost m1l heart in 
San Francisco 
I lost $$ in 
hotels in 
Las Vegll.8 

I lost those little town blues in 

was not printed because it was NOT addressed by the v command. 

4-2. 

4-3. 

5-88 

.<OR> 
LII.8 Vegas 
a!Las Vegas!Toledo<OR> 
Toledo 

!lost!8!!tound<0R> 
I found $$ in 

ICON INTERNATIONAL 



(0 ) 

" 
) 

4-4. 

/no!II!!NO<CR> 
f 
/no/II/ /NO<CIb 
Like being NO wheu st all in 

You can not mix delimiters such as / and'! in a command line. 

Exercise 5 

5-1. 

ICON/UXV USER GUIDE 

S ed filel<CR> 
f file1 
a<CR> 
A ComputeT Scjence<CR> 
D Jogging<CR> 
C Tennis<CR> 
.<CR> 
1,$II/[A AB]/A/<CR> 
I,Sp<CR> 
AA Computer Science 
A Jogging 
A Tennis 
u<CR> 

I,Ssr r AB1/A<CR> 
I,Sp<CR> 
A Computer Science 
A Jogging 
A Tennis 

ANSWERS TO EXERCISES 

5-89 



LINE EDITOR TUTORIAL (ed) 

5-2. 

5-3. 

5-4. 

5-90 

2i<OR> 
These are not really my grades.<OR> 
.<OR> 
1,Sp<CR> 
A Computer Science 
These 4re not really my gr4des. 
A Tennis 
A Jogging 
r(AA]<OR> 
These 4re not re411y my gr4des 
TA(T}<OR> 
These 4re not re411y my gr4des 

1,Sp<CR> 
I love money 
I need money 
The IRS w4nt8 my money 
grI/s/I. *m /It's my m<CR> 
It'8 my money 
It'8 my money 

Is/money /gold<CR> 
It's my gold 
2,Ss//%<CR> 
The IRS w4nts my gold 

_/10202/&0<CR> 
10eoe0910eo 

ICON INTERNATIONAL 



(~ 

5-5. 

a<OR> 
* . \ & % • *<OR> 
.<OR> 
./*/a<OR> 
4.\&%' • 
• /*/b<CR> 
4.\&%'6 

Because there were no preceding characters, • substituted for itself . 

• /\./c<OR> 
ac\&%'b 
./ \\/d<CR> 
4cd&%'b 

./&/e<CR> 
acde%'b 
s/%/f<CR> 
acdef'b 

The & and % are only special characters in the replacement text. 

r ./ \ A/g<CR> 
acdefgb 

Exercise 6 

ANSWERS TO EXERCISES 

6-1. Any time you have lines of text that you may want to have repeated several times, it may be easier to 
write those lines to a file and read in the file at those points in the text. 

ICONfUXV USER GUIDE 5-91 



LINE EDITOR TUTORIAL (ed) 

6-2. 

6-3. 

If you want to copy the lines into other files you must write them to a file and then read in that fiie into 
the buffer containing another file. 

ed exer<OR> 
785 
10,17 w temp<OR> 
BI0 
q<CR> 
ed exer6<OR> 
805 
7r temp<OR> 
BI0 

The file temp can be called any file name. 

( 3','.m3<CR> 

.-<OR> 
10 
13p<OR> 
This is line 18. 
j<OR> 
.p<OR> 
This is line 18 and line 14. 

Remember the .- will give you the current line. 

5·92 ICON INTERNATIONAL 



Exercise 7 

7-1. 

7-2. 

Turn off your terminal. 

Log in again. 

ICONfUXV USER GUIDE 

ed newfllel<CR> 
f newfilel 
r cU!'1'eDt.l.<CR> 
currentl 
a<OR> 
This is a. line of text<CR> 
Will it go into newfilel<CR> 
or into currentl<CR> 
.<CR> 
w<CR> 
66 
q<CR> 
Is<CR> 
bin 
currentl 
rje 

ed filel<CR> 
? filet 
a<OR> 
I a.m adding text to this file.<CR> 
Will it show up in ed.hup?<CR> 
.<CR> 

ANSWERS TO EXERCISES 

5-93 



LINE EDITOR TUTORIAL (ed) 

7-3. 

6-94 

ed ed.hup<OR> 
58 
f fllel<OR> 
fild 
1,$p<CR> 
1 am adding tezt to thi8 file. 
Will it ,how up in ed.hap'? 

ed 6Iel<CR> 
58 
! mail mylogin<CR> 
You will get mail wben<CR> 
you are done editing!<CR> 
.<CR> 
'<OR> 

ICON INTERNATIONAL 



( Chapter 6 

SCREEN EDITOR TUTORIAL (vi) 

PAGE 

CETTI~ ACQl,JAINT'ED WI'TH vi............................................................................................................... 1-1 

HOW TO REA.D THIS llJTORlAL ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• e-2 

GET11t-.IG STARl'ED.................................................................................................................................. 6-4 

I-Iow to Set Terminal Configuration ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 8-4 
I-Iow 'to Access vi ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 6-0 

I-Iow 'to Create Text ........................................................................................................................... 1-7 
I-bw to Leave the Append ~e •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 1-'1 

How 'to ~ve the Cursor ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 8-8 
How 'to Delete Text-........................................................................................................................... 1-10 

I-fow to Add Text............................................................................................................................... 8-11 
f-Iow to Quit vi •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 1-12 

EXERCISE 1 •••••••••••••••••••• ••••••••••••••• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••• 1-13 

POSITIONING THE CURSOR IN THE WI~W •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
Character Positioning •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

Positioning the Cursor to the Right or Left. ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
Positioning the Cursor at the End or Beginning of a Line .................................................... .. 

Searching for a Character on a Line .................................................................................................... . 
Line Positioning ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

Word Position ing ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

Positioning the Cursor by Sentences .................................................................................................. . 
Positioning the Cursor by Paragraphs ................................................................................................ . 
Positioning in "he Window •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

POSITIONING -rHE CURS~ IN THE FILE ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
Scrolling the Text •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

(ic) 'to 8 Specified Une. ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
Line Numbers ................................................................................•.......•........................................... 
Search for a Pattern or Characters ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

EX:ERCISE 2 .............................................................................................................................................. . 

CREA TIf't.IG "'f'EX'T •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
Append Text .................................................................................................................................... . 
Insert Text ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

EX:ERCISE a ....•..•.........•......•...........•.•....•......•...•....................................................................................... 
OELEllf\IG "'f'EX'T ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

Delete Commands in the Text Input f\,4ode .........................................................................•................. 
Undo the Last ComrT\8nd •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

Delete Commands in the Command ~e ........................................................................................... . 
Delete Text Obj ec'ts •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

EXERCISE 4 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

CHANGING "'f'EX'T •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

6014 

6015 

6016 

6017 

6010 

6020 

6022 

60U 

6026 

6031 

6032 

6037 

6037 

6038 

6042 

6043 

6043 

6044 

6046 

6047 

6047 

6040 

6060 

6052 

6066 

6067 

Replacing Text.................................................................................................................................. 6-57 

Substituting Text.............................................................................................................................. 8-68 
Changing Text................................................................................................................................... 6-5D 

CUTTING AND PASTING "'f'EX'T ELECTRONICALLY .................................................................................... 6062 



I\A()vinl Text. ................................................... _............................................................................... 8-82 

Fixinc Typos •••••••• _ ...................... _......................................................................................... 0-03 
Copyinc Text ........................................... _ •• ___ •••••••••••••••••••••••••••••••••••••••••••• _.............................. &.83 

Copying or "'vin& Text Usinc Recis'ters. ........................................................ _ •••• _.............................. 8-04 

EXERCISE S ................................................ _ ................................................. _ •••• _............................ 8-GG 

SPECIAL C~ ....................... _ ........ _____ F .~ ..... _ .............................................. _ •••••••••••••••••••••••••••• 

Repeatinc \he Last ConvnInd ............... , ....... _ ............ ___ ......... _ .................................................................. . 
Joininc Two Un •••••••••••••••••••• _ .............. P" ••• •••• • •• ............................................................................ G-87 

Typinc t-.bnprintinl Ch.r.c:Hrs .................... _ ••• _............................................................................ 6-88 

Clearing and Recirawiq the Window ................ .....-....................................... _.................................. 1-88 
Chancinl Lowercase to Uppercase and Va V.rSl ........................................................ _......... 1-89 

Uf'\E EDI11t-.IG C~S ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 1-80 
Write: Text to • t-.lew File ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• _................................... 8-"10 

Finding the Une Number ••••••••••••••••••••••••••••• _ •• _ ...................................... _ •••••••••••••••••••••••••••••••••••••• _. 1-71 

Deleting the Rest of the Burrer ........................................................................................................... 6-72 

Adding a File 'tc) the Burrer ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• _.......... 8-12 

Making Global ChanllS •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 1-"12 

QlJI'Tn'1'IG VI •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 8-'14 

SPECIAL OPTIOi'IS FOR: vi •••••••••••••••••••••••••••••••••••• _ •••••••••••••••••••••••••••••••••••••••••••••••••• _............................. 8-16 
Recovering a File Lost by an Interrupt-................................................................................................. e-'16 
Editing Multiple Files •••••••••••••••••••••••••••••••••••••• ___ ............................................... _............................. 6-17 

EXERCISE 6 ••••••••••••••••••••••••••••••••••••••••••••••••••• _ ••••••• ....-•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ~.... G-78 

CHANGING YOlJR EN\IIR~ •••••••••••••••••••••••••• _............................................................................... 6-'1Q 

Setting the Automatic Carriale Return ••••• _ •••••• __ •••••••••••••••••••••••••••••••••••••••••••••• _............................. 6-70 

AI\ISweR'S TO EXERCISES ••••••••••••••••••••••••••••• _ •••••• _ ................................................... _............................. 8-80 

Exercise 1......................................................................................................................................... 8-80 
Exercise 2 •••••••••••••••••••••••••••••••••••••••••••••• _ •••••••••• _............................................................................. 8-81 

Exercise a ......•....••.••.••.•..•....•.•••..•..•.••••.•..•.....• __ ..........•.....•••.•.....•...•..•.•.•••....••.••••....•..•.................. 8-82 

Exercise 4 ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 8-82 

Exercise 5 ••••••••••••••••••••••••••••••••••••••••••••••••••••••••.••••••••••••••••••••.••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 6-83 
Exercise 6 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••.•••.•.•.•••••••.•.••••••••••••••••••••••••••••••••••••••••••• 6-84 

( ) 
"'---/ 

) 



( 

( 

Chapter 6 

SCREEN EDITOR TUTORIAL (vi) 

GETTING ACQUAINTED WITH vi 

The screen editor, accessed by the vi command, is a powerful and sophisticated tool for 
creating and editing files. The video display terminal is used as a window to view the text 
of a file. Within this window, you can add, delete, or change text in much the same way as 
you would on a typewriter or with paper and pencil. However, making corrections in vi 
does not involve white out, correction tape, or cutting and pasting. A few simple 
commands change the text, and these changes are quickly reflected in the text on the 
screen. 

The vi editor displays from 1 to several lines of text. The cursor can be moved to any 
point on the screen and text can be created, changed, or deleted from that point. The text 
in the file can be scrolled forward to reveal the lines below the current window, the window 
that is on the screen now. Or, the file can be scrolled backward to reveal lines above the 
current window. (See the display on page 6-2.) Other commands can place you at the 
beginning or end of the file, paragraph, line, or word. 

Besides the convenience of editing portions of text within the window, vi also gives you the 
advantage of some line editor commands, such as the powerful global commands that make 
the same change throughout the whole file. 

ICON/VA'V USER GUIDE 6-1 



SCREEN EDITOR TUTORIAL (vi) 

TEXT FILE 

You are in the screen editor. 

This portion of the file is above 
the display window. You can scroll 
backward to place this part on the 
screen. 

r 
This portion of the file 
is in the display window. 

This part of the file in 
display window can be edited. 

"-
This is another part of the file 
which is below the display window. 

You can scroll the screen forward 
to place this text in the 
display window. 

Editing window of vi displaying part of a file 

HOW TO READ THIS TUTORIAL 

This chapter is a tutorial on how to access and use vi. Although there are more than 100 
commands within vi, this tutorial covers only the basic commands that will enable you to 
effectively use vi. The following basics will be covered: 

• How to set up your particular type of terminal so you can access vi, 

• How to get started creating a file, deleting some of your mistakes, writing the text into 
a ICON/UXV file, and the~ leaving vi to go back to the shell command mode, 

• How to move around within the file, so that you can create, delete, or change text, 

• How to electronically cut and paste your text, 

• How to use some special commands and shortcuts, 

6-2 ICON INTERNATIONAL 

() 

" 1 



( 

f 

HOW TO READ THIS TUTORIAL 

• How to temporarily escape to the shell to perform some shell commands and then 
return to edit the current window of text, 

• How to use some line editing commands within vi, 

• How to quit vi, 

• How to edit several files in the same session, 

• How to recover a file lost by an interruption to an editing session, and 

• How to change your shell environment to automatically set your terminal 
configuration, and set an automatic carriage return. 

In this tutorial, commands printed in bold should be typed into the system exactly as 
shown. ICON/UXV system responses to those commands are printed in italic. The vi 
editor commands that do not print out on the screen will be enclosed in <>. For example, 
<OR> denotes carriage return, meaning press the RETURN key. 

The vi editor has several commands executed by holding down the "control" or CTRL key 
while you press another key. These are called control characters. A A and a letter 
denote a control character in the text. For example, Ad means hold down the control key 
and press the "d" key. Since Ad is a command that does not appear on the screen, it will 
appear in the text as <Ad>, meaning you should execute vi command <Ad>. As you read 
the text you may want to glance back for a quick review of these conventions, which are 
summarized next. 

bold command(Type in exactly as shown.) 

italic response(The system's response to a command.) 

roman 

<OR> 

(Text that is being typed in 
a file.) 

(Commands that are typed in, 
but not reftected on the screen 
are enclosed in < >.) 

(A control character. Hold down the 
control key, CTRL, while you press "g".) 

In the following sections, a full or partial screen may be used to display the examples 
showing how the commands are executed. An arrow will point to the letter that is over the 
cursor. Cursor movements on the screen are depicted by arrows pointing in the direction 
that the cursor will move. 

ICON/UXV USER GUIDE 6-3 



SCREEN EDITOR TUTORIAL (vi) 

The keys on your keyboard may be depicted as shown in the example of the "m" key. 

Notice that the letter on the key appears as it does on your keyboard. However, when you 
press the key it will appear in lowercase in your text. If you need an uppercase letter, the 
example will include the SHIFT key. 

The commands discussed in each section are reviewed at the end of the section. A 
summary of all the vi commands is found in Appendix E, where they are listed In 

alphabetical order, as well as by topic. 

At the end of some sections, exercises are given for you to experiment with those commands 
covered in the section. The answers to all of the exercises are at the end of this chapter. 

GETTING STARTED 

/ 

The best way to learn vi is to log into the ICON/UXV system and do the examples and the \~ j 

exercises as you read the tutorial. If you experiment with the commands, they will become 
familiar to you and you will soon be adept at editing in vi. 

You should be logged into the ICON/UXV system, and ready to create a file In your 
current directory, the directory you are in now. 

How to Set Terminal Configuration 

Before you access vi, you must set your terminal configuration. That is, you must tell the 
system what kind of terminal will display the editing window of your file. Each type of 
terminal has a code name that can be recognized by the system. The code for your 
terminal is in the ICONjUXV file /etc/termcap. The termcap file contains information 
about different terminals. You only need to know the code for your terminal, which is the 
first two letters of the line containing information about your terminal. 

To find the code for your type of terminal, use the grep command to search the 
/etc/termcap file for your terminal type. For example, if you have a TELETYPE 5420 
terminal, type in the following from your login directory: 

6-4 ICON INTERNATIONAL 



(-) 

( 

GETTING STARTED 

$ grep "teletype 5420" /etc/termcap<CR> 
T71 5-1£0 I tty5-1£0 I teletype 5-1£0 80 columns: 
$ 

The code for a Teletype 5420 is T7. 

To set the terminal configuration, type in: 

TERM=code<CR> 
export TERM<CR> 

TERM must be typed in uppercase and there are no spaces on either side of the equal 
sign. "code" will be the first two letters on the line for your terminal from the termcap file. 
In this command sequence, the export command assigns the terminal type to your login 
environment for this session while you are logged in to the ICON/UXV System. You can 
learn more about exporting variables such as TERM in Chapter 7, Shell Tutorial and in 
Part 8 Shell Commands. (See Appendix A.) 

In the example below, you have logged into the ICON/UXV system and have gotten your $ 
prompt from the system. Then, you set your terminal configuration for the Teletype 5420. 

$ TERM=T7<CR> 
$ export TERM <CR> 
$ 

Look up your terminal code in the termcap file, or ask your system administrator for the 
code. If you set your terminal configuration now, you can do the examples as you read the 
text. 

Do not experiment typing in terminal configurations that do not match your terminal, since 
you may confuse the ICON/UXV system, and you will either have to log off, hang up, or 
get the help of the system administrator to restore your login environment. 

Later in this chapter, you will learn how to set your shell environment so that you do not 
have to set the terminal configuration each time that you log in to the ICON/UXV system. 

ICON/UXV USER GUIDE 6-5 



SCREEN EDITOR TUTORIAL (vi) 

How to Access vi 

Now you are ready to access vi. 

Type in: vi filename<CR> 

where filename is the name of the file you wish to edit, or the name of the file you are 
about to create. 

Mter you have set your terminal configuration, you want to create a file called stuff. For 
the purpose of this example, TERM is set to T7. 

$ TERM-T7<CR> 
$ export TERM<CR> 
$ vi stuff<CR> 

The vi command will clear the screen and display the window for the screen editor. It 
should look like this: / " 

"stuff' {new file} 

The vi editor window initially displays some lines of text. In this example there are no 
lines of text. The screen editor displays a '" on each line to indicate the file is empty. The 
cursor is at the beginning of the file waiting fOT the first command. In this example, the 
cursor appears as a short line. Your video display terminal may indicate the cursor by a 

, J 

blinking line or a reverse color block. (~" 

0' 
6-6 ICON INTERNATIONAL 



(-

(-

GETTING STARTED 

Problem: 
If you access vi and get the following message you have forgotten to set the terminal 
configuration. 

$ vi stldf<CR> 
I don 't /mow what kind of terminal you are on - all I have is unknown 
/'Using open mode) 
'stulJ" {New file} 

Type in: :q<CR> 

This returns you to the shell command mode, now you can set your terminal configuration. 

How to Create Text 

If you have successfully accessed vi, you are in the command mode of the screen editor, and 
vi is waiting for your commands. How do you create some text? 

• Press the "a" key, <a>. Now you are in the append mode of vi. You can add text to 
the file. The a does nut print out on the screen. 

• Start typing in some text. 

• To begin a new line press the carriage return key <CR>. 

• Notice as you get dose to the right margin a bell sounds to remind you to press the 
carriage return. Terminals which do not have a bell, may warn you another way, such 
as flashing the screen. 

It is possible to set the carriage return so that it is automatic; this is discussed later in this 
chapter in the section on changi~ YOllrenvironment. 

How to Leave the Append Mode 

If you are finished creat~ text, you need to leave the append mode and return to the 
command mode of vi to edit any text you have created, or to write the text into a 
ICON/UXV file. Press the escape key, ESC or DEL, denoted by <ESC>. You are now 
back in the command mode. 

ICON/UXV USER GUIDE 6-7 



SCREEN EDITOR TUTORIAL (vi) 

Problem: 

<a> 
Create some text <CR> 
in the screen editor <CR> 
and return to the <CR> 
command mode. <ESC> 

If you press <ESC> and a bell sounds, vi is telling you that you are already in command 
mode. It will not affect the text in the file if you press <ESC> several times. The vi 
editor will only sound a bell each time that you press <ESC>. 

How to Move the Cursol' 

To edit your text, you need to move the cursor to the point on the screen where you will 
begin the correction. This is easily done with four keys that are next to each other on the 
keyboard, "h, j, k, I". 

<h> Moves the cursor one character to the left. 

<j> Moves the cursor down one line. 

<k> Moves the cursor up one line. 

<1> Moves the cursor to the right one character. 

6-8 ICON INTERNATIONAL 

c;: 



( 

( 

GETTING STARTED 

k 

1 
• I 

1 
j 

Right now try moving the cursor around. Watch the cursor on the screen while you press 
the keys <h>, <j>, <k>, and <1>. If you want to move two spaces to the right, press 
<1> twice. If you want to move up four lines, press <k> four times. If you cannot go any 
farther in the direction you have indicated, vi will sound a bell. 

Many people who use vi find it helpful to mark these four keys with arrows indicating the 
direction that each key moves the cursor. Mark an arrow on each of four small pieces of 
white correction tape and place a left arrow on the front of the "h" key, a down arrow on 
the "j" key, an up arrow on the "k" key, and a right arrow on the "I" key. 

(" Some terminals have special cursor control keys that are marked with arrows. These may 
be used as "h, j, k, and }" keys are used. 

ICON/UXV USER GUIDE 6-9 



SCREEN EDITOR TUTORIAL (vi) 

Problem: 
If you are trying to move the cursor around on the screen and the letters h, j, k, and I print 
out on the screen, you are still in the append mode of vi. Press <ESC>. Most of the 
commands in the screen editor are silent, that is they do not print out. If the screen editor 
commands are printing out on the screen you are still in append mode. Press <ESC> and 
try the commands again. 

How to Delete Text 

If you have put in an extra character in the text, you will want to delete that character. 
Move the cursor to that character, and press the "x" key. Watch the screen. The letter 
will disappear and the line will readjust to the change. If you want to erase three letters in 
a row, press <x> three times. In the examples below, the position of cursor is depicted by 
the arrow under the letter. 

Hello Wurld! , 

pre~~ 

Hello Wrld! , 
6-10 ICON INTERNATIONAL 

c 



(I 

GETTING STARTED 

How to Add Text 

If you need to add text at a certain point in the text that is in the window, move the 
cursor to that point using <h>, <j>, <k>, and <1>. Then, press <a> and text will be 
created after that point. As you append text, the characters to the right will move over on 
the screen to make room for the new characters. The vi editor will continue adding all 
characters that you type in, until you press <ESC>. If necessary the characters to the 
right will even wrap around onto the next line. 

Hello Wrld! 

t 

Press ~then ~ 

Hello World! 

t 

Press 

Moving around on the screen, or scrolling through the file to add or delete characters, 
words, or lines, is discussed in detail later in this tutorial. 

ICONjU'XV USER GUIDE 6-11 



SCREEN EDITOR TUTORIAL (vi) 

How to Quit vi 

The vi command creates a temporary buffer for you. This is equivalent to giving you a 
piece of scratch paper. When the text or data on the scratch pad is in the form you want 
for this editing session, you must write it to a ICONjUXV file. If you are done editing your 
test file, you will want to put this file in a file called stuff in the current directory and get 
back into the shell command mode. 

Hold down the SHIFT key and press the "z" key twice, <ZZ>. The vi editor remembers 
the file name given to the vi command at the beginning of the editing session, and moves 
the text from the buffer of the editor to the file named stuff. You will get a notice at the 
bottom of the screen giving the file name, and the number of lines and characters in the 
file. Then, you are returned to the shell command level, and the ICONjUXV system 
displays the shell prompt $. Since stuff is a new file, the notice at the bottom of the screen 
will include this fact. 

6-12 

<a> 
This is a test file. <OR> 
I am adding text to <OR> 
a temporary buffer and <OR> 
now it is perfect. <OR> 
I want to write this file, <OR> 
and return to the shell command <OR> 
mode. <ESO><ZZ> 

"stuff' [New file] 6 lines, 151 characters 

$ 

ICON INTERNATIONAL 



( 

EXERCISE 1 

SUMMARY OF GETTING STARTED 

TERM =code 
export=TERM Set the terminal configuration. 

vi filename Enter vi editor to edit the file called filename. 

<a> 

<h> 

<j> 

<k> 

<1> 

<x> 

<CR> 

<ESC> 

<zz> 

:q 

Add text after the cursor. 

Move one character to the left. 

Move down one line. 

Move up one line. 

Move to the right one character. 

Delete a character. 

Carriage return. 

Leave the append mode, and return to vi 
command mode. 

Write to a file, and quit vi. 

Quit vi. 

EXERCISE 1 

There is often more than one way to perform a task in vi. If the way you tried worked, 
then your answer is correct. Watch the screen as you give the commands, and see how it 
changes or how the cursor moves. 

The answers to the exercises are at the end of this chapter. 

1-1. If you have not logged in yet, do so now, and set your terminal configuration. 

1-2. Enter vi and append the following five lines of text to a new file called exer1. 

This is an ,exercise! Up, down left, right, build your 
terminal's muscles bit by bit. 

1-3, Move the cursor to the first line of the file and the seventh character from the right. 
Notice as you move up the file, the cursor moves "in" to the last letter of the file, but 
it does not move "out" to the last letter of the next line. 

1-4. Delete the seventh and eighth character from the right. 

(' 1-5. Move the cursor to the last line of the text, and the last character of that line. 

ICONjUXV USER GUIDE 6-13 



SCREEN EDITOR TUTORIAL (vi) 

1-6. Append a new line of text. 

and byte by byte 

1-7. Write the buffer to a file and quit vi. 

1·8. Reenter vi and append twO'1Dote Jinft of text to the file eurl. 

What does the notice at the bottom of the screen say once you'have reentered vi to 
edit exerl? 

POSITIONING THE CURSOR IN THE WINDOW 

Until now you have been positioning the cursor with the keys "h, j, k and, I". However, 
there are several commands to help you move the cursor quickly around the window. 

This section on positioning the cursor in tM window will look at: 

• Positioning by characters on .a. line, 

• Positioning by lines, 

• Positioning by text objects 

- By words, 

- By sentences, and 

- By paragraphs, and 

• Positioning in the window. 

There are also several commands that position the cursor within the vi editing buffer. 
These commands will be looked at in the next section, Positioning in the File. 

The vi editor provides two very helpful patterns in cursor movement. 

• Instead of pressing a key such as Ith" OT "k"-a certain numbeT of times, you can precede 
the command with that number. For example, <7h> moves the cursor seven 
characters to the left. 

• Many lowercase commands have an uppercase equivalent that will slightly modify or 
enhance the command. For example, <.a> appends text after the cursor, but <A> 
appends text after the last character at the end of the line. 

The uppercase commands will be mentioned briefly in the text, and will be defined in 
the summary. As you tryout the lowercase commands, experiment with the uppercase r-~ 
commands and see what they can do. 0 

6-14 ICON INTERNATIONAL 



( 

POSITIONING THE CURSOR IN THE WINnOW 

If you have not logged into the ICONjUXV system and have not accessed vi to edit a file, 
please do so now. You will want a file that has at least 40 lines in it. If you do not have 
one, create one now, because you will want to tryout each of these cursor movements as 
you read this section of the tutorial. Remember, to execute these commands, you must be 
in the command mode of vi. Press <ESC> to make sure you are out of the append mode, 
and are in the command mode of vi. 

Character Positioning 

There are three ways to position the cursor by a character on a line. 

• You can move the cursor right or left to a character, 

• You can specify the character at either end of the line, or 

• You can search for a character on a line. 

Positioning the Cursor to the Right or Lett 

The commands, <h>, <I>, the space bar, and the BACK SPACE key move the cursor 
right or left to a character on the current line. 

You are already familiar with the "h" and "1" keys. 

Move the cursor to the left. 

<h> 

4- Move the cursor one character to the left. 

<nh> Move the cursor "n" characters to the left. 

---!.. Move the cursor to the right. 

ICONfUXV USER GUIDE 6-15 



SCREEN EDITOR TUTORIAL (vi) 

<1> 

---- Move the cursor one character to the right. 

<nl> Move the cursor "nIt characters to the right. 

Try typing in a number before the command key. Notice that the cursor moves the 
specified number of characters to the left or right. In the example below, the cursor 
movement is depicted by the arrows. 

To quickly move the cursor 
left or right on the screen, 
prefix a number to the command. 

Move the cursor left 7 spaces. 
<7h> 

Move the cursor right three spaces. 
<31~ 

Even if there are not 100 characters in a line, if you type in <1001>, the cursor will simply 
travel to the end of the line. If you type in <100h> the cursor will travel to the beginning 
of the line. 

By now, you have probably accidentally discovered that you can move the cursor back and 
forth on a line using the space bar and the BACK SPACE key. 

6-16 

I"---_-----"'} 
\ \ 

----Space bar 
moves one 
apace to the 
right 

ICON INTERNATIONAL 

r· 
I 

.~/ 



( 

( 

POSITIONING THE CURSOR IN THE WINDOW 

<space bar> 

---- Move the cursor one characteT to the 
Tight. 

<nspace bar> Move the CUTsor "n" characters to the Tight. 

<BS> 

<nBS> 

~ 
~ 

Move the cursor one charaeter to the left. 

--- Move the cursor one character to the left. 

Move the cursor "n" characters to the left. 

You can type in a number before the space bar or <BS>. The cursor will move that many 
characters to the left or right. 

Positioning the Cursor at the End or Beginning or a Line 

The second method of positioning the cursor on the line is shown below. These commands 
will place you at the first character or last character of a line. 

ICONjUXV USER GUIDE 

Position the cursor on the last character of 
the line. 

The number zero positions the cursor on the 
first character of the line. 

6-17 



SCREEN EDITOR TUTORIAL (vi) 

The carat key positions the cursor on the first 
character of the line that is not a blank. 
(This is not a control character.) 

The next examples show the movement of the cursor for each of the three commands. 

6-18 

Go to the back of the line! .. ... 
<$> 

Go to the front of the line! 
< 

<0> (The number zero) 

Go to the first character 
of the line that 

is not blank! 
4 .. 

<A> 

ICON INTERNATIONAL 

(, 
! 

~/ 



(~ ) 

POSITIONING THE CURSOR IN THE WINDOW 

Searching for a Character on a Line 

The third way to position the cursor on a line is to search for a specific character on the 
current line. If the character is not on the current line, a. bell will sound and the cursor will 
not move. There is a command that will search the file for patterns. It is discussed in the 
next section of this tutorial. 

<fx> 

<Fx> 

<;> 

Moves the cursor to the right 
to find the specified letter 
on the current line. 

--. Move the cursor to the right to 
the specified character x. 

__ Move the cursor to the left to the 
specified character x. 

The <;> will continue the search. It will remember the character 
and seek out the next occurrence of that character on the current 
line. 

In the next example, vi is searching to the right for the first occurrence of the letter "A" on 
the current line. 

Go forward to the letter A on this line. 

<fA> 

ICON/UXV USER GUIDE 6-19 



SCREEN EDITOR TUTORIAL (vi) 

You may also find the <tx> command useful. 

<tx> 

<Tx> 

.... Move the cursor to the right, to the 
character just before the specified 
character z. 

4- Move the cursor left to the character 
just after the specified character z. 

Try the search commands on one of your files. Notice the difference between the uppercase 
and lowercase commands. 

Line Positioning 

Besides the <j> and <k> commands that you have already used, the "+", "-" and 
RETURN keys will move the cursor line by line. The cursor will try to remain at the same 
position on the line. If the cursor is on the seventh character from the left in the current 
line, it will try to go to the seventh character on the new line. If there is no seventh 
character, the cursor will move to the last character. 

Move the cursor down one line. 

Move the cursor up on line. 

Since you have already tried out <j> and <k> and know how they react, try adding a 
number of lines to the command as you did with <h> and <1>. 

Type in: 7k 

The cursor will move up seven lines above the current line. If there are not seven lines 
above the current line, a bell will sound and the cursor will remain on the current line. 

6-20 ICON INTERNATIONAL 

c 



( 

( 

POSITIONING THE CURSOR IN THE WINDOW 

Type in: 35j 

The screen will clear and redraw. The cursor will be on the 35th line below the current 
line. The new line will be located in the middle of the new window. If there are not 35 
lines below the current line, the bell will sound and the cursor will remain on the current 
line. Try the following command. 

Type in: 35k 

Did the screen clear and redraw? 

Now, tryout the following three easy ways to move up or down in the file. 

Type in: 13-

The minus sign moves the 
cursor up a line. 

The cursor will travel up 13 lines. If some of those 13 lines are above the current window, 
the window will move up to reveal those lines. This is a rapid way to move quickly up the 
file. Try the following command. 

Type in: 100-

What happened to the window? If there are less then 100 lines above the current line, a 
bell will sound telling you that you have made a mistake, and the cursor will remain on the 
current line. 

or RETURN 

Now, try moving down the lines of the file with +. 

Type in: 9+ 

Move the cursor 
down a line. 

The cursor will move down nine lines below the current line. 

Try moving down line by line in the file with the RETURN key. 

ICON /UXV USER GUIDE 6-21 



SCREEN EDITOR TUTORIAL (vi) 

Type in: 5<CR> 

Did the RETURN key give the same r~sponse as the "+" key? 

Word Positioning 

The vi editor considers a word a string of characters that are either numbers or letters. 
The word positioning commands, <w>, <b>, and <e>, consider that any other character 
is a delimiter, telling vi it is the beginning or end of a word. Punctuation before or after a 
blank is considered a word. The beginning or end of a line is also a delimiter. 

The uppercase word positioning commands, <W>, <B>, and <E>, consider that the 
punctuation is part of the word and define a word by all the characters within two blank 
spaces, that is, the word is delimited by blanks. 

<w> 

<nw> 

<w> 

6-22 

Move the cursor to the right by words. 

Move the cursor forward to the first character in the next word. You may 
press the "w" key as many times as you wish to reach the word you want, 
or you can prefix the number to the <w> command as shown below. 

number of words to the first character of that word. The end of the line 
does not stop the movement of the cursor, it will wrap around and 
continue to count words from the beginning of the next line. 

Ignore all punctuation, and move the cursor forward to the word after the 
next blank. 

ICON INTERNATIONAL 



( 

(', 

POSITIONING THE CURSOR IN THE WINDOW 

The w command 
leaps word by word through the 
file. Move from this word forward 

<6w> ~ 
six words to this word. 
>.. .. .. ~ 

Move the cursor backwards, to the left, 
by words. 

<b> Move the cursor backward one word to the first character of that word. 

<nb> 

<B> 

Move the cursor backward "n" number of words to the first character of 
the nth word. The <b> command does not stop at the beginning of a 
line, but moves to the end of the line above and continues to move 
backward. 

Can be used just like the <b> command, except that it delimits the word 
only by blank spaces. It treats all other punctuation as letters of a word. 

Leap backward word by word through 
the file. Go back four words from here. 

<C <C <C <C 

<4b> 

ICON/UXV USER GUIDE 6-23 



SCREEN EDITOR TUTORIAL (vi) 

Move forward to the end of the word. 

The <e> command acts like <w> moving forward in the file by words, except that it 
moves the cursor to the end of the word. This makes it easy to add punctuation or add "s" 
to the end of a word. 

The <E> command ignores all punctuation except blanks, delimiting the words only by 
blanks. 

Go forward one word to the end of 
the next word in this line 

<e> • 

Go to the end of the third word. 
<3e> ..... • 

Positioning the Cursor by Sentenees 

The vi editor also recognizes sentences. In vi, a sentence ends in "! or . or ? ". If they 
appear in the middle of a line, they must be followed by two blanks spaces for vi to 
recognize them. You should get used to the vi convention of putting two spaces at the end 
of each sentence, because you can also delete, change, or yank whole sentences, which will 
be discussed later in this tutorial. 

6-24 

Move the cursor to the beginning 
of a sentence. 

ICON INTERNATIONAL 

I '\ 

) 



( 

( 

c· 

POSITIONING THE CURSOR IN THE WINDOW 

Move the cursor to the beginning 
of the next sentence. 

Move the cursor to the beginning of the current sentence. «> 

< n( > Move the cursor to the beginning of the "nth" sentence above the current 
sentence. 

Move the cursor to the beginning of the next sentence. <» 
< n) > Move the cursor to the beginning of the "nth" sentence below the current 

sentence. 

In the next example, the arrows show the movement of the cursor. 

This sentence ends in the middle of 
a line. Followed by two blank spaces. 

• «> 
You can go to the end of a sentence. <» • .. 

Now, precede the command with a number. 

Type in: 3( or 5) 

Did the cursor move the correct number of sentences? 

Positioning the Cursor by Paragraphs 

Paragraphs are recognized by vi if they begin after a blank line, or after the paragraph 
formatting command .P. If you want to be able to move the cursor to the beginning of a 
paragraph (or later in this tutorial, delete or change a whole paragraph), then make sure 
each paragraph ends in a blank line. 

ICON/UA'V USER GUIDE 6-25 



SCREEN EDITOR TUTORIAL (vi) 

<{> 

Move the cursor to the beginning 
or the current paragraph. 

Move the cursor to the beginning 
of the next paragraph. 

Move the cursor to the beginning of the current paragraph, which is 
delimited by a blank line above it. 

< n{ > Move the cursor to the beginning of the paragraph, "n" number of 
paragraphs above the current paragraph. 

<}> Move the cursor to the beginning of the next paragraph. 

< n} > Move the cursor to the "nth" paragraph below the current line. 

The next example uses arrows to show the cursor moving down to the beginning of the 
paragraph. 

6-26 

The end of a paragraph is 
a blank line. 

This is a new paragraph. 
It also ends in a blank 
line. <}> 
Go to the beginning 
of the next paragrap . 

This is the third paragraph. 

ICON INTERNATIONAL 



( 

( 

POSITIONING THE CURSOR IN THE WINnOW 

Try moving the cursor with the following commands. 

Type in: { 
3{ 
6} 

Did you have enough blank lines in your file to test out the last two commands? 

Positioning in the Window 

The next three commands help you quickly position yourself in the window. Tryout each 
of the commands. 

ICON/UXV USER GUIDE 

~ove the cursor to the first line 
on the screen. 

~ove the cursor to the middle line 
on the screen. 

~ove the cursor to the last line 
on the screen. 

------- ----- ----.=~--

6-27 



SCREEN EDITOR TUTORIAL (vi) 

6-28 

This is the text of the file 
above the .. current window . 

.. . , 
\ 

/' 
This is the first line of the screen: HOME 

t <H> 

,hiS is the MIDDLE line of the screen 

<M> 
This is the LAST line of the screen 

t <L> 

"- ./ 

This is the portion of text 
in the file that is below the 
current window. 

SUMMARY OF POSITIONING IN THE WINDOW 

Character Positioning Commands 

<h> 

<1> 

<BS> 

~ Move the cursor one character to the 
left. 

-. Move the cursor one character to the 
right. 

<l1li- Move the cursor one character to the 
left. 

ICON INTERNATIONAL 



( 

POSITIONING THE CURSOR IN THE WINDOW 

SUMMARY OF POSITIONING IN THE WINDOW 

<space bar> 

<fx> 

<Fx> 

<;> 

<tx> 

<Tx> 

.--. Move the cursor one character to the 
right. 

.--. Move the cursor to the right to 
the specified character x. 

___ Move the cursor to the left to the 
specified character x. 

Continue the search. It will remember 
the character and seek out the next 
occurrence of the character on the 
current line. 

.--. Move the cursor to the right, to 
the character just before the 
specified character x. 

___ Move the cursor left to the 
character just after the specified 
character x. 

Positioning by Lines 

<j> 

ICON/ID...V' USER GUIDE 

Move the cursor down one line lD the same 
column, if posible. 

(Continued on next page) 

6-29 



SCREEN EDITOR TUTORIAL (vi) 

6-30 

SUMMARY OF POSITIONING IN THE WINDOW (continued) 

<k> 

<-> 

<+> 

<CR> 

Word Positioning 

<w> 

<W> 

<b> 

<B> 

<e> 

<E> 

Move the cursor up one line in the same 
column, if possible. 

Move the cursor up one line. 

Move the cursor down one line. 

Move the cursor down one line. 

Move the cursor forward to the first 
character in the next word. 

Ignore all punctuation, and move the cursor 
forward to the next word delimited 
only by blanks. 

Move the cursor backward one word to the 
first character of that word. 

Move the cursor to the left one word, 
which is delimited only by blanks. 

Move the cursor to the end of the 
current word. 

Delimit the words by blanks only. The 
cursor is placed on the last character 
before the next blank space, or end of 
the line. 

(Continued on next page) 

ICON INTERNATIONAL 

c 



( 

( 

c 

POSITIONING THE CURSOR IN THE WINDOW 

SUMMARY OF POSITIONING IN THE WINDOW (continued) 

Positioning by Sentences 

«> 

<» 

Move the cursor to the beginning of the 
current sentence. 

Move the cursor to the beginning of the 
next sentence. 

Positioning by Paragraphs 

<{> 

<}> 

Move the cursor to the beginning of the 
current paragraph. 

Move the cursor to the beginning of the 
next paragraph. 

Positioning in the Window 

<H> 

<M> 

<L> 

Move the cursor to the first line on the 
screen, or "home". 

Move the cursor to the middle line on the 
screen. 

Move the cursor to the last line on the 
screen. 

POSITIONING THE CURSOR IN THE Fll..E 

How do you move the cursor to text that is not in the current editing window? You can 
type in the commands <20j> or <20k>. However, if you are editing a large file, you need 
to move quickly and accurately to another place in the file. This section covers those 
commands that help you move around within the file. You can: 

• Scroll forward or backward in a file, 

• Go to a specified line in the file, or 

• Search for a pattern in the file. 

ICON/UXV USER GUIDE 6-31 

___ ~~~~_~ __ C~ _____ •• _________ _ 



SCREEN EDITOR TUTORIAL (vi) 

Scrolling the Text 

Four basic commands scroll the text of the file. <At> and <Ad> scroll the screen 
forward. <"b> and <AU> scroll the screen backward. 

Scroll the text forward one full window, revealing the window of text 
below the current window. 

To scroll the file forward, vi clears the screen and redraws the window. The last two lines 
that were at the bottom of the current window are placed at the top of the new window. If 
there are not enough lines left in the file to fill the window, the screen will display the'" to 
indicate the empty lines. 

6-32 ICON INTERNATIONAL 

." / 



( 

( 

POSITIONING THE CURSOR IN THE Fll..E 

Type in: 

These last two lines of the current window 
become the first two lines of the new window 

This part of the file 
is below the display 
window. 

You can scroll forward 
to place this text in the 
display window. 

vi clears the screen and redraws the new screen shown next. 

ICON/UXV USER GUIDE 6-33 



SCREEN EDITOR TUTORIAL (vi) 

These last two lines of the current window 
become the first two lines of the new window 

This part of the file 
is below the display 
window. 

You can scroll forward 
to place this text in the 
~isplay window. 

Scroll down a half screen 
to reveal lines below the window. 

Scroll down a half screen to reveal text below the window. 

When you use <Ad>, it seems as if the text is being rolled up at the top and unrolling at 
the bottom to allow the lines below the screen to appear on the screen, while the lines at 
the top of the screen disappear. If there are not enough lines in the file, a bell will sound 
indicating there are no more lines. 

6-34 ICON INTERNATIONAL 



f 

POSITIONING THE CURSOR IN THE FILE 

Scroll the screen back a full window to reveal the text above the current 
window. 

The <Ab> command clears the screen and redraws the window with the text that is above 
the current screen. Unlike the <At> command, <Ab> does not leave any reference lines 
from the previous window. Also, it does not use the f""ooJ to indicate space above the top of 
the file. If there are not enough lines above the current window to fill a full new window, a 
bell will sound and the current window will remain on the screen. 

This part of the file 
is above the display 
window. 

You can scroll backward 
to place this text in the 
display window. 

Any text in this display window 
will be placed below the current 
window. 
The current window clears and is 
redrawn with the text above the window. 

ICON/UXY USER GUIDE 6-35 



SCREEN EDITOR TUTORIAL (vi) 

Type in: 

vi clears the screen and redraws the new screen shown next. 

/ 
This part of the file 
is above the display window. 

You can scroll backward 
to place this text in the 
display window. 

'-~--------------------------~~ 
Any text in this display window 
will be placed below the current 
window. 
The current window clears and is 
redrawn with the text above the windm . 

Any text that was in the display window is placed below the current window. 

6-36 

Scroll up a half screen to reveal 
lines above the window. 

Scroll up a half window of text to reveal the lines just above the window. 
At the same time, the lines at the bottom of the window will be erased. 

ICON INTERNATIONAL 

\" / 



( 

( 

c 

POSITIONING THE CURSOR IN THE Fll..E 

When you use <AU>, it appears as though the text in the file is on a scroll that is being 
unwound at the top and wound up at the bottom of the screen. 

When the cursor is near the top of the file, it will move to the first line of the file and then 
sound a bell, alerting you it cannot scroll any farther. Try the <AU> and <Ad> 
commands now. Watch the file scroll through the window. 

Go to a Specified Line 

The <G> command will position the cursor on a specified line in the window, or it will 
clear the screen and redraw the window around that line. If you do not specify a line, 
<G> will go to the last line of the file. 

~~GO ~ a line. 

<G> Go to the last line of the file. 

<nG> Go to the "nth" line of the file. 

Line Numbers 

Each line of the file has a line number, that corresponds to the number of lines in the 
buffer. How can you find out the line numbers? There are two basic ways. One way is to 
use a line editor command, which you will learn about in the section on the line editor 
commands. The other way is to position the cursor on the line and type in a <Ag> 
command. Try the <A g> command now. 

The < .. g> command will give you a status notice at the bottom of the screen. The notice 
tells you: 

- Name of the file, 

ICONjUXV USER GUIDE 6-37 



SCREEN EDITOR TUTORIAL (vi) 

- If the line has been changed [modified], 

- Line number, 

- Number of the last line in the file, and 

- Percent the current line is of the total lines in the buffer. 

This line is the 35th line of the buffer. 
The cursor is on this line. 1 <"g> 

There are several more lines in the 
buffer. 
The last line of the buffer is line 116. 

"file. name" [modified] line 96 of 116 --9..(%--

Search for a Pattern of Characters 

The fastest way to reach a specific place in your text is to use one of the search commands. 
You can search forward or backward for the first occurrence of a specified pattern of 
characters or words in the buffer. The search pattern is ended by <CR>. 

The search commands, / and r, are not silent. They will print out on the bottom of the 
screen along with the sea.rch pattern. However, the command to repeat the search <n> is 
silent, it does not print out on the bottom of the screen. 

6-38 ICON INTERNATIONAL 

\ / 



( / 

POSITIONING THE CURSOR IN THE FILE 

Search forward in the buffer. 

Search backward in the buffer. 

Repeat the previous search. 

/pattern<CR> 

Search forward in the buffer for the next occurrence of the characters 
pattern. Position the cursor on the first character of the pattern. 

/Hello world<CR> 

Find the next occurrence in the buffer of the two words Hello world. 
Position the cursor under the H. 

!pattern<CR> 

Search backward in the buffer for the first occurrence of the pattern. 
Position the cursor under the first character of the pattern. 

!data set design<CR> 

Search backward in the buffer until the first occurrence of data set 
design. Position the cursor under the tid" of data. 

ICONjUXV USER GUIDE 6-39 



SCREEN EDITOR TUTORIAL (vi) 

<n> Repeat the last search command. 

<N> Repeat the search command in the opposite direction. 

The search commands will not wrap around the end of the line in searching for two words. 
If you are searching for "Hello world", and "Hello" is at the end of one line, and "world" is 
at the beginning of another line, the search commands will not find that occurrence of 
"Hello world". However, the search commands will wrap around the end or the beginning 
of the buffer to continue the search. For example, if you are toward the end of the buffer, 
and the pattern you are searching for with the / command is at the top of the buffer, / 
will find that pattern. 

The <n> command continues the last search, remembering the pattern and direction of 
the search. 

The following example shows the results of first typing in rthe and then typing in <n>. 

Search backward for the character 
pattern "the". 

N0ice th'y:e,e .. Iso qualifies 
for he search. 

<n> 

'(the 

Experiment for a minute. What happens if you try to type in a number before r or / or 
<n>? Experiment with commands in a file called junk. If you tried to type in a number 
before / or r, you found out it does not work. However, if you tried to type in <7n>, you 
found out that it searched for the seventh identical pattern. 

6-40 ICON INTERNATIONAL 

/ 



( 

( 

EXERCISE 2 

Scrolling 

SUMMARY OF POSITIONING IN THE Fll..E 

Scroll the screen forward a full window, revealing the 
window of text below the current window. 

Scroll the screen down a half window, revealing lines 
below the current window. 

Scroll the screen back a full window, revealing the 
window of text above the current window. 

Scroll the screen up a half window, revealing the lines 
of text above the current window. 

Positioning on a Numbered Line 

<G> Go to the last line of the file. 

<Ag> Give the line number and status. 

Searching for a Pattern 

/pattern Search forward in the buffer for the next occurrence of the 
pattern. Position the cursor on the first character of the 
pattern. 

(Continued on next page) 

fpattern Search backward in the buffer for the first occurrence of 
the pattern. Position the cursor under the first character 
of the pattern. 

<n> Repeat the last search command. 

<N> Repeat the search command in the opposite direction. 

ICON/UXV USER GUIDE 6-41 



SCREEN EDITOR TUTORIAL (vi) 

EXERCISE 2 

2-1. Create a file called exerf. Type a number on each line, numbering the lines from 1 
to 50. Your files should look similar to the following. 

1 
2 
3 
4 
5 

45 
46 
47 
48 
49 
50 

2-2. Try using each of the scroll commands, notice how many lines scroll through the 
window. Try the following: 

<Af> 
<Ab> 
<AU> 
<Ad> 

2-3. Go to the end of the file. Append the following line of text. 

123456789 123456789 

What number does the command 7h place the cursor on? What number does the 
command 31 place the cursor on? 

2-4. Try the command $ and the command 0 (number zero) 

2-5. Go to the first character on the line that is not a blank. Move to the first character 
in the next word. Move back to the first character of the word to the left. Move to 
the end of the word. 

2-6. Go to the first line of the file. Try the commands that place the cursor on the 
middle of the window, on the last line of the window, and on the first line of the 
window. 

2-7. Search for the number 8. Find the next occurrence of number 8. Find 48. 

6-42 ICON INTER~ATIONAL 



( 

CREATING TEXT 

CREATING TEXT 

There are three basic commands for creating text: 

• Append command <a>, 

• Insert command <i>, and 

• Open command that creates text on a new line <0>. 

After you finish creating text with anyone of these commands, you can return to the 
command mode of vi with the <ESC> command. 

Append Text 

<a> 

<A> 

The ESC key ends the text 
input mode. 

Append text. 

Create text to the right of the cursor, or after the cursor. 

Append text at the end of the current line. 

You have already experimented with the <a.> command in the section on Getting Started. 
Make a new file named junk2. Append some text using the <a> command. Escape or 
return to the command mode of vi by pressing the ESC key. Then, compare the <a> 
command with the <A> command. 

ICON/UXV USER GUIDE 6-43 



SCREEN EDITOR TUTORIAL (vi) 

Insert Text 

Insert text. 

<i> Insert text to the left of the cursor, or before the cursor. 

<I> Create text at the beginning of the current line before the first character 
that is not a blank. 

In the example below, the arrow shows where the new text will be created. 

Insert before the H of Here. 
Insert before the H 0, 

<i> 

Here. 

pre~~ 

To end the insert mode and return to the command mode of vi, press the "ESC" key. In 
the next example you can compare the append command wjth the insert command. 

6-44 ICON INTERNATIONAL 



( 

( 

Append a.fter the H of Here. 
Append after the H of ~ ~re. 

<a> 

Insert before the H of Here. 
Insert before the H Ofr Here. 

<i> 

CREATING TEXT 

Remember to end the append mode and the insert mode with the <ESC> command. 

<0> 

<0> 

~ Create a new line of text. 

The open command <0> creates text at the beginning of a new line below 
the current line. The cursor can be on any character in the current line. 

To create text at the beginning of a new line ahove the current line, use 
the <0> command. 

In the next screen the <0> command -opens a new line below the current line and begins 
creating text at the beginning of the new line. 

ICONjUXV USER GUIDE 6-45 



SCREEN EDITOR TUTORIAL (vi) 

<a> 

<A> 

<i> 

<I> 

<0> 

Create text with the open line command. 

~::~:_t.:~:.!>:~, .. 
the current line . 

<0> 

SUMMARY OF CREATE COMMANDS 

Create text after the cursor. 

Create text at the end of the current line. 

Create text in front of the cursor. 

Create text before the first character on the current 
line that is not a blank. 

Create text at the beginning of a new line below the 
current line. 

<0> Create text at the beginning of a new line above the 
current line. 

<ESC> Return vi to the command mode from any of the 
above text input modes. 

EXERCISE 3 

3-1. Create a test file exer8. 

3-2. Insert the following four lines of text. 

6-46 

Append text 
Insert text 
a computer's 
job is boring. 

ICON INTERNATIONAL 



( 

( 

(~ 

DELETING TEXT 

3-3. Create a line of text 

financial statement and 

above the last line. 

3-4. Create a line of text 

Delete text 

above the third line using an insert command. 

3-5. Create a line of text 

byte of the budget 

below the current line. 

3-6. Using an append command create a line of text 

But, it is an exciting machine. 

below the last line. 

3-7. Move to the first line and append "some" before" text ". 

Now, practice each of the six commands for creating text until you are familiar with 
using them. 

3-8. Leave vi and go on to the next section to find out how to delete any mistakes you 
made in creating text. 

DELETING TEXT 

You can delete text from the text input mode or the command mode of vi. In addition, you 
can undo the effect of your most recent command that changed the buffer. 

Delete Commands in the Text Input Mode 

To delete text in the text input mode, you will use <BS>. 

<BS> Delete the current character, the character indicated by the cursor. 

ICONjUXV USER GUIDE 6-47 



SCREEN EDITOR TUTORIAL (vi) 

~ 
~ 

Delete a character in the create 
mode of vi. 

The BACK SPACE key <BS> backs up the cursor in the create mode and deletes each 
character that the cursor backs across. However, the deleted characters are not erased 
from the screen until you type over them, or use <ESC> and return to the command 
mode of vi. 

In the next examples, the arrows show the movement of the cursor. 

6-48 

Pre .. ~~~~three times. 

<a> 
Back space 3 spaces 

~ 

ICON INTERNATIONAL 



( 

DELETING TEXT 

<a> 
Back space 3 spa 

~ 

Notice that the characters do not erase from the screen until you press the ESC key. 

There are two other commands that delete text in the text input mode. Although you may 
not use them often, you want to be aware that they are commands in the text input mode 
and need a special command to type them into your text, see the section on special 
commands. 

Delete the current word, or a specified portion of the word from the cursor 
to the end of the word. 

<@> Delete all of the portion of the line that is currently being created. 

Undo the Last Command 

Before you experiment with the commands that can delete a good portion of your text, you 
will w'ant to tryout the "undo" command, which will undo the last command. 

ICONjUXV USER GUIDE 6-49 



SCREEN EDITOR TUTORIAL (vi) 

Undo the last command. 

<u> Undo the last command. 

<U> Erase the last change on the current line. 

If you deleted a line, <u> will bring it back on the screen. If you hit the wrong command, 
<u> will undo that command. 

If you press the "u" key twice, it will undo the "undo". That is, if you delete a line, the first 
<u> will restore the line. If you press <u> again, it will delete the line again. 

Delete Commands in the Command Mode 

You know that you can precede a number before the command. Many of the commands in 
vi, such as the delete and change commands, allow an argument after the command. The 
argument can specify a text object such as a word, or a line, or a sentence, or a paragraph. 
The general form of a vi command is: 

[number] command [argument] 

The brackets around objects in the general form of the command line denote optional parts 
of the command. They are not part of the command line. 

You will see many examples of this form for the delete and change commands. 

All of the delete commands in the command mode of vi immediately remove the deleted 
text from the screen and redraw that part of the screen. 

6-50 ICON INTERNATIONAL 

\", -

) " 



( 

<x> 

<nx> 

DELETING TEXT 

~ Delete a character. 

Delete one character. 

Delete "n" characters, where n is the number of characters you want to 
delete. 

You used <x> in the Getting Started section of this chapter. Now try preceding <x> with 
the number of characters you want to delete. 

Tomorrow the Loch Ness monster 
shall slither forth from the 
deep darkfeep depths of the lake. 

Put the cursor on the first letter you want to delete, in this example the "d" of the second 
"deep". 

Type in: 5x 

The screen will delete "deep", plus the extra space, and readjust the text on the screen so 
that it will now read: 

ICON/UXV USER GUIDE 6-51 



SCREEN EDITOR TUTORIAL (vi) 

Tomorrow the Loch Ness monster 
shall slither forth from the 
deep darkfePths of the lake. 

You can also use the delete word command, which is discussed next. 

Delete Text Objects 

The delete command follows the general form of a vi command. 

[number]d[text object] 

Delete a word, a line, a 
sentence, or a paragraph. 

Delete a word. 

You can delete all of a word or part of a word with <dw> by moving the cursor to the 
first character you want deleted. Pressing <dw> deletes that character and all characters 
up to and including the next space or punctuation character. 

6-52 ICON INTERNATIONAL 



(' 

( 

c 

DELETING TEXT 

To delete part of thisill word. 

t 

Type in: dw 

To delete part of thisword. 

t 

You can delete one word with <dw> or several words by prefixing the "dw" with a 
number. The cursor must be on the first character of the first word to be deleted. To 
delete five words, you would type in 5dw. An example of how to do this follows. 

Type in: 5dw 

The quick red fox jumped over 
the lazy black turtle or an ox 

t~ J 

ICON/UXV USER GUIDE 6-53 



SCREEN EDITOR TUTORIAL (vi) 

,.-. 

The quick red fox jumped over 
the ,l~y. 

4 

Try typing in the a.rguments for other text objects that you learned In the section on 
positioning the cursor. 

Type in: d( or d} 

Observe what happens to your file. Remember, you can restore the text that you just 
deleted with <u>. 

<dd> Delete a line of text. 

To delete a line, press the "d" key twice. You do not need to worry about deleting text if 
you press the "d" key once. Nothing will happen, unless you press the space bar. The <d 

space bar> acts like the <x> command and deletes one character. If you accidentally 
press "d" key in the command mode, press the ESC key. The ESC key will cancel the 
previous typed command. 

Try to delete ten lines. 

Type in: lOdd 

/ " 

The lines will be deleted from the screen. If some of the lines are below the current (~ 
window, vi will display a notice on the bottom of the screen: 

6-54 ICON INTERNATIONAL 



DELETING TEXT 

10 lines deleted 

If there are not ten lines below the C1J1"rent line in the file, a bellwiU sound and no lines will 
be deleted. 

Delete the line from the cursor to the end 
of the line. 

If you are erasing the end of a line, use the <D> command. Put the cursor on the first 
character to be deleted, hold down the SHIFT key while you press the "d" key. 

Type in: D 

The <D> command will not allow you to specify more than the current line. You cannot 
type in "3D". However, you could type in <3d$>. Remember the general form of a vi 
command? The $ refers to the end of the line in vi. 

ICON/UXV USER GUIDE 6-55 



SCREEN EDITOR TUTORIAL (vi) 

SUMMARY OF DELETE COMMANDS 

For the CREATE Mode: 

<BS> 

<@> 

Delete the current character. 

Delete the current character. 

Delete the current word. 

Delete the current line of new text, or delete all new 
text on the current line. 

For the COMMAND Mode: 

<u> 

<U> 

<x> 

<ndx> 

<dw> 

<dd> 

<D> 

<d» 

<d}> 

Undo the last command. 

Erase the last change on the current line. 

Delete the current character. 

Delete "n" number of text objects "x". 

Delete the word at cursor through the next space or 
to the next punctuation mark. 

Delete the current line. 

Delete the line at the cursor to the end of the line. 

Delete the current sentence. 

Delete the current paragraph. 

EXERCISE 4 

4-1. Create a file exer./ containing the following four lines: 

When in the course of human events there are many 
repetitive, boring chores, then one ought to get a 
robot to perform those chores. 

4-2. Move the cursor to line 2 and append to the end of that line: 

tedious and unsavory. 
6-56 ICON INTERNATIONAL 

" / 



( 

(/ 

DELETING TEXT 

Delete "unsavory" while in the append mode. 

Delete "boring" in the command mode. 

What is another way you could have deleted "boring"? 

4-3. Insert at the beginning of line 4: 

congenial and computerized. 

Delete the line. 

How could you delete the line and leave it blank? 

Delete all the lines with one command. 

4-4. Leave the screen editor and remove the empty file from your directory. 

CHANGING TEXT 

Instead of deleting text using a delete command and then creating text with a text input 
command, the three basic commands, <r >, <a>, and <c> both erase the text and then 
create new text. 

Replacing Text 

<r> 

<nr> 

<R> 

Replace one character that is typed over. 

Replace the current character, the character pointed to by the cursor. 
This is not a text input mode. It does not need to be ended by <ESC>. 

Replace "n" characters with the same letter. This command 
automatically terminates after "nth" character is replaced. It does not 
need the <ESC>. 

Replace only those characters typed over until the <ESC> command is 
given. If the end of the line is reached, this command will then begin 
appending new text. 

ICONjUXV USER GUIDE 6-57 



SCREEN EDITOR TUTORIAL (vi) 

The <r> command will replace the current character with the next character that 1S 

typed in. For example, in the sentence below you want to change "acts" to "ants". 

The circus has many acts. 

Place the cursor under the ftc" of "acts". 

Type in: rn 

The sentence becomes: 

The circus has many ants. 

To change "many" to "6666", place the cursor under the "m" of "many". 

Type in: 4r6 

The <r> command changes the four letters of "many" to 6s. 

The circus has 6666 ants. 

Substituting Text 

The substitute command replaces characters, but then allows you to continue to create 
text from that point until you press <ESC>. (-" 

<s> 

<ns> 

<S> 

Substitute for a character of text. 

Delete the character the cursor is on and append text. End the text input 
mode with the ESC key. 

Delete "n" characters and append text. End the text input mode with 
<ESC>. 

Replace all the characters in the line. 

The <s> command indicates the last character in the substitution with a $. The 
characters are not erased from the screen until you type over them, or leave the text input 
mode with the <ESC> command. 

Notice that you cannot use an argument with either <r> or <8>. Did you try? 

6-58 ICON INTERNATIONAL 

) 



( ) 

CHANGING TEXT 

Suppose you want to substitute "million" for "hundred" in the following example. 

My salary is one hundred dollars. 

t 

Put the cursor under the h of hundred. 

Then type in: 78 

Notice where the $ is placed. 

My salary is one hundre$ dollars. 

t 

Now type in: million 

Press the ESC key, and you will owe the Internal Revenue Service $500,000. 

Changing Text 

The substitute command replaces characters. The change command replaces text objects, 
and then continues to append text from that point until you press <ESC>. To end the 
change command and return to the command mode in vi, you must press the ESC key. 

ICONjID.."V USER GUIDE 6-59 



SCREEN EDITOR TUTORIAL (vi) 

Change. Replace a text object with 
new text. 

The change command can take an argument. You can replace a character, word, or an 
entire line with new text. 

<cw> Replace a word or the remaining characters in a word with new text. The 
vi editor prints a $ indicating the last character to be changed. 

<ncw> Replace "n" number of words with new text. 

<cc> Replace all the characters in the line. 

<ncc> Replace all the characters in the current line and up to "n" lines of text. 

<ncx> Replace "n" number of text objects "x", such as sentences ) and 
paragraphs }. 

<C> 

<nC> 

Replace the remaining characters in the line, from the cursor to the end of 
the line. 

Replace the remaining characters from the cursor in the current line and 
replace all the lines under the current line up to "n" lines. 

For the <cw> command and the <C>, a $ will indicate the last letter that will be 
replaced. The characters will remain on the screen until you have pressed the ESC key. 
When used to change one or more lines of text, the change command simply deletes the 
lines that are to be replaced, and then places you in the text input mode of vi. 

6-60 ICON INTERNATIONAL 

,~ / 



( 

To change a word, use the <cw> 
command. In the next line change 
the word "chang$" to "replace". 

t 
<cw> 

CHANGING TEXT 

In the example, notice that "replace" has more letters then "change". Once you have 
executed the change command you are in the text input mode of vi and you can add as 
much text as you want, until you press <ESC>. 

To change a word, use the <cw> 
command. In the next line change 
the word "replace" to "replace". 

t 
<ESC> 

Try the other change commands. Watch the screen. When you use <C> the $ will appear 
at the end of the line. Try using other arguments. 

Type in: c{ 

Since you know the undo command, do not hesitate to experiment with different arguments, 
or preceding the command with a number. You must press <ESC> before you can use 
<u> since <c> places you in a text input mode. 

Compare <S> to <cc>. The results should be the same for both commands. 

ICON/UXV USER GUIDE 6-61 



SCREEN EDITOR TUTORIAL (vi) 

<r> 

<R> 

<s> 

<S> 

<cw> 

<cc> 

<ncx> 

<C> 

SUMMARY OF CHANGE COMMANDS 

Replace only the current character. 

Replace only those characters typed over with new 
characters until the <ESC> command is given. 

Delete the character the cursor is on and append 
text. End the append mode with the ESC key. 

Replace all the characters in the line. 

Replace a word or the remaining characters in a 
word with new text. 

Replace all the characters in the line. 

Replace "n" number of text objects "x", such as 
sentences) and paragraphs }. 

Replace the remaining characters in the line, from 
the cursor to the end of the line. 

CUTTING AND PASTING TEXT ELECTRONICALLY 

There is a set of commands that will cut and paste text in a file. Another set of commands 
will copy a portion of text and place it in another section of a file. 

Moving Text 

You can move text from one place to another in the vi buffer by deleting the lines and then 
placing them at the spot in the text that you want them. The last text or lines that were 
deleted go into a temporary buffer. If you move the cursor to that part of the file where 
you want the deleted lines to be placed and press the lip" key, the deleted lines will be 
added below the current line. 

6-62 ICON INTERNATIONAL 

.~ ... 

/ ". 



( 

( 

c 

CUTTING AND PASTING TEXT ELECTRONICALLY 

<np> 

The put command <p> puts the last 
yank or delete in the proper place. 

Place the contents of the temporary buffer after the cursor. 

Place "n" number of copies of the temporary buffer after the cursor. 

A partial sentence that was deleted by the <D> command can be placed in the middle of 
another line. Position the cursor in the space between two words, then press "p". The 
partial line is placed after the cursor. 

Characters deleted by <nx> also go into a temporary buffer. Any text object that was 
just deleted can be placed somewhere else in the text with <p>. 

The <p> command should be used right after a delete command since the temporary 
buffer only stores the results of one command at a time. The <p> command also places a 
copy of text after the cursor that had been placed in the temporary buffer by the yank 
command. Yank <y> is discussed next in Copying Text. 

Fixing Typos 

A quick way to fix typos that consist of transposed letters is to combine the <x> and the 
<p> commands as <xp>. <x> deletes the letter. <p> places it after next character. 

Notice the error in the next line. 

A line of tetx 

This error can be quickly changed by placing the cursor under the "t" in "tx" and then 
pressing first "x" and then "p" keys. The result is: 

A line of text 

Try it. Make a typing error in your file. Then use <xp>. 

Copying Text 

You can "yank" (copy) a part of the text into a temporary buffer, then move the cursor to 
that part of the file where you want to place a copy of the text, and place it there. <p> 
places the text after the current line. 

ICONjUXV USER GUIDE 6-63 



SCREEN EDITOR TUTORIAL (vi) 

The "yank" command follows the general form of a vi command. It allows you to specify 
the number of text objects that you want copied. 

[number]y[text object] 

The "yank" command <y> saves a copy 
of the text object. 

<yw> Yank a copy of a word. 

<yy> Yank a copy of the current line into a temporary buffer to be placed below 
another line. 

<nyy> Yank "n" lines into a temporary buffer to be placed below the current line. 
"n" is the number of lines. 

<y» Yank a copy of a sentence. 

<y}> Yank a copy of the paragraph. 

<nyx> Yank "n" number of text objects "x", such as sentences} and paragraphs 
}. 

Try the following command lines and see what happened to your screen. Of course you can 
undo the last command. 

Type in: 5yw 

Move the cursor to another spot. 

Type in: p 

Try yanking a paragraph <y}> and placing it after the current paragraph, then move to 
the end of the file <G> and place that same paragraph at the end of the file. 

Copying or Moving Text Using Registers 

\ / 

If you have several sections of text that you wish moved or copied to a different part of the 
file, it would be tedious to move each portion one at a time. vi has named registers, which C-: 
are electronic storage boxes where you can store the text until you want to place it into a 

6-64 ICON INTERNATIONAL 



( 

c 

CUTTING AND PASTING TEXT ELECTRONICALLY 

specific spot in the file. These registers are named for each letter of the alphabet, a 
through z. You can either yank or delete text to one of these registers. 

These commands are handy if you have an example that you want to use several times in 
the text. The example will stay in the specified register until you end the editing session or 
yank or delete another section of text to that register. 

The general form of the command is: 

[number"l]command[text object] 

The I represents any letter, and is the name of the register. You can precede the command 
with a number to indicate how many text objects, such as words or lines, that you want to 
save in the register. 

Place the cursor at the beginning of a line. 

Type in: 3"ayy 

Now, type in more text. Then, go to the end of the file. 

Type in: "ap 

Did the lines you saved in register "a" appear at the end of the file? 

SUMMARY OF CUT AND PASTE COMMANDS 

<p> Place the contents of the temporary buffer 
containing the last delete or yank command into the 
text after the cursor. 

<yy> Yank a line of text and place it into a temporary 
buffer. 

<nyx> Yank a copy of "n" number of text objects "x" and 
place them in a temporary buffer. 

<"lyn> Place a copy of text object "n" in the register named 
by a letter "1". 

<"lp> Place the contents of register I after the cursor. 

ICON/UXV USER GUIDE 6-65 



SCREEN EDITOR TUTORIAL (vi) 

EXERCISE 5 

5-1. Edit the file exerf. Notice that this is the same file you created in Exercise 2. 

Go to line 8 and change that line to read "END OF FILE". 

5-2. Yank the first eight lines of the file and place them in register "z". Put the contents 
of register "z" after the last line of the file. 

5-3. Go to line 8 and change that line to read "8 is great". 

5-4. Go to line 18 and make the same change as you did in 5-3. 

5-5. Go to the last line of the file. Substitute "EXERCISE" for "FILE". Replace "OF" 
with "TO". 

SPECIAL COMMANDS 

There are some special commands that you will find useful. 

<.> Repeat the last command. 

<J> Join two lines together. 

<\> 
or 

<AV> Print out nonprinting character. 

<AI> Clear the screen and redraw it. 

< ....... > Change lowercase to uppercase and vice versa. 

6-66 ICON INTERNATIONAL 

c: 



( 

( 

Repeating the Last Command 

.~ 

SPECIAL COMMANDS 

Repeat the last 
change command. 

You may have already accidentally pressed the ":' key, thinking that you were adding a 
period at the end of your sentence. If you were in the command mode of vi, you were 
unpleasantly surprised by the last text change suddenly appearing on the screen. 

The period repeats the last change command. This is a very handy command when it is 
used with the search command. For example, you forgot to capitalize the "S" in United 
States. However, you do not want to capitalize the "s" in "chemical states". One way you 
could correct this problem is search for "states". The first time you found "states" in 
United states, you would change the "s" to "S". The next occurrence you found, you would 
simply press the ":' key and vi would r~member to change the "s" to "S". 

The <.> will repeat change, or create, or delete, or put commands. Experiment with the 
commands. Watch the screen to see how the text is affected. 

Joining Two Lines 

Join the line below the· current line 
with the current line. 

The <J> command joins lines. Place the cursor on the current line, hold down the SHIFT 
key and press the "j" key. The line below the current line is joined to the current line at 
the end of the current line. 

Now is the time to join forces. 

To join these two lines into one line, place the cursor under any character in the first line. 

Type in: J 

Those two lines become: 

ICON/UXV USER GUIDE 6-67 



SCREEN EDITOR TUTORIAL (vi) 

Now is the time to join forces. 

Notice that vi automatically places a space between the last word on the first line and the 
first word on the second line. 

Typing Nonprinting Characters 

In the section of this tutorial on deleting in the text input mode, two commands were 
mentioned that are probably seldom used, but act as commands and will not print out in 
your text. How do you get characters that are commands in the text input mode to type 
out in your text? Precede them with a \ . 

Type in non printing characters. 

What happens when you want to type in the @ character? Try it. It erased the line you 
are working on. How do you type in the @ character? 

Type in: \@ 

Clearing and Redrawing the Window 

Clear and redraw the current screen. 

One of the frustrating things that can happen to you in vi is that another user in your 
ICONfUXV system decides to send you a message using the write command. If you have 
not turned off your messages in the shell, the message will appear right at the spot where 
you are editing in the current window. After you have read the message, how do you 
restore the current window? If you are in the text input mode, you must end it with the 
<ESC> command to get you into the command mode of vi. Then, hold down the CTRL 
key and press the ttl" key. vi will clear away the garbage, and redraw the window exactly 
as it was before the message arrived. 

6-68 ICON INTERNATIONAL 

C) 



( 

SPECIAL COMMANDS 

Changing Lowercase to Uppercase and Viee Versa 

Change upperease to lowerease, 
or lowerease to upperease. 

A quick way to change any lowercase letter to a capital letter or any capital letter to 
lowercase is the <-> command. To change a to A, or B to b press -. This command 
does not allow you type in a number before the command and change several letters with 
one command. 

<.> 

<J> 

<\x> 

<"v> 

<"I> 

<,....,> 

SUMMARY OF SPECIAL COMMANDS 

Repeat the last command. 

Join the line below the current line with the current 
line. 

Print the nonprinting character x that does not 
print out in the text input mode. 

Print characters that do not normally print out in 
the text input mode. 

Clear and redraw the current window. 

Change lowercase to uppercase, or vice versa. 

LINE EDITING COMMANDS 

The screen editor vi also has some line editing capabilities. The line editor associated with 
vi is called ex. However, the ex commands are very similar to the ed commands discussed 
in Chapter 5. If you know the ed commands, you may want to experiment on a test file 
and see how many will work in vi. 

There are many commands in the ex editor that can be called from vi. These commands 
are discussed at length in the ICON/UXV Editing Guide. (See Appendix A.) Only a few of 
the most useful commands are discussed here. 

ICONjUXV USER GUIDE 6-69 



SCREEN EDITOR TUTORIAL (vi) 

Call in the line editor commands. 

To call in the line editor commands, type in a ":" from the command mode of vi. The 
cursor will drop down to the bottom of the screen and display the ":". As you tryout the 
line editing commands notice that they print out at the bottom of the editing window. 

A powerful and useful command of ex is the command that temporarily returns you to the 
shell. You can return to the shell, perform some shell commands (even edit and write 
another file in vi) and then return to the current window of vi. 

:sh<CR> Temporarily return to the shell, leaving the vi buffer with the cursor on 
the current line. 

Mter you have executed the shell commands, hold CTRL and press "d". 
You will return to the exact line and window you were editing before you 
left vi. 

Even if you change directories while you are temporarily in the shell and then execute 
<Ad>, you will return to the vi buffer in the directory where you were editing the file. 

Write Text to a New File 

What do you do if you want only part of the file in the editing buffer placed in a 
ICONjUXV file? 

Many of the commands in ex will accept a line number or a range of line numbers typed in 
before the command W. Try to write the third line of the buffer to a file named three. 

Type in: :3w three<CR> 

Notice the system response. 

"three" {New file] 1 line, eo characters 

The" • " is the special character that indicates the number of the current line. 

Type in: :.w junk<CR> 

A new file called junk will be crea.ted containing only the current line in the vi buffer. 

You can also specify the range of lines. To write lines 23 through 37 to a file, type in: 
23,37w newfile<CR> 

6-70 ICON INTERNATIONAL 

--------~~-

C) 



( 

( 

LINE EDITING COMMANDS 

Finding the Line Number 

If you want to specify a range of lines, you can find out the line number of that line by 
moving the cursor to that line. 

Type in: :.=<CR> 

The editor will come back with the response that is the number of that line. 

If you want to know the number 
of this line, type in :.=<CR> 

... -

As soon as you press RETURN, the bottom line will clear and give you the number of the 
line in the buffer. 

If you want to know the number 
of this line, type in :.=<CR> 

You can move the cursor to any line in the buffer by typing in a ":" and the line number. 

:n<CR> Go to the "nth" line of the buffer. 

ICONjUXV USER GUIDE 6-71 



SCREEN EDITOR TUTORIAL (vi) 

Deletina the Rest of the Buffer 

One of the easiest ways to delete all the lines from the current line to the end of the buffer 
is to use the line editor command to delete lines. 

Type in: :.,Sd<CR> 

The " " is the current line, and the last line is $. 

Adding a File to the Buffer 

If you have a file with some data or text in it that you would like to add below a specific 
line in the editing buffer, you can do so with the :1' command. To read in the file data place 
the cursor on the line above the desired insertion. 

Type in: :1' data<CR> 

You may also specify the line number instead of moving the cursor. Insert the file data 
below line 56 of the buffer. 

Type in: :561' data<CR> 

Do not be afraid to experiment, <u> will undo the ex commands too. 

Making Global Changes (/ " 

One of the most powerful commands in ex is the global command. The global command is '" ./ 
given here to help those users who are familiar with the line editor. Even if you are not 
familiar with a line editor, you may want to try the command on a test file. 

If you had typed in several pages of text about the DNA molecule, calling its structure a 
"helix", you would have to change each occurrence of the word "helix" to "double helix". 
This could be a long involved process searching for each one and probably using the "." 
command of vi to repeat the change. If you are sure you want every "helix" changed, you 
can use the global command of ex. You need to understand a series of commands to do 
this. Let's take one at a time. 

6-72 

:g/characters<CR> 

Search for these exact characters. 

Type in: :g/helix<CR> 

The line editor does a global search for the first instance of the characters 
"helix" on a line. 

ICON INTERNATIONAL 



( 

LINE EDITING COMMANDS 

:s/text/new words/<CR> 

This is the substitute command. Instead of writing over the word text, as 
the screen editor would have done, the line editor searches for the first 
instance of the characters text on the current line, and changes them to 
new words. You must tell ex what word you are looking for and it must 
appear between the first two delimiters, f. It will then replace only those 
exact characters with the exact characters, new words, between the last 
two delimiters. 

:s/text/new words/g<CR> 

By adding a "g" at the end of the last delimiter of this command line, ex 
will change every occurrence on the current line. 

:g/helix/s//double helix/g<CR> 

This command line searches for the word helix. Each time helix is found, 
the substitute command substitutes double helix for every instance of 
helix on that line. The delimiters after the s do not need to have helix 
typed in again. The command remembers the word from the delimiters 
after the global command g. 

This is a very powerful command. If it is confusing to you, but you still want to add it to 
your vi command knowledge, read Chapter 5 on the line editor ed for a more detailed 
explanation of the global and substitution commands. 

ICON/UXV USER GUIDE 6-73 



SCREEN EDITOR TUTORIAL (vi) 

SUMMARY OF LINE EDITOR COMMANDS 

:sh<CR> 

:n<CR> 

:x,zw data<CR> 

:$<CR> 

:.,$d<CR> 

Indicates that the next commands 
are line editor commands. 

Temporarily return to the shell to 
perform some shell commands. 

Escape the temporary shell and 
return to edit the current window of 
vi. 

Go to the "nth" line of the buffer. 

Write lines from the number "x" 
through the number "z" into a new 
file called data. 

Go to the last line of the buffer. 

Delete all the lines in the buffer 
from the current line to the last 
line. 

:r shell.file<CR> Insert the contents of shell.file under 
the current line of the buffer. 

:s/text/new words/<CR> Replace the first instance of the 
characters text on the current line 
with new words. 

:s/text/new words/g<CR> Replace every occurrence of text on 
the current line with new word. 

:g/text/s/ /new word/g<CR> Change every occurrence of text to 
new word. 

QUITTING VI 

There are six basic command sequences to quit the vi editor. 

6-74 

<ZZ> Write the contents of the vi buffer to the ICONjUXV file currently being 
edited and quit vi. 

:wq<CR> Write the contents of the vi buffer to the ICON/UXV file currently being r " 
edited and quit vi. ~o-' 

ICON INTERN"ATIONAL 



( 

( 

QUITTING VI 

:w filename<CR> 
:q<CR> Write the temporary buffer to a new file named filename and quit vi. 

:wl filename<CR> 
:q<CR> Overwrite an existing file called filename with the contents of the buffer 

and quit vi. 

:ql<CR> Quit vi without writing to the shell file. 

:q<CR> Quit vi without writing the buffer to a ICON/UXV file. This command, 
without the write command w, can only be used in special cases, such as 
the view command discussed in the next section, or if the buffer has not 
been changed. 

The commands that are preceded by a ":" are line editor commands. 

The <ZZ> command and :wq command sequence both write the buffer to a ICONjU)..\T 
file, then quit vi, and return you to the shell command level. You have tried the <ZZ> 
command, now try to exit vi with :wq. 

Type in: :wq<CR> 

The system response is the same as it is for the <ZZ> command. It gives you the name of 
the file, and the number of lines and characters in the file. 

vi remembers the file name of the file currently being edited, so you do not have to 
reiterate the file name when you want to write the buffer of the editor back into that file. 
What do you do if you want to give the file a different name? 

If you want to write to a file called junk: 

Type in: :w junk<CR> 

Mter you write to a new file, you can leave vi by just typing in the :q. 

Type in: :q<CR> 

If you try to write to a file called letter that already exists in the shell, you will receive a 
warning: 

"letter" File exists - use "wI letter" to overwrite 

Type in: :w! letter<CR> 

You will erase the current file called letter and overwrite it with the new file. 

If you began editing a file called memo, made some changes to the file, and then decided 
you didn't want to make the changes, or you accidentally pressed a key that gave vi a 
command you could not undo, you can leave vi without writing to the file. 

ICON/UXV USER GUIDE 6-75 



SCREEN EDITOR TUTORIAL (vi) 

Type in: :qt<CR> 

SUMMARY OF QUIT COMMANDS 

<zz> 

:wq<CR> 

:w filename<CR> 
:q<CR> 

:wt filename<CR> 
:q<CR> 

:q!<CR> 

:q<CR> 

Write the file and quit vi. 

Write the file and quit vi. 

Write the editing buffer to a new file named 
filename and quits vi. 

(Continued on next page) 

Overwrite an existing file called filename with 
the contents of the editing buffer and quits vi. 

Quit vi without writing to the buffer. 

Quit vi without writing the buffer to a 
ICONjUXV file. 

SPECIAL OPTIONS FOR vi 

The vi command has some special options. It allows you to: 

• Recover a file lost by an interrupt to the ICONjUXV system, 

• Place several files in the editing buffer and edit each in sequence, and 

• View the file with the vi cursor positioning commands. 

Recovering a File Lost by an Interrupt 

There are times when an interrupt or a disconnect will cause the system to exit the vi C','~ ... ·.\) 
command without writing the temporary buffer to the ICONjUXV file. Or, you may 
become confused or have a problem with the vi editor that you cannot solve. If that 

6-76 ICON INTERNATIONAL 



SPECIAL OPTIONS FOR vi 

happens, one solution is simply to hang up, or disconnect from the ICONjUXV system. In 
both of these cases, the ICONjUXV system will store a copy of the buffer for you. When 
you log back into the ICONjUXV system you will want to restore the file with the -r 
option for the vi command: 

Type in: vi -r filename<CR> 

The changes you made to the file filename, before the interrupt occurred, are now in the vi 
buffer. You can continue editing the file, or you can write the file and quit vi. The vi 
editor will remember the file name and write to that file. 

Editing Multiple Files 

If you wish to edit more than one file in the same editing session, type in the vi command 
followed by each file name. 

Type in: vi filel file2<CR> 

vi will respond by telling you how many files you are going to edit. 

e files to edit 

After you have edited the first file, filet, you need to write the changes to the shell file. 

Type in: :w<CR> 

The system response to the :w <CR> command will be a message at the bottom of the 
screen giving the name of the file, and how many lines and characters are in that edited 
file. Then you must ask for the next file in the editing buffer with the :n command. 

Type in: :n<CR> 

The system response to the command :n<CR> is a notice at the bottom of the screen 
with the name of the next file to be edited and the character and line count of that file. 

Pick two of the files in your current directory and enter vi to place the two files in the 
editing buffer at the same time. Notice the system responses to the commands at the 
bottom of the screen. 

ICONjUXV USER GUIDE 6-77 



SCREEN EDITOR TUTORIAL (vi) 

SUMMARY OF SPECIAL OPTIONS FOR vi 

vi filel file2 file3<CR> 

:w<CR> 
:n<CR> 

vi -r filel<CR> 

Enter three files into the vi buffer to be 
edited. Those files are fUel, filet, and 
fileS. 

Write the current file and call the next 
file in the buffer. 

Restore the changes made -to the file 
file1. 

EXERCISE 6 

6-1. Try to restore a file lost by an interrupt. 

Enter vi, create some text in a file called exer6. 

Turn off your terminal without writing to a file or leaving vi. 

Log back in to your terminal. 

Try to get back into vi and edit the exer6 file. 

6-2. Place exerl and exert in the vi buffer to be edited. 

Write exer 1 and call in the next file in the buffer, exert. 

Write exert to a file called junk. 

Quit vi. 

6-3. Tryout the command: 

vi exer*<CR> 

What happens? To quit vi: 

Type in: ZZ ZZ 

6-4. Look at exer./ in read only mode. 

Scroll forward. 

Scroll down. 
6-78 ICON INTERNATIONAL 

./ " 
\, j 



( 

( 

CHANGING YOUR ENVIRONMENT 

Scroll backward. 

Scroll up. 

Quit and return to the shell. 

CHANGING YOUR ENVIRONMENT 

If you are going to edit with vi you will want to change your login environment so that you 
do not have to reconfigure your terminal each time you login. Your login environment is 
controlled by a file in your login directory called the .profile. The shell tutorial in 
Chapter 7. 

You are about to edit your .profile that sets up your environment each time you login. If 
you are concerned that you might cause a problem with your .profile in the editing process, 
you may want to keep a backup copy of your original .profile for safekeeping. 

From your login directory, type in: 

cp .profile safe.profile<CR> 

Now that you have a copy of your .profile in a safe place, safe. profile, you can edit your 
.profile just like any other file in vi. 

Type in: vi .profile<CR> 

Go to the last line of the file, ignoring all the lines currently in the file. 

Type in: G 

You are going to add two lines to the bottom of the file, the same terminal configuration 
you typed in at the beginning of your login session so that you could enter vi. 

Type in: <0> 

Now you are ready to append text to the end of the file. 

Type in: TERM=code<CR> 
export TERM <CR> 

Remember "code" is the special code characters for your type of terminal. 

Write and quit vi. Now, the next time that you log into the ICONjUXV system TERM is 
automatically set and you can immediately begin editing with vi. 

Setting the Automatic Carriage Return 

If you want an automatic carriage return, create a new file .exrc. The .exrc file controls 
the editing environment for vi. There are several options you can set in this file. If you 
want to know more about .exrc, read the Editing Guide. (See Appendix A.) 

ICONjUXV USER GUIDE 6-79 



SCREEN EDITOR TUTORIAL (vi) 

Type in: vi .exrc<CR> 

Add one line to this file. 

Type in: wm==n<CR> 

"n" is the number of characters from the right side of the screen where the carriage return 
will occur. If you want a carriage return at 20 characters from the right edge of the 
screen, 

Type in: wm 20<CR> 

Write and quit that file. The next time you login this file will give you an automatic 
carriage return. 

You can check on these settings, the terminal setting and the wrapmargin (automatic 
carriage return) when you are in vi. 

Type in: :8et<CR> 

vi will tell you the terminal type and the wrapmargin. You can also use the :set command 
to create or change the wrapmargin. Try experimenting with it. 

Now you know the basics of vi! Experiment with the commands, find the ones that work 
best for you. 

ANSWERS TO EXERCISES 

There is often more than one way to perform a task in vi. IT the way you tried worked, then your 
answer is correct. Below are suggestions for performing the task given in the exercise. 

Exercise 1 

I-I. Look up your terminal code with the following command. Type in: 

grep "your type of terminal" /etc/termcap<CR> 

The first two letters of of the system response are your terminal code. Type in: 

1-2. Type in: 

6-80 

TERM-code<CR> 
export TERM<CR> 

vi exerl<CR> 
<a> 
This is an exercise!<CR> 
Up. down<CR> 
left, right,<CR> 
build your terminal's<CR> 
muscles bit by bit.<ESC> 

ICON INTERNATIONAL 



J 

ANSWERS TO EXERCISES 

1-3. Use the <k> and the <h> commands. 

1-4. Use <x>. 

1-5. Use the <j> and <I> commands. 

1-6. Type in: 
<a> <CR> 
and byte by byte<ESC> 

Use <j> and <I> to move to the last line and character of the file. Use <a> to add text. <CR> will 
create the new line. <ESC> will end the create mode. 

1-7. Type in: 
ZZ 

1-8. Type in: 
vi exerl<CR> 

System response: "exerl" 6 lines, 100 characters 

Exercise 2 

2-l. Type in: 

2-2. Type in: 

vi exer2<CR> 
<a>I<CR> 
2<CR> 
3<CR> 

4S<CR> 
49<CR> 
50<ESC> 

<AI'> 
<Ab> 
<AU> 
<Ad> 

Notice the line numbers as the screen changes. 

2-3. Type in: 
<G> 
<0> 
1234567S9 1234567S9<ESC> 

2-4. $ - end of line 
o - first character in the line 

2-5. Type in: 

2-6. Type in: 

<A> 
<w> 
<b> 
<e> 

<IG> 
<M> 
<L> 
<H> 

lCONfUXV USER GUIDE 6-S1 



SCREEN EDITOR TUTORIAL (vi) 

2-7. Type in: 

Exercise 3 

3-1. Type in: 

3-2. Type in: 

18 
<n> 
148 

vi exeI'3<CR> 

<a> Append text <OR> 
Insert text<CR> 
a computer's <OR> 
job is boring.<ESO> 

3-3. Type in: 
<0> 
financial statement and<ESO> 

3-4. Type in: 
<3G> 
<i>Delete text<OR><ESO> 

The text in your file now reads: 

Append text 
Insert text 
Delete text 
a computer's 
financial statement and 
job is boring. 

3-5. The current line is "a computer's". To create a line of text below that line use the <0> command. 

3-6. The current line is "byte of the budget". 
<G> will put you on the bottom line. 
<A> will begin appending at the end of the line. 
<CR> will create the new line. 
Then, type in the text "But, it is an exciting machine." 
<ESC> ends the append mode. 

3-7. Type in: 
<IG> 
ltext 
<i>some<space bal'><ESC> 

3-9. <ZZ> will write the buffer to ezer9 and put you in the command mode of the shell. 

Exercise .( 

4-1. Type in: 

6-82 

vi exeI'4<CR> 
<a> When in the course of human events<CR> 
there are many repetitive, boring<CR> 
chores, then one ought to get a<OR> 

ICON INTERNATIONAL 

/ 



( 

( 

4-2. Type in: 

robot to perform those chores.<ESC> 

<20> 
<A> tedious and unsavory<CR> 
<8BS> 
<ESC> 

Press <h> until you get to the "b" of "boring" then press 
<dw>. Or, you could have used <6x>. 

4-3. You are at the second line. Type in: 
<2j> 
<I> congenial and computerized<ESC> 
<dd> 

To delete the line and leave it blank, type in: 
<0> (zero to place you at the beginning of the line) 
<D> 

<H> 
<3dd> 

4·4. Write and quit vi. 

<zz> 
Remove the file. 

rm exer4<CR> 

Exercise 5 

5-1. Type in: 

5-2. Type in: 

5-3. Type in: 

vi exer2<CR> 
<80> 
<cc> END OF FILE <ESC> 

<10> 
<8"z1'1'> 
<0> 
<"zp> 

<80> 
<cc> 8 is great<ESC> 

ICON/UXV USER GUIDE 

ANSWERS TO EXERCISES 

6-83 





( 

c 

SCREEN EDITOR TUTORIAL (vi) 

5-4. Type in: 

5-5. Type in: 

Exercise 8 

6-1. Type in: 

<180> 
<.> 

</FI> 
<cw> EXERCISE<ESC> 

<!OF> 
<R>TO<ESC> 

vi exeI'8<CR> 
<a> (append several lines of text) 
<ESC> 

Turn off the terminal. 

6-2. 

6-3. 

Turn on the terminal. 
Log into the ICONfUXV system. Type in: 

vi -I' exeI'8<CR> 

Type in: 

Type in: 

:wq<CR> 

vi exel'l exeI'2<CR> 
:w<CR> 
:n<CR> 

:w junk<CR> 
ZZ 

vi exel'-<CR> 

(Response) 
8 files to edit (vi calls in all files with 

names that begin with ezer.) 

zz 
ZZ 

6-4. Type in: 

6-84 

view exeI'4<CR> 
<AI'> 
<Ad> 
<Ab> 
<AU> 

ICON INTERNATIONAL 





( 

( 

Chapter 7 

SHELL TUTORIAL 

PAGE 

MAKING UFE EASIER IN '1l£ SHEL.L. •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

HOW TO READ lHlS "T'U'TORIAL ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

SHB.L C~ LAl'GJACE ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
Special Characters in the Shell •••• __ .................................................................................................... . 

t..4etacharlCW5 •• _._ ... _ ...................... __ •• _._ ...................................................................... . 

Metacherae&.' Thn Matches All Characters •••• _ •• _ ••••••••••••••••••••••••••• _.' •••••••••••••••••••••••••••••••• 
Metacharacter Thll Matches One Character •••••• ...--............... _ •••••••••••••••••••• _ •••••••••••••••••••••••••• 
tv1etacharacters That Match One or a Specific Ranp of Characters ...................................... .. 
Commands in the Backaround f\Ac::)de •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

Sequential Execution •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

Turning orr Special Character ttAeaninc .................................................................................. . 
Turning Off Special Characters by Quoting ........................................................................... . 

Redirecting Input and Output ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

Redirectin& Inpufr.. .................................... _ •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

Redirectinl OUtput ••••••••••••••••••• __ ........................................................................................... . 
Pipes ••••••••••••••••••••••••••••••••••••••••• _ ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

7-1 

7-1 

7-3 
7-3 
7-3 
7-4 
7-8 
'1-'1 
'1-8 
7-9 

7-10 
7-10 
7-13 

'1-13 
7-14 
7-1'1 

Command Output Substitution •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 7-20 
Executing and Terminating Processes ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• '1-21 

Running Commands at a uter 1irrte ••••••••••••••••••••••••••••••••••••••• ~............................................... 7-:1 
Obtaining the Status of Running Processes ............................................................................ '1-24 
Terminatinl Active Processes •••••••••••• :..................................................................................... 7.26 
·Using the "Ie» Hang Up Command •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 7·26 

C~ LAI'IGlJAGE. EXERCISES ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• '1-27 

SHELL PR~~INQ.............................................................................................................................. 1-28 
Getting Started ........................................ _ •••••••••••••• _....................................................................... 7-28 

Creatinl: a SilT1J)le Shell PrcliCf8m ••••• ________ ........................................................................ '1-2U 

Executinc a Shell Procram ••••••••••••••••••••••••••••••••••••• __ •••••••••••••••••••••••• _ ••• _ ••••• _....................... 7·30 
Creating a bin Directory for Executable Files ••••• _................................................................... 7·31 

Variables •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• _................................................ 1-32 

Positional Parlnwters •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 7-32 

PararMters with Special t-4eaning •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• '1-38 

Variable NarTleS ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• '1-30 

Assi", Values to Variables •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• '1·40 

Assign Values by 'the Read COmnllnd ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 1-40 

Substitute Cornrnand Output for the Value of a Variable........................................................ 7-43 
Assign Values with Positional Pararneters................................................................................ 7-44 

Shell ProsrramrTlinc Construe" ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• _ .............................. _... '1-48 

Comnwnts •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• _ •••••••• _........... '1-48 
The Here [)c)curTI8nt •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 1-47 
Using ed in a Shell PrcliCfam ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 1-48 

Looping ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 7-60 
The for Loop •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 7-60 
The while Loop ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• '1·53 

Conditional Constructs if •.. then ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 7-iS 
The Shell Garb.,e Can !dev/null............................................................................................. '1-68 



The 1;est Comn1Ind for Loops ..... _ •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• '1-08 
The Conditional Cortstruct e.se .. esac ...................................................................................... . 

/ 
} '1-80 

Unconditional Control Sta"""nt break ••••• _ ........................................................................... . '1-13 "'- . 
.I 

DebuainK PrQlr.ns. ........................................................................................................................ . '1-14 
aAr;)difyinc Your Locin EnvironrMnt •• _ .................... _ ................................................ _ •••••••••••••••••••••••• 1-18 

Wttat is • .profile? ••••••••••••• _ ••••••• _. __ .................................................... _ •••••••••••••••••••••••• 1-18 
Addi"" Corru1'wnds 1io .profile ................................................................................................. . 1 .. 18 
Settinc Termnal Options ••••• _ ...................................................................... _ •••••••••••••••••••••••• 1-19 
Us;", Shell V.riables ••••••••••• _ ....... _ •••••••• _ •••••••••••• _ ........ _ ••• _ •••••••••••••••••••••• _ •••••••••••••••••••••••• '1-70 

Conclusion ••••••••••••••••••••••••••••••••••••••••••••• _ ••••••••••••••••••••••••••••••••••••••••• _ •••••••• _ ................................. _. 1-'12 

SHELL. p~~ EXERCISES ......................................................................................................... . 1-'12 

~ TO EXERCISES ••••••••• _ ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 1-'13 
Comnlll1id L.an",l"e Exercises ........................................................................................................... . 7-73 
Shell Procramminc Exercises ••••••••••••••••••••••••••••••••••••••• _ ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• '1-74 

C) 



( 

··C·'· i 

Chapter 7 

SHELL TUTORIAL 

MAKING LIFE EASIER IN THE SHELL 

You have used the shell to interact with the ICON/UXV system by typing in commands 
that give you information, such as who, or commands that perform a task, such as sort. 
This chapter introduces some methods and commands that will help expedite the day-to
day tasks that you perform in the shell. 

The first part of the tutorial, Shell Command Language, introduces some basic shortcuts 
and commands to help you perform tasks in the ICON/UXV system quickly and easily. 
The second part of the tutorial, Shell Programming, shows you how to put these tasks into 
a file and call on the shell to execute the commands in the file while you go get a cup of 
coffee. The following basics are covered: 

• How to use some special characters in the shell, 

• How to redirect input and output, 

• How to execute and terminate processes, 

• How to create and execute a simple shell program, 

• How to use variables in a shell program, 

• How to use shell programming constructs for looping, conditional execution, and 
unconditional execution, 

• How to locate problems and debug a shell program, and 

• How to modify your login environment by editing the file called .profile. 

If, after you have read this tutorial, you want to learn more advanced concepts in shell 
programming, read Part 8, Shell Commands and Programming of this manual. (See 
Appendix A.) 

HOW TO READ TmS TUTORIAL 

Log into your ICONjUXV system and try the examples as you read the text. Experiment 
with the concepts and perhaps combine them into a shell program. Often, there is more 
then one correct way to write a shell program. You may discover a different method. If 
your shell program works, if it performs the task, then it is a correct method. 

ICON/UXV USER GUIDE 7-1 



SHELL TUTORIAL 

Here is a quick review of the text conventions mentioned lD Chapter e that are used 
throughout this book. 

bold eommand(Type in the command line exactly as shown.) 

italic response(The system's response to a command.) 

< > (Commands that are typed in, but not displayed 
on your terminal, are enclosed in < >.) 

A g (A control character, hold down the control key 
CTRL while your press "g".) 

A display screen like the one above is used to illustrate the commands and the text of the 
shell programs. You may not be working on a terminal with a screen. This will not affect 
the shell tasks that you perform or shell programs that you create. The lines that you type 
in and the system responses should be the same. 

7-2 ICON INTERNATIONAL 

c ) 

c 



( ) 

SHELL COMMAND LANGUAGE 

SHELLCO~LANGUAGE 

Special Characters in the Shell 

The shell language has special characters that give you some shortcuts for performing tasks 
in the shell. These special characters are listed below and are discussed in this section of 
the tutorial. 

Metacharacters 

• r [] These are metacharacters. A metacharacter is a 
character that has a special meaning in shell 
command language. These metacharacters give 
you shortcuts for file names. 

&. This character places commands in the 
background mode. While the shell is performing 
the commands in the background, your terminal 
is free for you to work on other tasks. 

\ 

" " 

This character allows you to type in several 
commands on one line. Each command must be 
followed by a ;. When you type in the <CR>, 
each command will execute sequentially from the 
beginning of the line to the end of the line. 

This character allows you to turn off the meaning 
of special characters such as *, 1, [ j, & and j • 

Both double· and single quotes turn off the 
delimiting meaning of the space, and the special 
meaning of special characters. However, double 
quotes will allow the characters $ and \ to retain 
their special meaning. (The $ and \ are discussed 
later in this chapter and are important for shell 
programs. 

The meaning of the metacharacters is similar to saying "etc. etc. etc.", "all of the above", 
or "one of these". Using metacharacters for all or part of a file name is called file name 
generation. It is a quick and easy way to refer to file names. 

ICON/UXV USER GUIDE 7-3 



SHELL TUTORIAL 

Metacharacter That Matches All Characters 

This metacharacter matches "aU", any string 
of characters, including no characters at all. 

The * alone refers to all the file names in the current directory, the directory you are in 
now. To see the effect of the *, try the next command. 

Type in: echo *<CR> 

The echo command displays its arguments on your terminal. The system response to 
echo * should have been a listing of all file names in the current directory. However, 
unlike Is, the file names were displayed in horizontal lines instead of a vertical listing. 

Since you may not have used the echo command before, here is a brief recap of the 
command. 

Problem: 

Command Recap 

. echo - write any arguments to the output 

command 

echo 

Description: 

Remarks: 

optionB arguments 

none any character 

echo writes arguments, which are separated by 
blanks and ended with <OR>, to the output. 

In shell programming, echo will be used to issue 
instructions, to redirect words or data into a file, 
and to pipe data into a command. All of these 
uses will be discussed later in this chapter. 

Be very careful with • because it is a powerful character. If you type in rm • you will erase all the 
files in your current directory. 

7-4 ICON INTERNATIONAL 



( 

(' 

SHELL COMMAND LANGUAGE 

The • metacharacter is also used to expand file names in the current directory. If you have written 
several reports and have named them: 

then 

report 
reportl 
report1a 
reportlb.01 
report2S 
report316 

report· 

refers to all six reports in the current directory. If you want to find out how many reports you have 
written, you could use the Is command to list all the reports that begin with the letters report. 

$ Is report·<CR> 
report 
reportl 
reportla 
reportlb.Ol 
report£5 
rep ort91 6 
$ 

The • refers to any characters after the letters report, including no letters at all. Notice that • 
calls the files in numerical and alphabetical order. A quick and easy way to print out all of those 
reports in order is: 

Type in: pr report·<CR> 

Choose a character that your file names have in common, such as an ., and list all those files in the 
current directory. 

Type in: Is ·.·<CR> 

The • can be placed anywhere in the file name. 

Type in: Is F·E<CR> 

This command line would list all of the following files in order: 

F123E 
FATE 
FE 
Fig3.4E 

ICONfUXV USER GUIDE 7-5 



SHELL TUTORIAL 

Metachal'acter That Matches One ChaJ'aeter 

This metaehal'aeter matches any 
single eh&I'aeter. 

The 1 metacharacter replaces anyone character of a file name. It you have created text for several 
chapters of a book, but you only want to list the chapters you have written through chapter9, you 
would use the 1 . 

$ Is chapterT<CR> 
chapterl 
chapterf 
chapter5 
chapter9 

• 
Although! matches anyone character, you .can use it more than once in a file name. To list the 
rest of the chapters up through chapter9g, type in: 

Is chapter!!<CR> 

Of course, if you want to list all the chapters in the current directory you would use chapter·. 

Problem: 
Sometimes when you mv or cp a file you accidentally press a character that does not print out on 
your terminal as part of the file name when you do an Is. If you try to cat that file, you get an 
error message. The * and! are very useful in calling up the file and moving it to the correct name. 
Try the following example. 

1. Make a very short file called trial. 

2. Type in: mv trial trial<"g>l<CR> 

Remember to type in <"g> you hold down the CTRL key and press the "g" key. 

3. Type in: Is trial1<CR> 

'7-8 ICON INTERNATIONAL 



(; 

SHELL COMMAND LANGUAGE 

• Is triall<CR> 
tnall not found 

• 

4. Type in: Is trial!!<CR> 

$ Is trialTl<CR> 
triall 
$ mv trial!! triall<CR> 
$ Is triall <CR> 
triall 
$ 

Metacharacters That Match One of a Specific Range of Characters 

The shell matches one of 
the specified characters 
or range or characters 
within the brackets. 

Characters enclosed in {I act as a specialized form of the T . The shell will match only one of the 
characters enclosed in the brackets in the position specified in the file name. If you use [crt] as part 
of a file name, the shell will look for c, or r, or r. 

ICONjUXV USER GUIDE '1-7 



SHELL TUTORIAL 

• Is [crf1at<CR> 
cat 
fat 
rat 

• 
The shell will also look for a range of characters within the brackets. For chapter [0-5] the shell 
looks for the files named thapterO through chapter5. This is an easy way to print out only certain 
chapters at one time. 

Type in: pI' chapter [2-4]<CR> 

This command will print out the contents of chapter!, chapterS, and chapter4 in that order. 

The shell will also look for a range of letters. For [A-Z], the shell will look for uppercase letters, or 
for [a-s], the shell will look for lowercase letters. 

Try out each of these metacharacters on the files in your current directory. 

Commands in the Background Mode 

This character, placed at the end of a command 
line, runs a task in background mode. 

Some shell commands take considerable time to execute. It is convenient to let these commands run 
in background mode to free your terminal so that you can continue to type in other shell tasks. 
The general format for a command to run in background mode is: 

command &;<CR> 

The grep command can perform long searches that may take a lot of time. If you place the grep 
command in a background mode, you can continue doing some other task at your terminal while the 
search is being done by the shell. In the example below, the background mode is used while all the 
files in the directory are being searched for the characters word. The &; is the last character after 
the command. 

7-8 ICON INTERNATIONAL 



(J 

( 

SHELLCO~NDLANGUAGE 

• ,rep word • 8c<CR> 
!1940 • 

11940 is the process number. This number is essential ir you want to stop the execution or a 
background command. This will be discussed in Ezeeuting and Terminating Proeeaaea. 

In the next section or this tutorial you will see how to redirect the system response or the ,rep 
command into a file so that it does not display on your terminal and interrupt your current work. 
Then, you can look at the file when you have finished your task. 

Sequential Execution 

The shell performs sequential execution 
of commands typed on one line and 
separated by a ; • 

If you want to type in several commands on one line, you must separate each command with a ; . 
The general rormat to place command!, command2, and command3 on one command line is the 
rollowing: 

command!; command2; command3<CR> 

Sequential execution is very userul ir you need to execute several shell commands while you are in 
the line editor ed. (See the section on Other Uat/vl Oommanda and In/ormtltion in Ohapter 5.) Try 
out the ;. Type in several commands separated by a ;. Notice that, arter you press <OR>, the 
system responds to each command in the order that they appear on the command line. 

Type in: cd; pwd; Is; ed trial<CR> 

The shell will execute these commands sequentially: 

1. cd Change to login directory. 

2. pwd Print the path of the current directory. 

3. Is List the files in the current directory. 

4. ed trial Enter the line editor ed and begin editing the file trial. 

ICONfUXV USER GUIDE 7-9 



SHELL TUTORIAL 

Did you notice the rapid fire response to each of the commands? You may not want these responses 
to display on your terminal. The section on Redirecting Output will show you how to solve this 
problem. 

Turning Oft' Special Character Meaning 

The backslaah turns oft' the special 
meaning of a metacharacter. 

How do you search for one of the special characters in a file? Type in a backslash just before you 
type in the metacharacter. The backslash turns off the special meaning of the next character that 
you type in. Create a file called trial that has one line containing the sentence "The all * game". 
Search for the * character in the file trial . 

• grep \ * trial<CR> 
The all * game 

• 

Turning Oft' Special Characters by Quoting 

7-10 

All special characters 
enclosed in single quotes 
lose their special meaning. 

ICON INTERNATIONAL 



( 

( 

SHELL COMMAND LANGUAGE 

~ ... ~ All BpeciaI'characters except 
S, \, and lose their special 
meaning when they are in 
double quotes. 

The special characters in the shell lose their special meaning when they are enclosed by quotes. The 
single quote turns off the special meaning or ~y character. "q'he double quote will turn off the 
special meaning of any character except • and . The' and are very important characters in 
shell programming. 

A delimiter separates arguments, telling the shell where one argument ends and a new one starts. 
The space has a special meaning to the shell because it is used as a delimiter between arguments of 
a command. 

The banner command uses spaces to delimit arguments. H you have not used the banner 
command, try it out. The system response is rather surprising. 

Type in: banner happy birthday to you<CR> 

Was each word displayed in large poster sized letters? 

Now put quotes around to you. 

Type in: banner happy birthday "to you"<CR> 

Notice that to and you appear on the same poster display line. The space between the to and the 
you has lost its special meaning as a delimiter. 

Since you may not have used the banner command before, the following is a quick recap of that 
command. You may find that you do not have access to the banner command. Not all systems 
have all the commands referenced in this chapter. H you cannot access a command, check with 
your system administrator. 

ICONjUXV USER GUIDE 7-11 



SHELL TUTORIAL 

command 

banner 

Description: 

Remarks: 

Command Recap 

banner - make posters 

options 

none 

arguments 

characters 

Displays arguments, up to ten characters on a 
poster-sized line, in large letters. 

Later in this chapter you will learn how to redirect 
the banner command into a file to be used as a 
poster. 

If you use single quotes in the argument for the grep command, the space loses the meaning of a 
delimiter. You can search for two words. The line, The all - game is in your file trial. Look for 
the two words The all in the file trial . 

• grep 'The all' trial<CR> 
The all It game 

• 
Try turning oft' the special character meaning of the - using single quotes. 

7-12 

grep ,-, trial<CR> 
The all It game 

• 

ICON INTERNATIONAL 



( 

( 

, 
/ 

(~l 

SHELL COMMAND LANGUAGE 

It you want to know more about quoting, read the IOON/UXV Uaer Reference Manual pages on the 
sh command. 

Redirecting Input and Output 

The redirection of input and output are important tools for performing many shell tasks and 
programs. 

Redirecting Input 

You can redirect the text of a file to be the input for a command. 

This character redirects the contents 
ot a file into a command. 

The general format to redirect the contents of a file into a command is shown below. 

command < filename<CR> 

It you write a report to your boss, you probably do not want to type in the mail command and then 
type in your text. You want to be able to put your report in an editor and correct errors. You 
want to run the file through the spell command to make sure there are no misspelled words. You 
can mail a file containing your report to another login using the redirection symbol. In the example 
below, a file called report is checked for misspelled words and then redirected to be the input to the 
mail command and mailed to login boss. 

• spell report<CR> • 
• mail boss < report<CR> • 

Since the only response to the spell command is the prompt, there are no misspelled words in report. 
The spell command is a useful tool that gives you a list of words that are not in a dictionary 
spelling list. The following is a brief recap of spell. 

ICONjUXV USER GUIDE 7-13 



SHELL TUTORIAL 

command 

spell 

De.ertption: 

Options: 

Remarks: 

Command Recap 

spell - find spelling errors 

option8 

available· 

argument8 

tlleD&llle 

spell collects words Crom the specified file or files 
and looks them up in a spelling list. Words that 
are not on the spelling list are displayed on your 
terminal. 

spell has several options, including one for 
checking the British spelling. 

The misspelled words can be redirected into a file. 
See the redirection symbol> discussed next. 

• See the lCON/ UXV U,er Reference MGnuGI for all available options and an explanation or their capabjlities. 

Redirecting Output 

You can redirect the output of a command to be the contents' of a file. When you redirect output 
into a file, you can either create a new file, append the output to the bottom of a file, or you can 
erase the contents of an old file and replace it with the redirection output. 

This character redirects the output 
ot a command into a file. 

The single redirection symbol> will create a new file, or it will erase an old file and replace the 
contents with new output. The general format to redirect output is shown below. 

command> fileD&llle<CR> 

If you want the spell command list of misspelled words placed in a file instead of displayed on your 
terminal, redirect spell into a file. In the example, spell searches the file memo for misspelled words 
and places those words in the file mi88pell. 

'1-14 ICON INTERNATIONAL 



( 

( 

SHELL COMMAND LANGUAGE 

• spell memo> misspell<CR> • 
The sort command can be redirected into a file. Suppose a file called Ii.t contains a list of names. 
In the next example, the output of the sort command lists the names alphabetically and redirects 
the list to a new file Rame". 

r 
Problem: 

• sort list> names<CR> • 

Be careful to choose a new name for the file that will contain the alphabetized list. The shell first 
cleans out the contents of the file that is going to accept the redirected output, then it sorts the file 
and places the output in the clean file. If you type in 

sort list > list<CR> 

the shell will erase lid and then sort nothing into lid. 

Problem: 
If you redirect a command into a file that exists, the shell will erase the existing file and put the 
output of the command into that file. No warning is given that you are erasing an existing file. If 
you want to assure yourself that there is not an existing file, first execute the Is command with the 
file name as an argument. 

If the file exists, Is will list the file. If the file does not exist, Is will tell you the file was not found in 
the current directory. 

ICONfUXV USER GUIDE 7-15 



SHELL TUTORIAL 

• Is flIename<CR> 
filename 

• Is Junk<CR> 
junk not found 

• 
The double redirection symbol » appends the output of a command after the last line of a file. 

The general format to append output to a file is: 

eommand > > flIename<CR> 

In the next example, the contents of trialt are added after the last line of triall by redirecting the 
eat command output of trialt into trial1. 

The first command, eat triall, displays the contents of trial1. Then, eat trial2 displays the 
contents of trialt. The third command line, eat trial2 » trial!, adds the contents of trialt to the 
bottom of file trial1, and eat triall displays the new contents of trial1. 

Scat triall<CR> 
hello 
tM8 i8 a trial 
TM8 i8 the la8t line of thi8 file 
S 
Scat tria12<CR> 
Add tM8 to file trial1 
ThiB iB the lGBt line of file tnalt 
S 
Scat tria12 » triall<CR> 
Scat triall<CR> 
hello 
tMB ;B a trial 
Th;B ;B the IGBt line of tMB file 
Add thiB to file triall 
ThiB ;B the laBt line of file trialt 
S 

In the section on Special Oharacter&, ODe of the examples showed how to execute the grep command 
in background mode with Iii;. Now, you can redirect the output of that command into a file called 
word file, and then look at the file when you have finished your current task. The Iii; is the last 

7-16 ICON INTERNATIONAL 

~) 



( 

SHELL COMMAND LANGUAGE 

character of the command line . 

Pipes 

• pep word" > wordflle &<CR> • 

The: character is called a pipe. It redirects the output of one command to be the input of another 
command. 

This character directs the output 
from one command to be the input 
of the next command. 

If two or more commands are connected by a pipe, I , the output of the first command is "piped" 
into the next command as the input for that command. 

The general format for the pipe line is: 

commandl command2 command3<CR> 

The output of commandl is used as the input of command2. The output of command2 is then 
used as the input for command3. 

You have already tried the banner display on your terminal. The pipe can be used to send a banner 
birthday greeting to someone by electronic mail. 

If the person using login david has a birthday, pipe the banner display of happy birthday into the 
mail command. 

Type in: banner happy birthday I mail david<CR> 

Login david will get a banner display in his electronic mail. 

The date command gives you the date and the time. Since you may not have used the date 
command before, a brief recap of date follows. 

ICONjUXV USER GUIDE 7-17 



SHELL TUTORIAL 

command 

date 

Description: 

Options: 

Remarks: 

Command Recap 

date - display the date and time 

option8 

+%m%d%,.* 
+%B%M%S 

argument8 

available· 

date displays the current date and time on your 
terminal. 

+% followed by m for month, d for day, y for year, 
H Cor hour, M for month, and S for second will 
echo these back to your terminal. You can add an 
explanation to these such as: 

date • +%H:M is the time' 

If you are working on a small computer system in 
which you are acting as both user and system 
administrator, you may be able to set the date and 
time using optional arguments to the date 
command. Check your reference manual for 
details. When working in a multiuser environment, 
the arguments are available only to the system 
administrator. 

• See the ICON/ UXV U,er Reference MlJnulJl ror all aV6.ila.ble options and an expla.nation or their capabilities. 

Try out the date command on your terminal. 

'1-18 

• date<CR> 
Mort Nov t5 17:57:tl CST 1985 
S 

ICON INTERNATIONAL 



(/ 

SHELL COMMAND LANGUAGE 

Notice that the time is given from the 12th character through the 19th character. H you want to 
know just the time and not the date, you can pipe the output of the date command into the cut 
command. The cut command looks for characters only in a specified part of each line of a file. If 
you use the -c option, cut will choose only those characters in the specified character positions. 
Character positions are counted from the left. To display only the time on your terminal pipe the 
output of the date command into the cut command asking for characters 12 through 19 . 

• date I cut -e12-1G<CR> 
18:08:28 

• 

Several pipes can be used in one command line. The output of the example can be piped into the pr 
command. 

Type in: date cut -e12-19 pr<CR> 

Try each of these examples. Check the system response. 

Later in this chapter, you will write a shell program that will give you the time. 

Since you may not have used the cut command until now, a brief recap of that command follows 
next. 

ICON{UXV USER GUIDE 7-19 



SHELL TUTORIAL 

Command Recap 

cut - cut out selected fields of each line of a file 

command 

cut 

Description: 

Options: 

Remarks: 

option, ar,ument, 

-clist fUel fUe2 
-flist [-dJ 

cut will cut out columns from a table or fields from 
each line of a file. 

-c lists the number of character positions from the 
left. A range of numbers such as characters 1-9 
can be specified by -c1-9 

-f lists the number of fields from the left separated 
by a delimiter described by -d. 

-d gives the field delimiter for -f. The default is 
a tab. If the delimiter is a colon, this would be 
specified by -d : . 

If you find the cut command useful, you may also 
want to use the paste command and the split 
command. 

Command Output Substitution , 
The output of any command line or shell program that is enclosed in back quotes, ,can be 
substituted anywhere on a shell command line. In the section on Shell Programming, you will 
substitute the output of a command line as the value for a variable. 

Substitute the output of the 
command line in back quotes. 

The output of the time command can be substituted for the argument in a banner printout. , , 
Type in: banner date I cut -c12-19 <CR> 

7-20 ICON INTERNATIONAL 

C~/ 



( 

SHELL COMMAND LANGUAGE 

Did you get a banner display oC the time? 

Executing and Terminating Proceeses 

Running Commands at a Later Time 

When you type in a command line at your terminal, the ICONfUXV system tries to execute that 
command immediately. It is possible to tell the system to execute those commands at another time 
with the batch or the at command. End the commands with <Ad> to let the shell know you have 
finished listing the commands to be executed. 

The batch command is useCul iC you are running a process or shell program that uses a longer then 
normal amount oC system time. The batch command submits a "batch" job, which consists oC the 
commands to be executed, to the system. The job is put in a queue, and then the job is run when 
the load on the system Calls to an acceptable level. This Crees the system to rapidly respond to 
other input by yourselC or others on the system. 

The general format for batch is: 

batch<CR> 
first command<CR> 

last command<CR> 
<"d> 

H there is only one command line, it may follow the batch command. 

batch command line<CR> 
<Ad> 

The next example uses the batch command to execute the pep command at a convenient time. 
When the system can execute that command and still respond quickly to other users, it will execute 
the grep command to search all the files for the word dollar, and redirect the output into the file 
dol-file. Using the batch command is a courtesy to other users sharing your ICONfUXV system. 

ICONfUXV USER GUIDE 7-21 



SHELL TUTORIAL 

• batch &rep dollar • > dol-flIe<CR> 
<Ad> 
j06 155ee8141.6 4t Mon Dec 7 11:1.1:5411188 

• 

A brief recap of the batch command follows. 

Command Recap 

batch - execute commands at a later time 

command 

batch 

Description: 

Remarks: 

options argvm~nts 

none command lines 

batch submits a "batch job", which is placed into 
a queue and executed when the load OD the system 
falls to an acceptable level. 

The list of. commands must end with a < ... d> to 
tell the system the last command has been typed in 
for this batch job. 

The at command gives the system a specific time that the commands are to be executed. The 
general format for the at command is: 

at time<CR> 
first command<CR> 

last command<CR> 
<Ad> 

The time must first give the time of day and then the date, if the date is not today. 

7-22 ICON INTERNATIONAL 



SHELL COMMAND LANGUAGE 

If you are afraid you will forget login david's birthday, you can use the at command to make sure 
the banner birthday greeting will arrive on his birthday . 

• at 8:15am. Feb 27<CR> 
banner happy birthday I mail david<CR> 
<Ad> 
job ,459,400609.0. at Mon Feb t7 08:15:00 198,4 • 

Both the batch and at commands give you a job number. If you decide you do not want to execute 
the commands currently waiting in a batch or at job queue, you can erase those jobs with the -r 
option of the at command and the job number. The general format is: 

at -r jobnumber<CR> 

Try erasing the previous at job for the happy birthday banner. 

Type in: at -r 453400803.a<CR> 

If you have forgotten the job number, the at -I command will give you the current jobs in the 
( batch or at queue. 

login will be your login name. 

$ at -I<CR> 
: login 16890t040.a a Tue Nov t9 19:00:00 1989 
: login 459400609.0. a Mon Feb t7 08:15:00 1984 

$ 

Try the following request. Using the at command, mail yourself a file at noon. The file, called 
memo, says that it is lunch time. You must redirect the file into mail. (You cannot type in the 
text directly unless you use the here document discussed in the Shell Programming section.) Now try 
the at command with the -I option. 

ICONjUXV USER GUIDE 7-23 

---- --- - ------- - -~~ 



SHELL TUTORIAL 

• at 12:00pm<CR> 
mail mylolin < memo<CR> 
<Ad> 
j06 t6919175-4.a at Jv.n 90 1t:00:00 1985 • • at -1<CR> 
: my/ogin t6919175-4.a at Jun 90 U:OO:OO 1985 

• 
A brief recap of the at command follows next. 

Command Recap 

at - execute a list of commands at a specified time. 

command 

at 

Description: 

Options: 

Remarks: 

0l't;on8 argument8 

time date 
-r jobnumber 
-1 

Executes commands at the time specified. The 
order of the arguments is the time which can be 1 
to 4 digits and "am" or "pm". The date need not 
be added it it is today. The date is specified by a 
month name followed by the number for the day. 

The -r option with the job number removes 
previously scheduled jobs. 

The -1 option without arguments gives the status 
of at and batch jobs and job numbers. 

Some times and dates are: at 08:15am Feb 27 and 
at 5:14pm Sept 24. 

Obtaining the Status of Running Proeesses 

The ps command will give you the status of the processes you are running. 

Running a process or command in background with Ill:. was discussed in the section on special 
characters. The ps command will tell you the status of those processes. In the next example, the 
grep command was run in the background, and then the ps command was typed in. The system 
response, the output from the ps command, gives the PID, which is the process identification 

7-24 lOON INTERNATIONAL 



( 

SHELL COMMAND LANGUAGE 

number, and TTY, which is the current number identification assigned to the terminal you are 
logged in on. It also gives the cumulative execution TIME for each process, and the COMMAND 
that is being executed. The PID is an important number if you decide to stop the execution of that 
command. 

'pep 'Word • 8c<CR> 
eBttS • • pe<CR> 
PID TTYTIME OOMMAND 
tB1t4 100:00 4h 
tBttS 100:04 grep 
tBtt4 100:04 p8 
S 

The example not only gives you the PID for the grep command, but also for the other processes 
that are running, the ps command itself, and the sh command that is always running as long as you 
are logged in. sh is the shell program that interprets the shell commands. It is discussed in 
Ohapter 1 and Ohapter 4. 

command 

ps 

Description: 

Options: 

Remarks: 

Command Recap 

ps - report process status 

option8 argument8 

several* none 

Displays information about active processes. 

This command has several options. If you do not 
use any options you will get the status of the 
active shell processes that you are running. 

Gives you the PID, the Process ID. This is needed 
if you are going to kill the process, that is, stop 
the process from executing. 

• See the ICON! UXV U.er Reference Manual ror all available options and an explanation of their capabilities. 

ICONjUXV USER GUIDE 7-25 



SHELL TUTORIAL 

Terminating Active Proceaaes 

The kill command is used to stop active shell processes. The general format for the kill command 
is: 

kill PID<CR> 

What do you do if you decide you do not need to execute the command that you are running in the 
background? If you press the BREAK key or the DEL key, you will find it does not stop the 
background process as it does the interactive commands. The kill command terminates a 
background process. If you want to terminate the crep command used in the previous example: 

S kill 28223<CR> 
t8tta Terminated 
S 

A recap of the kill command follows. 

command 

kill 

Description: 

Command Recap 

kill - terminate a process 

option8 argument8 

available* job number or PID 

kill will terminate the process given by the PID. 

• See the ICON! UXV U.er Reference Manual for all available options and an explanation of their capabilities. 

Using the No Hang Up Command 

Another way to kill all processes is to hang up on the system, to log off. What if you want the 
background process to continue to run after you have logged oft? The nohup command will allow 
background commands to continue to run even if you log off. 

nohup command &:<CR> 

If you place the Dohup command at the beginning of the command that you will be running as a 
background process, the background process will continue to run to completion after you have 
logged off. 

7-28 ICON INTERNATIONAL 

c 



( 

OOMMAND LANGUAGE EXERCISES 

Type in: nohup grep 'Word • > 'Word.list Ie<OR> 

The nohup command can be stopped by the kill command. The recap of the nohup command is 
the following: 

Command Recap 

nohup - runs a command, ignoring hanging up or 
quitting the system 

command 

nohup 

Description: 

optionll argumcnt8 

none command line 

Executes a command line, even if you hang up or 
quit the system. 

Now that you have mastered these shortcuts in the shell commands, use them in your shell 
programs. 

1-1. 

1-2. 

COMMAND LANGUAGE EXERCISES 

What happens if you use the * at the beginning of a file name? Try to list some of the files 
in a directory using the * with a last letter of one of your file names. What happens? 

Try out the following two commands. 

Type in: cat [0-9]·<CR> 
echo ·<CR> 

1-3. Can you use ? at the beginning or in the middle of a file name generation? Try it. 

1-4. Do you have any files that begin with a number? Can you list them without listing the 
other files in your directory? Can you list only those files that begin with a lowercase letter 
between a and m? (Hint use a range of numbers or letters in [ D. 

1-5. Can you place a command in background mode on the line that is executing several other 
commands sequentially. Try it. What happens? (Hint use ; and Ie.) Can the command in 
background mode be placed at any position on the command line? Try it. Experiment 
with each new character that you learn, so that you can learn the full power of the 
character. 

1-6. Using the command line 

cd; pwd; Is; ed trial<CR> 

redirect the output of pwd and Is into a file. Remember, if you want to redirect both 
commands to the same file, you have to use » for the second redirection or you will wipe 
out the information from the pwd command. 

ICONfUXV USER GUIDE 7-27 



SHELL TUTORIAL 

1-7. Instead oC cutting the time out or the date response, try redirecting only the date, without 
the time, into banner. What is the only part that you need to change in the "time" 
command line? 

Getting St&l'ted 

, 
banner date 

, 
cut -c12-19 

SHELLPROG~G 

Let a shell program perrorm your tasks ror you. A shell program is a ICONfUXV file that contains 
the commands that you would use to perrorm your task. 

• How do you create a simple shell program? 

• What makes the program run? 

• Is there a special directory Cor your shell programs? 

In this section of the tutorial you will learn the answers to these questions. The examples for 
creating shell programs usually show two display screens. The first screen displays the contents of 
the file containing the commands used in your program. It shows the command line 

cat flle<CR> 

and the system response to that command, which is the contents or the file. 

$ eat flle<CR> 
Fir&t command 

La&t command 
$ 

The S indicates the shell prompt. The second screen shows the results or executing your shell 
program. 

7-28 ICON INTERNATIONAL 



SHELL PROGRAMMING 

r · m.<CR> Ren,lt, 

• 

The names of the file containing the shell program will be printed in bold in the text, since it is a 
command and not an ordinary text file. 

Before you begin to create shell programs, you should be familiar with one of the editors. The 
editors are discussed in the tutorials in Ohapter 5 and Ohapter 6. 

Creating a Simple Shell Program 

How do you think you would create a simple shell program that would: 

• Tell you the directory you were in, 

• List the contents of that directory, and then 

• Display on your terminal: "This is the end of the shell program". 

Think about it now before you read any further. 

To create the shell program, you will need the following three shell commands: 

pwd The command that prints the path name of the current directory, 

Is The command that lists the contents of the current directory, and 

echo The command that displays on your terminal the characters following echo. 

To create your shell program, using pwd, Is, and echo, enter an editor and type in the following 
three commands. . 

Type in: pwd<CR> 
Is<CR> 
echo This is the end of the shell program.<CR> 

Write the contents of the editor buffer to a file called dI (for directory list) and quit the editor. You 
have just created a shell program. 

IOONfUXV USER GUIDE 7-29 



SHELL TUTORIAL 

• cat dl<CR> 
ptod 
I, 
echo TAi, u the end 0/ the ,hell program. 
S 

Executing a Shell Program 

How do you tell the shell that your file is a shell program that needs to be executed? The simplest 
way to execute a program is to use the sh command. 

Type in: .h dl<CR> 

What happened? 

Did you notice the path name of the current directory printed out first, then the list of the contents 
of the current directory, and last of all the comment Thi, i, the end of the ,hell program. ? 

The sh command is a good way to test out your shell program to make sure that it works. 

If dl is a useful command, you will want to change the file permissions so that you need only type in 
dl to execute the command. The command that changes the permissions on a file, chmod, is 
discussed in Chapter 9. The example below reminds you how to type in the chmod command to 
make a file executable, and then do an Is -I so you can see the change in the permissions . 

• chmod u+x dl<CR> 
S Is -I<CR> 
tot41 ./. 
-no - - - - - - - 1 

drtJJ:trW:trW% 2 
-noz------ 1 

S 

login login 
login login 
login login 

9661 Nov 210:28 mboz 
1056 Nov 1118:20 rie 

./.8 Nov 1510:50 til 

Now you have an executable program dl in your current directory. 

Type in: dl<CR> 

Did the dl command execute? 

7-30 ICON INTERNATIONAL 



SHELL PROGRAMMING 

Creating a bin Directory tor Executable Files 

If your shell program is useful, you will want to keep it in a special directory called bin, which is 
under your login directory. 

If you want your dl command accessible from all your directories, make a bin directory from your 
login directory and move the dl file to your bin. Below is a reminder of those commands. In this 
example, dl is in the login directory. 

Type in: mkdir bin<CR> 
mv dl bin/dl<CR> 

Move to the bin directory and type in the Is -1 command. Does dl still have execute permission? 

Now move to another directory other than the login directory. 

Type in: dl<CR> 

What happened? 

A command recap of your new program dl follows. 

Shell Program Recap 

dl - display the directory path and directory contents 

command 

dl 

Description: 

arguments 

none 

Displays the output of the shell command pwd and 
then lists the contents of the directory. 

The bin is the best place to keep your executable shell programs. It is possible to give the bin 
directory another name, but you need to change the shell variable PATH to do so. The shell 
variables are discussed briefly in this chapter. For more advanced information read the document 
Shell Commands and Programming in Part 3 of this manual. 

Problem: 
You can give your shell program file any appropriate file name. However, you should not name your 
program with the same name as a system command. The system will execute your command and 
not the command of the system. 

If you had named your dl program mv, each time you tried to move a file, the system would not 
move your file. It would have executed your program to display the directory name and list the 
contents. 

Problem: 
Another problem would occur if you had named the dl file Is, and then tried to execute the file Is. 
You would create an infinite loop. After some time, the system would give you an error message: 

ICON/UXVUSER GUIDE 7-31 



SHELL TUTORIAL 

Too mtln, proce"e" ctlnnot lork 

What happened? You typed in your new command Is. The shell read the command pwd and 
executed that command. Then the shell read the command Is in your file and tried to execute your 
Is command. This formed an infinite loop: 

'* ) echo This is the end of the shell program 

ICONfUXV system designers wisely set a limit on how many times this infinite loop can execute. 
One way to keep this from happening is to give the path name for the system>s Is command, 
/bin/ls. 

The following Is shell program would work. 

Scat Is<CR> 
pwd 
/bin/Is 
echo This is the end 01 the ,hell program 

If you name your command Is, then you can only execute the system command with /bin/Is. 

Variables 

If you enjoyed sending the banner birthday greeting, you could make a shell program that would 
pipe the banner printout into the electronic mail. A good shell program would let you send to a 
different login each time you executed the program. The login would then be a variable. There are 
two ways you can specify a variable for a shell program: 

• Positional parameters and 

• Variables that you define. 

Positional Parameters 

A positional parameter is a variable that is found in a specified position in the command line of 
your shell program. Positional parameters are typed in after the command. They are strings of 
characters delimited by spaces, except for the last parameter, which is ended with <OR>. If ppl 
is the first positional parameter, pp2 is the second positional parameter, and ... pp9 is the ninth 
positional parameter, then the command line of your shell program called shell.prog will look like 
this. 

'1-32 ICON INTERNATIONAL 



( 

SHELL PROGRAMMING 

shell.prog ppl pp2 pp3 pp4 ppo pp8 pp'1 pp8 ppl<CR> 

The shell program will take the first positional parameter (ppl) and substitute it in the shell 
program text for the characters 11. The second positional parameter (pp2) will be substituted for 
the characters $2. The ninth positional parameter (ppl), of course, will be substituted for the 
characters $1. 

If you want to see how the positional parameters are substituted into a program, try typing the 
following lines into a file called pp (positional parameters). 

Type in: echo The first positional parameter is: I1<CR> 
echo The second positional parameter is: $2<CR> 
echo The third positional parameter is: S3<CR> 
echo The fourth positional parameter is: $"<CR> 

First the echo command tells which parameter will be displayed and then displays the parameter. 
The next example shows the contents of the file pp. 

$ cat pp<CR> 
echo The firat poaitional parameter is: $1 
echo The aecond poaitional parameter ia: $e 
echo The third positional parameter is: $9 
echo The fourth poaitional parameter is: $4 
$ 

The following example shows the results of giving the four positional parameters one, two, three, 
and four to the shell program pp. Remember to change the mode of pp to be executable. 

$ chmod u+x pp<CR> 
$ 
• pp one two three four<CR> 
The fir8t poaitional parameter ia: one 
The aecond poaitional parameter ia: two 
The third p08itional parameter is: three 
The fourth p08itional parameter i8: four 
$ 

Now, return to creating your shell program for the banner birthday greeting. Call the file bbday. 
What command line would go into that file? Before you go on reading, try it. 

ICONjUXV USER GUIDE '1-33 



SHELL TUTOlUAL 

Did you get the following? 

S cat bbday<CR> 
banner happy birthday I mail $1 

Try sending yourself a birthday greeting. If your login name is .Iowmo, then the command line 
would be: 

S bbday elowmo<CR> 
you have mail 
S 

The following is a brief recap of the shell program command bbday. 

Shell Program Recap 

bbday - mail a banner birthday greeting 

command 

bbday 

Deseription: 

argument8 

login 

bbday mails "happy birthday" in poster-sized 
letters to the specified login. 

The who command will tell you every login that is currently using the system. How would you 
make a simple shell program called wh080n that will tell you if a particular login is currently 
working on the system? You could try the following: 

7-34 ICON INTERNATIONAL 



( 

SHELL PROGRAMMING 

• who: grep boss<CR> 
6044 tt'll51NotJ t9 17:01 
S 

This command pipes the output of the who command into the grep command. The grep command 
is searching for the characters "boss". Since login 6044 is currently logged into the system, the shell 
will respond with: 

6044 tt'll51 NOt) t917:01 

H the only response is a prompt sign, then login 6044 is not currently on the system because the 
grep command found nothing. Create a whoson shell program. 

Below are the ingredients for your shell program whoson. 

who The shell command that lists everyone on the system, 

grep The search command, and 

$1 The first positional parameter for your shell program. 

The grep command searches the output of the who command for the parameter designated in the 
program by $1. H it finds the login, it will-display the line of information. H it does not find the 
login in the output from who, it will display your prompt. 

Enter an editor and type the following command line into a file called whoson. 

Type in: who: grep U<CR> 

Write the file, quit the editor, and change the mode of the file whoson to have execute permission. 

Now try using your login as the positional parameter for the new program whoson. What was the 
system's response? 

H your login name is 4iowmo, your new shell command line would look like: 

ICONjUXV USER GUIDE 7-35 



SHELL TUTORIAL 

• whosoD alowmo<CR> 
a/owmo tt,t6 Jan £4 18:85 • 

The first positional parameter is slowmo. The shell substitutes slowmo (or the U in your 
program. 

who : grep slowmo<CR> 

The following is a brief recap of the whosOD command. 

Shell Program Recap 

whoson - display login information if user is logged in 

command 

Wh080D 

Description: 

a,.guments 

login 

If a user is on the system, displays the user's login, 
the TTY number, the time and date the user 
logged in .. 

The shell command line will allow 128 positional parameters. However, your shell program text is 
restricted to $1 through $9, unless you use the $. described below, or the shift command, which is 
described in Pa,.t 8, Shell Oommands and p,.og,.amming, of this manual. 

Parameters with Special Meaning 

$# This variable in your shell program will record and display the number of positional 
parameters you typed in for your shell program. 

Let's look at an example that will show you what happens when you use $#. Put the following 
command lines in a shell program called get.Dum. 

7-38 ICON INTERNATIONAL 

'j 



( 

c 

SHELL PROGRAMMING 

Scat get.num<CR> 
echo The number of parametera ia: S# 
S 

The program counts all the positional parameters and displays that number. Give get.num four 
parameters. They can be any string of characters. 

S get.num test out this program<CR> 
The number oj parametera is: 4 

• 

Shell Program Recap 

get.num - count and display the number of arguments 

command 

get.num 

Description: 

Remarks: 

argtlmenta 

(any string) 

get.num counts the number of arguments given to 
the command and then displays that number. 

This command demonstrates the special parameter 
*#. 

$* This variable in your shell program will substitute all positional parameters starting 
with the first positional parameter. The parameter $* does not restrict you to nine 
parameters. 

You can make a simple shell program to demonstrate $* . Make a shell program called 
show.param that will echo all of the parameters. Type in the echo command line shown in the 
following screen. 

ICONfUXV USER GUIDE 7-37 



SHELL TUTORIAL 

• cat show.param<CR> 
echo The parameter" lor thi" command are: ." • 

Make show.param executable and try it out. 

• show.param hello how are )"ou<CR> 
The parameter" lor thi" command are: hello how are you • 

Now try show.param using more than nine positional parameters. 

• show.param one two 3" 5 six 7 8 9 10 l1<CR> 
The parameters lor this command are: one two 9 -4 5 "ix 
7 8 9 10 11 

• 

The •• is very handy if file generation names are used &8 the p&rameters. 

Try a file name generation parameter in your show.param command. If you have several chapters 
of a manual in your directory called chapl, chap2 through chap7, you will get a printout listing of 
all of those chapters. 

7-38 ICON INTERNATIONAL 



( 

(-

c 

SHELL PROGRAMMING 

S show.param chap!<CR> 
The parametera lor tlaia command are: chapJ chapl e1&ap9 
chap4 chapS chap6 chap7 
S 

A quick recap of show.param follows. 

Shell Program Recap 

show.param - display all of the parameters 

command 

show.param 

Description: 

Remarks: 

arguments 

(any positional parameters) 

show.param displays all of the parameters. 

If the parameters are file name generations, it will 
display each of those file names. 

You may want to practice with positional parameters so that they are familiar to you before you 
continue on to the next section in which you will name the variables within the program, rather 
than use them as arguments in a command line. 

Variable Names 

The shell allows you to name the variables within a shell program. Naming the variables in a shell 
program makes it easier for another person to use. Instead of using positional parameters, you will 
tell the user what to type in for the variable, or you will give the variable a value that is the output 
of a command. 

What does a named variable look like? In the example below, varl is the name of the variable and 
myname is the value or character string assigned to that variable. There are no spaces on either 
side of the = sign. 

varl=myname<CR> 

Within the shell program, a S in front of the variable name alerts the shell that a substitution is 
needed in the shell program. Svarl tells the shell to substitute the value myname, which was 
given to varl, for the characters Svarl. 

The first character of a variable name must be a letter or an underscore. The rest of the name can 
be composed of letters, underscores, and digits. As in the case of shell program file names, it is a 

ICONfUXV USER GUIDE 1-39 



SHELL TUTORIAL 

risky business to use a shell command as a variable name. Also, the shell has reserved some 
variable names to be used by the shell. The following names are used by the shell and should not be 
used as the name of one of yo~ variables. A brief explanation of each variable is given. 

CDPATH 
This variable defines the search path for the cd command. 

HOME 
This is the default variable Cor the cd command (Home Directory). 

IFS 
This variable defines the internal field separators, normally the space, the tab, and the 
carriage return. 

MAlL 
This variable is set to the name of the file that contains your electronic mail. 

PATH 
This variable determines the path that is followed to find commands. 

PSI 
PS2 

These variables define the primary and secondary prompt strings. The defaults are $ and >. 
Do you have a prompt sign $? 

TERM 
This variable tells the shell what kind of terminal you are working on. It is important to set 
this variable iC you are editing with vi. 

Many of these named variables are explained in the last section of this chapter on your login 
environment. 

Assign Values to Variables 

If you edit with vi, you know that you must set the variable TERM to equal the code for your type 
of terminal before you use the vi editor. For example: 

TERM==T3<CR> 

This is the simplest way to assign a value to a variable. 

There. are several other ways to assign values to variables. One way is to use the read command to 
assign input to th~ vanable. Another way is to assign the value from the output oC a command 
using back quotes ... . A third way would be to assign a positional parameter to the variable. 

Assign Values by the Read Command 

You can set up your program so that you can type in the command and then be prompted by the 
program to type in the value Cor the variable. The read command assigns the input to the specified 
variable. The general format for the read command is: 

read var<CR> 

The values assigned by read to var will be substituted for $var in the program. I r I he echo 

'1-40 ICON INTERr\ATIONAL 

./ 



( 

SHELL PROGRAMMING 

command is executed just before the read command, the program can display the directions "type 
in ...... The read command will wait until you type in the value, and then assign the string of 
characters that you type in as the value for the variable. 

If you had a list that contained the names and telephone numbers of people you called often, you 
could make a simple shell program that would automatically give you someone's number. Stop for a 
minute. How would you make up the program using the following ingredients? 

echo The command that echoes the instructions. 

read The command that assigns the input value to the variable name. 

grep The command that searches for the person's name and number. 

First, you would use the echo command to inform the user to type in the name of the person to be 
called. 

echo Type in the last name<CR> 

The read command will then assign the person's name to the variable name. 

read name<CR> 

Notice that you do not use the == to assign the variable, the read command automatically assigns 
the typed in characters to name. 

The grep command will then search your phone list for the name. If your phone list were called 
list, the command line would be: 

grep Sname list<CR> 

In the next example, the shell program is called num.please. Remember, the system response to the 
cat command is the contents of the shell program file . 

• cat nuin.please<CR> 
echo T,pe in the 14,t ftClme 
reCld nClme 
grep bame li,t 

• 
Make a list of last names and phone numbers and try num.please. Or, try the next example, which 
is a program that creates a list. You can use several variables in one program. If you have a phone 
list, you may want a quick and easy way to add names and numbers to the list. The program: 

(~'\ • Asks for the name of the person, 

ICONfUXV USER GUIDE 7-41 



SHELL TUTORIAL 

• Assigns the name to the variable name, 

• Asks for the person's number, 

• Assigns the number to the variable Dum, and 

• Echos the name and Dum into the file list. You must use » to redirect the output of the 
echo command to the bottom of your list. If you use >. your list will contain only the last 
phone number. 

The program is called mknum. 

$ cat mknum<OR> 
echo T,pe in nllme 
read nllme 
echo T,pe in number 
read num 
echo Iname Inum > > list 
I 
$ chmod u+x mknum<OR> 
I 

Now tryout the new programs for your phone list. In the next example, mknum creates the new 
listing for Mr. Niceguy. Then, Dum.please gives you Mr. Niceguy's phone number. 

I mknum<CR> 
T,pe in the name 
Mr. Nicellly<OR> 
T,Ipe in the number 
118-0007 <OR> 
I 
$ Dum.please<CR> 
T,Ipe in last nllme 
Niceguy<CR> 
Mr. Nicegu, 668-0007 
I 

Notice that the variable Dame accepts both Mr. and Niceguy as the value. 

Here is a brief recap of mknum and Dum.please. 

ICON INTERNATIONAL 

(~ 

~ .. ) 



( 

SHELL PROGRAMMING 

Shell Program Recap 

mknum - place name and number on a phone list 

command 

mknwn 

Description: 

Remarks: 

argument" 

(interactive) 

Asks you for the name and number of a person and 
adds the name and number to your phone list. 

This is an interactive command. 

Shell Program Recap 

num.please - display a person's name and number 

command 

num.please 

Description: 

Remarks: 

argument" 

(interactive) 

Asks you for a person's last name, and then 
displays the name and telephone number. 

This is an interactive command. 

Substitute Command Output for the Value of a Variable 

Another way to assign a value to a variable is to substitute the output of a command for the value. 
This will be very useful in the next section when you try loops and conditiona.l constructs. 

The general format to assign output as the value for a variable is: , , 
var= command <OR> 

The variable var has the value of the output from command. 

In one of the previous examples on piping, the date command was piped into the cut command to 
get the correct time. That command line was: 

date : cut -e12-19<CR> 

You can place that command in a simple shell program called t that will give you the time. 

ICON/UXVUSER GUIDE 7-43 



SHELL TUTORIAL 

• cat't<OR> ' 
time- date I cut -clt-19 
echo The time i,: .time 
I 

Remember there are no spaces on either side of the equal sign. 

Change the mode on the file and you now have a program that gives you the time. 

I chmod u+x t<CR> 
It<CR> 
The time is: 10:96 

• 

The recap for the t shell program follows. 

command 

t 

Shell Program Recap 

t - display the correct time 

arguments 

none 

Description: t gives you the correct time in hours and minutes. 

Assign Values with Positional Parameters 

A positional parameter can be assigned to a named parameter. For example: 

varl==S1<OR> 

The example below is a simple program simp.p that demonstrates how you can a .... i!!n a positional 

'1-44 ICON 11'\'1'1 JlNATIONAL 

C) 

c 



( 

SHELL PROGRAMMING 

parameter to a variable. The command lines in the file would be the following: 

• cat simp.p<CR> 
tlllr1==11 
echo Svllr1 
1 

Or, you can assign the output of a command that uses a positional parameter. , , 
person== who : crep S1 <OR> 

If you wanted to keep track of the results of your .. hoson program, you could create the program 
log.time. The output of your ",hoson shell program is assigned to the variable person. Then, 
that value lperson is added to the file login.file with the echo command. The last part of the 
program displays the value of lperson, which is the same as the response to the ",hoson command. 

1 cat 1~.time<OR>' 
per!on== who': grep 11 
echo Iper!on > > login.file 
echo Iper!on 
1 

The system response to log.time would appear as in the following screen. 

• log.time maryann<CR> 
mllrYllnn tty61 Apr 11 10:t6 

• 
The following is a quick recap of the log.time program. 

ICONjUXV USER GUIDE 7-45 



SHELL TUTORIAL 

Shell Program Recap 

log.time - log and display a specified login that is 
currently logged in 

eommand 

log.time 

Description: 

ar,ument" 

login 

H the specified login is currently on the system, 
loa.time places the line of information from the 
who command into the file lo,in.file and then 
displays that line of information on your terminal. 

As you do more programming, you may discover other ways to assign variables that will help you in 
shell programs. 

Shell Programming Constructs 

The shell programming language has several constructs that give you more flexibility in your 
programs. 

• The "here document" allows you to redirect lines of input into a command. 

• The looping constructs for or while cause a program to reiterate commands in a loop, 

• The conditional control commands, if or'case, execute a group of commands only if a particular 
set of conditions is met. 

• The break command gives the unconditional end of a loop. 

Comments 

Before you begin writing shell programs with loops, you may want to know how to put comments 
about your program into the file, which the system will ignore. To place comments in a program, 
begin the comment with '# and end it with <CR>. The general format for a comment line is: 

,#comment<CR> 

The shell will ignore all characters after the:#. These lines 

'# This program senda a generic birthday greetina<CR> 
:# This program needs a login as the positional parameter<CR> 

will be ignored by the system when your program is being executed. They only serve as a reminder 
to you, the programmer. 

7-48 ICON INTERNATIONAL 

(~) 



( ) 

(~\ 

SHELL PROGRAMMING 

The Here Document 

The here document allows you to redirect lines of input of a shell program into a command. The 
here document consists of the redirection symbol « and the delimiter that specifies the beginning 
and end of the lines of input. The delimiter can be one character or a string of characters. The! is 
often used as a delimiter. The general format for the here document is: 

command «!<OR> 
.. .input lines ... <OR> 
!<OR> 

The here document could be used in a shell program, to redirect lines of input into the mail 
command. The program shown below sends a generic birthday greeting with the mail command. 
The program is called gbday. 

$ eat gbday<OR> 
mail $1 «I 
But wishes to you on your birthday. 
! 
$ 

The person's login is the first positional parameter $1. 

The redirected input is: 

Best wishes to you on your birthday. 

To send the greeting: 

r $ gbday mary<OR> 
$ 

To receive the greeting, login mary would execute the mail command. 

ICONJUXV USER GUIDE 7-47 



SHELL TUTORIAL 

• mail<CR> 
From m,login Mon Ma, 14 14:91 ODT 1984 
Beat wialaea to 'ou on ,our birthday • 

The following is a recap of gbelay. 

Shell Program Recap 

gbday - send a generic birthday greeting 

command 

gbday 

Description: 

argumenta 

login 

gbday sends a generic birthday greeting to the 
login given as an argument. 

Using ed in a Shell Program 

The line editor ed can be used within a shell program if it is combined with the here document 
commands. 

Suppose you want to make a shell program that will enter the editor, ed, make a global substitution 
to a file, write the file, and then quit the editor. The ed command to make a global substitution is: 

g/text to be changed/sf /new text/g<CR> 

Before you read any further, jot down what you think the cpmmand sequence will be. Put your 
command sequence into a file called ch.text. If you want to suppress the character count of ed so 
that it will not appear on your terminal, use the - option: 

ed - fllename<CR> 

Try to execute the file. Did it work? 

If you used the read command to enter the variables, your program ch.text may look similar to 
what appears in the following screen. 

'1-48 ICON INTERNATIONAL 

(\ 
: I 
~/ 



( 

SHELL PROGRAMMING 

, cat ch.text<CR> 
echo T,Ipe in the file name. 
read fild 
echo T,Ipe in the e:l:act ted to be changed. 
read oldte:l:t 
echo T,Ipe in the e:l:act new te:l:t to replace the above. 
read newted 
ed - 'filel «I 
gl$ 0ldte:l:tl81lSnewte:r:tl g 
w 
q 
! 
$ 

This program uses three variables. Each or them is entered into the program with the read 
command. 

Sfile The name or the file to be edited. 

Soldtext The exact text to be changed. 

Snewtext The new text. 

Once the variables are entered into the program, the here document redirects the global, write, and 
quit commands into the ed command. Try out the new ch.text command. 

S ch.text<CR> 
Type in the filename. 
memo<CR> 
Type in the e:l:act te:l:t to be changed. 
Dear John:<CR> 
Type in the e:l:act new ted to replace the above. 
To whom it may concern:<CR> 
Scat memo<CR> 
To whom it may concern: 
S 

Did you try to use positional parameters? Did you have any problems entering the text changes as 
variables, or did you quote the character strings ror each parameter? 

The recap or the ch.text command is: 

ICONfUXV USER GUIDE 7-49 



SHELL TUTORIAL 

command 

ch.text 

Description: 

Remarks: 

Shell Program Recap 

ch.text - cha.nge text in a file 

4rgument, 

(interactive) 

Replaces text in a file with new text. 

This shell program is interactive. It will prompt 
you to type in the arguments. 

If you want to become more familiar with the line editor ed, see Ohapter 5, Line Editor Tutorial 
(ed). 

The stream editor sed can also be used in shell programming. More inCormation on that editor can 
be found in the IOON/UXV Editing Guide. (See Appendix A.) 

Looping 

Until now, the commands in your shell program have been executed once and only once and in 
sequence. Looping constructs give you repetitive execution of a command or group oC commands. 
The for or while commands will cause a program to loop and execute a sequence oC commands 
several times. 

The for Loop 

The for loop executes a sequence of commands for each member of a list. The for command loop 
also requires the keywords in, do, and done. The for, do, and done keywords must be the first 
word on a line. The general format of the for loop is: 

for variable<CR> 
in this list of values<CR> 

do the following commands<CR> 
command l<CR> 
command 2<CR> 

last command<CR> 
done<CR> 

The variable can be any name you choose. If it is var, then the values given after the keyword in 
will be sequentially substituted for Ivar in the command list. If in is omitted, the values for var 

7-60 ICON INTERNATIONAL 



() 

SHELL PROGRAMMING 

will be the positional parameters. The command list between the keywords do and done will be 
executed for each value. 

When the commands have been executed for the last value, the program will execute the next line 
below done. If there is no line, the program will end. 

It is easier to read a shell program if the looping constructs stand out. Since the shell ignores spaces 
at the beginning of the lines, each section of commands can be indented as it was in the above 
format. Also, if you indent each command section, you can quickly check to make sure each do has 
a corresponding done statement to end the loop. 

The easiest way to understand a shell programming construct is to try an example. Try to create a 
program that will move files to another directory. 

The ingredients for the program are: 

echo 

read 

for variable 

in list of values 

You want to echo directions to type in the 
path name to reach the new directory. 

You want to type in the path name, and 
assign it to the variable path. 

You must name the variable. Call it file for 
your shell program. It will appear as Sfile in 
the command sequence. 

The list of values will be the file names. If 
the in clause is omitted, the list of values is 
taken to be S·, that is, the parameters 
entered on the command line. 

do command sequence The command sequence Cor this program is: 

mv Sfile Spath/Sfile<CR> 

done 

Your shell program text for the program called mv.file will look like: 

ICON/UXVUSER GUIDE 7-51 



SHELL TUTORIAL 

• cat mv.file<CR> 
echo Plea.e t,pe ira the directory path 
read path 
lor file 

in memol memo2 memoS 
do 

mtl ,file 'path/afile 
dorae 

• 
Notice that you did not type in any values f'or the variable file. The values are already in your 
program. If' you want to change the files each time you invoke the program, use positional 
parameters or variables that you name. You do not need the in keyword to list the values when 
you use positional parameters. If' you choose positional parameters, your shell program will look 
like: 

• eat mv.file<CR> 
echo t,pe in the director, path 
read path 
for file 
do 

mv $file Spath/$file 
done 
$ 

It is likely that you will want to move several files using the special file name generation characters. 

If' this is a usef'ul command, remember to move it into your bira. 

Following is a recap of'the mv.file shell program. 

7-52 ICON INTERNATIONAL 

( ." . 



SHELL PROGRAMMING 

Shell Program Recap 

mv.file - move files to another directory 

command 

mv.file 

Description: 

Remarks: 

The while Loop 

Moves files to a directory. 

ar,ument8 

file names (.) 
(interactive) 

This program requires the file names to be given as 
positional parameters. The path to the new 
directory is asked ror interactively by the program. 

The while loop will continue executing the sequence or commands in the do ••• done list as long as 
the final command in the while command list returns a status or true, that is can be executed. The 
while, do, and done keywords must be the first characters on the line. The general rormat or the 
while loop is the rollowing: 

while<CR> 
command l<CR> 

last command<CR> 
do<CR> 

command l<CR> 

last command<CR> 
done<CR> 

A simple program using the while loop enters a list or names into a file. The command lines ror 
that program called enter.name are: 

ICONjUXV USER GUIDE 7-53 



SHELL TUTORIAL 

$ eat enter.name<OR> 
while 

read z 
do 

eeho $z> >zfile 
done 
$ 

This shell program needs some instructions. You have to know to delimit or separate the names by 
a <OR>, and you have to use a <"'d> to end the program. Also, it would be nice if your program 
displayed the list of names in the zfile at the end of the program. If you added those ingredients to 
the program, the commands lines for the program become: 

$ cat enter.name<CR> 
eeho 'Plea8e type in each per80n'8 name and then a < OR> ' 
eeho 'Plea8e end the list of name8 with a < ~ d> ' 
while read x 
do 

echo Sx»zfile 
done 
echo zfile contain8 the following names: 
eat xfile 

• 

Notice that after the loop is completed, the program executes the commands below the done. 

In the echo command line, you used characters that are special to the shell, so you must use the 
, ••• ' to turn oft' that special meaning. Put the above command lines in an executable file and try 
out the shell program. 

7-54 ICON INTERNATIONAL 



( ) 

( 

SHELL PROGRAMMING 

S enter.name<CR> 
Pleaae type in each peraon'a name and then a < OR> 
Pleaae end the lid of namea with a <. d> 
Mary Lou<OR> 
Janice<CR> 
<Ad> 
~file containa the following namea: 
Mary Lou 
Janice 
S 

Conditional Constructs it ••• then 

The it command tells the shell program to execute the then sequence of commands only if the final 
command in the it command list is successful. The it construct ends with the keyword fl. The 
general format for the it construct is as follows: 

it<OR> 
command! <OR> 

last command<OR> 
then<CR> 

command! <OR> 

last command<CR> 
fl<OR> 

The next shell program demonstrates the it ••• then construct. The program will search for a word in 
a file. If the gnp command is successful then the program will echo that the word is found in the 
file. In this example the variables are read into the shell program. Type in the shell program shown 
below and try it out. Call the program search. 

ICONfUXV USER GUIDE 7-55 



SHELL TUTORIAL 

• cat search<CR> 
echo T,pe in the word and the file name. 
reod word file 
if ,rep 'word 'file 

fi 

• 
then echo 'word u in ,file 

Notice that the read command is assigning values to two variables. The first characters that you 
type in, up to a space, are assigned to word. All of the rest of the characters including spaces will 
be assigned to file. 

Pick a word that you know is in one of your files and try out this shell program. Did you see that 
even though the program works, there is an irritating problem? Your program displayed more than 
the line of text called for by the program. The extra lines of text displayed on your terminal were 
the output of the grep command. 

The Shell Garbage Can /dey/null 

The shell has a file that acts like a garbage can. You can deposit any unwanted output in the file 
called /dev/null, by redirecting the command output to /dev/null. 

Tryout /dev/nul/ by throwing out the results of the who command. First, type in the who 
command. The response tells you who is on the system. Now, try the who command, but redirect 
the response into the file / dev/null. 

who> /deY/null<CR> 

The response displayed on your terminal was your prompt. The response to the who command was 
placed in /dev/null and became null, or nothing. If you want to dispose of the grep command 
response in your search program, change the if command line. 

if grep 'word 'file > /dey /null<CR> 

Now execute your search program. The program should only respond with the text of the echo 
command line. 

The it .•. then construction can also issue an alternate set of commands with else, when the if 
command sequence is false. The general format of the if ••. then ••• else construct follows. 

7-56 ICON INTER:-\.-\TIONAL 

-\ 
( i 
~.) 



( 

(~ 

SHELL PROGRAMMING 

if<CR> 
commandl<CR> 

last command<CR> 
then<CR> 

command 1 <CR> 

last command<CR> 
else<CR> 

commandl<CR> 

last command<CR> 
S<CR> 

You can now improve your search command. The shell program search can look for a word in a 
file. If the word is found, the program will tell you the word is found. If it is not found (else) the 
program will tell you the word was NOT found. The text of your search file will look like the 
following: 

Scat search<CR> 
echo Type in the word and the file name. 
read word file 
if 

,rep Sword Sfile >/detJ/null 
then 

echo Sword ia in Sfile 
e/ae 

fi 
S 

echo Sword ia NOT in Sfile 

Following is a quick recap of the enhanced shell program called search. 

ICONJUXV USER GUIDE 7-57 



SHELL TUTORIAL 

command 

Description: 

Remarks: 

Shell Program Recap 

search - tell if a word is in a file 

arguments 

interactive 

Tells the user whether or not a word is in a file. 

The arguments, the word and the file, are asked for 
interactively. 

The test Command for Loops 

test is a very useful command for conditional constructs. The test command checks to see if 
certain conditions are true. If the condition is true, then the loop will continue. If the condition is 
false, then the loop will end and the next command is executed. Some of the useful options for the 
test command are: 

test -I' filename<CR> 
True if the file exists and is readable 

test -w filename<CR> 
True if the file exists and has write permission 

test -x filename<CR> 
True if"the file exists and is executable 

test -s filename<CR> 
True if the file exists and has at least one character 

If you have not changed the values of the PATH variable that were initially given to you by the 
system, then the executable files in your bin directory can be executed from anyone of your 
directories. You may want to create a shell program that will move all the executable files in the 
current directory to your bin directory. The test -x command can be used to select the executable 
files from the list of files in the current directory. Review the mv.file program example of the for 
construct. 

7-58 

• eat mv.file<CR> 
echo t,pe in the director, path 
read path 
lor file 
do 

mtl Sfilt Spath ISfile 
done 
S 

ICON INTERNATIONAL 



(-

SHELL PROGRAMMING 

Include an if test -x statement in the do ••• done loop to move only those files that are executable. 

If you name the shell program my.ex, then the shell program will be as follows: 

, cat my.ex<CR> 
echo t""e in 'he directo,"" "ath 
read "ath 
for file 

• 

do 
if teat -z 'file 

then 
mv 'file S"ath /,file 

fi 
cone 

The directory path will be the path from the current directory to the bin directory. However, if you 
use the value for the shell variable HOME, you will not need to type in the path each time. 
SHOME gives the path to the login directory. SHOME/bin gives the path to your bin. 

• cat my.ex<OR> 
for file 

• 

do 
if teat -z ,file 

then 
mv Sfile SHOME/bin/'file 

fi 
done 

To execute the command, use all the files in the current directory, "', as the positional parameters. 
The following screen executes the command from the current directory and then moves to the bin 
directory and lists the files in that directory. All the executable files should be there. 

, my.ex "'<OR> 
• cd; cd bin; ls<OR> 

ICONjUXV USER GUIDE 7-59 



SHELL TUTORIAL 

Shell ProgrJUll Recap 

mv.ex - move all executable files in the current 
directory to the bin directory 

cDmmand 

mv.ex 

Deecription: 

Remarks: 

C1'fUment& 

all file names (*) 

Moves all the files with execute permission that are 
in the current directory to the bin directory 

All executable files in the biD directory (or the 
directory indicated by the PATH variable) can be 
executed from any of your directories. 

The Conditional Construct eue •• eRe 

The ease ••• esae is a multiple choice construction that allows you to choose one of several patterns 
and then execute a list of commands for that pattern. The keyword in must begin the pattern 
statements with their command sequence. You must place a ) after the last character of each 
pattern. The command sequence for each pattern is ended with ;;. The c:aae construction must be 
ended with esac (letters of case reversed). The general format for the ease construction is: 

7-60 ICON INTERNATIONAL 



( ) 

case character8<CR> 
in<CR> 

patternl)<CR> 
command line l<CR> 

last command line<CR> 
;;<CR> 
pattern2)<CR> 
command line l<CR> 

last command line<CR> 
;;<CR> 
pattern3)<CR> 
command line l<CR> 

last command line<CR> 
;;<CR> 
*)<CR> 
command l<CR> 

last command<CR> 
;;<CR> 

esae<CR> 

SHELL PROGRAMMING 

The ease construction will try to match characters with the first pattern. If there is a match, the 
program will execute the command lines after the first pattern and up to the ;;. 

If the first pattern is not matched, then the program will proceed to the second pattern. After a 
pattern is matched, the program does not try to match any more of the patterns, but goes to the 
command following esac. The * used as a pattern at the end of the list of patterns allows you to 
give instructions if none of the patterns are matched. The * means any pattern, so it must be 
placed at the end of the pattern list if the other patterns are to be checked first. 

If you have used the vi editor, you know you must assign a value to the TERM variable so that 
the shell knows what kind of terminal is going to display the editing window of vi. A good example 
of the case construction would be a program that will set up the shell variable TERM for you 
according to what type of terminal you are logged in on. If you log in on different types of 
terminals, the program set.term will be very handy for you. 

set.term will ask you to type in the terminal type, then it will set TERM equal to the terminal 
code. You may want to glance back at the beginning of the vi tutorial for the explanation of those 

ICON{UXV USER GUIDE 7-61 



SHELL TUTORIAL 

commands. The command lines are: 

TERM-terminal code<CR> 
export TERM<CR> 

In this example of set.term, the person uses either a TELETYPE 4420, TELETYPE 5410, or a 
TELETYPE 5420. 

The set.term program will first check if the value of term is 4420. If it is, then it will assign the 
value T4 to TERM, and exit the program. If it is not 4420, it will check for 5410 and then for 
5420. It will execute the commands under the first pattern that it finds, and then go to the next 
command after the esac command. 

At the end of the patterns for the TELETYPE terminals, the pattern ., meaning everything else, 
will warn you that you do not have a pattern for that terminal, and it will also allow you to leave 
the case construct. 

• cat set.term<CR> 
echo If you have 0. TTY 4420 type in 4420 
echo If you htJve 0. TTY 5410 type in 5410 
echo If you have 0. TTY 5420 type in 5420 
read term 
case .term 

In 

4420) 
TERM==T4 

" 5410) 
TERM==T5 

" 5420) 
TERM==T7 

" *) 
echo not Cl correct terminal type 

" eS4C 

ezport TERM 
echo end of program 
$ 

What would have happened if you had placed the • pattern first? The set.term program would 
never assign a value to TERM since it would always fit the first pattern ., which means everything. 

7-62 ICON INTERNATIONAL 

o 

c 



( 

( 

SHELL PROGRAMMING 

When you read the section on modifying your login environment, you may want to put the set.term 
command in your hin, and add the command line 

set.term<CR> 

to your .profile. 

Following is a quick recap of the set.term shell program. 

command 

set.term 

Description: 

Remarks: 

Shell Program Recap 

set.term - assign a value to TERM 

arguments 

interactive 

Assigns a value to the shell variable TERM and 
then exports that value to other shell procedures. 

This command asks for a specific terminal code to 
be used as a pattern for the case construction. 

Unconditional Control Statement break 

The break command unconditionally stops the execution of any loop in which it is encountered, and 
goes to the next command after the done, ft, or aae statement. If there are no commands after 
that statement, the program ends. 

In the example for the program set.term, the break command could have been used instead of the 
echo command. 

ICONfUXV USER GUIDE 7-63 



SHELL TUTORIAL 

• cat set.term<CR> 
echo II '0" have ,. TTY .UtO t,pe in .UtO 
echo 1/ '0" have a TTY 5410 t,pe in 5410 
echo II ,0"Aavtll TTY 5410 t,pe in 54tO 
read term 
cale .term 
in 
44 to) 
TERM=T4 

" 5410) 
TERM=T5 

" 54tO) 
TERM=T7 

" e8ae 
ezport TERM 
echo end of program 

• 

.As you do more shell programming, you may want to use two other unconditional commands, the 
continue command and the exit command. The continue command causes the program to go 
immediately to the next iteration of a do or for loop without executing the remaining commands in 
the loop. 

Normally, a shell program terminates when the end of the file is reached. If you want the program 
to end at some other point, you can use the exit command. Both of these commands are explained 
in detail in the Part 9 
of this manual. 

Debugging Programs 

Debugging is computer slang for finding and cOlTecting errors in a program. There will be times 
when you will execute a shell program and nothing will happen. There is a "bug" in your program. 

Your program may consist of several steps or several groups of commands. How do you discover 
which step is the culprit? There are two options to the sh command that will help you debug a 
program. 

sh-v<CR> 
sh-x<CR> 

Prints the shell input lines as they are read by the system. 
Prints commands and their arguments as they are executed. 

To try out these two options, create a shell program that has an error in it. For example, type in 
the following list of commands in a file called bug. 
7-64 ICON INTERNATIONAL 

c 



(J 

( 

c 

• eat bug<cR> 
todar- date 
,erlon=='l 
mail • .e 
',erlon 

SBELLPROG~G 

When ,ou log off come into m, office ,ICtJle. 
'toda1/. 
MLH 
$ 

The mail message sent to Tom ($1) at login tomm, ($2) should read as shown in the following 
screen. 

$ mail<CR> 
From mlh Thu Apr 10 11:96 CST 1984-
Tom 
When 1/0U 101 off come into my office ,/eale. 
Thu Apr 10 11:96:92 CST 1984-
MLH 
$ 
f 

If you try to execute bug, you will have to press the BREAK key or the DEL key to end the 
program. 

To debug this program, try sh -v, which will print the lines of the file as they are read by the 
system. 

ICONfUXV USER GUIDE 7-65 



SHELL TUTORIAL 

• sh .-'v hUB tom tommy<CR> 
todar- date 
per.on=Sl 
mail I.e 

Notice that the output stops on the mail command. There is a problem with mail. The here 
document must be used to redirect input into mail. 

Before you fix the bug program, try .h -x, which prints the commands and their arguments as 
they are read by the system. 

$ sh -x bug tom tommy<CR> 
+date 
todar-Thu Apr 10 11:07:fl9 CST 1984 
perlon-tom 
+ mail tommy 

Once again, the program stops at the mail command. Notice that the substitutions for the 
variables have been made and are displayed. 

The corrected bug program is as follows: 

7-88 ICON INTERNATIONAL 



( 

SHELL PROGRAMMING 

I cat 'bug<cR> 
totlGY- tlGte 
peraon-Il 
mGil I.e «I 
Iperaon 
When '110" 10, off come into m, olJice p/eGae. 
'totlG, 
MLH 
! 

• 

The tee command is a helpful command to debug pipe lines. It places a copy of the output of a 
command into a file that you name, as well as piping it to another command. The general form of 
the tee command is: 

commandl : tee save.file I command2<CR 

aGtJe.jile is the name of the file that will save the output of commandl for you to study. 

If you wanted to check on the output of the grep command in the following command line 

who I grep $1 : cut -el-9<CR> 

you can use tee to copy the output of gl'ep into a file to check after the program is done executing. 

who : gl'ep $I I tee check I cut -cl-9<CR> 

The file checle contains a copy of the output from the grep command . 

• who I gl'ep mlhmo tee cheek eut -el-9<CR> 
$ mlhmo 
I cat cheek<CR> 
mlhmo tt'll61 Apr 10 11:90 

• 
If you do a lot of shell programming, you will want to refer to PGrt 9 of this manual and learn 
about command return codes and redirecting standard error. 

ICONfUXV USER GUIDE 7-87 



SHELL TUTORIAL 

Modifying YOUI' Login Environment 

What is a .proflle? 

When you log in, the shell first looks at a file in your login directory called the .profile (pronounced 
"dot profile"). The .profile is a shell program that issues commands to control your shell 
environment. 

Since the .profile is a file, it can be edited and changed to suit your needs. On some systems you 
can edit this file yourself, and on other systems the system administrator will do this for you. 

If you can edit the file yourself, you may want to be cautious the first few times and make a copy of 
your .profile in another file called ,ale. profile. 

( S cp .proflle .are.proflle<CR> 
S 

You can add commands to your .profile just as you can add commands to any other shell program. 
You can also set some terminal options with the &tty command, and you can set some shell 
variables. 

Adding Commands to .proflle 

How do you add commands to your .profile? Try this pleasant example. The ICONfUXV system 
will allow you to start out your day with a message from your computer. Edit your .profile and add 
the following echo command to the last line of the file. 

Type in: echo Good Morning! I am ready to work for you. 

Write and quit the editor. 

Whenever you make changes to your .profile and you want to initiate them in the current work 
session, you may type in a . and space before . profile. The shell will reinitialize your environment, 
that is, it will read and execute the commands in your .profile. 

Now, experience communicating with your computer. 

Type in: •• proflle<CR> 

The system should respond with: 

7-68 

Good Morning! I am ready to work lor ,OU 

S 

ICON INTERNATIONAL 



(/ 

SHELL PROGRAMMING 

Setting Terminal Options 

The &tty command can make your shell environment more convenient for you. You can set the 
following options for &tty. 

&tty -tabs 

This option preserves tabs when you are printing. It expands the tab setting to eight spaces, 
which is the default. The number of spaces for each l.ab can be changed. Read the 
IOON/UXV Uaer Referenee Manual on &tty for more details. 

&tty erase <"'h> 

This option allows you to use the erase key on your keyboard to erase a letter, instead of the 
default character #. Usually this key is the BACK SPACE key. 

&ttyechoe 

If you have a terminal with a screen, this option erases characters from the screen as you 
erase them with the BACK SPACE key. 

If you want to use these options for the &tty command, you create those command lines in your 
.profile just as you would create them in one of your the shell programs. If you use the tail 
command, which displays the last few lines of a file, you can see the results of adding those four 
command lines to your .profile. 

* tail -4 .p~ofile<CR> 
echo Good Morning! I am ready to work for you 
atty -taba 
atty era8e < Ah> 
atty echoe 
S 

If you have not used the tail command before, the following is a brief recap of tail. 

ICONfUXV USER GUIDE 



SHELL TUTORIAL 

Command Recap 

tail - display the last portion of a file 

command 

tail 

Description: 

Options: 

option, argument' 

-n me name 

Displays the last lines of a file. 

Using the option you can specify number of lines n. 
The default (no options) is ten lines. There are 
other options, besides specifying -n. You can 
specify blocks (b) or characters (c) instead of lines. 

Using Shell Variables 

Several of the variables reserved by the shell are used in your . profile. 

Let's take a quick look at four of these variables. 

HOME 

This variable gives the path for your login directory. Go to your login directory and type in 
pwd<CR>. What was the system response? Now type in echo SHOME<CR>. Was the 
system response the same as the response to pwd? SHOME is the default option for cd. If 
you do not specify a directory for cd, it will move you to SHOME. 

PATH 

7-70 

This variable gives the system the search path for finding and executing commands. 

If you want to see the current values for your PATH variable type in: echo SPATH. 

S echo SPATH<CR> 
: /mylogin/bin: /bin: /u,r/bin: /u,r/lib 
S 

The : is a delimiter. Notice that for this PATH the system looks in /my/ogin/bin, for the 
command first, then into /bin, then into /u,r/bin, and so on. 

H you are working on a project with several other people, you may want to set up a group 
bin, a directory of special shell programs used only by your group. The directory would be 
found from the root directory. The path would be /group/bin. How do you add this to your 

ICON INTERNATIONAL 



(, 

( 

(.

'+ 

., 

SHELL PROGRAMMING 

PATH variable? Edit your .profile, and add :/grovp/6in to the end of your PATH. 

P ATH-:/myloginfbin:fbin:/usr /Iib:/group fbin<CR> 

TERM 

This variable tells the shell what kind of terminal you are working on. If you have done any 
editing with vi you know that you have to specify: 

TERM-eode<CR> 
export TERM<CR> 

Not only do you have to tell the shell what kind of terminal you are working on but you 
must export the variable. If you read Part 8, Shell Commands and Programming of this 
manual, you will learn why variables need to be exported. 

If you do not want to specify the TERM variable each time you log in you can add those 
two command lines to your .profile and they will automatically be recognized each time you 
log into the ICONfUXV system. Or, if you log in on more than one type of terminal, you 
will want to add your set.term command to your . profile. 

PSI 

One of the delightful things about your .profile is that you can change your prompt. This 
one is fun to experiment with. Try the following example. If you wish to use several words, 
remember to quote the phrase. Also, if you use quotes you can add a carriage return to your 
prompt. 

Type in: PSI="Your wish is my command<CR>" 

Now your prompt sign looks like: 

$ •• profile<CR> 
Your wish is mJ command 

The mundane' is gone forever, or until you delete the PSI variable from your .profile. 

ICONfUXV USER GUIDE 7-71 

-- ------- -----~" .~--



SHELL TUTORIAL 

Conclusion 

This tutorial has given you the basics for creating some shell programs. If you have logged in and 
tried the examples and exercises as you read the tutorial, you can probably perform many of your 
day-to-day tasks with your new shell programs. Shell programming can be much more complex and 
perform more complicated tasks than shown in this brief tutorial. If you want to read further on 
shell commands and programming, read the IOON/UXV U.er Reference Manual on the sh 
eommand, and read Part 8, S,.tem Shell Oommand. and Programming, in this manual. 

SHELL PROGRAMMING EXERCISES 

2-1. Make the command line , 
banner date 

into a shell program called time. 

, 
cut -e12-19 <OR> 

2-2. Make a shell program that will give only the date in a banner display. Be careful what you 
name the program! 

2-3. Make a shell program that will send a note to several people on your system. 

2-4. Redirect the date command without the time into a file. 

2-5. Echo the phrase "Dear colleague" in the same file as the date command without erasing the 
date. 

2-6. Using the above exercises, make a shell program that will send a memo with: 

• Current date and the "Dear colleague" at the top of the memo, 

• Body of a file that is the memo, and 

• Closing statement 

to the same people on your system as in Exercise 2-3. 

2-7. How would you read variables into the mv.flle program. 

2-8. Use the for loop to move a list of files in the current directory to another directory. 

How would you move all files to another directory? 

7-72 ICON INTERNATIONAL 



(- / 

(~) 

SHELL PROGRAMMING 

Ingredients: 
• 
S· 
mv Sfile newdireetory 

2-9. How would you change the program search, to search through several files? 

Hint: 
tor file 
in S· 

2-10. Set the &tty options for your environment. 

2-11. Give yourself a new prompt that includes a carriage return. (Hint" <OR>") 

2-12. Check to see what SHOME, STERM, and SPATH are set to in your environment. 

ANSWERS TO EXERCISES 

Command Language Exercises 

1-1. The * at the beginning of a file name will refer to all files that end in that file name, including that file 
name. 

$18 *t<CR> 
cat 
leSt 
new.t 
t 
$ 

1-2. cat [0-9]* would display the files: 

lmemo 
100data 
9 
05name 

echo * will list all the files in the current directory. 

ICON/UXV USER GUIDE 7-73 



SHELL TUTORIAL 

1-3. You can place r any place in a file name. 

1-4. Is [0-9)· will list only those files that start with a number. 

I. [a-m]* will list only those files tha.t begin with letters "a" through "m". 

1-5. If you placed the sequential command line in the background mode, the immediate system response 
was the PID for the job. 

No, the II: must be placed at the end of the command line. 

1-6. The command line would be: 

cd; pwd > junk; Is > > junk; ed trial<OR> 

1-7. Cha.nge the -c option of the command line to read: 

, , 
banner date I cut -cl-lO <OR> 

Shell Programming Exercises 

2-1. 

2-2. 

2-3. 

7-74 

Scat titne<CR> , 
banner date Lcut -c1t-19 
S 
Schmod u+x time<OR> 
S time<CR> 
(banner display of the time 10:tUj 
S 

Scat m")'date<OR> , 
banner da.te I cut -cl-l0 

S 

ICON INTERNAT1(),\'\T. 



( 

( 

("~' 

, ~' ... ' 

ANSWERS TO EXERCISES 

2-4. 

Scat totrienda<CR> 
echo" T,pe in the name 01 tAe file containing the note." 
read note 
mail janice ma,.,lou 6,.,an < $note 
S 

Or, if you wanted to use parameters for the logins. 

Scat totrienda<CR> 
echo" Type in the name 0/ the file containing the note." 
read note 
mail S * < $note 
$ 

date I cut -cl-IO > filel<CR> 

2-5. echo Dear colleague » filel<CR> 

2-6. 

2-7. 

ICONjUXV USER GUIDE 

Scat send.memo<CR> 
date I cut -cl-l0 > me mol 
echo Dear colleague > > memol 
cat memo > > memol 
echo A memo from M. L. Kelly» memol 
mail janice ma,.,lou b,.,an < memol 
S 

7-75 



SHELL TUTORIAL 

2-8. 

Scat mv.file<OR> 
echo t,pe in the tlirectorJ pIth 
reId pItA 
echo "tlpe in file "lime" end flJith < "4>" 
while 
reId file 

do 
lor file 

in Sfile 
do 

mtl 'jile Spllth/'jile 
done 

done 
echo III done 
$ 

Scat mv.ftle<CR> 
echo Plell8e type in directory pIth 
read path 
for file 

in $* 
do 

mtl Sfile Spath/$file 
done 
S 

The command line would then be: 

2-9. See hint. 

7-76 

r S mv.file -<OR> 
S 

o 

ICON INTERNATIONAL 



( 

( / 

c' 

• cat aearch<CR> 
lor file 

ira •• 
do 

if grep 'word 'jile >/defJ/raull 
thera echo 'word i6 ira 'jile 
elae echo 'word is NOT ira 'jile 
fi 

dorae 

2-10. Type the following lines into your . profile . 

2-11. 

2-12. 

• tty -tab.<CR> 
.tty erase <Ah><CR> 
.tty echoe<CR> 

Type the following command line into your .profile 

PSl-"Hello<CR>" <OR> 

( I ecbo mOME<CR> 

( I ecbo ITERM<CR> 

( • echo $PATH<CR> 

ICONjUXV USER GUIDE 

ANSWERS TO EXERCISES 

7-77 





( 

Chapter 8 

COMMUNICATION TUTORIAL 

PAGE 

I~CTIot'III ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 1-1 

C~NICAll~ ~ i1-fE IC~/UXV SYST'EM........................................................................................ 8-1 
HOW CAN Y()lJ C~NI CA -rE? ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 8-2 

SEI'DI~ N.:t:J ~C~ twESSACE:S (m.il)............................................................................................. 8-3 
Sending tv4ail ••••••••• _ •••••••••• _ ••••••• _ ••• _._._...................................................................................... 8-3 

Basics of Sendinl' Mlit............................................................................................................ 8-3 
Sending Mail to One Person ... _ ............... __ ........................ _._ ..• _ .. '................................... 8-4 
Sending Mail to Several People Simultaneously •••••••••••••••••••••••••••• _ •••••••••• _ •••••••• _ ••• _._......... 8-8 

Sendine t-Aail m RetTIc:rte SysMrrls (uumel uun.me) •••••••••••••• _._ •••••••••••••••••••••••••••• ---......................... 8-7 

Receivinc Mail ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• _........................................................ 8-11 

Se:t--DI~ AI'D RECEIVlf\IG FILES •••••••••••••••• _............................................................................................ 8-14 
Sending SrTlIll Files (moil)................................................................................................................... 8-14 
Sending Large Files (uuto) •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• _.... 8--16 

Have You Qc)t Permssion? ••••••••••••••••• _ ••••••••••••••••••••••••••••••••••••• _ •••••••••••••••••• _....................... 8-16 

Sending a File (u.atSt --, 1IU".,) •••••••••••••••••••••••••••••••• _.., .. _ •••••••••• _ .......................... _.............................. 8-17 
Rec:eiving Files (uupiet) ••••••••••••••••••••••••••••••••••••••••••••• ,. .......... _._ •••••••••••••••••••••••••••••••• ~......................... 8-22 

ADVANCED ~SAGE AI'D FILE HAJ'II)ljNG (uucp, mlJilzj............................................................................ 8-25 



c 



( 

( 

Chapter 8 

COMMUNICATION TUTORIAL 

INTRODUCTION 

Sooner or later, you will want to use the ICON/UXV system to get in touch with other 
ICONjUXV system users. You may want to send a message to someone; the message may 
be one that must be read immediately. Perhaps you might need to send another user 
information from a file in your login. 

Whatever the case, this chapter teaches you how to use the communication tools available 
to you on the ICON /UXV system. The chapter begins with a brief overview of just who 
you might want to communicate with on the ICON/UXV system. You learn how to send 
basic messages to users on your system and other ICON/UXV systems, and also how to 
deal with messages you receive. You also learn about commands that enable you to send 
files to other users. 

The following list is a review of the text conventions mentioned in Chapter e that are used 
in this chapter. 

bold(Commands typed in exactly as shown.) 

italic(ICON/UXV system prompts and responses.) 

roman(Input other than commands.) 

<>(Commands that are typed in, but are not 
reflected on the screen, are enclosed in 
angle brackets.) 

COMMUNICATING ON THE ICONjUXV SYSTEM 

You can use the ICON/UXV system to communicate with just about anyone else who uses 
the ICON/UXV system. This means that your terminal does more than serve as a work 
station-it becomes your personal message-handling center as well, with the electronic 
equivalent of transmission, routing, and storage facilities. 

Who would you want to communicate with over the ICON/UXV system? Here are some 
examples to consider: 
ICONjUXV USER GUIDE 8-1 

----------- -- ---------~-~~ 



COMMUNICATION TUTORIAL 

• The person in your office who needs to know about a department meeting tomorrow, 

• Other users on your ICON/UXV system who should see a posted message concerning 
their use of the system after office hours, 

• The supervisor who wants a copy of your last two reports by 2:30 this afternoon, 

• The supervisor who wants to review the memo you are presently wOTking on as soon as 
you have finished it, 

• A person working with you on the ICON/UXV system to modify several files you both 
have in common; you need to be in touch from time to time, but the phones are being 
used as links from your terminals to the computer and you would rather not shout 
down the halls, and 

• A coordinator who wants your daily operations reco~ds (all in very large files), but does 
not want to have to wade through them all at once when he receives them on the 
terminal. 

As you can see, you can keep in touch with any number of people for any number of 
reasons through the ICON/UXV system. The remainder of this chapter shows you how to 
use the various communication tools provided by the ICON/UXV system to reach these 
people. 

HOW CAN YOU COMMUNICATE! 

The ICON/UXV system offers several commands for user-to-user communication. This 
chapter explains the most important commands to know and suggests how to select the one 
to use in a given situation. The basic choice is between sending (or receiving) a message 
and sending (or receiving) a file. 

To expand on one of the previous examples, suppose you are working at your terminal and 
you remember that you are giving a presentation at an office wide meeting tomorrow. You 
want to remind someone in your office about the presentation, but you do not want to take 
the time for a phone call or a walk to the other person's office. What can you do? 

If the other person has a login on your ICON/UXV system, you can use the mail command 
to send a brief message. When the recipient of your message finishes whatever task he or 
she is using the ICON/UXV system for, a notice is posted that there is mail waiting to be 
read. The recipient can then read your message and send a reply back to your login. 

To take another example, what if you need to send other people copies of things you 
already have on file-memos, reports, saved messages, documents, and the like? You can 
send such files using the mail command;however.this may not be the best way to send 
long files. For sending files over a page in length, you should use the uuto command. This 
command sends the file to a public directory on the recipient's system instead of sending it 
straight to the recipient's login. The recipient can then deal with it at his or her own 
leisure. 

8-2 ICON INTERNATIONAL 

c/ 

c' 



( 

HOW CAN YOU COMMUNICATE! 

These are the important communication tools available to you. (Two other tools, the uucp 
and mailx commands, are discussed briefly at the end of the chapter.) Now that you have 
a general idea of how to communicate in the ICON/UXV system, let's move on to the 
specifics. 

SENDING AND RECEIVING MESSAGES (mail) 

The mail command works in two ways-it lets you send messages to other ICON/UXV 
system users, and it lets you read messages sent to you. This section deals first with 
sending messages, both to users on your ICON/UXV system and to users on other 
ICON/UXV systems that can communicate with yours. 

Sending Mail 

It is easy to send mail to another user. The basic command line format for sending mail is 

mail login<CR> 

where login is the recipient's login name on the ICONfUXV system. This login name can 
be either of the following: 

• A login name if the recipient is on your system, or 

• A system name and login name if the recipient is on a system that can communicate 
with yours. 

For the moment, assume that the recipient is on your system (known as the local system); 
we will deal with sending mail to users on other systems (known as remote systems) a little 
later. 

Basics of Sending Mail 

Since the recipient is on your system, you type the mail command as follows at the system 
prompt ($): 

maillogin<CR> 
text 

where login is the recipient's login name. Then you type in the text of the letter, as many 
lines as you need. When your message is complete, you send the message on its way by 
typing a dot (.) at the beginning of a new line. 

The resulting message looks like this: 

ICON/UXV USER GUIDE 8-3 



COMMUNICATION TUTORIAL 

$ mail login<CR> 
After you enter the command line,<CR> 
type in as many lines of text as you need<OR> 
to get the mftSage across. <OR> 
When you're done,<OR> 
type in a control-d or a dot<OR> 
on a line by itself,as shown on the next line.<CR> 
.<CR> 
$ 

The system prompt returns to notify you that your message has been queued (placed in 
line) and will be sent. 

Sending Mail to One Person 

Let's look at a sample situation. You have to notify another person in your office of a 
meeting later this afternoon, but he is not in and you have to leave your office. He has a 
login on your ICON/UXV system with the login name tommy, so you can leave a message 
for him to read the next time he logs into the system: 

8-4 

$ mail tommy<OR> 
Tom,<OR> 
There's a m~ting of the review committee<OR> 
at 3:00 this afternoon. D.F. wants your<OR> 
comments and an idea of how long you think<OR> 
the project will take to complete.<OR> 
B.K.<OR> . 
$ 

ICON INTERNATIONAL 



c 

SENDING AND RECEIVING MESSAGES 

When Tom logs in at his terminal (or while he is already logged in), he receives a message 
that tells him he has mail waiting: 

( you h.ve moil 

To see how tommy can read his mail, see the section titled Receiving Mail. 

You can practice using the mail command by sending mail to yourself. This may sound 
strange at first, but it is the easiest way to practice sending messages. Simply type in the 
mail command and your own login name, then write a short message to yourself. When 
you type in the dot, the mail will be sent to your login and you will receive the notice that 
you have mail. 

Sending mail to yourself can also serve as a handy reminder system. Suppose your login 
name is rover; you are ready to log off of the system for the day and you want to leave a 
reminder to call someone first thing the next morning. You might enter the following: 

$ mail rover<CR> 
Remember to call Accounting and find out<CR> 
why they haven't returned my 1984 figures!<CR> . 
$ 

ICON/UXV USER GUIDE 8-5 



OO~OATIONTUTO~ 

When you log in the next day, you will get a notice of messages awaiting you. Reading 
your mail then brings up the reminder message (and any other messages you may have 
received). 

Sending Mail to Several People Simultaneously 

If you need to send the same message to more than one person, simply place their login 
names after the mail command on the command line, with a space between each one, in 
the following format: 

mail loginl login2 ••• <OR> 

where loginl, logint, and ... are the different login names. You can mail messages to as 
many logins as you wish. 

For example, if you send a notice about the department softball game to team members 
with login names tommy, switch, wombat, and dave, it might look like this: 

$ mail tommy switch wombat dave<CR> 
Diamond cutters,<CR> 
The game is on for tonight at diamond three.<CR> 
Don't forget your gloves!<CR> 
Your Manager<CR> 
.<CR> 
$ 

To provide you with a quick summary of what you can expect when using the mail 
command to send messages, a recap of how to use it follows. 

8-6 ICON INTERNATIONAL 

I 

/ 



( 

C., 
... 

SENDING AND RECEIVING MESSAGES 

Command Recap 

mail - sends a message to another user's login 

command 

mail 

Description: 

Remarks: 

0,tion3 ar,umcnt8 

none login 

mail followed by one or more login names, sends 
the message typed on the lines following the 
command line to the specified login(s). 

Typing a dot at the beginning of a new line sends 
the message. 

Sending Mail to Remote Systems (uname, uuname) 

We have assumed to this point that you are sending messages to recipients on your (local) 
ICON/UXV system. You may have occasion, however, to send messages to recipients on other 
(remote) ICON/UXV systems. For example, your office may have three separate systems, each in a 
different part of the building. Or perhaps you may have offices in several different locations, each 
with its own system. 

How do you send mail to someone on a remote system? The ICON/UXV system you are on must be 
able to communicate with a remote ICON/UXV system before mail can be sent between the two. 
So, if you plan to send a mail message to someone on a remote system, you need to do a little 
legwork to find out the following information: 

• Recipient's login name, 

• Name of the remote system, and 

• If your system and the remote system can communicate. 

Two commands are available to help -you answer these questions-the uname and uuname 
commands. 

You can get the login name and the remote system name from the recipient. If it happens that the 
recipient does not remember the system name, have him or her log into the system and type the 
following at the system prompt: 

uname -n<CR> 

The uname -n command responds with the name of the system you are logged into. For example, 
if you are logged into a system named 81/810 and you type in uname -n, your screen should look 
like this: 

ICON/UXV USER GUIDE 8-7 



COMMUNICATION TUTORIAL 

• uname -n<CR> 
11,810 • 

Once you know the remote system name, the uuname command helps you find out ir your system 
can communicate with the remote system. At the prompt, type: 

uuname<CR> 

This generates a list containing the names or remote systems with which your system can 
communicate. H the recipient's system is in that list, then you can send messages there by mail. 

The uuname command may respond with a large list or names ir your system can communicate 
with many other systems. To avoid having that long list scroll quickly up your screen, use the pipe 
and grep command in conjunction with uuname. At the prompt, type: 

uuname : grep system<CR> 

where s,stem is the recipient's system name. This generates the same list, then searches ror and 
prints only the specified system name ir it is round in the list. 

For example, if you want to find out whether a system called s1/810 can communicate with your 
system, type: 

• uuname grep syslO<CR> 

H this is the case, the system name is printed in response: 

8-8 ICON INTERNATIONAL 

c 



( 

SENDING AND RECEMNG MESSAGES 

• UUDame grep syslO<CR> 
·rdO • 

If you get only the system prompt back, then the two systems cannot communicate: 

grep SY810<CR> 

Once you determine that you can send messages to a login on a remote system, your mail command 
line is slightly different than it is for sending mail to someone on your local system. The command 
line format for remote systems is: 

mail system!login<CR> 

where 8y8tem is the remote system name and login is the recipient's login name. The two parts of 
the address are separated by an exclamation point {I}. 

Now that you have all the parts, let's put them together into an example. Assume that you have a 
message for someone on a different system in another part or your office. You know from the 
recipient her login name, 8arah, and her system name, 8ydO. To find out if her system can 
communicate with yours, use the UUDame command: 

• UUDame grep syslO<CR> 
·r810 • 

The system response tells you that your system is indeed networked to system .1/810. Now all you 
have to do is send the message, using the expanded address rormat given previously: 

ICONfUXV USER GUIDE 8·9 



OOMMUNIOATION TUTORIAL 

• mail syal0fsarah<CR> 
Sarah,<CR> 
The final counts ror the writing seminar<CR> 
are as rollows:<CR> 
<OR> 
Our department - 18<CR> 
Your department - 2O<OR> 
<OR> 
Tom<OR> 
.<OR> • 

Following is a quick summary or the two commands introduced in this section and what you can 
expect them to do. 

command 

uname 

Description: 

Command Recap 

uname - displays the system name 

options arguments 

-n an"d others· none 

uname -n displays the name or the system on 
which your login resides. 

• See the ICON/ UXV User Reference Manual for all available options and an explanation of their capabilities" 

8-10 

Command Recap 

uuname - displays a list of networked systems 

command 

uuname 

Description: 

options arguments 

none none 

uuname displays a list or remote systems that can 
communicate with your system. 

ICON INTERNATIONAL 



(-

( 

SENDING AND RECEIVING MESSAGES 

Receiving Mail 

Once you learn to send messages, you may be anxious to read what others are sending your way. 
As stated earlier, the mail command also allows you to read messages sent by other ICONfUXV 
users. 

Alter logging in, you may receive the rollowing message at your terminal: 

r r·· A ••• m •• 

This tells you that one or more messages are being held ror you in a ICONfUXV directory named 
war/mail, usually rererred to as the the mailboz. Entering the mail command by itselr allows you to 
read these messages. 

To read your mail, type the mail command by itseIr at the system prompt: 

mail<CR> 

This displays the waiting messages at your terminal, one message at a time, with the most recently 
received message displayed first. In other words, as you read your messages, you go from the 
"newest" message to the "oldest" message. 

A typical mail message looks like this: 

ICONfUXV USER GUIDE 

Smail 
From tommy MOR May f1 15:99 CST 198,4 
B.K. 
LookB like the meeting has been caRce/ed. 
Do you dill want the technical review materia/f 
Tom 

f 

8-11 



COMMUNICATION TUTORIAL 

The first line, called the header, displays information about a particular message-the login name of 
the sender, the date sent, and the time sent. The following lines (except for the last line) are the 
body of the message. 

Notice the question mark (1) on the last line of the message. After displaying each message, the 
mail command displays a 1 and a space, and waits for a response from you before going on to the 
next message. There are several responses; we will look at the most common responses and what 
they do. . 

After reading a message, you may want to delete it. To do so, type a d after the question mark. 

( fd<CR> 

This response deletes the message from the mail6o:r and displays the next message waiting in the 
mail6o:r (if there is one). If there are no other messages, the system prompt returns to indicate that 
you've finished reading your messages. 

If you would rather display the next message without deleting the message being displayed, type a 
carriage return after the question mark. 

( f<CR> 

The current message goes back into the mo.il6o:r and the next message is displayed. If there' are no 
more messages in the mailbo:r, the system prompt returns. 

You may want to save the message for later reference. To do so, type an 8 after the question mark: 

r fe<CR> 

8-12 ICON INTERNATIONAL 

/' 

I 

/' 

c 



( 

c' 

SENDING AND RECEIVING MESSAGES 

This response saves the mail message by default in a file called mboz in your login directory. Ir you 
would rather save the message in another file, follow the. response with a file name or with a path 
name ending in a file name. 

For example, to save the message in a file called mailaa1Je in your current directory, enter the 
following response after the question mark: 

r f. mailsave<CR> 

If you use the Is command to list the contents of this directory, you will find the file mailaatJe. 

You can also save the message in a file under another of your directories. If you have a mail 
message about a particular project or piece of work that you keep in a certain directory, you may 
want to save that message in the same directory. Let's say you have such a directory, named 
projectl, under your login directory .. If a mail message comes in that you want to place in directory 
projectl, under a file named memo, enter the following response after the question mark: 

( f. projeetl/memo<CR> 

If you use the cd command to change directories from your login directory to projectl and then use 
the Is command, you will find that the file memo is now listed. (You can use other, more complete 
path names as well; refer to Chapter 9 for instruction on using path names.) 

If you want to quit reading messages, enter the following response after the question mark: 

( fq<CR> 

Any messages that you have left unread are put back in the mailbox until the next time you use the 
mail command. 

ICONfUXV USER GUIDE 8-13 



OOMMUNIOATION TUTORIAL 

If a long message is being displayed at your terminal, you can interrupt it by pressing the BREAK 
key. This stops the message display, prints the 1, and waits for your response. 

Other responses are available; these are listed in the IOON/ UXV U,er Reference Manual. The 
following command recap summarizes what you can expect when using the mail command to read 
messages. 

Command Recap 

mail - rea.ds messa.ges sent to your login 

command 

mail 

Remarks: 

options argument, 

available· none 

mail entered by itself displays any messages 
waiting in the system file usr/mail (the mailbox). 

The question mark (1) at the end of a message 
indicates that a response is expected. A full list of 
responses is given in the IOON/UXV U,er 
Reference Manual. 

• See the ICON! UXV U,er Reference Manual for all available options and an explanation of their capabilities. 

SENDING AND RECEIVING FILES 

In several examples cited so far in this chapter, the need to send files from your ICON,IUXV system 
login to another UNIX system user has come up. Memos, reports, stories, baseball scores-there are 
numerous items that you can keep in your files. What do you do to send copies of those files to 
other UNIX system users? 

Sending Small Files {mail} 

The mail command uses the redirection symbol < to take its input from a specified file instead of 
from the keyboard. (For more detailed information on the use of redirection symbols, see Ohapter 
7.) T~e general format is as follows: 

mail login < flIename<CR> 

where login is the recipient's login name and filename is the name of the file containing the 
information to be sent. 

For example, assume you keep a standard meeting notice in a file named meetnote. If you want to 
send the letter to the owner of login ,arah using the mail command, type the following at the 
prompt: 

8-14 ICON INTERNATIONAL 



( 

SENDING AND RECEIVING FILES 

r • mail sarah < meetnote<CR> • 

The system prompt returns to let you know that the contents of meetnote have been sent. When 
,arah types in the mail command to read her messages, she will receive the standard meeting notice. 

Likewise, if you want to send the same file to several users on your system, type in the man 
command followed by the login names of the users, and then follow these with the < file redirection 
operator and the file name. It might look like this: 

S mail sarah tommy dingo .wombat < meetnote<CR> 
S 

The system prompt tells you that the messages have been sent. 

If the recipient for your file is on a remote system that can communicate with yours, simply redirect 
the file with the < operator: 

For example: 

mail aystem!login < fllename<CR> 

• mail ayslO!wombat < meetnote<CR> 

• 
Again, the system prompt notifies you that the message has been queued for sending. 

ICONjUXV USER GUIDE 8-15 



OOMMUNIOATION TUTORIAL 

Sending Large Files (uvto) 

When you need to send large files, you should use the uuto command. This command can be used 
to send files to both local and remote systems. When the files arrive at their destination, the 
recipient receives a mail message announcing its arrival. 

The basic format Cor the uuto command is 

uuto filename systemUogin<OR> 

where filename is the name of the file to be sent, ",tem is the recipient's system, and lo,in is the 
recipient's login name. The filename may be the name of a file or a path name ending in a specific 
file. 

If you send a file to someone on your local system, you may omit the system name and use the 
following format: 

uuto filename Iogin<CR> 

Have You Got Permission! 

Before you actually send a file with the uuto command, you need to find out whether or not the file 
is transferable. To do that, you need to check the file's permissions. If they are not correct, you 
must use the ehmod command to change them. (Permissions and the ehmod command are covered 
in detail in Ohapter 9.) 

There are two permission criteria that must be met before a file can be transferred using uuto: 

• The file to be transCerred must have read permission (r) for other" and 

• The directory that contains the file must have read (1') and execute (x) permission for other,. 

This may sound confusing, but an example should clarify the matter. 

Assume that you have a file named chicken, under a directory named 'Oup, that you want to send to 
another user with the uuto command. First you check the permissions on 'Oup, which is under your 
login directory: 

• Is -l<CR> 
total 95 
-rwzr-:rr-z 
drwzr--r-
drwzr-:rr-z 
S 

1 
e 
e 

reader grou1'15598M4r 919:00 memo, 
reader ,roup1 477Mar 109:08 Ii,t, 
reader ,rou1'1 45Feb 910:49 'Oup 

Checking the line that contains the inCormation for directory 80Up shows that it has read (1') and 

8-16 ICON INTERNATIONAL 

C) 

c 



SENDING AND RECEIVING FILES 

execute (x) permissions in all three groups; no changes have to be made. Now you use the ed 
command to change from your login directory to ,oup and then check the permissions on the file 
chicken: 

• Is -I chieken<CR> 
total -4 
-nD------- 1 reader ,roupl 8101 Mar 1 18:!! chicken • 

The output informs you that the file chicken has read permission for you, but not for the rest of the 
system. To add those read permissions, you use the ehmod command: 

r S ehmod 80+r ehIcken<CR> 

This adds read permissions to the rest of the system-group (g) and others (o)-without changing the 
previous permissions. Now, checking again w.ith the Is -I command reveals the following: 

$ Is -1 chieken<CR> 
-rw-r--r-- 1 reader groupl 9101 Mar 1 18:!! chicken 

• 
This confirms that the file is now transferable using the uuto command. Arter you send copies of 
the file, you can reverse the procedure and replace the previous permissions. 

Sending a File (uuto -m, n,tat) 

Now that you know how to determine if a file is transferable, let's take an example and see how the 
whole thing works. 

The process of sending a file by uuto is referred to as a job. When you enter a uuto command, 
your job is not sent immediately. First it is stored in a queue (a waiting line of jobs) and assigned a 
job number. When the job's number comes up, it is transmitted to the remote system and placed in 
a public directory there. The recipient is notified by mail message and must use the uupiek 

ICONfUXV USER GUIDE 8-17 



COMMUNICATION TUTORIAL 

command to retrieve the file (this command is discussed later in the chapter). 

For the following discussions, assume this information: 

wombat 
• ,dO 
marie 
• "dO 
mone" 

Your login name. 
Your system name . 
Recipient's login name. 
Recipient's system name . 
File to be sent. 

Also assume that the two systems can communicate with each other. 

To send the file mone" to login marie on system .".20, enter the following: 

$ uuto money eys20!marie<CR> 
$ 

The system prompt returns, notifying you that the file has been sent to the job queue. The job is 
now out of your hands; all you can do is wait for confirmation that the job reached its destination. 

How do you know when the job has been sent? The easiest method is to alter the uuto command 
line by adding a -m option, like so: 

8-18 

S uuto -m money eys20!marie<CR> 
S 

ICON INTERNATIONAL 

c 



SENDING AND RECEIVING Fll.ES 

This option sends a mall message back to you when the job has reached the recipient's system. The 
message may look something like this: 

• mail<CR> 
From ""ep T"e Apr 8 09:45 EST 1984 
file /''1dO/wombat/monel1, ",tem "dO 
eopll ,,,eeeeded 

f 

If you would rather check from time to time while you are working on the system, you can use the 
uustat command. This command keeps track or all the uuto jobs you submit and gives you their 
status. For example, 

S uustat<CR> 
11.15 wombat 'Y820 10/05-09:81 10/05-09:88 JOB IS QUEUED 
S 

The elements of this sample status message are as follows: 

• 1145 is the job number associated with sending file money to marie on 8yseO. 

• wombat is your login name. 

• sy,20 is the recipient's system. 

• 10/05-09:91 is the date and time the job was queued. 

ICONjUXV USER GUIDE 8-19 



OOMMUNICATION TUTORIAL 

• 10/05-09:99 is the date and time of this particular uustat message . 

• The final part is the status of the job-in this case indicating that the job has been queued, but 
has not yet been sent. 

H you are interested in just one uuto job, you can use the -j option and the job number when 
requesting job status: 

uustat -jjobnumber<OR> 

In the example, let's say you enter the uu.tat command with the -j option (Cor job 1145) until you 
receive the Collowing response: 

S uustat -j1l45<CR> 
11.45 wombat .,.80 JO/05-09:9J JO/05-09:97 COPYFINISHED,JOB DELETED 
$ 

This status message indicates that the job was sent and has been deleted from the job queue--in \,,) 
other words, it has reached the public directory of the recipient's system. There are other status 
messages and options for the uustat command which are described in the IOON/UXV User 
Reference Manual. 

That is all there is to sending files. You can practice simply by sending another UNIX system user a 
file. You should practice with a test file until you have the procedures down pat. 

The following command recaps give a summary of the uuto and uustat commands for your 
convenience. 

8-20 ICON INTERNATIONAL 

c 



( 

command 

uuto 

Description: 

Remarks: 

SENDING AND RECEIVING Fll.ES 

Command Recap 

uuto - sends files to another login 

option8 argument8 

-m and others· flle system!login 

uuto sends the specified file to the public directory 
of the specified system. The owner of the login is 
notified by mail that a file has arrived. 

Files to be sent must have read permission for 
other8; the directory above the file must have read 
and execute permissions for other8. 

The -m option notifies you by mail when the file 
arrives at its destination. 

• See the ICON I UXV U,er Reference Manual for all available optioDS and aD explanation of their capabilities. 

Command Recap 

uustat - checks job status of a uuto job 

command 

uuatat 

Description: 

Remarks: 

option8 argument8 

-J and others· none 

uuatat checks on the status of all uuto jobs sent 
from your login and displays the results. 

The -j option, followed by a specific job number, 
displays the status of only the specified job. 

• See the ICONI UXV U,er Reference Manual for all available options and an explanation of their capabilities. 

ICONfUXV USER GUIDE 8-21 



COMMUNICATION TUTORIAL 

Receiving Files ( •• pick) 

When a file sent by uuto shows up in the public directory on your ICON{UXV system, you receive a 
mail message telling you that the file has arrived and where you can find it. To continue our 
previous example, let'8 see what the owner of login marie receives when she types in the mail 
command, not long after you (login wombat) have sent her the file money: 

• mail 
From uucp Mon Mag 14 09:!! EST 1984 
I fUr/ .pool/ uucppublic/ receive/marie/ .,81 0/ /moneg from .g81 O!wombat arrived 

• 
The message contains the following pieces of information: 

• The first line tells you when the file arrived at its destination. 

• The second line up to the two slashes (/ /) gives you the path name to the part of the public 
directory where the file has been stored. 

• The second line after the two slashes tells you the name of the file and who sent it. 

Once you have disposed of the mail message, you can use the uupick command to store the file 
where you want it. Type 

uupick<CR> 

at the system prompt. The command searches the public directory for any files sent to you. If it 
finds any, it prompts you with a ? to do something with the file (much like the mail command). 

8-22 ICON INTERNATIONAL 



(~) 

SENDING AND RECEIVING FILES 

Continuing with our previous example, if the owner of login marie enters the uupick command, she 
receives the following response: 

• uupick<CR> 
from ",fem "dO: file mone, 
f 

After the question mark (1), the command goes to the next line and waits for your response. There 
are several available responses; we will look at the most common responses and what they do. 

The first thing you should do is move the file from the public directory and place it in your login 
directory so you can see what it is. To do so, type an m after the question mark. 

f 
m<CR> 
$ 

This response moves the file into your current directory. If you wish to put it in some other 
directory instead, Collow the m response with the directory name: 

r :~<CR> 
If there are other files waiting to be moved, the next one is displayed, followed by the question 
mark. If not, the prompt returns. 

ICON/UXV USER GUIDE 8-23 



OOMMUNICATION TUTORIAL 

If you would rather display the next message without doing anything to the current file, press the 
carriage return key after the question mark. 

r f <OR> 

The current file remains in the public directory until you next use the uupiek command. If there 
are no more messages, the system prompt returns. 

H you already know that you do not want to save the file, you can delete it by typing in a dafter 
the question mark: 

This response deletes the current file from the public directory and displays the next message (if 
ther~ is one). If there are no additional messages about waiting files, the prompt returns. 

Finally, if you want to stop the uupiek command, type a q after the question mark: 

rf q<CR> 

8-24 ICON INTERNATIONAL 



( 

SENDING AND RECEIVING Fn.ES 

Any unmoved or undeleted files will wait in the public directory until the next time you use the 
uupick command. 

Other available responses are listed in the IOON/UXV Uaer Reference Manual. The following 
command recap summarizes what you can expect from the uupick command. 

Command Recap 

uupick - searches for files sent by uuto 

command 

uupick 

Description: 

Remarks: 

optiona optiona 

none none 

uupiek searches the public directory of your 
system for files sent by uuto. If any are found, the 
command displays information about the file and 
awaits a response. 

The question mark (1) at the end of the message 
indicates that a response is expected. The full list 
of responses is given in the IOON/ UXV Uaer 
Reference Manual. 

ADVANCED MESSAGE AND FILE HANDLING (uucp, mailx) 

Once you master the mail and uuto/uupiek commands, you may decide that you want commands 
that are more flexible or efficient. If so, you should try the mailx and uucp commands. 

The uuep command enables you to send a copy of a file directly to another user's login directory, 
instead of to the public directory on that user's system. In some cases, you can even copy directly 
from files in another login and place the copy in your login directory. The uuep command also 
enables you to rename a file when it reaches its destination. 

There are a number of considerations to deal with when using uuep, such as file permissions and 
system security procedures. The uuep system is more complex and requires more experience to use 
than uuto and uupiek. 

If you want an electronic mail facility with more features, there is the mailx command. This 
command is an interactive message-handling system that gives you, among other things, the 
following: 

• The ability to use either the ed or vi text editor for use on incoming and outgoing messages, 

ICON{UXV USER GUIDE 8-25 



COMMUNICATION TUTORIAL 

• A list of waiting messa.ges from which the user can decide which messages to deal with and in 
what order, 

• Several options for saving files, and 

• Commands for replying to specific messages and sending copies to other users (both of incoming 
and outgoing messa.ges). 

As you might gather, these two commands are complex and are not recommended for the beginning 
user. Because of this, we do not cover the uses of uuep or maiJx in this guide. However, these 
commands are mentioned here because they may be available in your ICONfUXV package and are 
useful commands to know about. . 

Once you are thoroughly familiar with the standard tools for user communication, you may want to 
experiment with the uucp and mailx commands. Refer to the IOON/UXV UIJer Reference Manual 
for more information on using these commands. 

8-26 ICON INTERNATIONAL 

/\ 
) 

'" J 



( 

c' 

Chapter 9 

PAGE 

INTRODlJCll ~ ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 1-1 

EXE.CU1l~ SI~l.E SJ-El.l. C~ ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 1-1 

It-PUT / OlJ1PUT REDIRECn~ •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 1-1 

PIPEl..Jt£S Af\D FIL 'l'ERS •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 1-2 

PERMISSIOf\I ~................................................................................................................................ 0-3 

FILE NA.trwE. c::;e:tERA TI()t\.I......................................................................................................................... 0-4 
QUOTING •••••••••••••••••••••••••••••••••••••••• _....................................................................................................... 0-5 

EXECUTING C~S IN THE BACK~OlJf\I) ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 0-8 
Determininc Completion of Backlfound Comrnands •••••••••••••••••••••••••••••••••• _.......................................... 0-7 

Terminatinl Background Commands .................................................................................................... 0-7 

SHaL VARIABLES •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 9-8 
Positional PararTleters ••••••••••••••• _....................................................................................................... 1-8 

Keyword PararT'leters •••••••••••• _........................................................................................................... 0-0 
H~ •••••••••••••••••••• _.......................................................................................................... 0·10 

PAi1-f ••••••••••••••••••••••••••••• _...................................................................................................... V-II 

COPATH ••••••••••••••••••••••••••• ~...................................................................................................... 9-11 
MA.IL, MAILC~CK, MAILPA n-f ••••••••••• : •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
PSI ........................................................................................................................................ . 
PS2 ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
IFS ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
SHACCT •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

User "Defined Variables •••• _ •••••••• _ •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

SPECIAL. C~ •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
cd .................................................................................................................................................. . 
exec •••••••••••••••••••••••••••••••••••••••• _ ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
hash •••••••••••••••••••••••••••••••••••••••• _ ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
newlrp ••••••••••••••••••••••••••••••••••••• _ •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
pwd ................................................................................................................................................. . 
set ................................... _ ......................................................................................................... . 
type •••••••••• _ ............................. _ ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
ulimit •• _ ••••••••••••••••••• __ ._ ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
umask •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
unset ••••••••••••••••••••••••••••••••••• __ ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

RES""'TRlC'T'ED SHELL ................. __ ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

9·12 

9·13 

9·13 

9-13 

9-13 

9-13 

9·14 
9·15 

9·18 

9-18 

9-17 

9-17 

9-17 

9-18 

9-18 

9-18 

9-19 

9-19 





(.) Chapter 9 

USING SHELL COMMANDS 

INTRODUCTION 

This chapter provides information to enhance uses of the shell. Most information should 
be useful to both the programmer and nonprogrammer alike. Some information may be of 
more use to the more advanced user. It is assumed that the user has been introduced to 
the ICON/UXV system and understands such basics as how to log in, set the terminal baud 
rate, etc. 

EXECUTING SIMPLE SHELL COMMANDS 

A simple shell command consists of the command name possibly followed by some 
arguments such as 

cmd argi arg2 arg3 ... 

where emd is the command name consisting of a sequence of letters, digits, or underscores 
beginning with a letter or underscore. For example, the shell command 

Is 

prints a list of files in the current directory. 

INPUT /OUTPUT REDmECTION 

Most commands produce output to a terminal. Output can be redirected to a file in two 
different ways. First, standard output may be redirected to a file by the notation ">", thus 

Is -I > tempfile 

causes the shell to redirect the output of the command Is to be put in tempfile. If there is 
no file tempjile, one is created by the shell. Any previous contents of tempfile are 
destroyed. 

Standard output may be appended to the end of a file by the notation .,> >., thus 

Is -1 > > tempfile 

ICON/UXV USER GUIDE 9-1 



USING SHELL COMMANDS 

causes the shell to append the output of the command Is to the end of the contents of 
temp file. If tempfile does not already exist, it is created. 

Although input is normally from a terminal, it can also be redirected by the "<" notation. 
Thus 

wc < tempfile 

would send the contents of tempfile to the we command which would give a character, 
word, and line count of tempfile. Another modification of input is possible with the "< <" 
notation. The form 

cmd «word 

would send standard input to the specified command until a line the same as word is input. 
As an example 

sort «finished 

would send all the standard input to sort until finished is input. Then 'the input would be\ 
sorted and output to the terminal. If the notation "«-" is used, then all leading tabs \,-_~ 
would be stripped. As an example, the following is entered at the terminal (note that the 
primary system prompt $ and the secondary system prompt > provided by the system are 
shown in this example) 

$sort «end 
>no one does anything about it 
>everyone talks about the weather but 
>end 

and the following would be returned 

everyone talks about the weather but no one does anything about it 

PIPELINES AND Fa TERS 

The standard output of one command may be connected to the standard input of another 
by using the pipe (I) operator between commands as in 

Is -11 wc 

A sequence of one or more commands connected in this way constitutes a pipeline, and the 
overall effect is the same as 

9-2 ICON INTERNATIONAL 

c 



( 

USING SHELL COMMANDS 

Is -I > file; wc < file 

except no file is used. Instead the two processes are connected together by a pIpe [see 
pipe(2)] and are run in parallel. Each command is run as a separate process. 

Pipes allow one to execute several commands sequentially from left to right with the 
standard output from each command becoming the standard input of the next command. 
This prevents creating temporary files and is faster than not using pipes. Pipes are 
unidirectional. Synchronization is achieved by halting we when there is nothing to read 
and halting Is when the pipe is full. 

A filter is a command that reads its standard input, transforms it in some way, and prints 
the result as output. One such filter, grep(l), selects from its input those lines that contain 
some specified string. For example, 

Is I grep old 

prints those lines that contain the string "old". Another filter is the 8ort(l) command that 
gives alphabetical listings. 

PERMISSION MODES 

All ICON/UXV files have three independent attributes (often called "permission"), read, 
write, and execute (rwx). These three p'ermissions are assigned to three different levels of 
users. The first level is the owner level. Normally, the creator of the file is the owner. 
This ownership can be changed with the ehown(l) command. The second level is the group 
level. The third level is the others level. The permission for each level must be set to allow 
reading, writing, or executing a file. 

The Is command will display among other things the permissions for a file when used as 
follows 

Is -I filename 

The general format of the permissions is 

-rwxrwxrwx 

where the first character will be a dash if it is an ordinary file. The second, third and 
fourth characters (the first rwx) indicate the permission modes for the owner. The fifth, 
sixth, and seventh characters (the second rwx) indicate the permission modes of the group. 
And the eighth, ninth, and tenth characters (the last rwx) indicate the permission modes of 
others. A dash in any permission mode position indicates that the mode is not allowed. 

ICONfUXV USER GUIDE 9-3 



USING SHELL COMMANDS 

For example, the input 

Is -I wg 

displays the permissions of wg as follows 

-rwxr-x--- 1 abc ICON/UXV 66 May 4 09:25 wg 

In this case, the owner has read (r), write (w), and execute (x) permission, the group has 
read and execute permission, and all others are denied (-) permission to wg. 

The chmod(l) command is used by the owner to change the permission modes of a file. To 
change the permissions of wg so that everyone could execute the procedure, enter the 
following command 

chmod 751 wg 

which would result in a permlSSlon mode of rwxr-x-x. The 7 assigns the owner read, 
write, and execute permission !4 (read) + 2 (write) + 1 (execute) = 7]. The 5 assigns the 
group read and execute permission !4 (read) + 1 (execute) = 5J. Th~ 1 assigns others 
execute permission. \~,) 

The chmod command could also be entered as 

chmod +x wg 

which would add execute permission for owner, group, and all others. 

FILE NAME GENERATION 

The shell provides a mechanism for generating a list of file names that match a pattern. 
For example, 

Is -1 *.c 

generates as arguments to Js(I) all file names in the current directory that end in .c. The 
character "*" is a pattern that will match any string including the null string. In general, 
patterns are specified as follows 

* Matches any string of characters including the null string. 

9-4 ICON INTERNATIONAL 



( 

USING SHELL COMMANDS 

T Matches any single character. 

[ ... ] Matches B.lly character enclosed. A pair of characters separated by 
a minus will match any character lexically between the pair. 

For example, 

Is -I [a-zJ* 

matches all names in the current directory beginning with letters a through z. The input 

Is -I /usr /fred/test/? 

matches all names in the directory /usr//red/test that consist of a single character. This 
mechanism is useful both to save typing and to select names according to some pattern. 

There is one exception to the general rules given for patterns. The character "." at the 
start of a file name must be explicitly matched. The input 

echo * 

prints all file names in the current directory not bePmting with ".". The input 

echo .* 

prints all those file names that begin with ".". This avoids inadvertently matching the 
names tl o " and .... " that mean "the current directory" and "the parent directory," 
respectively. [Notice that Is(l) suppresses information for the Jiles ft." and .... ".J 

QUOTING 

Chara.cters that have a special meanmg to the shell, sDch as 

<> * ? I &$;\ ""I] 

are called metacharacters. 

The shell can be inhibited from interpreting and acting upon the special meaning assigned 
metacharacters by preceding them with a backslash (\). Any character preceded by a \ 
loses its special meaning. For example 

ICONfUXV USER GUIDE 9-5 



USING SHELL COMMANDS 

echo * 

prints all the file names in the current directory. To echo an asterisk, enter 

echo \* 

The backslash turns off any special meaning of a metacharacter. 

To allow long strings to be continued over more than one line, the sequence \newllne (or 
RETURN) is ignored. The \ is convenient for quoting single characters. When more than 
one character needs quoting, the above mechanism is clumsy a.nd error prone. A string of 
characters may be quoted by enclosing the string between single quotes. All chara.cters 
enclosed between a pair of single quote marks are quoted except for a single quote. For 
example, 

echo xx'****'xx 

will print 

xx****xx 

The quoted string may not contain a single quote but may contain new lines that are 
preserved. This quoting mechanism is the simplest and is recommended for casual use. 

EXECUTING COMMANDS IN THE BACKGROUND 

To execute a command, the shell normally creates a new process and waits for it to finish. 
A command may be run without waiting for it to finish. Executing commands in the 
background enables the terminal to be used for other tasks. Adding an ampersand (&) at 
the end of a command line before the RETURN starts the execution of a command and 
immediately returns to the shell command level. For example, 

cc pgm.c & 

calls the C compiler to compile the file pgm.c. The trailing .,&., is an operator that 
instructs the shell not to wait for the command to finish. To help keep track of such a 
process, the shell reports its process number following its creation. This means the system 
will respond with a process number followed by the primary shell prompt. 

9-6 ICON INTERNATIONAL 



( 

( 

USING SHELL COMMANDS 

Determining Completion of Background Commands 

When a command is executed in the background, a prompt is not received when the 
command completes execution. The only way to see that the command is either in process 
or complete is to request process status. The status of all active processes assigned to a 
user can be reported as follows 

ps -u ulist 

where "ulist" is the login name. If the process number and associated command name are 
output by the pB command, then the command is running in the background. If the process 
number and associated command name are not output by the ps command, then the 
command has finished executing. 

Terminating Background Commands 

Once a command starts in the background, it will run until it is finished or is stopped. The 
BREAK, RUBOUT, DELETE, or other keys will not stop a command running in the 
background. Instead, the process must be "killed" with the kill(l) command as follows 

kill PID 

where "PID" is the process identification number. The shell variable $! contains the "PID" 
of the last process run in the background and can be obtained as follows 

echo $! 

All nonessential background processes can be stopped by executing the following command 

kill 0 

Some processes can ignore the software termination signal. To stop these processes, enter 
the following 

kill -9 PID 

A process running in the background is automatically killed when the user logs out. The 
nohup(l) command can be used to continue the process after logging off or hanging up. 
For example, 

nohup nroff text & 

would continue the formatting of the file text using the nroff(l) formatter even if one 
logged off or the telephone line to the computer went down. The system responds with the 
lines 

ICON/UXV USER GUIDE 9-7 



USING SHELL COMMANDS 

28096 
$ Sending output t~ nohup.out 

The 28096 is the process id number. A file nohup.out is created by the Dohup command, 
and all output of the process is directed to this file. To redirect the output to a particular 
file, use the redirect command as follows 

nohup nrofl'text &, > formatted 

to direct the output to the file formatted. 

SHELL VARIABLES 

A variable is a name representing a string value. (Loosely defined, a string is a 
combination of one or more alphanumeric characters or symbols.) Variables that are 
normally set on a command line are called parameters. There are two types of parameters 
in the shell- positional and keyword. 

Positional Parameters 

When a shell procedure is invoked, the shell implicitly creates positional parameters. The 
shell assigns the positional parameters as follows 

${O} ${I} ${2} ${3} ... ${9} 

Since the general form of a simple command is 

cmd argi arg2 arg3 ... 

then the values of the positional parameters are 

cmd argi arg2 arg3 .,. arg9 
${O} ${l} ${2} ${3} ... ${9} 

For instance, if the following command is entered 

cmd tempI temp2 temp3 

then the positional parameter ${I} would have the value tempI. Notice that the 
command procedure name is always assigned to ${O}. 

9-8 ICON INTERNATIONAL 

/' 

c 



( 

", () 

USING SHELL COMMANDS 

The positional parameters are used often in shell programs. If a shell program, wg, 
contained 

who I grep $1 

then the call to run the program 

sh wg fred 

is equivalent to 

who I grep fred 

The variable $* is a special shell parameter used to substitute for all positional parameters 
except $0. Certain other similar variables are used by the shell. The following are set by 
the shell: 

$! 

$# 

$$ 

$! 

$-

The exit status (return code) of the last command executed as a decimal 
string. Most commands return a zero exit status if they complete 
successfully; otherwise, a nonzero exit status is returned. Testing the 
value of return codes is dealt with later under it and while commands. 

The number of positional parameters in decimal. 

The process number of this shell in decimal. Since process numbers are 
different from all other existing processes, this string is frequently used to 
generate temporary file names. For example, 

ps a >/tmp/ps$$ 

rm /tmp/ps$$ 

The process number of the last process run in the background (in decimal). 

The current shell flags, such as -x and -v. 

Keyword Parameters 

The shell uses certain variables known as keyword parameters for specific purposes. The 
following variables are discussed in this portion of the document: 

ICONjUXV USER GUIDE 9-9 



USING SHELL COMMANDS 

HOME 
PATH 
CDPATH 
MAIL 
MAILCHECK 
MAILPATH 
PSI 
PS2 
IFS 
SHACCT 
SHELL. 

HOME 
The variable HOME is used by the shell as the default value for the cd(l) command. 
Entering 

cd 

is equivalent to entering 

cd $HOME 

where the value of HOME is substituted by the ahell. If $HOME IdS/abc/de!, then each of 
the above two entries would be equivalent to 

cd /d3/abc/def 

Normally, HOME is initialized by login(l) to the login directory. The value of HOME can 
be changed to / dS/ abel ghi by entering the following 

HOME=/d3/abc/ghi 

No spaces are permitted. The change of the variable will have no effect unless the value is 
exported [see export in Chapter 3 under "Special Commands" and in sh(I}J. All variables 
(with their associated values) that are known to a command at the beginning of execution 
of that command constitute its environment. To change the environment to a new variable 
setting, the following must be entered 

export variable-name 

For instance, if HOME has been modified, then the command 

9-10 ICON INTERNATIONAL 



( 

c; 

USING SHELL COMMANDS 

export HOME 

will cause the environment to be modified accordingly. The variable HOME need be 
exported only once. At login the next time, the original variable settings will be 
reestablished. A change to the .profile would modify the environment for each new login. 

PATH 

The variable PA TH is used by the shell to specify the directories to be searched to find 
commands. Each directory entry in the PATH variable is separated by a colon (:). Several 
directories can be specified in the PATH variable but each directory before the command is 
found consumes processor time. Obviously, the directories that contain the most often used 
commands should be specified first to reduce searching time. The following is the default 
PATH value 

PATH=:/bin:/usr /bin 

Since no value precedes the first :, then the current directory is the first directory searched. 
Then directory /bin is searched followed by /usr/bin. To change the PATH variable, 
simply enter PA TH followed by the directories to be searched. Each directory should be 
separated by a colon. As when changing all variables, no spaces are allowed before or after 
the =. 

CDPATH 

The variable CDPA TH specifies where the shell is to look when it is searching for the 
argument of the ed command if that argument is not null and does not begin with •• /, ./, 
or /. For example, if the CDPATH variable were 

CDPATH=:/d3/abc/def:/d3/abc 

then the command 

cd ghi 

would cause the current directory, IdS/abc/de! directory, and /dS/abc directory to be 
searched for the subdirectory ghi. If found in the /dS/abc/de! directory, the full pathname 
of the subdirectory would be printed and the current working directory would be changed 
to I dSI abel dell ghi. 

ICON/UXV USER GUIDE 9-11 



USING SHELL COMMANDS 

MAIL, MAILCBECK, MAILPATH 

When the MAILPATH variable is set, the shell informs the user of modifications to any of 
the files specified by the MAILPATHvariable. The MAIL variable, if set, is ignored. When 
the MAILPATH variable is not set, the shell looks at the file specified by the MAIL 
variable and informs the user if there are any modifications. 

If MAILPATH: /dS/abc/de//mailfile, then a change to mailftle would cause the message 

You have mail 
$ 

to be displayed when a check is made. Note that the prompt appears on the line after the 
message. To display a customized message, follow the file name with a % and the message. 
For example 

MAlLPATH=/d3/abc /def/mailfile%"Mailfile modified" 

would cause the following message to be displayed after mail file is modified 

Mailfile modified 
$ 

Several files can be checked by adding them to MAILPATH. For instance 

MAlLPATH /usr /mail/def:/d3/abc/def /mailfile%''Mailfile 
modified":/d3/abc/othermail%"Othermail modified" 

would check for modifications to the three specified files. The standard mailfile is specified. 
Otherwise, the user would not be notified of the reception of standard mail except at login. 

The MAILCHECK variable specifies how often (in seconds) the shell will check for mail. 
The default value is 600 seconds (10 minutes). If set to zero, the shell will check before 
each prompt. To set the MAILCHECK variable to zero, enter the following 

MAlLCHECK=O 

The presence of mail in the standard mail file (/usr/mail/loginname) is announced at login 
regardless of the setting of MAIL or MAILPA TH variables. Otherwise, to be notified of the 
arrival of mail, either the MAIL or MAILPATHvariable must be set. 

9-12 ICON lNTER~ATIONAL 

:~) 

/ 



USING SHELL COMMANDS 

PSI 

The variable PSl is used by the shell to specify the primary shell prompt. This is 
displayed at a terminal whenever the shell is awaiting a command input. The default 
primary prompt is $. To change the prompt to <>, for example, the following is entered 

PSl-"<>" 

PS2 

The variable PSf is used by the shell to specify the secondary shell prompt. This is 
displayed whenever the shell receives a newline in its input but more is expected. The 
default value of PSf is >. To change the prompt to <more> for example, the following is 
entered 

PS2="<more>" 

IFS 

The variable IFS is used by the shell to specify the internal field separators. Normally, the 
space, tab, and newline characters are used. Mter parameter and command substitution, 
internal field separators are used to split the results of substitution into distinct arguments 
where such characters are found. Explicit null arguments (" " and' ') are retained. 

SHACCT 

The variable SHACCT is used by the shell to specify a file for storing shell (as opposed to 
process) accounting records. Whenever a shell procedure is executed and the variable 
SHACCT is set, the shell will write an accounting record to the file specified by SHACCT. 
This file must be writable by the user. The accounting records can be analyzed by 
accounting routines such as acctcom(l) and acctcms(lM). 

User Defined Variables 

A user variable can be defined using an assignment statement of the form name=value. 
The name must begin with a letter or underscore and may then consist of any sequence of 
letters, digits, or underscores. The name is the variable. Positional parameters cannot be 
in the name. 

The shell provides string-valued variables. Variable names begin with a letter and consist 
of letters, digits, and underscores. Variables may be given values by entering 

user=fred box=mOOO acct=mhOOO 

to assign values to the variables user, box, and acct. A variable may be set to the null 
string by entering 

ICON/UXV USER GUIDE 9-13 



USING SHELL COMMANDS 

null= 

The value of a variable is substituted by preceding its name with $; for example, 

echo $user 

will print fred. 

Variables may be used interactively to provide abbreviations for frequently used strings. 
For example, 

b=/usr /fred/bin 
mv file $b 

moves the file from the current directory to the directory /usr/fred/bin. A more general 
notation is available for parameter (or variable) substitution as in 

echo ${ user} 

This is equivalent to 

echo $user 

and is used when the parameter name is followed by a letter or digit. For example, 

tmp=/tmp/ps 
ps a >$tmpa 

directs the output of ps(l) to the file /tmp/psa, whereas, 

ps a >$tmpa 

causes the value of the variable tmpa to be substituted. 

SPECIAL COMMANDS 

The following special commands are used in writing shell procedures. Many of the 
commands are only needed when programming. Others have nonprogramming uses. 

9-14 ICON INTERNATIONAL 



(,) 

USING SHELL COMMANDS 

read 
readonly 

break return 
continue set 
cd shift 
echo test 
eval times 
exec trap 
exit type 
export ulimit 
hash umask 
newgrp unset 
pwd wait 

The ones that are useful to the casual (non programming) user are described below. 

cd 

The cd command is used to change the current working directory as follows 

cd [arg] 

where arg specifies the new directory desired. For instance, 

cd /d3/abc/ghi 

moves the user from anywhere in the file system to the directory /d8/abc/ghi. The full 
directory path name must be specified to be used in this way. Execute permissions must be 
set in the desired directory. 

If only the desired directory name is specified and the CDPATH variable is not set, then 
the current directory is searched for a subdirectory by that name. For instance; if the 
current directory / d8/ abc contains a subdirectory 8ubdir, then the command 

cd subdir 

changes the current working directory to /d8/abc/subdir. If the argument begins with •• /, 
the current working directory is changed relative to its parent directory. If the argument 
begins with ./, the current directory value precedes additional arguments. For instance, if 
the current working directory is / d8/ abc, the following command 

cd .fghi 

C" changes the current directory to /d8/abc/ghi. 

ICONjUXV USER GUIDE 9-15 



USING SHELL COMMANDS 

("\ 

If the variable CDPATH is set, the shell searches each directory specified in CDPATH for ~j 
the directory specified by the cd command. If the directory is present, the directory 
becomes the new working directory. (See "CDPATH" under "Keyword Parameters".) 

exec 

The command 

exec [arg ... ] 

causes the command specified by arg to be executed in place of the shell without creating a 
new process. Input/output arguments may appear and, if no other arguments are given, 
cause the shell input/output to be modified. 

hash 

When a command is executed, it is entered into a special hash table. This table keeps 
track of what commands have been used, where they were located, and how much directory 
searching is involved in locating the command. Since this table is the first place that the 
shell looks, the amount of time used to search for a previously used command is reduced. 
Note that if a command is created and a command by the same name has been previously 
used, the hash table will contain only the location of the previously used command. The 
ha.sh table is reinitialized upon each login session. The hash table can be cleared by 
entering 

hash -r 

To display the contents of the hash table, the following is entered 

hash 

The following is an example of a hash table: 

hits 
3 
1 
1 
1 
2 
1 

cost 
5 
2 
7 
2 
2 
2 

command 
/d3/abc/progbin/1 
/hinted 
/d3/abc/def/busy 
/bin/date 
/hin/who 
/bin/Is 

The hits column displays the number of times a command has been called. The cost 
column displays the number of nodes (i.e., P ATH=node:node:node) searched to find the 
command. The comma.nd column displays the full pathname of the command. 

9-16 ICON INTERNATIONAL 



( 

c 

USING SHELL COMMANDS 

An asterisk (*) displayed beside the hits information indicates that the command location 
may be reevaluated when the working directory is changed and the command is re
executed. 

If a command name is entered with hash, the location of the command is determined and 
stored in the hash table without executing the command. 

newgrp 

By issuing the command newgrp(l), the user is assigned a new group identification. The 
command is of the form 

newgrp [-] [group] 

All access permissions are then evaluated with the new group. This allows access to files 
with different group ID permissions. 

Entering newgrp with no argument changes the group identification back to the original 
group. When a - is entered, the environment is changed to the login environment. 

pwd 

The pwd command prints the full pathname of the current working directory. This 
command is especially useful when working directories are changed often. 

set 

The set command provides the capability of altering several aspects of the behavior of the 
shell by setting certain shell flags. Some of the more useful flags for the nonprogrammer 
and their meanings are: 

-a Mark variables that are modified or created for export. 

-f Disable file name generation. 

-v Print lines as they are read by the shell. The commands on each input line are 
executed after that input line is printed. 

-x Print commands and their arguments as they are executed. This causes a trace 
of only those commands that are actually executed. 

To set the x flag for example, enter 

set -x 

ICON/UXV USER GUIDE 9-17 



USING SHELL COMMANDS 

To turn the x 8ag oft' for example, enter 

set +x 

These commands are especially useful for troubleshooting within shell procedures. 

The set command entered with 110 arguments will display the values of variables in the 
environment. 

type 

The type command indicates how a specified command would be interpreted if used as a 
command name. The form of the command is 

type [command-name] 

For example, if the interpretation of the cd command is desired, enter 

type cd 

which returns 

cd is a shell builtin 

ulimit 

The ulimit command has the form 

ulimit [-f] [n] 

When the option -/ is used or if no option is specified, this command imposes a limit of n 
blocks on the size of files written by the shell and its child processes. Any size files may be 
read. If n is omitted, the current value of this limit is printed. The default value for n 
varies from one installation to another. 

umask 

The umask command has the form 

umask [nnn] 

The user file creation mask is set to nnn. This mask is used to determine the permission 
modes set on a file when it is created. For instance, 

9-18 ICON INTERNATIONAL 

o 

(" -, 

"- / 



USING SHELL COMMANDS 

umask 033 

causes a newly created file to be assigned the permission set of 744. (See "PERMISSION 
MODES".) 

unset 

The unset command has the form 

unset [name ... J 

For each variable name, the shell removes the corresponding variable or function. (This is 
not the same as making a variable null; removing a variable makes it nonexistent.) The 
variables PATH, PS1, PSt, MAILGHEGK, and IFS cannot be unset. 

RESTRICTED SHELL 

A restricted shell is also available with the ICON/UXV operating system. This restricted 
version of shell is used to create an environment that controls and limits the capabilities. 
The actions of rsh are identical to that of sh, except that the following are disallowed: 

• Changing directory 

• Setting the value of PA TH variable 

• Specifying path or command names containing / 

• Redirecting output ( > and»). 

The system administrator often sets up a directory of commands that can be safely invoked 
by rsh. A restricted editor may also be provided. 

ICON/UXV USER GUIDE 9-19 





---_ .. ----- -- ----- ---~ .-

( 

Chapter 10 

SHELLPROG~G 

PAGE 

IN'T'RODlJCTI ~ ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

1t-N()t(I~ TI£ S.aJ. •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• _ •••••••••••••••••• 

Ir-.P'UT" / 0lJTPUT ..................................................................................................................................... . 
Sinlle Une •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
Printinr; Error t-4essaK8S ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
Multiline Input (Here DocuRl8nts) ••••••••••••••••••••••••••••••••••••••••••••••••••••• _ .............................................. . 

SH8...L V ARIABI..ES •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

Cc:>f\DIi1~ SlJBSTITUTIOf\.I ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

COI\ITROI.. C~S ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
Programming Constructs •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

Control Flow_while •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
Control Flow_if ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••.•••••••••••••••••••••••••••••••••••••••••••••••••• 
Control Flow_for ......•...............................................•.•..........•............................................... 
Control Flow _ c.se. •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

10.1 

10.1 

10.1 

10.1 

10.: 

10.: 

10.3 

10.6 

10.8 
100g 

10.10 

10.11 

10.13 

10.15 
Functions........................................................................................................................................ 10-17 

SPECIAL. C~S.............................................................................................................................. 10-18 
: (Colon) ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• l()"IV 

break ...........................................................•.................................................................................. 10-20 
continue.......................................................................................................................................... 10.20 
echo ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 10-20 
eva' •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 16-21 

exit-................................................................................................................................................ 10-22 
export............................................................................................................................................. 10-:2 
read................................................................................................................................................ 1()..'3 
readonly ....................................................................................................................................... ~.. 10-23 
return ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• _.................................................... 10:-14 
shift ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 10-14 
1;es,t •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 10.2:6 
tirT18s.............................................................................................................................................. 10.28 

trap................................................................................................................................................ 10-21 
wait................................................................................................................................................ 1()"2V 

C~ ~PIt-.IG............................................................................................................................ 10-30 
A C~·S eNJ~ ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 10-81 

DEBUGGI"-ICi SHB.L. PROCE[)tJRES •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 16-32 

-----.. --_._- --------- --.------------------------~--~~,--~~~ 





(\ Chapter 10 

SHELL PROGRAMMING 

INTRODUCTION 

This chapter describes shell as a programming language and builds upon the information 
provided in Chapter 2. It is expected that the reader has read Chapter 2 and has 
experience with ICON/UXV operating system commands. 

INVOKING THE SHELL 

The shell is an ordinary command and may be invoked in the same way as other 
commands: 

sh proc [ arg ... 1 

sh -y proc [ arg ... 1 

proc [ arg ... 1 

A new instance of the shell is explicitly invoked to read 
proc. 

This is equivalent to putting set -y at the beginning of 
proc. Similarly for other set flags including x, e, U, and n 
flags. 

If proc is marked executable, and is not a compiled, 
executable program, the effect is similar to that of the sh 
proc [args...] command. An advantage of this form is 
that proc may be found by the search procedure. 

INPUT /OUTPUT 

Unless redirected by a command inside the program, a shell program uses the input and 
output connections of the shell program. A redirection on a command changes redirection 
for that command only. 

Single Line 

The following could be used to print a line from a program 

echo The date is: 
date 

and would result in 

ICON/UXV USER GUIDE 10-1 



SHELL PROGRAMMING 

The date is: 
Tue May 21 16:13:38 EDT 1984 

Printing Error Meeaages 

Normally, error messages are associa.ted witnllledescriptor 2 and are sent to sta.ndard 
error. Error messages can be redirected to a..tile withtlM! following command 

sample 2>ERROR 

If an error message is produced when running the program sample, the error output 15 

redirected to the file ERROR. 

Multiline Input (Here Documents) 

One way to input several lines to progra.ms is with what IS referred to as "Here 
Documents". The general form is 

cmd argl arg2 ... «word 

where everything entered at this command is accepted until word is entered on a line by / '\ 
itself. For example ) 

sort < <finish 

sends all the standard input to sort until finish is inputted. Then the input would be 
sorted and output to the terminal. For example 

$ sort «finish 
> def 
> abc 
> finish 
abc 
def 

Note that the primary system prompt ($) and the secondary system prompt (» are shown. 
The final two lines are returned by the system. 

The command 

sort «-word 

removes all leading spaces or tabs. 

10-2 ICON INTERNATIONAL 



( 

SHELL PROGRAMMING 

SHELL VARIABLES 

The shell has several mechanisms for creating variables. A variable is a name representing 
a string value. Certain variables are usually referred to as parameters. Parameters are the 
variables normally set only on a command line. There are also positional parameters and 
keyword parameters. Other variables are simply names to which the user or the shell itself 
may assign string values. 

Positional Parameters: When a shell procedure is invoked, the shell implicitly creates 
positional parameters. The argument in position zero on the command line (the name of 
the shell procedure itself) is called $0, the first argument is called $1, etc. The shift 
command may be used to access arguments in positions numbered higher than nine. 

One can explicitly force values into these positional parameters by using the set command 

set abc def ghi 

which assigns "abc" to the first positional parameter ($1), "def" to the second ($2), and 
"ghi" to the third ($3). For this example, set also umets $4, $5, etc. even if they were 
previously set. Positional parameter $0 may not be assigned a value so that it always 
refers to the name of the shell procedure or to the name of the shell (in the login shell). 

For instance, 

set abc def ghi 
echo $3 $2 $1 

prints 

ghi def abc 

User-defined Variables: The shell also recognizes alphanumeric variables to which string 
values may be assigned. Positional parameters may not appear on the left-hand side of an 
assignment statement. Positional parameters can only be set as described in "Positional 
Parameters". A simple assignment is of the form 

name=string 

Thereafter, $name yields the value "string". A name is a sequence of letters, digits, and 
underscores that begins with a letter or an underscore. Note that no spaces surround the 
= in an assignment statement. 

More than one assignment say appear in an assignment statement, but beware since the 

ICONjUXV USER GUIDE 10-3 

-- ------- ---------------------~~ 



SHELL PROGRAMMING 

shell perform8 the tJ8signments from right to left. The following command line results in the 
variable a acquiring the value "abc" 

a==$b b=a.bc 

The following are examples of simple assignments. Double quotes around the right-hand 
side allow blanks, tabs, semicolons, and newlines to be included in "string",' while also 
allowing variable substitution (also known as parameter sub8titution) to occur. In parameter 
8ubstitution, references to positional parameters and other variable names that are 
prefaced by $ are replaced by the corresponding values, if any. Single quotes inhibit 
variable substitution. Some examples follow 

MAIL /usr/mail/gas 
var-"$l $2 $3 $4" 
stars=***** 
asterisks='$stars' 

The variable var has as its value the string consisting of the values of the first four 
positional parameters, separated by blanks. No quotes are needed around the string of 
asterisks being assigned to stars because pattern matching (expansion of *, !', [ ... ]) does 
not apply in this context. Note that the value of $asterisks is the literal string "$stars", 
not the string "*****", because the single quotes inhibit substitution. 

In assignments, blanks are not reinterpreted after variable substitution, so that the 
following example results in $first and ~econd having the same value 

first='a string with embedded blanks' 
second -$first 

In accessing the value of a variable, one may enclose the variable's name (or the digit 
designating the positional parameter) in braces {} to delimit the variable name from any 
following string. In particular, if the character immediately following the name is a letter, 
digit, or underscore (digit only for positional parameters), then the braces are required 

a='This is a string' 
echo "${a}ent test" 

returns the following message 

This is a stringent test 

Command Substitution: Any command line can be placed within grave accents (' ... ') to 
capture the output of the command. This concept is known as command substitution. The rI.', _ /' 

command or commands enclosed between grave accents are first executed by the shell and ~ 
then their output replaces the whole expression, grave accents and all. This feature is 

10-4 ICON INTERNATIONAL 



( 

( 

( .'\. 
I 

SHELL PROGRAMMING 

often combined with shell variables so that 

today-'date' 

assigns the string representing the current date to the variable today (e.g., Tue Nov 27 
16:01:09 EST 1984). The command 

users='who I wc -1' 

saves the number of logged-in users in the variable users. Any command that writes to the 
standard output can be enclosed in grave accents. Grave accents may be nested. The 
inside sets must be escaped with \. For example 

logmsg='echo Your login directory is \'pwd\" 

Shell variables can also be given values indirectly by using the shell builtin command read. 
The read command takes a line from the standard input (usually the terminal) and assigns 
consecutive words on that line to any variables named 

read first init last 

will take an input line of the form 

A. A. Smith 

and has the same effect as if 

first A. init A. last =Smith 

had been typed. 

The read command assigns any excess "words" to the last variable. 

Predefined Speical Variables: Several variables have special meanings. The following are 
set only by the shell: 

records the number of positional arguments passed to the shell, not counting 
the name of the shell procedure itself. The variable $# yields the number of 
the highest-numbered positional parameter that is set. Thus, sh x abc sets 
$# to 3. One of its primary uses is in checking for the presence of the 
required number of arguments 

ICONfUXV USER GUIDE 10-5 



SHELL PROGRAMMING 

S1 

S$ 

if test $# -It 2 
then 

echo 'two or more args required'; exit 
fi 

is the exit status (also referred to as return code, esit code, or value) of the 
last command executed. Its value is a decimal string. Most IOON/UXV 
commands return 0 to indicate successful completion. The ahell itself returns 
the current value of S1 as its exit status. 

is the process number of the current process. Since process numbers are 
unique among all existing processes, this string of up to five digits is often 
used to generate unique names for temporary files. The lOON /UXV 
operating system provides no mechanism for the automatic creation and 
deletion of temporary files. A file exists until it is explicitly removed. 
Temporary files are generally undesirable. The IOON/UXV pipe mechanism 
is far superior for many applications. However, the need for uniquely-named 
temporary files does occasionally occur. The following example also 
illustrates the recommended practice of creating temporary files in a 
directory used only for that purpose 

temp==$HOME/temp/$$ 
Is> $temp 
commands, some of which use $temp, go here 
rm $temp 

$! is the process number of the last process run in the background. Again, this is 
a string of up to five digits. 

$- is a string consisting of names of execution flags currently turned on in the 
shell. The $- variable has the value xv when tracing output. 

CONDITIONAL SUBSTITUTION 

Normally, the shell replaces occurrences of Svariable by the string value assigned to 
variable, if any. However, there exists a special notation to allow conditional substitution 
depending upon whether the variable is set and/or not null. By definition, a variable is Bet 
if it has ever been assigned a value. The value of a variable can be the null string which 
may be assigned to a variable in anyone of the following ways 

A= 
bcd="" 
ELg=" 
set " "" 

10-6 lOON INTERNATIONAL 

( 
~/ 

c 



( 

c' 

SHELL PROGRAMMING 

The first three of these examples assign the null string to each of the corresponding shell 
variables. The last example sets the first and second positional parameters to the null string 
and umets all other positional parameters. 

The following conditional expressions depend upon whether a variable is set and not null. 
(Note that, in these expressions, variable refers to either a digit or a variable name. 

${ variable:-string} If variable is set and is non-null, then substitute the value $variable in 
place of this expression. Otherwise, replace the expression with string. Note that 
the value of variable is not changed by the evaluation of this expression. 

${ variable:=string} If variable is set and is non-null, then substitute the value $variable in 
place of this expression. Otherwise, set variable to string, and then substitute the 
value $variable in place of this expression. Positional parameters may not be 
assigned values in this fashion. 

${ variable:! string} If variable is set and is non-null, then substitute the value of variable 
for the expression. Otherwise, print a message of the form 

variable: string 

and exit from the current shell. (If the shell is the login shell, it is not exited.) If 
string is omitted in this form, then the message 

variable: . parameter null or n~t set 

is printed instead. 

${ variable:+string} If variable is set and is non-null, then substitute string for this 
expression; otherwise, substitute the null string. Note that the value of variable is 
not altered by the evaluation of this expression. 

These expressions may also be used without the colon (:). In this case, the shell does not 
check whether variable is null or not. It only checks whether variable has ever been set. 

The two examples below illustrate the use of this facility: 

1. If PATH has ever been set and is not null, then keep its current value. Otherwise, 
set it to the string :/bin:/usr/bin. Note that one needs an explicit assignment to set 
PATH in this form 

PATH=${PATH:-':/bin:/usr /bin'} 

2. If HOME is set and is not null, then change directory to it; otherwise, set it to 
/usr/gas and change directory to it. Note that HOME is automatically assigned a 

ICON/UXV USER GUIDE 10-7 



SHELL PROGRAMMING 

value in this case 

cd ${HOME:='/usrJgas'} 

CONTROL COMMANDS 

The shell provides several commands that are useful in creating shell procedures. A few 
definitions are needed before explaining the commands. 

A simple command is defined as a sequence of nonblank arguments separated by blanks or 
tabs. The first argument usually specifies the name of the command to be executed. Any 
remaining arguments, with a few exceptions, are passed to the command. Input/output 
redirection arguments can appear in a simple command line and are passed to the shell, 
not to the command. 

A command is a simple command or any of the shell commands described below. A pipel£ne 
is a sequence of one or more commands separated by I. (For historical reasons, ... is a 
synonym for I in this context.) The standard output of each command but the last in a 
pipeline is connected [by a pipe(£)J to the standard input of the next command. Each 
command in a pipeline is run separately. The shell waits for the last command to finish. 
If no exit status argument is specified, the exit status is that of the last command executed 
(an end-of-file will also cause the shell to exit). 

A command list is a sequence of one or more pipelines separated by i, &, &&, or II, and 
optionally terminated by i or &. A semicolon (i) causes sequential execution of the 
previous pipeline (i.e., the shell waits for the pipeline to finish before reading the next 
pipeline), while & causes asynchronous execution of the preceding pipeline. Both sequential 
and asynchronous execution are thus allowed. An asynchronous pipeline continues 
execution until it terminates voluntarily or until its processes are killed. 

More typical uses of &. include off-line printing, background compilation, and generation of 
jobs to be sent to other computers. For example, typing 

nohup cc prog.c& 

allows one to continue working while the C compiler runs in the background. A command 
line ending with & is immune to interrupts and quits, but it is wise to make it immune to 
hang-ups as well. The Dohup command is used for this purpose. Without Dohup, if one 
hangs up while cc in the above example is still executing, cc will be killed and the output 
will disappear. 

The && and II operators, which are of equal precedence (but lower than & and \), cause 
conditional execution of pipelines. In cmd1 II cmd2, cmd1 is executed and its exit status 
examined. Only if cmd1 fails (Le., has a nonzero exit status) is cmd2 executed. This is 
thus a more terse notation for 

10-8 ICON INTERNATIONAL 

l) 

/' " 
( ) 



() 

( 

o 

if cmdl 
test $? != 0 

then 
cmd2 

fi 

SHELLPROG~G 

The kk operator yields the complementary test: in cmdl kk cmd2, the second 
command is executed only if the first succeeds (has a zero exit status). In the sequence 
below, each command is executed in order until one fails 

cmdl && cmd2 && cmd3 && ... && cmdn 

A simple command in a pipeline may be replaced by a command list enclosed in either 
parentheses or braces. The output of all the commands so enclosed is combined into one 
stream that becomes the input to the next command in the pipeline. The following line 
prints two separate documents 

{ nroff ~m text!; nroff ~m text2; } I col 

Programming Constructs 

Several control flow commands are provided in the shell that are especially useful in 
programming. These are referred to as programming constructs and are described below. 

A command often used with programming constructs is the test{l) command. An example 
of the use of the test command is 

test -f file 

This command returns zero exit status (true) if file exists and nonzero exit status otherwise. 
In general, test evaluates a predicate and returns the result as its exit status. Some of the 
more frequently used test arguments are given below [see test{l) and "Test" under 
"SPECIAL COMMANDS" for more information]. 

test s true if the argument 8 is not the null string 

test -f file true if file exists 

test -r file true if file is readable 

test -w file true if file is writable 

test -d file true if file is a directory. 

ICON/UXV USER GUIDE 10-9 



SHELL PROGRAMMING 

Control Flow-while 

The actions of the for loop and the ease branch are determined by data available to the 
ahell. A while or until loop and an if then else branch are also provided whose actions 
are determined by the exit status returned by commands. A while loop has the general 
form 

while command-listl 
do 

command-list2 
done 

The value tested by the while command is the exit status of the last simple command 
following while. Each time around the loop command-listl is executed. If a zero exit 
status is returned, then command-liste is executed; otherwise, the loop stops. For example, 

while test $1 
do 

shift 
done 

The shift command is a shell command that renames the positional parameters $2, $3, ... (', 
as $1, $2, ••. and loses $1. \ j 

Another use for the while/until loop is to wait until some external event occurs and then 
run some commands. In an until loop, the termination condition is reversed. For example, 

until test -f file 
do 

sleep 300 
done 
commands 

will loop until file exists. Each time round the loop, it waits for 5 minutes (300 seconds) 
before trying again. (Presumably, another process will eventually create the file.) 

A file print could be written to use while and test as follows 

10-10 ICON INTERNATIONAL 

c 



( 

c 

while test S# != 0 
do 

echo "SI being submitted" 
lp -dprtd42 -c -012 -w -tuserl SI 
shift 

done 
lpstat -oprtd42 

Control Flow-it 

Also available is a general conditional branch of the form, 

if command-list 
then 

command-list 
else 

command-list 
fi 

SHELL PROGRAMMING 

that tests the value returned by the last simple command following if. If a zero exit status 
is returned, the command-list following the then is executed. If a zero exit status is not 
returned, the command-list following the else is executed. 

The if command may be used with the test command to test for the existence of a file as in 

if test -f file 
then 

process file 
else 

do something else 
fi 

A multiple test if command of the form 

ICON/UXV USER GUIDE 10-11 



SHELL PROGRAMMING 

if ... 
then 

else 
if '" 
then 

else 
if ... 

fi 
fi 

fi 

may be written using an extension of the if notation as, 

if ... 
then 

elif ... 
then 

elif ... 

fi 

A file could be written to include the use of if and test as follows 

if test $# = 0 
then 

echo "enter a filename after $0" 
else 

fi 

if [! -f $1 1 
then 

echo "$1 does not exist It 
echo ''Enter a filename that exists" ; exit 

else 
echo "$1 being submitted" 
lp -dprtd42 -c -012 -w -tuserl $* 
lpstat -oprtd42 
fi 

The [ ... ] is shorthand for test. The if [ ! -f $1 ] means if the file $1 does not exist then do 
this. 

10-12 ICON INTERNATIONAL 



( ./ 

() 
• 

The sequence 

if command! 
then 

command2 
fi 

may be written 

command! && command2 

Conversely, 

command! II command2 

SHELL PROGRAMMING 

executes command2 only if command 1 fails. In each case, the value returned is that of 
the last simple command executed. 

Control Flow-for 

A frequent use of shell procedures is to loop through the arguments ($1, $2, ••• ) executing 
commands once for each argument. An example of such a procedure is tel that searches the 
file /usr/lib/telnos that contains lines of the form 

fred mhO!23 
bert mh0789 

The text of tel is 

for i 
do 

grep $i /usr/lib/telnos 
done 

The command 

tel fred 

prints those lines in /usr/lib/telnos that contain the string "fred". 

ICONjUXV USER GUIDE 

------- ----~---~ .. ~--~-~ 

10-13 



SHELL PROGRAMMING 

The command 

tel fred bert 

prints those lines containing "fred" followed by those for "bert". 

The for loop notation is recognized by the shell and has the general form 

for name in words 
do 

command-list 
done 

A command-list is a sequence of one or more simple commands separated or ended by a 
newline or a semicolon. A name is a shell variable that is set to words ... in turn each time 
the command-list following do is executed. If words ... is omitted, then the loop is 
executed once for each positional parameter; that is, in $* is assumed. Execution ends 
when there are no more words in the list. 

An example of the use of the for loop is the create command whose text is 

for i do >$i; done 

The command 

create alpha beta 

ensures that two empty files alpha and beta exist and are empty. The notation > file may 
be used on its own to create or clear the contents of a file. Notice also that a semicolon (or 
newline) is required before done. 

The for can also be used in a program. Assume a document is formatted and stored in 
chapters (files) that begin with the letters "chIt (chI, ch2, ch3, and chtoc). A program can 
be written to send the document to the line printer. The program contains 

for i in ch* 
do 

lp -dprtd42 --c --012 -w -tuser! $i 
done 

lpstat -oprtd42 

This will send each chapter as a separate job. Notice that $i is used instead of $*. 

10-14 ICON INTERNATIONAL 



( 

c 

SHELL PROGRAMMING 

Control Flow-ease 

A multiple way (choice) branch is provided for by the case notation. For example, 

case $# in 
1) cat »$1 ;; 
2) cat »$2 <$1 ;; 
*) echo 'usage: append [from ] to' ;; 

esac 

is an append command. (Note the use of semicolons to delimit the cases.) When called with 
one argument as in 

append file 

$# is the string "1 ", and the standard input is appended (copied) onto the end of file using 
the cat(l) command. 

append filel file2 

appends the contents of filel onto file£. If the number of arguments supplied to append is 
other than 1 or 2, then a message is printed indicating proper usage. 

The general form of the case command is 

case word in 
pattern Ipattern} command-list;; 

esac 

The shell attempts to match word with each pattern in the order that the patterns 
appear. If a match is found, the associated command-list is executed; and execution of 
the case is complete. Since * is the pattern that matches any string, it can be used for the 
default case. 

Caution: No check is made to ensure that only one pattern matches the 
case argument. 

The first match found defines the set of commands to be executed. In the example below, 
the commands following the second "*" will never be executed since the first "*" executes 
everything it receives. 

ICONjUXV USER GUIDE 10-15 



SHELL PROGRAMMING 

case $# in 
*) .. ... " 
*) .. ... " 

esac 

A program print can be used to send a document to different line printers. Assume there 
are two line printers named "prtd42" and "prtd43". Send a document to "prtd42'~ as follows 

print 42 files 

Send a document to "prtd43" as follows 

print 43 files 

The print program contains the following 

case $1 in 
42) shiftjlp -dprtd42 -c -012 -w -tuserl $*jlpstat -oprtd42;j 
43) shiftjlp -dprtd43 -c -012 -w -tuser! $*;lpstat -oprtd43;; 
*) echo "line printer does not exist";j 

esac 

Another example of the use of the case construction is to distinguish between different 
forms of an argument. The following exa!Dple is a fragment of a cc(l) command. 

for i 
do 

case $i in 
-[ocs]) ... j; 
-*) echo 'unknown flag $i' ;; 
*.c) /lib/cO $i ... ;; 
*) echo 'unexpected argument $i' ;; 

esac 
done 

To allow the same commands to be associated with more than one pattern, the case 
command provides for alternative patterns separated by a I. For example, 

case $i in 
-xl-y)··· 

esac 

is equivalent to 

10-16 ICON INTERNATIONAL 

c 



( 

o 

case $i in 
-[xyJ) ... 

esac 

The usual quoting conventions apply so that 

case $i in 
\?) ... 

will match the character 1'. 

Functions 

SHELL PROGRAMMING 

Functions may be defined and used in the current shell. The general form of a function is 

name 0 {list} 

A space or a newline is required after the beginning brace (0. A semicolon or newline is 
required before the terminating brace (}). As an example, a function could be defined to 
see how many people are currently on the system as follows 

busy 0 { who I wc -I;} 

The we -1 command returns a count of ·the lines returned by the who command. Notice 
that a space is placed after the beginning brace ({) and a semicolon is placed before the 
terminating brace (}). This function is called by its name as follows 

busy 

which returns 

12 

if 12 people are logged into the system. 

The same function could be defined using multiple lines as follows 

busy 0 
{ 
who I wc-l 
} 

ICON/UXV USER GUIDE 10-17 



SHELL PROGRAMMING 

Positional parameters can be used to pa.SlSiDformation to a function. For instance, 

present 0 { who I grep $1 ; } 

searches the output of the who command for the value of the positional parameter $1 and 
prints all lines containing the va.lue. For .insta.nce, the entry 

present abc 

returns 

abc tty09 May 7 09:31 

if abc is logged in on tty09. 

The current shell contains the function definition. A different shell would not be able to 
execute the function until it is defined in that shell. To display the functions defined in the 
current shell, enter 

set 

The value for all variable names will be displayed including the functions defined. 

SPECIAL COMMANDS 

There are several special commands that are internal to the shell (some of which have 
already been mentioned). These commands should be used in preference to other 
ICON/UXV commands whenever possible because they are faster and more efficient. The 
shell does not fork to execute these commands, so no additional processes are spawned. 

Many of these special commands were described in Chapter 2. These commands include: 

cd 
exec 
hash 
newgrp 
pwd 
set 
type 
ulimit 
umask 
unset. 

10-18 ICON INTERNATIONAL 



( 

( 

() 

SHELL PROGRAMMING 

Descriptions of the remaining special commands follow. These commands include: 

break 
continue 
echo 
eval 
exit 
export 
read 
readonly 
return 
shift 
test 
times 
trap 
wait. 

: (Colon) 

The: command is the null command. This command can be used to return a zero (true) 
exit status. 

• (Period) 

The. command has the form 

. file 

This command reads and executes commands from file and returns. The search path 
specified byPATH is used to find the directory containing file. If the file command! 
contained the following 

echo Today is: 
date 

then the command 

. commandl 

returns 

Today is: 
Thu Sep 22 14:40:04 EDT 1984 

ICON/UXV USER GUIDE 10-19 



SHELL PROGRAMMING 

Any currently defined variable can be used in the shell procedure called. 

break 

This command has the form 

break [n] 

This command is used to exit from the enclosing for, until, or while loop. If n is specified, 
then exit n levels. An example of break is as follows 

# This procedure is interactive; the 'break' 
# command is used to allow 
# the user to control data entry. 
while true 
do 

echo "Please enter data" 
read response 
case "$response" in 

"done ") break 
.. 
" *) 

# no more data 

process the data here 
.. 
" esac 

done 

continue 

This command has the form 

continue [n] 

This command causes the resumption of an enclosing for, until, or while loop. If n IS 

spe~ified, then it resumes at the n-th enclosing loop. 

echo 

The form of the echo command is 

echo [arg ... J 

The echo command writes its arguments separated by blanks and terminated by a newline 
on the standard output. For instance, the input 

10-20 ICON INTERNATIONAL 

) 



o 

echo Message to be printed. 

returns 

Message to be printed. 

The following escapes can be used with echo: 

\b backspace 
\c print line without new-line 
\f new-line 
\r carriage return 
\t tab 
\ backslash 
\n the 8-bit character whose ASCII code is the 1-, 

2-, or 3-digit octal number, which must start 
with a zero. 

\v vertical tab 

For example 

echo "The current date is \c" 
date 

would return 

The current date is Tue May 16 08:00:30 EDT 1984 

eval 

SHELL PROGRAMMING 

Sometimes, one builds command lines inside a shell procedure. In this case, one might 
want to have the shell rescan the command line after all the initial substitutions and 
expansions are done. The special command eval is available for this purpose. The form of 
this command is 

eval [arg ... J 

The eva} command takes a command line as its argument and simply rescans the line 
performing any variable or command substitutions that are specified. Consider the 
following situation 

ICONjUXV USER GUIDE 10-21 



SHELL PROGRAMMING 

command=who 
-output-'fwc--....... l '--

eval $command $output 

This segment of code results in the pipeline who\wc -1 being executed. 

The uses of eval can be nested. 

exit 

A shell program may be terminated at any place by using the exit command. The form of 
the exit command is 

exit [nJ 

The exit command can also be used to pass a return code (n) to the shell. By convention, 
a 0 return code means true and a 1 to 255 return code means false. The return code can 
be found by $1. For instance, if the executable procedure testexit contained 

exit 5 

then 

test exit 

would execute testexit. The command 

echo $? 

would return 

5 

export 

The form of the export command is 

export [name ... J 

The export command places the named variables in the environments of both the shell 
and all its future child processes. Normally, all variables are local to the shell program. 
Commands executed from within the shell program do not have access to the local 
variables. If a variable is exported, then the commands within the shell program will be 

10-22 ICON INTERNATIONAL 



( 

() 

SHELL PROGRAMMING 

able to access the variable. 

To export variables, the following command is used 

export variablel variable2 ... 

To obtain a list of variables exported, the following command is entered 

export 

read 

A variable may also be set using the read command. The read command reads one line 
from the standard input of the shell procedure and puts that line in the variables which 
are its arguments. Leading spaces and tabs are stripped off. The general form of the 
command is 

read variablel variable2 ... 

The last variable gets what is left over. For example, if test read contains the following 

echo 'Please type your first and last name:\c' 
read first.Jlame last.Jlame 
echo Your name is ${ first.Jlame} ${last.Jlame} 

then when the program is run the first line would be printed 

Please type your first and last name: 

and would wait for the input. (The input would appear on the same line.) Assuming the 
name is Jane Doe, after the input, the following line would be printed 

Your, name is Jane Doe 

readonly 

Variables can be made readonly. After becoming readonly, a variable cannot receive a 
new value. The general form of the command is 

readonly variable-name variable-name ... 

To print the names of variables that are readonly, enter 

ICONjUXV USER GUIDE 10-23 



SHELL PROGRAMMING 

readonly 

retUl"D 

The return command causes a function to exit with a specified return value. The form of 
the command is 

return [n] 

where n is the desired return value. When n is omitted, the return status of the last 
command executed is displayed . 

• hitt 

The shift [sh(l)] command reassigns the positional parameters. Positional parameter $1 
would receive the value of $2, $2 would receive the value of $3, etc. Notice that $0 (the 
procedure name) is unchanged and that the number of positional parameters ($#) is 
decremented. 

If the executable program shifter contains the following 

echo ${ #} positional parameters 
echo ${*} 
echo Now shift 
shift 
echo ${ #} positional parameters 
echo ${*} 

then the command 

shifter first second third 

would result in 

3 positional parameters 
first second third 
Now shift 
2 positional parameters 
second third 

10-24 ICON INTERNATIONAL 



( 

o 

SHELL PROGRAMMING 

test 

The test(l) command evaluates the expression specified by its arguments and, if the 
expression is true, retllT1lS a zero exit status. Otherwise, a nonzero (false) exit status is 
returned. The test command a.lso returns a nonzero exit status if it has no arguments. 
Often it is convenient to use the test command as the first command in the command list 
following an if or a while. Shell variables used in test expressions should be enclosed in 
double quotes if there is any chance of their being null or not set. 

The square brackets ([]) may be used as an alias for test; e.g., [ expression] has the same 
effect as test expression. 

The following is a partial list of the primaries that can be used to construct a conditional 
expression: 

-r file 

-w file 

-x file 

-s file 

-d file 

-f file 

-p file 

-Z 81 

-n sl 

-t fi_lde8 

81 = s~ 

81 != s~ 

81 

true if the named file exists and is readable by the user. 

true if the named file exists and is writable by the user. 

true if the named file exists and is executable by the user. 

true if the named file exists and has a size greater than zero. 

true if the named file exists and is a directory. 

true if th~ named file exists and is an ordinary file. 

true if the named file exists and is a named pipe (fifo). 

true if the length of string "sl" is zero. 

true if tlte length of the string "sl" is nonzero. 

true if the open file whose file descriptor number is filde8 is 
associated with a terminal device. If filde8 is not specified, file 
descriptor 1 is used by default. 

true if strings "sl" and "s2" are identical. 

true if strings "sl" and "s2" are not identical. 

true if "sl" is not the null string. 

ICONjUXV USER GUIDE 10-25 



SHELL PROGRAMMING 

n1 -eq nt true if the integers n1 and . .e are algebraically equal. Other 
algebraic comparisons are indicated by -ne, -gt, ~e, -It, and -Ie. 

These primaries may be combined with the following operators: 

unary negation operator. 

-a binary logical and operator. 

-0 binary logical or operator. The -0 has lower precedence than -a. 

( expr ) parentheses for grouping; they must be escaped to remove their 
significance to the shell. When parentheses are absent, the 
evaluation proceeds from left to right. 

Note that all primaries, operators, file names, etc. are separate arguments to teat. 

For example, the procedure nametest 

if test -d $1 
then echo $1 is a directory 

elif test -f $1 
then echo $1 is a file 

else echo $1 does not exist 
fi 

then if the file bucket existed, then 

bucket is a file 

would be returned. 

times 

The times command prints the accumulated user and system times for processes run from 
the shell. The times command is entered on a line by itself. For example, the command 

times 

returns 

Om3s OmlOs 

10-26 ICON INTERNATIONAL 



( 

SHELL PROGRAMMING 

trap 

A shell program may ha.ndle interrupts by using the trap command. The trap command 
interfaces with the underlying ICON/UXV operating system mechanism for handling 
interupts. 

The ICON/UXV operating system provides signals that tell a program when some unusual 
condition has occurred. These signals may be from the keyboard or from other programs. 

By default, if a program receives a signal, the program will terminate. However, these 
signals may be caught, the program suspended, the interrupt routine run, and the program 
restarted at the point it was suspended. Or these signals may be ignored. 

trap arg signal-list 

is the form of the trap command, where arg is a string to be interpreted as a command list 
and signal-list consists of one or more signal numbers las described in signal(2)]. 

The following signals are used in the ICON/UXV operating system: 

01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

hangup 
interrupt 
quit 
illegal instruction 
trace trap 
lOT instruction 
EMT instruction 
floating point exception 
kill 
bus error 
segmentation violation 
bad argument to system call 
write on a pipe with no one to read it 
alarm clock 
software termination signal 
user defined signal 1 
user defined signal 2 
death of a child 
power fail. 

The commands in arg are scanned at least once when the shell first encounters the trap 
command. Because of this, it is usually wise to use single rather than double quotes to 
surround these commands. The single quotes inhibit immediate command and variable 
substitution. This becomes important, for instance, when one wishes to remove temporary 
files and the names of those files have not yet been determined when the trap command is 
first read by the shell. The following procedure will print the name of the current 
directory on the file errdireet when it is interrupted, thus giving the user information as to 
how much of the job was done 

ICON/UXV USER GUIDE 10-27 



SHELL PROGRAMMING 

trap 'echo 'pwd' >errdirect' 2 3 15 
for i in Ibin lusr/bin lusr/gas/bin 
do 

cd $i 

done 
commands to be executed in directory $i here 

while the same procedure with double (rather than single) quotes (trap "echo 'pwd' 
>errdirect" 2 3 15) will, instead, print the name of the directory from which the 
procedure was executed. . 

Signal 11 (SEGMENTATION VIOLATION) may never be trapped because the shell itself 
needs to catch it to deal with memory allocation. Zero is not a ICON/UXV system signal. 
Zero is effectively interpreted by the trap command as a signal generated by exiting from a 
shell (either via an exit command or by "falling through" the end of a procedure). If arg is 
not specified, then the action taken upon receipt of any of the signals in signal-list is reset 
to the default system action. If arg is an explicit null string (" or ""), then the signals in 
signal-list are ignored by the shell. 

The most frequent use of trap is to assure removal of temporary files upon termination of 
a procedure. The second example of "Predefined Special Variables" in subpart "D. Shell 
Variables" would be written more typically as follows 

temp=$HOME/temp/$$ 
trap 'rm $tempj trap OJ exit' 0 1 2 3 15 
Is> $temp . 

commands, some of which use $temp, go here 

In this example. whenever signals 1 (HANGUP), 2 (INTERRUPT), 3 (QUIT), or 15 
(SOFTWARE TERMINATION) are received by the shell procedure or whenever the shell 
procedure is about to exit, the commands enclosed between the single quotes will be 
executed. The exit command must be included or else the shell continues reading 
commands where it left off when the signal was received. The trap 0 turns off the original 
trap on exits from the shell so that the exit command does not reactivate the execution of 
the trap commands. 

Sometimes it is useful to take advantage of the fact that the shell continues reading 
commands after executing the trap commands. The following procedure takes each 
directory in the current directory, changes to it, prompts with its name, and executes 
commands typed at the terminal until an end-of-file (control-d) or an interrupt is received. 
An end-of-file causes the read command to return a nonzero exit status, thus terminating 
the while loop and restarting the cycle for the next directory. The entire procedure is 
terminated if interrupted when waiting for input; but during the execution of a command, 
an interrupt terminates only that command. 

10-28 ICON INTERNATIONAL 



( -j 
. / 

o 

dir=='pwd' 
for i in * 
do 

iC test ~ Sdir lSi 
then 

fi 
done 

cd SdirlSi 
while echo "$i:" 

trap exit 2 
read x 

do 
trap: 2 # ignore interrupts 
eval $x 

done 

SHELL PROGRAMMING 

Several traps may be in effect at the same time. If multiple signals are received 
simultaneously, they are serviced in ascending order. To check what traps are currently 
set, type 

trap 

It is important to understand some things about the way the shell implements the trap 
command in order not to be surprised. When a signal (other than 11) is received by the 
shell, it is passed on to whatever child processes are currently executing. When those 
(synchronous) processes terminate, normally or abnormally, the shell then polls any traps 
that happen to be set and executes the appropriate trap commands. This process is 
straightCorward except in the case of traps set at the command (outermost or login) level. 
In this case, it is possible that no child process is running, so the shell waits Cor the 
termination of the first process spawned after the signal is received before it polls the traps. 

For internal commands, the shell normally polls traps on completion of the command. An 
exception to this rule is made for the read, hash, and echo commands. 

wait 

The wait command has the following form 

wait [n] 

With this command, the shell waits for the child process whose process number is n to 
terminate. The exit status of the wait command is that of the process waited on. If n is 
omitted or is not a child of the current shell, then all currently active processes are waited 
for and the return code of the wait command is zero. For example, the executable 
program rormat 

ICON/UXV USER GUIDE 10-29 



SHELL PROGRAMMING 

while test "$1" !== ... , 
nroff $l»junk& . 
shift 
wait $! 
done 
echo ***nroff complete*** 

envokes the nroff formatter for each file specified and informs the user when it is finished. 
If the files chapter1 and chapter!! required formatting, the entry 

format chapter 1 chapter2 

would format the two chapters and when they are finished return 

***nroff complete*** 

COMMAND GROUPING 
Commands may be grouped in two ways 

{ command-list; } 

and 

( command-list) 

The first form, command-list, is simply executed. The second form executes command-list as 
a separate process. If a list of commands is enclosed in a pair of parentheses, the list is 
executed as a subshell. The subshell inherits the environment of the main shell. The 
subshell does not change the environment of the main shell. For example, 

(cd Xj rm junk) 

executes rm junk in the directory x without changing the current directory of the invoking 
shell. 

The commands 

cd Xj rm junk 

have the same effect but leave the invoking shell in the directory x. 

10-30 ICON INTERNATTONAL 



SHELL PROGRAMMING 

A COMMAND'S ENVIRONMENT 

All the variables (with their associated values) known to a command at the beginning of 
execution of that command constitute its environment. This environment includes variables 
that the command inherits from its parent process and variables specified as keyword 
parameters on the command line that invokes the command. 

The variables that a shell passes to its child processes are those that have been named as 
arguments to the export command. The export command places the named variables in 
the environments of both the shell and its future child processes. 

Keyword parameters are variable-value pairs that appear in the form of assignments, 
normally before the procedure name on a command line. Such variables are placed in the 
environment of the procedure being invoked. For example 

# key_command 
echo $a $b 

is a simple procedure that echoes the values of two variables. If it is invoked as 

a key! b-key2 key_command 

(-: then the output is 

key! key2 

A procedure's keyword parameters are not included in the argument count $#. 

A procedure may access the value of any variable in its environment. However, if changes 
are made to the value of a variable, these changes are not reflected in the environment. 
The changes are local to the procedure in question. In order for these changes to be placed 
in the environment that the procedure passes to its child processes, the variable must be 
named as an argument to the export command within that procedure. To obtain a list of 
variables that have been made exportable from the current shell, type 

export 

To get a list of name-value pairs in the current environment, type 

env 

ICONjUXV USER GUIDE 10-31 



SHELL PROGRAMMING 

DEBUGGING SHELL PROCEDURES 
The shell provides two tracing mechanisms to help when debugging shell procedures. The 
first is invoked within the procedUle as 

set -v 

(v for verbose) and causes lines of the procerlUTe to be printed as they are read. It is useful 
to help isolate syntax errors. It may be invoked without changing the procedure by 
entering 

sh -v proc ... 

where proc is the name of the shell procedure. This flag may be used with the -n flag to 
prevent execution of later commands. (Note that typing "set -n" at a terminal will render 
the terminal useless until an end-of-file is typed.) 

The command 

set -x 

will produce an execution trace with flag -1:. Following parameter substitution, each 
command is printed as it is executed. (Try the above at the terminal to see the effect it 
has.) Both flags may be turned off by typing 

set -

and the current setting of the shell flags is available as $-. 

10-32 ICON INTERNATIONAL 



( 

Cbapter 11 

EXAMPLES OF SHELL PROCEDURES 

PAGE 

copypairs ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 11-1 

copy'to..................................................................................................................................................... 11-2 

distinct ........................................................................................................................ __ •••••••••••••••••••••••• 11-2 

draft........................................................................................................................................................ 11-3 
edfind...................................................................................................................................................... 11-4 

edlast •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 11-4 

fsplit ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 11-6 

initvars •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 11-8 

rTlerge •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 11 .. 7 

mkfiles..................................................................................................................................................... 11-8 
mmt........................................................................................................................................................ 11-0 

null.......................................................................................................................................................... 11-10 
phone •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 11-11 

writemail.................................................................................................................................................. II-II 



c 



( ) 

( 

Chapter 11 

EXAMPLES OF SHELL PROCEDURES 
Some examples in this subpart are quite difficult for beginners. For ease of reference, the 
examples are arranged alphabetically by name, rather than by degree of difficulty. 

copypairs 

# usage: copypairs filel file2 ... 
# copy filel to file2, file3 to file4, ... 
while test "$2" !== " .. 
do 

cp $1 $2 
shift; shift 

done 
if test "$1" !== ,m 

then 
echo "$0: odd number of arguments" 

fi 

Note: This procedure illustrates the use of a while loop to process a list of 
positional parameters that are somehow related to one another. Here a while loop 
is much better than a for loop beca.use you can adjust the positional parameters 
via shift to handle related arguments. 

ICON/UXV USER GUIDE 11-1 



EXAMPLES OF SHELL PROCEDURES 

usage: copy to dir file ... 
copy argument files to 'dir', 
making sure that at least 

copy to 

:# 
:# 
:# 
:# two arguments exist and that 'dir' 
:# is a directory 
if test $:# -It 2 
then 

echo "$0: usage: copy to directory file ... " 
elif test ! -d $1 
then 

echo "$0: $1 is not a. directory"; 
else 

dir==S1; shift 
for eachtile 
do 

done 
fi 

cp Seachfile Sdir 

Note: This procedure uses an if command with two tests in order to screen out 
improper usage. The for loop at the end of the procedure loops over all of the 
arguments to copy to but the first. The original $1 is shifted off. 

:# 
:# 
:# 
# 

distinct 

usage: distinct 
reads standard input and reports 
list of alphanumeric strings 
that differ only in case, 

# giving lower·case form of each 
tr -cs '[A-Zl!a-z][0-9]' '[\012*]' I sort -u I 

tr '[A-Z)' '[a-z)' I sort I uniq -d 

Note: This procedure is an example of the kind of process that is created by the 
left.to.right construction of a long pipeline. It may not be immediately obvious how 
this works. [See tr(1), sort(1), and uniq(l) if you are completely unfamiliar with 
these commands.) The tr translates all characters except letters and digits into 
newline characters and then squeezes out repeated newline characters. This leaves 
each string (in this case, any contiguous sequence of letters and digits) on a separate 
line. The sort command sorts the lines and emits only one line from any sequence 
of one or more repeated lines. The next tr converts everything to lowercase so that 
identifiers differing only in case become identical. The output is sorted again to 
bring such duplicates together. The uniq -d prints (once) only those lines that 

11-2 ICON INTERNATIONAL 



( 

o 

--- --~~.- .-_.- .----~. 

EXAMPLESOFSBELLPROCEDURES 

occur more than once yielding the desired list. 

The process of building such a pipeline uses the fact that pipes and files can usually be 
interchanged. The two lines below are equivalent assuming that sufficient disk space is 
available: 

cmdl I cmd2 I cmd3 
cmdl>templ;cmd2<templ>temp2;cmd3<temp2;rm temp[12] 

Starting with a file of test data on the standard input and working from left to right, each 
command is executed taking its input from the previous file and putting its output in the 
next file. The final output is then examined to make sure that it contains the expected 
result. The goal is to create a series of transformations that will convert the input to the 
desired output. As an exercise, try to mimic distinct with such a step-by-step process 
using a file of test data containing: 

ABC:DEF /DEF 
ABC I ABC 
Abc abc 

Although pipelines can give a concise notation for complex processes, exercise some 
restraint lest you succumb to the "one-line syndrome" sometimes found among users of 
especially concise languages. This syndrome often yields incomprehensible code. 

draft 

# usage: draft file(s) 
# prints the draft (-rC3) of a document on a DASI 450 
# terminal in 12-pitch using memorandum macros fMM). 
nroff -rC3 -T450-12 -em $* 

Note: Users often write this kind of procedure for convenience in dealing with 
commands that require the use of many distinct flags. These flags cannot be given 
default values that are reasonable for all (or even most) users. 

ICON/UXV USER GUIDE 11-3 



EXAMPLES OF SHELL PROCEDURES 

edfind 

# usage: edfind file arg 
# find the last occurrence in 'file' of a line whose 
# beginning matches 'arg', then print 3 lines (the one 
# before, the line itself, and the one after) 
ed -$1 «~I 
H 
?"$2?j-,+p 
! 

Note: This procedure illustrates the practice of using editor (ed) inline input 
scripts into which the shell can substitute the values of variables. It is a good idea 
to turn on the H option of ed when embedding an ed script in a shell procedure 
[see ed(I)]. 

edlast 

# usage: edlast file 
# prints the last line of file, then deletes that line 
ed - $1 «-\eor # no variable substitutions in "ed" script 

H 
$p 
$d 
w 
q 

eof 
echo Done. 

Note: This procedure contains an in-line input document or script; it also 
illustrates the effect of inhibiting substitution by esca.ping a character in the 
eo/string (here, eor) of the input redirection. If this had not been done, $p and $d 
would have been treated as shell variables. 

11-4 ICON INTERNATIONAL 

c 



( 

c 

EXAMPLES OF SHELL PROCEDURES 

fsplit 

# usage: fsplit filel file2 
# read standard input and divide it into three parts: 
# append any line containing at least one letter 
# to filel, any line containing at least one digit 
# but no letters to file2, and throw the rest away 
total=<> lost=<> 
while read next 
do 

done 

total-"'expr Stotal + 1 ,It 
case "Snext" in 
"'[A-Za-z]"') 

"'[0-9]"') 

"') 

esac 

echo "Snext" »Sl ;; 

echo "Snext" > > S2 ;; 

lost-"'expr Slost + 1 ,It 

echo "Stotal lines read, Slost thrown away" 

Note: In this procedure, each iteration of the while loop reads a line from the 
input and analyzes it. The loop terminates only when read encounters an 
end-of-file. 

Do not use the shell to read a line at a time unless you must-it can be grotesquely slow. 

ICONjUXV USER GUIDE 11-5 



EXAMPLES OF SHELl; PROCEDURES 

initvars 

# usage: . initvars 
# use earriage return to indieate "no change" 
eeho "initializations'? \c" 
read response 
if test "Sresponse" == y 
then 

fi 

eeho "PSl-\c"j read temp 
PSl==${ temp:-$PSl} 

eeho "PS2 \c"; read temp 
PS2==${ temp:-$PS2} 

eeho "PATH=\c"; read temp 
PATH==${temp:-SPATH} 

echo ''TERM=\c''j read temp 
TERM=S{ temp:-STERM} 

Note: This procedure would be invoked by a user at the terminal or as part of a 
.profile file. The assignments are effective even when the procedure is finished 
because the dot command is used to invoke it. To better understand the dot 
command, invoke initvars as indicated above and check the values of PSI, PS2, 
PATH, and TERM; then make initvars executable, type initvars, assign 
different values to the three variables, and check again the values of these three 
shell variables after initvars terminates. It is assumed that PSI, PS2, PATH, 
and TERM have been exported, presumably by your .profile. 

11-6 ICON INTERNATIONAL 

/ '\ 

o 



() 

EXAMPLESOFSBELLPROCEDURES 

merge 

# usage: merge srcl src2 [ dest 1 
# merge two files, every other line. 
# the first argument starts off the merge, 
# excess lines of the longer 
# file are appended to 
# the end of the resultant file 
exec 4<$1 5<$2 
dest==${3-$1.m}# default destination file is named $1.m 
while true 
do 

done 

# alternate reading from the files; 
# 'more' represents the file descriptor 
# of the longer file 

line <&4 »$dest II { more=5; break ;} 
line <&5 > >$dest II { more=4j break ;} 

# delete the last line of destination 
# file, because it is blank. 

ed - $dest < <\eof 
H 
$d 
w 
q 

eof 
while line <&$more > > $dest 
do :; done # read the remainder of the longer 

# file-the body of the 'while' loop 
# does nothing; the work of the loop 
# is done in the command list following 
# 'while' 

Note: This procedure illustrates a technique for reading sequential lines from a file 
or files without creating any subshells to do so. When the file descriptor is used to 
access a file, the effect is that of opening the file and moving a file pointer along 
until the end of the file is read. If the input redirections used srel and sre2 
explicitly rather than the associated file descriptors, this procedure would never 
terminate because the first line of each file would be read over and over again. 

ICON/UXV USER GUIDE 11-7 



EXAMPLES OF SHELL PROCEDURES 

mkflles 

*' usage: mkfiles pref I quantity 1 *' makes 'quantity' (default = 5) files, *' named prefl, pref2, .,. 
quantity=${2-5} 
i=l 
while test "Si" -Ie "$quantity" 
do 

> SlSi 
i-"'expr Si + 1 ,II 

done 

Note: This procedure uses input/output redirection to create zero-length files. The 
expr command is used for counting iterations of the while loop. Compare this 
procedure with procedure Dull below. 

11-8 ICON INTERNATIONAL 

c 



c 

EXAMPLES OF SHELL PROCEDURES 

mmt 

if test "S#" = 0; then cat < <\! 
Usage: "mmt [ options J files" where "options" are: 
-a => output to terminal 
-e -> preprocess input with eqn 
-t -> preprocess input with tbl 
-Tst -> output to STARE phototypesetter by Honeywell 
-T4014 => output to 4014 manufactured by Tektronix 
-Tvp > output to printer manufactured by Versatec 
- -> use instead of "files" when mmt used inside a pipeline. 
Other options as required by TROFF and the MM macros. 
! 

exit 1 
fi 
PATH='/bin:/usr/bin'; O='-g'; o='!gcat -ph'; 
# Assumes typesetter is accessed via gcat{l) 
# If typesetter is on-line, use 0="; 0=" 
while test -n "SI" -a ! -r "$1" 
do 

case "$1" in 
-a) O='-a'; 0=" ;; 
-Tst) O='-g'; o='!gcat -st';; 

# Above line for STARE only 
-T4014) O='-t'; o='!tc';; 
-Tvp) O='-t'; o='lvpr -t';; 
-e) e=leqn';; 
-t) f='tbl';; 
-) break;; 
*) a-"$a $1 ";; 

esac 
shift 

done 
if test -z "$1" 
then 

fi 

echo 'mmt: no input file' 
exit 1 

if test "$0" = '-g' 
then 

x-"-f$l" 
fi 
d-"$*" 
if test "$d" = '-' 
then 

fi 
if test -n "sr' 

shift 
x=" 
d=" 

ICONfUXV USER GUIDE 11-9 



EXAMPLES OF SHELL PROCEDURES 

then 
f-"tbl $*1" 
d=" 

fi 
if test -n "$e II 
then 

fi 

if test -n "Sf" 
then e=='eqnl' 
else e="eqn S*I" 
d==" 

fi 

eval "Sf $e troff $0 -em Sa $d $0 Sx"; exit 0 

Note: This is a slightly simplified version of an actual UNIX system command. It 
uses many of the features available in the shell. If you can follow through it 
without getting lost, you have a good understanding of shell programming. Pay 
particular attention to the process of building a command line from shell variables 
and then using eva} to execute it. 

# 
# 

usage: null file 
create each of the named files 

# as an empty file 
for eachfile 
do 

> $eachfile 
done 

null 

Note: This procedure uses the fact that output redirection creates the (empty) 
output file if that file does not already exist. Compare this procedure with 
procedure mkfiles above. 

11-10 ICON INTERNATIONAL 

() 



( 

o 

EXAMPLES OF SHELL PROCEDURES 

phone 

# usage: phone initials 
# prints the phone number(s) of person 
# with given initials 
echo 'inits ext home' 
grep "AS1" «\! 
abc 1234 
def 2234 
ghi 3342 
xyz 4567 
! 

999-2345 
583-2245 
988-1010 
555-1234 

Note: This procedure is an example of using an inline input document or script to 
maintain a small data base. 

writemail 

# usage: writemail message user 
# if user is logged in, write message on terminal; 
# otherwise, mail it to user 

h "$1" I { 't "S'>" II '1 "S2" .} ec 0 I Wrl e _ II mal , 

Note: This procedure illustrates command grouping. The message specified by $1 
is piped to the write command and, if write fails, to the mail command. 

ICON/UXV USER GUIDE 11-11 





( ) 
Chapter 12 

GRAPmcs OVERVIEW 

PAGE 

Chapter Introduction ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 12-1 
Basic Concepts. ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• _.... 12-1 
Gettin& Start.ed •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• It-a 
Examples or Wl\at You can Do ••••••••••••••••••••••••••••••••••••• _................................................................... It-4 

NurrMtrical Manipulation and Plottin._ •••••••••••••••••••• _ ••••••••••• _ ........................... ~......................... 11-4 
Drlwinp Built From Boxes •••••••••••••••••••••••• _._.......................................................................... It-7 

Where To Go From Here •••••••••••••••••••••••••••••••••••••••••••••••••••••••• _.......................................................... 11-8 

( 

o 





( '\ 
) 

Chapter 12 

GRAPIDCS OVERVIEW 

Chapter Introduction 

The ICON/UXV System Graphics, or graphics, is the name given to a collection of 
numerical and graphical commands available as part of the ICON/UXV operating system. 
In the current release, graphics includes commands to construct and edit numerical data 
plots and hierarchy charts. This chapter will help a user get started using graphics and 
show where to find more information. The examples below assume that the user is familiar 
with the ICON/UXV operating system shell. 

Basic Concepts 

The basic approach taken with graphics is to generate a drawing by describing it rather 
than by drafting it. Any drawing is seen as having two fundamental attributes-its 
underlying logic and its visual layout. The layout encompasses one representation of the 
logic. For example, consider the attributes of a drawing that consists of a plot of the 
function y=z2 for x between 0 and 10: 

• The logic of the plot is the description as just given, namely y=z2, for x between 0 
and 10. 

• The layout consists of an x-y grid, axes labeled perhaps 0 to 10 and 0 to 100, and 
lines drawn connecting the x-y pairs 0,0 to 1,1 to 2,4 etc. 

The way to generate a picture in graphics is: 

gather data I transform the data I generate a layout I 
display the layout 

The command to generate the plot, y=z2, for x between 0 and 10 and display it on a 
TEKTRONIX display terminal would be 

gas -sO,tlO I af "x'2" I plot ltd 

where: 

• The gas command generates sequences of numbers, in this case starting at 0 and 
terminating at 10. 

• The af command performs general arithmetic transformations. 

• The plot command builds x-y plots. 

ICON/UXV USER GUIDE 12-1 

----~----------------------------~~~-



OVERVIEW 

• The tel command displays drawiDgs on TEKTRONIX terminals. 

The resulting drawing is shown in FiguTe If-l. 

1~~--~----T----T----~--~----' 

I I I I I 
100 

_ -1 __ .1.. __ l __ ..1.--
I I I I I 
I I I I I 

80 - -1- - t- - -1- - -t - t- -
I I 1 I 1 

60 _J __ l_-I-- __ L_ 
I I 1 1 
I 1 IlL 

40 --1--+--1 --+ --t--
I I I I 
I I 1 I I 

20 --,-- -1--,--,-
I 1 1 I 

o 2 6 8 10 12 

Figure 12-1. Plot of,aas-sO,tlO I at "x"2" I plot ltd 

The layout generated by a graphics program may not always be precisely what is wanted. 
There are two ways to influence the layout. Each drawing program accepts options to 
direct certain layout features. For instance, in the pr~vious example, it may be desired to 
have the x-axis labels indicate each of the numbers plotted and not have any y-axis labels 
at all. To achieve this the plot command would be changed to: 

gas -sO,tl0 I at "x"2" I plot -sil,ya I td 

producing the drawing of Figure 12-2. 

The output from any drawing command can also be affected by editing it directly at a 
display terminal using the graphical editor, ged. To edit a drawing really means to edit 
the computer representation of the drawing. In the ease of graphics the representation is 
called a graphical primitive string, or GPS. All of the drawing commands (e.g., plot) write 
GPS, and all of the device filters (e.g., td) read GPS. ged allows manipulation of GPS at a 
display terminal by interacting with the drawing the GPS describes. 

The GPS describes graphical objects drawn within a Cartesian plane, 65,534 units on each 
axis. The plane, known as the universe, is partitioned into 25 equal-sized square regions. 
Multidrawing displays can be produced by placing drawings into adjacent regions and then 
12-2 ICON INTERNATIONAL 

c 



OVERVIEW 

(~/ 
I I I I I I I I I 

-4 -.J-- ~- +- -1- + -I- -I- - t-
I I I I I I I I I 
I I I I I I I 1 

'-'-1- T -1- T -1-'-
I I 1 1 1 I I 1 1 

-t - t-.-,- + -1- + -I- - t-
1 1 1 I 1 1 1 1 

--1_ L _1_1. _1_ I L --1_ L 
1 1 I 1 1 1 1 
1 1 1 1 I I 1 1 

-t - 1- ---1- 1- -r - t- -t - t-
I I I 1 I 1 I 

o 2345678 10 

Figure 12-2. Plot or gas -sO,tlO I ar "x"2" I plot -xi1,ya ltd 

displaying each region. 

( Getting Started 

o 

To access the graphics commands when logged in on a ICON/UXV system, type graphics. 
The shell variable PATH will be altered. to include the graphics commands and the shell 
primary prompt will be changed to". Any command accessible before typing graphics will 
still be accessible; graphics only adds commands, it does not take any away. Exception, 
the 3B*20 computers list command cannot be accessed in the graphics mode. Once in 
graphics, a user can find out about any of the graphics commands using whatis. Typing 
whatis by itself on a command line will generate a list of all the commands in graphics 
along with instructions on how to find out more about any of them. 

All of the graphics commands accept the same command line format: 

• A command is a command-name followed by argument(s). 

• A command-name is the name of any of the graphics commands. 

• An argument is a file-name or an option-string. 

• A file-name is any file name not beginning with -, or a - by itself to reference the 
standard input. 

• An option-string is a - followed by option(s). 

• An option is a letter(s) followed by an optional value. Options may be separated by 
commas. 

ICON/UXV USER GUIDE 12-3 



OVERVIEW 

The graphics commands will produce the best results when used with a display terminal 
such as the TEKTRONIX display terminal. Tplot(lG) filters can be used in conjunction 
with gtop (see gutn(lG» to get somewhat degraded drawings on Versatec* printers and 
Dasi-type terminals. Since GPS can be stored in a file, it can be created from any terminal 
for later display on a graphical device. 

The graphics commands can be removed from user's PATH shell variable by' typing an 
end-of-file indication (control-d on most terminals). To log off the ICONfUXV operating 
system from graphics, type quit. 

Examples or What You Can Do 

Numerical Manipulation and Plotting 

Stat is a collection of numerical and plotting commands. All of these commands operate 
on vectors. A vector is a text file that contains numbers separated by delimiters, where a 
delimiter is anything that is not a number. 

For example: 

12345, and 
arf tty47 Mar 5 09:52 

are both vectors. The latter is the vector: 

475952. 

Here is an easy way to generate a Celsius-Fahrenheit converSIOn table using gas to 
generate the vector of Celsius values: 

gas -s0,tl00,ilO I at "0,9/5*0+32" 2> /dev /null 

• Registered trademark ofVeraatec Corporation. 

12-4 ICON INTERNATIONAL 

J 

\. 

) 



(~~. The output is: 

o 
10 
20 
30 
40 
50 
60 
70 
80 
90 
100 

where: 

32 
50 
68 
86 
104 
122 
140 
158 
176 
194 
212 

OVERVIEW 

• gas -sO,tlOO,ilO generates a sequence that starts at 0, terminates at 100, and the 
increment between successive elements is 10. 

• af "C,9/5*C+S2" generates the table. Arguments to af are expressions. Operands 
in an expression are either constants or file names. If a file name is given that does 
not exist in the current directory it is taken as the name for the standard input. In 
this example C references the standard input. The output is a vector with odd 
elements coming from the standard input and even elements being a function of the 
preceding odd element. 

• 2> /dev /null suppresses the printing of warning messages. It redirects error message 
to /dev /null. 

Here is an example that illustrates the use of vector titles and multiline plots: 

gas I title -v"first ten integers" >N 
root N >RN 
root -rS N >RSN 
root -rl.5 N >R1.5N 
plot -FN ,g N Rl.5N RN RSN I td 

where: 

• title -v"name" associates a name with a vector. In this case, first ten integers is 
associated with the vector output by gas. The vector is stored in file N . 

• root -rn outputs the nth root of each element on the input. If -rn is not given, 
then the square root is output. Also, if the input is a titled vector, the title will be 
transformed to reflect the root function. 

ICONjUXV USER GUIDE 12-5 



OVERVIEW 

• plot -F)(,g Y(s) generates a multiline plot with Y(s) plotted versus X The g option 
causes tick marks to appear instead of grid lines. 

The resulting plot is shown in Figure 12-3. 

The next example generates a histogram of random numbers: 

rand -nl00 I title -v"l00 random numbers" I qsort I 
bucket I hiat I td 

where: 

• rand -nl00 outputs random numbers using rand(3C). In this case 100 numbers 
are output in the range 0 to 1. 

• qsort sorts the elements of a vector in ascending order. 

• bucket breaks the range of the elements in a vector into intervals and counts how 
many elements from the vector fall into each interval. The output is a vector with 
odd elements being the interval boundaries and even elements being the counts. 

• hist builds a histogram based on interval boundaries and counts. 

The output is shown in Figure 12-4. 

11 --'D 
-- 111-- 10 'D.c: 'C 
IIICllIII 

.c: ..... 
9 :'D~ __ 

'D .... 'C'D 
~.g ...,::: 

8 en-en 0 
0:: o::CII 
wenw- 7 cO::Clen wwwo:: .... ct- w zwzc 8 ......... w 
ZOo4Z'" w w· 5 ........ 004 

.... ~t-. 
en en w 4 0:: .... 0:: .... 
.... en ........ 
"-e5"-en 3 C')"-u:e5 
..... N .... L&. 
0 .... 
e~ g 
O~ 1 ~ 

1 2 3 

---------
----

4 5 8 7 8 9 10 11 

FIRST TEN INTEGERS ... 
Figure 12-3. Some Roots or the First Ten Integers 

12-6 ICON INTERNATIONAL 



( 

( 

o 

24r-------------------------------~ 

U~--------------
~----------------
18 ----------------

16---------- --

14------------ 1-

12 ---- - ---- -1-

10 - - -- - - - -- - - - - - -1-

8---------------1-
6---------------1-
4~--------------1-
2~--------------,-
O~~~~ __ L_ __ ~ __ ~ __ ~ __ _L __ ~~ 

0.02810.165 0.301 0.438 0.574 0.71 0.847 0.983 

100 RANDOft NUMBERS 

Figure 12-4. Histogram of 100 Random N um hers 

Drawings Built From Boxes 

OVERVIEW 

There is a large class of drawings composed from boxes and text. Examples are structure 
charts, configuration drawings, and flow diagrams. In graphies the general procedure to 
construct such box drawings is the same as that for numerical plotting; namely, gather and 
transform the data, build and display the layout. 

As an example, for hierarchy charts, the command line 

dtoe I vtoe I td 

outputs drawings representing directory structures . 

• The dtoe command outputs a table of contents that describes a directory structure 
(Figure 12-5). The fields from left to right are level number, directory name, and the 
number of ordinary readable files contained in the directory . 

• The vtoe command reads a (textual) table of contents and outputs a visual table of 
contents, or hierarchy chart (Figure 12-6). Input to vtoe consists of a sequence of 
entries, each describing a box to be drawn. An entry consists of a level number, an 
optional style field, a text string to be placed in the box, and a mark field to appear 
above the top right-hand corner of the box. 

ICONjUXV USER GUIDE 12-7 

- ---------~~-------~-,,~ ,~----



OVERVIEW 

O. 
1. 
1.1. 
1.2. 
2. 
2.1. 
2.2. 
2.3. 
3. 
4. 
4.1 
4.4. 
5. 
5.1. 
5.2. 
6. 

"source" 2 
"glib.d" 1 
"IPI.d" 12 
"gsl.d" 14 
"auti1 .d" 6 
"cvrtopt.d" 7 
"atop.d" 8 
"ptog.d" 5 
"stlt.d" 54 
"tek4000.d" 5 
"Ied.d" 37 
"td.d" 8 
"toe.d" 3 
"ttoc.d" 3 
"vtoc.d" 22 
"whltis.d" 108 

Figure 12-5. Output or dtoc Command 

Where To Go From Here 

The best way to learn about graphics is to log onto a ICON/UXV operating system and 
use it. Other chapters in this guide contain tutorials for stat(IG) and ged(IG) and 
administrative information for graphics. Additional information can be found in the 
ICON/UXV User Reference Manual in the following manual entries: 

gdev(IG), a collection of commands to manipulate TEKTRONIX 
4000 series terminals; and 

ged(IG), the graphical editor; 

graphics(IG), the entry point for graphics; 

gutil(IG), a collection of graphical utility commands; 

stat(IG), numerical manipulation and plotting commands; 

toc(1 G), routines to build tables of contents; 

gps(5), a description of a graphical primitive string. 

12-8 ICON INTERNATIONAL 



OVERVIEW 

3. 54 
.---'----. 

14 
...-~-. 

2.2. 8 2.3. 5 

Figure 12-6. Output of vtoc Command 

o 
ICONjUXV USER GUIDE 12-9 





(-

( 

Chapter 13 

STAT-A TOOL FOR ANALYZING DATA 

PAGE 

Chapter Introduction ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 13-1 
Basic Concepts •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• _...................... 13-1 

TransforrTlers ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• la-I 
SUmrT18rizers .......................................................................................................................... 13-3 
PararMt.ers •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 13-3 
Buildinc r.tworks ..•.•••..••......•••••••...••••••.••••••••••••.••••••••••••••••.• _............................................... 18-3 
V8C'tors, 8 Closer Look •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 13-4 

A Simple Example: Interactinlt with a Data Base ....................................................................... 13-6 
Transla'tors............................................................................................................................ 13-8 

~e Descriptions •••••••..•.•..•••.•...••...•.••.••••••..••••••••.•..•.•.•••••..•.•.••.•...•••••..•.••••...•..••..••..••.••••••••.•••••.•••. 13-9 

Transformers ......................................................................................................................... 13-10 
Summarizers .•••••.••.••....••..•••••••.••••.••••.•••••••••••...•••••.•....•••.•.•.••••••••.•.•••••••.••.••••.•••••••••••••••••.•••••. 13-14 

Transla'tors............................................................................................................................ 13-18 

Generators............................................................................................................................. 13-21 

Examples •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 13-23 

Example 1: ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 13-23 
Example 2: ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 13-24 
Example 3: ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 13-28 

Example 4: ....•...••.........••......••.••....•.••.....•••.•..•...•..•......••..•.....••..•......•••...••.••..•...•••.....••.....•..... 13-28 





( 

( 

\ C"" 
, 

/ 

Chapter 13 

STAT-A TOOL FOR ANALYZING DATA 

Chapter Introduction 

This chapter introduces stat concepts and commands through a collection of examples. 
Also, a complete definition of each command is provided. 

Stat is a collection of numerical programs that can be interconnected using the 
ICON/UXV shell to form processing networks. Included within stat are programs to 
generate simple statistics and pictorial output. 

Much of the power for manipulating text in the ICON/UXV operating system comes from 
the DOCUMENTER'S WORKBENCH* software text processing package. The general 
interface is an unformatted text string. The interconnection mechanism is usually the 
ICON/UXV shell. The programs are independent of one another, new functions can easily 
be added and old ones changed. Because the text editor operates on unformatted text, 
arbitrary text manipulation can always be performed even when the more specialized 
routines are insufficient. 

Stat uses the same mechanisms to bring similar power to the manipulation of numbers. It 
consists of a collection of numerical processing routines that read and write unformatted 
text strings. It includes programs to build graphical files that can be manipulated using a 
graphical editor. And since stat programs process unformatted text, they can readily be 
connected with other ICON /UXV operating system command-level (i.e., callable from shell) 
routines. 

It is useful to think of the shell as a tool for constructing processing networks in the sense 
of data flow programming. Command-level routines are the nodes of the network, and 
pipes and tees are the links. Data flows from node to node in the network via data links. 
Throughout this chapter, the operator := means defined as. 

Basic Concepts 

All numerical data in stat are stored in vectors. A vector is a sequence of numbers 
separated by delimiters. Vectors are processed by command-level routines called nodes. 

• Trademark of AT&T Technologies. 

ICON /UXV USER GUIDE 13-1 



STATISTICAL NETWORK 

Tr&D8f'ormera 

A traf&8Jormer is a node that reads an input element, operates upon it, and outputs the 
resulting value. For example, suppose file A contains the vector 

12345 

then the command 

root A (typed input is bold) 

produces 

1 1.41421 1.73205 2 2.23607 

the square root of each input element. Also, 

log A 

produces 

o 0.693147 1.09861 1.38629 1.60944 

the natural logarithm of each element o(vector A. 

at, for arithmetic function, is a particularly versatile transformer. Its argument is an 
expression that is evaluated once for each complete set of input values. A simple example 
is 

which produces 

2 8 18 32 50 

twice the square of each element from A. Expression arguments to af are usually 
surrounded by quotes since some of the operator symbols have special meaning to the shell. 

13-2 ICON INTERNATIONAL 

o 

'\ 
1 

/' 



() 

STATISTICAL NETWORK 

Summariaers 

A summarizer is a node that calculates a statistic for a vector. Typically, summarizers 
read in all of the input values, then calculate and output the statistic. For example, using 
the vector A from the previous example, 

mean A 

produces 

3 

and 

total A 

produces 

15 

Parameters 

Most nodes accept parameters to direct their operation. Parameters are specified as 
command-line options. root, for example, is more general than just square root, any root 
may be specified using the r option. For "example, 

root -r3 A 

produces 

1 1.25992 1.44225 1.5874 1.70998 

the cube root of each element from A. 

Building Networks 

Nodes are interconnected using the standard ICONjUXV shell concepts and syntax. A pipe 
is a linear connector that attaches the output of one node to the input of another. As an 
example, to find the mean of the cube roots of vector A is simply 

root -r3 A I mean 

which produces 

ICON/UXV USER GUIDE 13-3 



STATISTICAL NETWORK 

1.39991 

Often the required network is not so simple. Tees and sequence can be used to build 
nonlinear networks. To find the mean and median of the transformed vector A is 

root -r3 A I tee B I mean; point B 

which produces 

1.39991 
1.44225 

Beware of the distinction between the sequence operator, (;), and the linear connector, the 
pipe m. Because processes in a pipeline run concurrently, each file written to in the pipeline 
should be unique. Sequence implies run to completion (so long as & is not used) hence files 
may be used more than once. 

There is a special case of nonlinear networks where the result of one node is used as 
command-line input for another. Command substitution makes this easy. For example, to 
generate residuals from the mean of A is simply 

af "A - ' mea.n A' " 

which results in 

-2 -1 o 1 2 

Vectors, a Closer Look 

Thus far vectors have been used but not created. One way to create a vector is by using a 
generator. A generator is a node that accepts no input and outputs a vector based upon 
definable parameters. gas is a generator that produces additive sequences. One of the 
parameters to gas is the number of elements in the generated vector. As an example, to 
create the vector A that we have been using is 

gas -n5 

which produces 

1 2 3 4 5 

Vectors are, however, merely text files. Hence, the text editor can be used to create and 
modify the same vector. 

ICON INTERNATIONAL 

'\ 

'" ) 



(, 

( 

( ''j 
,j 

STATISTICAL NETWORK 

A useful property of vectors is that they consist of a sequence of numbers surrounded by 
delimiters, where a delimiter is anything that is not a number. Numbers are constructed in 
the usual way 

(sign ]( digits )( .digi ts) [e (sign ]digits] 

where fields are surrounded by brackets and parentheses. All fields are optional, but at 
least one of the fields surrounded by parentheses must be present. Thus vector A could 
also be created by building the file B in the text editor a.s 

1 partridge ,2tdoves,3fr hens,4c birds,5gldnrings, 

which, when read by 

list B 

produces 

1 2 3 4 5 

A note should be made as to the size of a vector. A vector is a str~am containing numbers 
terminated by an end of file (control-d from the keyboard). A good illustration of this is to 
use the keyboard as the source of the input vector, as in 

cusum -cl 
2<cr> 
2 
16.3<cr> 
18.3 
25.4<cr> 
43.7 
-14<cr> 
29.7 
<control d> 

which implements a running accumulator. Since no vector was given to cusum, the input 
is taken from the standard input until an end of file. 

A Simple Example: Interacting with a Data Bue 

When used in conjunction with the ICON/UXV operating system tools for manipulating 
text, stat provides an effective means for exploring a numerical data base. Suppose, for 
example, there is a subdirectory called data containing data files that include the lines: 

ICON/UXV USER GUIDE 13-5 



STATISTICAL NETWORK 

path length = nn (nn is any number) 
node count = nn 

To access the value for node count from each file, sort the values into ascending order, 
store the resulting vector in file A, and get a copy on the terminal by typing 

grep "node count" data* I qsort I tee A 
17 19 22 32 39 
50 68 78 125 139 

If some of the data files have numbers in their name, we must protect those numbers from 
being considered data. Using cat, this is easy: 

cat data/* I grep "node count" I qsort I tee A 

To get a feel for the distribution of node counts, shell iteration can be used to advantage. 

for i in .25 .5 .75 
do point -p$i A 
done 
24.5 
44.5 
75.5 

This generates the lower hinge, the median, and the upper hinge of the sorted vector A. 

Translators 

Translators are used to view data pictorially. A translator is a node that produces a 
stream of a different structure from that which it consumes. Graphical translators 
consume vectors and produce pictures in a language called GPS. Among the programs that 
understand GPS is ged, the graphical editor, which means that the graphical output of any 
translator can be edited at a display terminal. hist is an example of a translator; it 
produces a GPS that describes a histogram from input consisting of interval limits and 
counts. The summarizer bucket produces limits and counts, thus 

bucket A I hist I td 

generates a histogram of the data of vector A and displays it on a display terminal (Figure 
13-1). td translates the GPS into machine code for TEKTRONIX 4010 series display 
terminals. 

A wide range of X-Y plots can be constructed using the translator plot. For example, to 
build a scatter plot of path length with node count (Figure 13-2) is 

13-6 ICON INTERNATIONAL 



( 

( 

STATISTICAL NETWORK 

grep "path length" data/* I title -v"path length" >A 
grep "node count" data/* I title -v"node count" I plot 

-FA,dg ltd 

A vector may be given a title using title. When a titled vector is plotted, the appropriate 
axis is labeled with the vector title. When a titled vector is passed through a transformer, 
the title is altered to reflect the transformation. Thus in a graph of log node count versus 
the cube root of path length, i.e., 

grep "node count" I title -v"node count" I log >B 
root -r3 A I plot -F-,dg B ltd 

the axis labels automatically agree with the vectors plotted (Figure 13-3). 
7~ ____________________________________________ ~ 

6~ ____________________ _ 

5 ~-Ir-------...,.. - - - - - - - - - - - - - --

4~~ _____ ~ ______________ _ 

3 ~ _____ -f-----,- - - - - - - - - --

2 ""- ______ 1- ________ .,-____ , __ 

1 ~------_-------- ______ _ 

OL-____ L-________ ~ __________ ~ ____________ _L ____________ ~ ____ ~ 

17 47.5 78 109 139 

Figure 3-1. bucket A I hist I td 

ICONjUXV USER GUIDE 13-7 



STATISTICAL NETWORK 
140 .. 

0 (-') 
120 ~ ~' 

100 ..... 

~ 
Z 

80 - 0 
::I 
C) 
U 0 
'" C) 60 -~ 

0 

40 - 0 
0 

20 "to 

0 I I I I I 
0 50 100 150 200 250 300 

PATH LENGTH 
Figure 13-2. Seatter Plot 

13-8 ICON INTERNATIONAL 



(~ / 

( 

STATISTICAL NETWORK 

5 
0 

4.8 0 

4.8 

4.4 
0 

4.2 0 

Ii = CI 4 u 

'" 0 
CI 
CI 

3.8 z 
l1li 
0 

0 - 3.6 

3.4 
0 

3.2 
0 

3 
0 

2.8 
1.5 2.5 3 3.5 4 4.5 5 5.5 6 8.5 7 

root3 PATH LENGTH 

Figure 13-3. Transformed Scatter Plot 

Node Descriptions 

In this section a more formal description of each node is given. The mathematical formula 
given with each description corresponds to the algorithm implemented by the command. 
The descriptions are organized by node class. The stat nodes are divided into these four 
classes: 

• Transformers 

• Summarizers 

• Translators 

• Generators 

All of the nodes accept the same command-line format: 

• A command is a command-name followed by zero or more arguments. 

• A command-name is the name of any stat node. 

ICONjUXV USER GUIDE 13-9 



STATISTICAL NETWORK. 

• An argument is a file-name or an option-string. 

• An option-string is a - followed by one or more options. 

• An option is one or more letters followed by an optional value. Options may be 
separated by commas. 

• A file-name is any name not beginning with -, or a - by itself (to reference the 
standard input). 

Each file argument to a node is taken as input to one occurrence of the node. That is, the 
node is executed from its initial state once per file. If no files are given, the standard input 
is used. All nodes, except generators, accept files as input, hence it is not made explicit in 
the synopses that follow. 

Most nodes accept command-line options to direct the execution of the node. Some options 
take values. In the following synopses, to indicate the type of value associated with an 
option, the option key-letter is followed by: 

• 
j 
string 
file 

to indicate integer, 
to indicate floating point or integer, 
to indicate a character string, or 
to indicate a file-name. 

Thus, the option ci implies that c expects an integer value (e := integer). 

Transformers 

Transformers have the form 

Vi. transform Yost 

where, by convention, Vi. is a vector Y, with elements Yl through'll" ('111:") and Yost is a 
vector Z, Zl:m' All transformers have a ci option, where c specifies the number of columns 
per line in the output. By default, e := 5. 

a.bs - absolute value 

at [-t v 1 - arithmetic function 

The command-line format of at is an extension of the command-line description given 
above, with expression replacing file-name; an expression consists of operands and operators. 

An operand is either a vector, junction, constant, or expression: 

13-10 ICON INTERNATIONAL 

() 



( 

( 

STATISTICAL NETWORK 

• A vector is a file name with the restriction that file names begin with a letter and 
are composed only of letters, digits, ".", and "_". The first unknown file name (one 
not in the current directory) references the standard input. A warning will appear if 
a file cannot be read. 

• A function is the name of a command followed by its arguments lD parentheses. 
Arguments are written in command-line format. 

• A constant is an integer or floating point (but not "E" notation) number. 

The operators are listed below in order of decreasing precedence. Parentheses may be used 
to alter precedence. 

The lEi (Vi) represents the start element from X (1') for the expression. 

• 'Y - reference Vi+l' Vi+l is consumed; the next value from Y is Vi+2' Y is a vector. 

• X A Y -Y - lEi raised to the Ji power, negation of Ji' Association is right to 
left. X and Yare expressions. 

• X.y X/Y X%Y - lEi multiplied by, divided by, modulo Vi' Association is left 
to right. X and Yare expressions. 

• X+Y X-Y - lEi plus, minus Vi' Association IS left to right. X and Yare 
expressions. 

• X, Y - yields lEi' Vi' Association is left to right. X and Yare expressions. 

Options: 

t causes the output to be titled from the vector on the standard input. 
v causes function expansions to be echoed. 

ceil - ceiling 

Zi := smallest integer greater than Vi 

cusum - cumulative sum 

i 

Zi :== E Vi 
i-I 

exp - exponential function 

Z • '- .'j 
1'- " 

ICON/UXV USER GUIDE 13-11 



STATISTICAL NETWORK 

floor - floor 

Zi := largest integer less than lIi 

gamma - gamma function 

list [-dstring] -list vector elements 

Z,' := lIi 

If d is not specified, then any character that is not part of a number is a delimiter. If 
d is specified, then the white space characters (space, tab, and new-line) plus the 
character(s) of string are delimiters, Only numbers surrounded by delimiters are listed, 

log [-bJl - logarithmic function 

By default, b :== e (e ~2,71828 .. ,) 

mod [-mJl - modulus 

Zi := lIi modulo m 

By default, m := 2 

pair [-Ffile XI1 - pair elements 

F is a vector X, Itl:j, and x is 
the number of elements per group from X. Let % 
denote modulo and / denote integer division, then 

Zi :== {Y(i/(X+l)) ifi%(x+l) == 0 
It(i ...... /(x+l)) ifi %(x+l) .,. 0 

rank(Z) == (x +l}minimum(k ,j Ix) 

13-12 ICON INTERNATIONAL 



( 

o 

STATISTICAL NETWORK 

If F is not specified, then X comes from the standard input. If both X and Y come 
from the standard input, X precedes Y. 

By default, x := 1 

power [-pJ] - raise to a power 

z, := rf 

By default, p := 2 

root [-rJ]- extract a root 

Zi := rY:;; 

By default, r := 2 

round [-pi S&l - round off values 

if a is specified, then 
Z; := 11; rounded up to s significant digits, 

else if p is specified, then 
Zi := 11. rounded up to p digits beyond the decimal 

point. 

By default, p := 0 

siline [-ifni aJ] - generate a line, given a slope and intercept 

Z; - SYi + i 

if n is specified, then 

Ye 0, 1, 2, 3, "', D. 

By default, i := 0, • := 1 

sin - sine function 

spline [-options] - interpolate smooth curve 

ICONjUXV USER GUIDE 13-13 



STATISTICAL NETWORK 

Yand Z are sequences of X,Y coordiu;tes 
(like that produced by pair). 

For more information about '8pliDe, see wpJine(l) in the IOON/UXV User Reference 
Manual. 

subset [-af bf Ffile ii ifni np pf.i't~-fjenera.te.a. subset 

Z consists of elements selected from Y. Selection occurs as follows: 

else 

Let C( w) be true if 

(w>a or w<b or w-p) and w,el 

is true. If neither a, h, nor p are specified, C( w) is true if w,el is true. 

CASE 1 - nl or Dp not specified. 

If F is specified, then 
kell. == 11. 

For r == • ,. + i, • + 2i, ... with r -==< t, 
lIr becomes an e.lem.e.nt of Zif C(s.e;..) is true. 

By default, i :- 1, • := 1, t.:= 32767. 

CASE 2 - np is specified. 

F is a vector X, xl:i. 

For r == Xl, X2, ••• , Xi' 

lIr becomes an element of .z if C(,1r) is true. 

CASE 3 - nl is specified. 

F is a vector X, xl:i. 
For r ,e Xl X2, • •• X· 

I , 'J' 

lIr becomes an element of Z if C(".,} is true. 

For ca.ses 2 and 3, if F is not "8pecified, then the standard input is used for X. Either 
X or Y may come from the standard input, but not both. 

Summarizer. 

Summarizers have the form 

v •• 3ummarize Vost 

where, again, Vi. is a vector Y, '1:., and Vost is a vector Z, Zl:m. For many summarizers, 

13-14 ICON INTERNATIONAL 

·c' ~' 

J 



( 

( 

STATISTICAL NETWORK 

r4nk(Z) == 1. 

bucket l-ai ci Ffile hJii 1/ull- break Dlth10 buckets 

Y must be a sorted v~ctor. Z consists 'rIf' odd elements (pueD.thesized) which are bucket 
limits and even elements which are bucket counts. 

The count is the number of elements £rmn Y greater than "the lower limit (greater than 
or equal to for the lowest limit), and ae.s than or equal tG1ibe higher limit. If specified, 
the limit values are taken from F. Otherwise the limits are evenly spaced between 1 
and h with a total of D buckets. If D is not spe.cified, the number of buckets is 
determined as follows: 

h -I 
i 

if i is specified 

D := k --
a+1 

if a is specified 

1 + lo82k if neither a nor i Bl!e specified. 

c specifies the number of columns in tie ,output. 

By default: 
c :=5 
h := largest element of Y 
I := smallest element of Y 

cor [-Ffile] - correlation coefficient 

If F is a vector X, %1:i, 
i 

!>:i 
let i == .!:!..- and 

i k 
I;lfi 

- i-I h 
If == T"' t en 

X and Y must have the same rank. 1f'F is not 
specified, the standard input is used for X If 
both X and Y come from the standardiimput, 
X precedes Y. 

ICON/UXV USER GUIDE 13-15 



STATISTICAL NETWORK 

hilo [-h 10 ox oy] - high and low values 

%1 := lowest value across all input vectors 

%2 := highest value across all input vectors 

Options to control output: 

h Only output high value. 
I Only output low value. 
o Output high, low values in option form (suitable for plot). 
ox Output high, low values with "x" prefixed. 
oy Output high, low values with "y" prefixed. 

Ireg [-Ffile i 0 s] - linear regression 

II II 

~%i ~lfi 
If F . X I - i-I d - i-I h 

15 a vector ,%1:11, et % = -1&- an If = k' t en 

(intercept) 

and 

(slope) 

X and Y must have the same rank. 
If F is not specified, then 

x == 0,1,2, ... , k 

Options to control output: 

i Only output the intercept. 
o 
8 

Output the slope and intercept in option form (suitable for sHine). 
Only output the slope. 

13-16 ICON INTERNATIONAL 



(~-

() 

STATISTICAL NETWORK 

mean [-fJni pJl- (trimmed) mean 

" I; 'i 
i-I 

Z '---1 .- k 

Y may be trimmed by 

(l/f ) k 
pk 
n 

By default, n :=0 

elements from each end, 
elements from each end, or 
elements from each end. 

point [-fJ ni pJ a] - empirical cumulative density function point 

ZI := linearly interpolated Yvalue corresponding to the 

100 (l/f ) 
lOOp 
nth 

percent point, the 
percent point, or the 
element. 

Negative option values are taken from the high end 
of Y. Option a implies Y is sorted. 

By default, p := .5 (median) 

prod - product 

qaort [-eal - quicksort 

Zi := ith smallest element of Y. 

By default, C := 5 

rank - rank 

ZI := number of elements in Y. 

total- sum 

ICONjUXV USER GUIDE 13-17 



STATISTICAL NETWORK 

var - variance 

Translators 

Translators have the form 

where Fia may be a vector or a GPS depending upon the translator. F •• t is a GPS. A GPS 
is a format for storing a picture. A picture is defined in a Cartesian plane of 64K points on 
each axis. The plane, or universe, is divided into 25 square regions numbered 1 to 25 from 
the lower left to the upper right. Various commands exist that can display and edit a 
GPS. For more information, see graphics(l) in the ICONjUXV User Reference 
Manual and in this manual. 

bar [-a b f g ri wi xfxa yfya ylfyh/j - build a bat chart 

Fin is a vector, each element of which defines the height of a bar. By default, the x-axis 
will be labeled with positive integers beginning at 1; for other labels, see label. 

Options: 

13-18 

a 
b 
f 
g 
ri 

WI 

xf(yJ) 
xa (ya) 
ylf 
yhf 

Suppress axes. 
Plot bar chart with bold weight lines, otherwise use medium. 
Do not build a frame around plot area. 
Suppress background grid. 
Put the bar chart in GPS region i, where i is between 1 and 25 
inclusive. The defa.ult is 13. 
i is the ratio of the bar width to center-to-center spacing expressed as 
a percentage. Default is 50, giving equal bar width and bar space. 
Position the bar chart in the GPS universe with x-origin (y-origin) at f. 
Do not label x-axis (y-axis). 
f is the y-axis low tick value. 
f is the y-axis high tick value. 

ICON INTERNATIONAL 

r"\ 
\ ) 

C· " . 
. j 



(. 

STATISTICAL NETWORK 

hist [-a b fg rix/xay/ya yl/yhJl- build a histogram 

Fin is a vector (of the type produced by bucket) of odd rank, with odd elements being 
limits and even elements being bucket counts. 

Options: 

Suppress axes. 
Plot histogram with bold weight lines, otherwise use medium. 
Do not build a frame around plot area. 
Suppress background grid. 

a 
b 
r 
g 
rt Put the histogram in GPS region i, where i is between 1 and 25 

inclusive. The default is 13. 
xl (yf) Position the histogram in the GPS universe with x-origin (y-origin) at 

xa (ya) 
'111 
yhl 

f. 
Do not label x-axis (y-axis). 
lis the y-axis low tick value. 
I is the y-axis high tick value. 

label [-b c Ffile h prix xu '1 yr] -label the axis of a GPS file 

Fin is a GPS of a data plot (like that produced by hist, bar, and plot). Each line of 
the label file is taken as one label. Blank lines yield null labels. Either the GPS or the 
label file, but not both, may come from the standard input. 

Options: 

b Assume the input is a bar chart. 
c Retain lower case letters in labels, otherwise all letters are upper case. 
Ffile file is the label file. 
h Assume the input is a histogram. 
p Assume the input is an x-y plot. This is the default. 
ri Labels are rotated i degrees. The pivot point is the first character. 
x Label the x-axis. This is the default. 
xu Label the upper x-axis, i.e., the top of the plot. 
'1 Label the y-axis. 
yr Label the right y-axis, i.e., the right side of the plot. 

ICONjUXV USER GUIDE 13-19 



STATISTICAL NETWORK 

pie [-b 0 p pni ppi ri v xi y.1 - build a pie chart 

Fa is a vector with a restricted format. Each input line represents a slice of pie and is 
of the form: 

[< i e f ceolor >1 value [label) 

with brackets indicating optional fields. The control field options have the following 
effect: 

i 
e 
r 

ceolor 

The slice will not be drawn, though a space will be left for it. 
The slice is "exploded" or moved away from the pie. 
The slice is filled. The angle of fill lines depends on the color of the 
slice. 
The slice is drawn in color rather than the default black. Legal values 
for color are b for black, r for red, g for green, and u for blue. 

The pie IS drawn with the value of each slice printed inside and the label printed 
outside. 

Options: 

b 
o 
p 
pni 

ppi 
ri 

v 
xi (yi) 

Draw pie chart in bold weight lines, otherwise use medium. 
Output values around the outside of the pie. 
Output value as a percentage of the total pie. 
Output value as a ptlrcentage, but total of percentages equals i rather 
than 100. The option pnl00 is equivalent to p. 
Only draw i percent of a pie. 
Put the pie chart in region i, where i is between 1 and 25 inclusive. 
The default is 13. 
Do not output values. 
Position the pie chart in the GPS universe with x-origin (y-origin) at i. 

plot [-a b cstring d r Ffile g m ri xfxa xhfxifxlfxni xt 
yfya yhfyifylfyni yt] - plot a graph 

Fa is a vector(s) which contains the y values of an x-y graph. Values for the x-axis 
come from F. Axis scales are determined from the first vector plotted. 

Options: 

13-20 

a 
b 
cstring 

d 

Suppress axes. 
Plot graph with bold weight lines, otherwise use medium. 
The character(s) of string are used to mark points. Characters from 
string are used, in order, for each separately plotted graph included in 
the plot. If the number of characters in string is less than the number 
of plots, the last character will be used for all remaining plots. The m 
option is implied. 
Do not connect plotted points, implies option m. 

ICON INTERNATIONAL 

(, .''\ 

J 



( 

(-

t 
Ffile 

g 
m 
ri 

xf(y!) 
xa (ya) 
xhf(yh!) 
xif(yi!) 
xlf(yl!) 
xni (yni) 
xt (yt) 

STATISTICAL NETWORK 

Do not build a frame around plot a.rea. 
Use file for x-values, otherwise the positive integers are used. This 
option may be used more than once, causing a different set of x-values 
to be paired with each input vector. If there are more input vectors 
than sets of x-values, the last set applies to the remaining vectors. 
Suppress the background grid. 
Mark the plotted points. 
Put the graph in GPS region i, where i is between 1 and 25 inclusive. 
The default is 13. 
Position the graph in the GPS universe with x-origin (y-origin) at f 
Omit x-axis (y-axis) labels. 
fis the x-axis (y-axis) high tick value. 
fis the x-axis (y-axis) tick increment. 
fis the x-axis (y-axis) low tick value. 
i is the approximate number of ticks on the x-axis (y-axis). 
Omit x-axis (y-axis) title. 

title [-b c lstring v string ustringj - title a vector or GPS 

F ill can be either a GPS or a vector with F ose being of the same type as Fill. Title 
prefixes a title to a vector or appends a title to a GPS. 

Options apply as indicated: 

b 
c 
lstring 
ustring 
vstring 

Generators 

Make the GPS title bold. 
Retain lower case letters in title, otherwise all letters are upper case. 
For a GPS, generate· a lower title := string. 
For a GPS, generate an upper title := string. 
For a vector, title := string. 

Generators have the form 

generate V He 

where Yost is a vector Z, Zl:'. All generators have a ci option where c specifies the number 
of columns per line in the output. By default, c := 5. 

gas [-ifni aftlJ - generate additive sequence 

ICON/UXV USER GUIDE 13-21 



STATISTICAL NETWORK 

Z is constructed as follows: 

rank(Z) =: D. 

By defa.ult, i := 1, D := 10, 8 := 1, t := 00 

prime [-hi Ii Dtl - generate prime numbers 

The elements of Z a.re consecutive prime numbers with 

1--< zj--<h 

rank( Z) ==<n. 

By defa.ult, D := 10, 1 := 2, h := 00. 

rand [-hIlI mf Di 8tl - genera.te ra.ndom sequence 

The elements of Z a.re ra.ndom numbers genera.ted by a. 
multiplica.tive congruentia.l genera.tor with 8 a.cting a.s a. 
seed, such tha.t 

1 =-< zi ==< h 

If m is specified, then 

h =m +1 

rank(Z) = D. 

By defa.ult, h := 1,1 := 0, D := 10, 8 := 1. 

13-22 

o 

ICON INTERNATIONAL 



( 

o 

STATISTICAL NETWORK 

Examples 

Example 1: 

PROBLEM 

Calculate the total value of an investment held for a number of years at an interest 
rate compounded annually. 

SOLUTION 

Principal=l000 
echo Total return on $Principal units compounded annually 
echo "rates:\t\t\c"; gas -s.05,t.15,i.03 I tee rate 
tor Years in 1 3 5 8 
do 

echo "$Years year(s):\t\c"; at "$Principal*(I+rate) "$Years" 
done 

Total return on 1000 units compounded annually 
rates: 
1 year(s): 
3 year(s): 
5 year(s): 
8 year(s): 

NOTES 

0.05 
1050 
1157.62 
1276.28 
1477.46 

0.08 
1080 
1259.71 
1469.33 
1850.93 

0.11 
1110 
1367.63 
1685.06 
2304.54 

0.14 
1140 
1481.54 
1925.41 
2852.59 

Notice the distinction between vectors and constants as operands in the expression 
to at. The shell variables $Principal and $Years are constants to at, while the file 
rate is a vector. at executes the expression once per element in rate. 

ICON/UXV USER GUIDE 13-23 



STATISTICAL NETWORK 

Example 2: 

PROBLEM 

Given are three ordered vectors (A, B, and C) of scores from a number of tests. 
Each vector is from one test-taker I each element in a vector is the score on one test. 
There are missing scores in each vector indicated by the value -1. Generate three 
new vectors containing scores only for those tests where no data is missing. 

SOLUTION 

13-24 

echo Before: 
gas -n' rank A' I tee N I af "label,A,B,C" 

for iin NB CA 
do subset -FA,I-1 $i >s$i; done 
for i in N AC B 
do subset -FsB,I-1 s$i I yoo s$i; done 
for i in NAB C 
do subset -FsC,l-1 s$i I yoo s$i; done 

echo "'nArter:" 
af "sN ,sA,sB,sC" 

Before: 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

After: 
2 
6 
10 
11 

5 
7 
-1 
10 
6 
5 
-1 
-1 
3 
6 
7 

7 
5 
6 
7 

6 
10 
10 
-1 
5 
7 
7 
-1 
-1 
10 
5 

10 
7 
10 
5 

-1 
10 
9 
8 
-1 
5 
8 
8 
8 
10 
7 

10 
5 
10 
7 

ICON INTERNATIONAL 

,/ "\ 



( 

( 

( '" \, 
/ 

STATISTICAL NETWORK 

NOTES 

The approach is to eliminate those elements in all vectors that correspond to -I in 
the base vector. Each of the three vectors takes a turn at being the base. It is 
important that the base be subsetted last. The command yoo (see gutil(l) in the 
ICON/UXV User Reference Manual) takes the output of a pipeline and copies it into 
one of the files used in the pipeline. This cannot be done by redirecting the output 
of the pipeline as this would cause a concurrent read and write on the same file. 

The printing of the "Before" matrix illustrates a useful property of at. The first 
name in an expression that does not match any name in the present working 
directory is a reference to the standard input. In this example, label references the 
input coming through the pipe. 

ICONjUXV USER GUIDE 13-25 



STATISTICAL NETWORK 

Example 3: 

PROBLEM 

Generate a bar chart of the percent of execution time consumed by each routine in 
a program. 

SOLUTION 

prof I cut -cl-15 I sed -e Id -e "I O.O/d" -e "sr ·1 r >P 
echo These are the execution percentages; cat P 
title P -v"execution time in percent" I bar -xa -ylO, 

yhl00 I label -br-45,FP I td 

These are the execution percentages 
Jork 32.9 
_creat 14.3 
-sbrk 14.3 
Jead 14.3 
_open 14.3 
_pnme 9.9 

NOTES 

13-26 

prof is a ICON/UXV operatin$ system command that generates a listing of 
execution times for a program (see prof{l)}. Cut and sed are used to eliminate 
extraneous text from the output of prof. (It is because verbiage can get in the way 
that stat nodes say very little.) Notice that P is a vector to title while it is a text 
file to cat and label. 

Figure 13-4 shows the output of these commands. 

ICON INTERNATIONAL 

/ " 

C·"'· ./ 



STATISTICAL NETWORK 

(~ 
98 

91 

84 

77 
~ z ..... 70 u 
CI: ..... 
D- 83 
z .... 
..... 56 
E .... 
~ 49 
:z 
Q 

42 .... 
~ = u 

35 ..... 
>C ..... 

28 

21 

14 

7 

0 
--

( 

Figure 13-4. Bar Chart Showing Execution Profile 

c~ 

ICONjUXV USER GUIDE 13-27 



STATISTICAL NETWORK 

Example 4: 

PROBLEM 

Plot the relationship between the execution time of a program and the number of 
processes in the process table. 

SOLUTION 

# The first program generates the performanee data 

for i in .. gas -n12' 
do 

done 

ps -ae I we -1 > >Proes& 
time prime -nlOOO > /dev /null 2> > Times 
sleep 300 

# The second program analyzes and plots the data 

for i in real user sys 
do 
grep $i Times I sed "s/$i/ /" I 

awk -F: "{ if(NF 2) print \$1*60+\$2; else 
print }" I title -v"$i time in seeonds" >$i 

siline -' lreg -o,FProes $i .. Proes >$i.fit 
done . 
title -v "number of proeesses" Proes I yoo Proes 

plot -dg,FProes real-r12 >R12 
plot -ag,FProes real.fit -r12 »R12 
plot -dg,FProes sys -r13 >R13 
plot -ag,FProes sys.fit -r13 »RI3 
plot -dg,FProes user -r8 >R8 
plot -ag,FProes user.fit -r8 »R8 
ged R12 Rl3 R8 

NOTES 

13-28 

The performance data is the execution time, as reported by the ICONfUXV 
operating system time command, to generate the first 1000 prime numbers. Times 
outputs three times for each run: 

• The time in system routines 

• The time in user routines 

ICON INTERNATIONAL 

I 

/ 
( 

c 



( 

( 

STATISTICAL NETWORK 

• Total real time. 

The output of the time command is saved in the file Times. Each of these types of 
time is treated separately by the analysis program. 

In the file Procs are the number of processes running on the system during each 
execution of prime. The short a'Wk program converts "minutes:seconds" format to 
"seconds." lreg does a linear regression of the time vectors on the size of the 
process table. snine generates a line based on the parameters from the regression. 
One plot is generated for each type of time. Each plot is put into a different region 
so that they can be displayed and manipulated simultaneously in ged. 

Figure 13-5 shows the output of these commands. 

en 110 2.4 
0 

100 
en 

2.2 z 0 
0 z 
u 90 0 2 w u 
en 80 w 1.8 en z ... 70 z 1.6 .... 
w 60 1.4 E • w ... 

50 
E 

1.2 ... ... ... .... 1 c en 
w >- 0.8 a: en 

• 0.6 
10 0.4 

10 15 20 25 30 35 40 
N~ER OF PROCESSES 

en 8.4 0 z 
0 8.2 u 
w 
en 

8 z ... 
~ 

7.8 ... 7.6 ... 
a: 
w 7.4 
~ 

7.2 

10 15 20 25 30 35 40 
N~BER OF PRDCESSES 

• 
0 0 

0 

0 

00 

• 
15 20 25 30 35 40 
~ER OF PROCESSES 

Figure 13-5. Relationship Betwee.n Execution Time and Number or Processes 

ICON/UXV USER GUIDE 13-29 





c 

Chapter 14 

GRAPmcs EDITOR 

PAGE 

Chapter Introduction ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 14-1 
ComfYllnds •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 14-2 

Command Une........................................................................................................................ 14-2 
Constructing Graphical Objects............................................................................................... 14-4 
Generatine Text ••••••••••••••••••••••••••••••••••••••••••••• !....................................................................... 14-. 
Drawing Unes......................................................................................................................... 14-5 
Accessinc Points by Narrw....................................................................................................... 14-6 

Drawine Curves •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 14-8 
Editinl Objects...................................................................................................................... 14-8 
View Commands ..........................................................•...•......••..•...•....................................... 14-13 
Other Commands ....................................................................••......•.....•..•.••....•.....•................ 14-14 
Other Useful InforrTUltion •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 14-15 

Command Summary •••••••••••••••••••••••••••••••••••••••••••••••••••.•.••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 14-16 

Construct Commands.............................................................................................................. 14-16 
Edit Commands •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

View Commands •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• _ ••••••••••••••••••••• 

Other Commands ••••••••••••••••••••••••••••••••••••••••••.•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
Options ................................................................................................................................ . 

SOrT\e Examples of What Can Be Done ••••••••••••••••••••••••••••••••••••••••••••.•••••••••••••••••••••••••••••••••••••••••••••••••• 
Example 1--Text Centered Within a Circle ................................................................................ . 
Example 2--Making Notes on a Plot ......................................................................................... . 
Example 3--A Page Layout with Drawings and Text ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

14-16 
14-16 
14-17 
14-17 
14-HI 

14-1U 
14-21 

14-23 



c 



(' 

( 

c 

Chapter 14 

GRAPmcs EDITOR 

Chapter Introduction 

The graphics editor, (ged), is an interactive ~aphical editor used to display, edit, and 
construct drawings on TEKTRONIX 4010 seJ"ies display terminals. The drawings are 
represented as a sequence of objects in a token language known as GPS (graphical 
primitive string). A GPS is produced by the drawing commands in the ICONjUXV 
Graphics such as vtoc and plot, as well as by ged itself. 

Drawings are built from objects consisting of lines, arcs, and text. Using the editor, the 
objects can be viewed at various magnifications and from various locations. Objects can be 
created, deleted, moved, copied, rotated, scaled, and modified. 

The examples in this tutorial illustrate how to construct and edit simple drawings. Try 
them to become familiar with how the editor works, but keep in mind that ged is intended 
primarily to edit the output of other programs rather than to construct drawings from 
scratch. 

As for notation, literal keystrokes are printed in boldface. Meta-characters are also in 
boldface and are surrounded by angled brackets. For example, <cr> means return and 
<sp> means space. In the examples, output from the terminal is printed in Roman 
(normal) type. In-line comments are in Roman and are surrounded by parentheses. Section 
2 contains an introduction to tbe commands understood by the ged. A summary of these 
editor commands and options is given in Section 3 under Command Summary. 

ICONjUXV USER GUIDE 14-1 



GRAPHICS EDITOR 

Oommands 

To start, it is assumed that while logged in at a display terminal the graphics 
environment (as described in graphic.(IG) in the IOON/UXV User Reference Manual) has 
been successfully entered. 

To enter ged type: 

ged<cr> 

Note: In order for ged to work properly, the 
standard strap options need to be set on the 
terminal. See Section 5.2 under Administrative 
Information for these standard settings. 

After a moment the screen should be clear except for the ged prompt, *, in the upper left 
corner. The * indicates that ged is ready to accept a command. 

Each command passes through a sequence of stages during which you describe what the 
command is to do. All commands pass through a subset of these stages: 

1. Command line 

2. Text 

3. Points 

4. Pivot 

5. Destination 

As a rule, each stage is terminated by typing <cr>. The <cr> for the last stage of a 
command triggers execution. 

Oommand Line 

The simplest commands consist only of a command line. The command line is modeled 
after a conventional command line in the shell. That is 

command name [-option(s}Jl/ilename]<cr> 

A question mark (1) is an example of a simple command. It lists the commands and options C' .. 
understood by ged. To generate the list, type 

14-2 ICON INTERNATIONAL 



GRAPmcs EDITOR 

(type a question mark followed by a return) 

A command is executed by typing the first character of its name. The ged will echo the 
full name and wait for the rest of the command line. For example, e references the erase 
command. As erase consists only of stage 1, typing <cr> causes the erase action to occur. 
Typing 

*<rubout> 

after a command name and before the final <cr> for the command aborts the command. 
Thus, while 

*erase<cr> 

erases the display screen, 

*erase<ru bout> 

brings the editor back to the ged prompt, *. 

Following the command name, options may be entered. Options control such things as the 
width and style of lines to be drawn or the size and orientation of text. Most options have 
a default value that applies if a value for the option is not specified on the command line. 
The Bet command allows examination and modification that the default values. Type 

*Bet<cr> 

to see the current default values. 

The option value is one of three types: integer, character, or Boolean. Boolean values are 
represented by + (for true) and - (for false). A default value is modified by providing it as 
an option to the set command. For example, to change the default text height to 300 
units, type 

*set -h300<cr> 

Arguments on the command line, but not the command name, may be edited using the 
erase and kill characters from the shell. This applies whenever text is being entered. 

ICON/UXV USER GUIDE 14-3 



GRAPIDCS EDITOR 

Constructing Graphical Objects 

Drawings are stored as a GPS in a display bufl'er internal to the editor. Typically, a 
drawing in ged is composed of instances of three graphica.l primitives: arcs, lines, and text. 

Generating Text 

To put a line of text on the display screen use the Text command. 

First enter the command line (stage 1): 

*Text<cr> 

Next enter the text (stage 2): 

a line of text<cr> 

And then enter the starting point for the text (stage 3). 

<position cursor><cr> 

Positioning of the graphic cursor is done either with the thumbwheel knobs on the terminal "- / 
keyboard or with an auxiliary joystick. The <cr> establishes the location of the cursor to 
be the starting point for the text string. The Text command ends at stage 3, so this <cr> 
initiates the drawing of the text string. 

The Text command accepts options to vary the angle, height, and line width of the 
characters, and to either center or right justify the text object. The text string may span 
more than one line by escaping the <cr> (i.e., \<cr» to indicate continuation. To 
illustrate some of these capabilities, try the following: 

*Text -r<cr> (right justify text) 
top\<cr> 
right<cr> 
<position cursor ><cr > 
*Text -a90<cr> (rotate text 90 degrees) 
lower\<cr> 
left<cr> 
<position cursor><cr> (pick a point below and left of 

the previous point) 

Results of these commands are shown in Figure 14-1. 

14-4 ICON INTERNATIONAL 



(~/ 

( 

() 

Drawing Lines 

L 
CD .. 
a'+o CD ........ 

top 
right 

Figure 14-1. Generating Text Objects 

GRAPmCS EDITOR 

The Lines command is used to construct objects built from a sequence of straight lines. It 
consists of stages 1 and 3. Stage 1 is straightforward: 

*Lines options<cr> 

The Lines command accepts options to specify line style and line width. 

Stage 3, the entering of points, is more interesting. Points are referenced either with the 
graphic cursor or by name. We have already entered a point with the cursor for the Text 
command. For the Lines command it is more of the same. As an example, to build a 
triangle, type 

*Lines<cr> 
<position cursor><sp> (locate the first point) 
<position cursor><sp> (the second point) 
<position cursor><sp> (the third point) 
<position cursor><sp> (back to the first point) 
<cr> (terminate points, draw triangle) 

Results of these commands are shown in Figure 14-2. 

Typing <sp> enters the location of the crosshairs as a point. Ged identifies the point 
with an integer and adds the location to the current point set. The last point entered can 
be erased by typing #. The current point set can be cleared by typing @. On receiving 
the final <cr> the points are connected in numerical order. 

Accessing Points by Name 

The points in the current point set may be referenced by name using the $ operator. For 
instance, $n references the point numbered n. By using $ the triangle above can be 
redrawn by entering: 

ICON/UXV USER GUIDE 14-5 



GRAPmcs EDITOR 

second point 

first point entered 

fourth point third point 

Figure 14-2. Building a Triangle 

*Lines<cr> 
<position cursor><sp> 
<position cursor><sp> 
<position cursor><sp> 
$O<cr> (reference point 0) 
<cr> 

At the start of each command that includes stage 3, points, the current point set is empty. 
The point set from the previous command is saved and is accessible using the. operator. \, j 

The • swaps the points in the previous point set with those in the current set. The = 
operator can be used to identify the current points. To illustrate, use the triangle just 
entered as the basis for drawing a quadrilateral. 

*Lines<cr> 
(access the previous set) 

= (identify the current points) 
# (erase the last point) 
<position cursor><sp> (add a new point) 
$O<cr > (close the figure) 
<cr> 

Results of these commands are shown in Figure 14-3. 

Individual points from the previous point set can be referenced by using the • operator with 
$. The following example builds a triangle that shares an edge with the quadrilateral. 

14-8 ICON INTERNATIONAL 



(i 

( 

c 

.----~.-----

GRAPmCS EDITOR 

*Lines<cr> 
$.I<cr> (reference point 1 from the previous point set) 
$.2<cr> (reference point 2) 
<position cursor ><sp> (enter a new point) 
$O<cr> (or $.1, to close the figure) 
<cr> 

Results of these points are shown in Figure 14-4. 

Figure 14-3. Accessing the Previous Point Set 

point 1 from 
previous point set 

new pOint 

point 2 from 
previous point set 

Figure 14-4. Referencing Points from Previous Point Set 

ICON/UXV USER GUIDE 14-7 



GRAPIDCS EDITOR 

A point can also be given a name. The > operator permits :an upper case letter to be 
associated with a point just entered. A simple example is: 

*Lines<cr> 
<position curaor><Sp> (enter:a point) 
>A<cr> (name the point A) 
<position cursor ><Sp> 
<cr> 

In commands that follow, point A can be referenced using the $ operator, as in: 

*Lines<cr> 
$A<cr> 
<position cursor><sp> 
<cr> 

Drawing Curves 

Curves are interpolated from a sequence of thTeeor mOTe points. The Arc command 
generates a circular arc given three points on a circle. The arc is drawn starting at the 
first point, through the second point, and ending at the third point. A circle is an arc with 
the first and third points coincident. One way to draw a circle is thus: 

*Arc<cr> 
<position cursor ><sp> 
<position cursor><Sp> 
$O<cr> 
<cr> 

Editing Objeets 

Addrc88ing Objcct8 An object is a.ddressed by pointing to one of its handles. All objects have 
an object-handle. Usually the object-handle is the first point entered when the object was 
created. The objects command marb the location of each object-handle with an O. For 
example, to see the handles of all the objects on the screen, type 

*objects -v<cr> 

Some objects, Lines for example, also ban point-handles. Typically each of the points 
entered when an object is c.onstructed.becomes a point-handle. (An object-handle is also a 
point-handle.) The points command marks each of the point-handles. 

14-8 ICON INTERNATIONAL 



( 

() 

GRAPmcs EDITOR 

A handle is pointed to by including it within a defined-area, A defined-area is generated 
either with a command line option or interactively using the graphic cursor, As an 
example, to delete one of the objects that was created on the screen, type 

*Delete<cr> 
<position cursor><sp> (above and to the left of some 

object-handle) 
<position cursor ><sp> (below and to the right of the 

object-handle) 
<cr> (the defined-area should include the 

object-handle) 
<cr> (if all is well, delete the object) 

The defined-area is outlined with dotted lines. The reason for the seemingly extra <cr> at 
the end of the Delete command is to provide an opportunity to stop the command (using 
<rubout» if the defined-area is not quite right. Every command that accepts a defined
area will wait for a confirming <cr>. The new command can be used to get a fresh copy 
of the remaining objects. 

Defined-areas are entered as points in the same way that objects are created. Actually, a 
defined-area may be generated by giving anywhere from 0 to 30 points. Inputting zero 
points is particularly useful to point to a single handle. It creates a . small defined-area 
about the location of the terminating <cr>. Using a zero point defined-area, the Delete 
command would be 

*Delete<cr> 
<position cursor> (center crosshairs on the object-handle) 
<cr> (terminate the defined-area) . 
<cr> (delete the object) 

A defined-area can also be given as a command line option. For example, to delete 
everything in the display buffer give the universe option (u) to the Delete command. Note 
the difference between the commands Delete -universe and erase. 

Changing the Location of an Object Objects are moved using the Move command. Create a 
circle using Are, then move it as follows: 

*Move<cr> 
<position cursor><cr> (centered on the object-handle) 
<cr> (this establishes a pivot, marked with 

an asterisk) 
<position cursor><cr> (this establishes a destination) 

The basic move operation relocates every point in each object within the defined area by 
the distance from the pivot to the destination. In this case, the pivot was chosen to be the 
object-handle, so effectively the object-handle was moved to the destination point. 

ICON/UXV USER GUIDE 14-9 



GRAPmcs EDITOR 

r-, 
Chonging the Shope 0/ 4ft Object The Box command is a special case of generating lines. LJ 
Given two points, it creates a rectangle such that the two points are at opposite corners. 
The sides of the rectangle lie parallel to the edges of the screen. To draw a box, type 

*Box<cr> 
<position cursor ><Sp> 
<position cursor ><cr > 

The Box command generates point-handles at each vertex of the rectangle. Use the points 
command to mark the point-handles. The shape of an object can be altered by moving 
point-handles. The next example illustrates one way to double the height of a box (shown 
in Figure 14-5). 

*Move -p+<cr> 
<position cursor ><Sp> 

<position cursor ><cr > 

<position cursor ><cr > 
<position cursor><cr> 

(left of the box, between the 
top and bottom edges) 
(right of the box, below the 
bottom edge) 
(on the top edge) 
(directly below on the bottom 
edge) 

two points for Box 

two points for defined - area 

Figure 14-5. Growing a Box 

14-10 

pivot 

destination 

ICON INTERNATIONAL 



( 

(~\ 
j 

GRAPmCS EDITOR 

When the points flag (p) is true, operations are applied to each point-handle addressed. In 
this example, the points flag was set to true using the command-lin~ option -p+ causing 
each point-handle within the defined-area. to be moved the distan~'from the pivot to the 
destination. If p was false, only the ob~et-handle would have been a~dressed. 

Ohanging the Size 0/ an Object TM size of an object can be changed using the Scale 
command. The Scale command scales objects by changing the distance from each handle 
of the object to the pivot by a factor. Put a line of text on the screen and try the following 
Scale commands (Figure 14-6). 

*Scale -rJOO<cr> 
<position cursor><cr> 
<position cursor><cr> 
<cr> 

(factor is in percent) 
(point to object-handle) 
(set pivot to rightmost character) 

*Scale -fSO<cr> 
.<cr> (reference the previous defined-area) 
<position cursor><cr> (set pivot above a character 

neaT the middle) 
<cr> 

* ______ pivot for Scale ·f50 

A LINE OF TEXT 

fa LINE [ilFinlE«fext -- pivot for Scale ·f200 

"V 
original line 

of text 

Figure ~4-e. Sca.ling Text 

A useful insight into the behavior of scaling is to note that the position of the pivot does 
not change. Also observe that the defined-area is scaled to preserve its relationship to the 
graphical objects. 

The size of objects can also be changed by moving point-handles. Generate a circle, this 
time using the Circle command: 

ICON/UXV USER GUIDE 14-11 



GRAPIDCS EDITOR 

.Circle<cr> 
<position cursor><sp> 
<position cursor ><cr > 

(specify the center) 
(specify a point on the circle) 

The Circle command generates an arc with 1he first and third point at the point specified 
on the circle. The second point of the arc is located ISO degrees around the circle. One 
way to change the size of the circle is to move Dne of the point-handles (using Move -p+). 

The size of text characters can be changed via a third mechanism. Character height is a 
property of a line of text. The Edit comm~~dallows changing character height as follows: 

*Edit -hheighKcr> (height is in universe units, 
see Section 2.8 View Command) 

<position cursor><cr> (point to the object-handle) 
<cr> 

Changing the Orientation of an Object The or~ntation of an object can be altered using the 
Rotate command. The Rotate command rotates each point of an object about a pivot by 
an angle. Try the following rotations on a line of text (Figure 14-7). 

*Rotate -a90<cr> 
<position cursor><cr> 
<position cursor><cr> 

<cr> 

*Rotate -a-90<cr> 

(angle is in .degrees) 
(point to object-handle) 
(set pivot to Tightmost 
character) 

.<cr> (reference previous defined-area) 
<position cursor><cr> (set pivot to a character near 

the middl~) 
<cr> 

14-12 ICON INTERNATIONAL 



o 

GRAPIDCS EDITOR 

original text 

~ ____ pi..,. for 10'.', ·.90 
AffOTtER LINE OF TEti 

w 
~ 

~ 
w 

ANOTHER etNE OF TEXT 

i~ pi.o. for .o.at •••. 90 

Figure 14-7. Rotating Text 

Ohanging the Style and Width 0/ Line8 In the current editor, objects can be drawn from lines in 
any of five styles: solid (so), dashed (da), dot-dashed (dd), long-dashed (ld) and three 
widths narrow (n), medium (m), and bold (b). Style is controlled by the s option and width 
by w. The next example creates a narrow dotted line: 

*Lines -wn,sdo<cr> 
<position cursor><sp> 
<position cursor ><sp> 
<cr> 

Using the Edit command, the line can be changed to bold dot-dashed: 

*Edit -wb,sdd<cr> 
$.O<cr> (reference the object-handle of the previous line) 
<cr> (complete the defined-area) 
<cr> 

View Commands 

All of the objects drawn lie within a Cartesian plane, 65,534 units on each axis, known as 
the universe. Thus far, only a small portion of the universe has been displayed on the 
screen. The command 

*view -u <cr > 

displays the entire universe. 

ICONjUXV USER GUIDE 14-13 



GRAPIDCS EDITOR 

i" 
Windowing A mapping of a portion of the universe onto the display screen is called a ~7 
window. The extent or magnification of a window is altered using the zoom command. To 
build a window that includes all of the objects drawn, type 

* zoom <cr> 
<position cursor ><Sp> 

<poeition curaor><cr> 

<cr > (verify) 

(above and to the left of all 
the object) 
(below and to the right, also 
end points) 

Zooming can be either in or out. Zooming in, as with a camera lens, increases the 
magnification of the window. The area outlined by points is expanded to fill the screen. 
Zooming out decreases magnification. The current window is shrunk so that it fits within 
the defined-area. The direction of the zoom is controlled by the sense of the out flag; 0 

true means zoom out. 

The location of a window is altered using the view command. View moves the window so 
that a given point in the universe lies at a given location on the screen. 

*View<cr> 
<position cursor><cr> 
<position cursor><cr> 

(locate a point in the universe) 
{locate a point on the screen} 

View also provides access to several predefined windows. As seen earlier, view -u displays 
the entire universe. The view -h command displays the home-window . . The home-window 
is the window that circumscribes all of the objects in the universe. The result is similar to 
that of the example using zoom given earlier. 

Lastly, the view command permits selection of a window on a particular region. The 
universe is partitioned into 25 equal-sized regions. Regions are numbered from 1 to 25 
beginning at the lower left and proceeding toward the upper right. Region 13, the center of 
the universe, is used as the default region by drawing commands such as plot(l) and 
vtoc(I}. 

Other Commands 

lnterading with File, The write command saves the contents of the display buffer by copying 
it to a file: 

*write fileno.me<cr> 

The contents of filename will be a GPS, thus it can be displayed using any of the device 
filters (e.g., td (1» or read back into ged. 

14-14 ICON INTERNATIONAL 



(-

o 

GRAPmcs EDITOR 

A GPS is read into the editor using the read command: 

*read filename<cr> 

The GPS from filename is appended to the display buffer and then displayed. Because read 
does not change the current window, only some (or none) of the objects read may be visible. 
A useful command sequence to view everything read is 

*read -e- filename<cr> 
*view -h <cr > 

The display function of read is inhibited by setting the echo flag to false; view -h windows 
on and displays the full display buffer. 

The read command may also be used to input text files. The form is 

read [-option(s)] filename<cr> 

followed by a single point to locate the first line of text. A text object is created for each 
line of text from filename. Options to the read command are the same as t.hose for the 
Text command. 

Leaving the Editor The quit command is used to terminate an editing session. As with the 
text editor ed, quit responds with r if the internal buffer has been modified since the last 
write command. A second quit command forces exit. 

Other Useful Information 

One-Line ICON/UXV E8cape As in ed, the! provides a temporary escape to the shell. 

Typing Ahead Most programs under the ICON/UXV operating system allow input to be 
typed before the program is ready to receive it. In general, this is not the case with ged; 
characters typed before the appropriate prompt are lost. 

Speeding up Thing8 Displaying the contents of the display buffer can be time consuming, 
particularly if much text is involved. The wise use of two flags to control what gets 
displayed can make life more pleasant: 

• The echo flag controls echoing of new additions to the display buffer . 

• The text flag controls whether text will be outlined or drawn. 

ICON/UXV USER GUIDE 14-15 



GRAPHICS EDITOR 

Command Summary 

In the summary, characters actually typed are printed in boldface. Command stages are 
printed in italics. Arguments surrounded by brackets (e.g., [ ... ]) are optional. Parentheses 
surrounding arguments separated by "or" means that exactly one of the arguments must be 
given. 

For example, the Delete command accepts the arguments -universe, -view, and points. 

Constl'uet Commands 

Arc [--echo,Btyle,width] points 

Box [--echo,Btyle,width] points 

Circle [--echo,Btyle,width] points 

Hardware [--echo] text points 

Lines [--echo,style,widthj points 

Text [-angle,echo,height,midpoint,rightpoint, text,width] text points 

Edit Commands 

Delete ( - (universe or view) or points) 

Edit [-angle,echo,height,style,width] ( - (universe or view) or points) 

Kopy [--echo,points,x] points pivot destination 

Move [--echo,points,x] points pivot destination 

Rotate [-angle,echo,kopy,x] points pivot destination 

Scale [--echo,factor,kopy,x] points pivot destination 

View Commands 

coordinates points 

erase 

new 

objects ( - (universe or view) or points) 

14-16 ICON INTERNATIONAL 



( 

() 

points 

view 

x 

zoom 

Other Commands 

quit or Quit 

read 

set 

write 

!command 

r 

Options 

GRAPIDCS EDITOR 

( - (labelled-points or universe or view) or points) 

( - (home or universe or region) or [-x] pivot destination) 

[-view] points 

[-out] points 

[-angle,echo,height,midpoint,rightpoint,text, 
[ destination] 

[-angle,echo,factor ,height,kopy ,midpoint, 
points,rightpoint,style,text,width,x] 

filename 

width] filename 

Options specify parameters used to construct, edit, and view graphical objects. If a 
parameter used by a command is not specified as an option, the default value for the 
parameter will be used. The format of command options is 

. -option [,option] 

where option is keyletter[value]. Flags take on the values of true or false indicated by + and 
-, respectively. If no value is given with a flag, true is assumed. Object options are 

anglen 

echo 

tactorn 

heightn 

kopy 

Specify an angle of n degrees. 

When true, changes to the display buffer will be echoed on the screen. 

Specify a scale factor of n percent. 

Specify height of text to be n universe-units (n greater than or equal to 
o and less than 1280). 

The commands Scale and Rotate can be used to either create new 
objects or to alter old ones. When the kopy flag is true, new objects are 
created. 

ICONjUXV USER GUIDE 14-17 



GRAPmcs EDITOR 

midpoint When true, use the midpoint of a text string to locate the string. 

out When true, reduce magnification during zoom. 

points When true, operate on points; otherwise operate on objects. 

rightpoint When true, use the rightmost point of a text string to locate the string. 

8tyletype Specify line style to be one of the following types: 
80 solid . 
da dashed 
dd dot-dashed 
do dotted 
ld long-dashed 

text Most text is drawn as a sequence of lines. This can sometimes be 
painfully slow. When the text flag (t) is false, strings are outlined 
rather than drawn. 

width type Specify line width to be one of the following types: 
n narrow 

x 

Area options are: 

home 

regionn 

UDlverse 

view 

14-18 

m medium 
b bold 

One way to find the center of a rectangular area is to draw the 
diagonals of the rectangle. When the x flag is true, defined-areas are 
drawn with their diagonals. 

Reference the home-window. 

Reference region n. 

Reference the universe-window. 

Reference those objects currently in view. 

ICON INTERNATIONAL 

f'\ 
i ) "'-. 

c 



( 

( 

Some Examples of What Oan Be Done 

The following examples are used to illustrate use of the ged. 

Example I-Text Centered Within a Oircle 

.Circle<cr> 
<position cursor ><sp> 
<position cursor ><cr > 
*Text -m<cr> 

(establish center) 
(establish radius) 
(text is to be centered) 

some text<cr> 
$.O<cr> (first point from previous set, 

i.e., circle center) 
<cr> 

Figure 14-8 shows the output of these commands. 

some text 

GRAPIDCS EDITOR 

Figure 14-8. Text Centered Within a Circle 

ICONjUXV USER GUIDE 14-19 



GRAPmCS EDITOR 

NOTES 

c 
14-20 ICON INTERNATIONAL 



( Example 2-Making Notes on a Plot 

*! gas I plot -g >A<cr> (generate a plot, put it in file A) 
*read ~-A<cr> (input the plot, but do not display it) 
*View -h<cr> (window on the plot) 
*Lines -.do<cr> (draw dotted lines) 
<position cur80r><Sp> (0,6.5 y-axis) 
<position cursor><sp> (6.5,5.5) 
<position cursor><sp> (5.5,0 x-axis) 
<cr> (end of Lines) 
*set -hI50,wn<cr>(set text height to 150, line width to 

narrow) 
*Text -r<cr> (right justify text) 
threshold beyond which nothing matters<cr> 
<position cursor><cr> (set right point of text) 
*Text -a-90<cr> (rotate text negative 90 degrees) 
threshold beyond which nothing matters<cr> 
<position cursor><cr> (set top end of text) 
*x<cr> (find center of plot) 
<position cursor><sp> (top left corner of plot) 
<position cursor><cr> (bottom right corner of plot) 
*Text -h300,wm,m<cr> (build title: height 300, weight 

medium, centered) 
SOME KIND OF PLOT<cr> 
<position cursor><cr> (set title centered above plot) 
*view -h<cr> (window on the resultant drawing) 

Figure 14-9 shows the output of these commands. 

ICON/UXV USER GUIDE 

GRAPmCS EDITOR 

14-21 



GRAPHICS EDITOR 

14-22 

SOME KIND OF PLOT 
11------------------------------------------~ 

10 

9 

8 

7 

4 

threshold beyond which nothing matters m ... 
til ... ... 
;; 

10 

Figure 14-9. Making Notes on a Plot 

ICON INTERNATIONAL 



() 

( 

Example 3-A Page Layout with Drawinp and Text 

*! rand -sI,nIOO I title -v "seed 1" I qsort I bucket I 
hist -rI2 >A<cr> (put a histogram, region 

12, of 100 random numbers in file A) 
*! rand -s2,nIOO I title -v"seed 2" I qsort I bucket I 

hist -rI3 >B<cr> (put another histogram, 
region 13, into file B) 

*! ed<cr> (create a file of text using the text editor) 
a<cr> 
On this page are two histograms<cr> 
from a series of 40<cr> 
designed to illustrate the weakness<cr> 
of multiplicative congruential random number 
generators. <cr > 
.pI3<cr> (mark end of page) 
.<cr> 
w C<cr> 
151 
q<cr> 

(put the text into file C) 

*! nroff C I yoo C<cr> (format C, leave the output 
in C) 

*View -u <cr > 
*read -e- A <cr 
*read -e- B<cr> 

(window on the universe) 

*view -h<cr> (view the two histograms) 
*read -h300,wn,m C<cr> (text height 300, line weight 

narrow, text centered) 
<position cursor><cr> (center text over two plots) 
*view -h<cr> (window on the resultant drawing) 

Figure 14-10 shows the output of these commands. 

ICON/UXV USER GUIDE 

GRAPmcs EDITOR 

14-23 



GRAPIDCS EDITOR 

ON THIS PAGE ARE TWO HISTORGRAftS FROft A SERIES OF 
40 DESIGNED TO ILLUSTRATE THE WEAKNESS OF MULTIPLICATIVE 

CONGAUENTIAL RANDOR ~ER GENERATORS. 

~r-------------------------~ 22r--------------------------, 
20 ------------22 

20 
18 ---

18 ---
14 ---
12 ....... -+ 
10 
8 

8 

4 

2 

18 ----------

18 
14 
'12 

10 
8 

8 

4 

'2 

O~---L--~--~~--~--~--~ O~---L--~--~~--~--~--~ 

0.02810.1650.3010.4380.574 0.710.8470.983 0.007870.1490.2890.430.5710.7110.8520.993 

SEED 1 SEED 2 

Figure 14-10. Page Layout with Drawings and Text 

14-24 ICON INTERNATIONAL 

c 



(-

( 

(;, 

Chapter 15 

ADMINISTRATIVE INFORMATION 

PAGE 

Chapter Introduction ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
Graphics Structure ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• _ ••••••••••••••••••••••• 
InS'talling Graphics ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• _ .......................................... . 

Makerile PararTll'ters ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
Hewlet1r-Plckard Plotter •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• _ •••••••• 
T'EK'"'TROf\IIX Terminal ................................................................................................................... _ •• 

Inittab Entry .......••.•..•....•••.••••..••••......••...•.•..........••••..•.•••••••••••••..•••••..•.••.••••..••.••••.•••.••••••••.•••.•• 
Stra p Options ......................................................................................................................... . 
Enhanced Graphics ~ule ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• _ ••••••• 

Miscellaneous Inrorrrtation •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
AnnouncerTlents •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
Or.rloc .•••••••••••• · ••••••.•••.••..•..••..••.••.......••.•.••.......•..•........•..••..................•.••.•.•...•...•.••••.•••••..••.••. 
Restricted EnvironJ'Tlents •••••••••••••••••••••••••••••••••••••••••••••••••••••••••.••••••••••••••••••••••••••••••••••••••••••••••••• 

16-1 
16-1 
16-3 
16-4 
16-0 
16-0 
10-0 

16-0 
10-8 
16-8 
10-8 

16-8 
10-8 



(\ 



() 

o 

Chapter 15 

ADMINISTRATIVE INFORMATION 

Chapter Introduction 

This chapter is a reference guide for system administrators using or establishing a graphics 
facility on a ICON/UXV operating system. It contains information about directory 
structure, installation, makefiles, hardware requirements, and miscellaneous facilities of the 
graphics package. 

Graphies Structure 

Figure 15-1 contains a graphical representation of the directory structure of graphics. In 
this part, the shell variable SRC will represent the parent node for graphics source and is 
usually set /usr/src/cmd. 

The graphics command (see graphics(lG)) resides in /usr/bin. All other graphics 
executables are located in /usr /bin/graf; the /usr /lib /graf directory contains text for 
whatis documentation (see gutil(lG)) and editor scripts for ttoc (see toc(lG)). 

Graphics source resides below the directory $SRC/graf; $SRC/grafis broken into the 
following subdirectories: 

• include - contains the following header files: debug.h, errpr.h, gsl.h, gpI.h, 
setopt.h, and util.h . 

• src - contains source code partitioned into subdirectories by subsystem. Each 
subdirectory contains its own Makefile (or Install file for whatis.d). 

• glib.d - contains source used to build the graphical subroutine library, 
$SRC/graf/lib/glib.a. 

• stat.d - contains source for numerical manipulation and plotting routines. 

• dev.d - contains source code for device filters partitioned into subdirectories . 

• Iolib and uplib - contains source used to create device independent libraries . 

• hp7220.d - contains source for hpd (a Hewlett-Packard (HP*) Plotter 
display function). 

• HP is a registered trademark or Hewlett-Paekard Company. 

ICON/UXV USER GUIDE 15-1 



15-2 

r .., 
I LI8 I 
L_....J 

Figure 15-1. Directory Structure of Graphics Program 

• tek4000.d - contains source for ged (the graphical editor), td (a 
TEKTRONIX display function), and other TEKTRONIX dependent routines. 

• gutil.d - contains source for graphical utility programs. 

• toc.d - contains source for table of contents drawing routines. 

c 

• whatis.d - contains nroff files and the installation routine for on-line ( 
documentation. "-

ICON INTERNATIONAL 



ADMINISTRATIVE INFORMATION 

(--; • lib - contains glib.a which contains commonly used graphical subroutines. 

( 

(~ 

The ICON/UXV Reference Manual entries for graphics consist of the following: gdev(lG), 
ged(lG), graphics(lG), gutU(lG), stat(lG), toc(lG), and gps(5). 

Installing Graphics 

Procedures for installing graphics: 

- To build the entire graphics package, execute (as super-user): 

/usr /src/:mkcmd gra! 

- To build a particular graphics subsystem, use the shell variable ARGS: 

ARGS=subsystem /usr /src/:mkcmd gra! 

A subsystem is either glib, stat, dey, toe, gutil, or whatis. Glib must exist before other 
subsystems can be built. Write permission in /usr /bin and /usr /lib is needed, and the 
following libraries are assumed to exist: 

• /lib/libc.s - Standard C library, used by all subsystems. 

• /lib/libm.a - Math library, used by all subsystems. 

• /usr/lib/macros/mm[nt] - Memorandum macros for [nt]roff, used by the whatis 
subsystem. 

The complete build process takes approximately two hours of system time. If the build 
must be stopped, it is a good idea to restart from the beginning. Upon completion, the 
following things will be created and owned by bin: 

• /usr /lib/graf - A directory for data and editor scripts. 

• /usr /bin/graf - A directory for executables. 

• /usr /bin/graphics - Command entry point for graphics. 

whatis.d contains source files for whatis and the executable command Install. 

Install command name 

calls nroft' to produce whatis documentation for command name in /usr/lib/graf. To 
install the entire whatis subsystem, use: mkcmd as described above. 

ICONjUXV USER GUIDE 15-3 



ADMINISTRATIVE INFORMATION 

Makeflle Parameters 

Makefiles use executable shell procedures ceo and eea. Ceo is used to compile C source 
and install load modules in /ur /bin/graf. The eca command compiles C programs and 
loads object code into a.rchive files. 

Makefiles use various macro parameters, some of which can be specified on the command 
line to redirect outputs or inputs. Parameters specified in higher level Makefiles are passed 
to lower levels. Below is a list of specifiable parameters for Makefiles followed by their 
default values in parentheses and an explanation of their usage: 

$SRC/graf/graf.mk: 

• BIN (lusr/bin) - installation directory for the graphics command. 

• BIN (lusr /bin/graf) - installation directory for other graphic commands. 

• SRC (lusr/src/cmd) - parent directory for source code. 

SSRC/graf/src/Makefile: 

• BINI (lusr /bin) - installation directory for the graphics command. 

• BIN2 (lusr /bin/graf) - installation directory for other graphic commands. 

• LIB (lusr /lib/graf) - installation directory for whatis documentation. 

SSRC /graf Isrc /stat.d/Makefile: 

• BIN ( •• I .. /bin) - installation directory for executable commands. 

$SRC /graf /src/toc.d/Makenle: 

• BIN ( •• / •• /bin) - installation directory for executable commands. 

SSRC/graf/src/dev.d/Makefile: 

• BIN ( •• I .. /bin) - installation directory for executable commands. 

$SRC/graf/src/dev.d/hp7220.d/Makefile: 

• BIN ( •• / •• I .. /bin) - installation directory for executable commands. 

SSRC/graf/src/dev.d/tek4000.d/Makefile: 

15-4 ICON INTERNATIONAL 



(~ 

() 

ADMINISTRATIVE INFORMATION 

• BIN ( •• / •• / •• /bin) - installation directory for executable commands. 

SSRC / graf /src / gutil.d /Makefile: 

• BIN ( •• / •• /bin) - installation directory for executable commands. 

The following example will make a new version of the ged, installing it lD 

/al/pmt/dp/bin (assuming that necessary libraries were previously built): 

cd $SRC /graf/src/dev .d/tek4000.d 
make BIN=/al/pmt/dp/bin ged 

Hewlett-Packard Plotter 

The graphics display function, hpd, uses graphics plotter that emulates the TEKTRONIX 
4014 terminal. The plotter can be connected to the computer in series with a terminal via 
a dedicated or dial-up line. This arrangement allows the plotter to intercept plotting 
instructions while passing other data to the terminal unaltered, thus providing for normal 
terminal operation. Plotter switch settings should match those of the terminal. The 
plotter operating manual contains a more complete discussion. 

TEKTRONIX Terminal 

The graphics display function, td, and the ged, both use TEKTRONIX Series 4010 storage 
tubes. Below is a list of device considerations necessary for graphics operation. 

Inittab Entry 

When a TEKTRONIX 4010 series terminal is connected to a ICONjUXV operating system 
via a dedicated 4800 or 9600 baud line, /etc/inittab should reference speed table entry 6 
(the table may vary locally) of getty. Speed table entry 6 is designed specifically for the 
TEKTRONIX 4014 and, among other things, sets a form-feed delay so that the screen may 
be cleared without losing information and clears the screen before prompting for a login. 
See stty(l), inittab(5) and getty(8) for more information. 

Strap Options 

The standard strap options as listed below should be used (see the Reference Manual for 
the TEKTRONIX 4014): 

• LF effect - LF causes line-feed only. 

• CR effect - CR causes carriage return only. 

• DEL implies loy - DEL key is interpreted as low-order y value. 

ICONjUXV USER GUIDE 15-5 



ADMINISTRATIVE INFORMATION 

• Graphics input terminators - None. 

Enhanced Graphics Module 

The Enhanced Graphics Module (EGM) for TEKTRONIX terminals is required for 
graphics. The EGM provides different line styles (solid, dotted, dot-dashed, dashed, and 
long-dashed), right and left margin cursor location, and 12-bit cursor addressing (4096 by 
4096 screen points). 

Miscellaneous Inf'ormation 

Announcements 

The graphic, command provides a means of printing out announcements to users. To set 
up an announcement facility, create a readable text file containing the announcements 
named announce in directory /usr /adm. If it is desired to use a different directory for 
announcements, redefine the shell variable GRAF in /usr /bin/graphics. 

Graflog 

The graphics command also provides a means of monitoring its use by listing users in a 
file. 

Each time a user executes graphics, an entry of the login name, terminal number, and 
system date are recorded in file graflog in directory /usr fadm, the same directory used for 
announcements. 

Restricted Environments 

Restricted environments can be used to limit access to the system [see sh(l )]. A restricted 
environment for graphics can be set up by creating the directories /rbin and /usr /rbin 
and populating them with restricted versions of regular ICON/UXV system commands, so 
that the environment cannot be compromised. In particular, ed(l), mV(l), rm(l), and 
sh(l) require restricted interface programs which do not allow users to move or remove files 
whose names begin with ".". 

15-6 ICON INTERNATIONAL 



o 

---_ .. __ . __ ._ .•. _. 

ADMlNISTRATIVE INFORMATION 

To create a restricted environment for graphics: 

• Create a restricted ged command in /usr /rbin as follows: 

exec /usr/bin/graf/ged-R 

• Create restricted logins for users or create a community login with a working 
directory (reached through .profile) set up for each user. A restricted login specifies 
/bin/rsh as the terminal interface program and is created by adding /bin/rsh to 
the end of the /etc/p&sswd file entry for that login. 

• Call graphics -r from .profile. 

The execution of graphics -r changes $PATH to look for commands in /rbin and 
/usr /rbin before /bin and /usr /bin and executes a restricted shell. The -R option is 
appended to the ged command so that the escape from ged to the ICONjUXV operating 
system (!command) will also use a restricted shell. 

ICONjUXV USER GUIDE 15-7 





( 

o 

APPENDICES 

PAGE 

AppendixA: SELECfED ICON/UXV SYSTEM DOCUMENTATION .................... A-I 

Document Descriptions ... _ .....................................••............................. A-I 
Ordering Documents ..•....•.................................................................... A-4 

Appendix B: FILE SYSTEM ORGANIZATION .............. ~ ................................ B-1 

ICON/UXV System Directories ............................................................... B-3 

Appendix C: SUMMARY OF ICON/UXV SYSTEM COMMANDS ....................... C-l 

Command Descriptions ................................. ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. C -3 

Appendix D: QUICK REFERENCE TO ed COMMANDS ................................... D-l 

Commands in Alphabetical Order ............................................................. D-l 
Commands by Topic ........................................................................... D-5 

Appendix E: QUICK REFERENCE TO vi COMMANDS ........•........................... E-l 

Commands in Alphabetical Order .................................•........................... E-l 
Commands by Topic ........................................................................... E -8 

Appendix F: SUMMARY OF SHELL PROGRAMMING INGREDIENTS ............... F-l 

Shell Command Language .•.. .•. . . ........................ ... . ....•... .. . ..... .. ... .. ...... ... F-l 
Shell Programming Constructs ................................•............................... F-3 

Appendix G: AN INTRODUCTION TO THE C SHELL.................................... G-l 

Abstract ......................................................................................... G-l 
Introduction .. ..... .... ..... .... ..... ......... .... ..... ......... ........ ..... .... ......... ....... G-l 
Acknowledgements ............................................................................ G -2 
1'ERMINAL USAGE OF TIlE SlIELL .......................................................... G- 3 

The Basic Notion of Commands ............................ ............................ G-3 
Flag Arguments eo ................................................. eo ........ eo............. G-4 
Output to Files............................ ...... ...... ........ ............................. 0-4 
Metacharacters in the Shell ............................................................... G -5 
Input From Files; Pipelines .............................................................. G-6 
Filenames................................................................................... 0-7 
Quotation .................................................................................. 0-10 
Terminating Commands ................................................................. 0-10 
What Now? ............................................................................... 0-13 

DETAILS ON TIlE SlIELL FOR TERMINAL USERS ........................................ G-14 
Shell Startup and Termination .......................................................... 0-14 
Shell Variables ............................................................................ 0-15 
The Shell's History List ................................................................. 0-17 
Aliases ..................................................................................... G-19 
More Redirection; » and >& .......................................................... 0-21 
Jobs; Background, Foreground, or Suspended ...................................... 0-21 
Working Directories ...................................................................... 0-26 
Useful Built-in Commands .............................................................. 0-29 
Conclusion ...............•................................................................ 0-31 



SHELL CONTROL STRUCTURES AND COMMAND SCRIPTS ....................•....... 0-32 
Introduction ............................................................................... 0-32 
Make ....................................................................................... 0-32 
Invocation and the "argv" V mabIe ................................................... . 
Variable Substitution ......................................................................................... . 
Expressions ....................................................................................... .. 
~BUll1?le ~Ilell S;cril't ••..••••••••••.•....•••....•.•......•..•..........•..•.•.•..•..••..... 
Oth.er Control Stru.ctures ................................................................................................................... ... 
Supplying Input to Commands ........................................................ . 
Catchin g Interrupts ................................................................................................................................................ . 
Other Shell Features ................................................................................................ . 

0-32 
0-33 
0-35 
0-36 
0-38 
0-39 
0-40 
0-40 

OTHER, LESS COMMONLY USED, SHELL FEATIJRES .................................. 0-41 
Loops at the Terminal; Variables as Vectors .......................................... 0-41 
Braces { ... } in Argument Expansion ................................................ 0-42 
Command Substitution.................... .............................................. 0-42 
Other Details Not Covered Here ....................................................... 0-43 

OLOSSARY .................................................................................... 0-44 

USER OUIDE OLOSSARY .................................................................... OL-1 

c 



( 

o 

Appendix A 

SELECTED ICON/UXV SYSTEM DOCUMENTATION 

The ICON/UXV U8er Guide is a general introduction to the ICON/UXV system. Several 
documents are available for follow-up study and for further reference. This appendix 
highlights documents to which you should refer next for detailed information on the topics 
presented in this guide. In addition, it provides brief instructions for obtaining these 
documents. 

The documents selected for the appendix conform to the scope of the ICON/UXV User 
Guide; your needs may be different. For example, your documentation requirements will 
depend upon your use of the ICON/UXV system, the special add-on packages available to 
you, and the computer on which you run the ICONjUXV system. You may require more 
advanced or more detailed documentation on such things as support tools, system 
administration, or error messages. If so, refer to the Documentation Directory described in 
this appendix or contact your Icon International, Inc. Account Representative. 

DOCUMENT DESCRIPTIONS 

Table A-l summarizes the additional documentation by select code number (the reference number 
you must use when ordering any of the documents) and title. Following are brief descriptions of 
these documents. 

IOON/UXV U8er Reference Manual (172-036-004) 
Gives complete instructions on all standard ICONjUXV system commands, including proper 
format and all options. 

IOON/UXV Programmer Guide (172-036-005) 
Describes the programming languages and language aids available on the ICONjUXV 
system, including C, FORTRAN-77, and libraries. 

IOON/UXV Programmer Reference Manual (172-036-006) 
Gives detailed instructions for programmers using the ICONjUXV system. This manual 
covers system calls, library functions and subroutines, file formats, and miscellaneous 
facilities for the programmer. 

IOON/UXV Editing Guide (172-036-007) 
Contains beginning and advanced information on the editing programs (including ed and vi) 
available with the lCONjUXV system. 

ICONjUXV USER GUIDE A-l 



APPENDIX A 

TABLE A-I 

ICON /UXV System Documentation Arranged by Select Code 

Select 
Code 

172-036-003 

172-036-004 

172-036-005 

172-036-006 

172-036-007 

User Guide 

ICONfUXV System 
Document Title 

User Reference Manual 
Programmer Guide 

Programmer Reference Manual 

Editing Guide 

ORDERING DOCUMENTS 

You may order ICONfUXV system documents through your Icon International, Inc. Account 
Representative. This appendix does not cover pricing information, which is subject to change. For 
current and complete document availability and pricing information, contact your Icon 
International Account Representative. 

A-2 ICON INTERNATIONAL 

(, ' 

/ 



(-

o 

AppendixB 

FILE SYSTEM ORGANIZATION 

To make full use of the capabilities of the file system, you must understand its or-ganization 
of files and directories. This appendix summarizes the standard system directories provided 
and maintained by the ICON/UXV operating system. 

The file structure of the ICON/UXV system is a treelike structure (or hierarchy), with 
directories and files descending and branching out from a single directory. This directory is 
called the root and is designated by a slash (/). One path from the root leads to a 
directory that, in turn, leads to the directory that you find yourself in when you log in 
(your home directory). Under your home directory, you can establish your own hierarchy of 
directories and files for organizing information. 

Other paths lead from the root to system directories. These directories are available to all 
users. The system directories described in this book are common to all UNIX system 
installations; they are provided and maintained by the operating system. In addition to 
this standard set of directories, you may have other system directories available to you. 
To obtain a complete listing of all the directories and files in the root directory on your 
ICON/UXV system, type: . 

Is -1/<CR> 

When you understand the organization of directories and files in the ICONjUXV system, 
you will be able to use path names to move around in the structure and find out what 
other directories contain. For example, you can move to the directory /bin (which 
contains ICONjUXV system executable files) by typing: 

cd /bin<CR> 

and then list its contents by inputting one of the following command lines: 

Is<CR> 
Is -I<CR> 

for a list of file and directory names 
for a detailed list of the contents 

Or, you can use the Is command to view the contents of the /bin directory from any 
directory. Type: 

Is /bin<CR> 
Is -1/bin<CR> 

for a short listing 
for a detailed listing 

You may use the same commands to look at the contents of other system directories, 
substituting the desired directory name for /bin. 

ICON/UXV USER GUIDE B-1 



APPENDIXB 

Figure B-1 shows the root and the major system directories belonging to it. On the 
following pages are brief descriptions of each system directory. 

/ 

/bin 

/lib 

/dev 

B-2 

o -DnctoriH 

o · 0rdInIIy FlIft 

'\l • SpecIal F.1es 

Figure B-1. Sample of file system structure of the ICON/UXV system 

ICONjUXV SYSTEM DffiECTORIES 

Root, the source of the file system. 

Many executable programs and utilities reside in this directory, such as: 

cat 
date 
login 
grep 
mkdir 
who 

This directory contains available program and language libraries, such as: 

libc.a 
libm.a 

system calls, standard I/O) 
math routines and support for languages such as C, 
FORTRAN, and BASIC. 

This directory contains special files that represent peripheral devices, such 
as: 

ICON INTERNATIONAL 



( 

fetc 

ftmp 

fuer 

console 
lp 
ttyOO 
ttyOl 
rpOO 

console 
line printer 
user terminal 
user terminal 
disks. 

APPENDIXB 

Special programs and data files for system administration reside In this 
directory. 

This directory holds temporary files, such as the buffers created for editing a 
file. 

This directory is the parent to the following subdirectories: 

news 
rje 
mail 
games 
man 
spool 

important news items 
data sent by the remote job entry 
electronic mail 
electronic games 
on-line user's manual 
files waiting to print on the line printer. 

ICONfUXV USER GUIDE B-3 





( 

c 

Appendix C 

SUMMARY OF ICON/UXV SYSTEM COMMANDS 

This appendix consists of two sections . 

• Table C-l summarizes the ICONjUXV system commands covered in this guide. The 
table lists these commands alphabetically and supplies a brief definition for each one . 

• The remainder of this appendix contains abridged descriptions of the capabilities of 
these commands. 

TABLE C-l 

Summary of ICON/UXV System Commands 

Name 

at 

banner 

batch 

cat 

cd 

chmod 

cp 

cut 

date 

diff 

echo 

ed 

grep 

kill 

lex 

Ip 

Ipstat 

Description 

Specify time to run a job 

Display posters on the standard output 

Run jobs when system load permits 

Display contents of a file on the terminal 

Change your working directory 

Change permission modes for a file or directory 

Copy an existing file to another file 

Cut out selected fields in a file 

Display the current date and time 

Find difference(s) between two files 

Echo input to the standard output 

Edit (or create) a file using line editor 

Search a file for a pattern 

Terminate a background process 

Generate programs for simple lexical tasks 

Print a file on the line printer 

Display current line printer status 

(Continued on nezt page) 

ICONjUXV USER GUIDE 0-1 



APPENDlXC 

Name 

Is 

mail 

mailx 

make 

man 

mkdir 

mv 

Dohup 

pg 

PI' 

ps 

pwd 

I'm 

rmdir 

sh 

sort 

spell 

stty 

uname 

uuep 

uuname 

uupiek 

uuto 

uustat 

vi 

we 

who 

yacc 

at 

TABLE C-l--continued 

Description 

List the contents of a directory 

Send or receive electronic mail 

Interactive message handing system 

Maintain large programs or documents 

On-line manual 

Make (create) a new directory 

Move and rename a file 

Continue background processes after logoff 

Display file contents a page at a time 

Display a partially formatted file on terminal 

Show status of background processes 

Display the current working directory 

Remove (delete) a file 

Remove (delete) an empty directory 

Execute a shell file/program 

Sort or merge files 

Find spelling errors in a file 

Report or set I/O options for a terminal 

Print the name of the current ICONjUXV system 

Send a copy of a file directly to another 
userts login 

List names of known remote systems 

Retrieve a file in the public directory 

Send a copy of a file to another user 

uuto status inquiry 

Edit (create) a file using full screen editor 

Count lines, words, and characters in a file 

Show who is logged into the system 

Impose a structure on program input 

COMMAND DESCRIPTIONS 

Displays the job numbers of all jobs you have in the at or batch modes or in the background 

0-2 ICON INTERNATIONAL 

( ) ,--. 



(-

o 

APPENDJXC 

mode. Followed by a time, submits commands to be run at that time. A sample format for 
this command is: 

at 0845am Jun 09<CR> 
commandl<CR> 
command2<CR> 
<Ad> 

If you use the at command without the date, the command executes within 24 hours at the 
time specified. 

banner 
Displays a message (in words up to 10 characters long) in large letters on the standard output. 

batch 

cat 

cd 

cp 

cut 

date 

diff 

echo 

Submits command(s) to be processed when the system load is at an acceptable level. A sample 
format of this command is: 

batch<CR> 
commandl<CR> 
command2<CR> 
<Ad> 

You may use a shell script for a command in batch. This may be useful and timesaving if you 
have a set of commands you frequently submit using the batch command. 

Displays the contents of a specified file at your terminal. To pause the output, use <AS>; 
<Aq> resumes the display. To stop the display and return to the shell prompt, press the 
<BREAK> key. 

Changes your position in the file system from the current directory to your home directory. 
Followed by a directory name, this command changes your position in the file system from the 
current directory to the directory specified. You can move up or down in the file system. By 
using a path name in place or the directory name, you may jump several levels with one 
command. 

Copies a specified file into a new file. The cp command leaves the original file intact; if you do 
not want to retain the file as is, use mv. 

Cuts out specified fields from each line of a file. This command can be used to cut columns 
from a table, for example. 

Displays the current date and time. 

Compares two files. The diff command reports which lines are different and what changes 
should be made to the second file to make it the same as the first file. 

Displays (echoes) input to the terminal on the standard output, rollowed by a carriage return. 

ICONfUXV USER GUIDE 0-3 



APPENDIXC 

ed 

grep 

kill 

lex 

Ip 

Edits a specified file using the line editor. If there is no file by that name, the ed command 
Cfeates a file. See Chapter 5 for detailed instructions on using the ed editor. 

Searches a specified file or files fOf a specified pattern and tells you which lines match. If you 
name more than one file, grep also tells you which file contains the pattern. 

Terminates a background process specified by its process identification number (PID). The 
PID can be found by using the ps command. 

Generates programs to be used in simple lexical analysis of text, perhaps as a first step in 
creating a compiler. See the IOON/UXV S,latem Uaer Reference Manual for details. 

Prints a specified file on the line printer. This gives you a paper copy of the file's contents. 

Ipstat 

Is 

mail 

Displays the status of any requests made to the line printer system. Options are available to 
request more detailed information. 

Lists the names of all files in the current directory except those whose names begin with a dot 
( .). Options are available to list more detailed information about the files in the directory. 

Displays any electronic mail you may have received at your terminal, one message at a time. 
Each message ends with 1; type r for a list of options available to you at this point. There 
are options for saving, forwarding, or deleting mail. 

When followed by a login name, mail sends a message to the user with the specified login 
name through electronic mail. You may type in as many lines of text as you wish; a dot (.) 
entered at the beginning of a new line ends the message and sends it to the recipient. Press 
the <BREAK> key to stop the mail session while composing the message or while reading 
one. 

mailx 
A more sophisticated, expanded version of electronic mail. See the Unix S,IBtem Uaer 
Reference Manual for details. 

make 

man 

Provides a method for maintaining and supporting large programs or documents on the basis 
of smaller ones. See the IOON/UXV S,IBtem Uaer Reference Manual for details. 

Displays the manual page for a specified command at your terminal. 

mkdir 

mv 

0-4 

Makes (creates) a new directory. The new directory becomes a subdirectory of the directory 
you are in when you issue the command. To create subdirectories or files in the new directory, 
you should move into the new directory with the cd command. 

Moves or renames a specified file. Either file name may be a path name. To make a copy of a 
file use the cp command. 

ICON INTERNATIONAL 

C) 

/ 

c 



APPENDIXC 

nohup 

pg 

pr 

ps 

pwd 

rm 

Allows a command placed in the background to continue executing after you log off. Error 
messages are placed in a file called nohup. out. 

Displays the contents of a specified file at your terminal, a screenful at a time. After each 
screenful, the system pauses and waits for your instructions before proceeding. 

Displays a partially formatted version of a specified file at your terminal. The pr command 
shows page breaks, but does not implement any macros supplied for text formatter packages. 

Shows the status and number of all processes currently t'111l1ling. The ps command does not 
show the status of jobs in the at or bateh queues, but it shows them when they are executing. 

Displays the name of the current working directory. The pwd command shows the working 
directory with its full path name, beginning from the root. For an explanation of the file 
system organization, see Appendix B. 

Removes (deletes) a file. You may use metacharacters with the rm command, but with 
caution; a removed file cannot usually be recovered. 

rmdir 

sort 

spell 

stty 

Removes (deletes) a directory. The directory must be empty before you delete it; you must 
delete all files and subdirectories in the specified directory first. 

Sorts a file by the ASCII sequence and displays the results at your terminal. The sequence is 
as follows: 

numbers before letters 
capitals before lower ease 
alphabetical order 

There are other options for sorting a file. For a complete list of sort options, see the 
ICON/UXV System User Reference Manual. 

Collects words from a specified file and checks them against a spe~ list. Words not on the 
list or not related to words on the list (with suffixes, prefixes, etc.) are displayed. 

By itself, reports the settings of certain input/output options fOT YOUT terminal. It sets these 
options when followed with appropriate options and arguments (see the ICON/ UXV System 
User Reference Manual). 

uname 

uucp 

Displays the name of the ICONjUXV system on which your login resides. 

Sends a specified file directly to a user's login. See the lCON/ UXV System User Reference 
Manual for details. 

ICONjUXV USER GUIDE 0-5 



APPENDJXC 

uuname 
Lists the names oC remote ICONjUXV systems that can communicate with your ICONfUXV 
system. 

uupiek 
Searches the public directory Cor files sent to you by the uuto command. If files are found, it 
displays the file name and the system it came from, then prompts you (1) to take action. 

uustat 

uuto 

vi 

we 

who 

yaee 

0-6 

Displays the status oC your request to send files to another user with the uuto command. 

Sends a specified file to another user. The destination is in the format system !login where 
the system must be on the list of systems generated by the uuname command. 

Edits a specified file using the screen editor. If there is no file by that name, vi creates the file. 
See Ohapter 6 for detailed inCormation on using the vi editor. 

Counts the number of lines, words, and characters in a specified file and displays the results at 
your terminal. 

Displays the login names of the users logged in to the ICONjUXV system on your computer, 
along with the terminals they are using and the times they logged in. 

Imposes a structure on the input of a program. See the IOON/UXV Sllatem Uaer Reference 
Manual for details. 

ICON INTERNATIONAL 



( 

0 

AppendixD 

QUICK REFERENCE TO ed COMMANDS 

This Quick Reference to ed Oommands is organized into two sections . 

• The first section lists the commands, with brief descriptions, in alphabetical order . 

• The second section groups the commands according to each topic discussed In 

Ohapter 5. 

The commands are shown as you type them. The general format for ed commands is: 

[addressl ,address2]command [parameter ]<CR> 

where addressl and addressf denote line addresses and parameter(s) indicates data on 
which the command operates. You can find complete information on using ed commands in 
Ohapter 5, Line Editor Tutorial. 

!eommand 

I 

\ 

-
. -
+x 

-x 

• 

• 

COMMANDS IN ALPHABETICAL ORDER 

Returns to command mode from text input mode. 

Address of the current line. 

Matches any single character (in a search pattern and in a substitution). 

Temporarily escapes to the shell to execute a shell command. 

Acts as a delimiter (for 8, v, or g commands). 

Removes the meaning of a special character (in a search pattern and in a 
substitution). 

Displays the address of the last line in the buffer. 

Displays the current line number . 

Relative address; add x to the current line number. 

Relative address; subtract x from the current line number. 

Matches zero or more occurrences of the preceding character (in search or 
substitution patterns). 

Matches zero or more occurrences of any characters following the period (in 
seareh or substitution patterns). 

ICON/UXV USER GUIDE D-l 



APPENDIXD 

D-2 

[ ••• J 

[A ••• J 

/pattern 

?pattern 

$ 

$ 

8& 

% 

@ 

# 

a 

e 

OR 

d 

ed fllename 

E fllename 

f 

tnerile 

a/pattern 

G/pattern 

h 

Matches the first character of those characters within the brackets. 

H the caret (A) is the first character in brackets, finds and matches the first 
character that is not within the brackets. 

The caret (") matches the beginning of a line (in a search pattern and in a 
substitution). 

Searches forward in the buffer and addresses the first line after the current 
line that contains the pattern of text. 

Searches backward in the buffer and addresses the first line beCore the current 
line that contains the pattern of text. 

Denotes the last line in the buffer. 

Matches the end of a line. 

Repeats the last pattern to be substituted. 

Repeats the last replacement pattern. 

Deletes the current line (text input mode) or a command line (command 
mode). 

Deletes the character just entered (text input mode). 

Oreates text after the specified line. 

Replaces text in the specified lines with new text. 

Carriage return; moves down a line in the buffer. 

Deletes specified lines of text. 

Enters ed line editor to edit a file called filename; copies the file into the 
buffer. 

Replaces the current buffer with the contents of a file called filename; deletes 
present contents of the buffer whether written to a permanent file or not. 

Displays the name of the file being edited. 

Changes the current file name associated with the buffer to newfile. 

Addresses all lines in the buffer that contain the specified pattern of text. 

Addresses all lines in the buffer that contain the specified pattern of text; 
prints each occurrence for you to deal with separately. 

Displays a short explanation of the previous diagnostic response (1). 

ICON INTERNATIONAL 

c 



(- ; 

( 

o 

H 

i 

j 

m 

n 

p 

p 

q 

Q 

r filename 

APPENDIXD 

Automatically displays explanations of diagnostic responses (1) throughout 
the editing session. 

Inserts new text before the specified line. 

Joins contiguous lines. 

Displays the specified lines with all nonprinting (hidden) characte~. 

Moves the specified lines after a destination line; deletes the lines at the old 
location. 

Displays the specified lines preceded by the line addresses and a tab space. 

Displays the specified lines in the buffer. 

Causes ed to print an asterisk (.) as a command mode prompt (for more 
details, see the ICON/UXV Editing Guide described in Appendiz A). 

Ends an editing session. If changes to the buffer were not written to a file, a 
warning (1) is given. Typing q a second time ends the session without writing 
to a file. 

Ends an editing session whether or not changes to the buffer were written into 
a file. 

Appends the contents of a file called filename to the end of the present buffer 
contents. 

s/old text/new text/ 
Substitutes the first occurrence of old text with new text on the current line. 
A g after the final slash changes all occurrences on the current line. 

addressl,address2s/old text/new text/ 

t 

u 

v/pattern 

V/pattern 

w 

w filename 

Substitutes the first occurrence of old text with new text on the lines 
denoted by addre381,addre332. 

Copies the specified lines and places them after a destination line. 

Undoes the last command given, except for wand q (command mode). 

Addresses all lines in the buffer that do not contain the specified pattern of 
text. 

Addresses all lines in the buffer that do not contain the specified pattern of 
text; prints each occurrence for you to deal with separately. 

Copies the buffer contents into the file currently associated with the buffer. 

Copies the buffer contents into a file called filename. 

ICON/UXV USER GUIDE D-3 



APPENDIXD 

COMMANDS BY TOPIC 

Commands for Getting Started 

ed filename Enters ed line editor to edit a file called filename. 

a Appends text after the current line. 

p 

d 

OR 

w 

q 

Ends the text input mode and returns to the command mode. 

Displays the current line. 

Deletes the current line. 

Moves down one line in the buffer. 

Moves up one line in the buffer. 

Writes the buffer contents to the file currently associated with the buffer. 

Ends an editing session. H changes to the buffer were not written to a file, a 
warning (?) is issued. Typing q a second time ends the session without writing 
to a file. 

Line Addressing Commands 

1, 2, 3 ••• 

• == 

/abe 

?abe 

D-4 

Denotes line addresses in the buffer. 

Address of the current line in the buffer. 

Displays the current line address . 

Denotes the last line in the buffer. 

Addresses lines 1 through the last line. 

Addresses the current line through the last line. 

Relative address; add % to the current line number. 

Relative address; subtract % from the current line number. 

Searches forward in the huffer and addresses the first line after the current 
line that contains the pattern dc. 

Searches backward in the buffer and addresses the first line before the current 
line that contains the pattern abc. 

ICON INTERNATIONAL 

( 



(. 

o 

s/abe 

v/abe 

Display Commands 

p 

D 

Text Input 

a 

e 

Deleting Text 

d 

u 

@ 

APPENDIXD 

Addresses all lines in the buffer that contain the pattern abc. 

Addresses all lines in the buffer that do not contain the pattern abc. 

Displays the specified lines in the buffer. 

Displays the specified lines preceded by the line addresses and a tab space. 

Enters text after the specified line in the buffer. 

Enters text before the specified line in the buffer. 

Replaces text in the specified lines with new text. 

On a line by itself, ends the text input mode and returns to the command 
mode. 

Deletes one or more lines of text (command mode). 

Undoes the last command given (command mode). 

Deletes the current line (text input mode) or a command line (command 
mode). 

# or baekspace 
Deletes the last character typed in (text input mode). 

ICONjUXY USER GUIDE D-5 



APPENDIXD 

Substituting Text 

addressl,address2s/old text/new text/eommand 

Special Characters 

• 

• 

$ 

\ 

% 

[ ... ] 
[A ••• 1 

Substitutes new text for old text within the range of lines denoted by 
atltlrud,atltlre"t (which may be numbers, symbols, .or text). The command 
may be g, I, n, p, or gpo 

Matches any single character in search or substitution patterns . 

Matches zero or more occurrences of the preceding character lD search or 
substitution patterns . 

Matches zero or more occurrences of any characters following the period lD 

search or substitution patterns. 

The caret (A) matches the beginning of the line lD search or substitution 
patterns. 

Matches the end of the line in search or substitution patterns. 

Takes away the special meaning of the special character that follows lD 

search and substitution patterns. 

Repeats the last pattern to be substituted. 

Repeats the last replacement pattern. 

Matches the first occurrence of a pattern in the brackets. 

Matches the first occurrence of a character that is not in the brackets. 

Text Movement Commands 

m 

t 

j 

w 

r 

Moves the specified lines of text after a destination line; deletes the lines at 
the old location. 

Copies the specified lines of text and places the copied lines after a 
destination line. 

Joins the current line with the next contiguous line. 

Copies (writes) the buffer contents into a file. 

Reads in text from another file and appends it to the buffer. 

Other Useful Commands and Information 

D-6 ICON INTERNATIONAL 



( 

( 

o 

h 

B 

f 

fnewfile 

!eommand 

ed.hup 

APPENDIXD 

Displays a short explanation Cor the preceding diagnostic response (f). 

Turns on the help mode, which automatically displays an explanation Cor each 
diagnostic response (f) during the editing session. 

Displays nonprinting (hidden) characters in the text. 

Displays the current file name. 

Changes the current file name associated with the buffer to newJile. 

Temporarily escapes to the shell to execute a shell command. 

If the terminal is hung up before a write command, the editing buffer is saved 
in the file ed.hup. 

ICON/UXV USER GUIDE D-7 





( 

AppendixE 

QUICK REFERENCE TO vi COMMANDS 

This Quick Reference to vi Commands is organized into two sections. 

• The first section lists the commands, with brief descriptions, in alphabetical order. 

• The second section lists the commands according to ea.ch topic discussed in Chapter 6. 

Please note the following conventions when using this appendix. 

• Typing the control key is denoted by a. caret (A) and the key--for example, Ag. 

• "Current line," "current word," and "current character" refer to the line, word, or 
chara.cter denoted by the cursor. 

The commands are shown as you type them. The general format for vi commands is: 

[x ]command [argument] 

where x denotes a number and argument indicates data on which the command operates. 
You can find complete information on using vi commands in Chapter 6, Screen Editor 
Tutorial. 

\ 

:$ 

:n 

+ 

( 

COMMANDS IN ALPHABETICAL ORDER 

Continues the search for the character specified by the f command. 

Repeats the action initiated by the last command. 

Prints the characters that are normally nonprinting (hidden characters) text input 
mode. 

Begins a line editor command. 

Moves the cursor to the beginning of the last line in the buffer. 

Moves the cursor to the beginning of the nth line of the buffer (n == line number). 

Moves the cursor up one line. 

Moves the cursor down one line. 

Moves the cursor to the beginning of the current sentence. 

ICON fUXV USER GUIDE E-l 



APPENDIXE 

) Moves the cursor to the beginning or the next sentence. 

{ Moves the cursor to the beginning or the current paragraph. 

} Moves the cursor to the beginning or the next paragraph. 

,..., Change uppercase to lowercase or lowercase to uppercase. 

/pattern Searches rorward in the buffer ror pattern. 

!pattern Searches backward in the buffer ror pattern. 

@ In text input mode, erases the current line. 

OR Carriage return; in command mode, moves the cursor down one line. 

space bar Moves the cursor to the right one character. 

a Enters text after the cursor. 

A Enters text at the end of the current line. 

b Moves the cursor to the left one word, to the first character of that word. 

B Moves the cursor to the left one word (delimited only by blanks), to the first 
character of that word. 

""b Scrolls the screen back a full window, revealing the window of text above the current 
window. 

BS Backspace; in command mode, moves the cursor one character to the left. 

BS Backspace; in text input mode, deletes the current character. 

cw Replaces a word (or part of a word), from the cursor to the next space or 
punctuation, with new text. 

cc Replaces all the characters in the current line. 

ftC% Replaces n number of text objects %, where % can include a sentence or a paragraph. 

o Replaces the characters in the current line from the cursor to the end of the line. 

D Deletes the line from the cursor to the end of the line. 

"" d Scrolls the screen down a half window, revea.ling lines below the current window. 

""d 

E-2 

Escapes the temporary return to the shell and returns to vi to edit the current 
window. 

ICON INTERNATIONAL 

c 



(-

( 

dd 

dw 

ncb 

:.,Sd 

e 

E 

ESC 

t% 

F% 

"'t 

G 

nG 

'" g 

APPENDIXE 

Deletes the current line. 

Deletes a word (or part of a word) from the cursor through the next space or to the 
next punctuation. 

Deletes n number of text objects %, where % can include a sentence or a paragraph. 

Deletes all the lines from the current line to the last line. 

Moves the cursor to the end of the current word. 

Moves the cursor to the end of the current word (delimited by blanks only); places 
the cursor on the last character before the next blank space or at the end of the 
current line. 

Escape; returns to the command mode from any of the text input modes. 

Moves the cursor right to the specified character %. 

Moves the cursor left to the specified character %. 

Scrolls the screen forward a full window, revealing the window of text below the 
current window. 

Moves the cursor to the beginning of the last line in the buBer. 

Moves the cursor to the nth line of the file (n = line number). 

Gives the line number, its position in the buffer (as a percentage of the buffer 
completed), and status. 

:g/text/s/ /new words/g 
Changes every occurrence of text to new words. 

h Moves the cursor one character to the left. 

H Moves the cursor to the first line on the screen, or "home". 

i Enters text to the right of the cursor. 

I Enters text to the left of the first character that is not a blank on the current line. 

j Moves the cursor down one line from its present position. 

J Joins the line immediately below the current line with the current line. 

k Moves the cursor up one line from its present position. 

Moves the cursor one character to the right. 

ICONjUXV USER GUIDE E-3 



APPENDIXE 

L Moves the cursor to the last line on the screen. 

... Clea.rs a.nd redra.ws the current window. 

M Moves the cursor to the lDiddle . line on the screen. 

n Repea.ts the last sea.rch comma.nd. 

N Repea.ts the lut sea.rch comma.nd in the opposite direction. 

o Enters text a.t the beginning of a. new line immedia.tely below the current line. 

o Enters text a.t the beginning of a. new line immedia.tely a.bove the current line. 

p Pla.ces the contents of the tempora.ry buffer conta.ining the last "delete" or "ya.nk" 
comma.nd into the text a.fter the cursor or below the current line. 

"zp Pla.ces the contents of register z a.fter the cursor or below the current line. 

:q Quits vi if changes ma.de to the buffer were written to a file. 

:q! Quits vi whether or not changes made to the buffer were written to a. file. 

r 

R 

:r filename 

s 

S 

Repla.ces the current character. 

Replaces only those characters that are typed over with new text; continues to 
append new text after the end of the line is reached. 

Inserts the contents of a file called filename under the current line of the buffer. 

Deletes the current character and appends text. 

Replaces all the characters in the current line. 

:s/text/new words/ 
Repla.ces text with new words on the current line. 

:s/text/new words/g 

tz 

Tz 

u 

u 

"u 

E-4 

Changes every occurrence of text on the current line to new words. 

Moves the cursor right to the cha.racter just before the specified cha.ra.cter z. 

Moves the cursor left to the cha.ra.cter just a.fter the specified cha.ra.cter z. 

Undoes the lut comma.nd. 

Era.ses the lut change on the current line. 

Scrolls the screen up a ha.lf window, revea.ling the lines of text above the current 
window. 

ICON INTERNATIONAL 

c 



( 

o 

APPENDIXE 

"'v In text input mode, prints characters that are normally nonprinting (hidden 
characters). 

vi filename 
Enters vi screen editor to edit the file filenGme. 

vi filel file2 flle3 
Enters three files into the vi buffer to be edited. Those files are filel, filet, and file9. 

vi -r filel 
Restores the changes made to file filel that were lost because of an interrupt in the 
system. 

view filel 
Views file fild in the read-only mode of vi. 

w Moves the cursor forward to the first character in the next word. 

w Ignores all punctuation and moves the cursor forward to the beginning of the next 
word delimited only by blanks. 

:w filename 
:n When editing more than one file, writes the buffer to the file called filename and calls 

the next file in the buffer (use :n only after :w). 

:w filename 
:q Writes the buffer to a new file called filename and quits vi. 

:wq Writes the buffer to a file and quits vi. 

:x,zw data 
Writes lines from the number x through the number z into a new file called data. 

:w! filename 
:q Overwrites an existing file called filename and quits vi. 

"'w In text input mode, deletes the current word delimited by blanks. 

x Deletes the current character. 

nyx Places (yanks) a copy of n numbertext objects x into a temporary buffer, where x can 
include a word, line, sentence, or paragraph. 

"I)'n Places a copy of text object x into a register named by a letter I. 

yy Places the current line of text into a temporary buffer. 

zz Writes the buffer to a file and quits vi 

ICONjUXV USER GUIDE E-5 



APPENDlXE 

SUMMARY OF vi COMMANDS BY TOPIC 

Commands for Getting Started 

TERM-code 

export TERM 
Before entering vi, sets the terminal configuration. 

vi filename 
Enters vi screen editor to edit a file called filename. 

a Enters text after the cursor. 

h Moves the cursor to the left one character. 

j Moves the cursor down one line. 

k Moves the cursor up one line. 

Moves the cursor to the right one character. 

x Deletes the current character. 

CR Carriage return; moves the cursor down to the beginning of the next line. 

ESC Escape; leaves text input mode and returns to command mode. 

ZZ Writes to a file and quits vi. 

:q Quits vi if changes made to the buffer were written to a file. 

Commands for Positioning in the Window 

Character P08itioning 

h Moves the cursor one character to the left. 

1 Moves the cursor one character to the right. 

BS Backspace; moves the cursor one character to the left. 

space bar Moves the cursor one character to the right. 

fz Moves the cursor right to the specified character z. 

Fz Moves the cursor left to the specified character z. 

Continues the search for the character specified by the r command. It will remember 
the character and seek out the next occurrence of the character on the current line. 

E-6 ICON INTERNATIONAL 

c: 



( 

APPENDIXE 

tz Moves the eursor right to the character just berore the speeified character z. 

Tz Moves the cursorl~rt to the character just arter the specified <:haracter z. 

Po,itioning 61/ Line, 

j Moves the eursor down one line rrom its praent position. 

k Moves the cursor up one line rrom its pTeSent position. 

+ Moves the cursor down one line. 

Moves the cursor up one line. 

OR Carriage return; moves the cursor down to the beginning or the next line. 

Word Positioning 

w 

w 

b 

B 

e 

E 

Moves the cursor to the right, to the first character in the next word. 

Ignores all punctuation and moves the cursor to the right, to the beginning of the 
next word delimited only by blanks. 

Moves the cursor to the lert one word, to the first character of that word. 

Moves the cursor to the left one word, (delimited only by blanks) to the first 
character of that-word. 

Moves the cursor to the end or the current word. 

Moves the cursor to the end or the current .word (delimited by blanks only); places 
the cursor on the last character before the next blank space or at the end of the 
current line. 

Positioning by Sentences 

( 

) 

Moves the CUTSOr to the beginning of the current sentence. 

Moves the cursor to the beginning of the next sentence. 

Po,itioning by Ptm,graph, 

{ Moves the cursor to the beginning of the current paragraph. 

} Moves the cursor to the beginning or the next paragraph. 

ICON/UXV USER GUIDE 

/ 

E-7 



APPENDIXE 

Po,itioning in tke Window 

H Moves the cursor to the first line on the screen, or "home". 

M Moves the cursor to the middle line on the screen. 

L Moves the cursor to the last line on the screen. 

Commands for Positioning in the File 

Scrolling 

"'d 

"'b 

"'u 

Scrolls the screen forward a full window, revealing the window of text below the 
current window. 

Scrolls the screen down a half window, revealing lines of text below the current 
window. 

Scrolls the screen back a full window, revealing the window of text above the current 
window. 

Scrolls the screen up a half window, revealing the lines of text above the current 
window. 

P08itioning on a Numbered Line 

G 

nG 

Moves the cursor to the beginning of the last line in the buffer. 

Gives the line number, position in the buffer (as a percentage of the buffer 
completed), and status. 

Moves the cursor to the nth line of the file (n == line number). 

Searching for a Pattern 

/pattern 

?pattern 

n 

N 

E-8 

Searchs forward in the buffer for the next occurrence of the pattern of text. 
Positions the cursor under the first character of the pattern. 

Searchs backward in the buffer for the first occurrence of pattern of text. Positions 
the cursor under the first character of the pattern. 

Repeats the last search command. 

Repeats the search command in the opposite direction. 

ICON INTERNATIONAL 

c 



( 

( 

o 

APPENDIXE 

Create Commands 

a Enters text after the cursor. 

A Enters text at the end of the current line. 

1 Enters text to the right of the cursor. 

I Enters text to the right the first character that is not a blank on the current line. 

o Enters text at the beginning of a new line immediately below the current line. 

o Enters text at the beginning of a new line immediately above the current line. 

ESC Escape; returns to the command mode from any of the above text input modes. 

Delete Commands 

For the TEXT INPUT Mode 

BS Backspace; deletes the current character. 

"'w Deletes the current word delimited by blanks. 

@ Erases the current line of text. 

For the COMMAND Mode 

u Undoes the last command. 

U Erases the last change on the current line. 

x Deletes the current character. 

dw Deletes a word (or part of a word) from the cursor through the next space or to the 
next punctuation. 

dd Deletes the current line. 

ncb Deletes n number of text objects z. z can be the symbol for a word, line, current 
sentence, or current paragraph. 

D Deletes the current line from the cursor to the end of the line. 

ICONjUXV USER GUIDE E-9 



APPENDIXE 

Change Commands 

I' Replaces the current character. 

R Replaces only those characters typed over with new characters; continues to append 
new text after the end of the line until the ESC command is given. 

a Deletes the current character and .appends text until the ESC command is given. 

S Replaces all the characters in the current line. 

cw Replaces the current word or the remaining characters in the current word with new 
text, from the cursor to the next space or punctuation. 

ee Replaces all the characters in the current line. 

nex Replaces n number of text objects z. z can be the symbol for a word, line, current 
sentence, or current paragraph. 

C Replaces the remaining characters in the current line, from the cursor to the end of 
the line. 

Cut and Paste Commands 

p Places the contents of the temporary buffer containing the last "delete" or "yank" 
command into the text after the CUTSOr or below the current line. 

yy Places (yanks) a line of text into a temporary buffer. 

nyx Places a copy of n number of text objects z into a temporary buffier. 

"Iy:z Places a copy of text object :z into a register named by a letter I. z can be the 
symbol for a word, line, current sentence, or current paragraph. 

":zp Places the contents of register z after the cursor or below the current line. 

Special Commands 

J 

\ 

"'v 

E-IO 

Repeats the action initiated by the last command. 

Joins the line immediately below the current line with the current line. 

Prints characters that are normally nonprinting (hidden characters) in text input 
mode. 

Prints characters that are normally nonprinting (hidden characters) in text input 
mode. 

ICON INTERNATIONAL 



( 

o 

APPENDIXE 

"I Clears and redraws the current window. 

Change uppercase to lowercase or lowercase to uppercase. 

Line Editor Commands 

Tells vi that the next commands are line editor commands. 

:sh Temporarily returns to the shell to perform some shell commands without leaving vi. 

"d Escapes the temporary return to the shell and returns to vi to edit the current 
window. 

:n Goes to the nth line of the buffer. 

:x,zw data 
Writes lines from the number x through the number z into a new file called data. 

:$ Moves the cursor to the beginning of the last line in the buffer. 

:.,$d Deletes all the lines from the current line to the last line. 

:r filename 
Inserts the contents or the file filename under the current line or the buffer. 

:s/text/new words/ 
Replaces the first instance of text on the current line with new words. 

:s/text/new words/g 
Replace every occurrence of text on the current line with new words. 

:g/text/s/ /new words/g 
Changes every occurrence of text in the buffer to new words. 

Quit Commands 

ZZ Writes the buffer to a file and quits vi. 

:wq Writes the buffer to a file and quits vi. 

:w filename 
:q 

Writes the buffer to a new file named filename and quits vi. 

:w! filename 
:q Overwrites an existing file called filename with the contents of the buffer and quits vi. 

:q! Quits vi whether or not changes made to the buffer were written to a file. 

ICONjUXV USER GUIDE E-ll 



APPENDIXE 

:q Quits vi if changes made to the buffer were written to a file. 

Special OptioDJI fol' vi 

vi fUel 61e2 me3 

:w 
:n 

vi -I' ftlel 

view 61el 

E-12 

Enters three files into the vi buffer to be edited. Those files are filel, filet, and fileS. 

When editing more than one file, writes the buffer to a file called filename and calls 
the next file in the buffer (use :n only after :w). 

Restores the changes made to filel that were lost because of an interrupt in the 
system. 

Views filel in the read-only mode of vi. Changes cannot be made to the buffer. 

ICON INTERNATIONAL 



(-

( 

ell 

Appendix F 

SUMMARY OF SHELL PROGRAMMING INGREDIENTS 

This summary of shell programming ingredients discussed in Chapter 7, Shell Tutorial, is 
organized into two sections . 

• The first section is a summary of the variables and special symbols of the shell. These 
are arranged by topic in the order that they were discussed in the chapter. 

• The second section shows the shell programming constructs. 

SHELLCO~LANGUAGE 

Special Characters in the Shell 

* ! 0" Metacharacters; used as file name shortcuts (file name generation). 

Executes commands in the background mode. 

\ 

Sequentially executes several commands typed in on one line, each separated by jo 

Turns off the meaning of special characters in the shell. 

" " Sing~ quotes turn off the special meaning of all characters. Double quotes allow 
$ , ,and" to retain their special meaning. 

Redirecting Input and Output 

< Redirects the contents of a file into a command. 

> Redirects the output of a command into a new file, or replaces the contents of an 
existing file with the output. 

> > Redirects the output to be added to the end of a file. 

{ ,Directs the output of one command to be the input of the next command. 

command Substitutes the output of the enclosed command line. 

Executing and Terminating Processes 

batch Submits the commands that follow to be processed at a time when the system 
load is at an acceptable level. "d ends the batch command. 

at 

at -I 

at -r 

Submits the following commands to be executed at a specified time. Ad ends the 
at command. 

Gives the current jobs in the at or batch queue. 

Removes the at or batch job from the queue. 

ICONjUXV USER GUIDE F-l 



APPENDIXF 

pB Gives the status of the shell processes. 

kill PID Terminates the shell process with the specified process ID (PID). 

nohup command list & 
Completes background processes after logging off. 

Executing A File 

.h filename Executes a shell file that is a program. 

chmod u+x filename 
Changes the mode of a file to be executable by you. 

bin Your directory for storing executable shell programs that are accessible to all of 
your other directories. 

Variables 

positional parameter 
A variable defined by its position on the command line. 

$# Gives the number of positional parameters. 

$* Substitutes all positional parameters starting with the first positional 
parameter. 

named variable 
A variable that is given a name by you. 

Variables Used by the Shell 

HOME 
PATH 
CDPATH 
MAIL 

PSl PS2 

TERM 
IFS 

F-2 

Denotes your home directory; the default variable for the cd command. 

Defines the path your login shell follows to find commands. 

Defines the search path for the cd command. 

Gives the name of the file containing your electronic mail. 

Defines the primary and secondary prompt strings. 

Defines the type of terminal. 

Defines the internal field separators; normally the space, the tab, and the carriage 
return. 

ICON INTERNATIONAL 

" 

c 

I 
I 



( 

( 

c 

Here Doeument 

For Loop 

While Loop 

SHELL PROGRAMMING CONSTRUCTS 

eommand «~I 
input lines 
! 

tor variable<OR> 
in this list of values<OR> 

do the following commands<OR> 
command 1 <OR> 
command 2<OR> 
.<OR> 
.<OR> 
last command<OR> 

done<OR> 

while command list<OR> 
do<OR> 
commandl <OR> 
command2<OR> 
.<OR> 
.<OR> 
last command<OR> 
done<OR> 

ICON/UXV USER GUIDE 

APPENDIXF 

F-3 



APPENDIXF 

It ... Then 

It ... Then ••• Else 

Case Construction 

F-4 

If this command is successf'ul<CR> 
then commandl<CR> 
command2<CR> 
.<CR> 
.<CR> 
last command<CR> 
fi<CR> 

if command list<CR> 
then command list<CR> 
else command list<CR> 
fl<CR> 

case characters<CR> 
in<CR> 

patternl )<CR> 
command line l<CR> 
.<CR> 
.<CR> 
last command line<CR> 
;;<CR> 
pattern2)<CR> 
command line l<CR> 
.<CR> 
.<CR> 
last command line<CR> 
;;<CR> 
pattern3)<CR> 
command line l<CR> 
.<CR> 
.<CR> 
last command line<CR> 
;;<CR> 

esac<CR> 

ICON INTERNATIONAL 



APPENDIXF \ , 

( 
break Statement 

This statement forces the program to leave any loop and execute the next command. \ , , 
\ 

\ , 
\ , 

\ 
! 

\ 

( 

ICONjUXV USER GUIDE F-S 



/ 



( 

( 

o 

Appendix G 

AN INTRODUCTION TO THE C SHELL 

William Joy 
(revised by Mark Seiden) 

Computer Science Division 
Department of Electrical Engineering and Computer Science 

University of California, Berkeley 
Berkeley, California 94720 

ABSTRACT 

Csh is a new command language interpreter for UNIX® systems. It incorporates good features 
of other shells and a history mechanism similar to the redo of INTERLISP. While incorporating 
many features of other shells which make writing shell programs (shell scripts) easier, most of 
the features unique to csh are designed more for the interactive UNIX user. 

UNIX users who have read a general introduction to the system will find a valuable basic 
explanation of the shell here. Simple terminal interaction with csh is possible after reading just 
the first section of this document. The second section describes the shell's capabilities which 
you can explore after you have begun to become acquainted with the shell: Later sections 
introduce features which are useful, but not necessary for all users of the shell. 

Additional information includes an appendix listing special characters of the shell and a 
glossary of terms and commands introduced in this manual. 

INTRODUCTION 

A shell is a command language interpreter. Csh is the name of one particular command 
interpreter on UNIX. The primary purpose of csh is to translate command lines typed at a 
terminal into system actions, such as invocation of other programs. Csh is a user program just 
like any you might write. Hopefully, csh will be a very useful program for you in interacting 
with the UNIX system. 

In addition to this document, you will want to refer to a copy of the UNIX User Reference 
Manual. The csh documentation in section 1 of the manual provides a full description of all 
features of the shell and is the defmitive reference for questions about the shell. 

Many words in this document are shown in italics. These are important words; names of 
commands, and words which have special meaning in discussing the shell and UNIX. Many of 
the words are defined in a glossary at the end of this document. If you don't know what is 
meant by a word, you should look for it in the glossary. 

ICON/UXV USER GUIDE G-l 



C Shell Introduction 

ACKNOWLEDGEMENTS 

Numerous people have provided good input about previous versions of csh and aided in its 
debugging and in the debugging of its documentation. I would especially like to thank Michael 
Ubell who made the crucial observation that history commands could be done well·over the 
word structm"e of input text,· and implemented a prototype history mechanism in an older 
version of the shell. Eric Allman has also provided a large number of useful comments on the 
shell, helping to unify those concepts which are present and to identify and eliminate useless 
and marginally useful features. Mike O'Brien suggested the pathname hashing mechanism 
which speeds command execution. Jim Kulp added the job control and directory stack 
primitives and added their documentation to this introduction. 

G-2 ICON INTERNATIONAL 

c 

\ ) 

c 



(/ 

( 

o 

C Shell Introduction 

TERMINAL USAGE OF THE SHELL 

The Basic Notion of Commands 

A shell in UNIX acts mostly as a medium 1hrough which other programs are invoked. While it 
has a set of built-in functions which it performs directly, most commands cause execution of 
programs that are, in f~ external to the shell. The shell is thus distinguished from the 
command interpreters of other systems both by the fact that it is just a user program, and by the 
fact that it is used almost exclusively as Jl mechanism for invoking other programs. 

Commands in the UNIX system consist of a list of strings orwords interpreted as a command 
name followed by arguments. Thus the command 

mail bill 

consists of two words. The first word mail names the command to be executed, in this case 
the mail program which sends messages to other users. The shell uses the name of the 
command in attempting to execute it for you. It will look in a number of directories for a file 
with the name mail which is expected to contain the mail program. 

The rest of the words of the command are given as arguments to the command itself when it is 
executed. In this case we specified also the argument bill which is interpreted by the mail 
program to be the name of a user to whom mail is to be sent In nonna! terminal usage we 
might use themail command as follows. 

% mail bill 
I have a question about the csh documentation. 
My document seems to be missing page 5. 
Does a page five exist? 

Bill 
EOT 
% 

Here we typed a message to send to bill and ended this message with a "0 which sent an end
of-file to the mail program. (Here and throughout this document, the notation "AX" is to be 
read "control-x" and represents the striking of the x key while the control key is held down.) 
The mail program then echoed the characters 'EOT' and transmitted our message. The 
characters '% ' were printed before and after the mail command by the shell to indicate that 
input was needed. 

Mter typing the '% ' promptthe shell was reading command input from our terminal. We 
typed a complete command 'mail bill'. The shell then executed the mail program with 
argument bill and went dormant waiting for it to complete. Themail program then read input 
from our terminal until we signalled an end-of-file via typing a AD after which the shell noticed 
that mail had completed and signaled us that it was ready to read from the terminal again by 
printing another '% ' prompt. 

This is the essential pattern of all interaction with UNIX through the shell. A complete 
command is typed at the terminal, the shell executes the command and when this execution 

ICON/UXV USER GUIDE G-3 



C Shell introduction 

completes, it prompts for a new command. If you ron the editor for an hour, the shell will 
patiently wait for you to finish editing and obediently prompt you again whenever you finish 
editing. 

An example of a useful command you can execute now is the tset command, which sets the 
·default erase and kill characters on your tenninal- the erase character erases the last character 
you typed and the kill character erases the entire line you have entered so far .. By default, the 
erase character is the delete key (equivalent to 'A?') and the kill character is 'AU'. Some 

. people prefer to make the erase character the backspace key (equivalent to 'AR') .. You can 
make this be true by typing 

tset -e 

which tells the program tset to set the erase character to tset's default setting for this character (a 
backspace). 

Flag Arguments 

A useful notion in UNIX is that of aflag argument. While many arguments to commands 
specify file names or user names, some arguments rather specify an optional capability of the 
command which you wish to invoke. By convention, such arguments begin with the character 
'-' (hyphen). Thus the command . 

Is 

will produce a list of the files in the current working directory. The option -s is the size option, 
and 

Is -s 

causes Is to also give. for each file the size of the file in blocks of 512 characters. The manual 
section for each command in the UNIX reference manual gives the available options for each 
command. The Is command has a large number of useful and interesting options. Most other 
commands have either no options or only one or two options. It is hard to remember options 
of commands which are not used very frequently, so most UNIX utilities perform only one ,or 
two functions rather than having a large number of hard to remember options. 

Output to Files 

Commands that normally read input or write output on the terminal can also be executed with 
this input and/or output done to a file. 

Thus suppose we wish to save the current date in a file called 'now'. The command 

date 

will print the current date on our terminal. This is because our terminal is the default standard 
. output for the date command and the date command prints the date on its standard output. The 

G-4 ICON INTERNATIONAL 

( 



C Shell Introduction 

shell lets us redirect the standard output of a command through a notation using the meta
character '>' and the name of the file where output is to be placed. Thus the command 

date > now 

runs the date command such that its standard output is the file 'now' rather than the terminal. 
Thus this command places the current date and time into the file 'now'. It is important to know 
that the date command was unaware that its output was going to a file rather than to the 
terminal. The shell performed this redirection before the command began executing. 

One other thing to note here is that the file 'now' need not have existed before the date -
command was executed; the shell would have created the file if it did not exist And if the file 
did exist? If it had existed previously these previous contents would have been discarded! A 
shell option noclobber exists to prevent this from happening accidentally; it is discussed in the 
section covering Shell Variables .. 

The system normally keeps files which you create with '>' and all other fIles. Thus the default 
is for fIles to be permanent. If you wish to create a file which will be removed automatically, 
you can begin its name with a '#' character, this 'scratch' character denotes the fact that the file 
will be a scratch file. 1 The system will remove such fIles after a couple of days, or sooner if 
file space becomes very tight. Thus, in running the date command above, we don't really want -.: 

- to save the output forever, so we would more likely do 

date > #now 

Metacharacters in the Shell 

The shell has a large number of special characters (like '>') which indicate special functions. 
We say that these notations have syntactic and semantic meaning to the shell. In general, most 
characters which are neither letters nor digits have special meaning to the shell. We shall 
shortly learn a means of quotation which allows us to use metacharacters without the shell 
treating them in any special way. 

Metacharacters normally have effect only when the shell is reading our input. We need not 
worry about placing shell metacharacters in a letter we are sending via mail, or when we are 
typing in text or data to some other program. Note that the shell is only reading input when it 
has prompted with '% ' (although we can type our input even before it prompts). 

@ UNIX is a registered trademark: of AT&T. 
1 Note that if your erase character is a 'H', you will have to precede the 'H' with a '\'. The fact that the 'Ht 

character is the old (pre-~-2CR~O) standard erase character means that it seldom appears in a me name, and 
allows this convention to be used for scratch meso If you are using a \s-2CR1\sO, your erase character should 
be a I\H, as we demonstrated in the section covering The Basic Notion of Commands how this could be 

set up. 

ICON/UXV USER GUIDE G-5 



C Sbell Introduction 

Input from Files; Pipelines 

We learned above how to redirect the standard output of a command to a file. It is also 
possible to redirect the standard input of a command from a file. 1b.is is not often necessary 
since most commands will read from a file whose name is given as an argument We can give 
the command 

sort < data 

to run the sort command with standard input, where the command normally reads its input, 
from the file 'data'. We would more likely say 

sort data 

letting the sort command open the file 'data' for input itself since this is less to type. 

We should note that if we just typed 

sort 

then the sort program would sort lines from its standard input. Since we did not redirect the 
standard input, it would sort lines as we typed them on the terminal until we typed a AD to 
indicate an end-of-file. 

A most useful capability is the ability to combine the standard output of one command with the 
standard input of another, i.e. to run the commands in a sequence known as a pipeline. For 
instance the command 

Is -s 

nonnally produces a list of the flIes in our directory with the size of each in blocks of 512 
characters. If we are interested. in learning which of our files is largest we may wish to have 
this sorted by size rather than by name, which is the default way in which Is sorts. We could 
look at the many options of Is to see if there was an option to do this but would eventually 
discover that there is not. Instead we can use a couple of simple options of the sort command, 
combining it with Is to get what we want. 

The -n option of sort specifles a numeric sort rather than an alphabetic sort. Thus 

Is -s I sort -n 

specifles that the output of the Is command run with the option -s is to be piped to the command 
sort run with the numeric sort option. This would give us a sorted list of our files by size, but 
with the smallest flrst. We could then use the -r reverse sort option and the head command in 
combination with the previous command doing 

Is -s I sort -n -r I head -5 

G·6 ICON INTERNATIONAL 
C: 



(-

( 

o 

C Shell Introduction 

Here we have taken a list of our files sorted alphabetically, each with the size in blocks. We 
have run this to the standard input of the son command asking it to sort numerically in reverse 
order (largest fmt). This output has then been run into the command head which gives us the 
first few lines. In this case we have asked head for the fmt 5 lines. Thus this command gives 
us the names and sizes of our 5 largest fues. 

The notation introduced. above is called the pipe mechanism. Commands separated. by 'I' 
characters are connected together by the shell and the standard output of each is run into the 
standard input of the next. The leftmost command in a pipeline will normally take its standard 
input from the terminal and the rightmost will place its standard output on the terminal. Other 
examples of pipelines will be given later when we discuss the history mechanism; one 
important use of pipes which is illustrated there is in the routing of information to the line 
printer. 

Filenames 

Many commands to be executed will need the names of files as arguments. UNIX pathnames 
consist of a number of components separated by '/'. Each component except the last names a 
directory in which the next component resides, in effect specifying the path of directories to 
follow to reach the file. Thus the pathname 

/etc/motd 

specifies a file in the directory 'etc' which is a subdirectory of the root directory '/'. Within 
this directory the file named is 'motd' which stands for 'message of the day'. A pathname that 
begins with a slash is said to be an absolute pathname since it is specified from the absolute top 
of the entire directory hierarchy of the system (the root ). Pathnames which do not begin with 
'/' are interpreted as starting in the current working directory, which is, by default, your home 
directory and can be changed dynamically by the cd change directory command. Such 
pathnames are said to be relative to the working directory since they are found by starting in the 
working directory and descending to lower levels of directories for each component of the 
pathname. H the pathname contains no slashes at all then the file is contained in the working 
directory itself and the pathname is merely the name of the file in this &rectory. Absolute 
pathnames have no relation to the working directory. 

Most filenames consist of a number of alphanumeric characters and ~. 's (periods). In fact, all 
printing characters except 'I' (slash) may appear in filenames. It is inconvenient to have most 
non-alphabetic characters in filenames because many of these have special meaning to the shell. 
The character' .' (period) is not a shell-metacharacter and is often used to separate the 
extension of a file name from the base of me name. Thus 

prog.c prog.o prog.errs prog.output 

are four related files. They share a base portion of a name (a base portion being that part of the 
name that is left when a trailing' .' and following characters which are not '.' are stripped off). 
The file 'prog.c' might be the source for a C program, the file 'prog.o' the corresponding 
object file, the file 'prog.errs' the errors resulting from a compilation of the program and the 
file 'prog.output' the output of a run of the program. 

ICONIUXV USER GUIDE G-7 



C Shell Introduction 

If we wished to refer to all four of these files in a command, we could use the notation 

prog.* 

This expression is expanded by the shell, before the command to which it is an argument is 
executed, into a list of names which begin with 'prog.'. The character '*' here matches any 
sequence (including the empty sequence) of characters in a file name. The names which match 
are alphabetically sorted and placed in the argument list of the command Thus the command 

echo prog.* 

will echo the names 

prog.c prog.errs prog.o prog.output 

Note that the names are in sorted order here, and a different order than we listed them above. 
The echo command receives four words as arguments, even though we only typed one word as 
as argument directly. The four words were generated by filename expansion of the one input 
word. 

Other notations forfilename expansion are also available. The character '1' matches any single 
character in a filename. Thus . 

echo? ?? ??? 

will echo a line of filenames; first those with one character names, then those with two 
character names, and finally those with three character names. The names of each length will 
be independently sorted. 

Another mechanism consists of a sequence of characters between '[' and 'J'. This 
metasequence matches any single character from the enclosed set. Thus 

prog. [co] 

will match 

prog.c prog.o 

in the example above. We can also place two characters around a '-' in this notation to denote a 
range. Thus 

chap. [1-5] 

might match files 

chap.1 chap.2 chap.3 chap.4 chap.S 

if they existed. This is shorthand for 

G·8 ICON INTERNATIONAL 

( 

c 



( 

( 

c 

C Sbell Introduction 

chap. [12345] 

and otherwise equivalent. 

An important point to note is that if a list of argument words to a command (an argwnent list) 
contains filename expansion syntax~ and if this filename expansion syntax fails to match any 
existing file names~ then the shell considers this to be an error and prints a diagnostic 

No match. 

and does not execute the command. 

Another very important point is that files with the character'. ~ at the beginning are treated 
specially. Neither '*~ or '?~ or the '[~ ']' mechanism will match it. This prevents accidental 
matching of the filenames '. ~ and ' .. ~ in the working directory which have special meaning to 
the system~ as well as other files such as .cshrc which are not normally visible. We will 
discuss the special role of the fIle .cshrc later. 

Another filename expansion mechanism gives access to the patbname of the home directory of 
other users. This notation consists of the character ..... ~ (tilde) followed by anotheruser~s login 
name. For instance the word • .... bill ~ would map to the patbname • /usr/bill ~ if the home 
directory for 'bill~ was ·/usr/bill~. Since~ on large systems~ users may have login directories 
scattered over many different disk volumes with different prefix directory names~ this notation 
provides a convenient way of accessing the files of other users. 

A special case of this notation consists of a ..... ~ alone~ e.g. ·-/mbox~. This notation is 
expanded by the shell into the file 'mbox~ in your home directory~ i.e. into '/usr/billlmbox~ for 
me on Ernie Co-vax~ the UCB Computer Science Department VAX machine~ where this 
document was prepared. This can be very useful if you have used cd to change to another 
directory and have found a file you wish to copy using cpo If I give the command 

cp thatfile -

the shell will expand this command to 

cp thatfile /usr/bill 

since my home directory is lusr/bill. 

There also exists a mechanism using the characters • {~ and '} ~ for abbreviating a set of words 
which have common parts but cannot be abbreviated by the above mechanisms because they 
are not mes~ are the names of files which do not yet exis4 are not thus conveniently described. 
This mechanism will be described much later~ in the section covering Braces { ... } in 
Argument Expansion~ as it is used less frequently. 

ICON/UXV USER GUIDE G-9 



C Shell Introduction 

Quotation 

We have already seen a number of metacharacters used by the shell. These metacharacters 
pose a problem in that we cannot use them directly as parts of words. Thus the command 

echo * 

will not echo the character '*'. It will either echo an sorted list of fIlenames in the current 
working directory, or print the message 'No match' if there are no fIles in the working 
directory. 

The recommended mechanism for placing characters which are neither numbers, digits, 'I', '.' 
or '-' in an argument word to a command is to enclose it with single quotation characters "', 
i.e. 

echo ,*, 

There is one special character'!' which is used by the history mechanism of the shell and 
which cannot be escaped by placing it within '" characters. It and the character'" itself can be 
preceded by a single '\' to prevent their special meaning. Thus 

echo \'\! 

prints 

, ! 

These two mechanisms suffice to place any printing character into a word which is an argument 
to a shell command. They can be combined, as in 

echo \"*, 

which prints 

, * 

since the first '\' escaped the first'" and the ,*. was enclosed between ,., characters. 

Terminating Commands 

When you are executing a command and the shell is waiting for it to complete there are several 
ways to force it to stop. For instance if you type the command 

cat /etc/passwd 

the system will print a copy of a list of all users of the system on your terminal. This is likely 
to continue for several minutes unless you stop it You can send an INTERRUPT signal to the 

G·I0 ICON INTERNATIONAL 

( 



( 

o 

C Shell Introduction 

cat command by typing "C on your terminal.2 Since cat does not take any precautions to avoid 
or otherwise handle this signal the IN1ERRUPT will cause it to terminate. The shell notices that 
cat has terminated and prompts you again with '% '. If you hit INTERRUPT again, the shell will 
just repeat its prompt since it handles INTERRUPT signals and chooses to continue to execute 
commands rather than terminating like cat did, which would have the effect of logging you out. 

Another way in which many programs terminate is when they get an end-of-file from their 
standard input. Thus the mail program in the fIrst example above was terminated when we 
typed a "0 which generates an end-of-me from the standard input. The shell also terminates 
when it gets an end-of-file printing 'logout'; UN1X then logs you off the system. Since this 
means that typing too many "D's can accidentally log us off, the shell has a mechanism for 
preventing this. This ignoreeof option will be discussed in the section covering Shell 
Variables. 

If a command has its standard input redirected from a file, then it will normally terminate when 
it reaches the end of this file. Thus if we execute 

mail bill < prepared. text 

the mail command will terminate without our typing a "D. This is because it read to the end-of
file of our file 'prepared.text' in which we placed a message for 'bill' with an editor program. 
We could also have done . 

cat prepared. text I mail bill 

since the cat command would then have written the text through the pipe to the standard input 
of the mail command. When the cat command completed it would have terminated, closing 
down the pipeline and the mail command would have received an end-of-file from it and 
terminated. Using a pipe here is more complicated than redirecting input so we would more 
likely use the fIrst form. These commands could also have been stopped by sending an 
INTERRUPT. 

Another possibility for stopping a command is to suspend its execution temporarily, with the 
possibility of continuing execution later. This is done by sending a STOP signal via typing a 
"Z. This signal causes all commands running on the terminal (usually one but more if a 
pipeline is executing) to become suspended. The shell notices that the command(s) have been 
suspended, types 'Stopped' and then prompts for a new command. The previously executing 
command has been suspended, but otherwise unaffected by the STOP signal. Any other 
commands can be executed while the original command remains suspended. The suspended 
command can be continued using the fg command with no arguments. The shell will then 
retype the command to remind you which command is being continued, and cause the 
command to resume execution. Unless any input files in use by the suspended command have 
been changed in the meantime, the suspension has no effect whatsoever on the execution of the 
command. This feature can be very useful during editing, when you need to look at another 
file before continuing. An example of command suspension follows. 

2 On some older UNIX systems the \cl-2DEL\clO or \cl-2RUBOUI\<;O key has the same effect. "stty all will tell you 

the INTR key value. 

ICONIUXV USER G.UIDE G·ll 



C Shell Introduction 

% mail harold 
Someone just copied a big file into my directory and its 
name is 
"z 
Stopped 
% Is 
funnyfile 
prog.c 
prog.o 
% jobs 
[1] + Stopped mail harold 
% fg 
mail harold 
funnyfile. Do you know who did it? 
EOT 
% 

In this example someone was sending a message to Harold and forgot the name of the file he 
wanted to mention. Themail command was suspended by typing "'Z. When the shell noticed 
that the mail program was suspended, it typed 'Stopped' and prompted for a new command. 
Then the Is command was typed to find out the name of the flle. The jobs command was run to 
find out which command was suspended. At this time the fg command was typed to continue 
execution of the mail program. Input to the mail program was then continued and ended with a 
"'D which indicated the end of the message at which time the mail program typed EaT. The 
jobs command will show which commands are suspended. The "'Z should only be typed at the 
beginning of aline since everything typed on the current line is discarded when a signal is sent 
from the keyboard. This also happens on IN1ERRUPT, and QUIT signals. More information on 
suspending jobs and controlling them is given in the section covering Jobs; Background, 
Foreground, or Suspended. 

If you write or run programs which are not fully debugged then it may be necessary to stop 
them somewhat ungracefully. This can be done by sending them a QUIT signal, sent by typing 
a "'\ This will usually provoke the shell to produce a message like: 

Quit (Core dumped) 

indicating that a flle 'core' has been created containing information about the running 
program's state when it tenninated due to the QUIT signal. You can examine this flle yourself, 
or forward information to the maintainer of the program telling him/her where the core file is. 

If you run background commands (as explained in Jobs; Background, Foreground, or 
Suspended) then these commands will ignore IN1ERRUPT and QUIT signals at the terminal. To 
stop them you must use the kill cominand. See the section on Jobs; Background, 
Foreground, or Suspended for an example. 

G-12 ICON INTERNATIONAL 



( 

( 

() 

C Shell Introduction 

If you want to examine the output of a command without having it move off the screen as the 
output of the 

cat /etc/passwd 

command will, you can use the command 

more /etc/passwd 

. The more program pauses after each complete screenful and types '--More--' at which point 
you can hit a space to get another screenful, a return to get another line, a '1' to get some help 
on other commands, or a 'q' to end the more program. You can also use more as a futer, i.e. 

cat /etc/passwd I more 

works just like the more simple more command above. 

For stopping output of commands not involving more you can use the AS key to stop the 
typeout. The typeout will resume when you hit AQ or any other key, but AQ is normally used 
because it only restarts the output and does not become input to the program which is rtmning. 
This works well on low-speed terminals, but at 9600 baud it is hard to type AS and AQ fast 
enough to paginate the output nicely, and a program like more is usually used. 

An additional possibility is to use the AO flush output character; when this character is typed, 
all output from the current command is thrown away (quickly) until the next input read occurs 
or until the next shell prompt This can be used to allow a command to complete without 
having to suffer through the output on a slow terminal; AD is a toggle, so flushing can be 
turned off by typing AO again while output is being flushed. 

What now? 

We have so far seen a number of mechanisms of the shell and learned a lot about the way in 
which it operates. The remaining sections will go yet further into the internals of the shell, but 
you will surely want to try using the shell before you go any further. To try it you can log in to 
UNIX and type the following command to the system: 

chsh myname /bin/csh 

Here 'myname' should be replaced by the name you typed to the system prompt of 'login:' to 
get onto the system. Thus I would use 'chsh bill /bin/csh'. You only have to do this once; it 
takes effect at next login. You are now ready to try using csh. 

Before you do the 'chsh' command, the shell you are using when you log into the system is 
'/bin/sh'. In fact, much of the above discussion is applicable to '/bin/sh'. The next section 
will introduce many features particular to csh so you should change your shell to csh before 
you begin reading it. 

ICONIUXV USER GUIDE G-13 



C Shell Introduction 

DETAILS ON THE SHELL FOR TERMINAL USERS 

Shell Startup and Termination 

When you login, the shell is started by the system in your home directory and begins by 
reading commands from a file .cshrc in this directory. All shells which you may start during 
your terminal session will read from this fde. We will later see what kinds of commands are 
usefully placed there. For now we need not have this file and the shell does not complain 
about its absence. 

A login shell, executed afteryou login to the system,will, after it reads commands from 
.cshrc, read commands from a file .login also in your home directory: This me contains 
commands which you wish to do each time you login to the UNIX system. My .login me looks . 
something like: 

set ignoreeof 
set mail=(/usr/spool/mail/bill) 
echo n${prompt}users ; users 
alias ts \ 

'set noglob ; eval \'tset -s -m dialup:clOOrv4pna -m \ 
plugboard:?hp2621nl \!*\"; 

ts; stty intr AC kill AU crt 
set time=15 history=lO 
msgs -f 
if (-e Smail) then 

echo "${prompt}mail" 
mail 

endif 

This file contains several commands to be executed by UNIX each time I login. The first is a set 
command which is interpreted directly by the shell. It sets the shell variable ignoreeof which 
causes the shell to not log me off if I hit "D. Rather, I use the logout command to log off of 
the system. By setting the mail variable, I ask the shell to watch for incoming mail to me. 
Every 5 minutes the shell looks for this file and tells me if more mail has arrived there. An 
alternative to this is to put the command 

biff Y 

in place of this set; this will cause me to be notified immediately when mail arrives, and to be 
shown the fIrst few lines of the new message. 

Next I set the shell variable 'time' to '15' causing the shell to automatically print out statistics 
lines for commands which execute for at least 15 seconds of CPU time. The variable 'history' 
is set to 10 indicating that I want the shell to remember the last 10 commands I type in its 
history list, (described later). 

I create an alias' 'ts" which executes a tset(l) command setting up the modes of the terminal. 
The parameters to tset indicate the kinds of terminal which I usually use when not on a 

G·14 ICON INTERNATIONAL 



,( 

-( 

o 

C Shell Introduction 

hardwired port. I then execute "ts" and also use the stty command to change the interrupt 
character to "C and the line kill character to "U. 

I then run the 'msgs' program, which provides me with any system messages which I have not 
seen before; the '-f' option here prevents it from telling me anything if there are no new 
messages. Finally, if my mailbox fIle exists, then I run the 'mail' program to process my mail. 

When the 'mail' and 'msgs' programs finish, the shell will fInish processing my .login tile,and 
begin reading commands from the terminal, prompting for each with '% '. When I log off (by 
giving the logout command) the shell will print 'logout' and execute commands from the tile 
'.logout' if it exists in my home directory. After that the shell will terminate ,and UNIX will log 
me off the system. If the system is not going down, I will receive a new login message. In 
any case, after the 'logout' message the shell is committed to terminating and will take no 
further input from my terminal. 

Shell Variables 

The shell maintains a set of variables. We saw above the variables history and time which had 
values '10' and '15'. In fact, each shell variable has as value an array of zero or more strings. 
Shell variables may be assigned values by the set command. It has several forms, the most 
useful of which was given above and is 

set name=value 

Shell variables may be used to store values which are to be used in commands later through a 
substitution mechanism. The shell variables most commonly referenced are, however, those 
which the shell itself refers to. By changing the values of these variables one can directly affect 
the behavior of the shell. 

One of the most important variables is the variable path. This variable contains a sequence of 
directory names where the ~hell searches for commands. The set command with no arguments 
shows the value of all variables currently defined (we usually say set) in the shell. The default 
value for path will be shown by set to be 

% set 
argv 
cwd 
home 
path 
prompt 
shell 
status 
term 
user 
% 

() 

/usr/bill 
/usr/bill 
(. /usr/ucb /bin /usr/bin) 
% 
/bin/csh 
o 
clOOrv4pna 
bill 

This output indicates that the variable path points to the current directory '.' and then 
'!usr/ucb', '/bin' and '/usr/bin'. Commands which you may write might be in '.' (usually one 

ICON/UXV USER GUIDE G-15 



C Shell Introduction 

of your directories). Commands developed at Betkeley, live in '/usr/ucb' while commands 
developed at Bell Laboratories live in '/bin' and '/usr/bin'. 

A number of locally developed programs on the system live in the directory '/usrllocal'. If we 
wish that all shells which we invoke to have access to these new programs we can place the 
command 

set path=(. lusr/ucb Ibin lusr/bin lusr/local) 

in our file .cshrc in our home directory. Try doing this and then logging out and back in and 
do 

set 

again to see that the value assigned to path has changed. 

Another directory that might interest you is lusr/new, which contains many useful user
contributed programs provided with Berkeley UNIX. 

One thing you should be aware of is that the shell examines each directory which you insert 
into your path and determines which commands are contained there. Except for the current 
directory'.', which the shell treats specially, this means that if commands are added to a 
directory in your search path after you have started the shell, they will not necessarily be found 
by the shell. If you wish to use a command which has been added in this way, you should 
give the command 

rehash 

to the shell, which will cause it to recompute its internal table of command locations, so that it 
will find the newly added command. Since the shell has to look: in the current directory '.' on 
each command, placing it at the end of the path specification usually works equivalently and 
reduces overhead. 

Other useful built in variables are the variable home which shows your home directory, cwd 
which contains your current working directory, the variable ignoreeofwhich can be set in your 
.login file to tell the shell not to exit when it receives an end-of-me from a terminal (as . 
described above). The variable 'ignoreeof' is one of several variables which the shell does not 
care about the value of, only whether they are set or unset. Thus to set this variable you simply 
do 

set ignoreeof 

and to unset it do 

unset ignoreeof 

These give the variable 'ignoreeof' no value, but none is desired or required. 

G·16 ICON IN1ERNATIONAL 
( 



" 

( " 

o 

C Shell Introduction 

Finally, some other built-in shell variables of use are the variables noclobber and mail. The 
metasyntax. 

> filename 

which redirects the standard. output of a colIDJlaIld will overwrite and destroy the previous 
contents of the named flle. In this way you may accidentally overwrite a file which is valuable. 
If you would prefer that the shell not overwrite files in this way you can 

set noclobber 

in your .login file. Then trying to do 

date > now 

would cause a diagnostic if 'now' existed already . You could type 

date >! now 

if you really wanted to overwrite the contents of 'now'. The '>!' is a special metasyntax. 
indicating that clobbering the file is ok. 3 

The Shell~s History List 

The shell can maintain a history list into which it places the words of previous commands. It is 
possible to use a notation to reuse commands or words from commands in forming new 
commands. This mechanism can be used to repeat previous commands or to correct minor 
typing mistakes in commands. 

The following example gives a sample session involving typical usage of the history 
mechanism of the shell. 

3 The space between the '!' and the word 'now' is critical here, as '!now' would be an invocation of the history 

mechanism, and have a totally different effect. 

ICON/UXV USER GUIDE G-17 



C Shell Introduction 

G-18 

% eat bug.e 
main () 
{ 

printf ("hello) ; 
} 

% ee !$ 
ee bug.e 
"bug.e", line 4: 
"bug.e", line 5: 
% ed !$ 

newline in string or ehar eonstant 
syntax error 

ed bug.e 
29 
4s/);/"&/p 

w 
30 
q 
% !e 

printf ("hello") ; 

ee bug.e 
% a.out 
hello% !e 
ed bug.c 
30 
4s/10/1o\\n/p 

printf("hello\n"); 
w 
32 
q % !e -0 bug 
ee bug.e -0 bug 
% size a.out bug 
a.out: 2784+364+1028 
bug: 2784+364+1028 = 
% Is -1 !* 

= 4176b = Ox1050b 
4176b = Ox1050b 

ls -1 a.out bug 
-rwxr-xr-x 1 bill 
-rwxr-xr-x 1 bill 

3932 Dec 19 09:41 a.out 
3932 Dee 19 09:42 bug 

% bug 
hello 

. % num bug. c I spp 
spp: Command not found. 
% "spp"ssp 
num bug.e I ssp 

1 main () 
3 { 
4 printf("hello\n"); 
5 } 

% !! I Ipr 
num bug.e I ssp I Ipr 
% 

ICON INTERNATIONAL 

" ... 

(/ 



( 

C Shell Introduction 

In the example on the previous page we have a very simple C program which has a bug (or 
two) in it in the file 'bug.c', which we 'cat' out on our terminal. We then try to run the C 
compiler on it, referring to the file again as '!$', meaning the last argument to the previous 
command Here the '!' is the history mechanism invocation metacharacter, and the '$' stands 
for the last argument, by analogy to '$' in the editor which stands for the end of the line. The 
shell echoed the command, as it would have been typed without use of the history mechanism, 
and then executed it The compilation yielded error diagnostics so we now run the editor on 
the file we were trying to compile, fix the bug, and run the C compiler again, this $Ie referring 
to this command simply as '!c', which repeats the last command which started with the letter 
'c'. If there were other commands starting with 'c' done recently we could have said '!cc' or 
even '!cc:p' which would have prin~ the last command starting with 'cc'without executing it.-

After this recompilation, we ran the resulting'a.out' file, and then noting that there still was a 
bug, ran the editor again. After fixing the program we ran the C compiler again, but tacked 
onto the command an extra '-0 bug' telling the compiler to place the resultant binary in the file 
'bug' rather than 'a.out'. In general, the history mechanisms may be used anywhere in the 
formation of new commands and other characters may be placed before and after the 
substituted commands. 

We then ran the 'size' command to see how large the binary program images we have created 
were, and then an 'Is -1' command with the same argument list, denoting the argument list 
,\!*'. Finally we ran the program 'bug' to see that its output is indeed correct 

To make a numbered listing of the program we ran the 'num' command on the file 'bug.c'. In 
order to compress out blank lines in the output of 'num' we ran the output" through the filter 
'ssp', but misspelled it as spp. To correct this we used a shell substitute, placing the old text 
and new text between 'N characters. This is similar to the substitute command in the editor. 
Finally, we repeated the same command with '!!', but sent its output to the line printer. 

There are other mechanisms available for repeating commands. The history command prints 
out a number of previous commands with numbers by which they can be referenced. There is 
a way to refer to a previous command by searching for a string which appeared in it, and there 
are other, less useful, ways to select arguments to include in a new command A complete 
description of all these mechanisms is given in the C shell manual pages in the UNIX 
Programmer's Manual. 

Aliases 

The shell has an alias mechanism which can be used to make transformations on input 
commands. This mechanism can be used to simplify the commands you type, to supply 
default arguments to commands, or to perfonn transfonnations on commands and their 
arguments. The alias facility is similar to a macro facility. Some of the features obtained by 
aliasing can be obtained also using shell command files, but these take place in another instance 
of the shell and cannot directly affect the current shells environment or involve commands such 
as cd which must be done in the current shell. 

ICONJUXV USER GUIDE G-19 



C Shell Introduction 

As an example, suppose that there is a new version of the mail program on the system called 
'newmail' you wish to use, rather than the standard mail program which is called 'mail'. If 

. you place the shell command 

alias mail newmail 

in your .cshrc file, the shell will transform an input line of the form 

mail bill 

into a call on 'newmail'. More generally, suppose we wish the command '18' to always show 
sizes of files, that is to always do '-s'. We can do 

alias ls ls -s 

or even 

alias dir ls -s 

creating a new command syntax 'dir' which does an 'Is -s'. If we say 

dir -bill 

then the shell will translate this to 

ls -s front/bill 

Thus the alias mechanism can be used to provide short names for commands, to provide 
default arguments, and to define new short commands in terms of other commands. It is also 
possible to defme aliases which contain multiple commands or pipelines, showing where the 
arguments to the original command are to be substituted using the facilities of the history 
mechanism. Thus the definition 

alias cd 'cd \!* ; ls ' 

would do an Is command after each change directory cd command. We enclosed the entire 
alias defmition in '" characters to prevent most substitutions from occurring and the character 
';' from being recognized as a metacharacter. The'!' here is escaped with a '\' to prevent it 
from being interpreted when the alias command is typed in. The '\1*' here substitutes the entire 
argument list to the pre-aliasing cd command, without giving an error if there were no 
arguments. The ';' separating commands is used here to indicate that one command is to be 
done and then the next Similarly the definition 

alias whois 'grep \!A /etc/passwd' 

defines a command which looks up its first argument in the password file. 

G·20 ICON INTERNATIONAL 

(--...\ 
\' 
'--- / 



C Shell Introduction 

Warning: The shell currently reads the .cshrc file each time it starts up. If you place a large 
number of commands there, shells will tend to start slowly. A mechanism for saving the shell 
environment after reading the .cshrc file and quickly restoring it is under development, but for 
now you should try to limit the number of aliases you have to a reasonable number... 10 or 15 
is reasonable, 50 or 60 will cause a noticeable delay in starting up shells, and make the system 
seem sluggish when you execute commands from within the editor and other programs. 

More Redirection; » and >& 

There are a few more notations useful to the terminal user which have not been introduced yet. 

In addition to the standard output, commands also have a diagnostic output which is normally 
directed to the terminal even when the standard output is redirected to a file or a pipe. It is 
occasionally desirable to direct the diagnostic output along with the standard output. For 
instance if you want to redirect the output of a long running command into a file and wish to 
have a record of any error diagnostic it produces you can do 

command >& file 

The '>&' here tells the shell to route both the diagnostic output and the standard output into 
'file'. Similarly you can give the command 

command I & lpr 

( to route both standard and diagnostic output through the pipe to the line printer daemon lpr.4 

Finally, it is possible to use the fonn 

c 

command » file 

to place output at the end of an existing file.5 

Jobs; Background, Foreground, or Suspended 

When one or more commands are typed together as a pipeline or as a sequence of commands 
separated by semicolons, a single job is created by the shell consisting of these commands 

-'"' together as a unit. Single commands without pipes or semicolons create the simplest jobs. 
Usually, every line typed to the shell creates a job. Some lines that create jobs (one per line) 
are 

4 A command of the fann 
command >&! file 

exists, and is used when noclobber is set andfile aJready exists. 
5 If noclobber is set, then an error will result if file does not exist, otherwise the shell will create file if it 

doesn't exist. A fonn 
command »! file 

makes it not be an error for file to not exist when noclobber is set. 

ICON/UXV USER GUIDE G-21 



C Sbell lntroduction 

sort < data 
Is -s I sort -n I head -5 
mail harold 

If the metacharacter • &' is typed at the end of the commands, then the job is started as a 
background job. This means that the shell does not wait for it to complete but immediately 
prompts and is ready for another command. The job runs in the background at the same time 
that normal jobs, calledforeground jobs, continue to be read and executed by the shell one at a 
time. Thus 

du > usage & 

would run the du program, which reports on the disk usage of your working directory (as well 
as any directories below it), put the output into the file 'usage' and return immediately with a 
prompt for the next command without out waiting for du to fInish. The du program would 
continue executing in the background until it fInished, even though you can type and execute 
more commands in the mean time. When a background job terminates, a message is typed by 
the shell just before the next prompt telling you that the job has completed. In the following 
example the du job fInishes sometime during the execution of the mail command and its 
completion is reported just before the prompt after the mail job is fInished. 

% du > usage & 
[1] 503 
% mail bill 
How 
EOT 
[1] 
% 

do you know when a background job is finished? 

- Done du > usage 

If the job did not tenninate normally the 'Done' message might say something else like 
'Killed'. If you want the terminations of background jobs to be reported at the time they occur 
(possibly interrupting the output of other foreground jobs), you can set the notify variable. In 
the previous example this would mean that the 'Done' message might have come right in the 
middle of the message to Bill. Background jobs are unaffected by any signals from the 
keyboard like the STOP, INTERRUPT, or QUIT signals mentioned earlier. 

''I.. Jobs are recorded in a table inside the shell until they tenninate. In this table, the shell 
remembers the command names, arguments and the process numbers of all commands in the 
job as well as the working directory where the job was started Each job in the table is either 
running in the foreground with the shell waiting for it to terminate, running in the background, 
or suspended. Only one job can be running in the foreground at one time, but several jobs can 
be suspended or running in the background at once. As each job is started, it is assigned a 
small identifying number called the job number which can be used later to refer to the job in the 
commands described below. Job numbers remain the same until the job terminates and then 
are re-used. 

G-22 ICON INTERNATIONAL 



(- / 

(-

C Shell Introduction 

When ajob is started in the backgound using '&', its number, as well as the process numbers 
of all its (top level) commands, is typed by the shell before prompting you for another 
command. For example, 

% Is -s I sort -n > usage & 
[2] 2034 2035 
% 

runs the 'Is' program with the '-s' options, pipes this output into the 'sort' program with the '
n' option which puts its output into the file 'usage'. Since the '&' was at the end of the line, 
these two programs were started together as a background job .. After starting the job, the shell ='
prints the job number in brackets (2 in this cas~) followed by the prOCess number of each 
program started in the job. Then the shell immediates prompts for a new command, leaving the 
job running simultaneously. 

As mentioned in the section covering Terminating Commands, foreground jobs become 
suspended by typing "Z which sends a STOP signal to the currently running foreground job. A 
background job can become suspended by using the stop command described below. When 
jobs are suspended they merely stop any further progress until started again, either in the 
foreground or the backgound. The shell notices when a job becomes stopped and reports this 
fact, much like it reports the termination of background jobs. For foreground jobs this looks 
like 

% du > usage 
"'z 
Stopped 
% 

'Stopped' message is typed by the shell when it notices that the du program stopped. For 
background jobs, using the stop command, it is 

% sort usage & 
[1] 2345 
% stop %1 
[1] + Stopped (signal) 
% 

sort usage 

Suspending foreground jobs can be very useful when you need to temporarily change what 
you are doing (execute other commands) and then return to the suspended job. Also, 
foreground jobs can be suspended and then continued as background jobs using the bg 
command, allowing you to continue other work and stop waiting for the foreground job to 
fmish. Thus 

% du > usage 
"'z 
Stopped 
% bg 
[1] du > usage & 

ICON/UXV USER GUIDE G-23 



C Shell Introduction 

starts 'du' in the foreground, stops it before it finishes, then continues it in the background 
allowing more foreground commands to be executed. This is especially helpful when a 

··foreground job ends up taking longer than you expected and you wish you had started it in the 
backgound in the beginning. 

Alljob control commands can take an argument that identifies a particular job. All job name 
arguments begin with the character '%', since some of the job control commands also accept 
process numbers (printed by the ps command.) The default job (when no argument is given) 
is called the current job and is identified by a '+' in the output of the jobs command, which 

. shows you which jobs you have. When only one job is stopped or l'UIUling in the background 
. . -':,~ ; ... (the usual case) it is always the current job thus no argument is needed. If a job is stopped - . 

while running in the foreground it becomest:he ,current job and the existing current jobbecoJDes '.' :.:. 
the previous job - identified by a '-' in the output of jobs. When the current job tenninates, the 
previous job becomes the CUITent job. When given, the argument is either '%-' (indicating the 

, previous job); '%#', where # is the job number; '%pref' where pref is some unique preflx of 
the command name and arguments of one of the jobs; or '%1' followed by some string found 
in only one of the jobs. 

The jobs command types the table of jobs, giving the job number, commands and status 
('Stopped' or 'Running') of each backgound or suspended job. With the '-1' option the 
process numbers are also typed. 

% du > usage & 
[1] 3398 
% Is -s I sort -n > myfile & 
[2] 3405 
% mail bill 
"z 
Stopped 
% jobs 
[1] - Running 
[2] Running 
[3] + Stopped 

.% fg %ls 
Is -s I sort -n > myfile 
% more myfile 

du > usage 
Is -s I sort -n > myfile 
mail bill 

Thefg command runs a suspended or background job in the foreground. It is used to restart a 
previously suspended job or change a background job to run in the foreground (allowing 
signals or input from the terminal). In the above example we usedfg to change the 'Is' job 
from the background to the foreground since we wanted to wait for it to flnish before looking 
at its output rue. The bg command runs a suspended job in the background. It is usually used 
after stopping the currently running foreground job with the STOP signal. The combination of 
the STOP signal and the bg command changes a foreground job into a background job. The 
stop command suspends a background job. 

The kill command tenninates a background or suspended job immediately. In addition to jobs, 
it may be given process numbers as arguments, as printed by ps. Thus, in the example above, 
the running du command could have been terminated by the command 

G-24 ICON INTERNATIONAL 

\.. ) 



( 

. . 

c 

% kill %1 
[1] Terminated 
% 

C Shell Introduction 

du > usage 

The notify command (not the variable mentioned earlier) indicates that the termination of a 
specific job should be reported at the time it finishes instead of waiting for the next prompt. 

H a job running in the background tries to read input from the terminal it is automatically 
stopped. When such a job is then run in the foreground, input can be given to the job. H 
desired, the job can be run in the background again until it requests input again. This is 
. illustrated in the following sequence where the 's' command in the text editor might take a long 
time. 

% ed bigfile 
120000 
1,$s/thisword/thatword/ 
"Z 
Stopped 
% bg 
[1] ed bigfile & 
% 
... some foreground commands 
[1] Stopped (tty input) -ed bigfile 
% fg 
ed bigfile 
w 
120000 
q 
% 

So after the's' command was issued, the 'ed' job was stopped with "'Z and then put in the 
background using bg. Some time later when the's' command was finished, ed tried to read 
another command and was stopped because jobs in the backgound cannot read from the 
tenninal. Thefg command returned the 'ed' job to the foreground where it could once again 
accept commands from the terminal. 

The command 

stty tostop 

causes all background jobs run on your terminal to stop when they are about to write output to 
the terminal. This prevents messages from background jobs fromintemIpting foreground job 
output and allows you to run a job in the background without losing terminal output It also 
can be used for interactive programs that sometimes have long periods without interaction. 
Thus each time it outputs a prompt for more input it will stop before the prompt. It can then be 
run in the foreground usingfg, more input can be given and, if necessary stopped and returned 
to the background. This stty command might be a good thing to put in your .login me if you 
do not like output from background jobs interrupting your work. It also can reduce the need 
for redirecting the output of background jobs if the output is not very big: 

ICON/UXV USER GUIDE G-25 



C Shell Introduction 

% stty tostop 
% we hugefile & 
[1] 10387 
% ed text 

some time later 
q 
[1] Stopped (tty output) 
% fg we 
we hugefile 

13371 30123 302577 
% stty -tostop 

we hugefile 

Thus after some time the 'wc' command, which counts the lines, words and characters in a 
file, had one line of output. When it tried to write this to the terminal it stopped. By restarting 
it in the foreground we allowed it to write on the terminal exactly when we were ready to look 
at its output. Programs which attempt to change the mode of the terminal will also block, 
whether or not tostop is set, when they are not in the foreground, as it would be very 
unpleasant to have a background job change the state of the terminal. 

Since the jobs command only prints jobs started in the currently executing shell, it knows 
nothing about background jobs started in other login sessions or within shell files. The ps can 
be used in this case to find out about background jobs not started in the current shell. 

Working Directories 

As mentioned in the section covering Filenames, the shell is always in a particular working 
directory. The 'change directory' command chdir (its short form cd may also be used) changes 
the working directory of the shell, that is, changes the directory you are located in. ' 

It is useful to make a directory for each project you wish to work on and to place all rues 
related to that project in that directory. The 'make directory' command, mkdir, creates a new 
directory. The pwd ('print working directory') command reports the absolute patbname of the 
working directory of the shell, that is, the directory you are located in. Thus in the example 
below: 

% pwd 
/usr/bill 
% mkdir newpaper 
% ehdir newpaper 
% pwd 
/usr/bill/newpaper 
% 

the user has created and moved to the directory newpaper. where, for example, he might place 
a group of related Illes. 

G-26 ICON INTERNATIONAL 

c 



(~/ 

C Sbell Introduction 

No matter where you have moved to in a directory hierarchy, you can return to your 'home' 
login directory by doing just 

cd 

with no arguments. The name ' .. ' always means the directory above the current one in the 
hiera.rchy, thus 

cd •. 

changes the shell's working directory to the one directly above the current one. The name ' .. ' 
can be used in any patb.name, thus, 

cd .. /programs 

means change to the directory 'programs' contained in the directory above the current one. If 
you have several directories for different projects under, say, your home directory, this 
shorthand notation permits you to switch easily between them. 

The shell always remembers the patb.name of its current working directory in the variable cwd. 
The shell can also be requested to remember the previous directory when you change to a new 
working directory. If the 'push directory' command pushd is used in place of the cd 
command, the shell saves the name of the current working directory on a directory stack before 
changing to the new one. You can see this list at any time by typing the 'directories' command 
dirs. 

% pushd newpaper/references 
-/newpaper/references -
% pushd /usr/lib/tmac 
/usr/lib/tmac -/newpaper/references -
% dirs 
/usr/lib/tmac -/newpaper/references -
% popd 
-/newpaper/references -
% popd 

% 

The list is printed in a horizontal line, reading left to right, with a tilde (-) as shorthand for 
your home directory-in this case '/usr/bill'. The directory stack is printed whenever there is 
more than one entry on it and it changes. It is also printed by a dirs command. Dirs is usually 
faster and more infonnative than pwd since it shows the current working directory as well as 
any other directories remembered in the stack. 

The pushd command with no argument alternates the current directory with the first directory in 
the list. The 'pop directory' popd command without an argument returns you to the directory 
you were in prior to the current one, discarding the previous current directory from the stack 
(forgetting it). Typing popd several times in a series takes you backward through the 
directories you had been in (changed to) by pushd command. There are other options to 

ICONIUXV USER GUIDE G-27 



C Shell Introduction 

pushd and popd to manipulate the contents of the directory stack and to change to directories 
not at the top of the stack; see the csh manual page for details. 

Since the shell remembers the working directory in which each job was star,ted, it warns you 
when you might be confused by restarting a job in the-foreground which has a different.
working directory than the curient working directory of the shell. Thus if you start a -
background job, then change the shell's working directory and then cause the background job 
to run in the foreground, the shell warns you that the working directory of the currently 
running foreground job is different from that of the shell. 

% dirs -1 
front/bill 
% cd myproject 
% dirs 
-/myproject 
% ed prog.c 
1143 
"z 
Stopped 
% cd .. 
% Is 
myproject 
textfile 
% fg 
ed prog.c (wd: -/myproject) 

This way the shell warns you when there is an implied change of working directory, even 
though no cd command was issued. In the above example the 'ed' job was still in 
'/mnt/bill/project' even though the shell had changed to '/mnt/bill'. A similar warning is given 
when such a foreground job terminates or is suspended (using the STOP signal) since the 
return to the shell again implies a change of working directory. 

% fg 
ed prog.c (wd: -/myproject) 

after some editing 
q 
(wd now: -) % 

These messages are sometimes confusing if you use programs that change their own working 
directories, since the shell only remembers which directory a job is started in, and assumes it 
stays there. The' -1' option of jobs will type the working directory of suspended or 
background jobs when it- is different from the current working directory of the shell. 

G-28 ICON INTERNATIONAL 



(-

() 

C Sbell Introduction 

Useful Built-in Commands 

We now give a few of the useful built-in commands of the shell describing how they are used. 

The alias command described above is used to assign new aliases and to show the existing 
-aliases. 'With no arguments it prints the cmrent aliases. It may also be given only one 
argument such as 

alias ls 

to show the current alias for, e.g., 'Is'. 

The echo command prints its arguments. It is often used in shell scripts or as an interactive 
command to see what fIlename expansions will produce. 

The history command will show the contents of the history list. The rmmbers given with the 
history events can be used to reference previous events which are difficult to reference using 
the contextual mechanisms introduced above. There is also a shell variable called prumpt. By 
placing a '!' character in its value the shell will there substitute the number of the cmrent 
command in the history list. You can use this number to refer to this command in a history 
substitution. Thus you could 

set prompt='\! %' 

Note that the '!' character had to be escaped here even within '" characters. 

The limit command is used to restrict use of resources. With no arguments it prints the current 
limitations: ' 

cputime 
filesize 
datasize 
stacksize 
coredumpsize 

Limits can be set, e.g.: 

unlimited 
unlimited 
5616 kbytes 
512 kbytes 
unlimited 

limit coredumpsize 128k 

Most reasonable units abbreviations will work; see the csh manual page for more details. 

The logout command can be used to terminate a login shell which has ignoreeof set. 

The rehash command causes the shell to recompute a table of where commands are located. 
This is necessary if you add a command to a directory in the cmrent shell's search path and 
wish the shell to fmd it, since otherwise the hashing algorithm may tell the shell that the 
command wasn't in that directory when the hash table was computed. 

ICONJUXV USER GUIDE G-29 



C Shell Introduction 

The repeat command can be used to repeat a command several times. Thus to make 5 copies of 
the file one in the file five you could do 

repeat 5 cat one » five 

The setenv command can be used to set variables in the environment Thus 

setenv TERM adm3a 

'. will set the value of the environment variable 1ERM to 'adm3a'. A user program prinienv 
. exists wbich·will print out the environment It might then show: 

% printenv 
HOME=/usr/bill 
·SHELL=/bin/csh 
PATH=:/usr/ucb:/bin:/usr/bin:/usr/local 
TERM=adm3a 
USER=bill 
% 

The source command can be used to force the current shell to read commands from a file. 
Thus 

source .cshrc 

can be used after editing in a change to the .eshre file which you wish to take effect right away. 

The time command can be used to cause a command to be timed no matter how much CPU time 
it takes. Thus 

% time cp /etc/rc 
O.Ou 0.1s 0:01 8% 
% time wc /etc/rc 

52 178 1347 
52 178 1347 
104 356 2694 

0.1u 0.1s 0:00 13% 
% 

/usr/bill/rc 
2+1k 3+2io 1pf+Ow 
/usr/bill/rc 

/etc/rc 
/usr/bill/rc 
total 
3+3k 5+3io 7pf+Ow 

indicates that the cp command used a negligible amount of user time (u) and about l/lOth of a 
system time (s); the elapsed time was I second (0:01), there was an average memory usage of 

. 2k bytes of program space and 1k bytes of data space over the cpu time involved (2+ 1k); the 
program did three disk reads and two disk writes (3+ 2io), and took one page fault and was not 
swapped (lpf+Ow). The word count command we on the other hand used 0.1 seconds of user 
time and 0.1 seconds of system time in less than a second of elapsed time. The percentage 
, 13%' indicates that over the period when it was active the command 'wc' used an average of 
13 percent of the available CPU cycles of the machine. 

G·30 ICON INTERNATIONAL 

./ 



( 

() 

C Sbell Introduction 

The unalias and unset commands can be used to remove aliases and variable definitions from 
the shell. and unsetenv removes variables from the environment. 

Conclusion 

This concludes the basic discussion of the shell for terminal users. There are more features of 
the shell to be discussed here. and all features of the shell are discussed in its manual pages. 
One useful feature which is discussed later is the foreach built-in command which can be used 
to run the same command sequence with a number of different arguments. 

If you intend to use UNIX a lot you you should look through the rest of this document and the . 
csh manual pages (sectionl) to become familiar with the other facilities which are available to " 
you. 

ICON/UXV USER GUIDE G·31 

_____ ._.c.~_·"_~~~ 



C Shell Introduction 

SHELL CONTROL STRUCTURES AND COMMAND SCRIPTS 

Introduction 

It is possible to place commands in files and to cause shells to be invoked to read and execute 
commands from these files, which are called shell scripts. We here detail those features of the 
shell useful to the writers of such scripts. 

Make 

It is important to first note what shell sCripts are not useful for. There-is a program called make_ 
which is very useful for maintaining a group of related fIles or perfonning sets of operations on 
related fIles. For instance a large program consisting of one or more files can have its 
dependencies described in a makefile which contains definitions of the commands used to 
create these different fIles when changes occur. Defmitions of the means for printing listings, 
cleaning up the directory in which the fIles reside, and installfug the resultant programs are 
easily, and most appropriately placed in this makefile. This format is superior and preferable to 
maintaining a group of shell procedures to maintain these fIles. 

Similarly when working on a document a makefile may be created which defines how different 
versions of the document are to be created and which options of nrolf or trolf are appropriate. 

Invocation and the argv Variable 

A csh command script may be interpreted by saying 

% csh script ... 

where script is the name of the fIle containing a group of csh commands and ' ... ' is replaced by 
a sequence of arguments. The shell places these arguments in the variable argv and then begins 
to read commands from the script. These parameters are then available through the same 
mechanisms which are used to reference any other shell variables. 

If you make the f:tIe 'script' executable by doing 

chmod 755 script 

and place a shell comment at the beginning of the shell script (Le. begin the file with a '#' 
character) then a '/bin/csh' will automatically be invoked to execute 'script' when you type 

script 

If the file does not begin with a '#' then the standard shell '/bin/sh' will be used to execute it. 
This allows you to convert your older shell scripts to use csh at your convenience. 

G-32 ICON INTERNATIONAL 

-----------

(\ 
\ 
'-



( 

o 

C Sbell Introduction 

Variable Substitution 

After each input line is broken into words and history substitutions are done on it, the input line 
is parsed into distinct commands. Before each command is executed a mechanism know as 
variable substitution is done on these words. Keyed by the character '$' this substitution 
replaces the names of variables by their values. Thus 

echo $argv 

when placed in a command script would cause the current value of the variable argv to be 
echoed to the output of the shell script It is an error for argv to be unset at this point 

A number of notations are provided for accessing components and attributes of variables. The 
notation 

$?name 

expands to '1' if name is set or to '0' if name is not set. It is the fundamental mechanism used 
for checking whether particular variables have been assigned values. All other forms of 
reference to undefined variables cause errors. 

The notation 

$.fI:name 

expands to the number of elements in the variable name. Thus 

% set argv=(a b c) 
% echo $?argv 
1 
% echo $.fI:argv 
3 
% unset argv 
% echo $?argv 
o 
% echo $argv 
Undefined variable: argv. 
% 

It is also possible to access the components of a variable which has several values. Thus 

$argv[l] 

gives the first component of argv or in the example above 'a'. Similarly 

$argv($.fI:argv) 

would give 'c', and 

$argv[l-2] 

ICON/UXV USER GUIDE G·33 



C Sbell Introduction 

would give 'a b'. Other notations useful in shell scripts are 

$n 

where n is an integer as a shorthand for 

$argv[n] 

the nth parameter and 

$* 

which is a shorthand for 

$argv 

The form 

$$ 

expands to the process number of the current shell. Since this process number is unique in the 
system it can be used in generation of unique temporary file names. The fonn 

$< 

is quite special and is replaced by the next line of input read from the shell's standard input (not 
the script it is reading). This is useful for writing shell scripts that are interactive, reading 
commands from the tenninal, or even writing a shell script that acts as a filter, reading lines 
from its input file. Thus the sequence 

echo 'yes or no?\c' 
set a=($<) 

would write out the prompt 'yes or no?' without a newline and then read the answer into the 
variable 'a'. In this case '$#a' would be '0' if either a blank line or end-of-file (I\D) was 
typed. 

One minor difference between '$n' and '$argv[n]' should be noted here. The fonn '$argv[n]' 
will yield an error if n is not in the range 'l-$#argv' while '$n' will never yield an out of range 
subscript error. This is for compatibility with the way older shells handled parameters. 

Another important point is that it is never an error to give a subrange of the fonn 'n-'; if there 
are less than n components of the given variable then no words are substituted. A range of the 
form 'm-n' likewise returns an empty vector without giving an error when m exceeds the 
number of elements of the given variable, provided the subscript n is in range. 

G-34 ICON INTERNATIONAL 



(; 

( 

o 

C Shell Introduction 

Expressions 

In order for interesting shell scripts to be constructed it must be possible to evaluate 
expressions in the shell based on the values of variables. In fact, all the arithmetic operations 
of the language C are available in the shell with the same precedence that they have in C. In _ 
particular, the operations '=' and '!=' compare strings and the operators '&&' and 'NI' 
implement the boolean and/or operations. The special operators '=-' and '! .... ' are similar to 
'=' and '1=' except that the string on the right side can have pattern matching characters (like 
*, 1 or 0) and the test is whether the string on the left matches the pattern on lhe right 

The shell also allows file enquiries of the form 

-? filename 

where '1' is replace by a number of single characters. For instance the expression primitive 

-e filename 

tell whether the file 'filename' exists. Other primitives test for read, write and execute access to 
the file, whether it is a directory, or has non-zero length. 

It is possible to test whether a command terminates normally. by a primitive of the form '{ 
command }' which returns true, i.e. '1' if the command succeeds exiting normally with exit 
status O. or '0' if the command terminates abnormally or with exit status non-zero. If more 
detailed information about the execution status of a command is required. it can be executed 
and the variable '$status' examined in the next command. Since'$status' is set by every 
command, it is very transient It can be saved if it is inconvenient to use it only in the single 
immediately following command. 

For a full list of expression components available see the manual section for the shell. 

ICON/UXV USER GUIDE G·35 



C Shell :Introduction 

Sample Sbell Script 

A sample shell script which makes use of the expression mechanism of the shell and some of 
its control structure follows: 

% cat copyc 

* * Copyc copies those C programs in the specified list * to the directory -/backup if they differ from the files * already in -/backup 

* set noglob 
foreach i ($argv) 

end 

if ($i !- *.c) continue * not a .c file so do nothing 

if (! -r -/backup/$i:t) then 

endif 

echo $i:t not in backup ... not cp\'ed 
continue 

cmp -s $i -/backup/$i:t * to set $status 

if ($status != 0) then 

endif 

echo new backup of $i cp $i 
-/backup/$i:t 

This script makes use of the foreach command, which causes the shell to execute the 
commands between the foreach and the matching end for each of the values given between '(' 
and ')' with the named variable, in this case 'i' set to successive values in the list. Within this 
loop we may use the command break to stop executing the loop and continue to prematurely 
terminate one iteration and begin the next. After theforeach loop the iteration variable (i in this 
case) has the value at the last iteration. 

We set the variable noglob here to prevent filename expansion of the members of argv. This is 
a good idea, in general, if the arguments to a shell script are filenames which have already been 
expanded or if the arguments may contain filename expansion metacharacters. It is also 
possible to quote each use of a '$' variable expansion, but this is harder and less reliable. 

The other control construct used here is a statement of the fonn 

G·36 

if ( expression) then 
command 

endif 

ICON INTERNATIONAL 



( 

o 

C Shell Introduction 

The placement of the keywords here is not flexible due to the current implementation of the 
shell. 6 

The shell does have another form of the if statement of the form 

i:f ( expression command 

which can be written 

i:f (expression \ 
command 

Here we have escaped the newline for the.sake of appearance. The command must not involve 
'I', '&' or ';' and must not be another control command. The second form requires the fmal '\' 
to immediately precede the end-of-line. 

The more general if statements above also admit a sequence of else-if pm followed by a single 
else and an endif, e.g.: 

if (expression then 
commands 

e1se if (expression) then 
commands 

e1se 
commands 

endif 

Another important mechanism used in shell scripts is the ':' modifier. We can use the modifier 
':r' here to extract a root of a ftlename or ':e' to extract the extension. Thus if the variable i has 
the value '!mnt/foo.bar' then 

% echo $i $i:r $i:e 
/ront/foo.bar /mnt/foo bar 
% 

6 The following two fonnats are not currently acceptable to the shell: 

and 

if ( expression 
then 

command 

endif 

4tWon 't work! 

if ( expression) then command endif t Won't work 

ICON/UXV USER GUIDE G·37 



C Shell Introduction 

shows how the ':r' modifier strips off the trailing '.bar' and the the ':e' modifier leaves only 
the 'bar'. Other modifiers will take off the last component of a pathname leaving the head ':h' 
or all but the last component of a patbname leaving the tail ':t'. These modifiers are fully 
described in the csh manual pages in the User's Reference Manual. It is also possible to use 
the command substitution mechanism described in the next major section to perform 
modifications on strings to then reenter the shell's environment Since each usage of this 
mechanism involves the creation of a new process, it is much more expensive to use than the 
':' modification mechanism 7 Finally, we note that the character '#' lexically introduces a shell 
comment in shell scripts (but not from the terminal). All subsequent characters on the input 
line after a '#' are discarded by the shell. This character can be quoted using '" or '\' to place· 
it in an argument word. 

Other Control Structures 

The shell also has control structures while and switch similar to those of C. These take the 
forms 

and 

whi1e ( expression ) 
commands 

end 

switch ( word 

case strl: 
commands 
breaksw 

case strn: 
commands 
breaksw 

default: 
commands 
breaksw 

endsw 

7 It is also important to note that the current implementation of the shell limits the number of ':' modifiers on 
a '$' substitution to 1. Thus 

% eeho $i $i:h:t 

la/b/e la/b:t 

% 

does not do what one would expect. 

G-38 ICON INTERNATIONAL 



( 

C Shell Introduction 

For details see the manual section for csh. C programmers should note that we use breaksw to 
exit from a switch while break exits a while or foreach loop. A common mistake to make in 
csh scripts is to use break rather than breaksw in switches. 

Finally, csh allows a goto statement, with labels looking like they do in C, i.e.: 

loop: 
conunands 
qoto loop 

Supplying Input to Commands 

Commands run from shell scripts receive by default the standard input of the shell which is 
running the script. This is different from previous shells running under UNIX. It allows shell 
scripts to fully participate in pipelines, but mandates extra notation for commands which are to 
take inline data. 

Thus we need a metanotation for supplying inline data to commands in shell scripts. As an 
example, consider this script which runs the editor to delete leading blanks from the lines in 
each argument file: 

% cat deb lank 
f deblank -- remove leading blanks 
foreach i ($argv) 
ed - $i « 'EOF' 
1,$s/"'[ ]*// 
w 
q 
'EOF' 
end 
% 

The notation '« 'EOF" means that the standard input for the ed command is to come from the 
text in the shell script file up to the next line consisting of exactly "EOF". The fact that the 
'EOP' is enclosed in '" characters, i.e. quoted~ causes the shell to not perform variable 
substitution on the intervening lines. In general, if any part of the word following the '«' 
which the shell uses to terminate the text to be given to the command is quoted then these 
substitutions will not be performed. In this case since we used the form' 1,$' in our editor 
script we needed to insure that this '$' was not variable substituted. We could also have 
insured this by preceding the '$' here with a '\', i.e.: 

1,\$s/"'[ ]*// 

but quoting the 'EOF' terminator is a more reliable way of achieving the same thing. 

ICONIUXV USER GUIDE G-39 



C Shell Introduction 

Catching Interrupts 

If our shell script creates temporary files, we may wish to catch intenuptions of the shell script 
so that we can clean up these files. We can then do 

onintr label 

where label is a label in our program. If an interrupt is received the shell will do a 'goto label' 
and we can remove the temporary -files and then do an exit command (which is built in to the 
shell) . to exit from the shell sCript If we wish to exit with a non-zero stat;ps we can do 

exit (1) 

e.g. to exit with status '1'. 

Other Shell Features 

There are other features of the shell useful to writers of shell procedures. The verbose and 
echo options and the related -v and -x command line options can be used to help trace the 
actions of the shell. The -n option causes the shell only to read commands and not to execute 
them and may sometimes be of use. 

One other thing to note is that csh will not execute shell scripts which do not begin with the 
character '#', that is shell scripts that do not begin with a comment Similarly, the '/bin/sh' on 
your system may well defer to 'csh' to interpret shell scripts which begin with '#'. This allows 
shell scripts for both shells to live in harmony. 

There is also another quotation mechanism using '''' which allows only some of the expansion 
mechanisms we have so far discussed to occur on the quoted string and serves to make this 
string into a single word as '" does. 

G·40 ICON INTERNATIONAL 



( 

() 

C Shell Introduction 

OTHER, LESS COMMONLY USED, SHELL FEATURES 

Loops at the Terminal; Variables as Vectors 

It is occasionally useful to use theforeach control structure at the terminal to aid in perfonning 
a number of similar commands. For instance, there were at one point three shells in use on the 
Cory UNIX system at Cory Hall, 'lbin/sh', 'lbin/nsh', and 'lbin/csh'. -To count the number of 
persons using each shell one could have issued the commands 

% grep -c csh$ /etc/passwd 
27 
% grep -c nsh$ /etc/passwd 
128 
% grep -c -v sh$ /etc/passwd 
430 
% 

Since these commands are very similar we can useforeach to do this more easily. 

% foreach i ('sh$' 'csh$' '-v sh$') 
? grep -c $i /etc/passwd 
? end 
27 
128 
430 
% 

Note here that the shell prompts for input with '? 'when reading the body of the loop. 

Very useful with loops are variables which contain lists of fIlenames or other words. You can, 
for example. do 

% set a=(\'ls\') 
% echo $a 
csh.n csh.rm 
% Is 
csh.n csh.rm 
% echo $#a 
2 
% 

The set command here gave the variable a a list of all the fIlenames in the current directory as 
value. We can then iterate over these names to perform any chosen function. 

The output of a command within '\" characters is converted by the shell to a list of words. 
You can also place the '\" quoted string within '"' characters to take each (non-empty) line as 
a component of the variable; preventing the lines from being split into words at blanks and 
tabs. A modifier ':x' exists which can be used later to expand each component of the variable 
into another variable splitting it into separate words at embedded blanks and tabs. 

ICONIUXV USER GUIDE G·41 

.~-~ --------------



C Shell Introduction 

Braces {... } in Argument Expansion 

Another form of filename expansion, alluded to before involves the characters '(' and '}'. 
These characters specify that the contained strings. separated by '.' are to be consecutively 
substituted into the containing characters and the results expanded left to right. Thus 

A{strl,str2, ... strn}B 

expands to 

AstrlB Astr2B ... AstrnB 

This expansion occurs before the other filename expansions, and may be applied recursively 
. (i.e. nested). The results of each expanded string are sorted separately, left to right order 
being preserved. The resulting filenames are not required to exist if no other expansion 
mechanisms are used. This means that this mechanism can be used to generate arguments 
which are not filenames, but which have common parts. 

A typical use of this would be 

mkdir -/{hdrs,retrofit,csh} 

to make subdirectories 'hdrs', 'retrofit' and 'csh' in your home directory. This mechanism is 
most useful when the common prefix is longer than in this example, i.e. 

chown root /usr/{ucb/{ex,edit},lib/{ex??*,how_ex}} 

Command Substitution 

A command enclosed in '\" characters is replaced, just before filenames are expande.d, by the 
output from that command. Thus it is possible to do 

set pwd=\'pwd\' 

to save the current directory in the variable pwd or to do 

ex \'grep -1 TRACE 8. c \' 

to run the editor ex supplying as arguinents those files whose names end in '.c' which have the 
string 'TRACE' in them.8 

8 Command expansion also occurs in input redirected with '«' and within .... quotations. Refer to the shell 
manual section for full details. 

G-42 ICON INTERNATIONAL 



( 

C Shell Introduction 

Other Details Not covered Here 

In particular circumstances it may be necessary to know the exact nature and order of different 
substitutions performed by the shell. The exact meaning of certain combinations of quotations 
is also occasionally important. These are detailed fully in its manual section. 

The shell has a number of command line option flags mostly of use in writing UNIX programs, 
and debugging shell scripts. See the csh(l) manual section for a list of these options. 

ICON/UXV USER GUIDE G-43 



C Shell Introduction 

GLOSSARY 

This glossary lists the most important terms introduced in the introduction to the shell and gives 
references to sections of the shell document for further information about them. References of 
the form cpr (1)' indicate that the command pris in the UNIX User Reference manual in section 
1. You can look at an online copy of its manual page by doing - -

man 1 pr 

References of the form (See ltIore Redirection; »and >&) indicate that more _ 
information can be found in the section covering More Redirection; » and >& of this manual. 

• 

• • 

a.out 

Your current directory has the name '.' as well as the name printed by the 
command pwd; see also dirs. The current directory'.' is usually the flrst 
component of the search path contained in the variable path, thus commands 
which are in '.' are found flrst (See Shell Variables). The character '.' is 
also used in separating components of fIlenames. The character' .' at the 
beginning of a component of a pathname is treated specially and not matched 
by the filename expansion metacharacters '?', '*', and '[' ']' pairs (See 
Filenames). 

Each directory has a flle ' .. ' in it which is a reference to its parent directory. 
After changing into the directory with chdir , i.e. 

chdir paper 

you can return to the parent directory by doing 

chdir .. 

The current directory is printed by pwd (See Working Directories). 

Compilers which create executable images create them, by default, in the fIle 
a.out. for historical reasons (See The Shell's History List). 

absolute pathname 
A pathname which begins with a 'f is absolute since it specifies the path of 
directories from the beginning of the entire directory system - called the root 
directory. Pathname s which are not absolute are called relative (see definition 
of relative pathname ) (See Filenames). 

alias An alias specifies a shorter or different name for a UNIX command, or a 
transformation on a command to be performed in the shell. The shell has a 
command alias which establishes aliases and can print their current values. The 
command unalias is used to remove aliases (See Aliases). 

G·44 ICON INTERNATIONAL 



( 

u 

C Shell Introduction 

argument Commands in UNIX receive a list of argument words. Thus the command 

echo abc 

consists of the command name 'echo' and three argument words 'a', 'b' and 
'c'. The set of arguments after the command name is said to be the argument 
list of the command (See The Basic Notion of Commands). 

argv The list of arguments to a command written in the shell language (a shellscri.pt . 
. . or shell procedure) is stored in a variable called argv within the shell. This 

'name is taken from the conventional name in the C programming language (See 
Variable Substitution). 

background Commands started without waiting for them to complete are called background 
commands (See Jobs; Background, Foreground, or Suspended). 

base A filename is sometimes thought of as consisting of a base part, before any '.' 
character, and an extension - the part after the '.'. See the definitions for 
filename and extension and basename (l)(See Filenames). 

b g The bg command causes a suspended job to continue execution in the 
background (See Jobs; Background, Foreground, or Suspended). 

bin 

break 

breaksw 

builtin 

case 

A directory containing binaries of programs and shell scripts to be executed is 
typically called a bin directory. The standard system bin directories are '/bin' 
containing the most heavily used commands and '/usr/bin' which contains most 
other user programs. Programs developed at UC Berkeley live in '/usr/ucb', 
while locally written programs live in '/usr/local'. Games are kept in the 
directory '/usr/games'. You can place binaries in any directory. If you wish to 
execute them often, the name of the directories should be a component of the 
variable path. 

Break is a builtin command used to exit from loops within the control structure 
of the shell (See Other Control Structures). 

The breaksw builtin command is used to exit from a switch control structure, 
like a break exits from loops (See Other Control Structures). 

A command executed directly by the shell is called a builtin command. Most 
commands in UNIX are not built into the shell, but rather exist as files in bin 
directories. These commands are accessible because the directories in which 
they reside are named in the path variable. 

A case command is used as a label in a switch statement in the shell's control 
structure, similar to that of the language C. Details are given in the shell 
documentation 'csh (1)' (See Other Control Structures). 

ICON/UXV USER GUIDE G-45 



C Sbell Introduction 

cat 

cd 

cbdir 

cbsb 

.cmp 

The cat program catenates a list of specified files on the standard output . It is 
usually used to look at the contents of a single fIle on the tennina1, to 'cat a fIle' 
(See Terminating Commands and The Shell's History f;.ist). 

The cd command is used to change the working directory . With no arguments, 
"cd changes your working directory to be your home directory (See Aliases 
and Working Directories). 

The chilir command is a synonym for cd . Cdis usually used because it is easier 
to type. 

The chsh command is used to change the shell which you use on UNIX. By 
default, you use an different version of the shell which resides in 'lbin/sh'. 
You can change your shell to 'lbin/csh' by doing 

chsh your-login-name /bin/csh 

Thus I would do 

chsh bill /bin/csh 

It is only necessary to do this once. The next time you log in to UNIX after 
doing this command, you will be using csh rather than the shell in 'lbin/sh' (See 
the What Now? section under TERMINAL USAGE OF THE SHELL). 

:. Cmp is a program which compares fIles. It is usually used on binary fIles, or to 
see if two fIles are identical (See Sample Shell Script). For comparing text 
fIles the program dif/, described in 'diff (1)' is used. 

command A function performed by the system, either by the shell (a builtin command) or 
by a program residing in a file in a directory within the UNIX system, is called a 
command (See The Basic Notion of Commands). 

command name 
When a command is issued, it consists of a command name , which is the first 
word of the command, followed by arguments. The convention on UNIX is that 
the frrst word of a command names the function to be performed (See The 
Basic Notion of Commands). 

command substitution 
The replacement of a command enclosed in '\" characters by the text output by 
that command is called command substitution (See Command Substitution). 

componenet A part of a pathname between 'f characters is called a component of that 
pathname . A variable which has multiple strings as value is said to have several 
component s; each string is a component of the variable. 

G-46 ICON INTERNATIONAL 



( 

c 

continue 

C Shell Introduction 

A builtin command which causesmecution of theenclosingforeach or while 
loop to cycle prematurely. Similauo the contin1.le command in the 
programming language C (See Sample Shell Script). 

con trol- Certain special charact~ called Cf!lntro/ charact .. are produced by holding 
down the CONlROL key on yom Jcnninal and simultaneously pressing another 
character, much like the SHIFTb"r:J.s used to produce upper case characters. 

_. Thus control- c is produced by holding doWll the CONTROL key while pressing 
the ~c' key. Usually UNlKprints an caret (J\)tilowed by the correspo~ding 
letter when you type a cOldllAl.d1aracter (e.g. "-c' far control- c (See 
Terminating Commanb}d 

core dump When a program terminates abnmmmally, the systemplaces an image of its 
current state in a filenamed 'core" .. This ClIMe dumpean be examined with the 
system debugger 'adb (1)' or 'sdlDO), in o.ttdI.er to detcmmine what went wrong 
with the program (See Tl!IIlminating Com1lllfBi'lh). If tJae shell produces a 
message of the fonn 

cp 

csh 

.cshrc 

cwd 

date 

Illegal i~ructiam (core dumped) 

(where 'illegal insttuCfion' is only one ofsevem1JX111iSible messages), you 
should report this to the author of the program (!Ina syIiIOm administrator, saving 
the 'core' file. 

The cp (copy) program is used tmmpy the contents of one file into another fIle. 
It is one of the most colllIIlllJDly used UNIX commaeds (See Filenames). 

The name of the shell program that\this document describes. 

The file .cshrc in your home directmry is read by·tw.dl shell as k begins 
execution. It is usually used to chqe the setting €iff the variable path and to set 
alias parameters which are to t*effect global\y(See Shell Startup and 
Termination ). 

The cwd variable in the sBll hold'S llhe absolute pathntmle of the current 
working directory . It is changed m"y the shell whenever your current working 
directory changes and should nat !he changed otherwise (See Shell 
Variables). 

The date command prints the current date and1tilme (See Output to Files). 

debugging Debugging is the process of correeting mistakes in programs and shell scripts. 

default: 

The shell has several options and variables which may be used to aid in shell 
debugging. 

The label default: is used within shell switch statements, as it is in the C 
language to label the code to be executed if none of the case labels matches the 
value switched on (See Other Control Structures). 

ICONIUXV USER GUIDE G-47 



C Shell Intro,duction 

DELETE The DELE'IE or RUBOUT key on the terminal normally causes an interrupt to be 
sent to the current job. Many users change the interrupt character to be AC. 

detached A command that continues running in the background after you logout is said 
to be detached. 

diagnostic An error message produced by a program is often referred to as a diagnostic. 
Most error messages are not written to the standard output ,since that is often 
directed away from the terminal (See Output to Files, See Input from Files; 
Pipelines). Error messsages are instead written to the diagnostic output which 

. may be directed away from the terminal, but usually is not Thus diagnostics 
will usually appear on the terminal (See More Redirection; »and >&). 

directory A structure which contains files. At any time you are in one particular directory 
whose names can be printed by the command pwd . The chdir command will 
change you to another directory, and make the files in that directory visible. 
The directory in which you are when you first login is your home directory 
(See The Basic Notion of Commands and Working Directories). 

directory stack 

dirs 

du 

echo 

else 

endif 

G·48 

The shell saves the names of previous working directories in the directory stack 
when you change your current working directory via the pushd command. The 
directory stack can be printed by using the dirs command, which includes your 
current working directory as the first directory name on the left (See Working 
Directories ). 

The dirs command prints the shell's directory stack (See Working 
Directories) . 

The du command is a program (described in 'du (1),) which prints the number 
of disk blocks is all directories below and including your current working 
directory (See lobs; Background, Foreground, or Suspended). 

The echo command prints its arguments (See Filenames and Sample Shell 
Script). 

The else command is part of the 'if-then-else-endif' control command construct 
(See Sample Shell Script). 

If an if statement is ended with the word then, all lines following the if up to a 
line starting with the word endif or else are executed if the condition between 
parentheses after the if is true (See Sample Shell Script). 

ICON INTERNATIONAL 



(, 

( 

EOF 

escape 

C Shell Introduction 

An end-of-file is generated by the terminal by a control-d, and whenever a 
command reads to the end of a file which it has been given as input. 
Commands receiving input from a pipe receive an end-of-file when the 
command sending them input completes. Most commands terminate when they 
receive an end-of-file . The shell has an option to ignore end-of-file from a 

_ terminal input which may help you: keep from logging out accidentally by typing 
too many control-d's (See The Basic Notion of Commands. 
Terminating Commands, and Supplying Input to Commands). 

A character '\' -used to prevent the special meaning of a metacharacter is said to 
escape the character from its special meaning. Thus 

echo \* 

will echo the character '*' while just 

echo * 

will echo the names of the file in the current directory. In this example, \ escape 
s ,*, (See Quotation). There is also a non-printing character called escape, 
usually labelled ESC or ALTMODE on terminal keyboards. Some older UNIX 
systems use this character to indicate that output is to be suspended. Most 
systems use control-s to stop the output and control-q to start it. 

/etc/passwd This file contains information about the accounts currently on the system. It 
consists of a line for each account with fields separated by ':' characters (See 
Terminating Commands). You can look at this me by saying 

cat /etc/passwd 

The commandsfinger and grep are often used to search for infonnation in this 
rue. See 'finger (1),. 'passwd(5)', and 'grep (1), for more details. 

exit The exit command is used to force termination of a shell script, and is built into 
the shell (See Supplying Input to Commands). 

exit status A command which discovers a problem may reflect this back to the command 
(such as a shell) which invoked (executed) it. It does this by returning a non
zero number as its exit status ,a status of zero being considered 'nonnal 
termination'. The exit command can be used to force a shell command script to 
give a non-zero exit status (See Sample Shell Script). 

expansion The replacement of strings in the shell input which contain metacharacters by 
other strings is referred to as the process of expansion. Thus the replacement of 
the word ,*, by a sorted list of files in the current directory is a 'fllename 
expansion'. Similarly the replacement of the characters '!!' by the text of the 
last command is a 'history expansion'. Expansions are also referred to as 
substitutions (See Filenames, Variable Substitution, and Braces { •.. } 
in Argument Expansion). 

ICONIUXV USER GUIDE G·49 



C Shell Introduction 

expressions Expressions are used in the shell to control the conditional structures used in 
the writing of shell scripts and in calculating values for these scripts. The 
operators available in shell expressions are those of the language C (See 
Expressions). 

extension .. FIlenames often consist of a base name and an extension separated by the 

fg 

- character'.'. By convention, groups of related files often share the same root 
name. Thus if 'prog.c' were a C program, then the object file for this program . 
would be stored in 'prog.o'. Similarly a paper written ydth the '-me' nroff 
. macro package might be stored in 'paper.me' while a formatted version of this 

- ,'-~-=-paper might be kept in 'paper.out' and a list of spelling errors in 'paper.errs' 
(See Filenames). 

The job control commandfg is used to run a background or suspended job in 
the foreground (See Terminating Commands and Jobs; Background, 
Foreground, or Suspended). 

filename Each file in UNIX has a name consisting of up to 14 characters and not including 
the character 'r which is used in pathname building. Mostfilenames do not 
begin with the character' .' , and contain only letters and digits with perhaps a 
, .' separating the base portion of the filename from an extension (See 
Filenames). 

filename expansion 
Filename expansion uses the metacharacters '*', '1' and '[' and ']' to provide 
a convenient mechanism for naming files. Using filename expansion it is easy 
to name all the files in the current directory, or all files which have a common 
root name. Otherfilename expansion mechanisms use the metacharacter '-' 
and allow files in other users' directories to be named easily (See Filenames 
and Braces { ••• } in Argument Expansion). 

flag Many UNIX commands accept arguments which are not the names of files or 
other users but are used to modify the action of the commands. These are 
referred to as flag options, and by convention consist of one or more letters 
preceded by the character '-' (See Flag Arguments). Thus the Is (list files) 
command has an option '-s' to list the sizes of files. This is specified 

foreach 

G-SO 

Is -s 

The foreach command is used in shell scripts and at the terminal to specify 
repetition of a sequence of commands while the value of a certain shell variable 
ranges through a specified list (See Sample Shell Script and Loops at the 
Terminal; Variables as Vectors). 

ICON INTERNATIONAL 



( 

(-

o 

C Sbell Introduction 

foreground When commands are executing in the normal way such that the shell is waiting 
for them to finish before prompting for another command they are said to be 
foreground jobs or running in the foreground . This is as opposed to 
background. Foreground jobs can be stopped by signals from the terminal 
caused by typing different control characters at the keyboard (See 
Terminating Commands and Jobs; Backgroun4, Foreground, or 
Suspended). 

got 0 The shell has a command. goto used in shell scripts to transfer control to a given 
_ label (See Other Control Structures). 

grep The grep command searches through a list of argument files for a specified 
string. Thus 

head 

bistory 

grep bill /etc/passwd 

will print each line in the file letclpasswd which contains the string 'bill'. 
Actually, grep scans for regular expressions in the sense of the editors oed (1), 
and 'ex (1)'. Grep stands for 'globally find regular expression and print' (See 
Aliases). 

The head command prints the frrst few lines of one ormore files. If you have a 
bunch of files containing text which you are wondering about it is sometimes 
useful to run head with these files as arguments. This will usually show 
enough of what is in these files to let you decide which you are interested in 
(See Input from Files; Pipelines). 

Head is also used to describe the pan of a pathname before and including the 
last 'f' character. The tail of a pathname is the pan after the last 'f'. The':h' 
and ':t' modifiers allow the head or tail of a pathname stored in a shell variable 
to be used (See Sample Shell Script). 

The history mechanism of the shell allows previous commands to be repeated, 
possibly after modification to correct typing mistakes or to change the meaning 
of the command The shell has a history list where these commands are kept, 
and a history variable which controls how large this list is (See The Shell's 
History List). 

home directory 

if 

Each user has a home directory ,which is given in yom entry in the password 
file, letclpasswd . This is the directory which you are placed in when you fIrst 
login. The cd or chdir command with no arguments takes you back to this 
directory, whose name is recorded in the shell variable home . You can also 
access the home directories of other users in forming filenames using a 
filename expansion notation and the character '-' (See Filenames). 

A conditional command within the shell, the if command is used in shell 
command scripts to make decisions about what course of action to take next 
(See Sample Shell Script). 

ICONIUXV USER GUIDE G-51 



C Shell Introduction 

ignoreeof Normally, your shell will exit, printing 'logout' if you type a control-d at a 
prompt of' % '. This is the way you usually log off the system. You can set 
the ignoreeofvariable if you wish in your .login me and then use the command 
logout to logout. This is useful if you sometimes accidentally type too many 
control-d characters, logging yourself off (See SheB Variables). 

input 

interrupt 

Many commands on UNIX take information from the tenninal or from mes 
which they then act 00. This information is called input. Commands normally 
.read for input from their standard input which is,by default; the terminal. This 

. standard.input can be redirected from a me using a shell metanotation with the -

. character' <'. Many commands will also read from a file specified as argument. •.. ~ 
Commands placed in pipelines will read from the output of the previous . 
command in the pipeline. The leftmost command in a pipeline reads from the 
terminal if you neither redirect its input nor give it a mename to use as standard 
input . Special mechanisms exist for supplying input to commands in shell 
scripts (See Input from Files; Pipelines and Supplying Input to 
Commands). 

An interrupt is a signal to a program that is generated by typing "C. (On older 
versions of UNIX the RUBOUT or DELE1E key were used for this purpose.) It 
causes most programs to stop execution. Certain programs, such as the shell 
and the editors, handle an interrupt in special ways, usually by stopping what 
they are doing and prompting for another command While the shell is 
executing another command and waiting for it to finish, the shell does not listen 
to interrupts. The shell often wakes up when you hit interrupt because many 
commands die when they receive an interrupt (See Terminating Commands 
and Supplying Input to Commands). 

job One or more commands typed on the same input line separated by 'I' or ';' 
characters are run together and are called a job. Simple commands run by 
themselves without any 'I' or ';' characters are the simplest jobs. Jobs are 
classified asforeground, background, or suspended (See Jobs; 
Background, Foreground, or Suspended). 

job control The builtin functions that control the execution of jobs are called job control 
commands. These are bg, fg, stop, kill (See lobs; Background, 
Foreground, or Suspended). 

job number When each job is started it is assigned a small number called ajob number 
which is printed next to the job in the output of the jobs command. This 
number, preceded by a '%' character, can be used as an argument tojob control 
commands to indicate a specific job (See lobs; Background, Foreground, 
or Suspended). 

jobs The jobs command prints a table showing jobs that are either running in the 
background or are suspended (See lobs; Background, Foreground, or 
Suspended). 

G·S2 ICON INTERNATIONAL 

) 



o 

kill 

C Shell Introduction 

A command which sends a signal to a job causing it to terminate (See Jobs; 
Background, Foreground, or Suspendetl) . 

• Iogin The file .login in your home directory is read by the shell each time you login to 
- UNIX and the commands there are executed. There are a number of commands 

which are usefully placed here, especially set commands to the shell itself (See 
Shell Startup and Termination). . 

login shell The shell that is started on your terminal when you login is called your login 
shell. It is different from other shells which you may run (e.g. on shell 
scripts) in that it reads the .login file before reading commands from the -
terminal and it reads the .logout file after you logout (See Shell Startup and 
Termination ). 

logout The logout command causes a login shell to exit. Nonnally, a login shell will 
exit when you hit control-d generating an entJ{l-of\fl-file, but if you have set 
ignoreeo/in you .login file then this will not work and you must use logout to 
log off the UNIX system (See Useful Built-In Commands) . 

• logout When you log off of UNIX the shell will execute commands from the file .logout 
in your home directory after it prints 'logout'. 

Ipr 

Is 

mail 

make 

makefile 

The command lpr is the line printer daemon. The standard input of lpr spooled 
and printed on the UNIX line printer. You can also give lpr a list of filenames as 
arguments to be printed. It is most common to use Ipr as the last component of 
a pipeline (See The Shell's History List). 

The Is (list files) command is one of the most commonly used UNIX 
cominands. With no argument flIenames it prints the names of the files in the 
current directory. It has a number of usefulflag arguments, and can also be 
given the names of directories as arguments, in which case it lists the names of 
the flIes in these directories (See Flag Arguments). 

The mail program is used to send and receive messages from other UNIX users 
(See The Basic Notion of Commands and Shell Startup and 
Termination), whether they are logged on or not. 

The make command is used to maintain one or more related fIles and to organize 
functions to be performed on these files. In many ways make is easier to use, 
and more helpful than shell command scripts (See Make). 

The fIle containing commands for make is called makefile or Makefile (See 
Make). 

ICONIUXV USER GUIDE G-53 



C Shell Introduction 

manual The manual often referred to is the 'UNIX manual'. It contains 8 numbered 
sections with a description of each UNIX program (section 1), system call 
(section 2), subroutine (section 3), device (section 4), special data structure 
(section 5), game (section 6), miscellaneous item (section 7) and system 
administration program (section 8). There are also supplementary documents 

.... --.. (tutorials and reference guides)· for individual programs which require 
. explanation in more detail. An online version of the manual is accessible 

through the man command. Its documentation can be obtained online via 

man man 

If you can't decide what manual page to look in, try the apropos (1) command. 
The supplementary documents are in subdirectories of lusr/doc. 

metacharacter 

mkdir 

Many characters which are neither letters nor digits have special meaning either 
to the shell or to UNIX. These characters are called metacharacters. If it is 
necessary to place these characters in arguments to commands without them 
having their special meaning then they must be quoted. An example of a 
metacharacter is the character '>' which is used to indicate placement of output 
into a file. For the purposes of the history mechanism, most unquoted 
metacharacters form separate words (See Metacharacters in the Shell). The 
appendix to this user's manual lists the metacharacters in groups by their 
function. 

The mkdir command is used to create a new directory. 

modifier Substitutions with the history mechanism, keyed by the character'!' or of 
variables using the metacharacter '$', are often subjected to modifications, 
indicated by placing the character':' after the substitution and following this 
with the modifier itself. The command substitution mechanism can also be 
used to perform modification in a similar way, but this notation is less clear 
(See Sample Shell Script). 

more The program more writes a file on your terminal allowing you to control how 
much text is displayed at a time. More can move through the me screenful by 
screenful, line by line, search forward for a string, or start again at the 
beginning of the me. It is generally the easiest way of viewing a file (See 
Terminating Commands). 

noclobber The shell has a variable noclobber which may be set in the me .login to prevent 
accidental destruction of files by the '>' output redirection metasyntax of the 
shell (See Shell Variables and More Redirection; » and >&). 

noglob The shell variable noglob is set to suppress the filename expansion of 
arguments containing the metacharacters ' ... ', '*', '1', '[' and ']' (See Sample 
Shell Script). 

G-54 ICON INTERNATIONAL 



(; 

o 

notify 

onintr 

. output 

C Shell Introduction 

The notify command tells the shell to report on the termination of a specific 
background job at the exact time it occurs as opposed to waiting until just before 
the next prompt to report the termination. The notify variable, if set, causes the 
shell to always report the termination of background jobs exactly when they 
occur (See Jobs; Background, Foreground, or Suspended). 

The onintr command is built into the shell and is used to control the action of a 
shell command script when an interrupt signal is received (See Supplying 
Input to Commands). 

Many commands 'in UNIX result in some lines of text which are called their ' 
output. This output is usually placed on what is known as the standard output 
which is normally connected to the user's terminal. The shell has a syntax 
using the metacharacter '>' for redirecting the standard output of a command 
to a flle (See Output to Files). Using the pipe mechanism and the 
metacharacter 'I' it is also possible for the standard output of one command to 
become the standard input of another command (See Input from Files; 
Pipelines). Certain commands such as the line printer daemon p do not place 
their results on the standard output but rather in more useful places such as on 
the line printer (See The Shell's History List). Similarly the write 
command places its output on another user's terminal rather than its standard 
output (See The Shell's History List). Commands also have a diagnostic 
output where they write their elTOr messages. Normally these go to the tenninal 
even if the standard output has been sent to a file or another command, but it is 
possible to direct elTOr diagnostics along with standard output using a special 
metanotation (See More Redirection; » and >&). 

path The shell has a variable path which gives the names of the directories in which it 
searches for the commands which it is given. It always checks first to see if the 
command it is given is built into the shell. If it is, then it need not search for the 
command as it can do it internally. H the command is not builtin, then the shell 
searches for a file with the name given in each of the directories in the path 
variable, left to right. Since the normal definition of the path variable is 

path (. /usr/ucb /bin /usr/bin) 

the shell normally looks in the current directory, and then in the standard system 
directories '/usr/ucb', '/bin' and '/usr/bin' for the named command (See Shell 
Variables). H the command cannot be found the shell will print an error 
diagnostic. Scripts of shell commands will be executed using another shell to 
interpret them if they have 'execute' permission set This is normally true 
because a command of the form 

chmod 755 script 

was executed to tum this execute pennission on (See Invocation and the argv 
Variable). H you add new commands to a directory in the path, you should 
issue the command rehash (See Shell Variables). 

ICONIUXV USER GUIDE G-SS 

~~~----.. -----. 


C Shell Introduction

pathname A list of names, separated by 'f characters, forms a pathname. Each
component, between successive'/, characters, names a directory in which the
next component file resides. Pathnomes which begin with the character '/' are
interpreted relative to the root directory in the filesystem. Other pathnames are
interpreted relativ~ to the cmrent directory as reported by pwd. The last

pipeline

popd

port

pr

printenv

process

program

prompt

G-S6

- component ofa pathnome may name a directory. but usually names a file.

A group of commands which are connected together, the standard output of
each connected to the standard input of the next, is called a pipeline. The pipe
mechanism used to connect these commands is indicated by the shell
metacharacter'I'{See Input from Files;-Pipelines and The Shell's
History List).

The popd COInmand changes the shell's working directory to the directory you
most recently left using the pushd command. It retums to the directory without
having to type its name, forgetting the name of the current working directory
before doing so (See Working Directories).

The part of a computer system to which each tenninal is connected is called a
pon. Usually the system has a fixed number of ports, some of which are
connected to telephone lines for dial-up access, and some of which are
permanently wired directly to specific terminals.

The pr command is used to prepare listings of the contents of files with headers
giving the name of the file and the date and time at which the file was last
modified (See The Shell's History List).

The printenv command is used to print the current setting of variables in the
environment (See Useful Built-In Commands).

An instance of a running program is called a process (See Jobs;
Background, Foreground, or Suspended). UNIX assigns each process
a unique number when it is started - called the process number . Process
numbers can be used to stop individual processes using the kill or stop
commands when the processes are part of a detached background job.

Usually synonymous with command; a binary fIle or shell command script
which performs a useful function is often called a program .

Many programs will print a prompt on the terminal when they expect input.
Thus the editor 'ex (1)' will print a ':' when it expects input. The shell prompts
for input with '% ' and occasionally with '1 'when reading commands from
the terminal (See The Basic Notion of Commands). The shell has a
variable prompt which may be set to a different value to change the shell's main
prompt. This is mostly used when debugging the shell (See Useful Built-In
Commands).

ICON INTERNATIONAL

o

pusbd

C Sbell Introduction

The pushd command, which means 'push directory' , changes the shell's
working directory and also remembers the current working directory before the
change is made, allowing you to return to the same directory via the popd
command later without retyping its name (See Working Directories).

p s . . The ps command is used to show the processes you are currently running ..
Each process is shown with its unique process number, an indication of the
terminal name it is attached to, an indication of the state of the process (whether
it is running, stopped, awaiting some event (sleeping), and whether it is

. swapped out), and the amount of CPU time it has used so far. "The command is " "
identified by printing some of the words used when it was invoked (See Jobs;
Background, Foreground, or Suspended). Shells, such as the csh you
use to run the ps command, are not normally shown in the output.

pwd The pwd command prints the full pathname of the current working directory .
The dirs builtin command is usually a better and faster choice.

quit The quit signal, generated by a control-\ is used to terminate programs which
are behaving unreasonably. It normally produces a core image file (See
Terminating Commands).

quotation The process by which metacharacters are prevented their special meaning,
usually by using the character'" in pairs, or by using the character '\', is
referred to as quotation (See Quotation).

redirection The routing of input or output from or to a fIle is known as redirection of input
or output (See Output to Files).

rebasb The rehash command tells the shell to rebuild its internal table of which
commands are found in which directories in your path. This is necessary when
a new program is installed in one of these directories (See Useful Built-In
Commands).

relative patbname

repeat

root

A pathname which does not begin with a '/' is called a relative pathname since it
is interpreted relative to the current working directory . The flI'St component of
such a pathname refers to some file or directory in the working directory ,and
subsequent components between '/' characters refer to directories below the
working directory . Pathnames that are not relative are called absolute
pathnames (See Filenames).

The repeat command iterates another command a specified number of times.

The directory that is at the top of the entire directory structure is called the root
directory since it is the 'root' of the entire tree structure of directories. The
name used in pathnames to indicate the root is '/'. Pathnames starting with 'f'
are said to be absolute since they start at the root directory. Root is also used as
the part of a pathname that is left after removing the extension. See filename
for a further explanation (See Filenames).

ICONIUXV USER GUIDE G·S7

C Shell Introduction

RUB OUT The RUBOUT or DELE1E key is often used to erase the previously typed
character; some users prefer the BACKSPACE for this purpose. On older
versions of UNIX this key.served as the IN1R character.

scratch file Files whose names begin with a 'It are referred to as scratch files • since .they
.,. ,> are automatically removed by the system after a couple of days of non-use; or

more frequently if disk space becomes tight (See Output to Files).

script

set

setenv

shell

Sequences of shell commands placed in a file are called shell command scripts.
. It is often possible to perform simple tasks using these scripts without writing a
program in a language such as C, by using the shell to selectively run other
programs (See Invocation and the largv' Variable and Other Shell
Features).

The builtin set command is used to assign new values to shell variables and to
show the values of the current variables. Many shell variables have special
meaning to the shell itself. Thus by using the set command the behavior of the
shell can be affected (See Shell Startup and Termination).

Variables in the environment 'environ (5)' can be changed by using the setenv
builtin command (See Useful Built-In Commands). The printenv
command can be used to print the value of the variables in the environment

A shell is a command language interpreter. It is possible to write and run your
own shell, as shells are no different than any other programs as far as the
system is concerned. This manual deals with the details of one particular shell ,
called csh.

shell script See script (See Invocation and the 'argv' Variable and Other Shell
Features).

signal

sort

source

A signal in UN1X is a short message that is sent to a running program which
causes something to happen to that process. Signals are sent either by typing
special control characters on the keyboard or by using the kill or stop
commands (See Terminating Commands and Jobs; Background,
Foreground, or Suspende4).

The sort program sorts a sequence of lines in ways that can be controlled by
argument flags (See Input from Files; Pipelines).

The source command causes the shell to read commands from a specified file.
It is most useful for readingflles such as .cshrc after changing them (See
Useful Built-In Commands).

special character
See metacharacters and the appendix to this manual.

G-S8 ICON INTERNATIONAL

(

c

standard

status

stop

string

stty

C Shell Introduction

We refer often to the standard input and standard output of commands. See
input and output (See Output to Files and Supplying Input to
Commands).

A command normally returns a status when it finishes. By cOIlvention a status
of zero indicates that the command succeeded. Commands may return non-zero .
status to indicate that some abnormal event has occurred. The shell variable
status is set to the status returned by the last command. It is most useful in
shell commmand scripts (See Sample Shell Script).

The stop command causes a background job to become suspended (See Jobs;
Backgrou.nd, Foreground, or Su.spended).

A sequential group of characters taken together is called a string . Strings can
contain any printable characters (See Shell Variables).

The my program changes certain parameters inside UNIX which detennine how
your terminal is handled. See 'stty (1)' for a complete description (See Jobs;
Background, Foreground, or Suspended).

substitution The shell implements a number of substitutions where sequences indicated by
metacharacters are replaced by other sequences. Notable examples of this are
history substitution keyed by the metacharacter '!' and variable substitution
indicated by '$'. We also refer to substitutions as expansions (See Variable
Substitution).

suspended A job becomes suspended after a STOP signal is sent to it, either by typing a
control -z at the terminal (for foreground jobs) or by using the stop command
(for background jobs). When suspended, a job temporarily stops running until
it is restarted by either the!g or bg command (See Jobs; Background,
Foreground, or Suspended).

switch The switch command of the shell allows the shell to select one of a numberof
sequences of commands based on an argument string. It is similar to the switch
statement in the language C (See Other Control Structures).

termination When a command which is being executed finishes we say it undergoes
termination or terminates. Commands normally terminate when they read an
endifl-ot\fl-ftle from their standard input . It is also possible to terminate
commands by sending them an interrupt or quit signal (See Terminating
Commands). The kill program terminates specified jobs (See Jobs;
Background, Foreground, or Suspended).

then The then command is part of the shell '8 'if-then-else-endif' control construct
used in command scripts (See Sample Shell Script).

ICONIUXV USER GUIDE G-59

C Sbell Introduction

time The time command can be used to measure the amount of CPU and real time
consumed by a specified command as well as the amount of disk i/o, memory
utilized, and number of page faults and swaps taken by the command (See
Shell Startup and Termination and Useful Built-In Commands).

tset - , . The tset program is used to set standard erase and kill characters and to tell the . -_-
system what kind of terminal you are using. It is often invoked in a .login file
(See Shell Startup and Termination).

tty·- -_ . The word tty is a historical abbreviation for 'teletype' which is frequently used
- in UNIX to indicate the port to which a given terminal is connected.' The tty

command will print the name of the tty or port to which your terminal is
presently connected.

unalias The una lias command removes aliases (See Useful Built-In Commands).

UNIX UNIX is an operating system on which esh runs. UNIX provides facilities which
allow esh to invoke other programs such as editors and text formatters which
you may wish to use. -

unset The unset command removes the definitions of shell variables (See Shell
Variables and Useful Built-In Commands).

variable expansion
See variables and expansion (See Shell Variables and Variable
Substitution).

variables Variables in esh hold one or more strings as value. The most common use of
variables is in controlling the behavior of the shell. See path, noelobber , and
ignoreeoffor examples. Variables such as argv are also used in writing shell
programs (shell command scripts) (See Shell Variables).

verbose The verbose shell variable can be set to cause commands to be echoed after they
are history expanded. This is often useful in debugging shell scripts. The
verbose variable is set by the shell's -v command line option (See Other Shell
Features).

we The we program calculates the number of characters, words, and lines in the
flIes whose names are given as arguments (See Jobs; Background,
Foreground, or Suspended).

w b iI eThe while builtin control construct is used in shell command scripts (See Other
Control Structures).

G-60 ICON INTERNATIONAL

, (/

(~;

word

C Sbell Introduction

A sequence OflCharacten;·which fonns an argmuent to a command is called a
word • M~, maracternwhich are neither Idle!rS, digits, '-', '.' nor 'f' form
words all b.ylbemselves even if they are nQtsmrrounded by blanks. Any
sequence of characters may be made into a WlJrd by surrounding it with ",
characters except for the.characters 'co and '{"which require special treatment
(See TJu Basic Noti_ of Commands). llhis process of placing special
characters ill words Wiihomtheir special memiing is called quoting .

working directory

write

At any given time youJl1"e in one particular iiimectory.,l:al1ed your working
directory . This direcmny's name is printed~ the pwd command and the files ,
listed by Is are the onesimthis directory. Yo.u can change working directories
using chilir .

The write command is an obsolete way of oommunicating with other users who
are logged in to UNIX (yan have to take tun1B~ing). If you are both using
display tenninals, use talk(l), which is muchtmore pleasant.

ICON/UXVUSER GUIDE G-61

..... -.---.---~-~---------

C Shell Introduction

G·62 ICON INTERNATIONAL

(,

(

c

GLOSSARY

. This glossary defines terms and acronyms used in the ICON/UXV User Guide that may not
be familiar to you.

acoustic coupler
A device that permits transmission of data over an ordinary telephone line. When you
place a telephone handset in the coupler, you link a computer at one end of the phone
line to a peripheral device, such as a user terminal, at the other.

address
Generally, a number that indicates the location of information in the computer's
memory. In the ICON/UX-V system, the address is part of an editor command that
specifies a line number or range.

append mode
A text editing mode where you enter (append) text after the current position in the
buffer. See text input mode, compare with command mode and insert mode.

argument
Special instructions on the command line that specify data on which a command is to
operate. Arguments usually follow the command and can include numbers, letters, or
text strings. For instance, in the command lp -m myfUe, lp is the command and
myfile is the argument. See option.

AS en
(pronounced as'-kee) American Standard Code for Information Interchange, a standard
for data transmission that is used in the ICONjUXV system. ASCII assigns sets of Os
and Is to represent 128 characters, including alphabetical characters, numerals, and
standard special characters, such as #, $, %, and &.

AT&T 3B computers
Computers manufactured by AT&T Technologies, Inc.

background
A type of program execution where you request the shell to run a command away from
the interaction between you and the computer ("in the background"). While this
command runs, the shell prompts you to enter other commands through the terminal.

baud rate
A measure of the speed of data transfer from a computer to a peripheral device (such as
a terminal) or from one device to another. Common baud rates are 300, 1200, 4800, and
9600. As a general guide, divide a baud rate by 10 to get the approximate number of
English characters transmitted each second.

ICONjUXV EDITING GUIDE GL-l

GLOSSARY

buffer
A temporary storage area of the computer used by text editors to make changes to a
copy of an existing file. When you edit a file, its contents are read into a buffer, where

" cyou ,make changes ,to the text .. For the changes to become a part of the permanent file,
.:' -·you·must write the buffer contents back into the file. See permanent file. .

chlld directory
See subdirectory.

command
The name of a file that contains a program that can be processed or executed by the
computer on request.

command file
See executable file.

command language interpreter
A program that acts as a direct interface between you and the computer. In the
ICONjUXV operating system, a program called the shell takes commands and
translates them into a language understood by the computer.

command line
A line containing one or more commands, ended by typing a carriage return «CR».
The line may also contain options and arguments. You type this line to the shell to

c

: instruct the computer to perform one or more tasks. "'-

command mode
A text editing mode in which each character you type is interpreted as an editing
command. This mode permits actions such as moving around in the buffer, deleting text,
or moving lines of text. See text input mode, compare with append mode and insert
mode.

context search
A technique for locating a specified pattern of characters (called a string) when in a text
editor. Editing commands that cause a context search scan the buffer, looking for a
match with the string specified in the command. See string.

control character
A non printing character that is entered by holding down the control key and typing a
character. A control character transmits a special command to the computer. For
instance, when viewing a long file on your screen with the cat command, typing control-s
(AS) stops the display so you can read it, and typing control-q (Aq) continues the display.

current directory
The directory in which you are presently working. You have direct access to all files and
subdirectories contained in your current directory. The shorthand notation for the
current directory is a dot (.).

GL-2 ICON INTERNATIONAL

(

(

GLOSSARY

cursor
A cue printed on the terminal screen that indicates the position at which you enter or
delete a character. it is .usually a rectangle or a blinking line.

default
An automatically assigned value or condition that exists unless you explicitly change it.
For example, the shell prompt string has a default value of $ unless you change it.

delimiter
A character that logically separates items or arguments on a command line. Two
frequently used delimiters in the ICON/UXV operating system are the space and the tab.
Another is the slash character (f) that separates directories from subdirectories and files
in a path name.

diagnostic
A message printed at your terminal to indicate an error encountered while trying to
execute some command or program. Generally, you need not respond directly to a
diagnostic message.

directory
A type of file used to group and organize other files or directories. You cannot enter text
or other data into a directory. (For more detail, see Appendix B, File System
Organization.)

disk
A magnetic data storage device consisting of several round plates similar to phonograph
records. Disks store large amounts of data and allow quick access to any piece of data.

electronic mail
The feature of an operating system that allows computers users to exchange written
messages via the computer. The ICONjUXV operating system mail command provides
electronic mail in which the addresses are the login names of users.

environment
The conditions under which you work while using the ICON/UXV operating system.
Your environment includes those things that personalize your login and allow you to
interact in specific ways with the ICON/UX.'V system and the computer. For example,
your shell environment includes such things as your shell prompt string, specifics for
backspace and erase characters, and commands for sending output from your terminal to
the computer.

erase character
The character you type to delete the previous character on the current line. The
ICONjUXV system default erase character is #.

escape
A means of getting into the shell from within a text editor or another program.

ICON/UXV EDITING GUIDE GL-3

GLOSSARY

execute
The computer's action of interpreting a programmed instruction or command and
performing the indicated operation(s).

executable file
A file that can be processed or executed by· the computer without any further
translation. When you type in the file name, the commands in the file are executed. See
shell procedure. -

field
A word or a group of characters treated as one word on a command line. Fields are
usually a fixed number of character positions in size, but they may also vary.

file
A collection of information. Files may contain data, programs, or other text. You access
ICONjUXV files by name. See ordinary file, permanent file, and executable file.

file name
A sequence of characters that denotes a file. (In the ICON/UXV system, a slash
character U) cannot be used as part of a file name.)

file system
A collection of files and the structure that links them together. The file system is a

C-~.)
.. /'

hierarchical structure-- that is, a ranked system of files. (For more detail, see Append£x /
B, File System Organization.) '" _)

filter
A command that reads the standard input, acts on it in some way, and then prints the
result as standard output.

final copy
The completed, printed version of a file of text.

foreground
The normal type of program execution. In foreground mode, the shell waits for a
command to end before prompting you for another command. In other words, you enter
something into the computer and the computer "replies" before you enter something else.

full-duplex
A type of data communication in which a computer system can transmit and receive
data simultaneously. Terminals and modems usually have settings for half-duplex (one
way) and full-duplex communication; the ICONjUXV system uses the full-duplex setting.

full path name
A path name that originates at the root directory of the ICON/UXV system and leads to
a specific file or directory. Each file and directory in the ICON/UXV system has a
unique full path name, sometimes called an absolute path name. See path name.

GL-4 ICON INTERNATIONAL

c

(

()

GLOSSARY

global
A qualifier that indicates the complete or entire file. While normal editor commands
commonly act on only the first instance of a pattern in the file, global commands perform
the action on all instances in the file.

hardware
The physical machinery of a computer and any associated devices.

hidden character
One of a group of characters within the standard ASCII set, but not normally printed as
visible symbols. Control characters, such as backspace and escape, are examples.

home directory
The directory in which you are located when you log in to the ICON/UXY system; also
known as your login directory.

ICON /UXV system
A general-purpose, multiuser, interactive, time-sharing operating system developed by
ICON International, Inc. The ICON/UXY system allows limited computer resources to
be shared by several users and efficiently organizes the user's interface to a computer
system.

input/output
The path by which information enters a computer system (input) and leaves the system
(output). An input device that you use is the keyboard and an output device is the
terminal monitor.

insert mode
A text editing mode in which you enter {insert) text before the current position in the
buffer. See text input mode, compare with append mode and command mode.

interactive
Describes an operating system (such as the ICON/UXY system) that can handle
immediate-response communication between you and the computer. In other words, you
interact with the computer from moment to moment.

line editor
An editing program in which text is operated upon on a line-by-line basis within a file.
Commands for creating, changing, and removing text use line addresses to determine
where in the file the changes are made. Changes can be viewed after they are made by
displaying the lines changed. See text editor, compare with screen editor.

login
The procedure used to gain access to the ICON/UXV operating system.

login directory
See home directory.

ICON/UXV EDITING GUIDE GL-5

GLOSSARY

login name
A string of characters used to identify a user. Your login name is different from other
login names.

log off
. The procedure used to exit from the ICON/UXVoperating system.

metacharacter
One of a group ·ofchara~ters with a special meaning to the shell, such as
<>*!I&$;()\" "[].

mode
. In general, a particular type of operation (for example, an editor's append mode). In
relation to the file system, a mode is an octal number used to determine who can have
access to your files and what kind of access they can have. See permissions.

modem
A device that connects a terminal and a computer by way of a telephone line. A modem
converts digital signals to tones and converts tones back to digital signals, allowing a
terminal and a computer to exchange data over standard telephone lines.

multitasking
The ability of an operating system to execute more than one program at a time.

multiuser
The ability of an operat"ing system to support several users on the system at the same
time.

nroff
A text formatter available as an add-on to the ICONjUXV system. You can use the
nroff program to produce a formatted on-line copy or a printed copy of a file. See text
formatter.

operating system
The software system on a computer under which all other software runs. The
ICONjUXV system is an operating system.

option
Special instructions that modify how a command runs. Options are a type of argument
that follow a command and are preceded by a minus sign (-). You can specify more
than one option for any command given in the ICONjUXV system. For example, in the
command Is -1 -a directory, -I and -a are options that modify the Is command. See
argument.

GL-6 ICON INTERNATIONAL

c

(

GLOSSARY

ordinary file
A collection of one to several thousand characters. Ordinary files may contain text or
other data but are not executable. See executable file.

output
Information processed in some fashion by a computer and delivered to you by way of a
printer, a terminal, or a similar device.

parameter
Generally, a value that determines the characteristics or behavior of something. In the
ICONjUXV system, a type of variable found only on the command line. See variable.

parent directory
The directory immediately above a subdirectory or file in the file system organization.
The shorthand notation for the parent directory is two dots (..).

parity
A method used by a computer for checking that the data received matches the data sent.

password
A code word known only to you that is called for in the login process. The computer uses
the password to verify that you may indeed use the system.

path name
A sequence of directory names separated by the slash character U) and ending with the
name of a file or directory. The path name defines the connection path between some
directory and a file.

peripheral device
Auxiliary devices under the control of the main computer, used mostly for input, output,
and storage functions. Some examples include terminals, printers, and disk drives.

permanent file
The data stored permanently in the file system structure. To change a permanent file,
you must make use of a text editor, which maintains a temporary work space, or buffer,

.. apart from the permanent files. Once changes have been made to the buffer, they must
be written to the permanent file to make the changes permanent. See buffer.

permissions
Access modes, associated with directories and files, that permit or deny system users the
ability to read, write, and/or execute the directories or files. You determine the
permissions for your directories or files by changing the mode for each one with the
chmod command.

ICON/UXV EDITING GUIDE GL-7

GLOSSARY

pipe (.
A method of redirecting the output of one command to be the input of another
command. It is named for the character (I) that redirects the output. For example, the
shell command :who I we -1 pipes output from the who command to the we command;
telling you the total number of people logged into your ICON/UXV system. . .

pipeline
A series of filters separated by the pipe character (I). The output of each filter becomes
the input of the next filter in the line. The last. filter in the pipeline writes to its
standard output. See filter.

positional parameters
Variables that hold arguments supplied with a shell procedure. They are placed into
variable names, such as $1, $2, and $3 when the shell calls for the shell procedure. The
name of the shell procedure is positional parameter $0. See variable and shell
procedure.

prompt
A cue displayed at your terminal by the shell, telling you that the shell is ready to accept
your next request. The prompt can be a character or a series of characters. The
ICON/UXV system default prompt is the dollar sign character ($).

printer
An output device that prints the data it receives from the computer on paper.

process
Generally a program that is at some stage of execution. In the ICON/UXV system, it
also refers to the execution of a computer environment, including contents of memory,
register values, name of the current directory, status of files, information recorded at
login time, and various other items.

program
The instructions given to a computer on how to do a specific task. Programs are user
executable software.

read-ahead capability
The ability of the ICON/UXV system to read and interpret your input while sending
output information to your terminal in response to previous input. The ICON/UXV
system separates input from output and processes each correctly.

relative path name
The path name to a file or directory which varies in relation to the directory in which
you are currently working.

remote system
A system other than the one on which you are working.

root

/-

The source of all files and directories in the file system, designated by a slash character A

(~. ~

GL-8 ICON INTERNATIONAL

(

c

GLOSSARY

screen editor
An editing program in which text is operated on relative to the position of the cursor on
a visual display. Commands for entering, changing, and removing text involve moving
the cursor to the area to be altered and performing the necessary operation. Changes
are viewed on the t·erminal display as they are made. See text editor, compare with
line editor.

search pattern
See string.

search string
See string.

secondary prompt
A cue displayed at your terminal by the shell to tell you that the command typed in
response to the primary prompt is incomplete. The ICONjUXV system default
secondary prompt is the "greater than" character (».

shell
An ICON/UXV program that handles the communication between you and the
computer. The shell is also known as a command language interpreter because it
translates your commands into a language understandable by the computer. The shell
accepts commands and causes the appropriate program to be executed.

shell procedure
An executable file that is not a compiled program. A shell procedure calls the shell to
read and execute commands contained in a file. This lets you store a sequence of
commands in a file for repeated use. It is also called a command file. See executable
file.

silent character
See hidden character.

software
Instructions and programs that tell the computer what to do. Contrast with hardware.

source code
The English-language version of a program. The source code must be translated to
machine language by a program known as a compiler before the computer can execute
the program.

special character
See metacharacter.

special file
A file (called a device driver) used as an interface to an input/output device, such as a
user terminal, a disk drive, or a line printer.

ICON/UXV EDITING GUIDE GL-9

~~- .. __ .. _--_.

GLOSSARY

standard input
An open file that is normally connected directly to the keyboard. Standard input to a
command normally goes from the keyboard to this file and then into the shell. You can·
redirect the standard input to come from another. file instead of from the keyboard; use
an argument in the ,form < file. Input to the command will then come· from the .specified ..
fi~. ..

standard output
An open file that is normally connected directly to a primary output device, such as a
terminal printer or screen. Standard output from the computer normally gOes to this ·file
and then to the output device. You can redirect the standard output into another file
instead of to the printer or screen; use an argument in the form> file. Output will then
go to the specified file.

string
Designation for a particular group or pattern of characters, such as a word or phrase,
that may contain special characters. In a text editor, a context search interprets the
special characters and attempts to match a specified string with an identical string in
the editor buffer.

string value
A specified group of characters that IS symbolized to the shell by a variable. See
variable.

subdirectory
A directory pointed to by a directory one level above it in the file system organization;
also called a child directory.

system administrator
The person who monitors and controls the computer on which your ICONjUXV system
runs; sometimes referred to as a super-user.

terminal
An input/output device connected to a computer system, usually consisting of a keyboard
with a video display or a printer. A terminal allows you to give the cdmputer
instructions and to receive information in response.

text editor
Software for creating, changing, or removing text with the aid of a computer (known as
text processing). M9st text editors have two modes--an input mode for typing in text,
and a command mode for moving or modifying text. Two examples are the ICON/UXV
editors ed and vi. See line editor and screen editor.

text formatter
A program that prepares a file of text for printed output. To make use of a text
formatter, your file must also contain some special commands for structuring the final
copy. These special commands tell the formatter to justify margins, start new
paragraphs, set up lists and tables, place figures, and so on. Two text formatters
available as add-ons to your ICON/UXV system are nroff and troff.

GL-IO ICON INTERNATIONAL

GLOSSARY

text input mode
A text editing mode where the text you type is added into the buffer. To execute a
command, you must leave the input mode. See command mode, compare with append
mode and insert mode.

timesharing
A method of operation in which several users share a common computer system
seemingly simultaneously. The computer interacts with each user in sequence, but the
high-speed operation makes it seem that the computer is giving each· user its complete
attention.

tool
A package of software programs.

troff
A text formatter available as an add-on to the ICON/UXV system. The troff program
drives a phototypesetter to produce high-quality printed text from a file. See text
formatter.

tty
Historically, the abbreviation for a teletype terminal. Today, it IS generally used to
denote a user terminal.

user
Anyone who uses a computer or an operating system.

user-defined
Something determined by the user.

user-defined variable
A shell name given by the user for the value of a string of characters. See variable.

utility
Software used to carry out routine functions or to assist a programmer or system user in
establishing routine tasks.

variable
A symbol whose value may change within a program or a repetition of a program. In the
shell, a variable is a name representing some string of characters (a string value). Some
variables are normally set only on a command line and are called parameters
(positional parameters and keyword parameters). Other variables are simply
names to which the user (user-defined variables) or the shell itself may assign string
values. (Keyword parameters are discussed fully in ICON/UXV System Shell Commands
and Programming; see description in Appendix A.)

video display terminal
A terminal that uses a televisionlike screen (a monitor) to display information. A video
display terminal can display information much faster than printing terminals.

ICONjUXV EDITING GUIDE GL-ll

GLOSSARY

visual editor
See screen editor.

working directory
See current directory.-

c\
GL-12 ICON INTERNATIONAL

.... ,'
.' .;", .

·"iriitd .ttlthe U.S.A.

~ ¢6p'yriQttt19~
IcOn Intematr6nal,Ir:lc:

AU rights reseNtcf worldwide.
','1",",::,

171-063-003 A 1

(t. '-/)

I'
1"

"'-

