
~ PROCEEDINGS
VI

OF THE en
~ ~

Q .

~ 1975 SAGAMORE COMPUTER CONFERENCE
0
~
m

ON

PARALLEL PROCESSINCi

PROCEEDINGS
OF THE

1975 SAGAMORE COMPUTER CONFERENCE
ON

PARALLEL PROCESSING

Papers presented on

August 19-22, 1975

Department of Electrical & Computer Engineering

SYRACUSE UNIVERSITY

Copyright © 1975
IEEE Computer Society~.
P.O. Box 639
Silver Spring, Maryland 20907

Additional copies are available from:
IEEE Computer Society
5855 Naples Plaza, Suite 301
Long Beach, CA 90803

Manufactured in the U.S.A.

PREFACE

The Sagamore Computer Conference has been held annually for the past four years at the former

Vanderbilt summer estate in the Central Adirondack Motmtains. The Conference was originally conceived

to provide a secluded environment, a 1300-acre preserve surrounding the private Sagamore Lake, for the

participants with excellent opportunities for exchanging ideas and learning each other's research

activities. Thus informative discussions may be made not only during the technical sessions but also

throughout the various sports and social gatherings provided by the Conference.

The first Sagamore Computer Conference was held on August 23-25, 1972. The subject of that con­

ference was on "RADCAP (Rome Air Development Center Associative Processor) and Its Applications". About

90 invited participants attended the 2-day conference to hear the 17 technical papers presented. The

Conference Proceedings were published and distributed by RADC and Syracuse University, co-sponsors of

the Conference. In 1973, the Conference broadened its scope to "Parallel Processing" and issued the

Call-for-Papers announcement. Among the submitted papers, 34 were accepted and presented on August 22-

24, 1973. The 1973 Conference was sponsored by Syracuse University in cooperation with IEEE and ACM.

Copies of its Proceedings (IEEE Catalog Number 73 CH0812-8 C) may be available from any one of these

institutions. The 1974 Conference was extended to three days (August 20-23, 1974) to provide the

participants with more time for individual activities. In addition to a panel ,discussion, the part­

icipants heard the presentation of 35 technical papers. The Conference was again sponsored by Syracuse

University, but the Proceedings were published and distributed by Springer-Verlag as Volume 24 in their

series of Lecture Notes in Computer Science.

Since 1972, the number of submitted papers and, in particular, the number of requests to attend

the Conference have increased significantly and persistently. In 1973 and 1974, the Minnowbrook

Conference Center was opened to accommodate the overflow from Sagamore. But this year, even with this

added facility, we had to turn down many requests to attend the Conference. Thus, the Conference had

grown out of Sagamore (as well as Minnowbrook) accommodations, and, much to our regret, this year's

Conference had to be the last one held at Sagamore.

The success of the Sagamore Computer Conferene is mostly due to the vigorous support of many

individuals. For this year's conference we are grateful to Col. Robert D. Krutz of Rome Air Development

Center for his enlightening Keynote Address. Also, at the request of many past Sagamore participants,

this year we invited Professors Enslow, Kuck, Ramamoorthy, and Yau to write survey papers on various

computer architectures related to Parallel Processing. Their time and effort in this respect are very

much appreciated. We appreciate the efforts of the authors who submitted papers for consideration.

We are also much indebted to all the reviewers who, in order to meet the stringent review deadlines,

put aside their own busy work schedule to carefully evaluate the papers sent for their comments. The

success of the Conference is also attributable to the generous help we received from the session

chairpersons. In addition, a special acknowledgement is due to Elliott McCulley, Anne Woods,

Mary Jo Fairbanks, and Angela Wisniewski for their administrative assistance and typing help.

iii

Tse-yun Feng

Department of Electrical & Computer Engineering

Syracuse University

\ .. -

TABLE OF CONTENTS

KEYNOTE ADDRESS
Parallel Processing: A Dilemma

Col. Robert D. Krutz
Rome Air Development Center

INVITED PAPERS
Associative Processor Architecture - A Survey

S. S. Yau, H. S. Fung . • • • • • .•.••.••..••.••.•••.••

Parallel Processor Architecture - A Survey
D. Kuck ••. • • • • • • · • • • • • • • · · • • • • • • • • · · • • · • • • · • • · •

Pipeline Processor Architecture - A Survey
C. V. Ramamoorthy, H. F. Li

Multiprocessor Architecture - A Survey
P. H. Enslow

SESSION 1 MULTIPROCESSORS
Chairperson: Professor O. Garcia

Parallel Processing in Software and Hardware - The MASCOT Approach
K. Jackson, C. Moir • • • • • • · • · · • • · • · · • • · • •

Sequencing Control in Multifunctional Pipeline Systems
C. V. Ramamoorthy, H. F. Li · · · · · • • · · · · · · · · • · · ·

Time-Shared Memory-Processor Interface
P-E Danielsson, B. Gudmundsson · · · · · · • • · · · · · • · · · • · • · • • • • • •

Dynamic Tuning in an Asymmetric Multiprocessing Environment
H. Nirsberger, S. Vestal · · · · · · · • • • • · · · · · · · • • · · · · ·

Parallelism in Automatic Testing
M. N. Matelan

' Multi-Microprocessor System for Industrial Control
A. C. M. Chen, W. D. Barber . • . . . · · · · · · • • • · · · · · · · · · · · ·

SESSION 2: PROCESSOR/MEMORY INTERCONNECTIONS
Chairperson: Dr. G. Couranz

~· Analysis Techniques for SIMD Machine Interconnection Networks and the Effects of Processor
Address Masks
H. J. Siegel • • • • • • .

Design Criteria for a Switch for a Multiprocessor Computing System
I. A. Davidson, J. A. Field · • · · · · · • · · · · · · · •

A Cellular Data Manipulating Array
I-N Chen • • • • • • · • • • •

v· A Two Dimension Pipe-Lined Processor for Communication in a Parallel System
V. M. Cordonnier • • • • • · • • • • • · • • • • • • · • • ·

v

Page

1

15

40

63

71

79

90

99

100

105

106

110

114

115

TABLE OF CONTENTS (CONT'D.)

SESSION 3: ASSOCIATIVE/PARALLEL PROCESSORS
Chairperson: Capt. A. Klayton

The Design and Implementation of a High/Low Magnitude Search Instruction on PEPE
M. C. Di Vecchio •••••••..•.•••••••••.•.••••.

The Associative Linear Array Processor
C. A. Finnila •••••.•••••

Programming the Associative Linear Array Processor
H. H. Love • • • • • • •• • • • • •

\,/ Architecture for a Highly Reliable Parallel Computer System
W. W. Gaertner · • • · • • •

\ Parallel Processing in a Cellular Logic Array

Page

122

123

124

125

K. S. Lin, Y. S. Shen, D. R. Smith .•••••••. • • • •• • • • . • • • • • 126

SESSION 4: PROGRAM DECOMPOSITION AND PETRI NETS
Chairperson: Dr. B. Hays

The Design of Programs for Asynchronous Multiprocessors
P. H. Mason . . • • • • • • • • • • . • • . . • . • • • • . . • • • • . . • . • 127

A Criterion for Synchronization Schemes
R. C. Chen, J. E. Coffman . • • • . • . • . • . . • • • • • • . • . . 130

A Comparative Analysis of Two Parallel Computation Models
S. C. Meyer, J. R. Jump . • . • • • . • . • . • . • . . • • • . . • . • • . . • • • . 131

SESSION 5: STARAN
Chairperson: Mr. O. Reimann

STARAN Complex-Defense Mapping Agency US Army Engineer Topographic Laboratories
L. A. Gambino, R. L. Boulis • • . • • . • • • • • • . • • . • . 132

A Parallel Approach to High PRF Doppler Radar Signal Processing
F. E. Schenfele •• • . • • . •...• 142

An Optimal Synchronous Refrarning Technique Using an Associative Processor
T. L. Saxton, C. C. Huang •. · . • • . • • • • • . . • . • . . • • • • • . • • • . • • 152

SESSION 6: MEMORY ORGANIZATION
Chairperson: Professor T. Feng

~. Organization of Semiconductor Memories for Parallel-Pipelined Processors
F. A. Briggs, E. S. Davidson • • • • · • • · • • • • • • · • · • • • • • • • • • • 155

~· Storage Schemes in Parallel Memories
H. D. Shapiro

The Multi-Dimensional Access Memory in STARAN
K. E. Batcher

159

167

vi

TABLE OF CONTENTS (CoNr'n,)

Page

SESSION 7: LANGUAGES
Chairperson: Professor R. J, Zingg

Polyautomaton Design for Recognizing Certain L System Languages by Parallel Computation
C. Weiman, J. Rothstein • • • . • 168

SIMPARAG - Simultaneous Parallel Array GraD1111ars
P. S-P Wang, W. I. Grosky • . • 171

Preliminary results of a Comparative Analysis of ILLIAC IV Languages
R. L. Milton • • • . •

Systems Design and Documentation Using Path Descriptions
A. C. Shaw ••••••••••••••••••••

A New Scheme for Analyzing Parallel Processing Systems
I. Margaria, A. Meo, M. Zacchi • • • • • • • • • •

Fortran Extension Design Concepts for Associative Processing

172

180

182

E. B. Allen, A. G. Larson • . • 186

SESSION 8: COMPILING TECHNIQUES
Chairperson: Professor J, Marzolf

Parallel Execution on Array and Vector Computers
L. Lamport • . • • • • 187

Formalizing Code Generation in the Multi Mini Computer Compiler
C. V. Ramamoorthy, P. Jahanian • • • • • • • • • • • • •••••••••

Evaluation of a Polish Form Expression on a FI-FO Queue:
Realization of a High Level "Pipeline" Computer
G. G. Baille, J. P. Schoellkopf • • • • • • • • • • •

SESSION 9: OPERATING SYSTEMS
Chairperson: Capt. R. Johnson

A Comparison of Approximative Scheduling Algorithms
K. Ecker ••••••••••••••••••••

A New Approach Towards the

A Linear Scheduling Algorithm for a Forest on a Multiprocessor System
D. Hennings, S. Schindler, M. Steinacker •••••••••••••

A Graph-Theoretic Characterization of a Class of Synchronizing Primitives
P. B. Henderson, Y. Zalcstein ••••••••••••••••••••

SESSION 10: IMAGE PROCESSING
Chairperson: Ms. A. Krygiel

An Image Array Processor for the Investigation of Architectures and Algorithms

192

200

201

202

203

R. M. Brown, P. L. Neely • 204

Parallelism in AI Problem Solving: A Case Study of Hearsay II
R. D. Fennell, V. R. Lesser • • • • • • • • • • • • • . • • • • • • • • • • • • • • 214

vii

TABLE OF CONTENTS CCoNr'n,)

SESSION 11: DATA FLOW ARCHITECTURE
Chairperson: Professor J, Dennis

Data Flow Languages
J. E. Rumbaugh •

A Data Flow Multiprocessor
J. E. Rumbaugh • • . . •

Packet Communication Architecture
J. B. Dennis

Structure Processing in a Data-Flow Computer
D. P. Misunas • . • , • • , . . • .

SESSION 12: ALGORITHMS AND APPLICATIONS
Chairperson: Dr. R. Downs

The Stability of a Parallel Algorithm for the Solution of Tridiagonal Linear Systems
M. A. Diamond • • • , • • • . • , . • • • • • • , • • • • • • • • • • • • • •

Parallel Algorithms for Evaluation of Arithmetic Expressions

Page

217

220

224

230

235

A. Deb, A. Mukhopadhyay • • • • • . • • • • . • • • • • • • • • • • • • • • 236

On Parallel Triangular System Solvers
S. Chen, A. Sameh • • . • • • • • • . • 237

Sorting Algorithms for Parallel Processing
C. C. Lee, T. Y. Feng • • • • • . • • • • • • • • • • • • • . • • • • • • • . • • • • 239

Short-Term Weather Prediction on ILLIAC IV
J, S. Daley, B. D. Underwood ••••. 240

The Feasibility of Using Associative Processors in Change Detection
P. B. Berra, A. K. Singhania • • • • . • • • •••••••••••••••• • • • 241

Plasma Simulation Using an Associative Processor
K. B. Irani, D. S. Lo •••. , •••.•••••••.••••••••• · •••••

Some Timing Figures for Inverting Large Matrices Using the STARAN Associative Processor
P. B. Berra, A. K. Singhania • • • • • • • • • • • • • . • • • • • • • • • • • • •

SESSION 13: PERFORMANCE EVALUATION
Chairperson: Professor E. Stabler

An Experimental Comparison of CDC STAR-100 and 7600 Computer Speeds for Explicit Finite­
Difference Hydrodynamics Calculations

242

243

T. E. Rudy ••••••• , , •.. , . , • 244

Evaluation Criteria for Process Synchronization
R. J, Lipton, L. Synder, Y. Zalcstein ••.••••. • • ••.••• • • • • • 245

Exploiting Vector Mode in an SISD Computer
B. L. Buzbee, L. E. Rudsinski • • • · . • • • • • • • • • • · • • • • • • • • • • • • 251

viii

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

ASSOCIATIVE PROCESSOR ARCHITECTURE - A SURVEY

S. S. Yau and H. S. Fung
Departments of Computer Sciences and Electrical Engineering

Northwestern University
Evanston, Illinois 60201 U.S.A.

(Invited Paper)

Abstract -- A survey of associative proces­
sor architecture is presented. Based on their
architecture, associative processors are classi­
fied into four categories, namely fully parallel,
bit-serial, word-serial and block-oriented. The
fully parallel associative processors are divided
into two classes, word-organized and distributed
logic. The architecture of each of these cate­
gories is described.

Introduction

An associative processor can generally be
described as a processor which has the following
two properties: (1) Stored data items can be
retrieved using their content or part of their
content (instead of their addresses) and (2) da­
ta transformation operations, both arithmetic and
logic operations, can be performed over many sets
of arguments with a single instruction. Because
of these parallel processing characteristics,
associative processors have a much faster data
processing rate than conventional sequential
computers, and hence are more effective in han­
dling many types of information processing
problems, such as information storage and re­
trieval of rapidly changing data bases, fast
search of a large data base, arithmetic and logic
operations on large sets of data, control and
executive functions in large-scale computer sys­
tems, radar signal processing and weather compu­
tations. However, because of their relatively
high implementation cost, associative processors
are usually used in conjunction with standard
sequential computer systems so that many re­
quired high-speed parallel processing ~asks which
cannot be effectively executed by sequential
processors are performed by associative proces­
sors. It is anticipated that associative proces­
sors will be used more extensively in the future
for enhancing the performance of many special­
purpose and general-purpose computer systems.

In this paper, we will present a survey of
the architecture of various associative proces­
sors. We will first give a general description
of associative processor architecture and then
classify associative processors on the basis of
their architecture. Then we will discuss each
of the categories of associative processors in
some detail.

l

General Description

In general, the architecture of an associ­
ative processor can be described as shown in
Fig. 1, which consists of an associative memory,
arithmetic and logic unit (ALU), control system,
instruction memory, and an input/output inter­
face. The major difference between an associa­
tive processor as shown in Fig. 1 and a standard
sequential processor is the use of an associa­
tive memory instead of a location-addressed
memory. Because of this difference, all the
other blocks are also different between an asso­
ciative processor and a standard sequential
processor. Furthermore, the associative memory
has a major impact on the architecture of an
associative processor, and the associative
processor architecture can be classified based
on the organization of its associative memory.

An associative memory [l] - [8] can be
defined as a memory system with the property
that stored data items can be retrieved by their
content or part of their content (that is, the
first property of an associative processor). An
associative memory is also called catalo'
memory [9], content-addressed memory [10 , data­
addressed memory [11], 1arallel search memo;;-­
[12], search memory [13 - [1s], search associa­
tive memor [16], content-addressable memory

17 , distributed logic memory [18], associative
ushdown memor [19], and multi-access associa­

tive memory 20].

From the hardware point of view, in order
to retrieve stored data items by their content
or part of their content, it is required that
the memory words can be accessed by matching
their content or part of their content with the
given search key words, instead of by an address
as in a location-addressed memory. The basic
memory element of the associative memory is called
the bit-cell, which has the property that one-bit
information can be written in, read out, and
compared with interrogating information. The
search operations, which consist of masking and
comparison, are executed in a fashion that de­
pends on the organization of the associative
memory. The search key word can be compared
with all the words of the memory through the
interrogating bit drives and comparison logic
circuitry. The possibility of matching multiple

1975 SAGAMORE (oMPUTER CONFERENCE ON PARALLEL PROCESSING

words to a search key word requires the associa­
tive memory to have some method of tagging all
the matched words. The tag function and matched­
word indication are performed by the so-called
word-match tag networks. Those matched words can
be accessed with a single instruction [4], [6],
[7], [21]. It is noted that a memory can have
the associative property by performing either
parallel comparison (word-parallel or word­
serial) or serial comparison (bit-serial).

The first associative memory was developed
by Slade and McMahon [9] in 1956 using cryotrons.
Since then, associative memories have been imple­
mented using tunnel diodes [22], [23], evapo­
rated organic diode arrays [2], ma~netic cores
[22], [24] - [27], plated wire [22J, [28], thin
permalloy film on copper wire [22], semiconduc­
tors [29], transfluxors [30], biax cores [31],
laminated ferrites [32], magnetic films [33],
solenoid arrays [34], bicore thin film sandwiches
[22], multi-aperture logic elements [35], and
large-scale integrated (LSI) circuits [36]. The
capacity of these associative memories is limited
by factors such as half-select noise which limits
the word length and interrogation drive problems
which limit the number of words. Because of
these limitations and because of high implementa­
tion cost, most associative memories in early
years had small capacity, say up to lK words
with length up to 100 bits [26]. Recent associ­
ative memories have become larger and more
flexible due to the deve'lopment of new archi­
tectural concepts and the use of LSI technology.
For example, in PEPE (parallel element processing
ensemble) [37] - [42] there are a number of pro­
cessing elements each of which contains a simple
lK X 32-bit random-access memory, called the
element memory, which is shared on a cycle-steal­
ing basis by the arithmetic unit, correlation
unit and associative output unit in the processing
element to perform associative processin$· In
each associative array module of STARAN L43] -
[46], a so-called multi-dimensional access
memory - implemented by a 256 X 256-bit random­
access memory is used to accommodate both bit­
slice accesses for associative processing and
word-slice accesses for input/output.

An associative memory may perform the
following comparison operations:

equal
less than
less than or equal
maximum value
between limits
next higher

not equal
greater than
greater than or equal
minimum value
not between limits
next lower

An associative processor normally performs other
complicated data transformation operations. For
instance, the matched words in the associative
memory are retrieved serially to the ALU through
the output circuit of the associative memory
under the control of the control system. The ALU
performs the specified data transformation opera­
tions and the result is then stored to the
associative memory, if necessary.

2

The first associative processor was devel­
oped by Behnke and Rosenberger [47] in 1963
using cryotrons. Since then a number of labor­
atory models of associative processors have been
built using various types of associative memories.
However, associative processors have not been
put to practical us'e until the development of
PEPE (parallel element processing ensemble)
[37] - [42] and STARAN [43]-[46].

The architecture of associative processors
can generally be classified into four categories
according to the comparison process of their
associative memories. The four categories are
fully parallel, bit-serial, word-serial, and
block-oriented. These are two types of fully
parallel associative processors: word-organized
and distributed logic. The former has its
comparison logic associated with each bit-cell
of every word, and the latter has its comparison
logic associated with each character-cell (for a
fixed number of bits) or a group of character­
cells. In a bit-serial associative processor,
only one bit-column (bit-slice) of all the words
is operated at a time. A word-serial associa­
tive processor essentially represents hardware
implementation of a simple program loop for
search. The important factor which contributes
to the relative efficiency of this approach as
compared with programmed search in a standard
sequential processor is that the instruction
decoding time is greatly reduced since the
search operation requires only a single instruc­
tion in the word-serial associative processor.
A block-oriented associative processor can be
implemented by using a logic-per-track rotating
memory which consists of a head-per-track disk
with some logic associated with each track.

In the following sections, we will discuss
each of these categories in more detail.

Fully Parallel Associative Processors

Fully Parallel Word-Organized Associative
Processors

As mentioned before, the major character­
istic of a fully parallel word-organized
associative processor is that the comparison
logic is associated with each bit-cell of every
word of its associative memory. Thus, its
comparison process is performed in a parallel­
by-word and parallel-by-bit fashion. The general
organization of the associative memory with the
ALU in such an associative processor is shown
in Fig. 2. In this figure each cross-point
represents a bit-cell. Although the operations
of a fully parallel word-organized associative
processor are simplest and fastest compared to
other types of associative processors, its hard­
ware is also the most complicated because each
bit-cell ·has to contain the comparison logic.
Because of its hardware complexity, this type
of associative processor was developed only
during the early stages although many experi­
mental models were developed and their fully

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

parallel word-organized associative memory sys­
tems used cryogenic components [9], [11], [31],
[48] - [53], magnetic cores [24], [25] and cut­
point cellular logic [54].

Distributed Logic Associative Processors

A distributed logic associative processor
is a fully parallel character-oriented associa­
tive processor whose memory (usually called
distributed logic memory [18]) has its comparison
logic associated with each character-cell or each
group of character-cells. A number of distri­
buted logic associative processors have been
developed [37] - [42], [55] - [62]. The first
associative processor of this type was proposed
by Lee [55] and a number of its variations were
presented later [56] - [61]. The most well-known
associative processor system of this type so far
developed is the PEPE [37] - [42] by Bell Labor­
atories for the U.S. Army Advanced Ballistic
Missile Defense Agency. In this section, these
associative processors will be briefly described.

Lee's Distributed Logic Associative Proces­
sor and Its Modifications. The distributed
logic associative processor proposed by Lee [55]
can be represented by the block diagram shown in
Fig. 3. Each character-cell has a single cell
state element (state part) S which may either be
in an active state or in a quiescent state, and
each character-cell also has a number of cell
symbol elements (symbol part) x1 , ••• , X de­
pending upon the size of the symbol alph~bet.
The cell state element or cell symbol element is
a bistable device, such as a flip-flop. Each
character-cell stores one character symbol of in­
formation and can connnunicate with its two neigh­
boring character-cells as well as the control
system. A string of information is therefore
stored in a correspondingstring of character-cells.

Each data block consists of a name string and
an arbitrary number of parameter strings. Every
name string is preceded by a tag a, and every
parameter string is preceded by a tag S. When
the input search key is a name string, the fully
parallel distributed logic memory is expected to
output all of the parameter strings associated
with the name string. This is the so-called
direct retrieval. On the other hand, when the
input search key is a parameter string, the fully
parallel distributed logic memory is expected to
output all of the name strings associated with
that parameter string. This is so called cross­
retrieval. In order to perform direct retrieval
and cross retrieval, each character-cell in the
fully parallel distributed logic memory must have
enough cell logic circuitry so that it can pro­
duce a "yes" or "no" answer to a simple question
such as whether the symbol of the character-cell
is A or not A. If we want to retrieve all of the
parameter strings whose name is AB, we will ask
each character-cell whether its character symbol
is A. If a cell gives us an answer "yes," we
also want each character-cell to have enough
cell logic circuitry so that it can signal its
next character-cell to be ready to determine

3

whether the symbol of the character-cell is B.
The character-cells which finally respond "yes"
to the name string AB are now ready to signal
all those character-cells storing all the para­
meter strings associated with the name string
AB to output their contents.

Typical operations of a character-cell are
changing state, transmitting state information
to a neighboring character-cell, accepting data
from the input bus, or putting its character
symbol on the output bus. When a character-cell
is in an active state and when the input signal
lead is activated, the symbol which is carried
on the input bus is then stored in that charac­
ter-cell. When a character-cell is in an active
state, an output signal causes that character­
cell to read out its symbol through the output
bus and store its symbol in the output symbol
buffer. Comparison operation is controlled by
the match signal through the comparison logic
of each character-cell. The stored symbol of
each character-cell is compared with the symbol
carried on the input bus, and a signal from each
matched character-cell is transmitted to one of
its neighboring character-cells which then
becomes active. The directions of transmission
of the signals are controlled by the signal on
the direction leads. All the character-cells
evaluate and act according to the input condi­
tions (given by the input and state buses)
independently and simultaneously.

Lee's system has been experimented using
cryogenics consisting of 72, 8-bit character­
cells [62].

Several modifications of Lee's original
system have been proposed. Lee and Paull [18]
proposed a distributed logic memory using two
cell state elements instead of one for each
character-cell, more control bus leads and a
threshold circuit. They defined the complex
symbol of a character-cell which includes both
the two cell state elements and the cell symbol
elements of the character-cell. The matching
process requires that an entire complex symbol
be used for matching. They presented a more
complicated design for a character-cell memory
and an external control unit in order to have
more capabilities to deal with problems such as
cross retrieval, erasing, gap closing and pre­
ference which appear in information retrieval.

In order to overcome the propagation timing
problems, Gaines and Lee [59] proposed to re­
design the logic circuitry using two different­
purpose cell state elements, called the match
flip-flop and control flip-flop, and adding a
mark line to simultaneously activate all cells
to the right of each active cell up to the first
cell whose control flip-flop is set. Due to the
control of the propagation of the marking signal,
this memory system is capable of performing two
new simultaneous operations, shifting and mark­
ing strings.

Cran~ and Githens [60] extended Lee's

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

system to a two-dimensional distributed logic
memory which could be used to perform highly
parallel arithmetic operations through the use
of a large number of identical processing units
on many sets of data simultaneously while re­
taining content-addressing capability to these
data sets. Such an extension can be illustrated
by the block diagram shown in Fig. 4.

Parallel Element Processin Ensemble PEPE
PEPE 37 41 is one of the two large-scale
associative processors developed to date. Its
basic concept was derived from Lee's distributed
logic associative processor and was originally
developed by Bell Laboratories for the U.S. Army
Advanced Ballistic Missile Defense Agency [37]
[39]. A second model of PEPE with both archi­
tectural and circuit technology improvements is
being developed by the Agency [40] - [42]. The
description of PEPE presented in this section is
primarily for the current model.

PEPE is composed of the following functional
subsystems: an output data control, an element
memory control, an arithmetic control unit, a
correlation control unit, an associative output
control unit, a control system, and a number of
processing elements. Each processing element
consists of an arithmetic unit, a correlation
unit, an associative output unit and a 1024 X 32
bit element memory. In addition, there are
primary power and signal distribution subsystems
to convert and route power and control and data
signals between various functional subsystems.
It is noted that the number of processing ele­
ments used in the PEPE is variable and may be
increased or decreased to meet the requirements
of the application. This variability has no
impact on PEPE system performance, except that
enough processing elements must be available to
accommodate the expected number of objects to be
tracked. A PEPE with 288 processing elements
organized in 8 element bays was presented in [40].

The block diagrams of PEPE and its processing
elements are shown in Figs. 5 and 6, respectively.
The processing elements are the main computation­
al component of PEPE. Selected portions of the
data processing load are loaded from the host
computer (a CDC 7600) to the processing elements.
The loading selection process is determined by
the inherent parallelism of the task and the
ability of PEPE's unique architecture to mani­
pulate the task more efficiently than the host
computer. Each processing element is delegated
the responsibility of an object under observa­
tion by the radar system. Each processing ele­
ment maintains a data file for specific objects
within its memory and uses its arithmetic capa­
bility to continually update its respective file.

The processing element operation and control
are directed by the three global control units as
follows: All the processing element arithmetic
units, correlation units, and associative output
units are controlled simultaneously by the arith­
metic control unit, correlation control unit and
associative output control unit, respectively.

4

In applying PEPE to radar data processing,
the data for each tracked object are stored in
a separate processing element memory. The
arithmetic units are used to execute tracking
and other programs on all or a selected subset
of the tracked objects simultaneously. The
control units are used to input new radar data
into the correct processing element memories,
and radar orders are obtained from th~ processing
element memories by the arithmetic output units
for transmission to the radar interface computer,
concurrent with the processing in the arithmetic
units. Arithmetic programs, correlation pro­
grams and output programs can be executed in­
dependently and simultaneously.

Each arithmetic unit, correlation unit and
arithmetic output unit contains a content­
addressed tag register, and only those arith­
metic units, correlation units and arithmetic
output units whose tag register contents match
the currently specified "activity" tags will
be set to perform subsequently issued instruc­
tions. All these units have the capability to
make less-than, greater-than, and equal to
comparisons between their contents and data
issued by the respective control unit. This
capability provides content-addressed access to
object data and is achieved through a set of
registers whose contents can be compared with
the input data stream. Only data meeting compa­
rative criteria is stored in the processing
element memory.

Arithmetic processes such as track updating,
track prediction, discrimination, and inter­
ceptor guidance are performed in parallel by the
arithmetic units. All the activated arithmetic
units simultaneously execute instruction signals
issued by the arithmetic control unit.

Input of new information to the processing
element is handled by the correlation unit under
control of the correlation control unit. The
correlation processes of the correlation unit
consist of comparing newly received object posi­
tion information (as derived from radar returns)
with predicted object position information
generated by the processing element arithmetic
units and transferred to the respective correla­
tion units. Information on one object at a time
is broadcast by the correlation control unit to
all correlation units simultaneously, and all
or a selected subset of correlation units
compare their stored data with the broadcast
data. The object information is input to the
correlation unit (or correlation units), where
correlation occurs, or into the first empty
processing element memory in those cases where
no correlation occurs.

Output information sent to the radar is
handled by the associative output unit under the
control of the associative output control unit
and control system through the output data
control. Allocation of pulses for the radar
consists of ordering pulse requests generated
by the processing elements as the result of

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

object file updates calculated by the arithmetic
units and stored in the respective element
memories for access. The ordered retrieval of
the pulse requests on one object at a time are
handled by the associative output control unit
using a maximum-minimum search for associatively
addressing data.

Bit-Serial Associative Processors

Because of the expensive logic in each
memory bit and the communication problems in
fully parallel associative processors, the bit­
serial word-parallel associative processor using
the concept of parallel processing with vertical
data (one bit-column of a large number of words
is processin$ at a time) w~s introduced by Shoe­
man in 1960 L63]. His system is essentially a
hypothetical vertical data processing computer
(referred to as an orthogonal computer) which
embodies both vertical data processing and con­
ventional (referred to as horizontal data proces­
sing) techniques. Shoeman also gave descriptions
and algorithms for several vertical data proces­
sing instructions. Since the number of words to
be processed is usually larger than the number of
bits in each word, this approach represents a
compromise between fully parallel and word-serial
associative processing.

Since then, this concept has resulted in
many proposals for associative processors.
Kaplan [14] proposed a bit-serial associative
memory which he called a search memory; this
memory may be used as a subsystem for a general­
purpose computer. The main memory may communicate
via a memory register with the search memory sub­
system, accumulator, arithmetic unit, control
unit and input/output unit. The match logic to
execute search operations was placed in the
search memory subsystem. Ewing and Davies [28]
proposed the design logic of a bit-serial associ­
ative processor. The block diagram of a bit­
serial associative memory with the ALU is shown
in Fig. 7. In this memory, storage for one bit
is provided at each intersection of a word line
and a bit line, and only one bit-column is opera­
ted one at a time. The particular bit-column
is selected by the bit-column select logic. A
pulse on a bit line causes a signal to be emitted
by each bit on each word line. The signals are
transmitted through the word lines to the sense
amplifiers. The word logic associated with each
word line gives the ability to perform associa­
tive processing. This logic is identical for all
words and consists of a sense amplifier, storage
flip-flops, a write amplifier and control logic.
The storage flip-flop remembers the match state
from one interrogating bit to the next. The
output of the sense amplifier determines the
state of the storage flip-flops in various ways
as determined by the control signals from the
control unit. The capability of the storage
flip-flops to act as a shift register provides the
co11DI1Unication link between adjacent words. Such
a bit-serial associative processor can be con­
sidered as an external logic associative processor,

5

in contrast to a distributed logic associative
processor.

Chu [3] proposed the implementation of a
bit-serial associative memory which makes use of
conventional destructive-readout magnetic memory
elements. This memory has two-dimensional read/
write capability, resulting in two word lengths:
a short-word length which is the number of bits
in a word and a long-word length which is the
number of words in a bit-column because the
number of bits in a word is usually smaller than
the number of words. This memory can read or
write in either a horizontal or vertical direc­
tion of the array, called the short-word mode or
the long-word mode, respectively. The short­
word mode is the conventional memory organization.
The long-word mode is equivalent to bit-serial
associative technique.

Bit-serial associative processing through
the use of 2-1/2 D core search memory was re­
ported by many researchers [64], [65]. Fulmer
and Meilander [66] presented a modular plated­
wire implementation of a bit-serial associative
processor which has arithmetic capability as well
as storage and logic capability at each word of
the memory.

Goodyear Associative Processor (GAP), developed
by Goodyear Aerospace Corporation [67], uses the
processor modules as basic building blocks. Each
processor module contains 256 plated-wire proces­
sing elements. Each plated-wire processing
element consists of one plated-wire, which is a
memory device for one 256-bit word, and one
response store, whose function is to signal the
matching of the word, stored in the plated-wire.
The limit on the number of processor modules
largely depends on the hardware physical size (a
single plated-wire module occupies about 0.5
cubic foot) and the processor's speed require­
ments.

One of the two large-scale associative pro­
cessors developed to data is Goodyear Aerospace
Corporation's STARAN [43] - [46]. Because of
its importance we are going to discuss it in
more detail.

STARAN. The basic structure of STARAN is
shown in Fig. 8. It consists of a control system
and a number of associative array modules
(current system configuration allows up to 32
such modules). Each associative array module
contains a 256-word X 256-bit multi-dimensional
access memory, 256 simple processing elements,
a flip network (or called permutation network),
and a selector as shown in Fig. 9. There is a
_simple processing element for each of the 256
words of the memory, and each simple processing
element operates serially by bit on the data in
the memory word. This operational concept is
shown in Fig. 10. Using the flip network, the
data stored in the multi-dimensional access
memory can be accessed through the input/output
channel either in the bit direction or the word
direction. A flip network (or permutation

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

network) is also used for shifting and rearrang­
ing of data in an associative array module so
that parallel search, arithmetic or logical oper­
ations can be performed between words of the
multi-dimensional access memory. By proper
arrangements, the multi-dimensional access memory
can be implemented using random access memory
chips [45], [68].

To locate a particular data item, STARAN
initiates a search by calling for a match against
an input data item. All words in the memories
of all the modules that satisfy the search cri­
terion are identified by a single instruction.
The simple processing elements simultaneously
execute operations as specified by the associa­
tive control logic. Therefore, in one instruc­
tion execution, the data in all selected word
in the memories of all the modules are processed
simultaneously by the simple processing element
at each word.

The interface unit involves interface with
sensors, conventional computers, a signal proces­
sor, interactive displays and mass storage
devices. A variety of I/O options are implement­
ed in the custom interface unit, including the
direct memory access (DMA), buffered I/O (BIO)
channels, external function (EXF) channels and
parallel I/O (PIO). Each associative array
module can have up to 256 inputs and 256 outputs
into the custom interface unit. They can be
used to increase speed of inter-array data com­
munication, allow STARAN to communicate with a
high-bandwidth I/O device, and allow any device
to communicate directly with the associative
array modules.

A mass storage device, like a multihead
disk, is connected to the associative array
modules via the PIO. The information transfer
rates obtained with this configuration depend on
the cycle time and the number of heads on the
disk being used. In requesting data from the
disk, STARAN will send the disk one or more ex­
ternal functions specifying a starting sector
address, the number of sectors, and the direc­
tion of transfer. The disk system may interrupt
STARAN when the disk reaches the requested sector
to initiate the transfer over PIO lines. The
STARAN control instructions that actually read
or write the PIO can be synchronized to the disk
so that STARAN timing is slaved to the disk
timing during the transfer.

In 1973, an operational associative proces­
sor facility, called RADCAP, was installed at
Rome Air Development Center [69] - [72]. This
facility consists of a STARAN and various peri­
pheral devices, all interfaced with a Honeywell
Information Systems (HIS) 645 sequential computer
which runs under the Multics time-sharing opera­
ting system. The objective of the RADCAP faci­
lity is to explore various applications of the
system to various real-time problems.

Other Bit-Serial Associative Processors. In
addition to those presented before, several other

6

bit-serial associative processors have been
developed recently. Sanders Associates [73]
developed the OMEN computer in which a conven­
tional serial processor, such as DEC PDP-11, and
a bit-serial associative processor both address
an orthogonal memory, which has a capacity of
64 words X 16-bits. The associative processor
contains 64 identical processors which form the
vertical arithmetic unit that has bit-slice
access to the orthogonal memory. These 64 pro­
cessors perform the same operations at the same
time under the control of masks.

Hughes Aircraft Co. [74] developed an asso­
ciative processor which contains 10 bit-serial
associative memories and an MOS shift-register
bulk memory. The bulk memory consists of a set
of MOS shift registers, each having, at least
16,000 bits each. The purpose of this configura­
tion is to achieve efficient operation of an
associative memory when the data base is stored
in a large inexpensive mass storage device.

Raytheon Co. [36] developed the Raytheon
Associative/Array Processor (RAP) which contains
a processing element array and a direct array
access channel which facilitates bulk data trans­
fer to/from the processing element array. The
function of the processing element is to perform
search, arithmetic and logic operation on data
stored in its own private memory. Each proces­
sing element can be thought of as a bit-serial
microprocessor with associative capability.

It should be noted that byte-serial associ­
ative processors are conceived between bit-serial
and fully parallel associative processors. For
reasons of efficiency, at a reasonable cost, a
byte-serial word-parallel associative processor,
called the Associative Processor Computer System
(APCS), was proposed by Linde, Gates and Peng
[75J at System Development Corporation. APCS
contains two associative processing units and
a parallel input/output channel. The word logic
consists of byte operation logic, instead of bit
operation logic as in bit-serial associative
processors, and tags.

Word-Serial Associative Processors

As mentioned before, a word-serial associa­
tive processor essentially represents hardware
implementation of a simple program loop for
search. The important factor which contributes
to the relative efficiency of this approach as
compared with progrannned search in standard
sequential processor is that the instruction
decoding time is reduced since the search opera­
tion requires a single instruction in the word­
serial associative processor.

In 1962 Young [76] proposed to use "circula­
ting" associative memories to allow many memory
words to time-share a single set of content­
addressing logic. In 1966, Crofut and Sottile
[77] presented a word-serial associative proces­
sor based on a word-serial .associative memory

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

using n ultrasonic digital delay lines operating
at 100 MHz with 10 µsec delay time, where n is
the number of bits of a word. Each delay line
stores one bit of the word, and all bits of the
stored word propagate down the delay lines syn­
chronously. A stable oscillator (Stdlo) was
used to generate the synchronizing clock pulses
for advancing the address counter. Individual
words can be interrogated and updated when they
appear at the output of delay lines. The rewrite
control logic allows the delay-line system to
select either recirculating information or new
data inputs. The operational characteristics of
such a memory resemble that of a drum or disk.
Such a word-serial associative processor is shown
in Fig. 11. In 1969, Rux [78] presented a word­
serial associative memory with 35 glass delay
lines storing 2046 bits per line at 20.48 MHz
which was connected to a general purpose medium­
speed sequential computer called NEBULA [79],
[so].

Because of the slow speed of word-serial
associative memories only experimental models
have been developed for word-serial associative
processors.

Block-Oriented Associative Processors

For applications such as information storage
and retrieval where a large storage capacity is
required, neither bit-serial nor word-serial
associative processors are cost-effective. Bit­
serial associative processors become too expen­
sive, while word-serial associative processors
require a long processing time. Thus, block­
oriented associative processors, which use mass
rotating storage devices, such as a disk to
provide a limited degree of associative capabi­
lities, have been proposed [81] - [85].

Slotnick [81] and Parker [82] presented the
concept of logic-per-track devices which consist
of a head-per-track disk memory with some logic
associated with each track. Based on this con­
cept and Lee's distributed logic memory for in­
formation storage and retrieval applications,
Parhami [83] presented a block-oriented associ­
ative processor, called RAPID (stands for Rotating
Associative Processor for Information Dissemina­
tion), which can be shown in Fig. 11. Since the
data rates between head-per-track disks and
distributed logic memory is high, the RAPID
system is suitable for applications requiring a
large storage capacity which presently suffer
from the high cost of random access memories or
from performance degradation due to the frequent
transfers between primary and secondary memories.

Minsky [84] proposed the associativity on
rotating memories either in the form of drums or
disks. He defined the term "partially associa­
tive memory" by specifying the primitive struc­
ture of information (name part and data part)
to be stored on it and the operational character­
istics (predicates and instructions). The acti­
vity of the memory is supervised by a special

7

processor, called controller. Instead of spend­
ing the time in looking for a given address,
he proposed to use the delay time for a search
for a content.

Another block-oriented associative proces­
sor has been proposed by Healy, Lipovski and
Doty [85] based on storage and retrieval from
a segmented sequential table data structure
utilizing associative addressing.

Sunnnary

In this paper, we have reviewed the archi­
tecture of various associative processors and
classified them into four major categories based
on the organization of their associative memo­
ries. Among these associative processors, PEPE
and STARAN are most well-known. Lloyd and
Merwin [86] have made an evaluation of the per­
formance of PEPE, STARAN and others in a real­
time environment. In general, fully parallel
and bit-serial associative processors are used
for high-speed parallel data processing which
cannot be carried out effectively in ordinary
sequential computers. However, their imple­
mentation costs are also higher. For low-cost
associative processing which is required in
large information storage and retrieval systems,
block-oriented associative processors offer a
promising architecture.

Acknowledgment

The authors would like to thank Professors
T. Y. Feng of Wayne State University, M. J.
Gonzalez, Jr. of Northwestern University and Dr.
Richard E. Merwin of U.S. Army Ballistic Missile
Defense Program Office for many helpful discus­
sions. They also would like to thank Capt. A.
R. Klayton of U.S. Air Force Rome Air Develop­
ment Center for providing useful information on
the STARAN/RADCAP system.

References

[l] R. R. Seeber, "Cryogenic Associative Memory,"
Proc. Assoc. Computing Machinery Nat. Conf.,
Aug. 1960.

[2] M. H. Lewin, H. R. Beelitz and J. A. Rajch­
man, "Fixed Associative Memory Using Eva­
porated Organic Diode Arrays," Proc. 1963
Fall Joint Computer Conf., pp. 101-106.

[3] Y. H. Chu, "A Destructive-Readout Associa­
tive Memory," IEEE Trans. on Electronic
Computers, Vol. EC-14 (Aug. 1965), pp. 600-
605.

[4] A. A. Hanlon, "Content-Addressable and
Associative Memory Systems: A Survey," IEEE
Trans. on Electronic Computers, Vol. EC-15
(Aug. 1966), pp. 509-521.

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSI~G

[5] A. Weinberger, "The Hybrid Associative
Memory Concept," Computer Design (Jan.
1971), pp. 77-85.

[6] J, Minker, "An Overview of Associative or
Content-Addressable Memory Systems and a
KW;I:C Index to the Literature," Computing
Reviews, Vol. 12 (Oct. 1971), pp. 453-504.

[7] B. Parhami, "Associative Memories and Pro­
cessors: An Overview and Selected Biblio­
graphy," Proc. of the IEEE, Vol. 61 (June
1973), pp. 722-730.

[8] M. Quinones, "An Associative-Capacitive
ROM for Reprograminable Logic Applications,"
Computer Design (Jan. 1974), pp. 98-101.

[9] A. Slade and H. O. McMahon, "A Cryotron
Catalog Memory System," Proc. 1956 East
Joint Computer Conf., pp. 115-120.

[10] M. H. Lewin, "Retrieval of Ordered Lists
from a Content-Addressed Memory," RCA Re­
~' Vol. 23 (June 1962), pp. 215-229.

[HJ V. L. Newhouse and R. E. Fruin, "A Cryo­
genic Data Addressed Memory," Proc. 1962
Spring Joint Computer Conf., pp. 89-99.

[12] A. D. Falkoff, "Algorithms for Parallel
Search Memories," Jour. Assoc. Computing
Machinery (Oct. 1962), pp. 488-511.

[13] E. C. Joseph and A. Kaplan, "Target-Track
Correlation with a Search Memory," Proc.
Nat. Conv. on Military Electronics (June
1962), pp. 255-261.

[14] A. Kaplan, "A Search Memory Subsystem for
a General-Purpose Computer," Proc. 1963
Fall Joint Computer Conf., pp. 193-200.

[15] R. G. Gall, "A Hardware-Integrated GPC/
Search Memory," Proc. 1964 Fall Joint
Computer Conf., pp. 159-173.

[16] G. G. Pick, "A Read-Only Multi-Megabit
Parallel Search Associative Memory," The
26th Annual Meeting of American Documenta­
tion, Oct. 1963.

[17] A. Estrin and R. Fuller, "Algorithms for
Content-Addressable Memorie.s," IEEE Pacific
Computer Conf. Proc. (March 1963), pp.
118-128.

[18] C. Y. Lee and M. C. Paull, "A Content
Addressable Distributed Logic Memory with
Applications to Information Retrieval,"
Proc. IEEE, Vol. 51 (June 1963), pp. 924-
932.

[19] R. B. Derickson, "A Proposed Associative
Pushdown Memory," Computer Design (March
1968), pp. 60-66.

8

[20] N. K. Natarajan and P. A. V. Thomas, "A
Multiaccess Associative Memory," IEEE Trans.
on Computers, Vol. C-18 (May 1969), pp.
424-428.

[21] Y. H. Chu, Computer Organization and Micro­
programming, Prentice-Hall, Inc., 1972.

[22] R. H. Fuller, "Content-Addressable Memory
Systems," Disser. Absts., Vol. 24 (Nov.
1963), p. 1960, 611 pp. .

[23] S. Nissim, "Organizing the Nanophile Com­
puters," Electronic Design, Vol. 11 (March
1963), pp. 44-53.

[24] W. L. McDermid and H. E. Peterson, "A
Magnetic Associative Memory System," IBM J.
Res. am Dev., Vol. 5 (Jan. 1961), pp-.--
59-62.

[25] J. R. Kiseda, H. E. Peterson, w. c. Seel­
back and M. Teig, "A Magnetic Associative
Memory," IBM J. Res. and Dev., Vol. 5
(Apri11961), pp. 106"'"121.

[26] R. T. Hunt, D. L. Snider, J. Suprise and
H. N. Boyd, "Study of Elastic Switching
for Associative Memory Systems," U.S. Gov.
Res. Repts., Vol. 39, p. 188(A), AD432041,
May 20, 1964.

[27] E. L. Younker, c. H. Heckler, D. P. Masher
and J. M. Yarbourough, "Design of an Experi­
mental Multiple Instantaneous Reference
File," Proc. 1964 Spring Joint Computer
Conf., pp. 515-528.

[28] R. G, Ewing and P. M. Davies, "An Associa­
tive Processor," Proc. 1964 Fall Joint
Computer Conf., pp. 147-158.

[29] E. S. Lee, "Associative Techniques with
Complementing Flip-Flops," Proc. 1963
Spring Joint Computer Conf., pp. 381-394.

[30] R. R. Lussier and R. P. Schneider, "All
Magnetic Content Addressed Memory,"
Electronic Indust., Vol. 22 (March 1963),
pp. 92-98.

[31] J, E. McAteer, J. A. Capobianco and R. L.
Koppel, "Associative Memory System Imple­
mentation and Characteristics," Proc. 1964
Fall Joint Computer Conf., pp. 81-92.

[32] M. F. Wolff, "What's New in Computer Memo­
ries," Electronics (Nov. 1963), pp.
35-39.

[33] J, I. Raffel and T. S. Crowther, "A Proposal
for an Associative Memory Using Magnetic
Films," IEEE Trans. on Electronic Computers
(Short Notes), Vol. EC-13 (Oct. 1964),
p. 611.

[34] G. G. Pick, "A Semipermanent Memory Uti­
lizing Correlation Addressing," Proc. 1964

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

Fall Joint Computer Conf., pp. 107-121.

[35] G. T. Tuttle, "How to Quiz a Whole Memory
at Once," Electronics (Nov. 1963), pp.
43-46.

[36] G. R. Couranz, M. S. Gerhardt and C. J.
Young, "Programmable Radar Signal Proces­
sing Using the RAP," Proc. of the Sagamore
Computer Conference on Parallel Processing
(Aug. 1974), pp. 37-52.

[37] B. A. Crane, M. J. Gilmartin, J. H. Hutten­
hoff, P. T. Rux and R. R. Shively, "PEPE
Computer Architecture," IEEE COMPCON (1972),
pp. 57-60.

[38) D. E. Wilson, "The PEPE Support Software
System," IEEE COMPCON (1972), pp. 61-64.

[39] J. A. Cornell, "Parallel Processing of
Ballistic Missile Defense Radar Data with
PEPE," IEEE COMPCON (1972), pp. 69-72.

[40] A. J. Evensen and J. L. Troy, "Introduction
to the Architecture of a 288-Element PEPE,"
Proc. of the 1973 Sagamore Computer Conf.
on Parallel Processing,(Aug. 1973), pp.
162-169.

[41] J. R. Dingeldine, H. R. Martin and W. M.
Patterson, "Operating System and Support
Software for PEPE," Proc. of the 1973
Sagamore Computer Conf. on Parallel Proces~
sing (Aug. 1973), pp. 170-178.

[42] C. R. Vick and R. E. Merwin, "An Architec­
ture Description of a Parallel Element
Processing Element," Proc. 1973 International
Workshop on Computer Architecture.

[43] J. A. Rudolph, "A Production Implementation
of an Associative Array Processor: STARAN,"
Proc. 1972 Fall Joint Computer Conf., pp.
229-241.

[44] K. E. Batcher, "Flexible Parallel Proces­
sing and STARAN," WESCON Tech. Papers,
Sept. 1972.

[45] K. E. Batcher, "STARAN Parallel Processor
System Hardware," Proc. 1974 National Com­
puter Conf., pp. 405-410.

[46] E. w. Davis, "STARAN Parallel Processor
System Software," Proc. 1974 National Com­
puter Conf., pp. 17-22.

[47] E. A. Behnke and G. B. Rosenberger, "Cryo­
genic Associative Processor," IBM Final
Report, Sept. 1963.

[48] A. E. Slade and C. R. Smallman, "Thin Film
Cryotron Catalog Memory," Automatic Control,
Vol. 13 (Aug. 1960), pp. 48-50.

[49] R. F. Rosin, "An Organization of an Associa­
tive Cryogenic Computer," Proc. 1962 Spring

9

Joint Computer Conf., pp. 203-212.

[SO] P. M. Davies, "A Superconductive Associa­
tive Memory," Proc. 1962 Spring Joint
Computer Conf., pp. 79-88.

[Sl] R. W. Ahrons, "Superconductive Associative
Memories," RCA Reviews, Vol. 24 (Sept.
1962), pp. 325-354.

[52] J. D. Barnard, F. A. Behnke, A. B. Lind­
quist and R. R. Seeber, "Structure of a
Cryogenic Associative Processor," Proc.
IEEE, Vol. 52 (Oct. 1964), pp. 1182-1190.

[53] s. s. Yau and C. c. Yang, "A Cryogenic
Associative Memory System for Information
Retrieval," Proc. National Electronic Conf.,
Vol. 22 (Oct. 1966), pp. 764-769.

[54] C. c. Yang and S. S. Yau, "A CUtpoint
Cellular Associative Memory," IEEE Trans.
on Electronic Computers, Vol. EC-15 (Aug.
1966), pp. 522-528.

[55] C. Y. Lee, "Interconmrunicating Cells, Basis
for a Distributed Logic Computer," Proc.
1962 Fall Joint Computer Conf., pp. 130-136.

[56] R. P. Edwards, "Content-Addressable Distri­
buted-Logic Memories," Proc. IEEE, Vol. 52
(Jan. 1964), pp. 83-84.

[57) E. s. Spiegelthal, "A Content Addressable
Distributed Logic Memory with Applications
to Information Retrieval," Proc. IEEE, Vol.
52 (Jan. 1964), p. 74.

[58] C. Y. Lee, "Content-Addressable and Distri­
buted Logic Memories," Applied Automata
Theory, J. T. Tou, Ed., New York; Academic
Press, 1968.

[59] R. S. Gains and C. Y. Lee, "An Improved
Cell Memory," IEEE Trans. on Electronic
Computers (Feb. 1965), pp. 72-75.

[60] B. A. Crane and J. A. Crithens, "Bulk Pro­
cessing in Distributed Logic Memory," IEEE
Trans. on Electronic Computers, Vol. EC-14
(April 1965), pp. 186-196.

[61] G. J. Lipovski, "The Architecture of a
Large Associative Processor," Proc. 1970
Spring Joint Computer Conf., pp. 385-396.

[62] B. A. Crane and R. R. Laane, "A Cryoelec­
tronic Distributed Logic Memory," Proc.
1967 Spring Joint Computer Conf., pp. 517-
524. .

[63] w. Shooman, "Parallel Computing With Verti­
cal Data," Proc. 1960 East Joint Computer
Conf., pp. 111-115.

[64] P. A. Harding and M. W. Rolund, "A 2-l/2D
Core Search Memory," Proc. 1968 Fall Joint
Computer Conf., pp. 1213-1218.

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

[65] H. S. Stone, "Associative Processing for
General Purpose Computers Through the Use
of Modified Memories," Proc. 1968 Fall Joint
Computer Conf., pp. 949-955.

(66] L. C. Fulmer and W. C. Meilander, "A Modu­
lar Plated Wire Associative Processor,"
IEEE Int. Computer Group Conf. Proc. (June
1970), pp. 325-335.

[67] J. A. Rudolph, L. c. Fulmer and W. C; Mei­
lander, "The Coming of Age of the Associa­
tive Processor:' Electronics (Feb. 15, 1971),
pp. 91-96.

[68] K. E. Batcher, "The Multi-Dimensional Access
Memory in STARAN," Proc. of the 1975 Saga­
more Computer Conf. on Parallel Processing.

[69] J, D; Feldman and L. C. Fulmer, "RADCAP -
An Operational Parallel Processing Facility,"
Proc. 1974 National Computer Conf., pp. 7-15.

[70] J. D. Feldman and O. A. Reiman, "RADCAP: An
Operational Parallel Processing Facility,"
Proc. of the 1973 Sagamore Computer Conf.
on Parallel Processing (Aug. 1973), pp.
140-146.

[71] K. E. Batcher, "STARAN/RADCAP Hardware
Architecture," Proc. of the 1973 Sagamore
Computer Conf. on Parallel Processing
(Aug. 1973), pp. 147-152.

[72] E. W. Davis, "STARAN/RADCAP System Software,"
Proc. of the 1973 Sagamore Computer Conf.
on Parallel Processing, (Aug •. 1973), pp.
153-159.

[73] L. C. Higbie, "The OMEN Computers: Associa­
tive Array Processors," IEEE COMPCON (1972),
pp. 287-290.

[74] H. H. Love, Jr., "An Efficient Associative
Processor Using Bulk Storage," Proc. of
the 1973 Sagamore Computer Conf. on Parallel
Processing (Aug. 1973), pp. 103-112.

[75] R. R. Linde, R. Gates and T. F. Peng, "Asso­
ciative Processor Applications to Real-Time
Data Management," Proc. 1973. National Com­
puter Conf., pp. 187-195.

r---
1
11 NPUT /OUTPUT I
I I
I INTERFACE I

ASSOCIATIVE

MEMORY

ARITHMETIC
ANO

LOGIC UNIT
(ALU)

CONTROL SYSTEM

I i----1------L ___ J
I NSTRUCT I ON MEMORY

Fig. 1. An associative processor.

10

[76] F. H. Young, "Circulating Associative Mem­
ories," Dept. of Math. Rept.; Oregon
State University, 1962.

[77] w. A. Crofut and M. R. Sottile, "Design
Techniques of a Delay-Line Content-Addressed
Memory," IEEE Trans. on Electronic Computers
(Aug. 1966), pp. 529-534.

[78] P. T. Rux, "A Glass Delay Line Contet­
Addressable Memory System," IEEE Trans. on
Computers (June 1969), pp. 512-520.

[79] J, A. Boles, P. T. Rux and w. Weingarten,
Jr., "NEBULA: A Digital Computer Using a
20 Mc Glass Delay Line Memory," C01111Il.
Assoc. Computing Machinery (July 1966),
pp. 503-508.

[SO] w. Weingarten, "On an Associative Memory for
the NEBULA Computer," Dept. of Math. Rept.,
Oregon State University, 1964.

[81] D. L. Slotnick, "Logic per Track Devices,"
Advances in Computers, Vol. 10, New York:
Academic Press, 1970, pp. 291-296.

[82] J. L. Parker, "A Logic Per Track Retrieval
System," IFIP Congress, 1971.

[83] B. Parhami, "A Highly Parallel Computing
System for Infonnation Retrieval," Proc.
1972 Fall Joint Computer Conf., pp. 681-690.

[84] N. Minsky, "Rotating Storage Devices as
Partially Associative Memories," Proc. 1972
Fall Joint Computer Conf., pp. 587-595.

[85] L. D. Healy, G. J, Lipovski and K. L. Doty,
"The Architecture of a Context Addressed
Segment-Sequential Storage," Proc. 1972
Fall Joint Computer Conf., pp. 691-701.

[86] G. R. Lloyd and T. E. Merwin, "Evaluation
of Perfonnance of Parallel Processors in
a Real-Time Environment," Proc. 1973
National Computer Conf., pp. 101-108.

INTERROGATING BIT DRIVES

_"'f-1 _I _,.1_2 ____ -+'l'-"n-t WORD-MATCH TAG
. NETWORK I

-+--+22"-----..i~2n.:,...i WORD-MATCH TAG
NETWORK 2

OUTPUT CIRCUIT ALU

Fig. 2. A fully parallel word-organized
associative memory and ALU.

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

DISTRIBUTED LOGIC MEMORY

r-----------------,
I 1-- -- I
I CHARACTER CHARACTER ... CHARACTER I 1-- -1 I CELL CELL CELL I
Ii.~

.1 ~ 2
rp I

I r-;tj r;:j n .- I
I I I

I I COMPARISON COMPARISON COMPARISm

I LOGIC LOGIC LOGIC I
I I

INPUT SIGNAL LEAD I I
i

OUTPUT SIGNAL LEAD !.
I

MATCH SIGNAL LEAD I I
CONTROL .

PROPAGATION Lr:AD I
INPUT BUS I I

I T SYSTEM >IArF BllS I I ----
lllll'llT BUS I -1 -·-
11 l'r CT I ON LUP~; I I
~··· -----, -1

I
OUT PU r SYMBOL [IUIT~

I
ALU I J I

1 I l I
L------------------~

k-lst

Fig. 3. A fully parallel distributed logic associative processor.

CELL INPUTS

CELL CONTROLS

CHARACTER
CELL

kl

CHARACTER
CELL

k2

. . . CHARACTER
CELL

km

kth GROUP CONTROL AND COMPARISON LOGIC

GROUP INPUTS

GROUP CONTROLS

GROUP OUTPUTS

k+lst

Fig. 4. A fully parallel two-dimensional distributed logic associative memory.

11

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

r
I

r---1 I

ELEMENT BAY I

·PROCESS I NG
_ELEMENTS

ELEMENT BAY 8

[~}··[;)
PROCESSING

ELEMENTS

SIGNAL DISTRIBUTION SYSTEM

DUTPUT
DATA

CONTROL

---.
I
I
I

I I I
I
I CDC 7600 I 1.--....__._...,
I (HOST I I ARITHMETIC

:cDMPuTER> I l c~~~oL
AS8~~~~~VE co~~~b~ON :

UN IT UNIT
---..--'I I

I
I

~-~~~==~-_J
CONTROL CONSOLE

I RADAR I r;:--------:;i
I INTERFACE 1-----t--i SEQUENTIAL CONrnOL LDGIC M----i

ICDMPUTER I
L ___ J

1.-~~~~~~~--.
I PARALLEL lNSTf<UCTION QUEUE ,,__ ___ _,

I PARALLEL 111;;i'/t''i';l IOM coNrnOI ·..-----'
~- ___ _;; ___ _

CON fll()l SYoTEM

Fig. 5. The parallel element processing ensemble
(PEPE) - a modified distributed logic
associative processor.

BIT COLUMN SELECT LOGIC--~
ELEMENT
MEMORY

CI024x32l

ARITHMETIC
UNIT

ASSOCIATIVE
OUTPUT

UNIT

CORR.ELA Tl ON

UNIT

rr-- -s1-;,.;z---1111 -1
I I DISTRIBUTION I 1 I I I i __ _::srEM __ 1111 _J

~r
ARITHMET IC

ELEMENT MEMDRY CONTROL UN IT
CONTRDL · .

OUTPUT DATA
CONTROL

ASSOCIATIVE
OUTPUT CONTROL
UNIT

CORRE LAT I ON
CONTROL UN I T

Fig. 6. A processing element of the PEPE.

•

INTERROGATING BIT DRIVES

12

21

• ·.
ml

OUTPUT CIRCUIT

CONTROL
UNIT

• ••

•

ALU

Fig. 7. A bit-serial associative memory and ALU.

12

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

r---,
I I PIO

I TYPICAL I
IUSER I

EQUIPMENT •

I . COMPUTERS I
I· PER I PHERAL~
.DISPLAYS
.SENSORS I PIO

EXF

I OMA

I
I L ____ ..J

CUSTOM
INTERFAC
UN IT

PIO

PIO

ASSOCtATlVE
ARRAY

MODULE 0

UP TO 31
ADDITIONAL •
MODULES

ASSOCIATIVE
ARRAY

MODULE n

CONTROL
1-------1 SIGNALS

r;:---------- ---,
EXF

i------+-t EXTERNAL FUNCT I.ON LOG IC I
I

-----J--1
ASSOCIATIVE I

CONTROL I
LOGIC

OMA

SEQUENTIAL
CONTROL

LOGIC

PROGRAM
PAGER
LOGIC

MEMORY PORT
LOGIC

I
I
I

I Assoc 1AT1 VE PROCEssm 1
1 I COtflf\OL MEMORY

L - - - - - ..:._-_-_-_-_ __.. _ _J
CONTf<OL SYSTEM

Fig. 8. The STARAN - a bit-serial associative processor.

TO/FRO ONTROL

MULTIDIMENSIONAL ALU
(256 SIMPLE ACCESS MEMORY I-- .--- PROCESSING 0

(256x256) ELEMENTS) 0

1]

INPUT r SELECTOR l
WORDS

0 UT PUT

]
FLIP

(PERMUTATION)
NE·TWORK

CONTROL
SIGNALS

Fig. 9. An associative array module of the STARAN.

13

255

256 WORDS X 256 BITS 256 PES

Fig. 10. The operational concept of a
STARAN associative array module.

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

REWRITE CONTROL LOGIC

WRITE AMPLIFIER

2

DELAY
LINES

• • •

READ AMPLIFIER

READ REGISTER

n

FINAL
ADDRESS

REGISTER

ADDRESS
COUNTER

CONTHOL SYSTEM

ALU

SEARCH KEY

COMPARE t----...,

STABLE
LOCAL

OSCILLATOR
CSTALO)

Fig. 11. A word-serial associative processor.

HEAD-PER-TRACK
DISK

CHARACTER
STRINGS

CHARACTER
STRINGS

CONTROL
UNIT

DISTRIBUTED

LOGIC
MEMORY

Fig. 12. The block-oriented associative memory used in the RAPID.

14

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

PARALLEL PROCESSOR ARCHITECTURE--A SURVEY*

David J • Kuck
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

(Invited Paper)

Abstract

This paper is a survey of parallel machine
organizations and programming. We define paral­
lelism in a broad sense, which encompasses the
bit level, operation level, and algorithm level.
A number of abstract and practical questions are
discussed.

I. Introduction

We will interpret "parallel processor archi­
tecture" broadly in this paper. In the strict
sense, we could limit our attention to a few ma­
chines, some already in operation, some being
built, and others being proposed. But this would
tend to perpetuate certain bits of folklore about
parallel machines which puts them in a zoo some­
where between the chimera and the white elephant.

Indeed, some parallel (and other) computers
probably belong there. But recent theoretical de­
velopments lead us to the conclusion that a broad
interpretation of "parallel processing" is justi­
fied here. By taking this point of view, we will
show that a number of previously diverse ideas
can be unified.

It is certainly true that the term "parallel
processing" has been used in many ways since the
dawn of computer history. Twenty-five years ago
it referred to arithmetic operations on whole
words rather than one bit at a time. Now, it re­
fers sometimes to multiple processors, other
times to array-type machines (parallel or pipe­
line), and occasionally to multiprogrammed ma­
chines. In this paper we will touch on all of the
above. Furthermore, we will not restrict our
attention to processing the sense of logic and
arithmetic. Memory access and data alignment
problems are equally important.

Several theoretical results will be given
and discussed. It turns out that by looking at
things correctly, a few abstract ideas can be in­
terpreted in several important practical ways.
For example, by studying recurrence relations we
can develop algorithms to transform sequential
logic equations (e.g., for bit serial arithmetic)
into combinational circuit diagrams (e.g., for
fast carry lookahead arithmetic). Using exactly
the same theory, we can develop compiler algo­
rithms to transform standard serial programs (e.g.,
Fortran) into highly parallel programs (e.g., for
array processors).

* This work was supported in part by NSF Grant
DCR73-07980 A02.

15

We will also study tree-height reduction
techniques which can be interpreted as logic de­
sign or compiler algorithms. As another example,
we will present new results about the effective
bandwidth of parallel memories. This can be in­
terpreted for multiprocessors, associative pro­
cessors, parallel or pipeline processors. Also,
we will discuss data alignment techniques which
have interpretations as bit shifters within one
processor, as data alignment networks between
several processors, or as merge networks between
a secondary and primary memory.

Our approach is to study the structure of
programs and the structure of certain machine
parts to see how the two can be brought together.
Our primary goal is to achieve high speed at low
cost. Obviously, there are other very important
considerations in machine design. But we choose
this goal first, for several reasons. For one,
it is widely used in practice and is thus practi­
cally important. For another, it has a great
deal of theoretical importance as follows.

Computer speeds are determined by two basic
limitations. One concerns the physics of the
hardware being used, e.g., how fast do gates
switch and how many inches of wire must a signal
traverse? The other concerns the logic of ma­
chine organization and program organization. It
is the latter question that we shall study.

Suppose that hardware speeds were fixe<l.
Then, given a set of programs, how fast could
they be executed? Theoretical lower bounds can
be given on the number of time steps needed to
compute certain functions. Once these are known
for an algorithm or class of algorithms, then we
can attempt to design "perfect" machine organiza­
tions for these algorithms. Such machines would
execute the algorithms in the fastest possible
way at the lowest cost. When we mention cost,
logic design questions arise. How many gates or
integrated circuits or microprocessors, etc., are
needed? Real costs are measured in printed cir­
cuit bounds, power supplies, cabinets and so on,
so "lowest cost" is difficult to define, but
logic component counts tend to reflect overall
hardware costs. We will deal at various points
with bounds on gate, integrated circuit, proces­
sor and memory unit counts.

In this paper we will not give much atten­
tion to specific algorithms or to lower bounds.
Rather, we will study Fortran-like programming
languages to see what elementary set of language
constructs may be universal to a large class of
algorithms. Assignment statements, recurrences,
and conditional statements together with program

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

graphs will be discussed in detail. Instead of
lower bounds, we will give upper bounds on time
and components, all of which can be achieved by
algorithms which support the bounds. In many
cases, these upper bounds are not far from lower
bounds obtained by simple fan-in arguments.

Overall, we are attempting to develop a
better understanding of the structure of programs
and of the relations of programs to machine orga­
nizations. By presenting bounds with constructive
proofs, logic design automation or compiler algo­
rithms follow. Furthermore, we repeat that a few
theoretical ideas can be given a number of useful
interpretations which provide insights in several
areas. Finally, we will point out that a better.
understanding of some fundamentals about program
and machine organization may lead to better under­
standing of structured programming and paging in
the memory hierarchies of existing computer sys­
tems.

This paper is divided into three main parts.
In section II, we give some theoretical background.
Then, in section III we use this to study the
overall structure of programs. We also use the
theory in section IV for processor design. Sec­
tion V discusses data handling; memory access and
data alignment are both considered.

II. Theoretical Background

In this section we will be concerned with
upper bounds on pr~cessing time and the number of
processors required to achieve such time bounds.
We will ignore for the moment memory activity,
data alignment and control unit times, and assume
an idealized multioperation machine. We will
allow any number of arithmetic processors to be
used at once (although we will bound this number).
For expression evaluation, any processor may per­
form any of the arithmetic operations on any time
step. This multiple instruction execution (c.f.
MIMD [1,2]) is less desirable than having all
processors execute the same instruction type (SIMD
[l]). Our recurrence method requires only one
instruction type at a time (SIMD). Clearly, ex­
pression evaluation is slowed down by at most a
small constant if SIMD instructions are used. Fur­
ther, we assume that each arithmetic operation
takes one unit of time. Later in the paper we
will discuss more realistic machine details.

If Tp is the number of unit time steps re­

quired to perform some calculation using p ~ 1
processors, we define the speedup of the p proces­
sor calculation over a uniprocessor as

Tl
s = - > 1

P T -p
calculation

and we define the efficiency of the
s

as E =E. < 1 which may be regarded
p p -

as actual speedup divided by the maximum possible
speedup using p processors. For various computa­
tions we will discuss the maximum possible speed­
up known according to some algorithm and in such
cases we use P to denote the minimum number of
processors kn~wn to achieve this maximum speedup.

16

In such cases we will use the notation TP' Sp and

~ to denote the corresponding time, speedup and

efficiency, respectively.

Time and processor bounds for some ·computa­
tion A will be expressed as Tp[A] and P[A] in the

minimum time cases and T [A] in the restricted
p

processor (p < P) case. When no ambiguity can
result, we will write T[A] or just T in place of
Tp [Al and P in place of P [A], for simplicity. We

write log x to denote log2 x and rxl for the
ceiling of x.

Arithmetic Expression Tree-Height Reduction

Now we consider time and processor bounds for
arithmetic expression evaluation. We restrict
our attention to transforming expressions using
associativity, commutativity and distributivity

which lead us to speedups of 0(~1 n). Since og n
this is asymptotic to the best possible speedup,
more complex transformations (e.g., factoring,
partial fraction expansion seem unnecessary.
In section IV, we shall return to this subject in
the form of Boolean expression evaluation for
combinational logic circuits.

Definition 1

An arithmetic expression is any well-formed
string composed of the four arithmetic operations
(+,-,*,/), left and right parentheses, and atoms
which are constants or variables. We denote an
arithmetic expression E of n distinct atoms by
E<n>.

If we use one processor, then the evaluation
of an expression containing:n operands requires
n - 1 units of time. But suppose we may use as
many processors as we wish. Then it is obvious
that some expressions E<n> may be.evaluated in
log2n units of time as illustrated in Figure 1.

Step 3

Step 2

Step 1

•1 + •2 +. •3 + • •4 + •.s + "6 + •7 + •a

Figure 1. Expression of 8 Atoms

In fact, we can establish, by a simple fan-in
argument, the following lower bound:

Lemma 1 Given any arithmetic expression E<n>

T[E<n>] ~ [log2n].

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

On the other hand, it is easy to construct
expressions E<n> whose evaluation appears to re­
quire O(n) time units regardless of the number of
processors available. Consider the evaluation of
a polynomial by Horner's rule:

pn(x) = a0 + x(a1 + x(a2 + .•. + x(an-l + xan)

•••)). (1)

A strict sequential order is imposed by the paren­
theses in Eq. 1 and more processors than one are
of no use in speeding up this expression's evalu­
ation.

However, we are not restricted to dealing
with arithmetic expressions as they are presented
to us. For example, the associative, commutative,
and distributive laws of arithmetic operations may
be used to transform a given expression into a
form which is numerically equivalent to the origi­
nal but which may be evaluated more quickly. We
now consider examples of each of these.

Figure 2a shows the only parse tree possible
(except for isomorphic images) for the expression
(((a+ b) + c) + d). This tree requires three
steps for its evaluation and we refer to this as
a tree height of three. However, by using the
associative law for addition we may rearrange the
parentheses and transform this to the expression
(a + b) + (c + d) which may be evaluated as shown
in Figure 2b with a tree height of two. It should
be noted that in both cases, three addition oper­
ations are performed.

Figure 3a shows a parse tree for the expres­
s ion a + be + d; again we have a tree of height
three. In this case the tree is not unique, but
it is obvious that no lower height tree can be
found for the expression by use of associativity.
But by use of the commutative law for addition we
obtain the expression a + d + be and the tree of
Figure 3b, whose height is just two. Again we re­
mark that both trees contain three operations.

Now consider the expression a(bcd + e) and
the tree for it given in Figure 4a. This tree has
height four and contains four operations. By use
of associativity and commutativity, no lower
height tree can be found. But, using the arith­
metic law for the distribution of multiplication
over addition we obtain the expression abed + ae,
which has a tree of minimum height three as shown
in Figure 4b. However, unlike the two previous
transformations, distribution has introduced an
extra operation; the tree of Figure 4b has five
operations compared to the four operations of the
undistributed form.

Having seen a few examples of arithmetic ex­
pression tree-height reduction, we are naturally
led to ask a number of questions. For any arith­
metic expression, how much tree-height reduction
can be achieved? Can general bounds and algo­
rithms for tree-height reduction be given? How
many processors are needed?

To answer these questions, we present a brief

17

survey of results concerning the evaluation of
arithmetic expressions. Details and further
references may be found in the papers cited. As­
suming that only associativity and commutativity
are used to transform expressions, Baer and Bovet
[3] gave a comprehensive tree-height reduction
algorithm based on a number of earlier papers.
Beatty [4] showed the optimality of this method •
An upper bound on the reduced tree height as­
suming only associativity and commutativity are
used, given by Kuck and Muraoka [S], is the
following.

Step 3

Step 2

Step 1

(((a + b) + c) + d)

(a)

Step 2 +

Step 1

+ b + +

(b)

Figure2. Tree-Height Reduction by AINlociativity

Step 3

Step 2

Step l

+ +

(a)

Step 2

Step 1

+ +

(b)

Figure 3. Tree-Height Reduction by Commutativity

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

Step 4

Step l

Step 2

Step 1

(b + e)

(a)

Step 2

Step 1

d + a

(b)

Figure 4. Tree-Height Reduetion by Distributivity

Theorem 1 Let E<njd> be any arithmetic ex-
pression with depth d of parenthesis nesting. By
the use of associativity and commutativity only,
E<nld> can be transformed such that

Tp[E<nld>] <

with
p <

r1og2nl + 2d + 1

[I - dl

Note that if the depth of parenthesis nesting
d, is small, then this bound is quite close to the
lower bound of f1og2rtl. The complexity of this

algorithm has been studied in [6], where it is
shown that in addition to the standard parsing
time, tree-height reduction can be performed in
O(n) steps. Unfortunately, there are classes of
expressions, e.g., Horner's rule polynomials or
continued fractions for which no speed increase
can be achieved by using only associativity and
COllDDUtativity.

Muraoka [71 studied the use of distributivity
as well as associativity and col!DDutativity for
tree-height reduction and developed comprehensive
tree-height reduction algorithms using all three
transformations. An algorithm which considers
operations which take different amounts of time
is presented by Kraska [8].

Bounds using associativity, commutativity and
distributivity have been given by a number of
people [9,10,llJ. In [10] the following theorem
is proved.

Theorem 2 Given any expression E<n>, by the
use of associativity, conunutativity and distribu-

18

tivity, E<n> can be transformed such that

TP[E<n>J ~ [41og nJ

with
P ~ 3n •

The complexity of the algorithm of [10] has
been studied in [6J, where it is shown that tree­
height reduction. can be done using O(n log n)
steps in addition to normal parsing. For expres­
sions of special forms, better bounds can be
given [9]. Also, if the number of processors is
allowed to grow beyond O(n), the time coefficient
of Theorem 2 can be reduced to 2.88 [11].

So we conclude that any arithmetic expres­
sion E<n> can be evaluated in O(log n) time steps
using O(n) processors. While this affords a nice
speedup for large n, we rarely see expressions
with n larger than five or six. For bigger speed­
ups, in practice, we turn to the following.

Recurrence Relations

Linear recurrences share with arithmetic ex­
pressions a role of central importance in com­
puter design and use. But they are somewhat more
difficult to deal with. While an expression
specifies a static computational scheme for a
scalar result, a recurrence specifies a dynamic
procedure for computing a scalar or an array of
results. Linear recurrences are found in com­
puter design, numerical analysis and program
analysis, so it is important to find fast, effi­
cient ways to solve them.

Recurrences arise in any logic design prob­
lem which is expressed as a sequential machine.
Also, almost every practical program which has an
iterative loop contains a recurrence. While not
all recurrences are linear, the vast majority
found in practice are, and we shall concentrate
first on linear recurrences.

We shall begin with several examples.
First, consider the problem of computing an inner
product of vectors a= (8i•••••an) and

b = (b1, •.• ,bn). This can be written as a

linear recurrence of the form

1 < i < n (2)

where x is initially set to zero and finally set
to the value of the inner product of a and b.

As another example of a linear recurrence
which produces a scalar result, the evaluation of
a degree n polynomial pn(x) in Horner's rule

form can be expressed as

2 < i < n (3)

where p is initially set to a1 and finally set to

the value of pn(x).

Techniques to handle both of these

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

recurrences should be familiar from our discussion
of expression evaluation. Note that Eq. 2 can be
expanded by substituting the right-hand side into
itself (statement substitution) as follows:

x a1b1

x al bl+ a2b2

x al bl+ a2b2 + a3b3

After n iterations we have an expression which can
be mapped onto a tree similar to that of Figure 1.

Earlier, we have also discussed polynomial
evaluation. Thus by carrying out a procedure
similar to the above, we could obtain an expres­
sion which could be handled by tree-height reduc­
tion. Thus, we would expect that these and simi­
lar recurrences could be solved in TP = O(log n)

time steps using P = O(n) processors.

But there are other, more difficult looking
linear recurrences. For example, a Fibonacci se­
quence can be generated by

fi fi-1 + fi-2
where

fl = f2 = 1.

3 < i < n (4)

As another example, consider the addition of two
n-bit binary numbers a = a

n
b1 . The propagation of the

sum can be described by

c. Yi + xi•ci-1 1 <
1

where
co 0, x. = a. + bi and

1 1

... a1 and b = bn

carry across the

i < n

Yi = a. •b ..
1 1

(5)

Here we use + to denote logical or and • to denote
logical and. This is an example-Of a bit level
linear recurrence, in contrast to our previous ex­
amples whose arguments were assumed to be real
numbers.

In both Eq. 4 and Eq. 5 we are required to
generate a vector result because of the sub­
scripted left-hand side. This is in contrast to
the scalar results of Eqs. 2 and 3. Because of
this, we can expect a good deal more difficulty
in trying to obtain a fast efficient solution to
these recurrences. With the above as an introduc­
tion, we now turn to a formalization of the gen­
eral problem. We will then give bounds for the
solution of the general problem and several im­
portant special cases.

Definition 2

An m-th order linear recurrence system of n
equations, R<n,m> is defined for m < n by

and

x. = 0
1

for i < 0

19

i-1
ci + l: aij xj

j=i-m
for 1 < i < n.

If m = n we call the system a general linear re­
currence system and denote it by R<n>.

Note that we can express any linear recur­
rence system in matrix terms as

x=c+Ax
where

t t
c = (c1 , .. .,en) , x = (x1 ,. . .,xn)

and A is a strictly lower triangular (banded if
m < n) matrix with a .. = 0 for i < j or i - j >

1J -
m. We refer to A as the coefficient matrix, c as
the constant vector and x as the solution vector.

It should be observed that the constant vec­
tor and coefficient matrix generally contain
values which can be computed before the recur­
rence evaluation begins. Thus, the xi and Yi

values of Eq. 5 would be precomputed from the ai

and b .. We will assume that the elements of c
1

and A are precomputed (if necessary) in all cases
so that our bounds on recurrence evaluation can
be simply stated, and that m and n are powers of
2.

How can we solve an R<n> system in a fast,
efficient way using many simultaneous operations?
The following is a straightforward way which uses
O(n) processors to solve the system in O(n) steps.

Column Sweep Algorithm

Given any R<n> system, we initially know the
value of x1 . On step 1 we broadcast this value,

c1 , to all other equations, multiply by ajl and

add the result to cj. Since we now know the

value of x2 , this leads to an R<n-1> system which

can be treated in exactly the same way. Thus
after n - 1 steps, each of which consists of a
broadcast, a multiply and an add, and each of
which generates another xi' we have the solution

vector x. The method requires n - 1 processors
on step 1, and fewer thereafter, so Tp = 2(n - 1)
with P = n - 1.

What speedup and efficiency have we achieved
by this method? The time required to solve this
system using a single processor which might sweep
the array by rows or columns would be

Tl= 2(1 + 2 + ... + (n - l)]

2[n(n2- l)] = n(n - 1).

Hence the above method achieves a speedup of

SP n(n - 1) = n/2
2(n - 1)

with an efficiency of

SP 1
Ep = p- 2(n ~ 1) > Z

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

Thus we can conclude that the Column Sweep Algo­
rithm is a reasonable method of solving an R<n>
system. But how does it perform in the R<n,m>
case for m<<n.

It can be seen that the Column Sweep Algo­
rithm will achieve SP = O(m) for an R<n,m> system.
So if m is very small, the method performs poorly,
particularly if we have a large number of proces­
sors available. It should be noted that the m<<n
case occurs very often in practice. Note that all
of our examples (Eqs. 2-5) had m .'.':_ 2.

What are our prospects for finding a faster
algorithm. First, we observe that the total num­
ber of initial data values in an R<n,m> system is
O(mn). This is the total of the constant vector
c and the coefficient matrix A. Assuming that
these numbers all interact in obtaining a solu­
tion, a fan-in argument [c.f. Lemma l] indicates
that we need at least O(log mn) steps to solve an
R<n,m> system, since m < n, O(log mn) = O(log n).
The Column Sweep Algorithm required O(n) steps, so
we still have a big gap in time.

Fast Recurrence Method

The next theorem is based on an algorithm for
the fastest known method of evaluating an R<n,m>
system. For large m, the number of processors re­
quired is rather large, but for small m, the num­
ber of processors is quite reasonable. We also
give bounds for the case of a small number of
processors, Corollary 3 is particularly important
in the case of m < p < P.

Theorem 3 Any R<n,m> can be computed in
1 2 Tp .'.':_ (2 + log m) log n - -z(log m + log m)

with
2 P .'.':_ m n/2 + O(mn) for m<<n,

for m .'.':_ n.

The details of transforming a system to meet
this bound are fairly straightforward (12]. We
will give a simple example here as a basis for
some intuition about how the technique of Theorem
3 works. Consider an R<4,2> system. This method
would generate the following expressions for the
evaluation of the xi:

x = 1 cl

X2 (c2+a2lcl)

X3 (c3+a3lcl) + a32(c2+a2lcl)

X4 C4 + (a42+a43a32)(c2+a2lcl)

+ a43(c3+a3lcl).

Note that all of the parenthesized expressions can
be computed simultaneously in two steps (there are
just three distinct ones). Then x4 , the largest

calculation, can be completed in three more steps
1 2 for Tp = (2+log 2)(log 4) - -zClog 2+log 2) = 5.

20

This time bound may be achieved using just three
processors in this case. But as n grows larger,
the number of processors required becomes very
large as shown in the tables of [13].

In practice we may have a machine with a
limited number of processors p < P so Theorem 3
cannot be used directly. Several schemes are
available for mapping a computation onto a
smaller set of processors and generally in­
creasing the efficiency of the computation as
well. While the techniques described below may
be applied to arithmetic expressions as derived
from Theorems 1. or 2, ·the expressions found in
typical programs usually do not require enough
processors to warrant such reductions (14].

First, we describe a folding scheme which
reduces the number of processors at a much faster
rate than the computation time increases. The P
processor computation for R<n,m> resulting from
Theorem 3 contains log n stages, each stage con­
sisting of many independent tree computations of
height (log m+l) resulting from inner products of
two m-vectors. Such a tree of height t will con-

tain 2t-l operation nodes and its evaluation re­

quires 2t-l processors. p is the maximum of the
total number of processors used at each stage.
It is easy to show that given such a tree its
height increases only one step by halving the
number of processors (called one fold), and after
f folds (f < t - 2) are performed the tree height

is t+2f+l_f:-2) while the number of processors is

reduced to 2t-l/2f. If all trees at the same
stage are folded uniformly, then this folding
scheme can provide us T as stated below.

p

Corollary 1 Let R<n,m> and P be as in Theorem

3. Then if f ~log m - 1 and p = [P/2fl, we have

T < TP + (2f+l_f-2) log n.
p-

Another technique which is useful in mapping
any computation onto a limited number of proces­
sors p <Pis the sweeping scheme [15]. If the
i-th step of any parallel computation requires Oi

operations using P processors it can be executed

·ropil . on p processors in · steps. This observa-

tion leads to the following:

Lemma 2 (10] If a computation C can be com-
pleted in TP with Op operations on P processors,

then C can be computed in Tp ~ Tp + (Op-Tp)/p for

p < P.

To apply this technique directly on the algo­
rithm of Theorem 3, the 0 value can be obtained

p
by the summation of 2•p(k) fork= 2, 4, 8, ... ,
n, where p(k) is the number of processors re­
quired at each stage (12]. The result of this
technique can be found in (17].

Our third scheme for reducing the number of

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

processors required for an R<n,m> system is called
the cutting scheme. The idea is to cut the origi­
nal system into a number of smaller systems and
evaluate these in sequence, using the algorithm
underlying Theorem 3 on each such system. We have
used this scheme in [13], [18], and a detailed
proof is given in [17].

Corollary 2 Let R<n,m> and P be as in Theorem
3. Then any R<n,m> can be computed with 1 < p <
P processors in

T < 2[m/p] (n-1) p -
-1

for 1 < p .:::_ m,

13 3 2 .:::_ 72 np (log p+27log p+l44) + 2mn
p

-1

2 for m < p < m

13 3 2 .:::_ 72 np (log p+27log p+l44)

for m 2
.:::. p

3
< m '

2 5 2 7 < Sm n(log m log p+2log2 p·:z log m-z- log p

for m 3 < p < P,

where 13(m,n,p) is a small constant.

m+l)

For most practical R<n,m> systems in which m
is very small compared to n, if the number of
processors is also very limited then a new compu­
tational algorithm developed in [12] can be used
more efficiently. This method gives the following
time bounds.

Corollary 3 Let R<n,m> and P be as in Theorem
3. If m < p < P, then any R<n,m> can be computed
in

2 n 2 T < (2m +3m)- + O(m log (p/m)).
p p

In sunnnary, for 1 < p < P the time bound for
evaluating a given R<n,m> system can be deter­
mined by choosing the minimum value obtained from
Corollaries 1, 2 and 3.

III. Program Analysis

In this section we discuss program analysis
techniques. These techniques can be used to com­
pile programs for parallel or pipeline computers.
They can also be used to specify machine organiza­
tion for high speed computation. Since we are
really just studying the structure of ordinary
serial programs, our results have interpretations
for ordinary virtual memory machines and struc­
tured programming as well.

Definition 3

An assignment statement is denoted by x = E,
where x is a scalar or array variable and E is a
well-formed arithmetic expression. A block of
assignment statements (BAS) is a sequence of one
or more assignment statements with no intervening
statements of any other kind. Any BAS can be
transformed by a process called statement substi­
tution to obtain a set of expressions which can be

21

evaluated simultaneously.

For example, the BAS

X BCD + E

y AX

Z X + FG

can be evaluated using one processor in 6 steps,
ignoring memory activity. By statement substitu­
tion we obtain three statements which can be
transformed by tree-height reduction to obtain:

X = BCD + E; Y = ABCD + AE; Z = BCD + E + FG.

Since the resulting expressions can be evaluated
simultaneously in three steps, we obtain a speed­
up of 2. By properly arranging the parse trees
it may be seen that just five processors are re­
quired. Thus we have efficiency E5 = 2/5. In

general, the number of processors required to
evaluate a set of trees in a fixed number of steps
may be minimized using an algorithm of Hu [19].
Note that the speedup here results from two
effects: the simultaneous evaluation of inde­
pendent trees and tree-height reduction by as­
sociativity, commutativity and distributivity.

Definition 4

An IF statement is denoted by (C)(s1 , •.• ,Sn)

where C is the conditional expression composed of
arithmetic and logical operations and s1 , •.• ,Sn

are n different statements which may be assign­
ment statements, IF statements, or loops such
that control will be transferred to one of them
depending on the value of C.

In many programs it is possible to find out­
side DO loops, rather large sets of statements
consisting of many IF and GOTO statements with
some interspersed assignment statements. Suppose
we have a method of discovering sections of code
in which the ratio of control (IF, GOTO) state­
ments to arithmetic operations is greater than
some small number. We call such a section of code
an IF block. Given an IF block, it is straight­
forward to put it in a canonical form consisting
of:

Step 1: A set of assignment statements, all
of which may be executed simultaneously.

Step 2: A set of Boolean functions, all of
which may be evaluated simultaneously.

Step 3. A binary decision tree through
which one path will be followed for each execu­
tion of the program. No Boolean function or
arithmetic expression evaluation is included in
the tree.

Step 4: A collection of blocks of assign­
ment statements, each with a single variable or
constant on the right-hand side. One such block
is associated with each path through the tree.

The details of an algorithm for the dis­
covery and transformation of an IF block to this
canonical form are given by Davis [20]. Note

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

that the IF block may be a graph with or without
cycles. Such graphs are converted to trees called
IF trees in the cited references.

Definition 5

A loop is denoted by

L = (I1 + N1 , I 2 + N2, ••• , Id+ Nd)

(Sl' S2' ••• , Ss)
or

(Il' I2' • • •' Id) (Sl' S2' • • •' Ss)

where Ij is a loop index, Nj is an ordered index

set, and Sj is a body statement which may be an

assignment statement, an IF statement or another
loop. We use OUT(Sj) and IN(Sj) to denote for Sj

the LHS (output) variable name and the set of RHS
(input) variable names, respectively. We will
write Sj(i1 , i 2 , ••• , id) to refer to Sj during a

particular iteration step, i.e., when the index
variables of Sj are assigned the specific values

I 1 = i 1 , I 2 = i 2 , ••• , Id= id. If Si is executed

before S,, we will write S. < Sj. We say that the
J J. 0

relation < defines the execution order of the
0

statements. If a loop execution leads to the exe­
cution of n statements, we sometimes denote their
execution order by writing Yi:xi = Ei' 1 2_ i 2_ n,

implying that Yi ~ Yi+l' 1 < i < n - 1.

Definition 6

Given a loop L = (Il + N1 , ••• , Id+ Nd)(S1 ,

••• , Ss)' all possible data dependencies between

statement pairs Si and Sj are given by OUT(Si(k1 ,

••• ,kd))flIN(Sj(21 , .•. ,2d)) #~for Si(k1 , ••• ,kd) ~

Sj(21 , ••• ,2d). Whenever this condition is satis­

fied, we say that Sj is data dependent on Si' and

is denoted by Siosj. o is a transitive relation.

All of the data dependencies can be represented by
a data dependence graph G1 of s nodes for Si' 1 2_

i < s. For each Siosj there is an arc from Si to

Sj. Statement Sj is indirectly data dependent on

Si·• denoted s.~s., if there exist statements
J. J

sk, ••• , sk such that s.osk
1 m i 1

o .•• sk asj.
m

Practical details on determining if siosj can be

found in [16].

Our definition of data dependence is much
more delicate than the usual definitions [21,22].
These definitions include the condition OUT(Si)

IN(S.) # ~. i.e., they ignore subscripts and only
J

check variable names. Thus statements like S.:
J.

A(I) = A(I+l) + B are said to be data dependent

22

(SioSi). However, by Definition 6 we would not

say SioSi because the values of A(I+l) are not

those from A(I).

In terms of Definitions 5 and 6, we can fur­
ther classify loops as follows.

Definition 7

We use D for data dependence relation, to
denote the set of loops with at least one S.oS.,

J. J
1 < i,j < s. In other words, there is at least
one Ek, I~ k ~ n, which is a function of ~-~·

for ~ > 0. If LED and none of its Si is a non­

linear function of xj, 1 ~ j ~ s, we call it a

linear dependence and write LELD (LDSD). The
complement of D is denoted by D, for non­
dependence relation.

Definition 6 can be applied to any (d-u+l),
1 < u < d, innermost nest of L as it is also a
loop. -This is described below.

Definition 8

Let Lu be the (d-u+l) innermost nest of L,
1 < u ~ d, i.e.,

L (Il,12, ... ,Id)(Sl,s2, ... ,ss)

(I1• 12•···•Iu-l)(Iu,Iu+l' 000 'Id)

(Sl,S2' • • • ,Ss)

Then for fixed values of r 1 , r 2, ••• , Iu-l' we

can obtain all pairs of data dependence for Lu
according to Definition 7 (note that now k1 = ~l'
···• ku-l = ~u-l)' which defines graph Gu.

Example 1 Given a loop

L: DO s2 Il 1, 10

DO s2 I2 1, 10

DO s2 I3 1, 10

sl: A(I1,r2,I3) B(I1-l,I2,r3)*C(r1,I2)+D*E

s2: B(I1,I2,r3) A(I1,r2-l,I3)*F(I2,I3),

The corresponding data dependence graphs G1 , G2 ,

and G3 are

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

For the set of data dependent loops, we can
easily distinguish two cases: acyclic and cyclic
graphs. Formally, we define these as follows:

Definition 9

An acyclic dependence graph is a dependence
graph of s nodes, Si for 1 .::_ i .::_ s, with no pair

(S. , S.) such that S. LIS. and S .t.S. . A dependence
i J i J J i

graph which is not acyclic will be called cyclic.

Given a data dependence graph, we wish to
partition it into blocks that contain only one
statement or a cyclic dependence graph. Formally,
we define these as follows:

Definition 10

On each dependence graph, Gu' 1 .::_ u .::_ d, for

a given loop L, we define a node ;partition 'llu of

{S1 ,s2 , ... ,Ss} in such away that Sk and SJ!. are in

the same subset if and only if SkllS.11. and S.11.llSk.

On the partition 'II = {'llul' 'II 2 , .•• } for 1 < u <
u u - -

d, define a partial ordering relation a in such a
way that 'II . a 'II . (reflexive), and for i ,P j,

ill ui

'llui a 'lluj iff there is an arc in Gu from some

element of 'II . to some element of 11 • • The a
ui UJ

relation is also anti-symmetric and transitive.
The 'II . are called 'II-blocks.

ui

Wave-Front Method

If there are cyclic dependencies in a ro
loop, we may turn to our next method, the wave­
front method. This is a well-known method which
effectively extracts array operations from the
loop and we can then apply the above bounds to
these. If the maximum speedup given by the wave­
front method is insufficient, i.e., if the avail­
able processors are not all being used, we may
turn to the recurrence method which gives the
fastest known speedup for such problems.

Example 2

L2: DO 10 I 1, N

DO 10 J 1, N

10 W(I,J) = A(I-1,J) * W(I-1,J) + B(I,J-1)

* W(I,J-1)

For one or more assignment statements con­
taining cyclic dependencies, the wave-front
method yields moderate speedups with high effi­
ciency. The idea of this method can be illustra­
ted by the loop L2 of Example 2 in which state­
ment 10 has a cyclic dependence in that the LHS
depends on RHS values computed earlier in the
loop. Note that generally, one or more state­
ments IDS¥ form a cyclic dependence. This method
proceeds as follows: if W(l,l) is computed from

23

boundary values, then we can compute W(2,l) and
W(l,2) in terms of W(l,l) and boundary values.
Next we can compute W(3,l), W(2,2) and W(l,3) and
so on, as a wave-front passes through the W array
at a 45° angle. Thus we can compute this loop in

O(N) steps instead of the O(N2) serial steps
required. The wave-front method was first de­
scribed in detail by Muraoka in [7] and was later
used in [15] and was also implemented in [23].
The formalization below removes some of the
restrictions included in the original formulation.

In [26] a revised wave-front algorithm is
presented. This includes a method of determining
the angle a at which the wave-front passes
through the arrS¥. It also includes a method for
computing the speedup as a function of a. Note
that these ideas can be extended to arrays of
hieher dimension, as well. However, the wave­
front method is of no value in one-dimensional
arrays, since it degenerates to a serial compu­
tation in this case. A similar thing happens if
a is slightly greater than 0° or slightly less
than 90°. In such cases we may treat the cyclic
dependence as a linear recurrence (assuming it
is linear).

Loop Speedup Hierarcl:Jy

With the above fundamentals, it is possible
to give some easy bounds on overall loop speedup
in terms of the uniprocessor time T1 . We will

present a simple hierarchy here based on the
maximum known speedups for various classes of
programs. Sharper bounds will be presented
later in the paper, based on more detailed loop
parameters. The hierarchy of this section will
provide good intuition for the following sections.

The simplest loop is LED which by Definition
7 has no dependence relation between any pair of
statements. Thus, following the notation of
Definition 5, all xi = Ei, 1 .::_ i .::_ n, can be

computed in parallel. The following loop, which
performs matrix addition and scalar product has
this property.

DO S2 Il 1, 10, 2

DO s2 I2 1, 10, 1

Sl: G(Il,I2) A(Il,I2) + B(Il, I2)

S2: Z(Il,I2) C(Il,I2) * D(Il,I2)

The total time required by any LED is, by
Theorems 1 and 2, T < O(log e) where e is the p-
maximum number of atoms in Ei' 1 .::_ i .::_ n. Hence,

we have for Le:D

Now, let us stuay a slightly more complica­
ted loop Le:LD such as one that performs vector

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

inner-product

DO 5 I = 1, 10

5 T = T + A(I)*B(I)

For any LELD, if we pre-compute simultaneously
all subexpressions in Ei, 1 ::;_ i ::;_ n, which do not

depend on any computed value in the loop, i.e.,
any xi for 1 ::;_ i ::;_ n, then the resultant state-

ments xi = E~, 1 ::;_ i ::;_ n, can be treated as an

R<n,m> system where m<n is the maximum of mi (see

Definition 7) for all i. The total computation
time of any LELD with m<<n, or m independent of
n, is therefore, any preprocessing time needed to
obtain the coefficients in R<n,m>, which is
O(log e) time steps by Theorems 1 and 2, plus the
time to solve an R<n,m> system which is stated in
Theorem 3. Since n ::;_ T1 ::;_ ne, we have a speedup

for this subset of LD,

Tl
s >

p - O(log m log n) + O(log e)

Next, consider the subset of loops which has
m ~ n or m a function of n. For example, given
an upper triangular matrix A, to solve Ax = b by
the traditional back-substitution method we may
write a loop like

DO 5 I = 10, 1, -1

X(I) = B(I)/A(I,I)

DO 5 J = I + 1, 10, 1

5 X(I) = X(I) - (A(I,J)/A(I,I))*X(J).

In this example, if we preprocess B(I)/A(I,I) for
all I, and A(I,J)/A(I,I) for all I,J, we obtain
an R<n,n> system. Since m = n, this is the worst­
case loop of LD. Hence, we can say that the
computation time of any LELD is less than O(log e)
plus the time stated in Theorem 3, i.e., for any
LELD

s
p

>
Tl

O(log2n) + O(log e)

T
0(--1-)

2
log Tl

Finally, we study a simple looking, but more
complicated loop:

DO 5 I = 1, 10

5 X(I) = (X(I-1) + A/X(I-1))/2 •

This is a familiar iterative program for approxi­
mating IA. For this loop, LED but LiLD. Muraoka
[7] shows that by using statement-substitution
any loop with Ei being a d-th degree polynomial

of xi-l' d > 1, can be speeded up at most by a

constant factor. Later, Kung also studied this

24

problem [24] in a similar way. However, since we
have been able to linearize a number of nonlinear
recurrences, it remains an open question which
techniques besides statement-substitution may be
used to speed up such loops.

Summarizing the above, we are able to
classify all loops in terms of their best known
speedups over serial computation time T1 , i.e.,

s
p

for 0 < i < 2 (6)

We call a loop~. 0 .:':_ i .:':_ 2, if its maximum
speedup has the form of Equation 6, or~ if
its maximum speedup is of a lower order of
magnitude. This was also discussed in [2].

By the wave-front method we are at best able

to achieve Tp = 0 (T111)2 , with Tp = 0 (T1) in the

worst case. Thus we have Sp::;_ O(T1112). Since

the wave-front method's speedup is always inferior
to the recurrence method for such problems, this
is consistent with our claim that Equation 6
represents a maximum speedup hierarchy.

Loop Distribution

Now we turn to the question of compiling
array operations· from serial programs. In order
to achieve statement independence we use state­
ment-substitution. This yields increased speedup,
sometimes at the cost of redundant operations.
It should be used with discretion, and only in
machines with a high degree of parallelism. After
describing this we give our loop distribution
algorithm and an example. This is a key algorithm
in loop compilation.

For acyclic graphs, it is easy to demon­
strate that we can perform statement-substitution
between any pair of nodes which have a dependence
relation. As in a BAS (c.f. Definition 3), we
substitute for each LHS variable of S. on the RHS

l.

of S., which is the cause of a dependence relation,
J

the corresponding arithmetic expression on the RHS
of Si with all subscript expressions properly

shifted. By applying statement-substitution, the
dependence relation is removed and a set of inde­
pendent assignment statements results. Each of
these represents a vector assignment statement,
all of which can be executed simultaneously.
Theorems 2 and 3 can be used to bound the time
and processors.

In loops with acyclic graphs, it is possible
to reduce the graph for the entire loop to a set
of independent nodes representing simultaneously
executable array statements. However, in general,
we must deal with cyclic graphs containing several
interdependent nodes. We will now present our
loop distribution algorithm which will be useful
in handling these cases. By loop distribution we

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

mean the distribution of the loop control state­
ments over individual or collections of assignment
statements contained in the loop. The idea of
loop distribution was introduced by Muraoka [7],
and later was implemented in our Fortran program
analyzer to measure potential parallelism in
ordinary programs [15], [25].

The purpose of distributing a given Type i
loop is to obtain a set of smaller size loops of
Type j, 0 .::_ j .::_ i, which upon execution give
results equivalent to the original loop. This is
essentially to reduce ai in Equation 6 (and hence

increase speedup) as much as possible. In fact,
the loop distribution algorithm resembling the
distribution algorithm for the reduction of tree
height of an arithmetic expression, may introduce
more parallelism into a program loop than that
obtained from an undistributed one. We now give
the algorithm to accomplish this distribution as
presented in [26].

Loop Distribution Algorithm

Given a loop

by analyzing subscript expressions and indexing
patterns, construct a dependence graph Gu (c.f.

Definitions 6 and 8) for 1 _::. u < d.

On Gu' 1 _::. u .::_ d, establish a node

partition Tiu as in Definition 10.

On the partition Tiu' 1 .::_ u _::. d,

establish a partial ordering relation as in
Definition 10.

Let the (d-u+l) innermost nest of L be

Replace Lu according to TI with a set of loops
u

{(I)(Tiu1),(I)(Tiu2), ... } where (I)= (Iu,Iu+l'

•••'Id) •

The condition of the partial ordering
relation y insures that data are updated before
being used. Hence, any execution order of the

set of loops which replaces Lu will be valid as
long as this relation is not violated. Thus, for
fixed values of I 1 , I 2 , ••• , Iu-l' if Tiui Y Tiuj

2S

then loop (I)(Tiui) must be evaluated before

(I)(TI .), otherwise they may be computed in
u1

parallel. In general, we can also use statement
substitution to remove this relation between some
or all of the distributed loops. But, by not
allowing statement substitution we have a some­
what simpler compiler technique; one which
generally requires fewer processors and yields
less speedup.

As an example of the use of our loop
distribution, consider the following pseudo­
FORTRAN program.

Example 3

DO 10 I = 1, N

Sl: A(I) = B(I) * C(I)

DO 20 J = 1, N

S2: D(J) A(I-3) + E(J-1)

S3: 20 E(J) D(J-1) + F

DO 30 K = 1, .N

S4: 30 G(K) = H(I-5) + 1

SS: 10 H(I) = SQRT(A(I-2))

Following step 1 of the Loop Distribution
Algorithm, we obtain a dependence graph as shown
in Figure 5. We use brackets to denote loop
nesting. For simplicity and speedup in this
program, we only consider the case u = 1.

In step 2, we form the partition Til = {Till'

TI12' TI13' TI14} where Till = {Sl}, TI12 = {S2,S3},

TI13 = {S4 }, and TI14 = {SS}. These partitions are

partially ordered on step 3 as follows: Till Cl TI21'

Till Cl TI14 and TI14 Cl TI13 • Since we are consider-

ing only the case u = 1 here, we ignore step 4.

The result of this transformation is shown
in Figure 6. We could use this graph to compile
array operations as follows. First, s1 yields a

vector multiply. Next, we can execute TI12 or TI14 •

TI12 leads to a linear recurrence of the form

R<N,3> which can be solved by the method of
Theorem 3, by combining the D and E arrays as an
unknown vector in which x1 represents D(l), x2

represents E(l), x 3 represents D(2), x4 repre­

sents E(2), etc. TI14 leads to the execution of

SS as a vector of square roots. Finally, s4 may

be executed for all I and K simultaneously. Note
that this requires the broadcasting of elements
of the H array to all elements in the columns of
G.

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

Original G1

Figure 5

Distributed G1

Figure 6

Here, the time required to execute 1111 , 1113 ,

and 1114 is independent of N using O(N) processors.

The overall execution time is dominated by 11 12
and is O(log N), so this is a type 1 loop. The
number of processors required to achieve this
time is O(N).

Notice that in this example we avoided
statement substitution. Using statement substi­
tution, we would have been able to obtain four
11-blocks, all of which could be executed at once.
This would require the execution of several
different operations at one time, while the
technique we used allows all operations at each
step to be identical. Furthermore, very little

26

additional speedup would be possible by this
method since 1112 dominates the time here.

IFs in Loops

To this point we have considered DO loops
without conditional statements. The addition to
DO loops of IF and GOTO as well as computed GOTO
statements, can cause major problems. In par­
ticular, data dependencies can be changed at
execution time by the existence of such condition­
al statements. Thus, knowledge at compile time
of what can be executed in parallel may be
difficult to obtain. In the worst case, we may
be forced by not knowing about control flow, to
compile loops for serial execution which in fact
can be executed in a highly parallel way.

We have developed a good deal of background
theory and have extended the loop distribution
algorithm to handle DO loops containing IF, GOTO
and computed GOTO statements [26], [27]. The
material is somewhat lengthy, so we will not
explore it here in detail. Rather, we will
present a few examples to give an intuitive idea
of how the procedures work. Basically, the
procedures allow us to remove IFs from DO loops.
Thus, we can compile code which is executed on
arrays in an unconditional way.

An array computer is assumed to have a set
of mode bits to indicate which array elements
are to be operated on. The conditional testing
is moved out of the program and into the data.
Thus, our goal is to replace IFs in serial pro­
grams with mode bit vectors in array programs.

The easiest case to handle is the IF which
depends on variables not set inside the loop.
We call these type A IFs. Such IFs can be
removed from loops trivially. However, good
programmers almost never write such statements,
so this is a moot point.

The next case is of the form

DO 5 I = 1, N

IF(I2_5) THEN A(I) = B(I) + C(I)

ELSE A(I) = B(I)/C(I)

5 CONTINUE

Let Mi[a,b] be a vector of mode bits denoting

vector elements from a to b, inclusive. Then we
can compile

Ml [1,5]

M2 [6,N]

DO SIM{A(Ml) = B(Ml) + C(Ml),

A(M2) = B(M2)/C(M2)}

where DO SIM indicates that the bracketed

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

statement can be executed as array statements and
simultaneously. This is an example of what we
call a prefix type B IF.

We also define two other types of IFs. A
postfix type B IF requires that both sides of the
IF be computed for the full array. We then give
a fast method to make parallel tests and merge
the two sets of data to obtain a correct result.
We obtain the same speedups as in the pref ix type
B, but with lower efficiency. Finally, the type
C IF is handled serially.

As a test of the usefulness of our methods,
we have analyzed the 16 Fortran programs which
appeared in 1973 in the CACM Algorithms Section.
Nested DOs were counted as one loop at the outer­
most level. There were a total of 124 such DO
loops. Each loop was characterized in terms of
the worst recurrence type (c.f. Equation 6) and
worst IF type it contained.

We observe that type A and prefix B IFs
together with recurrence types 0 and 1 can be
handled with good speedup and efficiency. This
accounts for 85% of the loops. Four programs
(type 3 and type C) are disasters for our methods
and in part must be handled serially. The re­
maining programs can be handled by the postfix
and wave-front (type 2) methods. Overall, this
seems to imply that the methods given would be
very effective for the general mix of CACM
Fortran algorithms.

Recurrence Type

0 1 2 3

No IF 51 24 2 1

A 0 0 0 0

Prefix B 24 6 1 1

Postfix B 3 8 1 0
IF
Type c 0 1 1 0

Table 1. 1973 CACM DO Loop Summary

Algorithm Analysis

We have also used the techniques of this
section and section II to analyze several standard
numerical algorithms abstractly, rather than in
the form of programs. In particular, we have
studied the solution of linear systems, the com­
putation of tridiagonal matrix eigenvalues, and
the solution of Poisson's equation.

Tridiagonal linear systems were studied in
[28] for the special case where pivoting is not
required. In [29], we improve this result
slightly and also give a more stable method for
solving any nonsingular tridiagonal system using
Givens' transformations. This solves the system
in T = O(log n) with P = O(n). Furthermore, an

27

orthogonal factorization method is given which
solves any nonsingular linear system in TP = O(n)

using P = O(n2) so Ep = 0(1). Attempts to go

faster have all led to nonlinear recurrences
which we have not been able to linearize.

In [30] and [31], the parallel computation
of matrix eigenvalues is studied. In [31] we
treat tridiagonal matrices and we show a parallel
QR-algorithm which requires O(log n) steps and
uses O(n) processors per iteration. This yields
a speedup of O(n/log n) and an efficiency of
0(1/log n).

The Poisson equation is treated in [32] and
[18]. In [18], it is proved that on an nxn grid,

·a finite difference approximation can be solved
by a direct method in Tp = O(log n) with

2 P = O(n) so Ep = 0(1), for Dirichlet, Neumann,

and periodic boundary conditions. We also treat
the biharmonic equation.

Extensions

The results discussed in this section can be
interpreted in several ways besides those already
mentioned. The TI blocks produced by these tech­
niques could be used as tasks for separate pro­
cessors in a multiprocessor computer. In virtual
memory machines, the TI blocks could be used as
pages, with the a transitions representing page
faults. Preliminary studies of space, time
products with limited page allotments are quite
encouraging. Substantial improvements in address
localization have been obtained using this tech­
nique as compared to standard compilation tech­
niques. Finally, the transformation of loops
containing IFs can be thought of as transforma­
tion of serial programs to DO WHILE loops. In
[27] we discuss further the interpretation of
these results in a structured programming sense.

IV. Processors

Traditionally, computers have executed one
operation at a time. Obviously, program speedups
may be achieved by performing more than one
operation simultaneously. This idea seems to be
at least 130 years old, since we read in the
October 1842 publication of Menabrea's descrip­
tion of Babbage's lectures [33]: " ... when a long
series of identical computations is to be per­
formed, such as those required for the formation
of numerical tables, the machine can be brought
into play so as to give several results at the
same time, which will greatly abridge the whole
amount of the processes." It should be pointed
out that elsewhere (e.g., [33, p. 261]) remarks
can be found indicating that at most one pair of
operands are used at once. In any case, the idea
seems to have been clear at the time, even if it
was not part of the design.

In modern history, the Bell Telephone
Laboratories' Model V system built by Stibitz
and Williams in the late 1940s had two processors

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

[34]. Designs of machines capable of simulta­
neously executing several operations for solving
partial differential equations began to appear in
the 1950s. In 1952, Leondes and Rubinoff [35]
proposed a multi-operation processor oriented
around a drum memory. In 1958, the German com­
puter pioneer Zuse proposed a drum-oriented
parallel machine [36]. Subsequently, a number of
abstract and real computers have been proposed
and built that are capable of executing more than
one operation at once. Most manufacturers now
provide two processor general multiprocessor
systems and some have up to four processors which
operate from a shared memory. Others provide
several arithmetic units in one processor. Pipe­
line and parallel systems currently appearing
promise to make even more simultaneous operations
available for special problem classes.

Since the early 1960s, we have seen a
sequence of high speed machines which have some
kind of multioperation capability. The CDC 6600
of the 60s was succeeded by the 7600 in the early
70s. IBM introduced the 360/91 and its successors.
The 7600 and /91 are both pipelined machines and
achieve high performance by operating on arrays of
data, Their instruction sets are rather tradi­
tional, however. In contrast, the pipelined
Control Data STAR (37] and Texas Instruments' ASC
[38], both have vector instruction sets, which
makes compilation for them substantially easier.

On the other hand, the Burroughs' ILLIAC IV
(66] is a parallel array machine, but its instruc­
tion set is also traditional in nature. Vectors
must be broken up into partitions of size 64 and
loops performed over a sequence of such partitions.
The Goodyear Aerospace STARAN IV [39] is a para­
llel array of processors, each of which operates
in a bit-serial fashion. This is an example of
an associative processor.

It is interesting to note that the highest
speed pipeline processors, the STAR and ASC, both
resort to parallelism by providing several para­
llel pipelines to achieve their desired operating
speeds.

The processing speedups achieved by all of
these machines are due to parallelism between
operations as well as parallelism between memory
and processor activities. We shall discuss
memories, alignment networks, and control units
later. Our point here is that in order to compile
ordinary serial languages for these processors,
two things are desirable: 1) Powerful transla­
tion techniques to detect parallelism, and 2)
Array type machine languages.

The main contributions to program speedup
discussed in section III arise from our loop
distribution procedure. This leads to array
operations and recurrences. Both of these are
well suited for computation on machines which
must perform the same operation on many data
elements to achieve high performance. Thus, the
methods of section III could serve as compiler
algorithms for such machines.

28

Some time ago, we implemented a comprehen­
sive analyzer of Fortran programs. It used
algorithms like those of sections II and III,
although some of the techniques were much more
primitive than those discussed here. Details of
our algorithms and results may be found in [7],
[15], [25], and [2]. We will summarize a few
points very briefly.

Altogether some 140 ordinary Fortran pro­
grams, gathered from many sources, were analyzed.
The programs ranged from numerical computations
on two-dimensional arrays (e.g., EISPACK) to
essentially nonnumerical programs (e.g., Fortran
equivalents of GPSS blocks). We set all loops
to 10 or fewer iterations and analyzed all paths
through the programs, computing T1 , T , S , E ,

p p p
etc. These were averaged over all traces and
also over collections of programs. A plot of
our results for S vs. p is shown in Figure 7.

p
Some of the points are labelled with the names of
a collection of programs; ALL represents a global
average.

Thus we observe that for these.simple pro­
grams, about 35 parallel processors could
deliver a speedup of about 10 for an efficiency
of greater than 30%.

Furthermore, we took a subset of the pro­
grams, again a random cross-section, and varied
the DO loop limits from 10 to 40. The points
10, 20, 30, 40 correspond to the results. We
conclude that for our sample of ordinary Fortran
programs, speedup is a linear function of T1 and

hence p. This is quite different from some of
the folklore which has arisen about parallel
computation [40], [41], [42] (e.g., S = O(log p)).

p
For more discussion of this, see [2], [25],
Using the methods known now, we are implementing
a new analyzer and expect better results.

)l;ALL

~1 ~~c
lL--==:'

"'Q 0 II 0

Figure 7.

~EIS

LllOz(P)

D0.0 ~.D 90.0
• Of PROCESSORS

Speedup vs. Processors

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

Combinational Logic Design

We are also interested in the logic design of
the processors themselves. Parallelism at the bit
level as compared to the word level has been under
consideration for many years in arithmetic unit
design. Indeed, Babbage was greatly concerned
with anticipatory carry-adder schemes [33] and was
quite proud of his invention of a fast adder.

More recently, lower bounds were given on the
time required for addition [43] and multiplication
[44]. It was shown that the bounds could be met,
but non-standard arithmetic was used. Binary
addition was considered in [45]. These papers did
not consider such questions as gate (or component)
counts, fan-out considerations, or more general
logic design problems,

In [46] these matters are discussed in some
detail and we will briefly survey them below. We
emphasize that each bound given is proved by a
constructive algorithm. These algorithms can be
used to transform any linear sequential logic into
combinational logic. Since it is usually quite
easy to write down sequential (bit serial) equa­
tions for a logical function, this seems to be a
useful way to design fast parallel combinational
circuits.

The theoretical results of section II were
given at the level of operations on computer words.
But, it is obvious that operations on bits are
quite similar. The main difference between bit
level and word level operations is in the fanning
out of intermediate values. In section II we
assumed that a number could be broadcast for oper­
ations with several other numbers without paying
a gate or time penalty. This is reasonable
because the actual time and gate count for broad­
casting is negligible compared to arithmetic
times.

However, at the gate level, add and multiply
are interpreted as or and and, respectively.
Thus, the fan-in of~ bits through combinational
logic may be done using n - 1 two input gates,
whereas, fanning out a bit to n destinations also
requires n - 1 two output gates. Thus, the fan­
out gates may become nonnegligible.

In the following, we ignore the gates which
are the source of signals since they are counted
as the destination of some other signal. First,
we give a lemma about signal fan-out.

Lemma 3 [46] An e way fan-out can be
accomplished using gates with fan-out of f > 2 in

with

Next, we bound the gates and time in the combina­
tional part of any logic circuit.

29

Lemma 4 [5], [47] Any Boolean expression
E<e> of e atoms can be realized using gates of
fan-in 2 in

with

< {l + 2d +
- r4log el

G[E<e>] _2 {
e-1

2(e-l)

r1og el l."f d < 3 1 2 og e

otherwise,

3
if d < 2 log e

otherwise,

where d is the depth of parenthesis nesting in E.
In the following, we assume for simplicity that
n and m are powers of 2. A third useful result
for recurrences is

Lemma 5 [46] Any m-th order linear Boolean
recurrence R<n,m> can be solved using gates of

fan-in 2 and fan-out f = 2q, q 2. 1, in

TG _:: <t + log m + tlogf n)log n

1 2
- 2(log m + log m)

with

1 2 1
G _:: 2[m (2 + f-l)

1
+ m(l + f-l)] n log n

3 + O(m n)

Counting gates and gate delays is a useful
measure, even though most present logic design
is carried out in terms of integrated circuits,
since gates are an absolute measure. But we are
also interested in specifying the role of inte­
grated circuits in solving recurrences. First,
we define two integrated circuit types. Since
the vast majority of real logic design problems
are R<n,l> systems, we now restrict our attention
to the case m = 1.

Definition 11

We define two types of integrated circuit
packages.

a) ICR 1 is a package which accepts
<n, >

input atoms ci for 1 _:: i _:: n, and ai for

2 < i < n. It computes the outputs xi for

1 < i < n according to the recurrence relation
x.-& c-: + a. x. 1 , where x0 = O.

l. l. l. i-

b) ICU<n> is a package which may accept

input atoms ai and bi for 1 _:: i _:: n, and c and

d. It computes the outputs xi for 1 < i _:: n,

according to

where either

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

d,

1 .::._ i < n

or

1 < i < n.

In general, we denote the total number of inte­
grated circuits in some logical circuit by IC.
Now we can prove the following.

Lemma 6 [46] Any first-order linear
recurrence R<n,l> can be solved in time

T < (2 ~ - 1)
IC - log h

using a total package count of

IC < 6 E. + 4 ~ - 7
h log h

with package types ICR<h,l> and ICU<h-l> for h > 2.

Using the above, we can solve a number of
useful logic design problems. To illustrate the
method, consider the binary addition of two
numbers a = an ••• a1 and b = bn ••• b1 . We can

generate the sum digits s = sn .•. s 1 and carry

digit en as follows:

where 1 < i < n and ci is specified in Equation 5.

By the use of Lemma 4 and Lemma 5, we can
easily prove the following.

Theorem 4 [46] Two n = 2t, t .::_ 0, digit binary
numbers can be added in

with

G < (l + - 1-) n log n + (8 - _l_) n
2 f-1 f-1

2
+ (f-l) log n + 2

Furthermore, using Lemma 6 we can prove

Theorem 5 (46] Two n = 2\ t > O, digit binary
numbers can be added in time

T < (2 ~ + 1)
IC - log h

using a total package count of

IC.::._ ~h + 4 ~ - 7 log h

with package types ICR<h,l> and ICU<h> for h > 2.

30

Using these results, we consider a practical
example.

Example 4 Consider the problem of adding two
32-bit binary numbers using gates with fan-in 2
and fan-out 8. By the method of Theorem 4, the
sum can be formed in at most 21 gate delays since

log8 32) log 32 + 4 < l.(20) 5 + 4
2 3

4 < 21 .

The number of gates required is at most

3 1 1
G .::._ (2 + 7) 32•5 + (8 - 7) 32 + 2•5

+ 2 < i~·l60 + s;.32 + 12 = 527

On the other hand, if integrated circuit
packages are available which handle 8 bits at a
time, h = 8, we have the following. The total
package count is

IC < 9 B_ + 4 ~ - 7 < 37
8 log 8

and the number of package delays is

T < (2 log 32 + 1) < 5 •
IC - log 8

These results can be used to transform any
linear sequential logic to combinational logic.
Furthermore, [46] shows how certain nonlinear
cases can be handled as well. Thus, we have a
uniform way to design circuits which perform
such functions as binary addition, counting the
number of ones to the right of each position in
a binary word, binary multiplication, digital
filtering, and so on.

Control Units

A well-designed control unit is one which
never gets in the way of the processor(s) and
memories. In other words, it operates fast
enough to be able to supply instructions whenever
they are needed in the processing and moving of
data. Control units tend to become complex,
mainly in a timing sense, because they may have
a number of tasks to control.

One way to ease some control unit difficul­
ties is to use parallelism at the control unit
level. A multiprocessor is an example; several
complete control units are used. This may be
rather expensive, and the multifunction, pipeline
and parallel processor machines use one shared
control unit. Such control units often contain
a number of independently operating parts. For
example, the first use of pipelining was in
control units [69]. A detailed study of the
control unit of any high-speed computer will
reveal a number of simultaneously operating,
independent functions. While this may allow the
functions to operate more slowly, it also causes
some sychronization problems.

As we mentioned in our processor discussion,
the level of machine language is very important

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

in modern, high-speed computers. Vector instruc­
tion sets make compiler writing easier. They
also focus control unit design on the correct
questions, namely, to execute vector functions at
high speed.

Control units for high-speed computers must
handle the traditional functions, including in­
struction decoding and sequencing, I/O and inter­
rupt handling, and address mapping and memory
indexing. In addition, we can list several new
functions. For one, memory indexing becomes
somewhat more complex when whole arrays are being
accessed in large parallel memories. Also, array
computers (parallel or pipeline) often rely on
the control unit for scalar computations. Broad­
casting of scalars to an array must also be
handled. Special control features such as IF
tree processing [48] can be effectively handled
in the control unit. Special stacks and queues
may be required to handle a number of processors
and programs in rapid succession. Indeed,
instruction level multiprogramming may even be
attempted.

Rather than discuss any of these in detail
we simply refer the reader to a detailed study ~f
the several high-speed machine papers mentioned
earlier.

We conclude this section with the computer
organization of Figure 8. The control unit can
really be regarded as four control units, one for
each of the four other major subsystems shown.
The operation of this machine can be regarded as
a pipeline from memory to memory. For move
instructions (memory to memory) the processors
can be bypassed.

Figure 8 represents parallelism at a number
of levels: within the control unit, processors,
memories and data alignment networks. Also, it
contains parallelism in the simultaneity of
operation of each of these which forms a pipeline.
Note that pipelining can also be used within each
of the five major subsystems to match bandwidths
between them.

The details of accessing parallel memories
and of aligning the accessed data will be
discussed in detail in the next section.

31

Figure 8.

N ARITHMETIC - LOGIC
UNITS

Overall Machine Organization

V. Parallel Memory Access and Data Alignment

As effective speeds of processing units have
increased, memory speeds have been forced to keep
up. This has partly been achieved by new tech­
nologies (magnetic cores to semiconductors). But
technology has not been enough, as evidenced by
the fact that in 1953, the first core memory
operating (in Whirlwind I) had an 8 µs memory
cycle time. Today, most computer designers can­
not afford to use memories much faster than
several hundred nanoseconds. Certainly, two
orders of magnitude increase in memory speed is
an upper bound, over the past twenty odd years.

In the same period, the fastest processor
operation times have advanced from a few tens of
microseconds to a few tens of nanoseconds; or
three orders of magnitude. Memory system speeds
have kept up with processors only through the
use of parallelism at the word level. In the
late 1950s, ILLIAC II and the IBM STRETCH intro­
duced the first two-way interleaved memories.
At the present time, high speed computers have
on the order of 100 parallel memory units. If
a word can be fetched from each of m memory units
at once, then the effective memory bandwidth is
increased by a factor of m.

Array Access

Parallel memories are particularly important
in array computers (parallel or pipeline). Thus,
if a machine has m memory units we can store one­
dimensional arrays across the units as shown in
Figure 9, form = 4. While the first m operands
are being processed, we can fetch m more, and so
on. But, if the array is indexed such that, say,
only the odd elements are to be fetched, then the
effective bandwidth is cut in half due to access
conflicts as shown in the underlined elements of
Figure 9. These conflicts can be avoided by

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

choosing m to be a prime number. Then, any index
distance relatively prime to m can be accessed
without conflicts.

Many programs contain multidimensional arrays.
1hese can lead to more difficult memory access
problems, since we may want to access rows,
columns, diagonals, back diagonals (as in the
wave-front method of section III), square blocks,
and so on. For simplicity, consider two-dimen­
sional arrays and assume we want to access n
element partitions of arrays from parallel memo­
ries with m units.

Memory Units

al az a3 a4

as a6 a7 a8

a9 alO all .
. .

Figure 9. One-Dimensional Array Storage

Consider the storage scheme shown in Figure
10 where m = n = 4. Clearly, using this storage
scheme we can access any row or diagonal without
conflict. But all the elements of a column are
stored in the same memory unit so accessing a
column would result in memory conflicts, i.e.,
we would have to cycle the memories n times to
get the n elements of a column.

In order to allow access to row and column
n-vectors, we can skew the data as shown in
Figure 11 [49]. Now, however, we can no longer
access diagonals without conflict. It can be
shown, in fact, that there is no way to store an
mxm matrix in m memories, when m is even, .so that
arbitrary rows, columns, and diagonals can be
fetched without conflicts. However, as we shall
see, by using more than m memories we can have
conflict-free access to any row, column, or
diagonal, as well as other useful m-vectors.
First, we will generalize the idea of skewed
storage,

Let m be the number of memories and let o.
].

be the skewing distance in the i-th dimension.
Thus for a two-dimensional (mxm) matrix, each
successive element of the first dimension (column)
is stored o1 (mod m) memories away from the

previous element. Similarly for the second
dimension (rows) and cz• This is called a (o1 ,oz)

skewing scheme, Thus, Figure 11 shows a (1,1)
skewing scheme. Form = 5, Figure lZ shows a
(Z,l) skewing scheme, Clearly, this generalizes
to matrices with k dimensions (i.e., (c1 ,oz•• •• ck)

skewing) and matrices whose dimensions are larger
than m.

3Z

Define a d-ordered n-vector (mod m) as a
vector of n elements whose i-th logical element
is stored in memory unit JJ = di + c (mod m) where
c is an arbitrary constant. A sufficient condi­
tion for conflict-free access to a d-ordered
n~vector (mod m) is:

m > n gcd(d,m) (7)

where gcd(d,m) is the greatest common division of
d and m. This follows from the fact that the set
of memory units {JJIJJ =di+ c(mod m), 0 < i < n -
l} must contain n distinct elements. Th°it is,
the memories in which the n elements of the d­
ordered n vector are stored must be distinct.

If we use a (o1 ,cz) skewing scheme, then

clearly columns will be c1-ordered, and rows will

be oz-ordered. Similarly, diagonals will be

o1 + oz ordered. Thus, in order to access these

three types of n-vectors the following conditions
must hold:

m > n gcd(o1,m)

m > n gcd(oz,m)

(columns)

(rows)

m > n gcd(o1+oz,m) (diagonals)

Clearly, if m = n then gcd(o1 ,m), gcd(oz,m)

and gcd(o1+oz,m) must equal 1 if these conditions

are to hold. If mis even, then o1 , oz and o1+oz

must be odd for this to hold. But it is easy to
show that o1 , oz and o1+oz cannot all be odd.

1hus we cannot have conflict-free access to rows,
columns, and diagonals if m = n and m is even.

If we
can obtain
ti.ons. In
mentioned
which. are

show that

turn to memory systems where m > n, we
conflict-free access to many parti­
addition to rows, columns and diagonals

above, let us consider back diagonals
o1 - oz ordered. Then it is easy to

if m = ZZk + 1, for any integer k, and
k (Z ,1), we have conflict-free access

(by Condition 7) to rows, columns, diagonals and
back diagonals. Square blocks can also be
accessed. For an example with k = 1, o1 = Z, and

oz = 1, see Figure lZ. This and other similar

results are discussed in [50].

If m is not a power of two, certain diffi­
culties arise in indexing the memory. Also, note
that the elements of various partitions are
accessed in scrambled order. The question of
unscrambling the accessed elements is discussed
by Swanson [51].

In order to simplify indexing and unscram­
bling, systems of the form m = Zn were considered
by Lawrie in [SZ] and [60]. He shows that
conflict-free access to a number of partitions is
possible using such a memory. We illustrate this

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

in Figure 13 with m = 2n = 8, o1 = /;:;- + 1, and

62 = 2. We will give a general discussion of data

alignment networks for such unscrambling later in
this section.

Memory Unit

0 1 2 3

aoo aOl a02 a03

alO all al2 al3

a20 a21 a22 a23

a30 a31 a32 a33

Figure 10. Straight Storage (m 4)

Memory Unit

0 1 2

aoo aOl a02

al3 alO all

a22 a23 a20

a31 a32 a33

Figure 11. Skewed Storage (61

Memory Unit

0 1 2

aoo aOl a02

al3 alO

a21 a22 a23

a30 a31

Figure 12. Skewed Storage (61

with m = 5)

3

a03

al2

a21

a30

1, m

3 4

a03

all al2

a20

a32 a33

2 and 62

4)

1

33

Memory Unit

0 1 2 3 4 5

aoo aOl a02

al3 alO all

a21 a22 a23

a30 a31 a32

Figure 13. Skewed Storage (61

m = 2n = 8)

6 7

a03

al2

a20

a33

3, 82 2,

In order to implement a skewing scheme, we
must have a properly designed parallel memory
system. In particular, each of the m memory
units must have an independent indexing mechanism.
This allows us to access a different relative
location in each memory unit. It is interesting
to observe that several presently existing high
speed computers have handled their parallel
memories in different ways.

The Control Data STAR and the Texas Instru­
ments' ASC do not allow independent indexing of
each memory unit. Instead, they provide trans­
pose instructions by which arrays can be physi­
cally transposed in memory to provide access to,
say, rows and columns. The transpose time is
essentially wasted time and some algorithms for
these machines are slowed down by as much as a
factor of two in this way.

ILLIAC IV has independent index registers
and index adders on each of m = 64 memories.
Since it has 64 processors, access to partitions
of n = 64 elements is usually required. Thus
the (1,1) skew scheme of Figure 11 is easily
implemented. Of course, since m is even, con­
flict-free access to rows, columns, and diagonals
is impossible. But as Figure 11 shows, diagonals
may be accessed in just two memory cycles.

STARAN IV has an associative memory. The
key to implementing such a memory (which was for
many years their downfall) is the ability to
access individual words, as from a standard
memory, on some occasions, and on other occasions
to access the same bit from all words. Access
in the bit direction allows searches to be made
and access to be based on the contents of the
memory. For example, a programmer may request
all words whose second byte contains all zeros.

The arrival of semiconductor memories
permitted an elegant implementation of an asso­
ciative memory in STARAN IV by skewing the
storage of words at the bit level. Thus if we
interpret the a .. of Figure 11 as bits, we have

1-J
a 4-word memory with 4 bits per word. STARAN IV
does not use programmable index registers, but

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

rather has special hard-wired indexing functions
which are available to the progrannner. From a
programmer's point of view, he can address a word,
a bit slice across words, a particular byte across
a subset of words, and so on. Physically, the
memory units are arrayed as a set of m semicon­
ductor chips each organized as 1 bit by m words.
This results in an mxm bit memory, and a complete
system contains several of these.

Random Access

The execution of Fortran-like programs
frequently leads to memory access requirements
which include one-dimensional arrays and various
partitions of multidimensional arrays, as we have
been discussing. However, we sometimes face
access problems which have much less regularity.

For example, consider the subscripted
subscript case:

DO I = 1, N

X(I) = A(B(I))

Here, we have no idea at compile time about which
elements of A are to be fetched, assuming that B
was computed earlier in the program. This easily
generalizes to multidimensional arrays. Frequent­
ly, table lookup problems are programmed in this
way.

To deal with this kind of memory access
problems, is in general to deal with random access
to a parallel memory. Note that this is a pro­
blem which has been given a good deal of attention
in multiprocessor systems.

One of the great advantages of multiprocessor
organizations is that the relatively expensive
primary and secondary memory can be shared by
several relatively inexpensive processors. A
primary weakness in such systems is that as the
number of memories and processors grows, the
effective system bandwidth drops off due to memory
conflicts. In commercially available systems,
four processors and perhaps eight to sixteen
memories have been limiting numbers in contrast
to much higher numbers of memories in array
machines.

In the past ten years, a variety of analyti­
cal results have been obtained concerning parallel
memories. Most of the results were presented in
a rather abstract way, without any clearly stated
machine interpretations. We will interpret them
below and also sketch some new results.

There are two key questions on which the
validity and usefulness of these models turns.
They are:

1) What kind of data dependence is assumed
in the memory access sequence?

2) What kind of queueing mechanism is
assumed for retaining unserviced accesses?
There are several other questions which relate
to the usefulness of the model, but are of less

34

importance in determining the general form of
the results. These include how control depen­
dence is handled and whether we study the steady
state or transient memory bandwidth. These are
interrelated questions, and control dependence
is also related to data dependence.

In these terms, we briefly summarize some
of the results. Hellerman's model [S3] can most
reasonably be interpreted to assume no data
dependence between successive memory accesses
and to have no provision to queue conflicting
addresses. It is also a steady state model,
ignoring control dependence. Thus, it scans an
infinite string of addresses, blocking when it
finds the first duplicate memory unit access
request.

In various models, Coffman and his co­
workers [S4, SS, S6] extended the above to
include a type of queueing and to separate data
accesses from instruction accesses. These papers
further introduced address sequences which were
not necessarily uniformly distributed. These
models also assumed that no data dependencies
existed in the address sequence.

Ravi [S7] introduced a model which was more
realistic for multiprocessor machines. He allows
each processor to generate an address and com­
putes the number of them which can be accessed
without conflict, in a steady state sense. Ef­
fectively he assumes a sequential data dependence
in the addresses generated by each processor.

In [SS] the above results are extended in
several ways. First, it is shown analytically
that the model of [S7] yields an effective memory
bandwidth which is linear in the number of memory
units. Several models are given with queues in
the processors and in the memories, to show the
differing effects on bandwidth of such queues and
methods used for managing the queues. Several
types of data dependencies are assumed to exist;
some as in the Ravi model and others which
include dependencies between the processors. In
all of these models, we show that the effective
bandwidth of m memories can be made to be O(m).
The models are useful for either multiprocessor
or parallel machines.

Thus, we conclude that for parallel or
multiprocessor machines, the proper use of m
parallel memories can lead to effective band­
widths which are O(m). This is much more

encouraging than the O(m112) which was derived
from earlier, more naive models.

Alignment Networks

Now we turn to the question of interconnect­
ing the processors and memories we have been
examining. We shall consider various alignment
networks to handle the task. In existing compu­
ters, the data alignment problem is handled in a
number of different ways; we will survey these
and some new possibilities.

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

At the bit level, data shifting is done in
all computers. The necessities of aligning and
normalizing floating-point numbers or packing and
unpacking bytes are well known. Usually, uniform
shifts in which all bits shift an equal distance
can be performed in a single instruction. Various
implementations are discussed in [59].

At the word level, data alignment require­
ments depend on the machine organization. A
simple way to connect several memories to a pro­
cessor is to use a shared bus. For higher speed
operation, multiprocessors often use a crossbar
switch which allows each processor to be connected
to a different memory simultaneously. In the
ILLIAC IV array, the i-th processor can pass data
to processors i ±. 1 and i ± 8, modulo 64. Here
all processors must route data the same distance
in a uniform way.

None of the above techniques is well suited
to a high performance parallel computer. Indeed,
the alignment network should be driven by an
independent control unit, to operate concurrently
with the processor and memory operation. The
requirements include IOOre than uniform shifts
and at times even more than permutations. Often
broadcasts are needed, including partial and

multiple simultaneous broadcasts, e.g., n1/ 2
1/2 numbers, each broadcast to n processors for

matrix multiplication in an n processor machine
[60].

The alignment network should be able to
transmit data from memory to memory and processor
to processor as well as back and forth between
memories and processors. The connections it must
provide are derived from two sources. For one,
it must be able to handle the indexing patterns
found in existing programs, for example, the
uni.form shift of 5 necessary in A(I) + A(I+5).
For another, it must be able to scramble and un­
scramble the data for memory accesses. For
example, to add a row to a column, one of the
partitions must be "unskewed". More details can
be found in [2], [52] and [60].

Many possible solutions exist for this
problem. Given n processors and n memories, we
will now outline a few details of some possible
alignment networks.

A crossbar switch is an obvious candidate.
With it we can perform any one-to-one connection
of inputs to outputs, and with some modification
we can also make one-to-many connections for
broadcasting. The switch can be set and data
can be transmitted in O(log n) gate delays.
However, the cost of such a switch is quite high,

2 namely, O(n) gates. Thus for large systems, a
crossbar alignment network is out of the question.

Another possibility is the rearrangeable
network developed over many years in telephone
switching theory. It is shown by Ben~ [61] that
such a switch, with the same connection capabili­
ties as a crossbar, can be implemented using only

35

O(n log n) gates. The time required to transmit
data through the network is just O(log n). Un­
fortunately, the best known time to set up the
network for transmission is O(n log n) [62].
This control time renders the network impractical
as an alignment network, unless all connection
patterns could be set up at compile time.

The Batcher sorting network [63] is another
possibility. Not only can it perform the con­
nections of a crossbar switch, it can also sort
its inputs, if desired. This network has

O(n log2n) gates, so it is an improvement over
the crossbar. However, it requires time of

2 O(log n) gate delays for control and data trans-
mission, making it faster than the Benes approach.

As a final possibility, we discuss the n
network [60] proposed specifically for this pur­
pose. This network can be controlled and trans­
mit data in O(log n) gate delays, but contains
only O(n log n) gates. Thus it has the speed
of a crossbar with the cost of a BeneS'network.
Its shortcoming is that it cannot perform
arbitrary interconnections. However, as dis­
cussed above, we seek an alignment network which
can handle the requirements posed by program
subscripts and memory skewing schemes. Lawrie
has examined a number of such questions and the
n network satisfies many of them.

It is interesting to note that the Q network
consists of a sequence of identical interconnec­
tion paths called shuffles, see e.g., [64], [60].
We call transmission from left to right a shuffle
and from right to left an unshuffle. It can be
shown that the Benet and Batcher networks, as
well as the Q network, can all be constructed
from a series of shuffle and unshuffle inter­
connections of 2x2 switching elements. The
switching elements are basically 2x2 crossbars.
In the Batcher network, they have the further
capability of comparing their inputs and
switching on this basis. In the Q network they
can also broadcast either of their inputs to
both outputs.

File Processing

Many computation problems are nonnumerical
in nature. In a number of file processing and
information retrieval applications, the require­
ment for merging a number of long lists arises.
Consider the problem of satisfying information
retrieval queries posed using logical expressions
of search terms. If the data is stored in in­
verted files, the retrieval can be handled
conveniently by first merging index files of the
search terms. Then the logical connections of
the search term expression can be applied to the
merged list to determine which stored data to
retrieve.

In [65] such a system was designed and
simulated. It involves a Batcher merge network
[63] which can merge two lists of n terms in
O(log n) gate delays using O(n log n) gates.

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

This merge network is followed by a coordination
network of similar complexity, which handles the
logical functions mentioned above. These networks
together with a buffer memory can be located
between a high-speed secondary memory (head-per­
track disk or shift register type) and a buffer
memory which holds intermediate search results.
For file processing problems which are dominated
by I/0 and merges, such a configuration can
achieve speedups proportional to the number of
parallel inputs to the merge/coordination unit.

Similar applications are being made of the
STARAN IV in a number of real world applications
[67]. A number of other efforts have been carried
out in the area of nonnumerical processing. When
nonnumerical computation is as well understood as
numerical computation is now--in the sense of
standard languages and algorithms--one can expect
results about time and component complexity to
develop as it has for numerical computation.

VI. Conclusions

We have surveyed a number of aspects of
"parallel computation" in the broad sense. It
is clear that by viewing matters abstractly,
several diverse design problems can be handled
by identical methods.

Parallelism in machine organization has been
used since the time of Babbage. It will continue
to be exploited, together with hardware speed
improvements, to build faster computers. If
hardware costs continue to improve at a faster
rate than hardware speeds, parallelism will be
used even more. For example, processors which
use hundreds of microprocessors as components are
easy to imagine. The methods outlined here show
how large numbers of them could be exploited.

The goal is to show that linear speed im­
provements can be achieved with linear (or almost
linear) increases in component count. If one
defines speedup/cost as a criterion function, it
can be shown [68] that by using parallel proces­
sors at the algorithm level, better cost-effectiv­
ness can be achieved than by using parallel gates
at the arithmetic level as we have been doing for
the past 25 years.

Compilation for parallel machines has been
a stumbling block. But the methods outlined have
been used to transform a number of serial programs
to highly parallel form. While it is easy to
write programs which cannot be speeded up, due to
nonlinear recurrences or difficult conditional
statements, such constructs are seldom used in
real programs.

Thus, by studying the structure of programs
and the structure of machines, we can attempt to
design machines which are well matched to the
programs they are to execute. As side benefits,
we may be able to transform programs into more
understandable forms for programmers (e.g., IFs
in loops become DO WHILEs). Also we may be able
to improve the paging behavior of a standard

36

program on any machine with virtual memory.

References

[l] M. Flynn, "Some Computer Organizations and
Their Effectiveness," IEEE Transactions on
Computers, Vol. C-21, 9 (Sept., 1972),
pp. 948-960.

[2] D. Kuck, "Multioperation Machine Computa­
tional Complexity," Proceedings of Symposium
on Complexity of Sequential and Parallel
Numerical Algorithms, Academic Press,
(1973), pp. 17-47.

[3] J. L. Baer, and D. P. Bovet, "Compilation
of Arithmetic Expressions for Parallel
Computations," Proc. of IFIP Congress,
North-Holland, Amsterdam, (1968), pp. 340-
346.

[4] J. C. Beatty, "An Axiomatic Approach to
Code Optimization for Expressions," J.
Assoc. Comput. Mach., 19 (1972), pp."""°613-
640.

[5] D. Kuck, and Y. Muraoka, "Bounds on the
Parallel Evaluation of Arithmetic Expres­
sions Using Associativity and Commutativ­
ity," Acta Informatica, Vol. 3, Fasc. 3,
(1974), pp. 203-216.

[6] R. Brent, and R. Towle, "On the Time
Required to Parse an Arithmetic Expression
for Parallel Processing," submitted for
publication.

[7] Y. Muraoka, "Parallelism Exposure and
Exploitation in Programs," Ph.D. Thesis,
Dept. of Comput. Sci., Univ. of Ill. at
Urbana-Champaign, Rep. 424, Feb. 1971.

[8] P. W. Kraska, "Parallelism Exploitation
and Scheduling," Ph.D. Thesis, Dept. of
Comput. Sci., Univ. of Ill. at Urbana­
Champaign, Rep. 344, Aug. 1969.

[9] D. Kuck, and K. Maruyama, "Time Bounds on
the Parallel Evaluation of Arithmetic
Expressions," SIAM Journ. of Computing,
Vol. 4, 2 (June, 1975), pp. 147-162.

[10] R. Brent, "The Parallel Evaluation of
General Arithmetic Expressions," J. Assoc.
Comput. Mach., Vol. 21, (1974), pp. 201-
206.

[11) D. E. Muller, and F. P. Preparata, "Re­
structuring of Arithmetic Expressions for
Parallel Evaluation," Coordinated Science
Lab., Univ. of Ill. at Urbana-Champaign,
Rep. R-676, April, 1975.

[12] S. C. Chen, "Speedup of Iterative Programs
in Multiprocessor Systems," Ph.D. Thesis,
Dept. of Comput. Sci,, Univ. of Ill. at
Urbana-Champaign, Rep. 694, Jan. 1975.
(NSF-OCA-GJ-36936-000004).

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

[13] S. C. Chen, and D. Kuck, "Time and Parallel
Processor Bounds for Linear Recurrence
Systems," IEEE Trans. on Computers, Vol.
C-24, 7 (July, 1975), pp. 701-717.

[14] D. E. Knuth, "An Empirical Study of FORTRAN
Programs," Dept. of Comput. Sci., Stanford
Univ., Rep. CS-186, 1970.

[15] D. Kuck, Y. Muraoka, and S. C. Chen, "On
the Number of Operations Simultaneously
Executable in FORTRAN-Like Programs and
Their Resulting Speed-Up," IEEE Trans. on
Comput., Vol. C-21, (Dec., 1972), pp. 1293-
1310.

[16] R. Towle, "Control Structures Inside DO
Loops," Ph.D. Thesis Proposal, Dept. of
Comput. Sci., Univ. or Ill. at Urbana­
Champaign, Nov., 1974.

[17] s. C. Chen, and A. H. Sameh, "On Parallel
Triangular System Solvers," submitted for
publication.

[18] A. H. Sameh, s. C. Chen, and D. Kuck,
"Parallel Direct Poisson and Biharmonic
Solvers," submitted for publication, Dept.
of Comput. Sci., Univ. of Ill. at Urbana­
Champaign, Rep. 684, July 1974.
(NSF-)CA-GJ-36936-000006).

[19] T. C. Hu, "Parallel Sequencing and Assembly
Line Problems," Oper. Res., 9 (Nov.-Dec.
1961), pp. 841-848.

[20] E. W. Davis, Jr,, "A Multiprocessor for
Simulation Applications," Ph.D. Thesis,
Dept. of Comput. Sci., Univ. of Ill. at
Urbana-Champaign, Rep. 527, June 1972.

[21] A. Bernstein, "Analysis of Programs for
Parallel Processing," IEEE Trans. on
Electronic Computers, Vol. EC-15, (Oct.,
1966), pp. 757-763.

[22]

\. [23]

[24]

'- [25]

D. Fisher, Program Analysis for Multi­
processing, Burroughs Corp., TR-67-2,
May 1967.

L. Lamport, "The Parallel Execution of DO
Loops," Connn. of the ACM, Vol. 17, 2 (Feb.,
1974)

H. T. Kung, "New Algorithms and Lower
Bounds for the Parallel Evaluation of
Certain Rational Expressions," Proc. of the
Sixth Annual ACM Symposium on Theory of
Computing, April 1974.

D, Kuck, P. Budnik, s. C. Oien, E. Davis,
Jr., J. Han, P. Kraska, D. Lawrie, Y.
Muraoka, R. Strebendt, and R. Towle,
"Measurements of Parallelism in Ordinary
FORTRAN Programs," IEEE Computer, (Jan.,
1974), pp. 37-46.

\ [26] S. C. Chen, D. Kuck, and R. Towle, "Time
and Parallel Processor Bounds for Fortran­
like Loops," submitted for publication.

, [27] S. C. Chen, D. Kuck, and R. Towle, "Control
and Data Dependence in Ordinary Programs,"
submitted for publication.

\.

[28] H. S. Stone, "An Efficient Parallel
Algorithm for the Solution of a Tridiagonal
Linear System of Equations," J. Assoc.
Comput. Mach., Vol. 20 (1973), pp. 27-38.

[29] A. H. Sameh, and D. Kuck, "Linear System
Solvers for Parallel Computers," submitted
for publication. Dept. of Comput. Sci.,
Rep. 701, Feb. 1975.
(NSF-OCA-GJ-36936-000009).

[30 J D, J. Kuck and A. H. S ameh, "Parallel Com­
putation of Eigenvalues of Real Matrices,"
IFIP 71, Vol. II, pp. 1266-1272, North Hol­
land Publishing Co., Amsterdam-London, 1972.

[31 J A. H. Sameh, and D. Kuck, "A Parallel
QR-Algorithm for Symmetric Tridiagonal
Matrices," Proc. of Second Langley Conf.
on Scientific Computing, Oct. 1974. Dept.
of Comput. Sci., Univ. of Ill. at Urbana­
Champaign, Rep. 700, Feb. 1975.
(NSF-OCA-GJ-36936-000006).

[32] B. L. Buzbee, "A Fast Poisson Solver
Amenable to Parallel Computation," IEEE
Trans. on Comput., Vol. C-22, 8 (1973),
pp. 793-796.

[33] P. Morrison, and E. Morrison, Charles
Babbage and His Calculating Engines, Dover,
N. Y., 1961.

[34] F. L. Alt, "A Bell Telephone Laboratories'
Computing Machine--II"" Mathematical Tables
and Other Aids to Computation (The National
Research Council), Vol. 3 21-28 (1948-
1949).

[35]

[36]

[3 7]

C. Leondes, and M. Rubinoff, "DINA, A
Digital Analyzer for Laplace, Poisson,
Diffusion, and Wave Equations," AIEE Trans.
(Connnun. Electron.), Vol, 71 (Nov., 1952),
pp. 303-309.

K. Zuse, "Die Feldrechenmaschine,"
Mathematik, Technik, Wirtschaft-Mitteilungen,
Vol. 4 (1958), pp. 213-220.

R. G. Hintz and D. P. Tate, "Control Data
STAR-100 Processor Design," Compean 72,
IEEE Computer Society Conf. Proc., (Sept.,
1972)' pp. 1-4.

' [38] W. J. Watson, and H. M. Carr, "Operational
Experiences with the TI Advanced Scientific
Computer," 1974 National Computer Conf.,
pp. 389-397.

37

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

[39] K. E. Batcher, "STARAN/RADCAP Hardware
Architecture," Proc. of 19 73 Sagamore Conf.
on Parallel Processing, pp. 147-152.

[40] G. M. Amdahl, "Validity of the Single
Processor Approach to Achieving Large Scale
Computing Capabilities," AFIPS Conf. Proc.,
30 (196 7)' pp. 483-485.

[41] M. Flynn, "Some Computer Organizations and
Their Effectiveness," IEEE Trans. on Comput.,
Vol. C-21, 9 (Sept., 1972), pp. 948-960.

[42] M. Minsky, "Form and Content in Computer
Science," ACM Turing Lecture, Journ. of the
ACM, Vol. 17, 2 (1970), pp. 197-215.

[43] S. Winograd, "On the Time Required to
Pf'.rform Addition," Journ. of the ACM, Vol.
12, 2 (April, 1965), pp. 277-285.

[44]

[45]

[46]

[47)

•. [48]

[49]

'- [SO]

\.· [51]

[52]

[53]

S. Winograd, "On the Time Required to
Perform Multiplication," Journ. of the ACM,
Vol. ~4, 4 (Oct., 1967), pp. 793-802.

:1. Brent, "On the Addition of Binary
Numbers," IEEE Trans. on Comput., Vol. C-19
(1970), pp. 758-759.

S. C. Chen, and D. Kuck, "Combinatorial
Circuit Synthesis with Time and Component
Bounds, 11 submitted for publication.

R. Brent, "The Parallel Evaluation of
Arithmetic Expressions in Logarithmic
Time," Complexity of Sequential and
Parallel Numerical Algorithms, J. F. Traub,
ed., Academic Press, N.Y. (1973), pp. 83-102

E. W. Davis, Jr., "Concurrent Processing of
Conditional Jump Trees," Comp con 72, IEEE
Computer Society Conf. Proc., (Sept., 1972),
pp. 279-281.

D. Kuck, "ILLIAC IV Software and Application
Programming," IEEE Trans, on Comput., Vol.
C-17, 8 (Aug., 1968), pp. 758-770.

P. Budnik, and D. Kuck, "The Organization
and Use of Parallel Memories," IEEE Trans.
on Comput., Vol. C-20 (Dec., 1971), pp.
1566-1569.

R. C. Swanson, "Interconnections for
Parallel Memories to Unscramble p-Ordered
Vectors," IEEE Trans. on Comput., Vol. C-23,
11 (Nov., 1974), pp. 1105-1115.

D. Lawrie, "Memory-Processor Connection
Networks," Ph.D. Thesis, Dept. of Comput.
Sci., Univ. of Ill. at Urbana-Champaign,
Rep. 557, Feb. 1973.

H. Hellerman, Digital Computer System
Principles, McGraw-Hill, N.Y., (1967).

[54] G. J. Burnett, and E. G. Coffman, Jr., "A
Combinatorial Problem Related to Inter­
leaved Memory Systems," Journ. of the ACM,
Vol. 20, l (Jan., 1973), pp. 39-45.

[55] G. J. Burnett, and E. G. Coffman, Jr., "A
Study of Interleaved Memory Systems,"
AFIPS Conf. Proc., 1970 Spring Joint
Computer Conference, Vol. 36, (1970),
pp. 467-474.

[56] E. G. Coffman, Jr., G. J. Burnett, and
R. A. Snowdon, "On the performance of
interleaved memories with multiple-word
bandwidths," IEEE Trans. on Comput., Vol.
C-20, pp. 1570-1572.

[57] C. V. Ravi, "On the Bandwidth and
Interference in Interleaved Memory

[58]

[59]

[60]

Systems," IEEE Trans. on Comput., Vol. C-21,
(Aug., 1972), pp. 899-901.

D. Chang, D. Kuck, and D. Lawrie, "On the
Effective Bandwidth of Parallel Memories,"
submitted for publication.

R. L. Davis, "Uniform Shift Networks,"
IEEE Computer, Vol. 7, (Sept. , 19 74),
pp. 60-71.

D. Lawrie, "Access and Alignment of Data
in an Array Processor," to appear in
IEEE Trans. on Comput.

~ [61] V. E. Bene't, Mathematical Theory of
Connecting Networks and Telephone Traffic,
Academic Press, N.Y., (1965).

\. [62]

[63]

[64]

[65]

[66]

[67]

38

D. C. Opferman and N. T. Tsao-Wu, "On a
Class of Rearrangeable Switching Networks,"
Bell Syst. Tech. Journ., Vol. 50, (May­
June, 1971), pp. 1579-1618.

K. E. Batcher, "Sorting Networks and
Their Applications," 1968 Proc. Spring
Joint Comput. Conf., pp. 307-314.

M. c. Pease, "An Adaption of the Fast
Fourier Transform for Parallel Processing,"
Journ. of the ACM, Vol. 15, (April, 1968),
pp. 252-264.

W. H. Stellhorn, "A Specialized Computer
for Information Retrieval," Ph.D. Thesis,
Dept. of Comput. Sci., Univ. of Ill. at
Urbana-Champaign, Rep. 637, Oct. 1974)
(NSF--OCA-GJ-36936-000003).

G. Barnes, R. Brown, M. Kato, D. Kuck,
D. Slotnick, and R. Stokes, "The ILLIAC IV
Computer," IEEE Trans. on Comput., Vol.
C-17, 8 (Aug., 1968), pp. 746-757.

R. Moulder, "A Data Management System
Utilizing the STARAN Associative Processor,"
1973 Sagamore Conference Proc., p. 161.

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

(68] D. Kuck, "On the Speedup and Cost of
Parallel Computation," to appear in Proc.
on the Complexity of Computational Problem
Solving, The Australian National Univ.,
Dec, 1974.

(69] W. Buchholz, Planning a Computer System,
McGraw-Hill, N.Y., 1962.

39

Acknowledgment

I am indebted to S. C. Chen, D. H. Lawrie,
and R. A. Towle for much discussion and help on
the material discussed here.

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

PIPELINED PROCESSORS - A SURVEYt

C.V. Ramamoorthy and H.F. Li
Computer Science Division

Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory
University of California at Berkeley

Berkeley, California 94720

(Invited Paper)

I. Introduction
Processor architecture for computer systems

has been a fast developing and fruitful area of
investigation for many years. Through the impreg­
nable efforts of past years, numerous distinguish­
ing schemes for processor systems have evolved and
secured their status in the art and science of com­
puter design. Included in this category are:

(l) efficient sequential processors for sequen­
tial programs,

(2) pipelined processors [l] that enhance the
amount of overlapped processing in each instruction
stream,

(3) array processors [2] for executing some
instructions on an array of data concurrently,

(4) associative processors [3-5] that possess
some Content Addressable Memory (CAM) for certain
decisTon making and information retrieval purposes,
and,

(5) multi-processors [6] that may be necessary to
meet some real-time constraints or for large com­
puting systems with a heavy workload.

These five schemes are not necessarily exclu­
sive; rather, some of them can be combined to pro­
duce a most effective processor system to satisfy
some design objectives. For example, pipelined
sequential processors are quite common, and asso­
~iative array processors are used in certain large
scale systems. But among these five schemes, pipe­
lining stands out as a very versatile, popular, and
effective technique to be applied to a wide range
of systems, from mini, medi, to large scale sys­
tems, so as to improve their throughput rates or
processing powers. In fact, pipelining can be em­
ployed as a basic complementary technique in
sequential, array, associative or multi-processors
as well. This clearly demonstrates the signifi­
cance of pipelining in processor architecture.

The word 'pipeline' may be confusing to some
laymen since a false image of oil pipes may be con­
ceived. Actually, pipelining refers to a segmen­
tation of a computational process into subprocesses
so that the latter for successive instructions
(computations) can be carried out in an overlapped
fashion, analogous to an industrial assembly-line.
So, very loosely, pipelining can be defined as the
technique of decomposing a repeated sequential
process (hardware or software) into subprocesses,
each of which can be executed efficiently on a
special dedicated, autonomous module that operates
concurrently with the others. As a simple
tResearch sponsored by National Science Foundation
grants DCR72-03734-A01 and DCR74-21248 and U.S.
Army Research Office Contract DA-ARO-D-3l-124-73-
Gl57.

40

illustration, consider the process of executing an
instruction. Normally, it involves fetching the
instruction, decoding the operations involved, and
fetching the operands before it is finally exe­
cuted. If this process is being decomposed into
the above four subprocesses executed on four
modules as shown in Fig. lb, four successive inde­
pendent instructions may be executed in parallel.
Specifically, while the EXEC module is executing
the first instruction, the OPFETCH module may be
fetching the operands needed for the second
instruction, the DECODE module may be setting up
for the different operations involved in the third
instruction, and the INFETCH modul~ fetching the
fourth instruction, The overlapped execution
among the four modules is best depicted using a
space-time diagram. As drawn in Fig. le, the hori­
zontal axis represents the time and vertical axis
the space (modules). From it, one can observe how
independent instructions can be executed in paral­
lel in a pipelined processor.

Instruction Processing +

Fig. la Non-piped Processor

Fig. lb Pipelined Processor

Facility

EXEC 2 3 4
O.F.,__~~~~l-+-~+---,3,-+-4~,__~-

I.D. l 2 3 4
0----+~-o.-~-+--~>--~~~~~

I.F.'--'-__._~2::-1._;_3-'---~4__._~~~~~~~ Time
Fig. le Space-Time Diagram

With this macroscopic view of a pipelined
processor, the advantages and requirements of
pipelining will be reviewed here.

(l) Throughput Consideration: One of the most
important performance measures of a system is its
throughput rate, defined as the number of outputs,
here the number of instructions processed, per
period of time, Very obviously it directly
reflects the processing power of a processor sys­
tem -- the higher its throughput rate, the more
powerful it is. Pipelining is a specific tech­
nique to enhance throughput, in addition to the
possibility of using faster modules.

For this discussion, let us reconsider the
example in Fig. l. For a nonpipelined processor,
the execution time of an instruction will be

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

T nP. = t1 + t2 + t3 + t4. Therefore, for every T np
units of time, an instruction is completed, which
corresponds to a throughput rate of l/Tnp· In the
pipelined case, suppose tb=max{t1,t4,t3,t4}=speed
of the slowest facility in the pipel1ne (defined
as the bottleneck). Then, its throughput rate will
be l /tb because for every T P. = tb uni ts of time, an
instruction can leave the pipeline after its exe­
cution. A direct comparison will reflect that
T p < T np with the result that the throughput rate of
the pipelined processor can be much larger than
that of the nonpipelined case. If t1 = t2 = t3 = t4,
then the comparison can show four-time improvement.

Three characteristics have been hidden in this
comparison. First, the decomposition of a process
often prolongs the process by introducing some
overhead. In this case, to guarantee non-interfer­
ing execution among the four modules, appropriate
buffers have to be inserted between adjacent mod­
ules in the form of latches. These latches intro­
duce additional propagation delay for an instruc­
tion. Consequently, the execution time of an indi­
vidual instruction for the pipelined processor will
be slightly larger than its nonpipelined counter­
part. But one should not be mistaken that the
resulting program execution.time will be longer.
In fact, usually it will be much ~horter because
more instructions can be executed per unit time.
The execution time of an instruction is negligible
compared to the execution time of a program or a
large collection of instructions.

Second, it has been assumed that the execution
time of a subprocess is not changed via pipelining;
that is, the t;'s are the same in Figs. la and lb,
In practice, such an assumption may not hold. In
some cases, because of the partitioning, some oper­
ations can be carried out more efficiently, and in
some other cases, the converse may be true. How­
ever, in general, the assumption may be valid to at
least a first order of magnitude.

Finally, no word has been said about the fine­
ness of segmentation or pipelining. Since the com­
parison reveals that the throughput rate is
l/max t;, it seems that decomposing the process
into finer levels or modules may decrease max{t;}
and improve the throughput. But many practical
considerations have to be made regarding the feasi­
bility and overhead tradeoffs involved. They will
form part of the later discussion in this paper.
In short, throughput enhancement is one of the main
advantages of pipelining. But the amount of
improvement has to be evaluated carefully.

(2) Efficiency Consideration: Another important
performance measure for a system is its efficiency,
sometimes also called utilization factor. Effi­
ciency also directly reflects how effective a pro­
cessing scheme is and can be used to indicate how
future improvements should progress, such as remov­
al of bottlenecks. Similarly to most performance
measures, it can be evaluated both analytically and
experimentally by measurement. Here, an attempt
will be made to illustrate the analytical effi­
ciency of pipeline processing, based on the space­
time relationship introduced earlier.

It is natural to view efficiency as the per­
centage of busy (productive) periods with respect

41

to a certain time span of consideration. Here
some slight complication arises because a pipe­
lined processor consists of several modules some
of which may be busy while the others are idle.
To evaluate the efficiency of the processor system
as an entity, [7] proposes a uniform space-time
span index as:

Efficiency of pipeline
= total space-time span of tasks

total space-time span of facilities
where the term task (process) is used to fit the
loose definition of a pipeline. Sometimes, the
modules in the pipeline are of different natures
with different importance (or cost) factors.
Then a refined index which also includes such con­
siderations has been suggested in [8] as:

Efficiency of pipeline
total weight space-time span of L tasks
total weight space-time span of n facilities
For example, for a linear pipeline as the one

in Fig. 1 (no looping inside the pipeline so that
a task will flow through each facility once only),
an analytical efficiency measure can be (assuming
the execution time of each module is time invari­
ant)

n

where

Efficiency of linear pipe
n

L(Ia; t;)
n n
Ia.(It. + (L-l)t.)

l 1 J

(see Fig. 2)

tj speed of the slowest facility (bottleneck)
ti speed of the ;th facility in the pipeline
ai = weight associated with the space-time span

of the ;th facility as determined as its
importance, such as cost-speed factor

L number of tasks (instructions) pumped into
the pipeline in a certain period of time.
For highest efficiency, it will be assumed
that tasks are pumped in continuously.

n =total number of facilities in the pipeline
In the ideal situation when all modules have

the same speed, the equation simplifies into

- L
n - n+ (L-1}

so that when L approaches infinity (in the steady
state of processing), the efficiency may approach
unity. In all other cases, as L approaches infi­
nity, the efficiency approaches

n
Ia;t;

n +-n--< 1.

(lo-;) tj

Two observations should be noted at this
point. First, this equation holds whether or not
there are additional buffers inside the pipeline
because of the linearity assumption. As will be
demonstrated later,. buffering is an important tool

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

-TIME

--tlNSTRUCTION ACCESS1 --!OPERAND M:cus,
INS~ -----------IW#AJ~~~...;,._ ______ __,~ R£SULT I

.....fGENERATE l.ADDR£SS~ --fOECODE. GENERATE OPERAND1 ADDRESS ~EXECUTE INST. 1

-oj INSTRUCTKlN ..:cESS2 ---!OPERANO ACC£SS2

INS~·!---------~-~~~
-1-n: 1 .. •00RUS, -iCllXICI. GEHERATt OPEJWCI, •-

~RESULT2
-!EXECUTE INST. 2

-f1NSTRUC11CN ACCESS, -ojOPERAHO ACC£SS3

~. ~~~~---------i~~J .. SUlr•
-IGEIOAtt l.-SS3 -lll£Cll0€. GEN£RATl OP£RAHD, .-OS -I EXECUTE INST. 3

---!INSTI!IJ:TIOH ACCESS, -ojOPERANO ACCESS4

INSTR~ ---------1~""€~~€~t--------,@&'$jj@@ RESULT 4

: -I GENERATl l..ocoll£SSc -i ll£Cll0€. GEHERATl OPERAN04 AllORESS -I EXEClITE INST. 4

Fig. 2 IBM 360 Model 91 Instruction Sequencing Illustration

to increase throughput in many practical pipeline
designs, for example, when more than one EXEC
module is available if the latter is a bottleneck.
Second, in deriving the equation, it has been
assumed that a continuous supply of tasks (instruc­
tions) is available. In reality, execution may be
discontinued because of various reasons such as
precedence constraints, branching, interrupts, etc.
which will be subject to closer scrutiny in the
rest of this paper. This space-time span evalua­
tion actually represents the efficiency limit of a
pipelined processor if sufficient control and
management have succeeded in justifying the assump­
tions to some approximate degree. The difficulties
encountered here help to reveal many problems that
underlie a pipeline design. These problems will
be addressed individually in the subsequent
sections.

(3) Cost-Effectiveness: Cost-effectiveness is
one of the major advantages of pipeline processing.
It has been demonstrated how pipelining can
enhance the throughput rate. Yet one can achieve
the same or even higher throughput rates using
array or multi-processors. The tradeoff considera­
tion here is cost and speed, or cost-effectiveness.
Usually when a process is being decomposed into
subprocesses executed on independent modules, the
latter can be designed to execute those subpro­
cesses very efficiently at a much lower cost than
the nonpipelined counterpart. Cost here includes
both the direct cost of the modules and the control
cost required. Then if it is compared with an
array or a multi-processor (nonpipelined) configu­
ration, it may prove more 'cost-effective' simply
because the latter may need more in both categories
of cost. This is why pipelining is so important
in smaller scale systems where the highest through­
put for a certain cost bracket is desired. Of
course, for large scale systems with array or
multiprocessors, pipelining can be utilized as a
complementary technique to enhance the throughput
of individual processing units. In such a case,
the cost-effectiveness of pipeline processing
remains as its outstanding merit.

So far we have reviewed a few important cha­
racteristics of pipeline processing. Before pro­
ceeding further in discussing the problems and
solutions in existing processors, the following
design guidelines are included to generate a more
complete picture.

(1) The repeated process can (most efficiently)

42

be subdivided into subprocesses, each executed by
an independent module in a compatible speed with
respect to the others. When a certain facil-ity in
the pipe has a much slower speed than the rest, it
will be the sole bottleneck and hence uniquely
affects the throughput rate of the pipe.

(2) The submodules in the pipe and the asso­
ciated control for sequencing them are cheaper
than the nonpipelined counterpart in an array or
multi-processor configuration. This is equivalent
to the cost-effectiveness consideration just
mentioned.

(3) Intermediate buffering is relatively cheap.
Therefore the size of intermediate data packets or
information transfers should be reasonably small,
depending on the level of the pipelining action.

(4) Routing of intermediate information is
easily accomplishable. If very complicated deci­
sions or switching are involved, perhaps the over­
head defeats the purpose of pipelining.

(5) Sharing of other system resources, includ­
ing buses, memories, registers, etc., does not
result in severe interference that degrades actual
performance to a large extent. Sometimes, the
inadequate supply of independent instructions or
operands due to interference or other reasons will
destroy the power of a pipelined processor and
lower its efficiency drastically. However, this
poses a number of design and operational problems
not easily resolvable as we will observe later on.

(4) Pipeline Characterization: For the purpose
of exposing the details of the problems to follow,
a characterization of pipelining in processors
will be provided here. Similar to many other
techniques such as parallel processing, pipelining
in processors exists in two levels and can take
two forms. In the first level, pipelining can be
seen in the entire instruction processing phase
which is decomposed into autonomous subphases such
as the one in Fig, lb. Each subphase is repre­
sented by the execution of the corresponding
module which possesses a certain amount of intel-
1 igence in controlling itself and communicating
with the other modules. Tasks (instructions) are
transferred from one module to the next for con­
tinued processing. But within each intelligent
module, pipelining techniques can be further
applied to speed up computation. Consider the
EXEC module for example. Usually it is the slow­
est module in the pipe because many arithmetic
operations require iterations or more levels of
propagation delays in the logic circuitry. If

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

this module is pipelined by partitioning the oper­
ation into suboperations and inserting appropriate
latches, the throughput of the EXEC module may be
improved to a desirable extent. Embedded in this
pipelining technique is the association of a local
intelligent controller in each pipelined module
for sequencing the pipelined operations to be exe­
cuted and monitoring the corrections of the execu­
tion. The existence of such local monitors can be
used to characterize the level of the pipelining
action concerned. Here, the pipelined EXEC module
may be regarded as the second level.

These two levels of pipelining can be seen in
some computers. In the IBM System/360 Model 91
[9], the instruction processing unit is quite simi­
lar to the model in Fig. lb. In addition, its exe­
cution unit includes a pipelined adder and a pipe­
lined multiplier for providing a higher throughput
of execution. Thus two levels of pipelining can
be distinctly observed, Similar situations can be
observed from other machines such as TIASC [10],
CDC STAR-100 [11] systems. Hence, a top-down,
level by level characterization of pipelining in
processor systems can be conveniently established
for the purpose of analyzing the system.

Besides the hierarchical nature of pipelining,
different design and control strategies classify a
pipelined module (whether it is level 1 or level 2)
into two types: static and dynamic pipes. Some­
times, a pipelined module only serves a single
dedicated function, for example, a pipelined adder
or multiplier as in the IBM/360, model 91. Natu­
rally, it can be termed as a unifunctional pipe
with a static configuration. On the other hand,
sometimes a pipelined module can serve a set of
functions, each with a distinguishable configura­
tion. For example, in the TIASC system, the arith­
metic unit in the processor is a pipe that has dif­
ferent configurations (interconnection of modules)
for performing different types of arithmetic opera­
tions. Then, a natural name for such a pipe is a
multifunctional pipe. A multifunctional pipe can
be either dynamic or static. In the static case,
at any time instant, only one configuration is
active. In other words, pipelining (overlapped
processing) is permissible only if the tasks
(instructions) involve the same configuration.
Most, if not all, multifunctional pipes in arith­
metic units of existing machines fall into this

13AS!C Tl~.1E
INTERVAL

l-- J
I GO NsEc1

MO\/E

ION INST.

GENERATE
OP£RANO
ADDRESS

llECOO£

classification because static pipes are easier to
control as will become clear later on. Dynamic
multifunctional pipes permit overlapped processing
among several active configurations simultaneously.
Then throughput may be further enhanced. But the
tradeoff here involves more elaborate control and
sequencing so that in practice, its use has to be
carefully justified. This classification of sta­
tic and dynamic pipes will be very useful when we
consider and evaluate pipelined processor archi­
tecture in the subsequent sections.

II. Structure of a Pipelined Processor
In this section, the basic structures of a

pipelined processor will be examined, using the
prominent IBM/360 model 91 central processor as
the example. The throughput objective of a
sequential pipe will be uncovered. Then from the
analysis of its structure, the problems and
requirements specific in pipelined processors will
become noticeable. They will be discussed and
some solutions in existing processors will also be
illustrated and compared. However, attention
regarding vector processing capabilities will be
reserved for the next section.

2.1 An Example Sequential Pipelined Processor
To demonstrate the pipeline action in a

sequential processor, the IBM/360 model 91 [9]
will be used as the illustration. The central
processor was designed to upgrade computational
performance (throughput) by one or two orders of
magnitude compared to the 7090 system via proper
pipelining and circuit design. A typical
instruction processing sequencing in the pipe can
be as depicted in Fig. 2. Because of the highly
overlapped operations among independent instruc­
tions, more instructions are completed per period
of time, thus helping to achieve the desirable
performance.

Let us look at each segment of the pipeline
in more detail in order to observe the important
problems and characteristics associated with a
pipelined processor. Basically most segments of
the pipe have a cycle time of 60 nsec, with the
exception of the storage referencing and execution
units. The different segments in the pipe are
drawn in Fig. 3. The function of each segment is

Cl'EAAHO
ACC£SS

GENERATE
INST.

INSTRUCT
ACCESS

TO
DECODE INST. t-----1 ----,--- ---·

1-
ST_CRAGE _ __._~ __ " ...__IHS1llUCT10N_~~~ I ___ _, r= ro:J8r'°" ~·~

AOtmESS

M
INSTRUCTION

" UNI!
FUNCTION

MAIN STORAGE
CONTROL UNIT

& STORAGE
FUNCTIONS

AREA TRANSMIT MOYE INST. ~AR
INST. TO Fl.OATIHG TO

FLOATING ca:xlCE EXECUTIOH AR~W EXECUTION HAAOWAR£ UNIT

llHMETIC HAROWAA£
UNIT

>\ITFOR
OP£lWiO ___ _...

INSTRUCTlON tJNIT ------~°2~-~~------ -- POINT ---1 MAIN STORAGE COHTROI. UNIT L +-Fl.OATINQ..-i
fUNCTIOH FLOATING POINT INSTRUCTION ~CUTIC»t

UNIT FUNCTTOHS FliNCTIOH

Fig. 3 Functional segments involves in a floating
storage-to-register instruction in model 91.

43

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

indicated in the figure. For a storage-to-register
instruction, after the instruction has been fetched
and moved to be processed, it will be decoded
first. This decoding serves to decide the subse­
quent actions to be taken for this instruction.
Since it is a storage-to-register instruction, two
parallel sequences of operations will be initiated.
The first sequence includes the effective address
calculation and fetch for the operand from memory
storage. To calculate this address, the delay
time in the segment(s) involved is variable,
depending on if it is indexed or not. The operand
access segment again has a random delay, depending
on the availability of the memory module to be
referenced. The memory system in the 360 model 91
is interleaved to increase the bandwidth or memory
supply rate. However, because of reference con­
flicts due to requests from other parts of the pro­
cessor or system (such as instruction fetch or
I/0), an operand fetch may have to be delayed for
a complete memory cycle or more before it is
acknowledged. This variable access time poses a
constraint on the efficiency of the pipelined pro­
cessor. A completely synchronous operation on the
segments may be impossible because of these varia­
ble waiting times, And the need to be able to re­
duce the memory access time so as to match the
speed of the other segments in the pipes remains to
be one of the most critical issues in pipelined
processor designs. With slow effective memory
access time, the memory access segment may be a
bottleneck of such a large magnitude that the
throughput of the processor is not much improved
via pipelining.

The second sequence of operations involves the
setting up of operands to be submitted to an
assigned execution station in the execution unit.
If it is a floating point instruction, it will be
mapped into a pseudo register-to-register (within
the execution unit) instruction and transmitted to
the execution unit. Here, the instruction is
stored in the floating-point operand stack. In
turn, it will be decoded and the operand registers
(in the execution unit) concerned will be tagged.
Then the execution unit will wait for the return of
the operand from memory. When it happens, the two
parallel sequences can merge (join) to initiate
the next stage of processing, the actual execution.
The ready operand pair will be transmitted to an
available execution station to complete the pro­
cessing. Of course, the segments in the above
description operate independently of others in an
overlapped mode, with suitable buffering in-between
so as to achieve the pipeline objective.

It has been demonstrated how important it is
to reduce memory access time, since most of the
other segments have fast deterministic speeds.
Even after the memory accessing problem has been
solved, another bottleneck in the pipeline may
emerge. This is the execution unit. Usually many
arithmetic operations, especially floating point
operations, require considerable delay because of
their implicit internal circuit delay requirement
or iterative characteristics. If there is only one
execution station to serve the entire instruction
stream coming in, the speed of the execution unit
may not be compatible with the input rate, thereby

44

unnecessarily slowing down the computation, One
alternative is to provide multiple execution sta­
tions to perform different types of operations.
In the model 91, there is a fixed point execution
area and a floating point execution area. With
this arrangement, floating and fixed point opera­
tions can be performed asynchronously but in
parallel, But within each execution area, the
multiplicity of execution stations can be
increased, so that more floating or fixed point
operation overlap can be achieved, This is equi~
valent to increasing the throughput of the execu­
tion unit as an entity. For example, the floating
point area in the model 91 has two execution hard­
ware: a pipelined adder and a multiply/divide
pipe. The second level of pipelining in the exe­
cution station is an ingenious approach to speed
up some slow arithmetic operations, though con­
currency in execution among parallel stations
already exists.

One notable characteristic of the model 91
execution unit is that it possesses multiple but
unidentical execution hardware stations, for exam­
ple, add, multiply/divide. This design d~cision
was made by considering that a universal execution
station might not be able to perform all functions
as efficiently as specially designed stations, one
for each type of operation. However, one should
also note that this machine assumes sequential
instruction processing. As hardware technology
develops, some pipelined processors emerged with
identical arithmetic unit pipes as in the TIASC
system, Such a more general purpose execution
hardware design is oriented towards vector pro­
cessing which will be covered in detail in Section
III. In that case, the execution hardware can
assume a certain configuration during a vector
instruction, such as adding or multiplying or two
vectors. These two alternatives have their advan­
tages and disadvantages. With only one type of
execution hardware, more homogeneity is achieved
and less cost incurred (in case there is only one
unit), But to change its configuration for dif­
ferent operations may introduce too much switching
overhead. Fortunately, for vector oriented appli­
cations, such an occurrence can be reduced, More­
over, as in the TIASC system, if the number of
arithmetic unit pipes is more than one, they can
be assigned dynamically certain configurations for
certain applications, and hence, reconfiguration
can be further reduced. Then it has the added
advantage of being able to cope with an applica­
tion requirement better.

Here we have shown the essential structures
of a pipelined processor. Next, attention will be
paid to studying some design and operational pro­
blems associated with a typical pipeline. Includ­
ed are the following topics:

(1) Buffering: the concept and urgency of buf­
fering in a pipeline and in what ways it can be
accomplished.

(2) Busing Structure: For communication between
segments and operand supply to allow processing to
proceed or resume as quickly as possible.

(3) Parallelism Requirements and Handling: To
secure correct execution and obey implicit prece­
dence constraints in the instruction stream.

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

(4) Branching: Effect of branching in through­
put and the ways to alleviate the inefficiency in
existing systems.

(5) Interrupt Handling: How interrupts are han­
dled in sequential and vector pipes.

(6) Sequencing Control: Need and usefulness for
proper sequencing, and some mechanisms.

These six topic areas together will represent
the major design constituents to be added to the
basic structure just mentioned. Their importance
and effects actually can decide the efficiency and
performance of the resulting design.

2.2 Buffering
Buffering is essential in smoothing out the

flow of a computation process when the exact timing
for each processing module (segment) involved can­
not be decided a priori. In the case of a pipe­
lined processor, it is one of the most crucial but
not very conspicuous componen1sof the system. The
impact of buffering here can be visualized in a
common assembly line, say in the car industry.
Occasionally a station (segment) of the pipe may
be slowed down because of various reasons which
prevent the continuous input of cars to the sta­
tion. If there is sufficient storage space (gap)
between this station and its predecessor (or suc­
cessor) then the latter can continue its operation
on other cars and ship them to the storage space
available until it is full. When the station
resumes service, it can try to clear up the cars
in its input storage, perhaps at a faster speed.
Concurrently, its predecessor (or successor) may
take its break or continue providing useful service
(perhaps to other stations as well). The advan­
tages indicated here are that the waiting station
can resume execution very quickly because inputs
are already available, and that continuous flow may
be achieved even though some occasional slowdown
in a station happens (in a pipelined processor,
the slowdown may be created by interference
of resource requests and the nature
varying times of some operations).

Therefore buffering is needed
before or after any segment whose
processing speed is not fixed. In
a pipelined processor this means
(1) memory storage access related
stations including instruction
fetch, operand fetch, and (2) exe­
cution unit stations. In a typi­
cal pipe as the model 91, the
instruction buffer can hold 8
words of instructions to be fol­
lowed in the sequence. In the
execution unit, for the fixed
point execution area, a buffer of
6 words of instructions (pseudo)
and 6 words of operands is avail­
able, whereas in the floating
point area, a buffer of 6 instruc­
tions and 6 operands (from stor­
ages) is also provided. These
buffers serve the purpose of con­
tinuing the supply of instructions
or operands to the appropriate
units whenever a variable speed

of the

MEMORY

r---...,
: (!) I
I OPTIONAL f-
I MEMORY I L __ .J

~

~

occurs. Similar buffers in other pipelined pro­
cessors can be found. In the STAR-100 system,
whose configuration is drawn in Fig, 4, a 64 quar­
terword (superword) buffer exists in the stream
unit to buffer the data and to align the two oper­
and vectors (in vector processing mode) for stream­
ing in the operations involved, In addition, of
course there is the instruction buffer holding 4
swords of instructions (each sword = 4 128-bit
words). One sword in the instruction buffer will
be filled by one memory fetch so that the buffer
can supply a continuous stream of instructions to
be executed even though memory conflicts may occur
from time to time. Similarly in the TIASC system,
whose schematic diagram is shown in Fig. 5, suffi­
cient buffers are installed in the IPU and Memory
Buffer Unit (MBU), The MBU specifically holds 8-
word x.-v. z (2 operands, 1 result) buffers to
serve the arithmetic unit, and its instruction buf­
fer consists of two 8-word fast register files.
These are typical examples of the need and magni­
tude of buffering in a pipelined processor.

Sometimes, the concept of buffering may be
applied to even a lower level of system considera­
tion. As in the model 91 example, buffering can
be installed also at each execution hardware sta­
tion (such as adder and multiplier) to create vir­
tual stations (the so-called reservation stations
[12]). As explained before, the operations in the
execution unit (for example, floating point) in­
volve a sequence of inter-related segments. If
during decoding the pseudo instruction, it is
found that an unresolved dependency exists or the
needed execution hardware is not available, fur­
ther processing will be paused until the condition
is removed, This will introduce the undesirable
waiting time before execution can resume. One
solution that could be considered is to add more
execution stations. But it may not be a good
alternative because the added stations may carry
a lot of idle time due to their waiting for the

CENTRAL PROCESSOR UNIT
FLOATING POINT

FLOATING POINT
STORAGE IE----I

r-f--1 PIPE I

ACCESS

STREAM

CONTROL

FLOATING POINT

(SAC) PIPE 21

I-r-- MULTI -PURPOSE

ii
,.,..

I
I I
I I I
I I
I I STRING

I I
I I
I I

-:c

Fig. 4 Basic CDC STAR-100 Configuration

45

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

needed operands. So instead, the model 91 provides
additional buffer pairs of each execution station.
(There are three add and two multiply/divide reser­
vation stations). Then while one buffer pair is
being executed by the hardware station, the others
can be established to receive operands for future
execution. Thus virtual execution stations are
formed.

2.3 Parallelism Requirement and Busing Structure
Pipelining requires the concurrent processing

of independent instructions, though they can be in
consecutive stages of execution. Once encountering
an instruction that receives a source operand to be
generated (or modified) by some previous but not
yet completed instruction, further processing be­
yond the decoding and address calculation stages
may become infeasible. The precedence constraint
implicit in an instruction stream must be pre­
served. Otherwise, using a faulty operand will
ultimately lead to a large number of errors that
propagate throughout the entire computation.

Therefore, parallelism in an instruction
stream has to be detected efficiently and correctly.
It becomes more important since the efficiency or
performance of the pipe almost is directly propor­
tional to the parallelism factor in an instruction

stream, With dependent instructions, their input
and traversal through the pipe have to be paused
until the dependency is resolved. This reduces
overlapping. In turn, a further problem arises:
how to resolve the dependency most effectively in
order that computation can resume as early as pos­
sible? Usually this means how the new source
operand should be transmitted to a convenient
location for further processing. Thus, the design
of an efficient internal busing structure is
implicitly needed.

Parallelism in a sequential instruction
stream can be detected by checking the source
operand addresses of an instruction with the sink
(result) operand addresses of instructions still
inside the later parts of the pipe. If the source
address matches with the result address of some
earlier but uncompleted instruction, the former
must be inhibited until its contents reflect the
result of the most recent operation to use that
address as its sink. For example,

LO Rl LOCl (Load)
MD Rl LOC2 (Multiply)

Then the load must be completed before the
multiplication can take place -- if not, the
register Rl will be holding an erroneous operand

MEMORY
MODULE 0

Ir--_-_:--,
INSTRUCTION I I

----1--1 PROCESSING UNIT I
MEMORY
MODULE 1

MEMORY
MODULE 2

MEMORY
MODULE 3

MEMORY
MODULE 4

MEMORY
MODULE 5

MEMORY
MODULE 6

MEMORY
MODULE 7

MEMORY
EXTENSION
(OPTIONAL)

MEMORY
CONTROL

UNIT

I
~-----

PERIPHERAL
PROCESSOR

DISC CHANNELS

TAPE CHANNELS

DATA
CONCENTRATORS

Fig. 5 ASC System Configuration

46

I r CENTRAL PROCESSOR

MAGNETIC TAPE DRIVES

REMOTE COMMUNICATIONS
TERMINALS

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

for the multiplication. This illustrates the
basic precedence relationship that may exist
between instructions. But the recognition hard­
ware must not hold up independent instructions
from entering the pipe.

One common technique in pipelined processors
to accomplish this is to install a fast hardware
scanner that compares the source addresses of the
instruction (during or immediately after the decod­
ing stage) with the sink addresses of previous
uncompleted instructions. Once dependency is iden­
tified, two alternative actions can be taken.

In the IBM 360, model 91, since storage-to­
register instructions are mapped into pseudo­
register-to-register instructions, dependency is
easy to check (notice that the mapping must be pre­
served in subsequent instructions). As an example,
let us consider the floating-point execution unit
again [12]. A busy bit is associated with each of
the floating point registers. It will be set when
it serves as the sink of some decoded instruction
in the floating-point operation stack, and reset
when the result is returned to the register. If a
dependency is encountered and detected, the decode
sets some control bits of the source register.
Then when the result becomes available here, it
will be transmitted immediately to some destination
buffer where execution can proceed. (Therefore an
execution unit station has been assigned to the
dependent instruction while it is waiting for its
source operand).

To allow processing to resume fastest, some
needed results have to be transmitted to certain
execution stations as quickly as possible. So the
Common Data Bus (CDB) in the model 91 was invented,
With the CDB-;- the entire floating-point unit is
drawn in Fig. 6. The CDB can transfer data not
only to the registers but also to the sink and

STORMG~ 8' '5 INSTRUCTION UNIT

l- -
j

__e- !-----~

r-FLOA mo .;;;q FLOATING·

.. POINT

BUFFERS {FlBl~ OPERAND :J CONTROL
STACK (FlOS)

f--------_:l
1 ::r

~+f
T

FLB BUS

± FLR BUS

f COB

j_
L TAGl SINK _l r•GJ SOURCE Jcrncj

[r AG] s1Ni< J. TAG} souRcE] cTRg
[TAG] SINK] TAG i SOURCE Jcrn:g

\ AODER 7
[RESULT J

i COM.l\10N DATA BUS (COB)

source registers of all reservation stations (the
virtual execution stations). It is fed by all
units that can alter a register. To make this
possible, tags (address) are assigned to the re­
gisters. Then the processing sequence can be
described as follows. In decoding each instruc­
tion, the busy bit of each source register will be
checked. If it is zero, the independent instruc­
tion can be transmitted to a certain execution
station, say Al (virtual adder 1). At the same
time, the busy bit of its sink register will be
set and the corresponding tag set to the destina­
tion of Al (so that the sink register will receive
the result from Al). If the busy bit is on,
instead of waiting for the source operand to be
generated and stored to the register, the depen­
dent instruction will still be issued to an avail­
able execution station, say Ml (virtual multiplier
1). However, the tag of the register, rather than
its content, will be transmitted to the reserva­
tion station Ml so that Ml will accept data whose
tag matches with its own from the CDB, As an
illustration:

ADD Fl,FLBl
MD Fl,FLB2

((Fl)+ (FLBl)-+ (Fl))
((Fl) x (FLB2) ~(Fl))

In executing the ADD, Al is used, and the tag of
Fl is set to 1000 (that of Al) and its busy bit
set to l. In decoding the MD, the busy bit of Fl
is 1. So rather than sending (Fl) to Ml, its tag
(1000) is transmitted to Ml. In addition, the tag
of Fl is changed to 1010 (tag of Ml). When CDB
is broadcasting the data tagged with 1000, Ml will
succeed in matching the tag and so ingate it to
the buffer and resume execution (if FLB2 is avail­
able). Notice that the result of ADD is not
stored in Fl in reality because that operation is
redundant (the tag of Fl is 1010 and not 1000).

l _[
8

~~~ TA.GS 
FLOMTING-POINT 4 

I-------
REGISTERS (fLR) 2 

0 

f 1 1 STORE ~ 
CONTROL TAGS [ DATA BUFFERS ~ 

1 (SOB) !l 

I 

i i l: 
i .l + r r;Gf SIN< I TAG[ SOURCE }cTRcj 

r '"\~,:~:~7,~1 

~ 
Fig. 6 Floating Point Unit of IBM 360 Model 91 

with CDB and Reservation Stations 

47 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

This CDB with tagging permits the intermediate 
operands generated from the pipe to be used most 
quickly by the following instructions, without hav­
ing to go through many levels of actual storage (to 
actual registers or even to memory storages). How­
ever, its effects are rather local in the instruc­
tion stream (which is exactly what is desired in· 
keeping the smooth flow of the instruction stream). 

A similar alternative can be found in other 
pipelined processors such as the TIASC and CDC 
STAR-100. In the TIASC processor [13], an instruc­
tion dependency is recognized by hardware. It 
scans the instruction stream and distributes the 
independent instructions across MBU-AU pairs to 
insure proper, yet efficient execution sequences. 
Update capability is incorporated by allowing the 
contents of the Z-buffer to be transmitted to the 
X- or Y-buffer in MBU when the latter are being 
used as scratch pads in local computation. In the 
STAR-100 system [14], a more explicit busing struc­
ture is maintained because of its different units. 
In the floating point pipes (whose configurations 
are drawn in Fig. 7), a direct route called short­
stop is established between the output (transmit 
segment) of each pipe to either of its inputs. 
This eliminates the time necessary to store the 
generated result in the register file and then to 
read it .out again. 

Although an efficient busing structure can re­
duce the adverse effect of instruction dependency, 
there is still a big burden on the programmers or 

_the compilers to produce codes that expose 
SHORTSTOP 

EXPONENT COE'"FtCIEHT CCE'FFICIENT 

COMPARE AUGNMENT ADD 

SHIFT 

sufficient parallelism to allow overlapped process­
ing beneficial. If more independent instructions 
are intermixed appropriately with those dependent 
ones, more concurrent processing can take place 
while the dependency is resolved with little in­
curre time (that is, the resolving of dependency 
is hidden behind other useful processing). This 
is a very important factor in deciding how effi­
cient a program or an implemented algorithm can be 
executed on a pipelined processor. Algorithm effi­
ciency must also consider the architectural fea­
tures of the processor on which it is executed. 

2.4 Branching 
Branching is another serious adverse effect 

that may arise because of program structures. It 
is more damaging to the pipeline performance than 
the previous instruction dependency. When a con­
ditional branch is encountered, one cannot tell 
which sequence of ins true ti ons wi 11 fo 11 ow unt i 1 
the deciding result is available at the output. 
Therefore, a conditional branch not only delays 
further execution but also affects the entire pipe 
starting from the instruction fetch segment. An 
incorrect branch of instructions and operands 
fetched may create a discontinuity of instruction 
supply. 

To remedy the effect of branching, different 
techniques can be employed to provide mechanisms 
whereby processing can resume even if an unexpected 
branch occurs. In the IBM 360 model 91 [9], a 
loop node and back-eight test are designed with 

NORMALIZE NORMALIZE. TRANSMIT 

COUNT SHIFT 

HIGlf SPEED MULTIPLY UNIT 

MULTIPLY I MIJL TIPl.T 2 MERGE 64 MERGE I MERGE 2 

EXPONENT COEFFIOEM'" COEFFICIENT NOAMALIZE NORMALIZE TRANSMIT 
AOPEAANO .. 

COMPA.RE ALIGll.MEt.IT ADD SHIFT 

St<IFT R<SULT 

OEGISTER 

MlJL TIPURPOSE UNIT OIVIDE 

""" 124 SEGMENTS) 

Fig. 7 Floating Point Pipe 1 and 2 of CDC STAR-100 system 

48 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

the help of an additional branch target buffer. 
In TIASC a load lookahead [15] mechanism (instruc­
tion) is' explicitly provided, with appropriate 
hardware and buffer support. Likewise, in the CDC 
STAR-100 [14], the instruction stack has special 
branch back capability. We will try to explain 
these schemes in this section. 

The branch-on-condition handling is best il­
lustrated using the model 91 example (Fig. 8). In 
this processor, upon decoding a conditional branch 
instruction, this instruction will be tagged so 
that its outcome can be used to set a condition 
code (CC) (provided it is not inhibited). Also it 
will be assumed that no branch will be taken (CC 
not valid). However, to guard against an incorrect 
guess, two instruction double-words will be fetched 
from the branch and stored at the branch target 
buffer. Then conditional mode is entered where 
instructions are forwarded conditionally to later 
segments for processing. Ope~and~ are c?n~itional­
ly set up while actual execution is prohibited. 
Finally, if the CC becomes valid (branch should be 
taken), the conditional instructions must be deac­
tivated and processing resumed using the branch 
target instructions. If the CC is invalid as 
guessed, then execution can continue almo~t.inst~n­
taneously. This therefore reduces the waiting time 
on the avera~e case (if the guess is more 'right' 
than 'wrong'). To further reduce instruction fetch­
ing time, short loops in programs can be fruit'.ully 
exploited. Very often, a short loop-backward in 
programs can be seen .. If the ins~ru~tio~s are al­
ready in the instruction buffer, it is wise not to 
erase any of them and assume the branch {loop) will 
be successful. Then no other memory access for 
instructions is needed and less memory interference 
to other parts of the processor will be created. 
The way to detect these short loops and reserve the 
instruction loop is by implementing a loop node and 

-TIME 

I~~ I 
I ?'(NJ~)' I g~D. 

f---oo NSEC-+l 

FETCH 
TARG£T 

f£1CH 
TARG£T +I 
1~+2 1 

I 
I 
I 

1~+•1 

back"eight test, 
A separation of eight instruction double 

words or less will be termed a short loop that can 
be completely stored in the instruction buffer. 
When a branch {backward) is obtained, the back­
eight test will be used .. If it is satisfied: the 
loop mode will be established. From that point 
on the complete loop is fetched in the instruc­
ti~n buffer so that no further fetching is needed 
until the loop mode is removed by branching out. 
In conditional branches, the loop mode can be 
established to replace condition mode once a suc­
cessful branch results and the back-eight test is 
satisfied. This method of back-eight test and 
loop mode is very useful in systems where availa­
ble memory cycles are precious to the entire 
system. 

The load lookahead mechanism in TIASC follows 
a similar philosophy. The instruction processing 
unit of the machine contains two instruction ad­
dress registers {Present Address, PA and b.ookahead 
Address, LA) and two instruction files of 8 words 
each {KA and KB). Each memory reference can fetch 
an octet {P) of instructions to one of the instruc­
tion files. Usually PA contains the starting ad­
dress of the next octet to be fetched and LA sup­
plies the address of the next octet to be fetch~d. 
To accommodate branching for a loop, a branch with 
lookahead can be set up by placing the branch 
instruction at the target location of a Load Lo?k­
Ahead {LLA) instruction. A LLA enters a count in­
to a lookahead count register {LC) and enter~ the 
address of the LLA into a branch address register. 
The count corresponds to the difference of the in­
struction locations of the LLA and its target 
branch instruction. The count is decremented by 
one every time an instruction is exec~ted, follow­
ing the initiation of the LLA. When it has reached 

I El<£C\1Tt I rn~rr I cc CC TO l:NST. n I.UNIT VAUD 

I I I n:sr 1~~1 cc 
(llGM) TO EXEC. 

AAEAS 

I I I I FRfE TO El<ECUT£ 
WHEN 
OPERAND 
R£TURNS 

Of'ERAHD ACCESS 

I I I 
CO£RAND ACCESS 

I COHO. I f:s~+4 I I I 
Fig. 8 Conditional Branch 

in IBM 360 model 91 

49 

OPERAND ACCESS 

1~+51 I I I . 
'------v-------

CPERAND ACCESS 

1~+61 I I ,,,-----
OP!RAHD ACCESS 

1~~H1 1-----



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

a value designating that the branch has already 
been requested from memory, the control will trans­
mit the contents of BA to LA. This causes the 
fetching of the octet containing the LLA and the 
loop control is reinitialized. In this way, a 
lookahead loading of instructions in a loop up to 
256 instructions is allowed and instru~tions will 
be continuously available for execution before the 
branch instruction is completed, 

The STAR-100 processor has a 16 128-bit word 
instruction stack. Each quartersword is loaded in 
one minor cycle (i.e. 4 words). Branching is al­
lowed within the instruction stack. The loading 
and management can be as depicted in Fig, 9. After 
the stack is loaded, any branch within the stack 
can be honored easily. However, the stack will be 
cleared whenever a branch out of the stack occurs. 
The reason is because the stack can be completely 
filled by a request to memory (i.e. in one memory 
cycle). With a faster memory rate and a large in­
struction stack, local loops can be maintained 
easily without having to install testing strategies. 

* 

(4-sword Instruction Stack) 
x 
x 

+ LOAD 
ISSUE 

x 
+ LOAD 

ISSUE 
USED 

+ LOAD 
ISSUE 
USED 
USED 

Branch back on any previous part of the stack. 

Fig. 9 STAR-100 instruction stack 
loading and issuing with 
branch tolerance 

Therefore these methods are useful to help to 
supply instructions continually to the pipe seg­
ments even though branch instructions are inevita­
ble. For fixed (targeted) branches, lookahead 
strategies can provide the means to continue the 
instruction sequence. But for conditional branches, 
more elaborate schemes to recover from unexpected 
branches have to be established (such as the condi­
tional mode). 

2.5 Interrupt Handling 
Interrupts, as deemed inevitable, have the 

same adverse effect to pipelining as conditional 
branches. When an interrupt occurs, subsequent 
instructions (that follow the interrupt logically) 
have to be inhibited until the interrupt is served. 
Otherwise, a large overhead in recovery to the lo­
gically correct form may be needed. In the IBM 
360 model 91, the notion of imprecise interrupts 
is used. These are instructions where interrup­
tion can be uncovered during decode time and hence 
involve interrupts that result from protection, 
addressing and execution functions. Once an inter­
rupt is encountered, further decoding is prohi­
bited. However, there may still exist instructions 
inside the pipe that are partially completed and 
which should be finished before switching the CPU 
to the interrupt routine. So the new status word 
(for the interrupt branch) is fetched to the 
branch target buffer in parallel with the execu­
tion completion. If the interrupt happens to be a 
precise one, the execution completion may cause an 

50 

imprecise condition. Then the logically preceding 
imprecise signal should cancel all previous pre­
cise actions. Afterwards, processing can proceed 
down the interrupt instruction path, 

For vector processing, execution of an in­
struction may take a long time. Therefore, as in 
the STAR-100 processor, special interrupt counters 
are available to hold addresses, delimiters, field 
lengths, etc. which are necessary to restart vec­
tor-type instructions after an interrupt (provided 
the interrupt does not affect the instruction pro­
cessing sequence). This represents a recovery 
mechanism for processing to proceed afterwards 
when an unpredictable interrupt occurs. Since 
interrupts, unlike parallelism detection and 
branch instructi9ns, are less predictable but for­
tunately less frequent, little distinguishable 
optimization techniques have been invented to re­
duce its affect to the pipeline continuity. Most 
adopted techniques are rather simple and crude. 

2.6 Sequencing Control 
For a second level pipeline (usually in the 

execution unit, such as a pipelined multiply or 
arithmetic unit pipe}, the speed of a segment is 
fixed. Then rather than inserting buffers to 
interlock the operations among the segments, a 
sequencing control for routing operand pairs 
through the segments can be established. An exact 
schedule for traversing the segments can be fol­
lowed after the execution is initiated. It has 
the additional advantage that with the removal of 
internal buffering (in the execution unit pipe}, 
less delay and hardware in the pipe will be 
needed. 

Since some pipelined execution unit requires 
internal looping (bi-flow pipe} in the segments, 
operand pairs admitted to this pipe must be routed 
properly so that two different active pairs will 
not try to access a same segment concurrently 
(recall that there is no buffer to resolve con­
flicts). This conflict avoidance is an important 
objective in the sequencing control. A general 
technique that can be applied to sequence operands 
properly can be developed as in [16]. A reserva­
tion table is used to represent the traversal path 
of an operand pair through the pipe. A typical 
example can be found in Fig. 10. In this example, 

Time 
Facil it 2 3 4 5 6 7 8 9 10 11 

+. x 0 + 

2 + x 0 + x 0 

3 + * ® 0 
4 + x 0 
5 + * ® 0 

6 + x 

Static Collision Vector = 100100001 
*=collision if+ and x are initiated as 

indicated. 

x 

0 

12 
0 

Fig. 10 Reservation Table for Sequencing 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

if the control waits for two minor cycles before 
initiating a second execution, no collision (re­
source conflict) will result. However, if initia­
tion takes place at the next minor cycle, a colli­
sion will occur at facility 3 (or 5). From this 
reservation table, a static sequence control can 
be designed so that operand pairs are initiated at 
certain periodic intervals to attain a high through­
put rate. 

Specifically, a collision vector can be de­
fined so that a 'O' denotes that initiation at 
that interval (after the current initiation) will 
not cause any collision and a 'l' the opposite. 
For the example, the collision vector is 100100001. 
Then, optimizing methods (usually mathematical pro­
gramming techniques) can be employed to find peri­
odic intervals to initiate the operand pairs to be 
admitted, assuming the latter exist. In fact, a 
state transition diagram as drawn in Fig. 11 can be 
constructed, a state being defined by the updated 
collision vector (previous updated vector or the 
static collision vector associated with each ini­
tiation) and a transition representing the number 
of cycles waited before initiating the next oper­
and pair. From the transition diagram, the high­
est throughput cycle can be picked to initiate 
operand pairs to the pipe. In the example, it is 
the 1-1-1-5 cycle. This method of statically con­
trolling the pipe is one way to guarantee highest 
throughput when a continuous stream of operand 
pairs to be executed is available. If the latter 
is not true, the collision vector approach can 
still be modified and applied to control the cor­
rect sequencing of operand pairs without incurring 
collisions. 

3 

Fig. 11 Example State Transition Diagram 

In the case of multifunctional pipes, the 
collision avoidance technique can be generalized. 
However, now two possible alternatives should be 
considered. In a static multifunctional pipe, 
only one configuration will be active at one time. 
So the previous unifunctional approach can be 
taken. But one must watch out for the overhead 
incurred in the reconfiguration process. There­
fore, the sequencing control should try to scan 
and group instructions which require the same con­
figuration to be executed together. In a dynamic 
multifunctional pipe, simultaneous active configu­
rations are allowed. Then the generalization of 

51 

the previous technique can be easily applied. For 
brevity, the details will be omitted here [17-18]. 

These techniques are useful not only to con­
trol operand routing correctly, but also to in­
crease the throughput of a pipe with fixed-speed 
segments. With them, one can further upgrade the 
pipelined processor throughput. 

2.7 Summary Discussion 
To sum up the adverse effects of precedence 

constraints, branching and other unanticipated 
events to the performance of a pipelined processor, 
let us try to derive its analytical throughput 
with suitable parameters. 

Consider a linear deterministic pipeline of L 
segments and suppose 

Po = probability that a task (instruction) does 
not depend on anyone already in the pipe, 
that is, once initiatied, it can proceed 
without waiting or being cancelled. 

pi probability th~fi a task (instruction) de-
pends on the i previous instruction 
still in the pipe to validate its initia­
tion, for i = 1, ... ,L. 

Thus 
L 
l p. = l 

i=O 1 

Ti = relative initiation time of the ;th 
instruction. 

For simplicity, let all facilities have the same 
speed T. Then 

L 
T. = T. l +paT+plLT+ l p.[max{O,T .. +LT-T. l}]. 

1 1- j=2J 1-J 1-

In the steady state, assume 

T.-T. l = T.-T. l = d 
1 1- J J-

(that is, expected delay in initiation between two 
consecutive tasks is d). Since 

T .. -T. l =T .. -T. '+l+T. ·+l_ ... -T. 1 1-J 1- 1-J 1-J 1-J 1-
= (j-l)d 

L 
d = PaT+plLT+ l p.[max{O,LT-(j-l)d}] 

j=2 J 

More precisely, there exists an r such that 

LT - ( r-l)d ~ 0 but LT - rd ~ 0 
Then 

r 

( l ) 

d = p0T+p1LT+ l p.[LT-(j-l)d] (2) 
j=2 J 

Equations (1) and (2) can be used to solve for r 
and d given Pi• L, T. But due to the nonlinear 
characteristics, a closed form solution is not 
available and an iterative algorithm for specific 
values of Pi• L, T has to be used. The index r 
arises because the present instruction may depend on 
onl~ up to r previous instructions (on the aver­
age) still inside the pipe, instead of a maximum 
of L. This .is because a cumulative delay may have 
resulted in these r previous instructions so that 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

when considering the present instruction, the ear-
1 ier ones (earlier than those r instructions) have 
already left the pipe. 

Here, for the purpose of demonstrating the 
effects of sequencing, equation (2) is worth a se­
cond look. By proper sequencing, for every step, 
one tries to increase Po (no unresolved dependency) 
and other higher Pk (k~r) (or dependency is far 
away) as much as possible. Several ways to achieve 
this exist. One is to produce optimized code via 
good programming or by a clever compiler, or a sim­
ple effective sequencing rule (perhaps implemented 
in hardware). Indeed, pipeline efficiency is high­
ly dependent on both the design and operational 
methods used. 

III. Vector Processing 
One of the main requirements in justifying the 

pipelining of a process is that the same process 
will be invoked very frequently. Ideally if a con­
tinuous excitation of the pipeline is attained, 
then the maximum throughput will be within reach. 
For a pipelined processor, this is equivalent to 
the need of abundant parallelism in the instruction 
streams to permit the initiation of independent in­
structions almost continuously. 

This ideal situation sometimes becomes true 
when the machine is processing some independent 
vectors such as adding two vectors, element by ele­
ment, to form a result vector. If each element of 
a vector has to go through a transformation inde­
pendent of the transformation of other elements of 
the vector, then they can be performed in an over­
lapped mode with the others, employing the pipelin­
ing characteristics. For machines with multifunc­
tional pipelined execution units (second level), 
the latter can establish and retain a static confi­
guration throughout until the entire vector is pro­
cessed. Hence minimal control, decoding and recon­
figuration overhead may be achieved while the memo­
ry operands are supplied to the execution unit in a 
most efficient way. This will become more apparent 
as our discussion proceeds. 

In this section, vector processing in pipe-
1 ined processors will be studied carefully. In 
subsection 3. l, the components of a vector instruc­
tion and the ultimate processing procedures will be 
demonstrated and a comparison of two prominent vec­
tor machines in this aspect will be included. This 
will then lead to the revelation and evaluation of 
the requirements, properti.es and tradeoffs in terms 
of time and space (control hardware) overhead in 
vector processing as contrasted with sequential 
pipeline processing. The analysis in subsection 
3.2 will serve to expose the real crux behind vec­
tor processing. Hopefully, these discussions will 
also reveal the many facets, advantages and disad­
vantages and other special features associated with 
a vector pipe that may appear quite mysterious to 
some people. 

3.1 Vector Instruction 
A vector pipe can be characterized by the 

existence of one or more multifunctional pipes (se­
cond level) in the execution unit (arithmetic and 
logic unit) and the needed control. and parameter 

52 

specifiers in the processor, As mentioned in sec­
tion l, a multifunctional pipe can be either sta­
tic or dynamic, depending on its reconfiguration 
control. In the static case, simpler control is 
required to establish and maintain a desired con­
figuration for processing. There is a fixed route 
for each operand set to transverse throughout the 
computation, unless a new configuration is formed. 
While in the dynamic case, more complicated con­
trol and routing overhead will be involved, the 
throughput may be higher because of the simulta­
neous existence of several configurations. In 
reality, static vector pipes are more common, as 
will be illustrated in the TIASC and CDC STAR-100 
examples to follow. Dyanmic vector pipes, though 
they may be superior in throughput, require too 
much control overhead and so their implementations 
still have to be studied more carefully. 

For a vector that consists of the two levels 
of pipeline action, appropriate vector instructions 
have to be designed and implemented to denote the 
operations on some ordered data in vector or array 
form. Generally, in the first level, a vector in­
struction will be fetched, decoded, and the neces­
sary control paths connected, before the needed 
elements of the vector are fetched from consecutive 
storage locations over a specified address range. 
The second level execution unit pipe carries out 
the specified operations on these elements, nor­
mally being supervised by a control ROM. Some­
times the results generated are stored back to 
certain consecutive addresses of a result field 
and sometimes other needed indicators will be gen­
erated and stored in the register file in the pro­
cessor for future usage. The exact procedure and 
mechanism to accomplish all these functions vary 
from machine to machine. For the sake of later 
comparison and analysis, a description of an exam­
ple of vector instruction execution will be pro­
vided here. 

Before starting the execution of a vector in­
struction, certain additional information perti­
nent to the mode of processing has to be furnished 
to the system. Such information can be quite va­
ried and detailed, such as the starting (base) 
address of each source vector and result vector 
involved (usually two source vectors and one re­
sult vector) and the control over what elements of 
the vectors should be operated upon. The method 
by which the CDC STAR-100 handles this will be 
demonstrated first. Then similar and different 
features in the TIASC system will be noted. Fin­
ally the vector processing power of the two sys­
tems can be compared. 

The schematic diagram of the central process­
ing unit for CDC STAR-100 system is drawn in Fig, 
4. Basically it consists of four parts, operating 
in an overlapped, asynchronous mode: (l) Storage 
Access Control (SAC), (2) Stream, (3) String, 
(4) Floating Point units. The SAC is responsible 
for sharing the magnetic core storage among the 3 
read and 2 write buses shared by the Stream and 
I/0 units. To support virtual addressing (all 
user programs are run in virtual address space), 
it is also equipped with a small associative page 
table. The Stream unit provides the basic control 
for the entire processor. Internally, it may be 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

regarded as a multi-segment pipeline (second level) 
as its carries out functions including 

{i) memory references, 
(ii) buffering and skewing of operand data, 

(iii) buffering and decoding instructions, 
(iv) setting up control signals for processing 

the instruction, 
and (v) performing simple logical and arithmetic 

operations. 
The String unit, as the name implies, is used 

to process strings of decimal or binary digits. 
It contains some fast half adders and full adders 
to carry out simple pencil and paper algorithms for 
binary arithmetics (divide and multiply). Finally 
the Floating Point unit consists of 2 pipes whose 
configurations are drawn in Fig. 7. Each pipe is 
(static) multifunctional as·it has different confi­
gurations for performing different floating point 
operations. Pipe l performs arithmetic operations 
on operands in floating point format and address 
operations on nonfloating point numbers. Pipe 2 
performs only two vector address type operations, 
in addition to other arithmetic operations. Pipe 
and pipe 2 are quite similar in structure except 
that the latter has a high speed register divide 
unit and a multipurpose unit for some special 
arithmetic such as square root, vector divide, etc. 
The pipes can take on a certain configuration at 
any time. For example, to perform floating point 
addition, pipe l configures itself (under micro­
code control to be explained later) to activate the 
path: Exponent Compare - Coefficient Align - Coeffi­
cient Add - Normalize Count - Normalize Shift -
Transmit. With this static configuration, operand 
pairs can be routed through the pipe at a steady 
and maximum rate. When the operand pairs can be 
supplied fast enough and the result stored suita­
bly, an ideal throughput rate will be reached. 
Then if these pipe segments have the same speed, 
say one minor cycle, then one result element may be 
generated per minor cycle. The evaluation, other 
tradeoffs and overhead will be examined more 
closely later. 

Let us now pause to examine a vector instruc­
tion before exploring the procedure of its execu­
tion. An ordinary vector instruction format in the 

STAR- 100 computer is representable by 8 fields as 
indicated on Fig. 12; (l) F: function code, (2) G: 
subfunction code, (3) X, Y specify the registers 
that hold address offsets for the two correspond­
ing source vectors (the offset operates as depicted 
in Fig, 13 and is useful for skewed vectors), 
(4) A, B specify the registers that hold the base 
addresses and field lengths of the two source vec­
tors, (5) Z-Specifies the register holding the 
base address of the control vector, (6) C specifies 
the register holding the base address and field 
length of the result vector, and (7) C+l then auto­
matically specifies the register holding the off­
set for the control and result vectors. This auto­
matic assignment is implied to maximize the utili­
zation of each instruction word which has a 
limited length, 

From these registers, the effective starting 
address and field length of each vector can be cal­
culated. Then the rest of the vector can be ref­
erenced sequentially until a termination condition 
is reached. The control vector is a unique feature 
introducing the flexibility desired in vector pro­
cessing. It performs prohibition responsibility, 
analogous to the control unit in an array processor 
such as the ILLIAC IV [2]. In the ILLIAC IV, the 
control unit broadcasts control signals to all the 
64 processing elements so that the latter, except 
those inhibited by previous broadcast signals, 
will execute some operation on the appropriate 
array data. The control vector in the STAR-100 
performs the analogous function, but in a time 
stretched fashion (compared to the simultaneous 
inhibition of array elements). Each bit of the 
control vector is used to specify whether or not 
the corresponding result element should be stored 
(for most vector instructions; however, in some 
modified cases like macros it has other duties as 
will be explained later), When a bit is set in 
the control vector, the corresponding element of 
the result vector will not be modified and stored. 
Thus, the nth bit read from the control vector 
will be used to control the storing of the nth 
element generated in processing the vector 
instruction. 

7. 15 16 23 24 31 32 39 40 47 48 !5~ 56 .. 
F 

(8X,9X) 
G 

(SUB FUNCTION) 

x 
(OFFSET 
FOR A ) 

A 
(FIELD LENGTH 

a 
BASE ADDRESS l 

y 
(OFFSET 
FOR 8) 

B Z 
(FIELD 8 LENGTH (Cy BASE 

BASE ADDRESS ADDRESS) 

c 
(FIELD LENGTH 

a 
BASE ADDRESS) 

C+I 
!(OFFSET FOR 

NOTE: CV DENOTES CONTROL VECTOR L :_a ~1-
Fig, 12 Vector Instruction Format in CDC STAR-100 

Field Length 

Memory Words (32 bit or 64 bit operands) 
r 

'-

} 
..- Base Address 

Offset 

Beginning Address 

}

<-- (Base Address+ Offset) 

Effective Field Length 

Fig. 13 Addressing Offset for Vectors 

53 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

As an illustration consider a vector add 
instruction: 

VADD A,B,C (A+B+C) 
Suppose the instruction format provides the follow­
ing information: 

(A) = content of A register: 
field length of A vector 

= 12 half-word (32 bits) 
base address = 1000016 (bit addressing) 

(B) field length of B vector 
= 4 half-word 

base address = 2000016 
(X) offset for A vector = 4 half-word 
(Y) offset for B vector = -4 half-word 
(Z) base address of control vector 

= 4000416 
(C) base address of result vector 

= 3000016 
field length = 12 half-word 

(C+l) = control vector and result vector offset 
= 4 half-word 

Then the starting address and effective field 
length of A vector can be calculated according to: 

starting address = base address+ offset 
effective field length= length·- offset 
Hence, for the example, the effective ad-

dresses and field lengths are: 
starting address of A vector 

= l 000016 + offset = 1008016 
effective field length = 12 - 4 = 8 halfwords 
starting address of B vector = 2000016 - 80 

= IFF8019 
effective field length = 4- (-4) = 8 halfwords 
starting address of C vector 

= 3000016 + 8016 = 3008016 
effective field length = 12 - 4 = 8 halfwords 
The results of the VAOD instruction can be 

summarized in Fig. 14. Notice that the addressing 
used is bit address and a 'l' in the control vector 
will permit the storing of the corresponding ele­
ment in the resulting vector. For example, 40005 
stores a 'l' so that C5 is transformed into A5+B-3. 
The skewing effect is quite apparent in this 
example. 

The mechanism to generate the desired output 
has to be explained further. After the instruction 
has been decoded at the stream unit, the appro­
priate microcode sequence in the Microcode Unit 
(MIC) will be initiated. This microcode unit re­
sides in the stream unit and is responsible for 
vector type operations. The processor uses micro­
code to start up and shut down a vector instruc­
tion. The microcode is loaded.in a read only memo­
ry (to users). When the CPU initiates an instruc­
tion requiring microcode control, it sends the F 
(function) code and a microcode pulse to the MIC. 
The latter then takes over control of the start up 
and termination of the instruction. In the case of 
interrupts, it also has to branch to save all the 
operands and parameters necessary to resume execu­
tion afterwards. Therefore it is the heart of the 
vector processing control. ·In fact, it is the cen­
tral control once a vector-type instruction has 
been noticed via decoding. Typically it controls 
operations including: 

54 

A source vector 
Ao 10000 + base address 

10020 
10040 

10060 
10080 
lOOAO 
lOOCO 
lOOEO 

10100 
10120 
10140 

10160 

IFF80 
IFFAO 
IFFCO 
IFFEO 
2000 
2020 
2040 
2060 

3000 
3020 
3040 
3060 
3080 

30AO 
30CO 
30EO 
3100 
3120 
3140 

3160 

Al 
A2 
A3 

I,,,,,, 
A4 
A5 

+ start address 
(base address - offset) 

A6 
A7 actual field length 
A8 
Ag 

= field length - offset 
= 12 - 4 = 8 halfwords 

AlO 
All 

B source vector 
B_4 
B_3 
B_2 
B_l 

Bo 
Bl 
B2 
B3 

C result vector 
co + co 
cl + cl 

c2 + c2 
C3 + C3 
c4 + c4 

C5 + A5+B_3 
c6 + c6 
C7 + C7 

cs + Aa+B6 
Cg + Cg 

ClO + AlO+B2 
Cll + A11 +B3 

+ starting address -

I -omot 

+ base address 

+ base address 

I '"'" 
+ starting address 

effective 
field length 

control vector 

1110111110111010111011111 
t t 

40000 t 40004 
off set 

Fig. 14 Example Vector ADD 

actual 
field 
length 
=4-(-4) 
= 8 half 

word 

(1) the reading of addresses from the register 
file (in the stream unit) for the vector 
parameters according to the designations 
specified in the instruction 

(2) the calculation of the effective addresses, 
field lengths, etc, for monitoring the 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

starting the operations involved in the vec­
tor instruction 

(3) the setting up of the usage of read-write 
buses as specified by the G (subfunction) 
field for the operands and results 

and 
(4) the transfer of addresses and other informa­

tion to appropriate interrupt count regis­
ters wherever needed. 

Once the effectiv~ addresses are computed, the 
operand elements will be fetched and paired for the 
operations involved, for example, going through the 
second level floating point pipe. The static con­
figuration of the execution pipe will remain active 
until the vector instruction is terminated. A ter­
mination is marked by either of the following 
events: 

(1) A vector is exhausted (e.g. when the effec­
tive field length is or has become zero, or 
the difference between the effective field 
length and the number of operand pairs en­
countered thus far is zero). 

(2) Some other data fields or strings have been 
exhausted. 

From the above description, one can grasp 
what a vector pipe really includes and how vectors 
can be processed in an overlapped manner. It is 
interesting to find out some other alternatives to 
achieve a vector pipe. So let us examine a simi­
lar vector machine, the TIASC system. The TIASC 
handles a vector instruction in a similar way, 
though some additional distinguishing features 
should be mentioned. To facilitate understanding, 
the central processor unit composition in TIASC 
has to be briefly explained. Its schematic dia­
gram is provided in Fig. 5. It consists of 3 main 
components: (1) Instruction Processing Unit (IPU), 
(2) Memory Buffer Unit (MBU) and (3) Arithmetic 
Unit (AU), The IPU is analogous to the Stream unit 
in the STAR-100, MBU analogous to the load/store 
and AU plays the role of actual processing of data. 
In vector mode, the IPU fetches, decodes the in­
struction and calculates the effective addresses 
for the vector fields. After receiving the needed 
information from the IPU, the MBU starts fetching 

REGISTER 

28 

29 

2A 

2B 

2C 

2D 

2E 

2F 

Ho 

-

HS 

V1 

Hz 

OPR ALCTI 

XA 

XB 

xc 

DAI 

DCI 

DAO 

DCO 

sv 

source operands and pairing them to be sent into 
the AU pipe (the AU can have one to four identical 
pipes). Each AU pipe has different configurations 
for performing different arithmetic operations 
(including integers) as in a typical static multi­
functional pipeline. The two levels of pipeline 
action are quite apparent in this case. 

A vector instruction in TIASC has some out­
standing characteristics. Its instruction format 
can be as depicted in Fig. 15. However, rather 

I OP N 

Hi 20 32 8 

Fig. 15 Vector Instruction Format in TIASC 

then specifying particular registers to fetch 
operand address and control information, some re­
gisters in the IPU have already been dedicated for 
vector processing, called the vector parameter 
file (VPF). It consists of 8 32-bit registers 
whose individual functions or interpretations have 
also been assigned permanently as drawn in Fig. 16. 
This fixed organization has the advantage that 
they can be hardwired to the input of the control 
ROM or other logic units for fast operation, with­
out having to worry about access conflicts among 
them. The first register contains the operation 
code and the type and length of the vector consi­
dered (single or two-dimensional). Then the base 
address and the register containing the index 
(offset) are specified for each operand vector in 
the subsequent register in the VPF. The fifth 
and sixth registers are used to specify the incre­
ment for each vector and the number of iterations 
(field length) in this inner loop. For the outer­
loop (two-dimensional vectors), similar informa­
tion about the increments and number of iterations 
is included in registers seven and eight. The 
vector instruction, after having been decoded, 
will provide the information regarding whether the 
parameter file has to be loaded from main memory 
or retain some previous setting for immediate 
usage. If a load is needed, since the memory is 

L 

SAA 

SAB 

SAC 

DBI 

NI 

DBO 

NO 

Fig. 16 Vector Parameter File Format in TIASC 

55 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

inter-leaved, one memory cycle will be needed for 
VPF loading. The significance of this and the sub­
quent additional activities will be examined more 
carefully in the next subsection. Afterwards, the 
sequence control in MBU takes over (as the MIC in 
STAR-100) the fetching of operands and the routing 
of operand pairs through the AU pipe, 

So one observes that TIASC has at least two 
distinguishing features in vector processing: 

(1) its dedicated use of the vector parameter 
file; 

(2) the interpretation and usage of the VPF allow 
variable increments within different vectors 
concerned (contrary to the sequential mode in 
STAR-100) and two-dimensional vectors can be 
explicitly handled (inner and outer loops). 

These features help to execute some vectors 
more efficiently and reduce the overhead that may 
have been incurred. Observe that once a vector 
instruction is initiated, the operand pairs are 
submitted to the AU continuously, in most cases, 
once per minor cycle (provided no severe memory 
interference results from other pipes or parts of 
the system or processor). Then the maximum through­
put rate may be achieved (1 result per minor cycle 
= 60 nsec.). Also the sequence control for the AU 
is handled exclusively by the microcode stored in 
the ROM (read only to users) in MBU. Therefore the 
MBU serves as the unique interface between the IPU 
and the AU. 

From the previous discussions, one can visual­
ize the concept of vector processing and the two 
ways to achieve high throughput in two similar ma­
chines. The design of these processors really re­
presents a complex and ingenious effort in pushing 
processor architecture, in both hardware and soft­
ware aspects, to the very front of research and 
development. To bring out more interesting special 
features in these machines, the vector-type instruc­
tion set in the STAR-100 will be examined once 
again. From it, a final brief comparison between 
the two giants, STAR-100 and TIASC in this respect, 
will be derived. 

Generally speaking, the CDC STAR-100 has a 
richer and more powerful vector instruction set. 
Two outstanding features are: 

(1) Vector Macros 
(2) Sparse Vector Instructions 

In vector macro instructions, operations are 
similarly performed on the source vectors except 
that in some cases, no result vector is created. 
Then, instead, the result will be represented and 
stored in one or two registers as specified by the 
instruction. 

For example, SELECT GE A> B, ITEM COUNT TO (C) 
involves: Comparing each element of vector field A 
with the corresponding one in B. The comparison 
will terminate if 

{i) the condition Ai .'.:_Bi is met for the current 
i, or . 

(ii) one of the vector fields is exhausted. 
Then the number of operand pairs encountered thus 
far is stored in the register specified by C. 

In this macro operation, control vectors can 
be used not only to prohibit the storage of result 

56 

elements but also to disable the operation on some 
elements. In the example, even if Ai .'.:_Bi is true 
for some i, if that comparison is disabled by the 
corresponding element in the control vector, exe­
cution will not be terminated. Thus using this 
kind of instruction, comparison of ordered vectors 
(e,g, lexicographic comparison) can be easily han­
dled, The itemcount will be useful in some cases 
to indicate at which element the condition is sa­
tisfied, On the other hand, .. ordinary vector com­
pare instructions also exist in the STAR-100 
machine. 

For example, COMPARE GE A.::_B, ORDER VECTOR+Z 
involves: 

(1) Comparing the two vectors element by element. 
(2) Storing 1 or 0 at the result vector elements 

depending on the satisfaction of the compari­
son condition, 

Then the result of each pair-wise comparison 
will be recorded and available for later use, such 
as in sorting. Thus ordinary vector and vector 
macro instructions may form a powerful vector in~ 
struction set to be tailored to suit some applica­
tion in mind as close as possible. With them, 
many quite complex sequential algorithms may turn 
out to be very effective which will be studied in 
another section, 

The sparse vector instructions in the STAR-
100 system further facilitate processing of large 
vectors with a lot of insignificant elements be­
cause then the latter can be packed easily into a 
sparse vector to be operated upon later. This can 
save both memory storage space and later effective 
processing time. A sparse vector can be formed 
using the following procedure as illustrated in 
Fig. 17. 

Step 1: Generate an ordered vector using COMPARE 
instruction to indicate insigificant 
elements, 

Step 2: Compress the vector into a sparse vector 
by storing the chosen elements from the 
former to memory, according to the or­
dered vector generated at step 1. The 
ordered vector has to be retained 
throughout the lifetime of the sparse 
vector to specify the positional signi­
ficance of its elements. 

After this, the sparse vector can be effi­
ciently operated upon to generate desirable, inter­
pretable results as in other vector instructions, 
with the help of the ordered vector. The advan­
ta9es with sparse vectors should be emphasized: 
(1) the explicit hardware support for compaction 
of large vectors to reduce memory space needed, 
(2) if the sparse vector has to go through several 
operations or computation steps, effective pro­
cessing time can be saved as well in that the 
operation on insignificant elements is no longer 
necessary, (3) if a variable increment for each 
vector (as in TIASC) is desired instead of in a 
sequential manner, one way to implement it is to 
use sparse vector instructions (though a more 
obvious way is to include the appropriate control 
vector) for the purpose of saving space and time. 

While the TIASC does not include sparse vec­
tor instructions, its explicit two-dimensional 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

Half-word Initial Vector address 
n vl 

n+l v2 
n+2 V3 
n+3 V4 

(R) = 
n+4 V5 near redundant 
n+5 v6 R 

n+6 V7 R 

n+7 Va 
n+a Vg R 

Step l: Generated order vector Z 

0 l 7 a 31 
1110101111101011101 I 

v~ j vta j 
V2 v9 

Step 2: Sparse Vector Generated 
Half-word 
address 

p VO 
p+l v4 
p+2 v5 
p+3 Va 

Fig. 17 Example Compression of Vector 
into Sparse Vector Field 

vectors and variable vector increments are good 
features which promise high vector processing capa­
bility. Included in the vector instruction set of 
both machines are some very interesting and high 
level instructions such as Vector Search, Dot Pro­
duct, Merge, Shift and Order instructions that al­
low programmers more power in developing their 
programs and the system to execute the algorithms 
implemented with the help of these advanced in­
structions more efficiently. The TIASC has also 
demonstrated how a 32-bit machine can cope with 
vector processing by efficiently making use of a 
bit opcode and the other relative fields, together 
with a dedicated vector parameter file. While the 
STAR-100 shows a stronger vector instruction set 
(a vector instruction is composed of 64 bits) be­
cause the F (function) and G (subfunction) codes 
can be used to specify more things, the vector 
parameters to be used can be assigned to any one 
of the registers (therefore not dedicated). It is 
hard to say which scheme is absolutely superior. 
And to summarize, the comparison between the vec­
tor processing powers of the TIASC and STAR-100 
will be tabulated on the next page. 

3.2 Implications, Requirements and Tradeoffs 
How vectors can be processed has been demon­

strated in the previous section. Now a closer look 
at some hidden or less conspicuous aspects in a 
vector machine is appropriate. From the previous 

:.1 

description, one notices at least four things. 
(1) There is some set-up time involved before 

executing a vector. 
(2) Additional control in configuring the execu­

tion pipe and monitoring operand admission 
and traversal is needed. 

(3) Richer instruction sets and clever compilers 
are pre-requisites to producing optimized 
code for vector machines. 

(4) An intrinsic tradeoff between sequential and 
vector processing can be derived from the 
above considerations. 

These four observations will be discussed and 
scrutinized here. 

(l) Set-up Time and Flush Time. As demonstrated 
in the example TIASC and CDC STAR-100 systems, 
each vector instruction involves a set of vector 
parameter registers or control vectors to hold the 
information needed before the instruction can be 
initiated. The contents of these parameter regis­
ters are used to control the addressing operation 
and storage of result operands, as well as the 
final termination. In the example STAR-100 system, 
they will be used by the Microcode unit and later 
other buffers in the stream unit for initiation of 
operand fetches and execution continuously until a 
termination condition is detected by the microcode 
control. In the case of TIASC processor, they 
will be used by the IPU for address calculation, 
MBU for memory references and also by the micro­
code control (in MBU) for monitoring the subse­
quent execution activities. These parameter regis­
ters can be loaded from memory. In doing so, many 
additional memory fetches (register loading) have 
to be performed before the vector instruction can 
be started. This represents an overhead in time 
-- the set-up time. If the vector involved has a 
relatively short field length (therefore the num­
ber of iterations to be executed will be small), 
sometimes the set-up time may be comparable to the 
actual processing time of the vectors. 

Besides the set-up time, there is another 
time measure of interest: the flushing time. The 
flushing time denotes the period of time between 
the initial operation (decode) of the instruction 
and the exit of the result (for vectors, the first 
result element) through the entire pipe. There­
fore it directly measures the sum of the speeds of 
all the facilities that the instruction and an 
operand pair have to go through. Sometimes it is 
interesting to compare the flush times of a vector 
pipe and a sequential pipe. (Note, the flush time 
of a pipelined processor often is larger than that 
of its nonpipelined counterpart.) A vector pipe 
often has to perform more activities inside such 
as checking the termination condition, checking 
the control vector, etc. (though some of them can 
be overlapped with other operations), Therefore 
it will not be s~rprising to discover that a vec­
tor pipe may have a longer flush time than its 
sequential counterpart. However, this is insigni­
ficant if the vector field length is long, because 
then the execution time of the vector instruction 
will be dominated more likely by the field length 
as we will explore in the next paragraph. But for 
short vectors, this may be a disadvantage. 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

Compare and Contrast 
STAR-100 

Vector parameter registers to be specified. 

Very strong vector instruction set. 

Sparse vector instruction included. 

Vector increment is fixed. 

Control vector introduces flexibility similar to 
the control unit in array processors. Can be used 
to implement variable vector increment. 

Explicitly speaking, vectors are only one-dimen-
sional. 

Use microcode control once a vector instruction is 
decoded. 

Strin~ unit and Floating Point unit (2 non~dentical 
pipes will be responsible for most of the actual 
processing of data. Therefore, concurrency is 
among different execution units. 

Floating point facility more powerful (e.g. Pipe 2 
has fast divide, special multi-purpose segments). 

Requires set up time for vector processing. 

Here an endeavor will be made to compare se­
quential and vector pipeline processing in terms of 
time efficiency analytically. For a vector pipe, 
usually the memory operand supply rate is fast 
enough to meet the speed of the execution pipe(s). 
For example, in the TIASC system, the eight inter­
leaved memory modules can maintain a total data 
transfer rate of 400M words per second, twice that 
required to support a central processor with four 
arithmetic unit pipes when processing vector in­
structions [13]. Therefore, analytically, for an 
effective vector field length of t, the execution 
time of the vector instruction can be expressed as 
(assuming the bottleneck is in execution unit): 

where t = vp 
t = s 

tvf = 

t = e 

t = t + t f + ( t-1) t vp s v e 
vector instruction processing time 
set-up time 
vector pipe flush time including de­
code, address calculation, operand 
fetch and paired, termination check 
and execution 
the speed of the bottleneck of the 
execution unit pipe (in the case of 
TIASC, all 8 segments have the same 
speed, namely 1 minor cycle= 60 nsec) 

Analogously, the same situation in a sequen­
tial pipe can be analyzed. Suppose the same in­
struction has to be executed on a vector in this 
case. Without vector processing power, this in­
struction has to be invoked t times, that is, go 
through the entire pipe t times. Even if the 

58 

TIASC 

Vector parameter file fixed, therefore easy to 
reference and store. 

Strong vector instruction set. 

Sparse vector not included. 

Variable vector increment allowed. 

No control vector used. 

Two-dimensional vector explicitly accommodated. 
Computes 2 level loops effectively. 

Use microcode control to sequence each AU. 

4 identical AU-MBU pairs can be installed to carry 
out all kinds of arithmetic operations (fixed or 
floating point). Concurrency of execution is 
among 4 identical pipes. 

AU has to be responsible for floating point opera-
tions (consists of 8 segments). 

Also requires set up time (though could be less 
because of the fixed VPF is easier to manage). 

execution unit is fast enough here, most likely 
the fetching of operands can be less efficiently 
performed, (In vector machines, consecutive stor­
age locations for operands will be fetched.) The 
processing time of the t instructions may be ex­
pressed as: 

tsp = tsf + (t-1 )tb 

where tsp = sequential (pipeline) processing time 
tsf·= sequential pipe flush time 
tb = speed of bottleneck in the pipe, most 

likely in fetching operands if the 
execution unit is fast enough because 
more interference from unstructured 
memory references for instructions 
and operands results, 

Comparing tvp and tsp yields: 

t +t f+ (t-l)t < t f+ (t-l)tb s v e - s 
iff 

ts~ (t-l)(tb-te) if tvf ~ tsf 

This reveals that if the vector length is 
reasonably large, vector processing is beneficial, 
considering the time advantage. If the set-up 
time is large compared to the difference of the 
speeds of the bottlenecks of the two pipes, then a 
large vector field length is needed to justify 
processing it in the vector form. Usually (tb-te) 
will not be very much smaller than ts (about 10 
times), so that vector processing provides time 
efficiency in pipelined processors, 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

(2) Additional Control and Hardware, Vector 
pipes are designed to be cost-effective. They are 
implemented with sufficient flexibility and power 
to match the speed of an array processor (which 
usually is more expensive). For those vector ma­
chines with multifunctional pipes, additional con­
trol to establish the desirable configurations and 
routing the operands between pipe segments are 
needed. This is usually accomplished using micro­
coded control to allow flexibility and simpler cir­
cuitry. The hardware and firmware cost so intro­
duced represents a portion of the cost of vector 
processing. These control functions sometimes are 
not very conspicuous but they do require a consi­
derable amount of hardware support. 

In addition, some other costs arise indirect­
ly. The vector parameter file or registers repre­
sent part of the indirect hardware needed. Larger 
instruction sets to cope with vector processing al­
so demand·longer word lengths -- a result that 
affects the cost throughout the entire system. For 
smaller word length machines, one can try to get 
around the problem using techniques such as dedi­
cated VPF in TIASC. Because of its cost effective­
ness and speed advantages, vector processing power 
may prove adaptable to medium scale systems. 

Buffering-wise, to keep up the execution 
speed, additional memory buffers (as the MBU) may 
be necessary to maintain an effective memory supply 
rate. Memory management problems, though out of 
the scope of this paper present a rich area to 
be explored for vector machines. All this direct 
and indirect control cost marks the space overhead 
incurred in vector processing and should be eval­
uated appropriately in tradeoff considerations. 

(3) Richer Instruction Set and Clever Compilers. 
Once the skeleton processor is designed, the 

instruction set has to be designed carefully. As 
in the case of STAR-100, suitable higher level vec­
tor macro and sparse vector instructions can be 
implemented (with proper hardware support) so that 
some application algorithms can be easily handled 
(fewer instruction and operand fetches and other 
conflicts). Without such well designed instruction 
sets, the power of the processor may depreciate 
many times because inefficient operations, redun­
dant or excessive memory references and poorly 
utilized facilities may result. 

Then the question arises: Since many of the 
rich instructions are by no means conventional, how 
to use them effectively in programs becomes a prime 
concern. For assembly language program writing, 
the user has to familiarize himself not only with 
the algorithm he is going to implement, but also 
with the details of these unconventional instruc­
tions first [19]. Because of the various architec­
tural aspects involved, he has to choose a suitable 
algorithm carefully. Many a time, a fast (theore­
tical) algorithm will turn out to be inferior to 
some less effective serial algorithm because of the 
machine vector characteristic. As a simple example, 
consider sorting methods. In those vector machines, 
bubble sort will be quite inefficient because of 
the static multifunctional pipe involved. The bub­
bling of an item (compare and interchange) will 
incur too much reconfiguration cost, memory fetch 

59 

overhead and set-up cost for the pipe. On the 
other hand, merge sort algorithms may be better 
because the machine can merge two ordered vectors 
in one pass without reconfiguration and additional 
set-up. As in the TIASC, the instruction vector 
ORDER A,B,C will try to compare element by element 
and store the smaller element in C until the en­
tire ordering is accomplished. For example, if 

A= l,3,4,5,7,8,9 
B = 2,3,5,8,10 

then C = l,2,3,3,4,5,5,7,8,8,9,lO 

Therefore only a simple vector instruction is 
needed to merge sort two ordered vectors. Another 
good alternative is to find the peak value of an 
unsorted vector at every iteration, remove and 
store it at the appropriate place and repeat until 
the vector is completed sorted. It is easy to 
find the peak value of an unsorted vector by using 
instructions such as SEARCH and therefore this re­
presents a better strategy (though quite similar) 
than the conventional bubble sort. This simple 
example discussion reveals how important it is to 
find the right algorithms to be implemented on 
these vector processors. The overlooking of archi­
tectural aspects may prove fatal in studying pro­
gram efficiency. 

Besides the direct program writing, each sys­
tem also requires the installation of clever lan­
guage processors to fully utilize its power. Addi­
tional optimization procedures should be incor­
porated to exploit its vector capability. For 
example, the optimized Fortran Compiler in TIASC 
was designed to produce highly optimized object 
code with complete diagnosis and messages. In 
general, the additional optimization included is 
accomplished by analyzing the source program logic 
and performing optimization on the object code 
instructions involved. Vector instructions will 
be used wherever feasible and scalar operations 
are reordered wherever possible to reduce pipeline 
reconfiguration and memory reference delays (8-way 
interleaved memory system). Therefore the compi­
ler not only can recognize array (vector) oriented 
operations in DO-loops but also can reorder some 
scalar operations generated to meet the architec­
tural characteristics of the machine. Of course 
the other more conventional optimization proce­
dures are also included, such as elimination of 
redundant subexpressions, removal of constant 
assignment statements in a loop and proper regis­
ter assignment, etc. This burden on compiler 
designers is quite heavy. Thus the software cost 
for vector processing is an important item not to 
be omitted. 

(4) Tradeoff Summary. In this section, we have 
revealed both the time and the space overhead 
needed in vector processing as compared to a se­
quential pipelined processor (such as the IBM 360 
model 91). The advantages of vector processing 
are its speed improvement for reasonably long vec­
tors and the more orderly management to better 
utilize the memory system and other resources when 
dealing with vectors. The costs it incurs are the 
needed firmware control and additional software 
facilities to utilize its power. When the latter 
have been solved successfully at less cost, vector 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

processing may be generalized and applied to smal­
ler scale processing systems as well. 

IV. An Example Buffer Free Pipeline Design 
-- Multipliers 

Multi-level pipelining action can be imple­
mented in a processor, as revealed in some detail 
in the previous sections. Before ending the anal­
ysis, a closer study of some typical low level 
pipelines in processors may be of interest, just 
to understand the physical limits in applying pipe­
line discipline in computer systems. 

As a first step for implementing a pipeline, 
an algorithm for the function (process) to be im­
plemented has to be chosen. The algorithm should 
demonstrate sufficient parallelism to allow re­
peated iterations or new inputs to proceed as fast 
as possible. To back up this assertion, here pipe-
1 ined multipliers will be studied carefully. Ob­
serve that a good algorithm will yield a good 
reservation table with the smallest initiation time 
intervals or shortest execution time for some spe­
cific sequences. 

The most common method of multiplication is 
the pencil and paper algorithm in which the multi­
plicand will be shifted and, if the corresponding 
bit in the multiplier isl, added to the partial 
sum until the multiplier is exhausted. Clearly 
this is not an effective pipeline algorithm because 
too much shifting and adding (complete additions) 
are needed. Even if the O's in the multiplier are 
skipped, the speed of the multiplier is too slow 
to match the speed of the other parts of the 
system. 

One could try to build a very fast adder such 
as the Wallace Tree [20] of carry-save adders (CSA). 
But such implementation requires too much hardware 
support. Obviously a speed-cost tradeoff exists 
here. The method favored in the IBM 360 model 91 
was a hybrid method [21]. Intuitively, a carry­
save adder tree is still used as shown in Fig. 18. 

Multiples of Multiplicand 

+ + + 
CSA2 

s~----~C 

s 

Note: 
C - Carry 
S - Sum 

CSA - Carry 
Save 
Adder 

~--~ 

c 

c s 

Carry Propagate 
Adder 

Fig. 18 CSA tree for multiplication 
using iterations 

60 

At each iteration, 12 bits of the multiplier are 
retired by generating the corresponding six multi­
ples (each corresponds to 2 bits of the multi­
plier) of the multiplicand and admitting them to 
the CSA tree. Therefore five iterations are 
needed to exhaust the 56 bits of the multiplier. 
Here, however, the iterations cannot be effectively 
pipelined because in each pass, the six multiples 
have to go through CSA6 and loop back to CSA4 to 
synchronize with the next iteration. In this 
example, the next iteration must thus wait for 3 
levels of CSA delays for synchronization (for the 
previous iteration to route through CSA3, CSA4, 
CSA5 and CSA6), To improve it, the adopted pipe­
lined design is drawn in Fig. 19a and its schema­
tic diagram in Fig. l9b. Four stages are 

Multiples of Multiplicand 
r~,.---,..--,..-----'A---~1--..,.1--1~' 

SUM A H 

Right 12 Right 12 

Carry Propagate Adder After Five Iterations 
Fig. 19a Pipelined CSA Multiplier (Model 91) 

Inputs 

Tern orary 

Input-----, 
Tern orar Stora e Platform 

Stage Two 

Loop Loop 

Output Output 

Fig. l9b Schematic Diagram 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

identified with a loop at the last stage which con­
sists of two CSA. Therefore the clock delay is two 
levels instead of three in the previous design. 
The loop in this case is used to add the result of 
the iteration (right shifted 12 bits) to that of 
the next iteration (for the next set of 12 bits) 
until the partial sum and carry finally emerge (at 
the end of five iterations) to be added together 
for the final output. A timing diagram is drawn 
in Fig. 20 to illustrate the sequence of actions 
involved. At time 0, the first input I1 (for the 
first 12 bits) is gated into stage l. At the next 
interval, I1 is gated into stage 2 while I2 into 
stage 1. This process repeats until I5 has exited 
from stage 4 when the final product is accumulated. 
Observe that latches have to be inserted between 
stages to tolerate concurrent processing. The 
total iterative tree requires 8 clock periods = 16 
levels of CSA delays. If the multiple generation 
process is fast enough (to allow the iterations to 
proceed), a multiplier with a speed equal to 3 cy­
cles (60 nsec each) can be built. 

Clock Time 
0 2 3 4 5 I 6 I 7 I 8 I 
Il 12 I3 I4 I5 

Stage One 
I1 I2 I3 I4 I5 

Stage Two 
Il I2 I3 I4 I 

I 5 I Stage Three 
Il I2 I3 I I 

I 4 I 5 I 
Stage 

Fig. 20 Timing of the multiplier 
in Fig. 19 

Four 

The intrinsic requirement here i's that the 
multiples of the multiplicand can be generated fast 
enough. However, this need not be possible. Some­
times simple full adders may be needed, in which 
case, the propagation delay is considerable .. so, 
in small machines, maybe some other alternatives 
can be considered as well. Here, an effort will 
be made to describe two of them. 

The first observation is that the generation 
of multiples can be made simple if a simple shift­
ing after table looking (decoding) is involved. 
For example, 1100 x M represents l6M - 4M, 0111 x M 
represents BM - M. Then the generated (shifted) 
multiples can be added as before. The second ob­
servation is that if the clock period can be re­
duced from two levels of CSA to one level, the 
required iterations may be completed faster. 

The first scheme to be described also uses 
CSA's to generate the partial sum and carry of the 
iterations involved (CSA has the advantage over 
full adders in that it need not carry propagation 
inside). The configuration is drawn in Fig. 21. 
Each multiplier will be grouped into gl•·:··~m 
each containing 4 bits. A decoded and shifting 
network is required in addition to the CSA's. For 
the current gi, the corresponding multiples of ~he 
multiplicand will be generated. The three multi­
ples (16M, ±8M®±4M, ±2ME!HM) are admitted to the 
first CSA at the first clock (= l level CSA delay). 

61 

(Input from Decoder) 
±BD ±4D 

16D=i y 
CSAl 

F ±2D 
±D 

1- - - - - - - - I 

----'---'---'------. : Rec on f i -
CSA2 :guration 

Fig. 21 

- --- - -- - - - - - ' needed at 

CSA3 

FBA 

Fast piped multiplier 
(Rate= l CSA delay) 

the last 
iteration 

Iterations repeat until m groups in the multiplier 
are exhausted. Then after the last iteration (gm) 
has passed through CSA3, the loop from its partial 
sum output is reconfigured to feed to the input of 
CSA3 (instead of CSA2 in previous intervals). 
This serves to synchronize the flow to produce a 
final partial sum and carry to the full binary 
adder. 

The CSA pipe has an ideal throughput rate 
because input is allowed at every clock interval. 
For a smaller machine, if m is equal to 6, then 
the total delay in the tree for 6 iterations is 
only 6+3 = 9 levels of CSA delays. Also the multi­
ple generation at the beginning is much simpli­
fied -- since also a simple decode of gi is ne~ded 
to shift the operands to the corresponding posi­
tions. If the shifting hardware is fast enough, a 
very fast multiplier using the pipeline concept to 
exploit the parallelism among iteration has been 
created. 

The necessity of reconfiguration at the last 
iteration in the previous example may be an unde­
sirable feature, A modified scheme using three 
loops as shown in Fig. 22 will eliminate this 
requirement. Then the multiples are admitted into 
the pipe as before with a rate equal to one level 
of CSA delay. Using this arrangement, the total 
delay for 6 iterations is 6+3=9 levels of CSA, 
the same as the previous scheme. 

These pipelined multiplier examples have 
demonstrated some important facts. In the first 
place, the choice of the algorithm is quite i~por­
tant in determining the efficiency of the design. 
Then, strategies must be developed in trying to 
reduce the clock-interval and hence improve the 
speed of the pipeline. In so doing, extra ca:e 
must be taken in matching the speeds of the dif­
ferent segments of the pipe, for example, the loop 
back that may create 3 or 2 levels of delay. The 
physical limit of applying pipeline principles is 
also exposed. Since pipelining requires ~he ~n­
sertion of latches among segments (to avoid cir­
cuit race conditions, etc.), the latter 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

(Input from Decoder) 
±8D ±4D 

16D 

CSAl 

CSA2 

CSA3 

FBA 

±2D 
±D 

Fig. 22 Improved Pipelined CSA Multiplier 
(Rate = l CSA delay) 

have finite delays and therefore mark the physical 
upper limit of throughput rate in any pipeline. 

V. Conclusion 
Pipelined processors represent a clever ap­

proach to speed up instruction processing when the 
memory access time has improved to a certain ex­
tent. Without having to duplicate the entire pro­
cessors n times, a throughput rate of close to n 
times improvement over a nonpipelined case may be 
achieved. To make this possible, certain problems 
have to be solved including: parallelism and busing 
structure, handling of unexpected events and effi­
cient sequence control with well-designed instruc­
tion set. Special vector processing capability is 
one way to specify parallelism in programs easily. 
These problems and solutions are discussed and 
solutions in existing machines illustrated. The 
multi-level application of pipeline discipline is 
promising in upgrading the performance of a pro­
cessor, especially from a cost-effective point of 
view and certain deserves future investigation to 
generalize its application to even smaller scale 
systems. 

References 
[l] T. C. Chen, "Unconventi ona 1 supers peed computer 

systems," AFIPS SJCC 1971, pp. 365-371. 
'-/ [2] D. Mcintyre, "An introduction to the ILLIAC IV 

computer," Datamation (April 1970), pp. 60-67. 
[3] A.J. Evensen and J.L. Troy, "Introduction to 

the architecture of a 288-element PEPE," Proc. 
1973 Sagamore Conf. on Parallel Processing:--­
pp. 162-169. 

[4] J.A. Rudolph, "A production implementation of 
an associative array processor - STARAN," 
AFIPS FJCC 1972, pp. 229-241. 

[5] O. E. Marvel, "HAPPE - Honeywell Associative 
Parallel Processing Ensemble," Proc. Symp. on 
Computer Architecture (Dec. 1973), pp.261-268. 

t .. [6] D.C, Stanga, "Univac 1108 multiprocessor sys­
tem," AFIPS SJCC 1967, pp. 67-74. 

,/ [7] T.C. Chen, "Parallelism, pipelining and com­
puter efficiency," Computer Design (Jan. 1971) 
pp. 69-74. 

.,,... [8] C.V. Ramamoorthy and H.F. Li, "Efficiency in 
generalized pipeline networks," AFIPS NCC 
1974, pp. 625-635. 

[g] D.W. Anderson, F.J. Sparacio and R.M. Tomasulo, 
"IBM System 360 Model 91, machine philosophy 
and instruction handling," IBM J. Res. and 
Develop. (Jan. 1967), pp. 8-24. 

v [10] W.J. Watson, "The TIASC - a highly modular and 
flexible super computer architecture," AFIPS 
FJCC 1972. --

[ll] R.G. Hintz and D.P. Tate, "Control Data STAR-
100 processor design," COMPCON 72. 

[12] R.M. Tomasulo, "An efficient algorithm for 
exploiting multiple arithmetic units," IBM J. 
Res. and Develop. (Jan. 1967), pp. 25-3-3.--

[13] Texas Instruments Inc., "A description of the 
Advanced Scientific computer system," (April 
1973). 

'"[14] Control Data Corp., "Control Data STAR-100 
computer hardware reference manual," (1974). 

62 

[15] Texas Instruments Inc., "The ASC system -
Central Processor," Austin, Texas (Dec. 1971 ). 

[16] E. Davidson, "The design and control of pipe-
1 ine function generator," Stanford Report 
(1972). 

[17] E.S. Davidson, L.E. Shar, A.T. Thomas and 
J.H. Patel, "Effective control for pipelined 
computers," COMPCON 75, pp. 181-184. 

[18] C. V. Ramamoorthy and H.F. Li, "Sequencing 
control in multifunctional pipelined systems," 
Proc. 1975 Sagamore Conf. on Parallel Pro­
cessing. 

[19] T. Kishi and T. Rudy, "STAR TREK," COMPCON 75, 
pp. 185-188. 

[20] C.S. Wallace, "A suggestion for a fast multi­
plier," IEEE Trans. Elec., EC-13 (1964), 
pp. 14-17. 

[21] S.F. Anderson, J.G. Earle, R.E. Goldschmidt 
and D.M. Powers, "The IBM System/360 Model 91: 
floating-point execution unit," IBM J. Res. 
and Develop. (Jan. 1967), pp. 34-53. 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

MULTIPROCESSOR ARCHITECTURE - A SURVEY 

Philip H. Enslow Jr. 
School of Infonnation and Computer Science 

Georgia Institute of Technology 
Atlanta, GA 30332 

(Invited Paper) 

Abstract -- Multiprocessors are defined as 
a class of computer system in tenns of both hard­
ware and operating system organization. The 
hardware organization is characterized by the 
nature of the interconnection system used be­
tween the primary functional units, memory, pro­
cessors, and input/output. The three basic 
interconnection systems are time-shared bus, 
crossbar switch, and multiport memory. The 
three basic organizations for operating systems 
are master-slave, separate executive for each 
processor, and synnnetric treatment of all pro­
cessors. 

Introduction 

Motivation 

There are four general levels at which 
improvements in system perfonnance can be made: 

- Devices and circuits: the basic hard­
ware speed. 
System architecture: the algorithms 
implemented in the functional units --­
processor, control, memory, and input/ 
output. 
System organization: the method of 
interconnecting the functional units. 
System software: the speed and 
efficiency of the operating system, 
translators, and other supporting soft­
ware. 

Multiprocessors are a special class of system 
organizations supported by appropriate system 
software. 

Two methods that have been utilized to 
varying degrees to improve system perfonnance 
are concurrency and simultaniety: (a) 

o CanCLUUtent execution of several differ­
ent programs --- Multiprogramming. 

o CanQU/Utent memory operations --- inter­
leaved memory. 

o Execution of I/O operations 1.ihnuLta.n­
?S!_~ with CPU operations --- over­
IapPea I/O. 

o Multiple, 1.ihnuLta.neauA I/O operations. 

(a) To refresh your memory: "concurrent events" 
occur during the same intcuwal of time; 
"simultaneous events" occur at the same 
imta.nt of time. 

63 

o Multiple, 1.ihnuLta.neaUl.i operations in the 
processor unit(s) 
oo Replicated processor units --- multi­

processing, etc. 
oo Fragmented or segmented algorithms 

--- pipelining. 
o Multiple, 1.ihnuLta.neaUl.i memory operations 

--- associative processing. 
It is by the use of all of these techniques that 
parallelism is introduced into the system, 

Multi-Computer Systems 

There are a number of multi-computer systems 
that are not multiprocessors. An obvious example 
is the system with a stand-alone peripheral or 
satellite processor. Perhaps less obvious are 
the various fonns of coupled systems, both loose­
ly and closely coupled, such as the IBM ASP 
(Attached Support Processor) System and others 
having direct electrical connections. Specific 
examples and details are given in Enslow 11]. 

Definition of a Multiprocessor 

A multiprocessor is defined in the American 
National Standard ''Vocabulary for Infonnation 
Processing" as "A computer employing two or more 
processing units under integrated control". 
That definition is good as far as it goes, but 
that is not far enough! The connnent about 
"integrated control" is extremely important, for 
a multiprocessor muA~ have a single integrated 
operating system. What has not been covered by 
the ANSI definition are the concepts of sharing 
and interaction which are at the central core of 
the philosophies of multiprocessing. 

With respect to the hardware, the system 
must have the capability for sharing of main 
memory by all processors (arithmetic/logic unit 
and control unit only) and the sharing of input/ 
output devices by all memory and processor com­
binations (Figure 1). There are some qualif­
ications on the requirement for sharing of a.tl 
of the resources of any one type, but those will 
be covered below. 

The important aspect of interaction is the 
level at which it occurs. In the multi-computer 
systems mentioned above, the level of interaction 
is the complete file or data set. Interaction 
is basically an I/O transfer. The operational 
level of interaction allowed must be more flex­
ible. In a multiprocessor this level must be 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

allowed to descend to the lowest level. Inter­
action nrust be possible at the physical levels 
of files, data sets, and even data elements. 
From the operational point of view, interaction 
nrust be possible at the level of complete jobs, 
tasks, and individual steps. 

It is the combination of these expanded 
concepts of sharing and of interaction at all 
levels that completely characterizes the hard­
ware and software required to provide a true 
nrultiprocessor. 

o A nrultiprocessor contains two or more 
processors of approximately comparable 
capabilities. 

o All processors share access to connnon 
memory. 

o All processors share access to input/ 
output channels, control units, and 
devices. 

o The entire system is controlled by one 
operating system providing interaction 
between processors and their programs 
at the JOB, TASK, STEP, DATA SET, and 
DATA ELEMENT levels. 

Multiprocessor System Organizations 

There are only three basically different 
organizations used for nrultiprocessors. These 
are characterized by the nature of the inter­
connection sub-system: 

- Time-Shared Bus. 
- Crossbar Switch 
- Multiport Memory 

These are each discussed in turn. Other system 
organizations that have been utilized to achieve 
parallelism are 

~ Asymmetrical or Nonhomogeneous 
- Array or Vector Processors 
- Pipeline Processors 
- Fault-Tolerant Systems 
- Associative Processors 

Several of these are discussed in other invited 
papers in this series and in other. 
References [1,2]. 

Time-Shared/Connnon-Bus Systems 

The simplest organization for any system, 
nrulti- or not, is to establish a connnon commun­
ication path and connect all of the functional 
units to it. This has been done to assemble 
some simple nrultiprocessors (Figure 2). They 
are "simple", for the inter-connection sub-system 
can be merely a nrulti-conductor cable. It is 
often a totally passive unit, i.e., it has no 
active components such as switches or amplifiers. 
Transfer operations are controlled completely by 
the bus-interfaces of the sending and receiving 
units. The unit wishing to initiate a transfer, 
e.g., a processor or I/O unit, must determine 
the availability status of the bus, address the 
destination lllit, determine its availability and 
capability to receiving the transfer, notify the 
destination what to do with the data being trans­
ferred, and then initiate the transfer. A re-

64 

ceiving unit has only to recognize its address 
and respond to the control signals from the 
sender, It is not really that simple; but those 
are the basic concepts. (The single bus in the 
PDP-11, the UNIBUS, has 56 lines to provide the 
control lines and data paths necessary to trans­
fer words of only 12 bits.) 

To add or remove functional units, the hard­
ware changes are quite minimal, in fact, almost 
nothing, The units in the system must know what 
other units are present and their unit and inter­
nal location addresses, but that is basically a 
software problem. The interconnection sub­
system is quite reliable by its very nature, and 
it is low-cost. 

However, all of these benefits do not occur 
without other costs. The most important of 
these is the serious limitation on overall system 
performance that results from having only one 
path for all transfers. Interconnection tech­
niques that overcome this weakness add to the 
complexity of the system. 

The first step might be to provide two, one­
way paths (Figure 3). The complexity is not 
increased very nuch, nor is the reliability 
diminished substantially; however; a single 
transfer operation usually requires the use of 
both buses, so not very much is gained • 

The next step is to provide multiple two-way 
buses (Figure 4). Now there can be nultiple, 
sinrultaneous transfers; but the complexity has 
greatly increased. No longer is the intercon­
nection sub-system a totally passive unit. 
Logic, switching, and other control functions 
must be associated with each point at which 
functional units are attached to the transfer 
buses. 

Crossbar Switch System 

If the mnnber of buses in a shared-bus 
system is increased, the point is reached where 
there is a separate path available for each 
memory box (Figure S) • The interconnection sub­
system is then a "non-blocking" crossbar. The 
adjective non-blocking is usually omitted since 
it is a characteristic of the crossbar switches 
used in multiprocessor systems that they are 
"complete" with respect to the memory units, 
i.e., there is a separate bus associated with 
each memory and the maximum mnnber of transfers 
that can take place simultaneously is limited 
by the mnnber of memory boxes and not by the 
capacity of the switch. 

The important characteristics of a system 
utilizing a crossbar interconnection matrix are 
the extreme simplicity of the switch-to-function­
al unit interface and the ability to support 
simultaneous transfers for all memory units. 
To provide these features requires major hardware 
capabilities in the switch. Not only must each 
cross-point be capable of switching complete 
parellel transmissions, but it must also be 
capable of resolving multiple requests for access 
to the same memory module occurring during a 
single memory cycle. These conflicting requests 
are usually handled on a pre-determined priority 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

basis, e.g., I/O first, P2 has primary access 
priority to M2, etc. The result of this is that 
the hardware required to implement the switch can 
become quite large and complex. An example that 
has been cited is a system with 24 each 32-bit 
processors and 32 memory units. The number of 
circuits required in the switch matrix would be 
two to three times the number required for an 
IBM S/360 Model 75. 

A characteristic of somewhat lesser import­
ance that can be significant in specific instan-­
ces is the capability to expand the size of the 
system by merely increasing the capacity of the 
switch. There are no changes required in any 
of the functional units because of the very 
simple interfaces utilized, and often the switch 
is designed so that its capacity can be increased 
merely by adding additional modules of cross­
points. Note, that this discussion of expansion 
has addressed only the hardware. The modifica­
tion of the operating system to support the larg­
er system may often prove to be extremely dif­
ficult; however, this is true for all multi­
processor system organizations. 

In order to provide the flexibility required 
in access to the input/output devices, it is a 
natural extension of the crossbar switch concept 
to use a similar switch on the device side of the 
I/O processor or channel (Figure 6). The hard­
ware required for the implementation is quite 
different and not nearly so complex for control-­
lers and devices are normally designed to recog­
nize their unique addresses. The effect is the 
same as if there were a primary bus associated 
~rith each I/O channel and cross buses for each 
controller/device. 

Multiport Memory Systems 

If the control and switching logic that is 
distributed throughout the crossbar switch matrix 
is concentrated in the memory units, a nrulti­
port memory system results (Figure 7). This 
system organization is well suited to both uni­
and multiprocessors, and it is used in both. 
The method often utilized to resolve memory 
access conflicts is to permanently assign specif­
ic priorities to each memory port. The system 
can then be configured as necessary at each 
installation to provide the- appropriate priority 
access to various memory boxes for each func­
tional unit. Except for the priority associat­
ed with each, all of the ports are electrically 
and operationally identical. In fact, the 
ports are often merely a row of identical cable 
connectors, and electrically it makes no 
difference whether an I/O or central processor 
is attached. A system which utilizes 8-port 
memory units may have any mixture of processor 
and I/O units subject to the restrictions that 
there must be at least one of each and the total 
be eight or less. 

The flexibility possible in configuring the 
system also makes it possible to designate 
portions of memory as "private" to certain pro­
cessors, I/O units, or combinations thereof 
(Figure 8). This organization can have definite 

advantages in increasing security against un­
authorized access , It may also permit the 
storage of recovery routines in memory areas that 
are not susceptible to modification by other 
processors. There are also serious disadvant­
ages in other processors not being able to 
access control and status information in a 
memory block associated from a failed processor. 

The multi.port memory system organization can 
also support non-blocking access to the memory 
if a "full-connected" topology is utilized. It 
will also permit the exploitation of interleaved 
memory addresses for access by a single processor, 
However, for multiple processors, interleaving 
may actually degrade memory performance by in­
creasing the number of conflicts. With multiple 
processors it is usually preferable to utilize 
the property of "locality of reference" and not 
attempt to increase the effective memory speed 
by interleaving. 

Comparison of The Three Basic System Organizatims 

A number of factors can be considered in com­
paring the three basic organizations described 
above or evaluating their use in specific appli­
cations. The most obvious are cost, flexibil­
ity, growth potential, and syste.11 throughput 
capacity, 

Time-Shared Bus; 
o Lowest overall system cost for hardware. 
o Least complex. The interconnection bus 

may be totally passive. 
o Very easy to physically modify the hard­

ware system configuration by adding or 
removing functional units. 

o The overall system capacity is limited by 
the bus transfer rate. This may be a 
severe restriction on overall system per­
formance. 

o The failure of the bus is catastrophic. 
o Expanding the system by the addition of 

functional units may degrade overall 
system performance (throughput). 

o The system efficiency attainable (based 
on the simultaneous use of all available 
units) is the lowest of all three basic 
interconnection systems. 

o This organization is usually appropriate 
only for smaller systems. 

Crossbar: 
o This is the most complex interconnection 

system. 
o The functional units are the simplest and 

cheapest since all of the control and 
switching logic is in the switch. 

o Because a basic switching matrix is re­
quired to assemble any functional units 
into a working configuration, this organ­
ization is usually cost-effective only for 
multiprocessors. 

o There is the potential for the highest 
total transfer rate. 

o System expansion (addition of functional 
units) usually improves overall perform­
ance. 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

o There is the highest potential for system 
efficiency. . 

o There is the potential for system expansion 
without reprogramming of the operating sy­
stem being required. 

o Basically, expansion of the system is lim­
ited only by the size of the switch matrix 
which can be modularly expanded within 
engineering limitations. 

o The reliability of the switch, and there­
fore the system, can be improved by seg­
mentation and/or redundancy within the 
switch. 

M.lltiport Memory: 
o Requires the most expensive memory units 

since most of the control and switching 
circuitry is included in the memory unit. 

o The characteristics of the functional units 
pennit a relatively low-cost uniprocessor 
to be assembled from them. 

o There is a potential for a very high total 
transfer rate in the overall system. 

o The size and configuration options possible 
are determined (limited) by the number and 
type of memory ports available. That 
design decision is made quite early in the 
overall design process and is difficult 
to modify. 

o There is a large number of cables and con­
nectors required. 

System Software 

It is difficult to detennine how much should be 
said about system software for the types of 
machines being discussed here. There is con­
ceptually little difference between the system 
software requirements of a multiprocessor and 
those for any other large system utilizing multi­
programming. When the functional capabilities 
required in the operating system are listed 

Resource allocation and management 
Table and data set protection 
Prevention of system deadlock 

- Abnormal termination 
I/O load balancing 
Processor intercommunication 
Processor load balancing 
Reconfiguration 

only the last three may be thought of as unique 
to multiprocessor systems. Many of the problems 
to be solved in providing the conunon capabilit­
ies may be more difficult to solve because of the 
additional processor(s) present in the system; 
however, the effective utilization of these 
additional resources makes it even more import­
ant that efficient solutions be found. Other­
wise poor perf onnance by the operating system 
will destroy any cost-perfonnance advantages 
that the system might have. The efficiency of 
the operating system becomes much more import­
ant in a multiprocessor system. 

66 

There are a few special problems that appear in 
multiprocessor and other parallel systems. One 
of these is the importance of short-term sched­
uling, .Anomalies may occur if there are only a 
few jobs to be scheduled and the order in which 
they are chosen is "incorrect" (Figure 9c). 
However, if there is a large amount of work wait­
ing for the system, such short-tenn effects will 
not affect the total productivity of the system. 

Organizatien ofM..iltiprocessor operating Systems; 

There are three organizations that have been 
utilized in the design of operating systems for 
multiprocessors; 

- Master-slave 
- Separate executive for each processor 
- Symmetric or anonymous treatment of all 

processors 
For most multiprocessors, the first operating 
system available usually operates in the master­
slave mode. This is certainly the easiest type 
to implement and may often be produced by making 
relatively simple extensions to a uni-processor 
operating system that includes full nultiprog­
ranuning capabilities. The master-slave type of 
system is simple, but it is usually quite inef­
ficient in its control and utilization of the 
total system resources. It is not clear which 
of the other two system organizations is the 
best from a performance point of view; however, 
there appears to be evidence that both are sup­
erior to master-slave. 
An operating system operating in the master-slave 
mode has the following characteristics: 

- The executive routine is always executed 
in the same processor. If the slave 
needs service that must be provided by 
the executive, then it must request that 
service and wait until the current pro­
gram on the master processor is inter­
IUpted and the executive is dispatched. 
The executive and the routines that it 
uses do not have to be reentrant since 
there will be only the one processor 
using them. 

- Having a single processor executing the 
executive also simplifies the table con­
flict and lock-out problem for control 
tables. 

- The entire system is subject to catastro­
phic failures that require operator in­
tervention to restart when the processor 
designated the Master has a failure or 
irrecoverable error. 

- The overall system is comparatively in­
flexible. 

- Idle time on the Slave system can build­
up and become quite appreciable if the 
Master cannot execute the dispatching 
routines fast enough to keep the Slave 
busy. 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

This type of system requires comparative­
ly simple software and hardware. 

This type of operating system is most 
effective for special applications where 
the work load is well defined or for as­
ymmetrical systems in which the Slaves 
have less capability than the Master 
processor. 

When there is a separate executive (distinct copy) 
operating in each processor the characteristics 
are quite changed: 

Each processor services its own needs. 
It is necessary for some of the supervis­
ory code to be reentrant or replicated to 
provide separate copies for each proces­
sor. 

- Each processor (actually each executive) 
will have its own set of private tables, 
although there are some that must be 
corrnnon to the entire system and will 
create table access control problems. 
It is not as sensitive to a catastrophic 
failure as the Master-Slave system; 
however, the restart of an individual 
processor that has failed will probably 
be quite difficult. 
In effect; each processor (executive) has 
its own set of I/O equipment, files, etc. 
Because of the point irrnnediately above, 
the reconfiguration of I/O usually re­
quires manual intervention and possibly 
manual switching. 

To treat all the processors as well as all other 
resources symmetrically or as an anonymous pool 
of resources is the most difficult mode of oper­
ation; however, the resulting benefits may be 
worth the trouble: 

- The':fnaster" floats from one processor to 
another, although several of the proces­
sors may be executing supervisory service 
routines at the same time. 

- This type of system can attain better 
load balancing over all types of re­
sources. 
Conflicts in service requests are resolved 
by priorities that can be set statically 
or under dynamic control. 

- Most of the supervisory code must be reen­
trant since several processors can 
execute the same service routine at the 
same time. 

- Table access conflicts and table lock-out 
delays can occur, but there is no way to 
avoid this with nrul tip le executions. The 
important point is that they nrust be con­
trolled so that system integrity is pro­
tected. 

- The potential advantages that can accrue 
·with this type of operating system 
operation are: 
o It provides graceful degradation 
o It can provide better availability of 

a reduced capacity system 
o The system provides true redundancy 
o It makes the most efficient use of the 

resources available. 

67 

It must be emphasized that most operating systems 
for nrultiprocessors are not "pure" examples of 
any one of the three classes discussed above. 
The only generalization that is possible is that 
the first system produced is usually of the 
Master-Slave type and the ultimate being sought 
is of the Symmetric type. 

Today and Tomorrow 

Current Situation 

There is no question that nrultiprocessors 
and other forms of parallel computing systems 
are accepted types of organizations. A table 
prepared by the author in mid-1973 li~l~d the 
§haracteristics over 50 such systems.L J 

ince that date, almost every manufacturer has 
announced further systems that fall into this 
category. The major factors governing future 
expansion of the concepts are perfonnance and 
cost-effectiveness. 

System Perfonnance 

There have been very few careful studies of 
the productivity increase attained by adding 
another processor. These studies are very 
difficult to perform in an accurate manner, for 
there are too many variables present. One ex­
ample cited in the author's book gives a factor 
of 1.8 for a two-processor system but only 2.1 
for three. Much of this non-linearity is 
probably due to the operating system, and dramat­
ic improvements have been attained by simple 
changes in routines like the dispatcher. One 
manufacturer developed fornrulae to predict 
system performance improvements; however, these 
are also quite suspect. 

Cost-Effectiveness 

Cost-effectiveness comparisons between 
comparably sized systems of different manufact­
urers are very unreliable since the system 
price often does not reflect its tru cost in any 
dimension. In fact, it is doubtful that such 
comparisons between systems produced by the same 
manufacturer are even valid. Figure 10 
illustrates some data that was derived from real 
systems costs and performances a few years ago. 
The starting points for cost and performance of 
the Mod 1 system are taken as unity. A fully 
expanded Mod 1 will provide almost double the 
performance at about 1.7 times the basic cost. 
A large gap then exists between the Mod 1 and 
Mod 2 system which provides over 3.4 times the 
performance at 2.2 times the cost. What happens 
if the Mod 1 processors are used in a nrulti­
processor configuration? The cost-performance 
curves are always below the standard Mod 1 uni­
processor due to the extra cost of the hardware 
features that permit multi-processing; however, 
when the capabilities of the single Mod 1 
processor are saturated, then another is added 
to the system along with other equipment such 
as additional memory, and the cost-performance 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

curve continues upwards in a fairly smooth manner. 
When necessary, a third processor can be added 
to continue this trend. With the multiprocessor 
system there are distinct advantages; 

- it is possible to provide a ~lll.ooth growth 
in system perfonnance capabilities 
avoiding the large jwrrp from a Mod 1 to 
Mod 2 system; 

- there is no requirement for a major system 
change-over; and 

- there is a definite performance range in 
which the multiprocessor provides better 
cost-perfo1mance. 

The disadvantages are equally obvious: 
- the multiprocessor provides lower cost­

performance for most workload levels (this 
is the price that is paid for the reliab­
ility/availability improvements of the 
multiprocessor); and 

- the ability to continue to expand the 
multiprocessor system change-over will 
finally be necessary at a much higher work­
load level. 

Figure 11 is not accura~e in the specific 
numbers and ratios displayed; however, it does 
display a condition that has occurred with a 
recently introduced system. The Mod A multi­
processor is little bit more costly than the uni­
processor Mod A; however, it does have the 
ability to expand past the limits of the single 
Mod A. In fact as the Mod A multiprocessor 
expands, it provides a cost-performance factor 
that is better than the next larger model from 
the same manufacturer, the Mod B. The logical 
questions then is why stop at a two-processor 
multiprocessor. The answer is that that is the 
limit of the hardware software configurations 
supported for the Mod A, and the user is forced 
to change to the Mod B system family. 

The Future 

Some have said that the general-purpose uni­
processor is reaching the limits of its capabil­
ities. This will probably happen, but it does 
not appear that the limit has been reached yet. 
What is tnie is that the use of multiple proces­
sors often provides an easier, and often cheaper, 
method to increase performance. 

Several studies of the future for data pro­
cessing hardware presents arguments that large 
future systems will be both multiprocessors, as 
defined here, as well as asymmetric systems with 
several levels of processors in the systems each 
devoted to a hierarchy of functions such as main 
processing, file handling, physical input/output 
control, etc. This appears to be a much more 
probable picture for the future. It may be 
necessary to produce a new descriptive term to 
differentiate these systems from the classic 
multiprocessors as described here. One such 
tenn that has been coined is "polyprocessor". 
There is no question that the future will find 
multiprocessing and the other concepts of parallel 
processing in much wider use than the present. 

68 

References 

fl] P,H, Enslow, ed, 1 Comtre Corp., 
Multi rocessors & Parrallel Processin , 
Jo iley, New York, (19 4 , 40+xii pp. 

[2] P,H, Enslow, "Multiprocessors and other 
parallel systems: An Introduction and 
Overview," Multiprocessors --- State-of­
the-Art Report Infotech, Maideilhead, 
England, (to be published). 

Memory 

Processor 
Units 

Input/ 
Output 

Fig.]; Basic Multiprocessor Organization. 

Fig .. 2: Time-Shared Bus System Organization --­
Single Buss 

Fig.3: Time-Shared Bus System Organization --­
Uni-Directional Buses 



I/0 
0 

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

• • • • • • 

Fig.4: Time-Shared Bus System Organization --­
Multiple Buses 

Fig.5; Crossbar Switch System Organization 

pl 

I 
l l 

MO 

TI 
l 

I/00 

-

Ml 

D D 

Fig.6; Crossbar Switch System Organization with 
I/0 Crossbar Switch Matrix 

P2 

il l 
M2 M3 MO 

Pa 

I J J 1 -
I/01 I/O 

D 

pl 

Ml M2 M 

I 
J 

...... 

0 I/01 

1 
3 

Fig.7: Multiport-Memory System Organization --­
Basic Organization 

Fig.8: Multiport-Memory System Organization --­
Including Private Memories 

69 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

~ T 1 
a) I 2 3 4 I 

I 3 

2 1~ T/2 b) 
4 

3 
c) 

2 4 

Fig.9: Multiprocessor Dispatching Anomaly 

QJ 
u 
s:: 

6 

5 

ill 4 
s.. 
.!: 
s.. 
QJ 

0.. 

2 

0 

Mod 2 ~,/ 

1 
I 

I . J / 
/ 

Cost-performance / 
advantage range // 3 CPU 
for multiprocesso / 

l. ~{ ~/ 2 CPU 

0.5 

Mod l ~ .,/// \M~d l (M~) 
./ 1 CPU with added 

'/ costs for 
MP features 

l.O l. 5 2.0 2.5 3.0 

Relative Cost 

Fig.10: Cost-Performance Comparisons 

70 

6 

5 

2 

0 

• 
/ 

Mod A (MP) .7· 
(. 

2 CPU / • /Mod B 
~/ 

/ . 
/ I 

Mod A~·// 
/ l CPU 

/ 

0:5 l.O 1.5 

Relative Cost 
2.0 2.5 

Fig.11: Cost-Performance Comparisons --- Inversion 

3 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

PARALLEL PROCESSING IN SOFTWARE AND HARDWARE - THE MASCOT APPROACH 

K Jackson 
C I Moir 

Royal Radar Establishment 
Malvern 

Abstract -- Real-time computer based infor­
mation systems contain a high degree of parallel 
processing outside the computer, Consequently, it 
is best to consider the tasks which the computer 
has to perform in support of these external 
parallel processes as being executed in parallel, 
A software structure is suggested which aligns 
modularity with parallel processing leading to 
flexibility during operational use. This software 
structure is capable of implementation on either 
single or multiple processor computers or a net­
work of distributed computers. An experimental 
distributed computer system being built to study 
the problems of high integrity hardware configur­
ations is described. An interesting feature of 
this system is the pseudo-random data transmission 
network it contains. 

1 Introduction 

All computer based systems contain three 
parts: an environment, men and software. The 
environment contains sensors and actuators some 
monitored and controlled by men, others by soft­
ware. The men also inject data into the software 
and are given information by the software in 
return. Although the actual interactions between 
these three parts are particular to any given 
system, in general information can flow in both 
directions between the three possible pairs 
namely: environment to/from software, men to/from 
software and men to/from environment. Figure 1 
represents this diagrammatically. The model 

Figure 1. Components and interactions in real­
time systems 

UK 

71 

applies equally to a wide range of systems from 
air traffic control to industrial process control 
and can even be applied to a computer bureau! 

Three pertinent points can be made from this 
model. Firstly, within the model there are many 
concurrent activities; each man works independ­
ently, each sensor and actuator works independ­
ently. Therefore the environment and the men can 
be considered to be sets of parallel processes. 
Secondly, the degree of interaction between these 
parallel processes depends upon the system. One 
extreme is represented by a multiple access com­
puter where several people can use a single com­
puting facility at once but the interaction be­
tween the users is nil. The other extreme is the 
dedicated command and control information system 
where several people must interact with each other 
and with the environment and software in order to 
perform a single joint task e.g. air defence, 
Thirdly there are many channels of interaction 
between the three components and the channels are 
open continuously. 

It follows that the software in the general 
model must have a large number of tasks placed 
upon it. Each sensor and actuator in the environ­
ment under software control demands some attention 
and each of the men who interacts with the soft­
ware has a (possibly unique) repertoire of tasks 
he can ask the software to perform. In the design 
of these systems it is therefore impractical to 
treat the software as a single sequential program, 

The problem of dividing programs, and hence 
organising software, plays a central role in soft­
ware engineering [ l] • The main tool for determin­
ing divisions within a program is that of function­
al decomposition; the process of repeated decom­
position continues until the units, or modules as 
they are usually known, are of a suitable size for 
an individual programmer to manage, When modules 
have been implemented and tested individually, the 
inverse process of composition - often called inte­
gration - begins. At this stage the interfaces 
between modules are tested and many problems arise 
due to poor or inadequate specification, In fact 
there is evidence [2] to show that testing 
(module and integration) accounts for up to 45 per 
cent of software production effort in large com­
mand and control systems, During integration a 
further form of modularity is introduced. The 
basic units are still the most elementary function­
al modules but it is convenient to group these to­
gether for presentation to either a higher order 
language compiler or an assembler. Finally, when 
the software commences execution, a third type of 
modularity is exposed. Here the unit is the se­
quential process which is separately scheduled by 
a despatcher algorithm or is executed in response 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

to a:ri external hardware interrupt. 

Thus, software for connnand and control infor­
mation systems has to perform a large variety of 
tasks which are not sequentially related. The 
software that is produced to satisfy this require­
ment tends to be modularised in three different 
ways: 

during design - by function 
during implementation - by .some convenient group­

ing for compilation 
during execution - by splitting into a set of 

interacting processes running apparently in 
parallel. 

MASCOT (Modular Approach to Software Construction 
Operation and Test)[ 3] proposes a unified dis­
cipline of modularisation based upon the initial 
decomposition of a program into a set of parallel 
processes (with a hierarchial decomposition within 
the main constituents by function as necessary). 
This approach imposes a strong discipline on the 
module interfaces which significantly reduces the 
integration period and also gives a more flexible 
end product. 

2 Software Structure 

Software is responsible for taking in a con­
ceptually continuous stream of data and transform­
ing it into a continuous stream of output data. 
In practice data is not continuous in form but is 
quantised into units such as bytes, words or 
blocks etc. Diagrammatically a piece of software 
can be represented as in figure 2. The two 

Figure 2. Elemental data processor 

rectangular boxes represent the current quantum 
of input data and the current quantum of output 
data while the circle represents the processing 
operations performed by the software in making 
the necessary transformation. This diagram is 
over simplified for the type of applications 
being considered. Firstly we have said that there 
are several parallel streams of input and output 
data and therefore we need to have several input 
and output data boxes. Secondly we have argued 
that the data processing actions for the many 
input streams of data are not serially related 

72 

and thus instead of a single data processing 
action we need several. These many processes must 
intercommunicate and the only means available for 
communication between parallel processes is thra.igh 
common data boxes. Therefore the software struct­
ure for command and control information systems 
(and most other real-time computer based systems) 
consists of a network of intercommunicating 
parallel processes as indicated in figure 3. 
The modular approach of MASCOT is primarily con­
cerned with establishing such a network from a 
set of processes and intercommunication data areas. 

Figure 3. Network of data processors 

A network of this nature can be constructed 
using conventional techniques without the MASCOT 
approach. However, the resulting program may 
contain hidden interactions (e.g. by two pro­
cesses communicating via global data) and be con­
sequently more difficult to debug and integrate. 
It also embodies a fixed network so that if a 
change is required one or more modules must be 
changed and then all the constituent modules must 
be link-edited to produce the total program. Con­
sequently the unit of replacement is the complete 
program and this leads to difficulties in situa­
tions where 24 hours/day service is required. 

In the MASCOT approach the concept of global 
data is ~liminated. Instead, each process must 
explicitly state its total process external data 
intercommunication requirements. It follows from 
this approach that the result of the compilation 
and link-edit phases of software construction need 
not be a program but can be a kit of parts which 
can be used to construct networks of intercom­
municating parallel processes. The method of 
constructing the network consists of satisfying 
the data requirements of each process by pointers 
to data areas of appropriate types. Because this 
network construction can take place after compil­
ation and link-editing, the network can be changed 
dynamically. 

3 MASCOT networks 

At this stage it is worthwhile describing the 
software structure created by the MASCOT approach 
in more detail. Processes in MASCOT are called 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

activities and the data processing actions of an 
activity are defined by a root procedure. It is 
the root procedure which has a set of formal 
parameters defining the number and type (see 
below) of intercommunication data areas it will 
require access to when it supports an activity. 
The network structure is strengthened by alloca­
ting each intercommunication data area a parti­
cular type which defines its internal structure. 
The act of creating an activity necessitates the 
specification of the particular root procedure 
required together with an appropriate set of 
intercommunicating data areas. Thus the kit of 
parts for generating a network of intercommuni­
cating parallel processes contains root pro­
cedures and intercommunication data areas. These 
items are known as System Elements and the set 
of these items available for use in the construc­
tion stage is called the System Element File. 
This file includes information about the types of 
intercommunication data areas and the inter­
communication requirements of each root procedure. 

Before going on to describe the construction 
process in more detail, it is necessary to digress 
briefly into the philosophy of activity-activity 
intercommunication. The aim here was to be as 
unrestricting (and therefore as general) as pos­
sible. Thus we have suggested that each type of 
intercommunication data area can be interfaced to 
the activities which may use it by a set of access 
procedures. These access procedures can use~ 
minimal set of process synchronisation primitives 
within the kernel (see section 4) to hide both the 
detailed data structure of the intercommunication 
data areas and the use of the synchronisation prim­
itives. This leads to a clean design and further 
lessens the risk of interaction problems during 
the i.integration phase of software production be­
cause the access procedures can be exhaustively 
tested in advance and are usually sufficiently 
small to be guaranteed correct. Using this 
approach a large number of intercommunication 
mechanisms can be expressed within the same very 
simple framework. Two such mechanisms which have 
been found useful in a variety of different appli­
cations are described below. 

Each mechanism introduces a particular cate­
gory of intercommunication data area; these are 
the channel and the pool. The channel category of 
intercommunication data area is used for a message 
passing mechanism. This has two uni-directional 
interfaces implemented by a pair of access pro­
cedures: one for sending (called by the producer 
activity), the other for receiving (called by the 
consumer activity). It is useful to represent the 
channel diagrammatically by the symbol J: (see 
figure 4). Many different types of channel can 
be used in a network but each channel type passes 
messages in a particular format and has a buffer 
with capacity to hold one or more messages in 
transit. The message format and buffer capacity 
are defined within the overall conventions for 
channel data structures. An example of a channel 
data structure and its access procedures is given 
in section 4. 

73 

Intercommunication data areas of category 
pool are complementary to channels. They are used 
primarily as a repository for non-transient data 
which is remembered and kept up to date as time 
passes. Pools are used for data bases and models 
of the environment etc. and are represented dia­
grammatically by the symbol L...-1 . No conven­
tions have been laid down for the structure of 
pools nor for pool access procedures, but, as with 
the channel, each different pool structure is 
allocated an explicit type. It is expected that 
each designer will decide on his pool structure 
and use access procedures as appropriate. Typical 
use of pool access procedures would be to use a 
set as a data base management facility or to use 
them for resource control. 

The unit of construction in MASCOT is not the 
activity but the subsystem. This is merely a 
network of one or more activities grouped together 
for convenience. The way subsystems are formed 
from system elements is best understood by example. 
Suppose we have two root procedures. The first 
one reads text as a sequence of characters from a 
channel of type 'CHARCHAN' and can recognise macro 
definitions; the definitions are remembered in a 
dictionary pool of type 'DICTPOOL'; subsequently 
any calls of the remembered macros in the text 
being read are recognised and expanded; the 
expanded text is output as a sequence of charac­
ters into another channel of type 'CHARCHAN'. The 
root procedure header might look like: 

PROC expand = (REF CHARCHAN in, out, 
REF DICTPOOL dictionary): 

using Algol 68 [4] notation for the parameters. 
The second root procedure called 'duplicate' 
takes a stream of characters from one 'CHARCHAN' 
channel and copies it into two further 'CHARCHAN' 
channels: 

PROC duplicate= (REF CHARCHAN in, outl, out2): 

If we now wish to create the subsystem "tripli­
cated expansion" shown in figure 4 we could express 
it in the following way: 

FORM triplicated expansion = 

(expand (input, interl, dictionary), 
duplicate (transl, outl, trans2) 
duplicate (trans2, out2, out3) 

The FORM command (assumed to be issued via a 
command interpreter facility) first checks that 
each item mentioned exists as a system element 
and then that the parameters which have been given 
for the root procedure match the requirements as 
specified in the root procedure headers. Finally 
a new subsystem is created containing the (as yet 
inert) three activities. Once created the activ­
ities of the sub-system can be started by a sub­
sequent command to start the subsystem. The 
subsystem is also the unit of stopping and 
removal. 

The MASCOT approach leads to a network of 
intercommunicating activities organised for 
convenience into the set of subsystems which con­
stitutes the system. The system can be varied 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

whilst it is operational by adding, starting, 
stopping or deleting subsystems. This software 
structure offers many advantages for software 
production and it can pe mapped on to many 
possible hardware configurations. 

out 1 

in 

out 2 

'--

Figure 4. A subsystem 

4 Mapping on to hardware 

The software structure which has been des­
cribed so far makes no assU111ption about hardware 
Other than that it will supply a means of execu­
ting the activities in the network. This require­
ment can be satisfied at two extremes by either 
a single processor computer or by a network of 
inter-connected computers having one computer per 
activity. The latter solution may not be as far 
fetched nowadays as it once was but for the 
majority of applications the number of activities 
will usually be greater than the number of pro­
cessors. Consequently there must be some means 
of running several activities on a single pro­
cessor computer. 

The main contention which arises when attempt­
ing to run a set of activities on a single pro­
cessor is obviously the competition_ for processor 
time. This has been solved by the MASCOT kernel 
which includes a minimal set of synchronising 
primitive operations and two executive routines. 
One executive routine is responsible for alloca­
ting processor time on demand from external hard­
ware interrupts; the other is responsible for 
allocating processor time to the base level (i.e. 
non interrupt driven) activities. The kernel also 
contains the procedures implied by the FORM com­
mand to create subsystems (and their activities), 
and to start, stop and remove them. The kernel 
has been implemented in Coral 66 [ 5) for a Marconi 
Myriad computer as a very small monolithic monitor 
[ 1) and the object code generated occupies less 
than 2000 words (24 bit). This includes a 

74 

significant proportion devoted to a monitor 
facility which enables the creation of a time 
ordered record of calls of primitive operations 
by activities and executive decisions. 

The objective in the specification of MASCOT 
kernel primitives was to identify a minimal set 
which was not only necessary and sufficient but 
also convenient for the handling of all problems 
of process synchronisation at the basic level. 
Thus all concepts of data passing via the kernel 
have been stripped out. Two basic mechanisms were 
identified as necessary [ 3,6): 

a) Mutual exclusion: it must be possible for 
each of a set of activities sharing data 
to gain exclusive access to the data 
(or some recognised part of it). 

b) Cross Stimulation: An activity must be 
able to defer further execution until it 
receives an explicit software stimulus 
from another activity. 

Although both mechanisms can be implemented using 
the conventional semaphore with P and V operations 
on it [ 1) , it is considered that this practice 
leads to confusion. Whether a particular sema­
phore is being used for mutual exclusion or for 
cross stimulation in a given situation is not at 
all obvious. Therefore, on the grounds of improv­
ing understandability and convenience, it was 
decided to have a. semaphore (called a controlqueue 
because it acts as the focal point for sequence 
control operations between activities) with four 
primitive operations available upon it. One pair 
of primitives - TEST/CLEAR - deals with the mutual 
exclusion mechanism; the other pair - WAIT/STIM 
handle the cross-stimulation mechanism with the 
condition that the WAIT operation can only be 
used by the activity which has secured (i.e TESTed) 
the control queue. To exemplify the use of these 
primitives we consider a channel and associated 
access procedures. Using Algol 68 notation again, 
we can define a channel data structure by the 
following MODE declaration: 

MODE SIMPLECHAN = 
(STRUCT (CONTROLQ inputaccess; outputaccess, 

INT inpointer, outpointer, maximum 
[ 0: 31) MESSAGE data); 

This channel can be used for passing messages of 
mode MESSAGE (assumed to be previously defined). 
The two pointers are used to indicate the position 
of the next message slot to be used for input and 
output respectively. They are incremented by one 
after each insertion/extraction and used modulo 
the maximum valu~ for the pointer, chosen to·be 
2n - 1 for efficiency (31 in this example). 

An access procedure which could be used to 
put a message into such a channel might be 
written: 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

PROC send= (REF SIMPLECHAN chan,MESSAGE n): 
BEGIN TEST (inputaccess OF chan); 

IF full(chan) THEN 

END; 

WAIT (inputaccess OF chan) FI; 
(data OF chan)[inpointer OF chan 

MODULO maximum OF chan] := m; 
inpointer OF chan PLUS l; 
STIM (outputaccess OF chan); 
CLEAR (inputaccess OF chan) 

where the procedure "full" delivers the value 't 
'true' when all slots are full otherwise 'false' 
and the operators MODULO and PLUS are self 
explanatory. 

The corresponding access procedure to remove 
a message might be written: 

PROC receive = (REF SIMPLECHAN chan, 
REF MESSAGE m) : 

BEGIN TEST (outputaccess OF chan); 
IF empty(chan) THEN 

END; 

WAIT (outputaccess OF chan) FI; 
m := (data OF chan)[outpointer OF chan 

MODULO maximum OF chan] ; 
outpointer OF chan PLUS l; 
STIM (inputaccess OF chan); 
CLEAR (outputaccess OF chan) 

where the procedure "empty" delivers the value 
'true' when all slots are empty otherwise 'false'. 

'When called each of these procedures attempts 
to secure the appropriate interface for use by the 
calling activity, At this point the activity may 
be held awaiting its turn to use the interface. 
'When the calling activity has possession of the 
interface it may yet be held up due to the state 
of the data area. If held at this point (WAIT), 
flow of data across the interface ceases until a 
stimulus to restart comes from the other side of 
the channel; such a stimulus is only transmitted 
when the change of state is likely to be of 
interest to activities on the opposite side of 
the channel. 

The control queue has also been included in 
the control data structure for hardware interrupts 
which is known as a virtual interrupt. The 
primitives TEST INTERRUPT and CLEAR INTERRUPT are 
similar in operation to TEST and CLEAR (the only 
difference being that they operate on a virtual 
interrupt instead of directly on a control queue). 
The WAIT INTERRUPT primitive allows an activity 
to defer further processing until a hardware 
interrupt stimulus is received. Further details 
of the kernel facilities and the Myriad implement­
ation can be found in references [ 3,6) • 

The kernel can be easily adapted to the co­
equal multi-processor type of computer. The chief 
question to be answered is the extent of mutual 
exclusion necessary between the processors. The 
simplest if rather crude solution is to allow 
only a single processor to execute within the 
kernel at a time. Since the kernel has been 

75 

designed with the utmost efficiency in mind, this 
solution may be perfectly adequate. More sophis­
ticated solutions involve selective lockouts in 
crucial areas such as list manipulations and the 
need to prohibit more than one processor from 
simultaneously executing a primitive operation on 
the same control queue. 

For the multi-computer system, in addition to 
the allocation of processor time to activities, 
there is a further problem of allocation of activ­
ities to computers. The simplest way of achieving 
this is to make the subsystem the allocatable unit 
so that each unit of computing is responsible for 
the execution of a set of subsystems. (This 
brings in a further level in the system - sub­
system - activity hierarchy). It is useful to 
note however that with this organisation of soft­
ware into subsystems it is possible to design and 
implement the software first on a large single 
computer. This allows the investigation of soft­
ware problems of distributed computer systems in 
the absence of any of the hardware problems 
associated with the distributed computer hardware, 
Subsequently the software subsystems can be alloc­
ated to individual computers with a hardware link 
between two sides of any channel which straddles 
a computer-computer boundary. An experimental 
distributed computer system, which we call FRIMP, 
is being built to study the problems of high 
integrity hardware configurations and the problems 
associated with transferring software from a 
single processor computer on to a distributed 
computer system, 

5 FRIMP - Flexible Reconfigurable 
Irttercortrtected Multi•Processor 
System 

There are many applications which require a 
high level of system availability and integrity. 
System here includes both hardware and software. 
The hardware must be capable of detecting and 
isolating faulty units (computer, store, 
peripheral) and it must be possible to introduce 
new hardware into the system whilst it is oper­
ational. This includes reinstatement of faulty 
units after repair and adding new units to upgrade 
performance. The conventional approach to 
improving hardware availability is to duplicate, 
triplicate, quadruplicate ••• hardware units until 
the desired cumulative mean time between failures 
has been achieved. The problem introduced by this 
approach is that there must be voting logic which 
tends to become the vulnerable point of the hard­
ware. Another approach is the multi-processor 
system having spare processor capacity that can be 
utilised in the event of faults, Two problems 
arise here: firstly a fault can cause untold 
damage to data and programs before it is dis­
covered, thus reducing integrity; secondly, there 
is a strong possibility of store contention 
reducing the gain of adding extra processors. A 
third approach is to have a distributed computer 
system. This allows extra power to be added 
without such a dramatic application of the law of 
diminishing returns. Faults within a single 
computer are much less likely to cause chaos in 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

others especially if defensive progrannning tech­
niques are employed on the computer to computer 
data transfers. Online reconfigurability is 
possible provided that a very reliable inter­
computer communication medium can be provided and 
a suitable control strategy can be found. 

FRIMP is a distributed computer system which 
is being built in order to study the problems out­
lined above. The feasibility of the entire 
project depends upon a reliable data transmission 
medium. This must allow the necessary connectivity 
(including multiple paths) to be made between 
communicating devices and provide sufficient 
capacity. Also the total network must not depend 
on a single arbitrator at any one point. Current 
work on this medium is discussed below. The other 
major requirement for the distributed computer 
system is a control strategy. This will be based 
initially on the MASCOT approach with subsystems 
being allocated to individual computers. The sub­
system allocation will attempt to keep all com­
puters as busy as possible. Thus changes may be 
made to meet peaks in demand on a particular sub­
system or to redistribute the subsystems of a 
failed computer. This control strategy must be 
secure, yet since it involves management of the 
system's resources as a whole it is very difficult 
to disperse the responsibility effectively amongst 
the individual computers. Fortunately the MASCOT 
concept reduces the need for global system manage­
ment operations to such an extent that, when such 
operations are unavoidable, they can be done 
relatively slowly. Provided that any activities 
which are not affected by the global operation can 
continue normally, the system will have time to 
perform a self-test routine on every computer, 
"elect" a leader from amongst those which pass the 
test, wait for the leader to perform the operation, 
and then perhaps appoint a deputy to repeat the 
operation as a check. This mechanism avoids the 
cost of a majority voting system applied to all 
operations, but retains its security advantages in 
the most critical operations, namely those which 
involve the system as a whole. It also avoids the 
concentration of logic at a single, vulnerable 
point which is found in some majority voting 
systems. 

FRIMP is being constructed using micro­
processors which have a micro programming facility. 
This facility suggests several potential advantages 
over a software only version of MASCOT. Firstly 
a store protection mechanism using base, limit and 
access registers will b~ built. This will confine 
activities to their connected intercommunication 
areas and, since each area can have its own 
register, access time to the data will be quicker 
than using indirection or indexing. Secondly it 
is planned to build a micro progrannned version of 
the most commonly used parts of the MASCOT kernel, 
whose very simple structure lends itself to this 
type of implementation. Finally where an inter­
conmunication area is used by activities in 
different computers the access procedure mechanism 
could be used to trigger a virtual storage system 
into either fetching the data (write or read 
access) or fetching a copy of it (read only 
access). 

76 

6 Data Communications Medium 

The need for a reliable data communications 
medium in FRIMP has been stated above. The prob­
lem was to find a means of achieving the desired 
level of interconnectivity and capacity between 
the many intercommunicating devices within FRIMP. 
The need for reliability and flexibility has 
excluded any method involving a central vulnerable 
point. This excludes single highway systems and 
multiple cross-bar highway systems. Connexion 
strategies where n devices of one type are con­
nected to all m devices of another are also 
excluded on cost, due to the n * m expansion 
factor, in addition to having a single crossing 
point in some cases. 

Current work at RRE is examining a communic­
ations network consisting of interconnected nodes 
with pseudo-random data routing. Each device 
connected to the network has its own unique code. 
Messages transmitted between devices carry a header 
which contains both the source and destination 
device numbers and the length of the message 
(0-256 bytes). Each node is a store and forward 
switching centre having up to eight input ports 
and up to 8 output ports, and storage for at least 
one maximum length message, though in practice 
more store than this would be provided. When a 
message arrives at an input port, the destination 
device is used to access a local look-up table 
indicating the set of output ports which would be 
suitable for onward transmission. The information 
extracted from the table can be 'here' (meaning 
the destination device is connected to this node, 
'not connected' (a fault condition - the device 
being sent to is not connected to the network), or 
'port selection data' (if the destination device 
is not local). The exact nature of the 'port 
selection data' depends upon the particular 
routing algorithm being used (see below), Once a 
port has been selected and found to be not busy 
the data is transmitted serially through it to the 
next node. Figure 5 gives an example of a network 
showing multiple paths between all devices not 
connected to the same node. 

A computer simulation of the network has been 
performed using Algol 68 RT, (A variant of 
Algol 68-R [2] which allows parallel processing). 
The program has been used to investigate the prop­
erties of the network and to study the effects of 
routing s.trategies and node design on performance. 
The simulation consists of four types of process: 
node, transmitter, receiver and statistical 
sampler. The node process is launched as an 
independent task once for each node in the network 
being simulated. The transmitter or receiver 
process is launched once for each device of the 
appropriate type. The statistical sampler is also 
the control process and it reads in a file to 
define the network connectivity and define the 
pattern of data packet transmission which each 
transmitter will attempt to make. Data output by 
the sampler, when it runs each simulated milli­
second, includes the total number of packets sent 
and received since the start, the number of new 
packets introduced during that millisecond and the 
maximum transmission and access delays. At the 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

end of .the run a histogram is printed which indic­
ates thec:.distribution of transmission and access 
delays during the simulation run. 

Using this model two different node processes 
have been tested. The first one imposes a fixed 
2 byte packet size on transmissions through the 
network, and the routing data in the look-up table 
contains in addition to 'here' and 'not connected' 
either 'clockwise' or 'anti-clockwise'. Ports are 
marked 'clockwise' or 'anti-clockwise' and so the 
route essentially gives a choice of one of two 
sets of output ports. The algorithm chooses the 
first one it encounters which is not busy. In the 
second node process the look-up table gives a 
first choice port and a second choice port. The 
ports are examined in that order. Also in this 
simulation the packet data length is variable in 
the range 0-256 bytes. One surprising fact which 
has emerged from these simulations is that the 
characteristics of the network are not signific­
antly changed by altering the node algorithm, but 
in both cases a deadlock situation can arise if 
all nodes are allowed to accept all the data they 
are offered and can accommodate. Therefore a limit 
has been set which stops a node accepting 1new1 

data (i.e. data from a device connected to that 
node) if the proportion of the node storage 
occupied exceeds a given limit. Data passed on 
from other nodes is still accepted and further new 
data is also accepted as soon as the peak is 
passed. Each node acts entirely autonomously in 
this way, monitoring only its own traffic, and is 
therefore not vulnerable to failures elsewhere in 
the network. The other surprising fact is that 
independently of connectivity and transmission 
pattern, imposing a limit on the rate at which new 
traffic is accepted actually improves the overall 
throughput of the network and reduces the maximum 
transmission delays. A limit which blocks inputs 
when 75% of the available storage in a node is 
filled is sufficient to prevent deadlock even 
under saturation conditions (when every trans­
mitter generates data as fast as the network will 
allow), but a lower limit gives the best through­
put. The graphs in figure 6, for a 16 port/node 
simulation, show the rate of acceptance of new 
packets (roughly equivalent to throughput), access 
delays and transmission delay as traffic increases 
plotted against the number of busy ports limit. 
This phenomenon is being vigorously investigated 
and the simulation work programme includes an 
investigation of techniques for adaptive route 
changing which can be applied independently at 
each node. 

Conclusion 

The MASCOT approach allows design of real 
time computer based connnand and control infor­
mation systems in terms of a network of inter­
connected parallel processes. This design can 
proceed independently of the eventual computer 
configuration. The network of processes can be 
implemented and run on a large machine by provid­
ing the small MASCOT kernel. Then it can be 
implemented on the target machines, if necessary 
changing the progra11m1ing language in the process 

77 

but keeping the same modular real time parallel 
processing structure. This form of modularity, it 
has been proved, significantly reduces software 
integration time and promises the possibility of 
re-usable program modules because of the tight 
discipline which forces explicit specification of 
each activity's external data interface. 

The MASCOT modular structure is also very 
suitable for applying a distributed computer 
system to a single overall task (e.g. air defence, 
air traffic control). A distributed computer 
system is being built, using micro-processors, as 
a vehicle for validation and experimentation. 
Initial simulation studies of the proposed commun­
ications network for the distributed computer 
system indicate that it will meet its objective 
and also indicate some interesting properties 
which will be investigated together with the 
possibility of adaptive route control at each node. 

References 

[ l] R C Holt, "Structure of Computer Programs: 
A Survey", Proc IEEE, Vol 63, No 6, June 
1975. 

[ 2] D W Kosy, "Air Force Connnand and Control 
Information Processing in the 1980 1 s: Trends 
in Software Technology", Rand Corporation, 
Santa Monica, 1974. 

[ 3] K Jackson, H R Simpson, "MASCOT - A modular 
approach to software construction operation 
and test", RRE Technical Note 778, Ministry 
of Defence (Procurement Executive), London, 
UK. 

[ 4] P M Woodward, S G Bond, "Algol 68-R Users 
Guide", Her Majesty's Stationery Office, 
London, UK, 1972. 

[SJ PM Woodward, PR Wetherall, B Gorman, 
"Official Definition of Coral 66", Her 
Majesty's Stationery Office, London, UK, 
1970. 

[ 6] K Jackson, H R Simpson, "MASCOT - A Modular 
Approach to Software Construction Operation 
and Test", Agard Conference Proceedings 
No 149 on Real Time Computer Based Systems, 
NATO, May 1974. 

Acknowledgements 

The authors are indebted to many colleagues 
for useful comment and discussion and in partic­
ular to Dr R J W Kershaw who undertook the network 
simulation work. 

This paper is published by permission of the 
Director, Royal Radar Establishment, Copyright 
HBMSO, London, UK. 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

Figure 5, Random network example 

Accf!>5 

NEW PAC•ETS / ms 

\ 
p.s 

10 NODES, 'l-0 '.DEVICES 

10 ti '13 1+ 

" PROH!filT NEW ' INPUT Lll'llT 

Figure 6, Graphs describing transmission characteristics of random network 

78 

z 
0 
(!i 

I UJ 
a: 

I l< 
l) 

I 0 .... 
I 0 

I~ 

1!5 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

SEQUENCING CONTROL IN MULTIFUNCTIONAL PIPELINE SYSTEMSt 

C.V. Ramamoorthy and H.F. Li 
Computer Science Division 

Department of Electrical Engineering and Computer Sciences 
and the Electronics Research Laboratory 
University of California at Berkeley 

Berkeley, California 94720 

Abstract -- A parallel and pipeline processing 
implementation scheme termed RSRP is considered. 
It consists of parallel functional pipes sharing 
resources at strategic locations. The sequencing 
problem for RSRP systems is considered first from a 
theoretical point of view, by characterizing its 
intrinsic complexity using a convenient classifica­
tion termed "inherently difficult". From this re­
sult, the semi-exhaustive nature of an optimal 
strategy is justified. However, for low level of 
implementation, faster heuristics are necessary. 
Some simple efficient heuristics were compared us­
ing experimental simulation on systems whose models 
were based on some existing machines. 

1. Introduction 
The study of computer architecture coupled 

with technological advancement has blossomed in 
many ways. In developing new processing techniques 
and organizations for amplifying the computing 
power available from a computer system, both paral­
lel and pipeline processing techniques are favora­
ble candidates. They actually revolve around the 
same concept: overlapped operation among the facil­
ities or modules in the computer system. By over­
lapping, more tasks could be executed at one time. 
Consequently, higher utilization and throughput 
rate are within reach. As a co-product, the turn­
around times of computing jobs could be improved 
which may be an important requirement in some real 
time applications such as weather forecasting, air 
traffic control and other real time processes. 

In a parallel processing architecture, usually 
there are numerous processing elements which could 
execute independent instructions or task(s) con­
currently. In practice, due to the limitation on 
the memory-processing element relationship, most 
parallel processing exists in a form of array pro­
cessing where identical processing elements are 
executing the same instruction for some array type 
of computation. So a SIMD characterization [ll 
fits array processing very well. Well-known array 
processing machines include ILLIAC IV, ST.ARAN and 
PEPE [2-4J. On the other hand, a more general MIMD 
structure where different instruction streams are 
being executed can also be seen in the PEPE machine 
since there are three identifiable different con­
trol-PE paths so that three different instruction 
streams can feed into the 288 processing elements 
with parallel instructions to be executed. How­
ever, a general parallel processing system with 
powerful autonomous identical processors to execute 
MIMD streams is still an uncommon super-giant, 
though parallel processing at a lower level, namely 
among smaller logical elements, is a corrmon prac­
tice. 
tResearch sponsored by National Science Foundation 
grants DCR72-03734-A01 and DCR74-21248 and U.S. 
Army Research Office Contract DA-ARO-D-31-124-73-
Gl57. 79 

Pipeline processing can be.characterized by 
the SISD classification because a pipeline may 
commence operation on one set of data for some 
instruction per minor cycle. Since a processing 
phase is being decomposed to several sub-phases 
executed on autonomous functional modules in a 
pipeline processor, the overlapping among the pro­
cessing of consecutive instructions provide the 
amplification of throughput desired. As the sub­
modules are usually cheaper than a complete module, 
therefore pipelining is useful to speed up opera­
tions in processors in a most cost-effective man­
ner wherever possible. It is applicable to many 
levels of a processor design. In a higher level, 
the instruction processing is pipelined into many 
phases such as instruction fetch, decode, operand 
fetch and execute in the IBM/360 model 91, 195, 
etc. [5]. To speed up a CPU further, execution 
units can be pipelined for performing the arithme­
tic operations as in TIASC arithmetic units and 
the CDC STAR-100 machine [6-7]. 

Parallel and pipeline processing techniques 
are complementary in achieving higher throughput, 
and it is by no means surprising if a person dis­
covers the presence of both in a computer system 
such as in the STAR-100 and PEPE machines. In 
this paper, a modeling of parallel-pipeline ~re­
cessing is established for the discussion of 
throughput and sequencing control in a system with 
parallel functional paths (pipes) sharing some 
strategic resources, termed a Reconfigurable 
Shared Resource Pipeline (RSRP) system, Sequenc­
ing in a parallel-pipeline system is a vital acti­
vity in order to fully utilize the overlapping 
modules in the system because a continuous stream 
of instructions should be provided and executed 
with as little disturbance as possible to the sys­
tem configuration. In this way, the system re­
sources can be kept in a busy state to produce 
useful outputs. 

The importance of scheduling or sequencing in 
a parallel or pipeline machine can be reflected by 
the enormous research efforts devoted to the study 
of optimal algorithms for them. There are roughly 
two lines of research to be followed. First is 
the development of optimal sequencing algorithms 
for a deterministic task system where task prece­
dence relationships and execution requirements are 
known [8]. The other is a mqre realistic model 
where a stochastic precedence relationship or exe­
cution time .is allowed in the task system [9]. 
The optimal algorithms should be able to derive an 
optimal schedule for executing a given task system 
under specified conditions in a very efficient 
manner. Their qualities are judged mainly by 
their average speed, and sometimes their worst 
case performance [10]. Since 'average speed' is 
difficult to.define and .compare both qualitatively 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

and quantitatively, the latter figure of reference 
is adopted by many people. For instance, essen­
tially enumerative methods are considered poorer 
than simple systematic procedures that require a 
'well-bounded' number of iterations or steps before 
its termination even in the worst situation. 

Unfortunately, due to inherent characteris­
tics, even under the most simple deterministic 
model, scheduling in general is quite difficult. 
Over the years of research, only three special 
cases were found to possess simple optimal algo­
rithms. They include (1) a tree type of precedence 
relationship for a task system with unit execution 
time per task [ll], (2) a 2-processor system exe­
cuting a task system with unit execution time per 
task [12], (3) a two-facility pipeline system with 
variable speeds [13]. 

In this paper, the sequencing problem in a 
mixed parallel-pipeline architecture, the static 
and dynamic RSRP systems to be explained later, 
will be explored. The design and control of these 
two types of RSRP systems will also be discussed, 
Although a RSRP system does not necessarily fall 
into the framework of a general parallel processing 
system with identical processors, the inherent dif­
ficulty behind optimal sequencing in both static 
and dynamic RSRP systems will be characterized in 
order to justify the use of a semi-exhaustive ap­
proach to optimal sequencing and simple near-opti­
mal heuristics in some practical situations. Fi­
nally, the heuristics for static and dynamic RSRP 
systems whose models are derived from existing sys­
tems will be compared with some experimental simu­
lation. 

2. Modeling 
The processing phase within a computer system 

can be described by many possible models, based on 
the objective of modeling. For some purposes, a 
very detailed modeling is necessary. But for 
others, a simplified model helps the analysis and 
reveals the most important characteristics of the 
actual system. In most cases, system modeling re­
volves around a graph structure. Sometimes, addi­
tional semantics of tokens provide the additional 
information desirable. For example, marked graphs 
or Petri Nets [14-15] can be used to describe the 
exact operation and synchronization of a modular 
system. 

For the purposes of this paper, we are con­
cerned with the throughput of a complex processing 
system which has a structure describable by the 
various functional paths {pipes) within the system, 
sometimes with some strategic resources being 
shared among the functional paths. Under this pro­
cessing organization, both parallel and pipeline 
processing characteristics emerge. Pipelining is 
recognized because a functional path is composed of 
a sequence of modules each performing some phase of 
processing in an overlapped mode with the others. 
Simultaneously, parallel processing may be achieved 
because concurrency of execution may take place 
among the various functional paths (pipes), analo­
gous to the Multiple Instruction Multiple Data 
(MIMD) stream type of computer systems [l]. As a 
result, independent tasks or instructions are 
guided through the different required functional 

80 

paths in a pipelined manner with the objective of 
getting the most utilization from the system re­
sources and hence the highest throughput rate pos­
sible. For obvious reasons, such a processing sys­
tem will be named Reconfigurable Shared Resource 
Pipeline system (RSRP). 

There are two kinds of RSRP systems which 
wil 1 be considered here -- static and dynamic RSRP 
systems. A static RSRP system is less flexible 
and less intelligent in the sense that at any time 
instant, only one configuration or functional pipe 
may be active. Therefore pure pipeline character­
istics exist, though over a time period different 
pipes may be excited. This design has the advan­
tage of less control circuitry and overhead needed 
in monitoring the routing of operands and gating 
activities in the pipeline segments. This also 
has the obvious disadvantage of less overlapping 
in other inactive paths and hence reducing the 
opportunity to achieve maximum throughput. Some 
simple static RSRP systems can be observed in the 
arithmetic unit pipes in computers such as TIASC 
and CDC STAR-100 [16-17]. In the example of TIASC 
systems, the machine has fourteen different groups 
of instructions. For a group of instructions in­
volving the same pipeline configuration, if the 
needed operands are fetched fast enough, the arith­
metic unit can produce a fastest throughput rate 
of one result per minor cycle. However, to avoid 
excessive switching, only one active configuration 
or pipe is allowed at any time. On the other hand, 
a dynamic RSRP system permits concurrent process­
ing in the various functional paths (pipes) with 
some additional control to route operands to cor­
rect transitions. Therefore, simultaneous "ly sev­
eral functional pipes may be active, although col­
lisions at a shared resource have to be either 
avoided or resolved by proper buffering and se­
quencing control, There are certainly some trade­
offs between a static and dynamic RSRP system. 
Here their performance under some sequencing rules 
will be studied. 

Hence, formally a RSRP system will be repre­
sented by a modified digraph consisting of a 3-
tuple G = (N,A,P) where N denotes the set of facil­
ity modules o.r nodes, A the set of transition arcs 
among the facilities, and P the set of legal func­
tional paths (pipes) in the system. Sometimes 
when used in a deterministic model, it can be ex­
tended to a quadruple G' = (N,A,P,T) where T pro­
vides the additional information about the execu­
tion speeds of the facilities in N. With this, 
the analytical throughput rates of the pipes under 
no interference conditions are computable, Notice 
that not all possible paths in the digraph are 
legal paths because there may exist configurations 
that do not have logical meaning and their activa­
tion will produce erroneous outputs. 

3, Collision Avoidance 
Given a dynamic RSRP system, some determinis­

tic analysis will be useful for controlling the 
operation of the system for optimization purposes 
under different operating assumptions [18], Be­
cause of the presence of shared resources and mul­
tiple tasks currently being executed by the system, 
care must be taken to accommodate the occurrence 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

of collision. A coll·ision occurs when two or more 
tasks try to access the same facility at the same 
time. When a collision has occurred, the system 
control must have built-in (hardware or software) 
collisions resolvers and/or buffers of some kind 
in order that proper execution can continue at its 
normal pace. 

Similar to other undesirable events, a colli­
sion can be either prevented or resolved. If pre­
vention is the goal, some global sequencer may be 
designed so that a task, once initiated, will not 
cause any collision with other tasks still resident 
in the pipeline system. This further implies that 
a task will 'flow' through the RSRP system without 
any waiting inside after its admission. This goal 
has the advantage that implicit requirements on 
intermediate buffering capabilities between facili~ 
ties are not imposed. But then it loses some 
chance in enhancing more overlapped operation pro­
vided by sufficient buffering. 

An almost exactly analogous situation between 
a dynamic RSRP system and a traffic network can be 
drawn up easily. A share::tresource corresponds to a 
traffic junction. Under a deterministic assumption, 
the exact speeds of vehicles and the lengths of 
blocks of roads are assumed known. Cars may then 
be admitted under a global controller which will 
allow entrance at some pre-determined sequence of 
the synchronization signals. On the other hand, 
internal buffering may be used to avoid collision 
at a junction in a similar way as the use of traf­
fic signals. Of course, excessive traffic conges­
tion on one route will result in the overload of 
'buffers' -- an expected phenomenon of an ill­
balanced dynamic RSRP system. Sometimes, remedy 
may be sought by dynamically changing the periodic 
ratio of traffic signals for the junctions involved. 
In particular, the heavily loaded direction may be 
favored to relieve the unbalance -- similar to a 
dynamic priority assignment to shared resources 
among the different related processing paths. 

For the immediate discussion, the coll is ion 
avoidance technique in a RSRP system will be tac~ 
kled. This is especially important when pipelining 
is implemented in a very low level (in order to 
achieve the ultimate speed). Then the speed of a 
typical facility node may be of the order of 50 
nsec. and therefore intermediate buffering demands 
comparatively excessive static and dynamic over­
head (since the cost of intermediate buffers will 
be almost the same as other component costs and the 
total delay of the pipeline may be doubled). Con­
sequently, except for simple operand routing, addi­
tional buffering between facilities may be undesir­
able when pipelining is performed at a very low 
level. 

When sufficient buffering is absent, collision 
inside the pipeline system has to be avoided by a 
global control mechanism. In [19], a reservation 
table approach is suggested for sequence control of 
a linear pipeline with a single configuration. 
From a static reservation table, the initiation 
procedure (of a certain periodic length) is chosen 
such that highest throughput rate is attainable 
with complete collision avoidance. For a multi­
functional RSRP system, a similar approach utiliz­
ing a two-dimensional collision matrix is possible. 

81 

As the name implies, a collision matrix is a gener­
alization of a one dimensional collision vector 
characterizing the relationships among the func­
tional paths. 

Each entry in the collision matrix contains 
information regarding the collision relationship 
between the two pipes concerned. Specifically, 
the (i,j)th entry represents the time intervals 
after the initiation of pipe i so that the excita­
tion of pipe j will not cause a collision inside. 
For example, {(2,6),(10,17),(20,00 )} in the (i,j)th 
entry means the excitation of pipe j ~fter pipe i 
can take place between the 2nd and 6t hcycles, or 
loth and 17th cycles, or after the 2ot cycle. 
Each entry in a collision matrix may contain sever­
al time intervals instead of a single one because 
the two pipes involved may share more than one 
resource, thus introducing more sites where colli­
sion may occur. As an example, the dynamic RSRP 
system in Fig. l has a collision matrix as shown. 

4 2) pl: 1-2-3-4 
5 p P2: 1-5-3-6 

2 (Speed of each facility 
is as labeled.) 

Collision matrix: 
t 11 = (15,00 ) 

t 12 = ((4,10),(16,00 )) 

t 21 = (4,oo) 
t 22 = (4,co) 

Fig. l Example Collision Matrix 

The (l,l) entry is (15,00 ) indicating that pipe 
can be excited at regular intervals of 15 cycles 
or more because the slowest facility in pipe 1 
generates an output in every 15 cycles and so 
forms the bottleneck of the pipe. The (1,2) entry 
is {(6,10),(16,oo)} because pipe 2 may collide with 
pipe l at facility 1 as well as facility 3. The 
(0,4) interval characterizes collision at facility 
l and (10,16) at facility 3. Notice that the 
(2,1) entry is single-valued despite the fact that 
pipes l and 2 share two resources. This is so 
because once pipe 2 is excited and has passed 
through facility 1, there is no way for the task 
in pipe 1 to catch up. The flow~chart of the 
algorithm which can be used to construct the col-
1 ision matrix given (N,A,P,T) is illustrated in 
Fig. 2. It represents the procedure in generating 
the (i ,j) entry. For simplicity, if pipe i and 
pipe j share a sequence of consecutive facilities, 
the latter are grouped together with a composite 
throughput rate equal to that of the slowest facil­
ity in this group. Also the time to reach and 
leave the composite facility will correspond to 
that for the slowest facility in the group. 

With this collision matrix, an external glo~ 
bal sequencer may sequence instructions or tasks 
according to some sequencing rule or algorithm and 
initiate them so that no collision will occur in­
side the RSRP system. Naturally one wonders what 
sequencing rules should be used given a task sys­
tem. Should the sequencer try to minimize the 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

A collision site 
may have been found. 

Calculate TR(i), TR(j) 1 

TC(i), TC(j). 

Create new time interval 
(TC(i)-TR(j) ,m) 

Form appropriate overlapping 
products with previous time 

intervals generated. 

Create new tioe intervals 
(0,TR(i)-:C(j)) and 

(TC(i)-TR(j) ,m). 

Notation: TC (i) • time to leave the collision site via pipe i 

TR(i) • time to reach the collision site via pipe i 

Overlapping product: 

Illustration: Suppose previous time interval is (4,m) and the newly 
generated are (0, 7) and (lQ,~). The resulting intervals 
will be (4,7), (lO,c:o). 

Fig. 2 Flow-chart for Constructing 
Collision Matrix 

execution time of the task system? What is the 
gain-overhead tradeoff? Is optimal sequencing in­
trinsically difficult? These problems will be the 
subject of the next section. 

4. Theoretical Basis of Sequencing 
To justify the use of a semi-exhaustive tech­

nique to perform optimal sequencing, a study of 
its intrinsic difficulty will be included. The 
classification of 'difficult' problems using 'poly­
nomial completeness' will be used. 

A big class of combinatorial problems requires 
the determination of certain properties in graphs, 
integer arrays, boolean functions and finite sets. 
Through the use of suitable encoding, these pro­
blems can be transformed into language recognition 
problems over a finite alphabet. Then one could 
test its intrinsic complexity by developing a con­
clusion as to whether there exists a fast recogni­
zer for the language. Based on the 'satisfiability 
problem', the class of polynomial complete (PC) 
recognition problems are characterized so that if 
any possesses a 'fast' algorithm, it can be modi­
fied to become a 'fast' algorithm for any other in 
the class ('fast' means the al9orithm terminates 
in a polynomial bounded time) L20-21]. Falling 
into the PC class of problems include well-known 
combinatorial problems such as 0-1 integer program­
ming, set packing, node covering, set covering, 
Hamiltonian circuit, knapsack, etc. It has also 
been conjectured, with strong circumstantial evi­
dence, that no PC problem has a fast algorithm. 

It is nice to be able to classify languages in 

82 

the previous way. But optimization problems in 
general do not restrict themselves to a Yes or No 
type of answer supplied by a recognizer. More 
generally, a minimization or maximization of some 
objective function subject to constraints is in­
volved, So an extension of the PC classification 
is useful, 

Definition. A PC problem L is reducible to 
an optimization problem P (L < P) if and only if 
there exists a polynomial bounded time transforma­
tion F from SL to Sp and a simple recognition func­
tion G such that Xe: L * G(Z(F(X))) = 1 where SL 
and Sp are spaces of problem specification for L 
and P, Xe: L denotes X being recognized (Yes out­
put), and Z(F(X)) is the output left in the opti­
mization problem P with specification F(X), cor­
responding to its optimal objective function value. 
The optimization problem P is said to be inherent­
ly difficult if there exists a PC language L ~ P. 

Therefore, if an inherently difficult problem 
has a fast optimal algorithm, then Z(F(X)) can be 
generated in polynomial bounded time. Further, it 
implies X can be recognized in polynomial bounded 
time by simply concatenating output to the fast 
recognizer G. Consequently, L will have a fast 
algorithm. But because of the conjecture, no PC 
problem exhibits this property. So inherently 
difficult problems do not seem to possess any fast 
algorithm. 

As an illustration of this notion of inherent 
difficulty and an aid to later proofs, the follow~ 
ing example assertion is provided. 

Lemma. The traveling salesman problem (TSP) 
is inherently difficult, 

Proof. The traveling saleman problem is to 
find a shortest tour (through each city once and 
only once) given a (directed) graph indicating all 
the routes between them. For our discussion in 
this paper, let us assume that there exists an arc 
between any pair of nodes in the TSP. It will be 
shown that the (directed) Hamiltonian Circuit Pro­
blem (HCP) which is known in PC is reducible to it. 
The procedure is as follows. Given the HCP speci­
fication, attach a cost of 0 to all existing arcs 
and a cost of 1 to arcs that have to be added (see 
Fig. 3 as an example). This completes the F-trans­
formation. 
Given HCP 

Transformed to TSP 
0 

Fig. 3 Reduction of HCP to TSP 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

Define 

{
l if Z=O 

G(Z(F(X))) -
- 0 otherwise. 

Clearly, both F and G are polynomial bounded in 
time, and hence HCP ~TSP. In fact, the resulting 
TSP has a shortest tour of zero cost if and only if 
the original HCP has a tour or circuit. Q.E.D. 

Now one should realize that if sequencing pro­
blems are polynomial complete or inherently diffi­
cult, perhaps he should not be too ambitious to 
create a polynomial bounded time optimal algorithm, 
Sometimes, simple near-optimal techniques should be 
used. The 'inherently difficult' classification is 
quite useful because general optimization problems 
such as minimization of execution time or critical 
resource of a task system by a multiprocessor sys­
tem can be found to belong to it [22]. Here, let's 
focus on the sequencing problems for pipelines. 
Observe that multiple pipeline processing is a type 
of multiprocessing, so that some results obtained 
for multiprocessors are readily extendable to it. 

Let us deviate a little bit for the time being 
from a deterministic RSRP system and consider a 
linear pipeline executing a task system whose tasks 
have distinct execution time vectors on the facil­
ities concerned. This problem will also form the 
basis of the sequencing discussion in RSRP systems. 
Here, the inherent difficulty of the sequencing 
problem of a linear pipeline with different tasks 
will be proved first. 

Theorem 1. Under the assumption that a task 
should not be initiated if it would cause a colli­
sion inside the system, the minimum execution time 
of a given task system (with different execution 
time vecto~ is given by 

N 
min [ J. d .. + L t . ] 

S (i,f)E:S lJ j=l rJ 

where S is an ordering of the tasks to be executed, 
tij is the execution time of task i on facility j, 
dij is the delay caused by initiating task j after 
task i, and r is the index of the last task in the 
sequence S. 

Proof. 
).-d .. 

( i .DE: s lJ 

(See Fig. 4 for illustration.) 
provides the total delay in initiating 

N 
all of the tasks. The last term l t 1• will there­

i=l r 
fore complete the total execution time of the tasks 

Facility 

F4 

F3 

F2 
Fl 

2 3 

2 3 

3 
1--___,I----' 

2 3 
~~~~~~~~~~~~~~~

4
~~~T~i-m_..e 

__ __,.I.,__ j~l t 3j --+I 

Fig. 4 Execution times of a linear pipe 
with variable execution times 

83 

by the pipeline, (Observe that the collision 
avoidance assumption here guarantees the same or­
dering of tasks as they leave the pipe.) There­
fore the minimum execution time of the task system 
corresponds to the minimum of the expression for a 
certain sequences. Q.E.D. 

In exploring the intrinsic difficulty of this 
problem, let us be more general and assume that we 
want to minimize the execution time of a task sys­
tem on a 'perturbed' pipeline. The perturbation 
is used to describe that there is still some pre­
vious task executed on the pipe. It therefore 
fits very well in a local optimization scheme of 
task systems in a stochastic environment where a 
continuous stream of task systems is available for 
sequencing at some time intervals. Situations 
where there is no perturbation can be taken care 
of by ignoring this parameter. Under this assump­
tion, the following theorem is derived, 

Theorem 2. The aforementioned sequencing 
problem is inherently difficult. 

Proof, The traveling salesman problem (TSP) 
prove~be inherently difficult (Lemma 1) and 
can be shown reducible to it. Optimize 

N 
min [ Y d. . + l t . + d ( S)] 
S (i,jlE:SlJ j=2rJ o 

where d0 (S) is the perturbation (measured in de­
lay) due to previous task system to the sequence 
S. Now the similarity between this problem and 
the TSP suddenly reveals itself. Observe that the 
sequencing problem is actually equivalent to find­
ing a cheapest trip through m+l cities once and 
only once starting at some city (perturbed state) 
and then leaving the last one to a sink with a 

N 
cost of l t J .. Therefore a given TSP can be re-

j=l r 
duced easily by adding a fictitious node t and arc 
(i,t) for all nodes i inthe original TSP with costs 
dit by choosing an arbitrary starting node p. The 
resulting specification is solved as a sequencing 
problem whose optimal solution is obviously an op­
timal solution for the TSP (with node p as the 
perturbation state) because any shortest trip 
through the m+l cities to the sink twill corres­
pond to a shortest tour through the m+l cities 
(see Fig, 5). To complete the proof, we have to 

TSP 

Transformed into a sequencing problem as: 
(starting at node k) cheapest trip from k, 
through T to sink s 

Fig. 5 The reduction of TSP 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

show how to derive the specification for the se­
quencing problem given the specification of a TSP 
of the reduced form. The procedure is done induc­
tively. Assume it has completed k cities. For the 
(k+l)th city, extend the k-task system table to a 
(k+l)-task system as follows: 

Facility 
Task n n+l n+2k 

l 
2 

k 
k+l 

[S~] 
1 

For the (k+l)th city, assign 

t~ 
1 

s~ 
l 

Then let 
n+l 

sk+ l 
n+2i -1 

sk+ l 
n+2i-l 

Si 

execution time of the ;th task on 
facilities l through j, j = 1,2, ... ,N 
(slack) execution time of task i on 
facility j. 

= tn 
l 

= {O tn+2i-3_tn+2i-2}} f max , i k+ 1 . or 
_ n+2i-2 n+2i-3 1 = 2•3•· · · ,k 
- max{O,tk+l -ti } 

n+2i 
Si =di,k+l} ·-n+Z:i·_ fori-1,2, ... ,k 
sk+l' - d k+ l , i 

(d .. are city distances in TSP). 
lJ 

All other unspecified s~ = 0. 

Then the complete task system for (k+l) tasks will 
be specified, and inductively, their delays after 
one another are precisely the respective distances. 
By construction, the starting city t represents the 
perturbed state (task l) of the pipe which is ini­
tially present and causes delay to any sequence de­
noted by d0 (S). To complete the picture, the arc 
distances to the sink dit have to be modeled into 
the tasks system. Suppose the number of facilities 
so far is q. Compute 

and let 

t max {t{} 
0 i=l, ... ,m+l 

q-i 
Si 
q+2i 

Si 

= t - t9 
0 l 

= dit . 

With this, the return distances from any node to 
the starting node p is modeled into s9+Zi while all 
tasks will have the same remaining ex~cution time 
from facility 2 to facility q+m+l. The return dis­
tances are included as additional execution time on 
some later facilities. If the sequencing problem 
has a fast algorithm, so does the TSP. Q.E.D. 

This theorem therefore asserts that even for 
a linear pipeline, if the task execution time on a 
facility is variable, then optimal sequencing under 
collision avoidance assumption is inherently 

84 

difficult. Consequently, the optimal sequencing 
for a nondeterministic RSRP system under similar 
situations will also be inherently difficult. 

If, however, the facilities have fixed speeds, 
will the optimal sequencing problem be simpler? 
Two different cases will be studied, and in both 
cases, static and dynamic RSRP systems, optimal 
sequencing is inherently difficult in general. 

Theorem 3. The sequencing problem for a sta­
tic RSRP system with reconfiguration cost is inhe­
rently difficult. 

Proof. Observe that if more than one pipe 
can process some task, then trivially from 0(3), 
the problem will be inherently difficult. So let 
us assume this is not so. Again, a reduction from 
the TSP will be used. Recall a static RSRP system 
permits one active pipe or configuration at one 
time. If a different configuration is needed, an 
extra amount of waiting for flushing the system 
and establishing the desired configuration will be 
necessary. Let 

O .. = overhead of ;th configuration to the 
lJ jth configuration. 

Then given a task system with task i going through 
a pipe, say u(i), the total execution time will be 
minimized if and only if 

l o .. + t 
-1 -1 lJ r 

(u (i),u (j)) t:S 

is minimized where 
t = execution time of the last task in 
r the sequence S. 

By a similar argument to Theorem 3, obviously 
TSP = static RSRP sequencing . 

The variable tr corresponds to the distance from 
the last city visited to the original city. (Whe­
ther the perturbed state exists or not is irrele­
vant here. Also observe that no assumption has 
been made on the precedence relationship of the 
task system, The theorem holds whether or not 
this is empty.) Q.E.D. 

So general optimal sequencing algorithms for 
static RSRP systems are complicated by prediction. 
Apparently, for the more flexible dynamic RSRP 
systems, where more overlapping among parallel 
pipes is allowed, the problem will be at least as 
difficult. Indeed it is so and can be cited as a 
theorem. 

Theorem 4. Optimal sequencing in a dynamic 
RSRP system is inherently difficult. 

Proof. A similar reduction procedure from 
the TSP can be constructed. First, given the spe­
cification of a TSP of m cities, add a fictitious 
sink node t and arc (t,i) with cost 0 and arc 
(i,t) with cost t 0 for all i =l,,.,,m and some t 0 
to be determined. Trivially, the solution of the 
resulting TSP will also yield the solution of the 
original TSP. Next try to reduce the resulting 
TSP to a sequencing problem in a dynamic RSRP sys­
tem. The TSP is to minimize Y d .. + t where 

(i,f)ESlJ o 
S is a sequence of traversals of the cities. The 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

transformation is similar to that in Theorem 3. 
The procedure is done inductively, assuming having 
completed the task specification for k cities. 
Then for the (k+l)th city, expand the task table: 

Let 

t~ = execution time of ;th task on facilities 
1 i through j, 

s~ (slack) execution time of task i on 
1 fac il i ty j . 

n+2i-l 
S; 
n+2i-l 

sk+ 1 
n+2i 

S; 
n+2i 

sk+ 1 
n+l 

sk+ 1 

= {O tn+2i-2_tn+2i-3} 
max ' k+ 1 i } for 

= max{O,t~+2i-3_t~:fi-2} i = 2,3,. . .,k 

di,k+l} for i=l,2,. .. ,k 
dk+l,i 
tn 

1 

After the RSRP system is completed for the m+l ci­
ties, let us assume the number of facilities so far 
is q. Compute 

t = max {t9} 
0 i=l, ... ,m+l 1 

and let 
s9+i = t - t9 

l 0 l 
i = 1,. . .,m+l 

and all other unspecified s~ = 0. This completes 
the RSRP specification whose optimal sequencing 
solution turns out to be precisely l:d;j + t 0 because 
by construction, the delay of executing task j 
after task i is precisely d;j and also each facil­
ity has the same speed if d;j = djf (which holds 
for a TSP in an undirected graph). Hence if the 
sequencing problem in a dynamic RSRP has a fast 
algorithm, so does the TSP. Q.E.D. 

These results indicate the necessity of simple 
heuristics (near-optimal) to be used in sequencing 
under the different conditions discussed. Some 
simple heuristics will be discussed in the next 
section. Meanwhile a semi-exhaustive approach to 
generate an optimal sequence for a dynamic RSRP 
system will be included to complete the discussion. 
Its application may be justified when the RSRP sys­
tem is implemented at a high level so that each 
facility is actually a large computing module for 
performing specific computations. Also, in some 
cases, static local optimization for RSRP systems 
may be used to increase the throughput. Then an 
optimal sequencing algorithm for statically se­
quencing the pipes will be needed. So the follow­
ing optimal algorithm is included. First, a theo­
rem has to be developed. 

Theorem 5. When maximum overlap in execution 
among all functional pipes is desired, the execu­
tion time of a given task system Sf, Sr is bounded 
by 

LB(Sf) 
=m~x{T.(Sf)+ l t .. +min[ l .tkj]} 

l 1 j£Sr lJ j£Sr k following i 
where 

85 

completion time of the partial schedule 
on facility i containing the set of 
tasks Sf, 

t 1j =execution time of task j on facility i, 
sf = a partial schedule for the task in sf. 
Sr = remaining tasks to be scheduled. 

Proof. T;(Sf) yields the time facilit~ i 
becomes available for any task in Sr, and l t .. 

j£S lJ 

corresponds to the minimum additional time torfin­
ish the remaining tasks on facility i. The term 
min l tkj gives the time needed for 
j£Sr k following i 
the fastest task to leave the pipe after leaving 
the ;th facility. Then their sum will naturally 
form a lower bound on the execution time of 
{Sf,Sr}. Q.E.D. 

With the above lower bound, one could devise 
a branch and bound algorithm to locate the optimal 
sequence as follows. For simplicity, we will con­
sider only a list sequencing method, that is, the 
tasks will be ordered in a list to be executed 
according to tl!e priority indicated in the list. 
The extension ~o an exact initiation schedule can 
be easily established. 

Algorithm Search. Let S = task system, T0 = cp, 
i = 1, Tc= T0 and Mark T0 • 

~: Among the ready tasks in S not yet in Tc, 
say this set is Sc= fo1,. .. ,u.tl}. Create 
Ti,T;+1 ... .,T;+p-l suc:h that l;+k= (Tc,~k+1) for 
k=O,l,. .. ,p-1. Obtain LB(T;+~). Let i=1+p-l. 
For all Tj0 (j 0 < i) such that \Tj 0 \ = \S\, a fea-
sible solution has been found. Fathom (discard) 
all Tj (j < i) such that LB(Tj) ::LB(Tj0 ). 

Step 2: Among all Tj (j < i) unfathomed and un­
marked, choose one with smallest LB(Tj 1) and let 
Tc= Tj 1. Mark Tj1 and repeat step 1. If no 
other is available, the only feasible solution 
unfathomed will be the optimal solution. So 
halt. This procedure obviously will halt since 
there are only N! possible sequences and there 
always remains one feasible solution unfathomed. 

The inherently difficult characterization 
propels one to believe that optimal sequencing in 
the dynamic situation may involve enormous over­
head which causes a degradation in performance 
instead. Even after a task system (in a deter­
ministic or partial stochastic sense such as in a 
lookahead type of sequencing) is identified to be 
sequenced, any optimal sequencing strategy devel­
oped for the general case, as the characterization 
is conjectured, will incur some decision disci­
pline that takes a long time (if implemented by 
software means) or a large additional cost of 
hardware (if implemented by hardware and firmware 
mechanisms) or both. Also, what is optimal in a 
local task system may not be optimal in a more 
'global' or larger task system that the former 
belongs. Under these circumstances, naturally a 
simple and near-optimal heuristic is often more 
advantageous. In view of this, the next section 
will be devoted to the comparison of some 
heuristics, 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

5. Sequencing Heuristics 
In this section, sequencing of ready instruc­

tions in a semi-stochastic environment will be dis­
cussed. The term semi-stochastic is used to mark 
the fact that tasks or instructions are sequenced 
in a fixed burst under some lookahead scheme. So 
complete deterministic knowledge of the task sys­
tems (instructions) will be unavailable. The real­
ism of this modeling assumption is easily conceiva­
ble because in the continuous behavior of the real 
World, a deterministic and finite model often is 
insufficient. 

Three heuristics will be of particular inter­
est here. They will be named First Come First 
Served (FCFS), Clustering, and RSRP Clustering. 
Their special features will be described and per­
formance under memory conflict free situations com­
pared using some experimental simulation. Their 
implementation using hardware and firmware control 
will also be included. 

l. First Come First Served. As the name im­
plies, FCFS discipline will allow the tasks or in­
structions to enter the RSRP system in the same 
ordering as they have arrived. So it is the sim­
plest heuristic possible and its implementation 
schemata can be sketched as in Fig. 6. The initia­
tion control is responsible for allowing the task 
or i~struction at the end of the queue to enter the 
system at the correct moment to avoid collision in­
side or to allow proper reconfiguration to take 
place in the static RSRP system. The task queue 
will be monitored by the initiation control and 
there is little additional hardware or firmware to 
perform any reordering. Its performance can then 
be referred to as one achievable with the cheapest 
cost and legitimately it may be chosen to filter 
out other heuristics that are more costly but not 
much superior in performance to FCFS. 

Task Queue 

Initiation 
Control 

Fig. 6 FCFS Sequencing 

RSRP 
System 

2. Clustering. In a RSRP system, reconfigu­
ration due to different types of instructions or 
tasks incur extra overhead and delay to the normal 
stream of execution. Specifically in a static RSRP 
system, if a task (instruction) has to flow through 
one pipe different from the current one in the sys­
tem, it has to wait for some latency period until 
the latter has emerged, as in the arithmetic unit 
pipe of the TIASC system. So a sensible approach 
to remedy the situation is to reduce the occurrence 
of reconfiguration as much as possible. This stems 
the reasoning behind the 'clustering' heuristic 
where ready instructions. or tasks that involve t'he 
same configuration or path are grouped together to 
be executed one after the other. So clustering 
really involves a scanning and grouping mechanism 
and its implementation can be as depicted in Fig. 7. 

86 

lookahead 
set of 

instructions 

clustering 

initiation 
control 

queue of ~ associative § 
instructions --v' 

clustering 
control 

Fig. 7 Clustering 

static 
RSRP 

initiation 
control 

The additional hardware and control circuitry 
needed in this implementation include an associa­
tive queue rather than an ordinary queue for the 
set of lookahead instructions so that independent 
instructions are searched in parallel during exe­
cution in such a way that instructions of a same 
type are detected almost instantaneously and hence 
are available for the initiation control for con­
trolling their entrance to the static RSRP system. 
For the other parts of the sequencing modules, no 
significant deviation from the previous scheme is 
necessary (except the synchronization clock pulses 
in the initiation control and the additional clus­
tering unit which will change its associative 
match word from time to time based on signals from 
the initiation control). With the aid of the asso­
ciative queue, prolonged delay due to retrieving 
or detecting of clustered instructions is avoided. 
Hence, this sequencer can function almost as 
quickly as the FCFS discipline. In addition, ob­
serve the static control overhead of clustering is 
primarily a l.inear function of the size of the 
task system in the lookahead set since it merely 
involves some additional associative registers. 

3. RSRP Clustering. The same clustering 
heuristics may be applied to a dynamic RSRP system 
where concurrent processing among the various func­
tional pipes are allowed. In many cases, grouping 
of tasks of the same type in a dynamic RSRP system 
still is advantageous when tasks of the same type 
usually incurs less latency. The routing of oper­
ands in a dynamic RSRP system is a bit more compli­
cated than that in a similar but static RSRP sys­
tem because a correct transition at a shared re­
source has to be chosen dynamically rather than 
statically. A localized monitor scheme for this 
routing is exemplified in Fig. 8. Each data pac­
ket wi 11 ccinta in some redundancy holding encoded 
information about the path desirable. This encoded 
path information will be used by the second part, 
the decoding control at each shared facility (one 
with multiple exit arcs), to enable the correct 
transitions. Since this decoding activity can be 
performed in parallel with the actual processing, 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

intermediate data 
or task package 

A shared 
facility with 

multiple exit arcs 

possible transitions 

l
pcoadthel 1 new intermediate package 

_ . . to be delivered to one 
=~------' of the output transition 

arcs 

Fig. 8 Localized monitor scheme 
in dynamic RSRP system 

there is no apparent dynamic runtime overhead in­
volved which may delay the availability of an out­
put. Also since multiplexors are used to choose 
correct transitions at a static RSRP system in any 
case, the overhead discussed above is really quite 
tiny. The schematic diagram of RSRP clustering is 
exactly the same as that of the clustering method 
except in the initiation control, a two-dimensional 
collision matrix constructed by the algorithm in 
Fig. 2 is also provided. The matrix can be stored 
in shift registers or counters whose contents are 
constantly updated to control the initiation of 
tasks (instructions) already re-ordered. 

6. Experimental Demonstration 
The three heuristics (2 for static and l for 

dynamic RSRP systems) were tested on RSRP systems 
whose configurations are taken directly from the 
arithmetic unit pipes of TIASC and the floating 
point pipes of the CDC STAR-100 systems. The en­
vironments are parameterized in three aspects. 
First, the different ty°pes of tasks, in this case 
the instructions, are given some relative frequency 
of excitation. For instance, (O.l,0.2,0.4,0.l,0.2) 
implies the percentage of instructions executed are 
0.1, 0.2, 0.4, 0.1, 0.2 for the five types (confi­
gurations) respectively. Second, the size of the 
lookahead set of instructions is variable. This 
marks a variable structure in the semi-stochastic 
sequencing discipline explained in the previous 
section. Third, the nature and amount of inter­
dependency or precedence relationships of the in­
structions (mainly in operands) as they are gener­
ated are parameterized such that the amount of in­
teraction and levels of dependency within and be­
tween lookahead sets of instructions are encom­
passed. ·Therefore, a stochastic precedence rela­
tionship is also allowed in the simulation model. 

With these three types of parameters, the heu­
ristics can be compared under different RSRP sys­
tems. The simulator built mainly consists of three 
parts. 

(1) Instruction generator which generates the 
instructions according to the parameters specified. 
(A random number generator is used particularly to 
create instructions according to the mix ratio, de­
pendency parameters, etc.) 

(2) Collision matrix constructor which 

87 

constructs the two-dimensional collision matrix 
given a RSRP system specification (including paths, 
speeds) according to the algorithm described in 
Fig, 2. 

(3) Heuristic sequencers which simulate the 
hardware sequencers in Figs. 6 and 7 according to 
the sequencing discipline chosen and monitor the 
execution of the instructions. The output of the 
simulator consists of a (time-driven) execution 
profile of the instructions as they are generated 
and executed under the three heuristics adopted so 
that they can be compared easily. 

A typical comparison is shown in Fig. 9. The 
horizontal axis gives the number of iterations 
(one iteration corresponding to the execution of 
the ready instructions in a lookahead set of in­
structions) and the vertical axis the corresponding 
execution time profile. This particular output 
illustrates that indeed the clustering philosophy 
is very useful compared to FCFS since it brings a 
reduction in execution time by 30%. But the dyna­
mic RSRP system under the same clustering rule is 

Execution Time 

Iterations 

Fig, 9 A Typical Comparison (STAR-100 Pipe 1) 

even more attractive as it further reduces the 
execution time by as much as 40%. To compare the 
three cases, a relative efficiency index is set up. 
Let 

= relative efficiency of heuristic j with 
respect to heuristic i 

~ T/Tj 

where Ti = execution time of the instructions under 
heuristic i (observe O.ij = O.ikO.kj). The results of 
the comparisons under different parameters for the 
three cases are tabulated in Figs. lOa, b, c. 
From it, several observations are to be discussed. 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

STAR-100 Pipe l 

Tl T2 T3 T2/Tl 
L FRFS Clustering RSRP 

Mix= (0.2,0.2,0. l ,0.2,0. l ,0.2) 
8 2056 

16 3936 
32 7195 
8 2095 

16 3820 
32 7509 
8 1709 

16 3499 
32 6672 

1672 
2797 
4040 
1661 
2794 
4227 
1340 
2578 
3920 

1004 0.815 
1252 0. 71 
1780 0.562 
973 0.795 

1135 0.73 
1729 0.564 
869 0.785 

1147 0.739 
1605 0.59 

Mix= (0.3,0.2,0. l ,0.2,0. l ,0. l) 

8 1608 1330 888 0.83 
16 3227 2433 1187 0.745 
32 6027 3571 1724 0.593 
8 1793 1546 923 0.865 

16 3734 2771 1251 0.74 
32 6979 3951 1962 0.566 
8 1816 1427 943 0.785 

16 3628 2611 1316 0.71 
32 6933 3906 1883 0.572 

Fig. l Oa 

STAR-100 Pipe 2 

T/T2 
e cp 

0.605 0.5 0.4 
0.45 0.5 0.4 
0.44 0.5 0.4 
0.575 0.3 0.4 
0.407 0.3 0.4 
0.409 0.3 0.4 
0.658 0.3 0.6 
0.445 0.3 0.6 
0.41 0.3 0.6 

0.552 0.5 0.4 
0.49 0.5 0.4 
0.483 0.5 0.4 
0.595 0.3 0.4 
0.46 0.3 0.4 
0.498 0.3 0.4 
0.65 0.3 0.6 
0.501 0.3 0.6 
0.475 0.3 0.6 

Tl T2 T3 T2/Tl T3/T2 
L FRFS Clustering RSRP e cp 

Mix= (0.2,0.2,0.2,0. l ,0.2,0. l) 

8 4143 
16 7795 
32 13369 

8 4277 
16 7170 
32 14180 
8 3119 

16 6582 
32 12386 

3377 
5191 
7291 
3493 
5148 
7462 
2524 
4826 
6960 

2997 
3318 
3850 
2859 
3112 
3826 
2472 
3094 
3572 

0.82 
0.67 
0.545 
0.815 
0.716 
0.53 
0 .81 
0.734 
0.574 

Mix= (0.3,0. l ,0.3,0. l ,O. l ,O. l) 

8 3900 
16 6144 
32 11436 
8 3142 

16 6287 
32 11894 
8 2457 

16 5515 
32 10160 

3044 
4251 
6797 
2636 
4594 
6808 
1977 
4072 
6274 

2851 0.78 
3237 0.676 
3990 0.594 
2430 0.805 
3107 0. 73 
3905 0.575 
1950 0.805 
3141 0. 74 
3657 0.62 

Fig. lOb 

0.89 
0.64 
0.53 
0.82 
0.61 
0.515 
0.97 
0.645 
0.508 

0.935 
0.76 
0.59 
0.85 
0.665 
0.575 
0.98 
0. 77 
0.58 

0.5 
0.5 
0.5 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 

0.4 
0.4 
0.4 
0.4 
0.4 
0.4 
0.6 
0.6 
0.6 

0.5 0.4 
0.5 0.4 
0.5 0.4 
0.3 0.4 
0.3 0.4 
0.3 0.4 
0.3 0.6 
0.3 0.6 
0.3 0.6 

(l) a;j is usually sensitive to the size of 
the lookahead set and the individual system tested. 
This is readily explainable because with more in­
structions clustered (which depends on the size of 
lookahead) at one, fewer reconfigurations may be 
necessary. Since the amount of concurrent process­
ing possible is limited by the system structure, 
the latter dependency is also reasonable. 

(2) CJ.ij is quite insensitive to other parame­
ters such as instruction mix ratio, and dependency 

88 

Tl 
L FRFS 

8 1190 
16 2050 
32 4312 
8 1297 

16 2210 
32 4180 
8 l 010 

16 1885 
32 3861 
8 1034 

16 1975 
32 3766 
8 1267 

16 2189 
32 3981 
8 1079 

16 2038 
32 4092 

TIASC Results 

T2 T3 T2/Tl 
Clustering RSRP 

981 811 0.824 
1373 1112 0.67 
2101 1830 0.488 
993 801 0.766 

1405 1060 0.64 
2084 1767 0.5 
852 737 0.84 

1276 975 0.677 
1934 1575 0.52 
850 762 0.824 

1322 998 0.78 
1906 1501 0.506 

986 791 0.78 
1411 1049 0.642 
2021 1590 0. 51 

945 866 0.865 
1344 1072 0.66 
2034 1134 0.499 

Fig. lOc 

T/T2 

0.825 
0.81 
0.87 
0.806 
0.73 
0.845 
0.868 
0.767 
0.815 
0.895 
0.805 
0.79 
0.805 
0,742 
0.786 
0.91 
0.798 
0.81 

e 
0.5 
0.5 
0.5 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.5 
0.5 
0.5 

cp 

0.4 
0.4 
0.4 
0.4 
0.4 
0.4 
0.6 
0.6 
0.6 
0.6 
0.6 
0.6 
0.4 
0.4 
0.4 
0.4 
0.4 
0.4 

structure. These two parameters have the same com­
mon characteristics; they tend to limit the amount 
of independent instructions of each type to be exe­
cuted, With a reasonable lookahead set size, they 
influence the three heuristics to a relatively si­
milar extent. 

(3) In particular, 0.6~a21.::_0.8 for 90% of 
the cases, hinting the clustering discipline is 
really beneficial compared to FCFS in a static 
RSRP system. But a32 < 0. 7 for most cases in the 
STAR models and a32 < 0.8 for most cases in the 
TIASC model further 1mp lies the advantages of a 
dynamic RSRP system over a static one under the 
same clustering discipline. 

Conclusion 

RSRP design represents a powerful organiza­
tion that embeds both parallel and pipeline pro­
cessing characteristics. However, optimal sequenc­
ing in either a static or a dynamic RSRP system 
has been proven to fall into the 'inherently diffi­
cult' characterization and it is unlikely to pos­
sess a fast algorithm. An optimal sequencing algo­
rithm in general is too complicated to be imple­
mented by hardware or software. So in practice, 
simple heuristics may be more advantageous. These 
heuristics can be implemented with sufficient hard­
ware support such that speed-up of execution is 
attainable. In particular, the clustering disci­
pline has been demonstrated to be valuable to re­
duce reconfiguration overhead while a dynamic RSRP 
scheme introduces additional advantages over a 
static scheme because full concurrent processing 
among parallel paths is permissible. 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

References 
[l] M. Flynn, "Some computer organization and 

their effectiveness," IEEE Trans. on Computers 
(Sept. 1972), pp. 948-960. 

[2] G. Barnes, R. Brown, M. Kato, D. Kuck, 
D. Slotnick and R. Stokes, "The ILLIAC IV com­
puter," IEEE Trans. on Computers (Aug. 1968) , 
pp. 746-757. 

[3] J.A. Rudolph, "A production implementat'ion of 
an associative array processor -- STARAN," 
Proc. FJCC 1972, pp. 229-242. 

[4] J.L. Troy, "Computer simulation of PEPE and 
its host at the instruction level," 1973 Saga­
more Computer Conference on Parallel Process­
ing. 

[5] D.W. Anderson, F.J. Sparacio and R.M. Tomasulo, 
"The IBM system/360 model 91: machine philo­
sophy and instruction handling," IBM J. Res. 
and Develop. (Jan. 1967), pp. 8-24. 

[6] W.J. Watson, "The TI-ASC - a highly modular 
and flexible super computer architecture," 
AFIPS FJCC 1972, pp. 221-230. 

[7] R.G. Hintz and D.P. Tate, "Control Data STAR-
100 processor design," COMPCON 1972. 

[8] C.V. Ramamoorthy, K.M. Chandy and 
M.J. Gonzalez, "Optimal scheduling strategies 
in a multiprocessor system," IEEE Trans. on 
Computers (Feb. 1972), pp. 137-146. 

[9] K.M. Chandy and J.R. Dickson, "Scheduling 
unidentical processors in a stochastic envi­
ronment," Proc. COMPCON 73, pp. 171-174. 

[10] R.L. Graham, "Bounds on multiprocessing and 
timing anomaly," SIAM J. Appl. Math. (March 
1969). 

[ll] T.C. Hu, "Parallel sequencing and assembly 
line problems," Oper. Res. (Nov. 1961), 
pp. 841-848. 

[12] R.R. Muntz and E.G. Coffman, "Optimal preemp­
tive scheduling on two-processor systems," 
IEEE Trans. on Computers (Nov. 1969), 
pp. 1 014-1020. 

[13] S.M. Johnson, "Optimal two- and three-stage 
production schedules with set-up time in­
cluded," Naval Res. Log. Qtly (1954). 

[14] A. Holt and P. Commer, "Events and conditions 
-- a. an approach to the description and anal­
ysis of dynamic systems, b. marked graph 
mathematics." 

[15] C.A. Petri, "Kommunication mit automaten," 
trans. in Project MAC M-212 Report, originally 
published in 1962. 

[16] Texas Instrument Inc., "A description of the 
Advanced Scientific computer system" {April 
1973). 

[17] Control Data Corp., "Control Data STAR-100 
computer hardware reference manual" (1974). 

[18] C.V. Ramamoorthy and H.F. Li, "Efficiency in 
generalized pipeline networks," Proc. NCC 
1974, pp. 625-635. 

89 

[19] E. Davidson, "The design and control of pipe­
line function generators," Stanford Report. 

[20] S. Cook, "The complexity of theorem proving 
procedures," Conf. Rec. of 3rd ACM Symp. on 
Theory of Computing (1970), pp. 151-158. 

[21] R.M. Karp, "Reducibility among combinatorial 
problems," TR-3, Dept. of Comp. Sci., U,C. 
Berkeley (April 1972). 

[22] H.F. Li, "A structured theory of parallel 
pipelined systems," Ph.D. dissertation, 
U.C. Berkeley (Dec. 1975). 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

TIME-SHARED MEMORY-PROCESSOR INTERFACE 

Per-Erik Danielsson 
Bjorn Gudmundsson 

Department of Electrical Engineering 
Linkoping University 

Linkoping, Sweden 

. Abstract -- In multiprocessors the Hardware 

Connection alternatives 
memory interface can be designed either 
as a two-level structure (multiports) or 
as a single time-shared bus. A nonexpen­
sive reasonably fast synchronous bus 
system is proposed and has been tested up 
to a minimum of 60 ns bus time slice. The 
dynamic behaviour for different configura­
tions of processors anq memory modules 
has been subjected to simulation. The re­
sults show that if the bus time slice is 
short enough the single bus property con­
tributes very little to performance de­
gradation. Queues tend to develop at the 
memory modules when the number of pro­
cessors increases. Diagrams illustrate 
how this can be compensated for by divid­
ing the memory space into smaller modules. 

Due to some authors [1,2,3] there 
are three principally different ways of 
interfacing memories and processors in a 
multiprocessor system. These are by means 
of 

o a crossbar switch system 
o multiport memory modules 
o a time-shared common bus 

First, we demonstrate that the two first 
cases are essentially the same and that 
the real choice is between a multiport 
memory and one single time-shared common 

I I I 

GJ ~ ~ __ _) 
a) b) 

~ 
I I I 

I I I : 

r:l 1 l ~ L.!J--------------­
c) 

Fig 1. The crossbar switch reduced to multiports 

90 

I 
I 
I 

1 * 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

bus. 

The crossbar switch system is usual­
ly depicted as in Fig la) • In a certain 
moment any processor k can be connected 
to any memory module i without interfering 
the communication to other modules. How­
ever, in the given context the S-switches 
are abstractions, concepts borrowed from 
the world of relays and contact networks. 
Electronic switches are unidirectional 
gates and the S-switches must ultimately 
be transformed into a bus system like Fig 
lb). Needless to say, the gates have to 
be controlled by conflict resolving logic. 
Fig le) shows the same gates but the bus­
system is somewhat redrawn with preserva­
tion of the topology. The subsystem of 
gates that performs the fanning-in and 
fanning-out at the outskirt of each memory 
module is now readily seen to be identi­
cal to a multiport. As far as the authors 
can see, this simple argument shows that 
the so called crossbar switch can be 
omitted from further discussions. 

Fig le) has a two level structure 
with one bus for each processor and one 
bus for each memory module. Normally, 
only the processor busses are elongated 
as physically observable lines. The 
memory module busses are usually conceal­
ed in a device that is called a multiport 
or multiport switch, multiplexer, priori­
ty system, arbiter or the like. 

Time conflicts has to be resolved 
at each one of these busses. In some 
computers the processors can be assumed 
never to make another memory request un­
til the present one has been effectuated. 
It then immediately follows that time 
conflicts on the receiving processor bus 
are automatically resolved. For the memory 
module bus no such assumptions can be 
made. Any combination of the p processors 
can request the same memory module at the 
same time and therefore every memory mo­
dule must be equipped with a time con­
flict resolver. 

' 

.___P, ~-i.____.M• 
Fig 2. The single time-shared common bus 

91 

Multiport memory modules tend to be 
very expensive in a multiprocessor en­
vironment since the number of gates is 
2 (p.m). The time-shared common bus in Fig 
2 contains only 2(p+m) gates. The rest of 
the paper deals with this alternative. 

Serial versus parallel transmission 

Questions may arise whether the 
single bus will bring a high penalty in 
terms of speed reduction and/or a very 
complex time conflict resolver. It will 
be demonstrated below that neither need 
to be the case. Also there are many trade­
off situations in the actual bus design. 
A very significant choice is the bus 
width. If we are interested in "normal" 
processor speed the bit-by-bit serial 
transfer can be ruled out at once, but 
the alternatives in Fig 3 deserve a short 
discussion. 

a) p 

c) p 

P processor 

A address 

M memory 

data to be stored in memory 

data fetched from memory 

A 
A,Din -D. M b) p M in D out n-out -

A 

0 in' 0 out 
M d) p A,Din'Dout M 

Fig 3 

Fig 3a) is a maximally parallel 
system. One memory module i may be re­
ceiving data over the bus from processor 
k at the very same moment as another me­
mory module j delivers data to another 
processor 1. In Fig 3b) address and data 
are supposed to arrive in sequence to 
the memory. Now, it is generally agreed 
that in an ordinary job mix for a CPU no 
more than 20% of the memory references 
are WRITE operations. This means that in 
four out of five cases only address in­
formation is transmitted from the pro­
cessor. When IO-processors are taken into 
account the relative number of WRITEs 
will increase and in the case Fig 3c) 
will give a more balanced situation. How­
ever, time conflict resolving in Fig 3c) 
is somewhat more complicated. In 3a) and 
3b) the potential senders on one bus are 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

the processors only (for A and D. ) or 
memory modules (for Dout). In Fiqn3c) 
however, both processors and memory mo­
dules are acting as senders on the data 
bus. 

A proposal for a synchronous bus 

In our research project we decided 
to.investigate the case of Fig 3a). In 
order to get a thorough understanding we 
designed and built a laboratory model of 
the bus and interface. The design is 
shown by Fig 4 in the case of four pro­
cessors and four memory modules. We 
assume 16 bit for both address and data. 
The system contains an internal clock and 
may be regarded as a synchronized sequen­
tial network. All incoming signals and 
all registers and flip-flops change state 
only within the permitted interval of the 
clock cycle. 

0 
0 c 

>, c UJ 
UJ Ql UJ 

......_ 0 .-1 Ql 
>,..Q () 0 i:-
UJ c 0 u u 

pri 0 0 i:- 0 u ..a c 0. E C1J 

4 2 2 14 

writu 

-6-re3d ....., 

k} ace_.: pt 2 

_L ~ 
'4-1. M PX l ~t;11 -.-

~ ~: ~ '! I -....,2,...---tl-L1 _____ ..... 4'1 

address ----1----w----1-----1---1r---... 

d ata i 

~i 

c 
•.-l 

C1J 
.µ 

C1J 
u 

16 

A transfer is initiated by WRITE or 
READ requests from the processor. Such a 
request is gated out to the bus lines 
when the following conditions are full-
f illed: 

o No processor with higher priori­
ty is making a request in the 
same clock cycle. 

o The address points to a non-busy 
module. This is checked by the 
MPX-unit. 

Address and data (if WRITE request) are 
recieved and stored at the interface of 
the appropriate memory module which starts 
its own cycle immediately. After a while, 
during which the bus may have been used 
many times for other purposes, the memory 
module signals READY and if the priority 
condition is fullfilled a previous READ 

1 
pri 

~ite 

read 

address 

H 
data in --

p i 

v alidi ty 
1 

m 8~~~~ n 
r-- r-D ..... I-

d ata out t- data out 
,_.. 

..... 
16 2 2 

data proc. module 

PROCESSOR out no .. no. MEMORY MODULE 

Fig 4. Time-shared memory-processor interface 

92 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

request results in data transfer back to 
the appropriate processor. The two SR­
flip-flops are reset and in the clock­
cycle after READY the memory module sig­
nals NON-BUSY on its individual BUSY/NON­
BUSY line. 

In fact, this signalling is included 
in the longest delay path in the network. 
This path goes from the SR-flip-flops, 
back to the MPX-units, along the priority 
lines, via data output gates over the bus 
to the recieving register input. This 
signal path must settle in one clock cycle. 
In our experiment set-up we used a mix­
ture of TTL and Shottky TTL-logic. The 
bus lines were about half a meter and we 
managed to get a realiable function at 
clock speeds up to 17 MHz. We conclude 
that a time slot of 80 ns is achievable 
in a time-shared memory multiprocessor 
interface. This is in accordance with re­
sults reported from real computer install­
ations [3]. 

2 i-1 i i+1 n-1 n pri high/low 

Module 
i 

request 

accept 

Fig 5. Accelerated two case priority logic 

Fig 4 ha$ a ;U.xed priority between 
processors and memories. As will be shown 
below there are few cases where the low 
priority units will suffer from substan­
tial delays. If necessary one may intro­
duce a second priority chain counter­
directed to the first one. A low fre­
quency switch may couple and decouple 
these priority chains alternatively re­
sulting in the same average priority for 
each unit. The priority chains of Fig 4 
can be speeded up in a manner similar to 
carry acceleration in counters and adders. 
Fig 5 shows a double directed and acce­
lerated priority logic. 

93 

A ring priority scheme can be imple­
mented as shown in Fig 6. The central 
counter is part of the synchronized se­
quential network and in each clock cycle 
one and only one module is pointed at via 
the decoder. The priority chain is closed 
and, as can be seen in Fig 6, the module 
pointed at gets the highest priority. The 
counter "cuts" the chain at module i and 
by stepping the counter the priority is 
shifted among the modules in a round­
robin fashion. A more general dynamic 
priority algorithm can be implemented if 
the counter is replaced by a register 
which can be loaded under program control. 

pri lcTrl 
Module i 

request 

Fig 6. Ring priority logic 

I I 
I I 

A completly reprogrammable (but time con­
sumingJ priority network has been pro­
posed in [5]. 

Simulation experiments 

Modelling 

In order to get an idea of the per­
formance of a time-shared memory interface 
a number of simulation experiments has 
been undertaken. In particular, the effects 
of varying the number of processors and 
memory modules connected to the interface 
has been studied. 

The following parameters affect the 
performance of the system: 

o Clock cycle time (= bus time slot) 
o Distribution of processor requests 
o Memory cycle time 
o Bus configuration 
o Type of conflict resolving logic 
o Number of processors 
o Number of memory modules 

The strategy in the simulation experiments 
has been to measure performance as a func-



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

tion of the number of processors and me­
mory modules for different combinations 
of the remaining parameters. In order to 
get a manageable set of parameter combina­
tions, the assumptions described below 
are made about the behaviour of the main 
parts of the simulation model. 

Processors. Needless to say, this 
is the most difficult part to model. As 

·our experiments are not intended to 
evaluate the effect of a time-shared bus 
on a particular processor, a fairly simp­
le model of processor behaviour was used. 
It is hoped that the model chosen is 
general enough to give a rough picture of 
the dynamic behaviour of the time-shared 
bus. 

The processors are identical (no I/0-
acti vi ty) and they are. modeled at the in­
struction execution level. There are four 
types of instructions which are selected 
in random order from a specified mix. 
Timing diagrams of the instructiontypes 
are shown below. 

IR: Instruction Request 
DR: Operand Request 
WR: Write Request 

T 

2 w 

T 

w 

T 

4 w 
T 

w 

Fig 7. Instruction types 

I); the. requested data ha.s not been 
delivered at point W', the processor 
(microprogram) enters a wait loop. When 
the data arrives processing continues 
from point w. In the simulated configura­
tions T is always less than memory access 
time. As can be seen in the timing dia­
grams there is no overlapping of consecu­
tive READ-requests. This not being the 
case, serial correlation between destina-

94 

tions of successive requests will have 
little effect on the average access time 
as seen from the processor. Therefore, 
the memory modules are accessed complete­
ly at random. It is assumed that the 
length of all instructions and operands 
equals the wordlength of a memory module. 

Bus configurations. Three bus con­
figurations were simulated, and in the 
sequel they will be referred to as I, II 
Gind III. 

I: Addressbus + one bidirectional 
databus (Fig 3c). Memory modules 
have priority over processors. 

II: Addressbus + two unidirectional 
datahusses (Fig 3a and Fig 4). 

III: Multiport configuration. An ana­
lysis of this configuration with 
clock cycle time equal to memory 
cycle time is presented in [4]. 

Memory modules. The memory modules 
are assumed to be identical and of semi­
conductor type, i.e. accesstime equals 
cycle time. The variations in accesstimes 
are assumed to be so small that the access­
time as seen from the memory/bus interface 
is a constant multiple of clock cycles. 
This means that memory modules do not have 
to compete for the bus as only one module 
can be started in each clock cycle. 

Results 

The number of instructions that a 
simulated processor executes during a 
simulation run is taken as a measure of 
performance. This measure is normalized 
so that it .relates to the performance of 
a single processor (no bus conflicts) 
connected via the time-shared bus to an 
infinite number of memory modules (no 
memory conflicts) . Unrealistic as this 
configuration may be, it still serves as 
a reference point when comparing the 
relative effects of adding more processors 
or memory modules to a given system. 

In the sequel the following abbreva­
tions will be used: 

p: number of processors 

m: number of memory modules 

Cl: clock cycle time 

A: memory accesstime as seen from 
the processors. A = (nominal 
memory accesstime) + 2 • Cl 

T1 ,T 2 ,T3 : processor speed (Fig 7) 

n: processor performance (as de­
fined above) 

Cm: aver, number of clock cycles that 
processor requests are del~yed 
by contention for memory modules. 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

Cb: d:o for delays introduced by con- ry 

tention for busses 1 

A: aver. number of memory modules 
started/clock cycle 

Processor speed was kept fixed (T1=200 ns, .8 
T2=250 ns, T3=1750 ns) while the other 
timing parameters were varied. 

A fixed priority scheme was used and 
by averaging n over all processors we get 
the performance of the processors when 
the ring priority scheme shown in Fig 6 
is used. Since all processors are identi­
cal, A is proportional to the total number 
of instructions executed and we get n = 
A/pA 0 where AO relates to the conf igura­
tion with a single processor and an in­
finite number of memory modules. 

When m is increased in a given con­
figuration, C will of course decrease 
leading to a Wigher A and thus a higher 
n. Since Cb>O in bus configurations I and 
II we can never reach n=l in these con­
figurations although we can get arbitrari­
ly close by reducing Cl and thus get Cb"'O. 
However, in bus configurations I and II 
the capacity of the addressbus will set 
upper limits to A and n if pA 0>1, i.e. if 
there are enough processor to potentially 
saturate the addressbus. In these cases 
we get the following maximum values for 
A and n: 

Bus conf. A ~ax -max 

I <l <l/pAO 

II 1 l/pAO 

The addressbus in configuration I can 
never become saturated (A=l) since this 
would imply that no conflicts everocurred 
at the databus. As memory modules have 
priority over processors, a conflict at 
the databus means that in the next clock 
cycle a memory module will act as sender 
on this bus while a WRITE-request will be 
delayed and no memory module will be 
started in that clock cycle. 

Configurations where Cb is negligible 
In configurations with low p and with Cl 
short enough compared to processor speed, 
Cb"'O. Cb is also negligible in configura­
tions with short Cl and a high ratio p/m 
giving C »Ch. Diagrams 1, 2 and 3 relate 
to confi~ura~ions with the following 
parameter values: A=960 ns, Cl=80 ns. 

Instruction mix: type 1 35% 
type 2 20% 
type 3 35% 
type 4 10% 

Bus configuration: II 

95 

.6 

.4 

1 

.8 

.6 

.4 

.2 

~--tt--~...--~~1~--t~~~1~~~--tlf--~t--~+1'" ...... 
2 4 6 8 10 

Diagram 1 

Hig~st priority 

priority 

p 4 

rn 
~~-lt----lf----ll-----+----+l----+---+l---+---+1•.-

2 4 6 8 10 

Diagram 2 

Diagram 2 gives n for the processors 
with highest and lowest priority when a 
fixed priority scheme was used. For low m 
the processor with lowest priority suffers 
substantial delays. However, by increasing 
m the difference in performance between 
the low priority and the high priority 
processors is significantly reduced in­
dicating that for the given parameter 
values Cb is negligible. When this is the 
case the following empirical expression 
seems to give a fairly good approximation 
of n: 

n "' exp(-ap/m) 

a is a constant that increases when the 
ratio between A and processor speed in-



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

creases. In diagram 3 n is plotted versus 
p/m for the values of p and m in dia-
gram 1. The solid line depicts n = 
exp (-0, 32 p/m) • 

1 

.6 

A 
I 

T/ 

0.5 1.0 1.5 

Diagram 3 

p/m 

2.0 

Comparison of bus configurations I, 
II and III. For given p and m, the three 
bus configurations will give different Cb. 
Configuration I gives the highest Cb and 
thus the lowest n since it has a bi~irec­
tional databus. Diagrams 4 and 5 show a 
comparison of configurations I, II and IIL 

Instruction mix: type 1 30% 
type 2 30% 
type 3 30% 
type 4 10% 

Nominal memory accesstime was 400 ns, 
giving A=800 ns (diagram 4)_ and A=560 ns 
(diagram 5). Compared to processor speed 
and memory accesstime a clock cycle of 
200 ns is somewhat unrealistic, but it 
was used in order to emphasize the effects 
of contention for the busses. 

Increasing m leads to a higher A 
which for configurations I and II means 
increasing Cb. However for high ratios 
p/m the differences in n will be negligi­
ble since here Cm>>Cb. By making Cl 
shorter we reduce C and as can be seen 
in diagram 5 the di~f erences in n become 
very small. 

Configurations with high Cb. We 
shall now look at some cases where A, and 
thus Cb' is high. Also, we shall see how 
the performances of the individual pro­
cessors are affected as A is increased. 

Diagram 6 relates to configurations 
with the same instruction mix and nominal 
memory accesstime as in diagrams 4 and 5. 

96 

1 

.8 

.6 

.4 

1 

.8 

.6 

.4 

L-
2 4 

T/ 

p = 5 

Cl = 200 ns 

6 8 

Diagram 4 

p = 5 

Cl = 80 ns 

III 

II 

I 

m 
10 

III 
I 

The curve for conf. II 
lies between the curves 
for conf. I and III 

m 
L - ~1~--1,__--1!1--~1--~~l~-+~-+1~-+~-+I~•• 

2 4 6 8 10 

Diagram 5 

Curve E. Cl Bus conf. 

a 5 80 ns I 
b 5 200 ns I 
c 7 200 :ils II 
d 6 200 ns I 
e 7 200 ns I 
f 10 200 ns I 

For Cl=80 ns, Ao=0,10 while Cl=200 ns 
gives Ao=0,19. 

As was mentioned earlier, the capa­
city of the addressbus sets upper limits 
to A and n if pA 0 >1. Also, we said that 
in configuration I we can never reach 
A=l. This configuration with Cl=200 ns 
gives A =0,81 for the cases in diagram 
6. We h~~~ not yet been able to calculate 
A but its value must depend on the 
rW~~o between READ- and WRITE-requests 
and it is probably safe to say that it 
has a minimum for READ/WRITE = 1. 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

1 1/ 

---------- - ----a 

.a ---b 

------~-~------- - -----C --~~~~~~~~~~~-: ______ d 

.6 --------------------- - - - - ·-e 

A ~--------------------- - - - -f 

~ 
4 8 12 16 35 00 

Diagram 6 

With A =0,81 and A0=0,19 we get max 

Curve Dmax=Amax/PAo 

b 
d 
e 
f 

0,85 
0,71 
0,61 
0,43 

These values for Amax are also found in 
diagram 6. 

As we increase m in configuration II, 
we will eventually reach A=l if pA 0 >1. 
For p=7 and Cl=200 ns (curve c) we get 
n =l/pA 0=0,75, which can also be found 
i¥la~hagram 6. 

Curve a shows a case where A and 
thus Cb has been made low through a re­
duction of Cl. The addressbus is far from 
being saturated and n is close to 1. 
For comparison a few ~~fier configurations 
with p=7 have been simulated (not shown 
in diagram 6) : 

Bus conf. Cl m !l 

I 80 ns !1~ 0,60 
0,87 

III 80 ns !1~ 0,60 
0,91 

Comparing these values to the values in 
curve c, we see that with Cl=80 ns, the 
reduction of Cb is such that n of con­
figuration I is close to that ot con­
figuration III where Cb=O. 

For some m in a configuration with 
a high A and a fixed priority scheme, Cb 
will be greater than C for the low 
priority processors. B~ adding more me­
mory modules to the configuration we 
decrease C and increase Cb and thus the 
performancW of the low priority processors 
actually goes down. Diagram 7 shows n for 

97 

the individual processors in the con­
figuration whose average n is shown by 
curve c in diagram 6. We observe that for 
m<6 C dominates over C for all pro­
cesso~s. However, when g is further in­
creased the performance of the lowest 
priority processor starts going down. The 
same effect for the processor with the 
second lowest priority is observed for 
m>35. In configurations where Cb is . 
negligible, the performances of the in­
dividual processors rapidly converge as 
can be seen in diagram 2. 

Concluding remarks 

we have in this paper demonstrated 
that there are two main design principles 
in the processor-memory interface for a 
multiprocessor system: The multiport and 
the time shared single bus. Detailed hard­
ware designs were given on some crucial 
points. The simulation of the dynamic be­
haviour reveals that the single bus con­
tributes to little performance degrada­
tion provided the bus is reasonably fast 
(100 ns or less). Processor performance 
seems to decrease exponentially with the 
negative ratio between the number of 
processors p and the number of memory 
modules m. However, a fixed priority bet­
ween the processors leads to low perf or­
mance for the processors with low priority. 
This effect becomes very pronounced in 
the case of a slow bus. A bus configura­
tion with only one (double directed) data 
bus would at first sight seem very attrac­
tive since the total number of data trans­
fers (READs and WRITEs) never exceeds the 
number of address transfers. However, a 
READ-request from one processor creates a 
delayed request for the common data bus 
which will prohibit a WRITE (but not a 
READ) request in a certain later clock 
cycle. This effect is not fully investi­
gated but it seems very likely that 
"waves" of pure WRITE-requests and READ­
requests tend to develop. 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

1. fJ 

.8 - __ .. 

. 6 

·- -- -
.4 

~~~.-...·~_________. 

~-· ------------.2

4 8 12 16

--
35 00

m ..
Diagram 7

References

[l] P. Enslow, Multiprocessors and
Parallel Processing, Wiley, (1972).

[2] J.R. Brandsma, B.L.A. waumans, A
Common Bus Switch, Proc Second -
International Computing Symposium,
Venice, (April, 1972), pp 446-454.

[3] S.H. Lavington, G. Thomas, D.B.G.
Edwards, The MUS Exchange, 1974
Conference on Computer Systems and
Technology, IEE Conference Publica­
tion, No 121, pp 219-225.

[4] D.P. Bhandarkar, Analysis of Memory
Interference in Multiprocessors,
IEEE Computer Society Repository,
R-74-216.

[5] A. Badini, G. Chiabrando, R. Paul,
Dynamic Access Priority Resolution
in a Multi-Memory Multi-Processor
Environment using a Supervisory Bus
Controller, IEEE Computer Society
Repository, R-74-1.

This work was supported by the Swedish Board for Technical Development

98

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

DYNAMIC TUNING IN Al~

ASYMMETRIC MULTIPROCESSING ENVIRONMENT

H. M. Nirsberger, S. C. Vestal
Honeywell Information Systems, Inc.

Rome, New York 13440

SullU!lary

The environment in question concerns
point to point synchronous communication
between two central processors not necessarily
equal in terms of hardware characteristics
and/or software functionality.

Furthermore, each processor has a suit­
able front-end communications controller and
appropriate software primitives for control­
ling data transmission to/from its front end.
For such multiprocessing environments, it is
desirable to optimize the effective speed of
intercomputer data transfer. Effective line
speed is affected by several factors,
including number of housekeeping characters
within messages, bit error rate, modem turn­
around times, real line speed, and number of
data characters in messages. An equation
proposed by Martin [l] for relating these
factors to effective line speed is given by:
E =

D/{T+[(D+H)/S]}+{[R+[(D+H)/S]][P/(1-P)]}

where E is the effective line speed, D is the
number of data characters in a message, T is
turnaround time of the sender, H is the
number of housekeeping characters in a
message, S is the real line speed, R is the
resynchronization time necessary for message
retransmission, and P is the probability that
a message is in error, which is given by:

p = 1 - (1 - Pb) B(D+H)

where B is the number of bits/character and
Pb is the bit error rate.

The above equations are normally applied
in situations (e.g., character mode remote
terminal communication) wherein T, R, S, Pb
and H are constant. For such situations, the
problem is one of finding the value of D for
which E is maximized. The value (D+H) thus
becomes the optimal block size. For multi­
processor communication, however, applications
arise (e.g., transparent mode communication)
wherein H is data dependent. Each permissible
value of H is thus associated with its own
optimal value of D. Regarding such applica­
tions we first state and then prove a general
resul~. The use of this result is then
illustrated by a particular application.

99

RESULT: Suppose Z messages M1 and Mz
are to be transmitted. Also suppose Mi
contains H1 housekeeping characters and Di
data characters, where Di maximizes the
effective line speed associated with H1
(i.e., E1 (D1) is optimal for permissible
values of D) and Mz contains Hz housekeeping
characters and Dz data characters, where.Dz
maximizes the effective line speed associated
with Hz (i.e., Ez(Dz) is optimal for permis­
sible values of D). If
Hi< Hz then Ei (D1) > Ez (Dz).

More simply, as the number of housekeeping
characters in messages increases, the optimal
effective line speed decreases.

PROOF: Suppose the contrary, i.e.,
E1 (D1)<;_ Ez(Dz). Using the fact that
H1 <Hz, it is straightforward to show that
Ez(Dz) < Ei(D2) which implies that
Ei (D1) < Ei (Dz). This however, contradicts
the assumption that D1 maximizes the effective
line speed for tt1 , and the result is proven.

To illustrate the use of this result,
consider transparent mode synchronous trans­
mission using common ASCII control characters
(e.g., DLE, STX, ETX, etc.) which are distin­
guished from pseudo characters by a prefixed
DLE (ASCII data link escape), say. In this
situation, if a DLE itself is to be transmitted
as data, it too must be preceded by a house­
keeping DLE. Thus if a large file is to be
transmitted in transparent mode, the number of
housekeeping characters in messages will depend
on the data itself. At least two steps are
required if the above result is to be used as
the foundation of an algorithm. First, at
interface initialization time, it is necessary
to build, using the above equation, an array
D(n) where D(i) is the optimal number of data
characters for i housekeeping characters.
Secondly, before transmission, the data of
the file must be scanned until a character
position is reached, in front of which enough
data characters are found to optimize the
required number of housekeeping characters.
This position terminates the message, at which
point the scan begins again. It is clear that
other minor considerations may also ·be
incorporated within this general scheme.

References

[1] James Martin, Systems Analysis For Data
Transmission, Englewood Cliffs, N. J.:
Prentice-Hall, Inc., 197Z.

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

PARALLELISM IN AUTOMATIC TESTING

Mathew N. Matelan
Digital Design Automation Project, Electronics Engineering Department

Lawrence Livermore Laboratory
Livermore, California 94550

Abstract -- The architecture of the DELTA
(Distributed Electronic Test and Analysis) System,
and its impact on test equipment control and soft­
ware, is the topic of this paper. The system is
based on distributing the major functions common
to all testing among a group of function-specific
microprocessors. These microprocessors, driven by
test-mode selectable control programs, are linked
in ways which allow run-time configuration of the
tester on a by-test basis. The use of microproc­
essors to implement a high speed interpretive ver­
sion of a high level test language (e.g., ATLAS)
is described. The use of a firmware generator
(MPACT) to develop function-defining control code
is outlined.

Introduction

The increasing speed and complexity of elec­
tronic components is causing the time needed to
test devices containing them to grow. Serial test
of components has been the rule. Previously, when
test times became exorbitant, either more testers
were used, tests were degraded, or faster tester
hardware was employed, but seriality was retained.
The use of multiple testers is expensive and in­
efficient, while degrading tests is dangerous.
Requiring an increase in tester circuit speed
to keep pace with new UUT (Unit Under Test) cir­
cuit speeds will slow the increase in test times,
but it will not halt it since UUT complexity is
also increasing. Computer designers, faced with
similar needs to increase execution speeds beyond
those possible with existing circuit technologies,
turned to architectural innovations to gain
improved processing rates. Use of multiple proc­
essors, one of the innovations used by computer
architects, to perform what were previously serial
test functions in parallel seems a way to reduce
test times. The DELTA approach is to use this
method to perform test sequences at higher rates
than would be possible using serial techniques.

A Multiprocessor Approach

The computational power and low cost of cur­
rently available microprocessors allows procedures
and techniques developed for large computers to be
applied to automatic testing. Specifically, the
work done in multiprocessing and parallelism sug­
gests that the use of multiple CPU's (central
processing unit) may increase the testing capabil­
ity of otherwise conventional test systems with
only a change to the controller.

The general approach taken in the DELTA System
is the division of a test into functions such as:
switching, stimulus application, measurement data

100

acquisition, comparison of test results with limits
(Control), and user interaction. Each function is
accomplished by a dedicated microprocessor, work­
ing in parallel with the other functions as cir­
cumstances permit. Each microprocessor performs
a series of tasks in each test consistent with its
function. The manner in which a task is performed
is dictated by the current mode of the function.
The mode of all microprocessors is the same during
any particular test and is determined by the value
of the "mode switch."

For example, the switching function microproc­
essor might be performing a task such as opening a
relay, while the control function is (simultaneous­
ly) converting latched measurement data for limit
comparisons. Both functions must be performed by
methods consistent with the current mode. If the
mode were analog, each task would be performed
according to driver algorithms most suited to
analog testing. If the mode were logical (digital),
drivers optimized to perform logic testing would be
used. This dependence on the value of the mode
switch for the method in which functions are per­
formed makes it possible for the test devices
being controlled to be optimally configured, on a
test-by-test basis, for a particular type of mea­
surement.

Such a system allows devices which contain
both analog and digital characteristics to be
on the same station without degrading the quality
of some tests because the tester is basically
oriented toward one mode or the other. For
instance, a digital module with integrated power
supply would probably be assigned to a test sta­
tion oriented toward logic testing. It is probable
that such a tester would be less than ideal for
testing power supply circuits than would be a low
frequency analog oriented tester. With the DELTA
approach, the digital tests would be made in digi­
tal mode, but the analog tests would be conducted
after a forced mode change to analog.

The concept of mode need not be restricted to
pure test functions. The inclusion of specialized
modes of operation would enhance the capabilities
of distributed system .controller. Modes for facil­
itating manual fault isolation, and for collecting,
editing and storing utilization statistics are two
possible candidates. The dedication of a function
to active circuit simulation, producing patterns
for logic fault match is another distinctly attrac­
tive possibility.

Modes for testing at degraded levels of per­
formance would increase tester maintainability.
Suppose a microprocessor failed. Upon realization

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

of the failure, the mode is switched (either auto­
matically or manually) so that the failed unit is
bypassed, and the work load distributed over the
remaining processors. Testing could continue, at
a slower pace, until replacements are obtained.
This scheme is easily expanded to include modes
to bypass two or more failed processors (or their
associated circuitry). Further, since the only
difference between the various functions is
defined by the microprocessor's control programs,
commonality in controller circuit packaging is
possible allowing a single replacement subsystem.

System Architecture

A generalized DELTA controller is seen in
Figure I. The diagram is divided into two sec­
tions: that of actuation, consisting of test
devices interface; and control, the source of
test directives. The makeup of the actuation sec­
tion is irrelevant for the purposes of this paper,
it being a sink for test commands and a source of
test results. The control section and its inter­
face are of primary interest here.

The system is designed around two main data
busses: the world buss and the control buss.
The world buss is the testing environment com­
munications link; all data (whether stimulus
commands or measurement results) are placed on the
world buss accompanied by an alert code. This
code signals the processor or device on the
receiving end to accept data from the buss into
its latch. All events are asynchronous; the
scheme implementing the actuation section of the
tester (i.e., the switching and device technolo­
gies used) is unaffected by the distributed
architecture, modularizing the two sections. The
control buss, using the same flagging (alert code)
conventions, passes status and intra-control-sec­
tion information between the several processors
and the memories.

As discussed previously, each function is
assigned to a microprocessor. Each microprocessor,
at any particular time, is executing a control
program suited to its function from its local con­
trol store ROM (read only memory). The particular
set of control programs that the microprocessors
are executing (indicated by a row of boxes, one
for each microprocessor) is pointed to by the
mode switch (indicated by the dashed line). Each
control program consists of a local executive and
a set of task-related subroutines. The executive
is a looping program which scans the decode area
waiting for a task code to be activated. Upon
activation, control is transferred to the proper
task routine where configuration codes are deter­
mined and sent to the proper device command latch
for actuation.

This method allows the inclusion of a special
task code to switch modes (and therefore control
programs) on receipt of synchronizing signals
from the other microprocessors. This is the way
the test controller is switched under program
control from the appearance of a dedicated analog
device, to a logic-oriented one, for instance.

101

The need for system synchronization causes the
assignment of the overall control function to that
microprocessor used to check measurements against
limits.

Dispatching Functions

The rationale for the DELTA approach is its
capacity for taking advantage of the local paral­
lelism that may be present in the structure of a
particular test sequence. Even though a test is
completely described by the commands in the decode
area, the test controller must synchronize events
so that execution of various parts of a series of
tests may be performed in parallel.

The need for run-time detection of test sub­
functions which may be performed in parallel stems
from the imprecise timing caused by using generic
test procedures or UUT's whose tolerances and
timing differ. This makes run-time parallel activ­
ities difficult to predict, so actual initiation
of potential parallel functions must be performed
based on conditions as they exist during each test.

A priori function selection co_rresponds to
global detection of parallelism as it applies to
testing. Function selection is initially based on
simulations of testers running benchmark ATLAS pro­
grams. Later assignments may be based on tester
performance determined by individual microproc­
essor activity histories. The five functions dis­
cussed in this paper are derived from estimates
of time spent in various activities during a
general test and the probabilities of each func­
tion being performed in parallel with the others.

It is the duty of the Control function to
recognize situations in test sequences which will
allow functions to execute in parallel. For ex­
ample, consider a single test divided into mile­
stones consistent with the function assignments
previously described:

I Has the stimulus path been routed?
II Has the stimulus been applied?

III Has the measurement path been routed?
IV Has the measurement been made?
V Has the measurement been evaluated?

Depending on the relationships of these mile­
stones, and their relationships to other tests
in a test sequence, several tests would usually
be in various stages of completion. The method
used in the control microprocessor for determining
which tests have active sta9es is a variation of
the "scoreboard" (e.g., [8]). In this applica­
tion, the scoreboard is a matrix in which the
rows represent tests and the columns represent
stages that have been reached (see Figure II).

It is assumed in this structure that on a
"go" result of step V, the next test to be execu­
ted is the next set of milestones (row) in the
scoreboard. Since any set-up of future tests
which may not be needed (due to a no-go branch
to fault isolation, for instance) would be done in
parallel with the last test, no time would be

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

wasted. The scoreboard is simply reset and test­
int resumed in the parallel mode at the branch
target test number.

Uses of the scoreboard approach in testing,
other than preliminary setup, are many. The
scoreboard could be used as an indicator {pointing
to new test numbers) for buffering data into pages
of station memory for subsequent tests. Test
.numbers followed by branch instructions (as well
as other special types) might also be profitably
included in a special scoreboard column to indi­
cate out-of-memory pages that would be needed if
the branch were taken (a simple implementation of
branch path pre-fetch).

Another area where test delays are open to
reduction is the UUT adapte,r. Differences in
UUT voltages and data representations frequently
require several programs to be written which have
only parametric differences. The assignment of
a microprocessor to the test IO port (or "adapter
box") supplied with active circuit components,
allows preprocessing of raw data. The adapter box
control microprocessor is shipped (by the I/0
function) a control code block specific to the
current UUT which configures the adapter box at
run time. The control memory for the adpater con­
trol microprocessor must therefore be a RAM. Com­
puting capability in the adapter would also allow
adapter box/UUT verification (using identification
resistors), and built-in adpater self-test {both
initially and during testing).

Using the System

In the discussion of function control pro­
grams above, reference was made to the "decode
area" of the RAM (random access memory). One
might wonder why the control programs read and
respond to codes found in a decode area rather
than directly from the pages of memory containing
the test program (e.g., PAGE 1). This is done to
allow an improvement in user interface with the
test system: an inter retive high-level test­
oriented language e.g., ATLAS) that executes at
compiled object code speeds.

Test programs for large systems have usually
been generated by two methods:

l) Compile a high level language (that is
easy for engineers to use) off-line from the
tester - a system that produces good test run-time
code at the expense of poor development update
turnaround; or

2) Use an on-station interpreter - this is
commonly a lower-level language such as BASIC
(ill suited to test description) which is easy to
change on-line but executes slowly.

An on-station interpretive ATLAS which exe­
cutes quickly would combine the best features of
the two methods outlined. An interpretive langu­
age is easy to change. It is al so easier for
engineers to learn and use. Updating should be
done through a symoblic-file management system
with configuration control safeguards built in to

ensure system integrity and provide automatic doc­
umentation. Once a test program is complete and
accepted, the same code is used in the field; it
will, however, execute at speeds usually associated
with object code. The inclusion of a supervisory
mode for program alteration would keep unauthorized
field changes from being made. In short, the test
system would appear to all users (design engineers
as well as field personnel) as if it were executing
ATLAS directly as its primary code.

In order to accomplish this goal, the power of
the microprocessor is again exploited. The ATLAS
test program, in symbolic form, is loaded as
needed for execution into available pages of the
RAM by the control microprocessor. This is done
by using the scoreboard to determine when parts of
the test program not in the RAM will be needed.

Since the next few tests in the program will
always be available in the RAM, a new task is
added to the control microprocessor. (Actually,
several cooperating microprocessors may be required
to implement this expanded control function.) This
task is the interpretation of ATLAS statements
which will logically follow the one currently
executing. The interpreter task must determine,
through added scoreboard columns, which test num­
ber to interpret. It must then interpret each
ATLAS statement in the test number sequence, and
produce task commands, which are stored in the
decode area for the particular function for
future execution. In this way, the symbolic
ATLAS program is the only code ever seen outside
the control function and its decode area, while
the function microprocessors are executing com­
mands at a relatively high rate since their decode
areas are being filled in advance. System per­
formance could degrade to interpreter-like speeds
if several consecutive branches were performed,
however, the "branch to fault-isolation on no-go"
rule of programming rests would reduce the occur­
ence of this problem.

Interpreting a large language such as ATLAS
on-station, using microprocessors, is not a triv­
ial exercise in software development. The DELTA
approach is to make use of a table driven inter­
preter. The target language is then divided
into manageable subsets, each with a table defin­
ing subset statements and corresponding function
codes needed in the decode areas. These tables
are supplied through the I/0 (input/output) func­
tion from the test data base at the command of
the control function. The tables are stored in a
protected page of the RAM and are used by the
interpreter task much as decode area commands are
used by the various function microprocessors.

102

Research Directions

The realization of a DELTA based system may
be divided into hardware and firmware development
tasks. The redundancy of controller modules and
the consistency of device/controller and inter­
function communications makes the hardware task
relatively simple. By far, the greatest develop­
mental effort is seen in the firmware/software

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

area. A system for easing the production of con­
trol programs called MPACT is under development,
and its use in generating control firmware for
DELTA is anticipated [4].

MPACT is intended to produce a complete micro­
processor control-firmware program according to
definitions of the microprocessor's capabilities,
control environment, and related behavioral char­
acteristics. Each microprocessor function in a
multiprocessor configuration may be defined by a
separate MPACT description. Each of these descrip­
tions is partitioned into a system-oriented part
and a function specific part. The system part,
common to all processors, defines communications
conventions and synchronization rules. The
function-specific part defines the function of the
microprocesor in terms of timing-independent, con­
dition/response pairs. This scheme guarantees con­
sistent function interactions while offering a con­
venient method for generating rapidly changing
function requirements which ususally accompany
system development.

Conclusion

The rapidly expanding complexity of electronic
systems must eventually cause a demand for faster
and faster testing devices. As has been found in
the design of large, very fast computers, the
physics of electronic circuitry places a bound on
performance. One of the primary methods used to
circumvent this problem has been the introduction
of parallelism. Given the large amount of research
already done in the area, and the power and decreas­
ing cost of microprocessors, it is time to apply
parallel techniques to the design of automatic
test systems.

Acknowledgment

This work was performed under the auspices
of the U. S. Energy Research and Development
Administration.

103

References

[l] R. M. Holt and M. R. Lemas, "Current Micro­
computer Architecture," Computer Design
(February 1974), pp. 65-73.

[2] Harold Lorin, Parallelism in Hardware and
Software, Prentice-Hall, Inc. (1972), p. 508.

[3] J. J. Horning and B. Randell, "Process Struc­
turing," ACM Computing Surveys, Vol. 5, No. 1
(March 1973), pp. 5-30.

[4] M. N. Matelan, "MPACT -- Microprocessor Appli­
cation to Control-Firmware Translator," ACM
S ecial Interest Grou on Desi n AutomatTOil
Newsletter, Vol. 5, No. 1 March 1975 pp.
13-41; also available as technical report
UCRL-76990 from the Lawrence Livermore Labor­
atory, University of California.

[5] M. N. Matelan, "DELTA - The Uses of Micro­
processors in the Distributed Control of
Electronic Testing," Joint Conference on
'Advances in Automatic Testing Technology,'
University of Birmingham, Birmingham, England
(1975), pp. 19-26.

[6] G. Reyling, Jr., "Performance and Control of
Multiple Microprocessor Systems," Computer
Design (March 1974), pp. 81-86.

[7] H. Smith, "Impact of Microcomputers on the
Designer," WE SC ON Proceedings , Session 11 /l
(1973), pp. 1-4.

[8] J. E. Thornton, "Parallel Operation in the
Control Data 6600," SJCC Proceedings (1964).

[9] Anon., "Abbreviated Test Language for Avion­
ics Systems (ATLAS)," ARING Specification
416-6, Aeronautical Radio, Inc., Annapolis,
Maryland (1972+).

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

ACTUATION

MEASURING
DEVICES

STIMULUS
DEVICES

SWITCHING
DEVICES

-s1GNAL PATH
--CONTROL PATH

TES'l'
NUMBER

305

400

I WORLD
BUSS

I

x

CONTROL
MODE SWITCH

r-~~2::'~~....Y
.----~----.CONTROL

BUSS
µP CONTRCL

µp SWITCHING

DMA

DATA
STORAGE
PROCESSOR

A GENERALIZED DELTA SYSTEM
FIGURE I

II III

x x

x

THE SCOREBOARD

FIGURE II

104

IV

x

READ ONLY MEMORY (ROM}

DODOO
DDDDD

I I I I I
I I I I I
I I I I I
I I I I I

DDDDD
RANDOM ACCESS MEMORY (RAM}

SCOREBOARD

DECODE AREAS

PAGE l

PAGE N

v

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

MULTI-MICROPROCESSOR SYSTEM FOR INDUSTRIAL CONTROL

Arthur C. M. Chen and William D. Barber
Corporate Research and Development

General Electric Company
Schenectady, New York 12301

S\.U!Unary

The advent of low cost LSI microprocessors
has made the promise of multiprocessors for
industrial control extremely attractive. By re­
placing the numerous hardwired electronic func­
tional modules with few standard microprocessor
modules, greater economy can be achieved because
of large unit production and greater product
standardization. The control function would be
tailored by software. Larger control require­
ments can be satisfied by having multiple modules
in a multiprocessor system working together in a
federated mode.

A possible multi-microprocessor configura­
tion is shown in Fig. 1. Each microprocessor
based module would have its own private memory
and, if needed, device interfaces. It could
operate in a semiautonomous mode performing vari­
ous control functions such as sequencing, regula­
tion or data logging as defined by the system
generation process. The system as a whole would
communicate through a common memory and be super­
vised by a designated Master Module.

At system generation time, the tasks necess­
ary for the various control functions are assigned
to the modules. These tasks would run under the
control of a small real time operating system
resident in each microprocessor module. The
entire multiprocessor system would be supervised
by the Master Module whose tasks are the coordin­
ation of intermodule communication, the assign­
ment of common memory access priority and the
control of the external peripheral devices. The
system can be made fault-tolerant by providing
spare modules which are activated by the Master
Module to replace failed module.

The philosophy of decreasing system cost by
replacing hardware modules by software modules
"sounds good" - but it is fraught with pitfalls,
especially in the area of programming cost. Thus,
although the system shown in Fig. 1 represents
no new concept, it does represent a real
challenge to the development of a system design,
generation and requisition discipline to minimize
the problem of software modularity and programmer
efficiency. Central to this challenge is the
cost and performance constraints of industrial
control and the particular characteristics of LSI
microprocessor.

LSI microprocessors are characterized by its
small word length, limited instruction repertoire
and addressing modes. In addition, their control
structures are limited to single processor mode.

The lack of master processor mode makes the
implementation of secure real time operating
systems by software alone difficult. To provide

105

some protection from user program and hardware
errors the operating system and other crucial
procedures should be implemented in Read Only
Memory to provide quick restart capability in the
event of a crash.

Industrial control systems are characterized
by short "process" cycles - 30 to 500 ms. Thus
the operating system must be designed to respond
quickly to external and internal events with a
limited speed CPU. To have the ability of opera­
ting in a small stand-alone module or in a f eder­
ated system, the operating system should have
dual process modes; time base for stand-alone and
supervisory base for federated system modes.

Finally, to minimize programming cost, the
software development and requisition process must
be done in a "disciplined" interactive environ­
ment. Thus the support of a large computer with
extensive file editing and storage capabilities
as well as a flexible cross-assembler and linkage
loader for the target microprocessor is needed.
A facility should be created on this computer
which will enable engineers to link pre-assembled
modules together with the unique system applica­
tion package to fulfill various requisition
requirements. Central to this facility is the
cross-assembler or cross-compiler which will
generate relocatable object code modules which
can be binded together by the linkage loader into
specific memory locations. The output of the
facility in the form of an absolute formatted
code can be easily loaded into the microprocessor
module for test and acceptance.

F\lnctional Module r-------,

fig. 1 Multi-Microprocessor System for Industrial Control

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

ANALYSIS TECHNIQUES FOR SIMD MACHINE INTERCONNECTION NETWORKS
AND THE EFFECTS OF PROCESSOR ADDRESS MASKS

Howard Jay Siegel
Electrical Engineering Department

Princeton University, Princeton, New Jersey 08540

Abstract - We consider interconnection
networks as permutations on the set of processor
addresses. 'Ihe relation with permutation groups
is exploited to determine if a given network can
simulate any arbitrary one. 'Ihe effects of '
processor address ma.sks, that determine which
processors will be active, are examined, We
also present model independent techniques for
proving lower bounds on the time required for
one network to simulate another.

Introduction
One pt'Oblem in the design of SIMD (si~le

instruction stream - multiple data stream [5J)
or array machines is the construction of an
interconnection network to pass data :from one
pt'OCessor to another. The model of a SIMD

ma.chine used in this paper consists of N • 2m
vrocessing elements 0 Each pt'OCessing element
<!'.!) is a pt'Ocessor together with its own memory
and is assigned an address from 0 to N-l 0 In
this model, we consider no processor
instructions other than those that transfer data
to another pt'Ocessor.

An interconnection network is a set of
interconnection functions, ea.ch a total function
on the set of PE addresses. By applying
sequences of functions, networks can transfer
data between PE•s 0 When a function f is
applied, pt'OCessor i passes its data to
pt'OCessor f(i) for all i, o~ iL N,

An ~position PE address mask may accompany
any data transfer instruction aiid'Will determine
which PE•s are actives i.e., send data, When a
mask is used, the only PE•s that a.re active a...-re
those whose address matches the mask in the
following way for each bit posi tion1 if the mask
has a o, then the PE address must have a Or if
the ma.sk has a 1, then the PE address must have
a l; and if the ma.sk has an X, then the PE
address ma.y have either a 0 or a 1,

Interconnection Networks
'Ihe following interconnection networks will

be discussed. In the definitions of the
interconnection functions and throughout the

rest of the paper let ?P2m , let the binary
rept'esenta tion of a PE address be

p~lpm;;.2 •• •Pi Po• let pi be the complement of pi,

and let the integer n be the square root of N.

-----:WW------ .. -----'Ibis work was supported by NSF G.r:a.nt
DCR74-219J9. It is a sumnary of Princeton
University, Dept, of E.E., Computer Science Iab,
TR;.185,

106

(1) Th!, ~· 'Ibis network consists of m
functions defined by1
ci (pm-1•••Pi+lPiPi-1···Po)

= Pm-1•• 0 Pi+1P1P1.1•••Po
for O'=i"-m; e.g., c (?) • 3, for Na8, When the
PE addresses are co~idered as the corners of an
m-dimensiona.1 cube this network connects each PE
to its m neighbors (see [lll).

(2) Th!, Perfect Shuffle (PS). 'Ibis network
consists of a shuffle function and an exchange
function. The shuffle is defined by1

s(pm-lPm-2 • • ·P1Po) = Pm-2Pm-3' • ·P1PoPm-l
and the exchange is defined by1

e(pm-1Pm-2•••P1Po) = Pm-1Pm-2··P1Po '
e.g., s(3) = 6 and e(6) = ?, for N~8. The
shuffle can be thought of as the result l')f
perfectly shuffling (intermixing) a deck of
cards {i 0 e 0 , O_.O, N/2 -1, .l-+2, N/2+1..,.3,
etc,) (see [6], [8J , [15]). Note that e .. c~.

(3) Plus-Minus 2i (PM2I), 'Ibis network consists
of 2m functions defined by1

t (j) --j+2~ mod N,
+1

ti.1 (j) = j-2i mod N,

0:1" m; e,g.,t+l(2.) .. 4. fo:: ~r>h, {See [2] ,

[1t) .)

(4) Illiac IV. This network has four functions
of the form1

I.(x) = x+j mod N, where j = +n, -n, +l, -1;
J

e 0 g,, I+n (0) = 4, if N=l6. When we discuss the
Illiac IV we shall assume m is even, that is,

n = 2m/2 is an integer, If the PE' s are
considered as a n x n array, then each PE will
be connected to 1 ts north, south, east, am west
neighbors (see [l] , [3] , [ll] , (llfl) • This
network is a subset of PM2I,

(5) Wrap-around Plus-Minus 2i (WPM2I). This
,,etwork consists of 2m functions defiMd by,

w+i (pm-1" •·Pi•• ·Po) = qm-1' •,qi•• .qo,

where qi-1' • .qoqrn-1' • .qi+lqi=

(pi-1•••PoPm-1•••P1+lPi) +l mod N,

a.mi w _i (pm-1 • • ·P1 ••·Po) = qm-1' •.qi•• •qo,

where qi-1•••qoqm-1•••qi+lqi =
(pi-1•••PoPm-l''''Pi+lPi)-l mod N,

for O~i"m. WPM2I is like PM2I, exce'Pt any

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

"c .. 1rr·7° C"r "borrnw0 wil1 "wra·p-<::>.._round" t.r1 t.:1c
p~ ~ 1 t-i .. +, :rosi. ti.on: e. f!i. • j f N=B and m=J, th8n

w_1 (0C1) no,
whe:::e'.l..s t , (001) 111 ,

-J

Tnter~onr.E,ct.ion Networks as Perm,1+,a tions
The set of an bijections on the N PS

addresses is the group of permutations on N
elements, called SN' A network is universal if

some sequence of the funcUons in that network
can, possibly with the use of PE address masks,
generate SN: i ,e,, simulate any interconnection
function tnat is a bijection,

Every permutation can be uniquely
represented as the product of disjoint cycles,
The notation used to represent a cycle of the
bijection f is:

(io il i2 ... ix)

where f(i 0) = t 1 , f(i 1) = i 2 , ... , f(ix) = i 0 •

Cycles of len~th 1 (i,e,, f(i) = i) are removed,
A permutation in SN is said to be an ~
permutation if it can be represented as the
product of an even number of transpositions
(cycles of size 2), Any representation of an
even permutation as the product of
transpositions uses an even number of
transpositions. The ·oroduct of two even
permutations is an even permutation, Sy also
contains ~ (non-even) permutations, '(See [7]
or [12),)

Theorem 11 There does not exist a single
interconnection function which is universal for
N:::::),

Proof1 If a single permutation A generates SN'
then it cannot have more than one cycle, If a
mask other than XX,,,X is used, the resulting
function would not be a bijection, If A with
mask XX,,,X could generate SN' then SN

would be a cyclic group, but for N ~ J it is not,

Theorem 21 let F be the set of all distinct
bijections obtained by applying each function of
a particular network with every possible PE
address mask, If the network is universal then
a lower bound on the time required to simulate
an arbitrary interconnection function is
log I Fl ((N:) (IF I -1) +1)-1,

Proof& The elements of F must form N: distinct
sequences, The length of the longest sequence
must be at least x, where1

x '
igO IF I l. :<:N: •

Therefore, x :? log! Fl ((N:) (\ F\ -1) +1)-I.

107

Theorem JI The following table shows whiob
networks are ulliversal with and lfithout PE
address •sks,

~·
Cube a

Network
Cube
PS
PM2I
Illiac
WPM'ZI

ill:!!. Without
yes no
yes no
no no
no no
yes yes

iiiii 11Uks1 The set of permutations (o 1),
{o 2), .•• , (0 N•l) generate s1 (see [71 ,
page 69). Let j be a nU11.ber from 0 to N-1 tha.t
bas a 0 in the i '!h. bit position. Then ci

lfith a ask equal to the bit representation of j
except for an X in the i.Y! •sk position

is eq u1 valent to the cycle (j j+2i) for 0 f i .-:. a,
We use the follolling algorithm to construct a
sequence of transpositions of the fora

(j j+2i), the product ot which will be
(0 IC), for fixed IC, l~IC'N, Let the bina.ry
representation of IC be k•-l ~-2 .. •kJ. Ito•
Let (a b) represent a variable tha.t is a cycle
of she 2. Initially let (a b) • (o o),
which is just "do nothing,"

for i = 0 to m-1 do
-if k1= 1 -

~

then let (a b) be the product

;;;-(a b) (b b+21) (a b)

For e:D.llple, if JC•6, (0 6) would be
(Coo) (02) (00)1 (26) [(oo (02) (oo))

Without •sksa For O~i.!.11, ci is an even

permutation,

PS1
With masks1 Let R' equal the •sk R cycllcall7

left shifted a-1 times. Let si represent i

shuf:t'l.es. Then the sequnce slll-i w1 th mak

xx .•• x, e with 11&11k R' and si with mask xx ... x,
is equivalent to ci with ask R. Thus, PS can

sillul.a te the CU be with masks, which is
universal.
Vi thout 111&Sks1 (Fro• (9] ,) II.ch bijection
perfor•ble by sequences of PS functions can be
:represented as x ... 1 x ... 2 • ••l1.x0, where the xi •s

are 11 tere.l syabela of the fora j or j,
j E { 0,1, ••• ,m-1) , such tblt if Xi • j or J,
then xi+l • j+l or Jil (llod. a). The nuaber of

such bijections is 11(211). But 11(2•) < K:, for
• ~2.

Pll2I1
iitii or without •sksa We can show that the

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

permutation (0 l 2•-l 2) e&nnot be generated,
by using induction on the number of data
tn.nsfers to prove that whenever 0 maps

to j mod N, 2•-l maps to 2111-l + j mod N.

llliaca
wrtli"Or tr1 thout 111Uks a Follows f'ro111 PM2I.

WPM2Ia
i1t.ii"" or tr1 thout asks a w+o • (O l 2 ••• N-1)

and (w+o)2 (w_1) • (If-2 N-1) generate SN

(see [7] , page 69).

Rt.lections Obtainable Using Ml.sits
When designing an SIMD, machine a set of

interconnection functions and a set of !ll!Lsking
schemes llltlSt be chosen. The 118.Y in which the
funotions and •sks interact is an important
considers. ti.on. The next theorem analyzes this
in ter111111 of our llOdel.

'l'beorem 41 The number of distinct bijections
obtained by applying ea.ch function of a network
tr1 th every possible PE address !llll.sk is g1 ven in
tb.e following table, along with the nWRber of
distinct functions in that networks

Network t, biJections # functions

Cube m(3m-1) Ill

PS 1 + 3m-1 2

PM2I 2(3m-t) - 1 2m-1

Illiac 2 + 2(3m/2) 4

WPM2I 2m 2m

~·
2!!.2!,• For ea.ch ci the ma.ek must contain an X in

the i th posi t1on and the other ia-1 positions ca.n
be either O, l, or X.

Perfect Shuffle 1
Exchange 1 Follows from Cube
Shuffles 'l'he shuffle function, s, is not a
bijection when used w1 th any PE address aask
other than xx ••• x, oo •• ,O, or ll., .l. In proof
consider the following.
Case 11 There are no X•s in the nask. Let the
iiiSk1ie R • rm-lr111._2 ••• r 1r 0, where ri+lfri.

'lben s(rm-lrm-2•••r1ro) - s (r111-2ra-3•••rcfm-1>·
case 21 '!here is at least one X in mask R,
ii'iiiOiit loss of generality, let ri+l-0 and r 1•X.

at p be suoh that it has al in its il:!! bit and
matches mask R. 'l'ben s(p)ap•-s(p•).

PM2Ia The 1th to m-lst positions of the PE
address maskliust be Fs if used with t+i.

Thus, by setting the 0.!ll to 1-1!1 posi Uons of

the m.sk 31 distinct bijections can be obtained.
Note the. t t+i -f t _i, except for i•m-1,

108

lll1.ac IV1 Follows from PM'ZI.

WPM2Ia w+i , 0 ~ iL m, is a single cyole of size N

and therefore is not a bijection when used w1 th
a mask other than XX, •• x.

Theorem 51 lat D(f) be the number of oyoles in
the unique disjoint cycle representation of the
interoonneotion function f. No matter wha.t type
of masking system is used the JllB.Ximum number of
distinct bijections obtainable by applying f
111 th different masks is 2D(f).

Proof1 The number of bijections obtainable is
equal. to the size of the power set of the set of
disjoint cycles of f.

lower '!':I.me Bounds On Simulations
ill of the results and techniques in this

seat.ion are valid for all models of SIMD
machines. In models in whicb. PJil•s can save
their data in their respective memories and
la.ter reload it, the transfers specified by
interconnection functions with MSks need not be
bijections.

The way in which the actions of a network
on one PJil•s data. affect the other PE•s data is
a function of the model of SIMD machines being
used, i.e., type of 1BB.Sking, allowable
instruction set, etc. Therefore, in order to
maintain the model independence of our results,
the lower bounds w prove are based on the
actions of two different networks on a single PE
address.

We shall define a metrio d to have the
following propert1es1 d(x,z) ~ d(x,y) + d(y,z),
{the triangle ine9ualit1)s d(x,y) ~ Os and
d(x,x) • o. If f is an interconnection function
and dis a metric, then d(x,f(x)) is the
"distance" that f can "move" PE address x, at
df be ll!x d(x,f(x)). Then, if df~ dg' there
exists a PE address for which it must take at
least d/dg tilll8 for function g to simulate f.

Theorem 61 In the following table the entry in
row x, column y, is a lower time bound for
network x to simulate network y. A "c"
indicates tha. t with certain SIMD ma.chine lllOdels
the simulation can occur in constant time.

Cube
PS

Cube Illiac PM2I WPM2I
Ill II

2m-

Illiac l...!!J~--i-l'~'-4-~---+-==-=-+->-=..==----=i
PM2I
WPM2I

Jl:22!.1
Cube~ PSa IAt d be the Ha1111111ng distance, i.e.,
let d(x,y) • the number of bit :t><?Sitions in
which x and y differ. d(x,c1 (x)) • l, 0 ~ i ~ m,

SO dCube • 1 0 lat X • 0101 ••• 0l, if II is even,

and 0101 ••• 010 if a is odd. Then

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

d(x,s(x)) • 2 l m/tj • dPS"

Cubem Illlaca let d be &8 above,
I+l Ji ... 1) • 00 0 , .o, dil.liac -m.

Cube=± PM2Ia FollolfS from above.

Since

Cube~ WPM2Ia let d be as above, Since
w+o (11 ... l) • oo ... o, ~I=m

PS-+ Cubea cm-l (lm) • Olm-1• '.lbe shortest

sequence for the PS to map lm to 01•-l is es•-1 •

PS=t Illiac1 I+l (ll. ,,1) • oo ... o. The

shortest sequence for the PS to 1111.p
11 •• ,l to oo ••• o is {es)m-le,

PS-.>- PM2I1 Follo'll'S fro11 above.

PS-> WPK2I a Follows froa above, since
w+o (11 ••• 1) - oo ••• o.

Illlac~Cube1 let d(x,y) • lx-yl • let
j • (il/2)-l. 'lben d(O,cio)) • n/2. I+n and

I_n ca.n not be used to move a distance of n/2,

and d(x,I:!:.l (x)) • l, 0 ~ x ~ N,

Ill1ac4 PS1 s(lom-1) • o•-11. '!he only way to
change the l in the m-1.!1 bit position using
less than (n/2) +l steps is n/2 executions of
I+n or n/2 executions of I • In both cases the -n
O.:!ib, bit position remains unchanged.

Illiac'(o'. PM2Ia let d and j be as in Illiac.+ Cube.
'I'ben d o,t+j (o)) • n/2.

Il (m-1) a-1
liac~ WPM2I1 w+(m-l) 10 • 0 l. Illiac

requires (n/2) +l steps to perform this mapping
(see Illiac~ PS).

PM2I~ PS1 let h be the Hauing distance. let
k{x) be a cha.ra.cteristic bit vector of address
x, such that 1 ts i.:!ib, bit is l if and only if the
i th bit of x does not equs.l the i-lst mod m.
xSt d(x,y) • h(k(x),k(y)). let 7-: 11 mod 4-.

let x • OOllOOll, •• 0011 (o1"). Then
h(k(x),k(s(x)) • m,-y • 4- Lm/4J • By a case
analysis it can be shown that
h(k(x),k(t:!i (x)))~ 2, for O~i ~•and. O~x"'-N,

VPJrZI~ PS1 SiJlilar to PMZI~ PS,

Concluions
We developed severe.l analysis techniques

for evaJ.ua.ting interconnection networks am
en.mined five Jllll'ticular networks. We described
and studied the effects of a PE address asking
system which would ~q4-e O(lo~N) bi ts,_ wbltn a

masking system which could specify any a.rbi tr:ary
set of PE's would require O(N) bi ts. Iwkld.el
indepement techniques for determining a lower
time bound. on the siaul.ation of one network with
another were presented,

Future work in this area would inclu:ie the
design and a.nalysis of other •eking systems and
interconnection networks, Hybrid networks, such
as the PM2I with a shuffle i"unction, present
interesting possibilities. Further research
would also include an e:xamina.tion of the added
flexibility the use of store and load
instructions would create by allowing nappings
that a.re not bijections to be used.

Acknowleclgements
I would like to thank Prof, J,D. Ullman

for his help and guidance with this research, I
would also like to thank Prof. R. M, Keller for
his colllll8nts and suggestions.

References

(i] G,H, Barnes, et, al,, "The ILLIAC IV
c(omputer," IEEE T.re.ns, CO§Ut,, Vol, C-17

[.2;i Aug,, l968};Pp~757,
;J K.E. Batcher, "STARAN/RADCAP hardware

a:rchi tecture, " Proceedings of the l2Q.
Saga.more Computer Conference-On~llel
Processing, pp. 147-1.52. -

[JJ W,J. Bouknight, et, al,, "The Illlac IV
system, " Proceedings 2£. the §EEE, Vol, 60,
No, 4 (Apr., 19'72), pp • .369=.3 8,

~1 T. Feng, "Data manipulating functions in
parallel processors and their
implementations," IEEE T.re.ns, Comput., Vol
C-2.3 (Ma.r., 19'74), pp • .309-.318. •

~} M. J. Flynn, "Very high-speed computing
s;ysteu," Proceed!~ of the IEEE, Vol, ,54,

~6 .. 1 No. l2 (Dec,, 1966;.p;; 1901-1909.
~ s.w. Golomb, "Permutations by cutting and

shuffling, "SI.AM~. Vol, J, No. 4-

109

,,7.,1 (Oct., 1961),pp. 293-29'7.
L J I.N. Herstein, Topic(in r.eebra, Xerox

College Publishing, l~ •
~1 P,B, Johnson, "Congruences and card

shuffli~," American Mathematical Monthly,
Vol. 63 {Dec., 1956), pp. 7lS-7l9.

\9] R,M. Keller, private communication,
~O} D.E. Iaw.rie, Memory-Processor Connection

l'fetworks, Dept, of Computer Science,
University of Illinois, Rep. 5S1, (Feb,,
19'7.3).

~~ S,E. Orcutt, Computer Qr;ganization and
Algor1 thBls !2£. Very-High Speed Computation,
Dept, of Computer Science, Stanford

fi,,l University, Ph.D. Thesis, (Sept,, 19'74-).
~ D. Passman, Permutation Groups, w. A.

Benjamin, Inc., (1968).
li.3} D, Rahal.ow, "l?arasim," Princeton

'i,;i University, unpublished paper, (19'74).
l:!"!l D.L. Slotnick, et, al., "'I'be SOLOMON

computer," ~ Fall Joint Computer Conf
~Proc., Vol:-22 'U%2), pp. 9'7-107. ••

~5} H,S, Stone, "~llel processing w1 th the
perfect shuffle, "IEEE T.re.ns. Conrput,, Vol.
C-20 (Feb., 19'71), pp. 15.3-161.

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

DESIGN CRITERIA FOR A SWITCH
FOR A

MULTIPROCESSOR COMPUTING SYSTEM

Ian A. Davidson and James A. Field
Department of Electrical Engineering

University of Waterloo
Waterloo, Ontario N2L 3Gl

Canada

Abstract. The characteristics of a switch
connecting the processors and a common memory in
a closely coupled multi-processor computing system
are considered. The switch is assumed to be
controlled from part of the address information,
and the effect of signal blocking is considered.
The performance of the switch is discussed in
conjunction with the processor characteristics,
and the two have to be matched to achieve
efficient processor utilization. An example shows
that for a 64 processor system, the presence of
switch blocking only reduces the processor
utilization by' about 5%.

Introduction

In a closely coupled multiprocessor computing
system where the processors share a common memory
the switch interconnecting the processors and the
memory modules is a critical com~onent. This has
been considered by Miller et alj by Baer2 and
more recently by Chen and Frank • An example of
the type of system under consideration is shown
in figure 1, where the switch makes a connection,
between a number of processors and a multiple port
memory system.

It will be assumed that the memory modules
are identified by part of the data address and
this information will also be used to route the
path between the processors and the memory. Any
switch architecture can be employed, but for
simplicity of operation, the routing through the
switch should be capable of being established
easily from part of the address data. It is
further assumed that control of the switch will be
distributed, with each switch module being
controlled by the address information associated
with the data. There is no external control
system for the switch.

Switch characteristics

The switch will be considered to be
constructed with a number of identical binary
modules, an example of such a module being shown
diagramatically in figure 2. The modules are
arranged to form a Rearrangeable Switching Network
(RSN) as described by Opferman and Tsao-Wu4, The
data path from left to right - representing the
path from the processors to the memory, can
contain either data or address bits. Certain of

110

the address bits are used by each module for its
control. At any time, each module can be in one
of three states:

1. The module is not in use
2. The module is set in the parallel

position, where the inputs A,B, C and
Dare connected to the outputs A', B',
C' and D' respectively.

3. The module is set in the crossed position,
where the inputs A,B,C, and D are
connected to the outputs B', A', D' and
C' respectively.

The path taken by the data through the
switch is determined by the memory address issued
by the processor. This when received by each
module is used by that module to control the
switch position and hence route the signal to the
next layer of modules until a complete path
between the processors and the memory is
established. Data can then be sent through this
path in both directions, the path being maintained
while a block of data is transmitted, the data
being read (or written) from successive memory
locations. The size of a data block and the width
of the data path are important factors in the
design and performance of the switch and will be
considered in detail later.

The switch configuration can be described as
'binary', and it is a compromise between a
completely non-blocking switch (i.e. a single
cross-bar switch) and the simplest configuration
consisting of a single data bus. It also has
the advantage that the routing of the data can be
associated with the binary bits of the address,
successive bits corresponding to the control of
successive levels of the switch. The blocking
characteristics of the switch are important as
this determines the delay that can occur between
the request for data by the processor and the
time before that data is available.

Blocking can arise when a switch module is
already in use by another connection, and there is
a conflict in the state required in the switch.
However with a non-blocking switch design there
will still be blocking due to memory contention,
which will have the same characteristics as
switch blocking.

An analysis can be made of the performance of
such a switch. For a switch with m layers, assume
both 2m input (processor ports) and output
(memory) ports, and assume that an average of p

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

processors are requesting access to the memory.
Assume also that the requested addresses are
random and uniformly distributed and are
uncorrelated between the processors, assumptions
that will be untrue in a practical system, but
are necessary for a reasonable analytical result.
The theory can be extended to the more general
case where there is correlation between memory
references. The number of the requests that are
blocked by the switch is given by the recurrence
relation

-- xi (xi- 1)
where S which is the number of

2(2m - 1)

switches in which both input terminals are in use
and where x. is the number of paths at level i in
the switch, 1 the number of paths through the switch
will be xm:l-l' The probability of a given call
being blocked by the system b(p) is:

b(p) = 1 - xm+l
p

where xm+l is the number of completed connections
through tlie switch. Values of b(p) have been
computed using the above equations, and the result
is shown in figure 3.

When the data transfer between the processor
and memory is complete, the path is released,
starting at the memory side of the switch and
going back to the processor. As soon as a
switch module is released, if it is blocking
another path, it is switched to enable routing of
the previously blocked path. The finite blocking
probabilities show up as a delay in the connect
time. The time taken to transfer data is the
sum of three components, i.e.:

TSWITCH + TMEMORY + TBLOCKING

where TTOTAL is the total time between the
the request for data and its
availability

TSWITCH is the time taken to route the signal
through the switch

TMEMORY is the time to access memory in the
memory block

TBLOCKING is the extra delay due to blocking in
the switch

Processor Characteristics

In order to assess in more detail the
performance of the switch, more consideration
must be given to the overall system, in particular
to the configuration of the processors. This will
determine the optimum width of the data path and
the average size of the data blocks being sent
through the switch.

It has already been established that delays
can occur when a processor requests information
from the memory, but that once a path is

111

established data flows continuously at a rate
determined by the technology. This implies that
for maxillll.lm processor utilization the tasks
performed by the processors should be at a 'high'
level, i.e. should contain sufficient data to
enable the processing time for an individual task
to be long compared to the time taken to establish
a connection in the switch.

Various typical macro-processor tasks can be
identified, the following are some examples:

a) Arithmetic processing sequence
b) Communication data processing

(communication protocol)
c) Output data processing (Format)
d) Sorting and Hashing routines
e) Search programs
f) Matrix operations (i.e. inversion)
g) Transforms (FFI etc)
h) Analogue Simulation (differential

equations etc).

The processors would therefore require local
memory, both for the data and for local
instructions. These memories should be of high
speed and matched to the technology used in the
processor.

The processor local instructions would be in
three categories:

1. Instructions and tasks that are
frequently used. These would be stored
in Read only memory (ROM) , and would be
available for use at any time.

2. Instructions that have a high probability
of being used, but are stored in Read
write memory (RAM) • These would normally
be available for immediate use, but which
could be overwritten if the memory space
were required for specialized
instructions.

3. Specialized instructions that are
infrequently used, and would normally
have to be loaded from the main memory
at the start of each task.

There would normally be a data transfer at
the start and end of each task. However the data
would be available in the processor memory for the
subsequent task if required.

Data format

The format for the data has to be consistent
with established computing practices. The most
usual data 1 tmits' are characters, integers and
real numbers, and characters are usually assigned
8 binary bits. However any data format should
easily be expandable to include in one extreme
binary bits, and in the other extreme double
precision and complex numbers.

The data block would be preceded by a header
that would include bits to indicate the nature of

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

the data being transferred and the size of the
data block. This is shown in figure 4.
Furthermore the data and the header should be
easily subdivided into 'words' for parallel
transmission down the data path. The cost of the
switch will be proportional to the width of the
data path, whereas the time to transfer data will
be inversely proportional to it. As a compromise
three possible configurations are shown in the
table in figure 5: - a data path of width 4 with
a record size of 2060 bits, or data path of width
8, with record sizes of either 136 or 32784 bits.
The total transfer time is shown in terms of the
factor TN, which is the time interval between
successive data words in the data path. This will
probably be determined by the design of the
memory, but should be matched to the technology
used in the switch, as well as to the rate at
which the processor can accept the data.

The block size required by the processor
tasks outlined above can be estimated.
Preliminary investigation shows that the record
size of 32784 bits (32768 data bits) would
probably be optimum for the tasks outlined for
the processors.

Optimization of the system

It is now possible to collect these facts
together and calculate the overall performance of
the system. It is considered that there are
sufficient tasks available to keep all the
processors active continuously, and the problem
is to calculate a figure of merit that describes
the utilization of the system.

A given processor will take a time TTASK to
complete a task, at which point it will access the
main memory, and require a time TTOTAL to get more
data before it can continue processing. Now the
quantity TTOTAL contains the term TBLOCKING, which
is the time the processor has to wait while other
units are accessing the memory. TBLOCKING can be
calculated from the probability of a request being
blocked b(p) and the time taken for tasks TTASK

TBLOCKING = b(p) x TTASK

It is also possible to define a factor R
which is the proportion of time for which a
processor is executing a task. R can be derived
in two ways:

R=l-E.
2m

from the probability of the port being used

and R = TTASK
-"--"-----
TTASK + TTOTAL

from the time taken to complete tasks, then

TSWITCH + TMEMORY

TTASK

1 - b (p)

2m /p - 1

112

and this is a function of p. This expression can
be used to calculate the ratio of the time to
propagate signal through the switch together with
the time to obtain data from the memory
(TSWITCH + TMEMORY) to the time for the processor
to complete a task. Values for this ratio have
been calculated, and some of the results are
shown in figure 6. In this values are given for
different size switches,m 4 to 8 (zm ranging from
16 to 256) in which the processor utilization is
assumed to be 0.90 and 0.95.

Discussion of results

The results have shown that the utilization
of the processors in a multiprocessor system will
be reduced compared to a single processor system
due to blocking in the switch, but this 'blocking'
will also be present in a non-blocking switch
configuration due to memory contention. It has
also been shown that it is possible to increase
the processor utilization to as near one as
required by increasing the task time (TTASK)
compared to the access. time TswITCH + TMEMORY·
It should be noted that TsWITCH represents the
time for a memory request to propagate through
the switch, and as it does not include delays
due to blocking, will be small. TMEMORY however,
is the time taken for the transfer of data in or
out of memory, and can be significant if the size
of the data block is large.

The results can be illustrated by a practical
example. For a system with 64 processors, i.e.
m = 6, if the average data block size is 2000 - 8
bit words, being transferred at a data rate of one
word every 50 nanoseconds (TN), the value of
TMEMORY would be 100 microseconds. If the average
task were 2.3 milliseconds, the value of R would
be 0.90, and if 3.7 milliseconds, R would be 0.95.
In these two cases the average number of
processors requesting use of the switch at any
time would be 5.8 and 3.2, and the blocking
probability 0.054 and 0.025 respectively. This
example illustrated the reason for assigning
processor tasks to as high a level as possible.
A task lasting 4 milliseconds would correspond to
about 5000 machine instructions, which corresponds
to the complexity of the tasks outlined under
processor characteristics.

Various approaches can be made to reduce the
task time and still maintain a high processor
utilization. The switch can be made more complex
in order to reduce the blocking probability in
the switch. Also the number of menK>ry ports could
be increased so as to reduce the incidence of
memory contention. The above analysis is based on
the use of random memory addressing. However the
incidence of memory· contention could be reduced if
the memory allocation was ordered correctly.

Conclusion. The performance of a switch
for use in a multiprocessor system has been
discussed, and various properties of such a
system presented. It has been shown that a high
processor utilization can be achieved under
realistic conditions.

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

No consideration has been given in this
paper to the allocation of tasks to the
processors, the introduction of interrupt
facilities or the inclusion of input/output
devices, This is being considered separately,
but it is not expected to change significantly
the concepts presented in this paper.

References

1. Miller, James S. et al, "Multiprocessor
Computer System Study-Final Report,"
Intermetrice Inc., Cambridge, Mass March
1970.

Processors Input
Lines Switch Output Memory

Lines

Figure 1. System configuration

A
B
C'
D'

-....:: - - - =--
--.::. =----===- -==- -...__- .;_ --= =----=- - --=- ,;:;-_

A'
B'
c
D

Figure 2. Example of a switch module

Probability that a given
request will be blocked.

0.4

0.3 ___ _

2 4 8 16 32 64 128 256

Number of lines in use. Figure 3.
Blocking probabilities

On • , n Bit vector
100 xxx } 101 x x x Processor instructions
110 x x x
lllOn •• n Character string
llllOn , n Small Inte_g_er vector
lllllOn , n Vector of Integers or Real number~
llllllOn , n Vector of Double precision or

cq!!!E_lex numbers
lllllllOn • n Double precision complex

n . • • n denotes a binary number giving the size
of the data block
Figure 4 Proposed format for the data header.

113

2. Baer, Jean-Loup, "Large Scale Sys terns,"
Chapter 5 in Computer Science, Wiley­
Interstate, New York, 1972.

3. Chen, C,J, and Frank, A.A. On the
Programmable Parallel Data Routing Networks
for Multiple Element Computer Architecture,
Proc. 1974 Sagamore Conf. on Parallel
Processing.

4. Opferman D.C. and Tsao-Wu, N.T. On a class
of Rearrangeable Switching Networks, Bell
System Technical Journal, No, 50, May-June
1971, pp. 1579-1618.

!Width of data path 8 4 8

Record size (bi ts) 136 ~060 32784
Binary bits 128 ~048 32768
Characters (8 bits) 16 256 4096
Small Integers 8 128 2048
(16 bits)
Integers and Real 4 64 1024
(32 bits)
Double Precision 2 32 512
and complex (64 bits)
Double precision 1 16 256
complex

Transfer Time

TMEMORY 17 ~ 515 TNi 4098 TN

Figure 5. Possible configurations of
data blocks

bits

Ratio
.031---------1----_...,.-+-------+--~---r

TSWITCH + TMEMORY

TTASK
.021-----+----+----"~+----;·

16 32 64 128 256

Number of processors 2m

Figure 6. ratio of Switch and Memory delays to
Task delay to achieve 0.90 and 0.95 processor

utilization.

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

A CELLULAR DATA MANIPULATING ARRAY

I-Ngo Chen
Visiting Professor

Department of Electrical & Computer Engineering
Syracuse University
Syracuse, NY 13Zl0

Summary

A cellular array for realizing data manipula­
ting functions and general switching functions is
presented. The basic cell of the array is similar
to the comparison element of Batcher's sorting
network [l]. Fig. 1 shows the basic cell and its
state diagram. A cellular array is composed of
identical cells arranged in a rectangular or squa­
re grid. Each cell in the array can be set ini­
tially to one of the 4 states. Since the cell
covers those proposed by Akers [Z], Kautz et al.
[3], and Kukreja et al. [4], the array can be used
to realize any switching function. Also, the
array can be decomposed into Z or more regions and
a faulty cell can be detected and isolated.

B

z

x

x=A
z=B

A=B

Fig. 1 The basic cell and its state diagram

For data manipulating, the control windings
are illustrated in Fig. Z.

c9 cl c3 cl c3 cl

C5 ClO c2 c4 CZ c4

c7 c6 c9 cl c3 cl

c5 cs c5 c10 CZ c4

c7 c6 c7 c6 c9 cl

c5 cs c5 cs c5 ClO

Fig. Z Control Windings for data manipulating

The control function for shuffle is:
c1=c3=c5=c 7=c9=0

Cz=C4=C6=Cs=C1o=l

or interchanged;

for take-even:
C1=C4=C5=Cs=C1o=O

Cz=c3=c6=c7=c9=1

or interchanged;

114

for duplication:
c1=cz=c3=c4=c5=c6=C 7=Cs=l

c9=c10=z;

for merging:
C1=C2=C3=C4=C5=C6=C7=C3=C9=C1o=A;

For compression and expansion, the skeleton vector
has to be used as input to the top of the array.
For compression, the control function is:

c1=cz=C3=c4=c5=c6=c7=Cs=l

C9=C10= •

For expansion, the control function is:
C5=C6=C7=Cs=C9=C1o=A

c1=cz=c3=c4=1

and a proper control sequence has to be applied.
For sorting, shift, and flip, only the lower left
triangular region will be used. All the cells
within the region will be set to initially while
those cells along the slant line are set to O.
For shift and flip, a control sequence has to be
applied afterward.

Compared with the Batcher sorting network,
our array has the same cell complexity. But the
sorting algorithm employed in our array requires
far more cells than those by Batcher's. The trade­
off is uniform intercell connection and other data
manipulating capability. Compared with Feng's
data manipulators [5], the disadvantages of our
array are in cell complexity and the number of
cells required. The advantages are, again, uni­
form intercell connection and other computing
capability like switching function realization and
sorting.

References

[l] Batcher, K.E., "Sorting Networks and Their
Applications", AFIPS Proc. 3Z, 196S, pp. 307-
314.

[Z] Akers, S.B., "A Rectangular Logic Array",
IEEE Trane. Computers, vol. C-Zl, No. 8,
Aug. 197Z, pp. S48-S57.

[3] Kautz, W.H., et al., "Cellular Interconnection
Arrays", IEEETC May 196S, pp. 443-451.

[4] Kukreja, N. and Chen, I.N., "Combinational
and Sequential Cellular Structures", IEEE
Trane. on Computers, vol. C-Z2, No. 9,
Sept. 1973, pp. Sl3-SZ3.

[5] Feng, T.Y., "Data Manipulating Functions in
Parallel Processors and Their Implementations",
IEEE Trane. Computers, vol. C-23, No. 3,
March 1974, pp. 309-31S.

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

A TWO DIMENSION PIPE-LINED PROCESSOR

FOR COMMUNICATION IN A PARALLEL SYSTEM

V. Cordonnier
departement d'informatique

Universite de LILLE
FRANCE

Abstract -- We present a two dimension
network composed with identical cells. It
gives good communication performances between
a ~reat number of processors or various

units into a parallel system. Automatic
routing of data along the network is done by
a pipe-lined organization. Pamllelism of
communication allows a very high rate of
data transfer and a low transfer time.

Introduction

The ability for fast and easy communi­
cation seems necessary within large parallel
systems. The management of a set of diversi­
fied units, the access control into distribu­

ted memories and the use of new languages
with parallel capabilities requires perma­
nent and numerous mouvements of data.

The communication tool becomes as
important as memory,arithmetic and logical
unit or input and output controller. Even
more, it is the link between them and has to

bbe considered as an universal interface of
the whole system.

A first family of solutions consists
in mutiplying independant and specialized
branches. Consequently,this leads to a

developpement of an horizontal micro­
programming technic : A set of different
fields insures commands for groups of

independant communication branches .
However, there is a limit due to synchroni­
zation problems into a large amont of

independant activities.

Bus solution represents a second family
of devices. One bus can serve a number of
different units in spite of a serial distri­
bution of its tasks. Its data rate is limited
by technical capabilities of the used
circuits. Moreover,the conflicts and prio­
rity management reduces its performances.

The ideal characteristics for a com­
munication tool appear to be the following

ones:

115

I. User's point of view. From a strictly
functional point of view,a communication
processor is considered by users as a black
box with as many inputs and outputs as neces­
sary. Moreover,it it is able to recognize
adressing commands and to perform routing
of data according to these commands.

2. Tranparence. An exchange of data between
two units and passing through the communica­
tion processor must take place exactly as if
these two units where directly connected to
each other.

3. Simultaneity. If many units require the
services of the communication processor at
the same time,it should be possible to serve
all their demands instantaneously, The most

usual way of communication into the system is
" one unit towards one other"; other modes as
" one unit towards many others" may be obtai­
ned by repeating the first one according
various rules. So the rate of the departures
and the rate of the arrivals are equal.

4. Assynchronism. At any time the communica­
tion processor has to accept a demand of ser­
vice for a data transfer from any unit and
to move this data immediatly towards any
other one.

5. Modularity and extensibility. The units
within the system must be of various kinds
and interchangeable. So, interface between
them and the communication processor must
be standard. The number and the nature of
these units can be altered just by adding
new modules to the existing set of circuits
into the communication processor. New modules
are them considered as the other ones.

6. Speed and capacity. The time necessary for
transmission of a data' from a unit to another
one must be short. Tipicaly il will be the
same as the access time of a main memory into
a classical system. The capacity of transmis­
sion is a direct result of the speed and of
the level of simultaneity • For a speed of
one micro-second per word and the possibility
of ten simultaneous transfers,the capacity
is of ten mega-words per second,

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

The STUD system

The colilillunication processor we are
presenting now has been studied for a system

gathering one or several hundred of indepen­
dant units of anay kind. Its name is STUD
(Systeme de traitement a unites distribuees)

With such a number of users, the entire
simultaneity cannot accept a direct connection
between inputs and out puts. Each connection
should require too much circuits and the

cost should be too high.

We have be driven to study a pipe-lined
solution inside which the transmission is
ensured by intermediate cells· with memory
capabilities. Every cell takes part to one
path for the propagation of data from input
toward output. Switching operations on trans­
mitted data are performed all along their
way.

A. direct solution must be prefered. It
uses special intermediate circuits all along
the route of data. In that way,intermediate
processors or units are not affected by the
exchange (fig la, lb)

processors or units

cells of the communication
processor

Fig la: Direct solution

processors or units

cells of the colilillunication
processor

Fig lb: Indirect solution

Another consideration has directed the
choice of the solution: Adresses generation
command and analysis must be simple. Indeed
every cell of the structure must be enchar­

ged with the routing decisions into its own
switching possibilities. For rapidity,micro­
progralililled analysis of adresses has been
excluded and hard-wired solution seems

absolutely necessary.

116

Among simple stuctures,the array has
been adopted because it agrees with linear
modes of adresses construction used into
all data processing organizations. Another
reason is that all the cells are absolutely
identical. This is not possible with some
other stuctures like trees for example.

For a N-dimension array with P cells
in each dimension one may obtain the follo­
wing results:

A- One cell has 2N neighbours.

B- The mean distance between two cells is:

Bl- NP/4 if the array is side-closed,
(opposite cells may directly com­
municate)

B2- NP/3 if the array is side-opened.

With our goal of one hundred users,a
two dimension array seems efficient. For N=2
and P=IO,every cell has four neighbours and
the mean distance is seven.

However,we have examined one-dimension
and three-dimension arrays. The first one
gives good results with about twenty users.
The second one is only justified for thou­
sand of users.

The communication processor is designed
according to the drawing of fig.2

User B

Fig.2 Array communication
I'rocessor

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

With a two-dimension array,every cell
has actually five neighbours: Four cells,
up,down,right and left and its own user.
When it receives a message, it is the only
owner of it. This message and its track
have been lost into the previously crossed
cells. These cells become free for other
messages.

In that way, the whole system runs
like a two-dimension shift register with
local decision of transmission according to
routing rules and priority management.

down cell

Fig 3. Cell's connectiorrs.

Routing rules

They are many possible ways between one
sender and one receiver. The routing decision
is taken for every path by the owning cell.
we have to be sure that this sequence of
independant decisions will be successful.

It would be possible to set connections
between opposite cells of the array in order
to reduce the number of steps for a message.
This interesting possibility has been elimi-
nated because of "dead lock" effects that
appear into closed loops. In addition the

routing rules are greatly complicated.

First we eliminate non-minimal routes:
A minimal route between the sending user I,J
and the receiving user K,L is determined by
a number of steps:

ABS(I - K) + ABS(J - L)

Because of the reduced amont of infor­
mation of a cell,a non-minimal routing should

not be convergent.

117

/
/

/

non-m nimal
,

I I

mii:{ima'l route
routes

Fig 4. _Possible routes into the
communication processor

Then we eliminate adaptative routing for
three major reasons:

A- If the user I,J sends the following sequen­
ce of data to te user K,L:

M1, M2 , M3 ••••• Mj, •••• M1 ;

message M3 may arrive into K,L before message
M1 because of a successful route,Yet,it is
necessary for the receiver to receive this
sequence in the order of departure. So,a
sorting operation would be undertaken after
reception. That produces a loss of time.
More,every message M. ought to contain its
index in the sequencJ. Otherwise this infor­
mation is not necessary: The order of depar­
ture and the order of arrival are the same,

All the messages comming from I,J to
K,L follow exactly the same way in the net­
work and the routing rules are independant
of the state of the cells.

B- Another consideration goes in the same
direction: Good routing techniques result
from a complex analysis about the whole
state of the network, Such analysis is
difficult to perform with hard-wired solution,

C- Eventually,routing techniques may introduce
local "dead locks". In order to suppress
these locks,special procedure of recognition
and decision must be added. They bring a
complication of circuits and a loss of time,

The routing rule we have chosen in the
network is simple:

ALL HORIZONTAL STEPS ARE PERFORMED
BEFORE VERTICAL ONES.

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

with this rule,inter-active tasks are
made easier because qu~ions and answers do

not follow the same route.

Fig 5. Rxamples of autorized
route in the network

When a cell I,J contains a message
bound to a cell K,L,it obeys the following
algorithm:

BEGIN TRANSMISSION PROCEDURE;
IF(J-L)I0,20,30

IO IF CELL(I,J-1)= EMPTY THEN TRANSMIT
TO CELL(I,J-1');
GO TO END;

30 IF CELL(I,J+I)= EMPTY THEN TRANSMIT
TO CELL(I,J+l);
GO TO END

20 IF(I-K)40, 50, 60
40 IF CELL(l+I,J)= EMPTY THEN TRANSMIT

TO CELL(I+l,J);
GO TO END;

60 IF CELL(I-1,J)= EMPTY THEN TRANSMIT
TO CELL(I-1,J);
GO TO END;

50 IF LOCAL = EMPTY THEN TRANSMIT
TO LOCAL INPUT OF USER
END;

This decision rule may be applied to
any message contained into the cell; it is
not necessary to know where it comes from.

As a cell has five suppliers,it may
have five messages during one cycle. It is
possible to apply this algorithm in parallel
over the five inputs and to supply the
messages to the corresponding outputs.

However conflicts may exist between
demands. This point will be discussed latter.

118

Format of messages

A message is the amount of data handled
at a time by a cell of the network. It is
considered as a single word.

This word contains:

I- The data to be exchanged.
2- Adress of receiver. This adress

must be built by the sender,
3- Adress of the sender. This information

is absolutely necessary because one
unit may indertake various exchanges
with several others. Then it has to
know where the answer is comming
from.

Parts I and 2 are issued from the sender,
parts I and 3 are presented to the receiver.

As there is no trace of the route esta­
blished for a message,a long sequence of
data must be divided into individual words.
Each of these words must contain the two
adresses.

I source
adress

Message format

DATA I destin.
adress

in the communication proc.

I destin.
D A T A _ adress

Message format in the sending unit

I source I
adress

Message format

DAT A I
in the receiving unit

Fig.6 Formats of messages

Realization

A cell is divided in two groups of
circuits:
Registers.The registers contain the messages

,of the cell. The logic command will try to
present these messages to:
Ports. A port is the way by the which a
message can leave the cell.

They are five registers corresponding
to the five inputs of the cell;they are five
ports corresponding to the five outputs of
the cell.

According to the previous statements,
we find sixteen possible routes within one
cell between registers and ports.

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

Input and output
registers of
local user

----- ----- --------; ,-----
CELL(I+I ,J) /

I
/ CELL(I+l ,J+I)

Fig. 7 - The cell organization.

Some of these sixteen routes may be
activated simultaneously but.sometime, conflicts
appear when one port is demanded by more than
one register.

The first solution for resolving this
problem of conflicts is to interrogate sequen­
tialy the five registers with regard to the
five possible ports. All registers may be
gathered into a single memory.

In order to get better performances,one
may examine with more care the nature of the
conflicts. The matrix of connection between
registers and ports is represented in fig. 8.

Registers

N
Ports

E

s
w

LOCAL

Fig.8 - Connection matrix.

119

Four cycles only are necessary to eliminate
conflicts. The values in the matrix repre­
sent a possible distribution of these four
cycles . Since every row and every column
does only contains once each cycle number,
conflicts are suppressed as well between
registers and between ports.

This organization is very fast but
registers with simultaneous read and write
capabilities are required.

A clock is distributed all along the
network and so,all the cells run with the
same rythm. During one cycle it may send
four messages and accept four other ones.

Before the realization with hard-wired
circuits,a rigourous simulation of the entire
network was essential in order to valuate
the following points:

I- The total transfer rate of the
corrnnunication processor.

2- The propagation time with regard to
inter-cells conflicts.

3- The risks of saturation.
4- The relative speed of the network's

and the user's circuits and clocks.

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

~ 4 5' G "f g !J IQ II 12. l!J l't 15' ,, 1r Ii Ni.:, og
9 - Distribution of elapsed time CAJc.l.;,

between departure and arrival

The results presented here concern a
network of 64 cells (8 X 8). The first curves
represents the distribution of elapsed time
between the cycle of departure and the cycle
of arrival into rece;ver. This time is a
relative one. It is counted in number of
cycles.

K Is the rate of demands from the cells.
K=0.30 means that during 100 cycles of the
network,the cell presents 30 demands.

The second figure rep'resents the total rate
of transfers. The variable is K. The S para­
meter represents the relative speed of the
network on the one hand and of the users
on the other hand. S=2 means that they are

two cycles of the network during one cycle
of demands.

The most important result of the simu­
lation is that the network cannot be satura­
ted and dead locked. When the rate of demands
becomes highter,cells begin to refuse new

messages and the flow keeps steady.

Simulation has been done for various
networks till 256 (16 Xl 6) and for various
unternal organizations of the cells.

Hard-wired realization.A network with 64 cells
is now under project.A message is a word of
3~ bits: 8 bits for adress of departure, 8
bits for adress of arrival and 16 bits of data.
With actual LSI and MSI circuits,one cell

requires about 30 chips. The processor will
be installed as the back panel of a cabinet.

The only obligation for using circuits is to
interface with the two input and output
registers of the cell into appropriate format.
In addition every user must take out immedia-
tly any message present in its input register.

12

106 words/second

with user's cycle time of Io- 6 second

S=l

--~~~o_._2~0~.3~-o~·-4~o~s'--~o~6~~o~.~7_o~8<--~o:.+L9__,~K

Fig. 10 - Total transfer rate in the
network with three possible
speeds of the circuits.

The users of the communication processor.

From the point of view of the communi­
cation processor,one may characterize three
types of users:

Passive and fast users. Such a unit has been
designed for only one kind of task,always the
same. In addition it can send its response
before the arrival of the next demand. A
typical example is a core or semiconductor
memory. The access time must be shorter than
the cycle time of the network.

Input register of this unit is adress
register or write input,output register of

the unit is read output ot the memory.

This definition possibly agrees with
other types of units such as fast and spe­
cialized arithmetic and logical units or
associative memories.

Passive and slow units. Here too,it is not
necessary to undertake an analysis on comming
messages. They are self-defined, But when the
unit is occupied,other messages may be put
into its input register by the network, This
register will be connected to a push down
stack. If the stack comes to be full, a
"REFUSE" message must be send toward the
demander. ~/O controllers,specialized ALUs,
slow memories belong to this family.

Active units or users. Such a unit is runing
under the control of a program or micro­
pr,ogram. During this activity it will send
demands to passive units or to others active
units. Consequently it may receive responses

120

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

or demands comming from other points of the
network. For this matter we have characterized
two classes of messages:

- Data messages;
- Control messages.
The difference between them appears in

a few bits field of the message. When the
field is zero,the word's other fields are
considered as data. Otherwise,they are taken
as commands.

In the realization four bits are devo­
ted to this field.

According to the organization of the
receiver,the status of the processor and the
value of the field,different actions are
possible:

- Interrupts;
- Start or stop the program;
- Send status;
- Activate DMA if existing;

Conclusion

New directions of investigation. We have
distinguished the project into two parts:

I- A work about the communication processor
itself. The main works are the definition of
some well adapted LSI circuits and a new
simulation program for showing how perfor­

mances are affected by the use of a locality
principle between senders and receivers.

2 - A work about the users. We consider the
STUD communication processor as a tool for
different experimentations about parallel pro­
cessing.

The first one is the study of parallel
operating system and languages.

Another direction is the study of a
permanently adapted system. Units are ALUs,
programm controllers,memories and I/O pro­
cessors. One group of these units is a per­
manent builder. It receives external demands
for jobs and builds "ephemeral" machines
well suited to the character of the jobs.
This organization is specialy devoted to
real time applications.

At least,special applications that claim
a great amount of identical processors may
use the STUD processor; for example,telephone
commutation or radar tracking.

In other respects,we think that the
network structure of the communication pro­
cessor allows easy reconfiguration procedures
to run and circuit failures detection and
correction mechanisms to be added.

So far,communication problems within
computers had found local and specialized
solutions. With the increasing importance
of parallel techniques,we think that it is
essential to develop general tools. This
paper tries to present one solution but
they are many other directions for investi­
gation about this problem.

-o-o-o-o-o-o-o-o-o-o-o-

121

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

THE DESIGN AND IMPLEMENTATION OF A
HIGH/LOW MAGNITUDE SEARCH INSTRUCTION ON PEPE

M. C. DIVECCHIO
Burroughs Corporation

Paoli, Pa. 19301

Summary

PEPE, the Parallel Element Processing Ensemble,
is a highly parall'el content addressable computer,
capable of executing three independent instruction
streams concurrently[lJ. A need was identified in
PEPE for a high speed algorithm to perform a max­
imum or minimum search over a set of data values
in the element ensemble. The algorithm is dis­
cussed in this paper.

Each of the three units in PEPE contain sequen­
tial control logic and a parallel instruction con­
trol unit (PICU). The PICUs each control their
respective third of each processing element (PE)
l?J. The PE contains three independent processors,
two of which are able to perform this search func­
tion. Each PE contains an Element Activity (EA)
flip-flop which controls its participation in this
operation. PEPE also includes a set of logic
called distributed logic. This logic is not con­
tained in any one PEPE unit but is spread over the
control unit and the element bays. The comparison
logic involved in the search instruction is this
type of logic. The two search instructions are
Select Highest and Select Lowest (SH/SL). The
SH/SL instructions execute as follows: in the set
of active PEs, reset element activity in each PE
whose "A" register contains a nonmaxial/minimal
value relative to the set of active PE. This
value comparison is done for the set of PEPE
integer or normalized floating point numbers [3.J •

The algorithm executes in the AU and the A¢U
and requires a maximum of 35 100 ns micro-steps.
Execution consists of two parts, Conversion and
Search. The first micro-step of SH/SL converts
the set of values to be compared from the valid
set of PEPE 2 1 s complement number system into an
ordered set of operands. This conversion is a
mapping of PEPE numbers onto a 32 bit pure magni­
tude number line. In the case of Select Highest,
the largest (most positive) PEPE number is con­
verted to all ones and ·the smallest (most nega­
tive) PEPE number is converted to all zeros. For
Select Lowest the mapping is reversed. The con­
version is done in the ALU of the element. Fol­
lowing this mapping, each element contains a value
in pure 32 bit magnitude representation with the
same relative "value" as the original PEPE number.
All that remains is to compare this value in all
active elements and leave the element(s) with the
maximum/minimum value active.

This work was supported by the Ballistic Missile
Defense Advanced Technology Center (BMDATC),
Huntsville, Alabama, under Contract No.
DAHC60-73-C-0060.

122

The basic principle behind the search is as
follows: two bits of the converted value in each
PE "A" register are decoded into three signals
named A, B and C and are gated out of the PE and
into the Signal Distribution System (SDS). In
the SDS each of the three lines are "OR"ed
together with the corresponding lines from all of
the active PEs. The three outputs of the final
OR gates are called the X, Y and Z lines and are
sent back to every element. The element then
compares its local A, B, C lines with the global
X, Y, Z lines and any elements whose ABC lines
indicate its 2 bits are less than the XYZ lines
show for the entire system, will reset its ele­
ment activity.

When a and b are the two bits being examined,
the equations for the search lines and reset EA
function are:

A = ab
B = ab
c =ab

RESET = Ax + X'BY -+ ABcZ

The PICU does not directly participate in the
actual search. It sends controls to the elements
directing the element to generate the A, B and C
lines, to do the mapping, to compare the X, Y and
Z lines and to reset the element activity if the
compare so indicates. The PICU can end the
search early. If during the execution of the
search instruction, the element activity count
goes to one, the PICU terminates execution of
the instruction. This early end is possible
because, if there is only one element left, it
has the highest or lowest valued "A" register in
the set of active elements.

References

11: J. A. Cornell, "Parallel Processing of
Ballistic Missile Defense Radar Data with
~", IEEE COMP CON 1972 Digest.

!2 1 Alf J. Evensen and J. L. Troy, "Introduction
to the Architecture of a 288-Element PEPE",
1973 Sagamore Computer Conference on
Parallel Processing, 1973.

3 PEPE System Functional Design Specification,
Vol. II, Hardware Specification, System
Development Corporation, Revision D,
August 1974.

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

THE ASSOCIATIVE LINEAR ARRAY PROCESSOR

Charles A. Finnila
Data Systems Division

Hughes Aircraft Company
Culver City, California 90230

Summary

The Associative Linear Array Processor (ALAP)
is designed to make very large associative mem­
ories practical. (See reference [1 J for a survey
of associative memories.) In order to achieve
this goal, many techniques are used. The data
storage is in shift registers. The arithmetic and
data transfers are bit-serial. Arithmetic and
control logic are combined with each data storage
shift register to form a word cell. The word cells
are fabricated using metal-oxide-silicon (MOS)
technology to form a type of large scale integrated
(LSI) circuit. Enough matching and arithmetic
capability is included to service large, real time
data bases within ALAP memory. Exact match and
arithmetic limit match capability is provided as
well as all of the basic arithmetic operations,
including square root. Electronic fault isolation
is provided so that defective word cells may be
deactivated and will not interfere with the use of
other good cells in the array.

The basic ALAP configuration is shown in Fig­
ure 1. The word cells form a line of processing­
plus-memory elements. Most data transfer and con­
trol connnunication is by means of the group ofbit­
serial busses, which are connnon to all words. The
extensive use of connnon busses is made practical
by the multi-use chaining channel, which is the
only bus which is not connnon. This provides bit­
serial connnunication between adjacent elements in
the ALAP linear array. The connnon data and control
block interprets the program to be executed in the
ALAP memory array. The program is stored in a
random access program memory.

Like the other resources of each word cell,
the current function of the multi-use chaining
channel is determined by the combination of the
state of connnon control busses and control flag
flip-flops in each word cell. In general, differ­
ent words will be in different chaining channel
modes. Some of the chaining channel modes are

"relay" (word chaining input to chaining output),
"chain" (chaining input to shift register and
shift register to chaining output), "clocked relay"
(chaining input to head flag flip-flop and head
flag to chaining output), and "recirculate" (data
recirculated in shift register and output on chain­
ing channel). Usually arithmetic (using arguments
from either the chaining channel or the connnon
input) and data input and output on connnon busses
are taking place simultaneously with the chaining
channel operations.

Combinations of chaining channel modes have
many uses. For example, when it is necessary to
output (on the connnon output bus) several words
which all match, a marker flag bit can be passed
down the chaining channel (using relay and clocked
relay) to signal the next matching word to be out­
put. As another example, new data can be sorted
as they are loaded into a contiguous block of ALAP
memory cells. A limit match in the field to be
sorted can flag all of the words with that field
equal or larger. These words can then be put in
the chain mode while the other words are in re­
circulate. The words in the chain mode move over
to leave room at the same time that the new word
is loaded into its sorted location.

For more on ALAP see reference [2]. A
multi-cell LSI wafer has been fabricated. A com­
plete processor with software has been built and
tested.

References

[l] B. Parham!, "Associative Memories and Pro­
cessors: An Overview and Selected Bibli­
ography", Proceedings of the IEEE (June,
1973), pp. 722-730

[2] B. F. Meyers, The Hughes Associative Pro­
~· Computer Science Dept,, Univ. of
Calif. at Los Angeles, Modeling and Measure­
ment Note #26 (May, 1974)

WORD WITH
ARITHMETIC

WORD WITH CHAINING
ARITHMETIC

CHANNEL WORD WITH
ARITHMETIC

PROGRAM MEMORY

t:i ...1 zw
:::z .,_...,.
<i:::C
:c:c
(.)(.)

CONTROL AND

WORD WITH CHAINING
ARITHMETIC

DATA

Figure 1. ALAP Configuration

123

BUSS ES COMMON DATA
AND CONTROL

INPUT - OUTPUT

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

PROGRAMMING THE ASSOCIATIVE LINEAR ARRAY PROCESSOR

Hubert H. Love
Hughes Aircraft Company

Culver City, California 90230

Two stand-alone application programs for
the ALAP have been programmed and checked
out, using a symbolic assembler and a func­
tional simulator, both of which execute on the
XDS Sigma 5 computer. One of these is a
track-while-scan program which performs cor­
relation, association and track prediction. The
second, described here, is a fact-retrieval
demonstration program. This program retrieves
and outputs the names of all items which are in
a given set of attribute-value relationships with
other items, as defined by a query input by the
user.

The data base, resident in the ALAP mem­
ory, is in two parts. One of these consists of
a set of records, called "A-V records"· Each
record consists of a subject item and all of its
attribute-value item pairs. Each distinct item
in an A- V pair is also the subject of a record,
thus making the file structure complete. All
items are represented in these records by fixed­
length binary "item numbers. " The second
part of the data base is a directory which corre­
sponds each item number with an alphanumeric
"item name" of arbitrary length for represent­
ing the item to the user.

Figure 1 shows two entries from a sample
directory. The first and last words of an entry
contain the item number for the entry. The
intervening words contain the item name, di­
vided into segments of seven {or fewer) charac­
ters. The eighth {last) character position in
every directory word contains a tag denoting
the top header{&), bottom header(#), first
item name segment('~), last (or only) segment
($), or intervening segment {@).

Figure 2 shows two sample A- V records
having as subjects the two items of Figure 1. The
last word of each record, tagged by "%", is the
header word. It contains the item number for
the subject of the record. The other words in
the record, tagged by "+", each contain the
pair of item numbers for an A- V pair belonging
to the subject.

1 0 4 6 & 9 1 0 7 6 3 6 +
CATbbbb $ 2 7 2 3 +
1 0 4 6 # 3 9 9 1 4 0 2 6 +
2 4 & 0 4 6 &
H I P P !il p ~
TAMUSbb $ 2 4 8 +

2 4 # 2 4 &

Figure 1 Figure 2

124

The user's query consists of a set of pairs
of item names. These are the A-V pairs which
any retrieved item must contain in its A-V
record. The program first substitutes item
numbers in the query in place of the correspond­
ing item names. This is done for each item
name by comparing each successive seven­
character (or less) segment of the given item
name against the corresponding segments of
all item names in the directory simultaneously.
The ALAP memory logic AND' s the results of
the successive comparisons. The chaining chan­
nel simultaneously transfers the results of each
such compare/AND operation from the directory
words at which the operation is performed to the
next following words in the entries. After the
last segment of the given item name has been
thus processed, at most one word in memory
will still be tagged. The chaining channel is
used to advance this tag to the next word, which
is the bottom header word. The item number is
then retrieved and substituted for the item name
in the query.

The program now processes in turn each
A-V pair from the query against the A-V records.
First, a content-addressing operation is per­
formed to simultaneously tag all words in ALAP
memory containing the first A-V pair. Next, a
single chaining channel operation transfers the
flag settings from all tagged words to the cor­
responding header words, where they are saved
in one of the flag bits. This entire process is
then repeated for each of the remaining A-V
pairs in the query, except that the flag settings
denoting the results of the comparisons are
AND-ed with the flag settings previously saved
at the header words, the results replacing the
latter flag settings.

After the last A-V pair has thus been proc­
essed, the only words still tagged will be header
words for the items satisfying the query. The
program now retrieves each tagged item number
and makes a single comparison against the direc­
tory. This locates the top header for the cor­
responding directory entry. The item name is
then retrieved, a segment at a time, and output
to the user.

The program does not perform modification
to the data base. However, the chaining channel
can be used to shift the contents of any specified
set of contiguous words any desired distance in
a single operation, exactly as though they con­
stituted a single long shift register. The exe­
cution time for such a shift depends only on the
length of the shift, and is independent of the
number of words involved. This operation can
be used to open space in the middle of a record
or between records or entries for the insertion
of new data.

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

ARCHITECTURE FOR A HIGHLY RELIABLE
PARALLEL COMPUTER SYSTEM

W. W. Gaertner
W. W. Gaertner Research, Inc.
Stamford, Connecticut 06903

Summary

The work described in this paper had
the objectives of determining (1) what
levels of performance can be achieved in
a parallel-processor computer system mak­
ing extensive use of off-the-shelf build­
ing blocks in main-stream technology; (2)
what architectural features would make
such a computer system highly fault tol­
erant; (3) what architecture would maxi­
mize processing speed per unit cost.

The study resulted in the following
conclusions:

Most applications which benefit from
the high throughput of the parallel pro­
cessors also require a mass-memory system
of high capacity and very high data­
transfer rate. To achieve highest
throughput and hardware utilization, the
architecture should allow "total-activi­
ty parallelism" of the hardware, in the
sense that e.g. the execution of an in­
struction in the ALU, the fetching of the
next instruction, the fetching of the
next data, the storing of the previous
outputs from the ALU, the rearrangement
of data in the memory, performance moni­
toring, fault location and recovery, all
occur simultaneously. At the same time,
the rates of all activities should be
matclleClto each other for a given class
of algorithms.

Using these guidelines, a parallel
computer has been designed [l] which is
organized into a Control Computer Complex
(CCC), a Processing Element and Data
Routing Element Array (PE&DRE Array) and
a Mass Memory System (MMS). The Control
Computer Complex is an off-the-shelf mini
or midicomputer with standard peripherals.
It is made triple redundant, if necessary
to achieve syste~ availability specifica­
tions [2]. The parallel Processing Ele­
ments (PEs) carry out all parallel and
associative computations and are imple­
mented by off-the-shelf microcomputers
with certain significant modifications.
The Data Routing Elements (DREs) provide
simultaneous high-speed communication
capability between all PEs, and allow a
pipeline operation of the machine. The
Mass Memory System (MMS) is also organ­
ized into parallel modules, implemented
by off-the-shelf disks and/or CCD memo-

125

ries. A Mass-Memory Buffer/Multiplexer
matches the mass-memory transfer rate
to the PE processing rate. With an
instruction rate of 0.25 to 4 MIPS (16-
bit word) per PE (depending on internal
hardware implementation) computer systems
between 32 and 1,024 PEs will achieve 8
to 4,096 MIPS. The mass-memory transfer
rate is 1.2 Mbytes/sec per disk module
or as high as 40 Mbytes/sec per CCD mod­
ule.

The architecture achieves very high
reliability and availability through the
use of redundancy, built-in switchable
spares [3], [4) and on-line maintenance.
Specifically, in the PE&DRE Array there
are two spare PE&DREs assigned to each
group of 32 PE&DREs and one spare is pro­
vided for every 8 Mass Memory Modules.
If faulty modules are replaced every four
hours, a system with 128 PEs (32-512
MIPS) and 32 Mass Memory Modules has a
reliability, at 20,000 hours, of 0.9817
times the reliability of the Control Com­
puter Complex.

[l]

[2]

[3]

[4]

References

W.W. Gaertner, D.B. Ellingham, Jr.,
L.T. Fiore, C. Hung, R.J. Tolmie,
Jr. and W.M. Schreyer, Architecture
for a Highly Reliable Parallel Com­
puter System, W.W. Gaertner Re­
search, Inc., Final Report under
Contract F30602-72-C-0462 (June
1975)

W.W. Gaertner, D.B. Ellingham, Jr.,
L.T. Fiore, C. Hung, R.J. Tolmie,
Jr. and W.M. Schreyer, Computer­
Aided Design of Digital Systems with
High Availabih ty and Marntainab1li­
!}r, W.W. Gaertner Research, Inc.,
Final Report under Contract F30602-
73-C- 0304 (Nov. 1974)

W.W. Gaertner, T.C. Booth,
F.L. Hajdu and R.A. Reiss, Multi­
function Module Design for Improved
Logistics Support, W.W; Gaertner
Research, Inc., AD Nos. 886485L and
886486L (June 1971)

W.W. Gaertner, ed., Adattive Elec­
tronics, Artech House, nc., (1973)
279 pp.

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

PARALLEL PROCESSING IN A CELLULAR LOGIC ARRAY

D. R. Smith, K. S. Lin and Y. S, Shen
Department of Computer Sciences, S.U.N.Y.

Stony Brook, N.Y. 11794

Cellular logic has been studied for a number
of years as an attempt to anticipate and exploit
the peculiar characteristics of integrated circuit
technology.

The actual construction of a hardware model
forces a confrontation with any inherent weakness­
es of theoretical proposals [2, 3, 4] as well as
providing. an experimental laboratory with which to
study the software appropriate to such· an archi­
tecture.

A prototype cellular array implemention
with the proposed cell model shown in Fig. 1 (a)
is currently under construction in the Department
of Computer Sciences, S.U.N.Y. Stony Brook. The
cell model here is a campramise designed to avoid
basic performance limitations of those in [2] and
[3]. The internal control c1 offers a combination
of semi-permanent and dynamic control of the cells
in the array. All the functions inside a cell are
realized by using a 256x4 PROM and a Dual D-type
Flip Flop as shown in Fig. 1 (b). A design for a
microprogrammed controller which attaches to the
direct memory access bus of a PDP-15 computer is
shown in Fig. 2. The cellular array itself is
arranged in two 18-bit wide and 1-bit tag column
sets. These are necessary to serve functions an­
alogous to the AC-MQ registers and Link of a con­
ventional computer for arithmetic operations, and
act as key, tag and data field in the associative
operations. A latch register and two majority
gates per row are used to offer both external and
internal feedback control over the horizontal
control and input lines, CH and Z0 • Vertical
control lines, (Cy) and clock lines (Pl., P2) are
grouped and controlled in zones by bits in a
microprogram instruction register (MIR). The
vertical control/data lines (CD) are used as a one
way direct access bus to every row in the array.The
array is paged into suitable size to reduce the
cycle time of array operations. A selection of

Anpemlix . ·

.~....:-~;;e.ti;,~~-,.---~.::"P F'actor~-
oing Furst Shift I/O

cct'Or"Addie;1-,-----'-'-.-
& Mult:ivlicatfon a K

. ec1ir'reiiCe··Iel8:1.i<i"n-o--+-------·-l

Addition-;;,ecurr02nce a K
D1noniiaJ. C<Jefffoien
Fa'ctortal Fu:1ction

oK
o.K/1011,,_i'_· __ .
alogi:

S)'l'!bC':r-Ta"~----l-:-~::~-~-o-~---1
l-H-:f-st-og_r_om_::s ____ -.JL..>0-oK_l_og_

2
_K _____ I List Processing

(substring search)

• K is p:.-oport:ional to the number o'f rov:s

..

array algorithms has been microprogrammed and
simulated. These algorithms which use extensively
the bulk data processing capability of the array
show a speed-up improvement, as compared with the
best known algorithms in serial computers, which
often exceed the Minsky bound [5]. (See Appendixl,

The above results are based on the current
architectural structure, i.e., the cellular array
is an add-on unit to a general purpose computer,
It is conceivable that more powerful and general
applications could be achieved if the cellular
array were embedded inside the CPU of a computer as
a functional unit or a mixed memory, and function­
ing cooperatively and in parallel with the CPU, It
is observed that a cellular array has essentially
all the bulk -processing capability of the SIMD type
of computer [5]. However, in terms of performance/cost
a cellular array can be much superior to any SIMD
computer.

References

[l] Minnick, R. C,, "A Survey of Microcellular
Research", J. ACM, (April, 1967) pp. 203-241.

[2] Kautz, W. H,, "An Augmented Content-Addressed
Memory Array for Implementation with Large­
Scale Integration", J. ACM, (Jan., 1971) pp.
19-33.

[3] Jump, J. R. and Fritsche, D. R., ''Micropro­
grammed Arrays", IEEE Trans. Computers (Sept.,
1972) pp. 974-984.

[4] Cornel, R. C. and Torng, H. C., "A Cellular
General Purpose Computer" 2nd Annual Sym. on
Computer Architecture, ACM-SIGARCH, Confer­
ence Prodeedings (Dec., 1974) pp. 207-213.

[5] Flynn, M. J., "Some Computer Organizations and
Their Effectiveness", IEEE Trans. Computers
(Sept., 1972) pp. 948-960,

(1t) .Aowa.1 bpl•iu:St:Lon

126

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

THE DESIGN OF PROGRAMS FOR ASYNCHRONOUS MUL TIPROCESSORs(a)

Philip H. Mason
Computer Science Department

Carnegie-Mellon University
Pittsburgh, Pa. 15213

Summary

This research develops both a methodology for
enhancing the design of programs to be composed of
concurrently executable subparts, and a set of tools to
support that methodology. The execution environment
which we shall be concerned with consists of several
processing units operating under the control of separate
instruction streams. Intuitively, when parts of a program
are processed in such an environment, the real time(b)
required to execute the program should decrease<c) . For
this reason, as well as others, much current research effort
addresses program structure for just such a multiprocessing
environment. This paper addresses the task of decomposing
problems for concurrent execution in such a way that the
decompositions are efficient with respect to certain
specifiable performance criteria. The approach is to provide
a set of tools with which a system designer can manipulate
and analyze a program model. The model is then simulated
to predict the performance of a system designed for a
multiple asynchronous instruction stream environment. The
tools are appl-icable to both the early design of a program
and later tuning of a program under construction.

There are several reasons why researchers are
considering multiprocessing and problem restructuring
instead of just building faster computer hardware without
explicit concurrency. First, certain problem applications
overwhelm current and projected technology when
programmed for single .instruction stream computers. An
example is the problem of weather forecasting for any
single place on earth. A second reason is the benefit that
may be achieved, through explicit multiprocessing, in lower
cost for similar comP,utational power. A set of 16
minicomputers can have the same computational power as a
uniprocessor costing 4 to 8 limes as much as the
minicomputer system and may be used to solve problems as
complex as those designed for the uniprocessor
environment. Perhaps the most compelling reason (probably
a consequence of the first two) for wanting to decompose
programs for multiprocessing environments is that soon such

(a) This work was supported by the Department of
Defense Advanced Research Projects Agency
(F44620-73-C0074) and is monitored by the Air Force
Office of Scientific Research.

(b) "Real time" is the time elapsed between the start of
computation and the time the final resuli is available. It
is different from the total processing .time since
operations may be performed concurrently.

(c) This does not always occur. Graham [1] has shown
that adding more processors can incre11se real time
due to scheduling anomalies.

127

environments will be avail.able and it will be important to
use them properly [2, 3, 4, 5).

There are, at present, no guidelines for decomposing a
problem for multiprocess execution. This research is
directed towards answering the following questions:

1. How can interactions among concurrent computations
be modeled?

2. Are the interactions safe, i.e. deadlock free? For
example, can the program arrive at a state in which
one process is trying lo communicate with a second
process w.hile the second process is wailing to send a
communication to the first process?

3. Where will most of the process and communication
activity occur?

4. Where may bottlenecks occur and how may they be
relieved? For example, will the introduction of buffers
or additional processors help?

5. Are there working sets of processes? If certain
subsets of processes tend lo be activated at different
times then fewer processors will be required for a
program.

6. What are the effects of restricting the number of
processors? What are the effects of alternative
scheduling algorithms?

7. How do alternative program decompositions compare
with each other, and can good comparison standards be
identified?

A number of questions relating lo guidelines for the
decomposition of programs for multiprocessors have been
investigated. Previous research has progressed mainly
along two directions: theoretical models of computation [6,
7, 8, 9), and construction tools for multiprocessor programs
[10, 11, 12, 13). The theoretical model that has been
studied the most is the Petri net model [14, 15). The main
draw back in using Petri nets. is that in order to study any
reasonably interesting structures the number of nodes
necessary often becomes very large. Another model of
concurrent computation that explored questions of mean
path time traversal and determinism was the UCLA graph
model [16). A problem ,with this model is that many of the
results that were obtained utilized acyclic graphs. All loops
were expanded by some suitable or es'limated repetition
factor. This property of the model diminished its usefulness
due to the large numbers of nodes that were required.

The present research approaches the decomposition
problem with graph tools, analysis tools, and simulation

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

tools. The graph structure is a directed graph with the
activity of 'its nodes being determined by parameteri;, as
well as by the flow of tokens. A certain amount of analysis
can be performed upon a model and finally a model can be
simulated and data collected concerning the performance of
a particular decomposition. All of these tools exist as an
interactive computer system called STEPPS (Some Tools for
Evaluating Parallel Programs).

The STEPPS model contains two components. These
are a connected directed graph representing potential
communication paths, and sets of attributes which determine
how nodes operate and set other limitations on a model's
operation. There are two types, of nodes in the STEPPS
model: process nodes and link nodes. Process nodes are
only connected to link nodes and visa-versa. Tokens, called
messages, traverse the graph and may be deposited in the
links between processes.

All processing is modeled as occurring within process
nodes. The operations of the process nodes are defined to
be similar t·o . semi-Markov process descriptions. Each
process is composed of a set of states, a set of transition
probabilities between states, and compute limes between
state transitions which are dependent on each intraprocess
stale transition. The slate of a process is identified as the
last input/output operation performed by the process. Thus
each connei:tion between a process and a link node
represents a different process state. Each process has an
initial state.

A link node functions as a finite queue 'for messages
sent by processes and as a queue of requests for messages
required by processes. In addition, a link can be used to
designate delay due to interprocess communication.
Messages are tokens that contain only immediate information
such as which process sent the message and what time it
was sent. There are no other data associated with a
message; not even a message's destination. Each link can
have an initial volume of messages.

It has been shown that both Petri nets and the UCLA
graph model can be subsumed by the STEPPS model [17).

A very important feature of the STEPPS system is the
implementation of an algorithm to test for the existence of
potential deadlocks in the model. This algorithm consists of
a set of graph reductions that preserve the message flow
structure of a model, but ignore the particular process
transition values. The algorithm consists of iteratively
applying a set of four graph reductions to the graph until no
reduction is applicable. If the resultant graph is empty then
the original model represented a safe (non-deadlock)
structure. The reductions are: combine adjacent processes,
combine parallel processes, eliminate states of a process,
and remove single state processes. The algorithm has
been proven correct [17).

The STEPPS system provides features to facilitate
entry, manipulation, display, saving and recalling of a model.
The STEPPS simulation system provides facilities to restrict
the number of available processors and compare models'
performance using a variety of scheduling algorithms. Data
are collected to determine such attributes as expected

128

queue lengths, wait times, process states, number of active
processes, number of ready processes, and working sets of
processes. These data are used to determine alternate
model structures for comparison.

The STEPPS design methodology including the STEPPS
model and interactive system has been applied to several
examples. The two major examples are a multiprocess
Bliss/11 compiler [18) and the Hearsay II speech
understanding system [19). The results of experiments
with these models demonstrate the ease with which these
design tools can be used to predict performance properties
before commitments are made to particular multiprocess
structures.

Bibliography

[1] R.L. Graham, "Bounds on Multiprocessing Anomalies and
Related Packing Algorithms," SJCC, (1972), pp. 205-217.

[2] W. Wulf, and C.G. Bell, "C.mmp -- A Multi-mini­
processor," Proc. AFIPS 1972 FJCC, vol. 41, AFIPS
Press, Montvale, N.J., pp. 765-777.

[3] F.E. Heart, S.M. Ornstein, W.R. Crowther, and W.B.
Barker, "A New Minicomputer/multiprocessor for the
ARPA Network," Proceedings Qf the National Computer
Conference, (1973), pp. 529-537.

[4] S.H. Fuller, D.P. Siewiorek, and R.J. Swan, "Computer
Modules: An Architecture for Large Digital Modules,"
ACM SIGARCH 1.tl Annual Symposium, Gainesville, Fla.
(Jan. 1974).

[5] J.T. Quatse, P. Gaulene, and D. Doge, "The External
Access Network of a Modular Computer System," Proc.
SJCC, (1972), pp. 783-790.

[6] R.M. Karp, R.E. Miller, "Properties of a Model for
Parallel Computations, Determinancy, Termination,
Queueing," SIAM,!,. 8.11.Qh Math.; vol. 14, 116, (Nov. 1966),
pp. 1390-1411.

[7] J.A. Gosden, "Explicit Parallel Processing Description
and Control in Programs for Multi- and Uni-processor
Computing," FJCC, (1966), pp. 651-660.

[8) W.L. Miranker, "A Survey of Parallelism in Numerical
Analysis," SIAM Review, vol. 13, 114, (Oct. 1971), pp.
524-547.

[9) R.M. Keller, "Parallel Program Schemata and Maximal
Parallelism I: Fundamental Results," JACM. vol. 20, 114,
(1973), pp. 514-537. [10) D.A. Adams, "A Model for
Parallel Computations," in Parallel Processor Systems,
Technologies and Applications, ed. by L.C. Hobbs et al.,
(1970), pp. 311-333.

[i 1] D. Parnas, On the Criteria !.Q be Used ln. Decomposing
Systems into Modules, Computer Science Department,
Carnegie-Mellon University, Report (Aug. 1971).

[12) V. Lesser, The Design Qf §l.!l Emulator for ! Parallel
Machine Language, Stanford University, (1972), Ph.D.
Thesis.

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

[13], W. Riddie, The Modeling and Analysis Qf Supervisory
Systems, Stanford University, (1972), Ph.D. Thesis.

[14] C.A. Petri, Kommunication mil Automaten, Translated in
Project MAC-M-212 Report, originally published in
1962.

[15] A. Holt, and F. Commoner, "Events and Conditions," in
Concurrent Systems and Parallel Computation
Conference, ACM, (1970), pp. 1-52.

[16) J.L. Baer, "A Survey of Some Theoretical Aspects of
Multiprocessing," Computing Surveys, vol. 5, •1, {Mar.
1973), pp. 31-80.

[17) P.H. Mason, Design Tools for Asynchronous
Multiprocessor Programs, Computer Science
Department, Carnegie-Mellon University, (1976}, Ph.D.
Thesis.

[18) W. Wulf, et al., The Design Qf an Optimizing Compiler,
(1975), American Elsevier.

[19] R.D. Fennell, HSll: The Asynchronous Version,
Computer Science Department, Carnegie-Mellon
University, (1975), Ph.D. Thesis.

129

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

A CRITERION FOR SYNCHRONIZATION SCHEMES

Robert C. Chen and James E. Coffman
The Moore School of Electrical Engineering

The University of Pennsylvania
Philadelphia, Pennsylvania 19174

Summary

This paper discusses a criterion useful for
judging the range of applicability of schemes for
representing process synchronization. The devel­
opment of this criterion, motivated by a basic
shortcoming of several well known representation
schemes (l] - ~4], raises the issue of capability
of representation schemes as a consideration
separate from other issues such as convenience or
efficiency. ,

The basic limitation of the scope of
representation of these schemes arises from the
fact.th~t though events may be enabled by the
fulfilling of a condition it is never the case
that an event is enabled by the absence of a
condition. A reader - writer system can be des­
cribed [5] which cannot be modelled by any of
these schemes. Kosaraju [6] has shown the same
limitation for Petri nets and the P and V scheme.

To overcome this limitation we simply add a
very simple primitive. The resultant schemes do
not suffer from the limitation. However, it is
clear that there might still be concurrent systems
which cannot be rrodelled even by the augmented
schemes. To argue that this is not the case we
must define the general class of systems to be
modelled and find a convenient scheme capable of
representing all systems in the class. We define
our criterion for representation schemes: a
scheme is complete if it can represent the same
class of coordinations as nondeterministic Turing
transducers, where by "represent" we mean to
generate the same set of "output tapes" for a
given "input tape". This criterion is exactly
_:that developed independently by Agerwala [7].
\Ve have shown [8] that the augmented schemes are
complete in om' sense.

130

References

[l] Anatol W. Holt and Fredrick Corrmoner,
"Events and Conditions," Record of the Pro­
ject MAC Conference on Concurrent Systems
and Parallel Computation, ACM (1970),
pp. 3-52.

[2] F. W. Dijkstra, "Cooperating Sequential
Processes," Prograrrming languages, ed.
F. Genuys, Academic Press (1968), pp. 43-112.

[3] P. Wodon, "Still Another Tool for Controlling
Cooperating Algorithms," Carnegie-Mellon
University Report, (1972).

[4] H. Vantilborgh and A. van lamsweerde, "On an
Extension of Dijkstra's Semaphore Primitives "
Information Processing Letters I, (1972), '
pp. 181-186.

[5] James E. Coffman, "Synchronization Schemes
and Completeness," (Master's Thesis, Moore
School of Electrical Engineering, University
of Pennsylvania, 1975).

[6] S. Rao Kosaraju, "Limitations of Dijkstra's
Semaphore Primitives and Petri Nets,"
Hopkins Computer Research Report #25, (May
1973).

[7] T. Agerwala, "A Complete Model for Represent­
ing ~he Coordination of Asynchronous Process,"
Hopkins Computer Research Report #32,
(August 1974).

[8] Coffman, (1975).

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

A Comparative Analysis of Two Parallel Computation Models

by

Susan c. Meyer
Department of Mathematics
Clarkson College of Technology
Potsdam, New York 13676

Summary

A computation graph, as proposed by
Karp and Miller [l], models parallel
computations by means of a finite labeled
directed graph. Each vertex of the
graph represents an operation and each
edge is interpreted as a queue which may
contain data. Performance of an op­
eration then causes operands to be
removed from incoming edges and results
to be placed on the edges directed away
from the vertex representing that op­
eration. An operation may occur only if
there are a sufficient number of operands
available on each of its input queues.

One of the models studied in this
paper, called a bounded computation
graph, differs in only one respect from
the Karp-Miller computation graph. A
finite, though arbitrarily large, bound
is imposed on the length of each queue.
Then an operation may occur only if there
are a sufficient number of operands
available on each of its input queues
and none of the output queues will over­
flow as a result of the performance of
that operation.

Though imposing a bound on queue
length does indeed restrict the Karp­
Miller model, the class of computations
which can be described within this model
is still quite useful. For if one
wishes to implement the computation rep­
resented by a computation graph, the
lengths of the queues must be bounded in
some way. Furthermore, Karp and Miller
derive a test for the boundedness of
queue lengths in a computation graph,
and it is clear that by making the
imposed bounds sufficiently large, we
may represent within the restricted
model any computation graph having
bounded queue lengths. In addition, it
has been shown [6] that if the restriction
on queue lengths is removed, a compar­
ative evaluation may be carried out along
very similar lines to those presented in
this paper.

It has been observed [3]-[5] that
every finite marked graph [2], [3] may
be viewed as a special case of the Karp­
Miller computation graph. We have
shown that the class of computations
which can be modeled by finite marked
graphs and the class represented by
bounded computation graphs are very
nearly identical. Hence the bounded

131

J. Robert Jump
Laboratory for Computer Science and

Engineering
Department of Electrical Engineering
Rice University
Houston, TX 77001

computation graph and the marked graph
are, effectively, equally powerful
models for parallel computation. This
result is established by showing that
any set of constraints represented by a
computation graph can also be
represented by an infinite marked graph.
Then necessary and sufficient conditions
are given for the existence of a finite
marked graph which is equivalent to this
infinite graph. It is further shown
that when there is no equivalent finite
marked graph, the constraints on the
order of operation occurrence exhibit a
"transient" behavior followed by a
"steady state" behavior, each of which
may be represented by a single finite
marked graph.

References

[l] Karp, R.M., and Miller, R.E., Pro­
perties of a model for parallel
computations: Determinacy, termi­
nation, queueing. SIAM J. Appl.
Math. 14 (1966), 1390-1411.

[2] Holt, A.W., and Commoner, F.,
Events and conditions. Information
systems theory project. Research
Report of Applied Data Research,
Inc., New York, 1970.

[3] Commoner, F., Holt, A.W., Even, S.,
and Pneuli, A., Marked directed
graphs. J. Comput. Syst. Sci. 5
(1971), 5ll-523.

[4] Miller, R.E., A comparison of some
theoretical models for parallel
computation. IEEE Trans. Comput.
v. C-22 (1973), 710-716.

[5] Miller, R.E., Some relationships
between various models of parallel­
ism and synchronization, IBM
Research Report, RC5074, October,
1974.

[6] Meyer, S.C., An analysis of two
models for parallel computation.
Ph.D. Thesis, Department of
Electrical Engineering, Rice
University, December, 1974.

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

ST ARAN COMPLEX
DEFENSE MAPPING AGENCY

U.S. ARMY ENGINEER TOPOGRAPHIC LABORATORIES

Lawrence A. Gambino, Director
Computer Sciences Laboratory

U.S. Army Engineer Topographic Laboratories
Fort Belvoir, Virginia 22060

Abstract: Hardware, software, and applications are described for
a ST ARAN* associative array processor (AAP) that has been in­
stalled by the Defense Mapping Agency (DMA) and the U.S.
Army Engineer Topographic Laboratories (USAETL) at the
USAETL facility in Fort Belvoir, Virginia. STARAN - developed
and built by Goodyear Aerospace Corporation - is now being
used in a stand-alone mode, which will prevail until the end of
1975 when part of the interface to the ETL CDC 6400 sequen­
tial computer is completed. As designed, the ST ARAN interface
to the CDC 6400 is accomplished with a command channel to
the 6400 mainframe and a high bandwidth data channel con­
nection to the CDC's extended storage system (ECS). The ETL
image processing system is connected to ST ARAN through the
CDC 6400. The fact that the CDC 6400 has the high bandwidth
characteristics to match those of ST ARAN avoids the usual host
computer data rate bottleneck that ST ARAN encounters; this
allows a critical review of the cost-effectiveness that ST ARAN
can provide. Applications being investigated include digital

By

Roger L. Boulis, Sr., Development Engineer
Digital Technology Department

Goodyear Aerospace Corporation
I 210 Massillon Road
Akron, Ohio 44315

Introduction

The Defense Mapping Agency (DMA) and the U.S. Army
Engineer Topographic Laboratories (USAETL) have installed a
Goodyear Aerospace Corporation ST ARAN* associative array
processor (AAP) at the USAETL facility in Fort Belvoir, Virginia
(see Figure 1). The equipment, delivered to USAETL in October
1974, included the ST ARAN AAP with four arrays of associative
memory, a parallel input/output (PIO) unit, a 64-track parallel
head disk (PHD), and a variety of peripherals. The installation
was completed and subjected to a one-month availability demon­
stration during November 1974. The STARAN system achieved
an availability figure of 99.58 percent, which was well above the
required 90 percent.

Since November 1974, STARAN has been used in a stand­
alone mode. Thus, programmers have had valuable time avail­
able to develop their programs and familiarize themselves with
ST ARAN. image processing, automated cartography, stero-photogrammetry,

and storage and retrieval.
*TM, Goodyear Aerospace Corporation, Akron, Ohio

Figure 1. STARAN Associative Array Processor at DMA/ETL

132

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

The custom interface unit (CIU) between ST ARAN and the
CDC 6400 consists of two parts. The first part, installed in late
July 1975, is a command channel interface unit (CCIU) that is
capable of transferring data as well as command information.
The second part, which is planned to be installed later, is a data
channel interface unit (DCIU) that will provide an extremely high
bandwidth path between the ST ARAN arrays and the CDC's ex­
tended core storage (ECS) memory.

An interface almost identical to the CCIU between ST ARAN
and the CDC 6400 makes possible the attachment of special image
processing equipment to the CDC 6400.

Figure 2 shows the interconnections of the DMA/ETL
STARAN complex. In the remainder of this paper, the complex
is discussed from the standpoints of hardware, software, and
applications.

Hardware

System Description

Standard STARAN Elements. The heart of the ST ARAN
AAP is the associative array. The array's unique multi-dimensional
access capability allows search, arithmetic, and logical operations
to be performed simultaneously on either all or selected words
of the array. The elements that support the array's operation as
well as the array itself are shown in Figure 3 and are described
below.

• Sequential Controller and Memory. The STARAN se­
quential controller is a Digital Equipment Corporation (DEC)
PDP-I I minicomputer. It performs maintenance and test func­
tions, controls peripherals, maintains job control, provides for
operator communciation between various STARAN elements,
and assembles STARAN programs. Sixteen-thousand words
of 16 bits per word memory are contained within the sequential
controller.

e AAP Control Memory. All assembled AAP control in­
structions are stored in AAP control memory. The several
different types of AAP control memory include magnetic core
memory, solid-state page memories, solid-state control memory,
and host computer control memory. Any AAP control memory
can also exist as a data buffer between various STARAN elements.

• AAP Control. Data manipulation within the four asso­
ciative arrays is performed by AAP control as directed by pro­
grams stored in AAP control memory. Data within each array
may be operated on separately or in parallel as a function of
AAP control. Two 8-bit field pointers and three 8-bit field
length counters control the array address and number of bit
slices to be operated on in sequence. All timing in AAP control
is asynchronous and directly controls the operations performed
in the arrays.

e Associative Arrays. Each of the four arrays contains
256 by 256 bits of multidimensional access (MDA) memory.
The memory is a patented organization that permits word­
oriented accesses, bit-oriented accesses, and accesses with mixed
orientation. In one operation, it is possible to read or write all
bits of one word, one bit of all words, a few bits of many words,
or many bits of a few words. Each array communicates with
three 256-bit registers - M, X, and Y - through a flip (permuta­
tion) network. The M register allows masked writes into the
array. Each bit of the X and Y registers forms a small processing
element whose logic can perform the 16 Boolean functions of
two variables.

e External Functions. The external function (EXF) logic
allows any ST ARAN control element to transfer control infor­
mation to any other STARAN element. The typical STARAN

133

IMAGE
PROCESSING
SYSTEM

GOODYEAR
ST ARAN

Figure 2. DMA/ETL ST ARAN Complex

CORE PAGES HSDB*

PORT LOGIC

OMA

BIO

OMA

BIO

~-1-~~~~~-+-~~~-t-~~~~-EXF

---~ECS

PERIPHERALS·

*HIGH SPEED DATA BUFFER

PIO
CONTROL

Figure 3. ST ARAN Block Diagram

SPARE

PHO

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

connection to a host computer includes the EXF capability to
ensure an efficient connection. Control and status sensing of
EXF's are accomplished by issuing a 19-bit EXF code and re­
ceiving a one-bit sense signal in return.

Standard ST ARAN Input/Output. The standard peripherals
delivered iwth ST ARAN include a cartridge disk drive and con­
trolle~, line printer, card reader, paper tape reader and punch,
and high-speed keyboard printer. Optional equipment includes
magnetic tape transports and keyboard CRT's. All peripherals
interface with STARAN's sequential controller, the PDP-11
minicomputer.

In addition to peripheral communication, STARAN pro­
vides complete facilities for interfacing with other processors.
Figure 3 illustrates these features. The four input/ output (1/0)
buses provided include (1) direct memory access (DMA) bus,
(2) buffered I/O (BIO) bus, (3) external function (EXF) bus,
and (4) parallel I/O (PIO) bus.

The DMA is a 32-bit wide bus for STARAN AAP control
or sequential control to address any external memory. The BIO
bus is a 32-bit bus provided for processors to address STARAN's
memory. The EXF bus is used to transfer control/interrupt in­
formation. The PIO bus is a special bus provided by the optional
PIO cabinet. It is a very wide and fast data bus used for
STARAN array I/O. Up to seven 256-bit wide ports can be
connected directly to seven arrays for the fast movement of
array data. Only four of these ports are utilized as array connec­
tions in the DMA/ETL facility STARAN. One of the remain­
ing three ports is used as a 64-bit wide port to the 64-track
parallel head disk (PHD). In the near future, the sixth port will
be dedicated to a data channel connection between ST ARAN
associative arrays and the CDC 6400 ECS. This will be 240-bit
wide, high bandwidth data channel.

STARAN/CDC 6400 Interface. The STARAN-to-CDC
6400 custom interface unit (CIU) will allow programs executing
in the two machines to transfer commands and data to each
other. The CIU design, shown in Figure 4, consists of:

• A command channel int~rface unit (CCIU), which pro­
vides a command and control interface path between the

CDC
6400

CUSTOM
INTERFACE
UNIT CCIU

(DEC·DRHCO)

ST ARAN
AAP

ECS

TRANSLATORS DATA
DATA BUFFER TRANSFE
DATA PACKER CONTROL

PIO
PORT
CONTROL

PIO
CONTROL
~
~

DCIU

AAP
CONTROL
MEMORY

Figure 4. Block Diagram of STARAN(CDC 6400 Custom
Interface Unit

134

STARAN PDP-11 sequential controller and the peripheral pro­
cessing unit (PPU) of the CDC 6400. It is off-the-shelf, self­
contained equipment that ties directly into STARAN's PDP-I I
unibus and CDC's PPU channel without modification of either.

• A data channel interface unit (DCIU), which provides a
high transfer rate data path connecting one port of STARAN's
PIO module to the CDC 6400's ECS controller.

The CCIU serves as an interprocessor buffer between
ST ARAN and the CDC 6400. Because of the nature of the CDC
I/ 0 system, the CCIU responds to requests from the CDC PPU
and, therefore, is considered passive by the CDC system. The
CCIU connects directly to the 12-bit data channel of the PPU.
Connection to the ST ARAN PDP- I I is via the unibus, a 16-bit
channel. The CCIU contains a buffer to match the data transfer
rates of the two processors. All required packing and unpacking
required by the processors for a maximum data transfer rate is
done by the CCIU hardware.

The DCIU appears to the CDC 6400 channel as a standard
computer coupler. Requests for access to the ECS are initiated
by the DCIU in accordance with transfer parameters supplied
by STARAN. Data are transferred as 480-bit super words
(SWORDS) multiplexed over a 60-bit wide channel on the CDC
side of the DCIU. On the PIO side of the DCIU, 240-bit segments
are buffered into the 256 bit wide PIO port connection. Packing
and unpacking of the 480-bit SWORD at the DCIU are accom­
plished by the hardware.

Interactive Digital Image Processing System. Image pro­
cessing systems, in the past, have been special purpose analog or
optical-electronic hardware. Most of these devices are designed
to handle only one application. Some can handle several appli­
cations. System requirements can change - new applications can
arise. When this happens, expensive equipment becomes obso­
lete. At best, costly, time consuming hardware changes can
marginally upgrade the system.

Digital image processing, on the other hand, offers flexibil­
ity as one of its main advantages. Once the basic hardware and
software systems are developed, only minimal software effort
is required to apply the system to new applications as they
arise. Further, the system can be used to. simulate and analyze
the feasibility of special purpose hardware for various tasks
before any hardware is built.

Data organization and the ability to perform complex
operations with minimized information losses are other attri­
butes contributing significantly to its popularity. For instance,
the digital system can access, sort, and collect data from an
entire imagery data base using some common element as the
search basis. Moreover, any complex operation for which a
definitive algorithm exists can be performed on that data base.
The information losses usually experienced when processing
imagery data can be minimized and controlled if necessary.

However, digital image processing has its drawbacks. Mas­
sive quantities of data play the burdening role. Large images
result in very large quantities of data. These data must be
stored and then transferred to the processing element(s). 'From
the processing elements, the data must be stored one more time
before being displayed or made available as hard copy. There­
fore, when considering an interactive digital image processing
system, transfer rates and processing times must be considered
in detail.

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

Measures are under way at the DMA/ETL STARAN com­
plex to resolve the problems posed by digital image processing.
Very large quantities of data are being stored in the CDC 6400
ECS memory. STARAN will be used as a special processing
element to reduce processing times. Transfer times between
STARAN and the CDC 6400 will be greatly reduced when the
DCIU connects ST ARAN's associative arrays to the CDC's ECS.
Finally, the on-line digital image processing facility will provide
the interactive capability, which is an extremely important as­
pect of image processing. With the DMA/ETL ST ARAN com­
plex, the pattern recognition capabilities of the human being
can be married more closely to the computational power of the
associative and sequential digital computer.

Images from the interactive digital image processing system
(Figure 5) are input to the system from magnetic tape or from
digitized transparencies made on the DICOMED D56. Once
images are in the system, they are stored on CDC's 844 disks.
The CDC 6400 will contain the majority of the processing soft­
ware. STARAN will eventually assume the majority of the
processing load as the software is developed. The interactive
capability results from an operator working through the Tek­
tronix 4014-1 alphanumeric console and the COMT AL image
display unit. Images and optional functions are presented to
the operator, who specifies the function he wants performed.
The CDC 6400 then reads the image from disk, initiates those
functions to be done in STARAN, performs those functions to
be done internally, and sends the resulting image to the COMTAL
for inspection. Hard copies, prints or transparencies of the pro­
cessed imagery data are available on-line by the DICOMED D47
or off-line by copying to magnetic tape for recording on other
hard copy devices.

Performance Figures

General. ST ARAN is a special breed of computer - an
associative processor. Because its architecture is unique to that
of any sequential processor, presenting summarized performance

PDP-11/50

D D
0 0

DODOO

IMAGE 7-TRACK
DISPLAY IMAGE

TAPE

ALPHANUMERIC DIGITIZER
CONSOLE

··@
D "@

CDMTAL IMAGE 9-TRACK
DISPLAY RECORDER TAPE

Figure 5. Digital Image Processing System

135

characteristics might be misleading. Performance can best be
judged when STARAN is compared directly with another com­
puter for cost-effectiveness in algorithm execution. However,
care must be taken when using an algorithm as a tool for com­
parison. Almost always, the algorithm must be recreated to takec
full advantage of ST ARAN's associative architecture. A specific
example of this performance comparison technique is presented
later in the paper. As a start, some baseline performance figures
and detailed characteristics of ST ARAN's major elements are
presented below.

Associative Array. Any STARAN system can have up to
thirty-two associative arrays. Typical array operations with
their corresponding execution speeds are:

Search... 150 nsec/bit slice
Add or subtract 800 nsec/bit slice
Read (multidimensional, 256 bits).... 150 nsec
Write (multidimensional, 256 bits).... 300 nsec

Control Memory. The largest portion of control memory
within STARAN is one microsecond per cycle core memory.
Currently there are 16K words (32 bits/word) that will be ex­
panded to its design maximum of 32K words by Fall 1975.

There are two types of solid-state control memory. The
first type operates at 1 SO nanoseconds per cycle and is referred
to as "page" memory. Three, S 12-word, 32 bits/word mem­
ories make up this page memory. While instructions are exe­
cuting out of any one page simultaneously, new instructions can
be loaded into one of the other two. Page memory may be
doubled in size, if desired.

The second type of solid state memory operates at 350
nanoseconds per cycle and does not offer the paging feature.
It consists of two 512-word by 32-bit memories of ST ARAN
control memory. One is referred to as the high speed data
buffer, the other as the PIO control memory.

Parallel Input/Output. The parallel I/O module was de­
signed to provide very high bandwidth data paths to and from
each associative array. In fact, the PIO module at ETL is capable
of handling an inter-array data transfer of up to 1024 bits in
approximately one microsecond. The transfer involves only
four 256-bit wide ports out of the possible seven to which
arrays could be attached. Of the three remaining ports at ETL,
·one is a 64-bit wide connection to the PHD, one is reserved for
a 240-bit wide connection to CDC's ECS, and one is a spare.

In addition to this high bandwidth capability, PIO control
is also capable of processing within one set associative arrays
while mainframe control is operating within a different set of
arrays. During this mode of operation, both PIO and mainframe
control are operating autonomously.

STARAN/CDC 6400 Interface. As with any computer-to­
computer interface, rapid command and data transfer are of
extreme importance. It was with this thought in mind, that the
ST ARAN-to-CDC 6400 DCIU design was undertaken. The
6400's ECS provides the ideal medium for high bandwidth data
transfers for fast on-line digital processing of ~ata by STARAN.

The ECS memory can consist of up to four banks of l 2SK,
60-bit per word memory. Each bank can be accessed at a 150-
megabit per second rate and linearly adds to the data transfer
capability of the channel (see Figure 6). The maximum data

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

rate capability of the DCIU is 300 megabits per second. There­
fore, beyond two banks of ECS, the bandwidth of the data
channel cannot be increased. ETL currently has only one bank
ofECS.

Since the DCIU is not very well suited to transferring com­
mands efficiently, the ecru provides the necessary direct link
between programs resident in STARAN's sequential controller
(PDP- I I) and those in one of CDC's eight PPU's. The hardware
proper is a DEC DRHCD channel coupler. The minimum effec­
tive transfer rate that will be achieved with the DEC DRHCD
hardware and the associated GAC software is 4.0 megabits per
second. The maximum to be expected is 4.8 megabits per sec­
ond. These rates are achieved by performing DEC "TRAN"
type direct data transfers between the CDC 6400's PPU buffer
and STARAN's bulk core control memory_ Block transfers are
limited to 4K word by 32-bit block. Once begun, the transfer
is controlled strictly by hardware and continues at 4.0 to 4.8
megabits per second until completion of the block.

NUMBER OF ECS BANKS

I 0 I 0 I ® I © I
1111111111111111111111111111 -tt 1-- 100 NANOSECONDS (60-BIT TRANSFER TIME) I r 3.2 MICROSECONDS .,

(1 CYCLE TIME)

Figure 6. CDC 6400 ECS Memory Timing

Physical Description

All major elements of ST ARAN are built using proven
packaging techniques and modular design. These philosophies
are backed up by almost exclusive use of standard, commercially
available, integrated circuits (IC's), regulated power supplies,
laminated power buses, cabling material, and electronic enclo­
sures. The majority of the !C's are Motorola's Emitter Coupled
Logic (MECL) II and MECL I 0,000 series !C's. They are
mounted on multilayer printed circuit boards designed and
built at Goodyear. Goodyear's first multilayered boards were
built eleven years ago. From that point on, GAC has benefitted
from carefully controlled board impedances,,properly terminated
transmission lines, and readily available replacement compo­
nents.

Interprinted circuit board communication takes place over
multilayered backpanels and twisted pair wires with carefully
controlled impedances. Intercabinet communication is via
twisted pair cables contained within the physical confines of
ST ARAN.

Each ST ARAN cabinet is air-cooled, requires standard 220
3-wire, single phase power, and is automatically sequenced up
or down depending on various self-portect features. These in­
clude automatic sensing of undervoltage, under-airflow,
overtemperature, and operator intention conditions. Total
power consumption is approximately 12 kilowatts. Each
ST ARAN cabinet can contain seven "nests" each containing

136

34 printed circuit boards. In the DMA/ETL ST ARAN, there
are a total of 612 printed circuit boards representing approxi­
mately 24,700 !C's.

As shown in the photo of Figure I, the ST ARAN system
at ETL consists of six cabinets (described as follows, from left
to right):

• Cabinet I, PHD control, contains the 64-track PHD and
has provisions for accepting a second system disk drive scheduled
for the Fall of 1975. The controller for the ST ARAN/CDC
6400 CCIU also resides there.

e Cabinet 2, sequential control, contains the PDP-I I mini­
computer, system disk unit, paper tape reader/punch, and one­
microsecond core memory.

e Cabinet 3, AP control, provides all the necessary control
signals for the associative arrays.

• Cabinets 4 and 5, array, contain the four associative
arrays (two in each cabinet). Provisions are made to add an
extra array in each cabinet if so required.

• Cabinet 6, PIO, is the most heavily populated cabinet.
Almost every circuit board slot of every nest is occupied.

System Reliability. Since ST ARAN is relatively new,
it is important to publish the field performance figures that
have accumulated to date. Including the ST ARAN installation
at the DMA/ETL facility, the ST ARAN mainframe hardware
has now accumulated about 20,000 hours of field operation. It
has demonstrated an average availability of 99.8-percent (MTBF
of 702.5 hours and MTTR of 1.2 hours). At the system level,
which includes the peripherals (disks, line printers, paper tape
readers/punches, card readers, and keyboard terminals), the
average availability is 99.3 percent (MTBF of 288.4 hours and
MTTR of 1.95 hours). The MTBF figure represents the average
"machine" time that has accumulated between each malfunction
of the equipment. The MTTR figure represents three time ele­
ments: (I) the time to diagnose the problem, (2) the time to
repair the problem, and (3) the time to verify that the problem
has been corrected. Availability is defined as MTBF/(MTBF +
MTTR).

Software

ST ARAN Software

Disk Operating System (DOS). STARAN's system soft­
ware is based on a disk operating system (DOS) that provides
ready access to system programs, a device independent 1/0, and
a file system. Operation of ST ARAN can be under direct con­
trol of the console user, or it can run in a batch mode with a
command stream from any character input device, such as the
card reader or the system disk. The disk is a file-structured
bulk storage device in which all system software is resident for
rapid user access.

STARAN Assembly Language (APPLE). A complete set
of stand-alone system programs are provided to enable ST ARAN
users to generate programs. The software used to convert
source language programs into executable machine language
programs includes a macropreprocessor (MAPPLE), assembly
language (APPLE), and a relocating linker. All programs for
ST ARAN are written in APPLE.

The mnemonics of APPLE generate from I to 12,
in•line machine language instructions. About one-third of all

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

available mnemonics generate calls to subroutines. Consequently
these mnemonics do not generate in-line code. The one-to­
many mnemonics generally implement a parallel algroithm for
arithmetic or search operations using the arrays. Thus, APPLE
is at a higher level than sequential machine assembly languages.

MAPPLE increases the user's flexibility at assembly time.
It provides a large set of arithmetic, logical, relational, and
string manipulation operators. User benefits include the ability
to define new mnemonics, redefine existing mnemonics, and
generate standard instruction sequences.

The ST ARAN linker generates an absolute load module
from a relocatable object module. Multiple object modules may
be input to the linker since it has the capability of resolving
symbols defined across object module boundaries as well as
adjusting addresses for relocation.

ST ARAN Execution Control Aids. Execution control
software covers loading, executing, and debugging programs
on ST ARAN. The "loader" moves absolute load modules into
ST ARAN control memory, beginning at a specified address.
Overlay modules can be brought in dynamically through pro­
gram calls from an executing program.

The STARAN program supervisor (SPS) is the software
interface between the associative and sequential control por­
tion of STARAN. This module provides services for system
users when programming in APPLE and when programming a
PDP- I I routine to interact with an APPLE program.

The STARAN debug module (SDM) helps the user debug
APPLE programs by giving him control of the exeution of the
program being debugged and access to memory and registers.
Single step, trace, breakpoint, and memory dump features pro­
vide good execution control.

The STARAN control module (SCM) is the interface be­
tween the user and execution of a STARAN program. STARAN
control commands, such as start and halt, are made available
to the user by this module.

STARAN Diagnostics. Diagnostics round out the available
system software for ST ARAN, providing an off-line trouble­
shooting aid that is capable of pinpointing faults in the hardware
to the module, the group of printed circuit boards, or even the
single printed circuit board level. The diagnostic package is
organized so that minimum user intervention is required. Each
diagnostic test is made into a subroutine called by the executive
controller. Each routine uses common error handling routines
in the executive to limit redundant programming and conserve
memory. The executive also intercepts all stray interrupts and
reinitializes the machine before calling the next diagnostic pro­
gram. The diagnostics run under the disk operating system en­
vironment, so that all DOS functions are available to the
diagnostics.

STARAN/CDC Interface Software

Command Channel. As of this writing, the interface soft­
ware development has just begun. Scheduled acceptance for
the interface software is January 1976. Software control of
the channel will involve system programs in STARAN's PDP-11
and in both the CPU and PPU of the CCD 6400. The PDP-11
program follows DOS conventions for interface sofware; since
the program enables communication with the CDC 6400, it is
called the CDC 6400 device driver (see .Figure 7). In the 6400

137

STARAN
INTERFACE
HANDLER

PPU CDC 6400

ST ARAN
COMMUNICATION
ROUTINE

ST ARAN
r---- ------------------------,
I PDP-11 AAP CONTROL PIO CONTROL II
I ECS l/F
I CDC 6400 HANDLER ECS I
I DEVICE CONVERSION DATA I
: DRIVER UTILITIES FORMATTER :

L-----------------------------J
Figure 7. Block Diagram of ST ARAN/CDC

Interface Software

system, the PPU program will handle the interface hardware and
the application program 1/0 requests; it is called the STARAN
interface handler. The CPU program will control command
stream and multiple user requests for access to ST ARAN; it is
called the STARAN communication routine.

From a software viewpoint, the command channel will
appear to be three logical devices:

• The first device will transfer character information from
the CDC 6400 to the PDP-11. The characters will be treated
as the batch command stream input for batch DOS in the
PDP-11. This device will be like a card reader to the DOS.

• The second logical device will transfer the job log
output produced by batch DOS from the PDP-11 to the 6400.
This device will be like a printer to the DOS.

• The third logical device will transfer data between
STARAN bulk core and CDC central memory. It will be like
a disk in that the user program may issue read and write re­
quests to the device, although it will not include a file structure.

The CDC 6400 device driver will be written in PDP- I I
assembly language. Implementation of the logical devices
mentioned above will be by several software pseudo channels.
The general scheme will reserve one pseudo channel for com­
mand stream input, one for job log output, and several for data
I/O. Conversion of character data from CDC 6400 display
code to PDP- I I ASCII will take place on all command stream
input. The opposite conversion will be implemented for job
log output.

The device driver will include an interrupt handler to
allow 6400 users to quit processing. This routine will halt
STARAN, initialize it, and flush the current job in the batch
stream. The pseudo channels for data I/O will move data be­
tween user buffers in STARAN control memory and CDC 6400
central memory. Data will be stored in control memory such
that eight CDC central memory 60-bit words (480 bits) are
packed into l 5 ST ARAN 32-bit words (480 bits). For trans­
fers that are not a multiple of 480 bits, the final word being
written will be padded with zeros. Several buffers may be
defined in each memory by using several pseudo channels.
Thus, the user may read from one buffer and write into a differ­
ent buffer with both channels open simultaneously.

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

The STARAN interface handler and communication rou­
tines will be the CDC 6400 part of the command channel inter­
face software. The interface handler will be written in PPU
Compass assembly language for execution in a PPU. The com­
munication routine will be written in CPU Compass for exe­
cution in the CPU. It is expected that user programs in ST ARAN
and the CDC 6400 will cooperate in issuing I/O requests. When
one processor issues a read request, the other must issue a
write; that is, the programs issue complementary requests so the
system does not reach deadlock with both programs waiting to
complete I/O operations. To reduce the chance of deadlock,
the PPU program will be written with multiple queues, corre­
sponding to the multiple pseudo channels in the 6400 device
driver. This will permit, for example, a 6400 program to issue
a write on channel I and read on channel 2. Then the STARAN
program can, in arbitrary order, issue the complementary read
on channel 1 and write on channel 2. The first ST ARAN re­
quest issued will be satisfied first.

The ST ARAN communication routine will provide a
means for a single 6400 user to gain control of ST ARAN and
keep other users from accessing it until control is relinquished.
It will notify the PPU of user I/O requests and will contribute
to quit function processing. Batch commands to ST ARAN will
be issued by this communication routine. Interactive jobs will
be allowed one of three options:

• If ST ARAN is available, the interactive routine will be
allowed to "attach."

• If STARAN is not available, a busy indication will be
returned to the calling program. This gives the interactive user
the option of branching to an alternate procedure which re­
quires only the CDC 6400.

• If ST ARAN is not available, the interactive user will be
allowed to place his job (command stream) in an interactive
queue that will have priority over the "normal" batch job
queue.

As long as a command stream file exists, the communica­
tion routine will issue write requests to the command stream
channel. The batch processor in ST ARAN will issue read re­
quests as it needs commands. Similarly, the job channel will
have read requests pending continuously by this routine. Since
the ST ARAN interface handler in the PPU has a queue for both
of these channels, no conflicts on I/O will result.

The STARAN interface handler will be written to support
the three logical devices that the CDC 6400 device driver sup­
ports. The batch command stream will be a character mode,
write-only pseudo channel. Data I/O will use several pseudo
channels. The quit function will be implemented.

Data Channel. This channel is intended as a high band­
width data path between ST ARAN arrays and 6400 ECS. The
hardware for this interface will exist between the PIO unit in
ST ARAN and ECS in the CDC 6400. A path for interface con­
trol information is provided between the interface hardware and
ST ARAN mainframe.

Software control of the channel involves system programs
in the ST ARAN mainframe and PIO unit. Since the interface can
directly read or write ECS, it will not be necessary to develop
software for exeuction in the 6400.

There is no change in the way CDC 6400 programs access
the ECS. In ST ARAN, mnemonics will be macros that use

138

interface software routines in both the mainframe and PIO pro­
cessors.

The primary functions of the mainframe routine will be to
(I) provide control information to the interface hardware, (2) re­
turn status information to the user program, and (3) provide
array formatting parameters to the PIO routines. The mainframe
routine is called the ECS interface handler. The primary function
of the PIO routine will be to move data between PIO buffers and
the associative arrays according to formatting parameters pro­
vided by the mainframe routine. The PIO routine is called the
ECS data formatter.

Applications

General

Prior to installing ST ARAN at ETL, various DMA applica­
tions considered amenable to ST ARAN processing were studied
under contract to Goodyear Aerospace. The applications were
listed, and the sequential computer formulations were submitted
to Goodyear. In cooperation with ETL, Goodyear personnel
familiarized themselves with these formulations. Purposely
omitted from this list were large scale data reduction problems
that require double precision arithmetic on most sequential
machines, such as the UNIV AC 1108's at DMA production
centers. For example, a class of DMA problems dealing with
geodetic satellite reduction schemes was among that type. These
require double precision arithmetic for the numerical integration
of orbits and for the inversion of very large matrices in order to
obtain required accuracies in orbit reconstruction and tracking
station coordinates.

In many instances, however, it is not the large scale data re­
duction problem that consumes large amounts of sequential com­
puter time. Instead, the simple arithmetic problem involving re­
petitive operations on massive amounts of data usually consumes
even more computer time. This is characteristic of the problem
under investigation.

The applications being researched for the DMA fall generally
into four functional areas: (I) digital stero-photogrammetry,
(2) automated cartography, (3) digital image processing, and (4)
storage and retrieval. Not every aspect of these areas is being re­
searched. The following discussion describes what is being re­
searched in each of these functional areas and explains why they
were chosen as candidates for ST ARAN implementation.

Stero-Photogrammetry

Photogrammetry involves many processes in which the
ultimate objective is to extract precise, three-dimensional in­
formation from stereo-pairs of photographs. This involves
the process of correlation. But prior to this, the photographs
must be measured and triangulated to reconstruct the geometry
of the photographs at the instant they were exposed in the
aerial mapping camera. The process of mensuration involves
the mathematical elimination of distortions, such as lens dis­
tortion and film shrinkage. All measurements are exacting and
performed on precision measuring instruments. After all photos
are mensurated, the strips or blocks of photos with all their pass
points (tie points between photos) are then triangulated using
large scale, photogrammetric, computer programs. The geomet­
ric parameters derived from this process are used to correlate
the digitized imagery from the overlapping stereo-pairs of photo­
graphs. It is only the correlation .portion of the problem to
which ST ARAN is being applied.

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

Stereocorrelation is categorized as a simple arithmetic,
but repetitive, type problem that involves massive amounts of
data. For this reason, the entire stereocompilation process at
the DMA production centers has always been relegated to
analog/electronic scan and correlation equipment. The large
scale sequential digital computer cannot compete with these
sophisticated instruments both in cost and speed. This is not
to say that the process cannot be performed digitally. Digital
correlation from digitized, stereophotographic data was proven
feasible years ago (on the IBM 7090), but it was not practical.
Electronic correlation instruments, such as DMA's UNAMACE
and AS-I I, automated stereocompilation instruments, were
built for this job almost ten years ago and have undergone
various stages of upgrading since then. They remain the work
horses for the extraction of three-dimensional stereophoto­
graphic mapping data for the OMA. The only way current
digital technology can be competitive is through the develop­
ment of parallel/ array digital architecture to perform the corre­
lation function.

Experiments thus far at ETL have indicated that the linear
correlation coefficient algorithm is the most reliable indicator
of correlation for all types of digitized, stereo-scenes; that is,
urban scenes, drainage scenes, mountainous scenes, etc. How­
ever, a much simpler algorithm, such as the absolute difference
between scenes, works well with certain scenes. The algorithm
is simpler in the sense that not as many arithmetic operations are
required to evaluate it. This situation might result in the imple­
mentation of both algorithms in a digital stereocompilation
system where the simpler algorithm would be used until it be­
gins to break down whereupon a switch is made to the more
sophisticated algorithm.

The linear correlation coefficient algorithm is as follows:

~t(X- X°)(Y - Y)
RXY= /J:, (X - X)2 l:(Y - Y)2

where X and Y pertain to arrays of pixels, one from each photo,
whereby each pixel is represented by six to eight bits. Addi­
tional information can be obtained from Reference [1]. The
equation is not implemented on STARAN, or even a sequential
computer, as it is written here. There are computational overlaps
that are exploited on ST ARAN to even a greater degree than on
a sequential machine, and several scenes can be correlated simul­
taneously in each of the four arrays. Suffice it to say that at
any given time during correlation only a very small portion of
entire digitized stereoscene is being processed: There may be
hundreds of millions of bits representing the digitized stereo
area of two overlapping 9 by 9 inch aerial photographs.

Of six different algorithms investigated, the above algorithm
offers the greater reliability over all types of scenes. Unfortun­
ately, it is also the most time consuming to evaluate. The abso­
lute difference algorithm works well with certain scenes, and
it might be implemented together with the correlation coefficient
algorithm in a digital stereocompilation system. This could be
a means of cutting down correlation times, and it also indicates
a degree of flexibility in the digital approach. DMA/ETL is just
now beginning to implement the algorithms on ST ARAN, and
first indications are that timing is impressive and competitive.

This is a very brief and general description of the digital
approach to the stereo-compilation process of map making.
The entire digital correlation process must be couched in the
formulas of analytical photogrammetry, whereby the geometry
of the overlapping photographs is input data. DMA/ETL hopes

139

to exploit the flexibilities afforded by digital techniques to pro­
duce highly accurate mapping data along with the resulting
statistical byproducts which, heretofore, have been obtained
only after the fact. Also, DMA/ETL hopes that quality control
may be more easily implemented in a digital environment as
opposed to the current analog/electronic production approach
to the problem of stereo-compilation.

Automated Cartography

Generally speaking, the process of making a map follows
the stereo-compilation process from which an orthophotograph
is produced. This is a photographic image of the stereo area
in which all parallax has been removed and adjusted for other
distortions due to the camera lens and atmosphere. This
orthophotograph forms the basis for tracing required data to
produce the map.

Modern techniques of obtaining numerical data while
tracing have been implemented at all DMA production centers.
After tracing, say the road overlay, the numerical data is usually
run-length coded and then it must be thinned to cartographic
standards. Each type of feature one views on a military map
has a standard to which it complies. Generally, then, the
process for converting an orthophotograph to a map sheet is
as follows:

• Tracing, resulting in an overlay (transperancy) per
each feature class.

• Digitization of each overlay.
• Data processing.
• Color separation.
• Printing five-color map.

Handling the digitized data in a sequential computer to
conform it to cartographic standards is a time consuming
process. Looking at only one function, it takes hours to perform
line thinning operations on digitized data. The objective of line
thinning is to reduce a line to a single-cell thickness along its
centerline. In general, lines are thinned by removing edge cells
until unit thickness is attained. On sequential machines, each
cell is tested with respect to the status of its eight neighbors.
A cell will be removed if one of the orthogonal neighbors is
zero, and removal of the cell does not destroy continuity of
a line. In contrast, the ST ARAN approach to line thinning
utilizes the digitized overlay data stored in the arrays as a binary
image. Simple logic operations are used between each 256-bit
of data and the data slice on either side of it. Details of this
operation can be obtained from reference [2].

Table I, from Reference [2], gives the reader a quick over­
view of the cartographic functions and their timing estimates
relative to an IBM 360/40 computer. Since this table was pro­
duced, verification of ST ARAN timing has been derived. The
estimated times closely approximate the actual time and this
looks to be one of the most promising areas of ST ARAN
applications for the OMA. It is also one of the most significant
steps in the production process.

One other point concerning the IBM 360/40. The only
reason for comparing against this machine is that it was the
only one upon which these cartographic functions were imple­
mented at the time. It represented a significant step forward
in the automation of these functions, and these timing com­
parisons should not detract from that effort.

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

TABLE I

TIMING RESULTS FOR RASTER PROCESSING STUDY*

No. of IBM ST ARAN
over- 360/40 S-1000

Operation lays (actuals) (est)

Registration mark
detection 8 7 min 0.084 sec

Line separation 1 ? 21.25 sec

Character recognition 1 1.0 hr 1.25 sec

Line thinning and
(vectorization) 7 4.2 hr 12.5 sec

Skew correction 8 1.4 hr 0.25 sec

Line break detection 7 1.4 hr } 6.25 sec
Line smoothing 7 1.4 hr

Line symbol generation 7 ? 5.4 sec

TOTALS 9.5 hr 51.98 sec+

* 12 by 16 in. map area with 8 overlays and 4-mil resolution.

+Requires approximately 5.5 min of tape I/O.

Digital Image Processing

Investigations in digital image processing have been going
on at ETL for several years. One of the milestones in this en­
deavor was the implementation of a user oriented image proces­
sing system on the CDC 6600 computer. The system is called
DIMES, an acrononym for digital image manipulation and en­
hancement system, and represents an evolution of these type
systems over the last five years. It has been in use at ETL for
almost two years, and it has been put to many useful applica­
tions. Since then, however, DMA/ETL has acquired a CDC
6400 computer, the ST ARAN, and digital image processing
equipment such as the DICOMED scanner/hardcopy/display/
tape equipment, COMTAL color/black and white CRT dis-
play; PDP-11/50 minicomputer and TEKTRONIX alphanumeric/
graphics terminal. These have been described in the hardware
section of this paper.

All of these components are currently in the process of
being interfaced to provide a comprehensive, interactive
digital image processing system. The CDC 6400 computer is
equippped with eight peripheral processing units. One of them
will be dedicated to the ST ARAN and another to the image
processing system. Two special pieces of hardware have been
built to interface the STARAN to the 6400 and the PDP-11/50
to the 6400. Software is currently being written for the systems.
Therefore, compared to the DIMES, batch oriented system,
a much more sophisticated system is being developed which
will provide fast response to user requests for processing digitized
grey shade data from aerial photographs and other imagery.

The system is being set up partially in response to our
Digital Photogrammetry functional area where we expect to
use it as a test bed for the digital stereocompilation operation
mentioned earlier.

There is no need to reiterate the potential of STARAN in
that area, but the system will also serve as an interactive measur­
ing device where again ST ARAN will be used to correlate mea­
surements of pass points on stereopairs of photographs.

140

There are numerous image processing functions that will
be implemented on this system, and STARAN will play a sig­
nificant role in the operation. This includes such functions as
the Fast Fourier transform and digital filtering of imagery in
the frequency domain. Other functions of interest to DMA will
include interactive digital rectification of aerial imagery. This
again is a production operation relegated to electro-optical and
analog devices. In order for digital techniques to be practical,
they must be performed on parallel /array processors. Again,
the sequential computer can perform this operation but not
competitively.

The foregoing represents a very brief overview of the DMA/
ETL digital image processing facility. It is a research facility
in which specific digital mapping functions will be investigated.
To date, the DMA/ETL digital image processing efforts have
been devoted to developing a system in support of other func­
tions such as digital photogrammetry. However, many of the
original DIMES modules will be implemented on this system
and those which are more advantageous to array processing
will be implemented on STARAN.

Storage and Retrieval

With respect to storage and retrieval, ETL has received from
the OMA/Aerospace Center, St. Louis, Mo., several data tapes
containing a data base of terrain information. This data base
is currently implemented on the UNIV AC 1108 system at this
Center. Extensive use will be made of the small parallel head
disk (PHD), which is part of the DMA/ETL STARAN facil-
ity. The characteristics of this disk are discussed in the hard­
ware section.

Not too much can be said of this function at this time
since the entire DMA/ETL facility is currently being integrated.
After this is accomplished, input and output to the disk, tape,
and printer systems of the CDC 6400 will be available to
the STARAN user. In the meantime, the only means of input
and output are via the DEC card reader and printer currently
on-line with ST ARAN. However, small amounts of data have
already been passed between the arrays and the PHD and
searches are being made in the arrays for prescribed data.

Summary

AGoodyear Aerospace STARAN AAP has been installed
at the DMA/ETL facility, Fort Belvoir, Virginia. It is now
being used in a stand-alone mode. This will continue until
late 1975 when the command channel interface unit hardware
and software interfaces are completed between STARAN and
the host CDC 6400 computer. The data channel interface unit
hardware and software interfaces are planned to begin next
year.

In addition, work has been completed on a hardware inter­
face between the CDC 6400 and the ETL digital image processing
system. Work is under way on the software interface.

From the standpoint of applications, very specific functions
have been chosen for investigation at the DMA/ETL STARAN
complex. Generally speaking, these applications do not require
large matrix inversiOns or double precision arithmetic. It was felt
that if undue efforts were devoted to these problems, ST ARAN
and array/parallel processing in general would have a difficult
time in showing production benefits compared to current ap­
proaches at the DMA production centers. In most cases, then,
fixed point arithmetic and short word lengths characterize the
chosen applications.

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

The cartographic functions are ideally suited to array pro­
cessing. The ST ARAN algorithms are radically different from
those implemented on the sequential machine and STARAN
may lead to an early payoff, so-to-speak, in terms of producing
maps.

The digital photogrammetry application involves an even
more fundamental problem than that associated with cartog­
raphy. In cartography, the sequential computer was the auto­
mating device since the advent of automated cartography. On
the other hand, the heart of the stereo-compilation process
(namely, correlation) has always been relegated to electronic/
analog devices since it was generally accepted that the sequential
digital computer could not compete with these devices in a pro­
duction environment. For this reason attention has been focused
on parallel/ array processors, and, in particular, ST ARAN. It
offers an opportunity to be competitive with existing stereo­
compilation devices in addition to offering flexibility that should
follow with digital techniques.

Digital image processing is being driven somewhat by the
other functions. Once the ST ARAN, the CDC 6400, and the
digital image processing system are integrated, they will offer
the researcher a tremendous amount of flexibility in carrying
out his work in image processing as well as photogrammetry,
cartography, and retrieval of information. We have yet to deter­
mine all of the image processing functions that are going to im­
pact DMA production, but it will become increasingly impor­
tant as time progresses.

141

[1]

[2]

[3]

[4]

[5]

References

U.S. Army Engineer Topographic Laboratories, Single
Photo Analysis of Sampled Aerial Imagery, Research Note
ETL-RN-74-10, Fort Belvoir, Va. (August 1974).

Goodyear Aerospace Corporation, Associative Array Pro­
cessing for Topographic Data Reduction, USAETL Con­
tract DAAK02-73-C-0336, Akron, Ohio (March 1974).

K. E. Batcher, "ST ARAN Parallel Processor System Hard­
ware," 1974 National Computer Conference, AFIPS Conf.
Proc., Vol. 43, pp. 405-410.

E.W. Davis, "ST ARAN Parallel Processor System Soft­
ware," 1974 National Computer Conference, AFIPS
Conf. Proc., Vol. 43, pp. 17-22.

J. D. Feldman and L. C. Fulmer, "RADCAP - An Oper­
ational Parallel Processing Facility," 1974 National Com­
puter Conference, AFIPS Conf. Proc., Vol. 43, pp 7-15.

[6 J Goodyear Aerospace Corporation, ST ARAN Reference
Manual, GER-15636A, Akron, Ohio (September 1974).

[7]

[8]

Goodyear Aerospace Corporation, Proposal for STARAN
S-IOOOP-CDC 6400 Custom Interface Unit, GAP-75-6868-
SlO, Akron, Ohio, (February 1975).

Goodyear Aerospace Corporation, Proposal for ETL Asso­
ciative Processing Facility, GAP-74-6868, Akron, Ohio
(March 1974).

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

A PARALLEL APPROACH TO HIGH PRF DOPPLER
RADAR SIGNAL PROCESSING

Frederick E. Schenfele
Boeing Computer Services, Inc.

Space and Military Applications Division
P.O. Box 24346

Seattle, Washington 98124

Abstract - A conceptual software design
for an Associative Processor to be used. as a
High Pulse Rate Doppler Radar Signal Processor
is presented.

A brief discussion is provided of how am­
biguous range is converted to unambiguous range
by the use of the Chinese Remainder Theorem.
Fol lowing this, Radar Signal Processing func­
tions are analyzed at the block diagram level.

A conceptual design is presented of an AP
Radar Signal Processor and the technique used
to perform the tasks of simultaneous correla­
tion, range resolution, beam splitting, destrad­
dle and report generation in para! lel.

Additional tasks that a radar designer can
perform with the computing power and array stor­
age capabilities of. an Associative Processor
are also discussed.

Introduction

High Pulse Rate Frequency IPRFJ Doppler
Radars have data rates between 10 and 50 million
bits per second, making signal processing in
real time by conventional hardware and software
difficult. Each signal processing task is cur­
rently performed by a unique piece of specially
designed hardware, thus dimming hopes that fu­
ture radars wil I be of modular construction.
Additionally, in a dense air environment con­
siderable processing time is wasted in range
computations due to the undesirable generation
of mathematical ghosts and subsequent deghost­
ing.

Why then the interest in a High PRF Dop­
pler Radar? The answers lie in its ability to
simultaneously distinguish two or more moving
targets in a cluttered surrounding, and to to­
tally reject stationary objects. The higher the
PRF, the greater is the velocity selectivity,
and the greater is the ability to distinguish
one or more moving targets.

This paper is intended to demonstrate the
feasibility of using an Associative Processor
IAPJ to handle the extreme data rates obtain­
able from a high PRF radar receiver. A concep­
tual design wi II be provided that wi I I demon­
strate the unique advantage provided by the AP,
and how the computing power of the AP enables
realtime computations.

Background Design Information

The electromagnetic energy transmitted from
a pulse radar is emitted in the form of short

142

bursts of energy cal led pulses. The Pulse Rate
Frequency IPRFJ is the number of pulses emitted
per second. It is desirable to have an echo of
a pulse return to the radar before the next pulse
is emitted, in order to avoid range ambiguities.
For example, if the pulses are 500 microseconds
apart and echoes are received 200 microseconds
after each pulse, the echoes may be caused by
a target 100 microseconds away or 600 microsec­
onds away.

A radar operating at a pulse rate of 50,000
pulses per second wil I produce a new pu1se every
20 microseconds. In 20 microseconds, a pulse
wil I appear to propagate less than 2 miles be­
fore the next pulse is transmitted. Since range
is time measured with respect to the last pulse
transmitted, al I targets, whether zero or five
hundred miles away, will appear to be less than
two miles away. Thus, al I range measurements
in a High PRF Radar are considered ambiguous.

However, if the target is examined at two
or more different pulse rates, the range can
be accurately computed by use of the Chinese
Remainder Theorem !CRT). Typically, a target
would be monitored at a constant pulse rate that
would last 3 to 10 milliseconds. This would be
fol lowed immediately by one or more 13 to 10
mi I lisecond) examinations at another unique PRF.

These examinations at a constant PRF wil I
henceforth be referred to as a "scan."

Figure 1 depicts a transmitter/receiver
at A ·and a target at B. The distance AB is mea­
sured at PRFl and again at PRF2 I 3 to 1 O mi 1-
1 i seconds later). The returning echoes wi I I in­
dicate the fol lowing equation:

AB = 10!01)+ fiDl = 81D2J+ fiD2 (1)

If the distance of the target were unknown in
the above example, the numbers 10 and 8 could
be replaced by integers Jl and J2. This would
result in the following equation:

AB= JllDlJ+fiDl = J21D2J+fiD2 (2)

By use of the Chinese Remainder Theorem ICRTJ,
the distance AB can be computed in as few as
four multiplies and one divide. The actual val­
ues of Jl and J2 need never be computed. Equa­
tion 2 forms the basis for the development of
the CRT. Reference [4] provides a background
for CRT derivation. To use the CRT, Dl and D2
must be In units of measure, where Dl might be
equal to 33 range gafes in time, and one range
gate might be 0.61 microseconds wide. A time

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

of 0.61 microseconds represents 300 ft. of wave
propagation. In this example, Dl would therefore
represent a distance of ~1.6 nautical miles !33
x 300 ft.I of wave propagation.

Additionally, a new pulse would be trans­
mitted every 33 x 0.61 microseconds at this PRF.
D2 might equal 38. Knowing Dl and D2, and then
by measuring t.Dl and t.D2, the range can be
computed by the use of the CRT as fol lows:

c1rn21t.Di+c2rn11t.D2 =Quotient and !31
DlxD2 Remainder

Where: Cl and C2 are constants dependent on the
selection of Dl and D2. See Reference [1].

Oyotient is discarded.
Remainder is the answer in units of range

gates.
For a 3 scan PRF or 3 PRF system, the CRT for­
mu I a becomes:

Cl!D2xD31 4Dl+C2(DlxD31fiD2+c3(DlxD214D3 141
DlxD2xD3

If two targets are observed at the same
time in each PRF, there may be no way to iden­
tify which of the two echoes came from which
target. In this case, there wi 11 be four CRT
computations resulting in two true ranges and
two ghost ranges. This is depicted in Figure
2, where at Pulse Rate 1, target B was observed
at range gate numbert.Dl and target B' was ob­
served at another range gate number t. Dl'.

It is frequently possible to observe one
target in two adjacent range gates at the same
time. This double observation is due to the size
of the target or its position with respect to
the range gate timing. This is cal led Range Gate
Straddle. Straddle wil I produce as many ghosts
as would any two correlated targets.

A pulse radar system cannot transmit and
receive at the same time. A returning echo is
lost and the target eclipsed if the echo co­
incided with a transmit pulse. In a three PRF
system (operating with Dl equal to 331, on the
average 3 out of every 33 targets wil I be
eclipsed, resulting in an occasional degrada­
tion to a two PRF system.

There are two methods used to reduce ghost
generation: 11 To correlate by elevation and
range rate (velocity! windows prior to selec­
ting a candidate for CRT computation, and 21
To I imit the range of the radar. The fol lowing
explains how and why to I imit the range:

Using one PRF at a pulse rate of 50,000
pulses per second, the unambiguous range is less
than 2 miles. By the use of the CRT and 2 PRF's,
the unambiguous range is extended to 120 miles;
3 PRF - 6,000 miles, 4 PRF - 300,000 miles, and
5 PRF - 15,000,000 miles.

In a 3 PRF system, the maximum range is
6,000 miles. By discarding all CRT answers with
a range greater than 300 miles, 19 of every
20 ghosts generated are discarded. In a four
PRF system, the maximum range is 300,000 miles.

143

By discarding al I answers greater than 300 miles,
999 of 1,000 ghosts are eliminated.

In summary, the minimum acceptable number
of PRF's required to compute range is three.
The greater the number of target observations
at various PRF, the easier is the task of ghost
elimination. Probability of detection increases
when four or more PRF's are used.

The Signal Processing Task

This paper demonstrates para I lei correla­
tion, para I lei use of the CRT, and, in effect
providing both a simultaneous para I lei Azimuth
to Azimuth Correlation and Range Gate Straddle.

To perform these tasks, the eight most re­
cent contiguous scans of data under considera­
tion wil I be correlated simultaneously with re­
spect to the oldest of these eight scans.

Figure 3 l I lustrates ten contiguous scans
of data. Each black box represents a target
report ready for correlation. Each scan was
observed at a slightly different azimuth due
to antenna rotation. The antenna beam pattern
is wide enough to permit more than three and
less than nine observations of a target at these
different azimuths or scans. The azimuth rotation
is identified by scan numbers n-9 through n,
where scan n-9 is the oldest. For clarity, let
the range marked A through T be unambiguous.

As the range in Figure 3 is unambiguous,
each cluster of black boxes represents one true
target. The problem to be solved by correlation
and range association, described later in this
paper, is the identification of each black box
or target report as belonging to one target.
Correlation wil I identify each cluster of re­
ports as having similar range rate and eleva­
tion, and the CRT range computat'ion wi 11 iden­
tify each cluster as one target due to their
range and azimuth proximity. However, as the
returning range is in reality ambiguous and
must be computed by a CRT, there can be no range
identification unless 3 or more target reports
are produced at exactly the same range.

In Figure 3, based on the proximity of
the range and azimuth of each target report,
there are four identifiable targets. Three of
these targets are first observed in scan n-9.
As n-9 is the earliest scan, correlation bf
the eight latest scans (to include scan n-21,
is with respect to B(n-91, O(n-91 and R!n-91.
Fol lowing correlation, the CRT is performed
on selected reports. For target 1, the CRT
wil I identify 4 reports as producing range B,
and 3 reports as producing range C. As C is
one range gate away from B, these r~ports are
considered part of the target at range B due
to range gate straddle. The reports from range
D wil I be lost as only two reports exist at
this range. Report B!n-11 is ineligible for
consideration due to an azimuth extension I im­
it of eight.

The resu It i ng i den.ti f i ed targets for scan
n-9 is comprised of target reports as fol lows:

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

TARGET 1

TARGET 2

TARGET 3

B(n-9l,B!n-8l,B!n-7l,B!n-6l, !5)
C! n-8) ,C! n-7) ,C! n-6)
O!n-9l,O!n-8l,O!n-7l,O!n-6), !6)
0(n-5) ,O! n-4) ,O! n-3) ,0(n-2 J
R! n-9 J ,R! n-81 ,R! n-7 J ,S! n-7 J, !7 J
S! n-6) ,SI n-51, T! n-61, T! n-41,
T!n-31

After scan n-9 has been processed, scan n-8 wil I
be the oldest. Correlation wi II now be with re­
spect to scan n-8. Most of the data at ranges
B,C,O,R,S,T have been identified as belonging
to targets 1, 2, and 3. No attempt is made to
re-use the target data in eq (5J, (6), and !7)
as only redundant answers wi II result.

Al I correlations are now with respect to
l!n-8) and J!n-8). These reports are correla­
ted with al I I, J, K, Land B!n-1) and O!n-11.
The resulting target consists of:

TARGET 4 = l!n-8), l!n-7),l!n-4) (8)

Each chosen target report contains a string
of information !input):

1. Signal Strength of Filter]
2. Fi I ter Number !Range Ratel
3. Elevation X Signal Strength
4. Azimuth
5. Ambiguous Range !Range Gate

Number)

(9)

When al I the individual pieces of a tar­
get observed at different PRF's have been iden­
tified as in !5l-!8l, they must be brought to­
gether and centroided by the fol lowing computa­
tions !output):

1. Signal Strength= l: Signal Strength

2. Range Rate= l: Filter X Signal Strength
l: Signal Strength

3. Elevation l: Elevation X Signal Strength
l: Signal Strength

4. Azimuth= l: Azimuth X Signal Strength
E Signal Strength

5. Quality Index= Number of Observations

6. Computed Range !Reference equation !4Jl

Chinese Remainder Theorem

The Chinese Remainder Theorem is used to
compute true range from ambiguous range. The
adaptation of this technique to a para I lei al­
gorithm is described below.

In a "3 of 8" PRF system, there are 120
possible val id PRF combinations with which to
compute the range. This assumes combinations

(10)

of 7 items taken at a time with the eighth item
fixed and always chosen. Examples of four val id
PRF combinations that can be used to compute
range are: 8,7,6,5,4,3,2,1 or 8,6,5,2,1 or 8,7,
2,1 or 8,3,1 !where 8 is the oldest PRF of in­
terest and 1 is the youngest PRF of interest).
For example, the PRF prime number Dl for PRF8
might equal 33, for PRF7, D2 might equal 38.

144

If one considers that the correlation tech­
nique to be presented permits a maximum of 4
matched correlations per PRF, there can be 312,
384 total CRT combinations for an 8 PRF system.
By modifying the approach slightly, only the
"3 of 8" correlations need be produced in order
to compute al I the possible target ranges. Four
examples of "3 of 8" are: 8,7,6 or 8,5,3 or
8,6,5 or 8,2,1. If three identical ranges are
produced after al I possible "3 of 8 11 CRT are
computed, this corresponds to a "4 of 8" target
return. If six identical ranges are found, this
corresponds to "5 of 8." As an example, if the
range produced by PRF 8,7,6 = 8,7,4 = 8,6,4,
this is the same as "4 of 8" target returns
- 8, 7 ,6,4. A "4 of 8" range computation after
deghosting has only one chance in a thousand
of being a ghost. Looking for any "3 of 8" cor­
relation requires only 21 possibilities. As the
correlation routine permits a maximum of 4
matched correlations per file, there are in to­
tal 1,344 possible ways to look at any "3 of 8."

To insure that al I range gate straddle
possibi Ii ties are also computed along with
the "3 of 8," every "3 of 7," "3 of 6," "3 of
5," "3 of 4" and "3 of 3" possibi I ities with
identical range rate and elevation, must also
be computed.

Examp I es of "3 of 7" are: 7,6,5 or 7,4,3 or
7,2,1.

Examples of "3 of 6" are: 6,5,4 or 6,3,2 or
6,2,1.

Examples of "3 of 5" are: 5,4,3 or 5,3,1 or
5,2,1.

Al I the examples of "3 of 4" are: 4,3,2 or 4,3,1
or 4,2,1.

The example of "3 of 3" is: 3,2,1.

After al I the "3 of 8" through "3 of 3"
possibilities have been computed, al I are test­
ed for a range in excess of 300 miles. All
the answers that exceed 300 miles are considered
ghosts and discarded. Then each surviving "3
of 811 is tested for a match with every other
"3 of 8," through "3 of 3," for a window of
±1 range gates. If two or more are found !ex­
cluding redundant answers), a "4 of 8" possi-
bi I ity has been identified.

Assumptions

The fol lowing system design assumptions
are made for the conceptual design:

1. The antenna beam width and rotational
rate permit a maximum target observation of 8
scans.

2. A maximum of 4 new targets per scan are
observab I e.

3. Four scans of raw digitized input data
must be processed into a final report in less
than 20 mil I iseconds of CPU time.

4. There are eight or more unique and rea­
sonable PRF's in which a target can be observed.

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

5. Correlation criteria prior to the CRT
requires a minimum of 3 target observations out
of the possible 8 PRF's.

To satisfy the above assumptions 1, 2, and
3, the following hardware requirements are made:

6. There is special purpose inter/intra
array data transfer hardware similar to the STA­
RANS PIO.

7. The processor contains four or more ac­
tive 4096 x 256 bit associative arrays.

8. The processor wi I I contain high speed
storage sufficient to contain four or more ar­
rays of data.

Any relaxation in assumptions presented
in 1, 2 or 3 wil I reduce the number of arrays
required and the size of the array required.

The concept that wil I be presented on the
fol lowing pages wi I I be designed to the assump­
tions just presented.

Overview of Para I lei Radar Signal
Processor

Figure 4 depicts the para I lei adaptation
of a Doppler Signal Processor. Each scan of raw
digitized input data is stored into a 4096 word
x 256 bit array or other storage device as the
returning data is gathered. At the completion
of the fourth scan, processing of these data
is begun in unison in al I four arrays.

Reference [2]and [3]discuss the feasi­
bi I ity of para I lei implementation of FFT and
CFAR respectively.

The results of the FFT, CFAR and centroid
is to reduce or compress each scan of digitized
input data of 0.1 to 0.5 mil lion bits to one
scan file which is composed of 64 words or less;
each word is less than 100 bits long and con­
tain the attribute I isted under target eq (9).

Correlation of the 4 most recent scan files
to their respective 7 preceding scan f i I es is
then performed. The correlation by similar range
rate and elevation is used to select up to four
subsets of the input data (based on the assump­
tion of a maximum of 4 targets). Each selected
subset is placed in a 4096 x 256 bit array. This
data is arranged in such a manner that after
four multiplies and one divide, all the possi­
ble combinations of range (ghost and true) are
produced including straddle. In effect, the pre­
ceding correlation reduces the selection of tar­
get reports for CRT calculation to a reasonable
subset and then every possible answer is com­
puted.

More than one true target may be computed
in each array as two targets with identical
range rate and elevation may have been flying
in formation.

The criteria for target identification is
four target observations at one range, or two
sets of three target observations at adjacent
ranges. This I imitation reduces the probabi Ii­
ty of a ghost report to one in a thousand.

Component words of File n that produce the
acceptable target range from the eight scan files
are col I ected in another array for eventua I tree

145

summing into one final output report via eq (10).

Detailed Description of Design

The fol lowing is a detailed description
of correlation through tree sum of final tar­
get report as outlined in the lower half of
Figure 4.

Correlation Technigue

Fol lowing Fi I ter/Elevation Centroiding,
file n through n-3 in array 1, 2, 3 and 4 is
arranged with older files n-10 to n-4 as shown
in Figure 5. A closer inspection of array 4 is
provided in Figure 6.

A tolerance to the elevation and range rate
data of the 64 word file n-10 is used to estab-
1 ish the correlation window. These windows are
denoted in Figure 6 under the STANDARD+~ and
-~.The 64 word file is then replicated 32 times
down the field marked by the STANDARD. Files
n-10 through n-3 which are to be correlated with
file n-10 are in the comparison field.

There are four copies of each 1i le and each
is rotated by 16 in each subsequent copy. Files
other than the STANDARD contain al I the data
found in (9). In addition, a pointer designa­
ting the file number and words within the file
is included for data management.

Correlation begins with simultaneous field
to field comparisons between the STANDARD (file
n-lOJ and al I other files. Results of success­
fu I comparisons, those that fa I I within both
a range rate and elevation window, are stored
in the array Storage Area. This technique per­
mits a maximum of four successful correlations
for each word of file n-10.

After a comparison is made and successful
comparisons stored in the Storage Area, files
n-10 through n-3 are rotated 1, mod 64 and the
comparison is made again to the stationary STAN­
DARD. Successful comparisons wi I I again be stored
in the array Storage Area. In total, 16 rotations
and 8 comparisons per rotation are required for
complete correlations. In addition, 16 field
to field moves are required to store the correla­
ted files in the Storage Area. These comparisons
are occuring simultaneously in arrays 1, 2, 3,
4, not only array 4.

When a successful field to field compari­
son occurs twice to the same STANDARD, it wil I
lock out possible future candidates from occupy­
ing that same Storage Area. To prevent loss of
a valid correlation, the second successful com­
parison of the same word wi I I be bumped down
64 words and stored in the next Storage Area
within that same file. If the Storage Area is
again already taken, it wi I I bump down 64 more
and try again. After the fourth unsuccessful
try, the data is discarded by this algorithm.

Fol lowing correlation, the correct PRF prime
number, azimuth and the product (azimuth x am-
pl itudel, are added to successful comparisons
in the Storage Area for each file. Adding this
data last saves time while correlating as the

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

added 45 bits need not be rotated.

Selection Of A Candidate For (RT

Fol lowing simultaneous correlation in four
arrays, the array with the oldest data, array
4, is selected. Data in arrays 1, 2, 3 are saved.
The Storage Area in array 4 contains the results
of al I successful correlations. These success­
ful correlations are marked by a bit slice.

A simple algorithm employs the bit slice
to select words with similar range rate and eleva­
tion. As each un i.:que set of range rate and e I eva­
t ion is selected !maximum of four>, the input
data listed below is shipped into its own array
1, 2, 3, or 4.

1. Range Gate Number C~mbiguous Rangel
2. Range Rate !Filter Number)
3. Signal Strength
4. Azimuth
5. Azimuth X Signal Strength

1111

6. Elevation
7. Data Management Pointers
8. PRF Prime Number
Figure 10 shows the data movement for up

to four unique range rate and elevation combin­
ations from array 4 to the arrays that wil I per­
form the CRT.

CRT Computations In The Array

After the data has been shipped to array
1,2,3 and 4, these four arrays wil I rearrange
their data in preparation for a CRT. The task
wi I I be to compute range by the formula 141.
In Figure 8, the oldest scan file ln-101 wi I I
be considered PRF8; n-9 wi II be PRF7; etc.

Figure 8 shows an example of the para I lei
data arrangement in the array.

Fol lowing the range computation and deghos­
ting, a serial search is performed in each array
to pick the first "3 of 8" survivor. The first
survivors range is subtracted from all of the
other survivors. A test is made on the result­
ing de I ta range for a window of ±.1 • If there
are none, discard and pick the next "3 of 8"
survivor and repeat the subtraction and ±1 range
comparison. When one or more targets are loca­
ted within a window of ±.1, identify al I the
responders as the same target and mark this
range closed to further comparisons. When al I
the "3 of 8" have been accou.nted for by this
serial search in al I four arrays, begin the
data movement to array four in preparation for
a tree sum.

Mgvement Of Data After CRT

Fol lowing CRT computations and identifica­
tion of one or more valid answers !see Figure
91, the first valid answer !range Al is moved
to array 4 starting at word o. Each valid answer
is the result of three raw words such as 8,7,4,
!where 8 is a word from file n-10 containing
the attributes listed in eq 1111; 7 is a word

146

from file n-9, etc.I. Words O through 2 are then
used to store these three file words. If there
is another range computation within a ±1 range
gate window, the three words that created this
range are moved to array 4 directly behind the
previous three words starting at word 3. In al I,
64 words are set aside to collect all possible
permutations of the same target.

Fol lowing array 4 interrogation, array
1 is then interrogated for target reports. In
Figure 9, two targets were identified in array
1, one with range Band the other with range
C. Both targets had similar range rates and
elevation. The first range discovered, range
B, is moved to start at word 64. Any three part
permutations are then moved behind it as des­
cribed before. The second target at range C
is then moved to start at word 128.

After arrays 2 and 3 have been interroga­
ted for their range contributions, this task
is complete.

Data Management

Figure 10 exemplifies storage on a mod
64 boundary of two unique targets in array 4.
Starting at word 0, a target was observed at
range 1234 and 1235 1300 ft. away>. The arrange­
ment of the data suggests that the data at range
1234 and 1235 are the same target and each an­
swer was produced in the same array. Also notice
the file number and word number duplications
in word O and 1 with word 3 and 4. These dupl i­
cations must eventually be identified, and al I
duplications marked deleted by the use of a
bit slice called SAVE.

In Figure 10 at word 64, the data again
start with another unique range. As the range
rate and elevation of word 64 are different
from words O through 8, it can be assumed that
the ranges fol lowing word 64 were not created
in the same array as words O through 8.

When al I the data has been placed into
array 4, correlation, azimuth, beamsplitting

and range gate destraddle are complete for file
n-10. The data in array 4 is available for tree
summing. However, tree summing wil I not be per­
formed unti I the remaining correlated files
!correlated to file n-9, n-8 and n-7, Reference
Figure 5, arrays 1,2, and 31 have also gone
through the CRT calculations.

The file correlated to n-9 is next to un­
dergo CRT computation. Correlated n-9 must
be restored into an array and the data to be
tree summed saved before CRT processing can
begin. The restored n-9 cannot be used until
components of accepted valid ranges have been
deleted. For example, !see Figure 101 file
n-4, word 24 is now known to be part of a tar­
get at range 1234. It therefore cannot be part
of any other target and should not be consid­
ered in any future CRT calculation. Figure 11
shows that these pointers are used to mark de­
letions in the unprocessed correlated files.
Failure to delete these components would tend

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

to generate a future multitude of recurring an­
swers that would quickly exceed the capacity of
the system.

When al I the pointers have been used to mark
deletions in the remaining correlations, CRT pro­
cessing can again begin for the next oldest file
n-9. This wi I I again require development of a new
mask and processing defined under Selection Of A
Candidate For CRT.

After processing correlated file n-9, then
n-8, then n-7, the CRT computations are complete
for this computer cycle. Copies of file n-6 thru
n must be saved for the next computer cycle when
they wi I I then become file n-10 to n-3.

Files n-6 through n have been continually
updated with deletions to its 64 word file after
every satisfactory CRT range selection. Upon
final storage, file n-6 wil I contain the great­
est number of deletions and file n the least
number of deletions.

The last step in this computer cycle wil I
be to tree sum array 4, the collector of al I
the correlated target data.

Tree Sum For Final Report

Al I the data is now set up on a mod 64 ba­
sis in array 4 (see Figure 111. This data is
further arranged for maximum para! lelism in prep­
aration for a tree sum of 64.

A tree sum of 64 quantities requires only
6 adds. In 6 adds, the fol lowing wil I be tree
summed for as many as 16 unique targets, where
a unique target can contain up to four more tar­
gets at similar range rate and elevation -

A= E Signal Strength }
F = E Filter X Signal Strength
E = ~Elevation X Signal Strength 6
Z = E Azimuth X Signal Strength ADDS
Qua I ity =Number of Observations

(121

Following the six adds, one divide wi I I
be performed.

F f A
E f A
Z f A

} One DIVIDE (13)

The result of performing (121 and (131 will
be a final target report (output! for each tar­
get as defined in eq (101.

In al I, the preceding correlation required
only 17 multiplies and 5 divides for four scans
of data. One multiply per four scans computed
the product of (Azimuth* Signal Strength!; four
multiplies and one divide per scan computed the
range; and one divide per four scans computed
the final output report.

In summary, the correlation merely selects
four subsets of al I possible targets and places
them into four arrays. Each subset has its own
unique elevation and range rate. The data is
arranged in such a way that al I possible CRT
calculations are performed in para I lel on each
subset at the same time. Within each subset,
if two or more answers agree exactly, or within

147

a window, it is assumed to be a valid target.
The input to each subset is limited, and

only four val id answers can be produced per
subset. As there are four subsets per scan,
it is conceivable sixteen valid answers can
fal I out of one scans computation. Four scans
are processed in one computer cycle producing
64 possible answers per four scans. These 64
possibilities are however limited by the cor­
relation technique's sensitivity to Range Gate
Straddle Probability, and the difficulty in
finding air traffic with that great a density.

Advantages Of An Array Data Base
Random Scan

Teaming of an AP with a Phased Array an­
tenna can lend a new versatility to this AP
Radar Signal Processor Design. Consider the
array as a radar data storage area that need
not be processed unti I sufficient data is avail­
able from other scans to begin processing. Con­
sider the antenna capable of transmitting in
any reasonable direction.

Then given the sufficient array space,
there is no requirement to scan the horizon
in a sequential pattern. A scan of data can
be stored in each array unti1 a suitable sector
of the sky is available for correlation. This
would in effect permit a Random Scan Search
Radar at any PRF.

Conclusions

1. During the design of these algorithms,
an interesting observation was made for the per­
formance of an AP compared to a serial machine
at both a high and a low PRF. If the pulse rate
is doubled for a constant number of targets,
then:

Serial Machine

a. Doubles the time required to centroid
filters, FFT, elevation, etc.

b. Reduces time to correlate <not by a fac­
tor of 21.

Para I lel Machine

a. Halves the capacity ·of the algorithm
for centroided filters, FFT, elevation, etc.
with Ii tt I e effect. on t.ime.

b. Doubles the capacity for correlation.

In effect, an AP wo.uld have different
array specification requirements for a different
PRF, while a serial processor would require
more CPU's to meet higher PRF requirements.
The addition of arrays may be expensive but
has little effect on the original software.
The addition of a special purpose CPU may not
be as costly as an array, but the serial soft­
ware changes would be more extensive and cost­
ly than the AP software change.

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

This observation suggests that the AP as
a radar signal processor is more modular, and
due to its versatility !capable of CFAR, FFT,
Beamsplittingl, perhaps a better candidate for
future "plug-in modular" radars than is a special
purpose serial processor.

2. A reduction of the timing assumptions
or azimuth extension assumptions wi 11 reduce
system costs. Reduction of these assumptions
wi 11 also permit test bed implement.ation of
the concept on the four array STARAN computer
at Rome Air Development Center IRADCI. It is
hoped that this implementation wi II provide
further incentive to improve these presented
concepts by identifying the risks, cost and
system weaknesses.

01
......---.

PULSE RATE l

\
DURING SCAN l

02

f
' PULSE RATE 2 I DURING SCAN 2

The work reported in this paper was supported
~y-~D£ ~o~t~a£t_F:3£6£2~7~~-21~2~ _____ _

References

1. McGraw Hill, Skolnik, Radar Handbook, 1970.

2. Goodyear Aerospace Corporation, Application
Of STARAN To Fast Fourier Transform, GER-
16109, May 31, 1974.

3. Couranz, Gerhardt, Young, Programmable Ra-
dar Signal Processing Using The RAP , proceed­
ings of 1974 Sagamore Computer Conference.

4. Harvey Cohn, John Wiley and Sons, A Second
Course in Number Theory, 1962.

ti Dl
......---.

.1
ti 02

,...---..

v

A DISTANCE AB B

PULSE
RATE 1

PULSE
RATE 2

.t.Dl, M2 MEASURED IN UNITS OF 300 FT.

Dl, 02 DISTANCE OF PULSE PROPAriATION BETWEEN PULSES

A TRANSMITTER/RECEIVER ANTENNA

B TARGET

Figure 1 HIGH PRF RANGE MEASUREMENTS

Dl
....--..,

l I l
02

'

c. 01
,.--,

iv
ti.02

.....--.....
I VI I DISTANCE AB To Tarqet 1 £>-B A

To Target 2 A·Cf DI STANCE AB I

ti Dl I
....--..,

l v
ti 02 1 ----I v

B'

TRUE RANGE OF TARGET l. Cl(D2)A[}l+C2(Dl)LlD2 TRUE RANGE OF TARGET 2 = Cl(D2)A9l'+C2(Dl)~02'
.=.i.=..:..::;;;D,;:.1...;X~D2 D 1 X D2

RANGE OF GHOST TARGET l • Cl(D2)/,101 '+C2(Dl)492 RANGE OF GHOST TARGET 2"' Cl(D2)AiJl+C2(Dl)~D2'
Dl X 02 Dl X D2

Figure 2 GHOST PROBLEMS IN PULSE DOPPLER RADARS

148

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

_) __
j_ __
I

SCAN n-9 n-8 n-7 n-6 n-5 n-4 n-3 n-2 n-1 n

AZIMUTHfTIME---

T
s
R
Q
p

0
N
M
L
K RANGE
J
I
H
G
F
E
D
c
B
A

Each box represents one 18rg8' report.

FIGURE 3. AZIMUTH TO AZIMUTH CORRELATION
AND RANGE GATE STRADDLE

SCAN N SCAN N-3
T-30MS.
DETECTION

SCAN N-2
T-20MS.
DETECTION

SCAN N-1
T-lOMs.

DETECTION
T

DETECTION

ARRAY 4 __ ~_RR_A_Y.....,3 ,___..... A_R_RA_Y...,2 r----''-A_R;.;...RA;.;...Y_,,1
,.....,,~~~~ VELOCITY/FFT VELOCITY/FFT VELOCITY/FFT VELOCITY/FFT

CFAR CFAR CFAR CFAR
ELEVATION/ ELEVATION/ ELEVATION/ ELEVATION/

FILTER FILTER FILTER FILTER
CENTROID CENTROID CENTROID CENTROID

l;RRAY 1-4

CORRELATE 4 NEWEST FILES AND PREVIOUS 8 FILES
COMPUTE RANGE

ARRAY 4

TREE SUM co~PONENTS OF EACH UNIQUE RANGE
FOR FINAL TARGET REPORT

FIGURE 4 PARALLEL RADAR SIGNAL PROCESSOR

149

ARRAY 1 ARRAY 2 ARRAY 3 ARRAY 4

N-7 N N-8 N-1 N-9 N-2 N-10 N-3

N-7 N-1 N-8 N-2 N-9 N-3 N-10 N-4

N-7 N-2 N-8 N-3 N-9 N-4 N-10 N-5

N-7 N-3 N-8 N-4 N~9 N-5 N-10 N-5

N-7 N-lJ N-8 N-) N-9 N-5 N-10 N-7

N-7 N-5 N-8 N-5 N-9 N-7 N-10 N-8

11.-7 N-5 N-8 N-7 N-9 N-8 N-10 N-9

N-7 N-7 N-8 N-8 N-9 N-9 N-10 N-10

FIGURE 5 ARRAY SETUP PRIOR TO CORRELATION

WORD 0

WORD 64

WORD 128

WORD 256

WORD 512

Fl LE n-10
!STANDARD)

ELEV ELEV
+A -A
n-10 n-10

(:

ARRAY 4

RNG RNG
!IT RT
+A _A
n-10 n-10

~

FILE n-10
to n-3

FILE n-10
0-63

FILE n-10
16-63, 0-15

PILE n-10
32-63, 0-31

FILE n-10
48-63, 0-47

PILE n-9
0-63

FILE n-9
16-63, 0-15

PILE n-9
32-63, 0-31

FILE n-9
48-63, 0-47

FILE n-8
0-63

FILE n-8
16-63, 0-15

PILE n-8
32-63, 0-31

.....__.,

Figure 6. CORRELATION TECHNIQUE
-

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

·------------------------------·
N-10 N-9 N-8

N-10 N-9 N-7

N-10 N-9 N-6

FOURTH
dLECTED CORRELATION ARRAY l

FIRST SELECTED_

N-10 N-9 N.,.S

N-10 N-9 N-4
CORRELA Tl ON

N-10 N-9 N-3

ARRAY 1;

SECOND .SELECTED CORRELATION ARRAY 2

TH !RD SELECTED

N-10

f

N-8 N-7

f I
CORRELATION N-10 N-4 N-3

l\RRAY 3 N-9

I
N-8

I T
N-5 N-4 N-3

FIGURE 7 -------------------------------
A MOVEMENT JN PREPARATION FOR
CHINESE REMAINDER THEOREM

DAT
FIGURE 8

ARRANGEMENT OF FI LES N-10 T HRU N-3

PRIOR TO RANGE COMPUTATION

150

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

ARRAY 1

2 UNIQUE
RANGES

FROM SAME
RANGE RAT

AND
ELEV.ATIQN

WORD 0

N-9

N-9

N-9

N-9

N-9

SRANGEA /
1--1

N-9
I~

RANGE B N-9
---1

RANGE C N-9
RANGE D

t1-2

N-3

N-1!

N-5

N-6

N-7

N-8

N-9

N-7

N-7
-

N-7

ALL COMPONENT WORDS OF UN I QUE RANGE D
ARRAY 2

54

128

192

25G
RANGE E DtLEIE ALL USED WORDS 11-7

BY USE OF PO llffER N-7

ARRAY 4 ~
N-8 N-1 N-7

ARRAY 4
N-8 N-2 N-7

N-8 N-3 N-7

ARRAY 3 N-8 N-4
FIGURE 9 1---1 --
PREPARATION. FOR TREE. SUM FIGURE 11 N-8 N-5

WORD 0

WORD 64

RANGE AZ EL

1234 100 3
1234 99 3
1234 97 3

RNG RT AMP

17 16
17.2 22
17 30

IDE
DEL

S/N

13
15
15

NT! FI CATI ON AND
N-8

ET! ON OF USED DA TA N-5

N-8 N-7

N-8 N-8

FILE NO. WORD NO. SAVE

n-8 7 1
n-7 52 1
n-5 9 1 ·-··-··-··-···-··-··-·-··-···-··-··-···-··-···-··-··-··-················'

1234 100 3 17 16 13 n-8 7 0
1234 99 3 17.2 22 15 n-7 52 0
1234 96 3 17 28 14 n-4 24 1

··-··-··-··-··-···--··-··-··-····-··-···-··-··-···-···-···-··--·············· 1235 100 3 17 15 13 n-8 29 1
1235 99 3 16.8 20 15 n-7 33 1
1235 98 3 16.8 28 15 n-6 16 1

2387 100 7 42 19 15 n-8 15 1
2387 99 7 42 28 14 n-7 19 1
2387 98 7 42 40 15 n-6 37 1 ·-··-··-·--·-··-··-··-··-··-··-··-·-··-··-·-··-··-··-················
2386 100
2386 99
2386 98

7 42
7 42
7 42

20
30
42

15
15
16

Figure 10 DELETION OF REPEATS

151

n-8
n-7
n-6

21
32

5

1
1
1

N

N-1
t---1

N-2

N-3

N-4

N-5

N-5

N-7

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

AN OPTIMAL SYNCHRONOUS REFRAMING TECHNIQUE
USING AN ASSOCIATIVE PROCESSOR

Terrence L. Saxton and Cheng-chi Huang
Systems and Research Center

Honeywell, Inc.
Minneapolis, Minnesota 55413

Abstract -- Data loss resulting from the
time to regain frame synchronization following
an out-of-frame condition on a synchronous time
division multiplexed bus or line, such as the
Bell System Tl digital line, can be substantial.
Most current schemes require many frame
times to separate with high probability the true
frame pattern from identical patterns occurring
temporarily in random data. A novel technique
based on an associative processor was con­
ceived which can reduce the reframe time to its
minimum value by eliminating the time spent
dwelling at false frame positions.

Introduction

Synchronous high speed digital transmission
terminals typically arrange serial bit streams
into periodic line formats called frames. Re­
ceiving terminals require at least two levels of
synchronization to permit proper decoding of
the transmitted information:

1. Bit synchronization, to bring the receiver
clock into phase with the .transmitted bit stream
for sampling of the bit values, and

2. Frame synchronization, to bring the
receiver into phase with the transmitted line for­
mat or frame so that the bits can be properly
arranged for decoding and/ or demultiplexing.

Our concern in this paper is only with frame
synchronization, and in particular with a novel
technique to regain frame synchronization in the
minimum possible time after a loss of frame
synchronization caused by errors due to trans­
mission path noise or equipment faults. The
technique to be described can be implemented
with a special purpose associative processor
realizable with currently available off-the-shelf
components.

Framing Strategies

At the transmitter a unique bit pattern is
added to the line format. The periodicity of this
framing pattern defines the frame length. For a
frame length of N bits, there are N different
phases the receiver can assume, only one of
which corresponds to an "in-frame" condition or

152

mode. The framing strategy consists of a pro­
cedure for searching through all N possible
phases until the one containing the frame pattern
is found and verified, at which time the receiver
is said to be in-frame.

The receiver framing circuitry has two modes
of operation. When the receiver is in-frame, a
single frame pattern bit error will not initiate
reframe searches. It takes repeated violation of
the expected frame pattern, such as four errors
in seven frames, to cause the receiver to enter
the out-of-frame mode. After entering this
mode, the receiver will initiate reframe searches
in order to get back to the in-frame mode. In the
reframe searches, a mismatch between the bits
under examination at a particular phase position
and the expected frame pattern bits will cause a
shift to the next phase in the frame. When the
expected frame pattern bits are found in a partic­
ular phase of the frame, the same phase of the

.next frame will be searched. The receiver re-
turns to the in-frame mode when the frame pat­
tern persists at that phase for a given number of
times, k. ·

Reframe strategies are evaluated by their
effects on system performance as measured pri­
marily by reframe time and by the complexity of
their circuit implementations. Reframe time is
the length of time spent in an out-of-frame mode,
during which all transmitted information is lost.
A long reframe time may be required because
random bits in a non-frame synchronization phase
may happen to match the frame pattern, resulting
in a false frame position until a mismatch occurs.

The expected time spent at a false frame
position, E(tff), can be shown to be [1], [2]:

°' -m -m
E(tff)='"°'__E!_ = 2 T 2 Nt ' (l)

L.J (2m)n (l- 2-m)2 (l- 2-m)2
n=l

where m = the number of frame bits
T = Nt, period of the frame
N = number of bits/frame
t = time duration of one bit

Searching over all possible positions requires
N such tests. If the pattern is further required
to persist for a minimum of k periods to achieve

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

an acceptably low probability of false-frame,
then the maximum average reframe time,
[t f] , is given by:

r max

[t f] =(N-l)E(tff) +kT. r max
(2)

As an example, consider the Bell System Tl digi­
tal transmission facility operating at 1. 544 mega­
bits per second with a frame length of 193 bits
and a three bit frame pattern. On the average,
a receiving terminal will dwell at a false frame
position for • 16 periods during a search. For
T = 125 microseconds and k = 4, the maximum
average reframe time is 4. 4 milliseconds.

Reframing Using an Associative Processor

Approach

Using associative processing techniques for
reframing, reframe time may be significantly
reduced. This is accomplished by performing
an associative equality search operation for the
frame pattern simultaneously (i.e., in parallel)
over all possible phases of the frame. The
reframe time attributed to dwelling at a false
frame position is thus eliminated. The reframe
time, trf' is now given by

trf = kT. (3)

The value of trf has thus been reduced to its
minimum possible value for a given value of k,
and in this sense is now optimal. For the
example given above, the value of trf is reduced
from 4. 4 milliseconds to O. 5 milliseconds.

An associative processor implementation of
this reframing procedure for the previous
example with the three bit frame pattern contig­
uously grouped at the beginning of a frame is
briefly described below.

An Associative Processor Implementation

The data paths for a simple associative pro­
cessor are shown in block diagram form in Fig­
ure 1. The incoming data stream is serially
shifted through the 1-bit wide X register from
bottom to top. An Associative Memory, AM,
has 193 words (one for each phase), each of
which has a frame pattern field (for the three
frame bits F 0, F 1, and F 2) and a counter field to
record the number of matches. At appropriate
times the X register is written as a bit slice into
the frame pattern field of the AM. A Y register
is used to record matches following equality
searches with the search register, S. A special
multiple match logic circuit is connected to each

153

bit position in the Y register to indicate zero,
one or more than one matches following a search
operation.

System Operation

In each period during the out-of-frame mode,
the bit stream (bo, b1, ... , b 192) is loaded into the
X register, immediately following the last bit
(b'192) of the previous frame. The stream is
shifted up until, for example, the pattern shown
in the X register of Figure 1 is present, at which
time it is loaded into Column 1 of the array.
Likewise, after each of the next 2 shifts, Columns
2 and 3 are loaded from the X register. The 3-
bit frame pattern field of the 193 words in the
array thus contain all possible 3-bit windows to
be searched. All windows are then compared by
an equality search operation to the frame header
pattern in the S register, and any matches are
indicated in the Y register. The match counters
(in the Match Counter Field) of matched windows
are incremented by one.

This procedure is repeated for k successive
periods. At the end of k periods, an equality
search fork is performed over the Match Counter
Field and the Multiple Match Logic is consulted
to determine if there is zero, one, or more than
one responder. One responder will result in a
return to the in-frame mode. Zero or more than
one will require additional searches until a single
responder is left with a satisfactory number of
matches. The probability of having only the cor­
rect frame pattern window with k in the Match
Counter Field after k periods is [1-(l/2m)k]192,
which is O. 954 for m=3 and k=4. In any case, the
frame header position is indicated by the location
of the word which satisfies the match criteria.

This technique can easily be extended to any
number of frame pattern bits, including one, and
to distributed as well as clustered patterns with­
in a frame. Whereas for conventional reframing
schemes, exemplified by the Dl terminal for the
Bell System Tl digital lines, the reframe time
goes up rapidly as the number of frame pattern
bits go down, the reframe time with an associa­
tive processor is only dependent on the value of k.
In fact, for one bit patterns (i.e., alternating
ones and zeros), the improvement in reframe
time is the most dramatic. To achieve the same
probability (e. g,, 0. 954) of correctly identifying
the frame pattern window used in the previous
example using a one bit frame pattern (i.e.,
m=l) requires k be equal to 12, The rcframe
time improvement in this case is from 49. 5
milliseconds for the conventional approach to 1, 5
milliseconds for the associative processor
approach.

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

Conclusion

A reframing strategy based on an associative
processor implementation has been described
which can reduce reframe time to its minimum
value. The technique eliminates the time spent
dwelling at false frame positions by simultan­
eously searching all possible bit positions for
the frame pattern. For Tl digital terminals with

·frame lengths of 193 bits, a period of 125 micro­
seconds, and a one bit frame pattern, the re­
frame time can be reduced from 49,5 milli­
seconds to 1, 5 milliseconds. The loss in infor­
mation is thus reduced from 396 frames to 12
frames, providing a significant improvement in
system performance.

S REGISTER (lx8 bits)

• •
• • •
• •

Frame Pattern
Field

Match Counter
Field

AM

(193 x 8 bits)

References

[l] Members of the Technical Staff, Bell
Telephone Labs, Transmission Systems
for Communications, Fourth Edition,
Western Electric Co., Inc., Technical
Publications, Winston-Salem, North
Carolina, 1970, 759 pp.

[2] L.B.W. Jolley, Summation of Series,
Dover Publications, Inc., New York,
1961.

•
•
•

Out-of-Frame
Cycle Counter (5 bits)

D
193xl 193xl

X Reg. Y Reg.

bo

bl

b2

•
•

Incoming
Data

Stream

t •
•
•

•
•
•

More
than
One
Match

One
Match

No
Match

Logic

Figure 1. A Simple Associative Processor for Reframing

(a)b'. are bits from the preceeding frame.
l

154

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

ORGANIZATION OF SEMICONDUCTOR MEMORIES FOR

PARALLEL-PIPELINED PROCESSORS(a)

Faye A. Briggs and Edward S. Davidson
Coordinated Science Laboratory

University of Illinois
Urbana, Illinois 61801

Abstract -- A multimodule semiconductor
memory organization for parallel-pipelined
processors is developed using a Markov model.
Buffered - and non buffered - request schemes
were simulated for various memory configurations.
Performance is evaluated as a function of
configuration.

I. Introduction

This paper describes a method for exploiting
the characteristics of semiconductor memories to
obtain a multimodule memory organization for
parallel-pipelined multiinstruction-stream
processors.

In simple terms, semiconductor memories
require an address to be held on the address
lines for i!o seconds (an address cycle) and can
perform a complete memory operation in £o seconds
(a memory cycle)(b). In general §!a-;:;_ £o· We
assume that the address is typically held .on the
address lines at least as long as data is held on
the data lines. Hence the data lines do not pose
a limiting constraint and are not considered
explicitly.

A parallel-pipelined processor of order
(~,p) [l] is modeled here as a set of£ inde­
pendent but synchronized processors each of
which is a pipelined processor of degree ~
consisting of~ segments (physical resources).
Each segment can simultaneously be processing a
distinct step of a distinct instruction. It is
assumed that these s instructions come from
distinct instruction streams as in [2], hence the
degree of multiprogramming is also ~· Each
processor segment takes 1 segment time unit
(STU = T seconds) to complete its execution step.
A pipelined processor can issue one memory
request per STU. Hence a parallel-pipelined
processor of order (~,p) can issue £ requests
each STU and execute ~·£ distinct instruction
streams concurrently. There is no execution
overlap between instructions from the same
stream.

(a)This research was supported by the National
Science Foundation under Grants GJ-35584X and
GJ-40584 and by the Joint Services Electronics
Program under Contract DAAB-07-72-C-0259.

(b)In actuality, we have (~,£r)/(~,.£w) which
are address and memory cycles for read and
write respectively.

155

II. Model Description

The memory and processor operations described
above suggest that parallel-pipelined processing
can be implemented in the memory if the memory
modules are organized in a matrix form with line
segment i and module segment i on line i
referred to as Li and ~,i respectively. This

organization, referred to as L-M memory organi­
zation, is shown in Figure 1.

A reservation table [3], used to illustrate
the flow of a computation through the segments
of a pipeline, is shown in Table 1 for a
straight-through pipelined processor of order
(7,1) having access to the L. and M .. of the

!. !.,J.
memory system whose memory characteristics are
(a,c) = (2,4), where a and £are the address
and-memory cycles exp~essed as an integer number

of STUs, namely ~ =
a !
..£.I c =
T ' ·-

IC 1

To I · Following

initiation at time instant !:_, an x in cell (~,y)

indicates that a task requires the segment
associated with row u for time interval
(!:_-fy_, !:_-ly_ + 1). Note -that operations in the line
and module segments cannot be preempted.

A memory collision is said to occur when a
memory request attempts to access a busy line or
module segment, or when two simultaneous requests
attempt to access the same line segment. Hence
following an initiation of a memory operation at
time ! on line segment 1'i and module segment

M. . , L. will remain busy throughout (t, t +a).
!_,J_ !. - - -

During this period, all requests (arriving at
!:_+l,!:_+2, ... ,!:_~-1) will find Li busy. Similarly,

all requests for M. . througho~t (!,!-+£) will
.!_, J..

result in a memory collision.

The memory organization consists of ~ (=2~)
identical modules arranged such that there are

£-lines and m-modules per line, where .e = 2£. and
- n-b - -
m = 2- - such that 0 < b < n. The modules are
interleaved on the lmv -o~d;r n bits and the lines
on the low order b bits of the address. This
scheme tries to ~ximize the probability that ~
successive requests are to distinct lines and £
successive requests are to distinct modules.

Two multiaccess content addressable memories
(CAMs) of size £·(~-1) and £·(£-1) are required
to store the addresses busy lines and modules

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

respectively. On the arrival of a memory request
at t, CAM probes are made at t to search for the
requestor's corresponding L. and M .. addresses .

.!. .:!:_,J_
If the line or the module is busy, the request is
rejected, otherwise it is accepted and its Li and

M. . addresses are stored in the CAMs for exactly
!.>J.

!!_-1 and £-1 STUs respectively.

We assume for analytical purposes, that the
addresses of the E. requests issued per STU are
independent and uniformly distributed among the

n
2- memory modules. This assumption is conser-
vative. In real systems, requests are often
vectoral. Hence higher performance should be
expected than presented here.

III. Results of Markov Analysis

Discrete Markov models were developed to aid
in the performance analysis of the memory organi­
zation. By way of example, Figure 2 shows a
graph of a line decomposition for (a,c) = (2,4)
with E. = 1. Labels on arcs indicate -ti="ansition
probabilities. The node marked "*" indicates
that a request is made to the line and is
accepted. A steady state solution gives the
probability of acceptance, PA(~,£,£> of the C&,~)
memory configuration as

(.R,m)2
PA (2,4,1) 2 2 (.R,m) + i.m + 2.R,m-m+l

.R, times the
probability of
being in state 1

Bandwidth, the expected number of accepted memory
requests in a memory cycle, is an indication of
performance and is given by

B = pcPA(a,c,p).

We now investigate the general case E.'.:: 1.

Lemma 1. The probability of a request being
rejected due to a line collision with one or more
of the E.-1 other simultaneous requests is

Theorem 1.

[.R,-1 PJ .R,
pl = 1 - 1 - <-y-) p

For ~ = 1, £ ~ 1,
l-P1

1 + (1-Pl)k ' where
nf~-1 \
k=~

N

Theorem 2. For !!. ~ £:::: 2!!_, !!. > 1,

l-P1
PA(!!_,£,£>= p (1-P1)

1 + (l-P1)k1 + m-l [1-(1-a{-aJ

where a = m;l > O and k1 = p(~-l) . Also

l-P1
1 + (1-Pl)k ' for a=O.

Theorem 3. For any 1 < !!. < £,

D

D

D

156

, where

Theorem 4. D

IV. Discussion of Simulation Results

Several (£,m) memory configurations have been
simulated. In-the Markov model, rejected requests
are simply discarded, whereas in the nonbuffered
simulation case, they result in a blocked process
and are resubmitted ~ STUs later. A buffered
case has also been simulated. In this case, each
of the E. processors has an associated FIFO queue
which accepts incoming requests. Each queue is
scanned each STU for the first acceptable request.
A process is blocked only while it has a queued
read request. For the nonbuffered case, simula­
tion results were within 5% of the respective
analytic results. Thus the graphical plots appear
to be identical.

The illustrations of Figures 3 to 8
illustrate a typical set of module charac­
teristics, whose read and write address cycles
are a = 2 and a = 2, respectively, read and write
memotj eye les ~e c = 4 and c = 6, respectively.
Figures 3 and 4 sh~ the prob'j[bility of accep­
tance, PA, versus the number of parallel requests,
£, for various (f,~) memory configurations with
N = 64 and N = 1024 respectively. For any
~onfiguration, the buffered case produces as
good or better PA than the nonbuffered case.

If we consider the size, !_, of the memory
module fixed, then the number of memory modules,
N, represents the total size of the memory. Thus
increasing li implies increasing the size of
memory. However, if we fix the total size of the
memory, an increase in)i implies a decrease in z.
Thus,)i could be interpreted in two ways.

In Figures 5 and 6, a point of inflection
occurs at & = E.· For & < £., the lines are
saturated, resulting in excessive blocking of
processes. Hence, configurations with & < E. would
not be desirable. Buffering tends to have its
maximum effect near .R, = ~E.· For small g_ and large
li, the bandwidth of the nonbuffered case is close
to the upper bound. Buffering has little effect.
For large & and li, PA approximates 1 in the non­
buffered case as shown in Figure 4. Again
buffering cannot improve PA significantly.
Buffering can thus be used for two purposes. One,
to increase the performance of a configuration
with &. in the vicinity of ~ E.· Two, when &.
exceeds ~ £, buffering may be used to maintain
bandwidth while reducing &· It is worth pointing
out that a decrease in .R, requires a smaller line
address decoder, fewer line drivers and fewer bits
per word of the CAM required for storage of line
addresses.

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

We can see that the effect of E. is dramatic
as can be seen in the bandwidth curves of Figures
5 and 6. Note, however, that a significant
increase in E. would warrant an increase in ~ to
avoid excessive page faulting which is not modeled
in this paper.

Figures 7 and 8 show the expected wait times,
in number of instruction cycles (= ~ STUs), versus
&. for various E.· Only the interesting cases
(&_ :::_ E.) were shown. As expected, the buffering
scheme exhibits a lower wait time. In the simu­
lation results of the buffered case for ~ = 64 and
~ = 1024, the expected mean (maxinrum) queue length
was less than 15(20) and 10(15), respectively, for
all configurations with&'.'.:. E.·

The module characteristics (~,£) also affect
the performance. An increase in ~reduces PA
most for small values of t, while an increase in
£ reduces PA most for larg; values of &·

It has been seen that any configuration with
&.. < E. will result in very poor performance.
Reasonable performance will be obtained for
&. :::_ ~E.· Further increase in &. and/or use of
buffering depends on cost and performance factors.

References

[l] D. L. Weller and E. S. Davidson, "Optimal
Searching Algorithms for Parallel-Pipelined
Computers," Parallel Processing, Proceedings
of the Sagamore Computer Conference, (August,
1974), pp. 291-305.

[2] L. E. Shar and E. S. Davidson, "A Multi­
miniprocessor System Implemented through
Pipelining," Computer, IEEE, (February,
1974), pp. 42-51.

[3] E. S. Davidson, et al., "Effective Control
for Pipelined Computers," Proc. Compcon
Spring 1975, (February, 1975), pp. 181-184.

Mo,o Mo,i Mo,m-1

9 ? • • • • ? Lo

M1,m-1

9 ? • • • • ? L1

•

•
M

'1-1,m-1

? 9 • • • • ? L 1-1
Fig. 1. 1-M organization

157

012 34 56

So

Processor Segments

55

56

Line Segment { L;

Module Segment { M;,J

Time

x
x

x
x

+

x

x
x

N

t

x
x

x x
"' "" Ill + + ± ~

Table 1. A reservation table.

Fig. 2. A Markov diagram.

x

- - - - Buffered Requests

<D
+

--- Nonbuffered Requests
1.0

-------:!"o.~ - --

x

I'­
+

a..<(

o)

.......... __
.... -1. =64 --

0
c
0

g. 0.6
0
0
<(

'O
>-

== 0.4
:0
0

..0
0

ct

0.2

'1=1

1 2 3 4 5 6 7 8
Number of Parallel- Pipelined Processors, p -

Fig. 3 . PA for N • 64.

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

o._«
a)
u
c:
0

Buffered Requests

Nonbuffered Requests

-1=64

g. 0.6
u
u
<{

30

([)

-E
1:1

~ 20
c::
0

([) -0
Q)
::J

Ci 10
>
1:1
~
" Q)

a.
)(

w

-1=16

1 2 3 4 5 6 7 8
Number of Porollel- Pipelined Processors, p -

Fig. 4. PA for N = 1024.

Buffered Requests
Nonbuffered Requests

1 2 4 8 16 32 64

p=8

p=4

p=2

p =l

Number of Lines, J(Logarithmic Scale)------

Fig. 5. B for N = 64.

158

r 40

- - - - Buffered Requests

--- Nonbuffered Requests

CD

..c:

.:030
-~
""Cl
c:
0

CD
_20
0

Q)
::i
0
> 10
""Cl
Q)

ti
Q)
a.
>< w

1 4 16 64 256 1024

Number of Lines,£ (Logarithmic Scale)-----

en
Q)

u
>.
u
c:
0

u
::J -~ 5

H

04
en
Q)

-E3
::J
z
.5 2
en
Q)

.i::: l
I-

c
0
Q)

:::;?

<J)
Q)

u
>.
u

-0

~4
Q)

.0
E
:::> 3 z
c::

<J) 2
Q)

E

~l
0

5:

Fig. 6. B for N = 1024.

Buffered Requests
Nonbuffered Requests

1 2 4 8 16 32 64
Number of Lines, J (Logarithmic Scale)~

Fig. 7. Wait time for N = 64.

Buffered Requests
Nonbuffered Requests

-:.--- --- ---
~ 1 2 4 8 16 32 64 128 356 512 1024
~ Number of Lines,J (L.ogarithmic Scale)-----_..

Fig. 8. Wait time for N = 1024.

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

STORAGE SCHEMES IN PARALLEL MEMORIES (a)

Henry D. Shapiro
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

Abstract -- various classes of skewing
schemes for storing data in independent memory
modules in multi-processing computing systems are
considered. Results concerning the simultaneous
demand for 1003 memory utilization and conflict
free access to common matrix subparts are
presented. Under certain conditions it is shown
that both these demands cannot be met. Under
other circumstances it is shown that linear
skewing suffices and non-linear skewing gives no
additional power.

I. Introduction

In this paper we consider the following model
of a parallel computer. Besides a "control
processor," we have N independent arithmetic
processors and M independent memory modules. The
arithmetic processors and the memories are
connected by a processor-memory interconnection
network (see Figure 1). we assume the inter­
connection network is such that in one "memory
cycle" any processor can access any memory module,
but two processors cannot access the same memory
module. An attempt by different processors to
access the same memory is called a memory conflict.
If memory utilization is defined to be the ratio
of the number of memories being used in one memory
cycle to the total number of memories, then our
goal becomes to choose N and M so that the
utilization is near one when certain algorithms
are executed. The algorithms we are primarily
concerned with arise from numerical analysis
computations on large matrices. Without discussing
the algorithms in detail, it suffices to know that
our data are organized as a P x P matrix, P >> N
and we wish to extract any row, column, forward
diagonal, or backward diagonal (see Figure 2), N
consecutive elements, one per processor, at a time.
A desire to keep all processors busy requires,
because of our previous restrictions, M ~ N.

In earlier works, Lawrie [4] and Budnik and
Kuck [l] investigated similar problems, imposing
various restrictions on N,M and the way in which
data elements can be assigned to individual memory
modules. Lawrie [4] deals primarily with the case
N = 2q for some q, and M = 2N. He gives a method
for assigning data to memory modules which permits
conflict free access to rows, columns, forward
diagonals, backward diagonals and .fN x .fN blocks
(when N is a perfect square). It should be noted
that M = 2N implies that memory utilization is
~ 503. If 1003 memory utilization is desired

(a)Work supported in part by an NSF Graduate
Fellowship and in part by NSF Grant GJ-41538.

159

then we must restrict M = N. Throughout this
paper 100% memory utilization will be a design
criterion, so we assume M = N and use N to stand
for both the number of processors and the number
of memories.

Definition 1: An instance of~ (x,y)-line is
{a. . lv= ... ,-2,-1,0,1,2,. .• and the l+Vy,J+Vx
element a. . falls within the bounds

l+Vy, J+Vx
of the P xP matrix).

Pictorially, the instance of the (x,y)-line
containing matrix element a .. is the set of

l,J
elements formed by starting at element a. . and

i,J
including those elements reached by repeatedly
''going over x and down y" (see Figure 3) . Notice
that two instances of an (x,y)-line have either
empty intersection or they coincide. As an
example, every row is an instance of a (l,O)-line,
every column an instance of a (0,1)-line, every
forward diagonal is an instance of a (1,1)-line,
and every backward diagonal is an instance of a
(1,-1)-line.

Definition 2: A skewing scheme for a P xP matrix
is a function, cp, from (0,1, ..• ,P-1} x
{O, 1,. . .,P-1) to (o, 1,. . .,N-1), where
cp(i,j) = m means matrix element a .. is
stored in memory m. i, J

Defintion 3: A skewing scheme is said to be
valid for a set of (x,y)-lines,
T'('X;";y.)-linesli=l,2, ... ,I}, if and only

l l

if every N consecutive elements of any
instance of any (xi,yi)-line, i=l,2, ... ,I,

are stored in different memories, i.e.
cp(p, q), cp(p+y.,q+x.), ... , cp(p+(N-l)y.,

l l l
q+(N-l)x.) are all distinct for any choice

l

of p and q and any (xi,yi), i=l,2, ... ,I.

If a skewing scheme is valid for a collection
of (x,y)-lines then any N consecutive elements of
any instance of any of them can be fetched conflict
free. The main focus of this paper is to define
some special classes of skewing schemes and to
investigate their relative abi.lities to provide
conflict free access to different sets of (x,y)­
lines.

II. Special Classes of Skewing Schemes

Before defining the special classes of
skewing schemes of interest to us, it is convenient
to modify slightly our definition of skewing

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

scheme. As presently defined, given a collection
of (x,y)-lines, the validity of a skewing scheme,
depends not only on the xi and yi' but also on P,

the size of the matrix. Since P >> N, and in
general cannot be determined in advance, it is
reasonable to free ourselves of this dependence
on P by redefining the domain of cp to be {0,1,2,
...) x {0,1,2, ..• }. Mathematical justification
can be found for this in

Theorem 1: Given a set of (x,y)-lines, {(x.,y.)-
i J_

linesli=l,2, ... ,I), if for every P, there
exists a valid skewing scheme for this
collection, cp = ~(P), then there exist a
a skewing scheme, cp:{o,1,2, ...) x {0,1,2, ...)-+
{ o, 1, ... , N-1} which is also valid for the
collection of (x,y)-lines.

The proof of this will not be presented here.
It is a straightforward application of Konig's
Infinity Lemma. The interested reader can find
the details in [6]. The same technique can be
used to eliminate the boundaries at row zero and
column zero. That is, we may take the domain of a
skewing scheme to be { ... ,-1,0,1, ...) x
{ ... ,-1,0,1, ...), without loss of generality.
In practice the elements outside the bounds of the
matrix would not be referenced or can be treated
as zeros.

Two classes of skewing schemes of special
interest are periodic skewing schemes and linear
skewing schemes.

Definition 4: A skewing scheme, cp, is called
periodic if and only if cp(i,j) = ~(i±kN,j±iN)
for k,i=0,1,2, A skewing scheme, cp, is
said to be linear if and only if there exists
a and b such that cp(i,j) = ai+bj mod N.

We observe that a linear skewing scheme is a
periodic skewing scheme, since cp(i±kN,j±iN) =
a(i±kN) +b(j±iN) mod N = ai+bj mod N = cp(i,j).
Given a collection of (x,y)-lines, {(x.,y.)-linesl

J_ J_

i=l,2, ... ,I), Budnik and Kuck [l] give a necessary
and sufficient condition for the existence of a
valid linear skewing scheme. We reca.11 their
results.

Theorem 2: Given a collection of (x,y)-lines,
{(x.,y.) li=l,2, ... ,I), there exists a valid

J. J_

linear skewing scheme for this collection if
and only if there exists a and b such that

(ay.+bx.,N)(b) = 1, for i=l,2, ... ,I.
J_ J_

Proof: It sufficies to show that for a chosen
pair, a and b, any N consecutive elements of any
instance of an (x, y)-line, for definiteness, say
the (x ,y)-line, can be accessed conflict free if

r r
and only if (ay +bx ,N) = 1, since the linear

r r
skewing scheme must work for each (x,y)-line
independently.

(b)(x,y) = 1 means the greatest common factor of x
and y is 1. They are relatively prime.

160

Suppose first that a and b are such that the
linear skewing scheme, cp(i,j) = ai+bj mod N is

valid for the (x ,y)-line. Then ai+bj ~N(c)
r r

a(i+vyr) +b(j+vxr)' for V=l,2, ... ,N-1. This

implies that v(ayr+bxr) ~No, for V=l,2, ... ,N-1.

This occurs if and only if (ayr+bxr,N) = 1 .

Conversely, suppose (ayr+bxr,N) = 1. This

implies that a(i+vyr) +b(j+vx) J a(i+v'y) + · r ~ r
b(j+v'xr), for v,v'=O,l, ... ,N-1 and v / v'. This,

however, is just a mathematical way of stating
that no two elements amongst N consecutive
elements of an arbitrary instance of the (x ,y)-

r r
line are assigned to the same memory module. •

Conflict free access to rows ((1,0)-lines)
is, therefore, equivalent to the existence of a b
so that (b,N) = 1. Similarly conflict free access
to columns, forward diagonals and backward
diagonals is equivalent to the existence of an
a and b so that (a,N) = 1, (a+b,N) = 1 and
(-a+b,N) = 1 respectively. From these results
Budnik and Kuck [l] point out that if 100% memory
utilization is desired, at the same time conflict
free access to rows, columns and forward diagonals
is assured, and a linear skewing scheme is

employed, then 2 JN, (d) for one of a,b and a+b is
divisible by 2. If backward diagonals are added
to the collection of matrix subparts to which
conflict free access is to be assured, then we
must also have 3 JN. They make two further
observations. Since N = 2q is precluded, by their
results, for the types of algorithms they
consider, the division process in performing
the modular arithmetic is slowed, and no
reasonably fast, but not too expensive, inter­
connection network is known which can sort the
permutations introduced by the skewing scheme.

It is the purpose of the next two sections
to prove

Theorem 3: Given a collection of three (x,y)­
lines, there is a valid linear skewing
scheme for this collection if and only if
there is a valid periodic skewing scheme.

The only if direction is trivial. The truth
of the if direction is rather surprising, since
the class of periodic skewing schemes is far
larger than the class of linear skewing schemes.
It is not hard to construct examples of
collections of three (x,y)-lines for which there
are valid periodic skewing schemes which are not
linear. (The theorem only claims the existence
of a valid linear skewing scheme, not that all
valid periodic schemes are linear.)

(c)~ means not congruent modulo N.
N

(d)c!d means c divides d (evenly). c Jd means c
does not divide d.

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

III. The Existence and Non-Existence of
Linear Skewing Schemes

In this section we will completely charac­
terize those situations for which a valid linear
skewing scheme exists for a collection of three
(x,y)-lines. We note that Theorem 2 requires
(x.,y.,N) = 1, for i=l,2,3.

l l

Lemma 1: Given a collection of (x,y)-lines,
((x.,y.)-linesJi=l,2, ... ,I}, and given N,N',

l ,l
a, b, a', and b' such that (ay.+bx.,N) =

l l

(a'y.+b'x.,N') = 1 for i=l,2, ... ,I, then there
l l

exists a" and b" so that (a"y.+b"x.,NN') = 1 for
l l

i=l,2, .. .,r.

Proof: We define three numbers. Let n equal the
product of those primes which divide N, but do not
divide N'. Let n' equal the product of those
prime which divide N', but do not divide N.
Finally, let p equal the product of those primes
which divide both N and N'. In each of n,n', and
p include a prime factor only once, even if N
and/or N' include it several times. Also, let
any of n, n', and p be equal to one if there are
no prime factors out of which to constitute the
product.

Let a" = an'p+a' n and b" = bn'p+b 'n. We
claim that (a"y.+b"x.,NN') = 1, for i=l,2, ... ,I.

l l

To see this let p be a prime factor of NN'. Then
p divides exactly one of n, n', and p. Assume
pin. The other cases are handled similarly. If
pJa"y.+b"x. for some i, then, since pJn implies

l l

p divides a'rryi

arr'pyi+bn'pxi.

and b'nxi' it also divides

Since p J rr ' and p A p we have

play.+bx .. But pin implies pJN, so
l l

(ay.+bx.,N) I 1, contrary to the hypothesis of
l l

the theorem. Thus p A a "y. +b "x. for any i. Bu't
l l

(after similar treatment for factors of rr' and
p) this implies that no prime factor of NN' is a
factor of a"yi+b"xi for any i, i.e.

(a"y.+b"x.,NN') = 1 for i=l,2, ... ,I. •
l l

Lemma 2: Given a collection of (x,y)-lines,
((x.,y.)-linesJi=l,2, ... ,I}, and given N prime,

l l

if (x.,y.,N) = 1, for i=l,2, ... , I and I:,; N then
l l

there is a valid linear skewing scheme for this
collection of (x,y)-lines.

Proof: Before proceeding with the details of the
proof, note that (x.,y.,N) = 1, for all i, unless

l 1

there is an i for which both xi and yi are

congruent to zero modulo N, since N is prime.

The method of proof is constructive--we
claim that one of a=O,b=l, a=l,b=l,
a=2, b=l, ... , a=N-1, b=l, or a=l, b=O
will have the property that (ay.+bx.,N) = 1,

1 1

for i=l,2, ... ,I. Consider the following table:

161

(1)

First observe that N can only divide at most one
element at each row. For suppose NJjy.+x. and

1 1

NJky.+x .. Then, assuming k > j, N divides their
1 1

difference, Nl(k-j)y .. But k-j :;;N-1, so Nly ..
l 1

(Recall that by hypothesis N is a prime number.
This is critical in the justification of this step
of the argument.) However, if Nly., we also have

1

NJjy. and from before Nljy.+x., and, hence, we
1 l l

have Nix .. But this implies (x.,y.,N) I 1,
1 1 1

contrary to hypothesis. This contradiction shows
that N can divide at most one element in each row.

There are N columns and only I rows. Thus,
unless I = N, there will have to be a column, say
the column whose elements are of the form
ay.+x., for which N Jay.+x., for i=l,2, ... ,I.

1 1 l l

In this case take a=a,b=l. Even if I = N, such
a column exists, except when each row does have
an element in it that is divisible by N, and then
only when they are appropriately distributed. In
this case, take a=l,b=O. This choice will suffice.
For suppose (ay. +bx., N) = (y., N) f 1 for some i.

l l l

Then Nly., but also N divides some element in the
l

row of form flYi·+x., fl=O,l, ... ,N-1, say Nljy.+x ..
l l l

These imply Nix., again contradicting the
1

hypothesis.

Thus we see that an a and b exist such that
(ay.+bx.,N) = 1, for i=l,2, ... ,I. •

l l

Corollary: Given N and a collection of two
(x,y)-lines, ((x1,y1)-line, (x2,y2)-line}, there

is a valid linear skewing scheme if and only if
(x.,y.,N) = 1, for i=l,2.

1 1

Proof: Lemma 1 shows that we need concern our­
selves only with the existence of valid linear
skewing schemes when N is replaced by its prime
factors. Since the collection has only two
elements, Lemma 2 guarantees that a valid linear
skewing scheme exists for this collection for any
prime. •

We now can completely characterize the
situation for which a collection of three (x,y)­
lines has a valid linear skewing scheme.

Theorem 4: Given Nanda collection of three
(x,y)-lines, there is a valid linear skewing
scheme for the collection if and only if
(x.,y.,N) = 1, for i=l,2,3 and it is not the

1 1

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

case that 2!N and, after suitable renumbering
of the subscripts, x1 is odd, y1 is even,

x2 is even, y2 is odd, ~ is odd, y3 is odd.

Proof: The need for the condition (x.,y.,N) = 1,
l l

for i=l,2,3, was mentioned at the start of this
section. As in the proof of the immediately
preceding corollary, Lemma 1 implies we need only
concern ourselves with the prime factors of N and
Lemma 2 implies that only the factor 2 (if indeed
2 is a factor of N) can cause any difficulty.
Thus the whole problem comes down to finding an
a and b for which (ay.+bx.,2) = l, for i=l,2,3.

l l

If all the yi are odd we may choose a=l,b=O. If

all the xi are odd we may choose a=O,b=l. Thus

we have accounted for all cases except the
following: After suitably renumbering the
subscripts, we have y1 even and, hence, x1 odd

(since (xi,yi,N) = 1 implies (xi,yi'2) = 1, y1

even implies, therefore, x1 is odd), x2 even and

y2 odd, and the nature of x3 and y3 is yet to be

determined. Since x3 and y3 cannot both be even,

we have either (i) x3 odd, y3 even, (ii) x3 even,

y3 odd or (iii) x3 odd, y3 odd. In case (i) and

(ii) we may choose a=l,b=l. If case (iii) is
applicable there is no choice of a and b that is
acceptable, for one of ayi+bxi for i=l,2,3, will

be even, and hence, not relatively prime to 2.
This is precisely the case, specified in the
theorem, when a valid linear skewing scheme cannot
be obtained. •

r;r. Ineffectiveness of More General
Skewing Schemes

In this section we will show that for a
collection of three (x,y)-lines, if linear
skewing schemes are precluded, then so are periodic
skewing schemes. This will complete the proof of
Theorem 3. Our first observation is that the
condition (x.,y.,N) = 1, for all i, must remain.

l l

Suppose that (x.,y.,N) = s > 1. Take any matrix
l l

element, say ac,d"

are in the same block of N consecutive
of an instance of an (x.,y.)-line. But

l l

elements
s Jy. and

l

s !xi., so a N
d+!! x c+syi, s i

is just ac+Nj,d+Nk" If

the skewing scheme is periodic then ~(c,d) =
~(c+Nj,d+Nk), so these elements are stored in the
same memory module, and, therefore, ~ is not a
valid skewing scheme.

In order to prove our assertion about the
ineffectiveness of periodic skewing schemes, it is
convenient.to give an (x,y)-line a new geometric
interpretation. The defining property of periodic
skewing schemes means that every N xN submatrix

162

(with left and upper edge on a multiple of N) has
exactly the same memory map. We are thus able to
restrict our attention to one NxN submatrix, and
in considering N consecutive elements of an
instance of an (x,y)-line, when the operation of
"going over x, and down y" takes us outside the
bounds of the N"xN submatrix, we just "wrap around"
to the opposite edge. Figure 4 gives an example
of this. Throughout this section "(x,y)-line"
will mean an "(x,y)-line under this wrap around
interpretation." Nati ce that the condition
(x, y, N) = 1 partitions the N x N array into N
distinct instances of the (x,y)-line, each with
N elements.

Lemma: Given an (x,y)-line, with (x,y,N) = 1,
each of the N instances of the (x,y)-line can be
characterized by an integer in {O,l, ... ,N-1) in
the following manner: If a is an element of

w,z
an instance of' the (x, -line, characterize this
instance by xw-yz mod N.

Proof': Our characterization is a £'unction from
instances of the (x,y)-::.-ine to [o, 1, .. .,N-1). We
must show that this definition is independent of
the choice of the representative element. Suppose
that a and a , , lie on the same instance of w,z w ,z
the (x,y)-line. Then w' ~ w+vy and z' =N z+vx,

the modular N arithmetic resulting from wrapping
around. Then xw'-yz' = x(w+vy)-y(z+•)x) -
xw+xvy-yz-yvx = xw-yz. Thus the function is
independent of the choice of representative.

Furthermore, the function is onto, i.e.
different instances of the (x,y)-line are
characterized by different integers. To see this
it suffices to show that for any i there exists
a w and a z for which xw-yz = l, for then the
instance of the (x,y)-line containing a will be . ~z

characterized by i. It is a well-known result of'
elementary number theory that given x and y, there
exists c and d such that xc-yd = (x,y). Since
((x,y),N) = (x,y,N) = 1 and the residue classes
of numbers relatively prime to N form a group under
multiplication, there exists g such that (x,y) ·g= 1.
Hence xcg-ydg =land thus xcgi-ydgi = i. Letting
w = cgi mod N and w - dgi mod N gives us the
needed a z· • w,

'l'he proof of the following theorem uses a
generalization of' a technique used by Polya [5]
in solving the recreational mathematics puzzle of'
placing N "super queens" on an N xN chessboard.

Theorem 5: Given three (x,y)-lines, with
(x.,y.,N) = 1, for i=l,2,3, if 2!N and,

l l

after suitably renumbering the subscripts,
x1 is odd, y1 is even, x2 is even, y2 is odd,

x.., is odd_, and y, is odd, then there is no
) _,

valid periodic skewing scheme for this
collection of (x,y)-lines.

Proof: The proof is by contradiction. Suppose a
valid skewing scheme exists. Then exactly N of the

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

N2 elements in the N xN array must be stored in
memory zero, for one and only one element from
each instance of the (~,y1)-line must be stored

in memory zero if we are to avoid a memory
conflict. Call these elements (u.,v.) for

J_ J_

i=O, l, ... , N-1. Furthermore if conflict free access
to (x2,y2)-lines and (x3,y3)-lines is to be assured

each of' these N elements must also lie on a
different instance of these two (x,y)-lines. Thus
the elements (u.,v.) can be used as representatives

. J_ J_

to characterize the instances of the (x,y)-lines.
The preceding lemma, therefore, tells us that
{x.u.-y.v. mod N li=O,l, ..• ,N-1} = {O,l, •.. ,N-l}

J J_ J J_

for j=l,2,3. This allows us to conclude that
N-1 N-l N(N-1) . ' E x.u.-y.v. mod N E i = - 2-- Since 2 N
i=O J i J i i=O

we have N(~-l) =N ~· Thus

for j=l,2,3

Consider next the set of linear equations:

this system has
X1Y3-~Y1

b = •
~y2-x2yl

ax1+bx2 x3

ayl+by2 Y3

(2)

(3)

valid, since x1y2-x2y1 is odd, and hence not zero.

Setting c = ~y2-~y3 , d = ~y3-~y1 and

e = x1y2-x2y1 we have

c~+~
(4)

Therefore

~l ~l

i:O (c~+~)ui -(cyl+dy2)vi = i:O ex3ui-ey3vi -

e

N-1 N-.1
Also, however, L. (c~u.-cy1v.) + L: (dx2u.-dy2v.) -

i=O i i i=O i i

N-1
c L

i=O

N-1 _ N N _ N
xlui-ylvi+d i~O ~ui-y2vi = c 2+ d2 =(c+d)2

163

Combining these last two formulae, we have
N _ (N e 2 = c+d)'2.

Because of the odd/even nature of the x. and
J_

yi' c,d, and e are all odd. This implies e~ = ~
and (c+d)~ = O. Thus~ = o, a contradiction.

This contradiction arose from assuming the
existence of a valid periodic skewing scheme.
Thus the theorem is proven. •

Coupled with Theorem 4, this proves
Theorem 3. Thus we see that for collections
of three (x,y)-lines, periodic skewing schemes
do not provide additional power over linear
skewing schemes. In certain cases it is possible
to go even further.

Lemma: If a valid skewing scheme exists for
a co.llection of (x, y)-lines, and the collection
includes both rows ((1,0)-lines) and columns
((0 .. 1)-lines), then the skewing scheme is periodic.

Proof: We show how the presence of (1,0)-lines
implies ~(i,j) = ~(i,j+N). For the skewing
scheme to be valid ~(i,j),~(i,j+l), .•. ,~(i,j+(N-1))
must all be different. Similarly, ~(i,j+l),
cp(i,j+2), ..• ,~(i,j+N) must all be different.
Since N-1 of the elements are the same, and the
values of ~ are fixed, there is no choice but to
have ~(i,j) = cp(i,j+N). The remainder of the
proof is obvious. •

As pointed out earlier Budnik and Kuck [l]
showed that if 2IN then there is no linear
skewing scheme which permits conflict free access
to rows, columns and forward diagonals. The
results presented here imply that if 2\N there
is no skewing scheme of any type which permits
conflict free access to these common matrix
subparts. Results on collections of four or more
(x,y)-lines can be found in the author's Ph.D.
dissertation [6]. A result of practical
significance is: If 2\N or 3\N, then there is
no valid skewing scheme for the collection of
(x,y)-lines consisting of rows, columns, forward
diagonals, and backward diagonals.

V. Implication for Research on
Related Problems

The practical problem of storing large
natrices in N independent memory modules so that
we simultaneously have 100% memory utilization
and conflict free access to rows, columns, forward
diagonals, and (optionally) backward diagonals
requires a number of processors and memories not
a power of 2. Furthermore, in selecting the
number of processors and memories only linear
skewing schemes need to be considered. We,
therefore, need only design memory processor
interconnection networks which can sort p-ordered
vectors (Swanson [7]) with arbitrary shifting.
The use of non-linear skewing schemes, with a
resultant rise in the complexity of the vectors
we need to be able to sort, does not appear to
yield any benefits. The problem of sorting

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

p-ordered vectors with arbitrary shifting under
certain time and hardware restrictions has proved
to be a most difficult problem. Swanson [7] has
proposed the use of k-apart shifters to sort
p-ordered vectors when N is prime, but without
the arbitrary shifting needed to sort the vectors
introduced by linear skewing schemes. Lawrie's
0-networks are at their best when N = 2q.
Unfortunately, our results show that N will have
5 as its smallest prime factor. If N is prime
Lawrie's 0-network reduces to an NxN crossbar.
Hopefully a network of cNbgN (c small) switches,
that operates in time QO!J-N, and sorts p-ordered
vectors with arbitrary shifting can be developed.

Acknowledgment

The author wishes to express his sincere
thanks to D. H. Lawrie, D. J. Kuck and C. L. Liu
for their many helpful suggestions.

References

[l] Budnik, p, and D. J. Kuck, "The Organization
and Use of Parallel Memories," IEEE
Transactions on Computers, Vol. 20,
December 1971, pp. 1566-1569.

[2] Chandra, A. K., "Independent Permutations,
as Related to a Problem of Moser and a Theorem
of Polya," Journal of Combinatorial Theory,
Series A, Vol. 16, 1974, pp. 111-120.

[3] Hardy, G. H. and E. M. Wright, An Introduction
to the Theory of Numbers, Oxford University
Press, London; 1954.

[4] Lawrie, D. H., "Memory-Processor Connection
Networks," Ph.D. Thesis, Department of
Computer Science, University of Illinois at
Urbana-Champaign, Report No. UIUCDCS-R-75-557;
February 1973.

[5] Polya, G., "Uber die 'doppel t-periodischen'
Losungen des n-Damen-Problems," in w. Ahrens,
Mathematische Unterhaltungen und Spiele,
Teubner, Leipzig, 1918, pp. 364-371.

[6] Shapiro, H. D., "Theoretical Limitations on
the Use of Parallel Memories," Ph.D. Thesis,
Department of Computer Science, University
of Illinois at Urbana-Champaign (to appear).

[7] Swanson, R. C., "Interconnections for
Parallel Memories to Unscramble p-Ordered
Vectors," IEEE Transactions on Computers,
Vol. C-20, November 1974, pp. 1105-1115.

control
processor

arithmetic
processors

memory
modules

processor-memory interconnection network

Model of a Parallel Computer

Figure 1

164

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

row ~

P xP matrix

forward~
diagonal

r--

fcolumn

I---. .
I---

I----.
.
.

L__ ~ .
. . .

•

Common Matrix Subparts

Figure 2

D
a __ ,___x __
l,J

y

D

r---
<t- backward

diagonal

An Example of an Instance of an (x,y)-line Containing Matrix Element a ..
l,J

i = 4, j = 5, X= 2, y= 3

Figure 3

165

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

4

D 2

6

An Example of an Instance of an (x,y)-line Under the Wrap Around
Interpretation. The Order in Which the Elements are Generated is
Indicated on the Figure.

i = l, j = 2, X= 3, Y= 2,

Figure 4

166

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

Summary*

THE MULTI-DIMENSIONAL ACCESS MEMORY IN STARAN

By Kenneth E. Batcher

Digital Technology Department
Goodyear Aerospace Corporation

Akron, Ohio

Each array module in the STARAN+ associa­
tive array processor contains a 256 X 256 multi­
dimensional access {MDA) memory (see illustra­
tion). Parallel vector arithmetic and associative
search ope rations access memory data by bit- slices,
while input, output, and scalar arithmetic opera­
tions access memory data by words. The MDA
memories use standard random-access memory
(RAM), integrated-circuit chips in a novel con­
figuration. Use of standard, high-volume, low
pin-count memory devices in place of custom LSI
devices re duce s cos ts significantly.

To achieve multidimensional access, data
are stored in a scrambled pattern; bit B of word W
is stored in bit-location B of memory chip B EB W
where EB indicates a component-by-component ex­
clusive-or.

Data are accessed by specifying a stencil shape
with an 8-bit access mode and a stencil position
with an 8-bit global address. The 256 memory bits
covered by a stencil can be fetched or stored in
one memory cycle.

The address bus structure of the MDA memory
has 16 address lines (as rpposed to 8 lines for a
conventional RAM). For k = 1, 2, ... , 8 address
line xk is fed by the kth bit of the global address,

while address line Yk is fed by the exclusive-or of
the kth bits of the access mode and the global ad­
dress. Address pink of memory chip (c 1 c 2 ... cg)

is connected either to Xk if Ck = 0 or to Yk i.f Ck = l.

Memory data are scrambled and 11nscrambled
by a scramble/unscramble network, which can
also shift and perform other useful pP-rmutations
on data fetched from memory. _.,.,

When memory data are fetched or stored with
access mode Mand global address G, ?recessing
element P accesses bit (M· G) EB (M· Pl of memory
word (M· G) EB IM· P), where logical negation is
indicated by 11 - 11 and the logical product ("and") is
indicated by "· ".

Bit- slice access is obtained with M =I 000000001
and word access i_s obtained with lvl -= (1l11- '.1 l .l)

Other access modes allow data to be accessed in
other ways.

* This is a summary of a paper that has been sub-
mitted for publication in the IEEETC Special
Issue on Paralle.i. Processing -

+TM, Goodyear Aerospace Corporation, Akron_.
Ohio

INPUT

2"

2" x 2"
MDA
MEMORY

2"

READ/WRITE
CONTROL

"' ;::) w
Ill a:
"';::)
"'~ w (.)
a: ;::)
0 a:
o~
~"'

n n

2"

2"

SCRAMBLE/
UNSCRAMBLE
NETWORK

2"

GLOBAL ADDRESS

ACCESS MODE

Block Diagram of STARAN Array Module

167

PROCESSING
ELEMENTS

OUTPUT

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

POLYAUTOMATON DESIGN FOR RECOGNIZING CERTAIN L SYSTEM IANGUAGES
BY PARALLEL COMPUTATION

Carl F. R. Weiman
Computer Science Dept.

and Jerome Rothstein

Courant Institute
New York University

251 Mercer Street
New York, N.Y. 10012

Abstract -- The theory of formal languages
specified by sequential rules, e.g. Chomskian gra­
nnnars for generation and various automata for re­
cognition, has contributed much to computer sci­
ence. The theory of formal languages specified by
parallel rules, e.g. Lindenmayer systems, is too
young yet to have contributed to parallel computer
design, but there are signs that it will. Languag­
es generated by parallel rules are often of more
general Chomskian type than those generated by
similar sequentially applied rules. Consequently
sequential recognition machinery is slow. A new
polyautomaton design for recognizing certain L
systems by parallel computation is described. The
flexibility of its control structure suggests gen­
eralization to other kinds of parallel computa­
tion.

Introduction

The theory of formal languages specified by
sequential rules, e.g. Chomskian grannnars for
generation and various automata for recognition,
has contributed much to computer science. For ex­
ample, BNF provides machine independent program­
ming language specification and automata theory is
useful in describing algorithm complexity. The
theory of formal languages specified by parallel
rules, e. g. Lindenmayer systems (L systems) [l.,2]
is too young yet to have contributed to the design
of parallel computers. Among the signs that it
will are that L systems constitute an abstract re­
presentation of discrete (digitized) parallel pro­
cesses independent of physical realization. Par­
allelism in processing digitized pictures and com­
puter modelling of many physical and biological
phenomena is much more natural than serial ism [3].
The translation of algorithms from serial to par­
allel form is not straightforward, however, and
there are many implications for machine realiza­
tions from the new parallel theory that are not
clearly related to results in the better known se­
rial theory [4,5]. Most L system papers concern
the generating of languages; the problem of recog­
nition is less well represented. One difficulty
with the latter is that most languages generated
by parallel rules are of more general Chomskian
type than those generated by similar sequentially
applied rules. For example, context free parallel
rules can generate languages which require context
sensitive rules for sequential generation. A re­
sult is that sequential recognition machinery(LBA
in this case) is slow and complex, not lending it­
self easily to parallelism. A new kind of poly­
automaton L 6]which recognizes certain L system

168

The Ohio State University
Department of Computer

and Information Science
2036 Neil Ave.

Columbus, Ohio 43210

languages is described here. Its mode of opera­
tion is highly parallel and the control structure
provides enough flexibility to suggest generaliz­
ation to other kinds of parallel computation.

Polyautomaton Design

In the following example, the L system whose
language is to be recognized by polyautomaton is
a TOL system with alphabet (O,l) and initial word
1. The tables are:

Ll: (0 o, 1 01) ' L2: (1-+ 1, 0 01)

All productions from a single table are to be ap­
plied simultaneously to all symbols in a string.
Words of the resulting language constitute a cod­
ing for the best stepwise approximations of
straight line paths of arbitrary slope on grids.
The symbol O corresponds to a unit step along a
grid axis and the symbol 1 along a diagonal. A­
mong the code's applications are digitized line
generation and geometric transformation in compu­
ter graphics and straight line detection in pat­
tern recognition, all via parallel computation.
Its very interesting geometric and computational
properties are described in [7 J and [8 J but will
not be discussed here. In the Chomskian hierarchy
the language is context sensitive and can be re­
cognized by an LBA with thirteen states using four
symbols. The polyautomaton recognition process
to be described roughly consists of reversing the
productions of the L system tables until the ini­
tial word results. However additional machinery
is needed to recognize appropriate contexts for
rule applications, decide which table to use, and
detect accept or reject conditions. The structure
of this controlling machinery is a departure from
most polyautomata designs; it results in greater
speed and flexibility. Details follow.

The general polyautomaton design consists of
a grid of identical finite state automata. Init­
ially, all are in state D (dead) except for those
constituting the word (pattern) to be recognized.
The state transition of each automaton (cell) is
determined by its oWI1 and its nearest neighbors'
states, There are several possible transition
functions. That which prevails at any time is de­
termined solely by the state of a finite state
controlling automaton (CS) and is the same for
all cells. CS communicates its state to all cells
not in state D, acting as a synchronizing clock
and programmer. Conmunication from cells to CS
occurs via a "logic bus" and determines CS trans­
itions as follows.

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

Each cell sends a boolean n-tuple which carries
information about its own and its neighbors'
states. Considering each n-tuple as indexed by
the coordinates of the cell sending it, the CS
computes a set of boolean functions over the set
of n-tuples symmetric with respect to that index,
That function in the set whose boolean value is 1
determines the state transition of CS which in
turn determines cell behavior in the next time
step, Intuitively, boolean symmetry over cell in­
dices means that CS responds to combinations of
messages from cells independent of the locations
or populations of sets of cells sending them.
This mode of operation permits interaction between
cells and CS; its significance will be clarified
in the detailed description which follows.

Initial°ly the non-dead cells constitute a hor­
izontal row of adjacent cells whose states are the
symbols of the word to be recognized, Only the
left nearest neighbor of any cell will be used in
determining cell state transitions. Table 1 des­
cribes the two cell state transition functions
corresponding to CS states X and W. The left col­
umn gives the neighbor's state (de means don't
care), the middle column gives initial and final
state, and the right column shows the boolean
n-tuple (a 2-tuple or pair in this case) that is
sent to CS.

.

Left
Neighbor
-

0

1 or D

0

1

de

de

de

de

Cell State
Transition

0 0

0 c

1 1

1 2

c c

1 ... 0

2 1

c c

to
cs

01

00

00

10

00

10

01

00

1 For CS

state X

1 For CS

J state W

Table 1. Cell Transition Functions

Table 2 describes the CS transition function,
States S and F are halting states for success and
failure (accept and reject) respectively, In the
left column the variables x and y represent res­
pectively the first and second digits of the bool­
ean 2-tuples; the implicit indices are dropped but
understood to constitute the range over which the
boolean sums (E) and products (IT) are evaluated.
Overbar means boolean complement and all operat­
ions are boolean. The middle column gives initial
and final states. The text in the right column

169

describes the situation which yields the value 1
for the function in the left column.

~

Boolean cs state Condition
function transition of cells

rrX'. E Y x x Unerased O's exist and
no l's are next to l's

ITx·ITy x s No O's, one 1 exists

-
EX •Ly x ... F A 1 is next to a 1

while unerased O's

-ix ~rry - . ---- -·-·----
_exis.t ________

x ... w
All O's are erased and
a 1 is next to a 1,

Ex• Ey w x l's and 2 1s exist

nX • E y W-+ F No l's, only 2's exist

Table 2, CS transition function.

Consider the behavior of the polyautomaton
in recognizing the string 00101. CS starts in
state X, so the first cell transition yields the
string COlCl whose constituent cells send a mix­
ture of 00 and 01 messages to CS, Cells in state
C act as communication channels between their
nearest neighbors, Thus, conversion to state c
corresponds to erasing a symbol in the string, The
result here is identical to reversing the produc­
tions of L system table Ll. In the CS transition
table, the only boolean function whose value is 1
is that which makes CS stay in state X, so the
cells again respond to yield the string CC1C2,
sending a m:ixture of 00 and 10 messages to CS.The
latter responds by going into state W, causing the
cell transition to CCOCl. The cells send the mes­
sages 00, 01 and 10 to CS which goes into state
X. The last two cell transitions correspond to
reversing the productions of L system table L2.
Next, the cell string becomes CCCCl, which is re­
cognized as the initial word of the L system, cau­
sing acceptance which consists of CS transition
into state S,

Conclusion

More general machines which operate on two
dimensional neighborhood patterns on grids have
been designed [5,7,8] • Among their capabilities
are the recognition of straight line paths, edges
(boundaries), connected regions, and polygonal ap­
proximations to general curves, The design of po­
lyautomata to recognize Dyck languages and lan­
guages of the type A~ncn •• ,Zn became straight­
forward. Their construction has been accomplished

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

explicitly by J. Rothstein and J. M. Moshell and
is incorporated in the doctoral dissertation of
the latter. These and many other languages can
be recognized ":immediately" by parallel computat­
ion. Properties of the straight line code suggest
incorporation into a polyautomaton with parallel
nl.Ullerical computation capabilities such as contin­
ued fraction manipulations and linear transforma­
tions.

The general polyautomaton design is not pre­
sented here as a universal recognizer of L sys~ems
though recent work suggests that this is possible.
The design treated in this paper has important
practical consequences for the speed and complex­
ity of algorithms for certain parallel computat­
ions. One of(i~ese principles is the use of con­
ducting cells , which could have been avoided
by using propagating states such as those used in
von Neumann 1s self-reproducing automaton (9 J. As
longer strings of such cells arise, most of the
machine's ti.me would be wasted in the trivial pro­
pagation of information that requires only one
ti.me step using conducting cells. A more import­
ant principle is the nature of the cell-CS inter­
action via the logic bus. It permits a division
of labor in which the cells process local infor­
mation and the CS global information. This frees
cells from the burden of keeping track of the
states of distant neighbors and the ti.me delays
necessary for such communication which iterative
automata suffer from [6] • To use a programming
analogy, CS acts as a monitor rather than a user
program.

The logic bus information processing by CS
frees it from the exponential network and comput­
ational complexity of perceptrons and nerve nets
which must somehow account for large numbers of
exact configurations of cells in unbounded neigh­
borhoods. It is precisely this exponential com­
plexity which is absorbed into the symmetric bool­
ean functions which determine CS transition. For
k cells, the number of distinct sets of k n-tuple
messagesk(indexed by cell location, for example)
is (2n) • The number of elements of this set
distinguishable by the kind of symmetric boolean

(a)This concept was generalized by Rothstein to
that of the bus automaton. This is a cellular
automaton which has, in each cell, the capabil­
ity of activating conducting channels through
it, whereby not only do non-adjacent neighbors
communicate directly, but arbitrary connection
patterns can be established between cells wher­
ever they may be. A complete formalization
and many applications will be found in Mosh­
ell 1 s dissertation and their joint papers [5] •

function over k messages used here is only 3n,
however (i.e., for any column of then-tuple,
only the threefold distinction between: l)All O's,
2)All l's, and 3)0 1 s and l's, can be made). The
exponent n here was 2, so the number of boolean
functions is small and more important, indepen­
dent of the number of cells in the pattern and
their coordinates. The logic bus poses no engin­
eering problems. It is realizable as a simple
series-parallel switching network constructed by
joining simple identical elements.

References

[1 J A. Salomaa, Formal Languages, Academic Press,
(1973).

[2 J G. T. Herman and G. Rozenberg, Develo197ntal
Systems and Languages, Am. Elsevier, (975) •

[3 J C. D. Stamopoulos, "Parallel Image Process ..
ing", IEEE Trans, Comput., vol. c-24, (April,
1975), pp. 424-433.

[4 J J. F. Traub (Ed.), Complexity of Sequential
and Parallel Numerical Algorithms, Academic
Press, (1973).

[5] J. Rothstein and J. M. Moshell, Papers in
preparation,and J. M. Moshell, Parallel Re­
cognition of Formal Languages by Cellular
Automaton, Ph. D. dissertation, the Ohio
State University Department of Computer and
Information Science, Columbus, Ohio, (1975).

[6 J A. R. Smith, "Introduction and Survey of
Polyautomata Theory", introduction to german
translation of von Neumann's Theory of Self­
Reproducing Automata, Burks, A. W. (Editor),
Rogner and Bernhard GmbH., Munich, (1975).

[7] J. Rothstein and C. F. R. Wei.man, "Parallel
and Sequential Specification of a Context
Sensitive Language for Straight Lines on
Grids", Computer Graphics and Image Process­
~, (to appear early 1976).

170

[8] C. F. R. Wei.man and J. Rothstein, Pattern Re­
co~nition by Retina-Like Devices, Computer
an Information Science Dept., Ohio State U.,
OSU-CISRC-TR-72-8 (AD 214 665/2), (1972).

[9] A. W. Burks, Essays on Cellular Automata,
Univ. of Illinois Press, (1970).

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

SIMPARAG - Simultaneous Parallel Array Grannnars *

Patrick Shen-Pei Wang and William I. Grosky
School of Information and Computer Science

GEORGIA INSTITUTE OF TECHNOLOGY
Atlanta, Georgia 30332

Sunnnary

In recent years several research efforts have
been aimed at the generalization of phrase­
structure grammars[l,4] whose rewriting rules
allow the replacement of a subarray of a picture
with another subarray[6,8]. The first example of
such a grammar is described by Kirsch[S] for
generating a class of labeled 45° right triangles.
A similar formal system is developed by Dacey[3]
and grammars for languages consisting of classes
of polygons are exhibited. A general survey of this
area of picture languages is given by Miller and
Shaw[7] .

A possible modification to the definition of
a derivation in a picture grammar is parallel rule
application, i.e. all instances of the rule's ante­
cedent are simultaneously replaced by the conseque­
nt (rather than just one instance). The advantage of
such modification is that, for a given language, a
grammar that operates in parallel may be much simp­
ler to write than one that operates sequentially
[8]. This is especially natural in two-dimensional
case since local picture operations are often app­
lied to digital pictures in parallel[8].

In this paper the effort is aimed not only at
the paralle}_ism of grammars but also at the simul­
taneous properties of generating rules. If in the
process of derivation two or more rules can be
applied simultaneously, it might speed up the deri­
vation and hence save computation time. This is one
of the motivations of this research. Another is the
deterministic property which may enhance the effic­
iency of the derivation and hence reduce the hard­
ware complexity in dealing with pattern processing
by computers. Moreover, it may provide some fundam­
entals of generalized Lindenmayer Systems[9] which
are more natural for biological applications.

We first establish a model AG for parallel
pattern processing in arbitrary dimensions. In this
model each grammar G is a quintuple G=(VN,VT,P,S,#)
in which the set of generating rules is represented
as P={ ar +Sri re:/R,}where 1(,is the set of labels
of rules and ar and Sr are the left and right
hand side arrays respectively. The maximal quadrup­
le extension of the minimal prism(MQEMP) in terms
of each rule is defined. It is shown[ll] that there
is a unique domain of MQEMP denoted by dom PQ(G)
for each grammar G and in dom Pq(G) there is an
unambiguous center which can be treated as the ori­
gin of the neighborhood index or template of a
corresponding cellular structure - another well
known parallel device, the familiarity with which
is assumed[Z,10].

*This work is supported in part by NSF Grant GN-655.

171

Next, the meanings of intersection (denoted
by ~) and union (denoted by U) of finite array
patterns are defined in terms of the overlaying
domains and overlaying arrays. The concepts of
'applicable in parallel' and 'simultaneously appli.­
cable'rules are introduced. The sufficient condit­
ions for rules to be applicable in parallel and
simultaneously applicable are exhibited repective­
ly.

We then give a formal definition of 'SIMPARAG'
- simultaneous parallel array grammars and it is
shown that the sufficient condition for a grannnar
in AG to be a.simp~rag fs that aiA Bj = 0 ¥ i~j ,
i,je:~and a 1 A sJ= {a}¥ ie:l\',. Under such cond­
itions any intermediate array(sentential form) can
be partitioned into several mutually exclusive
subarrays and the derivation process is independe­
nt of the order of the rules' selection. Further­
more it is shown that for each simparag G=(VN,VT,
P,S,#) we can find a deterministic cellular struc­
ture Z=(Q,Id,x, IT,q ,C) equivalent to it.

0 0

Finally, some necessary conditions for an AG
to be a simparag are discussed. It is pointed out
that one of the difficulties to derive necessary
conditions is that we don't know whether a 1 B Bj
will appear as a part of of any intermediate array.
This is, perhaps due to the 'unpredictability' of
the derivation of generating rules.

References

[l] S. Abraham,"Some Questions of Phrase Structure
Grammars I" ,Comp. Ling. v.4(1965), 61-70

[2] A.W.Burks,Essays on Cellular Automata, U.of Ill
Press, (1970)

[3] M.F.Dacey,"A 2-D Languages for a Class of Poly­
gons" ,Pattern Recognition,v.3, (1971), 197-208

[4] R.Y.Kain,Automata Theory:Machines and Languages
Mc Graw Hill Press,(1972)

[SJ R.A.Kirsch,"Computer Interpretation of English
Text and Picture Patterns" ,IEEE Tran., v.EC-13
(Aug. 1964), 363-374

[6] D.L.Milgram and A Rosenfeld,"Array Automata
and Array Grammars",Info. Proc.,(1971), 69-74

[7] W.F.Miller and A.C.Shaw,"Linguistic Methods in
Picture Processing", Proc.AFIP,(1968),v33,279-
290

[8] A.Rosenfeld and A.Mercer,"An Array Grammar Pro­
gramming System", CACM, v. 11 (1973) ,299-305

[9] A.Salomma,Formal ~uages,Academic Press(l973)
§13 Lindenmayer Systems,234-252

[10] R.A.Smith,"Cellular Automata and Formal Lang­
uages",IEEE Syrop.on Swit.and Auto.Th.(1971)

[11] P.S.P.Wang and W.Grosky,"The Relation Between
Uniformly Structured Tessellation Automata
and Parallel Array Grammars", Proceedings of
ISUSAL, Tokyo, Japan,(1975), To appear

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

PRELIMINARY RESULTS OF A COMPARATIVE ANALYSIS
OF ILLIAC IV LANGUAGES

Dr. Robert L. Milton
Computer Resources Group

R & D Associates
Marina del Rey, California 90291

ABSTRACT

This report presents the preliminary results of
comparative analysis of the three higher level
languages currently available for the ILLIAC IV.
Two of these languages, CFD and IVTRAN, have
FORTRAN like syntaxes, while the third, GLYPNIR,
has an ALGOL like syntax. For the comparison
FORTRAN programs were rewritten in each of the
languages. The comparison was based primarily on
two factors--programming effort (measured mainly
by the number of source statements) and language
utilization (measured mainly by the time required
to execute a standard problem). None of these
languages proved to be outstanding in these re­
sults. CFD appears to give the shortest execution
times, GLPYNIR appears to require the least pro­
gramming effort, and IVTRAN was intermediate in
both regards.

INTRODUCTION

One of the hurdles facing the prospective user
of the ILLIAC IV system is the decision as to
which of the currently available programming langu­
ages should be used. For the user desiring a high­
er level language than ASK, the ILLIAC IV assembly
language, there are three languages from which to
choose. These are [l] GLYPNIR, a high-level,
block-structured language that resembles ALGOL;
[2] CFD, a moderate-level language having some
resemblance to FORTRAN; and [3] IVTRAN, a high­
level language which has the basic features of
FORTRAN with extensions for the ILLIAC IV.

CRITERIA FOR COMPARISON

In order to make direct and fair comparisons of
the three higher-level ILLIAC IV languages, sev­
eral programs originally written in FORTRAN for a
serial computer were chosen for recoding as equi­
valent programs in each of the three languages.
The FORTRAN programs chosen for the benchmark
study were representative of several classes of
problems that should be well suited to the ILLIAC
IV. These programs included one and two dimen­
sional hydrodynamics codes, two Fourier Transform
Codes (one for transforming multiple, independent
data sets; one for transforming a single, large
data set), and several matrix manipulation codes.
This report presents preliminary results for the
two hydrodynamics programs. Work on the other
codes is still in the preliminary development stage.

Two main criteria were used in the comparison and
analysis of the languages--the efficiency of
machine utilization and the programming effort re­
quired. Efficiency of machine utilization is more
important for the ILLIAC IV than for a serial com­
puter. The ILLIAC IV's potential execution speed
can only be achieved with machine code that effi-

ciently utilizes its architecture. In order to
judge the quality of machine code generated by
each of the languages, two factors were consider­
ed. First, was the execution time required to run
a standard problem. Second, was the amount of
machine code generated for each of the standard
programs. This second factor, which will show
some correlation to the execution time, was consid­
ered since the core-size of the ILLIAC IV may be a
limitation for a large code.

The effort involved in converting a program to a
new machine is of ten a more important consider­
ation than the machine time involved. This is
particularly true in the case of the ILLIAC IV in
which architecture and languages are likely to be
unfamiliar for a new user. Thus, we consider pro­
gramming effort to be as important as machine uti­
lization in comparing these languages.

172

The number of statements required to produce an
equivalent version of the original FORTRAN codes
was the main factor used in comparing the program­
ming effort required for each of the languages.
Features supported by the languages have an impact
on the number of statements required. Particularly
important features are the functions supplied and
the I/O handling. One factor not taken into ac­
count in the comparison is the fact that both CFD
and GLYPNIR allow insertion of ASK statements in­
line anywhere in a code, a potentially valuable
feature not shared by IVTRAN, ,though it does allow
subroutines written in ASK. This feature was not
utilized in the comparison since we wanted to com­
pare the languages themselves and not the program­
mer's ability to write good assembly language codes.

ZAP

The first program used in comparing the ILLIAC IV
languages was ZAP, a one-dimensional Lagrangian
hydrodynamics code. The code was used to simulate
shock-wave phenomena in a spherical segment of air.
The equation of state used was a simple gamma-law
model.

Two versions of the program were coded in each of
the languages. The first, called ZAP62, used a
grid of 62 elements, not counting the boundary­
condition elements at each end of the grid. With
this grid size, each of the ILLIAC !V's 64 pro­
cessing elements (PEs) contained the variables
for a single grid element. Computations were car­
ried out only for an "active" set of elements which
numbered, at most, 62.

A second version, called ZAPN, used a grid of up to
4096 elements. This version allows computing pro­
blems of more physical significance. Thus, ZAPN

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

is the more useful program. It also allows a de­
termination of how well each of the languages
handles vectors with lenp,ths significantly longer
than the 64 PE width of the ILLIAC IV'sarchitec­
ture.

Comparison of the Codes

Figure lA shows a portion of the FORTRAN version
of ZAP. These two loops update the velocity, U,
and position, X, of each element in the current
active set (which ranges from. element 2 to element
JSTAR). Two separate loops are required since up­
dating U for a given element to the next time
step requires the value of X at the current time
step for the preceeding element. It should be
noted that the computational sections of bothZAP62
and ZAPN are identical in FORTRAN since only a
change in the dimensions of the variables is
required.
Figure lB shows the equivalent computational por­
tion of the CFD versions of ZAP62 and ZAPN. For
ZAP62, we note that the DO loops have been replaced
by a MODE setting operation that turns on only
those PEs containing active elements. There is
no need to worry about explicitly separating the
calculations for U and X since all the U's are up­
dated simultaneously.

Major changes in coding are required between ZAP62
and ZAPN. The vector variables involved are now
explicitly two dimensional, the second dimension
being the row index. Explicit DO loops are now
required to handle the calculation over multiple
rows, and two separate DO loops are required since
the vector assignment statements update only one
row of values at a time.

The series of statements prior to the DO loops is
needed to determine the number of rows of elements
in the active set. This number, JJ, is the upper
limit of the DO loops. This series of statements
also determines JL, the number of active elements
in the JJth row.

Two more changes are inside the DO loops. The
first is the series of conditional MODE setting
operations. This is required since the first and
JJth rows do not have all PE's turned on as oppos­
ed to the intermediate rows which do. The second
change is the presence of off set vector indices
for those variables that are routed one PE from
the right or left. These offset vector indices
are needed to handle a routing problem with multi­
row vectors in CFD. This problem arises since the
first index of a vector-alligned variable utilizes
the wraparound feature of the ILLIAC IV's routing
architecture. As an example, consider routing
from one PE to the left. Using the standard CFD
first index of *-1 causes all the PEs except the
first to access the proper value. The first PE
accesses the value in the same row in the last PE,
whereas the problem requires it to access the value
in the preceeding row in the last PE. The vector
index OFFL has a value of -1 in the first PE and
0 in all other PEs. This difference in value gives
the proper accessing. Similarly, the vector index
OFFR handles accessing from one PE to the right.

173

It should be noted that this approach is problem
dependent. For ZAPN, the first PE of the first
row and the last PE of the last row are always off,
since they contain only the boundary conditions.
Thus, no problems are encountered when accessing
from the left in the first PE in the first row or
accessing from the right in the last PE of the
last row. For programs where these PEs may be on,
a different approach must be used.

Figure lC shows this same portion of code for the
GLYPNIR versions of ZAP62 and ZAPN. For ZAP62,
the GLYPNIR equivalent of a DO loop is present.
Only one loop is required since all the vector
variables are updated at once. Note that the
vector variables do not have subscripts since
GLYPNIR does not require it. Also note the expli­
cit references to the inline routine functions,
RTL, and RTR.

Again, programming changes are needed when going
from ZAP62 to ZAPN. The vector variables now have
an index (K) which is equivalent to the second
index (II) in the CFD version. Again, two separ­
ate loops are required. The loop control for these
loops appears similar to that used in ZAP62. Act­
ually, it is more complicated. The GLYPNIR DEFINE
facility was used to produce a macro, called
FORALL(J), which determines the range of the loop
and handles the MODE setting operations which are
explicit in the CFD version. Since there are sev­
eral loops in ZAPN, this DEFINE facility allows
the programmer to establish the loop control and
MODE setting operations once and then to use them
wherever needed by calling the defined macro.

The routine problem is handled by the use of the
loop integer scalar index plus an integer vector
offset index. This is similar to the approach
used in the CFD version.

Figure lD shows this same section of code in the
IVTRAN versions of ZAP62 and ZAPN. These versions
closely resemble the original FORTRAN code. The
DO loops have now become DO FOR ALL loops, with
ZAP62 again only requiring one loop while ZAPN
requires two. The only other difference between
the ZAP62 and ZAPN versions is the range of the
control index. For ZAP62, the index is restricted
to the range 2 to 62, while for ZAPN it spans the
range from 2 to 4095. No special coding is requir­
ed to handle either the multi-rowed variables or
the routine problem. The IVTRAN compiler itself
generates the necessary code to handle those
factors. Thus, IVTRAN is clearly the easiest lang­
uage in which to convert this section of code from
ZAP62 to ZAPN.

Figure 2 shows part of another loop in ZAPN. This
portion of code determines the time for a wave to
cross a fraction (WW) of each element in the grid.
The time step for the next calculation cycle is
then set to the minimum of the times for the ele­
ments. For the FORTRAN version, a running minimum
is found using the AMINl function.

For the CFD version, significant coding changes are
again required. The calculation of the loop limit

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

and the MODE set are again required, though they
are not shown since they are similar to those in
Figure lB. The calculation of the minimum time is
accomplished in two stages. The first stage cal­
culates the times for .each active element in the
current row and then finds the mininmm of all ele­
ments in the row, whether active or not. The times
are initialized to a large value to keep the inac­
tive elements from influencing the result. The
second stage keeps a running minimum over the rows.

. Note that this requires an entire vector to store
this minimum, since CFD requires that the floating
point conditional expression contain a vector
quantity and TEMP(2) is treated like a scalar.

The GLYPNIR version uses a similar approach to CFD.
A scalar is set to the. mininmm of a row of times
and a running scalar minimum is kept over the rows •
Note that GLYPNIR uses a scalar, whereas CFD re­
quired an entire vector to store the minimum.

Again, the IVTRAN version looks similar to the
FORTRAN version. The only difference is that
the supplied row minimum function RMIN is called
to set up the argument for AMINl. IVTRAN is again
the easiest language to convert this section of
code.

Table 1 gives the number of source statements in
the main calculational loop of ZAP.N and ZAP62 for
each of the languages. For IVTRAN, CFD, and
FORTRAN, the number of statements is the number of
lines not including continuations. For GLYPNIR,
the number of statements is the number or state­
ment terminators. For CFD and GLYPNIR, the source
statement counts included setting up the vector
offset indices. For GLYPNIR, the statements in
the macro used for loop control are also included.
For ZAP62, CFD requires more source statements
than GLYPNIR or IVTRAN, which require similar
numbers. For ZAPN, IVTRAN requires fewer source
statements than GLYPNIR, which in turn requires
fewer than CFD.

Table 1
Source Statements for ZAP

Language fl of Source fl of Source
Statements (ZAPN) Statements (ZAP62)

FORTRAN 32 32
CFD 68 39
GLYPNIR 44 30
IVTRAN 32 32

Two connnents should be made concerning this com­
parison of the various versions of ZAPN. First,
the IVTRAN version was produced by putting the
FORTRAN version through the paralyzer and then
making minor changes to the output. The original
FORTRAN codes were written with that in mind and
thus a comparison of the FORTRAN and IVTRAN ver­
sions tends to underestimate the effort required
in the conversion.

Second, since the original program was coded in
FORTRAN, the comparison has a slight intrinsic
bias against GLYPNIR. IVTRAN seems easier to use

174

since it has the syntactic structure of FORTRAN.
Had the original program been written in ALGOL,
GLYPNIR would have appeared a little easier to
use than it did in this comparison.

Nonetheless, IVTRAN did require the least user
effort to reprogram ZAPN, primarily due to the
syntactic similarity to FORTRAN. GLYPNIR was a
reasonably close second because of the clarity of
its syntax. The effort required with CFD was
significantly greater than for the other languages
since its syntactic structure conforms more direct­
ly to the architecture of the machine.

Execution of Standard Problem

Due to current hardware problems with the ILLIAC
IV, the standard problem has not been successfully
executed for any of the versions of ZAPN. There
are results for a problem run using ZAP62. The
CFD, GLYPNIR, and IVTRAN versions gave the same
results as the original FORTRAN version for the
problem used.

Table 2A gives the number of equivalent ASK state­
ments for the main calculational loop of ZAP62 for
each of the languages, and the time required to
execute the standard problem on the ILLIAC IV.

Table 2A.
Results for ZAP62

Language fl of ASK Execution Time
Statements (Sec)

CFD 309 1.22
GLYPNIR 560 1. 73
IVTRAN 330 1.36

While ZAPN has been coded, and partially debugged
in all three languages, the standard problem has
not been run on the ILLIAC IV with all versions.
Therefore, the execution times have been estimated
from the equivalent ASK generated from each version.
The timing estimates are for one pass through the
main body of the program, and the standard pro­
blem used was for vectors of 512 elements (i.e.,
8 rows of memory) with 220 active elements (i.e.,
4 rows). Since the ILLIAC IV has, in the past,
been run with overlap disabled, this mode was as­
sumed for the estimate.

Table 2B.
Results for ZAPN

Language fl of ASK Normalized Est.
Statements Execution Time

CFD 440 1.00
GLYPNIR 887 1.70
IVTRAN 425 1.19

The main reason for the relatively long estimated
time for the GLYPNIR version is that GLYPNIR pro­
duced significantly more ASK statements for ZAPN
than did the other languages. While some of the
extra statements are due to such factors as

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

GLYPNIR generating the MIN function in-line (as
opposed to CFD, for which ROWMIN is an external),
much of the difference is due to the fact that
GLYPNIR, in general, produces extra statements.

For instance, GLYPNIR produces 2 more ASK state­
ments for each access of a multi-row vector than
does CFD. It should be noted that the GLYPNIR
compile was done with the BOUND option off, so as
not to generate the extra code required to verify
that vector row accesses were within bounds.

As was mentioned previously, neither CFD nor
GLYPNIR automatically handles multi-row vectors.
The programmer must explicitly include code to
handle this. For ZAPN, both the CFD and GLYPNIR
programmers chose to determine the number of rows
in the active set and then to loop on that number.
While IVTRAN automatically handles the multi-row
vectors, it does so by setting the loop limit to
the full number of rows contained in the vector
and generating code to skip the body of the loop
for those rows that do not contain active elements.
Thus, while the timing estimates for each of the
versions is dependent on the number of elements
assumed to be active, the IVTRAN timing estimate
also depends on the number of elements in the
vectors. Since the normal problem run with ZAPN
has half of the elements active, on the average,
the length of the vectors assumed for the timing
estimate was twice the active set. Note, however,
that if the vectors had been assumed to be of
length 4096 (i.e., 64 rows of memory), the IVTRAN
estimated time would have been 3.63, while the
estimated times for the CFD and GLYPNIR versions
would have been unchanged.

PUKA

The second program used for comparing the ILLIAC
IV languages was PUKA, a two-dimensional Eulerian
hydrodynamics code. Again, a simple gamma-law
gas model was used for the equation of state.

The original FORTRAN version of PUKA was written
to perform calculations on a series of buffers.
With the appropriate set of buffer-handling
routines, the code will work on variables that
are either totally core-contained or partially
disk resident. The core-contained version of PUKA
was used for the language comparison.

Comparison of the Codes

PUKA contains two main calculational subroutines­
PHl, which update the velocities, and PH2, which
calculates the mass transport between cells. These
two subroutines will be discussed separately.

Comparison for PHl Figure 3A shows a portion of
the FORTRAN version of PHl. This portion deter­
mines the values of the velocity and pressure below
the current row. How these values are determined
depends on two conditions. If the current row is
not the bottom of the grid, i.e., J is not 2, then
the velocities and pressures below are the aver­
ages of the values in the current row and the row
below it (the DO 60 loop). If the current row is
the bottom, the values depend on the bottom bound-

175

ary condition. If the bottom is not reflective,
i.e., BTREF=.FALSE., then the velocity below is
velocity in the current row, while the pressure
is the average. If the bottom in reflective, then
the velocity below is O, and the pressure below is
the pressure in the current row.

Figure 3B shows this same portion of code in the
CFD version. This version looks similar to the
original FORTRAN. The main difference is that an
explicit mode set is used instead of the DO loop
structure of FORTRAN.

Figure 3D shows this portion of code in theGLYPNIR
version. While this portion appears very differ­
ent from the FORTRAN version, it does offer the ad­
vantage of lucid conditional control structure that
is found in GLYPNIR. The use of the IF •• THEN •.
ELSE structure makes explicitly clear how the var­
iables depend on the two conditions. This clarity
adds substantially to the ease of programming.

Figure 3D shows the IVTRAN version of this portion
of PHl. Except for the conversion of the DO loops
to DO FOR ALL loops, this version is identical to
the original FORTRAN.

Table 3 gives the number of source statements in
PHl for each of the versions. For this routine,
GLYPNIR required significantly fewer statements
than either of the other versions because of its
lucid control structure. CFD required slightly
fewer statements than the original FORTRAN since
explicit DO loops were not needed. The IVTRANver­
sion required the same number of statements as the
FORTRAN version.

Table 3.
Source Statements for PHl

Language II of Source
Statements

FORTRAN 69
CFD 56
GLYPNIR 33
IVTRAN 69

Even though CFD required fewer statements than
IVTRAN, the programming efforts involved were
similar since CFD required more changes from the
original FORTRAN. While the GLYPNIR version is
quite different from the FORTRAN version, it re­
quired so many fewer statements that it was the
easiest language for the conversion.

Comparison for PH2 Figure 4A shows a portion of
the FORTRAN version of PH2. This portion of code
handles some special calculations for the top row
of the grid, which has J equal to Jl>IAXA. The DO
275 loop is primarily for determining how lllllch
mass is flowing through the top of the two
(MSTTOP). For the top of the grid, this value can­
not be negative since that would imply that the
mass is flowing into the grid from outside. If for
the top of the grid, MSTTOP is greater than a spec­
ified fraction TOZONE of the mass in the top row,
a logical flag RZNTOP is set to .TRUE. to indicate

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

that the problem should be rezoned before contin­
uing. Then, the calculation determines how much
energy is lost from the grid by the mass flowing
out the top. The DO 400 loop subtracts that
energy from the total so that later energy checks
will not fail.

Figure 4B shows the CFD version of this same por­
tion of code. Other than the removal of the spe­
cific DO loops, there are two major changes re­
quired. Since an entire row of values of MSTTOP
is simultaneously checked to see if any values are
large enough to require setting RZNTOP, the log­
ical operator .ANY. must be used. Also note that
RZNTOP is not set to .TRUE., which is a scalar
value, but to ON, which is a logical vector
constant. The other change occurs in subtracting
the sum of the values of DTH from ETH. In CFD,
this calculation requires the use of a temporary
row vector since a floating point arithmetic as­
signment statement cannot involve only scalars.

Figure 4C shows the GLYPNIR version of this por­
tion code. The main conditional control struc­
ture utilizes the IF .. THEN .. ELSE construct. The
calculational statements are very similar to the
original FORTRAN. The ROWSUM function is utilized,
though the entire calculation requires only one
statement unlike the CFD version.

Figure 4D shows this portion of code in the IVTRAN
version. There are a couple of changes from the
original FORTRAN. The biggest change required is
for the conditional statement that sets RZNTOP.
In IVTRAN, RZNTOP is set by ORing its previous
value with the logical function ANY which deter­
mines if any of the values of MSTTOP are larger
than the conditional value ..

The DO 400 FOR ALL loop shows an idiosyncracy of
the paralyzer. The original FORTRAN loop ran from
2 to !ACT. The paralyzer changes this so that
the loop runs from 1 to IACT-1 and compensates by
replacing all references to I by I+l. For this
comparison, the other loops have been manually
changed to reflect the FORTRAN sequence. The
IVTRAN compiler will accept both forms. Thus, the
effort required to convert the programs to IVTRAN
is larger than might appear from the examples
shown in this report.

Table 4 gives the number of source statements in
each of the versions of PH2. Again, GLYPNIR re­
quired far fewer statements than the other lang­
uages. IVTRAN and CFD required the same number
of statements, though the changes required for
IVTRAN were easier to implement than those required
for CFD.

Table 4.
Source Statements for PH2

Language fl of Source
Statements

FORTRAN 110
CFD 107
GLYPNIR 75
IVTRAN 107

176

Execution of Standard Problem

The standard problem for PUKA has not yet been
run on the ILLIAC IV in any version due to cur­
rent hardware problems. Since the various ver­
sions of PUKA are still in the development stage,
it was felt unwise to estimate timings for the
code produced so far.

CONCLUSION

There is currently little data for judging the ef­
ficiency of machine utilization. There are ILLIAC
IV execution times only for ZAP62 and the esti­
mated times for ZAPN. On the basis of these pre­
liminary results, CFD appears to give the short­
est execution times and GLYPNIR the longest,
though the ratio is less than a factor of two.
IVTRAN appears to give execution times intermedi-·
ate between those of CFD and GLYPNIR, though as
mentioned in the results for ZAPN, it is possible
for IVTRAN to give longer execution times than
GLYPNIR.

There is preliminary data for determining the user
effort required for each of the languages. The
comparison of the versions of ZAPN shows that
IVTRAN is the easiest language for handling multi­
row vectors. For PUKA, GLYPNIR required the
least effort due primarily to the ease of handling
conditional control statements in that language.
For both codes, CFD was the most difficult langu­
age primarily because it is not as high a level
as the other two.
The I/O handling capabilities of the languages
have not been discussed. Only CFD presents any
major difficulties in this respect since it sup­
ports only unformatted, binary I/O. Thus, post­
processing of the output is required to put it
into human-readable form.

One other code which has been briefly investigated
deserves mention. This code is a global weather
model that explicitly utilizes the wraparound
feature of the ILLIAC !V's routing hardware.
This wraparound is simple to utilize in either
GLYPNIR or CFD, while IVTRAN requires a special
function to handle it. This is as might be
expected, since IVTRAN handles multi-row vectors
so easily.

Several factors that influence the required pro­
gramming effort were not used in comparing the
languages but do deserve brief mention. Access­
ability of the compiler is one such factor. Cur­
rently, only GLYPNIR is available at the ILLIAC
IV site. CFD is only available on the 360 at
NASA Ames, and IVTRAN is only available on the
TENEX system at IS!. Thus, the CFD or IVTRAN
user must spend some effort in transferring files
between the host site for the compiler and the
ILLIAC IV site, while the GLYPNIR user does not
face that problem. Another factor is the level
of support for the language. Currently, GLYPNIR
is without funded support, and the future support
levels for both CFD and IVTRAN are in some doubt.

It should also be mentioned that each of the lang­
uages has some facilities to allow program

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

simulations on a serial computer. For GLYPNIR,
there is SSK, which simulates execution of ILLIAC
IV code on the B6700. For CFD programs, there is
a translator, called CFDX, which produces equiva­
lent serial FORTRAN. For IVTRAN, there is the
paralyzer that converts serial FORTRAN into
IVTRAN. The use of the paralyzer may require re­
writing the FORTRAN code so that efficient IVTRAN
is produced, though these rewritten versions can
be checked using a serial machine.

None of the three languages compared herein are
best in all respects or for all programs. Each
language has its own strengths and weaknesses,
some of which are given in Table 5. In general,
GLYPNIR's main strengths are its lucid control­
structure and the in-line macro facility.
GLYPNIR's main weakness is that it does not as
efficiently utilize the machine as do CFD and
IVTRAN. CFD's main strength is that it's syntax
reflects the architecture of the machine thus
allowing very efficient code to be generated. How­
ever, the syntax is fairly restrictive and, thus,
more effort is required to program in CFD.
IVTRAN's main advantage is that the syntax is close
to standard FORTRAN; while the disadvantage is
that the syntax does not reflect the architecture
of the machine. Also, while IVTRAN automatically
handles multi-row vectors, an advantage, the code
produced is less than optimal for some problems.

I would like to acknowledge the contributions of
those persons who assisted in this project:
Mr. Terry Layman of R & D Associates, Dr. Charles
Muntz, of Massachusetts Computer Association,
and Mr. Ken Stevens of the NASA Ames Research
center.

Table 5.
ILLIAC IV Languages

CFD:
Advantages
• Syntax relfects architecture of the ILLIACIV
• Produces reasonably good machine code
• I/O reflects structure of disk transfers
• Allows inserting ASK statements in-line

Disadvantages
• BOOLEAN operations are tricky
• All variables must be assigned storage at

beginning of each routine
• No formatted I/O
• No multi-statement optimization

GLYPNIR:
Advantages
• Lucid control structure
• In-line macro facility
• Allows insertion of ASK statements in-line
• Pointer constructs for handling complex

data structure
• Formatted and binary I/O

Disadvantages
• Relatively poor machine utilization
• Allows only two-dimensional variables
• No multi-statement optimization

177

IVTRAN:
Advantages
• Syntax similar to standard FORTRAN,

with extension
• Multi-statement optimization
• Formatted and binary I/O
• Multi-dimensional arrays

Disadvantages
• Syntax does not reflect machine architecture
• Routing is serial, not wraparound

Illustrations

ZAP:
DO 341 J=2,JSTAR
U(J)=U(J)+DELT*((P(J)+Q(J)-

lQ(J+l)-P(J+l))/(RHO(J)*(X(J)-
2 X(J-l))+RHO(J+l)*(X(J+l)
3-X(J))))

IF(ABS(U(J)).LT.UMIN) U(J)=O.O
341 CONTINUE

DO 351 J=2,JSTAR
X(J)=X(J)+DTC*U(J)

351 CONTINUE

Figure lA. FORTRAN

ZAP62:
MODE=OFF.TURN ON .2.TO.JSTAR
U(*)=U(*)+DELT*((P(*)+Q(*)-Q(*+l)-
-P(*+l)) / (RHO(*)*(X(*)-X(*-1))+ -
RHO(*+l)*(X(*+l)-X(*))))

* IF((ABS(U(*)) .LT.UMIN))U(*)=O.O
X(*)=X(*)+DTC*U(*)

ZAPN:
JJ=l
JL=JSTAR

23l*IF(JL.LE.64) GO TO 232
JL=JL-64
JJ=JJ+l

*GO TO 231
232 JN=64-JL

*DO 341 II=l,JJ
MODE=ON

*IF(II.EQ.l) MODE=MODE.TURN OFF .• FIRST.l
*IF(II.EQ.JJ) MODE=MODE.TURN OFF •• LAST.JN
U(*,II)=U(*,II)+DELT*((P(*,II)+Q(*,II)­

-Q(*+l,OFFR(*)+II)-
P(*+l,OFFR(*)+II))/RHO(*,II)*­

(X(*,II)-X(*-1,0FFL(*)+II))+
RHO(*+l,OFFR(*)+II)*(X(*+l,
OFFR (*)+II)-X(*,II))))

f:IF ((ABS (U*, II)) .LT .UMIN)) U (*, II)=O. 0
341 CONTINUE

*DO 351 II=l,JJ
MODE= ON

*IF(II,EQ.l) MODE=MODE.TURN OFF.FIRST.l
*IF(II.EQ.JJ) MODE=MODE.TURN OFF •• LAST.JN
X(*,II)=X(*,II)+DTC*U(*,II)

35l*CONTINUE

Figure lB. CFD

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

ZAP62:
--IF(PEN GTR 0 AND PEN LEQ JSTAR) THEN

BEGIN
U:=U+(DELT*(P+Q-RTL(l,MODE,Q)-RTL(l,
MODE,P)))/(RHO*(X-RTR(l,MODE,X))+RTL
(l,MODE,RHO)*(RTL(l,MODE,X)-X));

IF ABS(U) LSS UMIN THEN U:=O.O;
X:=X+DTC*U;
END;

ZAPN:
FORALL (JSTAR) DO
BEGIN

U[K]:=U[K]+(DELT*(P[K]+Q[K]-RTL(l,,
Q[K+oFFL])-(RTL(l,,P[K+oFFL])))/
(RHO[K]*(X[K)-RTR(l,,X[K+oFFR]))+
RTL(l,,RHO[K+oFFL])*(RTL(l,,X[K+oFFL))
-X[K]));

IF ABS(U[K]) LSS UMIN THEN U[K):=O.O;
END;
FORALL (JSTAR) DO
BEGIN

X[KJ:=X[K]+DTC*U[K);
END;

Figure lC. GLYPNIR

ZAP62:
~~DO 3Sl FOR ALL (J)/[(J)/[2,3 ••• 63):

1 J.LE.JSTAR]
U(J)=U(J)+DELT*((P(J)+Q(J)-Q(J+l)-P(J+l))

1 /(RHO(J)*(X(J)-
2 X(J-l))+RHO(J+l)*(X(J+l)-X(J))))

IF(ABS(U(J)).LT.UMIN) U(J)=O.O
X(J)=X(J)+DTC*U(J)

3Sl CONTINUE

ZAPN:
--DO 341 FOR ALL (J)/[(J)/[2,3 •.• 409S]:

1 J.LE.JSTAR]
U(J)=U(J)+DELT*((P(J)+Q(J)-Q(J+l)-P(J+l))/

1 (RHO(J)*(X(J)
2 X(J-l))+RHO(J+l)*(X(J+l)-X(J)))

IF(ABS(U(J)).LT.UMIN) U(J)=O.O
341 CONTINUE

DO 3Sl FOR ALL (J)/[(J)/[2,3 •.. 409S]:
1 J.LE.JSTAR]

X(J)=X(J)+DTC*U(J)
3Sl CONTINUE

Figure lD. IVTRAN

FORTRAN:
DO SOl J=~,JSTRl

DTZJM=AMINl(DTZJM,WW*(X(J)-X(J-1))/
1 (CRNT(J)+cS(J)+0.01))

SOl CONTINUE

CFD:
--*DO SOl II=l,JJ

DTZJ (*)=1. E30

DTZJ(*)=WW* (X(*, II)-X(*-1,0FFL(*)+II)) /­
(CRNT(*)+cS (*, II)+o.01)

TEMP(*)=ROWMIN(DTZJ(*))
IF(.ANY.(DTZJM().GT.TEMP(2))) DTZJM(*) -

=TEMP(2)
SOl*CONTINUE

GLYPNIR:
FORALL (JSTRl) DO
BEGIN

CTEMP:-MIN(WW*(X[K]-RTR(L,,X[K+oFFR]))/
(CRNT+CS[K]+0.01));

IF CTEMP LSS DTZJM THEN DTZJM:=CTEMP;
END;

IVTRAN:
---00 SOl FOR ALL (J)/[(J)/[2,3 ••• 409S]:

1 J.LE.JSTRl]

DTZJM-AMINl(DTZJM,RMIN(WW*(X(J)-X(J-1))/
1 (CRNT(J)+cS(J)+0.01)))

SOl CONTINUE

178

Figure 2. ZAPN

IF(J,NE.2) GO TO SO
IF(.NOT.BTREF) GO TO 30
DO 20 I=l,IACTA
VB(I)=O.O
PB(I)=P(I,I3)

20 CONTINUE
GO TO 7S

30 DO 40 I-1, !ACTA
VB(I)+v(I, I3)
PB(I)=O.S*(P(I,I3)+o(*,I2))

40 CONTINUE
GO TO 7S

SO DO 60 I=l, !ACTA
VB(I)=O.S*(V(I,I3)+V(I,I2))
PB(I)=O.S*(P(I,I3)+P(I,I2))

60 CONTINUE
7S CONTINUE

Figure 3A. FORTRAN

MODE=OFF.TURN ON •• FIRST.IACTA
*IF(J.NE.2) GO TO SO
*IF(.NOT ANY.(BTREF)) GO TO 30
VB(*)=O.
PB(*)=P(*,I3)

*GO TO 7S
30 VB(*)=V(*,I3)

PB(*)=O.S*(P(*,I3)+P(*,I2))
*GO TO 7S

SO VB(*)=O.S*(V(*,I3)+V(*,I2))
PB(*)=O. S*(P(*_, I3)+P (*, 12))

7S*CONTINUE

Figure 3B. CFD

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

FORALL (l,IACTA) DO
IF J=2 THEN

IF BTREF THEN
BEGIN

VB:O.O; PB:=P[I3];
END;.
ELSE
BEGIN

VB:=V[I3]; PB:=0.5*(P[I3]+P[I2]);
END;
ELSE BEGIN

VB:=O.S*(V[I3]+V[I2]);
PB:=0.5*(P[I3]+P[I2]);

END;

Figure 3C. GLYPNIR

IF(J.NE.2) GO TO 50
IF(.NOT.BTREF) GO TO 30
DO 20 FOR ALL (I)/[(I)/[l,2 ••• 64]:I.LE.IACTA]
VB(I)=O.O
PB{I)=P(I,13)

20 CONTINUE
GO TO 75

30 DO 40 FOR ALL (I)/[(I)/[l,2 ••• 64]:I.LE.IACTA]
VB(I)=V(I,13)
PB(I)=0.5*(P(I,I3)+P(I,I2))

40 CONTINUE
GO TO 75

50 DO 60 FOR ALL (I)/[(I)/[l,2 ••. 64]:I.LE.IACTA]
VB(I)=O.S*(V(I,I3)+V(I,I2))
PB(I)=O.S*(P(I,I3)+P(I,I2))

60 CONTINUE
75 CONTINUE

Figure 3D. IVTRAN

IF(J.EQ.JMAXA) GO TO 250

GO TO 300
250 DO 275 I=2,IACT

VTPIN(I)=V(I,I8)
MSTTOP(I)=VTPIN(I)*DT*DMSDDY(I)
IF(MSTTOP(I).LT.O.O) MSTTOP(I)=O.O
IF(MSTTOP(I).GT.TOZONE*AMX(I,I2)) RZNTOP=.TRUE.
DTH(I)=DTH(I)+MSTTOP(I)*DTPSPE(I)

275 CONTINUE
300 CONTINUE

DO 400 I=2,IACT
ETH=ETH-DTH(I)

400 CONTINUE

Figure 4A. FORTRAN

*IF(J.EQ.JMAXA) GO TO 250

*GO TO 300
250 VTPIN(*)=V(*,I8)

MSSTOP(*)=VTPIN(*)*DT*DMSDDY(*)
IF((MSTTOP().LT.O.O)) MSTTOP(*)=O.O
IF(.ANY.((MSTTOP().GT.ROZONE*AMX(*,I2))))

RZNTOP=ON

179

300*CONTINUE

TEMP(*)=ROWSUM(DTH(*))
TEMP(*)=ETH-TEMP(*)
ETH=TEMP(2)

Figure 4B. CFD

FORALL (2,IACT) DO
IF (J NEQ JMAXA) THEN

ELSE
BEGIN

VTPIN:=V[IB];
MSTTOP:=VTPIN*DT*DMSDDY;
IF (MSTTOP LSS O.O)THEN MSTTOP:=O.O;
IF (MSTTOP GTR TOZONE*AMX[I2]) THEN

RZNTOP:=TRUE;
END;

FORALL (2,IACT) DO
ETH:=ETH-ROWSUM(DTH);

END;

Figure 4C. GLYPNIR

IF(J.EQ.JMAXA) GO TO 250

GO TO 300
250DO 275 FOR ALL (I)/[(I)/[2,3 ... 63]:1.LE.IACT]

VTPIN(I)=V(I,IB)
MSTTOP(I)=VTPIN(I)*DT*DMSDDY(I)
IF(MSTTOP(I).LT.O.O)MSTTOP(I)=O.O
RZNTOP=RZNTOP.OR.ANY(MSTTOP(I).GT.TOZONE*

1 AMX(I,I2))
DTH(I)=DTH(I)+MSTTOP(I)*DTPSPE(I)

27 5 CONTINUE
300 CONTINUE

DO 400 FOR ALL (I)/[(I)/[l,2 •.• 63]:I.LE.IACT-l]
ETH=ETH-RSUM(DTH(I+l))

400 CONTINUE

Figure 4D. IVTRAN

References

[l] Lawrie, D, H., T. Layman, D. ~aer, and J. M.
Randal, "GLYPNIR - A .Programming Language for
ILLIAC IV," Comm. ACM 18, 3 (March 1975),
157-164. -

[2] CFD - A FORTRAN-based Language for ILLIAC IV,
Computational Fluid Dynamics Branch, NASA/Ames
Research Center.

[3] The IVTRAN Manual, Institute for Advanced
Computation, Doc. DS-A-8000-QlO-B, February
18, 1975.

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

SYSTEMS DESIGN AND DOCUMENTATION USING PATH DESCRIPTIONS

Alan C. Shaw(a)
Department of Computer Science

University of Washington
Seattle, Washington 98195

Summary

Sequential and concurrent systems are often
designed and understood by informally considering
the execution time paths through their software
and hardware components. While there has been
much theoretical research in parallel processing
based on control flow specification and analysis,
for example using different graph models of comp­
utation [l], we are not aware of many practical
schemes that are of direct assistance to the de­
signer. This paper presents some preliminary re­
sults on the definition and application of a prac­
tical notation for systems description.

Related research includes that of Riddle, who
defined operators similar to ours in his Message
Transfer Expressions for specifying permissible
sequences of messages and synchronization con-
s train ts among processes [2] - [3], and the Path
Expression work of Campbell, Habermann, and Lauer
[4] - [6]. There is also the report on the Pascal
<P> compiler [7]; the code generation software is
described in a top-down fashion by a sequential
path notation, somewhat clearer than conventional
flowcharts, which incorporates syntax diagrams and
productions.

In our scheme, systems are described by sets
of rules or productions where each rule contains
a path description denoting the possible execu-·
tion-time control paths through some components.
Let L(S) be the set of paths represented by the
path description S. For sequential activities,
the language of regular expressions is used for
path descriptions; L(S), S a regular expression,
is the regular set corresponding to S. Extensions
to this language are provided to handle concur­
rency. (Path descriptions can also be represented
graphically, using a straightforward extension of
syntax diagrams.)

The concurrent operator G specifies the
meaning of concurrent activities in terms of se­
quential paths through a system; the underlying
idea is that the effect of the concurrent (parallel)
execution of two components or routines is equiv­
alent to the execution of one sequential path
through both components, but the particular one
chosen is in general unknown.
Define L(e1 G e 2) = {e1e2 , e2e1} for e1 ,e2
elementary (indivisible), and
L(S1 0 s2) = {all paths thru both s1 and s 2}

{x1y1 •.• 21cYk : x1 ••• xk E L(S1) ,
Y1 •.• yk E L(S2), and either or both
x1 and yk could be empty}.

(a)The author is grateful to R. Ladner and W. Rid­
dle for several useful discussions. This work
was supported in part by NSF Grant GJ-36273.

180

A variable degree of concurrency is denoted by the
concurrent 2 operator, e; i.e.

(e.g.
03 S = S 0 S 0 S).

This operator is useful when there may be execu­
tion-time control over the degree of logical or
physical concurrency.
An expression is designated as indivisible (a crit­
ical section) by surrounding it with square brack­
ets; the expression is then treated as elementary
in the context of the 0 operator. llif ferent
critical section locks are distinguished by label­
ling the bracketted descriptions; bracketted ex­
pressions are then considered elementary only when
they interact concurrently with those having iden-
tical locks. (b)
Thus L([Sl]k 0 [S2Jk) = L(S1.s2) u L(S2.s1)

and L([s1]j 0 [s2]k) = L(S1 0 s 2) (provided that

no j locks appear in s 2 and no k locks are
in s1).
Note that the definition of ® must now be am­
plified to ensure that all paths obey the locking
rules.
Cyclic processes and programs are described with
the w operator; thus sW = S.S.S •.•

For a first example, we consider the path
of a batch user job through a simple spooled mul­
tiprogramming system. This path c_an be generated
by the "syn tax" :

Batch_User_Paths + Input_Spool • Run •
Output_Spool

Input_Spool + (Read_Input . Pio~efs_Input
Write_on_Disk) tc

Run + Load • Execute . Terminate

Execute + (Compute . (Input Output u
Resource_Request))+

Output;_Spool + (Read_From_Disk • +
Process_Output • Write:__Output)

We next des.cribe the multiprogramming situation
where a variable number of such jobs may be in
execution concurrently, where each job stream is
cyclic, where only one Input_Spool and Output_
Spool operation can occur at a time but Input_
Spool and Output_Spool can occur concurrently,
where only one job can be loaded at a time, and
so on:

System + Sequential_Jobs9

Sequential_Jobs + Batch_Jobw

(b)The "." (dot) denotes concatenation of regular
expressions.

(c)The "+" specifies one or more repetitions.

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

Batch_Job + [Input_Spool]is • Run •

[Output_Spool] 0 s

Run + [Load]l • Execute . [Terminate]t

Execute+ (Compute • ([Input_Output]io u

[Resource Request]))+
- r

Our second example is in time-sharing systems.
Suppose a system potentially swaps workspaces of
interactive terminal users out of main storage at
the end of a time slice or on an input-output (IO)
request; assume that swapping and terminal IO can
occur concurrently. Then, ignoring logon and
logoff, the paths of a terminal user can be des­
cribed:

Terminal User Paths + (Compute •
((Tim; Up-: (Swap u E)) u
(Termi;:al_IO © (Time_Up* • (Swap u E)))))+

Swap + [Swap_Workspace_Out]sw

[Swap_Workspace_In]sw

Because we are interested in a scheme which
is practically useful and not too cumbersome, we
have not incorporated data into the notation nor
have we provided for more complex interactions
by, for example, including the equivalent of a
Dijkstra P and V at this time. Consequently,
many synchronization constraints, such as those
that appear in general Reader-Writer problems,
appear difficult to express. The notation is being
used to describe the software in several systems
currently under development. As we gain more ex­
perience, we expect our top-down, syntax-oriented,
path scheme to evolve to correct any serious de­
ficiencies.

181

References

[l] J. L. Baer, "A Survey of Some Theoretical As­
pects of Multiprocessing", ACM Computing
Surveys 5, 1 (March, 1973), pp. 31-80.

[2] W. E. Riddle, The Modeling and Analysis of
Supervisory Systems, Ph.D. Thesis, Computer
Science Dept., Stanford University, (March,
1972).

[3] W. E. Riddle, Message Transfer Expressions and
Their Use in Specifying Synchronization Con­
straints, RSSM/l, Dept. of Computer and Com­
munication Sciences, University of Michigan,
(Sept., 1974), 14 PP•

[4] A. N. Habermann, Operations on Shared Data
Controlled by Function Modules in Type Def­
initions, Computer Science Dept., Carnegie­
Mellon University, (Sept., 1973), 10 pp.

[5] R. H. Campbell and A. N. Habermann, The Speci­
fication of Process Synchronization by Path
Expressions, TR 55, Computing Laboratory,
University of Newcastle-Upon-Tyne, (Jan.,
1974).

[6] P. E. Lauer and R. H. Campbell, "A Descrip­
tion of Path Expressions by Petri Nets",
Proc. 2nd ACM Symp. on Principles of Progr.
Lang., Palo Alto, Calif., (Jan., 1975),
pp. 95-105.

[7] K. V. Nori, U. Ammann, K. Jensen, and H. H.
Nageli, The Pascal <P> Compiler: Implement­
ation Notes, Nr. 10, Berichte des Instituts
fur Informatik, Eidgenossische Technische
Hochschule, Zurich, (Dec., 1974), 57 pp.

1975 SAGAMORE COMP0TER CONFERENCE ON PARALLEL PROCESSING

A NEW SCHEME FOR ANALYZING PARALLEL PROCESS! NG SYSTEMS

Ines MARGARiA (-), An;ielo Raffaele MEO (0), Maddalena ZACCHI (-)

(-) lstituto di Scienza dell'lnformazione,
UniversiHi d; Torino, Italia.

(0) lstituto di Elettrotecnica Generale,
Politecnico di Torino, Italia

Abstract. - A new model specifically studied for analyzing
1111lit.imi£11:processor systems and automatically detecting paralle­
lism is introduced a~d discus.sed from a theoretical point of view.

The present short paper is subdivided into two sections. In
the first section the new model is ·introduced and its general pr.Q..
parties presented. In the second section the important problem
of determinacy is discussed.

In this paper only an i mp~rtant subset of the class of the new
schemata, referring to a family of "well-structured" programs, is
a1alyzed. The new model is well suited for automatically detect­
ing parallelism; related techniques will be presented in a forth­
com i ng paper.

I, The model

The mode] presented in this paper is described by three sets of
elements: 1) the OP-set, namely, the set of operations and predic~
tes used by the system; 2) the~ describing the parallel pro­
gram to be executed; 3) the interpretation, which specifies .the o­
perati ans and the pre di cat es.

1. The OP-set

The OP-set .§...(a) is the union of two subsets Q.and E;

l.·Q.Vl.
where

will be called "operation set" and

£..· lP1• p2' ... }

will be called "predicate set".

To each o € Q. are associated:

a) a finite set

.Q. (o)C ~

(where ~ is the set of natural numbers), which will be called
the "domain" of o;

b) a finite set
Jl..(o)c. ~

which will be called the 11~1 of a.

To each pE ..E.. is associated a finite set

.!L (p) c ~
which will be called the "domain" of p.

Of course, the set

~-[ul.Q.(o)\ o€Q.\] U [ul.BJo) \ o€Q.~]u
u [u{ .QlpJ I PE...E..fl

(a 1 The symJols of sets will be always underscored.

182

represents the memory cells used by the computation system.

2. The graph

The oriented graph G is characterized by a finite set of·
nodes

.!:L={n1' n2, ••• J
and a finite of oriented arcs

A.• { a1, a2, ••• 1
The nodes represent control units of the whole system, and the

arcs the operations to be performed (or their corresponding pro­
cessing units).

To each node n E .!:L are associated:

a) a mode M(n), which is a oinary specification indicating whe­
ther the node is of type MD or OR;

b) a set of predicates

..E..(n)~ ..E..
wnich may be missing, in which case the node will be called a "free
node".

To each arc a€ A. is associated an operation

o • O(a) ;

besides, if a is an output arc of node n and a set of predica­
tes ..E..(n) has been associated to n, then a predicate

P(a) E: ..E..(n)

will be assigned to a. (Generally, if {a1, a2, ... , av! is the
set of the arcs going out of n,

..E..(n) • tP(a1), P(a2), ••• , P(a.)J)

Fig. 1 shows an exa~ple of graph and illustrates some conven­
tions used in the sequel. In particular, only the nodes OR will
be labelled in the graph (using a sign +; see nodes n4 and n 5
in Fig. 1), the remaining nodes be·ing assumed to be of t$'pe AMO.
Notice also that in Fig. 1 only the arcs going out of n8· and n15
are assigned predicates; this implies that only the nodes n ana
n15 are associated sets of predicates, coincident (unless o~her-
w1se specified] with the sets of predicates associated to the
leaving arcs.

In the sequel, the set of arcs entering a node n will be indic~
ted as J_(n), and the set of arcs leaving n as j)Jn). Besides,
the node which the arc a is leaving will be denoted with G(a)
(generator of a) and the node which a is entering with S(a) (s!J.£_
cessor of a) •

A formal definition ·of the behaviour of the system described
by the graph will be given in a foHhcmm~og ~apn. However, it
may be useful to anticipate at this point in loose terms that a
contra l section of type AND begins to work after the completion
of all the operations associated to the entering arcs, while a
section of type OR requires the completion of only one input ope­
ration. When a control section (that is, a node) has completed
its activity, all the operations associated to the leaving arcs
will be initiated, unless a set of predicates has been associa­
ted to that node and those arcs, in which case only the operations

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

associated to the arcs for which the predicates are satisfied will
be initiated. Thus, the activity of the system shown in Fig. 1 will
begin with the activity of the input nodes n1 and n2" After com­
pletion of the control activity of n1, the operations associated to
a1 and a2 will be performed in para lel; similarly, a3 and a4 will
be initiated after the activity of n2• When all a1, a2, a3 and a4
are completed, n3 and then a will be activated. Since n is of
type OR, the completion of t~e activity of a5 will be suf~icient to
begin the operation of n4; then all the operations associated to
a- - a 1 will be performed in parallel. And so on. Notice that
tRe aci1vity of n15 will be to calculate the predicates p4 and p5•
If p4 is satisfied, a1 will be activated and the loop to n4
will be closed; if p5 is safisfied, a13 and then n10 will be acti­
vated.

3. The interpretation

An Jri ented graph, each node and arc of which has been assigned
an element of the OP-set, will be called a "specified graph". Since

only specified graphs are of interest for our study, in these­
quel the word "graph" will always be used for denoting a "specified
graph". Besides, a (specified) graph will be ca'lled an "interpre­
M' graph, when an interpretation. that is, a suitable set of as­
signments of the type below defined, has been assigned.

An interpretation of a (specified) graph is a quadruple

1=~0.£.,.£)
0

where:

(i) ~ is the universe of the values assumed by the variables of
our computation system;

(ii) b E: ,a.\'!.. (b) is the initial assignment;
0 -

(iii) for each o E 0

; : Ll Q(o1_.~filo)
0 - -

is a total function, and

L•lFo I oE..Q.}
(iv J for each p E: £..

GP : ~Q(p)_. ~ TRUE, FALSE}

is a total function, and

.§..={Gp (P€f.}
It is apparent that, if Ji.. the set of the memory ce"lls used by

the systems, b specifies the initial values contained in those
ce'lls, £_the fu~ctions performed by the operations and.§... the pre­
dicates calculated in the branch points.

In any interpretation, for each not free node nE. Ji.at least
one of the fun di ons G associated to the pre di cat es of n must
take the value TRUE. IR loose terms, at least one of the arcs lea.:L_
ing n must always be activated after n.

The functions G associated to f(n) are not necessarily mu-
tually exclusive, iR the sense that more than one of the arcs lea.:L_
ing a not free node may be activated after that node. If fundions
G associated to f(n) are mutually exclusive for all the sets of
v~lues assigned to the domains Q(p), the interpretation will be
called "mutually exclusive" (ME) on n. The restriction to the class
of the interpretations ME on some nodes leads sometimes to simpler
statements than the genera 1 case and it is not a serious one becau­
se it is not difficult to prove that any (interpreted) graph can
always be transformed into an equivalent (interpreted) graph which
is ME on all the nodes of some subset of them.

(b)~ denotes the set of the functions from.\'!... into~.

183

4. Biqraphs and structures

In order to restrict our attention to a class of graphs which
can be easily treated and which covers most cases of practical in
terest, the following definitions are assumed. -

A "complex bigraph 11 is a subgraph recursively defined by the
following statements:

A. An oriented arc (associated to a given operation and, P"ssibly,
to a given predicate)(elementary bigrap1 of type A) is a com­
plex bigraph.

B. A free and loop-free subgraph containing nodes of AND mode only,
connected to other subgraphs by only two arcs, an inpJt arc lead
i ng to a node which no other arc is entering, and an output arc-
1 ea vi ng a node from which no other arc is leaving (e 1 ementary
bigraph of type B; Fig. 2), is a complex bigraph.

C. A loop-free subgraph of the type indicated in Fig. 3 (elementa­
ry bigraph of type C), which is ME on node n1 for every inte.r_
pre!ationlis a complex bigraph.

D. A su)graph of the type indicated in Fig. 4 wnich is ME on n2
for every interpretation (elementary bigraph of type D) is a
complex bigrap'i.

E. A subgraph obtained from a complex bigraph by substituting for
any arc a complex bigrapn (oriented in the same direction) and
labelling its input arc with the same predicate as the substi­
tuted arc, is a complex bigraph. The arcs connecting a given
bigraph to other subgraphs will be called the "input arc" and
the "output arc", and will be denoted with a1 and au, respecti­
vely (cpr. figs. 2, 3, 4).

Besides, a free and loop-free graph composed of nodes of the
only type ANO will be called an "elementary structure". A graph
obtained from an elementary structure by substituting for any arc
a complex bigraph (oriented in the same direction) and labelling
its input with the same predicate as the original arc will be cal.
led a "complex structure". An elementary structure will be con­
sidered as a particular complex structure.

The activity in the bigraphs and the structures is described by
some basic theorems, which will be presented in a forthcoming pa­
per.

1. Definitions

Our model must permit of the analysis and the simulation of pa­
rallel computation systems working asynchronously. The following
definitions lead lo the notion of determinacy, an important prope.r_
ty for all the models of parallel programs since it guarantees the
invariance of the computation results even under the hypothesis of
a completely asynchronous operation.

Our concept of determinacy relies on the following definitions,
here given rather informally, for the sake of brevity.

Defi ni ti on

A grap'i will be said to be 11 determined 11 for a given interpreta­
tion I if for each cell of memory w'the hystory H'\(ut) of the
contents of ta is independent of the computation ti.. considered, na­
mely of the durations of the operations involved.

Defi ni ti on

A graph will be said to be determined if it is determined for
any interpretation.

2. Determinacy of elementary bigrapns an:J structures

Let us first consider elementary structures. On the set A.V .!

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

of the graph a relation 2 is defined by the following statements:

A. If for an arc a and a node n

a € lJn)

then
a :? n

a. If for an arc a and a node n

a E l!.(n)

then
n ;? a

C. The relation:? is transitive.

Two elements (s1, s2) of .A.. V .!!.. such that neither s1 .!! s2,
nor s2 2 s1 wil be called 11 uncomparable elements".

Theorem 1

An elementary structure is determined if, and only if, the
following condition is v~rified.

Condi ti on OC.). If two arcs a1 and a2 are uncomparab 1 e, then

(R (O(a1JJ () R(O(a2JJ'J V [R (O(a1JJ (\ D(O(a2JJ] V

V (R (O(a 2)) (\ D(O(a1))] • 0

where, as usual, O(a) denotes the operation associated to arc a,
and O(o) and R(o) denJte the domain and the range of operation
o, respectively.

As a particular case, Theorem 1 holds also for elementary bi­
grap~s of type B:

Theorem 2

An elementary bigraph of type B is determined, if, and only if,
the con di ti on Cl of Theorem 1 is verified.

Besides, the following theorems hold.

Theorem 3

An elementary bigrap~ of type C is always determined.

Theorem 4

An elementary bigrap~ of type 0 is always determined.

3. Equivalence

On the set of the (specified but not interpreted) complex bi­
graphs and structures it is possible to define an equivalence re­
lation which will result usefull for determinacy conditions. Such
equivalence relation is defined by the following statements.

A. An elementary bigraph B of type B is equivalent to an oriented
arc a defined as follows:

A1) Its direction coincides with the direction of the input arc (or
the output arc) of the assigned bigraph B.

A2) The operation associated to a is a dummy operation O{a).

A3) The domain of O{a) is

D (O(a)) • U p (O(a)) /a E Ai3l
where Aa denotes the set of the arcs of B.

A4) The range of O(a) is

R {O(a)) • U \R (O(a)) /aE: ~B}_
A5) If the input arc of B is labelled with a predicate, the same

predicate must label arc a.

B. An elementary bigraph B of type C is equivalent to a1 oriented

184

arc a defined as follows:

B1) Its direction coincides with the direction of the input arc
(or the output arc) of the assigned bigraph B.

B2) The operation associated to a is a dummy operation O(a).

B3) The domain of O(a) is

o (O(a)) .[u\o (O(a)J I a~ ~BJ] u [up(pi) I PE: ..e.U
where ~ is the set a1, a2, ... , af' a1, a11 of the arcs of B
and P • p1, p2, pf is the set of preaicates associated
to n;-:-

B4) The range of D(a) is

R (O(a)) • U lR (O(a)) /a E. ~BJ
where ~B is again the set of the arcs of B.

85) If the input arc of B is labelled with a predicate, the same
predicate must label arc a.

C. An elementary bigraph B of type 0 is equivalent to an oriented
arc defined as follows.

C1) Its direction coincides with the direction of the input arc
{or the output arc) of the assigned bigraph B.

C2) The operation associated to a is a dummy operation O(a).

C3) The domain of O(a) is

D (O(a)) • [u t D (O(a)) /a E. ~BI] U D(p1) U D(p2)

where~ is again the set l a1, au, ar' af}

of the arcs of B.

C4) The range of O(a.) is

R(O(a)) • Ut R (O{a)) /a E ~a!
C5) If the input arc of B is labelled with a predicate, the same

predicate must label arc a.

D. The complex bigraph B2 (or the complex structure s2), obtained
from a complex bigraph B1 (or a complex structure s1) by sub­
stituting in B1 (S1) any elementary bigraph with its equivalent
arc, is equivalent to B1 (S1).

E. Each complex bigraph or complex structure is equivalent to it­
self (reflexivity).

F. If a1 (or s1J is equivalent to B2 {or s2), then B2 (s 2) is e­
quivalent to B1 (S1) (symmetry).

G. If B (or s1) is equivalent to B2 (S 2) and a2 (S 2) is equi­
valen1 to B3 (S3), then B1 (S1) is eq~ivalent to s3 (S3) (tral!_
sitivity).

Notice that, Owing to cond'itions E, F, G, our notion of equiva­
lence defines a relation of equivalence in the usual sense.

4. Determinacy of co~plex bigraphs and structures

Oet~rminacy of complex bigraphs and structures can be easily
verified, by applying the theorems presented in this subsection.
Four distinct cases are to be considered separately.

A. Complex bigraph of type B

A complex bigraph wnich can be thought of as an elementary bi­
graph of type B in which a set ll..·{A1, B2, ••• Jof complex bi­
graphs have been substituted for a set of arcs w1 ll be ca 11 ed "a
complex bigraph of type 8". By definition, by substituting again
equivalent arcs for the component complex bigraphs we can obtain
an elementary bigraph of type B, which will be called the "eqJi­
valent elementary bigraph of the assigned complex bigraph with
respect to];'.

The rel ati onshi p between the two equivalent bi grap~s is i 11 u­
strated by the fo 11 owing theorem.

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

Theorem 1

A complex bigraph of type B is determined if, and only if, its
equivalent elementary bi graph with respect to the set Jl.. of compo­
nent bigraphs is determined, and each element of JL is determined.

B. Complex bigraph of type C

A complex \)igraph which can 'ie thought of as an elementary bi­
graph of type C in which a set Jl.. "1,B 1, B2, ••• , B9s of complex bi
graphs have been substituted for the set t a1, a1, •.. , a } of in­
ternal arcs will be called 11 a complex bigraph of type C"~

By definition, by substituting again an equivalent arc for each
B.E .!l.. we obtain an elementary bi graph of type C, which will be
dlled the "equivalent elementary bigraph of the assigned complex
bi graph with respect to]_'1•

.ill or em 2

A complex bigraph of type C is determined if, and only if, each
element B . ..:: B is determined.

i"'-

c. Complex bigraph of type D

A complex bigraph which can be thought of as an elementary bigraph
of type Din which the complex bigraph B and B have been substi­
tuted for the internal arcs a and a , w911 be talled a "complex bi
graph of type 011 • By definit9on, byrsubstituting the equivalent -
arcs a and a for B and 8, respectively, we obtain an elementary
bigrapR of ty5e 0, w~ich will be called "the equivalent elementary
bigraph 11 of the assigned complex bigraph with respect to{ B9 , BrJ·

Theorem 3

A complex bigraph of type 0 is determined if, and only if, both
B and U are deter,,ined. g ('

o. ~.JJJ_eLLVl'.Ll:.!!r..?.
By dsfi nit'r on, a cornp·i ex struct,Jre can be tra11sformed i 1to an ,,_

lernsntary structure by suostituting a set Jl. 0 !81, B2, ... J of co.!!_.
p1ex bigraphs with be set of the corresponding eq1Ji'1alent arcs.
Such e'iemenfary sfructure will be called "the equivalent eiementary
structure of the assigned complex structure with respect to .\.[11 •

Theo1-ern 1 extends to this case aco follows.

TneoreJ!L-4..

A complex structure is dehrmined if, and ri;lly if, its equivalen1
elernenbry structure is deter'mined, and each BI<. JL is d8terminild.

Tne theorems pr·esetded in The preceding subs,ection suggest an ~j_
qorithm 1rnich md 1->:es it possib~e to ea'.;ily verify \.~hether or n.Jt a
given (complex) structure (w bigrapn) is dehmined. An outline of
this a'lgorithm 's presented bebw.

A. The assigrrnd is fransformed i.1to a complex structure by
simph rules. examp.le, if more tha1 one arc is entering a not
free node, a dummy arc (with empty domain and range) and a dummy
node are introduced.

B. The complex structure is transformed into an equivalent elemen­
tary structure with respect to a suitable set of bigraphs Jl..,

C, Each complex bigraph B i:::l is transformed in10 its eqrJivalent
elementary bigra 0h witn respect to a new subset of complex bigt'aphs.
The procedu 0 e is iterabd until simp.re arcs or elementa1-y bigraphs
are obtained.

0., fhe preceding decompositions at'e used for determining the equi­
valent a:-c of each '>Jmplsx bigraph above det,ermined. It is so P02..

sible to apply tne lneorems stated in the preceding subsection +
for verifying the dderminacy of each component bigr'aph and 1:ne as­
si,ined complex structure.

185

DJ AshcroH, E. aid Z.
Pa-ell el Prog1-ams.
(1971) .

, Formalization of Pronerti es of
ne Intelligence, vol. 5, N,ew York

. [2J Holt, A. W. e Commoner, F ., Events and Conditions - Record
of the Project ~AC ConL on Concurren1 Systems a1d Parallel
Computation ACM, New York (1974), 3-52.

L3J KaM, G., A Preliminary Theory for Par-all el Programs - Lab.2..
ratoi re de recerche en i nformati que et automati que - Rapport
de recherche n° 6 (1973).

L4-J Karp, R. M., and Miller, R. E., Parailel Program Schemata -
J. Corn;iut. Syst. Sci. 3, 2 (196j), 147-195.

f5J Keller, R. M., Parallel Prograrn Schemata and Maximal Paral­
lelism, J. ACM 20, 3 (1G7l),5H-537; 4 (1973), 696-710 •

LBJ Petri, C.A., Communication Witn Adtomata, Supplement 1 tu
Technical Report RADC-TR-65-377, Vol. 1, Griffiss Air For­
ce Base, i~ew York (1966).

Fig. 1 - An exarnp.le of gra~h.

f.(nl) ={p,l,p2, ••• ,pf1

Fig. 3 - Exar110.le of eiernentary
big"aph of type C.

Fig. 2 - Examp.le of eleme_ri_
tary bi gra"h of type B.

f.(nzl ·{ P1' Pz\
Fig. 4 - Exarnp.le of elementary
bigraph of type D.

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

FORTRA.~ EXIENSION DESIGN CONCEPTS
FOR ASSOCIATIVE PROCESSING

Edward B. Allen, Arvid G. Larson

Applied Research Group
PRC Information Sciences Company

7600 Old Springhouse Road, McLean, Virginia 22101

Summary

This paper presents some high-level lan­
guage design concepts [2] - [4] and applies them
to a FORTRAN extension for a generalized associa­
tive processor (AP) such as is described in [4].
Reference [l] is a more detailed presentation.

While it is not necessary that the high­
level programmer have a detailed understanding of
hardware operation, it is necessary that the pro­
grammer's machine concept be adequately defined.
We employ the following concepts: the AP is a
"slave" to a "master" sequential processor (SP).
The content addressable memory (CAM) of the AP is
divided into modular arrays. The CAM includes a
logical "response" vector indicating which array
elements have the desired content. Other AP
ntm1erical/logical operations are functionally
similar ·to those of the SP host.

The functional requirements of a language
must be defined in terms of the computational
capabilities which it must support. Our FORTRAN
extension exploits AP capabilities in parallel
numerical calculation, manipulation of logical
arrays, and searches of a data base.

Process control and functional control con­
cepts must also be defined, the former stemming
from the programmer's machine concept, the latter
following from the required computation capa­
bilities. Finally, a syntax must be defined;
here the language designer should choose necessary
semiotics by considering "What is natural for the
programmer?" We favor AP language designs based
on extension of existing languages, where
"natural for the programmer" is defined as the
base language programming conventions.

Extension of an existing language has
several advantages (1) The programmer need learn
relatively few new concepts. (2) Applications
which exploit the SP and AP in the same system
can utilize the same basic language in both proc­
essors with minimal programmer concern for hard­
ware interfaces. (3) Development costs are
likely to be less, since implementation can be
based on existing compiler and ancilliary soft­
ware.

In the area of process control, our exten­
sion design adapts FORTRAN subroutine concepts to
control subprograms executing in the SP and AP;
the AP subprogram is a subroutine of the SP main
program. Subroutine arguments can be used to in­
voke the transfer of data between SP memory and

186

CAM. Since AP computational efficiency is high­
ly dependent on the layout of variables in CAM,
the extension requires the programmer to explic­
itly assign variables to CAM locations.

Functional control extensions are illus­
trated by several new statements. A PARALLEL
statement, modeled on a DO, defines a range of
lines where statements with an embedded index i
are executed for all values of i in parallel.
Thus, parallel execution of the same statement
on different array elements is explicitly con­
trolled by the programmer. An IF statement
within the range can include an embedded i in
the logical condition to indicate a test per­
formed in parallel for all values of i. The
THEN clause will be executed only for .TRUE.
values of i; subsequently the ELSE clause is
executed only for .FALSE. values of i.

A "FIND arrayname, (logical expression)"
statement sets bits of the CAM "responder" ac­
cording to the value of the logical expression
for each element of "arrayname", where "array­
name" is embedded in the logical expression.
This in effect finds elements of "arrayname"
which satisfy the logical expression. Other
high-level operations are also defined, such as
".ANY. (logical expression) " and ".ALL.
(logical expression)" which return a single
logical value, where an "arrayname" is embedded
in the logical expression, and such as "ROTATE"
and "SHIFT" of arrays.

References

[l] E.B. Allen, and A.G. Larson, A FORTRAN Ex­
tension for Associative Processing, Techni­
cal Report D-1875, PRC Information Sciences
Company, McLean, Va., (June 1975).

[2] C.R. DeFiore, A.A. Vito, and L. Baner,
"Toward the Development of a Higher Order
Language for RADCAP", Proc. Sagamore Com­
puter Conf. (August 1972), pp. 99-112.

[3] W.W. patterson, "Some Thoughts on Associa­
tive Processing Languages", National Com­
puter Conference, (May 1974), pp. 23-26.

[4] H.K. Resnick, and A.G. Larson, "A COBOL
Extension for Associative Array Processors",
Proc. Conf. on Programming Languages
and Compilers for Parallel and Vector
Machines, pub. as SIGPLAN Notices 10, 3,
(March 1975), pp. 54-61.

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

PARALLEL EXECUTION ON ARRAY AND VECTOR COMPUTERS

Leslie Lamport
Massachusetts Computer Associates, Inc.

Wakefield, Massachusetts 01880

Abstract -- The DO SIM loop was intro­
duced as a natural way of expressing parallel
execution on an array or vector computer. How­
ever, it pres en ts implementation problems for an
array computer with fewer processors than the
number of elements in the index set, for vector
computers, and for ordinary sequential computers.
A DO SYNC loop is defined to be a special type of
DO SIM loop suitable for execution on a single
instruction stream array computer, on certain
types of single pipe vector computers, and on se­
quential computers. A compiler for such a compu­
ter may have to rewrite a DO SIM loop as one or
more DO SYNC loops. A condition is given for
deciding if a DO SIM loop is also a DO SYNC
loop. It shows that the DO SIM loops obtained
from sequential DO loops by previous automatic
translation techniques are actually DO SYNC
loops.

The problem of implementing a DO SIM
loop on more complicated machines, such as mul­
tiple pipe vector computers, is also considered.
A condition is given for detem1ining if an imple­
mentation is correct, It can be used by the com­
piler in generating code for a DO SIM loop.

Introduction

Several parallel arr:i.y and vector compu­
ters have appeared, including the Illiac IV, the
CDC Star-100, and the Texas Instruments ASC.
These computers require some means of expressing
parallel execution in a high level programming
language. One method is with the DO SIM loop,
defined below. It is essentially equivalent to
several other proposed constructions. This paper
discusses the general problem of executing a DO
SIM loop on an array or pipelined vector computer.
The results are useful in designing a compiler for
such a computer.

A special type of DO SIM loop called a
DO SYNC loop is introduced. For execution on a
single instruction stream arr:i.y computer, the
compiler may have to write a DO SIM loop as
several DO SYNC loops. A condition is given to
determine if a DO SIM loop is also a DO SYNC
loop, It is shown that the DO SIM loops pro­
duced by the coordinate method of [1, 2] are
actually DO SYNC loops,

More general types of parallel computers
are also considered, including multiple pipe vec­
tor computers. A general condition is given to
determine if an implementation of a DO SIM loop
on such a computer is correct,

Even when a program is written for a paral­
lel computer, it will sometimes be desirable to
execute it on a sequential computer. It is shown
that executing a DO SIM loop on an ordinary se­
quential computer is essentially the same problem
as executing it on a single instruction stream

187

array computer,

The DO SIM Loop

The DO SIM loop was defined in [1-3] •
Three examples are given in Figure 1.

(A) DO 1 SIM FOR ALL I e [l, ... , 256}
A(I) = A(I) + B(I)

1 CONTINUE

(B) DO 1 SIM FOR ALL I e [l, ... , 256}
A(I) = A(I + 1) + B(I + 1)

1 CONTINUE

(C) DO 1 SIM FOR ALL Ie [1, ,,,, 256}
A(I + 1) = A(I) + B(I)
CONTINUE

Figure 1

(In [3], the word "SIM" is omitted, and the set
is specified by a boolean array expression.)
Loop C, for example, has the following effect.
For each i = 1, , • , , 256: the new value of
A(i+l) is set equal to B(i) plus the old value of
A(i) • Loop C might also be expressed in the fol­
lowing different notation.

loop.

(1)

* +- [1, ... ,256}

A(*+ 1) +- A(*) + B(*)

In general, we consider the following

1 k DO a SIM FOR ALL (I , ••• , I) e g

loop body

a. CONTINUE.

where g is a subset of the set ~k of all k­
tuples of integers, Loop (1) has the following

meaning, To each element (i 1 , • , , , ik) e ~ ,
assign a separate processor and have it set

I1 = i 1 , , , , , Ik = ik , All the processors then
execute the loop body simultaneously, operating
in lock step. E.g., in the loops of Figure 1, all
processors first perform the addition, then they
all perform the store.

In practise, the nature of the computer
design will place certain restrictions on the form
of ~ and on what may appear in the loop body,
More is said about this below,

In [1], we also defined a DO CONC loop.
It is similar to the DO SIM loop, except that the
individual processors are assumed to operate
asynchronously, completely independent of one
another. Loop A is actually a DO CONC loop,
since different executions of the loop body all
reference different data. However, Loops B and
C are not DO CONC loops.

The DO SIM construction is a natural

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

means of expressing parallelism for an array com­
puter. It seems easiest to think in terms of this
type of parallelism. Although it is called a
"loop", the body is actually executed just once
simultaneously for all values of the index vari-'
ables. However, it presents one major implemen­
tation problem. Suppose we want to execute the
loops of Figure 1 on an array computer with only
64 separate processors. We would like to re­
place the DO SIM I statements with the following:

DO 1 J = 0 I 3

DO 1 SIM FOR ALL IE: [1 +J*64, .•• I 64+J*64} .

This form of replacement is called strip mining,
Loops A and B can be strip mined in this way, but
loop C cannot. E.g. , strip mining loop C would
yield a loop in which the assignment of
A(64) + B(64) to A(65) would use the new value
of A(64) instead of the old value.

(Loop C can actually be strip mined in the
reverse direction, using a "DO 1 J = 3, O, -1"
loop. However, it is easy to construct DO SIM
loops which cannot be strip mined in either direc­
tion. For now, we ignore the possibility of re­
verse strip mining.)

Strip mining has two advantages: (1) it
minimizes loop initialization costs, and (2) it
minimizes the amount of temporary storage needed.
For example, loop C would actually be executed as
follows:

DO 11 J = 0 I 3

DO 11 SIM FOR ALL IE: [1+64*J I ••• , 64+64*J}

llTEMP(I) = A(I) + B(I)

DO 1 J = 0 I 3

DO 1 SIM FOR ALL I e [1 +64 *J, ••• , 64+64 *J}

1 A(I + 1) = TEMP(I)

This involves twice the loop setup time and four
times the temporary storage space as the strip
mined version of loops A and B. Hence, we want
to strip mine a DO SIM loop whenever possible.

It is clear that any DO CONC loop can be
strip mined, since it can be executed by com­
pletely unsynchronized processors. Loop B indi­
cates that there is a class of loops which are not
DO CONC loops but which can still be strip
mined, We will define these to be DO SYNC
loops.

The DO SYNC Loop

. Before defining the DO SYNC loop, we
introduce some terminology. An occurrence of a
variable in a program is said to be a generation if
it causes the assignment of a new value to the
variable, otherwise it is called a use. The exe­
cution of a use consists of fetching the indicated
value from memory. The execution of a genera ti on
consists of storing the value into memory. Let f
and g be two variable occurrences in a loop
body. We say that f precedes g if for a single
execution of the loop body, f may be executed
before g is. (If there is a loop inside the loop
body, then it is possible for f and g to each
precede the other.)

A DO SYNC loop has the following form,

188

(2) DO O/_ SYNC FOR ALL (I 1
I ••• I Ik) E: ~

loop body

:x CONTINUE

where ~ is now assumed to be an ordered subset

of ~k • It is defined in a similar manner to loop
(1), except that the individual processors are not
assumed to operate in lock step. Instead, they
are merely assumed to satisfy the following syn­
chronization condition. Let f and g be any two
variable occurrences in the loop body such that f
precedes g , and let P, Q e g with P < Q •
Then the processor assigned to P must execute f
before the processor assigned to Q executes g •

Loop B can be executed as a DO SYNC
loop. For example, the above restriction implies
that the processor with I= 65 cannot assign a
new value to A(65) before the processor with
I = 64 fetches the old value to compute
A(65) + B(65) • 0Ne are assuming here that we
use the usual ordering on the set of integers.)

Returning to the general loop (2), suppose
g = ~ 1 1 J • · · lj ~n, and for each i = 1, ••• , n-1

and all P e ~i , Q e gi+l we have P < Q • Then

the loop (2) is equivalent to the following:

DO a J = 1, N

DO a SIM FOR ALL (I1 , ••• , h e gJ

loop body

CONTINUE

In other words, a DO SYNC loop can always be
strip mined.

We do not propose that the DO SYNC loop
be adopted for writing parallel programs. Rather
it provides a useful semantic concept for the co~­
piler. The programmer should write DO SIM
loops. The compiler for an array computer must
translate them to DO SYNC loops if strip mining is
necessary. For loops A and B , the compiler
can merely replace the DO SIM by a DO SYNC.
Loop C must be rewritten as follows:

DO 11 SYN c FOR ALL I € [1 I ••• I 2 5 6 }

11 TEMP(I) = A(I) + B(I)

DO 1 SYNC FOR ALL I e [1, ••• , 256}

A(I+l) =TEMP(!)

This is all quite obvious for the simple
one-dimensional loops of Figure 1. However, it
becomes more subtle for higher dimensional loops
such as the following.

DO 1 SIM FOR ALL (I, J) e g

A (I + l , J - 1) = A (I I J) + B (I I J)

A general rule for deciding if a DO SIM may be
replaced by a DO SYNC is given below. It has an
important corollary. A technique for translating
sequential DO loops into DO SIM loops, called
the coordinate method, was described in [1] and
[2] • The general rule shows that the coordinate
method actually produces DO SYNC loops.

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

Sequential Computers

It may be desirable to compile DO SIM
loops for execution on a sequential computer.
For example, an array or vector computer will
usually be more expensive than a sequential com­
puter, so it might be better to debug a program on
a sequential computer before running it on a more
powerful parallel computer.

A sequential computer can simply be
thought of as an array computer with just one
processor. Hence, the compiler must rewrite the
DO SIM loop as one or more DO SYNC loops.
The DO SYNC loops can then be executed sequen­
tially like ordinary DO loops.

Vector Computers

To the user, a pipelined vector computer
like the Star-100 or the ASC appears similar to an
array computer. The DO SIM loop is a reasonable
way of expressing vector operations for such a
computer. However, implementing a DO SIM loop
on a vector computer is a more general problem
than implementing it on an array computer.

The execution of one of the loops of Figure
1 on a pipelined vector computer is indicated
schematically in Figure 2. The buffers, arithmetic
unit and result register form a ~. Calculation
of several different sums would actually be taking
place concurrently within the pipe. However, the
final results are produced one at a time as shown.

MEMORY

Buffer .---.z......--, ____ ..___Buffer

A(i+3) B(i+3)

A(i+2) B(i+2)

A(i+l) B(i+l)

A(i) + B(i)

Figure 2

Loops A and B can be executed as shown
in Figure 2 with no problem. Loop C can also be
executed in this way if the pipe never became
empty - i.e., if there is always some value in the
left hand buffer or in the result register. How­
ever, if the flow of new arguments is stopped long
enough for the pipe to empty itself by storing re­
sults in memory, perhaps by an external interrupt,
then an error will occur.

A vector computer may contain several
separate pipes. These might be synchronized
with one another in some fashion, or might oper­
ate asynchronously. To see the problems which
this raises, consider the following example.

189

DO 2 SIM FOR ALL I e; [i : 1 :S. i :S. 256}

C(I) = A(I) + B(I)

2 A(I + 1) = D(I)**2

A two pipe computer could execute the two state­
ments concurrently -- provided the two pipes are
properly synchronized so a value generated by
statement 2 is not stored in memory before its
previous value is used in statement 1.

We can also envision an array computer
capable of concurrent execution of several differ­
ent array operations. The problem of executing a
DO SIM loop on such a computer is similar to
that of executing it on a multiple pipe vector com­
puter.

We will formulate the problem of correctly
implementing a DO SIM loop in a sufficiently
general way to be applicable to these types of
computers. A validity condition will be given
which determines if an implementation is correct,
It can be used by the compiler to generate the best
code possible.

Assumptions

Efficient parallel execution on an array or
vector computer is possible only under certain re­
strictions on the way operands are stored in
memory. Execution of loop A with the Star-100
vector operations requires that each element A(i)
be stored in the memory location adjacent to
A(i+l) • For the Illiac IV, A(i) and A(i+l) must
be stored in the memories of adjacent processors,
in some regular fashion. E.g., A{j) might be
stored in memory location 2j of processor number
j mod 64.

Because of these restrictions, we may
make certain assumptions about the specification
and execution of a DO SIM loop. Define a rec-

tangular set in :.rlk to be a set of the form -
1 1 k k

[i, , u] x • • • x [;, , u] , where
i i .

[;,, u] =(x :;,i:S. X:S. u1 }. We assume that
the set <;1, of loop (1) is of the form
g = (P e; R : ••• } , for some rectangular set R •
We further assume that the variable occurrences
in the loop are executed for all the elements of
R , but the effects of the execution are inhibited
for the elements not in Q(• For example, con-
sider the loop

DO 1 SIM FOR ALL I e: [i e: [l,256] : C(i) f 0}

1 A(I) = B(I) •

We assume that the use B(I) and the generation
A(I) are executed 256 times, except that the
value of A(i) is not actually stored in memory if
C(i) = 0 •

This is an accurate description of the way
execution actually takes place in an array or vec­
tor computer. For an empty index set 3 , an
array computer might simply skip over the loop
body. Hence, some occurrence executions might
actually be skipped in a strip mined execution of
the loop, However, we may pretend that these
executions take place.

Our problem arises from the fact that in­
stead of being simultaneous, the different

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

executions of an occurrence are actually done in
some order. This is indicated by an ordering re­
lation < on the set R • We assume that the
ordering of R can be expressed with the aid of a

linear transformation a : zk -+ z which is a 1-1
mapping from R onto an interval [i,, u] , such
that P < Q if and only if o(P) < o(Q) • The
execution of an occurrence for P is assumed to
precede its execution for Q if and only if P < Q •
For an array computer, in which some executions
actually do occur simultaneously, we can pretend
that they take place in very rapid succession in
the indicated order.

For example, suppose k = 3 and
R = [1, L] x [1, M] x [1, N] • Then the

3 usual lexicographical ordering on Z is obtained
if a is defined by a (x, y, z) = MNx + Ny + z •

For the loops of Figure 1, we can let a
be either the identity mapping or else the mapping
a (i) = -i • They represent the two ways of going
through the index set: forwards and backwards.

The Validity Condition

Let P and Q be two elements of R •
For a single occurrence f , we know that the ex­
ecution of f for P precedes its execution for
Q if and only if o(Q-P)>O. In that case, the

execution for Q is the o(Q-P)th one after the
execution for P •

Now consider two distinct occurrences f
and g such that f precedes g • To determine
the correctness of the implementation of a DO
SIM loop, we need to consider the following
question: does the execution of f for P pre­
cede the execution of g for Q ? Since f pre­
cedes g , the architecture of array and vector
computers implies that the answer w""!ll be "yes"
if a(Q-P) is large enough. Let us define the
number f#g to be the smallest number such that
.iJ a (Q-P) > f#g then the execution of f for P
must precede the execution of g for Q • In
other words, we have

f#g = 1 +maximum [a(Q-P) : execution of
g for Q precedes the execution
of f for P , for some P, Q e R } ,

where the maximum of the empty set is assumed
to be -oo •

The value of f#g depends upon the im­
plementation. For a single instruction stream
arr'ly computer, f#g always equals zero if the
loop is strip mined, and -oo if it is not. For the
vector computer of Figure 2, suppose f and g
are the use and generation of A, respectively.
Let r be the minimum number of values which
can be in a buffer and in the result register during
execution of the vector operation -- neglecting
the initial filling and the final emptying of the
pipe. Then f#g = -r •

If f and g are occurrences which are
executed by completely asynchronous separate
pipes in a multiple pipe vector computer, then we
cannot answer the question of whether an execu­
tion of f will precede an execution of g •
Hence, we must assume that f#g ="' •

The assumption about the synchronization

190

of processors in a DO SYNC loop is equivalent to
the assumption that for every pair of occurrences
f, g such that f precedes g : f#g must be< O •

Let f I g be two occurrences of the same
variable. As in [2] , we define « f, g » to be

the set of all elements X e zk for which there is

an element P e ~k such that P and P + X are
elements of ~ and the executions of f for P
and of g for P + X reference the same array
element. If f is the use and g the generation
of A in loop C, tnen « f, g » = [-1} .

The set « f, g » may only be known at
run time. We assume that the compiler constructs
a set < f, g > which contains « f, g » . Note
that for a DO SIM loop to be legal, we must have
< g, g > = (0, ••• , O) for every generation g •

For the correct execution of a DO SIM
loop, it is necessary to maintain the specified
ordering of references to any single array element
when one of the references is by a generation.
E.g. , in loop C, it is necessary to guarantee
that the reference to any element A(i) by the use
A(I) precedes the reference to that element by
the generation A(I+l) •

We know that the execution of an occur-

rence for the element P+X e R is the a (X) th one
after the execution for P • (The linearity of a
is used here.) It is easy to verify that the fol­
lowing condition is therefore sufficient to insure
the correct execution of a DO SIM loop,

(VC) For every pair of occurrences
f, g of a single variable, at least
one of which is a generation, such
that f precedes g in the loop body,
and for every element X e < f, g > :
we must have a (X)..? f#g •

To apply condition (VC) to DO SYNC
loops, we simply replace f#g by zero and recall
that a(X)..? 0 if and only if X..? 0 • This yields
the following condition for a DO SIM loop to be a
DO SYNC loop.

(VS) For every pair of occurrences
f, g of a single variable, at least
one of which is a generation, such
that f precedes g in the loop body,
we must have X > 0 for all
Xe<f,g>. -

For the DO SIM loops constructed by the
coordinate method of [1] , we can have
X e < f, g > and X < (0, ••• , 0) if and only if
g precedes f , where > denotes the lexico­
graphical ordering of k-tuples. Those DO SIM
loops therefore satisfy (VS). Hence, the coor­
dinate method of [1] produces DO SYNC loops.
(Note that the set < f, g > we have been using
here is calculated just for the DO SIM loop. It

1 .k 1 k equals [(i I ... , l) :J (X) = (0, ... I 0 Ii I ... Ii) for
some X e < f, g > } , where J and the latter
< f, g > are defined as in [1] •)

The general coordinate method of [2] is
somewhat more complicated, since it can create
a DO SIM loop having DO loops inside its loop
body. The definition of the DO SYNC loop can be
generalized to include such loops, and a similar

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

analysis shows that the general coordinate method
also produces DO SYNC loops. In particular,
those loops may be strip mined on an array com­
puter. For execution on a vector computer, it is
necessary to move the DO SIM loop inside any
inner DO loops, splitting it into several loops if
necessary. The resulting DO SIM loops will also
be DO SYNC loops.

Application of the Condition

Let us now consider the application of
rules (VC) and (VS) to the implementation of the
DO SIM loop (1). The relation < and the map­
ping o will be implied by the conventions of the
programming language, In IVTRAN [3] , for
example, o is determined by the allocation of
the boolean array which specifies ~ •

· There may be several possible choices
for o • On the Illiac IV, one can use both o
and -o , representing the possibility of forward
and backward strip mining, For the ASC there can
be several choices of CJ , some of which are more
efficient than others. They represent the various
ways of using the vector parameter registers to
step through an array. For a sequential computer,
a choice of CJ represents a way of stepping
through the set R with a nest of DO loops.

For a single instruction stream array com -
puter (or a sequential computer), if the computer
has fewer processors than there are elements in
R , then the compiler will try to write (1) as a
DO SYNC loop. This can be done if (VS) is sat­
isfied by one of the possible choices of the rela­
tion < • If not, then (1) must be rewritten as a
sequence of DO SYNC loops, each of which
satisfies (VS). Note that if f precedes g in the
loop body and X < 0 for some X e: < f, g > , then
f and g may not be placed inside the same for­
ward strip mined loop. However, if X < 0 for
all Xe: < f, g > , then f and g can be placed
inside the same backward strip mined loop. (I.e.,
we can replace < by the inverse ordering.)

Designing a general algorithm to produce
an optimal splitting of the loop is a non-trivial
task. However, it should be possible to find a
simple procedure that is adequate. For example,
it is easy to do if one does not split individual
statements or change the statement order.

For a pipelined vector computer, (VC) pro­
vides a legality condition which must be satisfied
by the compiled code. For each pair of occur­
rences, f, g, (VC) determines the maximum per­
missable value of f#g • Making f#g small
enough may require inserting some delay between
the execution of f and of g • This delay may be
effected by introducing temporary storage. E.g.,
for the one pipe computer of Figure 2, we could
implement loop C as follows:

DO 1 SIM FOR ALL I e: [1, ... , 256}

TEMP (I) = A (I) + B (I)

1 A(I + 1) = TEMP(I) •

Note that a violation of (VC) by f, g when g is
a use can only happen in a multiple pipe computer.

191

Conclusion

We have discussed the problem of com­
piling a DO SIM loop. For a single instruction
stream array computer, a sequential computer, or
a vector computer with a single pipe which can be
emptied by an interrupt, the compiler needs to
generate DO SYNC loops. Condition (VS) pro­
vides a sufficient condition for a DO SIM loop to
be a valid DO SYNC loop, It implies that the co­
ordinate method for the parallel execution of se­
quential DO loops actually produces DO SYNC
loops. For a more general multiple instruction
stream array computer or multiple pipe vector
computer, the compiler must use condition (VC) to
determine if an implementation of a DO SIM loop
is correct.

References

[1] L. Lamport, The Parallel Execution of DO
Loops. Coml!l.L.ACM lZ., 2 (February,
19 7 4).

[2] L. Lamport, The Coordinate Method for
the Parallel Execution of DO Loops.
Proceedings of the 1973 Sagamore Compu­
ter Conference on Parallel Processing,
Syracuse University, August 22-23, 1973,
IEEE, New York, 1973, p. 1-12,

[3] R, Millstein, Control Structures in Illiac
IV FORTRAN. Comm. ACM 16, 10
(October, 1973), pp. 621-627.

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

FORMALIZING CODE GENERATION IN THE MULTI MINI COMPUTER COMPILERt

C.V. Ramamoorthy and P. Jahanian
Computer Science Division

··Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory
University of California at Berkeley

Berkeley, California 94720

Abstract -- This paper provides a formalism
for generating the appropriate code for a number
of different mini-computers, when provided with a
single higher level language together with the
parameters of the desired target machine. The
multi-mini computer compiler isolates the genera­
tion of the object code from the syntax and seman­
tic analyses of the source language by providing a
machine independent intermediate language. With
this intermediate language, the compiler can pro­
duce code in the target machine assembly language
by analyzing information provided by the syntacti­
cal entity called the machine specification lan­
guage. Specification language instructions, con­
taining the target machine description, are first
preprocessed by the compiler, and internal tables
are set up. Then, the automatic code generator,
an integral part of the compiler, can produce the
object code by following the information contained
in these tables.

Introduction

The basic objective in the development of the
.f1ulti .f1ini fomputer fompiler (MMCC) is to directly
translate a high level language to a number of
target machines (mini computers). This objective
implies that the logic involved in the code gener­
ation module of the compiler should be formalized.
Formalization is done by providing the target
machine description in a notation which is mathe­
matically sound and is processable by the computer.
The code generation module (called the Meta Assem­
bler) processes the formal description of the tar­
get machine and then adapts itself to the new en­
vironment for the generation of object code.

Formalization of code generation is assisted
by two specification languages:

1. an intermediate language which is target
machine independent and describes the operations
of the high level language,

2. a machine specification language which
describes the target machine to the MMCC.

The intermediate language (called the Meta
.&ssembly !:_anguage (MAL)) is an intermediate-assem­
bly language between the high level language and
the machine language. This language is machine
independent but "closer" to the machine language
than the high level language.

The machine specification language is used by
the Target Machine Specifier to clearly define
those features of his machine which are common and
can be formalized. Those target machine
tResearch supported by National Science Foundation
Grant DCR74-21248.

192

characteristics which represent the operational
idiosyncracies must be handled by specially
written routines.

In the following sections, a brief overview
of the MMCC is given. Emphasis will be placed on
the discussion of the specification language and
its use in describing mini computers. Finally, an
explanation is given in how code can be generated
from the description provided by the specification
language.

Design Technique for the MMCC-Universal Compiler
The basic conceptual model of MMCC is shown

in Fig. 1. Inputs are of two types. One is the
source code input and the other, the parametric
input. The source input is software for some
application written in a high level language; the
parametric input is the set of target machine cha­
racteristics. The object output is the corres­
ponding assembly code for the proper target
machine. In accordance with the parametric
description, MMCC behaves as a compiler whose
function is to translate source programs written
in a high level language into the corresponding
assembly code for a specific target machine.

The above model may be implemented by the
universal compiler approach. This is illustrated
in Fig. 2. The universal compiler accepts source
programs as input and translates them into the
target machine assembly language code using tables
extracted from the parametric input. The overall
implementation scheme of a universal compiler is
depicted in Fig. 3. The two major internal com­
ponents of the universal compiler are a table­
driven compiler and a meta assembler.

The table-driven compiler is responsible for
converting the input source language program into
language dependent constructs as indicated by the
formal language description. From these language
constructs, the semantic processor generates cor­
responding code in a lower level language, the
Meta Assembly Language.

The output of this table-driven compiler,
the meta assembly program, is the input to the
next component, the meta assembler, which gener­
ates the target machine assembly program. A com­
piler-compiler [l] could also be optionally em­
ployed to help automatic generation of the table­
driven compiler, which is a step toward high level
language independence. The above techniques are
fairly well known and will not be pursued any
further.

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

Meta Assembly Language

The purpose of MAL is to obtain effective
adaptation for a variety of machines. The trans­
lation from source language to the Meta Assembly
Language eliminates many of the past ad hoc
approaches used in the direct translation process
into different machine assembly languages. Conse­
quently, efforts required to achieve machine inde­
pendence can be minimized.

The Meta Assembly Language is not a universal
intermediate language. Rather, it is designed to
include only the features found in various mini­
computers while maintaining generality with respect
to machine assembly languages. Its design has
been influenced by the features found in today's
most popular minicomputers.

On the Uniform Features of Minicomputers
Supported by MMCC

The non-universality of the intermediate lan­
guage brings up the question of what features the
minicomputers should have in order to qualify as
"target machines" for MMCC. In this section, the
findings from a study of uniform characteristics of
several of the most popular minicomputers [4,5,6]
will be summarized. The purpose of this study is
the fa 11 owing:

l. To classify common minicomputer features
which the Meta Assembler will support as object or
target machines.

2. To single out those idiosyncrasies which
need special attention at the source or Meta Assem­
bly language level.

A qualified target machine is one that essen­
tially fits the mold of traditional second and
third (and many of the fourth) generation minicom­
puter designs, i.e. serial processing of instruc­
tions that reference registers, memory and imme­
diate operands. Capabilities of the target machine
should include multiple registers; direct, indi­
rect, indexed, self-relative addressing; and the
full complement of arithmetic, logical, comparison,
test and branch instructions.

Each minicomputer, in addition to the above
general features, should possess certain capabili­
ties in order to overcome restrictions imposed on
it by hardware limitations. These include page
addressing, implicit base addressing, relocatable
addressing, etc. Such features are made trans­
parent to the user of the machine through a power­
ful resident assembler which performs the neces­
sary transformation during assembly time. MMCC
ignores these peculiar features and deals only
with the symbolic assembly language, generating
the appropriate symbolic forms of opcode and oper­
ands which are then recognized and processed by
the target machine's local assembler.

Meta Assembly Language Abstract Machine
In this section the abstract machine for the

Meta Assembly Language will be described. The
abstract architecture reflects the common features
of those minicomputers which qualify as target
machines. During code generation, the modules of

193

the abstract machine are mapped one by one onto
the minicomputer's corresponding hardware units
according to the description provided by the
Target Machine Specifier.

Organization
A basic block diagram of Meta Assembly Lan­

guage machines is shown in Fig. 4. The program
refers to two types of memories, temporary (T) and
main (M) memory. Temporary memory is used to hold
intermediate computational results. Operations
normally take place on the variables after they
are transferred to (T). During code generation,
(T) will in effect be mapped onto the target
machine's registers as well as on primary memory.
Storage allocation (registers and primary memory)
may be minimized by implementation of a suitable
algorithm based on global flow analysis of the
program.

Main memory (M) is used to hold program
declared variables. The length of this memory is
potentially unlimited and is directly addressable
using the variable's symbolic representation.
There is a direct mutual path between the memories
and the CPU, implying that the contents of main
storage are directly alterable by CPU instructions
without secondary reference to temporary storage.
This latter capability is included so that those
minicomputers which allow direct manipulation of
the information stored in their main storage may
be simulated.

CPU
The central processing unit in the MAL

abstract machine is capable of performing those
operations common to most minicomputers. Opera­
tions are performed on the data stored in tempo­
rary or main storage. Instructions have been
selected after careful consideration of the
instruction set of the three most common minicom­
puters, e.g. HP 2100, PDP-11 and Tig6QA [4,5,6].
These instructions are anticipated to be general
enough and representative of a large class of
minicomputers. Instructions have one of the fol­
lowing formats:

a) single-operand: [<LABEL>=]<opcode><operand>

example: INCR Tl
ALS T2 /*arithmetic left

shift *I
b) double-operand: [<LABEL>=]<opcode><operandl>,

<operand2>
example: ADI Tl,A /*integer addition

A+Tl +Tl */
MOVE T2,B /*transfer operation

B + T2 */
c) triple-operand: [<LABEL>=]<opcode><operandl>.

<operand2>,<label>

example: BEQ Bl ,82,L /*if Bl= B2 then
goto L */

Because of space limitations a more detailed
description of the language is omitted. The
operations include:

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

1. program control
2. conditional testing
3. arithmetic operations
4. logical operations
5. data transfer operations
6. input/output handling
7. subroutine linkage and their invocations
8. optional utilization of machine independent

features

Target Machine Description
The target machine description includes both

information concerning the hardware capabilities
and the details for interfacing with the appro­
priate resident programs (e.g. operating system
monitors, user's defined semantic routines, etc.).
Thus, the description includes both the processing
units and the system configuration to which the
CPU belongs. In other words, the description
should be sufficient to allow the meta assembler
to set up a mapping from meta assembly language to
the target machine assembly language. The target
machine description contains the following
features:

l. Programmable hardware resources, including
registers, memory, etc.

2. Relevant operational characteristics, includ­
ing word-length, data format, addressing mode, etc.

3. Instruction set with appropriate classifica­
tion.
The target machine description is input to the
meta assembler by means of a formalism called
Machine ~ecification !:_anguage (MSL). Describing
hardware units by a description language has been
used by others, among other things, for testing
the logic circuit and microprogram design [2].
These languages have been used mainly to describe
system components and the intercoi;i.nections between
them at a lower level than our intended applica­
tion. On the other hand MSL is basically a decla­
rative, non-procedural language designed to
describe hardware modules at the level of an
assembly language. It provides sufficient flexi­
bility for defining the target machines belonging
to a large class of architectures. The MSL syntax
is simple and corresponds to the normal sequence
needed to define the structure of a machine. In
the following paragraphs, those features of the
language pertaining to memory structure and CPU
description are explained. A complete BNF syntax
of the language for the definition of these two
components is included in Appendix A.

I. Target Machine Memory Structure Definition
The Target Machine Specifier defines the

structure of his machine's memory by providing the
following information:

l. program addressable storage units and their
size;

2. length (precision) of data if different from
size of storage units;

3. off-set of data from storage unit boundary,
if applicable.

194

Example: (memory structure definition for
HP 2100A)

BSTRUCT
WORD[O .. 15];

DWORD[0.,31]
ESTRUCT

BMAP
INT: WORD;
INT: DWORD;

CHAR: WORD[8 .. 15];
ADDRESS: WORD;
LOGICAL: WORD

EMAP

In the above example addressable storage units are
'WORD' (16 bits) and 'DWORD' (32 bits). Variables
of type integer (INT) can occupy either a single
word or double words, depending on precision
requirements. A character occupies the right most
eight bits of a word (bits 8 to 15). BSTRUCT/
ESTRUCT and BMAP/EMAP separate the definition
sequences into blocks with different identities,
thus, make them suitable for later processing.

II. Target Machine CPU Description
The description of the CPU includes register

definition, pathways between registers and primary
memory, and control.

1. Register Definition: The Target Mac~ine
Specifier defines the program addressable registers
of his machine by specifying their symbolic
address, length and the sets to which these regis­
ters belong. The definition of registers is an
important part of target machine descriptions and
is closely related to the semantic description of
the instruction set.

Example: (description of registers for
HP 2100A)

BREG
-- REG = (I A I : 16' I B I : 16 ' I E I : l)

BCLASS
---GPR = ('A','B');

Rl =('A');
R2 = (I A I);
R3 = (IE I)

EC LASS
---iiREL R2 =[<'A' :'B'>](FREE) EREL

BRPATH

EREG

~->- Rl ('LD' Rl ,GPR);
GPR->- R2('LD' R2,GPR)

ERPATH

In the above example, register set 'REG' is defined
to include the symbolic name of all program
addressable registers and their size. In the next
part, these registers are grouped under different
register sets, thus organizing the class set
{GPR,Rl,R2,R3}. Each of these register sets has
some semantic information attached to it. Some of
this information is implicit and emerges during
the definition of the instruction set (see descrip­
tion below) while other information is explicitly
attached to each register set in the BREL/EREL
part of the definition. In the above example,
semantic entity 'FREE' has been attached to

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

register set R2. This attachment implies that any
reference to an element of R2 (in this case only
register A) will 'FREE' its corresponding register;
the one indicated by the relation R2.

A register set R may carry with it the follow­
ing semantic information, implicitly or explicitly.

a. Only certain operations are allowed to per­
form on these registers.

b. Only operands with specified precisions can
occupy these registers.

c. Some arbitrary semantic information, de­
fined by the target machine specifier, are attached
to these registers.

Since the Target Machine Specifier has com­
plete freedom in classifying the registers accord­
ing to different semantic entities, he also has to
provide the semantic routines. Each routine is
invoked whenever a register belonging to its cor­
responding register set is referenced.

The Target Machine Specifier should also
define the transfer paths between different regis­
ter sets, if applicable. There exists a transfer
path from a register set Ri to Rj (R; + Rj) if and
only if there exists r· € R· such that ri • R· and
this transfer is semanticaily correct. In th~ above
example BRPATH/ERPATH defines the transfer paths
between GPR and each of Rl and R2. Note that
'B' € GPR but 'B' • Rl,R2. Transfer paths between
R3 and other register sets are not meaningful and
therefore they are not specified here. The for­
mal ism provided for register definition allows for
modularized development of semantic routines with
well defined interface specification with other
modules of the Meta Assembler.

2. Pathways to Primary Memory: In the pre­
vious section different register sets were defined.
In this part, the target machine specifier should
describe the permitted transfer path between
addressable storage units and registers of his
machine. This is a necessity since for LOAD opera­
tion, the selected register and storage unit
should match in size and type requirements.

Ex amp 1 e: (HP 2100)
BMREG
----WORD(INT,LOGICAL,CHAR,ADDRESS) + GPR;

DWORD(INT) + R2
EMREG
BPATH
-WR: ('LO' GPR,OP)('ST' GPR,OP);

Rl: ('LO' Rl,OP)('ST' Rl,OP);
R2: ('OLD' OP)('DST' OP)

EPATH

In the above example, any operand with word
precision would be loaded into a single register
('A' or 'B') while a double precision integer
would eventually occupy both registers. Note that
register sets 'GPR' and 'R2' have already been
declared. The BPATH/EPATH pair define the LOAD/
STORE instructions necessary for transferring the
operands from primary memory to the elements of
the register sets previously defined. For example,

195

operands with double word precision can be speci­
fied to occupy the double length register formed
by combining A and B. This process is implicit in
the semantic entity 'FREE' attached to R2.

3. Control: The flow of information (data
and instruction) between various submodules of the
computer system is controlled by the machine's
assembly instructions. Description of the target
machine's instruction set consists of two parts:

a. Definition of the target machine's
instruction sequencing;

b. Definition of the target machine's address­
ing modes.

For each Meta Assembly Instruction, the Target
Machine Specifier should define the equivalent
instruction(s) for his machine. This process can
be formalized using the state transition technique
discussed in [3].

At each instant of instruction execution, an
operand might be residing in a primary storage
location, a register, a sub-field of the machine's
instruction (immediate operand) or the operand
might be a temporary with no storage allocated to
it at all. These cases are indicated by letters
'S', 'R', '0' and 'N', respectively. Before object
code can be generated, the Meta Assemblers should
be in one of the per~itted states. This state
corresponds to the required run time physical loca­
tions of the operands in the target machine's
assembly instruction. Therefore, the Target
Machine Specifier should first specify the sequence
of state transitions needed to reach one of the
target machine's permitted states from any initial
input state. Then he should define the instruc­
tion(s) of his machine corresponding to the Meta
Assembly instruction.

Example: (HP 2100A)
'AND'~ SO+ RO(LOAD Rl, OPl);

SS+ RS(LOAD Rl, OPl);
SR+ RRJRS(LOAD Rl, OPl);
RR+ RS(STORE OP2);
RO+ NIL(TRAN Rl, OPl) ('AND' OP2)
RS+ NIL(TRAN Rl, OPl) ('AND' OP2)

In the above example, which is the definition of
an 'AND' operation for HP 2100, the input states
are (SO), (SS), (SR), (RR), (RO) and (RS) while
the permitted states are (RO) and (RS) only. Note
for example that to reach (RS) from (SR) the
sequence of transitions would be SR+ RR+ RS or
SR+ RS (in the case where loading of the first
operand might cause storing the second one back to
main memory). Function (TRAN Rl, OPl) would cause
the first operand (OPl) to be loaded in register
of class Rl (in this case 'A').

A similar formalism has been developed for
defining addressing modes for the target machine.
This uniform formalism for describing both the
instruction sequencing and the address mode makes
the code generation process simpler since the same
module can be used for both address translation
and code generation.

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

Example: (TI960A - definition for indexing)
$X =>SS+ SR(LOAD Rl, OP2);

RS+ SS(STORE OPl);
RR+ SR(STORE OPl);
SR+ i'!!.!:_(CONCAT OPl' OP2, I ,I')

Indexed operands in MAL are represented by
$X(A, IND) where A is the array name and IND is
the indexing operand. This operand is translated
into 'A, r, I' for the TI machine, where r is a
register name and I is the index designator. A
similar state transition formalism is used to
define direct, indirect and immediate addressing.

Automatic Code Generation
from Target Machine Description

The Meta Assembler has an Automatic Code
~enerator (ACG) built into it. -This module accepts
the description of a particular machine and trans­
lates the Meta Assembly Language instructions,
line by line, into a sequence of target machine's
symbolic assembly language instructions. The fol­
lowing steps summarize the process of object code
generation.

I. Each MAL instruction is scanned and its
label (if any), opcode and operand(s) are
extracted.

II. The address mode of each operand is deter­
mined. Then using the description of the target
machine's address modes, this operand is modified
(symbolically) to conform to the target machine's
conventions. Moreover, additional intermediate
code might be generated in the cases where mere
symbolic transformation is not sufficient. In any
case, any required operation is clearly indicated
by the definition provided by the target machine
specifier with the aid of the formalism discussed
before.

III. The state of the operand is determined in
this stage. To do this, the symbol table and the
register status table are searched and, according
to the different modes, one of the states S, R,
0 or N is assigned to the operand (as discussed
previously).

IV. Once the input state is determined, the
MAL instruction opcode is used to initiate the
particular state transition process. Normally,
the input state does not match the target machine's
permitted state. Therefore the code generation is
further broken down into two steps: 1) state
transition; to reach the target state from the
input state (which might result in generation of
load or store instructions) and 2) the generation
of the target code to perform the operations spe­
cified by the Meta Assembly instruction's opcode.

These four steps are repeated for each new
line of a Meta Assembly instruction. A block dia­
gram for the Meta Assembler's different phases of
operations is shown in Fig. 5.

Conclusion
In this paper recent studies in formalizing

the code generation process have been reported.
Formalization is partially achieved due to our
ability to describe the program addressable modules
to MMCC in the notation of the Machine

Specification Language. Efforts at describing
input, output routines and other idiosyncrasies
such as interrupts is still under way. Also the
problem of subroutine calls and their invocations
has not been dealt with yet. Since these aspects
of compilation are highly machine dependent it is
anticipated that a description would only consist
of providing high level primitives in Meta Assem­
bly Language and requiring the target machine spe­
cifier to provide the code sequences in the for­
mal ism already discussed,

Using the MSL, we have defined the CPU and
the memory structure of three machines which enjoy
uniform characteristics, These machines are the
TI960A, HP 2100 and PDP-11/45. A description of
the TI960A machine [4] is provided in Appendix B
for reference.

Acknowledgment
The authors would like to thank Mr. Alex Conn

for his careful reading of the draft of this paper
and making useful suggestions for its improvement.

196

References
[l] R.A. Brooken et al., "The Compiler-Compiler,"

Annual Review in Automatic Programming, Vol .3,
(1963).

[2] Special Issue of COMPUTER on Hardware
Description Language (Dec. 1974).

[3] P.L. Miller, Automatic Creation of a Code
Generator from a Machine Description, TR-85,
Project MAC, MIT (1971).

[4] Programmers Reference Manual for the Model
960A Computers, Texas Instrument Corporation,
Houston, Texas.

[5] HP 2100 Reference Manual, Hewlett Packard
Company, Cupertino, California.

[6] PDP 11 Processor Handbook, Digital Equipment
Corporation.

Appendix A
Syntax description for Machine Specification

Language (MSL)
<COMPUTER>

<MEMORY>
<MM>

<ACSU>
<STI>

<DT>
<LOWER>
<UPPER>
<STRGE>

<MAPPING>
<MAPS>

<MAP>

<CPU>

<REGISTERS>

<NAMES>
<ARGS>

BEGIN<MEMORY><CPU>END
BMEM<MM>EMEM
<ACSU ><MAPP ING>
BSTRUCT<STI>ESTRUCT
<DT>i<STI>'; '<DT>

: : = <STRGE> I [I <LOWER>' .. I <UPPER> I JI

$INTEGER
$INTEGER
WORDIDWORDIBYTEIHWORD
BMAP<MAPS>EMAP
<MAP>i<MAPS>'; '<MAP>
<DATA-TYPE>': '<STRGE>
!<DATA-TYPE>': '<STRGE>'['<LOWER>
I •• I <UPPER> I J I
BCPU<REGISTERS><MEMORY-REG>
<CONTROL>ECPU

··= BREG<NAMES><CLSFS><RELATIONS>
<CLSPATHS>EREG
I REG = I I (I <ARGS> I) I

<ARG>i<ARGS>' ,'<ARG>

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

<ARG>
<LENGTH>

<CLSFS>
<CLASS>

<CL>
<RGNM>

<RELATIONS>
<RL TN>

<RLT>

<OPSEQ>
<CPLS>

<CPL>
<RN SEQ>

<CLSPATHS>
<CPATHS>

<CPATH>
<MEMORY-REG>

<M-REG>
<SQNC>

<SEQ>

<DATA>
<DATA-TYPE>

<MPATHS>
<PATHS>

<PATH>
<CONTROL>

<INSTR>
<OPCODE>

<MAC>
<MAL>

<OPCOD>
<SEQUENCING>

<STS>
<TRFM>

<PS>

<NS>
<ALT>

<CGEN>
<GEN>

<CSEQ>
<OPERAND>

··=$RN ':I <LENGTH>
: := $INTEGER
::= BCLASS<CLASS>ECLASS
::= <CL>i<CLASS>' ;'<CL>
: : = $CLSNM I= I I (I <RGNM> I) I
::= $RN!<RGNM>' ,'$RN
::= BREL<RLTN>EREL[A
::= <RLT>[<RLTN>' ;'<RLT>
: : = $CLSNM I= I I [I <CPLS> I JI

'(' <OPSEQ> ')'
::= $0PTNS[$0PTNS' ,'<OPSEQ>
::= <CPL>[<CPLS>' ,'<CPL>
: := '<' $RN '>'I'<' $RN<RNSEQ> '>'
::= I: '$RN[<RNSEQ>' :'$RN
: := BRPATH<CPATHS>ERPATH[A
::= <CPATH>[<CPATHS>' ;'<CPATH>
: := $CLSNM '+' $CLSNM<CSEQ>
: := <M-REG><MPATHS>
::= BMREG<SQNC>EMREG
::= <SEQ>!<SQNC>' ;'<SEQ>
: := <STRGE> '+' $CLSNM[<STRGE>

I (I <DATA> I) I '+' $CLSNM
::= <DATA-TYPE>[<DATA>' ,'<DATA-TYPE>
::= LOGICAL[BOOL!INT[ADDRESS!CHAR

I REAL
: := BPATH<PATHS>EPATH!A
::= <PATH>[<PATHS>' ;'<PATH>
: := $CLSNM I: I <CSEQ>
: := BINST<INSTR>EINST
: := <OPCODE><OPERAND>
: := BCODE<MAC>ECODE
: : = <MAL> [<MAC> next<MAL>
: := <OPCOD> ,_, <SEQUENCING>
::= CL[CMI ···lMlDl$R[$0[$H[$C[XlI
::= <STS>';'<CGEN>i<CGEN>
: := <TREM>[<STS>'; '<TRFM>
::=<PS> '+' <NS> '(' $0PTNS ')'

!<PS> '+' <NS> I I I <ALT>
I(' $OPTNS ')'

::= RIS[SO[RO[NSjNRIRR[RS[SR!SS
!$TARGET

::= RIS!SO[RO[RRIRS!SRjSS
: := <NS>
::= <GEN>[<CGEN>' ;'<GEN>
::=<PS> '+' NIL<CSEQ>
: : = I (I $0PTNS I) I I <CSEQ> I (I $0PTNS I) I
: : = BOP<MAC>EOP

Description of the terminals:
$RN is register's symbolic name
$CLSNM is register set name
$0PTNS is Target Machine Specifier's defined

semantic routine
$TARGET is symbolic name for Target Machine

Specifier's defined state

197

Appendix B
Partial description of TI960 mini computer

using MSL.
BEGIN
-BMEM

*

--BSTRUCT
WORD[O .. 15];

DWORD[0 .. 31]
ESTRUCT
BMAP

INT: WORD;
INT: DWORD;

CHAR: WORD[8 .. 15];
ADDRESS: WORD;
LOGICAL: WORD;

EMAP
EME_M_
BCPU
--BREG

BOOL: WORD

REG = (0: l 6, l : l 6, 2 : l 6 , 3: 16 , 4: 16, 5 : 16 ,
6: 16, 7: 16)

BC LASS
~=

Rl =
R2 =
R3 =

(I 0 I 11 1 121 161)'
(•01'111'121, ... ,151)~
(1 0·'·1·'·2·'"""' 1 6 1)~
(101'111'121' 000 '151)' ' ' , ... '

EC LASS
~
--Rl = [<O:l>,<l :2>,<2:3>,<3:4>,<4:5>,

<5:6>,<6:7>](FREE)*;
R2 = [<O:l>,<1:2>,<2:3>,<3:4>,<4:5>,

<5:6>,<6:7>](NORM)*;
R3 = [<O:l>,<1:2>,<2:3>,<3:4>,<4:5>,

<5:6>,<6:7>](SWITCH)*
EREL ERE_G_

BMREG
-- WORD(INT,BOOL,LOGICAL,CHAR,ADDRESS)

+ GPR
EMREG
BPATH
-,-GPR': ('L' GPR,OP)('ST' GPR,OP);

Rl: ('L' Rl,OP)('ST' Rl,OP);
R2: ('L' R2,0P)('ST' R2,0P);
R3: ('L' R3,0P)('ST' R3,0P)

EPATH
BINST
---irtODE

--,-!NCR I - s + R(LOAD OPl);
R + NIL('AA' OPl, l) next

'DECR' - S + R[[OAD OPl);
R + NIL('SA' OPl, l) next

'CL' - S + R[[OAD OPl);
R + NIL('LA' OPl, 0) next

'CM' - S + R[[OAD OPl);
R + NIL('XORA' OPl, X'FFFF')

next
'SET' - S + R(LOAD OP1);

R + NIL('LA' OPl, X'FFFF')
next

'JP' - + NIL('B' OPl, 0) next

FREE, NORM and SWITCH are semantic routines re-
lated to AND, DIVIDE, MULTIPLY and other opera­
tions whose definitions have been omitted for
brevity.

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

'ADI'=? SS+ RS(LOAD OPl);

EC ODE
WP

SR+ SS(STORE OP2);
RR+ RS(STORE OP2);
RS+ NIL('A' OPl, OP2);
SO+ NIL('AMI' OPl, OP2);
RO+ NIL('AA' OPl, OP2) next

-$M =? + NIL next
$D =? + NIL next
$R =? + NIL (ERROR) next
$0 =? + NIL (ERROR) next
$H =? +NIL (CONCAT 'if'; OPl) next
$C =? +NIL (CONCAT 'C', OPl) next
$X =?SS+ SR(LOAD OP2);

RS+ SS(STORE OPl);
RR+ SR(STORE OPl);
SR + NIL (CONCA rt OPl' OP2, I' I I)

next
$I=? R + S(STORE OPl);

S + !i!l (CONCAT '*', OPl)
EOP

EINST ECP_U _
END--

I
Parametric Inputs

Formal description of Source
Input Implementation Language

: Compiler- :
: Compiler :---

~~-Assembly
~age Program

Parametric Input Source Input
! ! !

MMCC

l
Object Output

Fig. l Basic Model for MMCC

Parametric Input Source Input

Universal Compiler

MMCC

Assembly Language
Output

Fig. 2 Model for MMCC, Employing
a Universal Compiler

I
Formal description of

Target Machine

Table-driven
Compiler

Meta-Assembler
Target Machine

F=f=~Ssembly Language
Program

Universal - Compiler

Fig. 3 Implementation Scheme of a Universal Compiler

tCONCAT is a routine which concatenates its argu­
ments and returns the result as the symbolic
address of the operand.

198

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

'M' 'T'

CPU I/0

Fig. 4 Simple Abstract Machine of
the Meta Assembly Language

Target Machine
Description in MSL

!
pre-processor]------

Meta Assembly
instruction

!
Address mode
calculation

opcode initial operands
state

Automatic Code
Generator

object code

internal
tables

(tabular
description
& utility)

Fig. 5 Implementation Scheme for
the Meta Assembler

/

199

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

EVALUATION OF A POLISH FORM EXPRESSION ON A FI-FO QUEUE: A NEW
APPROACH TOWARD THE REALIZATION OF A HIGH LEVEL "PIPE-LINE" COMPUTER

Gerard G.BAILLE and Jean P.SCHOELLKOPF
Computer Architecture Group

ENSIMAG-BP 53 38041 GRENOBLE(FRANCE)
Summary

Let the polish form expression where 0~ represents
the jth operand of the group number i ~nd x~ the
kth operator of the same group:

1 al 1 61 1 ap 1 6p
01 ... 01 xl ... xl op ... op xp ... xp

group 1 group P

In classical machines using such a post fixed
language, the expressions,are valued on a push-down

stack. This envolves a mon.oprocessor architecture
for which access to the operands and computation
of operators cannot run at the same time.
Parallel processing is made possible if the push­
down stack is replaced by a FI-FO Queue in the

following manner:

It is necessary to define two pointers Pl and P2
which give respectively the location of the first
and the second operand on the queue.
A queue must be cleared out by the bottom:therefore
the result of the operator x~ is stored in position
given by P2(second operand) and a new free location

:: created in position given by Pl(first operand).

tssume that a finite sequence

(d1,t1) , (dz,tz), ... , (dk,tk)
defines the state of the queue during evaluation
process (t1,t2, ... ,tk) gives the length of the free
location sequences, (d 1,d2, ... ,dk) gives the length

Either dk becomes zero, in which case Pl must be

decremented again by tk-l" Further the last element
(dk,tk) disappears and the state of the queue is
modified

tk-1 := tk-1 + tk k .- k-1

Bi .
If a xi is
be executed

the last executed operator, the next to
is operator x~ 1. P2 must give the

l+ ai+l
position of the second operand which is Oi+l ,
therefore it must be incremented by ai+l" Pl must
receive a value equal to the value of P2 minus 1.
In the same time, a new element is created for the
sequence (dk,tk) in order to have a new state of the
queue:

k := k+l ; dk := ai+l
Therefore we must generate
the evaluation processor:

tk := 0
three kinds of orders for

- execute a dyadic operator,
- increment P2 by a value n and initialize Pl(INCR)
- decrement Pl by a value n (DECR).

If there are N operands divided in p groups in the

expression to be evaluated, we have:
N orders for Access Processor,
N-1 orders for Evaluation Processor,
p extra orders INCR.

The maximum of DECR orders will be given by:
N-1-p if p+l:::_N.:::_2p

p-1 if N~2p

of the sequences of location which hold the operands The analysis of the expressions is performed by a
waiting for a further operation. third processor called Control Processor which

//; //~ ~ ~/;
/::~· !--d<- +--f., ~ f-d,- <-A -4> . . l'-dlr~ I--~.,....;, ;;;// /;/~ ~ // //_.. //

f Pt tP2
In order to have Pl pointing to a not free location,

before storing of result of operator x~, let us

decrement Pl by one. In the same time, let us modi­
fy the last element of the sequence (dk,tk):

dk .- dk-1
tk := tk-1

fetches instructions from main memory, and generates
orders for the other two processors.

The above evaluation mechani.sm permits the real iza­

tion of a new pipe-line architecture.

200

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

A COMPARISON OF APPROXIMATE SCHEDULING ALGORITHMS

Klaus Ecker
Gesellschaft fur Mathematik

und Datenverarbeitung
5205 St. Augustin, Germany West

S1Ulllllary

We consider a simplified version of the scheduling
problem where a task-graph is given, and the tasks
have to be performed without pre-emptions on an
array of m identical processors. Each task has
to be assigned to one of the processors, but at
any time not more than one task to each processor.
We assume that all task execution times are equal.
The problem is to construct algorithms which pro­
duce time-minimal schedules. Several efficient
algorithms producing time-minimal schedules under
special conditions are known, but in most cases
little is known about the quality of the results of
these algorithms in general. In this paper the
schedules obtained by these algorithms, applied
under general conditions, are compared with the
best possible schedules.

If A is a scheduling algorithm, tA (G) denotes ,m
the length (in time) of the schedule generated by
A for the task-graph G when m processors are
available. t 0 (G) denotes the length of a time-

,m
optimal schedule. The ratio r (A,G) = tA (G)/ m ,m
t 0 (G)

,m is a measure for the applicability of A

with respect

max{r (A,G) I m

to G. The value Rm(A,n) =

G contains at most n tasks} is sui-

table for a comparison of A with time-optimal
algorithms [4].

Turning to special algorithms, the measure rm for

the level-algorithm defined by HU in [3} can become
arbitrarily close to (2m-1)/m which is the worst
possible ratio for list scheduling [1], [2]. The
same is true for an algorithm which assigns a
higher priority to tasks with a higher number of
immediate successors, and for combinations of this
algorithm with HU's level-algorithm. Consequently,
due to the measure Rm those algorithms cannot be

considered as algorithms generating good schedules
in general.

Therefore we ask for efficient algorithms which are
better in the above sense. An algorithm A is
called k-depth-bounded iff there is a k6 IN
(N={1,2, •.• }) such that at every point of time A
considers only the subgraph defined by all chains
of length k starting from the actual starting
nodes. A is called k-optimal iff A produces
time-minimal schedules for all graphs of height Gk.

Theorem 1. Let ~ (k ~ 2) be k-optimal and k­

depth-bounded algorithms. Then

] r2m-1 2m-1
VmelN, Tfr:.E (0,1 , 3n€1N: Rm(~,n) E".1.---;--r:.,-;-).

201

In the sequel we consider the case k=2. It is
possible to construct A2 in such a way that its

its time complexity is O(nm- 1). Using A2 we

define a new algorithm H2 :

(1) G' :=G.
(2) Let Vs be the set of starting nodes of G'.

If Vs=¢, go to (5).

(3) If lvsl ~m, assign the elements of Vs to

the processors. Set G' :=G'-Vs. Go to (2).

(4) Let i e IN be the maximal integer with
l{al a6V, >-(a) ;?;i}l~m (>-(a)= level of

s
task a). Let G be the subgraph of G' which
consists exactly of all chains of G' star­
ting in {al a6Vs' >-(a)ll:i}. Determine m

tasks a 1 , •.. ,am which are to be assigned to

the m processors by applying A2 to G.
Set G':=G'-{a1 , ••. ,am}. Go to (2).

(5) Stop.

The time complexity of H2 is O(nm).

Theorem 2. \:/ m ~IN, VG: rm(H2 ,G) ~ 3/2.

Remark. Algorithms H3' H4, . .. can be defined in

an analogous way, however their value Rm is not

better than that of H2 . It can be shown that for

all k~ 2 rm(~,G) can become arbitrarily close

to 3/2 so that in this sense H3 , H4 , •.• are no

essential improvements of H2 •

[1]

[2]

[3]

[4]

References

N.F. Chen, and C.L. Liu, "On a Class of
Scheduling Algorithms for Multiprocessing
Computing Systems", Proceedings of the Saga­
more Computer Conference on Parallel Pro­
cessing 1974, Lecture Notes in Computer
Science 24, Springer-Verlag, (1975), PP• 1-16

E.G. Coffman Jr., and P.J.Denning, ~erating
Systems Theory, Prentice Hall, (197'.(, 331 pp.

T.C. Hu, "Parallel Sequencing and Assembly
Line Problems", Opns. Res. 9 (1961), pp. 841-
848

D.S. Johnson, "Approximation Algorithms for
Combinatorial Problems", Proceedings of the
5th Annual Symposium on Theory of Complexity,
Austin, Texas, 1973, pp. 38-49

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

A LINEAR SCHEDULING ALGORITHM FOR A FOREST

ON A MULTIPROCESSOR SYSTEM

D. Hennings, S. Schindler, M. Steinacker
Fachbereich 20 (Kybernetik)

Technische Universitat Berlin

Summary

The. problem is studied of scheduling N tasks - the
operational precedence structure of which is re­
presented as a finite, directed, weighted forest
G (paths being directed from leaves to roots) -
on a multiprocessor system consisting of M identi­
cal processors. The weight Wi of each node i,
1 ~ i ~ N, is regarded as the processing time of
the task represented by node i. We are concerned
especially with the problem to construct time­
optimal schedules of low complexity for complete
processing of G by the M processors.

For the case Wi = 1 for 1 ~ i ~ N Hu's algorithm
(see [1]) is a well known solution to this prob­
lem; a proof of correctness is given in [4], e.g.
If we give up the assumption of unit processing
times the problem becomes very difficult: it is
known to be "polynomial complete" (see [5]) unless
preemptions are allowed.

For arbitrary processing times Wi and an arbitrary
finite number of preemptions the problem is tract­
able again. Muntz/Coffman (see [2]) obtained a po­
lynomial bounded scheduling algorithm. One of the
authors (see [3,4]) gave a characterization of the
set of all time-optimal schedules in this case, or
more explicitly, of the set of all "time-optimal"
scheduling algorithms.

Starting from that characterization of the set of
all "time-optimal" scheduling algorithms for this
problem in [7] a scheduling algorithm of low com­
plexity is isolated: the number of steps of this
algorithm depends linearly on N, except for an in­
itial sorting of G's tasks (performable by stand­
ard sorting algorithms in O(N"ld N) steps at most,
see [6]). This result seems to establish the low­
est upper bound for the complexity (in N) of a
scheduling algorithm under the above assumptions
known until now.

202

References

[1] T. C. Hu: Parallel Sequencing and Assembly
Line Problems, Operations Research 9, No. 6,
1961

[2] R. R. Muntz, E.G. Coffman,Jr.: Preemptive
Scheduling for Realtime Tasks on Multiproces­
sor Systems, JACM, April 1970

[3] S. Schindler: On Optimal Schedules for Mul-.
tiprocessor Systems, Princeton Conference on
Information Sciences and Systems 1970

[4] S. Schindler: Quantitative Aspects of Opti­
mal Schedules for Multiprocessor Systems,
Technical Report 73-10, Juli 1973, Fachbereich
20, Technische Universitat Berlin

[5] J. D. Ullman: Polynomial Complete Scheduling
Problems, Technical Report 9, March 1973,
University of California at Berkeley

[6] E. M. Reingold: Establishing Lower Bounds
on Algorithms - A Survey, Spring Joint Com­
puter Conference, 1972

[7] D. Hennings, S. Schindler, M. Steinacker:
The Complexity of Preemptive Scheduling Algo­
rithms for Multiprocessor systems, Technical
Report 74-20, December 1974, Fachbereich 20,
Technische Universitat Berlin

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

A GRAPH-THEORETIC CHARACTERIZATION OF A CLASS OF SYNCHRONIZING PRIMITIVES

P, B. Henderson and Y. Zalcstein
Department of Computer Science

SUNY at Stony Brook
Stony Brook, N.Y. 11794

Summary

Vantilborgh and van La.msweerde [7] have intro­
duced an extension of Dijkstra's PV system of
primitives (dubbed PVchunk or PVc in [5]) allowing
the semaphore to be updated by "chunks" that are
arbitrary positive integers. The authors of [7]
regarded this system merely as a progranuning con­
venience, believing that it is no more powerful
than PV. The work of Lipton and his collaborators
[5,6], however, has since established that there
are simple synchronization problems that can only
be solved by PV in rather pathological ways.

In this paper, a synchronization problem is
viewed as a system of processes IP. A sequence
PJ.P2•••Pk of processes in !?will be termed a com­
putation provided that each Pi is not "blocked" fol­
lowing PlP2···Pi-l• Many of the process synchron­
ization problems studied in the literature may be
expressed by a conjunction of finitely many condi­
tions of the form "process PR. blocks process Pm·"
Examples are: 1) the "reader-writer problem" [l] ,
in which "a writer (process) blocks all readers
(processes) and all other writers," and "each
reader blocks all writers" (note that a reader
cannot block another reader), and 2) the "five
dining philosophers problem" [2], where each of
the five processes blocks exactly two other dis­
tinct processes and in turn is blocked only by
these two processes.

Utilizing the "blocking" relationship between
processes, a synchronization problem may be repre­
sented by a directed graph G = (N,E), where node
set N corresponds with the set of processes, and E
corresponds to the relation "blocks" on the pro­
cesses (i.e. there is an edge (i,j) in E if and
only if process Pi blocks process Pj). Precisely,
a graph G is defined by a system of processes tP
provided that there is a one-to-one correspondence
41:a:>+ N, so that p1 ... pk is a computation iff
(4i(pi), 4i(pj)) ¢ E, for all 1 ::_ i < j ::_ k. In this
paper we characterize the class of directed graphs
that are definable by PVc systems (PVc definable),
a problem le~ open in [5,6].

Let 6" be a system of processes and without loss
of generality assume there is a single semaphore
S [4]. Pis a PVc system ~rovided that every in­
struction is either a P(Sln) or V(Sln), n ~l.
P(Sln) is an indivisible instruction such that
S + S - n is executed only when s > n, otherwise
control is interrupted until s ~n-:-v(sln) is an
indivisible instruction, S + S + n. Since only
P(•I•) instructions can either block or be blocked
it follows that if graph G is defined by PVc sys­
tem tP, then <P consists only of P(·I ·) instructions.

Let P be a PVc system of processes with sema­
phore S, whose initial value is t. It follows
from the preceding discussion that a graph G is PVc­
definable (with respect to d') iff there is a posi­
tive integer t such that the nodes of G can be

labelled by positive integers.::_ t, so that given
node set F, the induced subgraph <F> is totally
disconnected [3] if and only if ~zEFR.(z) .::_ t, where
R.(z) is the label associated with node z. That is,
if z = 4i(pi) = 4i(P(Sln), then n = R.(z).

Theorem. A connected graph G = (N,E) is PVc-defin­
able iff either G is empty or N can be partitioned
into disjoint sets c1 , c2 , .•• ,Ck,D1 ,D2 , ••• ,Dk-l for
k,;:. 1, where each<Ci> i = 1,2, ••• ,k-1 is a non­
empty clique,<Ck}is a possibly empty clique and
each<Di> i = l, ••• ,k-1 is a possibly empty discon­
nected subgraph so that every node in Ci i =
1,2, ••• ,k-l is adjacent to every node in Cj+l and
D j , for all i ~ j ~ k-1.

Corollary. Any PVC-definable graph is an interval
graph.

This statement may be interpreted as a hierar­
chical structure of asynchronous processes where
each process in Ci can block (1) any process in D.,
j z.. i and (2) any processkin cj' for all 1 ~ j ~it,
while the processes in Ui~lDi cannot block each
other. One can think of this si tuatim as a "read­
er-writer" problem where there is a hierarchy of
writers (the Ci's) and a hierarchy of readers (the
Dj's). In the case k = 2 with C2 empty, the normal
form represents the classical reader-writer problem
[l]. A complete version of this paper appears in
[4].

References

[l] P. J. Courtois, F. Heymans and D. L. Parnas,
"Concurrent Control with 'readers' and 'writ­
ers'",~ (Oct.,1971) pp. 667-668.

[2] E. W. Dijkstra, "Hierarchical Ordering of Sequen­
tial Processes~ in Operating Systems Techniques,
C.A.R. Hoare and R.H. Perrott, ed., Academic­
Press (1972), pp. 72-93.

[3] F. Harary, Graph Theory, Addison-Wesley, (1969),

[4] P.B. Henderson and Y. Zalcstein, A Graph-Theo­
retic Characterization of a Class of Synchron­
ization Primitives, Computer Science, SUNY at
Stony Brook, N.Y., TR #41 (March,1975) 30 pp.

[5] R.J. Lipton, On Synchronization Primitive Sys­
~. Technical Report No. 22, Computer Science
Dept., Yale University, (1973).

[6] R.J. Lipton, L. Snyder and Y. Zalcstein, "A
Comparative Study of Models of Parallel Compu­
tation", 15th Annual IEEE Sym. of Switching and
Automata Theory (1974) , pp. 145-155.

[7] H. Vantilborgh and A. van La.msweerde, "On an
Extension of Dijkstra's Semaphore Primitives",
Information Processin~ Letters, (Jan., 1972)
pp. 181-186.

203

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

AN IMAGE ARRAY PROCESSOR FOR THE INVESTIGATION OF ARCHITECTURES AND ALGORITHMS(a)

R. M •. Brown and P. L. Neely
Computer Sciences Corporation
Huntsville, Alabama 35802

Abstract -- Digital processing of image data
has certain features which can be exploited in the
design of processing hardware. Reconfigurability
is required to implement a range of algorithms and
processing tasks. However, a completely general
purpose processor is not required, or even desir­
able, since it sacrifices processing speed and
compromises data management. This paper discusses
the design of a high-speed (200 nanosecond/picture
element) image oriented processor with parallel
architecture. Specific attention is focused on a
processing element and data management scheme, op­
timized for vector operations, which are currently
being developed for a prototype demonstration.

Introduction

Within the Data Systems Laboratory of NASA's
Marshall Space Flight Center, there is an active
project to study specialized architectural con­
cepts and current technology suitable for the de­
velopment of an Image Array Processor (IAP). The
objectives of this project are:

1. To investigate the technology necessary
to achieve pixel processing times (PPT) in the
neighborhood of 100-200 ns in order to handle
image data rates projected over the next decade.

2. To configure the IAP as a testbed with
the ability to examine different processor archi­
tectures which take advantage of the unique charac­
teristics of image processing.

3. To provide high speed image processing
capability for users developing processing tech­
niques and to allow their interaction with future
hardware research.

4. To retain a modular configuration capable
of incorporating advances in technology.

Although widespread use has been made of
general purpose digital computers in image pro­
cessing applications, particularly algorithm de­
velopment, image data has several features which
point to a more specialized form of processing
[1,2]. Image data arrays can be characterized by
two salient features:

1. Large size: e.g., 0.25 megapixels in a
512x512 video frame, 40 megapixels in a single
channel 6300x6300 EOS frame.

2. High on-line processing rate: e.g.,
100 ns/pixel PPT for NTSC video data, 400 ns/pixel
PPT for EOS data [3).
The processing of such image data contains an in­
herent parallelism at two levels:

3. Within a specific algorithm, the same
basic operations are performed on large data sets.

4. Between different algorithms, there are
many common algebraic operations.

(a)This work supported by NASA-Marshall Space
Flight Center under Contract NAS8-21805.

204

The above four features suggest that (i) Mem­
ory hierarchy and data management form a distinct
and very important problem which may be separated
from the processor design; (ii) Very high speed
hardware processing units will be necessary;
(iii) A parallel architecture should be employed
for the IAP; and (iv) A trade-off can be made be­
tween optimized processing elements for selected
functions and a reconfigurable hardware structure.

Candidate Architectures

There is a spectrum of parallel architectures
which might be considered for use in the IAP de­
sign. The implications of these different archi­
tectures can best be examined by considering them
in the context of a specific image processing task.
It should be emphasized, however, that the selec­
tion of a particular task should not be construed
to mean that the IAP is intended for any specific
problems; quite to the contrary, the purpose of
the IAP is to execute a wide variety of algorithms.
With this view in mind, consider the vector dot
product operation in the following analysis.

This operation is performed frequently in
image analysis and is a good illustration of item
(4) above. It forms, for example, the kernel of
the Maximum Likelihood Classification Algorithm
for multispectral data. It also is the basic op­
eration of the Cubic Interpolation Algorithm used
in the resampling process needed for picture
registration [4]. In the latter application,
which will be used as a benchmark, five vector dot
products between four-component vectors are re­
quired to interpolate one pixel, a total of 20
multiplies and 15 adds.

The computation time needed to perform the
benchmark on a GP computer ranges from approxi­
mately 35 µsec on a large scale machine such as
the UNIVAC 1108 to 110 µsec on a minicomputer such
as the PDP 11/45. Therefore, in order to achieve
a PPT of 100-200 ns, a speed-up factor of about
350-1000 is needed.

At one end of the architecture spectrum, this
speed problem might be solved through a general
parallel processor array patterned after existing
configurations [5,6,7,8]. The elements in this
array could conveniently be bipolar microprocessors
(µP's) such as MMI 6701 or Intel 3000 series.
These devices use microcode to perform a multiply
operation in 2.5-5.0 µsec, a time comparable with
the PDP 11/45.

The benchmark PPT for one such µp is 50-100
µsec and thus a speed-up factor of about 500 is
needed; that is, the array must contain between
2~0-!000 elements. However the problems of control

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

and bussing (among other technical difficulties)
associated with such a large array most likely
prohibits this configuration of µP's despite its
inherent advantages of reconfigurability and con­
struction from low cost elements.

At the other end of the spectrum, cubic in­
terpolation could be implemented through a special
purpose pipeline processor (9]. Using ECL 10,000
logic, such as in the General Dynamics' High Speed
Parallel Digital Processor (10] , a PPT of 30-50 ns
could be achieved. This approach, however, sacri­
fices reconfigurability since the algorithm is
locked into the processor architecture.

An alternative approach is to divide the
speed-up into two stages. A factor of 25-100 im­
provement can be provided through a programmable
processor whose design is optimized to complete
vector operations in 200 ns, a time requirement
intermediate between the two other approaches. A
parallel structure is used within this Vector Pro­
cessing Element (VPE) in order to obtain these
short execution times. One microprogrammed VPE
can, therefore, execute the benchmark in approxi­
mately 1 µsec. The further speed-up needed can be
achieved by configuring several (5-10) VPE's in
parallel. Algorithm reconfigurability (for vector
oriented data) is retained through such a VPE while
the array size necessary to achieve the required
PPT is small. In essence, the optimized design
approach takes a basic high-speed programmable
processor and adds to its list of op codes a spe­
cific function (or functions), characteristic of
image processing requirements, through hardware
and internal bus design.

This approach may be generalized to include a
range of Optimized Processing Elements (OPE's)
such as:

1. An Associative Processing Element with
associative cache memory for correlation operations
in pattern recognition, etc.

2. A Sorting and Counting Element for data
organization and histogram construction.

3. A Generalized Function Element for ultra
high speed function generation through table look­
up and Taylor Series expansion.

The concepts of an OPE are similar to those of
recently developed programmable signal processors
and modular processors 2,11,12,13,14 • However, the
objective for the IAP to be a flexible modular test
bed configured as an array imposes certain require­
ments that the array elements should possess:

1. An appropriate I/O capability in order to
allow the necessary array interconnect structure.

2. Control schemes/program stores that will
allow· the appropriate program partitioning and
overall master control as a total unified testbed
array.

3. Ultra high speed image processing arith­
metic capability in order to limit array size and
costs.

While it may be possible to utilize the signal
or modular processors, or modifications of them,
for some of the OPE's, in order to clarify the

205

architectural features that the above requirements
imply, a particular OPE, a VPE, has been studied
in some detail as will be discussed in the follow­
ing section.

Array Configuration

Three principal factors affect the IAP archi-
tectural design:

1. Sharing of costly resources.
2. IAP modularity.
3. IAP reconfigurability.

Computing elements are configured in an array
not only to increase computing power but also to
share computing resources. Without resource shar­
ing, a collection of completely independent com­
puters could achieve an overall high throughput by
processing different segments of the data, e.g.,
distinct image frames. However, the cost of such
a system rapidly becomes prohibitive since each
machine requires its own memory, control structure,
arithmetic section, I/O devices, etc. A true
array is formed when some or all of the resources
required by an individual processor can be shared
by the ensemble. The most common form of array is
to proliferate the lower cost (by present day
standards) arithmetic processing elements and to
share the more expensive resources. In a very
high performance array, such as envisioned for the
IAP, the problem of control and data flow implied
by this resource sharing is complicated by the fact
that the fundamental arithmetic elements have been
highly optimized. Thus, speed losses due to sys­
tems overhead for control, data transfers, and
path selection, which might represent a small frac­
tion of the total computation time in a GP machine,
would cause very great inefficiencies in the IAP.

The IAP array architecture needs to provide a
flexible, modular capability to support both growth
potential and varied applications. For example,
even though a VPE will initially have four chan­
nels, its design from the outset should take into
account the need for a variable number of channels
to accommodate larger or smaller vectors. Flexi­
bility is also needed in the precision or bit width
of the processors and data paths. This can readily
be provided by bit-slicing the design where
possible.

The modularity and reconfigurability of the
IAP are both related to the testbed nature of the
IAP. The IAP facility can be thought of as pro­
viding the resources needed to study various archi­
tectural schemes. Such tests will involve both
actual hardware and participation of algorithm
developers/users. From an architectural point of
view, the resources which must be provided for such
an interactive test environment will include:

1. Initial input sources.
2. Memory hierarchy/management system.
3. Various unified control and/or timing

units.
4. Processing element test berths.
5. Display and output systems.
6. Data base and management schemes for hand­

ling test data, benchmarks, etc.

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

These general resources, shown in Figure 1, will
be used for the following types of testbed
investigations:

1. Hardware integrity/reliability.
2. Throughput measures (speed)
3. Technical flexibility and program­

mability.
4. Application/production capability and

evaluation.

HOIT COMPUTER
DATA BASES, ETC. TIMING AND CONTROL

OPE-A

11
I I OPE TEST,ARRAV I I

l8
Figure 1. Resources Provided by the IAP

Testbed

The overall system architectural approach
should include the capability to allow the basic
resources to be reconfigured in order to examine
various specific architectural structures and
their relationship (advantages, disadvantages,
trade-offs, etc.) to actual image processing algo­
rithms. This overall architectural reconfigura­
bility can be separated into three levels:

1. OPE internal structures.
2. Logic controlled array structures (pro­

grallDllSble interconnections).
3. Structures easily modified through me­

chanical changes--cables and plugs, card slots
and cages, etc.
Such an overall system capability should be incor­
porated throughout the architectural planning for
the IAP.

The factors discussed above could be accom­
modated by organizing the IAP into four major
subsystems:

1. Control and Data Bussing Subsystem {CDBS)
to manage the overall array.

2. Individual OPE's to provide high speed
arithmetic capability.

3. Memory Hierarchy to reduce the cost of
high speed accesses to large image data bases.

206

4. Host computer to support general services
and interfaces to users and other computing
systems.

The first three subsystems involve high
speed, carefully balanced, state-of-the-art design
concepts in order to maximize overall efficiency.
Preliminary architectural considerations and pos­
sible implementations are discussed in the re­
mainder of the paper. The host computer interface
is anticipated to be reasonably straightforward
and is therefore not discussed further.

IAP Subsystems

Control and Data Bussing Subsystem

The CDBS provides a framework for the solu­
tion of two related problems as the name implies:

1. Overall control of the many elements in
the array.

2. Data transfers between the memory system
and the elements or between elements.
These functions are interdependent for two rea­
sons: (1) The data transfers may have to share
common busses and thus require global control to
coordinate the accesses of the elements; (2) When
the data transfers occur depends on the "state of
each machine" (element), i.e., how the programs
are partitioned.

In conventional machines, there is usually no
distinction made between "data" and "program." It
is desirable for the IAP, however, that these two
portions of image processing tasks be isolated
since separate hardware for these two functions is
an advantageous and natural way that parallelism
can be built into the array. Furthermore, with
such a structure, overlap of execution and instruc­
tion fetch can be performed more easily, and the
different word width and processing requirements
of program and image data can be accommodated.

Consequently, the duties of the CDBS can be
divided between the data and the program. For
image data, the CDBS will manage the necessary ar­
ray bus structure by controlling data flow between
memory and the elements and between the elements
themselves. For program, the CDBS will be con­
cerned with instruction fetch and decode at the
array level and the distribution of the resultant
tasks among the elements.

In addition, the CDBS will support the recon­
figuration of the IAP through programmable inter­
element and memory busses.

Control Schemes. There are two types of con­
trol scheme that might be used in the array:

1. Interrup~ driven control.
2. Predetermined assignments.

The first type is necessary when processing ele­
ments are functioning essentially asynchronously
and have arbitrary tasks to perform; that is, pro­
grams which cannot be timed out exactly at the
machine cycle level. This situation occurs, for
example, because of data dependent computation
times or branching. Thus, the elements must

1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

collllllunicate control through a "task completed"
message system. Such control strategy is common
in general purpose multiprocessors executing a
wide range of different tasks [7,15) and can best
be used when the TAP is cOIIUllunicating with the
external world.

The interrupt technique is more time constm1-
ing, particularly when implemented in software,
than one based on predetermined assignments and
timings. Since image processing involves very
large volumes of well-ordered data with little
data dependent branching and timing, the control
structure for the algorithms can be assigned in
advance. One example is a pipeline transfer sys­
tem in which each element does "its own thing"
but has strict protocol for passing on data to the
next element at each "major cycle."

Another example is a col!Ullutator control
scheme which assumes a set of homogeneous elements
all executing identical programs on different data
streams or portions of a picture. Thus the timing
sequences are well defined. Assume, for example,
that 16 cycles are needed for execution of the
program. To optimize the efficiency of the memory
system and CDBS, one should have 16 VPE's execut­
ing the program on 16 different "regions" of the
picture. Schematically, the col!Ullutator control
would consist of a 4-bit counter and a 4-to-16
line decoder. Such a scheme is shown in Figure 2.
Each memory cycle, one of 16 lines would become
TRUE and enable its corresponding VPE to access
the memory. To synchronize this data transfer
procedure and the program being executed in the
VPE, two I/O buffers must be provided in the VPE
input register system, one to store current data
being processed, the other to receive or transmit
data when its turn on the COl!Ullutator occurs.

CYCLE
PICTURE MfMOAV

I ..
ii .

PREDETERMINl!D
AlllONMENT
GENERATOR

~T0-11

LINE
DECODER

......

ENAILELINES
GENERATOR

PICTURE DATA llUS

.,.._,

CLOCK

Vl'l-18

Figure 2. Co11U11utator Control

207

This commutator control scheme is quite sim­
ple. It is given as one example solution to a
very severe control problem: namely, to effi­
ciently use an expensive, high performance memory
resource, one has a very limited time to make
"computations" or decisions about how the resource
should be shared. In the example, only one memory
cycle (200 ns) can be used in determining this
routing. An extension of this simple COllUllutator
concept would allow preprogrammed access "seg­
ments" for each VPE.

Data Transfers. When elements need to trans­
fer data between them, two techniques can be used
as indicated schematically in Figure 3. Register­
to-register direct transfer between elements will
provide very high data bandwidths since a large
number of data paths allow simultaneous transfers
between many elements. Complexity of the inter­
connect structure increases substantially if pro­
gra1I1111ability is to be maintained. The alternative
to the direct pipeline transfer scheme is to use
shared memory so that one element places data in a
known common location to be accessed by other
elements, This common memory technique provides a
greater flexibility in access for data needed by

.- SHARED BUS~

a:

~~
,_a:
:>W .. - OPE-A !!:~ z<O ~

~
-w a: a:i---

R-TO-R

i~w a:
1-w
~~ OPE-B

!~ §~

R-TO-R

[cc
~~ if OPE-C

~~~ 
R-TO-R 

y ..,.~ ~ ::>., OPE-D .. _ 
~~ zco R-TO-R -w TO DISPLAY cc a: 

COMMON MEMORY 

Figure 3. Types of Data Transfers 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

several elements. It also requires complex memory 
switching, but the technical difficulties are 
somewhat less than for programmable direct trans­
fers because of a smaller number of data paths 
(memory ports). There are "lock problems" associ­
ated with this collllllon memory type of element com­
munication as well as its resulting lower speed. 
Both types of data transfer schemes have their 
respective advantages, disadvantages, and particu­
lar areas of applicability. The architecture of 
the !AP should provide the capability to investi­
gate both types. 

In order to maintain the very high data 
throughput demanded by the VPE and a control 
scheme such as described above, the image data 
memory and the data bus servicing the VPE's must 
have sufficient bandwidth. To illustrate the 
memory and bussing requirements, assume that the 
memory is divided into two image buffers, each 
configured to have 16 ports. (The need for this 
structure is discussed in the subsection on mem­
ory hierarchy.) 

Control of the total buffer can conveniently 
be divided into two sections (Figure 4): a 16xl6 
switcher and an address mapper. All VPE's would 
provide the mapper with the required symbolic ad­
dresses. The mapper then would generate all 16 
physical memory cell location requests needed to 
access data in the total buffer. Dividing the 
buffer control problem in this manner provides 
modularity, flexibility, and relieves the VPE from 
burdensome address calculations. 

DATA 
OUTPUTS 

l--f16)- -

•{ 8 

SUBMEMORY fOI 
_,_a 

: : I OUTPUT 
I 

SWITCHER 
MEMORY BUFFER fl&) 16)( 16 

I I 
l I 

..LB I 
SUBMEMORY {15) 

14{ 
1--- {181 __ _, 

14 
4 SWITCHER 4{ ADDRESS 

t---{181---1 

MEMORY 
ADDRESS 

ADDRESS 
MAPPER 

TI 
L OPE ADDRESS REQUESTS 7 

Figure 4. Picture Memory Buffer Control 

208 

The output of the "memory switch" would drive 
a 128 data line bus, 16 groups of eight bits each, 
This bus structure is shown in Figure 5. A bus 
from eac·h buffer would feed direct transfer regis­
ters in each VPE as indicated above. Since any 
data could be put on any group of lines, it would 
be possible to partition the groups in terms of 
their destination in the VPE's. For example, data 
bytes 0-3 would be used for I/O in VPE channel 0 '· 
(the first vector component); 4-7 service VPE 
channel 1 (the second vector component); etc. 
Thus four vectors with four components could be 
transferred simultaneously on the single data bus, 
In the example, the first vector would use groups 
(0,4,8,12) for its four components. 

BUS DRIVERS 

H .. 

I{ 
5 

6 

VPE-A VPE-B VPE..i;z.·v 

Figure 5. Picture Data Bus Structure 

It is assumed that the "traffic" on these 
picture busses would be higher than that through 
any given VPE; the bus transfer rate would be 16 
bytes/cycle because of its high bandwidth, 
although it may take many VPE cycles to "process" 
or use these 16 bytes. Thus the picture bus would 
be available for I/O transfers to other VPE's 
during this time. The amount of time available 
for such sharing would depend on the number of 
VPE cycles between data transfers, that is, on the 
algorithm complexity. 

In general, a satisfactory solution to the 
data control problem is not obtained by connecting 
each of the VPE's to a particular memory port, at 
least not for image tasks that require many data 
points to initialize the algorithm. If various 
parameters all match, this port assignment might 
be possible. Thus, for example, if a particular 
algorithm requires 16 data points, 16 clock cycles 
and there are 16 VPE's, then each data port could 
be used to access the memory to obtain the 
necessary 16 data points for the next resampling 
during the 16 steps of the current process. This 
example is a special case but might be implemented 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

as described. It would have the disadvantage not 
only of making the address mapper more complicated 
since it must handle 16 different portions of a 16 
address sequence at once, but also of severely 
restricting the data accessible by any particular 
VPE. 

Program Control. The host computer will be 
responsible for IAP program compilation or pro­
gram access from bulk storage and for loading this 
program into the IAP master program memory. This 
program will consist of two parts: the processing 
algorithms executed by the elements of the array 
(OPE's) and the master CDBS control program for 
managing the implementation of these image algo­
rithms. Execution of the master control program 
in the CDBS controller fetches the processing 
program from the master program memory, decodes 
and loads it into the control store of the OPE's. 
If the homogeneous array approach and predeter­
mined assignment control of the data paths are 
used, all OPE's of the same class would receive the 
same decoded program. Execution of these OPE 
programs would follow initialization and receipt 
of a "start signal" from the CDBS master control 
program. Overall management of the OPE program 
execution by the CDBS controller will include, 
among other tasks, assignment of appropriate por­
tions of the data base to each OPE, keeping track 
of the coordinate addresses of the image data in 
order that ends of lines and ends of frames may be 
recognized, and programming the commutator if 
that control scheme is utilized. Essentially, 
therefore, the individual elements in the array 
will operate on a "load and go" basis from their 
internal program memories which behave very much 
as the PROM's in a microprogrammed processor. In 
addition to task assignment and management of the 
OPE's, the CDBS will control the memory hierarchy 
transfers and other I/O devices. 

VPE Structures 

As indicated earlier, a common image process­
ing task involves various forms of the multiply­
add operation; e.g., the vector dot product. The 
intention of the Vector Processing Element (VPE) 
is to reduce such vector or multichannel opera­
tions to microinstruction level code so that they 
can be executed in one machine cycle like other GP 
basic operations such as ADD, SUBTRACT, JUMP. It 
is intended that the initial VPE be configured 
with four parallel channels and a vector dot pro­
duct (contraction) capability. Such hardware will 
have associated with it an extended instruction 
set for vector operations. The initial design 
goal is a machine cycle time of 100 ns. A com­
plete four vector dot product would require two 
such cycles--one to perform the four multiplies, 
and one to perform the contraction (three adds). 
Also two dot products between two 2-component 
vectors could be done in 200 ns. 

This subsection contains a preliminary de­
scription of the internal structure of such a VPE. 
Several major tasks and thus components of the VPE 
have been identified. There are two types of such 
components--those that are replicated in each 
channel and those that deal with the overall 

209 

operation of the VPE and are implemented only 
once. All four channels of a type I·component 
will be referred to as the "system;" the individu­
al channels will be labeled by a subscript. Thus, 
for example, the four multiplier units in the MULT 
system are designated MULT(O), MULT(l), MULT(2), 
MULT(3). 

Type I: Each Channel 
(a) Cache Memory System (CMS) 
(b) Arithmetic and Logic Unit (ALU) 
(c) Multiplexer Structure (MUX) 
(d) Multipliers (MULT) 
(e) Higher Level Arithmetic Functions (HLAF) 
Type II: Overall Operations 
(a) Microprogram Control Unit (MCU) 
(b) Control Store and Scalar Memory (CSSM) 
(c) Address Generator/Scalar Unit (AG) 
(d) Special Control Registers (SCR), e.g., 

increment and test 

A general block diagram of the VPE components 
is shown in Figure 6. 

SCR 

MCU 

AG 

ALU 
A INPUT 

BINPUT 

MULT 

HLAF 

CMS 

I c:e I 

c:EJ 

CSSM 

MUX 

Figure 6. VPE Components 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

Cache Memory System. The VPE executes 
micro code programs which have been loaded by the 
CDBS into its control store. When issued a 
macro command from the master array control pro­
gram, the VPE starts execution of the appropriate 
micro code and runs independently until that task 
is completed. All the picture data needed for 
such a processing task must be supplied to the CMS 
at the time of the macro call or must already be 
resident in the CMS. These special VPE picture 
data buffers act as ultra high speed cache mem­
ories (15 ns access time). They must have a very 
high bandwidth I/O port in order to be able to 
accept sufficient data for the complete macro 
operation. Such a structure can be accomplished 
by a combination of registers and RAM's. Two 
identical groups of register/RAM's are proposed 
for each channel of the VPE so that two vector 
operands can be accessed at once. They will be 
referred to as the IA and IB Cache Memory Buffer 
(CMB) for the I-th channel and respectively hold 

A and B operands. 

Figure 7 shows one possible configuration for 
a cache memory buffer. Each memory is configured 
as a Large File and two Small Files. Each Small 
File provides the necessary bandwidth since it can 
accept four words simultaneously. Thus 16 words 
can be transferred to the CMS Small Files during 
each clock cycleo Two such Small Files are pro­
vided so that one can be accessed by the VPE while 
the other is loaded from the main memory struc­
ture. The Large File provides more storage capa­
bility, but with a lower I/O bandwidth. One word 

INPUT FROM VPE 

"'""' 
~ l ['-.... 

128 v t,...-J. J..-
128 

"). 
LARGE FILE ···") 256-1024 ... 

WORDS 
,... 

"' 
~ 

SMALL FILE 
~ "' :::i :::i 

'° N0.1 '° I- .... 4WORDS 
,... 

I-:::i :::i Q. ... 
~ I-
w :::i 
0 0 
;-; w 

0 

0 -')> SMALL FILE i 
a: N0.2 .) Q 
0 ... 

4 WORDS a: s: ~ ~ 
~ 

'--.. T ""' TOVPE 

Figure 7. Cache Memory Buffer 

210 

can be loaded into each Large File during each 
cycle; thus a complete four-component vector can 
be loaded into the VPE during each cycle in this 
Large File Mode. 

Figure 7 shows a common 16-word bus for the 
two parts of the cache memory. However, it may be 
more desirable to separate the bussing to the 
Large File and Small Files at a later stage in the 
VPE development. The memory should be partitioned 
so that reading and writing can be performed si­
multaneously in different segments. The VPE chan­
nels access this combined cache through a common 
set of addresses and data paths and obtain a 
vector (four words) each memory reference. In 
Figure 7 the block marked output is used to indi­
cate this address and data structure. 

Initially these memories are configured with 
16 bits in each word. This word width should be 
used for the prototype VPE evaluation in order to 
allow a greater range of programming possibilities. 
The memories will be bit sliced so that future 
modification of word width can easily be 
accommodated. 

Multiplexers. Since the VPE has multiple 
arithmetic channels, it must have a fairly flexi­
ble internal data path structure. This feature, 
at the processing element level, is equivalent to 
the overall data flow within the IAP itself. How­
ever, it is necessary to control the VPE data 
paths through software by microcode logic since 
these elements are basic IAP building blocks. An 
example multiplexer structure is shown in Figure 8. 

ALU 

,,, 
CMR":e ~ 

MULT 
~" 

HLAF 
~~ 
CMB-A 

MULT 

PICTURE MEMORY l!US 

HOST BUS 

0 1 2 3 --.uu--
Figure 8. VPE Multiplexer Structure (Channel O) 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

The equivalent control requirements at the array 
level could be relaxed since such control is used 
to investigate different fundamental architectural 
approaches to arrays and is not needed during pro­
gram executiono At that level, such logic is 
essentially one of convenience. At the OPE level, 
however, this relaxation/convenience is definitely 
not possible. The microprogram must flexibly con­
trol the data paths in order for the elements to 
even function. The multiplexer system is used to 
provide this capability. The different data path 
combinations may at first sight seem more exten­
sive than necessary. One must remember, however, 
that the VPE is an R&D tool to investigate such 
data path combinations (among other things) and 
therefore no restrictions have been placed on this 
part of the VPE. 

Multipliers and Higher Level Arithmetic 
Functions. The fixed-point multipliers for a 
prototype VPE will accept 16-bit operands and pro­
duce a 32-bit product. A provision is made for 
selecting either the 16 most significant or least 
significant bits of the product. This output 
should be available at its appropriate ALU through 
the multiplexer structure. The ALU can perform 
further operations on the product or can transfer 
it directly to the accumulator. 

It is anticipated that other mathematical 
functions such as divide and square root might be 
implemented in hardware in the VPE in a manner 
similar to multiplyo Provision for these elements 
has been included in the multiplexer structure. 

Arithmetic and Logic Unito The ALU provides 
the usual Boolean, ADD, and SUBTRACT functions. 
It may be desirable to include a shifter structure 
at the output of each ALU(I) to perform fast left 
and right rotates and arithmetic shifts. Further­
more various flags will be set by the ALU compo­
nents to indicate carry, overflow, +, 0, -, etc. 
More generally, as many advanced minicomputer type 
op codes, e.g., PDP 11, as possible will be in­
corporated into the VPE instruction set and will 
be performed in the ALU. Restriction may be 
necessary in the general branching instructions. 
This limitation, however, is quite appropriate for 
well-ordered image data in which data dependent 
branching for each pixel is not prevalent. 

Microprogram Control Unit. The Type II VPE 
elements will be discussed below. The micropro­
gram control unit performs various functions: 

1. Timing 
2. Instruction fetch and overlap 
3. Any further decoding necessary 
4. Testing of special registers 
5. Multiplexer control 
6. ALU and AG control 

These functions, at the element level, correspond 
to the tasks of the CDBS at the array level. 

Control Store and Scalar Memory. The micro­
program control unit has its own storage which is 
loaded from the CDBS. This storage unit manages 
its multiport capability under interaction of the 
VPE control and the IAP master control. The CSSM 

211 

contains the very wide words necessary to set the 
many internal logic lines in the MUX, ALU, etc. 

Address Generator. In order to allow the 
arithmetic section to run with maximum efficiency 
on vector data, a separate unit should be used to 
handle address calculations and.various scalar 
functions. In general, three addresses must be 
generated for each vector operation--two for 
operands, one for destination (result). The AG 
should provide indexing and incrementing capa­
bility to assist in such address calculations. 

Special Control Registers. A very time­
consuming function in handling image arrays in a 
GP computer is indexing the array. The VPE should 
have various special registers, independent of the 
ALU, to handle this function. For example, as one 
scans a picture using pixel coordinates (I,J), the 
following code, which would normally be executed 
for each pixel, should be explicitly executed in 
hard~ by the SCRo 

1f1 ADD 
JMP 

LOAD 

ADD 
JMP 

1 to J 
J S JEND to iFl 

J with JBEGIN 
1 to I 
I S IEND to start 

Thus during the image task initialization, 
the SCR would be programmed for a particular ar­
ray task. It then operates independently of the 
MCU except when the SCR interrupts the micropro­
gram to indicate the scanning status. 

Memory Hierarchy 

The IAP has been proposed as a very high 
performance testbed with pixel processing times in 
the neighborhood of 200 ns. This high throughput 
demands very careful analysis of the memory sub­
system. There are two differing requirements 
which must be balanced: 

1. Very large volume of data storage (40-
280 megapixels for multichannel EOS data). 

2. Fast random access within large blocks of 
this data. 
To meet these needs a hierarchical memory system 
is proposed, as illustrated in Figure 9. 

It is assumed that the "original source" has 
the ability to supply data for such a high 
throughput facilityo Thus raw data might come 
from 

1. Live sensors 
2. HDDT (15-30 Mbits/second, preferably 2-5 

times higher bit rates) 
3. Multiple CCT' s., discs, etc. 

"Circulating memory," either true discs or 
CCD storage, costs an order of magnitude less than 
random access memory, but still can have very high 
bit rates after "track acquisitiono" Therefore, 
it should be used for the basic "scene storage 
device." This temporary mass scene storage will 
be interfaced to the input buffer memories in 
block transfers possibly in a ping-pong fashion. 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

MEMORY CONTROL 

Figure 9. Memory Hierarchy 

A convenient fundamental image size to be 
accessed by the I.AP is a 512x512 image--the nominal 
size of a video frame. A picture buffer memory of 
2 Mbits will hold such a frame with 8 bits assigned 
to each point. An I/O port suitable for real-time 
video applications has been developed for such a 
2 Mbit buffer [16]. 

More than one such buffer could be used if 
more sampled data is associated with each point, 
for example, multispectral scanner data. Solid 
state random access memory with a maximum cycle 
time of 200 ns (preferably less) can be used for 
these buffers. Their data I/O ports would have 
a very high bandwidth, 6if0 Mbi ts I second, which 
could be provided by configuring them with 128 data 
lines in and 128 data lines out. These lines can 
be thought of as 16 eight-bit bytes and will be 
multiplexed through 16 data ports (bytes) by the 
CDBS; that is,·any of the 16 input bytes can be 
written into any of the 16 memories and likewise 
any memory output can be obtained at one of the 16 
output ports. Each of the submemory buffers is 
configured as 1 byte by 16K or 128K bits. 

The final element in the picture memory 
hierarchy is the ultra high speed cache memories 
(15 ns) in the individual OPE's. These should be 
configured to allow transfer of input or output 
blocks of 16-32 pixel data to the picture buffers 
during one clock cycle. 

Other types of memory are also needed for the 
operation of the array. Various levels of program 
store are anticipated. The overall control will 
be programmable and thus its master program re­
quires a control store. This master control pro­
gram has a counterpart at the individual OPE level. 
In addition to the cache picture memories, each OPE. 
will have its own control store for the intermedi­
ate storage of addresses and partial results re­
quiring larger words than the eight bits which are 
associated with data samples. This control store 
is similar to the VPE CSSM. 

212 

Homogeneous Array for Video Resampling 

To illustrate and help to unify the above 
concepts, consider the following particular exam­
ple problem. Can one perform real-time video re­
sampling to provide synthetic rotation and trans­
lation? What kind of array configuration would be 
needed? 

First, one needs two input buffers which 
operate in a ping-pong fashion--one receiving NTSC 
camera data (a sample point every 100 ns), the 
other providing data to an array of VPE's which 
perform the actual resampling. If a four-vector 
dot product requires 200 ns, then the actual in­
terpolation is done in 1.0 µs in each VPE. One 
might allow six 100 ns clock cycles to perform 
address calculations since (1) appropriate incre­
ment and test registers are part of a VPE's con­
trol unit, and (2) there is a memory address map­
per that accepts pixel addresses and returns the 
appropriate intensity data. The total resampling 
in one VPE thus would require 1.6 µsec and 16 such 
elements would operate in parallel. 

The homogeneous array approach is most appli­
cable for this problem. One would cycle the input 
memory every 100 ns and distribute the appropriate 
input image data to each of the 16 VPE's on a com­
mutator basis. The total picture buffer can be 
loaded so that each of the 16 intensity values of 
any contiguous block of 4x4 image data is con­
tained in a separate submemory. Therefore, they 
can all be accessed during ~ memory reference 
cycle. As a result, each 1.6 µs all VPE's can be 
loaded with the data needed for the resampling of 
the new pixel they are working on. The memory 
controller shares this total time among all 16 
elements giving each one 1/16 of the time to ac­
cess memory. This procedure is extremely well 
ordered and should cause no problems in imple­
mentation. All VPE's would be executing the same 
op code; furthermore, this redundancy is needed to 
achieve such high throughputs. The commutation 
technique would require that the VPE input buffers 
be "double buffered" to skew the data. As the 
resampled data is generated, it would be buffered 
by the scan line and then immediately displayed. 
Alternatively, it could be stored in an output 
picture memory similar to the input system. 

The above memory controller/commutator is an 
extension of the "bit switch" concept used in 
multiprocessor configurations [7}. Because of the 
overall uniformity of the problem and image data, 
however, control of the switch is provided through 
the initial programming of the commutator and 
memory accesses, which would be costly in time and 
hardware, are not left up to the individual VPE's. 
The individual elements "get a chance" at the 
main (expensive) memory when their time comes and 
can access any locations for which they have cal­
culated addresses. This type of overall control 
effectively solves the problem that 16 processors 
must all be coordinated and only 100 ns can be 
devoted to each for this purpose, Such high per­
formance requirements involving very large data 
volumes are common in image handling, particularly 
in the area of preprocessing; a fast, orderly 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

control system such as a commutator is most 
appropriate. 

It is worthwhile to note the performance of 
this system. For each new (resampled) pixel, the 
IAP must perform: 

20 multiplies, 15 ADDS 
4 multiplies, 4 Adds i 
2 increment 
2 test (branch) 

interpolation 

address calculation 

If all operations are treated as equivalent, 47 
operations are performed in 100 ns. Thus the 16 
VPE system is operating at 470 MIPS. If the mul­
tiply is equivalent to three ADD instructions, 
this figure becomes 950 MIPS. Furthermore, these 
figures do not count the usual overhead operations 
associated with the pixel address generation. 

The memory system, processing capability, and 
control described above have been evenly matched 
in throughput. Each subsystem is kept completely 
saturated at all times and the system overhead has 
been reduced to a minimum. Furthermore, the basic 
design concepts would allow this hardware to be 
reprogrammed to perform another completely differ­
ent task, for example, maximum likelihood 
classification. 

Acknowledgement 

The authors wish to thank Mro Ken Kadrmas, 
Information Analysis Branch, Data Systems Labora­
tory, NASA/MSFC, for his cooperation and helpful 
suggestions as technical monitor of this project. 

References 

[l) R. L. Lille strand and Ro R, Hoyt, "The Design 
of Advanced Digital Image Processing Systems," 
Photogrammetric Engineering, (October 1974), 
pp. 1201-1218. 

(2) G, R. Allen, et al, "The Design and Use of 
Special Purpose Processors for the Machine 
Processing of Remotely Sensed Data," Proc. 
Purdue Conference on Machine Processi~ 
Remotely Sensed Data, (October 1973), pp. 
lA-25 - lA-42. 

[3) "A Proposal to Grumman for an EOS Data Pro­
cessing System Study," Control Data Corpora­
tion, ADD503, (March 1974), p. 4-5. 

[4) s. s. Rifman, "Evaluation of Digitally Cor­
rected ERTS Imagery," Symp. on Management and 
Utilization of Remote Sensing Data, Sioux 
Falls, (1973), pp. 206-220. 

213 

[5) G. H. Barnes, et al, "The ILLIAC IV Computer," 
IEEE Trans. on Computers, (August 1968), 
pp. 746-757. 

[6) A. J. Evensen and J. L. Troy, "Introduction to 
the Architecture of a 288-Element PEPE," ~ 
Sagamore Computer Conference on Parallel Pro­
cessing, (August 1973), pp, 162-169. 

[7] W0 A, Wulf and C, G. Bell, "C.mmp--A Multi­
Mini-Processor," Proc. FJCC, (December 1972), 
pp. 765-777. 

[8) J. A, Rudolph, "A Production Implementation 
of an Associative Array Processor," ~ 
~. (December 1972), pp. 229-241. 

[9) F. Kriegler, et al, "Multivariate Interactive 
Digital Analysis System (MIDAS): A New Fast­
Multispectral Recognition System," Proc. 
Purdue Conference on Machine Processing of 
Remotely Sensed Data, (October 1973), 

(10] 

pp. 4B-51 - 4B-64. 

J. Gilbert, et al, "EOS Image Data Processing 
Sys tern Def ini ti on Study," NASA/GSFC Study 
Report, General Research Corp.,- (September 
1973), pp. 51-74. 

[11] W. R. Smith, et al, "AN/UYK-17 (XB-1) (V) 
Signal Processing Element Architecture," 
Communications Sciences Division, Naval 
Research Laboratory, NRL Report 7704, (June 
1974), 103 pp. 

[12] "SPS-81 Signal Processor: User's Manual," 
Signal Processing Systems, Inc., A008-
01Cl074, (1974). 

(13] "Macro Arithmetic Processor Systems: Pro­
grammer 1 s Reference Manual," CSP, Inc. , 
Document No, JB 6000-001-00, (May 1975), 

(14) "Introduction to the Hughes Modular Program­
mable Signal Processor," Hughes Aircraft 
Company, Report No. M75-09, (January 1975). 

[15] F, E. Heart, et al, "A New Minicomputer/ 
Multiprocessor for the ARPA Network," Proc. 
AFIPS NCC, (1973), pp. 529-537. 

[16] P. L. Neely and R. M. Brown, "A Digital Video 
Image System," Submitted for publication to 
IEEE Trans. Comput, 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

PARALLELISM IN Al PROBLEM SOLVING: 
A CASE STUDY OF HEARSAY II 

R. D. Fennell and V. R. Lesser 
Department of Computer Sciencel 

Carnegie-Mellon University 
Pittsburgh, Pennsylvania 15213 

SUMMARY 

This paper presents a design for the organization 

of knowledge-based AI problem-solving strategies which is 

felt to be particularly applicable for implementation on 

closely-coupled multiprocessor computer systems. The 

method of design is a result of formulating the problem­

solving organization in terms of the hypothesize-and-test 

paradigm for heuristic search, where the various 

hypothesizers and testers are represented as knowledge 

st>urces applicable to the task domain of the problem being 

solved. A knowledge source may be described as an agent 

that embodies the knowledge of a particular aspect of the 

problem domain and is useful in solving a problem from that 

domain by performing actions based on its knowledge so as 

to further the progress of the overall problem solution. The 

hypothesize-and-test paradigm provides the conceptual 

means of coordinating these various knowledge source 

activities by suggesting that it is the function of some 

knowledge sources to create hypotheses representing a 

possible (perhaps partial) solution state for the given 

problem. Hypotheses are created in a global data base; these 

are available for inspection by all knowledge sources. It is 

t~e responsibility of other knowledge sources to evaluate 

these hypotheses in light of their own knowledge of the task 

domain, and either accept or reject the hypotheses, or 

propose their own alternative hypotheses {by either 

modifying· the existing hypotheses or creating entirely new 

ones). 

The Hearsay II speech-undestanding system (HSll), 

which has been developed at Carnegie-Mellon University 

using the techniques for system organization described here, 

has provided a context for evaluating this system 

architecture. The HSII organization provides the facilities 

necessary for knowledge-source cooperation through the 

hypothesize-and-test paradigm to be carried out in a highly 

asynchronous and data-directed manner, where knowledge 

This research was supported in part by the Defense 
Advanced Research Projects Agency of the Office of the. 
Secretary of Defense {Contract F44620-73-C-0074) and 
monitored by the Air Force Office of Scientific Research. 

214 

sources are specified as independent processing entities 

capable of parallel execution; the activities of any given 

collection of such knowledge sources are coordinated by the 

hypothesize-and-test paradigm through the use of a shared 

global data. base called the blackboard. 

In specifying the blackboard as the primary means 

of interprocess communication, particular attention has been 

paid to resolving the data access synchronization problems 

and da.ta. integrit;y issues arising from the asynchronous data 

access patterns possible from the various independently 

executing parallel knowledge-source processes. A non­

preemptive data access allocation scheme was devised in 

which the units of allocation could be linearly ordered and, 

hence, allocated according to that ordering so as to avoid 

data deadlocks. The particular units of data allocation were 

chosen as being blackboard nodes (hypotheses and links), 

these nodes also representing the units of data creation 

within the. blackboard. Since the blackboard data base is a 

dynamically expanding structure, the mechanism of data 

access synchronization according to existing data objects is 

not sufficient to provide the access synchronization required 

when multiple knowledge sources are capable of 

simultaneously hypothesizing {creating) identical hypotheses 

on the blackboard without being required to link these 

hypotheses to previously existing data nodes. Assuming it is 

undesirable to have identical (duplicate) nodes in the 

blackboard· (as is the case in the HSU organization, since one 

of the design goals was to minimize the duplication of 

information within the blackboard so as to minimize the 

duplication of proce·ssing which would result from such 

replicated information), a mechanism had to be provided 

whereby a knowledge source could acquire access to a 

section of the blackeoard which did not yet exist. The region 

locking mechanism satisfies these requirements by viewing 

the blackboard as an abstract data space in which access 

rights to abstract regions could be granted without regard to 

the actual data content of these regions. However, since both 

the node accessing mechanism and the region accessing 

mechanism have the capability of allocating access rights to 

essentially the same data structure, the two forms of data 

access allocation must be closely coordinated so as to avoid 

data deadlocking and data access race conditions. 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

Another area of concern relating to the use of a 

shared blackboard.,.like data facility relates to the 

assumptions made by the various executing knowledge 

sources concerning issues of data integrity and localized data 

contexts. Since the blackboard is intended to represent only 

the most current global status of the problem solution state, 

mechanisms were introduced to allow individual knowledge 

sources to retain recent histories of modifications made to 

the dynamic blackboard structure in the form of loco.I 

contexts. Knowledge sources are also permitted to mark (to.g) 

arbitrary fields (or nodes or regions) of the blackboard itself 

(without requiring continuing access rights to the field being 

tagged) so as to be able to monitor (in a non-interfering way) 

those locations for subsequent changes; the knowledge 

source will then be sent a messo.ge should any modification be 

performed upon a tagged field. Local contexts provide 

knowledge sources with the ability to create a local data 

state which reflects the net effects of data events which 

have occurred in the data base since the time of the 

knowledge source activation. Combined with the blackboard 

data tagging capabilities, local contexts also provide a means 

by which knowledge sources can execute quite independently 

of any other. concurrently executing knowledge sources (and 

without interfering with the execution progress of any of 

these processes). When a knowledge source is about to 

modify the blackboard and has acquired exclusive access 

rights to the necessary data fields, it can request the receipt 

of any tagging messages that may have been sent to it; by 

interrogating its local context for the effects of these 

changes, a revo.lido.tion check may be performed on the 

advisability of proceeding with the intended blackboard 

modifications. 

In an attempt to impr.ove the problem-solving 

efficiency of a multiprocessor implementation of the .system 

by increasing the amount of potential parallelism from 

knowledge source activity, the logical functions of knowledge 

source execution are split into separate processing entities 

(called precondition and knowledge-source processes). A 

precondition process is responsible for monitoring and 

accumulating blackboard data events which might be of 

interest to the knowledge source associated with the 

precondition; when the appropriate data conditions for the 

activation of the knowledge source exist in the blackboard, 

the precondition instantiates a process based on its 

associated knowledge source, giving it the data context in 

which the precondition was satisfied. Two primary 

215 

mechanisms are provided to support the asynchronous form 

of precondition and knowledge source interaction that results 

from allowing preconditions and knowledge-source processes 

to execute concurrently. The first of these mechanisms 

relates to the way preconditions become activated; the 

second responds to the problems involved in having to 

schedule the many processes that may be capable of running 

so as to best serve the objectives of efficient problem­

solving. 

The process activity of HSII is intended to be very 

do.to.-directed in nature, basing the decisions as to whether a 

knowledge source action can be performed on the dynamic 

data state represented in the blackboard data base. It is the 

responsibility of a precondition to test this data state for 

conditions which would warrant the instantiation of the 

knowledge source associated with the precondition. The 

activation of the precondition itself is also data-directed, 

being based on monitoring for the more primitive blackboard 

modification operations which knowledge-source processes 

may invoke to effect the results of their computation. This 

blackboard monitoring is implemented· by having each 

blackboard modification operator be responsible for the 

activation of preconditions which are monitoring for data 

events being caused ·by the particular modification operation. 

While precondition activity might be requested as 

the result of a blackboard monitoring operation, and 

knowledge source activity might be requested as a result of 

precondition satisfaction, some care mus·t be exercised in 

allocating processing power lo these possible sources of 

activity. In particular, ii is likely that there will be many 

more processes capable of executing or requesting computing 

resources th.an can be serviced within the constraints of a 

reasonable problem solution lime. Even if there is not an 

excess of requested processing activity, system performance 

can often be improved by the use of a goo.I-directed 

scheduler who is responsible for allocating processing 

resources so as to execute those processes first which can 

best promote the progress of the overall problem solution. 

The process evaluation functions used within the goal­

directed scheduler are based on o.ttention focusing 

po.ro.meters associated with the various components of the 

blackboard data base. Policy knowledge-sources are used in 

calculating these attention focusing parameters based on the 

occurrence of various important blackboard data evenis; such 

policy knowledge-sources are also responsible for 

propagating the effects of such events throughout the 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

blackboard, so that proper attention is paid to these events 

and processing power may be allocated accordingly. 

In order to indicate the nature of the performance 

of the HSII organization when run· in a closely-coupled 

multiprocessor environment, a simulation system was 

imbedded into the multiprocess implementation of HSU on the 

DEC PDP-10. While the results of the simulation are 

admittedly based on a small (but computationally expensive) 

set of sample points, they have generally indicated the 

applicability of this system organization to such a hardware 

architecture. Given the knowledge-based decomposition of a 

problem-solving organization as prescribed by the HSU 

structure, effective parallelism factors of four to six were 

realized even with a relatively small set of precondition and 

knowledge-source processes, with indications that up to 

twelve processors could be totally utilized, given appropriate 

usage (or structuring) of the data access synchronization 

mechanisms. Experiments thus far have indicated that careful 

use of the locking structure is required in order to approach 

the optimal utilization of any given processor configuration 

(unless there exist so many ready processes that the number 

of suspended processes does not matter much, as is the case 

in configurations of four or fewer processors). An extended 

use of non-interfering tagging seems to be indicated, along 

with a reduction. in the use of region-locking (perhaps 

substituting region-examining or node-locking wherever 

possible). Measurements were also made of various primitive 

operations at the systems level which are required in order 

to implement the data-directed multiprocess structure of HSII. 

While all these results are of a preliminary nature (and hence 

are subject to variation as various components of the given 

implementation are improved in their relative efficiencies), 

they seem to indicate that the HSII organization is indeed 

applicable for efficient use in a closely-coupled 

multiprocessor environment. 

SELECTED REFERENCES 

Baker, J. (1974). "The DRAGON System -- An Overview," in 
Proc. IEEE Symp. Speech Recognition, Carnegie-Mellon 
Univ., Pittsburgh, Pa., April 1974, pp. 22-26; also 
appeared in IEEE Trans. on Acoustics, Speech, and 
Signal Processing, ASSP-23, 1, pp. 24-29 (Feb. 1975). 

Bell, C. G., R. C. Chen, S. H. Fuller, J .. Grason, S. Rege, and D. P. 
Siewiorek (1973). "The Architecture and Application 
of Computer Modules: A Set of Components for 
Digital Systems Design," COMPCON 73, San Francisco, 
Calif. 

216 

Bell, C. G., W. Broadley, W. Wulf, A. Newell, et al. (1971). 
"C.mmp: Th!! CMU Multi-mini-processor Computer," 
Tech. Rep., Comp. Sci. Dept.,. Carnegie-Mellon Univ., 
Pittsburgh, Pa. 

Coffman, E. G., M. J. Elphick and A. Shoshani (197 l). "System 
Deadlocks," Computing Surveys 3, 2, pp. 67-78. 

Erman, L. D., R. D. Fennell, V. R. Lesser and D. R. Reddy (1973). 
"System Organizations for Speech Understanding: 
Implications of Network and Multiprocessor Computer 
Architectures for Al," Proc. 3rd Inter. Joint Cont. on 
Artificial Intel., Stanford, Calif., pp. 194-199. 

Er man, L. D. (197 4). "An Environment and System for Machine 
Understanding of Connected Speech," (Ph.D. Thesis), 
Comp. Sci. Dept., Stanford Univ., Stanford, Calif. 

Erman, L. D., and V. R. Lesser (1975). "A Multi-Level 
Organization for Problem Solving Using Many, Diverse,. 
Cooperating Sources of Knowledge," Tech. Rep., Comp. 
Sci. Dept., Carnegie-Mellon Univ., Pittsburgh, Pa. 

Feldman, J. A., and P. D. Rovner (1969). "An Algol-based 
Associative Language," Comm. ACM 12, 8, pp. 439-
449. 

Feldman, J. A., et ;;ii. (1972). "Recent Developments in Sail -­
An Algol-based Language for Artificial Intelligence," 
Proc. FJCC. 

Fennell, R. D.(1975). "Multiprocess Software Architecture for 
A.I. Problem Solving," Tech. Rep.(Ph.D. Thesis), Comp. 
Sci. Dept., Carnegie-Mellon Univ., Pittsburgh, Pa. 

Heart, F. E., S. M. Ornstein, W. R. Growler and W. B. Barker 
(1973). "A New Minicomputer /Multiprocessor for the 
ARPA Network," Proc. AFIPS, NDD42, pp. 529-537. 

Lesser, V. R. (1972). "Dynamic Control Structures and Their 
Use in Emulation," Tech. Rep. CS-309 (Ph.D. Thesis), 
Comp. Sci. Dept., Stanford, Univ., Stanford, Calif. 

Lesser, V. R., R. D. Fennell, L. D. Erman and D.R. Reddy (1974). 
"Organization of the Hearsay II Speech Linders! anding 
System," in Proc. IEEE Symp. Speech Recognition, 
Carnegie-Mellon Univ., Pittsburgh, Pa., April 1974; also 
appeared in IEEE· Trans. on Acoustics, Speech, and 
Signal Processing, ASSP-23, 1, pp. 11-23 (Feb. 1975). 

Lesser, V. R. (1975). "Parallel Processing in Speech 
Understanding Systems: A Survey of Design 
Problems," in D. R. Reddy (ed.) Invited Papers of the 
IEEE Symp. on Speech Recognition, April 1974, 
Pittsburgh, Pa., Academic Press. 

Newell, A. (1973). "Production Systems: Models of Control 
Structures," in W. C. Chase (ed.) Visual Information 
Processing, Academic Press, pp. 463-526. 

Ohlander, R. B. (1975). "Analysis of Natural Scenes," Tech. 
Rep. (Ph.D. Thesis), Carnegie~Mellon Univ., Pittsburgh, 
Pa. 

Swinehart, D. and R Sproull (1971). SAIL. Stanford AI Proj. 
Operating Note 57.2, Stanford Univ., Stanford, Calif. 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

DATA FLOW LANGUAGES 

James Rumbaugh 
General Electric Research Center 

Schenectady, New York 12345 

Abstract -- The sequencing of data 
flow instruction execution depends only 
on the availability of required operands. 
Because the execution of each instruction 
is independent, concurrency is easily 
expressed in data flow notation. 

Data Flow Programs 

Data flow languages [1,2] are pro­
gramming notations in which data dependen­
cies are represented directly by program 
structure. A data flow program is a 
graph of functional operators connected 
by data links. Each type of operator 
has input and output links, and specifies 
a function (such as addition, multiplica­
tion, or comparison) from data values on 
input links to data values on output links. 
All operations are local; operators have 
no side-effects. Each data link connects 
the output of one operator to the input 
of another operator; links specify the 
data dependencies of a program. An en­
tire data flow program defines a function 
which is the composition of the functions 
specified by the operators. (Fig. 1) 

Tokens 

During the execution of a program, 
data values reside on certain data links 
at any moment. A value on a link, called 
a token, represents an intermediate re­
sult of a computation which has not yet 
been used. Tokens can contain values 
from the domains of the primitive func­
tions composing the instruction set, but 
each value is independent of values that 
are concurrently present on other links. 
There are no pointers, references, shared 
cells, or L-values in the data flow lan­
guage; each value is accessible to only 
a single operator. 

Instruction Execution 

The execution of all operators is 
concurrent and independent. An operator 
becomes enabled (able to execute) when 
tokens are present on all its input linka. 
The operator then swallows up its input 
values and computes the output values as 
functions of the input values. The out­
put values are emitted onto the output 
links and the operator returns to the 
inactive state. Operator execution 
depends only on information local to an 

217 

operator; there are no global variables 
or side-effects. Operators have no 
internal memory between executions. 
(Fig. 2) 

Structures 

Data flow structures are lists of 
components, which can be primitive values 
or simpler structures (no recursive 
structures are allowed) • Data flow 
structures can be represented as trees 
with ordered branches whose leaves are 
primitive values. Data flow tokens can 
contain structures as values. Each 
structure is independent of all other 
coexisting structures. Structure opera­
tions include composition and decomposi­
tion of structures, extraction of compon­
ents, and modification of components. 
(Fig. 3) 

Control Operators 

Functional operators are sufficient 
to build expression trees (and graphs). 
The Switch and Union operators pe~mit 
the construction of conditionals and 
loops. A Switch accepts an arbitrary 
number of switched inputs of arbitrary 
types and one control input of boolean 
type. It has two sets of outputs, desig­
nated true and false outputs, correspon­
ding to the set of switched inputs. 
When tokens are present on all its input 
links,the·Switch operator copies each 
switched input value onto the correspon­
ding output link according to the value 
of the control token. 

The Union operator is the inverse of 
the Switch. It has two sets of input 
links and one set of output links. When 
a token appears on an input link, its 
value is copied onto the corresponding 
output link. (Fig. 4) 

A conditional has a Switch at its 
head, two arms, and a Union at its foot. 
Each arm is a data flow program which is 
disjoint from the other arm and the rest 
of the program. All values for the arms 
enter or leave through the Switch or 
Union operators. A loop has a Union at 
its head and a Switch at its foot. The 
body of a loop must be disjoint from the 
rest of the program and all values must 
enter the body through the Union opera­
tor. (Fig. 5) 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

Program Syntax 

Good behavior of programs can be 
guaranteed by simple syntax requirements. 
Well-formed data flow programs are deter­
minate and deadlock-free. They are defined 
recursively as one of the following: an 
operator, an acyclic graph of data flow 
programs, a conditional whose arms are 
·disjoint data flow programs, or a loop 
whose body is a data flow program. 
Such programs define partial functions 
from input values to output values (total 
functions if the programs always termi­
nate). 

Procedu:i:::es 

Any data flow program (without tokens) 
can be considered to be a procedure, 
which can be held as a token value. Proc­
edures can be restricted to have a single 
inp~t and a single output link without 
loss of generality, since input or output 
values can be structures. Procedures can 
be copied and passed as values. Proce­
dures are called using the Apply operator, 
which requires a procedure-valued input 
and an arbitrary input as the argument. 
The Apply operator swallows its input 
values, places the argument value on the 
input link of the procedure, and allows 
the procedure to execute within the Apply 
operator. When the procedure execution 
terminates, the procedure is discarded 
and the result value is emitted by the 
Apply operator as output. Alternatively, 
the procedure execution can be regarded 
as occurring outside the Apply operator, 
in parallel with the execution of the 
calling procedure. Each instance.·of 
procedure execution, called a procedure 
activation, contains a return pointer to 

218 

indicate the destination of the result. 
Because an activation may in turn 
create other subordinate activations, 
the state of execution at any time is a 
tree of procedure activations. The root 
of the tree is created in response to a 
request external to the model. 

In a data flow program, each proce­
dure activation, active operator, and 
data value is independent of all concur­
rent activations, operators, and values. 
Operations can therefore be performed 
concurrently without interference. In 
a well-formed program, the sequence of 
execution of parallel operators does not 
affect the eventual result. Because 
each operator executes as soon as its 
required operands are available, data 
flow notation does not impose arbitrary 
sequencing constraints on an algorithm. 

Several independent data flow models 
have been developed, but they are all 
similar to the model described here. 
Some models have been used as the bases 
for highly parallel machines [3,4,5]. 

References 

[l] James Rumbaugh, A Parallel Asynchron­
ous Computer Architecture for Data 
Flow Programs, M. I. T. Project MAC, 
TR-150, (May 1975), 319 pp. 

[2] Jack B. Dennis, "First Version of a 
Data-Flow Procedure Language," 
M. I. T. Project MAC, Computation 
Structures Group Memo 93-1, (Aug 
1974). 

[3J James Rumbaugh, "A Data Flow Multi­
processor," these proceedings. 

[4] Jack B. Dennis, "Packet Communica-
tion Architecture," these proceedings. 

[ 5] David P. Misunas, "Structure Proc­
essing in a Data-Flow Computer", 
these proceedings. 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

Fig. 1 

Data Flow Program 

3.1'/- -7 

Fig. 3 

Data Flow Structure 

Fi.g. 5 

Conditional 

® 0 

Switch 

Fig. 6 

Loop 

219 

® 
"before" "after" 

Fig. 2 

Execution of an Add Operator 

Fig. 4 union 

Control Operators 

Fig. 7 

Activation Tree 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

A DATA FLOW MULTIPROCESSOR 

James Rumbaugh 
General Electric Research Center 

Schenectady, New York 12345 

Abstract -- The Data Flow Multiproc­
essor is a network of independent modules 
which execute data flow programs. Modules 
communicate solely by passing asynchronous 
messages. The machine contains extensive 
concurrency. 

Major Modules 

The Data Flow Multiprocessor [l.l, 
shown in Fig. 1, executes programs ex­
pressed in data flow notation [2]. The 
machine is composed of several asynchron­
ous major modules: Each of the activation 
processors holds and executes a single 
procedure activation. The scheduler mod­
ule coordinates the processors and assigns 
activations to processors. The structure 
memory holds data structures too large to 
fit in activation processors. The struc­
ture controllers operate on structures for 
the processors. The program memory holds 
procedures which can be called. The swap 
memory holds procedure activations which 
are temporarily dormant. The swap network 
transfers procedure activations between 
swap and program memories and activation 
processors. The peripheral processor 
connects the machine to the outside world. 

Each major module is composed of 
smaller basic modules. Each basic module 
is an asynchronous finite state machine 
which executes concurrently with and in­
dependently of all other modules. Modules 
interact by sending messages over one-way 
asynchronous communication channels con­
necting pairs of modules. The machine 
contains no global clocks. The machine 
description is very clean, because the 
observable effects of a module are limited 
to the sequences of messages it transmits. 

Activation Processor 

Activation processors, shown in Fig. 
2, perform the actual computation of pro­
grams. Each processor contains the in­
structions and data of one procedure acti­
vation. Concurrent activations of a sin­
gle procedure are independent. A proces­
sor comprises a local memory, an execution 
pipeline, and an activity counter. 

Local Memory 

The local memory contains instructions, 
data, and enabling counts for an activa­
tion. Each data flow operator is coded as 

one instruction. An instruction contains 
an opcode, the addresses of the operands 
and results, and the addresses of the 
successor instructions (those instructions 
that use the results. A data flow token 
is coded as a data value and an enabling 
count. The enabling count equals the num­
ber of missing operands for the correspon­
ding instruction. The count is initially 
equal to the total number of operands re­
quired by an instruction; the count is 
decremented as each operand is stored in 
memory. When it becomes zero, the instruc­
tion is enabled. For example, the enab­
ling count of a binary instruction would 
initially be two. 

Execution Pipeline 

The execution pipeline executes data 
flow instructions. The modules of the 
pipeline are organized into a circle, so 
that an instruction can initiate the exe­
cution of its successors. Each pipeline 
module performs one stage in the execution 
of an instruction. The modules are the 
activity list, the decoder, a set of func­
tional units, and the updater. 

The activity list holds the addresses 
of enabled instructions waiting their 
turns at execution. The decoder pulls the 
address of an enabled instruction off the 
activity list, obtains the instruction and 
its operand values from local memory, and 
forms the information into an instruction 
packet which is directed to the appropri­
ate functional unit for execution. There 
is a functional unit for each type of data 
flow operator (one unit might perform 
several related operations, such as addi­
tion and subtraction). All the functional 
units are connected in parallel and exe­
cute independently. When it is free, a 
functional unit accepts an instruction 
packet from its input channel and performs 
the indicated computation. The result, 
together with the addresses of the result 
and the successor instruction, are formed 
into a result packet which is sent to the 
updater. The updater accepts result pac­
kets from all the functional units via an 
arbiter. When it receives a result packet, 
the updater stores the result value in 
local memory and decrements the enabling 
count of the successor instruction. If 
the enabling count remains positive, one 
or more operand values are still missing, 
so the updater goes on; if the enabling 
count becomes zero, then all required oper­
ands are present, so the updater resets 

220 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

the enabling count to its initial value 
and places the address of the instruction 
on the activity list. 

Because concurrently enabled data 
flow operators are independent, concurrent 
activity in different pipeline modules is 
independent and need not be synchronized. 
A module will not write a message into a 
communication channel which is full, but 
this can be determined on a local basis 
by the module. Stages of instruction 
execution can be overlapped and the execu­
tion of slow instructions need not delay 
the execution of faster instructions. 
Activation processors therefore will exe­
cute programs very efficiently. 

Each processor contains two function­
al units which lead outside the processor: 
The call unit sends procedure call requests 
to the scheduler and gets the results. 
The structure unit sends structure opera­
tion requests to a structure controller. 
Because these operations are correctly 
performed by the external modules, the 
"hole" in the pipeline is invisible to the 
rest of the processor. 

Activity Counter 

The activity counter does not affect 
instruction execution, but rather monitors 
the processor status for the benefit of 
the scheduler. The activity count equals 
the number of active pipeline modules or 
channels. The count is adjusted as activ­
ity is gained or lost. For example, a 
binary instruction with a single result 
loses one activity. If the count becomes 
zero, no pipeline module is active; unless 
the activation has terminated, it must be 
waiting for the return of a procedure 
call. Since an activation can remain 
dormant for an indefinite time, the 
scheduler can transfer the contents of a 
dormant activation's local memory to swap 
memory and assign the processor to another 
activation. When the activation becomes 
active again, it is swapped back into an­
other dormant processor. 

Structure Management 

Structure Representation 

Because local memories are limited 
in size, large data structures are stored 
in structure memory and represented with­
in processors by their addresses in 
structure memory. Although data flow 
structures are conceptually unshared, 
structures are represented in memory as 
acyclic graphs in which common substruc­
tures are sometimes shared. However, the 
structure controllers simulate unshared 
structures for the processors. Each 

221 

level of a structure, called a node, is 
stored as a contiguous vector of compon­
ents: primitive values are represented 
directly, while substructures are repre­
sented by pointers to other nodes. Each 
node also has a reference count equal to 
the number of pointers referencing it in 
processors and in other nodes. The ref­
erence count is adjusted as operations 
change the number of pointers to a node. 
If its reference count becomes zero, a 
node is inaccessible and can be dealloca­
ted. Because data flow structures are 
acyclic, garbage collection is unneces­
sary. 

Structure Controllers 

The structure controllers prevent 
structure operations from causing side­
effects. Read-only operations (such as 
extraction of components and structure 
length testing) are performed by moving 
pointers and adjusting reference counts. 
New structures (such as those formed by 
joining substructures) are created in 
free storage of structure memory. Only 
Alter operations (in which the value of 
a component is changed to yield a new 
structure) are affected by concurrent 
structure node references. If the ref­
erence count of a node is one, then the 
node is accessible only to the Alter 
operator, so it can be updated in place 
without causing a side-effect. If the 
reference count exceeds one, then the 
structure node is shared, and the node 
must first be copied before being up­
dated. Note that only the top level of 
a shared structure need be copied in a 
single Alter operation. 

Structure Cache 

Because many structures are accessed 
sequentially, efficiency of structure 
operations can be greatly improved by 
providing each activation processor with 
a structure cache. Each cache would 
hold several pages from currently acces­
sible structures. A page would be load­
ed from structure memory in a single 
operation. Many sequential structure 
operations could then be performed for 
every structure memory access. Because 
data flow structures are independent, 
modifications to structure pages could 
be done immediately in the cache, without 
need for immediate write-through to 
structure memory or interlocks among 
caches, as are required on conventional 
multiprocessors. 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

Scheduler 

The scheduler creates, maintains, and 
destroys procedure activations and assigns 
them to processors for execution. Each 
activation is assigned a unique identi­
fier, the activation pointer, when it is 
first created. The scheduler maintains 
three tables: The call list holds proce­
dure call requests which are waiting to 
be processed. The processor table iden­
tifies the activations currently resident 
in processors. The activation table 
identifies the caller and calling location 
of each activation. 

When the schedule~ receives a call 
request from a processor, it appends the 
caller's activation pointer to the re­
quest, which it then places in the call 
list to wait its turn. When a processor 
becomes free through the termination or 
swapping of an activation, the first entry 
is removed from the call list and assigned 
an activation pointer. The caller and 
calling location are stored in the acti­
vation table, the program is read into the 
processor from program memory, and the 
argument value is fed into the processor. 
The processor is then free to execute. 

When an activation terminates, the 
processor is deallocated, the name of the 
caller is retrieved from the activation 
table, and the processor table is examined 
to see if the caller is already in a 
processor. If so, the result is returned 
to the caller; if not, the caller is 
brought into the newly vacated processor 
from swap memory and reactivated. 

222 

Peripheral Processor 

The peripheral processor is the 
interface with the outside world. On 
the inside, it resembles an activation 
processor. It can access structure mem­
ory and make procedure calls. Requests 
to the peripheral processor cause the 
creation of root nodes of the activation 
tree. 

Formal Description 

In [l] a formal specification of the 
Data Flow Multiprocessor is given as a 
set of simple programs which define the 
machine modules as finite state machines. 
A proof is given that the machine cor­
rectly implements the data flow language 
described there. The machine is shown 
to execute well-formed data flow programs 
without danger of deadlocks or race con­
ditions. 

Conclusions 

The Data Flow Multiprocessor is 
simple to understand and modify because 
it is modular and asynchronous. Because 
data flow operations are independent 
and have no side-effects, a high degree 
of pipelining is possible for efficient 
hardware utilization. The isolation of 
procedure activations in separate proc­
essors simplifies the processor-memory 
interconnection problem. The machine 
should be suitable for LSI implementation: 
modules are self-contained with few 
interfaces and the organization is un­
complicated. 

Because data flow notation contains 
no side-effects, the basic machine as 
described here cannot represent non­
determinate computations (such as I/O 
and interprocess communication) . Several 
methods of extending the model to include 
non-determinate operations are possible, 
but further work is needed. 

References 

[l] James Rumbaugh, A Parallel Asynchron­
ous Computer Architecture for Data 
Flow Programs, M. I. T. Project MAC, 
TR-150, (May 1975) , 319 pp. 

[2] James Rumbaugh, "Data Flow Lan­
guages," these proceedings. 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

l Activation 
Processor 1 

L- ... 
~ 

Swap Activation 
Memory Processor 2 7 

Swap 
I/ .... 
~ --,. 

Net- Activation !scheduler 
work Processor n 7 

Program 
mem Memory logic jE- 7 ory 

7 ~ 

\ \ \ ~ 
Structure Structure Peripheral 
Controller Controller IE- ~ Processor 

Bulk Data Transfer 2 1 

If' 

t> Memory Access ~ -0 w 
To Outside 

7 Control Flow Structure Memory World 

Fig. 1. Structure of the Data Flow Multiprocessor 

Local Memory Control Units Functional Units ,--------- ----, 

w 

I R I 

I f'-I decoder I 
---., linstr- .---

I 
µct ion I Struc 

~ ture 

I 
memory If\ '3tr- I Con-

pct-
, ___ 

,x .-L ~ I"" troll 

I µre I 
R l.init ,...±.. I Swap 

~'"""" 
l<J- activ- L.-r-r-

data ity add mult bopy I Net- !<...:- 1""7 memory 
~ 

... 
ork list le all I 

I ~ If\" !unit proc. 

I 
'--r- '--...- T""'T""" v I calls 

I j=nabl- ~~I 

I 
ing ~ I 
count '--- ~ I Sched - update:rt.-I memory i<J- ~ I 

uler 

I w !;" 
I" I I '1t \It \lt 

I I ..... . . ~ I --;? Acti Vl ty Counter I statu 

er 

s 

L ______ _ --' 
Fig. 2. Activation Processor 

223 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

PACKET COMMUNICATION ARCHITECTURE 

Jack B. Dennis 
Project MAC 

Massachusetts Institute of Technology 
Cambridge, Massachusetts 

Abstract -- Packet Communication Architec­
ture is the structuring of data processing sys­
tems as collections of physical units that commu­
nicate only by sending information packets of 
fixed size, using an asynchronous protocol. Each 
unit is' designed so it never has to wait for a 
response to a packet it has transmitted to 
another unit while other packets are waiting for 
its attention. Packets are routed between sec­
tions of a system by networks of units arranged 
to sort many packets concurrently according to 
their destination. In this way, it is possible 
to arrange that system units are heavily used 
provided concurrency in the task to be performed 
can be exploited. The packet communication prin­
ciple is especially attractive for data flow 
processors since the execution of data flow 
programs readily separates into many independent 
computational events. In this paper we show 
how packet communication can be used in the arch­
itecture of memory systems capable of processing 
many independent memory transactions concurrently 
and having hierarchical structure. The behavior 
of these memory systems is prescribed by a formal 
memory model appropriate to a computer system 
for data flow programs. 

Introduction 

With the advent of LSI technology, the 
main direction of further advance in the power 
of large computer systems is through exploita­
tion of parallelism. Attempts to achieve paral­
lism in array processors, associative processors 
and vector or pipeline machines have succeeded 
only with the sacrifice of programmability. 
These large parallel machines all require that 
high levels of local parallelism be expressed in 
program formats that retain the notion of sequen­
tial control flow. Since most algorithms do not 
naturally exhibit local parallelism in the fonn 
expected by these machines, intricate data repre­
sentations and convoluted algorithms must be de­
signed if the potential of the machine is to be 
approached. 

The alternative is to design machines that can 
exploit the global parallelism in programs, that 
is, to take advantage of opportunities to execute 
unrelated parts of a program concurrently. Con­
ventional sequential machine languages are unsui­
ted to this end because identification of concur­
rently executable program parts is a task of 
great difficulty. Data flow program representa­
tion are of more interest, for only essential se­
quencing relationships among computational events 
are indicated. An instruction in a data flow 
program is enabled for execution by the arrival 
of its operand values -- there is no separate no­
tion of control flow, and where there is no data 
dependence between program parts, the parts are 

224 

implicitly available for parallel execution. 

Several designs for data processing systems 
have been developed that can achieve highly paral­
lel operation by exploiting the global concurrency 
of programs represented in data flow form [ 1-6 ]. 
Two of these designs [3 ,6] are able to execute 
programs expressed in a conventional high-level 
language that exceeds Algol 60 in generality. These 
systems consist of units that operate independently 
and interact only by transmitting information pac­
kets over channels that connect pairs of units. 
The units th:iemselves may have similar structure 
so the system as a whole has a hierarchical struc­
ture that we call packet communication architec­
ture. 
~~ In this paper we discuss the principles of 
packet communication architecture, and illustrate 
their application ID the organization of memory 
systems for highly concurrent operation. 

The Packet Communication Principle 

Suppose the data processing part P of the 
computer in Figure 1 is organized so many indep­
endent computational activities may be carried 
forward concurrently -- as would be true if P 
contains many independent sequential processors, 
or if P is designed to exploit the inherent 
parallelism of data flow programs. Activities in 
P will generate many independent requests to the 
memory system M for storage or retrieval of infor­
mation. It is not essential that M respond imme­
diately to these requests because, if P is properly 
organized, its resources (registers, instruction 
decoders, functional units) may be applied to 
other activities while some activities are held 
up by pending memory transactions. Thus the mem­
ory system need not be designed to complete one 
transaction before beginning the processing of 
other transactions. In fact, we will see how this 
freedom can be exploited in memory systems organ­
ized to process many transactions concurrently 
and keep their constituent units heavily utilized. 

This is the first principle of packet commu­
nication architecture -- designing each part of 
a system so many activities are concurrent, and 
reasonable delays in information transmission be­
tween parts may be incurred without important 
loss of performance, This tolerance of delay 
permits a radically different approach to the 
design of switching-mechanisms that interconnect 
sections of a computer system. 

Figure 1. Computer system. 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

Instruction { 
Cells 

Pocket 
Routing 
Network 

} 
Functional 
Units 

Figure 2. Application of a routing network. 

In a system designed to profit from this prin­
ciple, the response to a request may arrive only 
after many additional requests have been sent. 
In general the responses will occur in a differ­
ent order than the requests raising the problem 
of how the requesting system part can relate each 
response to the request that generated it. In 
many cases it is possible to avoid the problem by 
including sufficient information in the response 
that the processing of it is determined without 
relating it to a specific request. This princi­
ple is followed in the several proposed data flow 
architectures and leads to some elegant data pro­
cessing structures. 

A function frequent1y required in a computer 
system is a mechanism to direct requests from one 
system part to the appropriate specialized unit 
of the system according to the nature of the re­
quest. Two examples are: an instruction and its 
operands must be sent to an appropriate functional 
unit for execution; a request by a processing 
unit for the contents of a specified memory loca­
tion must be sent to the appropriate memory module. 
Figure 2 illustrates the former example in the 
case of a data flow processor (1 ]. Operands 
arrive at units called Instruction Cells to form 
Operation Packets which must be transmitted to 
the appropriate Functional Units. Some form of 
switching mechanism must provide a path for Opera­
tion Packets between each Instruction Cell and 
each Functional Unit. Because attaining minimum 
delay is a less crucial objective in a packet 
communication system than achieving high concur­
rency, Routing Networks such as shown in Figure 3 
are an attractive form of switching mechanism. 

(a) 

• • • •• • 

(b) 

• 

----~_hi 

~ 
• • ••• 

=»-<L----~ 
~- Arbitration ~ Swich 
~Unit ~Unit 

Figure 3. Routing network structure. 

225 

p 

Retrieval Command Store Un id 
Packets Packets Packets Pockets 

~ 
cmd stare 

Memory System 

.!'.!.!: unid 

Figure 4. A memory system and its ports. 

A routing network is itself a packet communi­
cation system built of two basic kinds of modules: 
Arbitration Units and Switch Units. An Arbitra­
tion Unit transmits packets arriving on either 
input channel to its output channel. A Switch 
Unit sends arriving packets over the output chan­
nel determined by some property of the packet. 

If the Arbitration Units and Switch Units 
are grouped as in Figure 3a, there is a single 
channel through which all packets must fl©w -­
probably a bottleneck. Alternatively inter­
leaving ranks of Arbitration Units and Switch 
Units as indicated in Figure 3b provides for con­
current flow of packets over disjoint paths. 

A routing network that has few input ports 
and therefore consists mostly of Switch Units ' 
is called a Distribution Network, and has the 
eff:ct of sorting arriving packets according to 
their contents. In Figure 2 the routing net­
work would sort operation packets according to 
the operation codes of the instructions they con­
tain. A routing network that has few output 
ports, and consists mostly of Arbitration Units 
is called an Arbitration Network. 

Packet Corrnnunication Memory Systems 

As an example of packet communication archi­
tecture, consider the memory system shown in Fig­
ure 4 which is connected to a processing system 
P by four channels. Command Packets sent to the 
memory system at port cmd are requests for mem­
ory transactions, and specify the kind of trans­
action to be performed. Items to be stored are 
presented as Store Packets at port ~. and 
items retrieved from storage are delivered as 
Retrieval Packets at port ~· The role of port 
unid will be explained later. 

For further discussion of the operation of 
this memory system, we must define the desired 
behavior -- the nature of the information stored, 
and how the contents of Retrieval Packets depends 
on the contents of Store Packets previously sent 
to the memory system. A precise specification 
of behavior may take the form of an abstract 
memory model consisting of a domain of values and 
a specification of each transaction in terms of 
the sequences of packets passing the ports of the 
memory system. We give an informal outline of 
such a memory model. 

For simplicity, the value domain V is 
V = E + [V x V] 

and is the union of pairs consisting of all order­
ed pairs of elements of V. This domain is recur­
sively defined, and consists of all finite binary 
trees having elementary values at their leaves. 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

Our memory model must deal with the reten­
tion of information by the memorY system. We 
use a domain of memory states which are acyclic 
directed graphs called state graphs. Each node 
of a state graph represents a value (binary tree) 
in V in the obvious way. 

The transactions of this memory model are so 
specified that no outgoing arc is added or deleted 
from a node already present in the state graph, 
and hence the value represented by a node never 

.changes. A memory system having this property 
is attractive for applicative languages such as 
pure Lisp and various determinate data flow lang­
uages. However, such a memorY model is incomplete 
in that it does not support the updating of a 
shared data base, for example. The proper way to 
generalize this memory.model is a matter of cur­
rent research. 

The basis of a memory state is a subset of 
the nodes of a state graph that includes every 
root node of the graph (Thus each node and arc of 
a state graph is accessible over a directed path 
from some basis node). Each basis node represents 
a value in terms of which the precessing system 
may request transactions by the memorY system. 

Each node of a state graph has an associated 
reference count which is the sum of two numbers-­
the number~tate graph arcs that terminate on 
the node, and the number of "references" to the 
node (if it is a basis node) held in the proces­
sing system P. Each node of a valid state graph 
must have a reference count greater than zero. 

We regard the memory system as holding a col­
lection of items that represent a state graph in 
the manner of a linked list structure. To this 
end we require a set of unique identifiers for 
the nodes of state graphs. One may regard each 
unique identifier as corresponding to a unique 
site in the memory system that can hold a distinct 
item. The items held by the memory system are 
of two kinds: 

1. Elementary items: 
whereiis 

e is 
r is 

(elem, i, e, r) 
a unique identifier 
an elementarY value 
a reference count 

(pair, i, j, k, r) 2. Pair Items: 
where i, j, k are unique identifiers 

r is a reference count 

Elementary items and pair items correspond to leaf 
modes and pair nodes, respectively, of a state 
graph. In each item, i is the unique identifier 
of the item. 

For the purpose of specifying the transac­
tions of the memorY system, it is convenient to 
suppose that it has the structure shown in Fig­
ure 5. Command Packets delivered at port !.£ 
(for reference count) of M are merged with Com­

mand Packets fr0m P and presented to M at port 
cmd. We specify the behavior of the whole mem­
OrY system by specifying the behavior of M. We 
regard the state of M as consisting of a collec­
tion of items and a collection of unique identi­
fiers not in use. In the initial state of M the 
collection of items is empty and every unique 
identifier is not in use. 

The specifications for the behavior of M 
state the response, if any, and change of state, 

226 

.----------- cmd---- store-------, 
-- -~- I 

Packets Packets : l Command Store I 
i.....:.. __ ..:....i I 

Command 
Packets 

Memory System 

rtr re unid 

I 
I 
I 
I 
I 
I 
I 
I 
I 

Retrieval Un id I 
l Packets Packets I 
I I 

I 
L_ - ---- - rtr----- - unid- ___ -1 

Figure 5. Structure of a memorY system for 
specification of its transactions. 

if any, that accompany each kind of transaction. 
In the simple memory system we are considering, 
there are five kinds of transactions -- four of 
these are associated with acceptance of Command 
Packets by M, and the fifth is associated with 
delivery of Unid Packets. The behavior of M for 
each kind of transaction is as follows. 

Store Transaction: 
--(store, i) { (elem, i, e) J 

~pair, i, j, k) 

t 
store 

In response to a store Command Packet, the 
item presented at port store is added to the 
collection of items held by M, and is given 
an initial reference count of one. 

~etrieval Transaction: 

(retr, i) J. ________ T 
J(elem, i, e) \ 
l<pair, i,j, k) j 

The item dilivered at port rtr is the item 
with unique identifier i in the collection of 
items held by M. The state of M does not 
change. 

Reference Generation and Anihilation 

(a)(.!!£ i) (b)(down i) 

l 
cmd 

i 
cmd 

(c)(down i) 

i ~,!.£ -/ l 
( .!!2fil! i > 
(down k) 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

Command 
Packets 

Figure 6. 

rt r 

cmd 

~ 

! Command 
Packets 

store 

Store 
Packets 

Distribution Networks 

... 
Arbitration Networks 

Retrieval 
Pockets 

Un id 
Pockets 

un 1d 

Memory system structure for con­
currency. 

The up conunand adds one to the reference count 
of item i; the down command decrements its ref­
erence count by one. If the reference count 
is reduced to zero by a down command, the item 
is deleted from the collection of items held 
by M and its unique identifier i is added to 
the collection of unused unique identifiers. 
Case (c) applies if the item deleted is a pair 
item since the reference counts of its compo­
nent items must be decremented. 

Unique Identifier Generation: 

unid 

(i) 

Some unique ic1~ntifier i is removed from the 
set of unused unique identifiers and deliver­
ed at port unid. 

We have not specified the behavior of M under 
certain conditions that should not occur during nor­
mal operation -- for example, if a store Connnand 
Packet contains a unique identifier which is already 
the unique identifier of an item held by M. We as­
sume the processing system is so designed that such 
ill behavior cannot occur. A discussion of these 
restrictions on processor behavior and how .they 
might be implemented is beyo~d the scope of the 
present paper. 

Memory System Structure 

With this albeit informal specification of M, 
we are prepared to see how M may be realized by sim­
pler subsystems interconnected as a packet connnuni­
cation system. 

First we show how concurrent processing of 
many transactionq can be achieved by distributing 

227 

Store 
Pockets 

Retrieval 
Pockets 

rt r 

cmd store 

Command l 
Pockets '--'-~~-'--' 

cmd-1 

rt r 

rtr 

Retrieval 
Packets 

store 

cmd-2 

re unid 

Command 
Pockets 

Store 
Pockets 

Un id 
Pockets 

re unid 

Figure 7. Hierarchical packet memory system. 

Command Packets among many identical physical mo­
dules which can operate independently. Such a 
structure for M is shown in Figure 6. Each Connnand 
Packet and each Store Packet is distributed to one 
of the memory subsys terns Ml> ... ,}1r according to some 
easily tested property of i, the unique identifier 
of the item to which the packet refers. The prop­
erty might be the first p bits of the binary repre­
sentation of the unique identifier where r = 2P. 

The sub sys terns M1, ••• , Mr are memory systems 
having specifications identical to the specification 
of M except that the universe of unique identifiers 
for the items held by each subsystem is restricted 
to (l/2)P of the unique identifiers of M. This 
fact may be used to reduce the complexity of the 
memory subsystems. 

The Retrieval Packets, Connnand Packets, and 
Unid Packets delivered by the memory subsystems at 
their rtr, !:..£, and unid ports are merged into com­
mon streams by three Arbitration Networks. Note 
that the Command Packets from subsystem !:..£ ports 
must be recirculated through the Distribution Net­
works becaµse, in general, the items they refer to 
will be held in subsystems other than the subsystem 
from which they originate. 

Hierarchical Structure 

Any realistic design for a large memory system 
must recognize the principle that only the most ac­
tive information need be held in expensive fast­
access devices; less active information should be 
held in slower devices. If the memory system is to 
support modularity of progrannning in its most gener­
al form, then information must be automatically re­
distributed among levels of the memory system as 
computational activity involves different portions 
of the stored information. 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

Figure 7 shows how a memory system M satisfying 
our specification may be realized by a hierarchical 
organization of two memory systems MH and MJ:.• 
With an important exception explained later, 
the lower level subsystem ML satisfies the same 
behav~pral specification as the entire memory sys­
tem M~ The higher level subsystem Mil is arranged 
to hold copies of the most active items in ~ --
it acts as a cache memory so M is able to achieve 
a much lower latency in processing transactions than 
ML could alone. Keep in mind that even though ML 
may have a long latency, it may have a high rate of 
processing transactions due to its organization for 
highly parallel operation. 

If there is no room in MH for an item sent to 
M for storage, or. for an item retrieved form ML' 
then some item is selected for deletion from ~· 
The criterion for selecting the item to be deleted 
could be any of the schemes used in contemporary 
cache memories or paging systems. The deleted item 
need not be sent to ML because the memory system 
under discussion is organized so ML holds a copy 
of every item present in the memory system M. How­
ever, ~ must know which items it holds have dupli­
cates in Mi:! so it can tell whether it is safe to 
release the unique identifiers of deleted items for 
reuse. Hence each item in Mr, includes an indicator 
f that tells whether the item is also held in Mi:i: 

Elementary Items: (elem, i,e,r,f) 
Pair Items: (pair, i, j, k, r, f) 

where f is one of [true, false} 

The tansactions of M_r, have specifications just 
like those for the transactions of M, except for a 
few changes: 

Store Tansactions: The indicator f of the item 
---added to the collection is ~ since each 

Store Packet is sent to both Mi:! and ML. 

Anihilation: If the reference count of an item is 
reduced to zero, the item is deleted and its 
unique identifier released for reuse only if 
the indicator f is false. 

Transaction: An additional form of Connnand 
Packet (done, i) is sent by Mu to Mr, .to say 
that item i has been deleted lrom ~· Subsys­
tem Mr, responds by setting f to false and, if 
the reference count is zero, the item is dele­
ted from ML and its unique identifier is re­
leased for reuse. 

In Mi:! items are held without reference counts: 

Elementary ~: 
Pair Items: 

(elem, i.e) 
(pair, i,j,k) 

For the purpose of si)ecifying the behavior of ~· 
its state is simply a collection of items in thes.e 
formats. A realization of ~.would require addi-

228 

tional state information to implement the chosen 
criterion for deletion of items. Item removal is a 
routine used by store transactions of MH: 

Item Removal: 
(done, i) 

i 
cmd-2 

The item to be removed is deleted from the 
collection of items held by Mi:! and a done 
Command Packet is sent at port cmd-2. 

The transactions of~ are: 

Store Transaction: 
(store, i) 

i cmd-2 -----

i 
<~. i) 

(elem, i,e) 
(pair, i,j,k) 

j 
~ 

The item is added to the collection after some 
chosen item is removed, if necessary, to cre­
ate space. The store Connnand Packet is for­
warded to ~-

Retrieval Transaction: 

(a)(~, i) 

i ;" 
cmd-1-'" 

(elem, i,e) 
(pair, i,j,k) 

Case (a) applies if an item with unique iden­
tifier i is in the collection held by Mi:i; 
otherwise case (b) applies, and the retrieval 
Conunand Packet is forwarded to ML. 

Reference Accounting: 

(a)(!:!.P., i) 

i / cmd-2 

cmd-1/.,,. i 
(_!!2, i) 

(b )(down, i) 

i ...... ~-2 
cmd-1,..,.. t 

(down, i) 

Up and down Command Packets are forwarded to 
~ without action by MR· 

In addition, for correct operation of the whole 
memory system M, all Connnand Packets relating to 
item i must be delivered at port cmd-2 in the 
same order as they arrive at port cmd-1. 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

Conclusion 

Packet Communication architecture offers 
many attractions to the computer system designer: 
The units of a system interact through very simple 
interfaces and are easy to specify; timing hazards 
are eliminated through use of a strict speed indep­
endent communication discipline; and the principles 
are applicable to the organization of machines that 
support the execution of well structured programs 
expressed in high level languages. A high level 
of concurrent operation can be achieved with high 
equipment unilization if the global parallelism 
inherent in most data processing tasks is expressed 
in the program. 

It will be interesting to see if these attrac­
tions can be realized in the design of practical 
computer systems. 

Acknowledgment 

This research was supported in part by the 
National Science Foundation under grant 
DCR75-04060 and in part by the Advanced Research 
Projects Agency of the Department of Defense 
under Office of Naval Research contract number 
N00014-75-C-0661. 

229 

Bibliography 

1. Dennis, J. B., and D. P. Misunas, "A computer 
architecture for highly parallel signal pro­
cessing," Proceedings of the ACM 1974 Nat­
ional Conference, ACM, New York (November, 
1974), 402-409. 

2. Dennis, J. B., and D. P. Misunas, "A prelim­
inary architecture for a basic data-flow 
processor, " Proceedings of the Second Annual 
Symposium ~ Computer Architecture, IEEE, 
New York (January 1975), 126-132. 

3. Misunas, D. P. !:. Computer Architecture for 
Data-Flow Computation. SM Thesis, Depart­
ment of Electrical Engineering and Computer 
Science, M.I.T., Cambridge, Mass. (June 1975). 

4. Misunas, D. P., "Structure processing in a 
data-flow computer, 11 Proceedil!&!!. of the 
1975 Sagamore Computer Confe~ on Parallel 
Processing, IEEE, New York (August 1975). 

5. Project MAC Progress Report XI, Project MAC, 
M. I. T. (July 1973-74), pp. 84--90. 

6. Rumbaugh, J. E., ~Parallel Asynchronous 
Computer Architecture for Data Flow Programs, 
Project MAC, M.I.T., Cambridge, Mass., Report 
TR-150 (May 1975). 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

* STRUCTURE PROCESSING IN A DATA-FLOW COMPUTER 

David P. Misunas 
Project MAC 

Massachusetts Institute of Technology 
Cambridge, Massachusetts 02139 

Abstract -- A data-flow computer uses a pack­
et connnunication system to achieve highly paral­
lel execution of programs expressed in data-flow 
form. The machine is composed of two sections 
which perform instruction processing and structure 
processing and share a connnon auxiliary memory. 
The structure processing section of the processor 
maintains data structures represented as acyclic 
directed graphs and is viewed as a functional unit 
by the instruction processing section; that is, 
instructions specifying structure operations are 
sent to the section, and the resulting values are 
returned to the instruction processing section. 
The organization of the structure processing sec­
tion as a packet connnunication system permits the 
simultaneous processing of many structure opera­
tions, while avoiding the deadlock and synchroni­
zation problems often associated with systems that 
support concurrent memory transactions. 

Introduction 

The data-flow form of program representation 
has been developed as a method of expressing par­
allel activity [l, 2, 3, 5, 8, 9, 11]. The at­
tractiveness of this form of representation lies 
in the fact that it is data-driven; that is, an 
instruction is enabled for execution when each re­
quired operand has been provided by the execution 
of a predecessor instruction. 

The simplicity of this method of representa­
tion has led to the development of a number of 
computer architectures capable of executing pro­
grams expressed in data-flow form. Elementary 
forms of the data-flow language are utilized as 
the base language of a series of machines devel­
oped by Dennis and Misunas [6, 7]. The implemen­
tation of more complete data-flow languages, in­
corporating data structures and procedures, has 
been investigated by Misunas [10] and Rumbaugh 
[ 12, 13]. 

In the machines described by Dennis and 
Misunas [6, 7], the processing of instructions of 
a program is carried out in an instruction pro­
cessing section which is structured as a packet 
communication system [4]. Sections of a machine 
are connected by interconnection networks which 
have a great deal of inherent parallelism, and the 
secions communicate by means of fixed size infor­
mation packets. Each section is designed so that 
it never has to wait for a response to a packet it 
has transmitted if other packets are waiting for 
its attention. The extension of this concept to 
the organization of the structure processing sec-
'{, 

This research was supported by the Advanced Re­
search Projects Agency of the Department of De­
fense and was monitored by the Office of Naval 
Research under contract number N00014-75-C-0661. 

230 

tion of a computer, described herein, proves very 
attractive, eliminating many of the deadlock and 
synchronization problems currently associated with 
systems that support concurrent memory transac­
tions. 

Data-Flow Structure Values 

A program expressed in the data-flow lan­
guage is constructed of two kinds of elements, 
called actors and links. An actor has a number of 
input arcs which supply values necessary for its 
execution and one output arc upon which results 
are placed. A small dot represents a link which 
has one input arc upon which it receives results 
from an operator and a number of output arcs 
over which it distributes copies of the results 
to other actors. · 

Values are conveyed over the arcs of a pro­
gram by tokens, represented as large solid dots. 
An actor with a token on each of its input arcs, 
and no token on its output arc, is enabled and 
sometime later will fire, removing the tokens from 
its input arcs, computing a result using the val­
ues carried by the input tokens, and associating 
the result with a token placed on its output arc. 
In a similar manner, a link is enabled when a to­
ken is present on its input arc, and no token is 
present on any of its output arcs. It fires by 
removing the token from its input arc and associ­
ating copies of the value carried by the input 
token with tokens placed on its output arcs. 

A value conveyed by a token is either an 
elementary value or a structure value. An ele­
mentary value is a single integer, real, string, 
or Boolean value. A structure value in a data­
flow program is composed of a number of elemen­
tary values and is represented as an acyclic di­
rected graph having one root node with the prop­
erty that each node of the graph can be reached 
by a directed path from the root node. A node 
of the graph is either a structure node or an 
elementary node. A structure node serves as the 
root node for a substructure of the structure and 
represents a value which is a set of selector­
value pairs 

where 

si E {integers} U {strings} 

v. E {elementary values} U {structure values} 
1 U {nil} 

and si is the selector of node vi. An elementary 
node has no emanating arcs; rather, an elementary 
value is associated with the node. A node with 
no emanating arcs and no associated elementary 
value has value [nil). 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

L R L R 

cb ~ cb 
L R 

cb cb 
Figure 1. An example of two structures sharing 

a common substructure. 

To illustrate the operation of the structure 
processing section of the processor, we shall 
limit our consideration to structures represented 
as binary trees. A selector of such a structure 
can have one of two values, L (left) and R (right), 
designating the left and right branches of the 
tree. 

A structure value is represented by a data 
token carrying a pointer to the root node of the 
structure. In Figure 1 the structure a contains 
three elementary values a, b, and c, designated 
by the simple selector L and the compound selec­
tors R·L and R·R respectively. Structure node 
y of structure a is shared with structure p and 
is designated by a different selector in p than 
in a. 

The data-flow program of Figure 2 transposes 
the elements of the four-element structure pre­
sented on its input. Initially, the input link 
of the program is enabled and, upon firing, cre­
ates four copies of the token conveying a pointer 
to structure a and places the copies on the inputs 
of the four select actors. Each select actor re­
trieves the value (either an elementary value or 
a structure value) at the end of the path speci-

I 
L R 

.i, .±-, 
L R L R 

I~ \, 

""Q'"" '"Q""" 0~00 
construct construct 

4=; ' construct 

Figure 2. A simple data-flow program to transpose 
a four-element structure. 

231 

\/ 
append L 

f~• a L Rn 
®~ cb 

®@ 
Figure 3. Operation of the append actor. 

fied as its argument. The resulting value is 
associated with a token placed on the output arc 
of the actor. 

Each construct actor is enabled when it has 
a token on each input arc and, upon firing, cre­
ates a new structure of the values associated 
with the input tokens. In the program of Figure 
2, the position of each input indicates the selec­
tor to be associated with the input in the resul­
ting structure. 

Structure values in a data-flow program are 
not modified; rather, new structure values are 
created which are modifications of the original 
values, while the original values are preserved. 
The append_ and delete actors provide the means of 
creating these new structure values. 

The structure produced by the firing of an 
append actor is a version of the input structure 
which contains a new or modified component (Figure 
3). If the specified node of the input structure 
has a selector corresponding to the selector argu­
ment of the actor, the value designated by that 
selector in the new structure is the input value. 
Otherwise the specified selector-value pair is 
added to the node of the new structure. Identical 
elements of the input and output structures are 
shared between the two structures. 

In a similar manner, the structure appearing 
on the output arc of a delete actor is a version 
of the input structure in which the specified 
node in the new structure is missing the selector­
va lue pair designated by the selector argument 
(Figure 4). As with the append actor, identical 
elements are shared between the input and output 
structures. 

r-~ 
delete L cb ,1, l L R ®0 

Figure 4. Operation of the delete actor. 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

Structure Representation 

The storage of structures and the execution 
of instructions representing structure actors 
occurs in the structure processing section of a 
data-flow processor. The structure processing 
section consists of a Structure Operation Unit 
and a Structure Memory and attendant.Arbitration 
and Distribution Networks. This section of the 
processor is viewed as a functional unit by the 
instruction processing section; that is, operation 
packets specifying structure operations are sent 
to the section, and data packets are returned. 
The organization of the structure processing sec­
tion is shown in Figure 5. 

Operation packets containing instructions 
representing structure actors are transmitted to 
the Structure Operation Unit by the instruction 
processing section. The Structure Operation Unit 
controls the execution of the instruction speci­
fied in each operation packet through instruction 
packets sent to the Structure Memory. The Struc­
ture Memory holds all structure values of the 
data-flow program, and all structure operations 
are performed in the Memory. Upon completion of 
a structure operation, the Structure Memory trans­
mits a data packet containing the resulting ele­
mentary or structure value to the instruction 
processing section. 

A node of a structure is contained in a two 
register Cell known as a Structure Cell and desig­
nated by a Cell identifier. The two registers of 
the Cell contain the left and right components of 
the structure, respectively; and hence no selector 
need be stored in a register. The first field of 
a register is a use code which indicates whether 
the item stored ~the second field is the iden­
tifier of another Cell or an elementary value, 
or if the register is empty. A memory represent­
ation of the simple structure of Figure 1 is 
given in Figure 6. 

The Structure Memory is composed of a number 
of Structure Cells. Each Structure Cell is cap­
able of holding one node of a structure, and the 
identifier of the Cell specifies a path through 
the Distribution Network to the Cell. The Struc-

command 
pockets 

data 
pockets 

command 
pockets 

Structure 
Cell 0 

Structure 
• Memory 

Structure 
Cell n - I 

instruction 
pockets 

Structure 
Operation 
Un it 

operation 
pockets 

Instruction Processing 
Section 

instruction 
pockets 

Figure 5. Organization of the structure processing 
section of the data-flow processor. 

232 

ture Memory receives instruction packets from the 
Structure Operation Unit connnanding a specific 
Structure Cell to execute some structure opera­
tion upon the node located in the Cell. Upon 
completion of the operation specified in an in­
struct ion packet, a Structure Cell presents any 
result as a data packet to the.Arbitration Net­
work for conveyance to the instruction processing 
section. Any further structure operations are 
specified in instruction packets returned to the 
input of the Structure Memory. 

A Structure Cell within the Structure Memory 
performs one of three operations upon the struc­
ture node contained in the Cell. The.possible 
operations are: 

1. select. Upon receipt of an instruction packet 
specifying a select operation 

{ selec: <lest} 

a Structure Cell follows one of two procedures, 
controlled by whether the selector s is a 
simple selector or a compound selector. 
a. If s is a simple selector, Lor R, the 

content c of the Cell register designated 
by s is used to form a data packet 

b. 

which is presented to the Arbitration Net­
work for transmission to the specified 
destination <lest in the instruction pro-
cessing section of the processor. 
Ifs is a compound selector s 1s 2 ... s , 
s. t: {L, R}, the content 13 of tfie re~ister 
d~signated by s 1 is the identifier of a 
Structure Cell and is used to form the 
instruction packet 

{ selec/ <lest} 
s2 ... sn 

which is presented to the Arbitration Net­
work for transmission to the input Distri­
bution Network of the Structure Memory. 
The process is then repeated with the se­
lector s2 at Structure Cell 13. 

2. alter. The receipt of an alter instruction 

Cell a Cell {3 

elem a --- st rue y ---
struc y --- elem d ---

Celly 

elem --- b 
st rue c ---

Figure 6. Memory representation of the 
structure of Figure 1. 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

indicates that the contents of the Structure 
Cell are to be modified so the component des­
ignated by the selector s is set to x. Since 
structure values are not modified, a Struc­
ture Cell that receives an alter instruction, 
must receive two alter instructions, one for 
each register. When both have been received, 
a data packet containing the Cell identifier 
p is returned to the instruction processing 
section: 

3. ~· A copy instruction 

{
£.Qll p} 

de st 
s 

specifies that the content of the register 
designated by s is to be transmitted to Struc­
ture Cell p. An instruction packet 

is formed of the register content c and is 
presented to the Arbitration Network for trans­
mission to the input Distribution Network. 

Instructions are transmitted to the Structure 
Memory as instruction packets, each consisting of 
a Cell identifier and an instruction. The Cell 
identifier specifies a path through the Distribu­
tion Network to the Cell, and the packet received 
by a Cell consists of merely the instruction por­
tion of the instruction packet. 

The Structure Operation Unit maintains the 
reference count of each node in the Structure Mem­
ory, specifying the number of arcs terminating on 
the node and the number of references to the node 
existing in the instruction processing section of 
the processor. When a node becomes inaccessible 
due to the execution of some instruction of the 
program, the reference count of the node becomes 
zero, and the node is placed on a free node list 
which is used for the allocation of new nodes 
during program execution. 

The processing of all structure operation pack­
ets by the Structure Operation Unit permits the unit 
to properly decrement reference counts as references 
to items are deleted through instruction exeuction. 
References to items are created in the Structure 
Memory by execution of a select instruction if the 
selected item is a structure value and in the in­
struction processing section through execution of 
an instruction representing a link of a data-flow 
program. We must require that in either case, 
command packets of the form 

{node id:;tifie~ 

are sent to the Structure Operation Unit, causing 
the reference count of the designated node to be 
properly incremented. 

233 

Now that we have considered the operation of 
a Structure Cell within the Structure Memory, we 
can describe the execution of each of the struc­
ture actors merely by listing the procedure fol­
lowed by the Structure Operation Unit in process­
ing the instruction. For the purposes of this 
discussion, it is assumed that all selectors are 
simple selectors. 

The processing of a select instruction by the 
Structure Operation Unit merely causes the refer­
ence count of the designated node to be decremented. 
The content of the operation packet is then sent 
as an instruction packet to the specified node of 
the Structure Memory for execution of the select 
operation. 

A construct instruction 

{
construct dest} 

L: a 
R: y 

specifies that a new node is to be created with 
components a and y, designated by the selectors 
L and R. The instruction is implemented by the 
Structure Operation Unit as two alter operations 
in the following manner: 

1. Accept an identifier P from the free node 
list. 

2. Transmit to the Structure Memory the instruc­
tion packets 

transferring the values a and y to the correct 
registers of P. 
An operation packet containing an append in­

struction is of the following format 

rpp~~: ~est} 

where L is the selector of the element in Struc­
ture Cell a which is to be replaced by x in the 
new structure. The procedure followed by the 
Structure Operation Unit in execution of the 
instruction is as follows: 

1. Accept an identifier P from the free node 
list. 

2. Transmit the instruction packets 

{~p} de st 
R 

to the Structure Memory to copy the register 
of node a designated by the selector R into 
Cell p and set the L-component of P to x. 
An operation packet specifying a delete in-

struction is processed in a similar manner, caus­
ing the use code of the designated register to be 
set to empty. 

To assure maximum use of the Structure Cells 
of the processor, the structure processing section 
utilizes a multi-level memory, so that only active 
s true ture nodes occupy the S truc_ture Cells· The 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

Structure Memor.y ac"ts as a cache for ili:ructure 
nodes; individual nodes are retrieved from the 
auxiliary memory as they become required for com­
putation, and structure nodes are sent to the aux­
iliary memory upon creation through execution of 
an append, delete, or construct instruction. The 
structure of the auxiliary memory as a packet com­
munication system is described by Dennis [4], and 
its use in conjunction with t.he structure process­

. ing section is presented in [10]. 

Conclusion 

The described techniques for the implementa­
tion of data structures can be readily extended to 
larger and more complex structures. In order to 
implement structures with a fixed maximum number 
of arcs emanating from eacij node, the size of a 
Structure Cell is increased to accommodate the new 
node size. The use of arbitrary (to a fixed max­
imum size) integers or character strings as selec­
tors is accommodated through the addition of a 
selector field to ea~h register. A Structure Cell 
must then have the ca pa bi li ty to choose from the 
node contained in the Cell an item whose selector 
matches a specified selector. These extensions 
allow the representation of a wide variety of 
structures, including the programs of the data­
flow language [10]. 

References 

1. Adams, D. A. ~ Computation Model With Data 
Flow Sequencing. Technical Report CS 117, 
Computer Science Department, School of Human­
ities and Sciences, Stanford University, Stan­
ford, Calif., December 1968. 

2. Bahrs, A. ,Operation patterns (An extensible 
model of an extensible language). S'ymposium 
.Q!l Theoretical Programming, Novosibirsk, USSR, 
August 1972 (preprint). 

3. Dennis, J. B. First version of a data flow 
procedure language. Lecture Notes in Computer 
Science 19 (G. Goos and J. Hartmanis, Eds.), 
Springer-Verlag, New York; 1974, 362-376. 

234 

4. Dennis, J. B. Packet communication architec­
ture. Proceedings of ~ 1975 Sagamore Com­
puter Conference .Q!l Para l le 1 Processing, IEEE, 
New York, August 1975. 

5. Dennis, J.B., and J.B. Fosseen. Introduc­
tion to Data Flow Schemas. November 1973 
(submitted for publication). 

6. Dennis, J. B., and D. P. Misunas. A computer 
architecture for highly parallel signal pro• 
cessing. Proceedings of the ACM 1974 National 
Conference, ACM, New York-;-liovember 1974, 402-
409. 

7. Dennis, J. B., and D. P. Misunas. A prelimin­
ary architecture for a basic data-flow proces­
sor. Proceedings of the~ Annual~­
sium .Q!! Computer Architecture, IEEE, New York, 
January 1975, 126-132. · 

8. Karp, R. M., and R. E. Miller. Properties of 
a model for parallel computations: determin­
acy, termination, queueing. SIAM Journal of 
Applied Mathematics 14 (November 1966), 1390-
1411. 

9. Kosinski, P. R. A data flow language for op­
erating systems P.rogramming. Proceedings of 
ACM SIGPIAN-SIGOPS Interface Meeting, SIGPIAN 
Notices~. 9 (September 1973), 89-94. 

10. Misunas, D. P. ~Computer Architecture for 
Data-Flow Computation. SM Thesis, Department 
of Electrical Engineering and Computer Science, 
M.I.T., Cambridge, Mass., June 1975. 

11. Rodriguez, J. E. ~Graph Model for Parallel 
Computation. Report TR-64, Project MAC, 
M.LT., Cambridge, Mass., September 1969. 

12. Rumbaugh, J. E. ~Parallel Asynchronous Com­
puter Architecture for Data Flow Programs • 
Report TR-150, Project M(l.C, M. LT. , Cambridge; 
Mass., May 1975. 

13. Rumbaugh, J. E. A data flow multiprocessor; 
Proceedings of the. 1975.Sagamore Computer .9.Q!l­
ference .Q!l Parallel Processing, IEEE, New York, 
August 1975. 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

THE STABILITY OF A PARALLEL ALGORITHM 
FOR THE SOLUTION OF TRIDIAGONAL LINEAR SYSTEMS 

Martin A. Diamond 
Systems & Information Science Department 

Vanderbilt University 
Nashville, Tennessee, 32735 

Summary 

A parallel algorithm for the solution of tri-
' diagonal linear systems of equations is given by 

Stone [l]. The algorithm factors the matrix of 
coefficients into a lower bidiagonal matrix and an 
upper bidiagonal matrix, and then solves the 

!::;~··: ~Y•<•(•·::::,:h• o<i<inal 'jystem is Mx = y 

e d f 
n-1 n:~d:-1 

then the factors of M are L and U where 
1 u1f 1 
m21 f 

u2 2 
m31 u3f 3 

L U 
mn-11 

m 1 
n 

u 
n 

The elements mi of L and ui of U are given by 
ul = dl' ui =di - (elfi-1/ui-l)' i > l; 

mi= e 1/ui-l' i ~ 2. 

Instead of computing these values directly, the u. 
are computed as the quotients ui = q./q. 1 where 1 

l. ].-

235 

qo = 1 • ql = dl' and qi= diqi-1 - (ei fi-1 qi-2)' i ~ 2· 
As Stone points out immediately below equation (16) 
of his paper, it is seen that 

i 
qi = TI U· 

j=l J. 

But this implies an instability for most systems. 
If the ui satisfy luil > 1 + e or luil < l + e for 
some e, then the qi go to infinity or go to zero. 
Consider the system with di = 2, ei = 1.5, and 
fi = 0.5. In this case, Ui > 1.5 for all i. Thus 
if n is 500, qn is too large to be stored in an 
IBM/360 single REAL word. 

If the ei, di, and fi go to limits, as they 
do in the above example, the instability can be 
remedied. This is done by finding in one step, 
the limit, u, of Ui and then in a single parallel 
operation scaling the coefficients ei, di, and fi. 
A different set of numbers qi are then computed. 
These numbers remain bounded and are such that 
qi/qi-l = ui/u. Thus, ui = (qi/qi_1)u can be 

computed in a single operation. 

Reference 

[ l] H. Stone, "An Effecient Parallel Algorithm for 
the Solution of a Tridiagonal Linear System of 
Equations", Journal of the ACM, Vol. 20, ill 
(January 1973), pp. 27-38. 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

PARALLEL ALGORITHMS FOR EVALUATION 
OF ARITHMETIC EXPRESSIONS* 

Ashoke Deb and Amar Mukhopadhyay 
Department of Computer Science 

The University of. Iowa 
Iowa City, Iowa 52242 

Summary 

An optimal algorithm for parallel processing 
of arithmetic expressions is presented in this 
paper. The arithmetic expression consists of a 
finite well-formed string of parentheses, 
operands and operators having a fixed precedence 
relation on them and having different execution 
times. A proof of the optimality is presented 
by providing an analysis which gives the best 
lower bound for the time of computation. The 
algorithm not only detects the parallelism but 
provides an exact scheduling of the processors 
for implementing it. Other advantages of the 
algorithm are: one-pass compilation, no conver­
sion to polish string required, independent of 
initial form of the expression, etc. 

We then investigate the effects of the 
application of distribution laws to override the 
precedence relation as presented in the expres­
sion. We develop several lemmas and theorems 
pointing out suitable strategies for the 
application of distribution laws for the purpose 
of reducing the total execution time. We then 
present an efficient algorithm to reduce the 
execution time of an arithmetic expression by 
the application of distribution laws. 

References 

[l] J.S. Squire, "A translation algorithm for a 
multiprocessor computer," Proc. 18th ACM 
Natl. Conf. (1963). 

* The work has been supported by NSF grant GJ-723. 

236 

[2] H. Hellerman, "Parallel processing of 
algebraic expressions," IEEE Trans. 
Electronic Computers, vol. 15, no. 1 (1966). 

[3] H.S. Stone, "One pass compilation of 
arithmetic expressions for a parallel 
processor," Comm. ACM, vol. 10, no. 4 
(April 1967), pp. 220-223. 

[4] J.L. Baer and D.P. Bovet, "Compilation of 
arithmetic expression for parallel computa­
tion," Proc. IFIP 68 (1968), pp. B4-Bl0. 

[5] C.V. Ramamoorthy and M~J~ Gonzalez, "A 
survey of techniques for recognizing 
parallel processable streams in computer 
programs," Proc. FJCC (1969). 

[6] F. Mavaddat, "Using stacks to detect 
expression parallelism," Proc. IFIP 
(August 1971). 

[7] D.J. Kuck, Y. Muraoka and S.C. Chen, "On the 
number of operations simultaneously 
executable in Fortran-like programs and 
their resulting speedup," IEEE Trans. 
Computers, vol. C-21, no. 12 (December 1972), 
pp. 1293-1310. 

[8] A. Deb and A. Mukhopadhyay, Optimal Parallel 
Algorithm for evaluation of Arithmetic 
Expressions, Dept. of Computer Science, Univ. 
of Iowa Tech. Rept. No. 73-10 (Nov. 1973). 

[9] A. Deb, Exploitation Laws for Parallel 
Evaluation of Arithmetic Expression, Dept. 
of Computer Science, Univ. of Iowa Tech. 
Rept. No. 74-06 (August 1974). 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

* ON PARALLEL TRIANGULAR SYSTEM SOLVERS 

** S. Chen ** and A. Sameh 

Summary 

Several parallel algorithIIJS for the solution 
of triangular systems of linear equations have 
been reported by several authors, Chen and Kuck 
{l], Heller 12], and Orcutt [3]. Among these, 
the algorithm developed in [l] yields the highest 
speedup over the sequential algorithm with the 
fewest processors to achieve this speedup. In 
this paper, we will first present a simpler proof 
of this algorithm than that reported in [l]. 

Consider the triangular system Ax.= f, where 
without loss of generality we assl.lllle that A is 

unit lower triangular of order n = 2k, for a posi­
tive integer k. The solution x can be written in 
the form, x = Mn-l Mn_ 2 .•• M2M1f where (Mn-l 

-1 
M2M1 ) is the product form of A , in which Mi 

t t 
(I-aiei ) where ai = (0, ••• , 0, ai+l, i' .•. , 

a i). Thus, x can be computed in parallel in 
n, 

log n stages. Throughout this paper log n denotes 
log2n. At each stage j we perform inner products 

of vectors the maximl.llll length of which is 1+2j-l 
elements. Assume each arithmetic operation takes 
one unit of time. Then, by using enough proces­
sors, the time required at stage j is 1 + 

flog(l+2j-l)l = (l+j) steps. Thus the total time 
required for solving the triangular system is 
log n 1 2 

l.: (l+j) = 2(log n+3log n). In the case that A 
j=l 
is a banded lower (or upper) triangular matrix of 
bandwidth (m+l), i.e., aij 0 for i - j > m, the 

algorithm requires 

1 2 
TP = (2+log m) log n - 2(log m+log m) (1) 

steps, where we assume that m is an integer power 
of two and m + 1 .::_ n, 

The maximum nunber of processors required by 
this algorithm is given in [l]' 

3 2 
P .::_ 4 m n + O(mn) for m+l<<n, 

n 3 2 
.::_ 68 + O(n ) for m+l<n. (2) 

However, in practice we may deal with the case 
when the available number of processors q is less 
than P above, i.e., l<q<P, Several techniques 
(folding, cutting and sweeping) are available 

* 

** 

This work was supported in part by the National 
Science-Foundation under Grant DCR73-07980 A02. 

Department of Computer Science 
University of Illinois at Urbana-Champaign 
Urbana, Illinois 61801 

237 

[4, 5] for mapping the above algorithm onto a 
small set of processors and generally increasing 
the efficiency of the computation as well. We 
present here one of these schemes. 

Theorem 1 Let Tp and P be as in Eqs. (1) and 

(2). Then, by applying the cutting scheme, we 
have 

T 2_ 2 f m/ql (n-1) 
q 

for 1 < q .::_ m, (3) 

-1 

2. ~2 nq 3(log2q+27log q+l44) + 2:n 

2 for m < q < m 

-1 
fl 3 2 .::. n nq (log q+271og q+l44) 

for m2 .::_ q < m3 

(4) 

(5) 

2 5 2 7 
< f3mqn(log m log q+2log q-2 log m-z log m+l) 

3 for m < q < P, (6) 

where fl(m,n,q) is a small constant. 

A backward error analysis of the algorithm 
for solving the dense unit lower triangular 
system Ax. = f shows that if x is the computed 
solution, then (A:t-oA)x = f where 

I IMJ I 2. a£K 2 (A) I IAI 12 

in which £ is the unit roundoff, a = log2n + 
O(log n) and K(A) is the condition number of 
A. I I .IJ stands for 1, 00 , or Frobenius norms. 
This bound can be very large compared to that of 
the serial algorithm in which 11 Ml I .::_ En 11 Al I· 

[l] 

[2] 

References 

S. C. Chen and D. J, Kuck, "Time and 
Parallel Processor Bounds for Linear 
Recurrence Systems," IEEE Trans. on Computers, 
Vol. C-24, No. 7, pp. 701-717, July, 1975. 

D. Heller, "A Determinant Theorem with 
Applications to Parallel Algorithms," 
Carnegie-Mellon University, Dept. of Comput. 
Science, March, 1973. 

[3] s. E. Orcutt, "Parallel Solution Methods for 
Triangular Linear Systems of Equations," 
Rpt. 77, Digital Systems Lab., Stanford 
University, 1974. 

[4] D. J, Kuck, Y. Muraoka and s. c. Chen, "On 
the Number of Operations Simultaneously 
Executable in FORTRAN-Like Programs and 
Their Resulting Speed-Up," IEEE Trans. on 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

Comput., Vol. C-21, pp. 1293-1310, Dec., 
1972, 

[5] S. C. Chen, "Parallel Schemes for Solving 
Triangular Systems," to be published. 

238 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

SORTING ALGORITHMS FOR PARALLEL PROCESSING 

C. C. Lee, T -Y Feng 
Department of Electrical & Computer Engineering 

Syracuse University 
Syracuse, N.Y. 13210 

Summary 

A sorting network consists of a number of 
basic comparison elements (BCE's). Each BCE is 
a device that can compare inputs and yields order­
ed outputs. An algorithm that is the most effic­
ient known so far for parallel processing has 
been described by Batcher [l]. The algorithm is 
Batcher's bitonic theorem. 'Ihe introduction of 
perfect shuffle [2] to the bitonic sorting net­
works has shown that many standard modules of con­
venient size can be saved while the number of 
iterations is increased. 

In this research, it is based upon two impor­
tant factors to determine the best sorting algo­
rithm for parallel processing. They are: (1) the 
number of BCE's, and (2) the number of comparison 
levels. The basic notion involves the intercon­
nections between comparison levels. The inter­
connections can be expressed as a mathematical 
transformation between input data and output data. 
This transformation preserves the information con­
tent while at the same time allowing information 
to be manipulated by data manipulating functions 
[3] in a manner that is more efficient than could 
be done on a random processing. 

As far as the number of comparison levels is 
concerned, bitonic sorting networks are superior 
to those existing so far. One of the reasons for 
their superiority is that they have the advantages 
of flexibility and modularity. The modularity 
implies that a larger network can be built up by 
several identical modules. Moreover, the perfect 
shuffle applied to the bitonic sorting networks 
can even eliminate the modularity. This can be 
achieved simply by introducing a column of BCE's 
and a data manipulator performing the perfect 
shuffle. 

The process in which the two-way merTe oper­
ation takes any two ordered groups of 2v- items, 
0 < v s [log2u], to form a single ordered group 
of 2v :i.tems is called a stage, where u(SN) is the 
number of input items to be sorted. It is known 
that each stage of bitonic sorting networks, which 
can be divided into p stages for N = 2P items, has 
j, 1 s j s p, different interconnections. These 
j different interconnections turn out to be an 
identity permutation that can also be performed 
by a much easier manner in which a certain inter­
connection is repeatedly applied j times in jth 
stage. This tremendous saving is easy to see. 
Since executing a certain interconnection j times 
is much easier than executing j distinct inter­
connections in the jth stage. One of the contri­
butions of this research is that we have shown 
that only one interconnection is needed in each 
stage of bitonic sorting networks and it is appli­
ed j times in jth stage. Hence there are p-1 

239 

interconnections needed for sorting N = 2P items 
(the interconnection for the first stage is triv­
ial). 

The operations of BCE' s can be defined as "O", 
"l" and "fl)". The "O" or "l" operation is defined 
as the largest of input items coming out of 'H' 
output lead, which is situated either at the bot­
tom or at the top of BCE's. The "fl)" operation 
means that all inputs go straight through BCE's 
without changing relative positions at their out­
put leads. 

We introduce a graphic method to analyze the 
characteristics of multitonic sequences with res­
pect to 2-sorters. In general, a multi-tonic se­
quence, or m-tonic sequence, with some special con­
ditions can be sorted into two m/2-tonic sequences 
of their original half length in one level of com­
parisons. Hence- a rai:i.dom ordered input list of 
N = 2P items can be first sorted into a 2P-l-tonic 
sequence. Secondly, the 2P- -tonic sequence is 
sorted into a bitonic sequence through a process 
of p-2 stages with p iterations in each stage. 
Finally, the bitonic sequence is sorted in order 
by bitonic theorem [l]. The feature of these 2-
sorter perfect shuffle networks is that only "O" 
and "l" operations are allowed to perform in BCE's. 
The construction not only eliminates ''fl)" operation 
of BCE's [2] but also gives more flexibility. The 
flexibility means that the operations of some BCE's 
can be all "O" or "l" to replace ''fl)" operation 
without changing the sorting outcome. The elim­
ination of "f/)" operation for BCE's, of course, 
attains a simpler logic for output control of BCE's. 

Similarly, the graphic method is used to ana­
lyze the characteristics of multi-tonic sequences 
with respect to 3-sortefs· For N = JP items, the 
selected input is a 3P- -tonic sequence, which can 
be easily arranged with N/3 3-sorters, rather than 
a tritonic sequence. The construction of 3-sorter 
perfect shuffle networks for N = 3P items is thus 
developed. 

References 

[l] Batcher, K.E., "Sorting Networks and Their 
Applications", Proc. AFIP Spring Joint Comp. 
Conf., pp. 307-314, April 1968. 

[2] Stone, H.S., "Parallel Processing with the 
Perfect Shuffle", IEEE Trans. on Computers, 
Vol. C-20, No. 2, pp. 153-161, February 1971. 

[3] Feng, T-Y, "Data Manipulating Functions in 
Parallel Processors and Their Implementation", 
IEEE Trans. on Computers, Vol. C-23, No. 3, 
pp. 309-318, March 1974. 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

SHORT-TERM WEATHER PREDICTION 
ON ILLIAC IV 

James Daley 
and 

B. D. Underwood 

Institute for Advanced Computation 
1095 East Duane Avenue 

Sunnyvale, California 94086 

Summary 

We have implemented a short-term numerical 
weather prediction model on ILLIAC IV, which runs 
fast enough to be used operationally. The model, 
originally developed by Kaplan and Paine [l], 
produces an 18-hour forecast for a rectangular 
window about the size of the United States in 14 
minutes. The physical model permits small scale 
atmospheric motions, generally filtered in other 
models, and their exchange of energy with large 
scale motions. Kaplan and Paine have shown that 
the inclusion of these mesoscale effects results 
in good forecasts, but the necessary fine-mesh 
and short time-step are computationally taxing. 
Since it is desired to run this model operational­
ly, it is a good candidate for a high-speed 
parallel processor. 

The original version of the model runs on a 
Univac 1110 on a 49 x 49 x 10 mesh. We have 
increased the mesh size to 64 x N x 10, with N 
variable, so as to cover a larger window and make 
a longer range forecast. The effect of surface 
friction has been added. A performance compari­
son of our version with a similar sequential 
implementation is shown in the facing table. 

ILLIAC IV consists of 64 processors which 
execute a single instruction stream, each proces­
sor using its own memory of 2048 64-bit words [2]. 
Although some minor mathematical changes were 
required, the vector nature of our problem made 
it possible to efficiently utilize all 64 pro­
cessors. 

The desire to use large and variable meshes 
necessitated our using the high-speed ILLIAC IV 
disk memory (I4DM). The geometrical placement of 
data on I4DM is under programmer control, and this 
enabled us to virtually eliminate latency time. 
Although the total I/O time is surprisingly small, 
it is possible to overlap it with CPU time. 

The requirement of parallel execution and the 
interdependence of mesh values with others at many 
neighboring mesh points made the small processor 
memory of ILLIAC IV a potential problem. A pro-

240 

gram structure was devised which minimizes proces­
sor memory, allows a variable number of mesh rows 
to be read in or out at a time, and makes the code 
manifestly reflect the problem definition. 

With a high-level language and without 
optimization, the speed-up over the 360/67 is 
147 with asynchronous I/O or 116 with synchronous 
I/O. Using ILLIAC IV 32-bit mode, we could 
expect to double these figures. 

Language 

Mesh 

Word Size 

Central 
Memory Used 

Disk 
Memory Used 

CPU Time 

I/O Time 

ILLIAC IV 

CFD 

64 x 64 x 10 

64 bits 

88K 

310K 

11 min. 

3 min. 

References 

360/67 

FORTRAN 

64 x 64 x 10 

32 bits 

570K 

a 

27 hrs. 

0 

[11 Kaplan and Paine, "The Proposed AFGWC 
Operational Primitive Equation Model," 
given at the Fifth Conference on Weather 
Forecasting and Analysis, March 4-7, 1974, 
St. Louis, Mo. Published by the Amer. 
Meteor. Soc. 

[2) Barnes, et. al., "The ILLIAC IV Computer," 
IEEE Trans. on Computers, Vol. C-17 (August; 
1968, pp. 746-757.) 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

~HE ~EASIBILITY OF USING ASSOCIATIVE PROCESSORS 
IN CHANGE DETECTION* 

P. Bruce Berra and Ashok K. Singhania 
Department of Industrial Engineering 

and Operations Research 
Syracuse University 

Syracuse, N.Y. 13210 

Summary 

Change detection involves comparison of 
a pair of given reference and collateral images 
in order to detect differences between the two. 
One of the major problems in this process [4] 
is the spatial alignment of the images. Cor­
relation techniques are employed for this pur­
pose - called image registration. A second 
problem that arises is due to differences in 
transparencies and contrast between the images. 
Adjustment for transparency differences - cal­
led photo normalization, together with image 
registration will produce a normalized and warp 
corrected collateral image that is ready for 
subtraction on a point by point basis from the 
reference image in order to produce the change 
data. 

The inherent parallelism in most of the 
above processes can be effectively exploited 
through the use of an associative processor (AP) 
[l]. We have presented a procedure for the 
change detection process and have developed al­
gorithms for implementing the various modules 
of the process on a "general purpose" associa­
tive processor. Corresponding timing equations 
are developed, in particular for the Goodyear/ 
STARAN AP [ 21. 

The major part of the change detection 
time is spent in the correlation process, as 
indicated in the results. A reduction in the 
amount of time to perform correlations would 
thus cause a significant reduction in time for 
the overall process. The inherent parallelism 
involved in the correlation, warp correction, 
photo normalization and subtraction processes 
indicates that a large reduction in time should 
be achieved by implementing these processes on 
an associative processor. Details of the pro-

cesses involved and the timing equations can be 
found in reference [2]. 

As an6example, for a pair of images with 
2.5 x 10 picture cells, and with 250 corre­
lation areas of 101 x 101 cells on the refer­
ence image, the process would require a total 
of 200 seconds if carried out on a STARAN with 
1,024 words. This assumes that the grey inten­
sities are encoded on a 16-point scale (re­
quiring 4 bits). The above figure reflects 
software floating point arithmetic functions 
performed on the STARAN and would be lowered 
substantially with the availability of hard­
ware arithmetic. The results indicate the 
attractiveness of the associative processor for 
change detection. 

References 

[l] P. Bruce Berra, "A Synopsis of Research Re­
sults in the Application of Associative/ 
Parallel Processors to Operations Research, 
Data Management and Change Detection", 1972 
Sagamore Computer Conference ProceedingS:-­
Syracuse University, August 23-25, 1972. 

[2] P. Bruce Berra, and Ashok K. Singhania, 
"The Feasibility of Using Associative 
Processors in Change Detection", Final 
Report RADC Contract F30603-72-C-0281, 
May 1974. 

[3] Goodyear Aerospace Corporation, "STARAN 
S Reference Manual", GER-15636, June 1972. 

[4] R. L. Lillestrand, "Techniques for Change 
Detection", IEEE Transactions on Computers, 
Vol. C-21, No. 7, July 1972. 

* This work supported by the USAF Electronic Systems Division through RADC Contract F 30602-72-C-0281, 
Large Scale Information Processsing System. 

241 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

PLASMA SIMULATION USING AN ASSOCIATIVE PROCESSOR 

Keki B. Irani and Daniel S. Lo 
University of Michigan 

Ann Arbor, Michigan 

Summary 

The execution times required by 
plasma simulation on both a sequential 
and an associative processor (STARAN) [2], 
[3], are analyzed. The problem considered 
is that of a one~dimensional plasma. The 
simulation uses the particle-in-cell 
method with the electric potential repre­
sented by a continuous ~iecewise linear 
function and the electric field by the 
derivative of the potential. The initial 
velocities of electrons and positrons 
are assumed to be selected randomly from, 
for example, Maxwellian distributions. 
The particles may be assumed to be 
positioned initially in electrori-.positr.on 
pairs with uniform distribution. For 
more details the reader is referred to 
Lewis, Sykes and Wesson's [l]. 

We assume that each word in the array 
memory of an associative processor corre­
sponds to one particle and that various 
quantities such as the position, the 
velocity of a particle and the value of 
electric field at the position of each 
particle are stored in various fields of 
the word corresponding to the particle. 

I 

In our analysis we concentrate on 
computation of two quantities, viz the 
charge density and the electric field; 
Because of the way we arrange our data in 
the array memories of an associative 
processor, the total computation time for 
updating the positions and velocities of 
the particles is a constant while for a 
sequential processor it is proportional 
to the number of particles. 

In the computations of charge 
density and ?lectric field, most of the 
time in an associative processor is con­
sumed in rearranging .data when the number 

242 

of particles becomes large. This data 
rearrangement is equivalent to the infor­
mation exchange among the processing 
elements. Unless the tasks are completely 
independent, information exchange among 
tasks being executed by processing 
elements is always necessary. The time 
required to rearrange data can be reduced 
if this rearrangement involves shifting 
data by integer powers of two. This can 
be obtained, if number of particles and 
number of cells are selected integer 
powers of two. Usually this selection 
does not constitute a restriction on the 
problem of plasma simulation. 

It is demonstrated that for a large 
number of particles the execution time for 
both the sequential and associative 
processors is proportional to the number 
of particles. However, the constant of 
proportionality and hence the execution 
time can be at least ten times larger in 
the case of a sequential processor, This 
analysis is based on the assumptions that 
the number of particles is not greater 
than the number of words in the array 
memory of STARAN and core memory in 
sequentiai computer is large enough to 
accommodate the total information about 
all particles. 

References 

[l] R.R. Lewis, A. Sykes, and J.A. Wesson, 
"A Comparison of some Particle-in-
Cel l Plasma Simulation Method", J. 
Comput. Phys. 10 (1972), 85-106. 

[2] STARAN APPLE Programming Manual, 
GER-15637A, Goodyear Aerospace 
Corporation (August 1973). 

[3] STARAN MACRO Programming Manual, 
GER-15643, Goodyear Aerospace 
Corporation (August 1973). 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

SOME TIMING FIGURES FOR INVERTING LARGE MATRICES USING 
THE STARAN ASSOCIATIVE PROCESSOR* 

P. Bruce Berra and Ashok K. Singhania 
Department of Industrial Engineering 

and Operations Research 
Syracuse University 

Syracuse, New York 13210 

Summary 

The purpose of this research is to deter­
mine the feasibility of solving a system of 
linear equations on the order of 2000 unknowns 
using an associative processor of the Goodyear 
Aerospace STARAN type. A series of timing eq­
uations have been developed for complete in­
version of the coefficient matrix using Gauss 
Elimination. Several curves have been plotted 
[l] under the following assumptions: software 
or hardware floating point arithmetic; 4 or 16 
associative arrays with each array having 256 
words of 256 bits each; 32 bit word size for 
each matrix element; and the data are available 
in auxiliary memory when and where desired. A 

summary table is shown below. Based upon these 
data we believe that the results obtained 

thus far are promising and that it is reason­
able to continue with our effects. We plan to 
solve actual problems on STARAN and to invest­
igate additional methods for solving systems 
of linear equations that are amenable to as­
sociative processing. 

[l] P. Bruce Berra and Ashok K. Singhania, 
"Timing Figures for Inverting Large Matrices 
Using the STARAN Associative Processor" 
RADC-TR-75-73, March 1975 

SUMMARY TABLE 

4 Arrays 16 Arrays 

Rank of Software Hardware Software Hardware 
Matrix Floating Floating Floating Floating 

Point Point Point Point 

500 4.0** 0.28 3.28 0.22 

1000 19.1 1.5 14.0 1.0 

1500 86.0 6.6 35.3 2.6 

2000 152.9 11.8 62.8 4.6 

2500 358.2 27.7 119.5 9.3 

** all times are in minutes 

* This work was supported by the RADC Post-Doctoral Program, RADC Contract F30602-72-C-0360, Inter­
System Communication Electronics. 

243 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

AN EXPERIMENTAL COMPARISON OF CDC STAR-100 AND 7600 
COMPUTER SPEEDS FQR EXPLICIT FINITE-DIFFERENCE 

HYDRODYNAMICS CALCULATIONS* 

Timothy E. Rudy 
Computation Department 

Lawrence Livermore Laboratory 
Livermore, CA 94550 

Summary 

We evaluated the performance of a 1-D hydro­
dynamics program on the CDC 7600 [l] CDC STAR-100 
[2] computers. The finite-difference algorithm 
used in the program is explicit in that no recur­
sions appear. That is, every calculation may be 
expressed in the form 

A = B (operation) C 
+ + 

where B and C are known vectors. Both serial and 
vector versions of the program are considered. 

At LLL, the LRLTRAN [3] langauge with vector 
extensions is currently being used on the 7600 to 
compile programs for the STAR. The development 
of STACKLIB [4] on the 7600 allows programs using 
the vector extensions to be debugged. STACKLIB 
uses the instruction stack and concurrency 
features on the 7600 to obtain increased effici­
ency and to allow the simulation of a significant 
portion of the STAR instruction set. 

Table 1 shows the performance of various 
versions of the hydrodynamics program. With the 
present LRLTRAN compiler, pure serial programs 
are about six times slower on the STAR than on 
the 7600. The poor performance of STACKLIB is 
partly due to short vector length, compiler link­
age, and initialization overhead. The STAR 
vector version is three times faster than the 
7600. 

Table 1. Serial and vector performanc~ 
characteristics for 100 zones and 5000 time steps. 

Serial 
---7600-FORTRAN 

STAR-FORTRAN 

Vector 
---7600-STACKLIB 

STAR 

zone-cycles/sec 

44.2 x 10 3 

7.8 x 10 3 

28.9 x 10 3 

138.9 x 10 3 

On the STAR, with each vector instruction a 
sequence of microcode is executed to control the 
initialization, execution, and termination of the 
instruction. For timing purposes, the delay 
associated with these control steps is termed 
"start-up" time. For example, a full-precision 
floating-point multiple has a 156-cycle start-up 
time and results are produced at every cycle. 

*This work is performed under the auspices of the 
Energy Research and Development Administration. 

244 

The available timings [5] enable us to 
compute a theoretical value for the number of 
machine cycles required to compute one time step 
for this 1-D code. 

For the 66 vector instructions used in this 
program, the total number of start-up cycles is 
8047. Since the 66 instructions consume 59*N 
cycles per time step, a vector length of 136 is 
required to obtain 50% efficiency. Obviously, 
the longer the vector the more efficient the STAR. 

Depending on the density of the data, a 
programmer may perform the calculation using 
meshwise, compressed, sparse, or serial 
techniques. 

Several of the key issues in moving a pro­
gram from a serial environment to a STAR have not 
been discussed. These include data base reorgani­
zation, boundary conditions, and algorithms not 
readily vectorized (e.g., table look-up and 
solution of implicit difference schemes). 

Based on these experiments, we conclude that 
a STAR may be degraded to 6600 level by treating 
it as a serial, or scalar machine. However, if 
some effort is expended in reprogramming to 
utilize the vector capability of the machine, a 
significant improvement in performance may be 
realized. 

References 

[l] Control Data 7600 Computer System: Reference 
Manual, Control Data Corporation, St. Paul, 
Minnesota, Publication 60100000 L (1971). 

[2] Control Data STAR-100 Computer System: 
Hardware Reference Manual, Control Data 
Corporation, St. Paul, Minnesota, Publi­
cation 60256000 06, (1973), 

[3] J. T. Martin, R. G. Zwakenberg, and S. V. 
Solbeck, LRLTRAN Language Used with the 
CHAT and STAR Compilers, Lawrence Livermore 
Laboratory, Rept. LTSS-307 (1973) 

[4] F. H. McMahon, L. J. Sloan, and G. A. Long, 
STACKLIB -- A Vector Function Library of 
Optimum Stackloops for the CDC 7600, 
Lawrence Livermore Laboratory, Rept. 
UCID-33083 (to be published). 

[5] Control Data Preliminary Instruction 
Execution Timing Manual, Control Data 
Corporation, St. Paul, Minnesota, 
Publication 60440600 (1974). 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

EVALUATION CRITERIA FOR PROCESS SYNCHRONIZATION 

R. J. Lipton+ 
L. Snyder++ 

Computer Science Department 
Yale University 

New Haven, Connecticut 06520 

Y. Zalcstein+++ 
Computer Science Department 

State University of New York 
Stony Brook, New York 11794 

Abstract -- While there are by now well­
established criteria for evaluating serial algo­
rithms, such as space and time measures, these 
criteria cannot be readily applied to asynchron­
ous algorithms. We propose a method for the 
evaluation of the performance of an asynchronous 
algorithm. This method is based on the study of 
delays that are o~en introduced when one solves 
a synchronization problem. We then illustrate 
this method by proving results about the efficien­
cy of various solutions to synchronization 
problems. 

1. Introduction 

A central problem in computer science is that 
of evaluating competing algorithms for the same 
task. In the case that the algorithms are to be 
executed sequentially, several evaluation criteria 
are commonly used. First, it is easy to express 
the idea that two algorithms "do the same thing" 
by the requirement that they have the same input­
output behavior. Secondly, given that two algo­
rithms have the same input-output behavior, they 
may be compared by considering the execution time 
required, memory space required, numerical (or 
other type of) stability and so on. By contrast 
asynchronous algorithms cannot be evaluated so 
easily, due to several important reasons. 

First, asynchronous algorithms -- especially 
those used in operating systems -- are not nec­
essarily supposed to halt. Indeed, considerable 
effort is often required to guarantee that they 
do not halt, i.e. do not deadlock or crash. 
Therefore, it often makes no sense to discuss the 
input-output behavior of these asynchronous algo­
rithms. Thus it is not a.1; all clear when two such 
algorithms "do the same thing". 

Another difficulty is that of measuring 
efficiency. Simply counting the number of steps 

(+) 

(++) 

Part of this work was done while at IBM 
Research Center at Yorktown Heights, and 
part was supported by ONR under Grant 
N00014-75-C-0752. 

Supported, in part, by ONR under Grant 
N00014-75-C-0752. 

(+++)Supported, in part, by NSF Grant 
DCR75-01998. 

245 

required to accomplish a task does not reflect the 
utilization of multiple processors. Are algo­
rithms requiring more steps -- which can be done 
in parallel -- to be preferred over those requir­
ing fewer steps -- which cannot be done in 
parallel? Similarly, algorithms requiring less 
memory are not clearly superior if referencing 
this memory causes processor interference. 

Since we are mainly concerned.with synchron­
ization, the questions of efficiency can be 
stated as: How much overhead is required (and how 
much is acceptable) to accomplish process synchron­
ization? Will the method we chose to solve our 
synchronization problem cause delays or interfer­
ence which are unacceptable? 

In this paper we present a criterion for ev­
aluating asynchronous algorithms. Rather than 
attempt to assign absolute measures of resource 
utilization -- a task that may well be impossible 
to do in a useful way -- we define, relative to a 
suitable measure of time, for each non-negative 
integer k, a relation, simulat~ between asynchron­
ous algorithms. For asynchronous algorithms Q and 
p 

Q simulatek P 

will mean that there is a mapping from computa­
tions (state changes) in Q to computations in P, 
This consideration of state changes avoids the 
difficulty of non-halting algorithms not being 
input-output comparable, The efficiency of this 
correspondence (i.e. the amount of overhead Q 
requires to accomplish the same effect as P) is 
measured by the integer k. k measures how close­
ly the "parallelism" of Q and P are related. When 
k = O, Q uses multiprocessors as efficiently as P, 
but as k + ~ Q uses multiprocessors less and less 
efficiently. 'Thus there will be a sequence of 
relations 

simulate0 , simulate1 , ... 

which allow increasing freedom with a correspond­
ing decrease in efficiency. 

2. The Model 

We have used a more "program oriented" model 
to study related problems ( [ 5] - [ 8]). However, 
experience has shown that, as far as the analysis 
of synchronization is concerned, it is possible to 
abstract the model further to the language theo­
retic one which we present below. 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

The model will ignore such issues as what 
kind of language the algorithm is specified in, 
how the actual scheduling is determined, and, most 
importantly, how the algorithms are actually im­
plemented. These are, of course, important consid­
erations, but it is our contention that a study of 
the logical implementation of asynchronous programs 
is of prime importance. 

Let E be a finite set. Elements of E will be 
thought of as actions (instructions or statements). 
Informally, a computation is any sequence of 
actions that respects the control flow of an 
asynchronous program P (we assume fixed initial 
values of all variables so that different sequences 
represent true asynchronous behavior and are not 
merely a reflection of different inputs to P). 
Clearly, if x is a computation, then so is any 
prefix (initial subsequence) of x. We formalize 
this notion as follows. 

Definition: Let E be a finite non-empty set. 
An asynchronous program is a subset P of E*, the 
set of all sequences of elements of E, which is 
closed under the operation of taking prefixes. 
Elements of E are called actions and elements of P 
are called computations. 

Definition: Let P !EE~ be an asynchronous 

program. A~ function is a function c:E~ + N, 

where N is the set of non-negative integers which 

is additive with respect to concatenation, i.e. 

c(xy) = c(x) + c(y). Intuitively, c measures 

"time". 

Let P ~ EP be an asynchronous program and c 

be a cost function. Define a del8iY function. 

dc:E~ x Ep +NU{..,} by 

dc(x,f) =min {c(y):yEE~ and xyfgP}, where 

d (x,f) = ... if there is no such y. If c 
c(x) = length (x) we will denote de by d. 

d (x,f) measures the minimal amount of "time" c 
as measured by c that must elapse before f can ex~ 

ecute following x. This quantity is important for 

several reasons. In a real time system, the value 

of dc(x,f) ma;v be critical to the correctness of 

the system. Also, given additional structure in 

the model, the delay function acts as a quantita­

tive measure of how well multiprocessors can be 

utilized. 

When comparing two asynchronous programs 

P ~ E~ and Q ~ EQ, it.is convenient to think of 

one of them, sa;v Q, as implementing the effect of 

P by using more primitive operations. According 

to this view, Q is the "compiled" or "macro 

246 

expanded" version of P. One can then consider a 

mapping M from P to Q representing this compila­

tion process. In the model presented here, it will 

be more convenient to consider the "inverse", say 

h, of M, from Q to P. Thus a sequence of actions 

a.ff3 in Q will be the "expansion" of a single action 

g in P. The action f will be considered to imple­
ment the action g while a and f3 will be considered 
as bookkeeping operations or overhead. 

Our model also requires that h be a homo­
morphism which simply means that flow of control 
in Q is a copy of the flow of control of P. 

Formalizing the discussion above, we obtain 
the following 

Definition: Let Q and P be asynchronous 

programs, i.e. Q ~ EQ and P = ~· Then h is a 

decoder from Q to P provided h is a string mor­

phism from EQ into~· i.e., h(xy) = h(x)h(y) for 

all x,y in EQ and h(f)EEplJ{A} for all fgEQ where 

A is the empty string and h(Q) = P. fgEQ is 

called observable if h(f) # A, otherwise it is 

called a bookkeeping action. 

We can now define simulatek. 

Definition: Let Q and P be asynchronous 

programs over alphabets EQ and EP respectively, 

and let c be a cost function on EQ. Then 

Q simulatek P 

provided that there is a decoder h from Q to P such 

that for all xEEQ and fEEQ' f observable, 

h(x)h(f)gP implies d (x,f) < k. 
c -

Intuitively, if, after a sequence of actions 
h(x), P is not "stopped" i.e. some action g may 
proceed, then Q may be stopped at x but only 
temporarily, in the sense that there is a bound k 
on the amount of time, as measured by c, that must 
elapse before the action f corresponding to g can 
be "released", This is our measure of efficiency. 

The smallest k such that Q simulatek P will 
be denoted by delay (Q,P), 

3. EXam;ples and discussion 

In this section we illustrate the preceding 
definitions by ex!il.mples from the literature, To 
simplify the discussion, we will use a suggestive 
informal notation, as is commonly employed in 
the synchronization. literature. It should be 
pointed out that the advantage of the abstract 
definition of an asynchronous program is its con­
ceptual economy and aid in. simplifying proofs. 
For describing particular examples, a "program 
oriented" notation is clearly preferable. This is 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

quite analogous to the description of languages by 
grammars, 

Consider the following asynchronous programs 
which we take as defining the semantics of the 
"first reader-writer problem" of [l] (for a dis­
cussion of the semantics of synchronization prob­
lems see [5], [6]). 

reader-i (1 < i ~ n) writer 

c.: 
]_ 

P(S) j: P(S!n) 

e.: read k: write 
]_ 

h.: 
]_ 

V(S) 1: v(s!n) 

where S is a global variable (semaphore) whose in­
itial value is n and P,V are Dijkstra's primitives, 
while P(S!n), V(S!n) are the generalizations of 
these primitives [9], P(S!n) is an indivisible 
action of the form 

~ S > n do S + S - n 

the assignment S + S - n is executed only when 
S > n, otherwise, control is interrupted until 
such time as s > n is satisfied. v(s!n) is an in­
divisible action of the form 

~ true .9£. S + S + n, 

Each of the processes reader i and ~ is 

cyclic so that for example, j can proceed after 

execution of jkl. Let us denote the set of compu­

tations of this program by P, For example, 

c1c2 £ P, while jc2 ¢ P, 

Now let Q1 be the asynchronous program of 

figure 1. This program corresponds to the solution 

to the first reader-writer problem found in [l]. 

integer readcount; (initial value 0) 

semaphore M,W; (initial value 1) 

reader-i 1 < i < n 

A. P(M) 
J. 

B. readcount + readcount + 1 
J. 

c. if readcount 1 then P(W) 
J. 

D. V(M) 
J. 

E. read 
J. 

F. 
J. 

P(M) 

G. readcount + readcount -1 
J. 

H. if readcount 
J. 

I. 
J. 

V(M) 

writer 

J P(W) 
K 
L 

write 
V(W) 

0 ~ V(W) 

Figure 1. First solution 
to reader-writer problem. 

247 

We will now study the relationship between Q1 
and P. First let h be the mapping defined by: 

h(C.) c. 
J. J. 

h(E.) 
J. 

e. 
J. 

h(H.) h. 
J. J. 

h(J) j 

h(K) k 

h(L) 1 

h(X) /\ for all other actions X. 

It is not difficult to verify that h(Q) = P. For 
instance the computation 

AlBlC1DlA2B2C2D2 

We wish to measure the efficiency of this 

solution. First, we claim that for the given de -

coder h, Ql simulatek P implies k > 3. To see 

this, take x = A1B1c1 and f = c2, then the short~ 

est y such that xyfeQ is D1A2B2 , which exits from 

the critical section of reader-1 restores the sem­

aphore M to 1 and then enters the critical section 

A2-D2 of reader-2. Thus d(x,f) = 3, while 

h(x)h(f) = c1 c2eP. By a straightforward analysis 

of cases, based on the observation that one need 

execute at most three actions between two "succes­

sive" observables, it follows that, for this de­

coder, k ~ 3. Next, we claim that under no de­

coder h1 , can either Ai or Bi be observable 

actions. Assume the contrary and let h1 (Ai) ci 

Since ~JgQ and since clearly h1 (J) = j, 
h(A1J) = h(A1 )h(J) = c1j t P, which is a contra­

diction since h maps computations into computatio: 

Similarly, h1 (Bi) # ci. Thus either h1 (ci) = ci 

for all i and we can argue as before that k ~ 3, 

or, for some i, h1 (Di) = ci, but, in the latter 

case d(A, D.) = !A.B.C. ! = 3 so k ~ 3 in all case 
J. J. J. J. 

Hence delay (Q1 ,P) = 3. 

Thus Q1 introduces new delays, but delay 

(Q1,P) is ~. independently of the number n of 

readers. 

Let us now compare Q1 with an alternat-.,_ 

solution, Q2 , represented in fi1<11~ 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

reader i l~i<n writer 

P(S.) 
J. 

E.: read 
J. 

H.: V(S.) 
J. J. 

J 
n 

K: 

Ll: 

L 
n 

P(S ) 
n 

write 

V(S1 ) 

V(S ) 
n 

Figure 2. Second solution to reader-writer 
problem. 

Clearly any decoder h from ~ to P will have 

to map h(Ci) = ci, h(Ei) = ei, h(Hi) =hi and 

h(K) = k. If h(Ji) = j, i; 1, then for x = J1 
and f = c1 , d(x,f) = n + 1 and h(xf) = c1eP, while 

if h(J1 ) = j, for x = J 2 and f = c2 , d(x,f) = 

n + 1. Thus delay (~,P) ~n + 1. 

Thus ~ introduces delays that are unbounded 

as a function of the number of readers present. 

Therefore, delay (Q,P) is a quantitative measure 

of efficiency which agrees with the intuition that 

~ is a better solution than ~. 

The above differences become even more inter­
esting if we allow different cost functions. 

For example, we may want to use a weighted 

length function c. Observing that most of the 

time is actually spent in the "read" and 11write" 

sections of the program, we may assign to the 

"read" and "write" actions weight t > 1 while all 

other actions in Qi and P get assigned weight 1. 

With respect to this cost function, dela;y­

(Q1,P) is still 3. However, dela;y- (~,P) ~n + t 

since for the above values of x and f, the program 

has to go through the "write" section in order to 

release the reader. 

4. Existence Theorems 

In this section we give proofs of various 
simulation results concerning Dijkstra's P and V 
primitives. 

In our previous work [5], [6], [8], we have 

shown that with respect to a suitable notion of 

248 

"simulate", F'V systems are too weak and cannot 

simulate even rather simple synchronization prob­

lems. Many readers of our work objected to "sim-
1 

ulate" as being too strong, based on the intuitive 

feeling that PV is "universal". Using the··"simu­

latek" relation, we now show that F'V is "universal" 

in the sense that for any asynchronous program P, 

there is a PV program Q such that Q simulatek P, 

for~ k. However, k grows unboundedly as a 

function of the size of P. 

In the following, we will use the !!!!!:!!.· •• ~ 
notation introduced in [5]: 

where a is a predicate and a is a statement means 
that 9 is executed only if a is true. Otherwise, 
control is interrupted until such time as a is 
true. 

Definition: A E!_asynchronousprogram is an asyn­
chronous program P such that there is a distin­
guished subsetA of the program variables (the 
elements of..! are called semaphores) which can 
only be used by actions of the form ~(S) or 
V(S), S e )>, ( [2]) where 

P(S) is ~ S > 0 .9:.2, S + S - 1 and 

V(S) is ~true .9:.2, S + S + 1 

Theorem 1. !2!:, every asynchronous program P, 

~ ~ !!:. non-negative integer k ~ .!!:. PV 

asynchronous program Q such that Q silhulate p 
------ k-' 

~ length ~ cost function. 

Proof. Let P be an asynchronous program and sup­
pose P consists of n actions of the form 

(n) when a do a 
n n 

We construct Q as an asynchronous program 
containing n + 1 processes, where the first n are 
constructed from the n actions of P and the 
n +·l -st is a "monitor". The monitor can act­
ually be incorporated into the individual process­
es, but its isolation as a separate processes en­
hances the efficiency and readability of the 
program. 

·For·the i-th action of P, construct the 
following process in Q: 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

process-i 

(1) L.: P(S.) 
1 1 

(2) P(S) 

(3) w+w+ 1 

(4) if w = np ~V(E) 

(5) V(S) 

(6) P(E) 

(7) if. ok l~ 

(8) e. 
1 

(9) ok + 0 

(10) w+w- 1 

(11) ll w > o~ V(E) 

(12) ~V(M) 

(13) goto Li; 

Where S is a mutual exclusion semaphore (in­
itial value 1) used to protect the critical section 
(2)-(5), Eis a semaphore (initial value 0) used to 
release all actions that may execute at a given 
step (the "ready-set" in the terminology of [5]), 
M is a semaphore (initial value 1) used for commun­
ication with the monitor. Si is a local semaphore 
(initial value 0) which is enabled at a given step 
if the i-th action ~ execute at that step. The 
variable w is a counter, np is a variable giving 
the number of actions that may execute at any step 
and ~a flag. 

The monitor process is given by 

LM: P(M) 

ok + 1 

np + ~( Sl' •• ' 'Sn) 

t + 1/J ( s1 , ... , Sn) 

if q_(t,l) ~ V(S1 ) 

if q_(t,n) then V(S ) 
n 

goto LM; 

~ is a function that computes the number of 
processes that may execute given the values of the 
Si's and 1/J is a function that figures out which 
processes may execute and encodes this information 
into t. q_(t,i) will decode t and enable Si accord­
ingly. 

The monitor starts and enables some process-i 
then enters its critical section (2)-(5). Inside 

249 

the critical section it acknowledges that it is 
ready to execute and waits on (6) for release. If 
all pending processes have so acknowledged, one of 
them is enabled in line (4), Note that the sched­
uling responsibility has not been usurped by this 
simulation in the sense Of'""'deciding ~ process 
will execute next. 

Assuming process J is the first to execute 

beyond line (6), and since ok will be 1, it will 

execute e., disable all others from executing (9) 
J 

(since executing e. could have changed which pro-
1 

cesses may now proceed), acknowledges that it has 

passed (10) and then releases another process if 

not all have been released (11), otherwise it 

releases the monitor (12). 

Let h((8).) = i and h(f) 
1 

actions in Q, Evidently h(Q) 

A for all other 

P. To bound the 

efficiency of the simulation, observe that be­

tween any two consecutive observable actions (8). 
1 

and (8)j, r bookkeeping actions are executed, 

where 

r ~ 5u + 2n + 8 + 5v 

where u is the number of processes that may exe­

cute after (8)i and v the number that may execute 

after (8)j. Since u,v 5.. n, k is bounded by 

12n + 8. 

The proof of Theorem 1 suggests another cost 

function -- the number of observable actions in a 

word. Let us denote this cost function by c1 • 

Then we have the following: 

Corollary. For every asynchronous program P, 

there exists a PV asynchronous program Q such that 

Q simulate0 P with cost function c1 . 

Pgiof. Immediate from the proof of Theorem 1, 

since there are only bookkeeping actions between 

(8). and (8) .• 
1 J 

In [8], we have shown that PV systems with 
only binary ({O,l}-valued) semaphores are strictly 
weaker than PV systems in the sense that there are 
PV systems that cannot be simulated by any PV sys­
tem with only binary semaphores. However, we have 
the following 

Theorem 2, For every !:Y_ asynchronous program P, 

~ i§_ .§:. !:Y_ asynchronous program Q ~ only 

binary semaphores ~ ~ Q simulate3 P, ~ 

length ~ ~ function. 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

Proof, The construction is essentially sketched 
iil12J. For each semaphore Sin P, add a new 
mutual exclusion semaphore E (initial value 1) and 
a new integer variable x (initial value 0), Q is 
obtained from P by replacing each P(S) by 

and V(S) by 

P(E) 

x+x-1 

if x < 0 then begin V(E); 
P(S) end 

else V(E); 

P(E) 

x + x + 1 

if x ~ 0 then V(S) 

V(E) 

Let the third line in each expansion be the 
observable action, Then clearly h(x)h(f) e P 
implies d(x,f) .::_ 4. 

Acknowledgements 

We would like to thank M. Condry, E. Ekanadham, 
P. Henderson, N. Pippenger, and A. Silberschatz 
for several helpful discussions. 

References 

[l] P.J. Courtois, F. Heymans and D.L. Parnas, 
"Concurrent control with 'readers' and 
'writers"', CACM 14 (Oct. 1971) pp. 667-668 • 

.. 

250 

[2] E.W. Dijkstra, "Cooperating sequential pro­
cesses", in Programming Languages (F. Genuys, 
ed.), Academic Press, pp. 43-112. 

[3) R.M. Karp and R.E. Miller, "Properties of a 
model for parallel computations: Determinacy, 
termination, queueing", -™ .:!_. Applied Math. 
14 (1966) pp. 1390-1411. 

[4) R.M. Karp and R.E. Miller, "Parallel program 
schemata", .:!_. Compu:, Syst. Sci. 3 (1969), 
pp. 147-195. 

[5) R.J. Lipton, "Limitations of synchronization 
primitives with conditional branching and 
global variables", Proc. Sixth ACM Symposium 
:E!!. Theory .2!_ Computing (1974) pp~ 230-241. 

[6] R.J. Lipton, Limitations of synchronization 
primitives, Research Report #31, Computer 
Science Department, Yale University, (Aug, 
1974), 51 pp. 

[7] R.J. Lipton, "Reduction: A new method for 
proving properties of systems of processes", 
Conference Record of the Second Annual ACM 
Symposium ·ortPr'ihdpie:soTPTogr~ 1.!!!!a­
uages (1975), pp. 78-86. 

[ 8) R,J. Lipton, L. Snyder and Y. Zalcstein, "A 
comparative study of models of parallel comp­
utation", Conference Record of the Fifteenth 
~ IEEE Symposium on Switchin'i and ~­
mata Theory (1974), pp. 145-155. 

[9] H. Vantilborgh and A. van Lamsweerde, "On an 
extension of Dijkstra's semaphore primitives", 
Information Processing Letters 1 (1972) pp. 
181-186. 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

EXPLOITING VECTOR MODE IN AN SISD COMPUTER 

hy 

B. L. Buzbee & L. E. Rudsinski 
University of California 

Los Alamos Scientific Laboratory 
Los Alamos, New Mexico 87545 

Summary 

Many modern SISD computers embody features 
with which data streaming can be established 
i.e., vector mode. In this paper, we briefl~ de­
scribe how vector mode is achieved and discuss 
our experience with it on the CDC 7600. 

.Frequently, the speed of the central pro­
cessing element (CPE) is much greater than memory 
speed on a modern high-performance computer. For 
example, the CDC 7600 has a 27-ns (nanosecond) 
~PE cycle time and a 270-ns memory cycle. Thus, 
i~ order to keep the CPE busy, designers have di­
vided memory into separate independent modules 
that can be in simultaneous operation, and succes­
sive. memory references are processed in parallel 
provided the references are to different modules. 
Conversely, successive references to the same 
modul~ result in a long delay, called a bank 
conflict. 

If we have several operands enroute to the 
CPE from memory, then we must have a buffer to 
receive them, and multiple registers often play 
that role. However, they provide another im­
portant function in that they can hold intermedi­
ate results and thereby eliminate the overhead of 
storing such results in memory. 

Suppose that we have interleaved memory 
multiple registers, and independent pipelined 
functional units (FU's). Conceptually, we then 
have the possibility of a stream of operands 
from memory to the registers, a stream from the 
registers through the FU's and back to the regis­
ters (perhaps cycling through several FU's) and 
finally a stream of results back to memory.' This 
memory-to-memory streaming is what we define as 
vector mode. In order to achieve it, we must have 
complete control of all traffic between memory and 
the CPE. Thus, we cannot tolerate instruction 
fetching during vector mode as it will almost cer­
tainly produce bank conflicts, thereby disrupting 
the stream. A short loop instruction stack in the 
CPE eliminates instruction fetching· thus it is a 
necessary feature to achieve vector' mode.' 

When executing object code generated by a 
FORTRAN compiler, the CDC 7600 averages about 9 to 
~2 million instructions per second (MIPS), whereas 
in vector mode it averages 20 to 25 MIPS. Fortu­
nately, a lot of work is often concentrated in 
short loops. Thus, the CDC 7600 productivity can 
be increased by vectorizing those loops, that is, 
replace them by calls to carefully written 
assembly language modules in which vector mode is 

251 

achieved. This was done with many of our large 
production codes, and their productvity was in­
creased by 30 to 40% [l, 2). 

From this experience, we find that the SISD 
environment offers some nice features with respect 
to vector implementation. For example, we can 
have (1) arbitrary spacing in memory between vec­
tor elements subject to the constraint that suc­
cessive elements reside in distinct modules. The 
programmer can easily achieve such separation when 
he lays out his data. This is an important fea­
ture because there are numerical algorithms where 
one operates on both rows and columns of an array. 
Also, (2) multiple registers minimize memory re­
quirements for intermediate stora~e and the asso­
ciated delays. For example, F = A+ B + C + D can 
be evaluated without any intermediate storage. 
Finally, (3) the complexity of the "vector func­
tion" is limited only by the length of the in­
struction stack. That is, we have the full 
generality of an SISD computer at our disposal 
but constrained by the stack length. 

This experience has also illustrated the im­
portance of scalar speed in a vector machine. 
Note that although the CDC 7600 vector mode exe­
cution rate is about twice its scalar rate 
(FORTRAN), vectorization only increased produc­
tivity by 30 - 40%. Thus a scalar machine which 
is twice as fast as the CDC 7600 scalar mode will 
significantly out perform a CDC 7600 even if 
vector mode is used whenever possible. This is 
consistent with [3) and is due to the fact that 
25 - 50% of the total work in an average program 
must be done in scalar mode. We conclude that 
scalar speed is a very important parameter in 
the performance of a vector machine. 

REFERENCES 

[l) B. L. Buzbee and Fred W. Dorr, "The Direct 
Solution of the Biharmonic Equation on Rec­
tangular Regions and the Poisson Equation on 
Irregular Regions," SIAM J. Numer. Anal., 11 
(1974) pp. 753-763. 

[2) F. McGirt, L. Rudsinski, and K. J. Melendez, 
"Computer Program Optimization Using Software 
Monitoring Techniques," presented to the 1973 
AEC Computer Information meeting, May 10-11, 
Lawrence Livermore Laboratory, Livermore, CA. 
Copies available from the authors. 

[3] G. M. Amdahl, "Validity of the single proces­
sor approach to achieving large scale comput­
ing capabilities," 1967 JJCC of AFIPJ, vol. 
30, pp. 483. 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

AUTHOR INDEX 

Author Page Author Page 

Allen, E. B. 186 Gaertner, W. w. 125 

Baille, G. G. 200 Gambino, L. 132 

Barber, w. E. 105 Grosky, W. I. 171 

Batcher, K. E. 167 Gudmundsson, B. 90 

Berra, P. B. 241, 243 Henderson, P. B. 203 

Boulis, R. L. 132 Hennings, D. 202 

Briggs, F. A. 155 Huang, c. c. 152 

Brown, R. M. 204 Irani, K. B. 242 

Buzbee, B. L. 251 Jackson, K. 71 

Chen, A. c. M. 105 Jahanian, P. 192 

Chen, I-N 114 Jump, J, R. 131 

Chen, R. c. 130 Kuck, D. 15 

Chen, s. 237 Lamport, L. 187 

Coffman, J. E. 130 Larson, A. 186 

Cordonnier, v. M. 115 Lee, C. c. 239 

Daley, J. 240 Lesser, v. 214 

Danielsson, P-E 90 Li, H. F. 40, 79 

Davidson, E. 155 Lin, K. s. 126 

Davidson, I. 110 Lipton, R. J. 245 

Deb, A. 236 Lo, D. 242 

Dennis, J, B. 224 Love, H. 124 

Diamond, M. 235 Mason, P. H. 127 

DiVecchio, M. 122 Matelan, M. N. 100 

Ecker, K. 201 Margaria, I. 182 

Enslow, P. H. 63 Meo, A. 182 

Feng, T-Y 239 Meyer, S. c. 131 

Fennell, V. 214 Milton, R. L. 172 

Field, J, 110 Misunas, D. P, 230 

Finilla, c. 123 Moir, C. 71 

Fung, H. s. 1 Mukhopadhyay, A. 236 

252 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

AUTHOR INDEX (CONT'D,) 

Author Page Author Page 

Neely, P. 204 Shen, Y. s. 126 

Nirsberger, H. 99 Siegel, H. J. 106 

Ramamoorthy, c. v. 40, 79, 192 Singhania, A. K. 241, 243 

Rothstein, J. 168 Smith, D. R. 126 

Rudsinski, L. 251 Snyder, L. 245 

Rudy, T. 244 Steinacker, M. 202 

Rumbaugh, J. E. 217, 220 Underwood, B. D. 240 

Sameh, A. 237 Vestal, S. 99 

Saxton, T. L. 152 Wang, P. 171 

Schenfele, F. E. 142 Weiman, c. 168 

Schindler, s. 202 Yau, S. s. 1 

Schoellkopf, J. P. 200 Zacchi, M. 182 

Shapiro, H. D. 159 Zalcstein, Y. 203, 245 

Shaw, A. c. 180 

253 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

Prof. J. L. Baer 

Dr. Kenneth Batcher 

Prof. P. B.ruce Berra 

Dr. K. Chandy 

Dr. I-Ngo Chen 

Dr. Wei-ith Cheng 

Mr. John Cornell 

Prof. Edward Davidson 

Prof. Jack Dennis 

Dr. Robert Downs 

Prof. Caxton Foster 

Dr. Garth Foster 

Prof. Domenico Ferrari 

Prof. Bernard Galler 

Dr. Oscar Garcia 

Prof. Mario Gonzalez 

Dr. Bill Hays 

Mr. Lee Higbie 

Mr. John Horn 

Dr. Chao P. Hsieh 

Prof. M. K. Hu 

Prof. Keki Irani 

Mr. Larry Jack 

Dr. Robert Johnson 

Prof. J. Robert Jump 

Prof. Robert Keller 

Dr. Alan Klayton 

Dr. Peter M. Kogge 

Prof. David Kuck 

REVIEWERS 

254 

University of Washington 

Goodyear Aerospace Corporation 

Syracuse University 

University of Texas, Austin 

University of Alberta/Syracuse University 

IBM Corporation 

Systems Development Corporation 

University of Illinois 

Massachusetts Institute of Technology 

Systems Control Incorporated 

University of !fassachusetts 

Syracuse University 

University of California, Berkeley 

University of Michigan 

University of South Florida 

Northwestern University 

Brigham Young University 

Massachusetts Maritime Academy 

Rome Air Development Center 

Syracuse University 

Syracuse University 

University of Michigan 

Honeywell, Incorporated 

Rome Air Development Center 

Rice University 

Princeton University 

Rome Air Development Center 

IBM 

University of Illinois, Urbana 



1975 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

Dr. Leslie Lamport 

Dr. Duncan Lawrie 

Prof. Gerald Lipovski 

Prof. C. L. Liu 

Mr. David Mcintyre 

Prof. John Marzolf 

Mr. W. C. Meilander 

Dr. Steve Nuspl 

Prof. Suhas Patil 

Mr. James L. Peterson 

Mr. James L. Previte 

Prof. C. v. RamalllOorthy 

Dr. S. S. Reddi 

Mr. Oskar Reimann 

Dr. John SaIIlll10n, Jr. 

Dr. H. Gregory Schmitz 

Mr. Henry D. Shapiro 

Mr. Henk Spaanenburg 

Prof. Edward Stabler 

Mr. Armand Vito 

Mr. K. P. Wang 

Mr. Kuo Y. Wen 

Dr. R. Wishner 

Dr. Sun-maw Yang 

Prof. Stephen Yau 

Prof. R. J. Zingg 

REVIEWERS 

255 

Massachusetts Computer Associates 

University of Illinois, Urbana 

University of Florida 

University of Illinois, Urbana 

University of Illinois, Urbana 

Syracuse University 

Goodyear Aerospace Corporation 

Honeywell, Inc. 

Massachusetts Institute of Technology 

University of Texas, Austin 

Rome Air Development Center 

University of California, Berkeley 

Rice University 

Rome Air Development Center 

Pattern Analysis & Recognition Corp. 

Honeywell, Inc. 

University of Illinois, Urbana 

Syracuse University 

Syracuse University 

Rome Air Development Center 

Syracuse University 

University of Illinois, Urbana 

Systems Control Incorporated 

Syracuse University 

Northwestern University 

Iowa State University 




