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PREFACE

The Sagamore Computer Conference has been held annually for the past four years at the former
Vanderbilt summer estate in the Central Adirondack Mountains. The Conference was originally conceived
to provide a secluded environment, a 1300-acre preserve surrounding the private Sagamore Lake, for the
participants with excellent opportunities for exchanging ideas and learning each other's research
activities. Thus informative discussions may be made not only during the technical sessions but also
throughout the various sports and social gatherings provided by the Conference.

The first Sagamore Computer Conference was held on August 23-25, 1972. The subject of that con-
ference was on "RADCAP (Rome Air Development Center Associative Processor) and Its Applicatiomns'. About
90 invited participants attended the 2-day conference to hear the 17 technical papers presented. The
Conference Proceedings were published and distributed by RADC and Syracuse University, co-sponsors of
the Conference. 1In 1973, the Conference broadened its scope to "Parallel Processing' and issued the
Call-for-Papers announcement. Among the submitted papers, 34 were accepted and presented on August 22-
24, 1973. The 1973 Conference was sponsored by Syracuse University in cooperation with IEEE and ACM.
Copies of its Proceedings (IEEE Catalog Number 73 CHO812-8 C) may be available from any one of these
institutions. The 1974 Conference was extended to three days (August 20-23, 1974) to provide the
participants with more time for individual activities. In addition to a panel discussion, the part-
icipants heard the presentation of 35 technical papers. The Conference was again sponsored by Syracuse
University, but the Proceedings were published and distributed by Springer-Verlag as Volume 24 in their
series of Lecture Notes in Computer Science.

Since 1972, the number of submitted papers and, in particular, the number of requests to attend
the Conference have increased significantly and persistently. In 1973 and 1974, the Minnowbrook
Conference Center was opened to accommodate the overflow from Sagamore. But this year, even with this
added facility, we had to turn down many requests to attend the Conference. Thus, the Conference had
grown out of Sagamore (as well as Minnowbrook) accommodations, and, much to our regret, this year's
Conference had to be the last one held at Sagamore.

The success of the Sagamore Computer Conferene is mostly due to the vigorous support of many
individuals. For this year's conference we are grateful to Col. Robert D. Krutz of Rome Air Development
Center for his enlightening Keynote Address. Also, at the request of many past Sagamore participants,
this year we invited Professors Enslow, Kuck, Ramamoorthy, and Yau to write survey papers on various
computer architectures related to Parallel Processing. Their time and effort in this respect are very
much appreciated. We appreciate the efforts of the authors who submitted papers for consideration.

We are also much indebted to all the reviewers who, in order to meet the stringent review deadlines,
put aside their own busy work schedule to carefully evaluate the papers sent for their comments. The
success of the Conference is also attributable to the generaus help we received from the session
chairpersons. In addition, a special acknowledgement is due to Elliott McCulley, Anne Woods,

Mary Jo Fairbanks, and Angela Wisniewski for their administrative assistance and typing help.
Tse-yun Feng

Department of Electrical & Computer Engineering

Syracuse University
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ASSOCIATIVE PROCESSOR ARCHITECTURE - A SURVEY

S. S. Yau and H. S. Fung
Departments of Computer Sciences and Electrical Engineering
Northwestern University
Evanston, Illinois 60201 U.S.A.

(Invited Paper)

Abstract -- A survey of associative proces-
sor architecture is presented. Based on their
architecture, associative processors are classi-
fied into four categories, namely fully parallel,
bit-serial, word-serial and block-oriented. The
fully parallel associative processors are divided
into two classes, word-organized and distributed
logic. The architecture of each of these cate-
gories is described.

Introduction

An associative processor can generally be
described as a processor which has the following
two properties: (1) Stored data items can be
retrieved using their content or part of their
content (instead of their addresses) and (2) da-
ta transformation operations, both arithmetic and
logic operations, can be performed over many sets
of arguments with a single instruction. Because
of these parallel processing characteristics,
associative processors have a much faster data
processing rate than conventional sequential
computers, and hence are more effective in han-
dling many types of information processing
problems, such as information storage and re-
trieval of rapidly changing data bases, fast
search of a large data base, arithmetic and logic
operations on large sets of data, control and
executive functions in large-scale computer sys-
tems, radar signal processing and weather compu-
tations. However, because of their relatively
high implementation cost, associative processors
are usually used in conjunction with standard
sequential computer systems so that many re-
quired high-speed parallel processing tasks which
cannot be effectively executed by sequential
processors are performed by associative proces-
sors. It is anticipated that associative proces-
sors will be used more extensively in the future
for enhancing the performance of many special-
purpose and general-purpose computer systems.

In this paper, we will present a survey of
the architecture of various associative proces-
sors. We will first give a general description
of associative processor architecture and then
classify associative processors on the basis of
their architecture. Then we will discuss each
of the categories of associative processors in
some detail.

General Description

In general, the architecture of an associ-
ative processor can be described as shown in
Fig. 1, which consists of an associative memory,
arithmetic and logic unit (ALU), control system,
instruction memory, and an input/output inter-
face. The major difference between an associa-
tive processor as shown in Fig. 1 and a standard
sequential processor is the use of an associa-
tive memory instead of a location-addressed
memory. Because of this difference, all the
other blocks are also different between an asso-
ciative processor and a standard sequential
processor. Furthermore, the associative memory
has a major impact on the architecture of an
associative processor, and the associative
processor architecture can be classified based
on the organization of its associative memory.

An associative memory [1] - [8] can be
defined as a memory system with the property
that stored data items can be retrieved by their
content or part of their content (that is, the
first property of an associative processor). An
associative memory is also called catalo
memory (9], content-addressed memory L10], data-
addressed memory L11], parallel search memory
[12], search memory [13] - [15], search associa-
tive memory L16], content-addressable memory
[17], distributed logic memory L18), associative

ushdown memory [ 19], and multi-access associa-
tive memory |20].

From the hardware point of view, in order
to retrieve stored data items by their content
or part of their content, it is required that
the memory words can be accessed by matching
their content or part of their content with the
given search key words, instead of by an address
as in a location-addressed memory. The basic
memory element of the associative memory is called
the bit-cell, which has the property that one-bit
information can be written in, read out, and
compared with interrogating information. The
search operations, which consist of masking and
comparison, are executed in a fashion that de-
pends on the organization of the associative
memory. The search key word can be compared
with all the words of the memory through the
interrogating bit drives and comparison logic
circuitry. The possibility of matching multiple
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words to a search key word requires the associa-
tive memory to have some method of tagging all
the matched words. The tag function and matched-
word indication are performed by the so-called
word-match tag networks. Those matched words can
be accessed with a single instruction (4], [e],
[7], [21]. 1t is noted that a memory can have
the associative property by performing either
parallel comparison (word-parallel or word-
serial) or serial comparison (bit-serial).

The first associative memory was developed
by Slade and McMahon [9] in 1956 using cryotrons.
Since then, associative memories have been imple-
mented using tunnel diodes [22], [23], evapo-
rated organic diode arrays [2], magnetic cores
[22], [24] - [27], plated wire [22], [28], thin
permalloy film on copper wire [22], semiconduc-
tors [29], transfluxors [30], biax cores [31],
laminated ferrites [32], magnetic films [33],
solenoid arrays [34], bicore thin film sandwiches
[22], multi-aperture logic elements [35], and
large-scale integrated (LSI) circuits [36]. The
capacity of these associative memories is limited
by factors such as half-select noise which limits
the word length and interrogation drive problems
which limit the number of words. Because of
these limitations and because of high implementa-
tion cost, most associative memories in early
years had small capacity, say up to 1K words
with length up to 100 bits [26]. Recent associ-
ative memories have become larger and more
flexible due to the deve€lopment of new archi-
tectural concepts and the use of LSI technology.
For example, in PEPE (parallel element processing
ensemble) [37] - [42] there are a number of pro-
cessing elements each of which contains a simple
1K X 32-bit random-access memory, called the
element memory, which is shared on a cycle-steal-
ing basis by the arithmetic unit, correlation
unit and associative output unit in the processing
element to perform associative processing. In
each associative array module of STARAN E43] -
[46], a so-called multi-dimensional access
memory - implemented by a 256 X 256-bit random-
access memory is used to accommodate both bit-
slice accesses for associative processing and
word-slice accesses for input/output.

An associative memory may perform the
following comparison operations:

equal

less than

less than or equal
maximum value
between limits
next higher

not equal

greater than

greater than or equal
minimum value

not between limits
next lower

An associative processor normally performs other
complicated data transformation operatioms. For
instance, the matched words in the associative
memory are retrieved serially to the ALU through
the output circuit of the associative memory
under the control of the control system. The ALU
performs the specified data transformation opera-
tions and the result is then stored to the
assoclative memory, if necessary.

The first associative processor was devel-
oped by Behnke and Rosenberger [47] in 1963
using cryotrons. Since then a number of labor-
atory models of associative processors have been
built using various types of associative memories.
However, associative processors have not been
put to practical use until the development of
PEPE (parallel element processing ensemble)
[37] - [42] and sTARAN [43]-[46].

The architecture of associative processors
can generally be classified into four categories
according to the comparison process of their
associative memories. The four categories are
fully parallel, bit-serial, word-serial, and
block-oriented. These are two types of fully
parallel associative processors: word-organized
and distributed logic. The former has its
comparison logic associated with each bit-cell
of every word, and the latter has its comparison
logic associated with each character-cell (for a
fixed number of bits) or a group of character-
cells. In a bit-serial associative processor,
only one bit-column (bit-slice) of all the words
is operated at a time. A word-serial associa-
tive processor essentially represents hardware
implementation of a simple program loop for
search. The important factor which contributes
to the relative efficiency of this approach as
compared with programmed search in a standard
sequential processor is that the instruction
decoding time is greatly reduced since the
search operation requires only a single instruc-
tion in the word-serial associative processor.

A block-oriented associative processor can be
implemented by using a logic-per-track rotating
memory which consists of a head-per-track disk
with some logic associated with each track.

In the following sections, we will discuss
each of these categories in more detail.

Fully Parallel Associative Processors

Fully Parallel Word-Organized Associative
Processors

As mentioned before, the major character-
istic of a fully parallel word-organized
associative processor is that the comparison
logic is associated with each bit-cell of every
word of its associative memory. Thus, its
comparison process is performed in a parallel-
by-word and parallel-by-bit fashion. The general
organization of the associative memory with the
ALU in such an associative processor is shown
in Fig. 2. 1In this figure each cross-point
represents a bit-cell. Although the operations
of a fully parallel word-organized associative
processor are simplest and fastest compared to
other types of associative processors, its hard-
ware is also the most complicated because each
bit-cell has to contain the comparison logic.
Because of its hardware complexity, this type
of associative processor was developed only
during the early stages although many experi-
mental models were developed and their fully
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parallel word-organized associative memory sys-
tems used cryogenic components [9], [11], [31],
(48] - [53], magnetic cores [24], [25] and cut-
point cellular logic [54].

Distributed Logic Associative Processors

A distributed logic associative processor
is a fully parallel character-oriented associa-
tive processor whose memory (usually called
distributed logic memory [18]) has its comparison
logic associated with each character-cell or each
group of character-cells. A number of distri-
buted logic associative processors have been
developed [37] - [42], [55] - [62]. The first
associative processor of this type was proposed
by Lee [55] and a number of its variations were
presented later [56] - [61]. The most well-known
associative processor system of this type so far
developed is the PEPE [37] - [42] by Bell Labor-
atories for the U.S. Army Advanced Ballistic
Missile Defense Agency. In this section, these
associative processors will be briefly described.

Lee's Distributed Logic Associative Proces-
sor and Its Modifications. The distributed
logic associative processor proposed by Lee [55]
can be represented by the block diagram shown in
Fig. 3. Each character-cell has a single cell
state element (state part) S which may either be
in an active state or in a quiescent state, and
each character-cell also has a number of cell
symbol elements (symbol part) X., ..., X de-
pending upon the size of the symbol alphgbet.
The cell state element or cell symbol element is
a bistable device, such as a flip-flop. Each
character-cell stores one character symbol of in-
formation and can communicate with its two neigh-
boring character-cells as well as the control
system. A string of information is therefore

stored in a correspondingstring of character-cells.

Each data block consists of a name string and
an arbitrary number of parameter strings. Every
name string is preceded by a tag @, and every
parameter string is preceded by a tag B. When
the input search key is a name string, the fully
parallel distributed logic memory is expected to
output all of the parameter strings associated
with the name string. This is the so-called
direct retrieval. On the other hand, when the
input search key is a parameter string, the fully
parallel distributed logic memory is expected to
output all of the name strings associated with
that parameter string. This is so called cross-
retrieval. In order to perform direct retrieval
and cross retrieval, each character-cell in the
fully parallel distributed logic memory must have
enough cell logic circuitry so that it can pro-
duce a "yes'" or "no'" answer to a simple question
such as whether the symbol of the character-cell
is A or not A. If we want to retrieve all of the
parameter strings whose name is AB, we will ask
each character-cell whether its character symbol
is A. If a cell gives us an answer ''yes," we
also want each character-cell to have enough
cell logic circuitry so that it can signal its
next character-cell to be ready to determine

whether the symbol of the character-cell is B.
The character-cells which finally respond '"yes"
to the name string AB are now ready to signal
all those character-cells storing all the para-
meter strings associated with the name string
AB to output their contents.

Typical operations of a character-cell are
changing state, transmitting state information
to a neighboring character-cell, accepting data
from the input bus, or putting its character
symbol on the output bus. When a character-cell
is in an active state and when the input signal
lead is activated, the symbol which is carried
on the input bus is then stored in that charac-
ter-cell. When a character-cell is in an active
state, an output signal causes that character-
cell to read out its symbol through the output
bus and store its symbol in the output symbol
buffer. Comparison operation is controlled by
the match signal through the comparison logic
of each character-cell. The stored symbol of
each character-cell is compared with the symbol
carried on the input bus, and a signal from each
matched character-cell is transmitted to one of
its neighboring character-cells which then
becomes active. The directions of transmission
of the signals are controlled by the signal on
the direction leads. All the character-cells
evaluate and act according to the input condi-
tions (given by the input and state buses)
independently and simultaneously.

Lee's system has been experimented using
cryogenics consisting of 72, 8-bit character-
cells [62].

Several modifications of Lee's original
system have been proposed. Lee and Paull (18]
proposed a distributed logic memory using two
cell state elements instead of one for each
character-cell, more control bus leads and a
threshold circuit. They defined the complex
symbol of a character-cell which includes both
the two cell state elements and the cell symbol
elements of the character-cell. The matching
process requires that an entire complex symbol
be used for matching. They presented a more
complicated design for a character-cell memory
and an external control unit in order to have
more capabilities to deal with problems such as
cross retrieval, erasing, gap closing and pre-
ference which appear in information retrieval.

In order to overcome the propagation timing
problems, Gaines and Lee [59] proposed to re-
design the logic circuitry using two different-
purpose cell state elements, called the match
flip-flop and control flip-flop, and adding a
mark line to simultaneously activate all cells
to the right of each active cell up to the first
cell whose control flip-flop is set. Due to the
control of the propagation of the marking signal,
this memory system is capable of performing two
new simultaneous operations, shifting and mark-
ing strings.

Crane and Githens [60] extended Lee's
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system to a two-dimensional distributed logic
memory which could be used to perform highly
parallel arithmetic operations through the use
of a large number of identical processing units
on many sets of data simultaneously while re-
taining content-addressing capability to these
data sets. Such an extension can be illustrated
by the block diagram shown in Fig. 4.

Parallel Element Processing Ensemble (PEPE).
PEPE [37] - [41] is one of the two large-scale
associative processors developed to date. Its
basic concept was derived from Lee's distributed
logic associative processor and was originally
developed by Bell Laboratories for the U.S. Army
Advanced Ballistic Missile Defense Agency [37] -
[39]. A second model of PEPE with both archi-
tectural and circuit technology improvements is
being developed by the Agency [40] - [42]. The
description of PEPE presented in this section is
primarily for the current model.

PEPE is composed of the following functional
subsystems: an output data control, an element
memory control, an arithmetic control unit, a
correlation control unit, an associative output
control unit, a control system, and a number of
processing elements. FEach processing element
consists of an arithmetic unit, a correlation
unit, an associative output unit and a 1024 X 32
bit element memory. In addition, there are
primary power and signal distribution subsystems
to convert and route power and control and data
signals between various functional subsystems.
It is noted that the number of processing ele-
ments used in the PEPE is variable and may be
increased or decreased to meet the requirements
of the application. This variability has no
impact on PEPE system performance, except that
enough processing elements must be available to
accommodate the expected number of objects to be
tracked. A PEPE with 288 processing elements
organized in 8 element bays was presented in [40].

The block diagrams of PEPE and its processing
elements are shown in Figs. 5 and 6, respectively.
The processing elements are the main computation-
al component of PEPE. Selected portions of the
data processing load are loaded from the host
computer (a CDC 7600) to the processing elements.
The loading selection process is determined by
the inherent parallelism of the task and the
ability of PEPE's unique architecture to mani-
pulate the task more efficiently than the host
computer. Each processing element is delegated
the responsibility of an object under observa-
tion by the radar system. Each processing ele-
ment maintains a data file for specific objects
within its memory and uses its arithmetic capa-
bility to continually update its respective file.

The processing element operation and control
are directed by the three global control units as
follows: All the processing element arithmetic
units, correlation units, and associative output
units are controlled simultaneously by the arith-
metic control unit, correlation control unit and
associative output control unit, respectively.

In applying PEPE to radar data processing,
the data for each tracked object are stored in
a separate processing element memory. The
arithmetic units are used to execute tracking
and other programs on all or a selected subset
of the tracked objects simultaneously. The
control units are used to input new radar data
into the correct processing element memories,
and radar orders are obtained from the processing
element memories by the arithmetic output units
for transmission to the radar interface computer,
concurrent with the processing in the arithmetic
units. Arithmetic programs, correlation pro-
grams and output programs can be executed in-
dependently and simultaneously.

Each arithmetic unit, correlation wunit and
arithmetic output unit contains a content-
addressed tag register, and only those arith-
metic units, correlation units and arithmetic
output units whose tag register contents match
the currently specified "activity" tags will
be set to perform subsequently issued instruc-
tions. All these units have the capability to
make less-than, greater-than, and equal to
comparisons between their contents and data
issued by the respective control unit. This
capability provides content-addressed access to
object data and is achieved through a set of
registers whose contents can be compared with
the input data stream. Only data meeting compa-
rative criteria is stored in the processing
element memory.

Arithmetic processes such as track updating,
track prediction, discrimination, and inter-
ceptor guidance are performed in parallel by the
arithmetic units. All the activated arithmetic
units simultaneously execute instruction signals
issued by the arithmetic control unit.

Input of new information to the processing
element is handled by the correlation unit under
control of the correlation control unit. The
correlation processes of the correlation unit
consist of comparing newly received object posi-
tion information (as derived from radar returns)
with predicted object position information
generated by the processing element arithmetic
units and transferred to the respective correla-
tion units. Information on one object at a time
is broadcast by the correlation control unit to
all correlation units simultaneously, and all
or a selected subset of correlation units
compare their stored data with the broadcast
data. The object information is input to the
correlation unit (or correlation units), where
correlation occurs, or into the first empty
processing element memory in those cases where
no correlation occurs.

Output information sent to the radar is
handled by the associative output unit under the
control of the associative output control unit
and control system through the output data
control. Allocation of pulses for the radar
consists of ordering pulse requests generated
by the processing elements as the result of
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object file updates calculated by the arithmetic
units and stored in the respective element
memories for access. The ordered retrieval of
the pulse requests on one object at a time are
handled by the associative output control unit
using a maximum-minimum search for associatively
addressing data.

Bit-Serial Associative Processors

Because of the expensive logic in each
memory bit and the communication problems in
fully parallel associative processors, the bit-
serial word-parallel associative processor using
the concept of parallel processing with vertical
data (one bit~column of a large number of words
is processing at a time) was introduced by Shoo-
man in 1960 563]. His system is essentially a
hypothetical vertical data processing computer
(referred to as an orthogonal computer) which
embodies both vertical data processing and con-
ventional (referred to as horizontal data proces-
sing) techniques. Shooman also gave descriptions
and algorithms for several vertical data proces-
sing instructions. Since the number of words to
be processed is usually larger than the number of
bits in each word, this approach represents a
compromise between fully parallel and word-serial
associative processing.

Since then, this concept has resulted in
many proposals for associative processors.
Kaplan [14] proposed a bit-serial associative
memory which he called a search memory; this
memory may be used as a subsystem for a general-
purpose computer. The main memory may communicate
via a memory register with the search memory sub-
system, accumulator, arithmetic unit, control
unit and input/output unit. The match logic to
execute search operations was placed in the
search memory subsystem. Ewing and Davies [28]
proposed the design logic of a bit-serial associ-
ative processor. The block diagram of a bit-
serial associative memory with the ALU is shown
in Fig. 7. In this memory, storage for ome bit
is provided at each intersection of a word line
and a bit line, and only one bit-column is opera-
ted one at a time. The particular bit-column
is selected by the bit-column select logic. A
pulse on a bit line causes a signal to be emitted
by each bit on each word line. The signals are
transmitted through the word lines to the sense
amplifiers. The word logic associated with each
word line gives the ability to perform associa-
tive processing. This logic is identical for all
words and consists of a sense amplifier, storage
flip-flops, a write amplifier and control logic.
The storage flip-flop remembers the match state
from one interrogating bit to the next. The
output of the sense amplifier determines the
state of the storage flip-flops in various ways
as determined by the control signals from the
control unit. The capability of the storage
flip-flops to act as a shift register provides the
communication link between adjacent words. Such
a bit-serial associative processor can be con-
sidered as an external logic associative processor,

in contrast to a distributed logic associative
processor.

Chu [3] proposed the implementation of a
bit-serial associative memory which makes use of
conventional destructive-readout magnetic memory
elements. This memory has two-dimensional read/
write capability, resulting in two word lengths:
a short-word length which is the number of bits
in a word and a long-word length which is the
number of words in a bit-column because the
number of bits in a word is usually smaller than
the number of words. This memory can read or
write in either a horizontal or vertical direc-
tion of the array, called the short-word mode or
the long-word mode, respectively. The short-
word mode is the conventional memory organization.
The long-word mode is equivalent to bit-serial
associative technique.

Bit-serial associative processing through
the use of 2-1/2 D core search memory was re-
ported by many researchers [64], [65]. Fulmer
and Meilander [66] presented a modular plated-
wire implementation of a bit-serial associative
processor which has arithmetic capability as well
as storage and logic capability at each word of
the memory.

Goodyear Associative Processor (GAP), developed
by Goodyear Aerospace Corporation [67], uses the
processor modules as basic building blocks. Each
processor module contains 256 plated-wire proces-
sing elements. Each plated-wire processing
element consists of one plated-wire, which is a
memory device for one 256-bit word, and one
response store, whose function is to signal the
matching of the word, stored in the plated-wire.
The limit on the number of processor modules
largely depends on the hardware physical size (a
single plated-wire module occupies about 0.5
cubic foot) and the processor's speed require-
ments,

One of the two large-scale associative pro-
cessors developed to data is Goodyear Aerospace
Corporation's STARAN [43] - [46]. Because of
its importance we are going to discuss it in
more detail.

STARAN. The basic structure of STARAN is
shown in Fig. 8. It consists of a control system
and a number of associative array modules
(current system configuration allows up to 32
such modules). Each associative array module
contains a 256-word X 256-bit multi-dimensional
access memory, 256 simple processing elements,
a flip network (or called permutation network),
and a selector as shown in Fig. 9. There is a
simple processing element for each of the 256
words of the memory, and each simple processing
element operates serially by bit on the data in
the memory word. This operational concept is
shown in Fig. 10. Using the flip network, the
data stored in the multi-dimensional access
memory can be accessed through the input/output
channel either in the bit direction or the word
direction. A flip network (or permutation
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network) is also used for shifting and rearrang-
ing of data in an associative array module so
that parallel search, arithmetic or logical oper-
ations can be performed between words of the
multi-dimensional access memory. By proper
arrangements, the multi-dimensional access memory
can be implemented using random access memory
chips [45], [68].

To locate a particular data item, STARAN
initiates a search by calling for a match against
an input data item. All words in the memories
of all the modules that satisfy the search cri-
terion are identified by a single instruction.
The simple processing elements simultaneously
execute operations as specified by the associa-
tive control logic. Therefore, in one instruc-
tion execution, the data in all selected word
in the memories of all the modules are processed
simultaneously by the simple processing element
at each word.

The interface unit involves interface with
sensors, conventional computers, a signal proces-
sor, interactive displays and mass storage
devices. A variety of I/0 options are implement-
ed in the custom interface unit, including the
direct memory access (DMA), buffered I/0 (BIO)
channels, external function (EXF) channels and
parallel I/0 (PIO). Each associative array
module can have up to 256 inputs and 256 outputs
into the custom interface unit. They can be
used to increase speed of inter-array data com-
munication, allow STARAN to communicate with a
high-bandwidth I/0 device, and allow any device
to communicate directly with the associative
array modules.

A mass storage device, like a multihead
disk, is connected to the associative array
modules via the PIO. The information transfer
rates obtained with this configuration depend on
the cycle time and the number of heads on the
disk being used. In requesting data from the
disk, STARAN will send the disk one or more ex-
ternal functions specifying a starting sector
address, the number of sectors, and the direc-
tion of transfer. The disk system may interrupt
STARAN when the disk reaches the requested sector
to initiate the transfer over PIO lines. The
STARAN control instructions that actually read
or write the PIO can be synchronized to the disk
so that STARAN timing is slaved to the disk
timing during the transfer.

In 1973, an operational associative proces-
sor facility, called RADCAP, was installed at
Rome Air Development Center [69] - [72]. This
facility consists of a STARAN and various peri-
pheral devices, all interfaced with a Honeywell
Information Systems (HIS) 645 sequential computer
which runs under the Multics time-sharing opera-
ting system. The objective of the RADCAP faci-
lity is to explore various applications of the
system to various real-time problems.

Other Bit-Serial Associative Processors. In
addition to those presented before, several other

bit-serial associative processors have been
developed recently. Sanders Associates [73]
developed the OMEN computer in which a conven-
tional serial processor, such as DEC PDP-11, and
a bit-serial associative processor both address
an orthogonal memory, which has a capacity of

64 words X 16-bits. The associative processor
contains 64 identical processors which form the
vertical arithmetic unit that has bit-slice
access to the orthogonal memory. These 64 pro-
cessors perform the same operations at the same
time under the control of masks.

Hughes Aircraft Co. [74] developed an asso-
ciative processor which contains 10 bit-serial
associative memories and an MOS shift-register
bulk memory. The bulk memory consists of a set
of MOS shift registers, each having, at least
16,000 bits each. The purpose of this configura-
tion is to achieve efficient operation of an
associative memory when the data base is stored
in a large inexpensive mass storage device.

Raytheon Co. [36] developed the Raytheon
Associative/Array Processor (RAP) which contains
a processing element array and a direct array
access channel which facilitates bulk data trans-
fer to/from the processing element array. The
function of the processing element is to perform
search, arithmetic and logic operation on data
stored in its own private memory. Each proces-
sing element can be thought of as a bit-serial
microprocessor with associative capability.

It should be noted that byte-serial associ-
ative processors are conceived between bit-serial
and fully parallel associative processors. For
reasons of efficiency, at a reasonable cost, a
byte-serial word-parallel associative processor,
called the Associative Processor Computer System
(APCS), was proposed by Linde, Gates and Peng
[75) at System Development Corporation. APCS
contains two associative processing wunits and
a parallel input/output channel. The word logic
consists of byte operation logic, instead of bit
operation logic as in bit-serial associative
processors, and tags.

Word-Serial Associative Processors

As mentioned before, a word-serial associa-
tive processor essentially represents hardware
implementation of a simple program loop for
search. The important factor which contributes
to the relative efficiency of this approach as
compared with programmed search in standard
sequential processor is that the instruction
decoding time is reduced since the search opera-
tion requires a single instruction in the word-
serial associative processor.

In 1962 Young [76] proposed to use "circula-
ting" associative memories to allow many memory
words to time-share a single set of content-
addressing logic. In 1966, Crofut and Sottile

77] presented a word-serial associative proces-
sor based on a word-serial associative memory
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using n ultrasonic digital delay lines operating
at 100 MHz with 10 psec delay time, where n is
the number of bits of a word. Each delay line
stores one bit of the word, and all bits of the
stored word propagate down the delay lines syn-
chronously. A stable oscillator (Stalo) was
used to generate the synchronizing clock pulses
for advancing the address counter. Individual
words can be interrogated and updated when they
appear at the output of delay lines. The rewrite
control logic allows the delay-line system to
select either recirculating information or new
data inputs. The operational characteristics of
such a memory resemble that of a drum or disk.
Such a word-serial associative processor is shown
in Fig. 11. 1In 1969, Rux [78] presented a word-
serial associative memory with 35 glass delay
lines storing 2046 bits per line at 20.48 MHz
which was connected to a general purpose medium-
Epeﬁd sequential computer called NEBULA [79],
80].

Because of the slow speed of word-serial
associative memories only experimental models
have been developed for word-serial associative
processors.

Block-Oriented Associative Processors

For applications such as information storage
and retrieval where a large storage capacity is
required, neither bit-serial nor word-serial
associative processors are cost-effective. Bit-
serial associative processors become too expen-
sive, while word-serial associative processors
require a long processing time. Thus, block-
oriented associative processors, which use mass
rotating storage devices, such as a disk to
provide a limited degree of associative capabi-
lities, have been proposed [81] - [85].

Slotnick [81] and Parker [82] presented the
concept of logic-per-track devices which consist
of a head-per-track disk memory with some logic
associated with each track. Based on this con-
cept and Lee's distributed logic memory for in-
formation storage and retrieval applications,
Parhami [83] presented a block-oriented associ-
ative processor, called RAPID (stands for Rotating
Associative Processor for Information Dissemina-
tion), which can be shown in Fig. 11. Since the
data rates between head-per-track disks and
distributed logic memory is high, the RAPID
system is suitable for applications requiring a
large storage capacity which presently suffer
from the high cost of random access memories or
from performance degradation due to the frequent
transfers between primary and secondary memories.

Minsky [84] proposed the associativity on
rotating memories either in the form of drums or
disks. He defined the term 'partially associa-
tive memory" by specifying the primitive struc-
ture of information (name part and data part)
to be stored on it and the operational character-
istics (predicates and instructions). The acti-
vity of the memory is supervised by a special

processor, called controller. Instead of spend-
ing the time in looking for a given address,

he proposed to use the delay time for a search
for a content.

Another block-oriented associative proces-
sor has been proposed by Healy, Lipovski and
Doty [85] based on storage and retrieval from
a segmented sequential table data structure
utilizing associative addressing.

Summary

In this paper, we have reviewed the archi-
tecture of various associative processors and
classified them into four major categories based
on the organization of their associative memo-
ries. Among these associative processors, PEPE
and STARAN are most well-known. Lloyd and
Merwin [86] have made an evaluation of the per-
formance of PEPE, STARAN and others in a real-
time environment. In general, fully parallel
and bit-serial associative processors are used
for high-speed parallel data processing which
cannot be carried out effectively in ordinary
sequential computers. However, their imple-
mentation costs are also higher. For low-cost
associative processing which is required in
large information storage and retrieval systems,
block-oriented associative processors offer a
promising architecture.
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Abstract

This paper is a survey of parallel machine
organizations and programming. We define paral-
lelism in a broad sense, which encompasses the
bit level, operation level, and algorithm level.
A number of abstract and practical questions are
discussed.

I. Introduction

We will interpret ''parallel processor archi-
tecture' broadly in this paper. In the strict
sense, we could limit our attention to a few ma-
chines, some already in operation, some being
built, and others being proposed. But this would
tend to perpetuate certain bits of folklore about
parallel machines which puts them in a zoo some-
where between the chimera and the white elephant.

Indeed, some parallel (and other) computers
probably belong there. But recent theoretical de-
velopments lead us to the conclusion that a broad
interpretation of "parallel processing" is justi-
fied here. By taking this point of view, we will
show that a number of previously diverse ideas
can be unified.

It is certainly true that the term "parallel
processing' has been used in many ways since the
dawn of computer history. Twenty-five years ago
it referred to arithmetic operations on whole
words rather than one bit at a time. Now, it re-
fers sometimes to multiple processors, other
times to array-type machines (parallel or pipe-
line), and occasionally to multiprogrammed ma-
chines. In this paper we will touch on all of the
above. Furthermore, we will not restrict our
attention to processing the sense of logic and
arithmetic. Memory access and data alignment
problems are equally important.

Several theoretical results will be given
and discussed. It turns out that by looking at
things correctly, a few abstract ideas can be in-
terpreted in several important practical ways.
For example, by studying recurrence relations we
can develop algorithms to transform sequential
logic equations (e.g., for bit serial arithmetic)
into combinational circuit diagrams (e.g., for
fast carry lookahead arithmetic). Using exactly
the same theory, we can develop compiler algo-
rithms to transform standard serial programs (e.g.,
Fortran) into highly parallel programs (e.g., for
array processors).

* .
This work was supported in part by NSF Grant
DCR73-07980 A02.
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We will also study tree-height reduction
techniques which can be interpreted as logic de-
sign or compiler algorithms. As another example,
we will present new results about the effective
bandwidth of parallel memories. This can be in-
terpreted for multiprocessors, associative pro-
cessors, parallel or pipeline processors. Also,
we will discuss data alignment techniques which
have interpretations as bit shifters within one
processor, as data alignment networks between
several processors, or as merge networks between
a secondary and primary memory.

Our approach is to study the structure of
programs and the structure of certain machine
parts to see how the two can be brought together.
Our primary goal is to achieve high speed at low
cost. Obviously, there are other very important
considerations in machine design. But we choose
this goal first, for several reasons. For one,
it is widely used in practice and is thus practi-
cally important. For another, it has a great
deal of theoretical importance as follows.

Computer speeds are determined by two basic
limitations. One concerns the physics of the
hardware being used, e.g., how fast do gates
switch and how many inches of wire must a signal
traverse? The other concerns the logic of ma-
chine organization and program organization.
is the latter question that we shall study.

It

Suppose that hardware speeds were fixed.
Then, given a set of programs, how fast could
they be executed? Theoretical lower bounds can
be given on the number of time steps needed to
compute certain functions. Once these are known
for an algorithm or class of algorithms, then we
can attempt to design 'perfect" machine organiza-
tions for these algorithms. Such machines would
execute the algorithms in the fastest possible
way at the lowest cost. When we mention cost,
logic design questions arise. How many gates or
integrated circuits or microprocessors, etc., are
needed? Real costs are measured in printed cir-
cuit bounds, power supplies, cabinets and so on,
so "lowest cost'" is difficult to define, but
logic component counts tend to reflect overall
hardware costs. We will deal at various points
with bounds on gate, integrated circuit, proces-
sor and memory unit counts.

In this paper we will not give much atten-
tion to specific algorithms or to lower bounds.
Rather, we will study Fortran-like programming
languages to see what elementary set of language
constructs may be universal to a large class of
algorithms. Assignment statements, recurrences,
and conditional statements together with program
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graphs will be discussed in detail. Instead of
lower bounds, we will give upper bounds on time
and components, all of which can be achieved by
algorithms which support the bounds. In many
cases, these upper bounds are not far from lower
bounds obtained by simple fan-in arguments.

Overall, we are attempting to develop a
better understanding of the structure of programs
and of the relations of programs to machine orga-
nizations. By presenting bounds with constructive
proofs, logic design automation or compiler algo-
rithms follow. Furthermore, we repeat that a few
theoretical ideas can be given a number of useful
interpretations which provide insights in several
areas. Finally, we will point out that a better
understanding of some fundamentals about program
and machine organization may lead to better under-
standing of structured programming and paging in
the memory hierarchies of existing computer sys-
tems. )

This paper is divided into three main parts.
In section II, we give some theoretical background.
Then, in section III we use this to study the
overall structure of programs. We also use the
theory in section IV for processor design. Sec-—
tion V discusses data handling; memory access and
data alignment are both considered.

II. Theoretical Background

In this section we will be concerned with
upper bounds on processing time and the number of
processors required to achieve such time bounds.
We will ignore for the moment memory activity,
data alignment and control unit times, and assume
an idealized multioperation machine. We will
allow any number of arithmetic processors to be
used at once (although we will bound this number).
For expression evaluation, any processor may per—
form any of the arithmetic operations on any time
step. This multiple instruction execution (c.f.
MIMD [1,2]) is less desirable than having all
processors execute the same instruction type (SIMD
[ 1]). Our recurrence method requires only one
instruction type at a time (SIMD). Clearly, ex-—
pression evaluation is slowed down by at most a
small constant if SIMD instructions are used. Fur-
ther, we assume that each arithmetic operation
takes one unit of time. Later in the paper we
will discuss more realistic machine details.

If TP is the number of unit time steps re-

quired to perform some calculation using p > 1 )
processors, we define the speedup of the p proces-
sor calculation over a uniprocessor as

T
SP = 51'2.1 and we define the efficiency of the

P

S
calculation as Ep = 52-5.1 which may be regarded

as actual speedup divided by the maximum possible
speedup using p processors. For various computa-
tions we will discuss the maximum possible speed-
up known according to some algorithm and in such
cases we use P to denote the minimum number of

processors known to achieve this maximum speedup.

In such cases we will use the notation T, SP and

EP to denote the corresponding time, speedup and

efficiency, respectively.

Time and processor bounds for some computa-
tion A will be expressed as TP[A] and P[A] in the
minimum time cases and Tp[A] in the restricted

processor (p < P) case. When no ambiguity can
result, we will write T[A] or just T in place of
TP[A] and P in place of P[A], for simplicity. We

write log x to denote 1og2 x and [x] for the
ceiling of x. :

Arithmetic Expression Tree-Height Reduction

Now we consider time and processor bounds for
arithmetic expression evaluation. We restrict
our attention to transforming expressions using
associativity, commutativity and distributivity

which lead us to speedups of O(ng—;). Since

this is asymptotic to the best possible speedup,
more complex transformations (e.g., factoring,
partial fraction expansion seem unnecessary.

In section IV, we shall return to this subject in
the form of Boolean expression evaluation for
combinational logic circuits.

Definition 1

An arithmetic expression is any well-formed
string composed of the four arithmetic operations
(+,-,%,/), left and right parentheses, and atoms
which are constants or variables. We denote an
arithmetic expression E of n distinct atoms by
E<n>. :

If we use one processor, then the evaluation
of an expression containing n operands requires
n - 1 units of time. But suppose we may use as
many processors as we wish. Then it is obvious
that some expressions E<n> may be evaluated in
logzn units of time as illustrated in Figure 1.

Step 3

Step 2

Expression of 8 Atoms

Figure 1.

In fact, we can establish, by a simple fan-in
argument, the following lower bound:
Lemma 1 Given any arithmetic expression E<n>

T[E<n>] 2_[1ogzn].
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On the other hand, it is easy to construct
expressions E<n> whose evaluation appears to re-
quire O(n) time units regardless of the number of
processors available. Consider the evaluation of
a polynomial by Hormer's rule:

Pn(x) = +x(a; + x(ay, + ... +x(a

R

a7 xan)
(1)

)

A strict sequential order is imposed by the paren-
theses in Eq. 1 and more processors than one are
of no use in speeding up this expression's evalu-
ation.

However, we are not restricted to dealing
with arithmetic expressions as they are presented
to us. For example, the associative, commutative,
and distributive laws of arithmetic operations may
be used to transform a given expression into a
form which is numerically equivalent to the origi-
nal but which may be evaluated more quickly. We
now consider examples of each of these.

Figure 2a shows the only parse tree possible
(except for isomorphic images) for the expression
(((a+1b) +c) + d). This tree requires three
steps for its evaluation and we refer to this as
a tree height of three. However, by using the
associative law for addition we may rearrange the
parentheses and transform this to the expression
(a + b) + (c + d) which may be evaluated as shown
in Figure 2b with a tree height of two. It should
be noted that in both cases, three addition oper-
ations are performed.

Figure 3a shows a parse tree for the expres-
sion a + bec + d; again we have a tree of height
three. In this case the tree is not unique, but
it is obvious that no lower height tree can be
found for the expression by use of associativity.
But by use of the commutative law for addition we
obtain the expression a + d + bc and the tree of
Figure 3b, whose height is just two. Again we re-
mark that both trees contain three operations.

Now consider the expression a(bcd + e) and
the tree for it given in Figure 4a. This tree has
height four and contains four operations. By use
of associativity and commutativity, no lower
height tree can be found. But, using the arith-
metic law for the distribution of multiplication
over addition we obtain the expression abcd + ae,
which has a tree of minimum height three as shown
in Figure 4b. However, unlike the two previous
transformations, distribution has introduced an
extra operation; the tree of Figure 4b has five
operations compared to the four operations of the
undistributed form.

Having seen a few examples of arithmetic ex-
pression tree-height reduction, we are naturally
led to ask a number of questions. For any arith-
metic expression, how much tree-height reduction
can be achieved? Can general bounds and algo-
rithms for tree-height reduction be given? How
many processors are needed?

To answer these questions, we present a brief
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survey of results concerning the evaluation of
arithmetic expressions. Details and further
references may be found in the papers cited. As-
suming that only associativity and commutativity
are used to transform expressions, Baer and Bovet
[3] gave a comprehensive tree-height reduction
algorithm based on a number of earlier papers.
Beatty [4] showed the optimality of this method.
An upper bound on the reduced tree height as-
suming only associativity and commutativity are
used, given by Kuck and Muraoka [5], is the
following.

Step 3
Step 2

Step 1

((a + b + c) + d)

(a)

Step 2
Step 1

a + b o+ c + d

(b)

Figure 2. Tree-Height Reduction by Associativity
Step 3
Step 2

Step 1

a + b * c + d

(a)

Step 2

Step 1
a + 4 + b * <

(b)

Figure 3. Tree—Height Reduction by Commutativity
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Step 4

Step 3

Step 2

Step 1

Step 3

Step 2

()]
Figure 4. Tree-Height Reduetion by Distributivity
Theorem 1 Let E<n|d> be any arithmetic ex—

pression with depth d of parenthesis nesting. By
the use of associativity and commutativity only,
E<n|d> can be transformed such that

Tp[E<n|d>] <
with

[ldgzn] +2d+1

P<[%—d].

Note that if the depth of parenthesis nesting
d, is small, then this bound is quite close to the
lower bound of [1og2n]. The complexity of this

algorithm has been studied in [6], where it is
shown that in addition to the standard parsing
time, tree-height reduction can be performed in
0(n) steps. Unfortunately, there are classes of
expressions, e.g., Horner's rule polynomials or
continued fractions for which no speed increase
can be achieved by using only associativity and
commutativity.

Muraoka [7] studied the use of distributivity
as well as associativity and commutativity for
tree-height reduction and developed comprehensive
tree-height reduction algorithms using all three
transformations. An algorithm which considers
operations which take different amounts of time
is presented by Kraska [8].

Bounds using associativity, commutativity and
distributivity have been given by a number of
people [9,10,11]. In [10] the following theorem
is proved.

Theorem 2 Given any expression E<n>, by the
use of associativity, commutativity and distribu-
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tivity, E<n> can be transformed such that

T, [E<n>] < [4log n]

The complexity of the algorithm of [10] has
been studied in [6], where it is shown that tree-
height reduction can be done using O(n log n)
steps in addition to normal parsing. For expres-
sions of special forms, better bounds can be
given [9]. Also, if the number of processors is
allowed to grow beyond 0(n), the time coefficient
of Theorem 2 can be reduced to 2.88 [11].

So we conclude that any arithmetic expres-
sion E<n> can be evaluated in 0(log n) time steps
using O(n) processors. While this affords a nice
speedup for large n, we rarely see expressions
with n larger than five or six. For bigger speed-
ups, in practice, we turn to the following.

Recurrence Relations

Linear recurrences share with arithmetic ex-
pressions a role of central importance in com-
puter design and use. But they are somewhat more
difficult to deal with. While an expression
specifies a static computational scheme for a
scalar result, a recurrence specifies a dynamic
procedure for computing a scalar or an array of
results. Linear recurrences are found in com-
puter design, numerical analysis and program
analysis, so it is important to find fast, effi-
cient ways to solve them.

Recurrences arise in any logic design prob-
lem which is expressed as a sequential machine.
Also, almost every practical program which has an
iterative loop contains a recurrence. While not
all recurrences are linear, the vast majority
found in practice are, and we shall concentrate
first on linear recurrences.

We shall begin with several examples.
First, consider the problem of computing an inner
product of vectors a = (al,...,an) and

b = (bl,...,bn). This can be written as a

linear recurrence of the form

X =X+ aibi, 1<i<n (2)

where x is initially set to zero and finally set
to the value of the inner product of a and b.

As another example of a linear recurrence
which produces a scalar result, the evaluation of
a degree n polynomial pn(x) in Horner's rule
form can be expressed as
2<i<n

P =a + xp, (3

where p is initially set to a; and finally set to
the value of pn(x).

Techniques to handle both of these
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recurrences should be familiar from our discussion
of expression evaluation. Note that Eq. 2 can be
expanded by substituting the right-hand side into

itself (statement substitution) as follows:
X = alb1
X = alb1 + a2b2
x =

alb1 + a2b2 + a3b3

.

After n iterations we have an expression which can
be mapped onto a tree similar to that of Figure 1.

Earlier, we have also discussed polynomial
evaluation. Thus by carrying out a procedure
similar to the above, we could obtain an expres-
sion which could be handled by tree-height reduc-
tion. Thus, we would expect that these and simi-
lar recurrences could be solved in TP = 0(log n)

time steps using P = 0(n) processors.
But there are other, more difficult looking

linear recurrences. For example, a Fibonacci se-
quence can be generated by

fj=f+E ., 3<izn *
where
f1 = f2 = 1.

As another example, consider the addition of two
n-bit binary numbers a = an ... a and b = bn e

1
b The propagation of the carry across the

1°
sum can be described by
= . < i<
c; = vy txtey g 1<i<n 5)
where
?O =0, xi =a; + bi and y; = ai'bi.
Here we use + to denote logical or and * to denote

logical and. This is an example of a bit level
linear recurrence, in contrast to our previous ex-
amples whose arguments were assumed to be real
numbers.

In both Eq. 4 and Eq. 5 we are required to
generate a vector result because of the sub-
scripted left-hand side. This is in contrast to
the scalar results of Eqs. 2 and 3. Because of
this, we can expect a good deal more difficulty
in trying to obtain a fast efficient solution to
these recurrences. With the above as an introduc-
tion, we now turn to a formalization of the gen-
eral problem. We will then give bounds for the
solution of the general problem and several im-
portant special cases.

Definition 2

An m-th order linear recurrence system of n
equations, R<n,m> is defined for m < n by

x, =0 for i <0
i =

and
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i-1
X, =gt z a . X, for 1 < i< mn.
j=i-m
If m = n we call the system a general linear re-

currence system and denote it by R<n>.

Note that we can express any linear recur-—
rence system in matrix terms as

X =c + Ax
where

t t
c = (cl,...,cn) , X = (xl,...,xn)

and A is a strictly lower triangular (banded if
m < n) matrix with a,. = 0 fori<jori-j>

m. We refer to A as the coefficient matrix, c as
the constant vector and x as the solution vector.

It should be observed that the constant vec-
tor and coefficient matrix generally contain
values which can be computed before the recur-
rence evaluation begins. Thus, the xi and yi

values of Eq. 5 would be precomputed from the a;
and bi' We will assume that the elements of c

and A are precomputed (if necessary) in all cases
so that our bounds on recurrence evaluation can
be simply stated, and that m and n are powers of
2.

How can we solve an R<n> system in a fast,
efficient way using many simultaneous operations?
The following is a straightforward way which uses
0(n) processors to solve the system in 0(n) steps.

Column Sweep Algorithm

Given any R<n> system, we initially know the

value of Xy On step 1 we broadcast this value,

s to all other equations, multiply by ajl

Since we now know the

and
add the result to c,.
value of Xys this leads to an R<n-1> system which

can be treated in exactly the same way. Thus
after n - 1 steps, each of which consists of a
broadcast, a multiply and an add, and each of
which generates another X, we have the solution

vector x. The method requires n - 1 processors
on step 1, and fewer thereafter, so TP =2(n - 1)
with P = n - 1.

What speedup and efficiency have we achieved
by this method? The time required to solve this
system using a single processor which might sweep
the array by rows or columns would be

T 2[1+ 2+ ... + (n - 1)]

1
= Z[ELE_:;ll] =n(n - 1).
2
Hence the above method achieves a speedup of
. n(m-1) _
Sp = ICE n/2
with an efficiency of
E=.S—E—__.l__._>_].‘.
P P 2(n-1) 20
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Thus we can conclude that the Column Sweep Algo-
rithm is a reasonable method of solving an R<n>
system. But how does it perform in the R<n,m>
case for m<<n.

It can be seen that the Column Sweep Algo-
rithm will achieve S_ = 0(m) for an R<n,m> system.
So if m is very smali, the method performs poorly,
particularly if we have a large number of proces-
sors available. It should be noted that the m<<n
case occurs very often in practice. Note that all
of our examples (Eqs. 2-5) had m < 2.

What are our prospects for finding a faster
algorithm. First, we observe that the total num-
ber of initial data values in an R<n,m> system is
O(mn). This is the total of the constant vector
c and the coefficient matrix A. Assuming that
these numbers all interact in obtaining a solu-
tion, a fan-in argument [c.f. Lemma 1] indicates
that we need at least 0(log mn) steps to solve an
R<n,m> system, since m < n, 0(log mn) = 0(log n).
The Column Sweep Algorithm required O(n) steps, so
we still have a big gap in time.

Fast Recurrence Method

The next theorem is based on an algorithm for
the fastest known method of evaluating an R<n,m>
system. For large m, the number of processors re-
quired is rather large, but for small m, the num—
ber of processors is quite reasonable. We also
give bounds for the case of a small number of
processors, Corollary 3 is particularly important
in the case of m < p < P.

Any R<n,m> can be computed in

Theorem 3

TP < (2 + log m) log n - %(logzm + log m)
with

P j_mzn/Z + 0(mn) for m<<n,

P < n3/68 + O(nz) for m < n.

The details of transforming a system to meet
this bound are fairly straightforward [12]. We
will give a simple example here as a basis for
some intuition about how the technique of Theorem
3 works. Consider an R<4,2> system. This method
would generate the following expressions for the
evaluation of the Xyt

X, = C

1
= (egtagey)
Xy = (c3+a31cl) + a32(c2+a21cl)
= oy (ayytapag)) (eptay ep)
+ a43(c3+a31c1)‘
Note that all of the parenthesized expressions can

be computed simultaneously in two steps (there are
just three distinct ones). Then x4, the largest

calculation, can be completed in three more steps

for TP = (2+log 2)(log 4) - %{log22+log 2) =5,
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This time bound may be achieved using just three
processors in this case. But as n grows larger,
the number of processors required becomes very
large as shown in the tables of [13].

In practice we may have a machine with a
limited number of processors p < P so Theorem 3
cannot be used directly. Several schemes are
available for mapping a computation onto a
smaller set of processors and generally in-
creasing the efficiency of the computation as
well. While the techniques described below may
be applied to arithmetic expressions as derived
from Theorems 1 or 2, the expressions found in
typical programs usually do not require enough
processors to warrant such reductions [14].

First, we describe a folding scheme which
reduces the number of processors at a much faster
rate than the computation time increases. The P
processor computation for R<n,m> resulting from
Theorem 3 contains log n stages, each stage con-
sisting of many independent tree computations of
height (log mt+l) resulting from inner products of
two m—vectors. Such a tree of height t will con-

tain 2t-1 operation nodes and its evaluation re-

quires Zt—l processors. P is the maximum of the
total number of processors used at each stage.
It is easy to show that given such a tree its
height increases only one step by halving the
number of processors (called one fold), and after
f folds (f < t - 2) are performed the tree height

f+1

is t+2 ~f-2) while the number of processors is

reduced to Zt_l/Zf. If all trees at the same

stage are folded uniformly, then this folding
scheme can provide us ‘1‘P as stated below.

Corollary 1 Let R<n,m> and P be as in Theorem
3. Then if f < logm - 1 and p = [P/Zf], we have

f+1
TP E-TP + (2 -f-2) log n.
Another technique which is useful in mapping
any computation onto a limited number of proces-
sors p < P is the sweeping scheme [15]. If the

i-th step of any parallel computation requires 0i

operations using P processors, it can be executed
0
—_— This observa-

on p processors in steps.

tion leads to the following:

Lemma 2 [10] If a computation C can be com-

pleted in TP with 0P operations on P processors,

then C can be computed in TP LTt (0P~TP)/p for
p < P.

To apply this technique directly on the algo-
rithm of Theorem 3, the 0P value can be obtained

by the summation of 2+p(k) for k = 2, 4, 8, ...,
n, where p(k) is the number of processors re-
quired at each stage [12]. The result of this
technique can be found in [17].

Our third scheme for reducing the number of
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processors required for an R<n,m> system is called
the cutting scheme. The idea is to cut the origi-
nal system into a number of smaller systems and
evaluate these in sequence, using the algorithm
underlying Theorem 3 on each such system. We have
used this scheme in [13], [18], and a detailed
proof is given in [17].

and P be as in Theorem
computed with 1 < p <

Corollary 2 Let R<n,m>
3. Then any R<n,m> can be
P processors in

2 2[m/p] (n-1)
i §

B 3

72 P

for 1 <p<m,

(log2p+27log

A

p+1l44) + 3—‘;—11

2

form < p < m

-1

f'si-np 3(1og2p+2710g p+l44)

2 3

for m~ < m,

(S -]
IA

2
5_6252(10g m log p+2log, p-3 logzm-Z

3 log mtl)

for m3 <p<Pp,

where B(m,n,p) is a small constant.

For most practical R<n,m> systems in which m
is very small compared to n, if the number of
processors is also very limited then a new compu-
tational algorithm developed in [12] can be used
more efficiently. This method gives the following
time bounds.

Corollary 3 Let R<n,m> and P be as in Theorem
3. If m < p <P, then any R<n,m> can be computed
in

TP jv(2m2+3m)%~+ O(mzlog (p/m)).

In summary, for 1 < p < P the time bound for
evaluating a given R<n,m> system can be deter—
mined by choosing the minimum value obtained from
Corollaries 1, 2 and 3.

III. Program Analysis

In this section we discuss program analysis
techniques. These techniques can be used to com-
pile programs for parallel or pipeline computers.
They can also be used to specify machine organiza
tion for high speed computation. Since we are
really just studying the structure of ordinary
serial programs, our results have interpretations
for ordinary virtual memory machines and struc-
tured programming as well.

Definition 3

An assignment statement is denoted by x = E,
where x is a scalar or array variable and E is a
well-formed arithmetic expression. A block of
assignment statements (BAS) is a sequence of one
or more assignment statements with no intervening
statements of any other kind. Any BAS can be
transformed by a process called statement substi-
tution to obtain a set of expressions which can be
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evaluated simultaneously.

For example, the BAS
X = BCD + E
Y = AX
Z =X+ FG

can be evaluated using one processor in 6 steps,
ignoring memory activity. By statement substitu-
tion we obtain three statements which can be
transformed by tree-height reduction to obtain:

X = BCD + E; Y = ABCD + AE; Z = BCD + E + FG.

Since the resulting expressions can be evaluated
simultaneously in three steps, we obtain a speed-
up of 2. By properly arranging the parse trees
it may be seen that just five processors are re-
quired. Thus we have efficiency E5 =2/5. In

general, the number of processors required to
evaluate a set of trees in a fixed number of steps
may be minimized using an algorithm of Hu [19].
Note that the speedup here results from two
effects: the simultaneous evaluation of inde-
pendent trees and tree-height reduction by as-
sociativity, commutativity and distributivity.

Definition 4

An IF statement is denoted by (C)(Sl,...,Sn)

where C is the conditional expression composed of
arithmetic and logical operations and Sl,...,Sn

are n different statements which may be assign-
ment statements, IF statements, or loops such
that control will be transferred to one of them
depending on the value of C.

In many programs it is possible to find out-
side DO loops, rather large sets of statements
consisting of many IF and GOTO statements with
some interspersed assignment statements. Suppose
we have a method of discovering sections of code
in which the ratio of control (IF, GOTO) state-
ments to arithmetic operations is greater than
some small number. We call such a section of code
an IF block. Given an IF block, it is straight-
forward to put it in a canonical form consisting
of:

Step 1: A set of assignment statements, all
of which may be executed simultaneously.

Step 2: A set of Boolean functions, all of
which may be evaluated simultaneously.

Step 3. A binary decision tree through
which one path will be followed for each execu-
tion of the program. No Boolean function or
arithmetic expression evaluation is included in
the tree.

Step 4: A collection of blocks of assign-
ment statements, each with a single variable or
constant on the right-hand side. One such block
is associated with each path through the tree.

The details of an algorithm for the dis-
covery and transformation of an IF block to this
canonical form are given by Davis [20]. Note



1975 Sacamore CoMPUTER CONFERENCE ON PARALLEL PROCESSING

that the IF block may be a graph with or without
cycles. Such graphs are converted to trees called
IF trees in the cited references.

Definition 5

A loop is denoted by

L= (Il <« Nl, I2 « NZ’ vees Id « Nd)
(Sl, SZ, PP SS)
or )
= (Il, 12,..., Id)(Sl, SZ’ e SS)
where I,

is a loop index, Nj is an ordered index

set, and S, is a body statement which may be an

3

assignment statement, an IF statement or another
loop. We use OUT(Sj) and IN(Sj) to denote for Sj

the LHS (output) variable name and the set of RHS
(input) variable names, respectively. We will
write Sj(il, iZ’ ey id) to refer to Sj during a

index
values

particular iteration step, i.e., when the
variables of Sj are assigned the specific
Il = il, If Si is
before S,, we will write S

a = ig- executed
<

io Sj'

relation g defines the execution order of

I2 = iz, eeey I
We say that the
the

statements. If a loop execution leads to the exe-
cution of n statements, we sometimes denote their
execution order by writing Yi:xi = Ei’ 1<4i<nm,

implying that Y SY 1<i<n-1.

i i+1’

Definition 6

Given a loop L = (Il‘+ Nl’ cees Id « Nd)(Sl,

..+s S ), all possible data dependencies between
s

statement pairs Si and Sj are given by OUT(Si(kl,
...,kd))nIN(Sj(li,...,zd)) # ¢ for Si(kl""’kd) é
Sj(ll,...,ﬁd). Whenever this condition is satis-
fied, we say that Sj is data dependent on Si’ and
is denoted by SiGSj. § is a transitive relation.
All of the data dependencies can be represented by
a data dependence graph G1 of s nodes for Si, 1<
i <s. For each SiGSj there is an arc from Si to
S..
J

Si’ denoted SiASj, if there exist statements

Statement Sj is indirectly data dependent on

Sk s eees Sk such that SiGSk 6.7. Sk GSj.
1 m 1 m
Practical details on determining if Si<§Sj can be

found in [16].
Our definition of data dependence is much

more delicate than the usual definitions [21,22].
These definitions include the condition OUT(Si)

IN(Sj) # ¢, i.e., they ignore subscripts and only
check variable names. Thus statements like Si:

A(I) = A(I+1) + B are said to be data dependent

(Siasi). However, by Definition 6 we would not
say Si<SSi because the values of A(I+1l) are not
those from A(I).

In terms of Definitions 5 and 6, we can fur-
ther classify loops as follows.

Definition 7

We use D for data dependence relation, to
denote the set of loops with at least one SiSSj,
1 <1i,j < s. In other words, there is at least
one Ek’ 1 < k < n, which is a function of xk_mk

a non-

for m > 0. If LeD and none of its Si is
it a

The

linear function of Xj’ 1<3j<s, wecall

linear dependence and write LgLD (LD<D).

complement of D is denoted byiﬁ, for non-
dependence relation.

Definition 6 can be applied to any (d-ut+l),
1 <u<d, innermost nest of L as it is also a
loop. This is described below.
Definition 8

Let L" be the (d-u+1) innermost nest of L,

l<ucx<d, i.e.,
L= (11,12,...,Id)(Sl,Sz,...,SS)
= (11,12,...,Iu_l)(Iu,Iu+l,...,Id)

(Sl’SZ""’Ss)
u
= (Il’IZ’°"’Iu—1)(L ).

Then for fixed values of Il, 12, ey Iu-l’ we

can obtain all pairs of data dependence for 1A

according to Definition 7 (note that now k., = 21,

cees ku—l = lu—l)’ which defines graph Gu.
Example 1 Given a loop
L: DO S2 I1 =1, 10
DO 82 I2 =1, 10
DO 82 I3 =1, 10
sl: A(Il,IZ,IB) = B(Il—l,12,13)*C(I1,12)+D*E
82: B(Il’IZ’I3) = A(Il,12—1,13)*F(I2,I3),
The corresponding data dependence graphs»Gl, G2,
and G3 are
Gl: G2: G3:

&

22
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For the set of data dependent loops, we can
easily distinguish two cases: acyclic and cyclic
graphs. Formally, we define these as follows:

Definition 9

An acyclic dependence graph is a dependence
graph of s nodes, Si for 1 < i < s, with no pair

(8., S.) such that S.,AS, and S.,AS,. A dependence
1 J i3 J i

graph which is not acyclic will be called cyclic.

Given a data dependence graph, we wish to
partition it into blocks that contain only one
statement or a cyclic dependence graph. Formally,
we define these as follows:

Definition 10

On each dependence graph, Gu’ l<ux<d, for

a given loop L, we define a node partition "u of

{81,82,...,Ss} in such a way that Sk and SQ’ are in
the same subset if and only if SkASg and SQASk.
= {n } for 1 <u <

On the partition “u E “u2’ e

d, define a partial ordering relation a in such a
way that m . o w . (reflexive), and for i # jJ,

m . @
ul u,

element of m ., to some element of w_ ..
ui uj

3 iff there is an arc in Gu from some
The a

relation is also anti-symmetric and transitive.
The "ui are called m-blocks.

Wave-Front Method

If there are cyclic dependencies in a DO
loop, we may turn to our next method, the wave-
front method. This is a well-known method which
effectively extracts array operations from the
loop. and we can then apply the above bounds to
these. If the maximum speedup given by the wave-
front method is insufficient, i.e., if the avail-
able processors are not all being used, we may
turn to the recurrence method which gives the
fastest known speedup for such problems.

Example 2
12: DO 10 I=1,N
DO 10 J=1, N
10 W(I,J) = A(I-1,J3) * w(I-1,7) + B(I,J-1)

* W(r,5-1)

For one or more assignment statements con-
taining cyclic dependencies, the wave-front
method yields moderate speedups with high effi-
ciency. The idea of this method can be illustra-
ted by the loop L2 of Example 2 in which state-
ment 10 has a cyclic dependence in that the LHS
depends on RHS values computed earlier in the
loop. Note that generally, one or more state-
ments may form a cyclic dependence. This method
proceeds as follows: if W(1,1) is computed from
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boundary values, then we can compute W(2,1) and
W(1,2) in terms of W(1,1) and boundary values.
Next we can compute W(3,1), W(2,2) and W(1,3) and
so on, as a wave-front passes through the W array
at a 45° angle. Thus we can compute this loop in

0(N) steps instead of the O(Nz) serial steps
required. The wave-front method was first de-
scribed in detail by Muracka in [7] and was later
used in [15] and was also implemented in [23].
The formalization below removes some of the
restrictions included in the original formulation.

In [26] a revised wave-front algorithm is
presented. This includes a method of determining
the angle o at which the wave-front passes
through the array. It also includes a method for
computing the speedup as a function of a. Note
that these ideas can be extended to arrays of
hieher dimension, as well. However, the wave-
front method is of no value in one-dimensional
arrays, since it degenerates to a serial compu-
tation in this case. A similar thing happens if
a is slightly greater than 0° or slightly less
than 90°. In such cases we may treat the cyclic
dependence as a linear recurrence (assuming it
is linear).

Loop Speedup Hierarchy

With the above fundamentals, it is possible
to give some easy bounds on overall loop speedup
in terms of the uniprocessor time Tl' We will

present a simple hierarchy here based on the
maximum known speedups for various classes of
programs. Sharper bounds will be presented

later in the paper, based on more detailed loop
parameters., The hierarchy of this section will
provide good intuition for the following sections.

The simplest loop is LeD which by Definition
T has no dependence relation between any pair of
statements. Thus, following the notation of
Definition 5, all X, = Ei’ 1 <iz<mn, can be

computed in parallel. The following loop, which
performs matrix addition and scalar product has
this property.

D s,I,=1,10,2

D s,I,=1,10,1
8, G(Il,Ig) = A(Il,Iz) + B(Il, 12)
5, Z(Il,I2) = C(Il,Iz) * D(Il,Ig)

The total time required by any LeD is, by
Theorems 1 and 2, Tp < 0(log e) where e is the

maximum number of atoms in E, 1< i < n. Hence,

we have for LeD

T

Sp Z O(log &)

o{m.).

1

Now, let us study a slightly more complica-
ted loop LeLD such as one that performs vector
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inner-product

Do 5 1=1, 10

5 T =T+ A(I)*B(I) .
For any LelLD, if we pre-compute simultaneously
all subexpressions in Ei’ 1 <i < n, which do not

depend on any computed value in the loop, i.e.,
any x, for 1 < i < n, then the resultant state-

ments x, = Ei, 1 <i < n, can be treated as an
R<n,m> system where m<n is the maximum of m, (see

Definition 7) for all i. The total computation
time of any LeLD with m<<n, or m independent of
n, is therefore, any preprocessing time needed to
obtain the coefficients in R<n,m>, which is

0(log e) time steps by Theorems 1 and 2, plus the
time to solve an R<n,m> system which is stated in
Theorem 3. Since n f.Tl < ne, we have a speedup

for this subset of LD,

B! T

> = 0¢( )
p — 0(log m log n) + 0(log e) log T1

S

Next, consider the subset of loops which has
m ~ n or m a function of n. For example, given
an upper triangular matrix A, to solve Ax =b by
the traditional back-substitution method we may
write a loop like

o 5 I=10,1, -1
X(I) = B(I)/A(L,T)
0 5 J=T1+1,10,1
5 X(I) = X(I) - (A(I,J)/A(I,I))*X(J).

In this example, if we preprocess B(I)/A(I,I) for
all I, and A(I,J)/A(I,I) for all I,J, we obtain

an R<n,n> system., Since m = n, this is the worst-
case loop of LD. Hence, we can say that the
computation time of any LeLD is less than 0(log e)
plus the time stated in Theorem 3, i.e., for any
LeLD

T T
S > L =0(1).

P —RO(loan) + 0(log e) 1og2T1

Finally, we study a simple looking, but more
complicated loop:

D 5 I=1, 10
5  X(I) = (X(I-1) + A/X(I-1))/2 .

This is a familiar iterative program for approxi-
mating YA. For this loop, LeD but L#LD. Muraoka
[7] shows that by using statement-substitution
any loop with Ei being a d-th degree polynomial
of X 10
constant factor.

d > 1, can be speeded up at most by a

Later, Kung also studied this
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problem [24] in a similar way. However, since we
have been able to linearize a number of nonlinear
recurrences, it remains an open question which
techniques besides statement-substitution may be
used to speed up such loops.

Summarizing the above, we are able to
classify all loops in terms of their best known
speedups over serial computation time Tl’ i.e.,

B!

§ = e
i
ai(log Tl)

for 0 < i <2
D 1z

(6)

We call a loop Type i, 0 <1 < 2, if its maximum
speedup has the form of Equation 6, or Type 3 if
its maximum speedup is of a lower order of
magnitude. This was also discussed in [2].

By the wave-front method we are at best able

_ 1/2 .

to achieve Tp = OCT1 ) O(Tl) in the
2
/ ).

the wave-front method's speedup is always inferior
to the recurrence method for such problems, this
is consistent with our claim that Equation 6
represents a maximum speedup hierarchy.

, with T =
P

worst case., Thus we have Sp _j_O(Tl1 Since

Loop Distribution

Now we turn to the question of compiling
array operations from serial programs. In order
to achieve statement independence we use state-
ment-substitution. This yields increased speedup,
sometimes at the cost of redundant operations.

It should be used with discretion, and only in
machines with a high degree of parallelism. After
describing this we give our loop distribution
algorithm and an example. This is a key algorithm
in loop compilation.

For acyclic graphs, it is easy to demon-
strate that we can perform statement-substitution
between any pair of nodes which have a dependence
relation. As in a BAS (c.f. Definition 3), we

substitute for each LHS variable of Si on the RHS

of Sj’ which is the cause of a dependence relation,

the corresponding arithmetic expression on the RHS
of Si with all subscript expressions properly

shifted. By applying statement-substitution, the
dependence relation is removed and a set of inde-
pendent assignment statements results. Each of
these represents a vector assignment statement,
all of which can be executed simultaneously.
Theorems 2 and 3 can be used to bound the time
and processors.

In loops with acyclic graphs, it is possible
to reduce the graph for the entire loop to a set
of independent nodes representing simultaneously
executable array statements. However, in general,
we must deal with cyclic graphs containing several
interdependent nodes., We will now present our
loop distribution algorithm which will be useful
in handling these cases. By loop distribution we
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mean the distribution of the loop control state-
ments over individual or collections of assignment
statements contained in the loop. The idea of
loop distribution was introduced by Muraoka [7],
and later was implemented in our Fortran program
analyzer to measure potential parallelism in
ordinary programs [15], [25].

The purpose of distributing a given Type i
loop is to obtain a set of smaller size loops of
Type j, 0 < j < i, which upon execution give
results equivalent to the original loop. This is
essentially to reduce ai in Equation 6 (and hence

increase speedup) as much as possible, In fact,
the loop distribution algorithm resembling the
distribution algorithm for the reduction of tree
height of an arithmetic expression, may introduce
more parallelism into a program loop than that
obtained from an undistributed one. We now give
the algorithm to accomplish this distribution as
presented in [26].

Loop Distribution Algorithm

Step 1 Given a loop

L= (Il’IZ""’Id)(Sl’SZ"°"Ss)’

by analyzing subscript expressions and indexing
patterns, construct a dependence graph Gu (c.f.

Definitions 6 and 8) for 1 < u < d.

Step 2
partition T, s in Definition 10.

On Gu’ 1 < u < d, establish a node

Step 3 On the partition L 1 <uc<d,

establish a partial ordering relation as in
Definition 10.

Step 4 Let the (d-ut+l) innermost nest of L be
u

L, 1 <uc<d, i.e.,
L= (I5,0,500e 5T ) (S1,5,,000,8)
SCTE SUTORUE ST {c VS SUNTRRTE SH YT
...,SS)}
= (T)y5e I, D@D .

Replace e according to T with a set of loops
{(I)(“ul),(l)(ﬂuz),...} where (I) = (I
...,Id) .

u’Iu+l’

The condition of the partial ordering
relation y insures that data are updated before
being used. Hence, any execution order of the

set of loops which replaces LY will be valid as
long as this relation is not violated., Thus, for

fixed values of Il’ 12, ey Iu—l’ if Ta Y ﬂuj
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then loop (I)(nui) must be evaluated before
(I)(nui)’ otherwise they may be computed in

parallel. In general, we can also use statement
substitution to remove this relation between some
or all of the distributed loops. But, by not
allowing statement substitution we have a some-
what simpler compiler technique; one which
generally requires fewer processors and yields
less speedup.

As an example of the use of our loop
distribution, consider the following pseudo-
FORTRAN program.

Example 3
DO 10 I=1, N
Sy A(I) = B(I) * c(I) *
DO 20 J=1, N
S, D(J) = A(I-3) + E(J-1)
S, 20 EQJ) = D(J-1) + F
DO 30 K=1, N
S, 30 G(K) = H(I-5) + 1
Sg: 10 H(I) = SQRT(A(I-2))

Following step 1 of the Loop Distribution
Algorithm, we obtain a dependence graph as shown
in Figure 5. We use brackets to denote loop
nesting. For simplicity and speedup in this
program, we only consider the case u = 1.

In step 2, we form the partition T = {ﬁll’

T Ty3s Mgt Where myg = {83, m, = {8,,85},

vl3 = {SA}’ and T4 = {SS}' These partitions are

partially ordered on step 3 as follows: 7 o m

11 21’

m o and T Since we are consider-

11 ¢ M4 14 ¢ M3
ing only the case u = 1 here, we ignore step 4.

The result of this transformation is shown
in Figure 6. We could use this graph to compile
array operations as follows. First, S1 yields a

vector multiply. Next, we can execute T

12 °F T14°

1o leads to a linear recurrence of the form

R<N,3> which can be solved by the method of
Theorem 3, by combining the D and E arrays as an
unknown vector in which X, represents D(1), X,

represents E(1), x., represents D(2), x, repre-

3

sents E(2), etc. leads to the execution of

14

S5 as a vector of square roots. Finally, 54 may

be executed for all I and K simultaneously. Note
that this requires the broadcasting of elements
of the H array to all elements in the columns of
G.
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Here, the time required to execute ﬂll’ ﬂla,

and 7., is independent of N using O0(N) processors.

14

The overall execution time is dominated by T1p

and is 0(log N), so this is a type 1 loop. The
number of processors required to achieve this
time is O(N).

Notice that in this example we avoided
statement substitution. Using statement substi-
tution, we would have been able to obtain four
m-blocks, all of which could be executed at once.
This would require the execution of several
different operations at one time, while the
technique we used allows all operations at each
step to be identical. Furthermore, very little

additional speedup would be possible by this

method since ﬁlZ dominates the time here.

IFs in Loops

To this point we have considered DO loops
without conditional statements. The addition to
DO loops of IF and GOTO as well as computed GOTO
statements, can cause major problems. In par-
ticular, data dependencies can be changed at
execution time by the existence of such condition-
al statements. Thus, knowledge at compile time
of what can be executed in parallel may be
difficult to obtain. In the worst case, we may
be forced by not knowing about control flow, to
compile loops for serial execution which in fact
can be executed in a highly parallel way.

We have developed a good deal of background
theory and have extended the loop distribution
algorithm to handle DO loops containing IF, GOTO
and computed GOTO statements [26], [27]. The
material is somewhat lengthy, so we will not
explore it here in detail. Rather, we will
present a few examples to give an intuitive idea
of how the procedures work. Basically, the
procedures allow us to remove IFs from DO loops.
Thus, we can compile code which is executed on
arrays in an unconditional way.

An array computer is assumed to have a set
of mode bits to indicate which array elements
are to be operated on. The conditional testing
is moved out of the program and into the data.
Thus, our goal is to replace IFs in serial pro-
grams with mode bit vectors in array programs.

The easiest case to handle is the IF which
depends on variables not set inside the loop.
We call these type A IFs. Such IFs can be
removed from loops trivially. However, good
programmers almost never write such statements,
so this is a moot point.

The next case is of the form
D0 5 1=1,N
IF(I<5) THEN A(I) = B(I) + C(I)
ELSE A(I) = B(I)/C(I)
5  CONTINUE

Let Mi[a,b] be a vector of mode bits denoting

vector elements from a to b, inclusive. Then we

can compile

M1l = [1,5]
M2 = [6,N]
DO SIM{A(M1) = B(ML) + C(ML),

A(M2) = B(M2)/c(M2)}

where DO SIM indicates that the bracketed

26
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statement can be executed as array statements and
simultaneously. This is an example of what we
call a prefix type B IF.

We also define two other types of IFs. A
postfix type B IF requires that both sides of the
IF be computed for the full array. We then give
a fast method to make parallel tests and merge
the two sets of data to obtain a correct result.
We obtain the same speedups as in the prefix type
B, but with lower efficiency. Finally, the type
C IF is handled serially.

As a test of the usefulness of our methods,
we have analyzed the 16 Fortran programs which
appeared in 1973 in the CACM Algorithms Section.
Nested DOs were counted as one loop at the outer-
most level. There were a total of 124 such DO
loops. Each loop was characterized in terms of
the worst recurrence type (c.f. Equation 6) and
worst IF type it contained.

We observe that type A and prefix B IFs
together with recurrence types 0 and 1 can be
handled with good speedup and efficiency. This
accounts for 857% of the loops. Four programs
(type 3 and type C) are disasters for our methods
and in part must be handled serially. The re-
maining programs can be handled by the postfix
and wave-front (type 2) methods. Overall, this
seems to imply that the methods given would be
very effective for the general mix of CACM
Fortran algorithms.

Recurrence Type

0 1 2 3
No IF 51 24 2 1
A 0 0 0 0
Prefix B 24 6 1 1
Postfix B 3 8 1 0
IF
Type C 0 1 1 0
Table 1. 1973 CACM DO Loop Summary

Algorithm Analysis

We have also used the techniques of this
section and section II to analyze several standard
numerical algorithms abstractly, rather than in
the form of programs. In particular, we have
studied the solution of linear systems, the com-
putation of tridiagonal matrix eigenvalues, and
the solution of Poisson's equation.

Tridiagonal linear systems were studied in
[28] for the special case where pivoting is not
required. In [29], we improve this result
slightly and also give a more stable method for
solving any nonsingular tridiagonal system using
Givens' transformations. This solves the system
in T = 0(log n) with P = 0(n). Furthermore, an
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[18].

orthogonal factorization method is given which
solves any nonsingular linear system in TP = 0(n)

using P = O(nz) so EP = 0(1). Attempts to go

faster have all led to nonlinear recurrences
which we have not been able to linearize.

In [30] and [31], the parallel computation
of matrix eigenvalues is studied. In [31] we
treat tridiagonal matrices and we show a parallel
QR-algorithm which requires 0(log n) steps and
uses 0(n) processors per iteration. This yields
a speedup of O(n/log n) and an efficiency of
0(1/log n).

The Poisson equation is treated in [32] and

In [18], it is proved that on an nxn grid,
a finite difference approximation can be solved
by a direct method in TP = 0(log n) with

P = O(nz) so EP = 0(1), for Dirichlet, Neumann,

and periodic boundary conditions. We also treat

the biharmonic equation.
Extensions

The results discussed in this section can be
interpreted in several ways besides those already
mentioned. The m blocks produced by these tech-
niques could be used as tasks for separate pro-
cessors in a multiprocessor computer. In virtual
memory machines, the w blocks could be used as
pages, with the o transitions representing page
faults. Preliminary studies of space, time
products with limited page allotments are quite
encouraging. Substantial improvements in address
localization have been obtained using this tech-
nique as compared to standard compilation tech-
niques. Finally, the transformation of loops
containing IFs can be thought of as transforma-
tion of serial programs to DO WHILE loops. 1In
[27] we discuss further the interpretation of
these results in a structured programming sense.

IV. Processors

Traditionally, computers have executed one
operation at a time. Obviously, program speedups
may be achieved by performing more than one
operation simultaneously. This idea seems to be
at least 130 years old, since we read in the
October 1842 publication of Menabrea's descrip-
tion of Babbage's lectures [33]: "...when a long
series of identical computations is to be per-
formed, such as those required for the formation
of numerical tables, the machine can be brought
into play so as to give several results at the
same time, which will greatly abridge the whole
amount of the processes.' It should be pointed
out that elsewhere (e.g., [33, p. 261]) remarks
can be found indicating that at most one pair of
operands are used at once. In any case, the idea
seems to have been clear at the time, even if it
was not part of the design.

In modern history, the Bell Telephone
Laboratories' Model V system built by Stibitz
and Williams in the late 1940s had two processors
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[34]. Designs of machines capable of simulta-
neously executing several operations for solving
partial differential equations began to appear in
the 1950s. In 1952, Leondes and Rubinoff [35]
proposed a multi-operation processor oriented
around a drum memory. In 1958, the German com-
puter pioneer Zuse proposed a drum-oriented
parallel machine [36]. Subsequently, a number of
abstract and real computers have been proposed
and built that are capable of executing more than
one operation at once. Most manufacturers now
provide two processor general multiprocessor
systems and some have up to four processors which
operate from a shared memory. Others provide
several arithmetic units in one processor. Pipe-
line and parallel systems currently appearing
promise to make even more simultaneous operations
available for special problem classes.

Since the early 1960s, we have seen a
sequence of high speed machines which have some
kind of multioperation capability. The CDC 6600
of the 60s was succeeded by the 7600 in the early
70s. IBM introduced the 360/91 and its successors.
The 7600 and /91 are both pipelined machines and
achieve high performance by operating on arrays of
data. Their instruction sets are rather tradi-
tional, however., In contrast, the pipelined
Control Data STAR [37] and Texas Instruments' ASC
[38], both have vector instruction sets, which
makes compilation for them substantially easier.

On the other hand, the Burroughs' ILLIAC IV
[66] is a parallel array machine, but its instruc-
tion set is also traditional in nature. Vectors
must be broken up into partitions of size 64 and
loops performed over a sequence of such partitions.
The Goodyear Aerospace STARAN IV [39] is a para-
1llel array of processors, each of which operates
in a bit-serial fashion., This is an example of
an associative processor,

It is interesting to note that the highest
speed pipeline processors, the STAR and ASC, both
resort to parallelism by providing several para-
1llel pipelines to achieve their desired operating
speeds.

The processing speedups achieved by all of
these machines are due to parallelism between
operations as well as parallelism between memory
and processor activities. We shall discuss
memories, alignment networks, and control units
later. Our point here is that in order to compile
ordinary serial languages for these processors,
two things are desirable: 1) Powerful tramsla-
tion techniques to detect parallelism, and 2)
Array type machine languages.

The main contributions to program speedup
discussed in section III arise from our loop
distribution procedure. This leads to array
operations and recurrences. Both of these are
well suited for computation on machines which
must perform the same operation on many data
elements to achieve high performance. Thus, the
methods of section III could serve as compiler
algorithms for such machines.
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Some time ago, we implemented a comprehen-
sive analyzer of Fortran programs. It used
algorithms like those of sections II and III,
although some of the techniques were much more
primitive than those discussed here. Details of
our algorithms and results may be found in [7],
[15], [25], and [2]. We will summarize a few
points very briefly.

Altogether some 140 ordinary Fortran pro-
grams, gathered from many sources, were analyzed.
The programs ranged from numerical computations
on two-dimensional arrays (e.g., EISPACK) to
essentially nonnumerical programs (e.g., Fortran
equivalents of GPSS blocks). We set all loops
to 10 or fewer iterations and analyzed all paths

through the programs, computing Tl’ Tp’ Sp’ Ep,
etc. These were averaged over all traces and

also over collections of programs. A plot of
our results for Sp vs. p is shown in Figure 7.

Some of the points are labelled with the names of
a collection of programs; ALL represents a global
average.

Thus we observe that for these. simple pro-
grams, about 35 parallel processors could
deliver a speedup of about 10 for an efficiency
of greater than 30%.

Furthermore, we took a subset of the pro-
grams, again a random cross-section, and varied
the DO loop limits from 10 to 40. The points
10, 20, 30, 40 correspond to the results. We
conclude that for our sample of ordinary Fortran
programs, speedup is a linear function of Tl and

hence p. This is quite different from some of
the folklore which has arisen about parallel
computation [40], [41], [42] (e.g., S_ = 0(log p)).

For more discussion of this, see [2], [25].
Using the methods known now, we are implementing
a new analyzer and expect better results.
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Combinational Logic Design

We are also interested in the logic design of
the processors themselves. Parallelism at the bit
level as compared to the word level has been under
consideration for many years in arithmetic unit
design. Indeed, Babbage was greatly concerned
with anticipatory carry-adder schemes [33] and was
quite proud of his invention of a fast adder.

More recently, lower bounds were given on the
time required for addition [43] and multiplication
[44]. It was shown that the bounds could be met,
but non-standard arithmetic was used. Binary
addition was considered in [45]. These papers did
not consider such questions as gate (or component)
counts, fan-out considerations, or more general
logic design problems.

In [46] these matters are discussed in some
detail and we will briefly survey them below. We
emphasize that each bound given is proved by a
constructive algorithm. These algorithms can be
used to transform any linear sequential logic into
conmbinational logic. Since it is usually quite
easy to write down sequential (bit serial) equa-
tions for a logical function, this seems to be a
useful way to design fast parallel combinational
circuits.

The theoretical results of section II were
given at the level of operations on computer words.
But, it is obvious that operations on bits are
quite similar. The main difference between bit
level and word level operations is in the fanning
out of intermediate values. 1In section II we
assumed that a number could be broadcast for oper-
ations with several other numbers without paying
a gate or time penalty. This is reasonable
because the actual time and gate count for broad-
casting is negligible compared to arithmetic
times.

However, at the gate level, add and multiply
are interpreted as or and and, respectively.
Thus, the fan-in of n bits through combinational
logic may be done using n - 1 two input gates,
whereas, fanning out a bit to n destinations also
requires n - 1 two output gates. Thus, the fan-
out gates may become nonnegligible.

In the following, we ignore the gates which
are the source of signals since they are counted
as the destination of some other signal. First,
we give a lemma about signal fan-out.

Lemma 3 [46] An e way fan-out can be
accomplished using gates with fan-out of £ > 2 in

TG < [1ogf e] -1

with

Next, we bound the gates and time in the combina-
tional part of any logic circuit.
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Lemma 4 [5], [47] Any Boolean expression
E<e> of e atoms can be realized using gates of
fan-in 2 in

1+ 2d + [log e] ifd<—§-loge

TG[E<e>] < fhlog e] otherwise,
with

o1 if d < %-1og e
G[E<e>] < 2(e1) otherwise,

where d is the depth of parenthesis nesting in E.
In the following, we assume for simplicity that
n and m are powers of 2. A third useful result
for recurrences is

Lemma 5 [46] Any m—-th order linear Boolean
recurrence R<n,m> can be solved using gates of
q
2

fan-in 2 and fan-out f = ,q>1, in

5 1
TG :'(2 + log m + logf n)log n

2
- %(1og2 m + log m)
with

1 1
) te@d 7)1 nlogn

Counting gates and gate delays is a useful
measure, even though most present logic design
is carried out in terms of integrated circuits,
since gates are an absolute measure. But we are
also interested in specifying the role of inte-
grated circuits in solving recurrences. First,
we define two integrated circuit types. Since
the vast majority of real logic design problems
are R<n,l> systems, we now restrict our attention
to the case m = 1.

Definition 11

We define two types of integrated circuit
packages.

a) ICRKn,l>

atoms e, for 1 <i <n, and a, for

is a package which accepts
input

2 <i <n. It computes the outputs X, for

1 < i < n according to the recurrence relation
X, = ¢, +a, x , where x. = 0.
i i 0

i “i-1
b) IC is a package which may accept

U<n>
input atoms a; and b
d.

according to

i for 1 <i <n, and c and

It computes the outputs X, for 1 <i <mn,

X, = v,w, +y.z,
i ivi Yi%y o

where either
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=c ¥y, = bi and z, = d,

or

ii) v, =g, W= bi’ ¥ =g and z, = b.,

In general, we denote the total number of inte-
grated circuits in some logical circuit by IC.
Now we can prove the following.

Lemma 6 [46] Any first-order linear
recurrence R<n,1> can be solved in time
log n _
Te2@3en - D

using a total package count of

< log n _
Ic=e h +4 log h /

with package types IC and IC

R<h,1> U<h-1> for h > 2,
Using the above, we can solve a number of
useful logic design problems. To illustrate the
method, consider the binary addition of two
numbers a = a ees 3y and b = bn e bl' We can

generate the sum digits s = s_ ... s. and carry

1
digit c, as follows:

(a,b

17 (b vagby) ey g+ (agby +agby) ey

where 1 < i < n and ¢ is specified in Equation 5.

By the use of Lemma 4 and Lemma 5, we can
easily prove the following.

t

Theorem 4 [46] Twon =27, t >0, digit binary

numbers can be added in

1
TG 5_5(5 + 1ogfn) logn + 4
with
3 1 1
G < (2 + f__1) n logn + (8 - D0

2
+("f—_'1-) logn + 2 .

Furthermore, using Lemma 6 we can prove

Theorem 5 [46] Two n = Zt, t > 0, digit binary
nunbers can be added in time

log n
TIC @2 log h + 1D
using a total package count of
n logn _
Ic 5-9H + 4 Tog b 7
with package types ICR<h,1> and ICU<h> for h > 2,
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Using these results, we comsider a practical
example,

Example 4 Consider the problem of adding two
32-bit binary numbers using gates with fan-in 2
and fan-out 8. By the method of Theorem 4, the
sum can be formed in at most 21 gate delays since

1 1,20
T, 5_2(5 + 1og8 32) log 32 + 4 < 2(—50 5+ 4

G
- 1%9-+ 4<21 .

The number of gates required is at most

3,1 1
Gi(2+7) 3245 4 (8 - 3) 32+ 2:5

23,
14

On the other hand, if integrated circuit
packages are available which handle 8 bits at a
time, h = 8, we have the following. The total
package count is

+2 < 160+§-3-.32+12=527

log 32 _ 7 < 37
log 8

and the number of package delays is

log 32
Tos 8 + 1) <5 .

32
IC <9 8+4

Tex @

These results can be used to transform any
linear sequential logic to combinational logic.
Furthermore, [46] shows how certain nonlinear
cases can be handled as well. Thus, we have a
uniform way to design circuits which perform
such functions as binary addition, counting the
number of ones to the right of each position in
a binary word, binary multiplication, digital
filtering, and so on.

Control Units

A well-designed control unit is one which
never gets in the way of the processor(s) and
memories. In other words, it operates fast
enough to be able to supply instructions whenever
they are needed in the processing and moving of
data., Control units tend to become complex,
mainly in a timing sense, because they may have
a number of tasks to control.

One way to ease some control unit difficul-
ties is to use parallelism at the control unit
level., A multiprocessor is an example; several
complete control units are used. This may be
rather expensive, and the multifunction, pipeline
and parallel processor machines use one shared
control unit. Such control units often contain
a number of independently operating parts. For
example, the first use of pipelining was in
control units [69]. A detailed study of the
control unit of any high-speed computer will
reveal a number of simultaneously operating,
independent functions., While this may allow the
functions to operate more slowly, it also causes
some sychronization problems.

As we mentioned in our processor discussion,
the level of machine language is very important
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in modern, high-speed computers. Vector instruc-
tion sets make compiler writing easier. They
also focus control unit design on the correct
questions, namely, to execute vector functions at
high speed.

Control units for high-speed computers must
handle the traditional functions, including in-
struction decoding and sequencing, I/0 and inter-
rupt handling, and address mapping and memory
indexing. In addition, we can list several new
functions. For one, memory indexing becomes
somewhat more complex when whole arrays are being
accessed in large parallel memories. Also, array
computers (parallel or pipeline) often rely on
the control unit for scalar computations. Broad-
casting of scalars to an array must also be
handled. Special control features such as IF
tree processing [48] can be effectively handled
in the control unit. Special stacks and queues
may be required to handle a number of processors
and programs in rapid succession. Indeed,
instruction level multiprogramming may even be
attempted.

Rather than discuss any of these in detail,
we simply refer the reader to a detailed study of
the several high-speed machine papers mentioned
earlier.

We conclude this section with the computer
organization of Figure 8. The control unit can
really be regarded as four control units, one for
each of the four other major subsystems shown.
The operation of this machine can be regarded as
a pipeline from memory to memory. For move
instructions (memory to memory) the processors
can be bypassed.

Figure 8 represents parallelism at a number
of levels: within the control unit, processors,
memories and data alignment networks. Also, it
contains parallelism in the simultaneity of
operation of each of these which forms a pipeline.
Note that pipelining can also be used within each
of the five major subsystems to match bandwidths
between them.

The details of accessing parallel memories

and of aligning the accessed data will be
discussed in detail in the next section.
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Figure 8. Overall Machine Organization

V. Parallel Memory Access and Data Alignment

As effective speeds of processing units have
increased, memory speeds have been forced to keep
up. This has partly been achieved by new tech-
nologies (magnetic cores to semiconductors). But
technology has not been enough, as evidenced by
the fact that in 1953, the first core memory
operating (in Whirlwind I) had an 8 us memory
cycle time., Today, most computer designers can-
not afford to use memories much faster than
several hundred nanoseconds. Certainly, two
orders of magnitude increase in memory speed is
an upper bound, over the past twenty odd years.

In the same period, the fastest processor
operation times have advanced from a few tens of
microseconds to a few tens of nanoseconds; or
three orders of magnitude. Memory system speeds
have kept up with processors only through the
use of parallelism at the word level. 1In the
late 1950s, ILLIAC II and the IBM STRETCH intro-
duced the first two-way interleaved memories.

At the present time, high speed computers have

on the order of 100 parallel memory units. If

a word can be fetched from each of m memory units
at once, then the effective memory bandwidth is
increased by a factor of m.

Array Access

Parallel memories are particularly important
in array computers (parallel or pipeline). Thus,
if a machine has m memory units we can store one-
dimensional arrays across the units as shown in
Figure 9, for m = 4, While the first m operands
are being processed, we can fetch m more, and so
on. But, if the array is indexed such that, say,
only the odd elements are to be fetched, then the
effective bandwidth is cut in half due to access
conflicts as shown in the underlined elements of
Figure 9. These conflicts can be avoided by
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choosing m to be a prime number. Then, any index
distance relatively prime to m can be accessed
without conflicts.

Many programs contain multidimensional arrays.
These can lead to more difficult memory access
problems, since we may want to access rows,
columns, diagonals, back diagonals (as in the
wave-front method of section III), square blocks,
and so on. For simplicity, consider two-dimen-
sional arrays and assume we want to access n
element partitions of arrays from parallel memo-
ries with m units.

Memory Units

T T R
32. ag il ag
&9 %10 31 )
Figure 9. One-Dimensional Array Storage

Consider the storage scheme shown in Figure
10 where m = n = 4, Clearly, using this storage
scheme we can access any row or diagonal without
conflict. But all the elements of a column are
stored in the same memory unit so accessing a
column would result in memory conflicts, i.e.,
we would have to cycle the memories n times to
get the n elements of a column.

In order to allow access to row and column
n-vectors, we can skew the data as shown in
Figure 11 [49]. Now, however, we can no longer
access diagonals without conflict. It can be
shown, in fact, that there is no way to store an
mxm matrix in m memories, when m is even, so that
arbitrary rows, columns, and diagonals can be
fetched without conflicts. However, as we shall
see, by using more than m memories we can have
conflict-free access to any row, column, or
diagonal, as well as other useful m-vectors.
First, we will generalize the idea of skewed
storage.

Let m be the number of memories and let Gi

be the skewing distance in the i-th dimension.
Thus for a two-dimensional (mxm) matrix, each
successive element of the first dimension (columm)
is stored 61 (mod m) memories away from the

previous element. Similarly for the second
dimension (rows) and 62. This is called a (61,6

skewing scheme. Thus, Figure 11 shows a (1,1)
skewing scheme., For m = 5, Figure 12 shows a
(2,1) skewing scheme., Clearly, this generalizes
to matrices with k dimensions (i.e., (61,62,...6k)

5)

skewing) and matrices whose dimensions are larger
than m.
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Define a d-ordered n-vector (mod m) as a
vector of n elements whose i-th logical element
is stored in memory unit u = di + c¢ (mod m) where
c is an arbitrary constant. A sufficient condi-
tion for conflict-free access to a d-ordered
n-vector (mod m) is:

m > n ged(d,m) 7

where gcd(d,m) is the greatest common division of
d and m. This follows from the fact that the set
of memory units {u|u = di + c(mod m), 0 <i<n-
1} must contain n distinct elements. That is,
the memories in which the n elements of the d-
ordered n vector are stored must be distinct.

If we use a (61,62) skewing scheme, then

clearly columns will be 6l~ordered, and rows will
be Gz—ordered. Similarly, diagonals will be

61 + 62
three types of n-vectors the following conditions
must hold:

ordered. Thus, in order to access these

m>n gcd(Gl,m) (columns)
m>n gcd(Gz,m) (rows)
m>n gcd(§l+62,m) (diagonals)

Clearly, if m = n then gcd(Gl,m), gcd(éz,m)
and gcd(dl+62,m) must equal 1 if these conditions

1 52 and 61+62
But it is easy to
cannot all be odd.

are to hold. If m is even, then §

must be odd for this to hold.

show that 61, 62 and 6l+62

Thus we cannot have conflict-free access to rows,
columns, and diagonals if m = n and m is even.

If we turn to memory systems where m > n, we
can obtain conflict-free access to many parti-
tions., In addition to rows, colummns and diagonals
mentioned above, let us consider back diagonals
which are 6, - 8§, ordered. Then it is easy to

1 2
show that if m = 22k + 1, for any integer k, and

(61,62) = (2k,l), we have conflict-free access

(by Condition 7) to rows, columns, diagonals and
back diagonals. Square blocks can also be
accessed. For an example with k = 1, 61 = 2, and

62 = 1, see Figure 12. This and other similar

results are discussed in [50].

If m is not a power of two, certain diffi-
culties arise in indexing the memory. Also, note
that the elements of various partitions are
accessed in scrambled order. The question of
unscrambling the accessed elements is discussed
by Swanson [51].

In order to simplify indexing and unscram-
bling, systems of the form m = 2n were considered
by Lawrie in [52] and [60]. He shows that
conflict-free access to a number of partitions is
possible using such a memory. We illustrate this
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in Figure 13 with m = 2n = 8, 61 =v/n + 1, and
62 = 2. We will give a general discussion of data
alignment networks for such unscrambling later in

this section.

Memory Unit

0 1 2 3
200 301 %02 203
210 41 %2 %13
0 21 iy 33
239 a3 232 333
Figure 10, Straight Storage (m = 4)
Memory Unit
0 1 2 3
200 301 302 293
33 210 411 )
422 33 20 21
231 832 833 230
Figure 11. Skewed Storage (61 = 62 =1, m= 4)
Memory Unit
0 1 2 3 4
290 21 202 %03
213 210 411 312
1 22 33 20
230 831 332 333
Figure 12, Skewed Storage (61 = 2 and 62 =1

with m = 5)
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Memory Unit
o 1 2 3 4 5 6 7
200 201 302 %03
813 210 41 812
a1 22 33 20
230 431 832 833
Figure 13. Skewed Storage (61 = 3, 82 = 2,

m= 2n = 8)

In order to implement a skewing scheme, we
must have a properly designed parallel memory
system, In particular, each of the m memory
units must have an independent indexing mechanism.
This allows us to access a different relative
location in each memory unit. It is interesting
to observe that several presently existing high
speed computers have handled their parallel
memories in different ways.

The Control Data STAR and the Texas Instru-—
ments' ASC do not allow independent indexing of
each memory unit. Instead, they provide trans-
pose instructions by which arrays can be physi-
cally transposed in memory to provide access to,
say, rows and columns. The transpose time is
essentially wasted time and some algorithms for
these machines are slowed down by as much as a
factor of two in this way.

ILLIAC IV has independent index registers
and index adders on each of m = 64 memories.
Since it has 64 processors, access to partitions
of n = 64 elements is usually required. Thus
the (1,1) skew scheme of Figure 11 is easily
implemented. Of course, since m is even, con-
flict-free access to rows, columms, and diagonals
is impossible. But as Figure 11 shows, diagonals
may be accessed in just two memory cycles.

STARAN IV has an associative memory. The
key to implementing such a memory (which was for
many years their downfall) is the ability to
access individual words, as from a standard
memory, on some occasions, and on other occasions
to access the same bit from all words. Access
in the bit direction allows searches to be made
and access to be based on the contents of the
memory. For example, a programmer may request
all words whose second byte contains all zeros.

The arrival of semiconductor memories
permitted an elegant implementation of an asso-
ciative memory in STARAN IV by skewing the
storage of words at the bit level. Thus if we
interpret the a]._j of Figure 11 as bits, we have

a 4-word memory with 4 bits per word. STARAN IV
does not use programmable index registers, but
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rather has special hard-wired indexing functions
which are available to the programmer. From a
programmer's point of view, he can address a word,
a bit slice across words, a particular byte across
a subset of words, and so on. Physically, the
memory units are arrayed as a set of m semicon-
ductor chips each organized as 1 bit by m words.
This results in an mxm bit memory, and a complete
system contains several of these.

Random Access

The execution of Fortran-like programs
frequently leads to memory access requirements
which include one-dimensional arrays and various
partitions of multidimensional arrays, as we have
been discussing. However, we sometimes face
access problems which have much less regularity.

For example, consider the subscripted
subscript case:

D0 I=1,N
X(I) = A(B(D)) .

Here, we have no idea at compile time about which
elements of A are to be fetched, assuming that B
was computed earlier in the program. This easily
generalizes to multidimensional arrays. Frequent-
ly, table lookup problems are programmed in this
way.

To deal with this kind of memory access
problems, is in general to deal with random access
to a parallel memory. Note that this is a pro-
blem which has been given a good deal of attention
in multiprocessor systems.

One of the great advantages of multiprocessor
organizations is that the relatively expensive
primary and secondary memory can be shared by
several relatively inexpensive processors. A
primary weakness in such systems is that as the
number of memories and processors grows, the
effective system bandwidth drops off due to memory
conflicts. In commercially available systems,
four processors and perhaps eight to sixteen
memories have been limiting numbers in contrast
to much higher numbers of memories in array
machines.

In the past ten years, a variety of analyti-
cal results have been obtained concerning parallel
memories. Most of the results were presented in
a rather abstract way, without any clearly stated
machine interpretations. We will interpret them
below and also sketch some new results.

There are two key questions on which the
validity and usefulness of these models turms.
They are:

1) What kind of data dependence is assumed
in the memory access sequence?

2) What kind of queueing mechanism is
assumed for retaining unserviced accesses?

There are several other questions which relate
to the usefulness of the model, but are of less

importance in determining the general form of
the results. These include how control depen-
dence is handled and whether we study the steady
state or transient memory bandwidth. These are
interrelated questions, and control dependence
is also related to data dependence.

In these terms, we briefly summarize some
of the results. Hellerman's model [53] can most
reasonably be interpreted to assume no data

_ dependence between successive memory accesses

and to have no provision to queue conflicting
addresses. It is also a steady state model,
ignoring control dependence. Thus, it scans an
infinite string of addresses, blocking when it
finds the first duplicate memory unit access
request.

In various models, Coffman and his co-
workers [54, 55, 56] extended the above to
include a type of queueing and to separate data
accesses from instruction accesses. These papers
further introduced address sequences which were
not necessarily uniformly distributed. These
models also assumed that no data dependencies
existed in the address sequence.

Ravi [57] introduced a model which was more
realistic for multiprocessor machines. He allows
each processor to generate an address and com-
putes the number of them which can be accessed
without conflict, in a steady state sense. Ef-
fectively he assumes a sequential data dependence
in the addresses generated by each processor.

In [58] the above results are extended in
several ways. First, it is shown analytically
that the model of [57] yields an effective memory
bandwidth which is linear in the number of memory
units. Several models are given with queues in
the processors and in the memories, to show the
differing effects on bandwidth of such queues and
methods used for managing the queues. Several
types of data dependencies are assumed to exist;
some as in the Ravi model and others which
include dependencies between the processors. In
all of these models, we show that the effective
bandwidth of m memories can be made to be 0(m).
The models are useful for either multiprocessor
or parallel machines.

Thus, we conclude that for parallel or
multiprocessor machines, the proper use of m
parallel memories can lead to effective band-
widths which are O(m). This is much more

encouraging than the O(ml/z) which was derived
from earlier, more naive models.

Alignment Networks

Now we turn to the question of interconnect-
ing the processors and memories we have been
examining. We shall consider various alignment
networks to handle the task. In existing compu-
ters, the data alignment problem is handled in a
number of different ways; we will survey these
and some new possibilities.
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At the bit level, data shifting is done in
all computers. The necessities of aligning and
normalizing floating-point numbers or packing and
unpacking bytes are well known. Usually, uniform
shifts in which all bits shift an equal distance
can be performed in a single instruction. Various
implementations are discussed in [59].

At the word level, data alignment require-
ments depend on the machine organization. A
simple way to connect several memories to a pro-
cessor is to use a shared bus. For higher speed
operation, multiprocessors often use a crossbar
switch which allows each processor to be connected
to a different memory simultaneously. In the
ILLIAC IV array, the i-th processor can pass data
to processors i+ 1 and it 8, modulo 64. Here
all processors must route data the same distance
in a uniform way.

None of the above techniques is well suited
to a high performance parallel computer. Indeed,
the alignment network should be driven by an
independent control unit, to operate concurrently
with the processor and memory operation., The
requirements include more than uniform shifts
and at times even more than permutations. Often
broadcasts are needed, including partial and
multiple simultaneous broadcasts, e.g., n1/2
numbers, each broadcast to nl/2 processors for
matrix multiplication in an n processor machine
[60].

The alignment network should be able to
transmit data from memory to memory and processor
to processor as well as back and forth between
memories and processors. The connections it must
provide are derived from two sources. For one,
it must be able to handle the indexing patterns
found in existing programs, for example, the
uniform shift of 5 necessary in A(I) + A(I+5).
For another, it must be able to scramble and un-
scramble the data for memory accesses. For
example, to add a row to a column, one of the
partitions must be "unskewed'. More details can
be found in [2], [52] and [60].

Many possible solutions exist for this
problem. Given n processors and n memories, we
will now outline a few details of some possible
alignment networks.

A crossbar switch is an obvious candidate.
With it we can perform any one-to-one connection
of inputs to outputs, and with some modification
we can also make one~to-many connections for
broadcasting. The switch can be set and data
can be transmitted in 0(log n) gate delays.
However, the cost of such a switch is quite high,

namely, O(nz) gates. Thus for large systems, a
crossbar alignment network is out of the question.

Another possibility is the rearrangeable
network developed over many years in telephone
switching theory. It is shown by Bened [61] that
such a switch, with the same connection capabili-
ties as a crossbar, can be implemented using only
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0(n log n) gates. The time required to transmit
data through the network is just 0(log n). Un-
fortunately, the best known time to set up the
network for transmission is O(n log n) [62].

This control time renders the network impractical
as an alignment network, unless all connection
patterns could be set up at compile time.

The Batcher sorting network [63] is another
possibility. Not only can it perform the con-
nections of a crossbar switch, it can also sort
its inputs, if desired. This network has

2 PR .
O(n log'n) gates, so it is an improvement over
the crossbar. However, it requires time of

0(1og2n) gate delays for control and data trans-
mission, making it faster than the Benes approach.

As a final possibility, we discuss the Q
network [60] proposed specifically for this pur-
pose. This network can be controlled and trans-
mit data in 0(log n) gate delays, but contains
only O(n log n) gates. Thus it has the speed
of a crossbar with the cost of a Bened network.
Its shortcoming is that it cannot perform
arbitrary interconnections. However, as dis-
cussed above, we seek an alignment network which
can handle the requirements posed by program
subscripts and memory skewing schemes. Lawrie
has examined a number of such questions and the
Q network satisfies many of them.

It is interesting to note that the Q network
consists of a sequence of identical interconnec-
tion paths called shuffles, see e.g., [64], [60].
We call transmission from left to right a shuffle
and from right to left an unshuffle. It can be
shown that the Bene¥ and Batcher networks, as
well as the Q network, can all be constructed
from a series of shuffle and unshuffle inter-
connections of 2x2 switching elements. The
switching elements are basically 2x2 crossbars.
In the Batcher network, they have the further
capability of comparing their inputs and
switching on this basis. 1In the Q network they
can also broadcast either of their inputs to
both outputs.

File Processing

Many computation problems are nonnumerical
in nature. In a number of file processing and
information retrieval applications, the require-
ment for merging a number of long lists arises.
Consider the problem of satisfying information
retrieval queries posed using logical expressions
of search terms. If the data is stored in in-
verted files, the retrieval can be handled
conveniently by first merging index files of the
search terms. Then the logical connections of
the search term expression can be applied to the
merged list to determine which stored data to
retrieve.

In [65] such a system was designed and
simulated. It involves a Batcher merge network
[63] which can merge two lists of n terms in
0(log n) gate delays using O(n log n) gates.
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This merge network is followed by a coordination
network of similar complexity, which handles the
logical functions mentioned above. These networks
together with a buffer memory can be located
between a high-speed secondary memory (head-per-
track disk or shift register type) and a buffer
memory which holds intermediate search results.
For file processing problems which are dominated
by I/0 and merges, such a configuration can
achieve speedups proportional to the number of
parallel inputs to the merge/coordination unit.

Similar applications are being made of the
STARAN IV in a number of real world applications
[67]. A number of other efforts have been carried
out in the area of nonnumerical processing. When
nonnumerical computation is as well understood as
numerical computation is now--in the sense of
standard languages and algorithms--one can expect
results about time and component complexity to
develop as it has for numerical computation.

VI. Conclusions

We have surveyed a number of aspects of
"parallel computation" in the broad sense.
is clear that by viewing matters abstractly,
several diverse design problems can be handled
by identical methods.

It

Parallelism in machine organization has been
used since the time of Babbage. It will continue
to be exploited, together with hardware speed
improvements, to build faster computers. If
hardware costs continue to improve at a faster
rate than hardware speeds, parallelism will be
used even more. For example, processors which
use hundreds of microprocessors as components are
easy to imagine. The methods outlined here show
how large numbers of them could be exploited.

The goal is to show that linear speed im-
provements can be achieved with linear (or almost
linear) increases in component count. If one
defines speedup/cost as a criterion function, it
can be shown [68] that by using parallel proces-
sors at the algorithm level, better cost-effectiv-
ness can be achieved than by using parallel gates
at the arithmetic level as we have been doing for
the past 25 years.

Compilation for parallel machines has been
a stumbling block. But the methods outlined have
been used to transform a number of serial programs
to highly parallel form., While it is easy to
write programs which cannot be speeded up, due to
nonlinear recurrences or difficult conditional
statements, such constructs are seldom used in
real programs.

Thus, by studying the structure of programs
and the structure of machines, we can attempt to
design machines which are well matched to the
programs they are to execute. As side benefits,
we may be able to transform programs into more
understandable forms for programmers (e.g., IFs
in loops become DO WHILEs). Also we may be able
to improve the paging behavior of a standard

A
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program on any machine with virtual memory.
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I. Introduction

Processor architecture for computer systems
has been a fast developing and fruitful area of
investigation for many years. Through the impreg-
nable efforts of past years, numerous distinguish-
ing schemes for processor systems have evolved and
secured their status in the art and science of com-
puter design. Included in this category are:

(1) efficient sequential processors for sequen-
tial programs,

(2) pipelined processors [1] that enhance the
amount of overlapped processing in each instruction
stream,

(3) array processors [2] for executing some
instructions on an array of data concurrently,

(4) associative processors [3-5] that possess
some Content Addressable Memory (CAM) for certain
decision making and information retrieval purposes,
and,

(5) multi-processors [6] that may be necessary to
meet some real-time constraints or for large com-
puting systems with a heavy workload.

These five schemes are not necessarily exclu-
sive; rather, some of them can be combined to pro-
duce a most effective processor system to satisfy
some design objectives. For example, pipelined
sequential processors are quite common, and asso-
ciative array processors are used in certain large
scale systems. But among these five schemes, pipe-
lining stands out as a very versatile, popular, and
effective technique to be applied to a wide range
of systems, from mini, medi, to large scale sys-
tems, so as to improve their throughput rates or
processing powers. In fact, pipelining can be em-
ployed as a basic complementary technique in
sequential, array, associative or multi-processors
as well. This clearly demonstrates the signifi-
cance of pipelining in processor architecture.

The word 'pipeline' may be confusing to some
Taymen since a false image of oil pipes may be con-
ceived. Actually, pipelining refers to a segmen-
tation of a computational process into subprocesses
so that the Tatter for successive instructions
(computations) can be carried out in an overlapped
fashion, analogous to an industrial assembly-Tine.
So, very loosely, pipelining can be defined as the
technique of decomposing a repeated sequential
process (hardware or software) into subprocesses,
each of which can be executed efficiently on a
special dedicated, autonomous module that operates
concurrently with the others. As a simple

+Research sponsored by National Science Foundation
grants DCR72-03734-A01 and DCR74-21248 and U.S.
Army Research Office Contract DA-ARQ-D-31-124-73-
G157.
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illustration, consider the process of executing an
instruction. Normally, it involves fetching the
instruction, decoding the operations involved, and
fetching the operands before it is finally exe-
cuted, If this process is being decomposed into
the above four subprocesses executed on four
modules as shown in Fig. 1b, four successive inde-
pendent instructions may be executed in parallel.
Specifically, while the EXEC module is executing
the first instruction, the OPFETCH module may be
fetching the operands needed for the second
instruction, the DECODE module may be setting up
for the different operations involved in the third
instruction, and the INFETCH module fetching the
fourth instruction, The overlapped execution
among the four modules is best depicted using a
space-time diagram, As drawn in Fig, 1c, the hori-
zontal axis represents the time and vertical axis
the space (modules). From it, one can observe how
independent instructions can be executed in paral-
Tel in a pipelined processor.

>

———t Instruction Processing

Fig. 1a Non-piped Processor
— I.F. |=——{ I.D. |—— O.F. |—| EXEC. [—

Fig. 1b Pipelined Processor

Facility

EXEC 1723747

0.F. T12]1314

1.D. 112 13[4

I.F.[1 12134 Time
Fig. 1c Space-Time Diagram

With this macroscopic view of a pipelined
processor, the advantages and requirements of
pipelining will be reviewed here.

(1) Throughput Consideration: One of the most
important performance measures of a system is its
throughput rate, defined as the number of outputs,
here the number of instructions processed, per
period of time, Very obviously it directly
reflects the processing power of a processor sys-
tem -- the higher its throughput rate, the more
powerful it is. Pipelining is a specific tech-
nique to enhance throughput, in addition to the
possibility of using faster modules.

For this discussion, let us reconsider the
example in Fig. 1. For a nonpipelined processor,
the execution time of an instruction will be
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Tpp=t1+tp+t3+ty. Therefore, for every Ty

units of time, an instruction is completed, wRich
corresponds to a throughput rate of ]/Tnp. In the
pipelined case, suppose tb=|nax{t],t2,t3,t4}= speed
of the slowest facility in the pipeline (defined
as the bottleneck). Then, its throughput rate will
be 1/t, because for every Tp=tp units of time, an
instruction can leave the pipeline after its exe-
cution. A direct comparison will reflect that
Tp<Tphp With the result that the throughput rate of
tﬁe piBe]ined processor can be much larger than
that of the nonpipelined case. If ty=ty=t3=1y4,
then the comparison can show four-time improvement.

Three characteristics have been hidden in this
comparison., First, the decomposition of a process
often prolongs the process by introducing some
overhead. In this case, to guarantee non-interfer-
ing execution among the four modules, appropriate
buffers have to be inserted between adjacent mod-
ules in the form of latches. These latches intro-
duce additional propagation delay for an instruc-
tion. Consequently, the execution time of an indi-
vidual instruction for the pipelined processor will
be slightly larger than its nonpipelined counter-
part. But one should not be mistaken that the
resulting program execution time will be longer.

In fact, usually it will be much shorter because
more instructions can be executed per unit time.
The execution time of an instruction is negligible
compared to the execution time of a program or a
large collection of instructions.

Second, it has been assumed that the execution
time of a subprocess is not changed via pipelining;
that is, the t;'s are the same in Figs. 1a and 1b.
In practice, such an assumption may not hold. In
some cases, because of the partitioning, some oper-
ations can be carried out more efficiently, and in
some other cases, the converse may be true. How-
ever, 1in general, the assumption may be valid to at
least a first order of magnitude.

Finally, no word has been said about the fine-
ness of segmentation or pipelining. Since the com-
parison reveals that the throughput rate is
1/max tj, it seems that decomposing the process
into finer levels or modules may decrease max{tj}
and improve the throughput. But many practical
considerations have to be made regarding the feasi-
bility and overhead tradeoffs involved. They will
form part of the later discussion in this paper.

In short, throughput enhancement is one of the main
advantages of pipelining. But the amount of
improvement has to be evaluated carefully.

(2) Efficiency Consideration: Another important
performance measure for a system is its efficiency,
sometimes also called utilization factor. Effi-
ciency also directly reflects how effective a pro-
cessing scheme is and can be used to indicate how
future improvements should progress, such as remov-
al of bottlenecks. Similarly to most performance
measures, it can be evaluated both analytically and
experimentally by measurement. Here, an attempt
will be made to illustrate the analytical effi-
ciency of pipeline processing, based on the space-
time relationship introduced earlier,

It is natural to view efficiency as the per-
centage of busy (productive) periods with respect
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to a certain time span of consideration. Here
some slight complication arises because a pipe-
lined processor consists of several modules some
of which may be busy while the others are idle.

To evaluate the efficiency of the processor system
as an entity, [7] proposes a uniform space-time
span index as:

Efficiency of pipeline

_ total space-time span of tasks
total space-time span of facilities

where the term task (process) is used to fit the
loose definition of a pipeline. Sometimes, the
modules in the pipeline are of different natures
with different importance (or cost) factors.,

Then a refined index which also includes such con-
siderations has been suggested in [8] as:

Efficiency of pipeline

. total weight space-time span of L tasks
total weight space-time span of n facilities

For example, for a linear pipeline as the one
in Fig. 1 (no looping inside the pipeline so that
a task will flow through each facility once only),
an analytical efficiency measure can be (assuming
the)execution time of each module is time invari-
ant

Efficiency of linear pipe

L[gaiti)

3
n

Sl (see Fig. 2)
Yo, (Tt + (L-1 )tj)
where
tj = speed of the slowest facility (bottleneck)
ti = speed of the ith facility in the pipeline
oy = weight associated with the space-time span
of the ith facility as determined as its
importance, such as cost-speed factor
L = number of tasks (instructions) pumped into
the pipeline in a certain period of time.
For highest efficiency, it will be assumed
that tasks are pumped in continuously.
n = total number of facilities in the pipeline

In the ideal situation when all modules have
the same speed, the equation simplifies into

_ L
nENE(T)

so that when L approaches infinity (in the steady
state of processing), the efficiency may approach

unity. In all other cases, as L approaches infi-
nity, the efficiency approaches
]
a.t.
i’i
n-)—-n <],
(Z“j)tj

Two observations should be noted at this
point. First, this equation holds whether or not
there are additional buffers inside the pipeline
because of the linearity assumption. As will be
demonstrated later,.buffering is an important tool
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to increase throughput in many practical pipeline
designs, for example, when more than one EXEC
module is available if the latter is a bottleneck.
Second, in deriving the equation, it has been
assumed that a continuous supply of tasks (instruc-
tions) is available. In reality, execution may be
discontinued because of various reasons such as
precedence constraints, branching, interrupts, etc.
which will be subject to closer scrutiny in the
rest of this paper. This space-time span evalua-
tion actually represents the efficiency 1imit of a
pipelined processor if sufficient control and
management have succeeded in justifying the assump-
tions to some approximate degree. The difficulties
encountered here help to reveal many problems that
underiie a pipeline design. These problems will

be addressed individually in the subsequent
sections.

(3) Cost-Effectiveness: Cost-effectiveness is
one of the major advantages of pipeline processing.
It has been demonstrated how pipelining can
enhance the throughput rate. Yet one can achieve
the same or even higher throughput rates using
array or multi-processors. The tradeoff considera-
tion here is cost and speed, or cost-effectiveness.,
Usually when a process is being decomposed into
subprocesses executed on independent modules, the
latter can be designed to execute those subpro-
cesses very efficiently at a much Tower cost than
the nonpipelined counterpart. Cost here includes
both the direct cost of the modules and the control
cost required. Then if it is compared with an
array or a multi-processor (nonpipelined) configu-
ration, it may prove more 'cost-effective' simply
because the latter may need more in both categories
of cost. This is why pipelining is so important
in smaller scale systems where the highest through-
put for a certain cost bracket is desired. Of
course, for large scale systems with array or
multiprocessors, pipelining can be utilized as a
complementary technique to enhance the throughput
of individual processing units. In such a case,
the cost-effectiveness of pipeline processing
remains as its outstanding merit.

So far we have reviewed a few important cha-
racteristics of pipeline processing. Before pro-
ceeding further in discussing the problems and
solutions in existing processors, the following
design guidelines are included to generate a more
complete picture.

(1) The repeated process can (most efficiently)
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be subdivided into subprocesses, each executed by
an independent module in a compatible speed with
respect to the others. When a certain facility in
the pipe has a much slower speed than the rest, it
will be the sole bottleneck and hence uniquely
affects the throughput rate of the pipe.

(2) The submodules in the pipe and the asso-
ciated control for sequencing them are cheaper
than the nonpipelined counterpart in an array or
multi-processor configuration., This is equivalent
to the cost-effectiveness consideration just
mentioned.

(3) Intermediate buffering is relatively cheap.
Therefore the size of intermediate data packets or
information transfers should be reasonably small,
depending on the level of the pipelining action.

(4) Routing of intermediate information is
easily accomplishable. If very complicated deci-
sions or switching are involved, perhaps the over-
head defeats the purpose of pipelining.

(5) Sharing of other system resources, includ-
ing buses, memories, registers, etc., does not
result in severe interference that degrades actual
performance to a large extent. Sometimes, the
inadequate supply of independent instructions or
operands due to interference or other reasons will
destroy the power of a pipelined processor and
Tower its efficiency drastically. However, this
poses a number of design and operational problems
not easily resolvable as we will observe later on.

(4) Pipeline Characterization: For the purpose
of exposing the details of the problems to follow,
a characterization of pipelining in processors
will be provided here. Similar to many other
techniques such as parallel processing, pipelining
in processors exists in two levels and can take
two forms. In the first Tevel, pipelining can be
seen in the entire instruction processing phase
which is decomposed into autonomous subphases such
as the one in Fig, 1b. Each subphase is repre-
sented by the execution of the corresponding
module which possesses a certain amount of intel-
Tigence in controlling itself and communicating
with the other modules. Tasks (instructions) are
transferred from one module to the next for con-
tinued processing. But within each intelligent
module, pipelining techniques can be further
applied to speed up computation. Consider the
EXEC module for example. Usually it is the slow-
est module in the pipe because many arithmetic
operations require iterations or more levels of
propagation delays in the logic circuitry. If
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this module is pipelined by partitioning the oper- classification because static pipes are easier to
ation into suboperations and inserting appropriate control as will become clear later on. Dynamic
latches, the throughput of the EXEC module may be multifunctional pipes permit overlapped processing
improved to a desirable extent. Embedded in this among several active configurations simultaneously.
pipelining technique is the association of a local Then throughput may be further enhanced. But the
intelligent controller in each pipelined module tradeoff here involves more elaborate control and
for sequencing the pipelined operations to be exe- sequencing so that in practice, its use has to be
cuted and monitoring the corrections of the execu- carefully justified. This classification of sta-
tion. The existence of such local monitors can be tic and dynamic pipes will be very useful when we
used to characterize the level of the pipelining consider and evaluate pipelined processor archi-
action concerned. Here, the pipelined EXEC module tecture in the subsequent sections.

may be regarded as the second level.
II. Structure of a Pipelined Processor

These two levels of pipelining can be seen in

some computers. In the IBM System/360 Model 91 In this section, the basic structures of a
[9], the instruction processing unit is quite simi- pipelined processor will be examined, using the
lar to the model in Fig. 1b. 1In addition, its exe- prominent IBM/360 model 91 central processor as
cution unit includes a pipelined adder and a pipe- the example. The throughput objective of a

Tined multiplier for providing a higher throughput sequential pipe will be uncovered. Then from the
of execution. Thus two levels of pipelining can analysis of its structure, the problems and

be distinctly observed, Similar situations can be requirements specific in pipelined processors will
observed from other machines such as TIASC [10], become noticeable, They will be discussed and
CDC STAR-100 [11] systems. Hence, a top-down, some solutions in existing processors will also be
level by level characterization of pipelining in illustrated and compared. However, attention
processor systems can be conveniently established regarding vector processing capabilities will be
for the purpose of analyzing the system. reserved for the next section.

Besides the hierarchical nature of pipelining,

different design and control strategies classify a 2.1 An Example Sequential Pipelined Processor

pipelined module (whether it is level 1 or level 2) To demonstrate the pipeline action in a

into two types: static and dynamic pipes. Some- sequential processor, the IBM/360 model 91 [9]
times, a pipelined module only serves a single will be used as the illustration. The central
dedicated function, for example, a pipelined adder processor was designed to upgrade computational
or multiplier as in the IBM/360, model 91. Natu- performance (throughput) by one or two orders of
rally, it can be termed as a unifunctional pipe magnitude compared to the 7090 system via proper
with a static configuration. On the other hand, pipelining and circuit design, A typical
sometimes a pipelined module can serve a set of instruction processing sequencing in the pipe can
functions, each with a distinguishable configura- be as depicted in Fig. 2. Because of the highly
tion. For example, in the TIASC system, the arith- overlapped operations among independent instruc-
metic unit in the processor is a pipe that has dif- tions, more instructions are completed per period
ferent configurations (interconnection of modules) of time, thus helping to achieve the desirable
for performing different types of arithmetic opera- performance.

tions. Then, a natural name for such a pipe is a
multifunctional pipe. A multifunctional pipe can
be either dynamic or static. In the static case,
at any time instant, only one configuration is
active. In other words, pipelining (overlapped
processing) is permissible only if the tasks
(instructions) involve the same configuration.
Most, if not all, multifunctional pipes in arith-
metic units of existing machines fall into this

BAS!IC TIME
INTERVAL

1= A K A R A N A N N IS B

Let us Took at each segment of the pipeline
in more detail in order to observe the important
problems and characteristics associated with a
pipelined processor. Basically most segments of
the pipe have a cycle time of 60 nsec, with the
exception of the storage referencing and execution
units, The different segments in the pipe are
drawn in Fig. 3. The function of each segment is
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Fig. 3 Functional segments involves in a floating
storage-to-register instruction in model 91.
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indicated in the figure. For a storage-to-register
instruction, after the instruction has been fetched
and moved to be processed, it will be decoded
first. This decoding serves to decide the subse-
quent actions to be taken for this instruction.
Since it is a storage-to-register instruction, two
parallel sequences of operations will be initiated.
The first sequence includes the effective address
calculation and fetch for the operand from memory
storage, To calculate this address, the delay
time in the segment(s) involved is variable,
depending on if it is indexed or not. The operand
access segment again has a random delay, depending
on the availability of the memory module to be
referenced. The memory system in the 360 model 91
is interleaved to increase the bandwidth or memory
supply rate., However, because of reference con-
flicts due to requests from other parts of the pro-
cessor or system (such as instruction fetch or
1/0), an operand fetch may have to be delayed for
a complete memory cycle or more before it is
acknowledged. This variable access time poses a
constraint on the efficiency of the pipelined pro-
cessor, A completely synchronous operation on the
segments may be impossible because of these varia-
ble waiting times, And the need to be able to re-
duce the memory access time so as to match the
speed of the other segments in the pipes remains to
be one of the most critical issues in pipelined
processor designs, With slow effective memory
access time, the memory access segment may be a
bottleneck of such a large magnitude that the
throughput of the processor is not much improved
via pipelining.

The second sequence of operations involves the
setting up of operands to be submitted to an
assigned execution station in the execution unit.
If it is a floating point instruction, it will be
mapped into a pseudo register-to-register (within
the execution unit) instruction and transmitted to
the execution unit. Here, the instruction is
stored in the floating-point operand stack, In
turn, it will be decoded and the operand registers
(in the execution unit) concerned will be tagged.
Then the execution unit will wait for the return of
the operand from memory. When it happens, the two
parallel sequences can merge (join) to initiate
the next stage of processing, the actual execution.
The ready operand pair will be transmitted to an
available execution station to complete the pro-
cessing. Of course, the segments in the above
description operate independently of others in an
overlapped mode, with suitable buffering in-between
so as to achieve the pipeline objective.

It has been demonstrated how important it is
to reduce memory access time, since most of the
other segments have fast deterministic speeds.
Even after the memory accessing problem has been
solved, another bottleneck in the pipeline may
emerge. This is the execution unit. Usually many
arithmetic operations, especially floating point
operations, require considerable delay because of
their implicit internal circuit delay requirement
or iterative characteristics. If there is only one
execution station to serve the entire instruction
stream coming in, the speed of the execution unit
may not be compatible with the input rate, thereby
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unnecessarily slowing down the computation, One
alternative is to provide multiple execution sta-
tions to perform different types of operations.

In the model 91, there is a fixed point execution
area and a floating point execution area. With
this arrangement, floating and fixed point opera-
tions can be performed asynchronously but in
parallel, But within each execution area, the
multiplicity of execution stations can be
increased, so that more floating or fixed point
operation overlap can be achieved, This is equi~
valent to increasing the throughput of the execu-
tion unit as an entity. For example, the floating
point area in the model 91 has two execution hard-
ware: a pipelined adder and a multiply/divide
pipe. The second level of pipelining in the exe-
cution station is an ingenious approach to speed
up some slow arithmetic operations, though con-
currency in execution among parallel stations
already exists.

One notable characteristic of the model 91
execution unit is that it possesses multiple but
unidentical execution hardware stations, for exam-
ple, add, multiply/divide, This design decision
was made by considering that a universal execution
station might not be able to perform all functions
as efficiently as specially designed stations, one
for each type of operation. However, one should
also note that this machine assumes sequential
instruction processing. As hardware technology
develops, some pipelined processors emerged with
identical arithmetic unit pipes as in the TIASC
system. Such a more general purpose execution
hardware design is oriented towards vector pro-
cessing which will be covered in detail in Section
ITI. In that case, the execution hardware can
assume a certain configuration during a vector
instruction, such as adding or multiplying or two
vectors. These two alternatives have their advan-
tages and disadvantages, With only one type of
execution hardware, more homogeneity is achieved
and less cost incurred (in case there is only one
unit), But to change its configuration for dif-
ferent operations may introduce too much switching
overhead, Fortunately, for vector oriented appli-
cations, such an occurrence can be reduced. More-
over, as in the TIASC system, if the number of
arithmetic unit pipes is more than one, they can
be assigned dynamically certain configurations for
certain applications, and hence, reconfiguration
can be further reduced. Then it has the added
advantage of being able to cope with an applica-
tion requirement better,

Here we have shown the essential structures
of a pipelined processor. Next, attention will be
paid to studying some design and operational pro-
blems associated with a typical pipeline. Includ-
ed are the following topics:

(1) Buffering: the concept and urgency of buf-
fering in a pipeline and in what ways it can be
accomplished.

(2) Busing Structure: For communication between
segments and operand supply to allow processing to
proceed or resume as quickly as possible.

(3) Parallelism Requirements and Handling: To
secure correct execution and obey implicit prece-
dence constraints in the instruction stream,
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(4) Branching: Effect of branching in through-
put and the ways to alleviate the inefficiency in
existing systems.

(5) Interrupt Handling: How interrupts are han-
dled in sequential and vector pipes.

(6) Sequencing Control: Need and usefulness for
proper sequencing, and some mechanisms.

These six topic areas together will represent
the major design constituents to be added to the
basic structure just mentioned. Their importance
and effects actually can decide the efficiency and
performance of the resulting design.

2.2 Buffering

Buffering is essential in smoothing out the
flow of a computation process when the exact timing
for each processing module (segment) involved can-
not be decided a priori. In the case of a pipe-
lined processor, it is one of the most crucial but
not very conspicuous components of the system, The
impact of buffering here can be visualized in a
common assembly line, say in the car industry.
Occasionally a station (segment) of the pipe may
be sTlowed down because of various reasons which
prevent the continuous input of cars to the sta-
tion. If there is sufficient storage space (gap)
between this station and its predecessor (or suc-
cessor) then the latter can continue its operation
on other cars and ship them to the storage space
available until it is full. When the station
resumes service, it can try to clear up the cars
in its input storage, perhaps at a faster speed,
Concurrently, its predecessor (or successor) may
take its break or continue providing useful service
(perhaps to other stations as well). The advan-
tages indicated here are that the waiting station
can resume execution very quickly because inputs
are already available, and that continuous flow may
be achieved even though some occasional slowdown
in a station happens (in a pipelined processor,
the slowdown may be created by interference

occurs, Similar buffers in other pipelined pro-
cessors can be found. In the STAR-100 system,
whose configuration is drawn in Fig, 4, a 64 quar-
terword (superword) buffer exists in the stream
unit to buffer the data and to align the two oper-
and vectors (in vector processing mode) for stream-
ing in the operations involved. In addition, of
course there is the instruction buffer holding 4
swords of instructions (each sword = 4 128-bit
words). One sword in the instruction buffer will
be filled by one memory fetch so that the buffer
can supply a continuous stream of instructions to
be executed even though memory conflicts may occur
from time to time. Similarly in the TIASC system,
whose schematic diagram is shown in Fig. 5, suffi-
cient buffers are installed in the IPU and Memory
Buffer Unit (MBU). The MBU specifically holds 8-
word X, Y, Z (2 operands, 1 result) buffers to
serve the arithmetic unit, and its instruction buf-
fer consists of two 8-word fast register files.
These are typical examples of the need and magni-
tude of buffering in a pipelined processor.

Sometimes, the concept of buffering may be
applied to even a Tower level of system considera-
tion. As in the model 91 example, buffering can
be installed also at each execution hardware sta-
tion (such as adder and multiplier) to create vir-
tual stations (the so-called reservation stations

[12]). As explained before, the operations in the
execution unit (for example, floating point) in-
volve a sequence of inter-related segments. If

during decoding the pseudo instruction, it is
found that an unresolved dependency exists or the
needed execution hardware is not available, fur-
ther processing will be paused until the condition
is removed, This will introduce the undesirable
waiting time before execution can resume. One
solution that could be considered is to add more
execution stations. But it may not be a good
alternative because the added stations may carry

a lot of idle time due to their waiting for the

of resource requests and the nature of the
varying times of some operations).

Therefore buffering is needed
before or after any segment whose
processing speed is not fixed. 1In

CENTRAL PROCESSOR UNIT

FLOATING POINT

a pipelined processor this means
(1) memory storage access related
stations including instruction
fetch, operand fetch, and (2) exe-
cution unit stations. In a typi-
cal pipe as the model 91, the
instruction buffer can hold 8
words of instructions to be fol-
lowed in the sequence. In the
execution unit, for the fixed
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needed operands. So instead, the model 91 provides
additional buffer pairs of each execution station.
(There are three add and two multiply/divide reser-
vation stations). Then while one buffer pair is
being executed by the hardware station, the others
can be established to receive operands for future
execution. Thus virtual execution stations are
formed.

2.3 Parallelism Requirement and Busing Structure

Pipelining requires the concurrent processing
of independent instructions, though they can be in
consecutive stages of execution. Once encountering
an instruction that receives a source operand to be
generated (or modified) by some previous but not
yet completed instruction, further processing be-
yond the decoding and address calculation stages
may become infeasible. The precedence constraint
implicit in an instruction stream must be pre-
served. Otherwise, using a faulty operand will
ultimately lead to a large number of errors that
propagate throughout the entire computation.

Therefore, parallelism in an instruction
stream has to be detected efficiently and correctly.
It becomes more important since the efficiency or
performance of the pipe almost is directly propor-
tional to the parallelism factor in an instruction

stream, With dependent instructions, their input
and traversal through the pipe have to be paused
until the dependency is resolved, This reduces
overlapping, In turn, a further problem arises:
how to resolve the dependency most effectively in
order that computation can resume as early as pos-
sible? Usually this means how the new source
operand should be transmitted to a convenient
Tocation for further processing. Thus, the design
of an efficient internal busing structure is
implicitly needed.

Parallelism in a sequential instruction
stream can be detected by checking the source
operand addresses of an instruction with the sink
(result) operand addresses of instructions still
inside the later parts of the pipe. If the source
address matches with the result address of some
earlier but uncompleted instruction, the former
must be inhibited until its contents reflect the
result of the most recent operation to use that
address as its sink. For example,

LD R1 LOC1 (Load)
MD R1 LOC2 (Multiply)

Then the load must be completed before the
multiplication can take place -- if not, the
register R1 will be holding an erroneous operand
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for the multiplication. This illustrates the
basic precedence relationship that may exist
between instructions. But the recognition hard-
ware must not hold up independent instructions
from entering the pipe.

One common technique in pipelined processors
to accomplish this is to install a fast hardware
scanner that compares the source addresses of the
instruction (during or immediately after the decod-
ing stage) with the sink addresses of previous
uncompleted instructions. Once dependency is iden-
tified, two alternative actions can be taken.

In the IBM 360, model 91, since storage-to-
register instructions are mapped into pseudo-
register-to-register instructions, dependency is
easy to check (notice that the mapping must be pre-
served in subsequent instructions). As an example,
let us consider the floating-point execution unit
again [12]. A busy bit is associated with each of
the floating point registers. It will be set when
it serves as the sink of some decoded instruction
in the floating-point operation stack, and reset
when the result is returned to the register, If a
dependency is encountered and detected, the decode
sets some control bits of the source register.

Then when the result becomes available here, it
will be transmitted immediately to some destination
buffer where execution can proceed. (Therefore an
execution unit station has been assigned to the
dependent instruction while it is waiting for its
source operand).

To allow processing to resume fastest, some
needed results have to be transmitted to certain
execution stations as quickly as possible. So the
Common Data Bus (CDB) in the model 91 was invented,
With the CDB, the entire floating-point unit is
drawn in Fig. 6. The CDB can transfer data not
only to the registers but also to the sink and

STORAGE BUS INSTRUCTION UNIT

source registers of all reservation stations (the
virtual execution stations). It is fed by all
units that can alter a register. To make this
possible, tags (address) are assigned to the re-
gisters, Then the processing sequence can be
described as follows. In decoding each instruc-
tion, the busy bit of each source register will be
checked, If it is zero, the independent instruc-
tion can be transmitted to a certain execution
station, say Al (virtual adder 1). At the same
time, the busy bit of its sink register will be
set and the corresponding tag set to the destina-
tion of Al (so that the sink register will receive
the result from A1), If the busy bit is on,
instead of waiting for the source operand to be
generated and stored to the register, the depen-
dent instruction will still be issued to an avail-
able execution station, say M1 (virtual multiplier
1). However, the tag of the register, rather than
its content, will be transmitted to the reserva-
tion station M1 so that M1 will accept data whose
tag matches with its own from the CDB, As an
illustration:

ADD F1,FLB1  ((F1) + (FLB1) - (F1))
MD  F1,FLB2 ((F1) x (FLB2) - (F1))

In executing the ADD, Al is used, and the tag of
F1 is set to 1000 (that of A1) and its busy bit
set to 1. In decoding the MD, the busy bit of F1
is 1. So rather than sending (F1) to M1, its tag
(1000) is transmitted to M1. In addition, the tag
of F1 is changed to 1010 (tag of M1). When CDB

is broadcasting the data tagged with 1000, M1 will
succeed in matching the tag and so ingate it to
the buffer and resume execution (if FLB2 is avail-
able). Notice that the result of ADD is not
stored in F1 in reality because that operation is
redundant (the tag of F1 is 1010 and not 1000).
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Fig. 6 Floating Point Unit of IBM 360 Model 91
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This CDB with tagging permits the intermediate
operands generated from the pipe to be used most
quickly by the following instructions, without hav-
ing to go through many levels of actual storage (to
actual registers or even to memory storages). How-
ever, its effects are rather local in the instruc-
tion stream (which is exactly what is desired in
keeping the smooth flow of the instruction stream).

A similar alternative can be found in other
pipelined processors such as the TIASC and CDC
STAR-100. In the TIASC processor [13], an instruc-
tion dependency is recognized by hardware. It
scans the instruction stream and distributes the
independent instructions across MBU-AU pairs to
insure proper, yet efficient execution sequences.
Update capability is incorporated by allowing the
contents of the Z-buffer to be transmitted to the
X- or Y-buffer in MBU when the latter are being
used as scratch pads in local computation, In the
STAR-100 system [14], a more explicit busing struc-
ture is maintained because of its different units.
In the floating point pipes (whose configurations
are drawn in Fig. 7), a direct route called short-
stop is established between the output (transmit
segment) of each pipe to either of its inputs.

This eliminates the time necessary to store the
generated result in the register file and then to
read it.out again.

Although an efficient busing structure can re-
duce the adverse effect of instruction dependency,
there is still a big burden on the programmers or
.the compilers to produce codes that expose

SHORTSTOP

sufficient parallelism to allow overlapped process-
ing beneficial. If more independent instructions
are intermixed appropriately with those dependent
ones, more concurrent processing can take place
while the dependency is resolved with 1ittle in-
curre time (that is, the resolving of dependency
is hidden behind other useful processing). This

is a very important factor in deciding how effi-
cient a program or an implemented algorithm can be
executed on a pipelined processor. Algorithm effi-
ciency must also consider the architectural fea-
tures of the processor on which it is executed.

2.4 Branching

Branching is another serious adverse effect
that may arise because of program structures. It
is more damaging to the pipeline performance than
the previous instruction dependency. When a con-
ditional branch is encountered, one cannot tell
which sequence of instructions will follow until
the deciding result is available at the output.
Therefore, a conditional branch not only delays
further execution but also affects the entire pipe
starting from the instruction fetch segment. An
incorrect branch of instructions and operands
fetched may create a discontinuity of instruction
supply.

To remedy the effect of branching, different
techniques can be employed to provide mechanisms
whereby processing can resume even if an unexpected
branch occurs. In the IBM 360 model 91 [9], a
Toop node and back-eight test are designed with
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the help of an additional branch target buffer,

In TIASC, a load lookahead [15] mechanism (instruc-
tion) is explicitly provided, with appropriate
hardware and buffer support. Likewise, in the CDC
STAR-100 [14], the instruction stack has special
branch back capability. We will try to explain
these schemes in this section.

The branch-on-condition handling is best il1-
lustrated using the model 91 example (Fig. 8). In
this processor, upon decoding a conditional branch
instruction, this instruction will be tagged so
that its outcome can be used to set a condition
code (CC) (provided it is not inhibited). Also it
will be assumed that no branch will be taken (CC
not valid). However, to guard against an incorrect
guess, two instruction double-words will be fetched
from the branch and stored at the branch target
buffer. Then conditional mode is entered where
instructions are forwarded conditionally to later
segments for processing. Operands are conditional-
1y set up while actual execution is prohibited.
Finally, if the CC becomes valid (branch should be
taken), the conditional instructions must be deac-
tivated and processing resumed using the branch
target instructions. If the CC is invalid as
guessed, then execution can continue almost instan-
taneously. This therefore reduces the waiting time
on the average case (if the guess is more 'right'
than 'wrong'). To further reduce instruction fetch-
ing time, short loops in programs can be fruitfully
exploited. Very often, a short loop-backward in
programs can be seen. If the instructions are al-
ready in the instruction buffer, it is wise not to
erase any of them and assume the branch (loop) will
be successful. Then no other memory access for
instructions is needed and less memory interference
to other parts of the processor will be created.
The way to detect these short loops and reserve the
instruction Toop is by implementing a loop node and

— TIME

back~eight test,

A separation of eight instruction double
words or less will be termed a short loop that can
be completely stored in the instruction buffer.
When a branch (backward) is obtained, the back-
eight test will be used. If it is satisfied, the
Toop mode will be established. From that point
on, the complete loop is fetched in the instruc-
tion buffer so that no further fetching is needed
until the loop mode is removed by branching out.
In conditional branches, the loop mode can be
established to replace condition mode once a suc-
cessful branch results and the back-eight test is
satisfied. This method of back-eight test and
loop mode is very useful in systems where availa-
ble memory cycles are precious to the entire
system.

The load lookahead mechanism in TIASC follows
a similar philosophy. The instruction processing
unit of the machine contains two instruction ad-
dress registers (Present Address, PA and Lookahead
Address, LA) and two instruction files of 8 words
each (KA and KB), Each memory reference can fetch
an octet (P) of instructions to one of the instruc-
tion files. Usually PA contains the starting ad-
dress of the next octet to be fetched and LA sup-
plies the address of the next octet to be fetched.
To accommodate branching for a loop, a branch with
Tookahead can be set up by placing the branch
instruction at the target location of a Load Look-
Ahead (LLA) instruction. A LLA enters a count in-
to a lookahead count register (LC) and enters the
address of the LLA into a branch address register.
The count corresponds to the difference of the in-
struction locations of the LLA and its target
branch instruction, The count is decremented by
one every time an instruction is executed, follow-
ing the initiation of the LLA, When it has reached
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a value designating that the branch has already
been requested from memory, the control will trans-
mit the contents of BA to LA. This causes the
fetching of the octet containing the LLA and the
loop control is reinitialized. In this way, a
lookahead loading of instructions in a Toop up to
256 instructions is allowed and instructions will
be continuously available for execution before the
branch instruction is completed,

The STAR-100 processor has a 16 128-bit word
instruction stack. Each quartersword is loaded in
one minor cycle (i.e. 4 words). Branching is al-
lowed within the instruction stack. The Toading
and management can be as depicted in Fig, 9. After
the stack is loaded, any branch within the stack
can be honored easily. However, the stack will be
cleared whenever a branch out of the stack occurs.
The reason is because the stack can be completely
filled by a request to memory (i.e. in one memory
cycle). With a faster memory rate and a large in-
struction stack, local Toops can be maintained
easily without having to install testing strategies,

(4-sword Instruction Stack)

X X X ~| _LOAD

X X ~+{ LOAD ISSUE

X ~{ LOAD ISSUE USED :-‘*
LOAD ISSUE USED USED |+«

*
Branch back on any previous part of the stack.

Fig. 9 STAR-100 instruction stack
Toading and issuing with
branch tolerance

Therefore these methods are useful to help to
supply instructions continually to the pipe seg-
ments even though branch instructions are inevita-
ble. For fixed (targeted) branches, lookahead
strategies can provide the means to continue the
instruction sequence. But for conditional branches,
more elaborate schemes to recover from unexpected
branches have to be established (such as the condi-
tional mode).

2.5 Interrupt Handling

Interrupts, as deemed inevitable, have the
same adverse effect to pipelining as conditional
branches. When an interrupt occurs, subsequent
instructions (that follow the interrupt logically)
have to be inhibited until the interrupt is served.
Otherwise, a large overhead in recovery to the lo-
gically correct form may be needed. In the IBM
360 model 91, the notion of imprecise interrupts
is used. These are instructions where interrup-
tion can be uncovered during decode time and hence
involve interrupts that result from protection,
addressing and execution functions. Once an inter-
rupt is encountered, further decoding is prohi-
bited. However, there may still exist instructions
inside the pipe that are partially completed and
which should be finished before switching the CPU
to the interrupt routine. So the new status word
(for the interrupt branch) is fetched to the
branch target buffer in parallel with the execu-
tion completion. If the interrupt happens to be a
precise one, the execution completion may cause an

imprecise condition. Then the logically preceding
imprecise signal should cancel all previous pre-
cise actions, Afterwards, processing can proceed
down the interrupt instruction path.

For vector processing, execution of an in-
struction may take a long time. Therefore, as in
the STAR-100 processor, special interrupt counters
are available to hold addresses, delimiters, field
lTengths, etc. which are necessary to restart vec-
tor-type instructions after an interrupt (provided
the interrupt does not affect the instruction pro-
cessing sequence). This represents a recovery
mechanism for processing to proceed afterwards
when an unpredictable interrupt occurs. Since
interrupts, unlike parallelism detection and
branch instructions, are less predictable but for-
tunately less frequent, Tittle distinguishable
optimization techniques have been invented to re-
duce its affect to the pipeline continuity. Most
adopted techniques are rather simple and crude.

2.6 Sequencing Control

For a second level pipeline (usually in the
execution unit, such as a pipelined multiply or
arithmetic unit pipe), the speed of a segment is
fixed. Then rather than inserting buffers to
interlock the operations among the segments, a
sequencing control for routing operand pairs
through the segments can be established. An exact
schedule for traversing the segments can be fol-
lTowed after the execution is initiated. It has
the additional advantage that with the removal of
internal buffering (in the execution unit pipe),
less delay and hardware in the pipe will be
needed.

Since some pipelined execution unit requires
internal looping (bi-flow pipe) in the segments,
operand pairs admitted to this pipe must be routed
properly so that two different active pairs will
not try to access a same segment concurrently
(recall that there is no buffer to resolve con-
flicts). This conflict avoidance is an important
objective in the sequencing control. A general
technique that can be applied to sequence operands
properly can be developed as in [16]. A reserva-
tion table is used to represent the traversal path
of an operand pair through the pipe. A typical
example can be found in Fig. 10. In this example,

Time
Facility 1234567891011 12
1 + x 0 + x 0
2 + x 0 + x 0
3 + * @ 0
4 + x 0
5 + *® 0
6 + x 0

Static Collision Vector = 100100001
* = collision if + and x are initiated as
indicated.

Fig. 10 Reservation Table for Sequencing
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if the control waits for two minor cycles before
initiating a second execution, no collision (re-
source conflict) will result. However, if initia-
tion takes place at the next minor cycle, a colli-
sion will occur at facility 3 (or 5). From this
reservation table, a static sequence control can
be designed so that operand pairs are initiated at

certain periodic intervals to attain a high through-

put rate.

Specifically, a collision vector can be de-
fined so that a '0' denotes that initiation at
that interval (after the current initiation) will
not cause any collision and a '1' the opposite.
For the example, the collision vector is 100100001,
Then, optimizing methods (usually mathematical pro-
gramming techniques) can be employed to find peri-
odic intervals to initiate the operand pairs to be
admitted, assuming the latter exist. In fact, a
state transition diagram as drawn in Fig. 11 can be
constructed, a state being defined by the updated
collision vector (previous updated vector or the
static collision vector associated with each ini-
tiation) and a transition representing the number
of cycles waited before initiating the next oper-
and pair. From the transition diagram, the high-
est throughput cycle can be picked to initiate
operand pairs to the pipe. In the example, it is
the 1-1-1-5 cycle. This method of statically con-
trolling the pipe is one way to guarantee highest
throughput when a continuous stream of operand
pairs to be executed is available. If the latter
is not true, the collision vector approach can
still be modified and applied to control the cor-
rect sequencing of operand pairs without incurring
collisions.

5* il =S
1 2 3
1101 2 P 5+ ; 1001
0011 0101
+1 ¥ 1
0111 1011
[
1111
2
3
Fig. 11 Example State Transition Diagram

In the case of multifunctional pipes, the
collision avoidance technique can be generalized.
However, now two possible alternatives should be
considered. In a static multifunctional pipe,
only one configuration will be active at one time.
So the previous unifunctional approach can be
taken. But one must watch out for the overhead
incurred in the reconfiguration process. There-
fore, the sequencing control should try to scan
and group instructions which require the same con-
figuration to be executed together. In a dynamic
multifunctional pipe, simultaneous active configu-
rations are allowed. Then the generalization of

]
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the previous technique can be easily applied. For
brevity, the details will be omitted here [17-18].

These techniques are useful not only to con-
trol operand routing correctly, but also to in-
crease the throughput of a pipe with fixed-speed
segments. With them, one can further upgrade the
pipelined processor throughput.

2.7 Summary Discussion

To sum up the adverse effects of precedence
constraints, branching and other unanticipated
events to the performance of a pipelined processor,
let us try to derive its analytical throughput
with suitable parameters.

Consider a linear deterministic pipeline of L
segments and suppose

= probability that a task (instruction) does
not depend on anyone already in the pipe,
that is, once initiatied, it can proceed
without waiting or being cancelled.
probability that a task (instruction) de-
pends on the i‘"" previous instruction
still in the pipe to validate its initia-
tion, for i=1,...,L.

Po

Thus
L
Lp;=1
i=0
relative initiation time of the jth
instruction.

T

For simplicity, let all facilities have the same
speed T. Then

, L
T = Ti_]-+p0T-+p]LT-+jzzpj[max{O,Ti_j+LT-Ti~]}].
In the steady state, assume
Ti 'Ti-1 = Tj"Tj-] =d

(that is, expected delay in initiation between two

consecutive tasks is d). Since
Ty T = Tig - Tisga F Ty - - T
= (3-1)d

L
d = pOT-rp]LT-+‘zzpj[max{O,LT-(j-l)d}]<
J:

More precisely, there exists an r such that

LT-(r-1)d >0 but LT-rd<0. (1)

Then
r
d = pgT+pilT+ § p.lLT-(-1d]l . (2)
j=2 "

Equations (1) and (2) can be used to solve for r
and d given p;, L, T. But due to the nonlinear
characteristics, a closed form solution is not
available and an iterative algorithm for specific
values of p;, L, T has to be used. The index r
arises because the present instructionmay dependon
only up to r previous instructions (on the aver-
age) still inside the pipe, instead of a maximum
of L. This .is because a cumulative delay may have
resulted in these r previous instructions so that
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when considering the present instruction, the ear-
lier ones (earlier than those r instructions) have
already left the pipe.

Here, for the purpose of demonstrating the
effects of sequencing, equation (2) is worth a se-
cond look. By proper sequencing, for every step,
one tries to increase pg (no unresolved dependency)
and other higher py (k>r) (or dependency is far
away) as much as possible. Several ways to achieve
this exist. One is to produce optimized code via
good programming or by a clever compiler, or a sim-
ple effective sequencing rule (perhaps implemented
in hardware). Indeed, pipeline efficiency is high-
1y dependent on both the design and operational
methods used.

III.

One of the main requirements in justifying the
pipelining of a process is that the same process
will be invoked very frequently. Ideally if a con-
tinuous excitation of the pipeline is attained,
then the maximum throughput will be within reach.
For a pipelined processor, this is equivalent to
the need of abundant paralielism in the instruction
streams to permit the initiation of independent in-
structions almost continuously.

Vector Processing

This ideal situation sometimes becomes true
when the machine is processing some independent
vectors such as adding two vectors, element by ele-
ment, to form a result vector. If each element of
a vector has to go through a transformation inde-
pendent of the transformation of other elements of
the vector, then they can be performed in an over-
lapped mode with the others, employing the pipelin-
ing characteristics. For machines with multifunc-
tional pipelined execution units (second Tevel),
the latter can establish and retain a static confi-
guration throughout until the entire vector is pro-
cessed. Hence minimal control, decoding and recon-
figuration overhead may be achieved while the memo-
ry operands are supplied to the execution unit in a
most efficient way. This will become more apparent
as our discussion proceeds.

In this section, vector processing in pipe-
Tined processors will be studied carefully. In
subsection 3.1, the components of a vector instruc-
tion and the ultimate processing procedures will be
demonstrated and a comparison of two prominent vec-
tor machines in this aspect will be included. This
will then lead to the revelation and evaluation of
the requirements, properties and tradeoffs in terms
of time and space (control hardware) overhead in
vector processing as contrasted with sequential
pipeline processing. The analysis in subsection
3.2 will serve to expose the real crux behind vec-
tor processing. Hopefully, these discussions will
also reveal the many facets, advantages and disad-
vantages and other special features associated with
a vector pipe that may appear quite mysterious to
some people.

3.1 Vector Instruction

A vector pipe can be characterized by the
existence of one or more multifunctional pipes (se-
cond level) in the execution unit (arithmetic and
logic unit) and the needed control. and parameter
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specifiers in the processor, As mentioned in sec-
tion 1, a multifunctional pipe can be either sta-
tic or dynamic, depending on its reconfiguration
control. In the static case, simpler control is
required to establish and maintain a desired con-
figuration for processing. There is a fixed route
for each operand set to transverse throughout the
computation, unless a new configuration is formed.
While in the dynamic case, more complicated con-
trol and routing overhead will be involved, the
throughput may be higher because of the simulta-
neous existence of several configurations. In
reality, static vector pipes are more common, as
will be illustrated in the TIASC and CDC -STAR-100
examples to follow. Dyanmic vector pipes, though
they may be superior in throughput, require too
much control overhead and so their implementations
still have to be studied more carefully.

For a vector that consists of the two levels
of pipeline action, appropriate vector instructions
have to be designed and implemented to denote the
operations on some ordered data in vector or array
form. Generally, in the first level, a vector in-
struction will be fetched, decoded, and the neces-
sary control paths connected, before the needed
elements of the vector are fetched from consecutive
storage locations over a specified address range.
The second level execution unit pipe carries out
the specified operations on these elements, nor-
mally being supervised by a control ROM. Some-
times the results generated are stored back to
certain consecutive addresses of a result field
and sometimes other needed indicators will be gen-
erated and stored in the register file in the pro-
cessor for future usage. The exact procedure and
mechanism to accomplish all these functions vary
from machine to machine. For the sake of later
comparison and analysis, a description of an exam-
ple of vector instruction execution will be pro-
vided here.

Before starting the execution of a vector in-
struction, certain additional information perti-
nent to the mode of processing has to be furnished
to the system. Such information can be quite va-
ried and detailed, such as the starting (base)
address of each source vector and result vector
involved (usually two source vectors and one re-
sult vector) and the control over what elements of
the vectors should be operated upon, The method
by which the CDC STAR-100 handles this will be
demonstrated first. Then similar and different
features in the TIASC system will be noted. Fin-
ally the vector processing power of the two sys-
tems can be compared.

The schematic diagram of the central process-
ing unit for CDC STAR-100 system is drawn in Fig,
4. Basically it consists of four parts, operating
in an overlapped, asynchronous mode: (1) Storage
Access Control (SAC), (2) Stream, (3) String,

(4) Floating Point units. The SAC is responsible
for sharing the magnetic core storage among the 3
read and 2 write buses shared by the Stream and
1/0 units, To support virtual addressing (all
user programs are run in virtual address space),
it is also equipped with a small associative page
table. The Stream unit provides the basic control
for the entire processor. Internally, it may be
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regarded as a multi-segment pipeline (second level)
as its carries out functions including
(i) memory references,
(i1) buffering and skewing of operand data,
(ii1) buffering and decoding instructions,
(iv) setting up control signals for processing
the instruction,
and (v) performing simple logical and arithmetic
operations.

The String unit, as the name implies, is used
to process strings of decimal or binary digits.
It contains some fast half adders and full adders
to carry out simple pencil and paper algorithms for
binary arithmetics (divide and multiply). Finally
the Floating Point unit consists of 2 pipes whose
configurations are drawn in Fig. 7. Each pipe is
(static) multifunctional as-it has different confi-
gurations for performing different floating point
operations. Pipe 1 performs arithmetic operations
on operands in floating point format and address
operations on nonfloating point numbers. Pipe 2
performs only two vector address type operations,
in addition to other arithmetic operations. Pipe 1
and pipe 2 are quite similar in structure except
that the latter has a high speed register divide
unit and a multipurpose unit for some special
arithmetic such as square root, vector divide, etc.
The pipes can take on a certain configuration at
any time. For example, to perform floating point
addition, pipe 1 configures itself (under micro-
code control to be explained later) to activate the
path: Exponent Compare - Coefficient Align - Coeffi-
cient Add - Normalize Count - Normalize Shift -
Transmit. With this static configuration, operand
pairs can be routed through the pipe at a steady
and maximum rate. When the operand pairs can be
supplied fast enough and the result stored suita-
bly, an ideal throughput rate will be reached.
Then if these pipe segments have the same speed,
say one minor cycle, then one result element may be
generated per minor cycle. The evaluation, other
tradeoffs and overhead will be examined more
closely later.

Let us now pause to examine a vector instruc-
tion before exploring the procedure of its execu-

STAR-~ 100 computer 1is representable by 8 fields as
indicated on Fig. 12; (1) F: function code, (2) G:
subfunction code, (3) X, Y specify the registers
that hold address offsets for the two correspond-
ing source vectors (the offset operates as depicted
in Fig, 13 and is useful for skewed vectors),

(4) A, B specify the registers that hold the base
addresses and field lengths of the two source vec-
tors, (5) Z specifies the register holding the

base address of the control vector, (6) C specifies
the register holding the base address and field
length of the result vector, and (7) C+1 then auto-
matically specifies the register holding the off-
set for the control and result vectors. This auto-
matic assignment is implied to maximize the utili-
zation of each instruction word which has a

limited Tlength,

From these registers, the effective starting
address and field length of each vector can be cal-
culated. Then the rest of the vector can be ref-
erenced sequentially until a termination condition
is reached. The control vector is a unique feature
introducing the flexibility desired in vector pro-
cessing. It performs prohibition responsibility,
analogous to the control unit in an array processor
such as the ILLIAC IV [2]. 1In the ILLIAC IV, the
control unit broadcasts control signals to all the
64 processing elements so that the latter, except
those inhibited by previous broadcast signals,
will execute some operation on the appropriate
array data. The control vector in the STAR-100
performs the analogous function, but in a time
stretched fashion (compared to the simultaneous
inhibition of array elements). Each bit of the
control vector is used to specify whether or not
the corresponding result element should be stored
(for most vector instructions; however, in some
modified cases 1like macros it has other duties as
will be explained later), When a bit is set in
the control vector, the corresponding element of
the result vector will not be modified and stored.
Thus, the nth bit read from the control vector
will be used to control the storing of the nt
element generated in processing the vector
instruction,

tion. An ordinary vector instruction format in the
o 78 15 16 23 24 31 32 3940 47 48 8556 63
F G X A Y B 2 C
(8%,9X) {susruncriony|  (OFFSET [FIELD LENGTH|  (oppser |(FIELD LENGTH (cv pase |(FIELOJENGTH
FORA ) |gASE ADDRESS) FOR B) |sASE ADDRESSY ADDRESS) |BASE ADDRESS)

NOTE:CV DENOTES CONTROL VECTOR

C+ 1
[KOFFSET FOR
L c8z)

Fig, 12 Vector Instruction Format in CDC STAR-100

Memory Words (32 bit or 64 bit operands)

+— Base Address

.

Offset

Field Length<

Beginning Address

(Base Address +0ffset)

Effective Field Length

~

Fig. 13 Addressing 0ffset for Vectors
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As an illustration consider a vector add
instruction:
VADD A,B,C (A+B~C)

Suppose the instruction format provides the follow-
ing information:

(A) = content of A register:
field Tength of A vector
= 12 half-word (32 bits)
base address = 1000015 (bit addressing)
(B) = field length of B vector
= 4 half-word
base address = 2000074
(X) = offset for A vector = 4 half-word
(Y) = offset for B vector = -4 half-word
(Z) = base address of control vector
= 400041¢
(C) = base address of result vector
= 3000074
field length = 12 half-word
(C+1) = control vector and result vector offset

= 4 half-word

Then the starting address and effective field
length of A vector can be calculated according to:

starting address = base address +offset
effective field length = length - offset

Hence, for the example, the effective ad-
dresses and field lengths are:

starting address of A vector
= 100007¢ + offset = 1008074

effective field length = 12-4 = 8 halfwords
starting address of B vector = 200001¢ - 80

= IFF80146
effective }1e1d length = 4 - (-4) = 8 halfwords
starting address of C vector

= 3000016 + 8075 = 3008074
effective field 1ength = 12-4 = 8 halfwords

The results of the VADD instruction can be
summarized in Fig. 14. Notice that the addressing
used is bit address and a '1' in the control vector
will permit the storing of the corresponding ele-
ment in the resulting vector. For example, 40005
stores a '1' so that C5 is transformed into Agt+B_3.
The skewing effect is quite apparent in this
example.

The mechanism to generate the desired output
has to be explained further. After the instruction
has been decoded at the stream unit, the appro-
priate microcode sequence in the Microcode Unit
(MIC) will be initiated. This microcode unit re-
sides in the stream unit and is responsible for
vector type operations. The processor uses micro-
code to start up and shut down a vector instruc-
tion. The microcode is loaded.in a read only memo-
ry (to users). When the CPU initiates an instruc-
tion requiring microcode control, it sends the F
(function) code and a microcode pulse to the MIC.
The latter then takes over control of the start up
and termination of the instruction. In the case of
interrupts, it also has to branch to save all the
operands and parameters necessary to resume execu-
tion afterwards. Therefore it is the heart of the
vector processing control. In fact, it is the cen-
tral control once a vector-type instruction has
been noticed via decoding. Typically it controls
operations including:
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A source vector

10000 Ry < base address

10020 A

10040 A, offset

10060 Aq

10080 A <« start address

A4 (base address - offset)

100A0 5

100C0 Re

T00E0 A actual field length

10100 A8 = field length - offset
= 12-4 = 8 halfwords

10120 Rq

10140 Ao

10160 A

B source vector

IFF80 -4 <+ starting address ¥

IFFAQ B_3

IFFCO B_ ~offset actual
: 2 field

IFFEOQ -1 Tength

2000 8o « base address =4-(-4)
B = 8 half

2020 1 word

2040 B,

2060 By 4

C result vector

3000 Co > CO < base address

3020 GG 1

3040 L > G offset

3060 C3 > G

3080 R < starting address

3080| Cg > AgtB_3
30C0 Ce ~ Cg

30E0 ¢, > G
3100 C. >~ A+B effective
Bc +8c 6 field length
3120 9 9
3140| Cyp ™ Ag*B,
3160| C11 > A1p*B;

control vector
[TTOTTTT]o]T]o[O[T[O] T[T}
R

40000 + 40004
offset

Fig. 14 Example Vector ADD

(1) the reading of addresses from the register
file (in the stream unit) for the vector
parameters according to the designations
specified in the instruction

(2) the calculation of the effective addresses,
field lengths, etc, for monitoring the
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starting the operations involved in the vec-
tor instruction

the setting up of the usage of read-write
buses as specified by the G (subfunction)
field for the operands and results

(3)

and
(4) the transfer of addresses and other informa-
tion to appropriate interrupt count regis-

ters wherever needed.

Once the effective addresses are computed, the
operand elements will be fetched and paired for the
operations involved, for example, going through the
second level floating point pipe. The static con-
figuration of the execution pipe will remain active
until the vector instruction is terminated. A ter-
mination is marked by either of the following
events:

(1) A vector is exhausted (e.g. when the effec-
tive field length is or has become zero, or
the difference between the effective field
length and the number of operand pairs en-
countered thus far is zero).

(2) Some other data fields or strings have been
exhausted.

From the above description, one can grasp
what a vector pipe really includes and how vectors
can be processed in an overlapped manner, It is
interesting to find out some other alternatives to
achieve a vector pipe. So let us examine a simi-
lar vector machine, the TIASC system. The TIASC
handles a vector instruction in a similar way,
though some additional distinguishing features
should be mentioned. To facilitate understanding,
the central processor unit composition in TIASC
has to be briefly explained. Its schematic dia-
gram is provided in Fig. 5. It consists of 3 main
components: (1) Instruction Processing Unit (IPU),
(2) Memory Buffer Unit (MBU) and (3) Arithmetic
Unit (AU). The IPU is analogous to the Stream unit
in the STAR-100, MBU analogous to the Toad/store
and AU plays the role of actual processing of data.
In vector mode, the IPU fetches, decodes the in-
struction and calculates the effective addresses
for the vector fields. After receiving the needed

source operands and pairing them to be sent into
the AU pipe (the AU can have one to four identical
pipes). Each AU pipe has different configurations
for performing different arithmetic operations
(including integers) as in a typical static multi-
functional pipeline, The two levels of pipeline
action are quite apparent in this case.

A vector instruction in TIASC has some out-
standing characteristics. Its instruction format
can be as depicted in Fig. 15. However, rather

op

1 12 16 2
Fig. 15 Vector Instruction Format in TIASC

32

then specifying particular registers to fetch
operand address and control information, some re-
gisters in the IPU have already been dedicated for
vector processing, called the vector parameter
file (VPF). It consists of 8 32-bit registers
whose individual functions or interpretations have
also been assigned permanently as drawn in Fig. 16.
This fixed organization has the advantage that
they can be hardwired to the input of the control
ROM or other logic units for fast operation, with-
out having to worry about access conflicts among
them, The first register contains the operation
code and the type and length of the vector consi-
dered (single or two-dimensional), Then the base
address and the register containing the index
(offset) are specified for each operand vector in
the subsequent register in the VPF. The fifth

and sixth registers are used to specify the incre-
ment for each vector and the number of iterations
(field length) in this inner loop. For the outer-
loop (two-dimensional vectors), similar informa-
tion about the increments and number of iterations
is included in registers seven and eight. The
vector instruction, after having been decoded,
will provide the information regarding whether the
parameter file has to be loaded from main memory
or retain some previous setting for immediate

information from the IPU, the MBU starts fetching usage. If a load is needed, since the memory is
Ho Hy Hp H3 Hgy Hg Hg H,
REGISTER
28 OPR ALCT SV L
29 - XA SAA
2A HS XB SAB
2B Vi Xc SAC
2cC DAl DBl
2D DCi NI
2E DAO DBO
2F Dco NO
Fig. 16 Vector Parameter File Format in TIASC
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inter-leaved, one memory cycle will be needed for
VPF Toading. The significance of this and the sub-
quent additional activities will be examined more
carefully in the next subsection. Afterwards, the
sequence control in MBU takes over (as the MIC in
STAR-100) the fetching of operands and the routing
of operand pairs through the AU pipe.

So one observes that TIASC has at Teast two
distinguishing features in vector processing:

(1) its dedicated use of the vector parameter
file;

(2) the interpretation and usage of the VPF allow
variable increments within different vectors
concerned (contrary to the sequential mode in
STAR-100) and two-dimensional vectors can be
explicitly handled (inner and outer loops).

These features help to execute some vectors
more efficiently and reduce the overhead that may
have been incurred. Observe that once a vector
instruction is initiated, the operand pairs are
submitted to the AU continuously, in most cases,
once per minor cycle (provided no severe memory
interference results from other pipes or parts of
the system or processor). Then the maximum through-
put rate may be achieved (1 result per minor cycle
= 60 nsec.). Also the sequence control for the AU
is handled exclusively by the microcode stored in
the ROM (read only to users) in MBU, Therefore the
MBU serves as the unique interface between the IPU
and the AU.

From the previous discussions, one can visual-
ize the concept of vector processing and the two
ways to achieve high throughput in two similar ma-
chines. The design of these processors really re-
presents a complex and ingenious effort in pushing
processor architecture, in both hardware and soft-
ware aspects, to the very front of research and
development. To bring out more interesting special
features in these machines, the vector-type instruc-
tion set in the STAR-100 will be examined once
again. From it, a final brief comparison between
the two giants, STAR-100 and TIASC in this respect,
will be derived.

Generally speaking, the CDC STAR-100 has a
richer and more powerful vector instruction set.
Two outstanding features are:

(1) vector Macros
(2) Sparse Vector Instructions

In vector macro instructions, operations are
similarly performed on the source vectors except
that in some cases, no result vector is created.
Then, instead, the result will be represented and
stored in one or two registers as specified by the
instruction.

For example, SELECT GE A>B, ITEM COUNT TO (C)
involves: Comparing each element of vector field A
with the corresponding one in B. The comparison
will terminate if

(i) the condition A;>B; is met for the current
i, or .
(ii) one of the vector fields is exhausted.
Then the number of operand pairs encountered thus
far is stored in the register specified by C.

In this macro operation, control vectors can
be used not only to prohibit the storage of result
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elements but also to disable the operation on some
elements. In the example, even if A;>Bj is true
for some i, if that comparison is disabled by the
corresponding element in the control vector, exe-
cution will not be terminated. Thus using this
kind of instruction, comparison of ordered vectors
(e.g. lexicographic comparison) can be easily han-
dled. The itemcount will be useful in some cases
to indicate at which element the condition is sa-
tisfied., On the other hand,.ordinary vector com-
pare instructions also exist in the STAR-100
machine,

For example, COMPARE GE A>B, ORDER VECTOR~>Z
involves:
(1) Comparing the two vectors element by element.
(2) Storing 1 or 0 at the result vector elements
depending on the satisfaction of the compari-
son condition,

Then the result of each pair-wise comparison
will be recorded and available for later use, such
as in sorting. Thus ordinary vector and vector
macro instructions may form a powerful vector in-
struction set to be tailored to suit some applica-
tion in mind as close as possible. With them,
many quite complex sequential algorithms may turn
out to be very effective which will be studied in
another section,

The sparse vector instructions in the STAR-
100 system further facilitate processing of large
vectors with a Tot of insignificant elements be-
cause then the latter can be packed easily into a
sparse vector to be operated upon later. This can
save both memory storage space and later effective
processing time. A sparse vector can be formed
using the following procedure as illustrated in
Fig. 17.

Step 1: Generate an ordered vector using COMPARE
instruction to indicate insigificant
elements,

Step 2: Compress the vector into a sparse vector
by storing the chosen elements from the
former to memory, according to the or-
dered vector generated at step 1. The
ordered vector has to be retained
throughout the 1ifetime of the sparse
vector to specify the positional signi-
ficance of its elements.

After this, the sparse vector can be effi-
ciently operated upon to generate desirable, inter-
pretable results as in other vector instructions,
with the help of the ordered vector, The advan-
tages with sparse vectors should be emphasized:
(1) the explicit hardware support for compaction
of large vectors to reduce memory space needed,
(2) if the sparse vector has to go through several
operations or computation steps, effective pro-
cessing time can be saved as well in that the
operation on insignificant elements is no longer
necessary, (3) if a variable increment for each
vector (as in TIASC) is desired instead of in a
sequential manner, one way to implement it is to
use sparse vector instructions (though a more
obvious way is to include the appropriate control
vector) for the purpose of saving space and time,

While the TIASC does not include sparse vec-
tor instructions, its explicit two-dimensional
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Half-word
address

n
n+l
n+2
n+3
n+4
n+5
n+6
n+7
n+8

Initial Vector

(R)
(R)

(R) =

near redundant

(R)
(R)

= < < < < < < <
O |0 |~ o o [ w (o =

<

(R)

Step 1: Generated order vector Z

01 78 31
(1fofo[T]1]ofo]T]0] |
4 4
Y VsT
V2 V9
Step 2: Sparse Vector Generated
Half-word
address
p Vo
p+1 Yy
p+2 Vs
p+3 Vs
Fig. 17 Example Compression of Vector

into Sparse Vector Field

vectors and variable vector increments are good
features which promise high vector processing capa-
bility. Included in the vector instruction set of
both machines are some very interesting and high
level instructions such as Vector Search, Dot Pro-
duct, Merge, Shift and Order instructions that al-
Tow programmers more power in developing their
programs and the system to execute the algorithms
implemented with the help of these advanced in-
structions more efficiently. The TIASC has also
demonstrated how a 32-bit machine can cope with
vector processing by efficiently making use of 8
bit opcode and the other relative fields, together
with a dedicated vector parameter file. While the
STAR-100 shows a stronger vector instruction set
(a vector instruction is composed of 64 bits) be-
cause the F (function) and G (subfunction) codes
can be used to specify more things, the vector
parameters to be used can be assigned to any one
of the registers (therefore not dedicated). It is
hard to say which scheme is absolutely superior.
And to summarize, the comparison between the vec-
tor processing powers of the TIASC and STAR-100
will be tabulated on the next page.

3.2 Implications, Requirements and Tradeoffs

How vectors can be processed has been demon-
strated in the previous section. Now a closer look
at some hidden or less conspicuous aspects in a
vector machine is appropriate. From the previous
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description, one notices at least four things.

(1) There is some set-up time involved before

executing a vector,

(2) Additional control in configuring the execu-
tion pipe and monitoring operand admission
and traversal is needed,

Richer instruction sets and clever compilers

are pre-requisites to producing optimized

code for vector machines.

(4) An intrinsic tradeoff between sequential and
vector processing can be derived from the
above considerations,

(3)

These four observations will be discussed and
scrutinized here,

(1) Set-up Time and Flush Time. As demonstrated
in the exampTe TIASC and CDC STAR-100 systems,
each vector instruction involves a set of vector
parameter registers or control vectors to hold the
information needed before the instruction can be
initiated. The contents of these parameter regis-
ters are used to control the addressing operation
and storage of result operands, as well as the
final termination. In the example STAR-100 system,
they will be used by the Microcode unit and later
other buffers in the stream unit for initiation of
operand fetches and execution continuously until a
termination condition is detected by the microcode
control. In the case of TIASC processor, they
will be used by the IPU for address calculation,
MBU for memory references and also by the micro-
code control (in MBU) for monitoring the subse-
quent execution activities. These parameter regis-
ters can be loaded from memory. In doing sc, many
additional memory fetches (register loading) have
to be performed before the vector instruction can
be started. This represents an overhead in time
-- the set-up time. If the vector involved has a
relatively short field length (therefore the num-
ber of iterations to be executed will be small),
sometimes the set-up time may be comparable to the
actual processing time of the vectors.

Besides the set-up time, there is another
time measure of interest: the flushing time. The
flushing time denotes the period of time between
the initial operation (decode) of the instruction
and the exit of the result (for vectors, the first
result element) through the entire pipe. There-
fore it directly measures the sum of the speeds of
all the facilities that the instruction and an
operand pair have to go through. Sometimes it is
interesting to compare the flush times of a vector
pipe and a sequential pipe. (Note, the flush time
of a pipelined processor often is larger than that
of its nonpipelined counterpart.) A vector pipe
often has to perform more activities inside such
as checking the termination condition, checking
the control vector, etc. (though some of them can
be overlapped with other operations), Therefore
it will not be surprising to discover that a vec-
tor pipe may have a longer flush time than its
sequential counterpart. However, this is insigni-
ficant if the vector field length is long, because
then the execution time of the vector instruction
will be dominated more Tikely by the field length
as we will explore in the next paragraph. But for
short vectors, this may be a disadvantage.
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Compare and Contrast

STAR-100

TIASC

Vector parameter registers to be specified.

Vector parameter file fixed, therefore easy to
reference and store.

Very strong vector instruction set.

Strong vector instruction set.

Sparse vector instruction included.

Sparse vector not included.

Vector increment is fixed.

Variable vector increment allowed.

Control vector introduces flexibility similar to
the control unit in array processors. Can be used
to implement variable vector increment.

No control vector used.

Explicitly speaking, vectors are only one-dimen-
sional.

Two-dimensional vector explicitly accommodated.
Computes 2 level loops effectively.

Use microcode control once a vector instruction is
decoded.

Use microcode control to sequence each AU.

String unit and Floating Point unit (2 nonidentical
pipes? will be responsible for most of the actual
processing of data. Therefore, concurrency is
among different execution units.

4 identical AU-MBU pairs can be installed to carry
out all kinds of arithmetic operations (fixed or
floating point). Concurrency of execution is
among 4 identical pipes.

Floating point facility more powerful (e.g. Pipe 2
has fast divide, special multi-purpose segments).

AU has to be responsible for floating point opera-
tions (consists of 8 segments).

Requires set up time for vector processing.

Also requires set up time (though could be less
because of the fixed VPF is easier to manage),

Here an endeavor will be made to compare se-
quential and vector pipeline processing in terms of
time efficiency analytically. For a vector pipe,
usually the memory operand supply rate is fast
enough to meet the speed of the execution pipe(s).
For example, in the TIASC system, the eight inter-
leaved memory modules can maintain a total data
transfer rate of 400M words per second, twice that
required to support a central processor with four
arithmetic unit pipes when processing vector in-
structions [13]. Therefore, analytically, for an
effective vector field length of %, the execution
time of the vector instruction can be expressed as
(assuming the bottleneck is in execution unit):

t,. = ts+tvf+(£-1)te

vp
where tVp = vector instruction processing time

tS = set-up time

tvf = vector pipe flush time including de-
code, address calculation, operand
fetch and paired, termination check
and execution

te = the speed of the bottleneck of the

execution unit pipe (in the case of
TIASC, all 8 segments have the same
speed, namely 1 minor cycle =60 nsec)

Analogously, the same situation in a sequen-
tial pipe can be analyzed. Suppose the same in-
struction has to be executed on a vector in this
case. Without vector processing power, this in-
struction has to be invoked & times, that is, go
through the entire pipe % times. Even if the
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execution unit is fast enough here, most likely
the fetching of operands can be less efficiently
performed. (In vector machines, consecutive stor-
age locations for operands will be fetched.) The
processing time of the 2 instructions may be ex-
pressed as:

tsp teet (=)t

sequential (pipeline) processing time
sequential pipe flush time

where tsp =
top =

tb = speed of bottleneck in the pipe, most
Tikely in fetching operands if the
execution unit is fast enough because
more interference from unstructured
memory references for instructions
and operands results,

Comparing tv and tS yields:

p p
tott et (’H)te Stet (SL-])tb
iff .
tg < (z-])(tb-te) if toe~ tep -

This reveals that if the vector length is
reasonably large, vector processing is beneficial,
considering the time advantage. If the set-up
time is large compared to the difference of the
speeds of the bottlenecks of the two pipes, then a
large vector field length is needed to justify
processing it in the vector form, Usually (tp-te)
will not be very much smaller than tg (about T0
times), so that vector processing provides time
efficiency in pipelined processors,



1975 SacamorRe CoMPUTER CONFERENCE ON PARALLEL PROCESSING

(2) Additional Control and Hardware, Vector
pipes are designed to be cost-effective. They are
implemented with sufficient flexibility and power
to match the speed of an array processor (which
usually is more expensive). For those vector ma-
chines with multifunctional pipes, additional con-
trol to establish the desirable configurations and
routing the operands between pipe segments are
needed. This is usually accomplished using micro-
coded control to allow flexibility and simpler cir-
cuitry. The hardware and firmware cost so intro-
duced represents a portion of the cost of vector
processing. These control functions sometimes are
not very conspicuous but they do require a consi-
derable amount of hardware support.

In addition, some other costs arise indirect-
ly. The vector parameter file or registers repre-
sent part of the indirect hardware needed. Larger
instruction sets to cope with vector processing al-
so demand -longer word lengths -- a result that
affects the cost throughout the entire system.
smaller word length machines, one can try to get
around the problem using techniques such as dedi-
cated VPF in TIASC. Because of its cost effective-
ness and speed advantages, vector processing power
may prove adaptable to medium scale systems.

For

Buffering-wise, to keep up the execution
speed, additional memory buffers (as the MBU) may
be necessary to maintain an effective memory supply
rate. Memory management problems, though out of
the scope of this paper present a rich area to
be explored for vector machines. A1l this direct
and indirect control cost marks the space overhead
incurred in vector processing and should be eval-
uated appropriately in tradeoff considerations.

(3) Richer Instruction Set and Clever Compilers.

Once the skeleton processor is designed, the
instruction set has to be designed carefully. As
in the case of STAR-100, suitable higher level vec-
tor macro and sparse vector instructions can be
implemented (with proper hardware support) so that
some application algorithms can be easily handled
(fewer instruction and operand fetches and other
conflicts). Without such well designed instruction
sets, the power of the processor may depreciate
many times because inefficient operations, redun-
dant or excessive memory references and poorly
utilized facilities may result.

Then the question arises: Since many of the
rich instructions are by no means conventional, how
to use them effectively in programs becomes a prime
concern. For assembly language program writing,
the user has to familiarize himself not only with
the algorithm he is going to implement, but also
with the details of these unconventional instruc-
tions first [19]. Because of the various architec-
tural aspects involved, he has to choose a suitable
algorithm carefully. Many a time, a fast (theore-
tical) algorithm will turn out to be inferior to
some less effective serial algorithm because of the
machine vector characteristic. As a simple example,
consider sorting methods. In those vector machines,
bubble sort will be quite inefficient because of
the static multifunctional pipe involved. The bub-
bling of an item (compare and interchange) will
incur too much reconfiguration cost, memory fetch
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overhead and set-up cost for the pipe. O0On the
other hand, merge sort algorithms may be better
because the machine can merge two ordered vectors
in one pass without reconfiguration and additional
set-up. As in the TIASC, the instruction vector
ORDER A,B,C will try to compare element by element
and store the smaller element in C until the en-
tire ordering is accomplished. For example, if

A=1,3,4,5,7,8,9
B =2,3,5,8,10

then ¢c=1,2,3,3,4,5,5,7,8,8,9,10 .

Therefore only a simple vector instruction is
needed to merge sort two ordered vectors. Another
good alternative is to find the peak value of an
unsorted vector at every iteration, remove and
store it at the appropriate place and repeat until
the vector is completed sorted. It is easy to
find the peak value of an unsorted vector by using
instructions such as SEARCH and therefore this re-
presents a better strategy (though quite similar)
than the conventional bubble sort. This simple
example discussion reveals how important it is to
find the right algorithms to be implemented on
these vector processors. The overlooking of archi-
tectural aspects may prove fatal in studying pro-
gram efficiency.

Besides the direct program writing, each sys-
tem also requires the installation of clever lan-
guage processors to fully utilize its power. Addi-
tional optimization procedures should be incor-
porated to exploit its vector capability. For
example, the optimized Fortran Compiler in TIASC
was designed to produce highly optimized object
code with complete diagnosis and messages. In
general, the additional optimization included is
accomplished by analyzing the source program logic
and performing optimization on the object code
instructions involved. Vector instructions will
be used wherever feasible and scalar operations
are reordered wherever possible to reduce pipeline
reconfiguration and memory reference delays (8-way
interleaved memory system). Therefore the compi-
ler not only can recognize array (vector) oriented
operations in DO-loops but also can reorder some
scalar operations generated to meet the architec-
tural characteristics of the machine. Of course
the other more conventional optimization proce-
dures are also included, such as elimination of
redundant subexpressions, removal of constant
assignment statements in a loop and proper regis-
ter assignment, etc. This burden on compiler
designers is quite heavy. Thus the software cost
for vector processing is an important item not to
be omitted.

(4) Tradeoff Summary. In this section, we have
revealed both the time and the space overhead
needed in vector processing as compared to a se-
quential pipelined processor (such as the IBM 360
model 91). The advantages of vector processing
are its speed improvement for reasonably long vec-
tors and the more orderly management to better
utilize the memory system and other resources when
dealing with vectors. The costs it incurs are the
needed firmware control and additional software
facilities to utilize its power. When the latter
have been solved successfully at less cost, vector
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processing may be generalized and applied to smal-
Ter scale processing systems as well.

IV. An Example Buffer Free Pipeline Design

-- Multipliers

Multi-level pipelining action can be imple-
mented in a processor, as revealed in some detail
in the previous sections. Before ending the anal-
ysis, a closer study of some typical low level
pipelines in processors may be of interest, just
to understand the physical limits in applying pipe-
Tine discipline in computer systems.

As a first step for implementing a pipeline,
an algorithm for the function (process) to be im-
plemented has to be chosen. The algorithm should
demonstrate sufficient parallelism to allow re-
peated iterations or new inputs to proceed as fast
as possible. To back up this assertion, here pipe-
lined multipliers will be studied carefully. Ob-
serve that a good algorithm will yield a good
reservation table with the smallest initiation time
intervals or shortest execution time for some spe-
cific sequences.

The most common method of multiplication is
the pencil and paper algorithm in which the multi-
plicand will be shifted and, if the corresponding
bit in the multiplier is 1, added to the partial
sum until the multiplier is exhausted. Clearly
this is not an effective pipeline algorithm because
too much shifting and adding (complete additions)
are needed. Even if the 0's in the multiplier are
skipped, the speed of the multiplier is too slow
to match the speed of the other parts of the
system.

One could try to build a very fast adder such

as the Wallace Tree [20] of carry-save adders (CSA).

But such implementation requires too much hardware
support. Obviously a speed-cost tradeoff exists
here. The method favored in the IBM 360 model 91
was a hybrid method [21]. Intuitively, a carry-
save adder tree is still used as shown in Fig, 18.

Multiples of Multiplicand
A

¥
C
CSA5
Note: CSA6
Cofary e S Shift Right 12
CSA - Carry Shift Right T2
Save
Adder Carry Propagate

Adder

Fig. 18 CSA tree for multiplication
using iterations
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At each iteration, 12 bits of the multiplier are
retired by generating the corresponding six multi-
ples (each corresponds to 2 bits of the multi-
plier) of the multiplicand and admitting them to
the CSA tree. Therefore five iterations are
needed to exhaust the 56 bits of the multiplier.
Here, however, the iterations cannot be effectively
pipelined because in each pass, the six multiples
have to go through CSA6 and loop back to CSA4 to
synchronize with the next iteration. In this
example, the next iteration must thus wait for 3
levels of CSA delays for synchronization (for the
previous iteration to route through CSA3, CSA4,
CSA5 and CSA6). To improve it, the adopted pipe-
Tined design is drawn in Fig. 19a and its schema-
tic diagram in Fig. 19b. Four stages are

Multiples of Multiplicand
A

1 . 1 T
[%:::]2%9{;::&]
c 5 [:::}g?ﬂ{@r__

CSAE SUM LATéH

[ CSAF
Right 12 T S

Right 12

Carry Propagate Adder After Five Iterations
Fig. 19a Pipelined CSA Multiplier (Model 91)

Inputs
r I — N

| | I
Temporary Storage Platform (TSP)
Stage One

Input

Temporary Storage Platform (TSP)
Stage Two

Temporary Storage Platform (TSP)
Stage Three

1
Temporary Storage Platform (TSP)
Stage Four

Loop Loop

Output Qutput

Fig. 19b Schematic Diagram
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identified with a loop at the last stage which con-
sists of two CSA. Therefore the clock delay is two
levels instead of three in the previous design.
The Tloop in this case is used to add the result of
the iteration (right shifted 12 bits) to that of
the next iteration (for the next set of 12 bits)
until the partial sum and carry finally emerge {at
the end of five iterations) to be added together
for the final output. A timing diagram is drawn
in Fig. 20 to illustrate the sequence of actions
involved. At time 0, the first input Iy (for the
first 12 bits) is gated into stage 1. At the next
interval, Iy is gated into stage 2 while I into
stage 1. This process repeats until Ig has exited
from stage 4 when the final product is accumulated.
Observe that latches have to be inserted between
stages to tolerate concurrent processing, The
total iterative tree requires 8 clock periods = 16
levels of CSA delays. If the multiple generation
process is fast enough (to allow the iterations to
proceed), a multiplier with a speed equal to 3 cy-
cles (60 nsec each) can be built.

Clock Time
0 41,2 4,3 ,4,5,6, 7,8,
i . i LI B 1 1 1 1
2 3 B 5 L stage one
I I I I 1
N.f%f:lﬂlﬂiwgemo
| ! - z b 3 } 44{ 5 | Stage Three
I I I I
T W W I
Stage Four

Fig. 20 Timing of the multiplier
in Fig. 19

The intrinsic requirement here is that the
multiples of the multiplicand can be generated fast
enough. However, this need not be possible. Some-
times simple full adders may be needed, in which
case, the propagation delay is considerable. So,
in small machines, maybe some other alternatives
can be considered as well. Here, an effort will
be made to describe two of them,

The first observation is that the generation
of multiples can be made simple if a simple shift-
ing after table looking (decoding) is involved.
For example, 1100 xM represents 16M - 4M, 0111 x M
represents 84 -M. Then the generated (shifted)
multiples can be added as before. The second ob-
servation is that if the clock period can be re-
duced from two levels of CSA to one level, the
required iterations may be completed faster.

The first scheme to be described also uses
CSA's to generate the partial sum and carry of the
iterations involved (CSA has the advantage over
full adders in that it need not carry propagation
inside). The configuration is drawn in Fig, 21.
Each multiplier will be grouped into g1,...,9y
each containing 4 bits. A decoded and shifting
network is required in addition to the CSA's, For
the current gy, the corresponding multipies of the
multiplicand will be generated. The three multi-
ples (16M, *8M®+4M, 2M® M) are admitted to the
first CSA at the first clock (= 1 level CSA delay).
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(Input from Decoder)

+8D  #4D
16D f::: ié“
CSA1
R '
iReconfi-
CSAZ ‘guration
............ needed at
— ?he 1a§t
CSA3 iteration
FBA

I

Fast piped multiplier
(Rate=1 CSA delay)

Fig. 21

Iterations repeat until m groups in the multiplier
are exhausted. Then after the last iteration (gp)
has passed through CSA3, the loop from its partial
sum output is reconfiqured to feed to the input of
CSA3 (instead of CSA2 in previous intervals).

This serves to synchronize the flow to produce a
final partial sum and carry to the full binary
adder.

The CSA pipe has an ideal throughput rate
because input is allowed at every clock interval.
For a smaller machine, if m is equal to 6, then
the total delay in the tree for 6 iterations is
only 6+3=9 levels of CSA delays. Also the multi-
ple generation at the beginning is much simpli-
fied -- since also a simple decode of g; is needed
to shift the operands to the corresponding posi-
tions. If the shifting hardware is fast enough, a
very fast multiplier using the pipeline concept to
exploit the parallelism among iteration has been
created.

The necessity of reconfiguration at the last
iteration in the previous example may be an unde-
sirable feature, A modified scheme using three
Toops as shown in Fig. 22 will eliminate this
requirement. Then the multiples are admitted into
the pipe as before with a rate equal to one level
of CSA delay. Using this arrangement, the total
delay for 6 iterations is 6+3=9 levels of CSA,
the same as the previous scheme.

These pipelined multiplier examples have
demonstrated some important facts. In the first
place, the choice of the algorithm is quite impor-
tant in determining the efficiency of the design.
Then, strategies must be developed in trying to
reduce the clock-interval and hence improve the
speed of the pipeline. In so doing, extra care
must be taken in matching the speeds of the dif~
ferent segments of the pipe, for example, the loop
back that may create 3 or 2 levels of delay. The
physical limit of applying pipeline principles is
also exposed. Since pipelining requires the in-
sertion of latches among segments (to avoid cir-
cuit race conditions, etc.), the latter
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(Input from Decoder) v [6]
8D #4D .
— _20
16 — i — [7]
CSA1
.v/ [8]
—
CSA2 (9]
|
1 ] ,
v [10]
CSA3
(1]
FBA [12]
Fig. 22 Improved Pipelined CSA Multiplier
(Rate = 1 CSA delay) [13]
have finite delays and therefore mark the physical
upper Timit of throughput rate in any pipeline. [14]
o
V. Conclusion
Pipelined processors represent a clever ap- (18]
proach to speed up instruction processing when the
memory access time has improved to a certain ex- [16]
tent. Without having to duplicate the entire pro-
cessors n times, a throughput rate of close to n
times improvement over a nonpipelined case may be [17]
achieved. To make this possible, certain problems

have to be solved including: parallelism and busing
structure, handling of unexpected events and effi-
cient sequence control with well-designed instruc-
tion set. Special vector processing capability is
one way to specify parallelism in programs easily.
These problems and solutions are discussed and
solutions in existing machines illustrated. The
multi-Tevel application of pipeline discipline is
promising in upgrading the performance of a pro-
cessor, especially from a cost-effective point of
view and certain deserves future investigation to
generalize its application to even smaller scale
systems.

(18]

[19]

[20]

[21]
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Abstract -- Multiprocessors are defined as
a class of computer system in terms of both hard-
ware and operating system organization. The
hardware organization is characterized by the
nature of the interconnection system used be-
tween the primary functional units, memory, pro-
cessors, and input/output. The three basic
interconnection systems are time-shared bus,
crossbar switch, and multiport memory. The
three basic organizations for operating systems
are master-slave, separate executive for each
processor, and symmetric treatment of all pro-
Cessors.

Introduction
Motivation

There are four general levels at which
improvements in system performance can be made:

- Devices and circuits: the basic hard-
ware speed,

- System architecture: the algorithms
implemented in the functional units -«-
processor, control, memory, and input/
output.

- System organization: the method of
interconnecting the functional units.

- System software: the speed and
efficiency of the operating system,
translators, and other supporting soft-
ware.

Multiprocessors are a special class of system
organizations supported by appropriate system
software.

Two methods that have been utilized to
varying degrees to improve system performance
are concurrency and simultaniety:\&

o Concwuent execution of several differ-

ent programs --- Multiprogramming.

o Concwuient memory operations --- inter-
Teaved memory.

o Execution of I/O operations simuftan-
eousfy with CPU operations --- over-

1app€(y{ 1/0.
o Multiple, s{multanecus I/O operations.

(@) To refresh your memory: ‘''concurrent events''
occur during the same <interval of time;
"simultaneous events" occur at the same
Anstant of time.
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o Multiple, simultaneous operations in the
processor unit(s
oo Replicated processor units --- multi-
processing, etc.
oo Fragmented or segmented algorithms
--- pipelining.
o Multiple, si{multaneous memory operations
--~ associative processing.
It is by the use of all of these techniques that
parallelism is introduced into the system.

Multi-Computer Systems

There are a number of multi-computer systems
that are not multiprocessors. An obvious example
is the system with a stand-alone peripheral or
satellite processor. Perhaps less obvious are
the various forms of coupled systems, both loose-
ly and closely coupled, such as the IBM ASP
(Attached Support Processor) System and others
having direct electrical connections. Specific
examples and details are given in Enslow [1].

Definition of a Multiprocessor

A multiprocessor is defined in the American
National Standard 'Vocabulary for Information
Processing'" as '"A computer employing two or more
processing units under integrated control",

That definition is good as far as it goes, but
that is not far enough! The comment about
"integrated control" is extremely important, for
a multiprocessor must have a single integrated
operating system. What has not been covered by
the ANSI definition are the concepts of sharing
and interaction which are at the central core of
the philosophies of multiprocessing.

With respect to the hardware, the system
must have the capability for sharing of main
memory by all processors (arithmetic/logic unit
and control unit only) and the sharing of input/
output devices by all memory and processor com-
binations (Figure 1). There are some qualif-
ications on the requirement for sharing of aff
of the resources of any one type, but those will
be covered below.

The important aspect of interaction is the
level at which it occurs. In the multi-computer
systems mentioned above, the level of interaction
is the complete file or data set. Interaction
is basically an I/0 transfer. The operational
level of interaction allowed must be more flex-
ible. In a multiprocessor this level must be
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allowed to descend to the lowest level. Inter-
action must be possible at the physical levels
of files, data sets, and even data elements,
From the operational point of view, interaction
must be possible at the level of complete jobs,
tasks, and individual steps.

It is the combination of these expanded
concepts of sharing and of interaction at all
levels that completely characterizes the hard-
ware and software required to provide a true
multiprocessor.

0 A multiprocessor contains two or more
processors of approximately comparable
capabilities.

o0 All processors share access to common
memory .

0 All processors share access to input/
output channels, control units, and
devices.

o The entire system is controlled by one
operating system providing interaction
between processors and their programs
at the JOB, TASK, STEP, DATA SET, and
DATA ELEMENT levels.

Multiprocessor System Organizations

There are only three basically different
organizations used for multiprocessors. These
are characterized by the nature of the inter-
connection sub-system:

- Time-Shared Bus.

- Crossbar Switch

- Multiport Memory
These -are each discussed in turn., Other system
organizations that have been utilized to achieve
parallelism are

=~ Asymmetrical or Nonhomogeneous

-~ Array or Vector Processors

- Pipeline Processors
Fault-Tolerant Systems

- Associative Processors
Several of these are discussed in other invited
papers in this series and in other.

References [1,2].

3

Time-Shared/Common-Bus Systems

The simplest organization for any system,
multi- or not, is to establish a common commun-
ication path and connect all of the functional
units to it. This has been done to assemble
some simple multiprocessors (Figure 2).  They
are "simple', for the inter-connection sub-system
can be merely a multi-conductor cable. It is
often a totally passive unit, i.e., it has no
active components such as switches or amplifiers.
Transfer operations are controlled completely by
the bus-interfaces of the sending and receiving
units. The unit wishing to initiate a transfer,
e.g., a processor or I/0 unit, must determine
the availability status of the bus, address the
destination unit, determine its availability and
capability to receiving the transfer, notify the
destination what to do with the data being trans-
ferred, and then initiate the transfer. A re-
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ceiving unit has only to recognize its address
and respond to the control signals from the
sender, It is not really that simple, but those
are the basic concepts. (The single bus in the
PDP-11, the UNIBUS, has 56 lines to provide the
control lines and data paths necessary to trans-
fer words of only 12 bits.)

To add or remove functional units, the hard-
ware changes are quite minimal, in fact, almost
nothing. The units in the system must know what
other units are present and their unit and inter-
nal location addresses, but that is basically a
software problem. The interconnection sub-
system is quite reliable by its very nature, and
it is low-cost.

However, all of these benefits do not occur
without other costs. The most important of
these is the serious limitation on overall system
performance that results from having only one
path for all transfers. Interconnection tech-
niques that overcome this weakness add to the
complexity of the system.

The first step might be to provide two, one-
way paths (Figure 3). The complexity is not
increased very much, nor is the reliability
diminished substantially; however, a single
transfer operation usually requires the use of
both buses, so not very much is gained .

The next step is to provide multiple two-way
buses (Figure 4). Now there can be multiple,
simultaneous transfers; but the complexity has
greatly increased. No longer is the intercon-
nection sub-system a totally passive unit.

Logic, switching, and other control functions
must be associated with each point at which
functional units are attached to the transfer
buses.

Crossbar Switch System

If the number of buses in a shared-bus
system is increased, the point is reached where
there is a separate path available for each
memory box (Figure 5). The intercomnnection sub-
system is then a "non-blocking'" crossbar. The
adjective non-blocking is usually omitted since
it is a characteristic of the crossbar switches
used in multiprocessor systems that they are
""complete" with respect to the memory units,
i.e., there is a separate bus associated with
each memory and the maximum number of transfers
that can take place simultaneously is limited
by the number of memory boxes and not by the
capacity of the switch.

The important characteristics of a system
utilizing a crossbar interconnection matrix are
the extreme simplicity of the switch-to-function-
al unit interface and the ability to support
simultaneous transfers for all memory units.

To provide these features requires major hardware
capabilities in the switch. Not only must each
cross-point be capable of switching complete
parellel transmissions, but it must also be
capable of resolving multiple requests for access
to the same memory module occurring during a
single memory cycle. These conflicting requests
are usually handled on a pre-determined priority
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basis, e.g., I/0 first, P, has primary access
priority to My, etc.  The result of this is that
the hardware required to implement the switch can
become quite large and complex. An example that
has been cited is a system with 24 each 32-bit
processors and 32 memory units. The number of
circuits required in the switch matrix would be
two to three times the number required for an

IBM S/360 Model 75.

A characteristic of somewhat lesser import-
ance that can be significant in specific instan-
ces is the capability to expand the size of the
system by merely increasing the capacity of the
switch. There are no changes required in any
of the functional units because of the very
simple interfaces utilized, and often the switch
is designed so that its capacity can be increased
merely by adding additional modules of cross-
points. Note, that this discussion of expansion
has addressed only the hardware. The modifica-
tion of the operating system to support the larg-
er system may often prove to be extremely dif-
ficult; however, this is true for all multi-
processor System organizations.

In order to provide the flexibility required
in access to the input/output devices, it is a
natural extension of the crossbar switch concept
to use a similar switch on the device side of the
1/0 processor or channel (Figure 6). The hard-
ware required for the implementation is quite
different and not nearly so complex for control-
lers and devices are normally designed to recog-
nize their unique addresses. The effect is the
same as if there were a primary bus associated
with each I/0 channel and cross buses for each
controller/device.

Multiport Memory Systems

If the control and switching logic that is
distributed throughout the crossbar switch matrix
is concentrated in the memory units, a multi-
port memory system results (Figure 7). This
system organization is well suited to both uni-
and multiprocessors, and it is used in both.

The method often utilized to resolve memory
access conflicts is to permanently assign specif-
ic priorities to each memory port. The system
can then be configured as necessary at each
installation to provide the appropriate priority
access to various memory boxes for each func-
tional unit. Except for the priority associat-
ed with each, all of the ports are electrically
and operationally identical. In fact, the
ports are often merely a row of identical cable
connectors, and electrically it makes no
difference whether an I/O or central processor
is attached. A system which utilizes 8-port
memory units may have any mixture of processor
and I/0 units subject to the restrictions that
there must be at least one of each and the total
be eight or less.

The flexibility possible in configuring the
system also makes it possible to designate
portions of memory as ''private" to certain pro-
cessors, I/0 units, or combinations thereof
(Figure 8). This organization can have definite

advantages in increasing security against un-
authorized access, It may also permit the
storage of recovery routines in memory areas that
are not susceptible to modification by other
processors. There are also serious disadvant-
ages in other processors not being able to

access control and status information in a
memory block associated from a failed processor.

The multiport memory system organization can
also support non-blocking access to the memory
if a "full-connected" topology is utilized. It
will also permit the exploitation of interleaved
memory addresses for access by a single processor,
However, for multiple processors, interleaving
may actually degrade memory performance by in-
creasing the number of conflicts. With multiple
processors it is usually preferable to utilize
the property of "locality of reference' and not
attempt to increase the effective memory speed
by interleaving.

Comparison of The Three Basic System Organizatims

A number of factors can be considered in com-
paring the three basic organizations described
above or evaluating their use in specific appli-
cations, The most obvious are cost, flexibil-
ity, growth potential, and system throughput
capacity,

Time-Shared Bus:

0 Lowest overall system cost for hardware.

o Least complex. The interconnection bus
may be totally passive.

0 Very easy to physically modify the hard-
ware system configuration by adding or
removing functional units.

o The overall system capacity is limited by
the bus transfer rate. This may be 2
severe restriction on overall system per-
formance.

o The failure of the bus is catastrophic.

o Expanding the system by the addition of
functional units may degrade overall
system performance (throughput).

o The system efficiency attainable (based
on the similtaneous use of all available
units) is the lowest of all three basic
interconnection systems.

o This organization is usually appropriate
only for smaller systems.

Crossbar: )
o This is the most complex interconnection
system.

o The functional units are the simplest and
cheapest since all of the control and
switching logic is in the switch.

o Because a basic switching matrix is re-
quired to assemble any functional units
into a working configuration, this organ-
ization is usually cost-effective only for
multiprocessors.

o There is the potential for the highest
total transfer rate.

o System expansion (addition of functional
units) usually improves overall perform-
ance,
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o There is the highest potential for system
efficiency. )

o There is the potential for system expansion
without reprogramming of the operating sy-
stem being required.

o Basically, expansion of the system is lim-
ited only by the size of the switch matrix
which can be modularly expanded within
engineering limitations.

o The reliability of the switch, and there-
fore the system, can be improved by seg-
mentation and/or redundancy within the
switch.

Multiport Memory:

o Requires the most expensive memory units
since most of the control and switching
circuitry is included in the memory unit.

o The characteristics of the functional units
permit a relatively low-cost uniprocessor
to be assembled from them.

o There is a potential for a very high total
transfer rate in the overall system,

o The size and configuration options possible
are determined (limited) by the number and
type of memory ports available. That
design decision is made quite early in the
overall design process and is difficult
to modify.

o There is a large number of cables and con-
nectors required.

System Software

It is difficult to determine how much should be
said about system software for the types of
machines being discussed here. There is con-
ceptually little difference between the system
software requirements of a multiprocessor and
those for any other large system utilizing multi-
programming. When the functional capabilities
required in the operating system are listed

- Resource allocation and management

- Table and data set protection

- Prevention of system deadlock

- Abnormal termination

- I/0 load balancing

- Processor intercommunication

- Processor load balancing
- Reconfiguration
only the last three may be thought of as unique
to multiprocessor systems. Many of the problems
to be solved in providing the common capabilit-
ies may be more difficult to solve because of the
additional processor(s) present in the system;
however, the effective utilization of these
additional resources makes it even more import-
ant that efficient solutions be found. Other-
wise poor performance by the operating system
will destroy any cost-performance advantages
that the system might have. The efficiency of
the operating system becomes much more import-
ant in a multiprocessor system.
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There are a few special problems that appear in
miltiprocessor and other parallel systems. One
of these is the importance of short-term sched-
uling, Anomalies may occur if there are only a
few jobs to be scheduled and the order in which
they are chosen is 'tincorrect' (Figure 9c).
However, if there is a large amount of work wait-
ing for the system, such short-term effects will
not affect the total productivity of the system.

There are three organizations that have been
utilized in the design of operating systems for
mltiprocessors:

-~ Master-slave

- Separate executive for each processor

~ Symmetric or anonymous treatment of all
processors

For most multiprocessors, the first operating
system available usually operates in the master-
slave mode. This is certainly the easiest type
to implement and may often be produced by making
relatively simple extensions to a uni-processor
operating system that includes full multiprog-
ramming capabilities. - The master-slave type of
system is simple, but it is usually quite inef-
ficient in its control and utilization of the
total system resources. It is not clear which
of the other two system organizations is the
best from a performance point of view; however,
there appears to be evidence that both are sup-
erior to master-slave,

An operating system operating in the master-slave
mode has the following characteristics:

- The executive routine is always executed
in the same processor. If the slave
needs service that must be provided by
the executive, then it must request that
service and wait until the current pro-
gram on the master processor is inter-
rupted and the executive is dispatched.
The executive and the routines that it
uses do not have to be reentrant since
there will be only the one processor
using thenm.

-~ Having a single processor executing the
executive also simplifies the table con-
flict and lock-out problem for control
tables.

-~ The entire system is subject to catastro-
phic failures that require operator in-
tervention to restart when the processor
designated the Master has a failure or
irrecoverable error.

~ The overall system is comparatively in-
flexible.

~ Idle time on the Slave system can build-
up and become quite appreciable if the
Master cannot execute the dispatching
routines fast enough to keep the Slave
busy. i ‘
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- This type of system requires comparative-
1y simple software and hardware.

- This type of operating system is most
effective for special applications where
the work load is well defined or for as-
ymmetrical systems in which the Slaves
have less capability than the Master
processor.

When there is a separate executive (distinct copy)
operating in each processor the characteristics
are quite changed:

- Each processor services its own needs.

- It is necessary for some of the supervis-
ory code to be reentrant or replicated to
provide separate copies for each proces-
sor.

- Each processor (actually each executive)
will have its own set of private tables,
although there are some that must be
common to the entire system and will
create table access control problems.

- It is not as sensitive to a catastrophic
failure as the Master-Slave system;
however, the restart of an individual
processor that has failed will probably
be quite difficult.

- In effect; each processor (executive) has
its own set of I/0 equipment, files, etc.

- Because of the point immediately above,
the reconfiguration of I/O usually re-
quires manual intervention and. possibly
manual switching.

To treat all the processors as well as all other
resources symmetrically or as an anonymous pool
of resources is the most difficult mode of oper-
ation; however, the resulting benefits may be
worth the trouble:

~ The '‘mnaster" floats from one processor to
another, although several of the proces-
sors may be executing supervisory service
routines at the same time.

- This type of system can attain better
load balancing over all types of re-
sources .

- Conflicts in service requests are resolved
by priorities that can be set statically
or under dynamic control.

- Most of the supervisory code must be reen-
trant since several processors can
execute the same service routine at the
same time.

~ Table access conflicts and table lock-out
delays can occur, but there is no way to
avoid this with multiple executions. The
important point is that they must be con-
trolled so that system integrity is pro-
tected.

- The potential advantages that can accrue
"with this type of operating system
operation are:

o It provides graceful degradation

o It can provide better availability of
a reduced capacity system

o The system provides true redundancy

o It makes the most efficient use of the
resources available.
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It must be emphasized that most operating systems
for multiprocessors are not “‘pure" examples of
any one of the three classes discussed above.

The only generalization that is possible is that
the first system produced is usually of the
Master-Slave type and the ultimate being sought
is of the Symmetric type.

Today and Tomorrow

Current Situation

There is no question that multiprocessors
and other forms of parallel computing systems
are accepted types of organizations. A table
prepared by the author in mid-1973 1ififd the

haracteristics over 50 such systems.

ince that date, almost every manufacturer has
announced further systems that fall into this
category. The major factors governing future
expansion of the concepts are performance and
cost-effectiveness. '

System Performance

There have been very few careful studies of
the productivity increase attained by adding
another processor. These studies are very
difficult to perform in an accurate manner, for
there are too many variables present. One ex-
ample cited in the author's book gives a factor
of 1.8 for a two-processor system but only 2.1
for three. Much of this non-linearity is
probably due to the operating system, and dramat-
ic improvements have been attained by simple
changes in routines like the dispatcher. One
manufacturer developed formulae to predict
system performance improvements; however, these
are also quite suspect.

Cost-Effectiveness

Cost-effectiveness comparisons between
comparably sized systems of different manufact-
urers are very unreliable since the system
price often does not reflect its tru cost in any
dimension. In fact, it is doubtful that such
comparisons between systems produced by the same
manufacturer are even valid. Figure 10
illustrates some data that was derived from real
systems costs and performances a few years ago.
The starting points for cost and performance of
the Mod 1 system are taken as unity. A fully
expanded Mod 1 will provide almost double the
performance at about 1.7 times the basic cost.

A large gap then exists between the Mod 1 and
Mod 2 system which provides over 3.4 times the
performance at 2.2 times the cost. What happens
if the Mod 1 processors are used in a multi-
processor configuration? The cost-performance
curves are always below the standard Mod 1 uni-
processor due to the extra cost of the hardware
features that permit multi-processing; however,
when the capabilities of the single Mod 1
processor are saturated, then another is added
to the system along with other equipment such
as additional memory, and the cost-performance
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curve continues upwards in a fairly smooth manner.
When necessary, a third processor can be added

to continue this trend. With the multiprocessor
system there are distinct advantages:

- it 1is possible to provide a smooth growth
in system performance capabilities
avoiding the large jump from a Mod 1 to
Mod 2 system;

- there is no requirement for a major system
change-over; and

- there is a definite performance range in
which the multiprocessor provides better
cost-performance.

The disadvantages are equally obvious:

~ the multiprocessor provides lower cost-
performance for most workload levels (this
is the price that is paid for the reliab-
ility/availability improvements of the
multiprocessor); and

- the ability to continue to expand the
multiprocessor system change-over will
finally be necessary at a much higher work-
load level.

Figure 11 is not accurate in the specific
numbers and ratios displayed; however, it does
display a condition that has occurred with a
recently introduced system. The Mod A multi-
processor is little bit more costly than the uni-
processor Mod A; however, it does have the
ability to expand past the limits of the single
Mod A. In fact as the Mod A multiprocessor
expands, it provides a cost-performance factor
that is better than the next larger model from
the same manufacturer, the Mod B. The logical
questions then is why stop at a two-processor
multiprocessor. The answer is that that is the
limit of the hardware software configurations
supported for the Mod A, and the user is forced
to change to the Mod B system family.

[1]

[2]

The Future

Some have said that the general-purpose uni-

—1
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processor is reaching the limits of its capabil-
ities. This will probably happen, but it does
not appear that the limit has been reached yet.
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What is true is that the use of multiple proces-
sors often provides an easier, and often cheaper,
method to increase performance.

Several studies of the future for data pro-
cessing hardware presents arguments that large
future systems will be both multiprocessors, as
defined here, as well as asymmetric systems with
several levels of processors in the systems each

Single Buss

Fig.2: Time-Shared Bus System Organization ---

devoted to a hierarchy of functions such as main

processing, file handling, physical input/output

]

control, etc. This appears to be a much more
probable picture for the future. It may be
necessary to produce a new descriptive term to
differentiate these systems from the classic

Bus

Modif. |

Control

Logic 1/0

i

B

™

multiprocessors as described here. One such
term that has been coined is "polyprocessor'.
There is no question that the future will find
multiprocessing and the other concepts of parallel
processing in much wider use than the present.
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PARALLEL PROCESSING IN SOFTWARE AND HARDWARE - THE MASCOT APPROACH

K Jackson
C I Moir

Royal Radar Establishment
Malvern

Abstract —— Real-time computer based infor-
mation systems contain a high degree of parallel
processing outside the computer. Consequently, it
is best to consider the tasks which the computer
has to perform in support of these external
parallel processes as being executed in parallel.
A software structure is suggested which aligns
modularity with parallel processing leading to
flexibility during operational use. This software
structure is capable of implementation on either
single or multiple processor computers or a net-—
work of distributed computers. An experimental
distributed computer system being built to study
the problems of high integrity hardware configur-
ations is described. An interesting feature of
this system is the pseudo-random data transmission
network it contains.

1 Introduction

All computer based systems contain three
parts: an environment, men and software. The
environment contains sensors and actuators some
monitored and controlled by men, others by soft-—
ware. The men also inject data into the software
and are given information by the software in
return. Although the actual interactions between
these three parts are particular to any given
system, in general information can flow in both
directions between the three possible pairs
namely: environment to/from software, men to/from
software and men to/from environment. Figure 1
represents this diagrammatically. The model

enviroment

Figure 1.

Components and interactions in real-
time systems

applies equally to a wide range of systems from
air traffic control to industrial process control
and can even be applied to a computer bureau!

Three pertinent points can be made from this
model. Firstly, within the model there are many
concurrent activities; each man works independ-
ently, each sensor and actuator works independ-
ently. Therefore the environment and the men can
be considered to be sets of parallel processes.
Secondly, the degree of interaction between these
parallel processes depends upon the system. One
extreme is represented by a multiple access com—
puter where several people can use a single com—
puting facility at once but the interaction be-
tween the users is nil. The other extreme is the
dedicated command and control information system
where several people must interact with each other
and with the environment and software in order to
perform a single joint task e.g. air defence.
Thirdly there are many channels of interaction
between the three components and the channels are
open continuously.

It follows that the software in the general
model must have a large number of tasks placed
upon it. Each sensor and actuator in the environ—
ment under software control demands some attention
and each of the men who interacts with the soft-—
ware has a (possibly unique) repertoire of tasks
he can ask the software to perform. In the design
of these systems it is therefore impractical to
treat the software as a single sequential program.

The problem of dividing programs, and hence
organising software, plays a central role in soft-
ware engineering [1l]. The main tool for determin-
ing divisions within a program is that of functiomr
al decomposition; the process of repeated decom~
position continues until the units, or modules as
they are usually known, are of a suitable size for
an individual programmer to manage. When modules
have been implemented and tested individually, the
inverse process of composition - often called inte-
gration - begins. At this stage the interfaces
between modules are tested and many problems arise
due to poor or inadequate specification. In fact
there is evidence [ 2] to show that testing
(module and integration) accounts for up to 45 per
cent of software production effort in large com—
mand and control systems. During integration a
further form of modularity is introduced. The
basic units are still the most elementary functiom
al modules but it is convenient to group these to=-
gether for presentation to either a higher order
language compiler or an assembler. Finally, when
the software commences execution, a third type of
modularity is exposed. Here the unit is the se-
quential process which is separately scheduled by
a despatcher algorithm or is executed in response
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to an external hardware interrupt.

Thus, software for command and control infor-
mation systems has to perform a large variety of
tasks which are not sequentially related. The
software that is produced to satisfy this require-
ment tends to be modularised in three different
ways:

during design - by function

during implementation — by .some convenient group-—
ing for compilation

during execution - by splitting into a set of
interacting processes running apparently in
parallel.

MASCOT (Modular Approach to Software Construction
Operation and Test)[ 3] proposes a unified dis-
cipline of modularisation based upon the initial
decomposition of a program into a set of parallel
processes (with a hierarchial decomposition within
the main constituents by function as necessary).
This approach imposes a strong discipline on the
module interfaces which significantly reduces the
integration period and also gives a more flexible
end product.

2 Software Structure

Software is responsible for taking in a con-
ceptually continuous stream of data and transform-—
ing it into a continuous stream of output data.

In practice data is not continuous in form but is
guantised into units such as bytes, words or

blocks etc. Diagrammatically a piece of software
can be represented as in figure 2. The two
_—

\\

data
t
input F""‘" processing outpu
Figure 2. Elemental data processor

rectangular boxes represent the current quantum
of input data and the current quantum of output
data while the circle represents the processing
operations performed by the software in making
the necessary transformation. This diagram is
over simplified for the type of applications
being considered. Firstly we have said that there
are several parallel streams of input and output
data and therefore we need to have several input
and output data boxes. Secondly we have argued
that the data processing actions for the many
input streams of data are not serially related
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and thus instead of a single data processing
action we need several. These many processes must
intercommunicate and the only means available for
communication between parallel processes is through
common data boxes. Therefore the software struct-—
ure for command and control information systems
(and most other real-time computer based systems)
consists of a network of intercommunicating
parallel processes as indicated in figure 3.

The modular approach of MASCOT is primarily con-
cerned with establishing such a network from a

set of processes and intercommunication data areas.

input

::: L

out put

Anput output

input out put

O
_Q/

Figure 3. Network of data processors

A network of this nature can be constructed
using conventional techniques without the MASCOT
approach. However, the resulting program may
contain hidden interactions (e.g. by two pro-
cesses communicating via global data) and be con-—
sequently more difficult to debug and integrate.
It also embodies a fixed network so that if a
change is required one or more modules must be
changed and then all the constituent modules must
be link-edited to produce the total program. Con-
sequently the unit of replacement is the complete
program and this leads to difficulties in situa-
tions where 24 hours/day service is required.

In the MASCOT approach the concept of global
data is eliminated. Instead, each process must
explicitly state its total process external data
intercommunication requirements. It follows from
this approach that the result of the compilation
and link-edit phases of software construction need
not be a program but can be a kit of parts which
can be used to construct networks of intercom-
municating parallel processes. The method of
constructing the network consists of satisfying
the data requirements of each process by pointers
to data areas of appropriate types. Because this
network construction can take place after compil-
ation and link-editing, the network can be changed
dynamically.

3 MASCOT networks
At this stage it is worthwhile describing the

software structure created by the MASCOT approach
in more detail. Processes in MASCOT are called
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activities and the data processing actions of an
activity are defined by a root procedure. It is
the root procedure which has a set of formal
parameters defining the number and type (see
below) of intercommunication data areas it will
require access to when it supports an activity.
The network structure is strengthened by alloca-
ting each intercommunication data area a parti-
cular type which defines its internal structure.
The act of creating an activity necessitates the
specification of the particular root procedure
required together with an appropriate set of
intercommunicating data areas. Thus the kit of
parts for generating a network of intercommuni-
cating parallel processes contains root pro-
cedures and intercommunication data areas. These
items are known as System Elements and the set

of these items available for use in the construc-
tion stage is called the System Element File.
This file includes information about the types of
intercommunication data areas and the inter-
communication requirements of each root procedure.

Before going on to describe the construction
process in more detail, it is necessary to digress
briefly into the philosophy of activity-activity
intercommunication. The aim here was to be as
unrestricting (and therefore as general) as pos-
sible. Thus we have suggested that each type of
intercommunication data area can be interfaced to
the activities which may use it by a set of access
procedures. These access procedures can use the
minimal set of process synchronisation primitives
within the kernel (see section 4) to hide both the
detailed data structure of the intercommunication
data areas and the use of the synchronisation prim—
itives. This leads to a clean design and further
lessens the risk of interaction problems during
the integration phase of software production be-
cause the access procedures can be exhaustively
tested in advance and are usually sufficiently
small to be guaranteed correct. Using this
approach a large number of intercommunication
mechanisms can be expressed within the same very
simple framework. Two such mechanisms which have
been found useful in a variety of different appli-
cations are described below.

Each mechanism introduces a particular cate-
gory of intercommunication data area; these are
the channel and the pool. The channel category of
intercommunication data area is used for a message
passing mechanism. This has two uni-directional
interfaces implemented by a pair of access pro-
cedures: one for sending (called by the producer
activity), the other for receiving (called by the
consumer activity). It is useful to represent the
channel diagrammatically by the symbol :E (see
figure 4). Many different types of channel can
be used in a network but each channel type passes
messages in a particular format and has a buffer
with capacity to hold one or more messages in
transit. The message format and buffer capacity
are defined within the overall conventions for
channel data structures. An example of a channel
data structure and its access procedures is given
in section 4.
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Intercommunication data areas of category
pool are complementary to channels. They are used
primarily as a repository for non-transient data
which is remembered and kept up to date as time
passes. Pools are used for data bases and models
of the environment etc. and are represented dia-
grammatically by the symbol L. . No conven-
tions have been laid down for the structure of
pools nor for pool access procedures, but, as with
the channel, each different pool structure is
allocated an explicit type. It is expected that
each designer will decide on his pool structure
and use access procedures as appropriate. Typical
use of pool access procedures would be to use a
set as a data base management facility or to use
them for resource control.

The unit of construction in MASCOT is not the
activity but the subsystem. This is merely a
network of one or more activities grouped together
for convenience. The way subsystems are formed
from system elements is best understood by example.
Suppose we have two root procedures. The first
one reads text as a sequence of characters from a
channel of type 'CHARCHAN' and can recognise macro
definitions; the definitions are remembered in a
dictionary pool of type 'DICTPOOL'; subsequently
any calls of the remembered macros in the text
being read are recognised and expanded; the
expanded text is output as a sequence of charac-
ters into another channel of type 'CHARCHAN'. The
root procedure header might look like:

PROC expand = (REF CHARCHAN in, out,
‘REF DICTPOOL dictiomary):

using Algol 68 [4] notation for the parameters.
The second root procedure called 'duplicate'
takes a stream of characters from one 'CHARCHAN'
channel and copies it into two further 'CHARCHAN'
channels:

PROC duplicate = (REF CHARCHAN in, outl, out2):.

If we now wish to create the subsystem "tripli-
cated expansion" shown in figure 4 we could express
it in the following way:

FORM triplicated expansion =

(expand (input, interl, dictionary),
duplicate (transl, outl, trans2)
duplicate (trans2, out2, out3)

The FORM command (assumed to be issued via a
command interpreter facility) first checks that
each item mentioned exists as a system element
and then that the parameters which have been given
for the root procedure match the requirements as
specified in the root procedure headers. Finally
a new subsystem is created containing the (as yet
inert) three activities. Once created the activ-
ities of the sub-system can be started by a sub-
sequent command to start the subsystem. The
subsystem is also the unit of stopping and
removal.

The MASCOT approach leads to a network of
intercommunicating activities organised for
convenience into the set of subsystems which con-
stitutes the system. The system can be varied
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whilst it is operational by adding, starting,
stopping or deleting subsystems. This software
structure offers many advantages for software
production and it can be mapped on to many
possible hardware configurations.

triplicated expansion

out 1

duplicate

in expand
| out 2
|
1 diotionary duplicate :
i
\ IoutB
'
1
M e e
Figure 4. A subsystem

4 Mapping on to hardware

The software structure which has been des-
cribed so far makes no assumption about hardware
Other than that it will supply a means of execu-
ting the activities in the network. This require-
ment can be satisfied at two extremes by either
a single processor computer or by a network of
inter—connected computers having one computer per
activity. The latter solution may not be as far
fetched nowadays as it once was but for the
majority of applications the number of activities
will usually be greater than the number of pro-
cessors. Consequently there must be some means
of running several activities on a single pro-—
cessor computer. ’

The main contention which arises when attempt-
ing to run a set of activities on a single pro-
cessor is obviously the competition for processor
time. This has been solved by the MASCOT kernel
which includes a minimal set of synchronising
primitive operations and two executive routines.
One executive routine is responsible for alloca-
ting processor time on demand from external hard-
ware interrupts; the other is responsible for
allocating processor time to the base level (i.e.
non interrupt driven) activities. The kernel also
contains the procedures implied by the FORM com-
mand to create subsystems (and their activities),
and to start, stop and remove them. The kernel
has been implemented in Coral 66 [ 5] for a Marconi
Myriad computer as a very small monolithic monitor
[1] and the object code generated occupies less
than 2000 words (24 bit). This includes a
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significant proportion devoted to a monitor
facility which enables the creation of a time
ordered record of calls of primitive operations
by activities and executive decisioms.

The objective in the specification of MASCOT
kernel primitives was to identify a minimal set
which was not only necessary and sufficient but
also convenient for the handling of all problems
of process synchronisation at the basic level.
Thus all concepts of data passing via the kernel
have been stripped out. Two basic mechanisms were
identified as necessary [ 3,6] :

a) Mutual exclusion: it must be possible for
each of a set of activities sharing data
to gain exclusive access to the data
(or some recognised part of it).

b) Cross Stimulation: An activity must be

able to defer further execution until it

receives an explicit software stimulus
from another activity.

Although both mechanisms can be implemented using
the conventional semaphore with P and V operations
on it [1], it is considered that this practice
leads to confusion. Whether a particular sema-
phore is being used for mutual exclusion or for
cross stimulation in a given situation is not at
all obvious. Therefore, on the grounds of improv-
ing understandability and convenience, it was
decided to have a. semaphore (called a controlqueue
because it acts as the focal point for sequence
control operations between activities) with four
primitive operations available upon it. One pair
of primitives - TEST/CLEAR - deals with the mutual
exclusion mechanism; the other pair - WAIT/STIM
handle the cross-stimulation mechanism with the
condition that the WAIT operation can only be

used by the activity which has secured (i.e TESTed)
the control queue. To exemplify the use of these
primitives we consider a channel and associated
access procedures. Using Algol 68 notation again,
we can define a channel data structure by the
following MODE declaration:

MODE SIMPLECHAN =
(STRUCT (CONTROLQ inputaccess, outputaccess,
INT inpointer, outpointer, maximum
[ 0:31] MESSAGE data);

This channel can be used for passing messages of
mode MESSAGE (assumed to be previously defined).
The two pointers are used to indicate the position
of the next message slot to be used for input and
output respectively. They are incremented by one
after each insertion/extraction and used modulo
the maximum vdlue for the pointer, chosen to-be

20 -~ 1 for efficiency (31 in this example).

An access procedure which could be used to
put a message into such.a channel might be
written:
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PROC send = (REF SIMPLECHAN chan,MESSAGE n):
BEGIN TEST (inputaccess OF chan);
IF full(chan) THEN
WAIT (inputaccess OF chan) FI;
(data OF chan)| inpointer OF chan
MODULO maximum OF chan)] := m;
inpointer OF chan PLUS 1;
STIM (outputaccess OF chan);
CLEAR (inputaccess OF chan)
END;

where the procedure "full" delivers the value 't
'true' when all slots are full otherwise 'false'
and the operators MODULO and PLUS are self
explanatory.

The corresponding access procedure to remove
a message might be written:
PROC receive = (REF SIMPLECHAN chan,
REF MESSAGE m):
BEGIN TEST (outputaccess OF chan);
IF empty(chan) THEN
WAIT (outputaccess OF chan) FI;
m := (data OF chan)| outpointer OF chan
. MODULO maximum OF chan] ;
outpointer OF chan PLUS 1;
STIM (inputaccess OF chan);
CLEAR (outputaccess OF chan)
END;

where the procedure "empty' delivers the value
'true' when all slots are empty otherwise 'false'.

When called each of these procedures attempts
to secure the appropriate interface for use by the
calling activity. At this point the activity may
be held awaiting its turn to use the interface.
When the calling activity has possession of the
interface it may yet be held up due to the state
of the data area. If held at this point (WAIT),
flow of data across the interface ceases until a
stimulus to restart comes from the other side of
the channel; such a stimulus is only transmitted
when the change of state is likely to be of
interest to activities on the opposite side of
the channel. )

The control queue has also been included in
the control data structure for hardware interrupts
which is known as a virtual interrupt. The
primitives TEST INTERRUPT and CLEAR INTERRUPT are
similar in operation to TEST and CLEAR (the only
difference being that they operate on a virtual
interrupt instead of directly on a control queue).
The WAIT INTERRUPT primitive allows an activity
to defer further processing until a hardware
interrupt stimulus is received. Further details
of the kernel facilities and the Myriad implement—
ation can be found in references [ 3,6].

The kernel can be easily adapted to the co-
equal multi-processor type of computer. The chief
question to be answered is the extent of mutual
exclusion necessary between the processors. The
simplest if rather crude solution is to allow
only a single processor to execute within the
kernel at a time. Since the kernel has been
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designed with the utmost efficiency in mind, this
solution may be perfectly adequate. More sophis-—
ticated solutions involve selective lockouts in
crucial areas such as list manipulations and the
need to prohibit more than one processor from
simultaneously executing a primitive operation on
the same control queue.

For the multi-computer system, in addition to
the allocation of processor time to activities,
there is a further problem of allocation of activ-
ities to computers. The simplest way of achieving
this is to make the subsystem the allocatable unit
so that each unit of computing is responsible for
the execution of a set of subsystems. (This
brings in a further level in the system — sub-
system - activity hierarchy). It is useful to
note however that with this organisation of soft-
ware into subsystems it is possible to design and
implement the software first on a large single
computer. This allows the investigation of soft-
ware problems of distributed computer systems in
the absence of any of the hardware problems
associated with the distributed computer hardware.
Subsequently the software subsystems can be alloc-
ated to individual computers with a hardware link
between two sides of any channel which straddles
a computer-computer boundary. An experimental
distributed computer system, which we call FRIMP,
is being built to study the problems of high
integrity hardware configurations and the problems
associated with transferring software from a
single processor computer on to a distributed
computer system.,

5 FRIMP - Flexible Reconfigurable
Intérconnected Multi-Processor
System

There are many applications which require a
high level of system availability and integrity.
System here includes both hardware and software.
The hardware must be capable of detecting and
isolating faulty units (computer, store,
peripheral) and it must be possible to introduce
new hardware into the system whilst it is oper-
ational. This includes reinstatement of faulty
units after repair and adding new units to upgrade
performance. The conventional approach to
improving hardware availability is to duplicate,
triplicate, quadruplicate ... hardware units until
the desired cumulative mean time between failures
has been achieved. The problem introduced by this
approach is that there must be voting logic which
tends to become the vulnerable point of the hard-
ware. Another approach is the multi-processor
system having spare processor capacity that can be
utilised in the event of faults. Two problems
arise here: firstly a fault can cause untold
damage to data and programs before it is dis-
covered, thus reducing integrity; secondly, there
is a strong possibility of store contention
reducing the gain of adding extra processors. A
third approach is to have a distributed computer
system. This allows extra power to be added
without such a dramatic application of the law of
diminishing returns. Faults within a single
computer are much less likely to cause chaos in
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others especially if defensive programming tech-—
niques are employed on the computer to computer
data transfers. Online reconfigurability is
possible provided that a very reliable inter-
computer communication medium can be provided and
a suitable control strategy can be found.

FRIMP is a distributed computer
is being built in order to study the
lined above. The feasibility of the
project depends upon a reliable data transmission
medium. This must allow the necessary connectivity
(including multiple paths) to be made between
communicating devices and provide sufficient
capacity. Also the total network must not depend
on a single arbitrator at any one point. Current
work on this medium is discussed below. The other
major requirement for the distributed computer
system is a control strategy. This will be based
initially on the MASCOT approach with subsystems
being allocated to individual computers. The sub-
system allocation will attempt to keep all com~
puters as busy as possible. Thus changes may be
made to meet peaks in demand on a particular sub-
system or to redistribute the subsystems of a
failed computer. This control strategy must be
secure, yet since it involvés management of the
system's resources as a whole it is very difficult
to disperse the responsibility effectively amongst
the individual computers. Fortunately the MASCOT
concept reduces the need for global system manage-
ment operations to such an extent that, when such
operations are unavoidable, they can be done
relatively slowly. Provided that any activities
which are not affected by the global operation can
continue normally, the system will have time to
perform a self-test routine on every computer,
"elect" a leader from amongst those which pass the
test, wait for the leader to perform the operation,
and then perhaps appoint a deputy to repeat the
operation as a check. This mechanism avoids the
cost of a majority voting system applied to all
operations, but retains its security advantages in
the most critical operations, namely those which
involve the system as a whole. It also avoids the
concentration of logic at a single, vulnerable
point which is found in some majority voting
systems.

system which
problems out-
entire

FRIMP is being constructed using micro-
processors which have a micro programming facility.
This facility suggests several potential advantages
over a software only version of MASCOT. Firstly
a store protection mechanism using base, limit and
access registers will be built., This will confine
activities to their connected intercommunication
areas and, since each area can have its own
register, access time to the data will be quicker
than using indirection or indexing. Secondly it
is planned to build a micro programmed version of
the most commonly used parts of the MASCOT kernel,
whose very simple structure lends itself to this
type of implementation. Finally where an inter-
communication area is used by activities in
different computers the access procedure mechanism
could be used to trigger a virtual storage system
into either fetching the data (write or read
access) or fetching a copy of it (read only
access).
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6 Data Communications Medium

The need for a reliable data communications
medium in FRIMP has been stated above. The prob-
lem was to find a means of achieving the desired
level of interconnectivity and capacity between
the many intercommunicating devices within FRIMP.
The need for reliability and flexibility has
excluded any method involving a central vulnerable
point. This excludes single highway systems and
multiple cross—bar highway systems. Connexion
strategies where n devices of one type are con-
nected to all m devices of another are also
excluded on cost, due to the n * m expansion
factor, in addition to having a single crossing
point in some cases.

Current work at RRE is examining a communic-
ations network consisting of interconnected nodes
with pseudo-random data routing. Each device
connected to the network has its own unique code.
Messages transmitted between devices carry a header
which contains both the source and destination
device numbers and the length of the message
(0-256 bytes). Each node is a store and forward
switching centre having up to eight input ports
and up to 8 output ports, and storage for at least
one maximum length message, though in practice
more store than this would be provided. When a
message arrives at an input port, the destination
device is used to access a local look-up table
indicating the set of output ports which would be
suitable for onward transmission. The information
extracted from the table can be 'here' (meaning
the destination device is connected to this node,
'not connected' (a fault condition — the device
being sent to is not connected to the network), or
'port selection data' (if the destination device
is not local). The exact nature of the 'port
selection data' depends upon the particular
routing algorithm being used (see below). Once a
port has been selected and found to be not busy
the data is transmitted serially through it to the
next node. Figure 5 gives an example of a network
showing multiple paths between all devices not
connected to the same node.

A computer simulation of the network has been
performed using Algol 68 RT. (A variant of
Algol 68-R [ 2] which allows parallel processing).
The program has been used to investigate the prop-
erties of the network and to study the effects of
routing strategies and node design on performance.
The simulation consists of four types of process:
node, transmitter, receiver and statistical
sampler. The node process is launched as an
independent task once for each node in the network
being simulated. The transmitter or receiver
process is launched once for each device of the
appropriate type. The statistical sampler is also
the control process and it reads in a file to
define the network connectivity and define the
pattern of data packet transmission which each
transmitter will attempt to make., Data output by
the sampler, when it runs each simulated milli-
second, includes the total number of packets sent
and received since the start, the number of new
packets introduced during that millisecond and the
maximum transmission and access delays. At the



1975 Sacamore CompUTER CONFERENCE ON PARALLEL PROCESSING

end of ‘the run a histogram is printed which indic-
ates theddistribution of transmission and access
delays during the simulation run.

Using this model two different node processes
have been tested. The first one imposes a fixed
2 byte packet size on transmissions through the
network, and the routing data in the look-up table
contains in addition to 'here' and 'not connected’
either 'clockwise' or 'anti-clockwise'. Ports are
marked 'clockwise' or 'anti-clockwise' and so the
route essentially gives a choice of one of two
sets of output ports. The algorithm chooses the
first one it encounters which is not busy. In the
second node process the look-up table gives a
first choice port and a second choice port. The
ports are examined in that order. Also in this
simulation the packet data length is variable in
the range 0-256 bytes. One surprising fact which
has emerged from these simulations is that the
characteristics of the network are not signific-—
antly changed by altering the node algorithm, but
in both cases a deadlock situation can arise if
all nodes are allowed to accept all the data they
are offered and can accommodate. Therefore a limit
has been set which stops a node accepting 'new'
data (i.e. data from a device connected to that
node) if the proportion of the node storage
occupied exceeds a given limit. Data passed on
from other nodes is still accepted and further new
data is also accepted as soon as the peak is
passed. Each node acts entirely autonomously in
this way, monitoring only its own traffic, and is
therefore not vulnerable to failures elsewhere in
the network. The other surprising fact is that
independently of connectivity and transmission
pattern, imposing a limit on the rate at which new
traffic is accepted actually improves the overall
throughput of the network and reduces the maximum
transmission delays. A limit which blocks inputs
when 757 of the available storage in a node is
filled is sufficient to prevent deadlock even
under saturation conditions (when every trans-
mitter generates data as fast as the network will
allow), but a lower limit gives the best through-
put. The graphs in figure 6, for a 16 port/node
simulation, show the rate of acceptance of new
packets (roughly equivalent to throughput), access
delays and transmission delay as traffic increases
plotted against the number of busy ports limit.
This phenomenon is being vigorously investigated
and the simulation work programme includes an
investigation of techniques for adaptive route
changing which can be applied independently at
each node.

Conclusion

The MASCOT approach allows design of real
time computer based command and control infor-
mation systems in terms of a network of inter-
connected parallel processes. This design can
proceed independently of the eventual computer
configuration. The network of processes can be
implemented and run on a large machine by provid-
ing the small MASCOT kernel. Then it can be
implemented on the target machines, if necessary
changing the programming language in the process
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but keeping the same modular real time parallel
processing structure. This form of modularity, it
has been proved, significantly reduces software
integration time and promises the possibility of
re-usable program modules because of the tight
discipline which forces explicit specification of
each activity's external data interface.

The MASCOT modular structure is also very
suitable for applying a distributed computer
system to a single overall task (e.g. air defence,
air traffic control). A distributed computer
system is being built, using micro—processors, as
a vehicle for validation and experimentation.
Initial simulation studies of the proposed commun-
ications network for the distributed computer
system indicate that it will meet its objective
and also indicate some interesting properties
which will be investigated together with the
possibility of adaptive route control at each node.
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Figure 5. Random network example
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Abstract -- A parallel and pipeline processing
implementation scheme termed RSRP is considered.
It consists of parallel functional pipes sharing
resources at strategic locations. The sequencing
problem for RSRP systems is considered first from a
theoretical point of view, by characterizing its
intrinsic complexity using a convenient classifica-
tion termed "inherently difficult". From this re-
sult, the semi-exhaustive nature of an optimal
strategy is justified. However, for Tow level of
implementation, faster heuristics are necessary.
Some simple efficient heuristics were compared us-
ing experimental simulation on systems whose models
were based on some existing machines.

1. Introduction

The study of computer architecture coupled
with technological advancement has blossomed in
many ways. In developing new processing techniques
and organizations for amplifying the computing
power available from a computer system, both paral-
Tel and pipeline processing techniques are favora-
ble candidates. They actually revolve around the
same concept: overlapped operation among the facil-
ities or modules in the computer system. By over-
lapping, more tasks could be executed at one time.
Consequently, higher utilization and throughput
rate are within reach. As a co-product, the turn-
around times of computing jobs could be improved
which may be an important requirement in some real
time applications such as weather forecasting, air
traffic control and other real time processes.

In a parallel processing architecture, usually
there are numerous processing elements which could
execute independent instructions or task(s) con-
currently. In practice, due to the limitation on
the memory-processing element relationship, most
parallel processing exists in a form of array pro-
cessing where identical processing elements are
executing the same instruction for some array type
of computation. So a SIMD characterization [1]
fits array processing very well. Well-known array
processing machines include ILLIAC IV, STARAN and
PEPE [2-4]. On the other hand, a more general MIMD
structure where different instruction streams are
being executed can also be seen in the PEPE machine
since there are three identifiable different con-
trol-PE paths so that three different instruction
streams can feed into the 288 processing elements
with parallel instructions to be executed. How-
ever, a general parallel processing system with
powerful autonomous identical processors to execute
MIMD streams is still an uncommon super-giant,
though parallel processing at a lower level, namely
among smaller logical elements, is a common prac-
tice.
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Pipeline processing can be characterized by
the SISD classification because a pipeline may
commence operation on one set of data for some
instruction per minor cycle. Since a processing
phase is being decomposed to several sub-phases
executed on autonomous functional modules in a
pipeline processor, the overlapping among the pro-
cessing of consecutive instructions provide the
amplification of throughput desired. As the sub-
modules are usually cheaper than a complete module,
therefore pipelining is useful to speed up opera-
tions in processors in a most cost-effective man-
ner wherever possible. It is applicable to many
levels of a processor design. In a higher level,
the instruction processing is pipelined into many
phases such as instruction fetch, decode, operand
fetch and execute in the IBM/360 model 91, 195,
etc. [5]. To speed up a CPU further, execution
units can be pipelined for performing the arithme-
tic operations as in TIASC arijthmetic units and
the CDC STAR-100 machine [6-7].

Parallel and pipeline processing techniques
are complementary in achieving higher throughput,
and it is by no means surprising if a person dis-
covers the presence of both in a computer system
such as in the STAR-100 and PEPE machines. In
this paper, a modeling of parallel-pipeline pro-
cessing is established for the discussion of
throughput and sequencing control in a system with
parallel functional paths (pipes) sharing some
strategic resources, termed a Reconfigurable
Shared Resource Pipeline (RSRP) system, Sequenc-
ing in a parallel-pipeline system is a vital acti-
vity in order to fully utilize the overlapping
modules in the system because a continuous stream
of instructions should be provided and executed
with as Tittle disturbance as possible to the sys-
tem configuration. In this way, the system re-
sources can be kept in a busy state to produce
useful outputs.

The importance of scheduling or sequencing in
a parallel or pipeline machine can be reflected by
the enormous research efforts devoted to the study
of optimal algorithms for them. There are roughly
two Tines of research to be followed. First is
the development of optimal sequencing algorithms
for a deterministic task system where task prece-
dence relationships and execution requirements are
known [8]. The other is a more realistic model
where a stochastic precedence relationship or exe-
cution time is allowed in the task system [9].
The optimal algorithms should be able to derive an
optimal schedule for executing a given task system
under specified conditions in a very efficient
manner. Their qualities are judged mainly by
their average speed, and sometimes their worst
case performance [10]. Since 'average speed' is
difficult to define and compare both qualitatively
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and quantitatively, the Tatter figure of reference
is adopted by many people. For instance, essen-
tially enumerative methods are considered poorer
than simple systematic procedures that require a
'well-bounded' number of iterations or steps before
its termination even in the worst situation.

Unfortunately, due to inherent characteris-
tics, even under the most simple deterministic
model, scheduling in general is quite difficult.
Over the years of research, only three special
cases were found to possess simple optimal algo-
rithms. They include (1) a tree type of precedence
relationship for a task system with unit execution
time per task [11], (2) a 2-processor system exe-
cuting a task system with unit execution time per
task [12], (3) a two-facility pipeline system with
variable speeds [13].

In this paper, the sequencing problem in a
mixed parallel-pipeline architecture, the static
and dynamic RSRP systems to be explained later,
will be explored. The design and control of these
two types of RSRP systems will also be discussed.
Although a RSRP system does not necessarily fall
into the framework of a general parallel processing
system with identical processors, the inherent dif-
ficulty behind optimal sequencing in both static
and dynamic RSRP systems will be characterized in
order to justify the use of a semi-exhaustive ap-
proach to optimal sequencing and simple near-opti-
mal heuristics in some practical situations. Fi-
nally, the heuristics for static and dynamic RSRP
systems whose models are derived from existing sys-
tems will be compared with some experimental simu-
lation.

2. Modeling

The processing phase within a computer system
can be described by many possible models, based on
the objective of modeling. For some purposes, a
very detailed modeling is necessary. But for
others, a simplified model helps the analysis and
reveals the most important characteristics of the
actual system. In most cases, system modeling re-
volves around a graph structure. Sometimes, addi-
tional semantics of tokens provide the additional
information desirable. For example, marked graphs
or Petri Nets [14-15] can be used to describe the
exact operation and synchronization of a modular
system.

For the purposes of this paper, we are con-
cerned with the throughput of a complex processing
system which has a structure describable by the
various functional paths (pipes) within the system,
sometimes with some strategic resources being
shared among the functional paths. Under this pro-
cessing organization, both parallel and pipeline
processing characteristics emerge. Pipelining is
recognized because a functional path is composed of
a sequence of modules each performing some phase of
processing in an overlapped mode with the others.
Simultaneously, parallel processing may be achieved
because concurrency of execution may take place
among the various functional paths (pipes), analo-
gous to the Multiple Instruction Multiple Data
(MIMD) stream type of computer systems [1], As a
result, independent tasks or instructions are
guided through the different required functional
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paths in a pipelined manner with the objective of
getting the most utilization from the system re-
sources and hence the highest throughput rate pos-
sible, For obvious reasons, such a processing sys-
tem will be named Reconfigurable Shared Resource
Pipeline system (RSRP),

There are two kinds of RSRP systems which
will be considered here -- static and dynamic RSRP
systems, A static RSRP system is less flexible
and Tess intelligent in the sense that at any time
instant, only one configuration or functional pipe
may be active. Therefore pure pipeline character-
istics exist, though over-a time period different
pipes may be excited. This design has the advan-
tage of less control circuitry and overhead needed
in monitoring the routing of operands and gating
activities in the pipeline segments. This also
has the obvious disadvantage of less overlapping
in other inactive paths and hence reducing the
opportunity to achieve maximum throughput. Some
simple static RSRP systems can be observed in the
arithmetic unit pipes in computers such as TIASC
and CDC STAR-100 [16-17]. 1In the example of TIASC
systems, the machine has fourteen different groups
of instructions. For a group of instructions in-
volving the same pipeline configuration, if the
needed operands are fetched fast enough, the arith-
metic unit can produce a fastest throughput rate
of one result per minor cycle. However, to avoid
excessive switching, only one active configuration
or pipe is allowed at any time. On the other hand,
a dynamic RSRP system permits concurrent process-
ing in the various functional paths (pipes) with
some additional control to route operands to cor-
rect transitions, Therefore, simultaneously sev-
eral functional pipes may be active, although col-
lisions at a shared resource have to be either
avoided or resolved by proper buffering and se-
quencing control. There are certainly some trade-
offs between a static and dynamic RSRP system.
Here their performance under some sequencing rules
will be studied,

Hence, formally a RSRP system will be repre-
sented by a modified digraph consisting of a 3-
tuple G = (N,A,P) where N denotes the set of facil-
ity modules or nodes, A the set of transition arcs
among the facilities, and P the set of legal func-
tional paths (pipes) in the system., Sometimes
when used in a deterministic model, it can be ex-
tended to a quadruple G' = (N,A,P,T) where T pro-~
vides the additional information about the execu-
tion speeds of the facilities in N. With this,
the analytical throughput rates of the pipes under
no interference conditions are computable, Notice
that not all possible paths in the digraph are
legal paths because there may exist configurations
that do not have logical meaning and their activa-
tion will produce erroneous outputs,

3, Collision Avoidance

Given a dynamic RSRP system, some determinis-
tic analysis will be useful for controlling the
operation of the system for optimization purposes
under different operating assumptions [18], Be~
cause of the presence of shared resources and mul-
tiple tasks currently being executed by the system,
care must be taken to accommodate the occurrence
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of collision. A collision occurs when two or more
tasks try to access the same facility at the same
time. When a collision has occurred, the system
control must have built-in (hardware or software)
collisions resolvers and/or buffers of some kind
in order that proper execution can continue at its
normal pace.

Similar to other undesirable events, a colli-
sion can be either prevented or resolved. If pre-
vention is the goal, some global sequencer may be
designed so that a task, once initiated, will not
cause any collision with other tasks still resident
in the pipeline system. This further implies that
a task will 'flow' through the RSRP system without
any waiting inside after its admission. This goal
has the advantage that implicit requirements on
intermediate buffering capabilities between facili-
ties are not imposed. But then it loses some
chance in enhancing more overlapped operation pro-
vided by sufficient buffering.

An almost exactly analogous situation between
a dynamic RSRP system and a traffic network can be
drawn up easily. A sharedresource corresponds to a
traffic junction. Under a deterministic assumption,
the exact speeds of vehicles and the lengths of
blocks of roads are assumed known. Cars may then
be admitted under a global controller which will
allow entrance at some pre-determined sequence of
the synchronization signals. On the other hand,
internal buffering may be used to avoid collision
at a junction in a similar way as the use of traf-
fic signals. Of course, excessive traffic conges-
tion on one route will result in the overload of
'buffers' -- an expected phenomenon of an i11-
balanced dynamic RSRP system. Sometimes, remedy
may be sought by dynamically changing the periodic
ratio of traffic signals for the junctions involved.
In particular, the heavily loaded direction may be
favored to relieve the unbalance -- simjlar to a
dynamic priority assignment to shared resources
among the different related processing paths.

For the immediate discussion, the collision
avoidance technique in a RSRP system will be tac-
kled. This is especially important when pipelining
is implemented in a very Tow level (in order to
achieve the ultimate speed). Then the speed of a
typical facility node may be of the order of 50
nsec. and therefore intermediate buffering demands
comparatively excessive static and dynamic over-
head (since the cost of intermediate buffers will
be almost the same as other component costs and the
total delay of the pipeline may be doubled). Con-
sequently, except for simple operand routing, addi-
tional buffering between facilities may be undesir-
able when pipelining is performed at a very low
Tevel.

When sufficient buffering is absent, collision
inside the pipeline system has to be avoided by a
global control mechanism. In [19], a reservation
table approach is suggested for sequence control of
a linear pipeline with a single configuration.

From a static reservation table, the initiation
procedure (of a certain periodic Tength) is chosen
such that highest throughput rate is attainable
with complete collision avoidance. For a multi-
functional RSRP system, a similar approach utiliz-
ing a two-dimensional collision matrix is possible.
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As the name implies, a collision matrix is a gener-
alization of a one dimensional collision vector
characterizing the relationships among the func-
tional paths.

Each entry in the collision matrix contains
information regarding the collision relationship
between the two pipes concerned. Specifically,
the (i,3)th entry represents the time intervals
after the initiation of pipe i so that the excita-
tion of pipe j will not cause a collision inside,
For example, {(2,6),(10,17),(20,%)} in the (i,j)th
entry means the excitation of p1pe ﬁfter pipe i
can take p]aﬁe between the 2"d and 6t cycles, or

h'and 17t cycles, or after the 20t cycle.

Each entry in a collision matrix may contain sever-
al time intervals instead of a single one because
the two pipes involved may share more than one
resource, thus introducing more sites where colli-
sion may occur. As an example, the dynamic RSRP
system in Fig. 1 has a collision matrix as shown.

Py: 1-2-3-4
Pp: 1-5-3-6

2 (Speed of each facility
is as labeled.)

Collision matrix:

t-” = (]5s°°)
t1 = ((4,10),(16,2))
tp = (&)
tao = (4]

Fig. 1

Example Collision Matrix

The (1,1) entry is (15,») indicating that pipe 1
can be excited at regular intervals of 15 cycles
or more because the slowest facility in pipe 1
generates an output in every 15 cycles and so
forms the bottleneck of the pipe. The (1,2) entry
is {(6,10),(16,2)} because pipe 2 may collide with
pipe 1 at facility 1 as well as facility 3. The
(0,4) interval characterizes collision at facility
1 and (10,16) at facility 3. Notice that the
(2,1) entry is single-valued despite the fact that
pipes 1 and 2 share two resources. This is so
because once pipe 2 is excited and has passed
through facility 1, there is no way for the task
in pipe 1 to catch up. The flow-chart of the
algorithm which can be used to construct the col-
lision matrix given (N,A,P,T) is illustrated in
Fig, 2. It represents the procedure in generating
the (i,j) entry. For simplicity, if pipe i and
pipe j share a sequence of consecutive facilities,
the latter are grouped together with a composite
throughput rate equal to that of the slowest facil-
ity in this group. Also the time to reach and
leave the composite facility will correspond to
that for the slowest facility in the group.

With this collision matrix, an external glo-
bal sequencer may sequence instructions or tasks
according to some sequencing rule or algorithm and
initiate them so that no collision will occur in-
side the RSRP system., Naturally one wonders what
sequencing rules should be used given a task sys-
tem. Should the sequencer try to minimize the
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Is kth facility
n Py also in P,?2

A collision site
may have been found.
Calculate TR(i), TR(j),
TC(i), TC(§).

Create new time intervals
(0,TR(1)-1C(3)) and
(TC(1)-TR(3) ,®) .

Yes

Create new time inferval
(TC(1)~TR(j) ,»)

I
4

Form appropriate overlapping
products with previous time
intervals generated.

!

TC(i) = time to leave the collision site via pipe i

Notation:
TR(1) = time to reach the collision site via pipe i
Overlapping product:

Illustration: Suppose previous time interval is (4,®) and the newly

generated are (0,7) and (10,%). The resulting intervals
will be (4,7), (10,%).

Fig. 2 Flow-chart for Constructing
Collision Matrix
execution time of the task system? What is the
gain-overhead tradeoff? Is optimal sequencing in-
trinsically difficult? These problems will be the
subject of the next section.

4., Theoretical Basis of Sequencing

To justify the use of a semi-exhaustive tech-
nique to perform optimal sequencing, a study of
its intrinsic difficulty will be included. The
classification of 'difficult' problems using 'poly-
nomial completeness' will be used.

A big class of combinatorial problems requires
the determination of certain properties in graphs,
integer arrays, boolean functions and finite sets.
Through the use of suitable encoding, these pro-
blems can be transformed into language recognition
problems over a finite alphabet. Then one could
test its intrinsic complexity by developing a con-
clusion as to whether there exists a fast recogni-
zer for the language. Based on the 'satisfiability
problem', the class of polynomial complete (PC)
recognition problems are characterized so that if
any possesses a 'fast' algorithm, it can be modi-
fied to become a 'fast' algorithm for any other in
the class ('fast' means the algorithm terminates
in a polynomial bounded time) [20-21]. Falling
into the PC class of problems include well-known
combinatorial problems such as 0-1 integer program-
ming, set packing, node covering, set covering,
Hamiltonian circuit, knapsack, etc. It has also
been conjectured, with strong circumstantial evi-
dence, that no PC problem has a fast algorithm.

It is nice to be able to classify languages in
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the previous way. But optimization problems in
general do not restrict themselves to a Yes or No
type of answer supplied by a recognizer. More
generally, a minimization or maximization of some
objective function subject to constraints is in-

volved, So an extension of the PC classification
is useful,
Definition. A PC problem L is reducible to

an optimization problem P (L < P) if and only if
there exists a polynomial bounded time transforma-
tion F from S to Sp and a simple recogn1t1on func-
tion G such tkat Xe L« G(Z(F(X))) = 1 where S
and Sp are spaces of problem specification for L
and P, XeL denotes X being recogmzed (Yes out-
put), and Z(F(X)) is the output left in the opti-
mization problem P with specification F(X), cor-
responding to its optimal objective function value.
The optimization problem P is said to be inherent-
1y difficult if there exists a PC language L < P,

Therefore, if an inherently difficult problem
has a fast optimal algorithm, then Z(F(X)) can be
generated in polynomial bounded time. Further, it
implies X can be recognized in polynomial bounded
time by simply concatenating output to the fast
recognizer G. Consequently, L will have a fast
algorithm, But because of the conjecture, no PC
problem exhibits this property. So inherently
difficult problems do not seem to possess any fast
algorithm,

As an illustration of this notion of inherent
difficulty and an aid to later proofs, the follow-
ing example assertion is provided.

Lemma. The traveling salesman problem (TSP)
is inherently difficult.

Proof. The traveling saleman problem is to
find a shortest tour (through each city once and
only once) given a (directed) graph indicating all
the routes between them. For our discussion in
this paper, let us assume that there exists an arc
between any pair of nodes in the TSP. It will be
shown that the (directed) Hamiltonian Circuit Pro-
blem (HCP) which is known in PC is reducible to it.
The procedure is as follows, Given the HCP speci-
fication, attach a cost of 0 to all existing arcs
and a cost of 1 to arcs that have to be added (see
Fig. 3 as an example). This completes the F-trans-
formation,

Given HCP

Transformed to TSP

Fig. 3 Reduction of HCP to TSP



1975 Sacamore CoMPUTER CONFERENCE ON PARALLEL PROCESSING

Define

1 =0
G(Z(F(x))) = {

0 otherwise.

Clearly, both F and G are polynomial bounded in
time, and hence HCP < TSP. In fact, the resulting
TSP has a shortest tour of zero cost if and only if
the original HCP has a tour or circuit, Q.E.D.

Now one should realize that if sequencing pro-
blems are polynomial complete or inherently diffi-
cult, perhaps he should not be too ambitious to
create a polynomial bounded time optimal algorithm,
Sometimes, simple near-optimal techniques should be
used. The 'inherently difficult' classification is
quite useful because general optimization problems
such as minimization of execution time or critical
resource of a task system by a multiprocessor sys-
tem can be found to belong to it [22]. Here, let's
focus on the sequencing problems for pipelines.
Observe that multiple pipeline processing is a type
of multiprocessing, so that some results obtained
for multiprocessors are readily extendable to it.

Let us deviate a little bit for the time being
from a deterministic RSRP system and consider a
linear pipeline executing a task system whose tasks
have distinct execution time vectors on the facil-
ities concerned. This problem will also form the
basis of the sequencing discussion in RSRP systems.
Here, the inherent difficulty of the sequencing
problem of a Tinear pipeline with different tasks
will be proved first.

Theorem 1. Under the assumption that a task
should not be initiated if it would cause a colli-
sion inside the system, the minimum execution time
of a given task system (with different execution
time vectory is given by

N
min [ d,. + t .]
s (mZ)eS‘J 321 "
where S is an ordering of the tasks to be executed,
tj; is the execution time of task i on facility j,
dijj is the delay caused by initiating task j after
task i, and r is the index of the last task in the
sequence S.

Proof.

d. .
(i,y)es ™
all of the tasks.

(See Fig. 4 for illustration.)
provides the total delay in initiating

N

The last term ) t . will there-
i=1 "

fore complete the total execution time of the tasks

Facility
Fa [ 1] 2 3 |
F3 1 2 3
1 2 3
1 | 2 |3
4 Time
| Zdij I jz]t&]‘ —|

Fig. 4 Execution times of a linear pipe
with variable execution times
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by the pipeline, (Observe that the collision
avoidance assumption here guarantees the same or-
dering of tasks as they leave the pipe.) There-
fore the minimum execution time of the task system
corresponds to the minimum of the expression for a
certain sequence S, Q.E.D.

In exploring the intrinsic difficulty of this
problem, let us be more general and assume that we
want to minimize the execution time of a task sys-
tem on a 'perturbed' pipeline. The perturbation
is used to describe that there is still some pre-
vious task executed on the pipe. It therefore
fits very well in a local optimization scheme of
task systems in a stochastic environment where a
continuous stream of task systems is available for
sequencing at some time intervals. Situations
where there is no perturbation can be taken care
of by ignoring this parameter. Under this assump-
tion, the following theorem is derived,

Theorem 2. The aforementioned sequencing
problem is inherently difficult.

Proof. The traveling salesman problem (TSP)
proved to be inherently difficult (Lemma 1) and
can be shown reducible to it. Optimize

N
min [ d.. + Yt . +d(S)]
S (uz)es Wm0

where do(S) is the perturbation (measured in de-
lay) due to previous task system to the sequence
S. Now the similarity between this problem and
the TSP suddenly reveals itself. Observe that the
sequencing problem is actually equivalent to find-
ing a cheapest trip through m+1 cities once and
only once starting at some city (perturbed state)
and then leaving the last one to a sink with a

N
cost of ) trj' Therefore a given TSP can be re-

J=1
duced easily by adding a fictitious node t and arc
(i,t) for all nodes 1 inthe original TSP with costs
d;jt by choosing an arbitrary starting node p. The
resulting specification is solved as a sequencing
problem whose optimal solution is obviously an op-
timal solution for the TSP (with node p as the
perturbation state) because any shortest trip
through the m+1 cities to the sink t will corres-
pond to a shortest tour through the m+1 cities
(see Fig. 5). To complete the proof, we have to

TSP

Transformed into a sequencing problem as:
(starting at node k) cheapest trip from k,
through T to sink s

Fig. 5 The reduction of TSP
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show how to derive the specification for the se-
quencing problem given the specification of a TSP
of the reduced form. The procedure is done induc-

tive1¥. Assume it has completed k cities. For the
(k+1)Th city, extend the k-task system table to a
(k+1)-task system as follows:
Facility
Task 1 +---e nintl «.... n+2k
1
2 J
k
k+1]  ceeee | eeees
th . .
For the (k+1)"" city, assign
tg = execution time of the ith task on
 facilities 1 through j, j =1,2,...,N
sg = (slack) execution time of task i on
facility j.
Then let
ntl _ .n
Skl T Y
sM2-T o a0, 11213 ¢ m2i-2 for
k+1 i k+1 i=2.3 K
n+2i-1 _ n+2i-2__n+2i-3 TGt
¥ = max{O,tk+] -t }
n+2i
S. = d.
i bk e 1,2, 0k
Sn”'Z]r =d
k+1 k+1,1
(dij are city distances in TSP).
A11 other unspecified sg = 0.

Then the complete task system for (k+1) tasks will
be specified, and inductively, their delays after
one another are precisely the respective distances,
By construction, the starting city t represents the
perturbed state (task 1) of the pipe which is ini-
tially present and causes delay to any sequence de-
noted by do(S). To complete the picture, the arc
distances to the sink djt have to be modeled into
the tasks system. Suppose the number of facilities

so far is q. Compute
o M
and let
3T =g - td
S?+2i =i

With this, the return distances from any node to

the starting node p is modeled into sq+21 while all

tasks will have the same remaining exécution time
from facility 2 to facility gtm+l. The return dis-
tances are included as additional execution time on
some later facilities. [If the sequencing problem
has a fast algorithm, so does the TSP. Q.E.D.

This theorem therefore asserts that even for
a linear pipeline, if the task execution time on a
facility is variable, then optimal sequencing under
collision avoidance assumption is inherently
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difficult. Consequently, the optimal sequencing
for a nondeterministic RSRP system under similar
situations will also be inherently difficult.

If, however, the facilities have fixed speeds,
will the optimal sequencing problem be simpler?
Two different cases will be studied, and in both
cases, static and dynamic RSRP systems, optimal
sequencing is inherently difficult in general.

Theorem 3. The sequencing problem for a sta-
tic RSRP system with reconfiguration cost is inhe-
rently difficult.

Proof. Observe that if more than one pipe
can process some task, then trivially from D(3),
the problem will be inherently difficult. So let
us assume this is not so. Again, a reduction from
the TSP will be used. Recall a static RSRP system
permits one active pipe or configuration at one
time. If a different configuration is needed, an
extra amount of waiting for flushing the system
and establishing the desired configuration will be
necessary. Let

Oi' = overhead of ith configuration to the
J jt configuration.

Then given a task system with task i going through
a pipe, say u(i), the total execution time will be
minimized if and only if
L.+
i P % "
(U (1)su ' (3))es

is minimized where

t_ = execution time of the last task in
the sequence S.

By a similar argument to Theorem 3, obviously
TSP = static RSRP sequencing .

The variable t, corresponds to the distance from
the last city visited to the original city. (Whe-
ther the perturbed state exists or not is irrele-
vant here. Also observe that no assumption has
been made on the precedence relationship of the
task system, The theorem holds whether or not
this is empty.) Q.E.D.

So general optimal sequencing algorithms for
static RSRP systems are complicated by prediction.
Apparently, for the more flexible dynamic RSRP
systems, where more overlapping among parallel
pipes is allowed, the problem will be at least as

difficult. Indeed it is so and can be cited as a
theorem.
Theorem 4. Optimal sequencing in a dynamic

RSRP system is inherently difficult.

Proof. A similar reduction procedure from
the TSP can be constructed. First, given the spe-
cification of a TSP of m cities, add a fictitious
sink node t and arc (t,i) with cost 0 and arc
(i,t) with cost t, for all i=1,...,m and some tg
to be determined. Trivially, the solution of the
resulting TSP will also yield the solution of the
original TSP. Next try to reduce the resulting
TSP to a sequencing problem in a dynamic RSRP sys-
tem. The TSP is to minimize d..+t where

(i,i)es ™ °

S is a sequence of traversals of the cities. The
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transformation is similar to that in Theorem 3.
The procedure is done inductively, assuming having
completed the task spec1f1cat1on for k cities.

Then for the (k+1)th city, expand the task table:

tJ = execution time of 1th
i through j,

task on facilities

sg = (slack) execution time of task i on
facility j.
Let
n+2i-1 _ nt2i-2  n+2i-3
S = max{0, teel -t }} for
E:$1 -1 _ max{0, tn+21 -3 tEi$1-2} i=2,3,...,k
n+2i
S. = d.
o LR eor 21,2,..0 0k
siiél = d
k+1 k+1,1
ntl _ .n
Skl T Y

After the RSRP system is completed for the m+1 ci-
ties, let us assume the number of facilities so far
is q. Compute

t = max 9
°  i=1,....m#1 !
and let

q+i _ .9 .
S5 t0 ti i=71,...,mtl

and all other unspecified s% = 0. This completes
the RSRP specification whose optimal sequencing
solution turns out to be precisely Jdjj+ty because
by construction, the delay of executing task j
after task i is precisely djj and also each facil-
ity has the same speed if djj = dji (which holds
for a TSP in an undirected graph) Hence if the
sequencing problem in a dynamic RSRP has a fast
algorithm, so does the TSP. Q.E.D,

These results indicate the necessity of simple
heuristics (near-optimal) to be used in sequencing
under the different conditions discussed. Some
simple heuristics will be discussed in the next
section. Meanwhile a semi-exhaustive approach to
generate an optimal sequence for a dynamic RSRP
system will be included to complete the discussion.
Its application may be justified when the RSRP sys-
tem is implemented at a high level so that each
facility is actually a large computing module for
performing specific computations. Also, in some
cases, static local optimization for RSRP systems
may be used to increase the throughput. Then an
optimal sequencing algorithm for statically se-
quencing the pipes will be needed. So the follow-
ing optimal algorithm is included. First, a theo-
rem has to be developed.

Theorem 5. When maximum overlap in execution
among all functional pipes is desired, the execu-
tion time of a given task system Sg, Sy is bounded
by

LB(Sf)
= max{T (Se)+ ] tyy+minl ) t
JeS jeSr k following i

where
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T.(Sf) = completion time of the partial schedule
on facility i containing the set of
tasks S¢,

tij = execution time of task j on facility i,
Sf = a partial schedule for the task in S
Sr = remaining tasks to be scheduled,

f,

Proof. T;(Sf¢) yields the time facility i

becomes ava11ab1e for any task in Sp, and ) tij
JeSy

corresponds to the minimum additional time to f1n-
ish the remaining tasks on facility i. The term
min ) ‘tkj gives the time needed for
jeSy k following i
the fastest task to leave the pipe after leaving
the ith facility. Then their sum will naturally
form a lower bound on the execution time of
{Sf’sr}' Q.E.D.

With the above lower bound, one could devise
a branch and bound algorithm to locate the optimal
sequence as follows. For simplicity, we will con-
sider only a list sequencing method, that is, the
tasks will be ordered in a list to be executed
according to the priority indicated in the list.
The extension ¢o an exact initiation schedule can
be easily established.

Algorithm Search. Let S =

i=1, Tc=Ty and Mark T,
Step 1: Among the ready tasks in S not yet in T,

task system, T, =9,

say this set is Sc={uy,... Create
T,,T1+1, . T1+p-1 such that ?1+k Tc,uk+1) for
k=0,1 ...,p -1." Obtain LB(Tj4y). Let i=i+p-1.
For all Tj, (Jo<1) such that TTJ | =1S], a fea-

sible solution has been found. Fathom (discard)
all Ty (j<i) such that LB(T) >LB(Tj,).

Step 2: Among all Tj (j < i) unfathomed and un-
marked, choose oné with smallest LB(TJ1) and let
Mark TJ'1 and repeat step 1. 'If no

other is available, the only feasible solution
unfathomed will be the optimal solution. So
halt. This procedure obviously will halt since
there are only N! possible sequences and there
always remains one feasible solution unfathomed.

TC=TJ'-|.

The inherently difficult characterization
propels one to believe that optimal sequencing in
the dynamic situation may involve enormous over-
head which causes a degradation in performance
instead. Even after a task system (in a deter-
ministic or partial stochastic sense such as in a
lookahead type of sequencing) is identified to be
sequenced, any optimal sequencing strategy devel-
oped for the general case, as the characterization
is conjectured, will incur some decision disci-
pline that takes a long time (if implemented by
software means) or a large additional cost of
hardware (if implemented by hardware and firmware
mechanisms) or both. Also, what is optimal in a
Tocal task system may not be optimal in a more
'global' or larger task system that the former
belongs. Under these circumstances, naturally a
simple and near-optimal heuristic is often more
advantageous. In view of this, the next section
will be devoted to the comparison of some
heuristics,
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5. Sequencing Heuristics

In this section, sequencing of ready instruc-
tions in a semi-stochastic environment will be dis-
cussed. The term semi-stochastic is used to mark
the fact that tasks or instructions are sequenced
in a fixed burst under some lookahead scheme. So
complete deterministic knowledge of the task sys-
tems (instructions) will be unavailable. The real-
ism of this modeling assumption is easily conceiva-
ble because in the continuous behavior of the real
world, a deterministic and finite model often is
insufficient.

Three heuristics will be of particular inter-
est here. They will be named First Come First
Served (FCFS), Clustering, and RSRP Clustering.
Their special features will be described and per-
formance under memory conflict free situations com-
pared using some experimental simulation. Their
implementation using hardware and firmware control
will also be included.

1. First Come First Served. As the name im-
plies, FCFS discipline will allow the tasks or in-
structions to enter the RSRP system in the same
ordering as they have arrived. So it is the sim-
plest heuristic possible and its implementation
schemata can be sketched as in Fig. 6. The initia-
tion control is responsible for allowing the task
or instruction at the end of the queue to enter the
system at the correct moment to avoid collision in-
side or to allow proper reconfiguration to take
place in the static RSRP system. The task queue
will be monitored by the initiation control and
there is little additional hardware or firmware to
perform any reordering. Its performance can then
be referred to as one achievable with the cheapest
cost and legitimately it may be chosen to filter
out other heuristics that are more costly but not
much superior in performance to FCFS.

Task Queue
Incoming ~ [ [ [ T 1] F*““”‘"’[) 55§§Zm
Initiation
Control

Fig. 6 FCFS Sequencing

2. Clustering. In a RSRP system, reconfigu-
ration due to different types of instructions or
tasks incur extra overhead and delay to the normal
stream of execution. Specifically in a static RSRP
system, if a task (instruction) has to flow through
one pipe different from the current one in the sys-
tem, it has to wait for some latency period until
the latter has emerged, as in the arithmetic unit
pipe of the TIASC system. So a sensible approach
to remedy the situation is to reduce the occurrence
of reconfiguration as much as possible. This stems
the reasoning behind the ‘clustering' heuristic
where ready instructions or tasks that involve the
same configuration or path are grouped together to
be executed one after the other. So clustering
really involves a scanning and grouping mechanism
and its implementation can be as depicted in Fig. 7,
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lookahead initiation static
set of 1 " control RSRP

instructions

clustering
associative initiation

queue of control
instructions

Tmatch information
clustering
control

Fig. 7 Clustering

The additional hardware and control circuitry
needed in this implementation include an associa-
tive queue rather than an ordinary queue for the
set of Tookahead instructions so that independent
instructions are searched in parallel during exe-
cution in such a way that instructions of a same
type are detected almost instantaneously and hence
are available for the initiation control for con-
trolling their entrance to the static RSRP system.
For the other parts of the sequencing modules, no
significant deviation from the previous scheme is
necessary (except the synchronization clock pulses
in the initiation control and the additional clus-
tering unit which will change its associative
match word from time to time based on signals from
the initiation control), With the aid of the asso-
ciative queue, prolonged delay due to retrieving
or detecting of clustered instructions is avoided.
Hence, this sequencer can function almost as
quickly as the FCFS discipline. In addition, ob-
serve the static control overhead of clustering is
primarily a linear function of the size of the
task system in the lookahead set since it merely
involves some additional associative registers.

3. RSRP Clustering. The same clustering
heuristics may be applied to a dynamic RSRP system
where concurrent processing among the various func-
tional pipes are allowed. In many cases, grouping
of tasks of the same type in a dynamic RSRP system
still is advantageous when tasks of the same type
usually incurs less latency. The routing of oper-
ands in a dynamic RSRP system is a bit more compli-
cated than that in a similar but static RSRP sys~
tem because a correct transition at a shared re-
source has to be chosen dynamically rather than
statically. A localized monitor scheme for this
routing is exemplified in Fig. 8, Each data pac-
ket will contain some redundancy holding encoded
information about the path desirable. This encoded
path information will be used by the second part,
the decoding control-at each shared facility (one
with multiple exit arcs), to enable the correct
transitions. Since this decoding activity can be
performed in parallel with the actual processing,
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intermediate data
or task package

A shared
facility with
multiple exit arcs

code

Decoding
Circuitry

new intermediate package
to be delivered to one
of the output transition
arcs

Multiplexor

possible transitions

Fig. 8 Localized monitor scheme
in dynamic RSRP system

there is no apparent dynamic runtime overhead in-
volved which may delay the availability of an out-
put. Also since multiplexors are used to choose
correct transitions at a static RSRP system in any
case, the overhead discussed above is really quite
tiny. The schematic diagram of RSRP clustering is
exactly the same as that of the clustering method
except in the initiation control, a two-dimensional
collision matrix constructed by the algorithm in
Fig. 2 is also provided. The matrix can be stored
in shift registers or counters whose contents are
constantly updated to control the initiation of
tasks (instructions) already re-ordered.

6. Experimental Demonstration

The three heuristics (2 for static and 1 for
dynamic RSRP systems) were tested on RSRP systems
whose configurations are taken directly from the
arithmetic unit pipes of TIASC and the floating
point pipes of the CDC STAR-100 systems. The en-
vironments are parameterized in three aspects.
First, the different types of tasks, in this case
the instructions, are given some relative frequency
of excitation. For instance, (0.1,0.2,0.4,0.1,0.2)
implies the percentage of instructions executed are
0.1, 0.2, 0.4, 0.1, 0.2 for the five types (confi-
gurations) respectively. Second, the size of the
Tookahead set of instructions is variable. This
marks a variable structure in the semi-stochastic
sequencing discipline explained in the previous
section. Third, the nature and amount of inter-
dependency or precedence relationships of the in-
structions (mainly in operands) as they are gener-
ated are parameterized such that the amount of in-
teraction and levels of dependency within and be-
tween lookahead sets of instructions are encom-
passed. "Therefore, a stochastic precedence rela-
tionship is also allowed in the simulation model.

With these three types of parameters, the heu-
ristics can be compared under different RSRP sys-
tems. The simulator built mainly consists of three
parts.

(1) Instruction generator which generates the
instructions according to the parameters specified.
(A random number generator is used particularly to
create instructions according to the mix ratio, de-
pendency parameters, etc.)

(2) Collision matrix constructor which
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constructs the two-dimensional collision matrix
given a RSRP system specification (including paths,
speeds) according to the algorithm described in
Fig, 2.

(3) Heuristic sequencers which simulate the
hardware sequencers in Figs. 6 and 7 according to
the sequencing discipline chosen and monitor the
execution of the instructions. The output of the
simulator consists of a (time-driven) execution
profile of the instructions as they are generated
and executed under the three heuristics adopted so
that they can be compared easily.

A typical comparison is shown in Fig. 9. The
horizontal axis gives the number of iterations

(one iteration corresponding to the execution of
the ready instructions in a lookahead set of in-
structions) and the vertical axis the corresponding
execution time profile, This particular output
illustrates that indeed the clustering philosophy
is very useful compared to FCFS since it brings a
reduction in execution time by 30%. But the dyna-
mic RSRP system under the same clustering rule is

Execution Time

2000
FRFS
1600

Cldstering
4

1200

P
RSRP

Clustexing
800

400

20 40 50

Iterations

Fig. 9 A Typical Comparison (STAR-100 Pipe 1)

even more attractive as it further reduces the
execution time by as much as 40%. To compare the
three cases, a relative efficiency index is set up.
Let

ag; = relative efficiency of heuristic j with
J respect to heuristic i
A
BT
where T; = execution time of the instructions under

heuristic i (observe ajj=oajkakj). The results of
the comparisons under different parameters for the
three cases are tabulated in Figs. 10a, b, c.

From it, several observations are to be discussed.
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STAR-100 Pipe 1

TIASC Results

B 2 T3 T/ T/T T T2 T3 T/Ty T3/T,
L FRFS Clustering RSRP 9 [} _L FRFS Clustering RSRP § o)
Mix = (0.2,0.2,0.1,0.2,0.1,0.2) 8 1190 981 811 0.824 0.825 0.5 0.4
8 205 1672 1004 0.815 0.605 0.5 0.4 16 2080 1331112 0.67 ~0.61 0.5 0.4
32 4312 2101 1830 0.488 0.87 0.5 0.4
16 3936 2797 1252 0.71 0.45 0.5 0.4
8 1297 993 801 0.766 0.806 0.3 0.4
32 7195 4040 1780 0.562 0.44 0.5 0.4
16 2210 1405 1060 0.64 0.73 0.3 0.4
8 2095 1661 973 0.795 0.575 0.3 0.4
32 4180 2084 1767 0.5 0.845 0.3 0.4
16 3820 2794 1135 0.73 0.407 0.3 0.4
8 1010 852 737 0.84 0.868 0.3 0.6
32 7509 4227 1729 0.564 0.409 0.3 0.4 16 1885 1276 975 0.677 0.767 0.3 0.6
8 1709 1340 869 0.785 0.658 0.3 0.6 32 3867 1934 1575 0.52 00815 0'3 0.6
16 3499 2578 1147 0.739 0.445 0.3 0.6 - = : =
32 6672 3920 1605 0.59 0.41 0.3 0.6 8 1034 850 762 0.824 0.895 0.3 0.6
o 16 1975 1322 998 0.78 0.805 0.3 0.6
Mix = (0.3,0.2,0.1,0.2,0.1,0.7) 32 3766 1906 1501 0.506 0.79 0.3 0.6
8 1608 1330 888 0.83 0.552 0.5 0.4 8 1267 986 791 0.78 0.805 0.3 0.4
16 3227 2433 1187 0.745 0.49 0.5 0.4 16 2189 1411 1049 0.642 0.742 0.3 0.4
32 6027 3571 1724 0.593 0.483 0.5 0.4 32 3981 2021 1590 0.51 0.786 0.3 0.4
8 1793 1546 923 0.865 0.595 0.3 0.4 8 1079 945 866 0.865 0.91 0.5 0.4
16 3734 2771 1251 0.74 0.46 0.3 0.4 16 2038 1344 1072 0.66 0.798 0.5 0.4
32 6979 3951 1962 0.566 0.498 0.3 0.4 32 4092 2034 1134 0.499 0.81 0.5 0.4
8 1816 1427 943 0.785 0.65 0.3 0.6
16 3628 2611 1316 0.71 0.501 0.3 0.6 Fig, 10c
32 6933 3906 1883 0.572 0.475 0.3 0.6
structure. These two parameters have the same com-
Fig. 10a mon characteristics; they tend to 1imit the amount
of independent instructions of each type to be exe-
cuted, With a reasonable lookahead set size, they
STAR-100 Pipe 2 influence the three heuristics to a relatively si-
milar extent.
T T2 T3 T/Ty T3/ (3) In particular, 0.6<ap)<0.8 for 90% of
L FRFS Clustering RSRP 6 [} the cases, hinting the clustering discipline is
- really beneficial compared to FCFS in a static
Mix = (0.2,0.2,0.2,0.1,0.2,0.1) RSRP system. But a3p<0.7 for most cases in the
8 4143 3377 2997 0.82 0.89 0.5 0.4 STAR models and a3 < 0.8 for most cases in the
16 7795 5191 3318 0.67 0.64 0.5 0.4 TIASC model further implies the advantages of a
32 13369 7291 3850 0.545 0.53 0.5 0.4 dynamic RSRP system over a static one under the
8 4277 3493 2859 0.815 0.82 0.3 0.4 same clustering discipline.
16 7170 5148 3112 0.716 0.61 0.3 0.4
32 14180 7462 3826 0.53 0.515 0.3 0.4 Conclusion
12 'géég iggé gggz 8‘§;4 8‘225 8'2 g'g RSRP design represents a powerful organiza-
32 12386 6960 3572 0'574 0‘508 0'3 0.6 tion that embeds both parallel and pipeline pro-
> = : : cessing characteristics. However, optimal sequenc-
Mix=(0.3,0.1,0.3,0.1,0.1,0.1) ing in either a static or a dynamic RSRP system
has been proven to fall into the 'inherently diffi-
8 3900 3044 2851 0.78 = 0.935 0.5 0.4 cult' characterization and it is unlikely to pos-
16 6144 4251 3237 0.676 0.76 0.5 0.4
: : : : sess a fast algorithm. An optimal sequencing algo-
32 11436 6797 3990 0.594 0.59 0.5 0.4 : : : : .
rithm in general is too complicated to be imple-
8 3142 2636 2430 0.805 0.85 0.3 0.4 : .
16 6287 4594 3107 0.73 0.665 0.3 0.4 mented by hardware or software. So in practice,
: . : : simple heuristics may be more advantageous. These
32 11894 6808 3905 0.575 0.575 0.3 0.4
8 2457 1977 1950 0.805 0'98 0'3 0‘6 heuristics can be implemented with sufficient hard-
: : : : ware support such that speed-up of execution is
16 5515 4072 3141 0.74 0.77 0.3 0.6 : : - e
32 10160 6274 3657 0.62 058 0.3 0.6 attainable. In particular, the clustering disci-
= = = = pline has been demonstrated to be valuable to re-
Fig. 10b duce reconfiguration overhead while a dynamic RSRP

(1) ajj is usually sensitive to the size of
the Tookahead set and the individual system tested.
This is readily explainable because with more in-
structions clustered (which depends on the size of
lookahead) at one, fewer reconfigurations may be
necessary. Since the amount of concurrent process-
ing possible is limited by the system structure,
the latter dependency is also reasonable.

(2) o435 is quite insensitive to other parame-
ters such as instruction mix ratio, and dependency
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scheme introduces additional advantages over a
static scheme because full concurrent processing
among parallel paths is permissible.
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TIME-SHARED MEMORY-PROCESSOR INTERFACE

Per-Erik Danielsson
BjSrn Gudmundsson
Department of Electrical Engineering
Link&ping University
Link&ping, Sweden

) Abstract -- In multiprocessors the
memory interface can be designed either
as a two-level structure (multiports) or
as a single time-shared bus. A nonexpen-
sive reasonably fast synchronous bus
system is proposed and has been tested up
to a minimum of 60 ns bus time slice. The
dynamic behaviour for different configura-
tions of processors and memory modules
has been subjected to simulation. The re-
sults show that if the bus time slice is
short enough the single bus property con-
tributes very little to performance de-
gradation. Queues tend to develop at the
memory modules when the number of pro-
cessors increases. Diagrams illustrate
how this can be compensated for by divid-
ing the memory space into smaller modules.

M1 M2 - m
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Connection alternatives

Due to some authors [1,2,3] there
are three principally different ways of
interfacing memories and processors in a
multiprocessor system. These are by means
of

o a crossbar switch system
o multiport memory modules
o a time-shared common bus

First, we demonstrate that the two first
cases are essentially the same and that
the real choice is between a multiport

memory and one single time-shared common
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c)

1. The crossbar switch reduced to multiports
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bus.

The crossbar switch system is usual-
ly depicted as in Fig la). In a certain
moment any processor k can be connected
to any memory module i without interfering
the communication to other modules. How-
ever, in the given context the S-switches
are abstractions, concepts borrowed from
the world of relays and contact networks.
Electronic switches are unidirectional
gates and the S-switches must ultimately
be transformed into a bus system like Fig
1b) . Needless to say, the gates have to
be controlled by conflict resolving logic.
Fig lc) shows the same gates but the bus-
system is somewhat redrawn with preserva-
tion of the topology. The subsystem of
gates that performs the fanning-in and
fanning-out at the outskirt of each memory
module is now readily seen to be identi-
cal to a multiport. As far as the authors
can see, this simple argument shows that
the so called crossbar switch can be
omitted from further discussions.

Fig lc) has a two level structure
with one bus for each processor and one
bus for each memory module. Normally,
only the processor busses are elongated
as physically observable lines. The
memory module busses are usually conceal-
ed in a device that is called a multiport
or multiport switch, multiplexer, priori-
ty system, arbiter or the like.

Time conflicts has to be resolved
at each one of these busses. In some
computers the processors can be assumed
never to make another memory request un-—
til the present one has been effectuated.
It then immediately follows that time
conflicts on the receiving processor bus
are automatically resolved. For the memory
module bus no such assumptions can be
made. Any combination of the p processors
can request the same memory module at the
same time and therefore every memory mo-
dule must be equipped with a time con-
flict resolver.

L.}__d L-) "
G !
L_D L
% D1 w,
| - - '

! |
| '
P L—:}_,, L—:}_——_. M.,
pb—Cr—l )
Fig 2. The single time-shared common bus

91

Multiport memory modules tend to be
very expensive in a multiprocessor en-
vironment since the number of gates is
2(p-m). The time-shared common bus in Fig
2 contains only 2(p+m) gates. The rest of
the paper deals with this alternative.

Serial versus parallel transmission

Questions may arise whether the
single bus will bring a high penalty in
terms of speed reduction and/or a very
complex time conflict resolver. It will
be demonstrated below that neither need
to be the case. Also there are many trade-
off situations in the actual bus design.
A very significant choice is the bus
width. If we are interested in "normal"
processor speed the bit-by-bit serial
transfer can be ruled out at once, but )
the alternatives in Fig 3 deserve a short
discussion.

P = processor
A = address
M = memory
Din = data to be stored in memory
D = data fetched from memory
out
A A’Din
a) P . M b) P M
in D
out
out
A
c) P D. ,D M d) P A,D; ,D_ .. M
in" “out -
Fig 3
Fig 3a) is a maximally parallel

system. One memory module i may be re-
ceiving data over the bus from processor
k at the very same moment as another me-
mory module j delivers data to another
processor 1. In Fig 3b) address and data
are supposed to arrive in sequence to

the memory. Now, it is generally agreed
that in an ordinary job mix for a CPU no
more than 20% of the memory references
are WRITE operations. This means that in
four out of five cases only address in-
formation is transmitted from the pro-
cessor. When IO-processors are taken into
account the relative number of WRITEs
will increase and in the case Fig 3c)
will give a more balanced situation.
ever, time conflict resolving in Fig
is somewhat more complicated. In 3a)
3b) the potential senders on one bus

How-
3c)
and
are
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the processors only (for A and Di ) or
memory modules (for D ). In Fig 3c)
however, both process0rs and memory mo-
dules are acting as senders on the data
bus.

A proposal for a synchronous bus

) In our research project we decided
to investigate the case of Fig 3a). In
order to get a thorough understanding we
designed and built a laboratory model of
the bus and interface. The design is
shown by Fig 4 in the case of four pro-
cessors and four memory modules. We
assume 16 bit for both address and data.
The system contains an internal clock and
may be regarded as a synchronized sequen-
tial network. All incoming signals and
all registers and flip-flops change state
only within the permitted interval of the
clock cycle.

A transfer is initiated by WRITE or
READ requests from the processor. Such a
request is gated out to the bus lines
when the following conditions are full-
filled:

o No processor with higher priori-
ty is making a request in the
same clock cycle.

o The address points to a non-busy
module. This is checked by the
MPX-unit.

Address and data (if WRITE request) are
recieved and stored at the interface of
the appropriate memory module which starts
its own cycle immediately. After a while,
during which the bus may have been used
many times for other purposes, the memory
module signals READY and if the priority
condition is fullfilled a previous READ

s ¢
2 < o & 4
N D . — (0]
>0 (8] j} 9 @
uc 8 o % -E’
pri 38 a 8 o] hs] .
4 2 2 4 fi6 h 1 pri
. ready
write
read Lq{"P—‘
q ) [ R
acqrpt P{:j 2 S " write
+ —d
(kB
— D— ™
—R
N MPX q ‘ & read
3 S S
L
modul 1 §
Wumb% 2 (t] address
address
N data in
data in l -
i » pfi
validity 1
7 kJ N
nefkbe - -
- .
data out r | data out
Kt
16 |2 2
data proc. module
PROCESSOR out no. no. MEMORY MODULE

Fig 4. Time-shared memory-processor intexface
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request results in data transfer back to
the appropriate processor. The two SR-
flip-flops are reset and in the clock-
cycle after READY the memory module sig-
nals NON-BUSY on its individual BUSY/NON-
BUSY line.

In fact, this signalling is included
in the longest delay path in the network.
This path goes from the SR-flip-flops,
back to the MPX-units, along the priority
lines, via data output gates over the bus
to the recieving register input. This
signal path must settle in one clockcycle.
In our experiment set-up we used a mix-
ture of TTL and Shottky TTL-logic. The
bus lines were about half a meter and we
managed to get a realiable function at
clock speeds up to 17 MHz. We conclude
that a time slot of 80 ns is achievable
in a time-shared memory multiprocessor
interface. This is in accordance with re-
sults reported from real computer install-
ations [3].

12 d1iid ndadn Prihigh/low
waute | | T 1T I L~
i
1
|
request v N
1
L/
accept
1
\

Fig 5. Accelerated two case priority logic

Fig 4 has a fixed priority between
processors and memories, As will be shown
below there are few cases where the low
priority units will suffer from substan-
tial delays. If necessary one may intro-
duce a second priority chain counter-
directed to the first one. A low fre-
quency switch may couple and decouple
these priority chains alternatively re-
sulting in the same average priority for
each unit. The priority chains of Fig 4
can be speeded up in a manner similar to
carry acceleration in counters and adders.
Fig 5 shows a double directed and acce-
lerated priority logic.
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A ring priority scheme can be imple-
mented as shown in Fig 6. The central
counter is part of the synchronized se-
quential network and in each clock cycle
one and only one module is pointed at via
the decoder. The priority chain is closed
and, as can be seen in Fig 6, the module
pointed at gets the highest priority. The
counter "cuts" the chain at module i and
by stepping the counter the priority is
shifted among the modules in a round-
robin fashion. A more general dynamic
priority algorithm can be implemented if
the counter is replaced by a register
which can be loaded under program control.

Module i

Fig 6. Ring priority logic

A completly reprogrammable (but time con-
suming) priority network has been pro-
posed in [5].

Simulation experiments

Modelling

In order to get an idea of the per-
formance of a time-shared memory interface
a number of simulation experiments has
been undertaken. In particular, the effects
of varying the number of processors and
memory modules connected to the interface
has been studied.

The following parameters affect the
performance of the system:

Clock cycle time (= bus time slot)
Distribution of processor requests
Memory cycle time

Bus configuration

Type of conflict resolving logic
Number of processors

Number of memory modules

0000000

The strategy in the simulation experiments
has been to measure performance as a func-
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tion of the number of processors and me-
mory modules for different combinations
of the remaining parameters. In order to
get a manageable set of parameter combina-
tions, the assumptions described below
are made about the behaviour of the main
parts of the simulation model.

Processors. Needless to say, this
is the most difficult part to model. As
‘our experiments are not intended to
evaluate the effect of a time-shared bus
on a particular processor, a fairly simp-
le model of processor behaviour was used.
It is hoped that the model chosen is
general enough to give a rough picture of
the dynamic behaviour of the time-shared
bus.

The processors are identical (no I/O-
activity) and they are modeled at the in-
struction execution level. There are four
types of instructions which are selected
in random order from a specified mix.
Timing diagrams of the instructiontypes
are shown below.

IR: Instruction Request
OR: Operand Reguest
WR: Write Request

Type T . T, T . T, R
1 w 1 w
IR OR
T T T
2 w l'
/IR WR
T i T1 —
3 w
riR
T ) T, T ) TS
a w l w
IR OR
Fig 7. Instruction types

If the requested data has not been
delivered at point W, the processor
(microprogram) enters a wait loop. When
the data arrives processing continues
from point W. In the simulated configura-
tions T is always less than memory access
time. As can be seen in the timing dia-
grams there is no overlapping of consecu-
tive READ-requests. This not being the
case, serial correlation between destina-
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tions of successive requests will have
little effect on the average access time
as seen from the processor. Therefore,
the memory modules are accessed complete-
ly at random. It is assumed that the
length of all instructions and operands
equals the wordlength of a memory module.

Bus configurations. Three bus con-
figurations were simulated, and in the
sequel they will be referred to as I,
and IIT.

IT

I: Addressbus + one bidirectional
databus (Fig 3c). Memory modules
have priority over processors.

II: Addressbus + two unidirectional
databusses (Fig 3a and Fig 4).

IIT: Multiport configuration. An ana-

lysis of this configuration with
clock cycle time equal to memory
cycle time is presented in [4].

" Memory modules. The memory modules
are assumed to be identical and of semi-
conductor type, i.e. accesstime equals
cycle time. The variations in accesstimes
are assumed to be so small that the access-
time as seen from the memory/bus interface
is a constant multiple of clock cycles.
This means that memory modules do not have
to compete for the bus as only one module
can be started in each clock cycle.

Results

The number of instructions that a
simulated processor executes during a
simulation run is taken as a measure of
performance. This measure is normalized
so that it relates to the performance of
a single processor (no bus conflicts)
connected via the time-shared bus to an
infinite number of memory modules (no
memory conflicts). Unrealistic as this
configuration may be, it still serves as
a reference point when comparing the
relative effects of adding more processors
or memory modules to a given system.

In the sequel the following abbreva-
tions will be used:

p: number of processors

m: number of memory modules

Cl: clock cycle time

A: memory accesstime as seen from

the processors. A (nominal
memory accesstime) + 2. Cl

Tl,T2,T3: processor speed (Fig 7)

n: processor performance (as de-
fined above)

C aver, number of clock cycles that
processor requests are delayed

by contention for memory modules.
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C .

bt d:o for delays introduced by con-

tention for busses

A: aver. number of memory modules

started/clock cycle

Processor speed was kept fixed (T,=200 ns,
T,=250 ns, T,=1750 ns) while the Gther
timing paraméters were varied.

A fixed priority scheme was used and
by averaging n over all processors we get
the performance of the processors when
the ring priority scheme shown in Fig 6
is used. Since all processors are identi-
cal, A is proportional to the total number
of instructions executed and we get n
A/pAo where A, relates to the configura-
tion with a single processor and an in-
finite number of memory modules.

When m is increased in a given con-
figuration, C_ will of course decrease
leading to a higher X and thus a higher
n. Since C, >0 in bus configurations I and
II we can never reach n=1 in these con-
figurations although we can get arbitrari-
ly close by reducing Cl and thus get C, =0.
However, in bus configurations I and I?
the capacity of the addressbus will set
upper limits to X and n if pA,>1, i.e. if
there are enough processor to potentially
saturate the addressbus. In these cases
we get the following maximum values for
A and n:

Bus conf. &max Nmax
I <1l <l/p>\0
II 1 l/p>\0

The addressbus in configuration I can
never become saturated (A=1) since this
would imply that no conflicts ever ocurred
at the databus. As memory modules have
priority over processors, a conflict at
the databus means that in the next clock
cycle a memory module will act as sender
on this bus while a WRITE-request will be
delayed and no memory module will be
started in that clock cycle.

Configurations where C, is negligible
In configurations with low p and with C1
short enough compared to processor speed,
C,=0. C,. is also negligible in configura-
tions with short Cl and a high ratio p/m
giving Cm>>C . Diagrams 1, 2 and 3 relate
to configura%ions with the following

parameter values: A=960 ns, Cl=80 ns.

Instruction mix: type 1 35%
type 2 20%
type 3 35%
type 4 10%

Bus configuration: IT
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| Y]
1..
8T

T
6+

p = 3,4,5

4t

|

Y S S, L

2 4 6 8 10
Diagram 1

I Y
14

1 Hig;;st priority
8+ //.—_———.

Lowest priority
61
41
p =4

21

! m

b— ——tp —t—+ —t—t—>

2 4 6 8 10

Diagram 2

Diagram 2 gives n for the processors
with highest and lowest priority when a
fixed priority scheme was used. For low m
the processor with lowest priority suffers
substantial delays. However, by increasing
m the difference in performance between
the low priority and the high priority
processors is significantly reduced in-
dicating that for the given parameter
values C, is negligible. When this is the
case the "following empirical expression
seems to give a fairly good approximation
of n:

n = exp(-ap/m)
o is a constant that increases when the
ratio between A and processor speed in-
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creases. In diagram 3 n is plotted versus
p/m for the values of p and m in dia-
gram 1. The solid line depicts n =

exp (-0,32 p/m).

1

41
! . . \ ,_P/m
05 10 15 20
Diagram 3
Comparison of bus configurations I,
ITI and III. For given p and m, the three

bus configurations will give different C. .
Configuration I gives the highest C, and
thus the lowest n since it has a bigirec—
tional databus. Diagrams 4 and 5 show a

comparison of configurations I, II and IIL
Instruction mix: type 1 30%
type 2 30%
type 3 30%
type 4 10%

Nominal memory accesstime was 400 ns,
giving A=800 ns (diagram 4) and A=560 ns
(diagram 5). Compared to processor speed
and memory accesstime a clock cycle of

200 ns is somewhat unrealistic, but it
was used in order to emphasize the effects
of contention for the busses.

Increasing m leads to a higher A
which for configurations I and II means
increasing C, . However for high ratios
p/m the différences in n will be negligi-
ble since here C_>>C, . By making Cl
shorter we reduce C, "and as can be seen
in diagram 5 the di%ferences in n become
very small.

Configurations with high C, . We
shall now look at some cases where A, and
thus C,, is high. Also, we shall see how
the performances of the individual pro-
cessors are affected as A is increased.

Diagram 6 relates to configurations
with the same instruction mix and nominal
memory accesstime as in diagrams 4 and 5.
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Diagram 4
]
147
.84
.6.. Cl = 80 ns
The curve for conf. II
1 lies between the curves
for conf. I and III
-4dv
! m
Lttt
2 4 6 8 10
Diagram 5
Curve  p cl Bus conf.
a 5 80 ns I
b 5 200 ns I
c 7 200 ns II
d 6 200 ns I
e 7 200 ns I
f 10 200 ns I

For C1l=80 ns, A
gives AO=O,19.

O=O,10 while C1=200 ns

As was mentioned earlier, the capa-
city of the addressbus sets upper limits
to X and n if pA,>1l. Also, we said that
in configuration I we can never reach
A=1l. This configuration with C1=200 ns
gives A =0,81 for the cases in diagram
6. We h3%8 not yet been able to calculate
Am < but its value must depend on the
r3%%o between READ- and WRITE-requests
and it is probably safe to say that it
has a minimum for READ/WRITE = 1.
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Diagram 6
With A =0,81 and A.,=0,19 we get the individual processors in the con-
max 0 . . .
figuration whose average n is shown by
Curve ﬂmaxfimax/EAO curve ¢C 1n'd1agram 6. We observe that for
m<6 Cn dominates over C_ for all pro-
b 0,85 cessors. However, when is further in-
d 0,71 creased the performance of the lowest
e 0,61 priority processor starts going down. The
£ 0,43 same effect for the processor with the
second lowest priority is observed for
These values for Amax are also found in m>35. In configurations where C, is

diagram 6.

As we increase m in configuration II,
we will eventually reach A=1 if pA.>1.
For p=7 and C1=200 ns (curve c) we get
n =l/pk0=0,75, which can also be found
igaéiagram 6.

Curve a shows a case where ) and
thus Cb has been made low through a re-
duction of Cl. The addressbus is far from
being saturated and n is close to 1.
For comparison a few Tfer configurations
with p=7 have been simulated (not shown
in diagram 6):

Bus conf. cl m n
4 0,60
I 80 ns ‘16 0,87
4 0,60
III 80 ns 16 0,91

Comparing these values to the values in
curve ¢, we see that with Cl=80 ns, the
reduction of C, is such that n of con-
figuration I is close to that ot con-
figuration III where Cb=0.

For some m in a configuration with
a high A and a fixed priority scheme, C
will be greater than C_ for the low
priority processors. B? adding more me-
mory modules to the configuration we
decrease C_ and increase C, and thus the
performance of the low priority processors
actually goes down. Diagram 7 shows n for

b

negligible, the performances of the in-
dividual processors rapidly converge as
can be seen in diagram 2.

Concluding remarks

We have in this paper demonstrated
that there are two main design principles
in the processor-memory interface for a
multiprocessor system: The multiport and
the time shared single bus. Detailed hard-
ware designs were given on some crucial
points. The simulation of the dynamic be-
haviour reveals that the single bus con-
tributes to little performance degrada-
tion provided the bus is reasonably fast
(100 ns or less). Processor performance
seems to decrease exponentially with the
negative ratio between the number of
processors p and the number of memory
modules m. However, a fixed priority bet-
ween the processors leads to low perfor-
mance for the processors with low priority.
This effect becomes very pronounced in
the case of a slow bus. A bus configura-
tion with only one (double directed) data
bus would at first sight seem very attrac-
tive since the total number of data trans-
fers (READs and WRITEs) never exceeds the
number of address transfers. However, a
READ-request from one processor creates a
delayed request for the common data bus
which will prohibit a WRITE (but not a
READ) request in a certain later clock
cycle. This effect is not fully investi-
gated but it seems very likely that

"waves" of pure WRITE-requests and READ-
requests tend to develop.
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DYNAMIC TUNING IN AN
ASYMMETRIC MULTIPROCESSING ENVIRONMENT

H. M. Nirsberger, S. C. Vestal
lHoneywell Information Systems, Inc.
Rome, New York 13440

Summary

The environment in question concerns
point to point synchronous communication
between two central processors not necessarily
equal in terms of hardware characteristics
and/or software functionality.

Furthermore, each processor has a suit-
able front-end communications controller and
appropriate software primitives for control-
ling data transmission to/from its front end.
For such multiprocessing environments, it is
desirable to optimize the effective speed of
intercomputer data transfer. Effective line
speed is affected by several factors,
including number of housekeeping characters
within messages, bit error rate, modem turn-
around times, real line speed, and number of
data characters in messages. An equation
proposed by Martin [1] for relating these
factors to effective line speed is given by:
E =

D/{T+{ (D+RH) /S]IFHH{[R+[ (D+H) /S]] [P/ (1-P) ]}

where E is the effective line speed, D is the
number of data characters in a message, T is
turnaround time of the sender, H is the
number of housekeeping characters in a
message, S is the real line speed, R is the
resynchronization time necessary for message
retransmission, and P is the probability that
a message is in error, which is given by:

P=1-(1-py) PO

where B is the number of bits/character and
Py is the bit error rate.

The above equations are normally applied
in situations (e.g., character mode remote
terminal communication) wherein T, R, S, Py
and H are constant. For such situations, the
problem is one of finding the value of D for
which E is maximized. The value (D+H) thus
becomes the optimal block size. For multi-
processor communication, however, applications
arise (e.g., transparent mode communication)
wherein H is data dependent. Each permissible
value of H is thus associated with its own
optimal value of D. Regarding such applica~
tions, we first state and then prove a general
result. The use of this result is then
illustrated by a particular application.
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RESULT: Suppose 2 messages M; and M,
are to be transmitted. Also suppose My
contains H; housekeeping characters and Dj
data characters, where Dy maximizes the
effective line speed associated with Hy
(i.e., E1(Dy) is optimal for permissible
values of D) and M, contains H, housekeeping
characters and D, data characters, where Dy
maximizes the effective line speed associated
with Hy (i.e., E2(D2) is optimal for permis-
sible values of D). If

More simply, as the number of housekeeping
characters in messages increases, the optimal
effective line speed decreases.

PROOF: Suppose the contrary, i.e.,
El(Dl)ﬁi E2(Dy). Using the fact that
H] € Hy, it is straightforward to show that
EZ(Dz) < El(Dz) which implies that
E;(D1) € E;(Dy). This however, contradicts
the assumption that D maximizes the effective
line speed for Hy, and the result is proven.

To illustrate the use of this result,
consider transparent mode synchronous trans-
mission using common ASCII control characters
(e.g., DLE, STX, ETX, etc.) which are distin-
guished from pseudo characters by a prefixed
DLE (ASCII data link escape), say. In this
situation, if a DLE itself is to be transmitted
as data, it too must be preceded by a house-
keeping DLE. Thus if a large file is to be
transmitted in transparent mode, the number of
housekeeping characters in messages will depend
on the data itself., At least two steps are
required if the above result is to be used as
the foundation of an algorithm. First, at
interface initialization time, it is necessary
to build, using the above equation, an array
D(n) where D(i) is the optimal number of data
characters for i housekeeping characters.
Secondly, before transmission, the data of
the file must be scanned until a character
position is reached, in front of which enough
data characters are found to optimize the
required number of housekeeping characters.
This position terminates the message, at which
point the scan begins again. It is clear that
other minor considerations may also be
incorporated within this general scheme.
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PARALLELISM IN AUTOMATIC TESTING

Mathew N. Matelan
Digital Design Automation Project, Electronics Engineering Department
Lawrence Livermore Laboratory
Livermore, California 94550

Abstract -- The architecture of the DELTA
(Distributed Electronic Test and Analysis) System,
and its impact on test equipment control and soft-
ware, is the topic of this paper. The system is
based on distributing the major functions common
to all testing among a group of function-specific
microprocessors. These microprocessors, driven by
test-mode selectable control programs, are 1inked
in ways which allow run-time configuration of the
tester on a by-test basis. The use of microproc-
essors to implement a high speed interpretive ver-
sion of a high level test language (e.g., ATLAS)
is described. The use of a firmware generator
(MPACT) to develop function-defining control code
is outlined.

Introduction

The increasing speed and complexity of elec-
tronic components is causing the time needed to
test devices containing them to grow. Serial test
of components has been the rule. Previously, when
test times became exorbitant, either more testers
were used, tests were degraded, or faster tester
hardware was employed, but seriality was retained.
The use of multiple testers is expensive and in-
efficient, while degrading tests is dangerous.
Requiring an increase in tester circuit speed
to keep pace with new UUT (Unit Under Test) cir-
cuit speeds will slow the increase in test times,
but it will not halt it since UUT complexity is
also increasing. Computer designers, faced with
similar needs to increase execution speeds beyond
those possible with existing circuit technologies,
turned to architectural innovations to gain
improved processing rates. Use of multiple proc-
essors, one of the innovations used by computer
architects, to perform what were previously serial
test functions in parallel seems a way to reduce
test times. The DELTA approach is to use this
method to perform test sequences at higher rates
than would be possible using serial techniques.

A Multiprocessor Approach

The computational power and low cost of cur-
rently available microprocessors allows procedures
and techniques developed for large computers to be
applied to automatic testing. Specifically, the
work done in multiprocessing and parallelism sug-
gests that the use of multiple CPU's (central
processing unit) may increase the testing capabil-
ity of otherwise conventional test systems with
only a change to the controller.

The general approach taken in the DELTA System
is the division of a test into functions such as:
switching, stimulus application, measurement data
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acquisition, comparison of test results with Timits
(Control), and user interaction. Each function is
accomplished by a dedicated microprocessor, work-
ing in parallel with the other functions as cir-
cumstances permit. Each microprocessor performs

a series of tasks in each test consistent with its
function. The manner in which a task is performed
is dictated by the current mode of the function.
The mode of all microprocessors is the same during
any particular test and is determined by the value
of the "mode switch."

For example, the switching function microproc-
essor might be performing a task such as opening a
relay, while the control function is (simultaneous-
ly) converting Tatched measurement data for Timit
comparisons. Both functions must be performed by
methods consistent with the current mode. If the
mode were analog, each task would be performed
according to driver algorithms most suited to
analog testing. If the mode were logical (digital),
drivers optimized to perform logic testing would be
used. This dependence on the value of the mode
switch for the method in which functions are per-
formed makes it possible for the test devices
being controlled to be optimally configured, on a
test-by-test basis, for a particular type of mea-
surement.

Such a system allows devices which contain
both analog and digital characteristics to be
on the same station without degrading the quality
of some tests because the tester is basically
oriented toward one mode or the other. For
instance, a digital module with integrated power
supply would probably be assigned to a test sta-
tion oriented toward Togic testing. It is probable
that such a tester would be Tess than ideal for
testing power supply circuits than would be a Tow
frequency analog oriented tester. With the DELTA
approach, the digital tests would be made in digi-
tal mode, but the analog tests would be conducted
after a forced mode change to analog.

The concept of mode need not be restricted to
pure test functions. The inclusion of specialized
modes of operation would enhance the capabilities
of distributed system controller. Modes for facil-
itating manual fault isolation, and for collecting,
editing and storing utilization statistics are two
possible candidates. The dedication of a function
to active circuit simulation, producing patterns
for logic fault match is another distinctly attrac-
tive possibility.

Modes for testing at degraded levels of per-
formance would increase tester maintainability.
Suppose a microprocessor failed. Upon realization
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of the failure, the mode is switched (either auto-
matically or manually) so that the failed unit is
bypassed, and the work load distributed over the
remaining processors. Testing could continue, at
a slower pace, until replacements are obtained.
This scheme is easily expanded to include modes
to bypass two or more failed processors (or their
associated circuitry). Further, since the only
difference between the various functions is
defined by the microprocessor's control programs,
commonality in controller circuit packaging is
possible allowing a single replacement subsystem.

System Architecture

A generalized DELTA controller is seen in
Figure I. The diagram is divided into two sec-
tions: that of actuation, consisting of test
devices interface; and control, the source of
test directives. The makeup of the actuation sec-
tion is irrelevant for the purposes of this paper,
it being a sink for test commands and a source of
test results. The control section and its inter-
face are of primary interest here.

The system is designed around two main data
busses: the world buss and the control buss.
The world buss is the testing environment com-
munications link; all data (whether stimulus
commands or measurement results) are placed on the
world buss accompanied by an alert code. This
code signals the processor or device on the
receiving end to accept data from the buss into
its Tatch. A1l events are asynchronous; the
scheme implementing the actuation section of the
tester (i.e., the switching and device technolo-
gies used) is unaffected by the distributed
architecture, modularizing the two sections. The
control buss, using the same flagging (alert code)
conventions, passes status and intra-control-sec-
tion information between the several processors
and the memories.

As discussed previously, each function is
assigned to a microprocessor. Each microprocessor,
at any particular time, is executing a control
program suited to its function from its local con-
trol store ROM (read only memory). The particular
set of control programs that the microprocessors
are executing (indicated by a row of boxes, one
for each microprocessor) is pointed to by the
mode switch (indicated by the dashed 1line). Each
control program consists of a local executive and
a set of task-related subroutines. The executive
is a looping program which scans the decode area
waiting for a task code to be activated. Upon
activation, control is transferred to the proper
task routine where configuration codes are deter-
mined and sent to the proper device command latch
for actuation.

This method allows the inclusion of a special
task code to switch modes (and therefore control
programs) on receipt of synchronizing signals
from the other microprocessors. This is the way
the test controller is switched under program
control from the appearance of a dedicated analog
device, to a logic-oriented one, for instance.
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The need for system synchronization causes the
assignment of the overall control function to that
microprocessor used to check measurements against
Timits.

Dispatching Functions

The rationale for the DELTA approach is its
capacity for taking advantage of the local paral-
lelism that may be present in the structure of a
particular test sequence. Even though a test is
completely described by the commands in the decode
area, the test controller must synchronize events
so that execution of various parts of a series of
tests may be performed in parallel.

The need for run-time detection of test sub-
functions which may be performed in parallel stems
from the imprecise timing caused by using generic
test procedures or UUT's whose tolerances and
timing differ. This makes run-time parallel activ-
ities difficult to predict, so actual initiation
of potential parallel functions must be performed
based on conditions as they exist during each test.

A priori function selection corresponds to
global detection of parallelism as it applies to
testing. Function selection is initially based on
simulations of testers running benchmark ATLAS pro-
grams. Later assignments may be based on tester
performance determined by individual microproc-
essor activity histories. The five functions dis-
cussed in this paper are derived from estimates
of time spent in various activities during a
general test and the probabilities of each func-
tion being performed in parallel with the others.

It is the duty of the Control function to
recognize situations in test sequences which will
allow functions to execute in parallel. For ex-
ample, consider a single test divided into mile-
stones consistent with the function assignments
previously described:

I Has the stimulus path been routed?
II Has the stimulus been applied?
111 Has the measurement path been routed?
v Has the measurement been made?
v Has the measurement been evaluated?

Depending on the relationships of these mile-
stones, and their relationships to other tests
in a test sequence, several tests would usually
be in various stages of completion. The method
used in the control microprocessor for determining
which tests have active stages is a variation of
the "scoreboard" (e.g., [8]). In this applica-
tion, the scoreboard is a matrix in which the
rows represent tests and the columns represent
stages that have been reached (see Figure II).

It is assumed in this structure that on a
"go" result of step V, the next test to be execu-
ted is the next set of milestones (row) in the
scoreboard. Since any set-up of future tests
which may not be needed (due to a no-go branch
to fault isolation, for instance) would be done in
parallel with the last test, no time would be
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wasted. The scoreboard is simply reset and test-
int resumed in the parallel mode at the branch
target test number.

Uses of the scoreboard approach in testing,
other than preliminary setup, are many. The
scoreboard could be used as an indicator (pointing
to new test numbers) for buffering data into pages
of station memory for subsequent tests. Test
numbers followed by branch instructions (as well
as other special types) might also be profitably
included in a special scoreboard column to indi-
cate out-of-memory pages that would be needed if
the branch were taken (a simple implementation of
branch path pre-fetch).

Another area where test delays are open to
reduction is the UUT adapter. Differences in
UUT voltages and data representations frequently
require several programs to be written which have
only parametric differences. The assignment of
a microprocessor to the test I0 port (or "adapter
box") supplied with active circuit components,
allows preprocessing of raw data. The adapter box
control microprocessor is shipped (by the 1/0
function) a control code block specific to the
current UUT which configures the adapter box at
run time. The control memory for the adpater con-
trol microprocessor must therefore be a RAM. Com-
puting capability in the adapter would also allow
adapter box/UUT verification (using identification
resistors), and built-in adpater self-test (both
initially and during testing).

Using the System

In the discussion of function control pro-
grams abave, reference was made to the "decode
area" of the RAM (random access memory). One
might wonder why the control programs read and
respond to codes found in a decode area rather
than directly from the pages of memory containing
the test program (e.g., PAGE 1). This is done to
allow an improvement in user interface with the
test system: an interpretive high-level test-
oriented language (e.g., ATLAS) that executes at
compiled object code speeds.

Test programs for large systems have usually
been generated by two methods:

1) Compile a high level language (that is
easy for engineers to use) off-line from the
tester - a system that produces good test run-time
code at the expense of poor development update
turnaround; or

2) Use an on-station interpreter - this is
commonly a Tower-level language such as BASIC
(i11 suited to test description) which is easy to
change on-line but executes slowly.

An on-station interpretive ATLAS which exe-
cutes quickly would combine the best features of
the two methods outlined. An interpretive Tangu-
age is easy to change. It is also easier for
engineers to learn and use. Updating should be
done through a symoblic-file management system
with configuration control safeguards built in to
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ensure system integrity and provide automatic doc-
umentation. Once a test program is complete and
accepted, the same code is used in the field; it
will, however, execute at speeds usually associated
with object code. The inclusion of a supervisory
mode for program alteration would keep unauthorized
field changes from being made. In short, the test
system would appear to all users (design engineers
as well as field personnel) as if it were executing
ATLAS directly as its primary code.

In order to accomplish this goal, the power of
the microprocessor is again exploited. The ATLAS
test program, in symbolic form, is loaded as
needed for execution into available pages of the
RAM by the control microprocessor. This is done
by using the scoreboard to determine when parts of
the test program not in the RAM will be needed.

Since the next few tests in the program will
always be available in the RAM, a new task is
added to the control microprocessor. (Actually,
several cooperating microprocessors may be required
to implement this expanded control function.) This
task is the interpretation of ATLAS statements
which will Togically follow the one currently
executing. The interpreter task must determine,
through added scoreboard columns, which test num-
ber to interpret. It must then interpret each
ATLAS statement in the test number sequence, and
produce task commands, which are stored in the
decode area for the particular function for
future execution. In this way, the symbolic
ATLAS program is the only code ever seen outside
the control function and its decode area, while
the function microprocessors are executing com-
mands at a relatively high rate since their decode
areas are being filled in advance. System per-
formance could degrade to interpreter-like speeds
if several consecutive branches were performed,
however, the "branch to fault-isolation on no-go"
rule of programming rests would reduce the occur-
ence of this problem.

Interpreting a large language such as ATLAS
on-station, using microprocessors, is not a triv-
ial exercise in software development. The DELTA
approach is to make use of a table driven inter-
preter. The target language is then divided
into manageable subsets, each with a table defin-
ing subset statements and corresponding function
codes needed in the decode areas. These tables
are supplied through the I/0 (input/output) func-
tion from the test data base at the command of
the control function. The tables are stored in a
protected page of the RAM and are used by the
interpreter task much as decode area commands are
used by the various function microprocessors.

Research Directions

The realization of a DELTA based system may
be divided into hardware and firmware development
tasks. The redundancy of controller modules and
the consistency of device/controller and inter-
function communications makes the hardware task
relatively simple. By far, the greatest develop-
mental effort is seen in the firmware/software
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area. A system for easing the production of con-
trol programs called MPACT is under development,
and its use in generating control firmware for
DELTA is anticipated [4].

MPACT 1is intended to produce a complete micro-
processor control-firmware program according to
definitions of the microprocessor's capabilities,
control environment, and related behavioral char-
acteristics. Each microprocessor function in a
multiprocessor configuration may be defined by a
separate MPACT description. Each of these descrip-
tions is partitioned into a system-oriented part
and a function specific part. The system part,
common to all processors, defines communications
conventions and synchronization rules. The
function-specific part defines the function of the
microprocesor in terms of timing-independent, con-
dition/response pairs. This scheme guarantees con-
sistent function interactions while offering a con-
venient method for generating rapidly changing
function requirements which ususally accompany
system development.

Conclusion

The rapidly expanding complexity of electronic
systems must eventually cause a demand for faster
and faster testing devices. As has been found in
the design of large, very fast computers, the
physics of electronic circuitry places a bound on
performance. One of the primary methods used to
circumvent this problem has been the introduction
of parallelism. Given the large amount of research
already done in the area, and the power and decreas-
ing cost of microprocessors, it is time to apply
parallel techniques to the design of automatic
test systems.
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Summary

The advent of low cost LSI microprocessors
has made the promise of multiprocessors for
industrial control extremely attractive. By re-
placing the numerous hardwired electronic func-
tional modules with few standard microprocessor
modules, greater economy can be achieved because
of large unit production and greater product
standardization. The control function would be
tailored by software. Larger control require-
ments can be satisfied by having multiple modules
in a multiprocessor system working together in a
federated mode.

A possible multi-microprocessor configura-
tion is shown in Fig. 1. Each microprocessor
based module would have its own private memory
and, if needed, device interfaces. It could
operate in a semiautonomous mode performing vari-
ous control functions such as sequencing, regula-
tion or data logging as defined by the system
generation process. The system as a whole would
communicate through a common memory and be super-
vised by a designated Master Module.

At system generation time, the tasks necess-
ary for the various control functions are assigned
to the modules. These tasks would run under the
control of a small real time operating system
resident in each microprocessor module. The
entire multiprocessor system would be supervised
by the Master Module whose tasks are the coordin-
ation of intermodule communication, the assign-
ment of common memory access priority and the
control of the external peripheral devices. The
system can be made fault-tolerant by providing
spare modules which are activated by the Master
Module to replace failed module.

The philosophy of decreasing system cost by
replacing hardware modules by software modules
"sounds good" - but it is fraught with pitfalls,
especially in the area of programming cost. Thus,
although the system shown in Fig. 1 represents
no new concept, it does represent a real
challenge to the development of a system design,
generation and requisition discipline to minimize
the problem of software modularity and programmer
efficiency. Central to this challenge is the
cost and performance constraints of industrial
control and the particular characteristics of LSI
microprocessor.

LSI microprocessors are characterized by its
small word length, limited instruction repertoire
and addressing modes. In addition, their control
structures are limited to single processor mode.

The lack of master processor mode makes the
implementation of secure real time operating
systems by software alone difficult. To provide
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some protection from user program and hardware
errors the operating system and other crucial
procedures should be implemented in Read Only
Memory to provide quick restart capability in the
event of a crash.

Industrial control systems are characterized
by short "process" cyeles - 30 to 500 ms. Thus
the operating system must be designed to respond
quickly to external and internal events with a
limited speed CPU. To have the ability of opera-
ting in a small stand-alone module or in a feder-
ated system, the operating system should have
dual process modes; time base for stand-alone and
supervisory base for federated system modes.

Finally, to minimize programming cost, the
software development and requisition process must
be done in a "disciplined" interactive environ-
ment. Thus the support of a large computer with
extensive file editing and storage capabilities
as well as a flexible cross-assembler and linkage
loader for the target microprocessor is needed.

A facility should be created on this computer
which will enable engineers to link pre-assembled
modules together with the unique system applica-
tion package to fulfill various requisition
requirements. Central to this facility is the
cross-assembler or cross-compiler which will
generate relocatable object code modules which
can be binded together by the linkage loader into
specific memory locations. The output of the
facility in the form of an absclute formatted
code can be easily loaded into the microprocessor
module for test and acceptance.

Functional Module
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Control
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M Acc CMD
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ANALYSIS TECHNIQUES FOR SIMD MACHINE INTERCONNECTION NETWORKS
AND THE EFFECTS OF PROCESSOR ADDRESS MASKS

Howard Jay Siegel
Electrical Engineering Department
Princeton University, Princeton, New Jersey 08540

Abstract -« We consider interconnection
networks as permutations on the set of processor
addresses, The relation with permutation groups
is exploited to determine if a given network can
simulate any arbitrary one, The effects of '
processor address masks, that determine which
processors will be active, are examined, We
also present model independent techniques for
proving lower bounds on the time required for
one network to simulate another,

Introduction
One problem in the design of SIMD (single
instruction stream - multiple data stream [5) )
or array machines is the construction of an
interconnection network to pass data from one
processor to another, The model of a SIMD

machine used in this paper consists of N = 2"
processing elements, Bach processing element
(PE) is a processor together with its own memory
and is assigned an address from 0 to N=1, In
this model, we conslder no processor
instructions other than those that transfer data
to another processor,

An interconnection network is a set of
interconnection functlons, each a total function
on the set of PE addresses, By applying
sequences of functions, networks can transfer
data between PE's, When a function f is
applied, processor 1 passes its data to
processor f(i) for all i, 0€i<N,

An m~position PE address mask may accompany
any data transfer instruction and will determine
which PE's are actlve; i,e,, send data, When a
mask is used, the only PE's that are active are
those whose address matches the mask in the
followlng way for each bit positions if the mask
has a 0, then the PE address must have a 0; if
the mask has a 1, then the PE address must have
a 1; and if the mask has an X, then the PE
address may have either a O or a 1,

Interconnection Networks
The following interconnection networks will
be discussed, In the definitions of the
interconnection functions and throughout the

rest of the paper let N=2" , let the binary
representation of a PE address be

PpiPpp *++P1Pye let 51 be the complement of D,
and let the integer n be the square root of N,

This work was supported by NSF Grant
DCR74=21939, It is a summary of Princeton
University, Dept, of E.E,, Computer Science Iab,
TR=185,
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(1) The Cube, This network consists of m
functions defined by:

ci (pm_locopi+lpipi_1cuopo)

= Ppo1ee Pi+1PyPyoyee P
for 0£1iem; e.,8.y ¢,(7) = 3, for N8, When the
PE addresses are congidered as the corners of an
m-dimensional cube this network connects each PE
to its m neighbors (see [13] ).

(2) The Perfect Shuffle (PS), This network
consists of a shuffle function and an exchange
function, The shuffle is defined by:

(P, 1Ppp+e*P1P0) = PpooPp_ge+«P1PoPp 1
and the exchange is defined by: -

e(Py 1Py p++*P1P0) = Pp1Ppze-P1Po

€.8.y s(3) = 6 and e(6) = 7, for N=8, The
shuffle can be thought of as the result of
perfectly shuffling (intermixing) a deck of
cards (i,e,, 0-0, N/2 =1, i~+2, N/2+1-3,
ete,) (see [6] , [§ , [15] ). Note thate = Coe

(3) Plus-Minus ot (PM21), This network consists
of 2m functions defined by:

tyy () = 32 mod X,

ty (3) = j~2~ mod N,

0434 my e.g:,,,'t._u(z) = UL, for N>h, (Ses [2] ,

!

(4) Illiac IV,
of the form:
I.(x) = x+j mod N, where j = +n, -n, +1, -1
CH-H (0) = 4, if N=16, When we discuss the
Illiac IV we shall assume m is even, that is,
n= 2m/2 is an integer, If the PE's are
considered as a n x n array, then each PE will
be connected to its north, south, east, and west

neighbors (see [1 , [3] , (11 , [14] ). This
network is a subset of PM2I,

(5) Wrap-around Plus-Minus ot (WPM2I), This
network consists of 2m functions defined by;
Mg (B ee+PyeeePo) =
Where ay_peesQgdp g3 %”
(Py_g+++PoPpys e Py41Py) *1 mod N,
ands W_g (pm-l'“Pi"’PO) = Qe

This network has four functions'

qm_llctqioclqO'

where qi_l. . .qoqm_l. . vqi+1Q.i =
(Pyp e+ +PpPpogee +PyagPy )L mod Ny

for 0€i<«m, WPM2I is like PM2I, except any
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"ocarry" or "borrow" will "wrap-around" to the

Dy 4 bit vosition: e.g., if ¥=8 and m=3, then
w_, (001} = 10,

wherezs t_,(001) = 117,

Tnterconrection Networks as Permitations

The set of all bijections on the N P&

addresses is the group of permutations on N
elements, called SN' A network is universal if

some seguence of the functions in that network
can, possibly with the use of PE address masks,
generate S.3 i,e.,, simulate any interconnection
function tb{at is a bijection,

Every permutation can be uniquely
represented as the product of disjoint cycles,
The notation used to represent a cycle of the
bi jection f is:

(1) 15 wuuty)
where f(io) =i, f(il) =5y wees f(ix) =i,
Cycles of length 1 (i,e,, f(i) = i) are removed,
A permutation in S, is said to be an even
permutation if it can be represented as the
product of an even number of transpositions
(cycles of size 2), Any representation of an
even permutation as the product of
transpositions uses an even number of

transpositions, The product of two even
permutations is an even permutation, S, also
contains odd (non-even) permutations, *'(See [7]

or [12),)

Theorem 13 There dces not exist a single
Iinterconnection function which is universal for

N>3o

Proofs If a single permutation A srenerates S r
then it cannot have more than one cycle, g
mask other than XX,,.X is used, the resultlng
function would not be a bijection, If A with
mask XX,..X could generate SN, then SN

would be a cyclic group, but for N= 3 it is not,

Theorem 2t let F be the set of all distinct

bl jections obtained by applying each function of
a particular network with every possible PE
address mask, If the network is universal then
a lower bound on the time required to simulate
an arbitrary interconnection function is

log g ((N1) (P} -1) +1)-1,

Proofs The elements of F must form N; distinct
sequences, The length of the longest sequence
must be at least x, where:

Therefore, x = lolei((N!) (7| =1) +1)a1,
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With or without maskss

Theorem 31 The following table shows which
networks are universal with and without PE
address masks,

Network Wwith Without
Cube yes no
PS yes no
PM21 no no
Illiac no no
WPM21 yes yes
Proofs
Cube}
With maskss The set of permutations (0 1),
(0 2)ye0e.s (0 N-1) generate Sy (see (7] ,

page 69), IotjbeanunbarfronOtoN-ltmt
has a 0 in the 1th bit position, Then ey

with a mask equal to the bit representation of j
except for an X in the ith mask position

is equivalent to the cycle ( j 5421 ) for 0414nm,
We use the following algorithm to construct a
sequence of transpositions of the form

EJ §#21 ), the product of which will be
0K ), for fixed K, 1‘1(417. Iet the binary
representation of K be k. -1 n 2...k1 ko

let (a b) represent a va.riabla that is a cycle
of size 2, Initially let (a b) = ( 0 0),
which is just "do nothing,.”

for 1= 0 to mel do
1f ki— 1

then let(ab)betheproduct
of (ab)(bb+2 ) (ab)
end

xample, if k=6,
[(00) (02) (00)] (26) [(oo (oz) (00)) .

Without masks; For 0£i<nm, ¢, is an even
permutation,

PSs

¥ith masks: Iet R' equal the mask R cyclically
left shifted m-1 times, Iet si represent 1
shuffles, Then the sequence s"'j' with mask

XX...X, e with mask R* and s> with mask XX...X,
is equivalent to ey with mask R, Thus, PS can

simulate the Cube with masks, which is
universal,

Without maskes (From [91 .) Each bijection
performable by soqmnces of PS functions can be
represented as x a1 X veeXyXgs where the xi's

are 1iteral symbols of the form j or J,

3 € f{o, 1.....n-1} , such thet if x, = Jor J,
then x, ., = j*1 or 71 (mod m), The number of
sughzhijoetions 1s n(2™), But n(2®) < N:, for
» .

PM21;
We can show that the
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permutation (0 1 21, ) cannot be generated,

by using induction on the number of data
transfers to prove that whenever 0 maps

to J mod N, 2™ maps to 21 +j mod W,

Illiacs
¥With or without maskss Follows from PM2I.
WPM21s

¥With or without maskss =(012,,, §1)

¥+0
and (w,5)? (w_y) = ( N-2 N-1) generate Sy
(see [ 7] , page 69).

Bl jections Obtainable Using Masks

When designing an SIMD machine a set of
interconnection functions and a set of masking
schemes must be chosen, The way in which the
functions and masks interact is an important
consideration, The next theorem analyzes this
in terms of our model,

Theorem 43 The number of distinct bl jections
obtained by applying each function of a network
with every possible PE address mask 1s glven in
the following table, along with the number of
distinct functions in that networks

Network # bijections # functions

Cube m(3m-1 y n
PS 1+ 31 2
PRI 2(3™1) -1 2me1
nuae 2 +2(3%2) b
vPK2I 2n 2n

Proof:

Cubes For each ey the mask must contain an X in

the ith position and the other m-1 positlons can
be either 0, 1, or X,

Pexrfect Shuffle:

Exchange: Follows from Cube
Shuffles The shuffle function, s, is not a

T jection when used with any PE address mask

other than XX,..X, 00,.,0, or 11,,.,1, In proof
consider the following.
Case 13 There are no X's in the mask, lLet the

mask be R = x, T ....'To Where Iy +17‘r1.

Then s(rn_lrm__z...rlro) =8 (rm_zr-_B...ror m—l)‘
Case 21 There is at least one X in mask R,
Without loss of generality, let r, +1-0 and rl-x.

Iet p be such that it has a 1 in its ith bitand
matches mask R, Then s(p)=p'=s(p’).

PM2I; The ith to m-1st positions of the FE
address mask must be X's if used with tﬁ.

Thus, by setiing the Oth to i-1st posiﬁons of

the mask 3' distinct bijections can be obtained,
Note that t,, ¥ t_,, except for i=a-1,

108

T1liac IVs Follows from PM2I,

WPM2Is Wy, 04i< m, is a single cycle of size N

and therefore is not a bijectlon when used with
a mask other than XX,,.X,

Theorem 51 Ilet D(f) be the number of cycles in

the unique disjoint cycle representation of the

interconnection function f, No matter what type
of masking syster is used the maximum number of
distinct bl jections obtalnable by applying f

with different masks is 20(F),

Proofs The number of bljections obtainable is
equal to the size of the power set of the set of
disjoint cycles of f,

Iower Time Bounds On Simulations

All of the results and techniques in this
section are valid for all models of SIMD
machines, In models in which PE's can save
their data in their respesctive memories and
later reload it, the transfers specified by
interconnection functions with masks need not be
bl Jectlions, )

The way in which the actions of a network
on one PE's data affect the other PE's data is
a function of the model of SIMD machines being
used, 1.e,, type of masking, allowable
instruction set, etc, Therefore, in order to
maintain the model independence of our results,
the lower bounds we prove are based on the
actions of two different networks on a single PE
address,

We shall define a metric d to have the
following propertiess d(x,z) < d(x,y ) + d(y,z),
(the triangle inequality); d(x,y) > 0; and
d(x,x) = 0, If f is an interconnection function
and d is a metric, then d(x,f(x)) is the
"distance” that £ can "move" PE address x, Let
d, Yo max a(x,£(x)). Then, if afadg. there

exists a PE address for which it must take at
least df/d.g time for function g to simulate £,

Theorem 63 In the following table the entry in
row X, column y, is a lower time bound for
network x to simulate network y, A "c"
indicates that with certain SIMD machine wodels
the simulation can occur in constant time,

Cube PS Illiac PM2I WPM2I
Cube - 2|m/2] m m n
PS n - 2m=1 [ 2mel | 2m=1
I1liac (n/2 |{(nf2)+1]| - n/2 | (nf2)+1
PM2I c 2L c - c
WPM2I [ 2im/) | e c -
Proofs
Cube—> PSy let d be the Hamming distance, i.e,,

Tet d(x,y) = the number of bit positions in
which x and y differ, d(x,ci(x )=1, 021 ¢n,

so anbe =1, Iet x=0101,,.01, if m is even,
and 0101,,,010 if m is odd, Then
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msking system which could specify any arbitrary
set of PE's would require O(N) bits, Model
independent techniques for determining a lower

d(x,8(x)) = 2 | n/2} = ap.

Cube. I1liacs Iet d be as above, Since time bound on the simmlation of one network with

I 11...1) = 00...0, d =-n, another were presented,

+1 e ***7? "Ilac Future work in this area would include the
design and analysis of other masking systems and

Cube—) PM2I: Follows from above, interconnection networks, Hytrid networks, such
as the PM2I with a shuffle function, present

Cube~—> WPM2I: ILet d be as above, Since

interesting possibllities, Further research
would also include an examination of the added
flexibllity the use of store and load
instructions would create by allowing mappings
that are not bl jections to be used.

Wpo leaol) = 00...0, dypy, =@

PS—> Cubes o, (1") = 01™ 2L, The shortest

n n~-1 n~-1
sequence for the PS to map 1 to 01 is es . Acknowledgenents
I would like to thank Prof, J,D., Ullman
for his help and guidance with this research, I
would also like to thank Prof, R, M, Keller for
his comments and suggestions,

PS=> Illlacs I, (11...1) = 00,..0, The
shortest sequence for the PS to map
11...1 to 00.,.0 1s (es)™ e,

PS—> PI2I; Follows from above, keforences
(1] G.H, Barnes, et, al,, "The ILLIAC IV
ES—»uHP!QIi ) zo]o%owsofron above, since computer, " IEEE T . Comput., Vol, C-17
v (oo et  (hug., 1968), po. PHELTTL
PP

p) = oyl (2] K.E, Batcher, "STARAN/RADCAP hardware
Illiac=>Cubes Iet d(x,y) = |x=y! . Iet archltecture," Proceedings of the 1973
J = (m/2)-1, Then d(O,cJ(O)) = nf2, I,,and Sagamore Computer Conference on Parallel
I_, can not be used to move a distance of n/2, Erocessing, pp. 147-152.

[3) W.J, Bouknight, et, al,, “The Illiac IV
system, " Proceedings of the IEEE, Vol, 60,
No, 4 (Apr., 1972), pp. 369-388,

Bl T, Feng, "Data manipulating functions in

parallel processors and their

implementations,” IEEE Trans, Comput,, Vol,

c-23 (Mar., 1974), pp. 309318,

M,J. Flynn, "Very high-speed computing

systems,” Proceedi of the IEEE, Vol, 54,

No. 12 (Dec., 1933;. PP. 1901-1909,

S.W, Golomb, "Permutations by cutting and

and d(x,1+1(x)) =1, 0£x4N,

T1liac=> PS: s(10™ 1) = 0™11, The only way to
change the 1 in the m-1lst bit position using
less than (n/2) +1 steps is n/2 executions of
I,,or n/2 exscutions of I_, In both cases the 51

Oth bit position remains unchanged.
shuffling, "SIAM Review, Vol, 3, No, 4

I1liac=> PM2I: Iet d and j be as in Illiac- Cube, iél
Then dfo,t+J (0)) = n/2, (ot., 19817, o, 355-597.

{7l I.N, Herstein, Topics in Algetra, Xerox
College Publishing, 1564%.

P,B, Johnson, "Congruences and card
shuffling,"” American Mathematlcal Monthly,
Vol, 63 DBC., 19%;, PPe. 71K719n

- 1
Iliac-> WRRLy w,(, oy (10" = 0"'1. Oltec

requires (n/2) +1 steps to perform this mapping )
(see Illiac-> PS),

FM2I-> PS; Iet h be the Hamming distance, Iet ] R.M, Keller, private communication,
k(x) be & characteristic bit vengtor of address 0 D,E, lawrie, Memory-Processor Comnectlon

X, such that its 1th bit is 1 if and only if the
ith bit of x does not equal the i-lst mod m,
Ist d(x,y) = h(k(x),k(y)). Iety = mmod 4,

Let x = 00110011,,,0011 (0¥), Then
h(k(x),k(s(x)) = m-y = 4 [m/4] . By a case
analysis it can be shown that
h(k(x),k(tﬂ(x)))é 2, for 021 <m and 0£x<N,

WPM2I~> PS: Similar to PM2I-> PS,

Conclusions
We developed several analysis technlques
for evaluating interconnection networks and
examined five particular networks, We described
and studied the effects of a PE address masking
system which would require 0(1°€2N) bits, when &
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Waterloo, Ontario N2L 3Gl
Canada

Abstract. The characteristics of a switch
connecting the processors and a common memory in
a closely coupled multi-processor computing system
are considered. The switch is assumed to be
controlled from part of the address information,
and the effect of signal blocking is considered.
The performance of the switch is discussed in
conjunction with the processor characteristics,
and the two have to be matched to achieve
efficient processor utilization. An example shows
that for a 64 processor system, the presence of
switch blocking only reduces the processor
utilization by about 5%.

Introduction

In a closely coupled multiprocessor computing
system where the processors share a common memory
the switch interconnecting the processors and the
memory modules is a critical component. This has
been considered by Miller et al,™ by Baer? and
more recently by Chen and Frank”?. An example of
the type of system under comnsideration is shown
in figure 1, where the switch makes a connection,
between a number of processors and a multiple port
memory system.

It will be assumed that the memory modules
are identified by part of the data address and
this information will also be used to route the
path between the processors and the memory. Any
switch architecture can be employed, but for
simplicity of operation, the routing through the
switch should be capable of being established
easily from part of the address data. It is
further assumed that control of the switch will be
distributed, with each switch module being
controlled by the address information associated
with the data. There is no external control
system for the switch.

Switch characteristics

The switch will be considered to be
constructed with a number of identical binary
modules, an example of such a module being shown
diagramatically in figure 2. The modules are
arranged to form a Rearrangeable Switching Network
(RSN) as described by Opferman and Tsao-Wu#. The
data path from left to right - representing the
path from the processors to the memory, can
contain either data or address bits. Certain of

the address bits are used by each module for its
control. At any time, each module can be in one
of three states:

1. The module is not in use

2. The module.is set in the parallel
position, where the inputs A,B, C and
D are connected to the outputs A', B',

C' and D' respectively.

3. The module is set in the crossed position,
where the inputs A,B,C, and D are
connected to the outputs B', A', D' and
C' respectively.

The path taken by the data through the
switch is determined by the memory address issued
by the processor. This when received by each
module is used by that module to control the
switch position and hence route the signal to the
next layer of modules until a complete path
between the processors and the memory is
established. Data can then be sent through this
path in both directions, the path being maintained
while a block of data is transmitted, the data
being read (or written) from successive memory
locations. The size of a data block and the width
of the data path are important factors in the
design and performance of the switch and will be
considered in detail later.

The switch configuration can be described as
'binary', and it is a compromise between a
completely non-blocking switch (i.e. a single
cross-bar switch) and the simplest configuration
consisting of a single data bus. It also has
the advantage that the routing of the data can be
associated with the binary bits of the address,
successive bits corresponding to the control of
successive levels of the switch. The blocking
characteristics of the switch are important as
this determines the delay that can occur between
the request for data by the processor and the
time before that data is available.

Blocking can arise when a switch module is
already in use by another connection, and there is
a conflict in the state required in the switch.
However with a non-blocking switch design there
will still be blocking due to memory contention,
which will have the same characteristiecs as
switch blocking.

An analysis can be made of the performance of
such a switch. For a switch with m layers, assume
both 2™ input (processor ports) and output
(memory) ports, and assume that an average of p
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processors are requesting access to the memory.
Assume also that the requested addresses are
random and uniformly distributed and are
uncorrelated between the processors, assumptions
that will be untrue in a practical system, but
are necessary for a reasonable analytical result.
The theory can be extended to the more general
case where there is correlation between memory
references. The number of the requests that are
blocked by the switch is given by the recurrence
relation

X =x - S/4

i+l
xi(xi— 1)

where S = which is the number of

202 - 1)

switches in which both input terminals are in use
and where x, is the number of paths at level i in
the switch,lthe number of paths through the switch
will be x 1 The probability of a given call
being blogﬁed by the system b(p) is:

b(p) = 1 - *mtl
P

where X is the number of completed connections
through t%e switch. Values of b(p) have been
computed using the above equations, and the result
is shown in figure 3.

When the data transfer between the processor
and memory is complete, the path is released,
starting at the memory side of the switch and
going back to the processor. As soon as a
switch module is released, if it is blocking
another path, it is switched to enable routing of
the previously blocked path. The finite blocking
probabilities show up as a delay in the connect
time. The time taken to transfer data is the
sum of three components, i.e.:

Trorar = Tswrren T Tvemory * TBLocking
where TTOTAL is the total time between the
the request for data and its
availability
T is the time taken to route the signal
SWLTCH through the switch
TMEMDRY is the time to access memory in the

memory block
Ter0ckING is the.extra delay due to blocking in
the switch

Processor Characteristics

In order to assess in more detail the
performance of the switch, more consideration
must be given to the overall system, in particular
to the configuration of the processors. This will
determine the optimum width of the data path and
the average size of the data blocks being sent
through the switch.

It has already been established that delays
can occur when a processor requests information
from the memory, but that once a path is

est