
INFORMATION INTERNATIONAL 12435 WEST OLYMPIC BLVD. LOS ANGELES, CA . 90064

8211

PROGRAMMER '. S XA;NUAL

FOR THE

FR 80 COMPUTER OUTPUT MICROFILM RECORDER,

(Second Edition)

July 1971

Published by

Information International, Inc.
12435 West Olympic Boulevard
Los Angeles, California 90064

(
90353 - © 1971 by Information International, Inc. All rights reserved.

CHANGE RECORD

Signature of Person
Change No. Date of Issue Entering Change in This Book Date of Entry

i
I

ii

TABLE OF CONTENTS

CHAPTER 1 - INTRODUCTION

1.1 The FR 80 System, p 1-1
1.1.1 Input Section, p 1-2
1.1.2 Processor, p 1-2
1.1.3 Data Translator, p 1-3
1.1.4 Recording Unit, p 1-3

1.2 Software Design Philosophy, p 1-3
1.3 Maintenance of FR 80 Software; p 1-4
1.4 III Policy on New Software, p 1-5
1.5 User Programming Aids, p 1-5

CHAPTER 2 - HOST COMPUTER SOFTWARE

2.1 SC 4020 Routines, p 2-1
2.2 FRESCO, P 2-1
2.3 IGS (Integrated Graphics System), p 2-2
2.4 3D Plots, p 2-2
2.5 Other Host Computer S~ftware Packages, p 2-2

CHAPTER 3 - STANDARD FR 80 SOFTWARE

3.1 Simulators, p 3-1
3.2 Forms Compiler, p 3-1
3.3 FR 80 Data Format, p 3-1

CHAPTER 4 - FR 80 OPERATING SYSTEMS

4.1 Tape Operating System, p 4-1
4.2 Disk OPerating System, p 4-2

4.2.1 Debug, p 4-3

CHAPTER 5 - UTILITY PROGRAMS

5.1 Text Edttor, p 5-1
5.2 AssemI>ler, p 5-1
5.3 Disk utility Programs, p 5-1

5.3.1 Tape Dump Re1oader, p 5-1
5.3.2 Disk Dumper, p 5-1
5.3.3 Magnetic Tape Display, p 5-1
5.3.4 Disk Audit, p 5-1

; ; ;

CHAPTER 6 - NEW APPLICATIONS

6.1 Creating New' Software for the FR 80, p 6-1
6.2 Standard Subroutines, p 6-2

6.2.1 Standard Subroutine Parameters (III-109), p 6-2
6.2.2 Operating Monitor, p 6-2
6.2.3 Vector Routines (III-162), p 6-3
6.2.4 Character Sets, p 6-4

6.2.4.1 Character Dispatch Tables (III-164), p 6-4
6.2.4.2 Character Descriptors (III-164 FILM), P 6-4

6.2.5 Character Routines (III-147), p 6-4
6.2.6 Magnetic Tape Routines '(III-163), p 6-5

6.3 FR 80 Commands, p 6-6
6.3.1 Setup Commands, p 6-6
6.3.2 Positioning Commands, p 6-7
6.3.3 Point Plotting Commands, p 6-8
6.3.4 Vector Generation Commands, p 6-9
6.3.5 Character Generation Commands, p 6-11 .
6.3.6 Skip and Other Commands, p 6-14

Appendix A - III-126D; Debug (Disk)
Appendix B - III-125; Symbolic Text Editor
Appendix C - III-101D; Assembler (For Disk Systems)
Appendix D - III-139; Tape Dump Reloader
Appendix E - III-138; Disk Dumper
Appendix F - III-123; Magnetic Tape Display
Appendix G - III-148; Disk Audit
Appendix H - III-109; Standard Subroutine Parameters
Appendix I - III-166 INVAR; III-166; III-16l; and III-16l GO
Appendix J - III-183; Disk I/O
Appendix K - III-162; Vector Routines
Appendix L - III-163; Magnetic Tape Routines

LIST OF ILLUSTRATIONS

Figure 4-1 FR 80 Magnetic Tape Structure, p 4-1

Figure 4-2 Disk Data Structure, p 4-2

Figure 6-1 Internal Data Formats, p 6-5

iv

Chapter 1

INTRODUCTION

The FR 80 Programmer's Manual is provided for use by experienced assembl}

language programmers who are modifying FR 80 software or writing new

FR 80 programs. It is not intended for the "open shop" user. The FR 80

User's Manual is provided for that purpose.

This chapter is concerned with the overall aspects of FR 80 software,

such as philosophy, maintenance, etc. Chapter 2 describes the available

host computer software. Chapter 3 outlines the standard FR 80 software,

which is explained in greater detail in the FR 80 Operator's Manual and

the FR 80 User's Manual. Chapters 4, 5, and 6 discuss operating systems,

utility programs and the writing of new software for the FR 80. These

three chapters are essential to the programmer who is going to work

with FR 80 assembly language. This material is not covered in any other

Information International publication.

1.1 THE FR 80 SYSTEM

The FR 80 is designed and manufactured by Information International,

Inc. (hereinafter called III). The system normally operates off-line.

By reading digital data from magnetic tape, the system processes the

information and records characte.rs and vectors on a high-precision,

cathode-ray tube. A special camera system photographs the face of the

tube. The resulting film is processed into either a positive or a

negative image. Film duplicates, hardcopy, or printing plates can be

made from the original film.

1-1

The FR 80 is organized into four functional sections:

1. Input section

2. Processor

3. Data translator

4. Recording unit

1.1.1 Input Section

Standard FR 80 input consists of 7- or 9-track magnetic tape units, a

master tape controller, Teletype, and paper tape reader. The master

tape controller may be expanded to four magnetic tape units and provides

switch selection of the desired input. The input section controls the

flow of data to the processor at a nominal transfer rate of 18,000

18-bit words per second. The Teletype and paper tape reader serve as a

10-character-per-second auxiliary communications link with the processor

unit.

1.1. 2 Processor

The processor is an 18-bit binary computer, with a 4096-word memory.

Serving as the central control unit of the system, the processor com­

fines operating data and plotting instructions for routing to the data

translator. Under program co~trol, the processor instructs the data

translator to generate the alphanumerics, vectors, and special forms

required. A display monitor provides the operator with a window into

the system. An 8-inch by 10-inch cathode-ray display tube is driven

directly from the precision light source to provide an accurate view of

the recorded image.

1-2

1.1.3 Data Translator

The high precision and versatility of the FR 80 is determined by the

function generators and control circuitry contained in the data trans­

lator, which is subdivided into a vector generator, character generator,

point plot circuitry, and control circuits for the monitor and recording

section. Upon command from the processor., the digital data received

by the translator is converted to analog signals that control the

precision light source deflection beam. The deflection drive signals

are corrected for linearity, focus, and astigmatism before routing to

the light source deflection coils. Control signals from the data

translator maintain control of the camera and monitor functions.

1.1.4 Recording Unit

Electrical signals are converted into a recorded film image in the

recording unit, which comprises a precision light source, optics, and

microfilm camera. Electromagnet'ic deflection is used to position the

light source beam and achieve the best possible image quality. The

created image is focused by the optical system and recorded by the

microfilm camera. The recording cameras are available with incremental

pulldown. The flexibility of the FR 80 permits the addition of Miracode

and other retrieval codes to the microfilm record.

1.2 SOFTWARE DESIGN PHILOSOPHY

The Information International FR 80 carefully balances hardware and

software to provide the greatest flexibility to the user.

The FR 80 includes a programmable controller and display monitor. All

the software is capable of creation on the FR 80 itself. Insurance

against obsolescence is assured by. maintaining a high degree of

1-3

flexibility through software control of all major functions. In other

words, rather than fixed hardware capable only of accepting a limited

number of formats, the FR 80 system is organized to accept virtually

any formatted tape.

This allows the FR 80 to replace any existing COM installation without

change Of host computer software, tape formats, or microform require­

ments. The result is a higher quality, more uniform, more readable

image. In addition, a broad range of features and capabilities are

available for future applications growth. A further feature is a

continuing extension of FR 80 capability through maintenance and

additions to distributed software.

1.3 MAINTENANCE OF FR 80 SOFTWARE

All of Ill's software is maintained at Los Angeles on a 16K FR 80 with

the disk option. There are four basic FR 80 software systems: SC 4020

Simulator, META Interpreter, Pri'nt Simulator, and CalComp Simulator.

Recognizing that there is an almost unlimited number of possible com­

binations for an FR 80 (such as two operating systems, 4K memory, 8K

memory, disk, several types of magnetic tape formats, at least seven

standard camera options, three character fonts, more than ten character

sets, plus a long list of features from which a user can choose), III

has designed each software system so that an III operator can enter the

hardware configuation and software features desired by a given customer

for a particular application and assemble the appropriate binary programs

These programs are distributed to the FR 80 user on program system tapes,

and are subsequently updated with additional distributions incorporating

improved performance, additional features, etc. Each system tape

distribution contains a list of the binary programs plus an information

bulletin outlining changes and improvements from prior distributions.

1-4

A copy of the system tape for each FR 80 user is maintained at III

headquarters in Los Angeles for use in duplicating identical conditions

to those encountered in the field.

Should a "bug" or an unusual condition develop at the user's site, III

will test the same condition and give a "patch" over the telephone.

1.4 III POLICY ON NEW SOFTWARE

The software systems provided for the FR 80 are very flexible. The

built-in features allow the operator to adapt to almost any requirement.

Should a particular requirement develop that is not within the scope of

the standard software, there are several alternatives open:

1.5

1. If the requirement appears to be of general use, III will

add it to its software development plan and will provide

this as part of the standard software at no charge. If

the user cannot wait for the normal distribution of an

additional feature, III will quote the charge for a

temporary solution.

2. If the application is of a special nature peculiar to one

customer, III will provide the required program at time­

and-material rates. Price and delivery date will be

quoted on request.

3. Should the user desire to develop such programs internally,

III offers, at no charge, its proprietary subroutine

package together with documentation and training to enable

the user to write his own software.

USER PROGRAMMING AIDS

Many FR 80 users have program staffs already established for their

computer installation. They have become accustomed to modifying

1-5

vendor-distributed software to meet their own specific requirements.

In order to do that, they normally request symbolic listings of all

software provided by the vendor. In the case of the FR 80, the software

distributed on system tapes is in binary form. Due to the complexity

of options offered in so small a system, the symbolics appropriate to

a particular distributed program are not available. The basic software

systems that produce these binaries are proprietary to III.

Practical manipulation of this software even within the expanded system

available at III necessitates operation with the barest minimum of

included comments. For reasons of both proprietary protection as well

as the impracticality of customer modification, this software is not

offered with the FR 80.

In lieu of this, to permit an FR 80 user to write his own programs, III

offers a set of documented FR 80 subroutines. These are the basic

subroutines III uses to write special applications programs not covered

by the standard software. Access to these programs is subject to

execution of a satisfactory agreement protecting Ill's proprietary

interests.

1-6

Chapter 2

HOST COMPUTER SOFTWARE

III makes available free of charge to FR 80 users the symbolics and user

manuals for several of the more common host computer software systems.

On request, III will provide any FR 80 customer with the symbolics on

magnetic tape and furnish a set of user manuals without charge.

These systems are the current production systems of the companies that

furnish them for distribution and are essentially error free. However,

neither the contributing company nor III assumes responsibility for

bugs which may be uncovered in your application.

2.1 SC 4020 ROUTINES

Developed by North American Rockwell Corporation, these routines are

written in COBOL with some 360 assembly language. The current version

is operating under OSjMVT. Output is a tape formatted for the SC 4020.

The III FR 80 reads this tape directly.

2.2 FRESCO

This is a host computer package particularly suited for use in installa­

tions where the users are familiar with the SC 4020 syntax. FRESCO was

also developed by North American Rockwell Corporation and is an expansion

of their SC 4020 routines package to take advantage of the additional

features of the FR 80. Written in COBOL with some 360 assembly language,

it is implemented under OSjMVT. The output of FRESCO is in the FR 80

data format. FRESCO is provided through the courtesy of North American

Rockwell Corporation.

2-1

2.3 IGS (INTEGRATED GRAPHICS SYSTEM)

Developed by the RAND Corporation, IGS was designed to provide a uni­

versal higher level language that would produce tapes for recording on

any graphics recorder. Through the courtesy of the RAND Corporation,

III is able to provide a version of IGS tailored to produce META output

for the SD 4060. This same package can be modified by the user to

provide a more efficient META output with extended features for the

FR 80.

2.4 3D PLOTS

Through the courtesy of Idaho Nuclear Corporation, III has available

for distribution listings of routines for producing 3D plots. The

routines are written in FORTRAN.

2.5 OTHER HOST COMPUTER SOFTWARE PACKAGES

Additional host computer software packages of general interest will be

distributed to FR 80 users if the contributer will furnish III a mag­

netic tape with the symbolics and a copy of the user's manual.

III will also furnish technical assistance to FR 80 users who would

like to convert their host computer systems to FR 80 data format output.

Such conversion has resulted in significant reductions in host computer

processing time, higher information density on the output magnetic tape

and, in many cases, substantially increased recording speed.

2-2

3.1 SIMULATORS

Chapter 3

STANDARD FR 80 SOFTWARE

There are four standard simulator systems:

1. SC 4020 simulator

2. Meta interpreter (SD 4060)

3. Print simulators

4. CalComp simulator

For detailed discussions of these simulator systems, refer to the FR 80

Operator's Manual and the FR 80 User's Manual.

3.2 FORMS COMPILER

The FR 80 utilizes forms stored in core rather than a hardware forms

flash. Refer to the FR 80 User's Manual and the FR 80 Operator's Manual

for details.

3.3 FR 80 DATA FORMAT

There is a preferred FR 80 format for users who wish to generate tapes

on the host computer and are not restricted by format. The FR 80 data

format is described in detail in the FR 80 User's Manual.

3-1

Chapter 4

FR 80 OPERATING SYSTEMS

4.1 TAPE OPERATING SYSTEM

An FR 80 with this configuration stores all the operating programs on

a specially prepared magnetic tape supplied by III. The structure of

the tape is shown in Figure 4-1.

System I Program I Program I Program
Maintenance N 1 L N 2 L N 3

D R D R D ...
E G E G E
X X X

LRG = Long Record Gap

Figure 4-1. FR 80 Magnetic Tape Structure.

To begin operation of the FR 80, a paper tape bootstrap is loaded in

the reader of the Teletype, the address switches are set to 40 8 and the

hardware read-in switch is depressed. The system tape is expected to

be on Unit 3. The System Maintenance Program is loaded into the computer

and started. The program responds by outputting *MONITOR to the Tele-

type.

The functions within the System Maintenance Program are:

1. System Tape Copy - If two tape units are executing on the

FR 80, the copy function will copy the system tape onto

Unit 3 from Unit 1.

2. Index - This function will search the entire tape and print

out the names of each program and the magnetic tape buffer

length of each program.

4-1

3. Abut - This function will produce test frames of film for

precisely determining the abutment number for each camera.

With a tape operating system, it is often necessary to input all the

operational parameters and forms into the program. Instead of repeating

this every time the program is run, the tape system allows for a program

to be dumped back onto the system tape. The dump can be with a new

name or over the same program. Upon distribution of new and updated

programs from III, the user can combine system tapes by utilizing this

dump feature.

4.2 DISK OPERATING SYSTEM

When the FR 80 is configured with the disk option, the immediate dif-

ferences are faster program setup, forms storage, and a rapid programming

system. The disk utilized is a fixed-head-per-track, fast-access disk

containing 262,143 18-bit words. The average access time is approximate 1

16ms. The disk is structured into blocks of 256 words each.

~ Track Usage Table

o Master Directory

~ ~user Directory

o Program Files
1. Symbolic
2. Binary Ouser Directory

OswapPing Area

Figure 4-2. Disk Data Structure.

4-2

See Figure 4-2. The Track Usage Table (TUT) is a bit-encoded table

indicating used or working block availability. The master directory

contains the names and pointers to each of the user directories. The

user directories give the names and pointers to each of the symbolic

or binary files within that directory. The swapping area is used to

retain disk debug or a core image if debug is running.

4.2.1 Debug

Debug is the basic operating system within the disk structure. Debug

has the capability to:

1. Load binary programs from disk.

2. Modify the binary image.

3. File changes back on the disk.

4. Set break points for debugging binary programs.

Debug is retained in the swapping area on disk, and a program bootstrap

located at -42 8 performs the swapping of the core image and debug. Once

debug is running, the monitor display shows the core image that is

currently in the swapping area.

4-3

5.1 TEXT EDITOR

Chapter 5

UTILITY PROGRAMS

This program is operable on both disk and tape operating systems. The

only difference is the output medium. On the tape system, the output

is paper tape. On the disk system, all storage is on the disk. The

text editor program is used to create symbolic files of forms or new

programs. After the file has been created, the text editor can be

utilized to correct and update the file.

5.2 ASSEMBLER

This utility program is a powerful two-pass macro-assembler that accepts

a high-level programming syntax developed by III. The assembler pro-

duces binary files on either paper tape or disk, depending on the

machine configuration.

5.3 DISK UTILITY PROGRAMS

5.3.1 Tape Dump Reloader - This program loads symbolic or binary

files from magnetic tape and transfers them to the disk.

5.3.2 Disk Dumper - This program dumps programs from the disk to

magne ti c tape.

5.3.3 Magnetic Tape Display - This program is used to display on the

monitor the binary image on either 7- or 9-track tapes. The data can

also be output to the Teletype.

5.3.4 Disk Audit - This program reads every block on the disk and

outputs to the Teletype any hardware errors that are detected. The

5-1

program also displays on the monitor the disk allocation by directories.

Disk audit is the means for deleting files from the disk or renaming

files.

6.1

Chapter 6

NEW APPLICATIONS

CREATING NEW SOFTWARE FOR THE FR 80

The FR 80 comes with a powerful programming system for both tape and

disk operating configurations. The first step in preparing a new pro­

gram is the editing and updating of the source symbolics. These sym­

bolics consist of standard subroutines and the application package

utilizing all the necessary routines to perform some specific task.

The user prepares a symbolic file using the Symbolic Text Editor and

has either a disk image or a paper tape of the symbolics, depending on

the FR 80 configuration. This file can be modified and updated using

the text editor.

Next is the assembly process. The FR 80 has a two-pass macro-assembler

for processing the source file and producing a disk or paper tape

binary program. At this point, the user can add this new program to

the library of existing FR 80 programs either on disk or magnetic tape.

To provide the user with this programming capability, III supplies the

source to produce custom application programs. These subroutines

include:

1. Operating monitor

2. Vector routines

3. Character sets'

4. Character routines

5. Magnetic tape routines

6-1

Given these basic routines, the user can put together an application

package with a minimum of programming effort.

6.2

6.2.1

STANDARD SUBROUTINES

Standard Subroutine Parameters (111-109)

This subroutine is a set of definitions, including:

1. Machine configuration (core, tape, disk)

2. Types of cameras available

3. Special options

4. Macro definitions for standard programming conventions

6.2.2 Operating Monitor

Five files comprise the operational monitor to interface between the

human operator and the applications program:

1. 111-166 INVAR

2. 111-166

3. 111-161

4. 111-161 GO

5. 111-183

Included in these files are the Teletype input/output routines and

basic FR 80 functions. The FR 80 functions are:

1. Beam positioning

2. Beam parameters

3. Camera advance

4. Monitor magnetic tape I/O

a. Density select

b. Drive select

6-2

c. Space forward

d. Space backward

e. Error retry

5. Teletype command decoding

6. Error responses

7. Image rotation

8. Focus program

9. Program load and dump

Monitor subroutines III-16l and III-16l GO are files that contain:

1. Teletype input/output formatting

2. Focus pattern for setting exposure level

3. Tape operating utility routines

a. Program dumper

b. Program loader

The Disk I/O file, III-183, contains routines to create, read, and

write files formatted within the disk operating structure.

6.2.3 Vector Routines (III-162)

This file contains a general set of vector drawing routines. There

is a routine to set the head and tail coordinates of a vector; after

these are set, three different vector routines can be called.

1. Solid vector

2. Dotted vector

3. Dashed vector

6-3

6.2.4 Character Sets

6.2.4.1 Character Dispatch Tables (111-164) - This file contains

dispatch tables for different character sets. These are defined

using the conditional assembly features. Some of the sets available

are:

I. III master set

2. BCD

3 . EBCDIC

4. EBCDIC with lower case

5. CDC

6. Univac

7. Honeywell

8. G.E.

9. SC 4020

10. SC 4060

II. SC 4400

6.2.4.2 Character Descriptors (111-164 FILM) - This file contains

the character descriptors for the character generator hardware. There

are two other fonts available from III: the NMA Microfont (111-164

Micro) and OCR-B (111-164 OCR-B).

6.2.5 Character Routines (111-147)

This file contains routines ~o accept magnetic tape characters and

convert them into FR 80 internal codes using 111-164; the routine then

performs the I/O instruction to start the character generator plotting

the specified character.

6-4

6.2.6 Ma9netic Tape Routines (III-l~3)

This file contains routines to read 7- or 9-track tape in binary or

character data. The data on tape can also be accessed in bit or word

formats. The file also contains routines to reposition the tape for

processing nested repeats of data on tape.

7-Track

9-Track

Character
2

IS-bit word

Character
1

I Cha~acter

Character
2

t L Parity for Character 2

~parity for Character 1

Figure 6-1. Internal Data Formats.

6.3

6.3.1

FR 80 COMMANDS

Setup Commands

RST (706002) RESET

This command stops the vector and character generators and

blanks the PLS (Precision Light Source), i.e., disables

intensification of the recording tube. The PDP instruction

CAF will also do a RESET in addition to its other functions.

This command should be done at the beginning of every program

and at the detection of certain error conditions.

BLNK (706064) BLANK

Blank the PLS (Precision Light Source) but not the monitor.

This command should be issued at the beginning of a program

sequence which is meant to intensify only the monitor; for

example, during periods of operator communication when it is

not desired to make film, such as in the Text Editor or

Monitor. (This command can also be used to draw dashed vectors

See LDL (706l64)in par. 6.3.4.

UNBL (706062) UNBLANK

Enable intensification of the PLS. All light-producing

commands following this will intensify both the monitor and

the PLS.

LSPS (706344) LOAD SPOT SIZE

The low-order 3 bits of the accumulator are put in the PLS

6-6

spot size .register (the high-order 15 bits are ignored). All

subsequent points, characters, and vectors will be drawn with

the corresponding spot size. This size varies linearly over a

range of 1 to 5 from the smallest (0, with a maximum size of

4 scope points) to the largest (7). The monitor is not affectec

by this command. A delay of at least 100 microseconds should

occur after this command is given before the first plotting

command will utilize the required spot size.

LBRT (706364) LOAD BRIGHTNESS

The low-order 3 bits of the accumulator are put in the PLS

brightness register. All subsequent points, characters, and

vectors will be drawn at the corresponding brightness. The

relation of the 8 levels (a-dimmest to 7-brightest) varies

greatly, depending on the setting of the PLS intensity knob.

The monitor is not affected by this command. No delay is

required after setting brightness.

6.3.2 Positioning Commands

The positioning of the PLS and monitor beams is accomplished through the

use of four l4-bit registers: the X-buffer register, the X-DAC register,

the Y-buffer register, and the Y-DAC register. (DAC means Digital-to­

Analog Converter and refers to the device which converts a l4-bit

number to a voltage which deflects the beam to the proper position.)

When a number is put into one of the buffers, the beam is not deflected.

When a number is put into one of the DACs, the beam is deflected. The

proper use of the positioning commands follows under pars. 6.3.3,

6.3.4, and 6.3.5.

6-7

6.3.3

LXB (706 2 04) LOAD X-BUFFER

Load the X-buffer register with the low-order 14 bits of the

accumulator. (The high-order 4 bits are ignored.)

LYB (706004) LOAD Y-BUFFER

Load the Y-buffer with the low-order 14 bits of the

accumulator.

LXD (706124) LOAD X-DAC

Load the X-buffer and X-DAC registers with the low-order 14

bits of the accumulator, and load the Y-DAC register from the

Y-buffer register. This command deflects the beam.

LYD (706224) LOAD Y-DAC

Load the Y-buffer and Y-DAC registers with the low-order 14

bits of the accumulator, and load the X-DAC register from the

X-buffer register. This command also deflects the beam.

Point Plotting Commands

INTS (706022) INTENSIFY SPOT

This command causes intensification at the current beam

position on the monitor and, if an unblank command is

currently in effect, on the PLS. The intensification lasts

for 2 microseconds, and the size and intensity of the spot are

determined by the most recent LSPS and LBRT commands.

6-B

6.3.4

LXDI (706244) LOAD X-DAC AND INTENSIFY

This command is equivalent to doing an LXD instruction

followed by an INTS instruction, with the exception that an

automatic delay of 35 microseconds occurs after the loading

of the DACs and before the intensification. The central

processor does not stop processing subsequent commands during

this 35 microseconds. Hence an SPNB command should be given

if any conflicting FR 80 commands are given soon after this

one. (See par. 6.3.6.)

LYDI (706264) LOAD Y-DAC AND INTENSIFY

This command is the same as LXDI with an LYD substituted for

the LXD.

Vector Generation Commands

The FR 80 must be given the following items of information in order for

it to draw a vector:

Item 1. Ratio of Smaller over Larger .. this is the 12-bit fraction

arrived at by dividing the smaller component by the larger.

(The longest vector that can be drawn is quarter screen, 4096

points; hence, the 12 bits instead of 14.)

Item 2.

Item 3.

Item 4.

Item 5.

The sign of the smaller component.

A bit telling which axis (X or Y) has the larger component.

The sign of the larger component.

The magnitude of the larger component. (This is also 12 bits

long.)

The vector will be drawn from the current beam position to the position

determined by these five quantities.

LSL (706104) LOAD SMALLER OVER LARGER

This command loads Items 1-3 as follows:

1. The ratio of the smaller over the larger is in the

low-order 12 bits of the accumulator (AC6-AC17).

2. The sign of the smaller is in AC bit 5 (0 for plus,

1 for minus).

3. AC bit 4 is a 0 if X is the larger, and a 1 if Y is the

larger. AC bits 0-3 are ignored.

LDL (706164) LOAD LARGER AND GO

Items 4 and 5 are loaded as follows:

4. The larger component is in AC bits 6-17.

5. The sign of the larger is in AC bit 5.

This command also initiates drawing of the vector. The

vector always appears on the PLS if it has been unblanked.

(Dashed vectors are drawn on the PLS by giving alternate

BLNK and UNBL commands while a vector is going.)

The vector generator requires the use of the X or Y buffer in order to

achieve minimal timing and optimal end point match. This is illustrated

by the following situation:

A vector is to be drawn from point (Xl' Yl) to point

(X2 , Y2), and then another vector is to be drawn from

6-10

6.3.5

(X2 , Y2) to (X 3 , Y3). After the first vector has been

drawn, the DAC registers still contain the numbers Xl and YI

but the beam is actually positioned at (X2 , Y2). The

difficulty arises when the DACs are updated to begin the

second vector. If an LXD is given with X2 in the accumulator,

the beam will begin moving to the position (X2 , YI). Then,

several microseconds later, when an LYD is given with Y2 in

the accumulator, the beam will have to reverse direction and

move to (X2' Y2). This is avoided by giving an LXB with X2

in the accumulator (this command does not cause the beam to

move), followed by an LYD with Y2 in the accumulator. This

sequence will update the DACs to the proper position without

the undesirable beam excursions.

Character Generation Commands

The character generator allows for 64 sizes, 8 rotations, variable

spacing and line feed values, and a range of character coding and styling

limited only by the memory capacity and resolution of the system. This

versatility in coding and styling is accomplished by having the

character graphic representations stored in core memory encoded in a

language very much like that used by incremental pen plotters. In

addition, there is a table of pointers to these representations, where

the position within the table represents the octal code for the

character. To display a cha!acter, one puts the pointer in location

378 and does a CHGO. (Location 378 is the fourth PDP Data Channel

pointer. Location 36 8 , the counter, is incremented but not tested.

See the' PDP manual for a description of Data Channel Operations.

&:;-"

LSIZ (706404) LOAD SIZE

The low-order 6 bits of the accumulator are put in the size

register. (The high-order 12 bits are ignored.) All subsequent

characters are plotted at the corresponding size, from

o (smallest) to 778 (largest).

LCDX (706464) LOAD CHARACTER DELTA-X

Load the del ta-X register with the low-order 14 bits of the

accumulator. This number is used for spacing or carriage

return, depending on the value of the rotation register

(see below).

LCDY (706444) LOAD CHARACTER DELTA-Y

Load the delta-Y register with the low-order 14 bits of the

accumulator. This number is used for spacing or carriage

return, depending on the value of the rotation register

(see below).

LROT (706424) LOAD ROTATION

This command loads the 5 low-order accumulator bits into the

rotation register. The low-order 3 bits select one of 8

rotations, where 0 means upright and 1 through 7 are

successive rotatio~s of 45 degrees counterclockwise. The

other 2 bits (AC 13 and 14) are interpreted as follows:

AC13 refers to X-delta

AC14 refers to Y-delta

a l-bit refers to spacing

a ~-bit refers to carriage return

6-12

Thus, if AC13 is a 1, the X-DAC will be incremented by

delta-X when spacing occurs (see below). If it is a~, the

X-DAC will be incremented by delta-X when carriage return

occurs. If AC14 is a 1, the Y-DAC will be incremented by

delta-Y when spacing occurs; if it is a ~, the Y-DAC will be

incremented by delta-Y when carriage return occurs. There

are four possibilities:

00 - update both X and Y for carriage return and

nei ther for space

01 - update X for carriage return and Y for space

10 - update X for space and Y for carriage return

11 - update both for space and neither for carriage

return

CHGO (706324) CHARACTER GO

The character generator will display the character whose

incremental codes are stored beginning in the location follow­

ing the one pointed at by location 378 . (See the PDP manual

discussion of Data Channel Operations.) When the character

has been displayed, the X and Y DACs (but not the buffers)

will be incremented by the deltas (i.e., spacing will occur)

depending on the value of the high-order 2 bits of the

rotation register.

SPC (706024) SPACE

No character will be displayed but spacing will occur, i.e.,

6-13

6.3.6

the X and Y DACs will be incremented by the deltas according

to the value of the 2 high-order bits of the rotation

register.

CRT (706042) CARRIAGE RETURN

This command does two things:

1. The DAC which has been spacing (see LROT) will be

replaced by the contents of the corresponding buffer

register. This may be either, neither, or both, depending

.on the contents of the rotation register.

2. The DAC which has been selected for carriage return by

the LROT command will be incremented by the corresponding

delta register. This may also be either, neither, or both.

Skip and Other Commands

SPNB (742000) for 9/L SKIP IF PLOTTING NOT BUSY

SPNB (706041) for 9/L or 15

Skip the next instruction if the character, vector, or point

plotting hardware is not busy; if one of them is busy, go to

the next instruction.

ADV (706304) ADVANCE FILM

Advance the camera the number of pulldowns specified by the

low-order 3 bits of the accumulator, where zero means 8 pull­

downs and 1 through 7 mean 1 through 7 pulldowns.

6-14

SFNA (706061) SKIP IF FILM NOT ADVANCING

Skip the next instruction if the film is not advancing; go to

the next instruction if it is.

SM1.0' (706021) SKIP IF MORE THAN 10 FEET

Skip the next instruction if there are more than 10 feet of

film in the supply magazine; otherwise, go to the next

instruction.

SFLM (706001) SKIP IF FILM

Skip the next instruction if there is film in the supply

magazine: go to the next instruction if the supply magazine

is empty.

6-15

III PROGRAM LIBRARY

111-1260; DEBUG (DISK)

APPENDIX A

A-2

2. ABSTRACT

2.1 DEBUG is a general purpose lIinvisible ll symbolic debug­
ging program, in that the program image being dealt
with is resident on the disk until swapped in. The
program is allowed to use locations 0 through 17730.
A bootstrap swapper above those locations exchanges
the DEBUG core image with the program core image.

3. REQUIREMENTS

None.

4. USAGE

To restart, START at 17777. If that fails to work, read
in DISK UNSAVE (program number 111-165) at address 17735.
Should that fail also, a fresh copy of DISK DEBUG may be
loaded from the disk by reading in LOAD DISK DEBUG (pro­
gram number 111-150) at 17755.

4.1 Available Commands

(In the following, a and b stand for any legal expres-
sion and s stands for any legal symbol.)

11$11 may be entered either by typing "$" (shift 4), or
ALT MODE. .

4.1.1 Initializing Commands

COMMAND ACTION

$K

$$Z

$$K

a < $$Z

a < b$$Z

Ki 11 all but permanent symbols.

Zero memory up to upper search limit.

Kill symbols then zero memory ($$K = $K, $$Z).

Zero memory from a up to upper search limit.

Zero memory from a to b inclusive.

The double $ is always required on the zeroing
command to avoid inadvertent loss of information.

COM~-1AND

name$L

name$$L

name$J

name$$J

name$G

name$$G

name$H

name$S

name$T

A-3

4.1.2 Program Loading

The following commands are used for loading
or comparing standard III programs from disk
or paper tape. (The $H command is useful
only for making a magnetic tape system from
a disk.) When there are more symbols that
can be fitted into the allocated storage in
DEBUG, the definitions for excess symbols will
be omitted.

NOTE: In the following list, the term "name"
is a binary disk file name or "0" meaning
paper tape. "name" applies only to load and
file commands. The file name will be assumed
to be in the default directory, or, if not
there, in the SYS di rectory. Wi th DEBUG, the
default directory name may be changed by
typing a "directory-name;".

ACTION

Clears core, deletes symbols, and loads
program with symbols.

Does not clear core, does not delete old
symbols; loads program with symbols.

Used to load a system program. Clears· all of
core but the first 100 cells, loads the program,
and starts it at the normal starting address.

Does not clear core, does not delete symbols
for the previous program; loads program and
starts it running at its normal address.

Clears core except first 100 cells, loads pro­
gram without symbols, starts at its normal
starting address plus 1.

Does not clear core, does not delete symbols;
loads program without symbols, and starts at
its normal starting address plus 1.

Loads program with paper tape DEBUG for
creation of mag tape operating program.

Does not clear core, does not delete old
symbols, does not load core; loads symbols only.

Compare core with binary program file in the
range between the lower search limit and the
upper search limit. Differences between them
(applying the search ma~k) will be typed out,
unless the word in the program file is a 0
or XX.

.... '"

4.1.3 Program Deletion

name$$D will delete a binary disk file.

4.1.4 Storing Programs on Disk or Punching
Programs Onto Paper Tape

Programs may be stored on the disk or punched
onto paper tape by me~ns of the following
command:

name$F

As before, if "name" is "0", the program
will be punched on paper tape.

If "name" already exists on the disk, the
program will be replaced; otherwise a new
program will be created. A? indicates that
the disk is full, or the default directory is
full, and the program \'Jas not saved on the
disk.

4. 1 . 5 Mod e Con t ro 1

COMMAND ACTION

$S Print words as symbolic commands.

$C Print words as constants.

$R Print addresses in relative symbolic.

$0 Print addresses as constants.

n$R Change output number base to n (n>l).

n. Interpret n as a decimal number.

= Print last quantity in current mode.

Print last quantity in opposite mode.

A-4

The initial modes are Sand Rt and the initial
output base is 8. (The input base is always
either octal or decimal t depending on the
absence or presence of the decimal point.)

In symbolic mode the listing is made to

A-5

look as much as possible like input to the
assembler. Labels are printed when there is
an exact match (in which case they are followed
by a comma)t or when the location counter
increases by more than 1 (in which case the
label is followed by a I).

In patch mode t addresses are always printed
and contents are never printed. (Patch mode
is entered with left parenthesis and exited
with slash.) InitiallYt DEBUG is in non-patch
mode.

4.1.6 Arithmetic

SYMBOL DEFINITION

+ or space Plus

Minus

* Times

% Divide

Inclusive OR

4.1.7 Examination

COMMAND ACTION

a/

a'

/

" carriage return

line feed

t
)

TAB

a(

REGISTER

$A

$L

$Q

$F

$J

$J+l

$J+2

$J+3

$M

$M+l

Exit patch mode and open a in current mode.

Open a in opposite mode.

Exit patch mode and open addressed register in
current mode.

Open addressed register in opposite mode.

Modify, close, and exit patch mode.

Mo d i fy and open next.

Mo d i fy and open previous.

Modify and open addressed.

Modify, open addressed, and change sequence.

Enter patch mode and open a.

Enter patch mode and open addressed register.

4.1.8 Registers

Accumulator

Link

MQ

Bottom of symbol table

Location at which program s ta rts on

Location at which program starts on II

Contents of shift counter

Status of extend mode

Mask for searches

Lower search limit

A-6

REGISTER

$M+2

Upper search limit

Current location

Value of last quantity typed

All of the above are input symbols
only - they do not print out as
addresses.

4.1.9 Running

COMMAND ACTION

a l

II

all

Go to location contained in $J

Go to a

Go to location contained in $J+l

Go to a and put a in $J+l

$J and $J+l initially contain halts. If
lor II are use d wit h 0 u t a>r gum e n t s be for e
changing $J or $J+l, an error is indicated.

When a program is loaded, its start or pause
address is put in $J.

A running program may JMS to 17776 to store
into $J+l so that a II (SHIFT 2) will return
control to that location with the status
restored.

A-7

NOTE: If it is desired that DEBUG type the
return address for such an entry, the

A-a

JMS 17776 should be preceded by DZM 17775.

COMMAND ACTION

$B

a$B

$P

n$P

a$X

Remove breakpoint

Put breakpoint at a

The interrupt status is saved and restored at
breakpoints.

Interrupt Status:

Contents of AC, contents of MQ, link,
shift counter, and PIE.

Proceed after breakpoint stop.

If not i~ DEBUG as a result of a breakpoint,
then $Pwill act as a II and proceed to the
address stored in $J+l.

WARNING: An attempt to proceed from a break­
point that is replacing a CAL will not
operate properly.

Proceed and break on the n'th time

Execute the command a

If the execution of the command results in a
skip, the bell will ring.

A-9

4.1.10 Symbol Definition

COMMAND ACTION

a <s> Define the symbol s as the quantity a.

s,Define the open location as s. If there is
no open location, an error is indicated.

4.1 .11 Search and Repl acement

COMMAND ACTION

aSH

a$N

a$A

a$E

a+:-

Search for and print all locations equal to a.

Search for locations not eq ua 1 to a.

Search for locations with address a .

Search for 1 oca ti ons with effecti ve address

Repeat last search and replace masked bits
with a.

Searches may be stopped by typing anything.
On replacement, the ALT MODE key stops the
printing, but continues the replacement;
any other key stops both the replacement and
the printing.

If two replacements are attempted without an
intervening search, or if the search was an
E-type, an error will be indicated.

a.

Searches and replacements are masked by ($M).
Replacement after an A search will be address
only unless the replacement word contains bits
outside the address part, in which case it
will be a word replacement masked by ($M).

A search begins at ($M+l) unless the command
was preceded by b<, in which case it starts
at b, as does the ensuing replacement, if any.
Searching ends at ($M+2). At the end of
either a search or a replacement, . is equal
to the address of the last match. If no
argument is given (e.g., $N), zero is assumed.

4.1.12 Program Calls to DEBUG

DEBUG may be entered from a program so as
to load and start another program, or to
load a program with symbols.

To call for a load, JMP 17776 after setting
17775 to one of the following:

A 13-bit ADDRESS pointing to the
directory name and file name of the
program to be loaded. That program
will be loaded with symbols as if
Iname$L" had been typed.

A file name first-word; if the file
name is more than three characters,
1-4 must contain a file name second­
word. That program will be loaded
without symbols and started at its
normal starting address pl us 1, as
if Iname$G" had been typed.

A-10

4.2 Display Feature and Operating Instructions

Figure 1 shows a typical display in Symbolic mode;
that is, with $S in effect.* The top line is a dis­
play of the various machine registers. From left to
right, we see the LINK (0 in this case), the symbolic
contents of the ACCUMULATOR, the symbolic contents of
the MQ, and -- in this case -- the contents of $J+l.
(If the content of the upper right field is preceded
by a right arrow,-', it indicates that the program is
interrupted by a breakpoint, and that the breakpoint
is at the location indicated by the entry following
the -+ .)

The second line is the absolute address of the first

A-ll

location displayed. Each subsequent line of the dis-
play is one location higher in memory. (The second
line may be absent if there is no reasonable symbolic
equivalent for that address, in which case the number
will appear on the following line followed by the /.)

The third line indicates the symbolic address of the
first location displayed, and to the riqht of it is
the content of that location.
The fourth line, PEN4, indicates that there is a sym­
bol ic tag corresponding to the location whose' contents
are being displayed on that line.
The right arrow at the left side of the screen indi­
cates where a breakpoint is set.

If the open register 11.11 is on the screen, it is in­
dicated by having the contents of its address, pre­
ceded by a I, to the right of its own contents. (The
presence of this information in the middle of the
screen tells the user where the current location
counter for DEBUG is.)

For installations having a light pen, the three char­
acters in the lower right corner of the screen will
appear for use in conjunction with the light pen. The
three characters have the following significance:
Pointing at the X will execute the contents of the
currently open register. Pointing at the B will cause
a breakpoint to be placed at the currently open regis­
ter. Pointing at the P will cause the program to act
as though a $P were typed. When any characters are

* Since the symbol table for the display features is derived from
the normal DEBUG symbol table, storage limitations in DEBUG may
prevent all symbols from being available for display in large
programs.

ABSOLUTE
ADDRESS OF
FIRST LINE
OF DISP

LINK

SYMBOLIC -
ADDRESS OF
FIRST LINE

BREAKPOINT- -
INDICATOR

.. " --

ACCUMULATOR MO
($J+l) OR--t-BREAKPOINT
PROCEED· ADDRESS

CONTENTS OF
ADDRESS OF " "

" "

nu\...t:..t:.D

Figure 1. Typical Display in Symbolic Mode. >
......
N

A-13

typed after carriage return, these three characters
will be extinguished before any command is completed,
and the light pen feature will be disabled to avoid
ambiguity of action.

Use of the light pen doesn't open any registers. It
just changes the value of 11.11. In fact, if the
pen points to a cell when another register is open,
the action of the pen will close that register without
modification and change ll • lI • to the new value.

Other things the light pen may do:

1.

2.

3 .

4.

5.

Pointing with the light pen to one of the
displayed cells on the screen will cause
that to become the open register, and it
will be flagged by the presence of the /
followed by the contents of its address
in the middle of the screen.

Pointin~ at the value in the middle of the
screen (the contents of the addressed
register) will perform the same function
as a tab typed on the Teletype, and will
open or change II II to that location.

Similarly, one may point to the address in
the upper right corner to see the code in
the neighborhood where the program will
return. [Whenever a cell is selected by
some means other than the pen, the selected
cell will become the eighth line on the
screen, so that the cells above and below
may be served with it. However, if the
selected cell was gotten to by a simulated
tab from the eighth line on the screen, it
will become the first line on the screen
(to prevent infinite tabbing).J

Pointing at the AC will effect a tab to
that location.

Pointing at the right arrow at the left
side of the screen will remove a breakpoint.

If your machine has parameter knobs, the display may
be moved to adjacent cells by turning the right A
parameter knob. For machines without parameter knobs,
set data switches 16 and 17 to perform the same
function. Switch 17 down moves slowly to successively
higher core locations, and switch 16 down moves slowly
to successively lower core locations.

To change the open register without modification,
turn the left A parameter knob, or turn on data
switches 14 or 15.

A-14

The Display Feature is disabled by moving sense switch
1 down (which corresponds to setting AC switch 12 to
1 on machines without sense switches).

Holding the left foot pedal
Teletype output from DEBUG.
foot pedals, the left pedal
switch 3.)

down suppresses all
(On machines without

is simulated by AC

The left foot pedal also changes the display from
current mode to the opposite mode, i.e., symbolic to
octal or vice versa. Figure 2 shows the sample
display in Octal mode. The radix for all display
items is 8, regardless of the Teletype radix setting.

In essence, the right foot pedal undoes tabbing
operations. Toggling the right foot pedal will
switch the display back to the last open cell not in
view of the display. [Any operation that opens a
cell not on the screen will store its value in a
table of previous cells. Toggling the right foot
pedal will take you to the previous entry in that
table. (The table has 8 entries treated cyclically.)]

A-15

Q)

"0
o

::E

,....
ItS
+-'
U
o

.~

,....
c..
III
.~

o
Q)

,....
c..
E
ItS
V)

.~

u.

COMMAND SUMMARY - DEBUG

$K
$$Z
$$K
a<$$Z
a<b$$Z

name$L
name$$L
name$J

name$$J

name$G

name$$G

name$H

name$T

name$S
name$$D
name$F

$S
$C
$R
$0
n$R
n .
=

Ki 11 Symbol s
Zero memory
$K, $$Z
Zero above a
Ze ro a to b

Clear & load w/symbols
Load with symbols
Cl ear, load wi thout
symbols, and start
Load without symbols,
and start.
Clear, load without sym­
bols & start at ($J)+l
Load without symbols,
and start at ($J)+l
Clear, load w/paper tape
DEBUG and symbols
Compare program with
binary file
Load symbols only
Delete binary program
Save core as program

Symbolic
Constant
Relative
Octal
Set base n
n is decimal
Equals, current mode
Equals, opposite mode

+ Plus
Minus

* Times
% Divide

Or

/ Open, current mode
\ Open, opposite mode
c.r. Close
Lf. Open next
t Open previous
) Open addressed
TAB New sequence, addressed
(Open, patch mode

$A
$L
$Q
$F
$J
$J + 1
$M
$M+l
$M+2
.

II

$B
$P
$X

$W
$N
$A
$E
4-

Accumulator
Link
MO
Symbol tabl e
Start address
Return address
Search mask
Lower limit
Upper limit
Current address
Last value typed

Start
Return

Breakpoint
Proceed
Execute

Define a as s
Define current as s

Word search
Not-word search
Address search

A-16

Effective address search
Replace

EXTENDED MEMORY FEATURES IN DEBUG

For machines with extended memory (more than 8K), there is
one additional command that relates to the mode in which
addresses are accepted. This command determines the mask­
ing to be used for address interpretation.

The lIatll sign, @, when used without argument, means that the
addresses will be interpreted as the hardware interprets in­
direct addresses, i.e., 14 bits on a 16K machine, and 15 bits
on a larger machine. The display will wrap from bank to bank
when a core bank boundary is within the field of the display.

Typing @ preceded by an argument which is the core bank num­
ber, will select that core bank and use only a 13-bit addres­
sing field. The display will correspondingly wrap from b~­
ginning to end of that bank if that area is on the field of
the screen.

In addition to being able to type this command, ther~ will be
displayed in the lower right corner of the screen a 0, 1, 2,
and so on through the number of core banks available, followed
by an @.

Pointing at the @ will extinguish it and select the total core
mode as though an @ were typed. Pointing at one of the num­
bers will extinguish the number and select that bank as the
only addressable area.

A-17

III PROGRAM LIBRARY

111-125; SYMBOLIC TEXT EDITOR

APPENDIX B

CONTENTS

1. IDENTIFICATION

2. ABSTRACT

3. REQUIREMENTS

4. USAGE OF SYMBOLIC TEXT EDITOR

4.1 Introduction

4. 1 . 1 How the
4.1.1.1
4.1.1.2
4.1.1.3
4.1.1.4

Editor Works
Operating Modes
Commands
Arguments
Special Functions

4.1.2 The Editor's Command Repertoire
4.1.2.1 Command Mode Errors
4.1.2.2 Input Commands
4.1.2.3 Editing Commands
4.1.2.4 Output-Punching Commands
4.1 .2.5 Stri ng Search Commands

4.2 Character Mode

4.3 Disk Editor Commands

4.4 Editor Command Summary

4.5 Summary of Editor Operations
4.5.1 AC Switch Settings
4.5.2
4.5.3

Special Characters
Editor Command Summary

4.6 Duplexing

4.7 CRT Display

4.8 Line Numbering

4.9 Disk Editor Usage

4.10 Using the Editor
4.10.1 Example 1
4.10.2 Rearranging Text on Output
4.10.3 Example 2

B-2

2. ABSTRACT

2.1 This program provides for the creation or modifi­
cation of symbolic text files. Input or output
may be paper tape, disk, or teletype.

3. REQUIREMENTS

None.

4. USAGE

4.1 Introduction

When debugging, perhaps the most tedious job is
that of making a corrected symbolic program. It
involves seemingly endless duplication, listing,
splicing, and close attention. The Symbolic Text
Editor lightens the task and speeds the process of
correcting programs by using the computer to per­
form the drudgery.

In brief, the Editor reads a section of symbolic
text into core memory, where it is available for
examination and correction. The corrected text
can then be output to a new file. Text may also be
entered directly from the keyboard for original
text preparation. The Editor accepts tape input
and provides output in ASCII* code. Keyboard com­
munication with the Editor may be accomplished on
the Teletype Model 33KSR. The information to be
corrected is stored in a text buffer, which occu­
pies all of memory not taken up by the Editor itself.

* The code herein referred to as ASCII is actually #33 code or
ASCII with the eighth bit punched on tape.

B-3

4.1.1 How the Editor Works

By convention, paper tape information is
organized into various-sized blocks. The
larger blocks are called pages and are sep­
arated by form feed codes on paper tape.
Each page is divided into smaller blocks
called lines, which are separated by carriage
return-line feed pairs. A terminating car­
riage return-line feed pair is part of the
line that precedes it.

In the text buffer, lines are implicitly num­
bered decimally in sequence beginning with 1.
Form feeds are not stored in memory; hence
there are no page divisions in the text buf­
fer, and the entire contents of the Editor's
buffer are treated as a single page. The
user may organize his output into pages if he
\lJishes.

4.1.1.1 Operating Modes

In order to distinguish between com­
mands to itself and text to be enter­
ed into the buffer, the Editor oper­
ates in one of three modes. In Com­
mand mode, typed input is interpreted
as directions to the Editon to per­
form some operation. In Text mode,
a 11 typed input is taken as text to

B-4

be inserted in or appended to the
contents of the text buffer. The
Character mode allows each character
of a designated line to be referenced.

4.1.1.2 Commands

A command directs the Editor to per­
form some operation. A command con­
sists of a single letter preceded by
zero, one, or two arguments. If we
let E represent any command letter,
the three ways of constructing a com­
mand are:

No arguments
One argument
Two arguments

E~*
nEl

m, nE~

* The nonprinting licarriage return II and Htab" characters will be
represented hereafter by ~ and ~ respectively.

Note that two arguments must be sep­
arated by a comma, but that no comma
separation is allowed between the
argument(s) and the command.

To be executed, a command must be
followed by a carriage return. This
is the signal to the Editor to pro­
cess the information just typed. The
Editor responds with a line feed as
soon as it has processed the command
and begun the operation. If a mis­
take is made while typing a command,
the entire line may be ignored by
typing Line Feed.

4.1.1.3 Arguments

An argument may be any decimal inte­
ger, special symbol, or arithmetic
expression, consisting of decimal in­
tegers or special symbols separated
by the addition (space) or subtrac­
tion (minus sign) operators.

Examples: 256
1-39
25-3

12 48-7
. 4

The following two characters are spe­
cial symbols in the Editor.

The (I) symbol represents the total
number of lines in the text buffer.
If there are 100 lines in the text
buffer, the symbol 1 has a value of
100. It is used primarily for refer­
encing the last line in the buffer.

Example:

IL~ This will cause the last
line in the text buffer to
be listed

The (.) symbol has a value equal to
the number of the last line involved
in an Editor operation. The value of
. will be equal to the number of the
last line referenced or typed in. In

B-5

Carriage Return (~)

Rub Out (RO)

each command description that fol­
lows, the value of . after the com­
pletion of the operation is stated.

Example:

23, . C~ Lines 23 to the current
line are changed.

4.1.1.4 Special Functions

Certain keys have special operating
functions. The first three below are
nonprinting, so the symbol in paren­
theses is used to indicate the oper­
ation of the associated key.

In both Command and Text modes, this
is the signal for the Editor to pro­
cess the information just typed. In
Command mode, the operation specified
is to be performed. In Text mode, it
means that the preceding line of text
is to be placed in the buffer. In
Character mode, operation of this key
causes the line to be stored back in
the buffer with the corrections made,
and an exit from Character mode back
to the Editorls Command mode.

8-6

This character has two meanings depend­
ing on when it is used. If it is
struck after some information has been
typed, it causes that information to
be deleted. Used thus in Command or
Text mode, it has the effect of eras­
ing mistakes. When it has processed
the line feed, the Editor responds
with a carriage return. In Character
mode, it causes the original line to
be stored back in the buffer with no
corrections.

Typing RO in Command mode will cause
the next line of text to be printed.

Pressing RO in Text mode will cause
the last character of an incomplete
line of text to be deleted from the
input buffer. Continued striking of
this key will cause successive char­
acters to be deleted one by one, work­
ing from the end of the line back to

Colon (:)

the beginning. In this way, a mis­
take can be corrected without having
to retype the whole line.

Example: Instead of DAC PTEM, the
following line was typed:

DAC eTE

8-7

To correct the line, RO is struck three
times, erasing the last three letters
in succession, E, T, and C. The cor­
rect text is then typed in.

In Text mode, the rub out key has ano­
ther function. Typed immediately
after a carriage return, it signals the
Editor to return to Command mode. If
one deletes all the characters in an
incomplete line and then strikes RO one
more time, the Editor will also return
to Command mode.

In Character mode, RO allows the user
to move the pointer to the left, and
if in Character Insert mode, to delete
that character.

When this symbol is typed in Command
mode, the Editor will print the deci­
mal value of the argument that pre­
cedes it followed by a carriage return.
It is frequently used for determining
the number of lines of text in the
buffer.

Example: /: 57

or in determining the number of the
current line:

Example: 32

4.1.2 The Editor's Command Repertoire

4.1.2.1 Command Mode Errors

If a command requires one or two argu­
ments, they must be provided. If an
argument is missing, the Editor types

the error message, ARG MISSING.

The Editor types? if:

1. A command is given too many
arguments.

2. An argument is zero, negative,
or greater than I.

3. The second argument is less
than the first (except for the
IIX II command).

4. The command is illegal.

5. No match could be found when
searching.

B-8

6. Attempting to get next page of
input when no more input exists.

The Editor types BUFFER ALMOST FULL if
there are less than 100 (octal) free
words in memory.

The Editor types BUFFER FULL if the
buffer is full. No more text wi 11 be
accepted.

If the keyboard input buffer becomes
full while the Editor is typing, all
further input is lost, and the bell is
rung once for each character.

The commands are grouped under four
headings:

1. Input Commands

2. Editing Commands

3. Output Punching Commands

4. String Search Commands

4.1.2.2 Input Commands

In these commands, the form feed and
the physical end of the input tape are
both end-of-page indicators. If an
end-of-tape is encountered before the
completion of a command, the operation
is terminated.

NOTE: Commands followed by an * are
included to allow the user to
know what the commands will do
with all possible combinations
of arguments. They are not
recommended for general use.
All combinations not listed are
illegal.

B-9

COMMAND ACTION

R

nR

m,nR *
m,nX

Z

nZ

m,nZ *

Read one page of text and append to buffer
(.=1). The Editor will read information from
the input file until a form feed or the physi­
cal end of input is encountered. The incoming
text is appended to the contents of the buffer;
no information in the buffer is lost. The form
feed is not entered into the buffer.

Read n lines (not pages) of text and append to
buffer (.=1). The Editor will read n lines and
append them to the contents of the buffer.
Reading will cease if a form feed or the end of
tape is encountered before n lines have been
read.

Equivalent to R.

Read the next m lines of text from the input
tape and insert them after line n. (.= last
line entered).

Skip one page of text. The input tape will be
moved forward until a form feed is encountered.
The contents of the buffer are unaffected.

Skip n pages of text. The contents of the text
buffer are unaffected.

Equivalent to Z.

COMMAND

o

nO

m,nD

A

m,nA *
I

nI

m,nI *
C

4.1.2.3 Editing Commands

The following commands permit the
alteration of text in the Editor's
buffer:

ACTION

Equivalent to .0.

8-10

Delete line n. Line n is removed from the text
buffer. The numbers of all lines following it
are reduced by one, as is the line count.
(.=n or /, whichever is smaller.)

Delete lines m through n, inclusive. The line
following line n becomes the new line m.
(.=m or /, whichever is smaller.)

Enter Text mode and append to buffer. The
Editor enters Text mode upon processing this
command, and the user may then type in any num­
ber of lines of text. These will be appended
to the end of the text in the buffer or placed
into a previously empty buffer. The line count
is increased accordingly. This command may be
given with an empty buffer to enter text.
(• = 1)

Equivalent to A.

Equivalent to .1.

Insert text before line n. The Editor enters
Text mode to accept input. No information is
lost. The first line typed becomes the new
line n. The numbers of all lines following
the insertion, as well as the line count, are
increased by the number of lines inserted.
(.= last line entered.)

Equivalent to nI.

Equivalent to .C.

'\
)

,

COMMAND

nC

m,nC

J

nJ

m,nJ *
K

ACTION

Change line n. Line n is deleted, and the
Editor enters Text mode to accept input. The
user may now insert as many lines of text as
he wishes in place of the deleted line. If
more than one line is inserted, subsequent
lines will be renumbered. (.= last line en­
tered.)

Change lines m through n. These lines (inclu­
sive) are deleted. The user may insert any
number of lines (or none at all) in their
place. (.= number of last line typed in.)

Equivalent to .+lJ.

8-1

Open line n to J or second tab and enter Text
mode for end of line correction or comment
insertion. Any comment already in line is lost.
When ~ is typed at the end of the line, the
Editor r~turns to Control mode. NOTE: Line
Feed deletes entire line and returns to Control
mode. (.=n)

Equivalent to nJ.

Kill the buffer. The contents of the buffer
are completely erased. The values of / and.
are set to zero. (. and / = 0)

The following commands will cause the
printout of all or any part of the
contents of the text buffer. Print­
ing may be stoPhed at any time bh the
use of AC switc O. Normally, t ;s
switch is down. If it is turned on
then off at any time during a print­
out, the operation will stop immedi­
ately. The line being printed is un­
affected in the buffer. If this
occurs in the middle of a line, the
user must type a ~ to restore the

COMMAND

L

nL

m,nL

W

nW

m,nW *
H

nH

m,nH *
Q

Editor to normal Command mode oper­
ation. Execution of any of the fol­
lowing commands may be halted in this
manner. The contents of the text
buffer are unaffected by the follow­
ing operations unless specified.

ACTION

Equivalent to .L.

Print line n. This line will be typed out,
followed by a ~ and a Line Feed. (.~n whether
printing is stopped or not.)

Print lines m through n, inclusive. (.=n
whether printing is stopped or not.)

Write entire buffer. This causes the Editor
to print the entire text contained in the buf­
fer. The buffer remains intact. (.=/)

Write n pages. The text buffer is cleared,
and the Editor reads n pages from tape, print­
ing each one on a separate page, spacing ac­
cross page perforations automatically. This
command is equivalent to executing K, followed
by the sequence, R. W, K, performed n times or
until a physical end of tape is encountered.
The buffer will be empty upon completion of
this command.

Equivalent to W. (.=/=O)

B- L

Same as for W except line numbering is forced.

Same as for W except line numbering is forced.

Same as for W except line numbering is forced.

Uncommented print. The Editor will print the
entire contents of the buffer, suppressing all
text on each line after the second tabulation.
Normally, this has the effect of suppressing
comments in the program. (.=/ after ex~cution)

COMMAND

nQ

m,nQ

G

nG

m,nG

B

U

nU

m,nU

(alt mode)

n (a1t mode)

*

*

ACTION

Print line n uncommented. Line n will be
printed up to the second tabulation; all in­
formation following this is not printed.
(.=n after execution)

Print lines m through n up to second tabula­
tion. (.=n after execution)

Equivalent to .G.

Get the first line after line n which contains
a tag. The Editor will scan the text begin­
ning with line n until it encounters a line
begi nni ng wi th a character other than ~, + '
~,or/. This line is printed. (.= number
of the line printed)

Equivalent to nG.

Back up and print. Line .-1 will be printed.
(.=.-1 after execution)

Read entire input tape and print the first
line of each page.

Equivalent to lU.

Move display pointer up n lines. This command
supplies its own ~, if in half duplex. (.=
.-n or 1 if current line~n.) Pointer will
not move past line 1.

Equivalent to nU.

Equivalent to 1 (a1t mode).

Move display pointer down n lines. This com­
mand supplies its own ~ if in half duplex.
The pointer will not move past line I.
[.=.+n or I if (I - current line) c:.n]

'") 1 The E command applies to Editor assembled for paper tape only.

8-1

B-l~

COMMAND ACTION

M

nM

m,nM *
y

V

nV

m,nV *

COMMAND

P

nP

m,nP

Equivalent to . + 1 M. (. = line found)

String search within buffer. (. = line found)
(See paragraph 4.1.2.5, page 16.)

Equivalent to nM.

String search entire input. (See paragraph
4.1.2.5, page 15 .)

Turn on line numberi ng.

Turn off line numbering. (1 V is recommended)

Turn off line numbering.

4.1.2.4 Output-Punching Commands

The following commands provide for the
output of corrected text or for the
duplication of pages of the input tape.
Punching can be halted by the use of
AC switch O. In this case, however,
the switch must be k~pt up until pro­
cessing of the punch command is fin­
ished.

ACTION

Punch the entire contents of the text buffer.
This is preceded by a short length of tape feed.
The contents of the text buffer are unaffected
by this command.

Punch line n. This is preceded by a short
length of tape feed. (.=n after execution)

Punch lines m through n, inclusive.
(.=n after execution)

COMMAND

S

nS *
m,nS *

F

nF

m,nF *
o

N

nN

m,nN *
T

nT

ACTION

Punch a form feed. This is preceded and fol­
lowed by a short length of tape feed.

Equivalent to S.

Equivalent to S.

B-15

Equivalent to IF. (Ignored for disk output.)

Punch n lines of blank tape. (Ignored for disk
output.)

Equivalent to IF. (Ignored for disk output.)

Punch one page. The Editor will punch the con­
tents of the text buffer followed by a form
feed, and then clear the buffer. This command
is equivalent to the sequence: P, S, K.

Punch, then read the next page. The Editor will
punch the contents of the buffer and a form feed,
clear the buffer, and read the next page of tape
into the buffer. This command is equivalent to
the sequence: 0, R.

Punch, duplicate, and read. The Editor will
punch the contents of the buffer, punch a form
feed, clear the buffer, duplicate n-l pages of
tape, and then read the nth page into the text
buffer. This command is equivalent to the se­
quence: P, S, (n-l)T, R.

Equivalent to N.

Equivalent to IT.

Tape duplication. The Editor will clear the
buffer, then read and punch n pages of tape.
The buffer is empty upon completion of this
command, which is equivalent to the sequence:
K, n(R, P, S, K).

If, within the range of this command, the Editor
encounters two form feeds with nothing more than
tape feed between them, only one will be punched.
However, the Editor will count the space between
them as a separate page in reading the input tape.

COMMAND

m,nT *

B-1 f

ACTION

Equivalent to IT.

4.1.2.5 String Search Commands

The string search commands enable the
user to search either the buffer or the
input tape for a specified string of
characters. The string may consist of
any characters except RO, ~, and •.
The string will be found if it is sur­
rounded by delimiters. The delimiters
are (space) (tab) ~ - (, / = #! $) +
and the first character of a page is
assumed to have a delimiter in front of
it although there really is not. Thus,
if the string is JMP ABC, the search
will find (tab) JMP ABC~, but not (tab)
JMP ABCD~. After typing the command,
the string to be searched for is en­
tered on the next line (following the ~).
If a mistake is made, the string can be
deleted with a + and re-entered. RO
negates the search command, and returns
to Command mode. Also, A#BC is not the
same as #ABC. The string is terminated
by a J, and the search begins immedi­
ately. If nothing is typed but a ~,
the last string entered will be used.
If no string has ever been entered, or
it has been deleted by ,,~, a ? is
typed. The maximum size of the string
is 16 (octal) characters, after which
the Editor types ~ and continues.

If the command is V, the entire input
is searched, starting with the next line
of input. When a page boundary is en­
countered, the buffer is output, and
replaced by the following page. (If
there is no more input, a ? is typed,
and control is returned to Command mode.:
Searching continues from the first line
of the new page. When a match is found,
. is equal to the line in which the
match occurs. A? is typed at the end

4.2 Character Mode

B -1:

of input. This command is useful for
locating typing errors revealed by the
assembler, and for finding references
to a given variable which is being
changed.

If the command is nM, the contents of
the buffer are searched starting at
line n. The pointer is moved to the
first occurrence of the string or the
end of the buffer. To continue the
search with the next line, type M~J.
If the Editor reaches the end of tne
buffer without finding the string, a ?
is typed.

All of the editing operations described previously
have a line as the smallest unit of text that can be
referenced. The command described below puts the
Editor into Character mode, allowing each character of
the designated line to be referenced.

4.2.1 The Command

Equi val ent to .,

n; Enter Character mode to edit line n.

m,n; Equivalent to n;

4.2.2 The Pointer

When the Editor enters Character mode, only the
designated line is displayed, preceded by a
right arrow. The Character mode pointer is an
up-arrow (except in Overwrite mode) which is
positioned either under the right arrow, or one
of the characters. The pointer is allowed to
be under the arrow for inserting before the
first character of the line. If, while in this
position, any other action is requested, the
pointer is moved under the first character before
taking the desired action.

COMMAND

Ca rri age
Return (~)

Line Feed (t)

Rub Out (RO)

nRO

C

nC

o

nO

I

8-18

4.2.3 Character Mode Instructions

When in Character mode, instructions to its con­
trol routine are not followed by a.. Each one
is executed as soon as it is typed. If half
duplexing, this means that the characters will
run across the page.

ACTION

Causes the line to be stored back in the buffer
with the corrections made and an exit from Char­
acter mode back to the Editorls Command mode.

Line Feed causes the original line to be stored
back in the buffer with no corrections.

E qui val e n t t 0 1 4 pac e) .

Moves the pointer n characters to the right.
The pointer will not move past the last char­
acter of the line.

Equivalent to lRO.

Moves the pointer n characters to the left. The
pointer will not move past the right arrow.

Equivalent to lC.

Deletes n characters as nO would and enters insert
mode to replace those characters.

Equivalent to 10.

Deletes n characters starting with the character
pointed at and goin~ to the right. If there are
less than n characters there, the rest of the
line is deleted. After deletion. the pointer is
under the character which was to the right of
the last character deleted. If there i5no such
character, the pointer is under the last remain­
ing character of the line.

Enter Insert mode. A space appears to the right
of the character pointed at. and the pointer
moves up part way into the space. Each char­
acter typed thereafter, except control characters.
is inserted into the line above the pointer and
the pointer (and blank) moved to the right of
the new character. If the pointer was pbinting
at the last character of the line, the char­
acters are appended onto the back of the line.

COMMAND

o

B-1 S

ACTION

Enter Overwrite mode. The pointer changes from
an up-arrow to an underbar. Each character
typed thereafter, except control characters, is
substituted for the character above the pointer,
and the pointer moved to the next character to
the right. If there are no more characters to
the right, the Editor automatically enters
Insert mode.

All other characters are ignored, and a bell is rung.

4.2.4 Control Characters for Insert and Overwrite Modes

• Same as for the Character mode control routine.

J Same as for the Character mode control routine.

(alt mode) Exit from Overwrite or Insert mode and return to
the Character mode control routine.

RO Allows the user to change the character to the
left of the pointer if he made a mistake in typ­
ing. In Overwrite mode, the pointer is moved one
character to the left. In Insert mode, the char­
acter to the left is deleted and the pointer
moved. If the leftmost character of the line is
being pointed at, the control character is ig­
nored.

All other characters are entered into the line as text.

4.2.5 Error Messages

When in Character mode, the line being edited is
unpacked in the area above the used portion of
the text buffer. If the buffer is almost full,
the messages "BUFFER ALMOST FULL" or "BUFFER
FULL" may be typed when entering Character mode,
or while inserting text. The first message is
a warning and does not affect the buffer. The
second message causes an immediate exit from
Character mode, eliminating any changes made in
the line.

ER

EI

B-2

4.3 Disk Editor Commands

COMMAND

EB

EE

EP

ES

fil ename~

filename~

ET

The following commands are available when the Editor
is part of a disk operating system. The commands
typed-in are always echoed on the teleprinter, even
when in full duplex mode.

Those commands not requiring a file-name do not re­
quire a~. If a file-name is called for, that name
is as specified in the Disk Operating System descrip­
tion. If the file-name is not typed before the ~, the
last name typed will be used (if no name has been typed,
the default file-name from the disk will be used.)

Any command needing a file-name may be aborted by typ­
ing • or RO before the ~ is typed.

Any command naming the output file will create a file
by that name on the disk if none previously existed, or
replace a previously existing file.

ACTION

Initialize input from paper tape instead of disk.

Resume input from disk.

Initialize output to paper tape punch.

Initialize or resume output to disk.

Initialize reading from disk file, and read
first page. Select disk as output ~evice.

Take subsequent input from file specified. When
the end of this file is reached, input will be
resumed from file specified before the EI was
given. EI commands may be nested.

Generate a scratch copy of the file being edited
on the disk as IITEMP FILE II , and read the first
page of that file. The default file-name will
not be changed. This command allows one to re­
turn to an earlier page in the file being edited
easily, and provides an extra copy of the file
being edited.

COMMAND

EF filename~

EC fil ename~

EG fil ename~

4.4

COMMAND

A

m,nA

B

C

nC

m,nC

nD

m,nD

E*

ACTION

Name the output so far put on the disk and in­
itialize for more disk output. Establish de­
fault file-name on disk.

B-21

Copy the input to the end, and name the result­
ant output. Initialize for more disk output.
Establish default file-name on disk.

Same as EC, except that control is passed to the
assembler to assemble the file. If the assem­
bler detects an error, control will be returned
to the Editor with this file-name. If no assem­
bly errors were noted, the resulting program
will be loaded.

Editor Command Summary

ARGUMENTS

o
2

o

o
1

2

1

2

o

FUNCTION

Enter text mode and append to buffer.

Equivalent to A.

Back up and print.

Equivalent to .C.

Change line n.

Change lines m through n.

De 1 e te 1 i ne n.

Delete lines m through n.

Read entire input paper tape and print
first line of each page.

* The E Command applies to Editor assembled for paper tape only.

COMMAND ARGUMENTS

EB 0

EE 0

EP 0

ES 0

ER fil ename~ 0

EI filename~ 0

ET 0

EF filenameJ 0

EC filename~ 0

EG filename~ 0

B-2

FUNCTION

Initialize input from paper tape ins tead
of disk.

Resume input from disk.

Initialize output to paper tape punch.

Initialize or resume output to disk.

Initialize reading from disk fi 1 e , and
read first page. Select disk as output
device.

Take subsequent input from file speci­
fied. When the end of this file is
reached, input will be resumed from file
specified before the EI was given. EI
commands may be nested.

Generate a scratch copy of the file be­
ing edited on the disk as "TEMP FILE",
and read the first page of that file.
The default file-name will not be changed
This command allows you to return to an
earlier page in the file being edited
easily, and provides an extra copy of
the file being edited.

Name the output so far put on the disk,
and initialize for more disk output.
Establish default file-name on disk.

Copy the input to the end, and name the
resultant output. Initialize for more
disk output. Establish default file­
name on disk.

Same as EC, except that control is pass­
ed to the assembler to assemble the file.
If the assembler detects an error, con­
trol will be returned to the Editor with
this file-name. If no assembly errors
were noted, the resulting program will
be loaded.

COMMAND

F

nF

m, n F

G

nG

m,nG

H

nH

m,nH

I

nI

m,nI

J

nJ

m,nJ

K

L

nL

m,nL

ARGUMENTS

o

1

2

o
1

2

o

1

2

o
1

2

o
1

2

o
o
1

2

, FUNCTION

Equivalent to IF. (Ignored for disk
output.)

Feed n lines of blank tape. (Ignored
for disk output.)

Equivalent to IF. (Ignored for disk
output.)

Equivalent to .G.

Get next location tag after line n.

Equivalent to nG.

Same as W, except line numbering is
forced.

Same as W, except line numbering is
forced.

Same as W, except line numbering is
forced.

Equivalent to .1.

Insert text before line n.

Equivalent to nI.

Equivalent to .+lJ.

Open line n and, without display, type
and enter Text mode for end-of-line
corrections or comment insertion.

Equivalent to nJ.

Ki 11 the buffer.

Equivalent to .L.

Print line n.

Print lines m through n.

B -23

COMMAND

M

nM

m,nM

N

nN

m,nN

o
P

nP

m,nP

Q

nQ

m,nQ

R

nR

m, n R

S

nS

m,nS

T

nT

m,nT

ARGUMENTS

o

1

2

o

1

2

o
o
1

2

o

1

2

o

1

2

o
1

2

o
1

2

FUNCTION

Equivalent to .+lM.

String search within buffer.

Equivalent to nM.

Punch, then read next page. Equivalent
to 0, R.

Punch, duplicate, and read. Equivalent
to p, S, (n - 1) T, R.

Equivalent to N.

Punch one page. Equivalent to P, S, K.

Punch the contents of the buffer.

Punch line n.

Punch lines m through n.

Print entire buffer -- uncommented.

Print line n uncommented.

Print lines m through n up to second tab.

Read one page of text and append to buf­
fer.

Read n lines of text and append to buffer.

Equivalent to R.

Punch form feed.

Equivalent to S.

Equivalent to S.

Equivalent to 1T.

Duplicate n pages of tape. Equivalent
to K, n(R, P, S, K).

Equivalent to 1T.

COMMAND ARGUMENT

U 0

nU 1

m,nU 2

V 0

nV 1

m,nV 2

W 0

nW 1

m,nW 2

m,nX 2

y 0

Z 0

nZ 1

m,nZ 2

<a 1 t mode)

n (al t mode)

FUNCTION

Equivalent to lU.

Move display pointer up n lines.

Equivalent to nU.

Turn on line numbering.

Turn off line numbering (lV is recom­
mended) .

Turn off line numbering.

Write the entire buffer.

Write n pages. Equivalent to K,
n(R, W, K).

Equivalent to W.

Read next m lines of text from input
tape and insert them after line n.

String search for entire tape.

Skip one page of text.

Skip n pages of text.

Equivalent to Z.

Equivalent to l(alt mOde).

Move display pointer down n lines.
This command supplies its own ~, if in
half duplex. The pointer will not
move past line I. [.=.+n or I if
(I - current line)<n]

Enter Character mode on line n.

B-2!

B-2E

4.5 Summary of Editor Operations

If a graphics console is available, the parameter win­
dows will display the page and line number respectively
in the A and B windows. Alternatively, the page num­
ber may be displayed in the data buffer lights of the
mag tape controller.

The A parameter knobs may be used for positioning
within the buffer. The right knob, moving vertically
from line to line, as ALT mode or U from the Tele­
type. The left knob will cause entering Character
mode, and allow positioning as (space) or RO. The
right knob may be used to exit Character mode.

Foot pedals are used in the following way:

Toggling the left pedal will act in the same
mann~r as typing y~~; that is, repeating the
preVlOUS search.

Toggling the right pedal performs the same
function as typing N~, going to the next page.

On the FR-80, the left foot pedal is replaced by AC
switch 3, the right foot pedal by AC switch 4. The
sense switches are replaced by AC switches as follows:

Sense Switch AC Switch

· · · · · · · · · · · · · · · · 12

2 · · · · · · · · · · · · · · · · 13

3 · · · · · · · · · · · · · · · · 14

4 · · · · · · · · · · · · · · · · 15

5 · · · · · · · · · · · · · · · · 16

6 · · · · · · · · · · · · · · · · 1 7

4.5.1 AC Switch Settings

SWITCH FUNCTION

o

1

Down
Up

Down
Up

Normal operation.
Stop printing or punching.

Simulate full duplex.
Simulate half duplex.

8-2j

4.5.2 Special Characters

CHARACTER FUNCTION

/ Equals number of lines in the buffers.

)

RO

4.6 Duplexing

Equals number of last line referenced.

Types value of expression preceding it.

In Command mode: Execute precedi ng
command.

In Text mode: Put last line typed in
buffer.

In Character mode: Exit Character mode
to Command mode.

Delete all input since last ~ in Text
or Command mode.

In Command mode: Print next line {.+l}.
In Text mode: Leave Text mode if no

characters in current line. Other­
wise, erase the last character.

In Y or M Command mode: When typing
string for search match, returns
system to Command mode and negates
command.

The Editor can simulate either full or half duplexing
according to AC1. In full duplex, the characters
typed in are not typed back except for ~ and ~, both
of which respond with~. If line numbering is on and
the Editor is in Text mode, a ~ is typed with each ~.

In half duplex, all legal characters are typed back,
except RO, and either ~ or ~ is answered with both
characters. The type out is done at the time the Edit­
oris Teletype input routine takes the character from
the input buffer. Thus, characters typed while the

Editor is busy will not be typed out until later.
Typing in while the Editor is printing will not
bother it.

4.7 CRT Display

Provision is made for displaying the contents of the
buffer on the CRT. A right arrow in the first column
points to the line equal to ".". This pointer chan­
ges automatically when the value of . changes, and

B -2~

can also be moved by U and (alt mode) as described ear-
lier. The display attempts to display as much of
the buffer as possible. Whenever the pointer is
within four lines of text of the top or bottom of the
screen, it is moved to the center, except when that
would move the first or last line of the page away
from the edge of the screen. The parameters used to
do this are recomputed when the display, using the
current parameters, runs over the bottom of the
screen. Therefore, changes can be forced by setting
the pointer to the first line of the page if the page
will not completely fit on the screen.

When the Editor is in Text mode, eight points are
displayed around the edges of the screen. Note that
after each ~ in Text mode, the pointer moves down
and inserts a blank line. If the user returns to
Control mode, this line disappears and the pointer
moves up one line.

When editing the first line of the buffer, the pointer
may disappear under certain conditions, because the
Editor has set it equal to line ·zero.

When sense switch no. 1 is up, each line is termin­
ated at the edge of the screen if it is too long.
When sense switch no. 1 is down, lines which are too
long are continued on the next line, with an up arrow
in the first column. With sense switch no. 1 up, the
display runs faster and is neater looking, as the
display parameters are adjusted for it.

The display is only on when the Editor is waiting for
Teletype input. The display stops as soon as a char­
acter is typed. When the user is typing fast, a few
lines at the bottom will not be displayed.

4.8 Line Numbering

Another option available with the Editor is line num­
bering on teletype output. When the numbering is
turned on by means of a V~ all lines printed by the
B~ E, G, H, J, L, M, Q, W, and Y commands will be
preceded by their line number in the buffer. The
numbers are mod 100 and are two characters long fol­
lowed by two spaces. These numbers do not affect
the tabs, which take the first column of the text as
column one. The H command always numbers lines.

B-2~

When executing A, C, or I~ the number of the line to
be entered is typed after each~. If a RO is then
typed to return to Control mode, the last number typed
minus one, is equal to . and is the last lin~ entered.
Note that J will also type the next line number after
the J, even though it is already in Control mode.

4.9 Disk Editor Usage

1. To create a user file:

A. Using DEBUG, load in the Editor by typing E$J

B. When Editor is loaded, type:

EF (User Name); (Program Name)~

Example: To create the program name RADAR in
WLJ's file, type: EFWLJ;RADAR~

2. To call a program from the Disk:

Type ER (User Name); (Program Name)~

Example: To call WLJ RADAR from the disk, type:
ERWLJ;RADARJ

The first page of RADAR will be displayed on the
monitor scope.

3. To punch paper tape:

Type EP

Pages of text will be punched on paper tape in­
stead of being stored on the disk.

By typing ES , all pages will be stored on the disk.

4. To read from paper tape, put tape in Reader, then
do R's.

NOTE: If no ER has been done upon loading the
Editor, it will default to paper tape in­
put and output~ If ER's have been done,
and paper tape reading is desired, type:

EB (read from paper tape)

To stop paper tape reading type:

EE

5. To store a program onto the disk after editing,
type:

EC (User Name); (Program Name)~

Example: ECWLJ;RADAR~

Thus, the steps required for creation and storage
of a program on the disk are the following:

A. Get Editor Program - (E$J)

B. Create program name - EF (User) ; (Program
Name),l

C. Call Program from Disk - ER (User) ; (Program
Name)~

D. Type in program (refer to Editor command set)

E. Store completed program on disk - EC (User);
(P rogram Name)~

6. The user may combine editing, assembling, and
loading of his program with the following com­
mand - EG~

After creating or modifying a program by using
the ER command, the user, instead of doing an EC,
will ty peE G~

B -31

This command will store his program onto the disk
(EC), call in the assembler, assemble the program,
store it in his file as (Program Name) BINARY, and
load the program into memory ready to run under
DEBUG control. If assembler errors were detected,
the process is interrupted, and control is returned

B-3l

to the Editor with the first page of the symbolic
program displayed on the monitor screen. The
user may now correct any program errors and try
the EG command again.

7. The user may combine programs with the use of the
EI command.

Example: The user wishes to insert the first five
pages of Program X into Program Y. He
wishes to insert these pages before page
5 of Program Y. Program X is 10 pages
long. Therefore, the last 5 pages of
Program X are not wanted. The following
commands will accomplish this:

ER (User); Y~

5N~

EI (User); X.1

NOTE: At this point, the monitor is
still displaying page 5 of Program
Y.

Any editing commands operate on Program X.

Append first 5 pages of X to Y.

5N~

Skip last 5 pages of X

5Z~

Store Program away

EC~

The structure of Program Y now is as fol­
lows:

(Original
y)

(First 5
pages of

X)

(Last 5
pages of
original

y)

Page ly

Page 2y

Page 3y

Page 4y

Page 5y

Page 1 X

Page 2X

Page 3X

Page 4X

Page 5X

Page 6y

Page 7y

Page By

Page 9y

Page lOy

B-3.

B-3

4.10 Using the Editor

4.10.1 Example 1

The following detailed example of the edit-
ing of a page of text will familiarize the
reader with the basic operations of the Editor.
All of the commands are described in full af­
ter the example, and the sample page of text
is reproduced in Figure 1.

The Editor starts automatically with cleared
buffers. All subsequent operations, inclu­
ding loading of the symbolic tape to be edited,
are performed through the Editor from the tele­
printer keyboard. Our sample text is a page
from the symbolic tape of the Editor itself;
it is punched in ASCII format.

B-3

SYMBOLIC TAPE EDITOR PART 2 MAIN SUBROUTINES 1
2

Xl = 10 3
X2 = 11 4

5
APPEND, 0 6

CHKONE 7
8

SKP 9
JMP CON ERR 10
LAC LASIN 11
DAC THISN 12
LAC LAST 13

14
DAC THIS 15
LAC (NOP 16

17
DAC TISW /TELETYPE INPUT SWITCH 18
DZM LSTCHR /STORAGE FOR LAST CHARACTER SEEN 19
LAC (JMS TONE /SET SWITCH IN PACK ROUTINE 20

21
DAC ON /FROM TELETYPE 22
JMS A /APPEND ALL LINES AND RESET POINTERS 23

24
JMP I APPEND 25

26
A, 0 27

JMS PACK /ADD ONE LINE 28
JMP .-1 29
JMPIA 30

31
TONE, 0 /TYPE IN 32

TTl 33
ISZ TONE /INDEX RETURN IF NOT DONE 34
DAC LSTCRR /SAVE CHARACTER FOR CHECK IF BLANK KEY TYPED 35
JMP I TONE 36

37
38
39

BLANK, LAC LSTCHR 40
SAD (77 41
JMP I TONE /NO DELETE IF LAST CHARACTER WAS CR 42
JMS DECR /OTHERWISE ERASE ONE CHARACTER 43
JMP TONE + 1 44

45
DECR, 0 46

LAC PeNI /IF CHARACTER CNT IS -2 MUST BACK UP 1 WORD 47
SAD (-2 48
JMP FUR 49
ADD (-1 /OTHERWISE DECREMENT CHARACTER COUNT BY 1 50
DAC PCNI 51
LAC PI EM /GET PARTIAL ACCUMULATION 52

DEI, AND (777700 / AND OUT LAST CHARACTER 53
CLL 54
RTR RTR RTR 55
DAC PIEM /ROTATE WORD BACK ONE CHARACTER 56
JMP IDECR 57

Figure 1. Editor Part 2 Main Subroutines.

B-3!

We are now ready to read in our symbolic text.
The command for this operation is:

R~

This causes the Editor to read the input tape
until a form feed or the physical end of tape
is encountered.

Once the text is in the buffer, we might wish
to find out how many lines there are in the
page, as follows:

/: 57

With this information, we can find our way
about the page. Note that blank lines are
included in the count.

The first task is to insert a comment before
the line that begins with the symbol A. To
do this, we must find the number of that line.
This can be done by asking the Editor to print
out a line with the number we estimate is the
correct one. We can see that the line is a
little less than halfway down the page, and we
know that there are 57 lines on the page, so
we ask for line 25 using the command L, as
follows:

25L~
JMP I APPEND

Now we see from the program copy that the line
we want is really two lines further on.

To insert text before the desired line, we
will use the command 271. This causes the
Editor to enter Text mode. As many lines of
text as we wish are then entered into the
text before line 27. Having done so, we strike
the RO key to return to Command mode. The
result of our work:

(RO)

/THE FOLLOWING SUBROUTINES HANDLE~

/INCOMING DATA.J

B-3

If we wish, we can now verify our work by
asking for a printout of the lines including
the new text. Bear in mind that the inserted
lines have been added; the buffer now con­
tains 59 lines; and all lines after the in­
sertion have had their numbers increased by
two. Our verification would look like this:

25,29L~

A,

JMP I APPEND
ITHE FOLLOWING SUBROUTINES
IINCOMING DATA.

o
HAN DL:

Our next correction is to change the name of
the subroutine PACK to LPAC. To do this, we
use the Change command, C. From the previous
printout, we know that the line beginning with
the symbol A is now line 29, so the one we
wish to change is now line 30. The operation
is completed as follows:

30C~
4/JMS LPAC IADD ONE LINE~

If we have no further corrections to make, we
are ready to punch out the corrected text.
The following sequence of commands causes the
contents of the buffer to be punched, followed
by some tape feed and a stop code. Finally,
the contents of the buffer are totally erased.

We are now ready to read the next page of the
input tape. Figure 2 shows the whole of our
operations for this ~xample; the comments in
parentheses summarize what happens.

B-37

4.10.2 Rearranging Text on Output

57

Text may be rearranged on output by using
the nP and m,nP commands to punch lines or
groups of lines from the Editor1s buffer in
the order of their se1~ction by the user
rather than their order in the buffer. The
buffer contents are unaffected by this pro­
cess.

For example, if we wished to relocate the
six lines beginning at line 40 in the sample
text at the end of the page, we would type:

1,39P~

46,/P~

40,45P~

to punch the first section
of text

to punch the final section
of text

to relocate the desired lines
to the end of the tape being
punched

to complete the page with a
stop code and tape feed

(read one page of input tape)
(find number of lines)
(print line 25)

JMP I APPEND

271). (insert text before line 27)

/THE FOLLOWING SUBROUTINES HANDLE~
/INCOMING DATA)

{RO}25,29 L). (return to Command mode and
JMP I APPEND verify previous ins"ertion)

A,
30CJ

(RO}P~

~.

/THE FOLLOWING SUBROUTINES HANDLE
/INCOMING DATA

o

JMS LPAC
JMP .-1

/ ADD ONE LINE? J
/GET NEXT LINE)

(change line 30)
{continuation; rema in in
text mode}
{return to Command mode and
punch out corrected text.}
(erase the text)

Figure 2. Editing Example 1.

B-38

4.10.3 Example 2

This example illustrates some of the more
subtle commands available to the Editor user.
It is suggested that this section not be
studied until the user has become acquainted
with the fundamental aspects of the Editor
illustrated in Example 1, preceding page.

To begin, we return to the sample text given
in Figure 1, and read the page into the buffer.

R~

Suppose now we wish to make an addition to a
line following symbolic location BLANK. To
find its line number in the buffer, we will
use the nG command. This command searches
from line n until a line is found which does
not begin with a -t/,), or /. To avoid stop­
ping at earlier symbolic addresses, we choose
n as 35.

35G~
BLANK, LAC LSTCHR

To find the line number, we use the character
period .

. : 40

We know the line we are concerned with is two
numbers further, that is line 42. In line 42,
we wish to change the instruction JMP I TONE
to JMS TONE deleting the I and changing the P
to S. To accomplish this, we use the command
n; to enter Character mode.

42~

4 (space) DDOS~

"4 (space) II positions the Character mode
pointer under the P. The first "0" deletes
the P. The second 110 11 deletes the space that
follows it. The pointer is now under the lip,
which should be changed to IISII. Typing "0"
enters Overstrike mode. Typing "S" changes
the "1" to an "SII.

B-3!

To inspect the altered line without bothering
to print the comments, we could use the com­
mand nQ. This suppresses all text following
the second tab on each line.

JMS TONE

Now suppose we want to punch the corrected
text but move the instructions beyond the
address DECR to the next page of our tape.
We can punch the first portion of text down
to line 46, then delete it moving DECR to
line 1.

1,45P.)
S~
1 ,45D~
lLJ
DECR'J o

We may now read the next page of tape into
the buffer following the instruction
JMP I DECR. Figure 3 summarizes this example.

R~

35G~

BLANK,

. : 40

42 ;

42L~

42Q~

1,45PJ

SJ
1 ,4 5DJ

lLJ

DECR,

B-40

(read 1 page of input tape)

(print first symbolic addressed line after 35)

LAC LSTCHR

(print the number of the current line)

(enter Character mode for corrections)

4(space) DDOS,l

(check correction made)

JMS TONE INO DELETE IF LAST CHARACTER WAS CR

(check corrections, suppress comments)

JMS TONE

o

(punch lines 1 through 45)

(punch a stop code)

(delete lines 1 through 45)

(check the location of DECR)

Figure 3. Editing Example 2.

III PROGRAM LIBRARY

111-1010; ASSEMBLER (FOR DISK SYSTEMS)

APPENDIX C

2. ABSTRACT

2.1 Purpose

To assemble symbolic source programs into binary program

images.

4. USAGE

4.1 Source Language

CHARACTER SET - The set consists of:

1) letters A through Z
2) digits ~ through 9
3) the following special characters:

CHARACTER

Space

+

*

+

&

<

>

(

)

I
]

JI

II

MEANING

plus

minus

times

divided by

inclusive OR

shift

logical AND

arithmetic left delimiter

arithmetic right delimiter

constant left delimiter

constant right delimiter

text left delimiter

text right delimiter

variable indicator

text concatenation

7-bi t ASCII

CONT.

C-2

C-3

4. 1 CONT.

CHARACTER MEANING

symbolic definition, or argument delimiter

current location, symbol constituent,
or decimal indicator

I
\

location setter, or comment delimiter

=

cr

tab

$

NUMBERS

....... ,. ... -"

........... J

macro argument delimiter

symbol assignment

word delimiters

extended address indicator

A number is a sequence of digits whose value is determined

by the radix established by the OCTAL or DECIMAL pseudo-op.

A sequence of digits including a period is always evaluated

as a decimal integer.

ASCII CHARACTERS

The character double-quote (II) is used to cause evaluation

of the 7 bit ASCII code for the character which immediately

follows. Thus the value of IIA is 101 8 ,

LOCATION COUNTER

The assembler begins assembling code at location 1008 and

increases the location counter as it assembles. The current

location is referenced using: . (period). The location

counter may be changed by using I preceded by an expression,

all of whose constituents have been previously defined.

SYMBOLS

A symbol is any set of up to 6 characters chosen frcm the

letters, digits and period; at least one of which is a

CONT.

4.1 CONT.

letter. (More than 6 characters may be used, but the assembler

ignores all after the sixth.) Interspersed with these char-

acters, but not i ncl uded in the symbol, may be the speci al

characters "$" and "#".

All standard operation codes and assembler pseudo-ops are

defined within the assembler.

EXTENDED MEMORY REFERENCES

Ordinarily, quantities which represent addresses; such as

".", variables, and symbols defined with a comma are treated

as l3-bit integers. To refer to the full lS-bit quantity

when assembling for a machine with extended memory, a "$"

is placed before or after the period or symbol.

SYMBOL ASSIGNMENTS

A symbol followed by a comma causes the symbol to be given the

current value of the location counter. A symbol followed

by = followed by an expression causes the symbol to be given

the value of the expression. Symbols which are defined by

using "=" may be redefined as desired, but errors will result

C-4

from inconsistent definitions of symbols defined by any other way.

(A statement containing two consecutive equals signs assembles the

same as one with a single equals sign, except that the symbol

assignment will not be included in the binary output file.)

VARIABLES

The assembler will assign storage locations to all symbols

which contain #.

OPERATORS

The following characters are infix operators, with the following

meanings:

4.1 CONT.

+

or space

* e *e
1 2

C-5

has the value of the sum of

has the value of the difference

has the value of the product

of e l and e2.

has the value of the quotient

of e l divided by e2.

The value obtained from any of the previous operators yields

one1s complement form negative numbers.

&

~,11 i;tF~ ::-;(i:) ,.P:': ~E'-'1
ri\l~ ~ tdi~l&~

This document contains information proprietary to
Information Internztional. Inc. It is provided on the
t)xprcss condition t'1,lt it wi!! t)(,) lI5: rJ ')~!': for the
purpose intended in its submissio;), .:md that will
not be duplicated or disclosed to others.

e l +e 2

has the value of the l8-bit

inclusive-OR of e l and e2 .

has the value of the 18-bit

logical-AND of e l and e2 .

has the value of e l shifted

left e2 places. If e2 is

negative, the value is that

of e l shifted right -e 2 places.

In all shifts, zeroes are

shifted in.

If two or more operators appear together, the rightmost

is used.

If e l is not present, 0 is assumed.

CONT.

-----,-.. ------_ ..

4.1 CONT.

EXPRESSIONS

An expression is one of the following; followed by a tab,

carriage return, or with some pseudo-ops, a comma.

(location counter)

a symbol

a number

an ASCII character

expression operator expression

<expressi on>

If hierarchy delimiters ("<" and ">") are not used,

expressions having more than one operator will be evaluated

from left to right.

The hierarchy delimiters < and> are used as (and) are

used in conventional algebraic notation.

COMMENTS

A slash immediately preceded by a word delimiter causes

everything from the slash to the next carriage return to

be ignored by the assembler. The first line of input is

treated as a comment and also printed.

CONSTANTS

Constants may be referenced by surrounding them with

parentheses. This causes the assembler to store the

constant in a memory location and substitute the address

of that location for the expression within the paren­

theses.

CONT.

C-6

4.1 CONT.

PSEUDO-OPS

Note: Only the first 6 characters of any pseudo-op

need be used.

OCTAL - Appearance of this pseudo-op causes all

succeeding numbers in the source code to be inter-

preted as decimal until the next occurrence of

OCTAL.

Note: The initial mode of the assembler is OCTAL.

CONSTANTS - This causes currently unassigned constant

locations to be assigned.

VARIABLES - This causes currently unassigned

variables (symbols used with #) to be assigned.

START - If this is followed by a location, the

object program will start at that location when

loaded. Otherwise, the program will halt when

loaded .

. PRINT - This pseudo-op will cause the character

string following it to be printed at assembly time.

It has no effect on the object program. The first

non-blank character after the .PRINT pseudo-op will

not be printed, but used as a terminator for the

string.

CONT .'

C-7

4. 1 CO NT .

. INSERT - Causes insertion of the file name that

follows on machines with mass storage, if that

file has not previously been inserted. This pseudo­

op and the remainder of its line is ignored by the

paper tape assembler .

. RPT

Any text string may be repeated in the source code

by preceding it with .RPT e, where ~ is any legal

expression. The text following the comma will be

repeated a number of times given by the value of e.

(If this value is negative or zero, the text will

not be examined by the assembler.) The text may be

enclosed in brackets, in which case it will be re-

peated verbatim; or it may be ended by a carriage

return, in which case it will be repeated up to and

including the carriage return. Within the text to

be repeated, the symbol .RPCNT has the value of the

number of completed repeats so far.

I FS

A set of conditional assembly pseudo-ops exist which

allow skipping or assembling text based on evaluation

of an expression. The format for the text of the

statement is as specified for repeats. (i .e. either

terminated by a carriage return or included within

brackets.)

CONT.

C-8

4. 1 CONT.

The pseudo-ops and their meanings are:

.IFZ e ,

· I FNZ e,

.IFP e ,

.IFNP e ,

· I FM e ,

· I FNM e ,

· I FD s ,

.IFND s,

if e=O or e=-O assemble text

if e=O or e=-O skip text

if e)O assemble text

if e)O ski p text

if e<O assemble text

if e<O skip text

(where s is a symbol)

if s has previously been encountered in

assembled text, assemble text.

if s has previously been encountered in

assembled text, skip text.

The inclusive OR of several conditions may be expressed by

separating the conditions with semicolons. For example,

.IFZ el ;.IFND s;.IFM e2 ,e O

will assemble eO if e l is zero, or s has not been

encountered, or if e2 is negative.

MACROS

A macro definition is specified by the pseudo-operation .DEF

followed by a name, followed by a list of dummy variables,

followed by the text of the macro. The name may be any legal

symbol. The arguments are separated by commas, slashes or

back slashes and the list is ended by a carriage return. One

back-slash may be inserted to separate the argument list. Those

arguments following the back-slash will have a generated symbol

of the form Gxxxxx (where the XiS are octal digits) if that

argument is not supplied by a macro call. Alternatively, one

slash may be inserted to separate the argument list. This does

the same as a back-slash except that the only terminator
,...nUT

C-9

-----,----

4.1 CONT.

recognized for the argument preceeding the slash in a

call for this macro will be a carriage return. Since

this also terminates the macro call, subsequent argu-

ments will have generated symbols substitued. The text

of the macro is ended by the pseudo-op .TERM. Within the

text of the macro, character concatenation is specified

by an apostrophe. The macro is called by using its name

followed by a list of arguments separated by commas. The

macro call is terminated by a tab or carriage return.

Missing arguments will have an appropriate null substitued,

unless a generated symbol is called for. If an argument

contains a tab, space, comma, or carriage return it should

be enclosed in brackets. If an argument is an expression

to be evaluated, it should be enclosed in back-slashes

4.2 ERROR MESSAGES

The possible error messages and their meanings are:

SCE Symbol core exceeded - the program has too many

symbols.

CLD

MDV

ILF

VLD

Constants location disagrees.

Multiply defined variable - a symbol has been

defined twice, once with the #.

Illegal format - special characters have been

used the wrong way.

Variables location disagrees.

CONT.

C-10

4.3 OPERATING INSTRUCTIONS FOR DISK ASSEMBLER

The assembler is kept on the disk as SYS; A BINARY.

Typing A$J to DEBUG loads and starts the assembler. It

is then waiting for a file name to be typed. Unless

another directory name is typed the default directory name

will be.used. If the file is not found the error message:

FNF "filename ll will be typed. The name may then be re­

typed. When processing .INSERT pseudo-ops, if the direc­

tory name is not specified the default directory name

will be used. If the file is not found in that directory,

a search will be made in the mandatory directory IISYSII.

If the file is not found there, the error message FNF

IIfilename" will be typed and control returned to DEBUG.

If A$G is typed to DEBUG, or the assembler is called auto­

matically by the EDITOR, the following occurs: The

assembler uses the default directory and file name' as the

program file to assemble. When the assembly is complete,

if errors were typed, the EDITOR is loaded and started

with the default file opened. If no errors were typed,

the binary program file just created is loaded.

The output from the assembler is a file with the same

first name as the input program and a second name of

"BINARY". This file will either replace a previously

existing file or be created as a new file.

CONT.

C-l

5. PROPERTIES

5.1 USEFUL PARAMETERS

MOVEDN

CORES

To produce programs with a loader which

does not occupy the highest core locations

set MOVEDN to the number of words to leave

free in upper core.

To utilize the additional storage afforded

by extended memory set CORES to the number

of 8192 word core banks available.

C-12

III PROGRAM LIBRARY

111-139, TAPE DUMP RELOADER

APPENDIX D

2.

3.

4.

0-2

ABSTRACT

2.1 This program provides for the replacement or creation

of disk files as copied from magnetic tape. Single

files, single directories, or the entire magnetic

tape can be reloaded under operator command. The

disk file system may be initialized with this program.

REQUIREMENTS

None.

USAGE

4.1 When started, the program will type the identification

information from the first record on the tape (if

there is no tape ready on Unit #1, the monitor will

display the IIHANG A TAPE II message).

The tape format from which files are to be reloaded

is given in the program description for 111-138, Disk

Dumper. If the tape is not in this format, the error

IIINVALID FORMAT!II is typed and displayed.

The error, IIBAD TRACK USAGE TABLE II , may be typed and

displayed on the monitor. If this happens, the only

command that may be entered is IIWIPE)II to initialize

the disk.

When a file from magnetic tape is copied to the disk,

it will replace an existing file with the same name,

COMMAND

ALL)

D-3

if one exists.

Each time a file is loaded onto the disk, date informatio

from the description record is stored on the disk to

be displayed by 111-148, Disk Audit, when that directory

is being displayed.

The commands which may be typed to this program are:

ACTION

Copy all files after the current position of the
tape to the disk, and rewind the tape.

Bfilename)

Ddirectory name)

Same as Ffilename BINARY)

Copy all files on the tape after the current
position of the tape with the specified directory­
name. (If no directory-name is specified, the
directory-name from the first file on the tape
will be used.) The tape will be rewound at
completion of this command.

Ddi rectory name...­
new name)

E

Ffilename)

The directory searched for becomes the disk de­
fault directory-name.

If no files were found on the tape with that
di rectory-name, IIFNFII wi 11 be typed back. Suc­
cessful completion of this command is indicated
by typing 1I0K II on the teleprinter.

Same as Ddirectory name) except the tape will be
searched for files having the specified directory
name and stored in by the same name in the new
directory.

Search for description record (date) change. The
new description record information and the file­
name will by typed when encountered. The tape
will be positioned to read that file next.

Locate IIfilename ll and copy it on to the disk.
(If no filename is typed, the previously typed
filename will be used. If none was previously
typed, the name from the first file on the tape
will be used.)

The directory name of the file searched for
becomes the disk default directory name.

COMMAND

Ffi 1 ename~
new name)

I

N

R

T

WI PE)

4.2

ACTION

Search for ~Ifilename" on tape and store it as
new name on disk.

0-4

Generate index of tape to display on the screen.
The index will portray each filename in a two­
column format. Following each filename, is the
number of disk blocks required to hold the file.
If the blocking factor on the tape is less than
8, the blocking factor used will appear in
parenthesis after the block count. Consecutive
files on the tape will be in alternate left and
right columns. At any file, if the description
record changes, its contents will be put on the
next line and the filename for that file will
be in the left column of the following line.
The tape will be rewound at completion of this
command.

Initialize for new tape.

Rewind the tape.

Performs all the functions of the "I II command
as an index in the preceding format is typed.

Initialize the disk. Blocks 408-1777 8 are
filled with zeros; a master directory with one
entry, "SYS", is created; the "SYS" directory
has no files; a track usage table with all
allocatable blocks indicated available is
written.

Error Messages:

When loading files onto the disk, the message, "DISK

FULL", may be typed and displ ayed on the screen.

This means that insufficient blocks are available on

the disk to hold the file being loaded. If "DIRECTORY

FULL II is typed and di s pl ayed, ei ther the di recto ry

for the file being loaded had no room for a new entry

(each directory may have a maximum of 50 files),

or there were no more directories as~ignable (a maxi­

mum of 15 directories may exist).

5 .

"CKSM ERR BLOCK n ddd;ffffff" means that there was

a disk checksum error in that block when the file

was copied to magnetic. tape. This is only a warning

message; the file will be loaded normally.

A bell is the response to an illegal command type-in.

PROPERTIES

By assembling with TAPMON defined, the code for the

FR 80 Monitor will be inserted.

D-5

III PROGRAM LIBRARY

111-138; DISK DUMPER

APPENDIX E

E-2

2. ABSTRACT

2.1 To dump any file, any user directory, the entire

disk, or files from paper tape onto magnetic tape.

3. REQUIREMENTS

None.

4. USAGE

4.1 When started, the program will request that the

operator enter the date. Any characters may be

entered into the data except line-feed and rub-out.

Line-feed will renew the request for the date.

Rub-out will erase the previous character entered.

The date is entered when a carriage return is typed.

The following commands may now be typed:

ALL ~

B

C

D directory-name~

D directory-name4-new name
or
D+-new name~

E

- Rewinds the tape, dumps the entire
disk file system onto tape, and
rewinds the tape.

- Backs over one file and types its
name.

- Search the tape for a different
da te.

- Dumps all files in one directory
(leaves tape positioned for further
dumps). If no directory name typed,
the default user on disk will be
used.

- Tape is written with new directory
name in place of specified or
default directory name.

- Positions tape at end of previously
written dumps in preparation for
dumps onto the end of the tape.

F file-name~ or
F f;le-name~new name

N

P file-name~

Q file-name~

R

Snl

T

V

WE{llT~

X

E-3

- Dumps one file onto the tape (leaves
tape positioned for further dumps)

- Allows entry of a new date.

Starts reading paper tape and copying
it to magnetic tape (file name must
have a valid directory name). The
copying will continue until the end
of the paper tape is reached. If
the second name of file-name is
"BINARY" file marks are written and
control is returned to the next
command. If the second name is not
IIBINARY" either a "C II or IISII must be
typed. IIC" indicates another paper
tape is to be read to continue the
file. liS II indicates the last paper
tape has been read in; file marks
will be written and control will be
returned to the next command.

- Same as IIpll except the second name
is forced to IIBINARylI.

- Rewinds the tape.

- Tape blocking factor (1 to 8)

- Lists contents of tape in INDEX form.

- Verifies a file from paper tape. The
program will type back the file-name
against which the tape will be com­
pared. At the end of the paper tape
the actions are as described in IIP".
An u n s u c c e s s f u 1 com par i son ty pes
IICOMP ERRII and returns to DEBUG.

- Write an ENO-OF-FILE mark on the tape.

- Provides typeout of file names in
110 11 and IIALLII dumps (initial mode)

Z - Suppresses typeout of file names in
110 11 and IIALLII dumps

At interrupt time, ts, tK, and to (control-S, control-K,
and control-D) are recognized and operate as specified
in the Keyboard Routines (111-113). .

Unrecognized commands will ring the bell.

Successful completion of a command is indicated by
the tel etype typi ng 10K I.

CONT.

5. PROPERTIES

5.1 All information dumped will be verified by read­

compare with disk data.

5.2 MAG TAPE FORMAT:

Each disk file will be stored on magnetic tape as one

physical file. (Two consecutive file marks terminate the

tape.)

Each file will consist of one label record and one or

more blocked data records. The format of the label record

is as' follows:

400 a words;

o Directory name (6-bit ASCII-40a , 3 characters/word)

1-4 File name II II II II II II

5 - Zero for 7 track 556BPI, negative for 9 track

core dump mode, positive for 7 track aoo BPI

6-377 - Date (a-bit ASCII, 1 character/word)

The format of the blocked data records is as follows:

E-4

One to eight 400~ word data blocks. Each data block except

the last contains in its first word a serial number (begin­

ning with 1). The first word of the last block contains a

zero. (If there was a check sum error on the disk block from

which a data block was copied, the sign bit of the first

word of thilt data block wi 11 be set to fl ag the suspect data.)

The remainder of the data block is copied directly from the

disk (376a words of data fonowed by an unused word).

CONT.

Symbolic files will contain two characters per word. ~hey

are S-bit Teletype characters right-justified in eaC:l half

word field. The terminal character of the file is 14i S'

Binary files (identified by words 3 & 4 of the label record

being "BINARY") contain data in the format described in the

"DISK DEBUG II writeup (1I1-126D).

If the last data block does not complete the tape record,

wo rds of -0 wi 11 be used to fi 11 out the record.

5.3 If default SELECW is altered, it must be done prior

to starting execution so that the sixth word of the

header is correctly generated.

6. FILE NAME SPECIFICATION FORMAT

Where file-name is required in the input, the following

formats are valid:

- Use default file name

directory name;fi1e name~

file name. - Use default directory name

Where a new file name is input, the same formats are valid.

7. NOTES

7.1 ERRORS

E-5

BAor~AS

BADDIR

- Bad master directory on disk, nQ dumping can be done.

CKSM ERR

WRITE ERR

COMP ERR

NEED RING

- Bad user directory prevents dumping any files from
that directory

- A checksum error was found on the disk in the
indicated block of the indicated file

- Bad tape preven ts dumping - exits to Debug

- Bad tape prevents dumping - exits to Debug

- Attempting to write on write protected tape -
tape unit off-line, put ri n9 in tape, and put
back on line.

put
unit

III PROGRAM LIBRARY

111-123; MAGNETIC TAPE DISPLAY

APPENDIX F

2. ABSTRACT

2.1 This program provides for recovery of information

from magnetic tape.

Any record on magnetic tape at 200, 556, or SOO bits per

inch in either BCD (even) or BINARY (odd) parity may be

examined through the first 4000 S lS-bit words. (6144 10

characters)

Any portion of the record may be displayed on the PFR-3

monitor or teletype. Data in BINARY records may be dis­

played as 19-bit signed decimal integers or lS-bit octal

numbers. Data in BCD records may be displayed as lS-bit

octal numbers or 6-bit characters. Octal numbers may be

displayed in either signed or unsigned integer form.

Any integer may be displayed with leading zeroes printed

or suppressed.

Optionally, repeating sequences of words can be displayed

in a compacted format.

A brief command summary is displayed on the monitor under

user command (space bar).

CONT.

F-2

3. REQUIREMENTS

None.

4. USAGE

4.1 When the program is started a summary of the commands

is displayed on the monitor scope.

4.2 Commands

4.2.1 Commands are entered at the teletype keyboard and

F-3

are echoed on the printer as they are interpreted. A command

is a single character immediately preceded by 0, 1, or 2

parameters. A parameter is an unsigned number. (Two para­

meters are separated by a comma) Unexpected parameters are

ignored. Unrecognized commands clear the teletype buffers

CONT.

4.2.1 cont.

and print a question mark. Multi-digit parameters are

interpreted as octal or decimal depending on the current

mode.

The interrupt characters detected by the teletype routines

are effective without interference to the command sequence.

The characters and their consequences are described in the

description of the Keyboard Routines (111-113).

4.2.Z Mode Commands (Initial state underscored)

4.2.2.1

4.2.2.2

4.2.2.3

4.2.2.4

4.2.2.5

Signed or Unsigned

In displaying data in octal mode they will be
represented as signed or unsigned quantities.

I,X Suppress or Print Leading Zeroes

In displaying numerical data words, leading
zeroes will be replaced with blanks if Z.

Q,O Decimal or Octal

Parameters input, and all numerical data output
will be treated as decimal or octal integers.

Page or Line

In Line mode, the display will consist of only
one line of data and the record header. (The
record header only prints on TTY when the first
word of the record is being printed.)

In Page mode, display continues consecutively
from the first word displayed until the monitor
screen is filled, the end of record is reached,
or teletype output is interrupted. Teletype
display can be interrupted at the end of any data
line by entering any character (except the inter­
rupt characters) while the line is printing. The
characters entered will be interpreted when the
line has finished printing. (ALT-MODE may be
used to resume printing where broken off)

~, T Monitor or Teletype

In Monitor mode the display will be on the PFR-3
monitor. In Teletype mode, entering space on the

cont.

F-4

4.2.2.5 (cont.)

keyboard will restart printing the display on
the teleprinter.

4.2.2.6 2B, ~B, 8B 200, 556, or 800 bits per inch

Select magnetic tape unit to read at this density.

4.2.2.7 Space Change or Initiate Display

In Monitor mode, if command summary is being dis­
played, change to data display, else revert to
command summary display.

In Teletype mode, restart display.

4.2.2.8 nC compact n word groups

If n is omitted or 0, no compaction will occur.
(The program is initially in this state.)

If n ~ (NUMBER OF WORDS DISPLAYED PER LINE),
then (WORDS-PER-LINE - 1) will be used instead
of n. This number will be used as a maximum span

F-5

in compacting the display, repeating word sequences.
(i.e., n=l searches only for repeating words;

n=2 searches also for repeating pairs, etc.)

If compacting of the sequence could result in the
display of fewer lines the compacted data is dis­
played as a word count followed by the repeating
sequence.

e.g. the display:

10 202020 202020 202020
13 202020 202020 777777

would be displayed in compacted form as:

10# 5* 202020
15 777777

4.3 Positioning Commands

4.2.3.1 L Rewind Tape

Position tape unit at load point.

cont.

4.2.3.2 m,nR Read Magnetic Tape

If m and n are omitted the next record on the
tape wi 11 be read.

If m is omitted the nth. record in the current
file wi 11 be read.

The nth. record of the mth. file will be read.
(If there are fewer than n records in the file,
the last record in the file will be read.)
Display of the record is automatic.
Unreadable records will have a question mark
inserted into the header.

4.2.3.3 nW Display Starting with Word n

If the record does not contain a word n, a
question mark will be returned and no action
will be taken.

Display begins automatically.

4.2.3.4 nALT-MODE Display Next

n omitted or 0 interpreted as 1

Positions display start at first word after cur­
rent display (unless beyond record).

If n > 1 each subsequent value attempts to
position 8 words later, refusing to go beyond
record end. (i.e., if large n entered, last
words of record displayed)

4.2.3.5 n= Scan forward for Equal

Relationship is exact equality with comparand.

A minus sign entered before, after, or between
parameter digits negates the value of the
parameter.

Beginning with first word being displayed, apply
relationship to each word in remainder of record
until it applies~ (-0<0) When it applies, initiate
display at this point. If it does not apply
leave display as it was and print a question mark.

4.2.3.6 n < - Scan Forward for Greater Number

Relationship is n < comparand.

Otherwise same as =

cont.

F-6

4.2.3.7 n> - Scan Forward for Smaller Number

Relationship is n > comparand.

Otherwise same as =

4.2.4 Other Commands

4.2.4.1 CR New Line

Can be used to cancel parameter, or stop
printing without side effect.

5. PROPERTIES

5.1 Output Format.

5.1.1 When tape is at load point:

'TAPE AT LOAD POINT'

5.1.2 When an end of file is read after file n:

'END OF FILE n'

5.1.3 When a record has been read: the header will

display:

nR
t
1

mF
t
2

x w
it l'
345

1 The record number, right justified appears here

2 The file number, right justified appears here

3 The number of words read appears here

F-7

4 Blank if record was not longer than buffer else '+'

5 Blank if record read without parity error else '1'

6 BIN if odd parity tape else 'BCD'

5.2.4 Subsequent lines will display contents of the record

in one of the following forms:

cont.

*

5.2.4

5.2.4. 1

5.2.4.2

cant.

Normal Form

w Xw

w i s the

X i s the w

1 is the

Compacted

w#

X
w+.l- 1

word location in the

contents of that word

number of words/l i ne*

Form

x ...
w

'---v--'
Repeating sequence

w is the first word location

record

Xw is the contents of first word of repeating
sequence

n is the number of words in repeating sequence

5.2.5 SAMPLE OUTPUT WITH EXPLANATION:

(See Pages 9 and 10)

Fo~ monitor display WPL contains the number of words/line that
will be used in two's complement form (Initially 8)

cant.

F-8

5.2.5 cont.
F-9

(1) •
(2) r
(3) 5B
(4)E
(5) ~
(6) ~
(7) 7777R 103 R 1 r 1000 W BIN

0 0130304 000240 0130330 000303 000303 000315 000301 00021
tel 000212 000330 000303 000317 000304 000305 000264 0117025·
2117 00117211 0117117330 00033117 0013211 0130257 000323 000324 00030
30 000323 11700310 000240 000303 000301 000311 000240 00031
40 000316 01170324 000317 000240 000324 000305 1300315 117130321
50 000240 000303 000305 000314 000314 01313215 0130212 001321
60 000312 000315 131313320

(8) 650W
000240 000330 000303 000317 000311

650 1170117117117117 117011711700 0117117013117 011700117117 11701171171170 0117000117 117011737117 77771'
660 # 120* 777777

(9) tL~tJl::: __ T_.
73

(10)..§L_
01170000 01170000 00001170 0001171170 1170001170 0117011700 1170117214 117117117001

11173 # 140* 00011700
12L-

163 175 210 197 193 196 160 177 161

- 163 175 210 197 193 196 160 177 161

2-
243 257 322 305 301 304 24117 261 241

177W
777

(i1)II?lI?l~W?
777777

~W-0=I
657 # 121* 777777

(12) t1WI325~
2 330 31173 303 315 301 215 212 331

",END Or rILE 1
L TAPE AT LOAD POINT -
R 1 R 1 r 1440 w BCD -

0 203447 516563 464447 203422 656323 714645 202230 22204,
(13)2BLR 1 R 1 r 621 W? BCD -

0 345767 466736 677347 223266 636374 202020 202020 202021
(1 4) ~BDP I.E. 1 R 1 r 743 W BCD

0 PDOK %LA8EL PDOK«
8 # 12*

20 0000300' %ENTRY PD~
28 Kt %LA8EL PDOKl«
36 # 1 1 *
47 0000400' GO %BUS %D. cont.
<::<::

5.2.5 cont.

(1) Tells DEBUG to start program

(2) Rewind the tape

(3) Setup to read 556 bits/inch

(4) Compact word pairs when found

(5) Display as unsigned octal numbers

(6) Print leading zeroes on teletype

(7) Read last record of the file.

The last record of the,first file was number 103.

F-10

Its 1000 words were read without error in binary mode.

(8) Output is interrupted by request to display the record
from word 650 onward. The output shows that all the
words from 657 to the end of the record contain 777777.

(9) The display is shifted to the monitor.

W moves the display to the top of the record.

0= searches for first word in the record containing zero.

T changes the di~play to the teletype and a blank starts
it printing. The first zero was found at word 73.

(10) Output was interrupted with a request to display only
one line at a time.

ALT-MODE (not printing) and space request display of
next line.

(11) Request for non-existent word returns question mark.

(12) Display first word in record greater than 325

(13) Set density to 200 bpi, rewind and read.

The question mark after the W in the header indicates
that the record could not be read without error.

(14) , The density is changed to 556 bpi, Display mode changed
to Decimal, meaning character representation for a
BCD record. Printing of the whole record is selected
and it is re-read. Word 8 begins a sequence of 12
words of blanks.

cont.

6. NARRATIVE

6.1 Method

Tape read errors cause a re-read in the opposite parity

mode to be attempted. After a total of five reads the

record is accepted and an error flag is inserted to the

display header.

F-ll

!:' Q

!1, T

2B, ~, 8B

Space

nC

L

R

nR

m,nR

nW

$

n$

n=

n<

n>

CR

Contro1-D

Cont ro'l- S

Control~K .. - :..... '~

COMMAND SUMMARY - MAGNETIC TAPE DISPLAY

MODES
(initial state underscored)

Signed or Unsigned

Suppress or Print Zeroes

Decimal or Octal

Page or Line

Monitor or Teletype

200, 556, or 800 bits per inch

Change or Initiate Display

Compact n word groups (Init n=O)

POSITIONING

Rewind Tape

Read next

Read nth record of current file

Read nth record of mth file

Display starting with word n of record

Display next part of record (See note below)

F-12

Skip 8(n-1) words into next part (See note below)

Scan forward and display from first word
to equal n

Scan forward and display from first word
greater than n

Scan forward and display from first word
less than n

OTHER

Gives new line and cancels parameter

INTERRUPTS

Enter DEBUG at 15000 (RETURN$X to resume)

Stop printing (kill TTY output buffer)

Kill :TY"inpu~ buffer

III PROGRAM LIBRARY

111-148; DISK AUDIT

APPENDIX G

2. ABSTRACT

2.1 This program detects and corrects errors in the disk

file system, displays the contents of the disk, and

provides for deletion and renaming of files.

3. REQUIREMENTS

None.

4. USAGE

4.1 The program initially reads every track on the disk

to accumulate chain data. If any errors are detected in

the information stored on the disk, or checksum errors in

any block, appropriate messages will be typed describing

the error. When done, the program will be in "directory

mode" .

4.2 Directory-mode .. In directory-mode a summary of disk

utilization broken down by users will be displayed on the

monitor. A sample display follows:

$T
FREE BLOCKS 138

SYS 171 AFS 0
SYM 0 ENG a
FR8 631 PWC a
RPH a
SYSTEM MESSAGE

Free blocks refers to the number of blocks in the file

system area not currently in use by any file. The numbers

adjacent to each user name refers to the number of blocks

in use by all files for that user.

The following inputs will· be accepted from the keyboard:

CONT.

G-2

4.2 (cont.)

Carri age-return

$RESTORE ~ (1)

User-name ~

$T ~

$CLEAN ~

$ZEROoooo ~

@

#n ~

$U ~

$M ~message~

Swi tches to II Fil e-mode" us i ng the
default user name.

Restores all directories to the state
they were in when the program was
started. (Will not work if operator
has returned to DEBUG since the pro­
gram was started).

G-3

Swi tches to II Fi 1 e-mode" in the di rectory
of user-name and establishes user-name
as the default user-name on the disk.
If the user-name typed did not pre­
viously exist, a response of "NEW
DIRECTORY?" will be typed. Any char­
acter typed in other than carriage
return will abort the request and return
to directory mode. If a carriage return
is entered, an empty directory will be
created for the user. (Unless no more
master directory space is available)

Types the summary being displayed on
the mo n ito r.

In all directories deletes those files
whose second name is "BINARY" if there
exists within the same directory a
symbolic file with the same first name.

Deletes all files with the name
"TEMP 1\ 1\/\ FI LE II •

Writes a block containing all zeroes to
the specified disk address.

Enter or exit mode where every directory
entry, including unnamed ones, is dis­
played. Unnamed entries will show as
II II

Switch to "File mode" in directory n.
("SYS" is directory #1.)

Displays a table showing the usage of
all disk blocks. A sample display is
shown on Page 4.

Stores system message. The system
message may contain up to 254 characters
and will be displayed every time this
program is run.

(1) Throughout this document "$" refers to either
ALT-MODE or the dollar sign.

CONT.

4.2 (cont.)

0000
0040
121100
121140
0200
02i!0
0300
0340
0400
121440
051210
121540
0600
06il0
070121
07il0
1000
1040
1100
11 il0
12121121
1240

.1300
1340
1400
14L!0
1500
1540
161210
16il0
1700
1740

WWWWWWWWWWWWWWWW WWWWWWWWWWWWWWWW
t·} \.] \.! l-J\'} \.;1 \·n·} ~'H'! t-H·ll,.l \.J t·} \0] WWWWWWWWWWWWWWWW
xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx
xxxxxxXXXXXX0XXX xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx
XXXXXXXXXXXXXXXX xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx xxxxx-----------
---------------- xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx xxxxxxxxx-------
---------------- ---xxxxxxxxxxxxx
xxxxxxxxxx------ --------xxxxxxxx
xxxxxxxxxxxxxxxx xxxxxxxxx-------
-------x-------- ----xxxxxxxxxxxx
xx---xxxxxxx---- -------------------------------- -------------------------------- ----------------
------------MDDD DDDDDDDDDDDDTUUU

The left column gives octal disk
addresses. Each letter in the table
describes the usage of the block re­
presented by its position.

W means Working block

X allocated file block

available file block

M Master directory

o user directory

T Track usage table

U Unused blocks

CONT.

G-4

4.2 (cont.)

$UT ~

$Soooo ~

$SBoooo;'

Typing a carriage-return returns
control to IIDi rectory Modell.

Types the table displayed above before
displaying it. Typing a carriage­
return returns control to IIDirectory
Modell.

Shows contents of block 0000 in sym­
bolic format. The top line of the
display gives the block number and
the contents of its chain word.

Typing a carriage-return returns to
IIDirectory Modell.

Typing liN II shows the contents of the
block to which the current one chains.

Typing space shows the contents of the
next consecutive block.

Typing IIAII shows contents of next
available block.

Shows contents of block 0000 in binary
format. The display shows 1008 words
in octal unsigned form. To display
the next 100S words of data, type in
$ (alt. mode). Other inputs are as
for $Soooo.

4.3 File Mode - In File Mode, a listing of all files and

their lengths within one directory is displayed. A sample

display follows:

$T
FREE BLOCKS 135

SYS 174

D BINARY 23 E BINARY 27
F BINARY 23 A BINARY 20
M BINARY 19 R BINARY 21
S BINARY 1 7 AA BINARY 21

*SKY 3

18 JULY 111123 MASTER

Last line of sample display indicates tape from which most

recently loaded. Free blocks are the same as in directory

mode. Numbers next to file names refer to the number of

disk blocks used by that file. The asterisk next to a

G-5

4.3 (Cont.) G-6

file name, if it appears, means that that name is the

default file name.

The following inputs will be accepted from the keyboard:

carri age-return

$RESTORE ~

$DELETE ~

file-name$D ~

file-name$B ,.

$T J.

Returns to directory mode.

As in directory mode. If successful,
returns to directory mode.

Delete all files from directory. If
no files were in the directory the
name will be removed from the master
directory and control returns to
directory mode.

Delete IIfile-name ll *

Delete IIfile-name BINARY II

Type contents of this directory as
displayed on the monitor.

file-name~1'--file-name-2j Change the name of IIfile-name-l ll
to "file-name-211

$CLEAN "

fil e-name $S ~

file-name $SB -.

Deletes files within this directory
with qualifications given under $CLEAN
in directory mode.

Gives display of first block of file­
name* in form described under $Soooo ~.
Except that carriage-return returns to
IIfile mode ll ; the description for·
$Soooo ~ applies.

Gives binary format display of first
block of file-name.* Except that carriage­
return returns to IIFile modell, the
description for $SBoooo ~ applies.

file-name = 0000 ~-.Makes a new entry in current user direc-
tory with 0000 as the first data block.

@

This feature should be used with caution
as it is possible to introduce Y file
errors to the file system.

The purpose of this feature is to allow
recovery of files lost through typing
errors to the editor.

Enters or exits mode which displays
every directory entry, whether used or
not. Unused directory entries will be
represented by" "

* file name may be "#n" to operate on the n'th
"" ~I T

4.4 ERROR MESSAGES: o=Octal digit
u=User

? IIbell"

d=Decimal number
f=F'ile

Unacceptable command typed in, no action taken.

INVALID DEFAULT USER NAME

Defau·lt user name on disk not in master directory.
The d e fa u 1 t use rna me i s c han g edt a II S Y S." .

LOGICAL CHECKSUM IN OLD TUT

Checksum of track usage table entries on disk is
invalid. A new TUT is always written.

UNPROTECTED BLOCKS IN OLD TUT

Track usage table on disk indicates one or more
blocks in file area are free when some file pointer
chains to them. A new TUT is written.

UNAVAILABLE BLOCKS IN OLD TUT

G-7

One or more blocks are marked as unavailable in track
usage table on disk when they are not part of any file.
A new TUT is written.

0000 CHECKSUM

WORKING BLOCK
AVAILABLE BLOCK
MASTER DIRECTORY
TUT
uuu USER DIRECTORY
BLOCK d of uuu;ffffff ffffff

A hardware checksum error was found when block 0000
was read from the disk. The checksum error persisted
in re-reading the block 3 times but the data was

·consistent. The block was rew~itten to eliminate the
error.

IIWORKING BLOCK II refers t·o the low-address blocks on
the disk which are used for the working copy of
DEBUG and the current program.

"AVAILABLE BLOCK" refers to an unused block in the
file area of the disk.

IITUT II refers to the track usage table block on the
disk.

0000 DATA ERROR

WORKING BLOCK
AVAILABLE BLOCK
MASTER DIRECTORY
TUT
uuu USER DIRECTORY
BLOCK d of uuu;ffffff ffffff

4.4 ERROR MESSAGES (cont.)

A hardware checksum error was detected all four times
this block was'read. Some inconsistancy in the data
was found so no corrective action was taken.

0000 TRANSIENT CHECKSUM ERROR

G-8

A hirdware checksum error was detected but a subsequent
re-read occurred with no error.

0000 HIGH ORDER BITS IN CHAIN BLOCK d OF uuu;ffffff ffffff

Tbe. chain word of block 0000 had bits on that were
not part of a disk address. The block was rewritten
with the high order bits removed from the chain word.

CIRCULAR FILE uuu;ffffff ffffff

A chain word was found that pointed to a previous
block in the same file. The offending chain word
was set to zero and the block was rewritten.

0000 BLOCK d OF uuu'ffffff ffffff
-INVALID CHAIN POINTS TO 0000 WORKING BLOCK

MASTER DIRECTORY
uuu USER DIRECTORY
TUT

A chain word was found which contained a disk address
not in the file area of the disk. The offending
chain word was set to zero and the block rewritten .

. uuu;ffffff ffffff ylED WITH uuu;ffffff ffffff (TAIL IS~INARY)
~YM.)oo

Two chain words from different files were found to
be pointing to the same block. If a head had a name
indicating its type is different from the tail, it
was truncated at the point of convergence. If two
binary heads chain to a symbolic tail, the address of
the first block of the deleted tail is given as 0000.

APPENDIX H

III PROGRAM LIBRARY

111-109; STANDARD SUBROUTINE PARAMETERS

111-109

ABSTRACT

111-109 contains subroutine parameters that specify

the FR 80 hardware and software configuration at assembly time.

GENERAL

Code will be assembled depending upon the definition

and value of parameters in 111-109. A parameter is defined by

removing the slash in front of it; parameters with slashes are

processed as comments by the assembler.

The following are the most commonly changed assembly

parameters in 111-109:

7TRACK - A value of zero means a 7-track drive is

not available; a value of one means a 7-

track drive is available.

9TRACK - A value of zero means a 9-track drive is

not available; a value of one means a

9-track drive is available.

CAMNUM - The value of CAMNUM determines the camera to

be used.

H-2

CAMNUM Value Camera

1 3Smm Unperforated

2 l6mm Unperforated

3 3Smm Perforated

4 l6mm Perforated

5 Not used at this time

6 10Smm Fiche

NUMCAM - The value of NUMCAM determines number of cameras

that may be used. A number greater than one

causes code to be assembled to facilitate camera

changes at run time.

If the parameter MUMBLE has been defined before the

assembler processes 111-109, a summary of the hardware and software

configuration will be printed on the Teletype.

H-3

III PROGRAM LIBRARY

OPERATING MONITOR:

1II-166 INVAR

1II-166

1II-161

III-161 GO

,
APPENDIX I

APPENDIX I

III-166 INVAR

2. ABSTRACT

III-166 INVAR is inserted by III-166 and is part of MONITOR.

The routines and their respective core positions are invarient;

they remain the same for all application programs and are com­

pletely independent of machine configuration.

3. GENERAL

TlE invariant area starts at location 40 and is several hundred words

long. This area is protected and is not reloaded when the opera tor

loads a new program from a system tape. An example is ("LOAD/

META # ").

These routines and their absolute core positions are necessary to

MONITOR. For example, the final tape read routines are located in

INVAR to protect them from being stepped on by the incoming program.

2. ABSTRACT

III-166

III-161

III-161 GO

III-l66, III-161, and III-161 GO are a set of subroutines making up

the operating system called "MONITOR" which is resident in all

application programs. These routines interpret and execut~ operat.or

commands.

1-2

3. GENERAL

III-l66 creates the MONITOR display of com.m.ands, com.m.unicates

to the operator, and dispatches to the appropriate routines after

interpreting a valid operator com.m.and.

Included in III-l66 are general purpos e routines that sim.plify FR 80

application program.m.ing. These routines allow num.eric conversions,

teletype com.m.unication, fram.e and page advance control, and ini­

tialization and resetting of FR 80 registers.

4. SUBROUTINES

4. 1 Num.eric and Teletype Routines

4. 10

4. 11

MOOUT

MOOUT converts the contents of the AC to octal and

outputs the octal num.ber to the teletype.

MOOUT is a conditional subroutine that exists only if

BIGBUF=O. MOOUT calls MTTOUT which norm.ally

outputs to the teletype. (See MTTOUT description to

display the octal num.ber on the Monitor and PLS.)

Calling Sequence:

LAC NUMBER
JMS MOOUT

MOOUT

MOOUT converts the contents of the AC to decim.al and

outputs the decim.al num.ber to the teletype.

1-3

4. 12

If BIGBUF~O, then MOOUT = MNOUT. (See MOOUT and

MNOUT descriptions.)

Calling Sequence:

LAC NUMBER
JMS MIx)UT

MNOUT

MNOUT is an internal subroutine that converts the con-

tents of the AC to radix n and outputs the number to the

teletype.

If the programmer calls MNOUT, with BIGBUF=O, the

following instruction must be a LAC (n) where

1 ~ n ':::10. is the radix number.

MNOUT will only output a maximum of six digits to the

teletype unless special assembly parameters are

changed. For example, if the programmer wished to

ou1put the contents of the AC in binary (n=2) he should

give MDNUMB the two's complement of the number of

digits to be printed and increase MDUBUF table to

accommodate the digits. (MDNUMB, 18. and MDOBUF,

.+18./).

Failure to increase the table will result in inadvertently

destroying subsequent code.

To output unsigned numbers, MNOUT+l should be

changed to a CLL.

1-4

4. 13

To prevent zero suppression, MRADIX+S should be

changed to a NOP.

Calling Sequence (If BIGBUF=O)

LAC NUMBER
JMS MNOUT
LAC (n) /normally 8 or lO.

Calling Sequence (if BIGB UF fO)

LAC NUMBER
JMS MNOUT

GETNUM

/assumes n=lO.

GETNUM is used in conjunction with other teletype

and internal monitor routines. GETNUM converts

numbers from the teletype buffer in six-bit character

code format to octal and decimal numbers.

The procedure for entering MONITOR commands is

to type the command, a slash (/), the necessary para­

meters separated by commas, and then a carriage

return ()). GETNUM as sumes numerical parameters.

The internal MONITOR routines convert the typed para­

meters into 6 - bit teletype (TTY) codes and then stores

these codes into the teletype buffer area.

For example, the operator types "SETSIZE/1200, 6;1- ".

Each digit of the parameter would be converted to TTY

code with the TTY code for a comma separating both

1-5

4. 14

character streams. The final delimiter would be a

binary zero in the buffer area.

GETNUM converts these character streams into a

signed binary number and exits on a nonnumerical

character code delimiter. GETNUM can convert both

octal and decimal digits to a signed binary number.

After the exit from GETNUM, 0 CTNUM contains the

octal number and DECNUM contains the decimal number.

The last character code that caused the exits from

GETNUM (i. e., nonnumerical parameter) is in the AC.

The programmer should enter his MONITOR command in

the monitor dispatch table (using the specified format).

The program will jump to the programmer I s subroutine

after the carriage return is typed.

Calling Sequence: .
TEST, JMS GETNUM

LAC DECNUM
DAC SIZE

/assuming decimal input

GETNUM is called by GETINM and GETANM

MYESNO

MYESNO outputs a "YES" message to the teletype (TTY),

if the link is clear, and a "NO" message if the link is

set.

1-6

4. 15

Calling Sequence:

RAL
JMS

KYBLIS

MYESNO

KYBLIS is the keyboard listen routine. JMS KYBLIS

is usually inserted in the program at a recurring program

loop to allow operation intervention with the running pro-

gram.

If no character has been typed from the teletype (i. e. ,

keyboard flag not set) then KYBLIS exits immediately.

When the keyboard flag is set, there is a test to see if

it is a control character. If DEBUG is defined, a

control D, octal code 204, will cause a jump to DEB UG.

A control I, octal code 211, causes the program to go

to MONITOR. A control A, octal 201, will cause the

program to go to MONITOR at the next frame advance.

Any other characters are ignored by KYBLIS.

Typing "CONTINUE /ji. "causes the program to continue

program execution. If in DEBUG, typing "JMP 1

KYBLIS $ X" continues the program.

Calling Sequence: .
LOOP,

JMS KYBLIS

JMP LOOP

I-7

4. 16

4. 17

4.18

ACCTG

A CCTG is called at BEGIN time and whenever

MONITOR interrupts program execution.

A CCTG outputs a teletype carriage return and linefeed,

the time, and the frame and picture numbers.

Calling Sequence: .
JMS ACCTG

MCRLF

MCRLS outputs a teletype carriage return and linefeed.

Calling Sequence: . .
JMS MCRLF

TIMOUT

TIMOUT outputs a time message to the teletype. Cells

6 and 7 are used by our internal MONITOR routines to

store and increment time data. The outputted time

message gives hour, minute, and second information.

Calling Sequence: .
JMS TIMOUT

1-8

4. 2 FR 80 REGISTER ROUTINES

4.20

4.21

4.22

PSTLL

PSTLL remains in a two instruction loop until the

character, vector, and point plotting generators are

not busy. This prevents jamming the FR 80 registers

before the previous FR 80 command has finished.

Calling Sequence: .
PSTLL

MNSPOT

MNSPOT loads the FR 80 spot size register. The AC

must contain the desired spot size (0-7) in the low order

three bits.

If the spot size is different then a delay loop of 50 milli­

seconds is initiated to allow sufficient time for the beam

to change size.

Calling Sequence: .
LAC SIZE

MNSPOT

SETOMU

This subroutine loads certain FR 80 registers to ini­

tialize the optical mechanical unit. SETOM U executes

a PSTLL, does a RST (RESETT), loads spot size,

intensity, rotation, character spacing (horizontal and

I-9

4.23

4.24

vertical), and character size registers with programmer

determined values.

The contents of RECSPT, RECPIN, CHRROT, CHDELX,

CHDELY, and CHRSIZ are used to load the spot, intensity,

rotation, x spacing, y spacing, and size registers

res p e c ti ve 1 y •

Calling Sequence: .
SETOMU

SETPLS

SETPLS calls SETOMU and unblanks the PLS (precision

light source), if PLSON contains a NOP. If BIGBUF#O,

SETPLS always unblanks the PLS.

SETPLS should be called at BEGIN time, and whenever

the program needs to reinitialize the FR 80 hardware

registers.

Calling Sequence: .
BEGIN,

SETPLS

SETXY (DAC SETTING ROUTINE)

There are three DAC setting routines which differ by

their respective delay loops. SETXY sets the X andY

DAC's with no delay, SETXYF has a 30 microsecond

I -10

4.25

delay, and SETXYS has a 120 microsecond delay.

The SEXTY routines set the DAC's by using two

internal routines, XXXXXX and YYYYYY, which are

initially set at as sembly time, and changed by calling

ROTATR at run time. Thus a programmer can initially

set up ROTCOM, call ROTATR, and then ignore rota­

tion when setting the X and Y coordinates.

These routines assume that the desired X and Y

coordinates immediately follow the call to SETXY in

this specified format.

Calling Sequence:

JMS SETXY
LAC XCORD
LAC YCORD

lor JMS SETXYS or JMS SETXYF
114 low order bits used

Use of a delay ensures that the electron beam has

sufficient time to settle at the p.ew coordinates before

a VGO or CHGO is initiated.

ROTATR

ROTATR is a subroutine that resets CHRROT

(CHRRO T' s contents are loaded into the rotation

register) and resets the DAC setting routines.

ROTCOM must contain an OPR for comic mode and

a SKP for cine mode.

I -11

4.26

Calling Sequence: .
LAC (OPR)
DAC ROTCOM
JMS ROTATR

INTENS

lor LAC (SKP)

INTENS is an intensify point subroutine. INTENS

assumes that the X and Y DAC registers have been set

to the desired coordinates.

This routine calls PSTLL and then executes an INTS

instruction. The beam is intensified on the monitor

screen, and on the PLS if previously enabled by an

UNB L command.

The beam uses current spot size and intensity values

and intensifie s for two microseconds. The one I s comple­

ment of the number of hits (intensifications) is stored in

PTHITS.

Calling Sequence: .
LAM-IO

DAC PTHITS
IN TENS

I 1 0 hits

4 •• 3 ADVANCE ROUTINES

4.30 ADVSYS

ADVSYS advances the camera the number of increments

that is contained in the AC. ADVSYS first calls PSTLL

1-12

4.31

to ensure that the vector and character generator are

not busy.

ADVSYS advances the cam.era in increm.ents, where

m.= contents of the AC. If m.> n (n=m.axim.um. num.ber

of increm.ents allowable for each cam.era advance for

the specified cam.era), then ADVSYS advances n incre-

m.ents at a tim.e until m. increm.ents are executed.

PULMAX contains n which is specified at assem.bly tim.e.

n=4 for sprocketed cam.era and 8 for unsprocketed

cam.eras.

After each cam.era advance the SFNA 10 T is executed

to ensure that the film. is not m.oving before further

program. processing.

Calling Sequence: .
LAC (12.)
ADVSYS

ADVANN

/m.=12.

ADVANN is a general purpose cam.era advance routine

for advancing the film. n increm.ents, where n is con-

tained in the AC.

After checking that there is m.ore than ten feet of film.

left in the supply m.agazine, ADVANN calls ADVSYS.

If there is insufficient film. left, ADVANN goes to

MONITOR to wait for further operation instructions.

1-13

4.32

4.33

Calling Sequence: .
LAC (n)

ADVANN

ADVAN

ADVAN is a general purpose camera advance routine

which advances the camera one pulldown. A pulldown

is defined as n increments, where n is large enough to

advance the exposed film past the PLS.

PULLNO contains n and is automatically set at

assembly time to give the correct advance. PULLNO

can be changed in MONITOR by selecting a new

camera or by typing IIPULLDOWN In). II. "n" should

be > 3 for an unsprocketed camera and > 4 (must be a

multiple of 4) for a sprocketed camera.

ADVAN increments PICNUM (if MANYUP is not

defined) and FRAMNM. ADVAN calls ADVANN and

ADVANF.

Calling Sequence: .
ADVAN

ADVANF

ADVANF is the accounting advance routine that is

called by ADVAN to update the frame number (FRAMNM).

1-1 4

4.34

4.35

4.36

ADVANF also increments NUMFRM to see if

"frames are done." If NUMFRM becomes zero then

ADVANF outputs a "FRAMES DONE" message and

goes to MONITOR.

If a "control A" was typed, ADVANF also goes to

MONITOR. Typing "CONTINUE Ii "continues pro-

gram execution in both cases.

CLEAR

CLEAR advances the exposed film past the film gate to

ready the takeup magazine for film processing. CLEAR

calls ADVSYS.

Calling Sequence: .
CLEAR

FRSPIC

FRSPIC is always defined but is relevant only if

MANYUP or STRIPM is defined. FRSPIC is usually

called at BEGIN time to initialize parameters neces­

sary for multiple images per frame. (In stripfiche

mode each strip is considered a frame.)

FRSPIC forces a frame advance (strip advance in strip­

fiche mode), with appropriate reinitializations, upon

the first call to NEXPIC.

NEXPIC

NEXPIC is a general purpose page and frame advance

1-1 5

routine. NEXPIC is always defined but degenerates

to an ADVAN if MANYUP or STRIPM is not defined~

NEXPIC updates X and Y images per frame counters

to determine the appropriate action to take on each

page and frame advance. When doing multiple images

per frame, the camera is advanced only after the

multiple image requirement is satisfied. For example,

the operator specifies with MONITOR commands two

images in X and two images in Y. FRSPIC will ini­

tialize NEXPIC to advance the film and position the

DAC's for the first image. The second call will update

the X coo rdina te, the third call updates the Y coordinate

and reinitializes the X coordinate. The fourth call will

update the X coordinate. The fifth call will cause a frame

advance and reset both X and Y coordinates for a new

frame, etc.

EXAMPLE

A t begin time FRSPIC

NEXPIC

DATA FRAME

NEXPIC

DATA FRAME

NEXPIC

DATA FRAME

NEXptC

DATA FRAME

NEXPIC

etc.

I frame advanc e

12nd call

13rd call

14th call

15th call - frame
advance

1-16

I - 1 7

Calling Sequence:

NEXPIC

III PROGRAM LIBRARY

III-183; DISK I/O

APPENDIX J

DISK I/O III-183

ABSTRACT

III-183 is a set of subroutines which provide capability for disk input/output.

A push down stack is provided for nested reads.

GENERAL

The disk organizatio1. is described completely in the "Disk Operating System"

documentation. The disk has 1024. blocks of 256. l8-bit words. Resident

on the disk is a master directory which indexes up to 15. user directories,

and a track usage table (TUT) which indicates the state (used or unused of all

blocks on the disk.

Data is read from the disk or written to the disk in blocks of 256. 18-bit words;

J-2

however the disk buffering routines make the block structure invisible to the us er.

A disk file is referenced by a directory name and a file name. The subroutines

in III-183 assume that the directory name is in location DKFILE and that the file

name is in locations DKFILE+l through DKFILE+4.

SUBROUTINES

DKRINI - This subroutine initializes the system to read from the file

specified by DKFILE through DKFILE+4.

Calling Sequence:

DKRINI
RETURN

RETURN+l

/DKRINI returnes here if the file
doesn It exist.
/normal return for DKRINI

DKWINI -

DKREAD -

DKRDWD -

DKWRIT -

This subroutine initializes the system to write on the disk

by finding an available block, setting up the buffer, and

sto ring the default directory and file name into locations

DKFILE through DKFILE+4. Control is returned to

DEBUG if the disk is full.

Calling Sequence:

DKWINI

This subroutine returns to next 9 bit byte in the low order

A C from the file opened by DKRINI.

Calling Sequence:

DKREAD
SAD (EOFCHR /check for EOF character

This subroutine returns the next 18 bit wo rd in the AC from

the file opened by DKRINI.

Calling Sequenc e:

DKRDWD

This subroutine writes the 9 low order bits of the A C to

the disk.

Calling Sequence:

DKWRIT

J-3

DKWRWD -

DKNAME -

DKPUSH -

J-4

This subroutine writes the contents of the AC to the disk.

Calling Sequence:

DKWRWD

This subroutine names all disk output since the last

DKWINI. Locations DKFILE through DKFILE+4 specify

the directory name and file name.

Calling Sequence:

DKNAME

RETURN

RETURN+I

RETURN+2

/DKNAME returns here if there is no
/ such directory and DKNWSR is not
/defined. or if the master directory is
/full.

/DKNAM E returns here if the user
/ d ir e eto ry is full.

/normal return for DKNAME.

This subroutine saves all relevant information about the

last file opened by DKRINI. This allows reading from a

new file and later reopening the old file by doring a DKPOP.

Extra core locations of interest to the user program may be

pushed onto the stack by defining DKPNUM to be the number

of extra words desired. The extra core locations are

DKPBLK to DKPBLK+ DKPNUM. for non-zero DKPNUM.

DKPOP -

Calling Sequence:

DKPUSH
RETURN

RETURN+l

DKRINI

/push down stack is full.
/normal return for DKPUSH

/ open a new file.

J-5

This subroutine reopens the last file process ed by DKPUSH.

The read routines will continue where they left off in the

file.

Calling Sequence:

DKPOP
RETURN
RETURN +l

/push down stack is empty
/normal return for DKPOP.

The following subroutines are called by those listed above.

DKRTUT -

DKCRUS -

DKRDMD -

This subroutine reads the track usage table into core and

stores the default directory name and file name in DKFILE

through DKFILE+4.

This subroutine creates a new directory with the name in

DKFILE. A new master directory is written on the disk.

The routine skips on a normal return.

This subroutine reads the master directory into core.

DKDRFN -

DKFFIL -

DKDLET -

DKGET -

DKINIT -

DKRDSK -

DKWRBK -

This subroutine searches the master directory for the

name in DKFILE. The routine skips on a normal return.

This subroutine searches the user directory for the name

in DKFILE+I through DKFILE+4. The routine skips on a

normal return with a pointer in the AC to the first block of

the file.

This subroutine deletes the file named in DKFILE through

DKFILE+4 from the disk.

J-6

This subroutine searches the track usage table for an avail­

able block. Control is returned to DEBUG if the disk is

full.

This subroutine initializes to read into core the blo ck whos e

number is in the A C.

This subroutine handles the actual data transfer from disk.

to core.

This subroutine handles the actual data transfer from core

to disk.

ASSEMBLY PARAMETERS

NODKWT -

DKNWSR -

When NODKWT is defined, it is not possible to write on

the disk.

When DKNWSR is defined, it allows new directories to be

created.

NODKRD -

DKREPL -

DKPNUM -

DKCHAN -

ADDITIONAL NO TES

When NODKRK is defined, it is not possible to read files

from the disk.

When DKREPL is defined, it allows file replacement.

When DKPNUM is defined, it allows "push-reads. II

Define it as the number of extra words (usually zero) to

be pushed.

When DKCHAN is defined, it allows a new TUT to be built

when using subroutine DKNAME. Store a LAM (-0) in

location DKCHAN when calling DKNAME to cause a new

TUT to be built.

III-182 reads a file name and formats it correctly for use with III-183.

A useful macro for producing file names in the proper format directly is.

N X, Y, Z - macro to pack characters X, Y, Z into name format •

• DEF N X, Y, Z

"X+40&77-6! < "Y+40&77)'" 6! <"Z+40&77)

. TERM

J-7

III PRO GRAM LIBRAR Y

III-162; VECTOR ROUTINES

APPENDIX K

K-2

VECTOR ROUTINES III-162

ABSTRACT

III-162 provides subroutines for drawing solid vectors, dashed vectors, and dotted

vectors.

GENERAL

The starting point of a vector is referred to as the "head"; the end point is called

the "tail." The macro SETHD is used to set the coordinates of the head; the

macro SETTL sets the coordinates of the tail. Specification of a null (zero-length)

vector results in the intensification of a single point.

For a vector from (XHD, YHD) to (XTL, YTL) the macro coding should be:

SE THD XHD, YHD

SETTL XTL, YTL

The following subroutines assume that the head and tail coordinates have been

set with the SETHD, SETTL macros.

so LID VECTORS

Subroutine DRWVEC uses the hardware vector generator to produce solid vectors.

Location VECHIT contains the l's complement of the number of hits for each

vector.

Calling Sequence:

JMS DRWVEC

K-3

DASHED VECTORS

Subroutine DRWVDS uses the hardware vector generator to produce dashed vectors.

Dashes are made by blanking and unblanking the PLS while the vecotr generator

is drawing. The dashed line format is specified by a call to COMDSH before calling

DRWVDS.

COMDSH Calling Sequence:

STL or CLL

JMS COMDSH / compile dashed line code.

LAC "SMALLER LENGTH" / argument 1

LAC II LARGER LENGTH" / argument 2

If the link is zero, then argument 1 refers to the length of the dash and argument 2

refers to the length of the space.

If the link is one, then argument 1 refers to the length of the space and argument 2

refers to the length of the dash.

It is necessary to call COMDSH only once for a particular dashed line format.

Any change in format requires another call to COMDSH.

A call to DRWVDS utilizes the output of COMDSH and draws the dashed vector.

Location VECHIT contains the l's complement of the number of hits for each

vector.

Calling Sequence

JMS DRWVDS

DOTTED VECTORS

Subroutine DRWDOT produces dotted vectors without the use of the hardware

vector generator. The assembly parameter DSH determines the spacing

between dots. The number of sC9pe points between dots, as measured on the

f h 1 . 2 DSH . 00 H . h ' axis 0 t e arger component, IS • Lo catIOn T IT contaIns tel s

complement of the number of hits for each vector.

Calling Sequence:

JMS DRWDOT

ASSEMBLY PARAMETERS

DASHED -

OOTVEC -

DSH -

When DASHED is defined, routines will be assembled to

produce dashed vectors.

When OOTVEC is defined, routines will be assembled to

produce dotted vectors.

When 00 TVEC is defined, DSH determines the number of

scope points, X, between dots, as measured on the axis

of the larger component. X = 2 DSH

K-4

APPENDIX L

III PRO GRAM LIBRAR Y

III 163; MAGNETIC TAPE ROUTINES

MAGNETIC TAPE ROUTINES III-l63

2. ABSTRACT

This insert file contains subroutines for initialization, reading, writing,

or repositioning of single or multiple tape units.

3. GENERAL

The read routines can access data in groups of bits or in words. The

write routines take words and transfer the data to tape. Ther e is also

a set of subroutines to save the magnetic tape status and at a later time

reposition the tape back to that point.

nested calls for backing up the tape.

The reposition routines can handle

By assembly option the read rou-

tines can be single or double buffered.

4. CONDITIONAL PARAMETERS

1. Single or Double Buffering. If the symbolic parameter

TWOBUF==l is defined, the read routines will be double buffered;

if it is not defined,the read routines will be single buffered.

2. Get Bits Subroutine (GETT see Para. 6). This routine

3.

will not be assembled if the symbolic parameter MTWRDS==l

is defined.

Use of an Auto-Index Register for the Read Routine. If the

symbolic parameter MTPTR is not defined, the read routines

will use a core location for indexing through the data buffer.

If the user desires a faster acces s time and can afford the

dedicated use of an auto -index register, define MTPTR==n

L-2

where n= 10 through 17.

4. Repos itioning Routines. If these routines are desired, define

MTRPT==In where n= the InaxiInuIn level of nesting.

5. Write Routines. If the user desires write routines, two syIn-

bolic paraIneters Inust be defined:

MTWRIT==l

MTMANY==n n= nUInber of tape units -1

5. INITIALIZATION OF READ ROUTINES

a. Single Buffered

LAC (Buffer-l

DAC MTAREA

LAC LENGTH / buffer length in two I s cOInpleInen t

DAC PBUFSZ

JMS MTRINI

b. Double Buffered

LAC (BUFFER-l

DAC CURBUF#

LAC LENGTH / I /2 total buffer length in two I s ,

DAC PBUFSZ
cOInpleInen t

CMA

ADD CURBUF

DAC NEXBUF#

JMS MTRINI

If both 7 and 9-track drives are available, the location MT9SW

will contain a NOP if the data was read froIn a 9-track drive.

L-3

6. GET BIT ROUTINE

By utilizing thp.macro instruction

GETT

The user can access data in a bit by bit basis. If the data is known to

cross record boundaries,MTBYSW should contain a SKP. If not, the partial

word at the end of the record will be ignored.

The GETT n macro expands to the following:

n

MTBYTE

LAW

JMS

AND (l .. (N -1)-1 +<;f- -(N -1»)

7. GET WORD ROUTINE

If the user desires only to access data in l8-bit word formats, this

subroutine will access data sequentially from the tape buffer.

JMS MTLAC

NOTE: The GETT macro and the word routine can not be intermixed.

If this method is utilized, the symbolic parameter MTWRDS==l should

be defined to save program space.

8. REPOSITIONING ROUTINES

These routines consist of a push-down list and backup routines to pro­

cess nested repeats of data from mag tape.

1. Push List

JMS MTPUSH

This saves the current status of the mag tape pointers.

L-4

2. Pop List

JMS MTPOP

This rem.oves the top m.ag tape pointers from. the push down list.

3. Backup Tape

JMS MTREPO

This routine backs the tape up to the previous push position.

9. WRITE ROUTINES

If these routines are utilized the m.ag tape read routines should not be

double buffered. The initialization sequence changes when the write

routines are included.

Initialization:

LAC WRUNIT

JMS MTWINI

LAC LENGTH

LAC (WRBUF-l)

LAC RDUNIT

JMS MTRINI

LAC LENGTH

LAC (RDBUF-l)

Unit Select:

LAC UNIT

JMS MTSEL

/write unit num.ber

/length 'of write buffer two's com.ple­
m.ent

/buffer address -1

/read unit num.ber

/1ength of read buffer two's com.ple­
m.ent

/ see figure below

L-5

Command

Not Used a NOP

012 345 6 789 10 11 12 13 14 15 16 17 1 Rewind

2 Read
Bits 0-2 Unit Number

3 Read/Compare
3 Parity O=even l=odd

4 Write
4 Core Dump

5 Write EOF
5 Long Gap

6 Space Forward
6-8 Command

7 Space Reverse
9 Interrupt Enable

10-11 Density Density

a 200 BPI

1 556 BPI

2 800 BPI

3 800 9-Track

10. Write

To place a word in the write buffer

JMS MTDAC

will transfer the contents of the accumulator into the write buffer,

when the buffer is full it will be written to the selected unit.

L-6

