
intJ

PL/M-51 USER'S GUIDE

Copyright «'> 1982. 1983 Inttl Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 Order Number: 121866-003

I
II

PL/M-S1 USER'S GUIDE

Order Number: 121966-003

Copyright © 1982, 1983 Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, CA 95051 r

ii

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers A venue
Santa Clara, CA 95051

Intel retains the right to make changes to these specifications at any time, without notice. Contact your
local sales office to obtain the latest specifications before placing your order.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes
no responsibility for any errors that may appear in this document. Intel Corporation makes no commitment
to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, dupli
cation or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may only be used to identify Intel
products:

BITBUS im iRMX Plug-A-Bubble
COMMputer iMMX iSBC PROMPT
CREDIT Insite iSBX Promware
Data Pipeline inte l iSDM QueX
Genius intelBOS iSXM QUEST

Intelevision Library Manager Ripplemode
" inteligent Identifier MCS· RMXj80 I

121CE inteligent Programming Megachassis RUPI
ICE Intellec MICROMAINFRAME Seamless
iCS Intellink MULTIBUS SOLO
iDHP iOSP MUL TICHANNEL SYSTEM 2000
iDIS iPDS MUL TIMODULE UPI
iLBX

A1121/184/SK/JAY/KH.

SOFTWARE

REV. REVISION HISTORY DATE APPD.

-001 Original issue. 11/82

-002 Corrects errors in the -001 version. 3/83

-003 Adds conditional compilation and UTIL51.LIB 11/83 D.M.
utilities.

iii

PREFACE

This manual describes the PL/M-Sl language as implemented by the PL/M-Sl
compiler. It provides you with all the information necessary for programming in the
PL/M-Sl language, and explains how to operate the compiler.

This manual is not intended to be a tutorial for high-level language programming,
nor is it an introductory manual for the MCS-Sl family of microcomputers. Previous
experience with high-level languages, as well as with the architecture of the
MCS-Sl, is desirable but not mandatory. The sections explaining the "suffix" will
provide you with the necessary background to start programming without knowing
all the details of the 80S 1.

This manual is intended to be read from front to back by a new programmer of
PL/M-S1. Some sections in the beginning and middle of this manual use terms and
concepts thai are fully defined and explained near the end. It is best to first read the
manual cover-to-cover, then re-read it, paying more attention to the areas that you
feel you do not fully understand.

Readers who are familiar with PL/M-80 may find it helpful to start by reading
Appendix E, which describes the main differences between PL/M-80 and PL/M-S1.

Related Literature

The following manuals may be of help in using this manual and may aid you in the
development of your own application.

• MCS-51 Family of Single-Chip Microcomputers User's Manual, Order number
980093S

MCS-51 Utilities User's Manual, Order number 121737-002 (describes RLSI
Relocator and Linker and LIBSI librarian)

• MCS-51 Macro Assembler User's Guide, Order number 9800937

• ICE-51 In-Circuit Emulator Operating Instructions for ISIS-II User's, Order
number 9801004

• ISIS-II User's Guide, Order number 9800306

Notational Conventions

UPPERCASE

italic

directory-name

filename

Characters shown in uppercase must be entered in the order
shown. You may enter the characters in uppercase or lower
case.

Italic indicates a meta symbol that may be replaced with an
item that fulfills the rules for that symbol. The actual symbol
may be any of the following:

Is that portion of a pathname that acts as a file locator by
identifying the device and / or directory containing the
filename.

Is a valid name for the part of a pathname that names a file.

v

Preface

vi

pathname

pathname1,
pathname2, .. ,

system-id

Vx.y

[]

{ }

{ L ..

[, ...]

punctuation

lnput llnes

< c r)

Is a valid designation for a file; in its entirety, it consists of a
directory and a filename.

Are generic labels placed on sample listings where one or more
user-specified pathnames would actually be printed.

Is a generic label placed on sample listings where an oper
ating system-dependent name would actually be printed.

Is a generic label placed on sample listings where the version
number of the product that produced the listing would
actually be printed.

Brackets indicate optional arguments or parameters.

One and only one of the enclosed entries must be selected
unless the field is also surrounded by brackets, in which case
it is optional.

At least one of the enclosed items must be selected unless the
field is also surrounded by brackets, in which case it is
optional. The items may be used in any order unless other
wise noted.

The vertical bar separates options within brackets [] or
braces { }.

Ellipses indicate that the preceding argument or parameter
may be repeated.

The preceding item may be repeated, but each repetition must
be separated by a comma.

Punctuation other than ellipses, braces, and brackets must be
entered as shown. For example, the punctuation shown in the
following command must be entered:

SUBMIT PLM86(PROGA,SRC,'9 SEPT 81')

In interactive examples, user input lines are printed in white
on black to differentiate them from system output.

Indicates a carriage return.

PL/M-51

CHAPTER 1
OVERVIEW

PAGE

Product Definition 1-1
The PLJM-51 Language ... 1-1

Using a High-Level Language 1-1
Why PLjM? .. 1-2

Two Categories of PLjM-51 Statements 1-2
Block Structure ... 1-3

Block Nesting and Scope of Variables: An
Introduction .. '" 1-4

Executable Statements .. 1-5
Assignment Statement .. 1-5
IF Statement 1-6
DO and END Statements '" 1-6

Built-In Procedures 1-8
Expressions 1-8
The Program Development Process '" ... 1-8

CHAPTER 2
BASICS OF A PL/M-51 PROGRAM
PLJM-51 Character Set ... 2-1
Identifiers and Reserved Words 2-1
Tokens, Separators, and the Use of Blanks 2-3
Constants ... 2-3

Whole Number Constants 2-3
Character Strings 2-4

Comments .. 2-4

CHAPTER 3
DECLARATIONS
Variable Declaration Statements 3-1
Types .. 3-1

Examples .. 3-2
Results 3-3

Address-Spaces and the Suffix 3-3
The CONSTANT Suffix 3-5
The Implicit Dimension Specifier ,. 3-7
The REGISTER Suffix 3-7
The IDATA Suffix .. 3-8
The MAIN Suffix 3-8
The AUXILIARY Suffix 3-8

Compilation Constants (Text Substitution):
The Use of LITERALLy................................. 3-8

Declarations of Names for Labels 3-9
Results .. 3-10

Combining DECLARE Statements 3-10
Declarations for Procedures 3-11

CHAPTER 4
DA T A TYPES AND BASED VARIABLES
BYTE and WORD Arithmetic 4-1
The Dot (.) Operator 4-1
Storing Strings and Constants via Location

Reference 4-2

CONTENTS

PAGE
Based Variables 4-3
Location References and Based Variables 4-4

Cautions on Using Based Variables 4-4
Contiguity of Storage 4-5
The AT Attribute .. 4-6

CHAPTER 5
EXPRESSIONS AND ASSIGNMENTS
Operands .. 5-1

Variable References .. 5-1
Constants 5-1
Function and Location References 5-2
Subexpressions ... 5-2
Compound Operands ... 5-2

Operand and Expression Types 5-3
Arithmetic Operators .. 5-4

The +, -, *, and j Operators 5-4
The MOD Operator ... 5-4

RelationalOperators ... 5-5
Logical Operators 5-5
Expression Evaluation ... 5-6

Precedence of Operators: Analyzing an
Expression .. 5-6

Notes on Relational Operators 5-7
Order of Evaluation of Operands 5-7

Assignment Statements ... 5-8
Implicit Type Conversions 5-8
Multiple Assignment ... 5-9

Special Case: Constant Expressions 5-9
Negative Numbers .. 5-9

CHAPTER 6
STRUCTURES AND ARRAYS
Arrays and Subscripted Variables 6-1
Structures .. 6-2

Arrays of Structures .. 6-3
Arrays within Structures 6-3
Arrays of Structures with Arrays Inside

the Structures .. 6-3
References to Arrays and Structures 6-4

Fully Qualified Variable References 6-4
Unqualified and Partially Qualified

Variable References 6-4

CHAPTER 7
FLOW CONTROL STATEMENTS
DO and END Statements: DO Blocks 7-1

Simple DO Blocks ... 7-2
DO CASE Blocks .. 7-3
DO WHILE Blocks ... 7-4
Iterative DO Blocks ... 7-5

The IF Statement .. 7-6
Nested IF Statements ... 7-7
Sequential IF Statements 7-8

vii

Contents

PAGE

GOTO Statements .. 7-9
The CALL and RETURN Statements 7-10
The Null Statement .. 7-10

CHAPTER 8
SAMPLE PROGRAM 1
Insertion Sort Algorithm ... 8-1

CHAPTER 9
BLOCK STRUCTURE, SCOPE,
AND LIFETIME RULES
Scope .. 9-1
Names Recognized within Blocks , ... 9-1
Restrictions on Multiple Declarations 9-3
Lifetime Rules 9-4
Extended Scope: The PUBLIC and

EXTERNAL Attributes 9-4
Scope of Labels and Restrictions on GOTOs 9-6

CHAPTER 10
PROCEDURES AND INTERRUPTS
Procedure Declarations 10-1

Parameters ... 10-2
Typed versus Untyped Procedures 10-3

Activating a Procedure: Function References
and CALL Statements 10-4

Indirect Procedure Activation 10-5
Exit from a Procedure: The RETURN Statement.. 10-6
The Procedure Body..... 10-6
The Attributes: PUBLIC and EXTERNAL,

INTERRUPT, USING,
INDIRECTLY_CALLABLE 10-7

Interrupts and the INTERRUPT Attribute:
ENABLE and DISABLE 10-8

The USING Attribute .. 10-9
The INDIRECTLY_CALLABLE Attribute 10-10

CHAPTER 11
BUILT-IN PROCEDURES
Obtaining Information about Variables 11-1

The LENGTH Function 11-1
The LAST Function 11-2
The SIZE Function 11-2

Explicit Type and Value Conversions 11-3
SHIFT and ROTATE Functions 11-3

Logical-Shift Functions: SHL and SHR 11-4
Rotation Functions: ROL and ROR 11-4

INPUT and OUTPUT 11-5
Miscellaneous Built-Ins ... 11-5

The TESTCLEAR Procedure 11-5
The TIME Procedure 11-5

CHAPTER 12
FEATURES INVOLVING 8051
HARDW ARE FLAGS
Optimization and the 8051 Hardware Flags 12-1
The PLUS and MINUS Operators 12-1
Carry-Rotation Built-In Functions 12-2
The DEC Function .. 12-2

viii

PL/M-51

CHAPTER 13 PAGE
SUPPORT LIBRARY: PLM51.LIB

CHAPTER 14
COMPILER INVOCATION AND CONTROLS
Introduction to Compiler Controls 14-1

Examples of Control Lines 14-1
Examples of Controls 14-2

The WORKFILES Control...................................... 14-2
The Object File Controls 14-2

INTVECTOR/NOINTVECTOR 14-4
OPTIMIZE .. 14-4
OPTIMIZE(O) ... 14-4
OPTIMIZE(1) 14-4
OPTIMIZE(2) 14-5
OPTIMIZE(3) ... 14-7
OBJECT /NOOBJECT ... 14-7
DEBUG /NODEBUG ... 14-8
ROM .. 14-8
REG ISTERBANK '.' 14-8

Listing Selection and Content Controls 14-9
PRINT/NOPRINT .. 14-9
LIST /NOLIST ... 14-9
CODE/NOCODE ... 14-9
XREF /NOXREF .. 14-10
SYMBOLS/NOSYMBOLS 14-10

Listing Format Controls .. 14-10
PAGING/NOPAGING 14-10
PAGELENGTH .. 14-11
PAGEWIDTH ... 14-11
TITLE .. 14-11
DATE ... 14-11
EJECT ... 14-12

Program Listing ... 14-12
Symbol and Cross-Reference Listing 14-13
Warnings and Compilation Summary 14-13
Source Inclusion Controls ... 14-14

INCLUDE ... 14-14
SAVE/RESTORE .. 14-15

Conditional Compilation Controls 14-15
IF /ELSEIF /ELSE/ENDIF 14-16
SET/RESET ... 14-17

CHAPTER 15
OBJECT MODULE SECTIONS
Modules 15-1
Segments 15-1
Linkage Information ... 15-2
Debug Information .. 15-3

CHAPTER 16
ERROR MESSAGES
Source PL/M-51 Errors 16-1
Fatal Command-Tail and Control Errors 16-1
Fatal Input/Output Errors 16-1
Fatal Insufficient-Memory Errors 16-2
Fatal Compiler Failure Errors 16-2
Error Messages 16-2

PL/M-51

APPENDIX A
GRAMMAR OF THE PL/M-51 LANGUAGE

APPENDIX B
PROGRAM CONSTRAINTS

APPENDIX C
PL/M-51 RESERVED WORDS

APPENDIX D
PREDECLARED IDENTIFIERS

APPENDIX E
DIFFERENCES BETWEEN
PL/M-80 AND PL/M-51

APPENDIX F
ASCII CODES

APPENDIX G
INTERFACING PL/M-51 TO ASM51

TABLES

TABLE TITLE PAGE

2-1 PLj M-51 Special Characters 2-2
5-1 Opera tors' Precedence 5-6
14-1 Compiler Controls 14-3

FIGURES

FIGURE TITLE PAGE

3-1 8051 Memory Organization 3-4
3-2 Internal Data Addressing Modes 3-4
8-1 Insertion Sort Algorithm 8-2
9-1 Inclusive Extent of Blocks 9-2

Contents

APPENDIX H
RUN-TIME INTERRUPT PROCESSING

APPENDIX I
THE PROCESSOR DESCRIPTOR FILES

APPENDIX J
SAMPLE PROGRAM 2

APPENDIX K
HOW TO GENERATE BETTER CODE

APPENDIX L
VALID PL/M-51 STATEMENTS

APPENDIX M
ASSEMBLER UTILITY LIBRARY:
UTIL51.LIB

INDEX

TABLE TITLE PAGE

14-2 Controls by Categories 14-3
15-1 Address Space Codes 15-2
G-l Typed Procedure Values G-2

FIGURE TITLE PAGE

9-2 Outer Level of Block SORT 9-3
H-l ASM51 Code for Interrupt Vector

and CPU Status Stacking H-2

ix

CHAPTER 1
OVERVIEW

This chapter introduces the PL/M-51 language and explains the process of develop
ing software for your system using PL/M-51.

1. 1 Product Definition

PL/M is a high-level language for programming various families of microprocessors
and microcontrollers. It was designed by Intel Corporation to meet the software
requirements of computers in a wide variety of systems and applications work.

The PL/M-51 compiler is a software tool that translates your PL/M-51 source
programs into relocatable object modules that you can link to other modules coded
in PL/M, assembly, or other high-level languages. The compiler provides a listing
output, error messages, and a number of compiler controls to aid in program devel
opment and debugging. The compiler runs on an 8080/8085-based Intel microcom
puter development system and consists of several overlays.

To perform the steps following compilation, use software development utilities RL51
and LIB51. Debug your programs using the ICE-51 In-Circuit Emulator or the EV-
51 execution vehicle. For firmware systems, use the Universal Prom Programmer
(UPP) with its Universal Prom Mapper (UPM) software to transfer your programs
to PROM.

1.2 The PL/M-51 Language

Using a High-Level Language

High-level languages more closely model the human thought process than lower-level
languages such as assembly language. High-level languages require one less transla
tion step from concept-to-code than do lower-level languages; consequently, high-level
languages are relatively easy to write and can be written faster than low-level
languages. High-level language programs also are more likely to be correct because
less chance exists to introduce error.

Programs in high-level languages are easier to read and understand than those in
lower-level languages, and thus are easier to modify. As a result, you can develop
high-level language programs in a much shorter period of time. Also, they are easier
to maintain throughout the life of the product. Thus, high-level languages result in
lower costs for both development and maintenance of programs.

In addition, programs in high-level languages are easily transferred from one proces
sor to another and are thus considered portable.

If PL/M-51 is your first high-level language, you should know how programming in
high-level languages differs from assembly-language programming. When you use a
high-level language:

• You do not need to know the instruction set of the processor you are using.
However, you do need to understand its memory structure.

You need not be concerned with the details of the target processor, such as regis
ter allocation or assigning the proper number of bytes for each data item-the
compiler takes care of these things automatically.

1-1

Overview PL/M-51

1-2

• You use keywords and phrases that resemble English.

• You can combine many operations (including arithmetic and Boolean opera
tions) into expressions; thus, you can perform a whole sequence of operations
with just one statement.

You can use data types and data structures that are closer to your actual problem.
For instance, in PL/M-51 you can program in Boolean variables, characters,
arrays, and other data structures instead of bits, bytes or words.

Coding programs in high-level languages rather than in assembly languages requires
a different thought process. Coding in high-level languages is actually closer to the
level of thinking you use when you are planning your overall system design.

Why PL/M?

Many high-level programming languages are available today. Some have been around
far longer than PL/M. So, once you have decided to use a high-level language, you
might ask: How does PL/M differ from other high-level languages? What advan
tages does it have? When is it the right language to use?

Following are some of the characteristcis of PL/M:

• It has a block structure and control constructs that aid-in fact, encourage and
enforce-structured programming.

It includes facilities for such data structures as structured arrays and pointer
based dynamic variables.

• I t is a typed language, that is, the compiler does data type compatibility checking
to 'help you detect logic errors in your programs at compile time.

Its data structuring facilities and control statements are designed logically. Thus,
PL /M is a good language for expressing algorithms for systems programming.

• Its control constructs make program correctness relatively easy to verify.

• It is a standard language used on Intel microcomputers; consequently, PL/M
programs are portable across Intel processors.

PL/M was designed for programmers (generally systems programmers) who need
access to microprocessor features (such as indirect addressing (BASED) and direct
I/O) for optimum use of all system resources.

PL/M differs from older, more established languages like FORTRAN, BASIC, and
COBOL in many ways. PL/M has many more features than BASIC and is a more
general-purpose language than either FORTRAN (best suited for scientific applica
tions) or COBOL (tailored for business data processing). Additionally, PL/M differs
from these other languages in its typing and block structure.

1.3 Two Categories of PL/M-S1 Statements

PL/M-51 has two types of statements: declarations and executable statements. A
simple example of a declare statement is:

DECLARE WIDTH BYTEj

This declare statement introduces the identifier WIDTH and associates it with the
contents of one byte (8 bits) of memory. You need not know the location of the byte,
i.e., its actual address in memory. Simply refer to the contents of this byte by using
the name WIDTH.

PL/M-Sl

An example of an executable statement is:

CLEARANCE = WIDTH + 2j

This executable statement has two identifiers, CLEARANCE and WIDTH. Both
must be declared prior to this executable statement, which produces machine code to
retrieve the WIDTH value from memory, adds 2 to it, and stores the sum in the
memory location for CLEARANCE.

For most purposes, you, the PL/M-51 programmer, need not think in terms of memory
locations. CLEARANCE and WIDTH are variables, and the assignment statement
assigns the value of the expression WIDTH + 2 to the variable CLEARANCE. The
compiler automatically generates all the machine code necessary to retrieve data from
the right type of memory, evaluates the expression, and stores the result in the proper
location.

A group of statements intended to perform a function, i.e., a subprogram or sub
routine, can be given a name by declaring them to be a procedure:

ADDER_UPPER: PROCEDURE (BETA)j

The statements that define the procedure then follow. This block of PL/M-51 state
ments is invoked from other points in the program, which may involve passing param
eters to it and returning a value. When a procedure has finished executing, control is
returned immediately to the position following the point at which the procedure was
called. This capability is the major feature permitting modular program construction.

1.4 Block Structure

PL/M-51 is a block-structured language. That is, every statement in a PL/M-51
program is part of at least one block. (A block is a group of statements that begins
with a DO statement or a procedure declaration and ends with an END statement.)
The compilation unit in PL/M-51 is a module, which is a labeled simple DO-block;
therefore, a module must begin with a labeled DO statement and end with an END
statement. Between those end points (within that DO-block) other statements provide
the definitions of data and processes that make up the program. These other state
ments are part of the block, contained within the block, or nested within the block. A
module can contain other blocks but is never itself contained within another block.

(The DO-block is described as simple because it is just one of four DO-blocks; the
other three are explained later in this manual.)

Every PL/M-51 program consists of one or more modules, separately compiled, each
consisting of one or more blocks. PL/M-51 has two kinds of blocks: DO-blocks and
procedure definition blocks.

A procedure definition block is a set of statements beginning with a procedure decla
ration (as shown in section 1.3) and ending with an END statement. Other declara
tions and executable statements, which can go between these endpoints, are used later
when the procedure is actually invoked or called into execution.

A definition block is really a further declaration of everything the procedure will use
and do. Since it is only executed later, a procedure definition block is considered just
another form of declaration; it is not regarded as immediately executable.

Overview

1-3

Overview

1-4

Block Nesting and Scope of Variables: An Introduction

Some blocks contain entire other blocks, as shown in the following examples.

Example 1

start: DOj
DECLARE CA,B,C,D,E,F,G,H,L) BYTEj
A 1 7 j

C B + Dj

middle: DOj
DECLARE CJ,K) BYTEj
E F + G j
H J + K + Aj

END middlej

las t : L H + C j

END start

Example 2

start: DOj
DECLARE CA,B,C,D,E,F,G,L) BYTEj
A 1 7 j

C B + Dj

middle: DOj
DECLARE
E F
H J

END middlej

las t : B H

END start

CH,J,K,L) BYTEj
+ Gj
+ K + A j

Cj /* This is an error
since H undeclared
at outer level */

(As shown in examples 1 and 2, multiple names of the same type can be declared in
one statement; consequently, all the names within the parentheses are of the same
type.)

The block called MIDDLE is completely contained inside the block labeled START;
MIDDLE is said to be nested within the START block.

The START block is called an outer block. The phrase outer level is used to refer to
statements that are in START but not in MIDDLE. For example, the statements
beginning with A =, C =, and B = are all in at the outer level in the blocks shown in
examples 1 and 2.

PL/M-51 permits each block to be independent of other blocks in that any names
declared at an outer level can be redeclared, with new meanings and values, inside a
nested block. If names declared at an outer level are not redeclared, they keep their
original locations and present contents.

PL/M-51

PLfM-51

Thus, A will still be 17 inside MIDDLE unless you add a new declaration to make it
have a new, local meaning there. Variables declared inside a nested block have only
that local meaning while statements in that block are being executed. The variables
lose their local meaning as soon as execution passes to statements outside that block.

Therefore, if H is only declared inside MIDDLE, as it is in Example 2, its value will
be unknown in the statement labeled "last:" the statement will be invalid and the
compiler will say so. If H is also declared in START, the valued used in last will be
the outer level meaning, unrelated to the one created in MIDDLE because that H is
unique. They will only be the same if their sole declaration is in START and not in
MIDDLE, as in Example 1.

The effect of these rules is that, when writing a block and declaring objects solely for
use inside that block, you need not worry about whether the same identifier has already
been used in another block. Even if the same name is used elsewhere, it refers to a
different object. This subject is dealt with in detail in Chapter 9.

The notion of nested blocks, inner and outer levels, is central to successful PL/M-51
programming. For example, the modules of a program must conform to the rule that
only one module may have executable statements at the outer-most level. That module
is called the main module (or sometimes, the main program). The outer-most level of
all other modules must only contain procedure definition blocks and other declara
tions, as discussed in the sections that follow.

Most of the rules discussed in this book, including those just covered, relate to creat
ing and preserving unambiguous meanings, addresses, and values for each name you
use. This uniqueness must be true in every block and in communicating values between
blocks.

1.5 Executable Statements

The following is a list of all PL/M-51 executable statements and the chapters in
which they are discussed:

Assignment Statement
GOTO Statement
IF Statement
Simple DO Statement
Iterative DO Statement
DO WHILE Statement
DO CASE Statement
END Statement
Null Statement
CALL Statement
RETURN Statement
ENABLE and DISABLE

Chapter 5
Chapter 7
Chapter 7
Chapter 7
Chapter 7
Chapter 7
Chapter 7
Chapter 7
Chapter 7
Chapter 10
Chapter 10
Chapter 10

The following sections, which give simple descriptions of some of the executable
statements, should help make you more familiar with PL/M-51 and should aid you
when you encounter the full descriptions found in later chapters.

Assignment Statement

The assignment statement has already been introduced. It is fundamental to
PL/M-51 programming. Although its form is quite simple, the expression in an
assignment statement may be quite complex and result in a considerable amount of
computation, as will be seen in Chapter 5.

Overview

1-5

Overview

1-6

The simplest form of the assignment statement is:

identifier=expression;

where

identifier is the name of a variable.

The expression is evaluated, and the resulting value becomes the value of the
variable. Variations of this form are given in Chapter 5.

IF Statement

The following is an example of an IF statement:

IF WEIGHT <
COUNT

ELSE
COUNT

MINWT THEN
COUNT + 1j

o j

This has been broken into four indented lines to make it more readable. As will be
explained in Chapter 2, blanks (spaces, tabs, carriage returns, comments and line
feeds) may be freely inserted between the elements of a statement without changing
the meaning.

WEIGHT, MINWT, and COUNT are assumed to be previously declared variables.
The IF statement example has three parts:

An IF part, consisting of the reserved word IF and a condition, WEIGHT <
MINWT

A THEN part, consisting of the reserved word THEN and a statement,
COUNT=COUNT + 1

An ELSE part, consisting of the reserved word ELSE and another statement,
COUNT = 0

If the condition in the IF part of an IF statement is "true," then the statement in the
"THEN part" will be executed. Otherwise, the statement in the ELSE part will be
executed.

In example given, if the value of WEIGHT is less than the value of MINWT, then
the value of COUNT will be incremented by 1. Otherwise, the value a will be assigned
to COUNT.

The ELSE part of an IF statement is optional. Chapter 7 contains a full description
of IF statements.

DO and END Statements

DO and END statements are used to construct DO blocks. A DO block begins with
a DO statement and ends with a matching END statement.

PL/M-51 has four kinds of DO statements, which are used to construct four kinds
of DO blocks.

PL/M-51

PL/M-51

A simple DO block begins with a simple DO statement and (like all DO blocks) may
be used wherever a single statement can be used. The following is an example of a
simple DO block used in place of a single statement in the THEN part of an IF
statement:

IF TMP >= 4 THEN
DOj

INC R
COUNT

ENDi
ELSE

COUNT = OJ

INCR * 2;
COUNT + INCRi

This example allows two or more executable statements to be executed if the condi
tion is true.

An iterative DO statement introduces an iterative DO block and causes the executa
ble statements within the block to be executed repeatedly. The following is an example
of an iterative DO statement:

DO J

ENDi

where

J

o TO 9;
VECTOR(J) o ;

is a previously declared BYTE or WORD variable (which
are discussed in detail in Chapters 3, 4, and 5).

VECTOR must be a previously declared array having at least 10
elements.

The assignment statement is executed 10 times, with values of J starting at 0 and
increasing by 1 each time around until all of the integers 0-9 have been used. Since
J is used as a subscript for specifying which element of VECTOR is referenced in
the assignment statement, this iterative DO block assigns the value 0 to all elements
of VECTOR from element 0 through element 9.

The DO WHILE statement contains a condition (like the condition in the IF part of
an IF statement), and causes the executable statements in the block to be executed
repeatedly as long as the condition is true.

In the following example, a DO WHILE block is used to step through the elements
of an array (TABLE) until an element is found that is greater than the value of a
scalar variable called LEVEL.

I 0 i
DO WHILE TABLE(I) <= LEVELi

I + 1;
ENDi

TABLE is a previously declared array, and LEVEL and I are previously declared
variables. I is first assigned a value of 0, then is used as a subscript for TABLE.
Because I is incremented in each execution of the DO WHILE block, a different
element of TABLE is compared with LEVEL each time the DO WHILE statement
is executed. When an element is found that is greater than LEVEL, the condition in
the DO WHILE statement is no longer true, the block is not repeated again, and
control passes to the next statement after the END statement. At this point, the value
of I is the subscript of the first element of TABLE that was not greater than LEVEL.

Overview

1-7

Overview

1-8

The DO CASE block, which is introduced by a DO CASE statement, uses the value
of the given expression to select a statement to be executed. In the following example,
assume that the expression TST -1 in the DO CASE statement can have any value
from 0 to 3.

DO CAS E TST 1 i
RED o i
BLUE o i
GREEN o i
GREY o i

ENDi

If the value of the expression is 0, only the first assignment statement will be executed,
and the value 0 will be assigned to RED. If the value of the expression is 1, only the
second assignment statement will be executed, and the value 0 will be assigned to
BLUE. Expression values of 2 or 3 will cause GREEN or GREY, respectively, to be
assigned the value o.

1.6 Built-In Procedures

PLJM-51 has many built-in procedures. These procedures provide such functions as
shifts and rotations, data type conversions, and test-and-set. The built-in procedures
are described in Chapter 11.

1.7 Expressions

As already noted, a PLJM-51 expression is made up of operands and operators, and
resembles a conventional algebraic expression.

Operands include numeric constants (such as 378 or 105) and variables (as well as
other operands, discussed in Chapters 4 and 5). The operators include + and - for
addition and subtraction, * and J for multiplication and division, and MOD for modulo
arithmetic.

As in an algebraic expression, elements of a PLJM-51 expression may be grouped
with parentheses.

1.8 The Program Development Process

The PLJM-51 compiler and run-time libraries are part of an integrated set of tools
that make up the total MCS-51 development solution for your microcomputer system.

The steps in the software development processes are as follows:

I. Define the problem completely.

2. Outline the proposed solution in terms of hardware plus software. Once this step
is done, you may begin designing your hardware.

3. Design the software for your system. This important step consists of several sub
steps, including breaking down the task into modules, choosing the programming
language, and selecting the algorithms to be used.

PL/M-51

PLJM-51 Overview

4. Code your programs and prepare them for translation using a text editor.

5. Translate your PL/M program code using the PL/M-51 compiler.

6. Using the text editor, correct any compile-time errors; then, recompile.

7. Link the resulting relocatable object modules with PLM51.LIB and locate your
object code using RL51 for both purposes.

8. Test the resulting program using ICE-51, EV -51 or other tools, and repeat steps
6 through 8 until the program performs correctly.

1-9

CHAPTER 2
BASICS OF A PL/M-51 PROGRAM

PLfM-51 programs are written free-form, which means it is insignificant where a
statement is placed on an input line, and blanks can be freely inserted between the
elements of the program.

2.1 PL/M-51 Character Set

The character set used in PLfM-51 is a subset of the ASCII character set, as follows:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
0123456789

along with the special characters

=·f()+ -'*,:;$-<>

and the blank or space, plus the tab, carriage-return, and line-feed characters.

The rules in this section apply to everything in a PLfM-51 program except character
string,constants, which are discussed in section 2.4, and comments, which are discussed
in section 2.5.

If a PL/M-51 program contains any character not in the set above, the compiier
treats it as an error.

Uppercase and lowercase letters are not distinguished from each other except in string
constants. For example, xyz and XYZ are interchangeable. In this manual, all
PLfM-51 code is in uppercase letters to help distinguish it from explanatory text.

Blanks are not distinguished from each other except in string constants. The compiler
treats any unbroken sequence of blanks as a single blank.

Special characters and combinations of them have particular meanings in a
PLfM-51 program, as described in the remainder of this manual.

Table 2-1 presents a glossary of special characters and combinations.

2.2 Identifiers and Reserved Words

Identifiers are used to name variables, procedures, symbolic constants, and statement
labels. Identifiers may be up to 31 characters in length. The first character must be
alphabetic, and the remainder may be either alphabetic, numeric, or the underscore
(_) or dollar sign ($).

Embedded dollar signs are totally ignored by the compiler, and may be used freely
to improve the readability of an identifier or constant (although the $ may not be the
first character). An identifer or constant containing a dollar sign is exactly equivalent
to the same identifier with the dollar sign deleted.

2-1

Basics of a PLfM-51 Program

2-2

Table 2-1. PL/M-51 Special Characters

Symbol Name Use

= equal sign Two distinct uses:
(1) assignment operator
(2) relational test operator

dot Two distinct uses:
(1) structure member qualification
(2) address operator

j slash division operator
/* beginning-of-comment delimiter
*j end-of-comment delimiter

(left paren left delimiter of lists, subscripts and some
expressions

) right paren right delimiter of lists, subscripts, and some
expressions

+ plus addition operator or unary plus operator

- minus subtraction or unary minus operator

apostrophe string delimiter

* asterisk multiplication operator, implicit dimension specifier

< less than relational test operator

> greater than relational test operator

<= less or equal relational test operator

>= greater or equal relational test operator

<> not equal relational test operator

colon label delimiter

semicolon statement delimiter

comma list-element delimiter

- underscore significant character in identifier

$ dollar non-significant character in identifier

Examples of valid identifiers are:

INPUT_COUHT
X
GAMM
LONGIDENTIFIERHUMBER3
LONGSSSIDEHTIFIERSSSNUMBERSSS3
INPUTSCOUNT
INPUTCOUHT

The two long identifiers are identical (as viewed by the compiler). The last two
examples are interchangeable, but different from the first.

Certain reserved words must not be used as identifiers because they are actually part
of the PL/M-51 language. These are listed in Appendix C.

PL/M-51 also has a set of predeclared identifiers naming built-in procedures. You
are permitted to declare these names for your own purposes, but, when you do so, the
built-in procedure with the same name becomes inaccessible. Appendix 0 lists these
identifiers.

PLfM-51

PLfM-51 Basics of a PL/M-51 Program

2.3 Tokens, Separators, and the Use of Blanks

Just as an English sentence is made up of words, so a PL/M-51 statement is made
up of tokens. Every token belongs to one of the following classes:

• Identifiers

Reserved words

• Simple delimiters (all of the special characters, except the underscore and dollar
sign, are simple delimiters)

• Compound delimiters-the following combinations of two special characters:

<> <= >= /* */

• Numeric constants (discussed in section 2.4)

• Character string constants (discussed in section 2.4)

For the most part, it is obvious where one token ends and the next one begins. For
example, in the assignment statement

EXACT=APPROX*(OFFSET-3)/SCALEj

EXACT, APPROX, OFFSET, and SCALE are identifiers, 3 is a numeric constant,
and all the other characters are simple delimiters.

Sometimes a simple or compound delimiter does not occur between two identifiers,
reserved words, or numeric constants, e.g., DECLAREABYTE. In these cases, a blank
must be placed between them as a separator, i.e., DECLARE A BYTE. (Instead of
a single blank, any unbroken sequence of blank characters may be used.)

Also, a comment (see section 2.5) may be used as a separator.

Blanks may also be inserted freely around any token, without changing the meaning
of the PL/M-51 statement. Thus, the assignment statement

EXACT • APPROX * (OFFSET - 3) / SCALEj

is equivalent to

EXACT-APPROX*(OFFSET-3)/SCALEj

2.4 Constants

A constant is a value that does not change during your program's execution. An
explanation of constants follows.

Whole Number Constants

Whole-number constants can be binary, octal, decimal, or hexadecimal. The compiler
recognizes these by a suffix of B, 0 (or Q), D, or H, respectively. Numbers without
a suffix are considered decimal. If a constant contains characters invalid in the
designated number base, it will be flagged as an error.

For example, the maximum whole-number word constant is:

1111$1111$1111$1111B - 177777Q = 65535D = OFFFFH

2-3

Basics of a PL/M-51 Program

2-4

The first character of a hexadecimal number must be a numeric digit to avoid looking
like an identifier. For example, the hexadecimal representation for 163 must be written
OA3H rather than A3H, which would be mistaken for an identifier.

Following are examples of valid whole-number constants:

12AH 2 33Q 10108 55D OBF3H 65535 7770 3EACH

Following are examples of invalid whole-number constants:

12A-hexadecimal digits used without an H suffix, hence invalid in the default
decimal interpretation.

12AD-the final D could be a suffix; however, the A is not a decimal digit. If
hexadecimal is intended, a final H is needed.

• 1102B-2 is not a valid binary digit.

2ADGH-G is not a valid hexadecimal digit.

A whole-number constant can be a BIT, BYTE or WORD value, depending on its
size and context.

Character Strings

Character strings are denoted by printable ASCII characters enclosed within
apostrophes. To include an apostrophe in a string, write it as two apostrophes; e.g.,
the string "'Q' consists of 2 characters, an apostrophe followed by a Q. Spaces are
allowed. The compiler represents character strings in memory as ASCII codes, one
7 -bit character code to each 8-bit byte, with a high-order zero bit. Strings of length
1 translate to single-byte values; strings of length 2 translate to double-byte values.
Following are examples of character strings.

I A I is equivalent to 4 1 H
I A G I is equivalent to 4 1 4 7 H

(See ASCII code table in Appendix F.)

Therefore, character strings can only be used as BYTE or WORD values because
strings longer than 2 characters would exceed the 16-bit capacity of a WORD value.
As constants, however, longer character strings are stored as a sequence of bytes and
can be used in a PL/M-51 program (see sections 3.1, 3.2 and 3.3).

The maximum length of a string constant is 254 characters. A string constant may
be used for initialization, or as part of a location reference pointing to where that
string constant is stored.

2.5 Comments

Explanatory comments may be interleaved with PL/M-51 program text to improve
readability and provide program documentation. A PL/M-51 comment is a sequence
of characters delimited on the left by the character pair /* and on the right by the
character pair * /. These delimiters instruct the compiler to ignore any text between
them, and to consider such text not part of the program proper.

A comment may contain any printable ASCII character and may also include space,
carriage-return, line-feed, and tab characters.

PL/M-51

PL/M-51 Basics of a PLfM-51 Program

A comment may not be embedded inside a character string constant because it will
become part of the string and the compiler won't recognize it. Apart from this, it
may appear anywhere that a blank character may appear-that is, anywhere except
embedded within a token. Thus, comments may be freely distributed throughout a
PL/M-51 program.

The following is a sample PL/M-51 comment:

/*This procedure copies one structure to another.*/

In this manual, comments are presented in mixed uppercase and lowercase to help
distinguish them visually from program code, which is always presented in uppercase.

2-5

CHAPTER 3
DECLARATIONS

Five types of objects can be declared to have symbolic names: variables, constants,
LITERALLY s, labels, and procedures. Exactly one declaration must be available for
each name used in a block-no more, no less. This declaration may appear at the
beginning of the block, or in an outer block. Multiple declarations of the same name
in the same block are invalid.

Variables, constants, LITERALL Ys and procedures must be declared before they
can be used in executable statements. Labels may be declared or implicitly declared
by appearing before a colon. A procedure is defined by the statements between the
PROCEDURE statement and the final END of the procedure.

In addition to the item's name, a declaration describes its type, attributes, and/or
location. These terms will be clarified in the course of this chapter.

3.1 Variable Declaration Statements

A DECLARE statement is a non-executable statement that introduces some object
or collection of objects, associates names (and sometimes values) with them and
allocates storage, if necessary. The most important use of DECLARE is for declaring
variables.

A variable may be scalar-that is, a single quantity-or an array, or a structure.

A scalar variable is a single object whose value is not necessarily known at compile
time and may change during the execution of the program. You therefore refer to it
by declaring a name to be used in the program: an identifier.

The term variable has a more general meaning: a variable may be a scalar variable,
or it may be a list of scalars referred to by a single identifier.

An array is a list of scalars all named by the same identifier, differentiated from each
other by the use of subscripts, e.g., A(0), A(I), A(l23), etc.

A structure is a list of scalars and/or arrays which all use the same main identifier
and which can be differentiated from each other by their own member-identifiers
(field names). For example, EMPLOYEES.NAME could refer to the NAME field
within the structure EMPLOYEES. Variables of this kind, known as arrays and
structures, are discussed in greater detail in Chapter 6.

Examples of the use of scalars, scalar variables, and arrays follow the introduction to
section 3.2.

3.2 Types

A scalar always has a type: BYTE, WORD, or BIT.

• A BYTE scalar is an 8-bit quantity occupying one byte of memory. The value
of a BYTE scalar is an unsigned whole number that ranges from 0 to 255.

• A WORD scalar is a 16-bit quantity occupying two contiguous bytes of memory,
with its most significant 8 bits stored in the first byte (lower address). The value
of a WORD scalar is an unsigned whole number that ranges from 0 to 65535.
For compaj:ability with other PL/M compilers, the keyword ADDRESS can be
used synonymously with WORD.

3-1

Declarations

3-2

A BIT scalar is one bit having a value of either 0 (false) or 1 (true). Bits must
reside in the bit-addressable locations of the on-chip RAM (MAIN addresses 32
through 47), or in a memory-mapped hardware register that is bit-addressable
(see Chapter 2 of the MCS-5J Family of Single Chip Microcomputer User's
Manual). Thus, bits may only have a suffix of MAIN or REGISTER (see the
discussion of suffixes which follows later in this section).

BITs have several important restrictions:

Bits cannot be subscripted; i.e., BIT arrays do not exist.

Bits cannot be BASED (Chapter 4 explains BASED variables).

Bits residing in MAIN cannot be AT. Bits mapped to hardware registers must
be AT the correct register address.

• Bits can be structure members. However, a structure that contains BIT members
may not contain non-bit members, may not be an array member, and may not be
BASED (it may be AT, if it is a special function register bit.) Note that bit
structures can be overlaid by bytes to allow access of memory locations by either
BIT or BYTE statements. For example,

DECLARE 51 STRUCTURE «BO, B1, B2, B3, B4, BS, B6, B7) BIT);
DECLARE 51_OVER BYTE AT (.51);

A maximum of 64 bits is allowed.

The BITs restrictions are not arbitrary; they stem from the MCS-Sl architecture and
therefore cannot be circumvented using ASMSI.

The concept of data types applies not only to variables but to every value processed
by a PL/M-Sl program. This includes values returned by procedures and values
calculated by processing expressions.

Arithmetic and other expressions using the different types are discussed in detail in
Chapter S.

Examples

The following statements declare scalars:

DECLARE APPROX WORDi
DECLARE (OLD, NEW) BIT
DECLARE POINT WORD, VAL12 BYTEi

The first example declares a single scalar variable of type WORD, with the identifier
(name) APPROX.

The second example declares two scalars, OLD and NEW, both of type BIT. This
kind of statement is called a "factored declaration." It is equivalent to the following
sequence:

DECLARE OLD BIT
DECLARE NEW BIT

except the factored declaration guarantees that the bits will be contiguous.

The third example declares two scalars of different types: POINT is of type WORD
and VAL 12 is of type BYTE.

PL/M-51

PL/M-51

The following statements declare arrays:

DECLARE DOMAIN (12) BYTE AUXILIARYi
DECLARE GAMMA (19) WORD;

The first statement declares the off-chip RAM array DOMAIN (AUXILIARY is
explained in the discussion of suffix later in this section), with 12 scalar elements,
each of type BYTE. These elements are distinguishable by subscripting the name
DOMAIN, using the range 0 to 11 for the subscripts. For example, the third element
of DOMAIN can be referred to as DOMAIN(2). The first element of every array
has subscript O.

The second statement declares the array GAMMA, with 19 scalar elements of type
WORD. The subscripts for this array can range from 0 to 18.

The next statement declares a structure with two scalar members:

DECLARE RECORD STRUCTURE (KEY BYTE, INFO WORD);

The two members are a BYTE scalar that can be referred to as RECORD. KEY and
a WORD scalar that can be referred to as RECORD.INFO. The word named by
RECORD.INFO is the second and third bytes of this structure.

Structures and arrays are discussed further in Chapter 6.

Results

The two results of a valid variable declaration are:

1. The name is given an address and an address space.

2. It is considered to have the attributes declared.

The two results mean all subsequent uses of the variable in this block will refer to the
same address (except for based variables, discussed in section 4.4).

The results also require all references to the variable to conform to the rules for the
current attributes, i.e., those having priority in the current block. Requiring all refer
ences to the variable to conform to the rules for the current attributes allows the
compiler to flag a large variety of errors of inconsistency, i.e., incompatibilty of
declarations with later usage (at this level of the block).

3.3 Address-Spaces and the Suffix

Figure 3-1 shows the 80S1's memory. Note the 4 memory spaces: program memory
(called CONSTANT in PL/M-Sl), internal data RAM (called MAIN or IDATA),
the special function registers (called REGISTER), and external data memory (called
AUXILIAR Y).

Figure 3-2\shows the internal data memory in more detail.

If you understand figures 3-1 and 3-2, you know enough about the MCS-Sl family
to proceed. Everything in this family is some flavor of memory; this includes I/O,
which is done using the REGISTER address-space (memory-mapped I/O). For
example, on the 80S 1 , the program fragment:

DECLARE SBUF BYTE AT(99H) REGISTER;
DECLARE X BYTE;
X=SBUF;

Declarations

3-3

Declarations

3-4

1
EXTERNAL

!
f

INTERNAL

!

64K 64K

OVERLAPPED SPACE

~r-----/bl 4095

255, I 255

0
12~ I I 128 0

-,,-
PROGRAM
MEMORY --INTERNAL

DATA RAM

-.
SPECIAL
FUNCTION
REGISTERS

INTERNAL DATA MEMORY

Figure 3-1. 8051 Memory Organization

255

128

SPECIAL
FUNCTION

INTERNAL DATA RAM REGISTERS

~

255 255 248

128 13 5 128

-~ 127

S-ADORES
ABLE
BITS IN
RAM
(128 BIT

48

127 120

S) 32 7 0 -
R7

BANK 3
24 RO -

R7
BANK 2

RS < 16 RO -REGISTE
R7

BANK 1
8 RO

R7
BANKO

0 RO

'" --...... v"'"--_/~

F8H

FOH

E8H

EOH

D8H

DOH

C8H

COH

B8H

BOH

A8H

AOH

98H

90H

88H

80H

INTERNAL SPECIAL FUNCTION
DATA RAM REGISTERS

ADDRESS-
ABLE
BITS IN
SFRs
(128 BITS)

Figure 3-2. Internal Data Addressing Modes

--EXTERNAL
DATA
MEMORY

121966-2

will read (into the variable X) a character from the serial port because SBUF (see
figures 3-2 and 3-3 of the MCS-5J Family of Single Chip Microcomputer User's
Manual) is the device-register containing serial-port data. Similarly,

DECLARE BIT_2_0F_PORT_2 BIT ATCOA2H) REGISTERj
BIT_2_0F_PORT_2 NOT BIT_2_0F_PORT_2i

will flip bit 2 of I/O port 2. (To see why the program fragment flips bit 2 of I/O
port 2, refer to figure 3-4 of the MCS-5J Family of Single Chip Microcomputers
User's Manual.)

PL/M-51

121966-1

PL/M-51

A variable in most programming languages has a name and a type (i.e., COMPLEX,
INTEGER, RECORD, ...). A PL/M-5l variable has a name, a type, and an address
space. As just seen in the last few paragraphs, getting the address-space wrong will
cause you to write an incorrect program.

Since the 8051 has more than one memory-space, an address by itself is not enough
to specify in PL/M-5l where a variable resides; you must declare the memory in
which it resides. Declaring the memory in which a variable resides is done using the
suffix part of the declaration. The suffix can be any of the following:

M A I t-I
A U X I L I A R Y
REGISTER
IDATA
COt-lSTAt-IT

- refers to the directly-addressable on-chip RAM.
- refers to the off-chip RAM.
- refers to (memory-mapped) hardware registers.
- refers to indirectly-addressable on-chip RAM.
-i.e., ROM.

If you do not specify a suffix, MAIN is assumed. If the suffix is IDATA, the variable
resides within the indirectly-addressable on-chip memory (bytes 0-127 for the 8051;
bytes 0-191 for the 8044). If REGISTER is specified, it must be preceded by an AT
attribute; the address in the AT attribute must be between 128 and 255 (inclusive)
and the variable must be of type BIT or BYTE.

The CONSTANT Suffix

The CONSTANT suffix declares variables in the CONSTANT memory-space, which
must be ROM. The content of a constant variable, as opposed to other variables, is
not altered and remains constant throughout the entire program execution.

CONSTANT data initializations can be used in declarations at any block level in the
program. The name of constant variables should never appear on the left-hand side
of an assignment statement.

The PL/M-51 user is allowed to add an initialization to the CONSTANT keyword.
You will almost always do it for non-BASED variables. Initialization is forbidden for
BASED or EXTERNAL variables. Initialization may follow the use of the AT
attribute discussed in section 4.7; but, if doing so causes multiple initializations, the
result cannot be predicted.

The general form of an initialization is:

C 0 t-I 5 T A t-I T (value-list>

where

value-list is a sequence of values separated by commas.

Values, taken one at a time from the value list, are used to initialize the individual
scalars being declared. The initialization is performed in the same manner as an
assignment. Initial values for members of an array or structure must be specified
explicitly.

Each value may be a I-byte or 2-byte string (e.g., 'A', 'NO') or a restricted expres
sion, a-sexpTained inffie nexT panrgraph. tBYTEarrays can accommoda-telonger
strings because each element can represent one character.)

A restricted expression is one of the following three possibilities:

• A location reference formed with the dot operator (.), which must refer to a
variable that has already been declared. (Location references are discussed in
Chapter 4).

Declarations

3-5

Declarations

3-6

A constant expression containing no operators except + or -. A constant
expression only has whole number constants as operands, e.g., 2048 - 256 + 5, as
explained in Chapter 5. A constant expression above 255 is illegal for initializing
a BYTE.

• A location reference plus or minus a constant expression.

The following declaration

DECLARE THRESHOLD BYTE CONSTANTC4a)i

declares the BYTE scalar THRESHOLD in ROM, (i.e, its value may not be altered)
and initializes it to a value of 48.

The following declaration

PL/M-51

DECLARE CCOUNTER J LIMITJ INCR) WORD CONSTANTC 1 024 J 0 J -2) i

declares the WORD scalars COUNTER, LIMIT, and INCR, indicates they are in
ROM, and initializes COUNTER to a value of 1024, LIMIT to a value of 0, and
INCR to a value of - 2 (i.e., 65534).

The following declaration

DECLARE EVEN (5) BYTE CONSTANTC2 J 4 J 6 Ja J 10)i

declares the BYTE ROM array EVEN, and initializes its five scalar elements to 2,
4,6,8, and 10,

The following declaration

DECLARE COORD STRUCTURE CHIGH$BOUND WORD J
VALUE (3) BYTE J
LOW$BOUND BYTE) CONSTANTC302 J 3 J 6 J 12 J O)i

declares the structure COORD, causes it to reside in ROM, and initializes it as follows:

COORD.HIGH$BOUND to 302
COORD.VALUECO) to 3
COORD.VALUE(1) to 6
COORD.VALUE(2) to 12
COORD.LOW$BOUND to O.

If a string appears in the value list, it is taken apart from left to right and the pieces
are stored in the scalars being initialized. One character is stored in each BYTE
scalar and two in each WORD scalar. For example,

DECLARE GREETING (5) BYTE AT (1600) CONSTANTC'HELLO')i

causes GREETING(O) to be initialized with the ASCII code for H, GREETING(1)
with the ASCII code for E, and so forth.

The examples shown thus far have value lists that match up one-for-one with the
scalars being declared. It is permissible for the value list to have fewer elements than
are being declared. Thus,

DECLARE DATUM (100) BYTE CONSTANTC3 J 5 J 7 Ja)i

is permissible. The first four elements of the array DATUM are initialized with the
four elements in the value list, and the remainder of the array is left uninitialized.
The value list, however, may not have more elements than are being declared.

PL/M-51 Declarations

The use of location' reference is demonstrated in the following example:

DECLARE GONOGO$MSG(S) BYTE CONSTANT ('NOGO',O),
GONOGOMSGPTR(2) WORD CONSTANT (.GOSNOGOMSG,

. GONOGO$MSG+2) j

The first CONSTANT contains a message; the second CONSTANT consists of two
constant pointers-the first of which points to the entire message (NOGO), and the
second to its suffix only (GO).

The Implicit Dimension Specifier

When initializing an array, you want the array to have the same number of elements
as the value list. This can be done conveniently by substituting the implicit dimension
specifier for an ordinary dimension specifier (a parenthesized constant). The implicit
dimension specifier has the form:

(*)

For example, the following statement:

DECLARE MSG(*) BYTE CONSTANT('WELCOME! I)j

declares a BYTE array in ROM, MSG, with enough elements to contain the string
'WELCOME!' (namely, 8), and initializes the array elements with the characters of
the string.

The implicit dimension specifier may only be used for arrays having a CONSTANT
suffix and an initialization.

The implicit dimension specifier may be used with any value list-it is not restricted
to strings.

The REGISTER Suffix

All interaction between the 8051 CPU and the outside world is done via the hardware
register address space, which contains pseudo-variables like SBUF (the serial-port
buffer), PI % port 1) and SP (the stack pointer). If the 8051, for instance, writes
a byte into SBUF, the byte will be output on the serial-channel interface.

This rule holds also in PL/M-51. To access a hardware register, declare it as a
REGISTER (with the correct address in the AT part). Then, for example, you can
write P2=P3 if you want to copy port 3 to port 2. Look up the user manual for the
relevant chip if you want to work out each REGISTER variable's actions. On the
8051, for example, PO (I/O port 0) is located at 80H. A declaration for this register
will look like the following:

DECLARE PO BYTE AT (SOH) REGISTERi

To help you avoid incorrect register declarations, Intel provides file REG51.DCL,
with ready-made declarations for all registers on the 8051 chip.

NOTE
The compiler uses the ACC, B, PSW, DPL and DPH registers to accomplish
various computations and to hold temporary results. Use of these registers in
the user program, although permitted, may cause unpredictable results (e.g.,
PSW = OFFH is dangerous).

3-7

Declarations

3-8

The IDA T A Suffix

The MCS-51 architecture permits up to 256 bytes of on-chip RAM. Bytes 0-127
are directly-addressable and indirectly-addressable. Bytes 128 - 255 (unimplemented
in the 8051) are indirectly-addressable only; direct-address accesses to these addresses
gets you into REGISTER space.

To use bytes 128-255, you have to use the IDATA suffix in your declarations.
Variables with this suffix are guaranteed to be accessed by indirect addressing only,
and may therefore reside anywhere in on-chip RAM. Such indirect access is, however,
usually less efficient than direct addressing.

The MAIN Suffix

If you do not specify a suffix, a suffix of MAIN is assumed, i.e., directly-addressable
on-chip RAM. Variables with this suffix will reside in addresses 0-127 of on-chip
8RAM. This is the fastest memory available, but should be used sparingly.

Omitting an explicit suffix can lead to trouble. Examples of this can be found in
Chapter 4, section 4.5, in "Cautions on Using Based Variables."

The AUXILIARY Suffix

It is possible to add up to 65536 bytes of external memory to the 8051. Added memory
is a separate address space. The suffix needed to declare a variable in this memory
space is AUXILIARY. For example,

DECLARE X WORD PUBLIC AT (2000H) AUXIlIARYj

declares X as a WORD variable at location 2000H in added memory. References to
variables with the AUXILIARY suffix are slower than MAIN or IDATA variables.

3.4 Compilation Constants (Text Substitution):
The Use of LITERALLY

If your program is large enough to have many declarations, you might want to declare
a compilation constant to save time at the keyboard:

DECLARE Del lITERAllY 'DEClARE'j

Thereafter, during compilation, every time DCL appears alone (not as part of a word),
the full string DECLARE will be substituted by the compiler. Subsequent declara
tions can thus be written:

DCl SWITCH BITj
DCl AREA BYTEj
DCl SIZE WORDj

A declaration using the reserved word LITERALLY defines a parameterless macro
for expansion at compile-time. You declare an identifier to represent a character string
that will then be substituted for each occurrence of the identifier in subsequent text.
This expansion will not take place in strings or constants. The form of the declaration
is:

DEC l ARE identifier lIT ERA l l Y 'string' j

PL/M-51

PL/M-51 Declarations

where

identifier

string

is any valid PL/M-51 identifier.

is a sequence of arbitrary characters from the PL/M-51 set
that do not exceed 254 in length.

The following example illustrates another use of LITERALLY:

DECLARE TRUE LITERALLY '1', FALSE LITERALLY 'O'j

DECLARE ROUGH BITj
DECLARE (X,Y,DELTA, FINAL) WORDj

ROUGH = TRUEj
DO WHILE ROUGHj

X = SMOOTH (X,Y,DELTA)j
/*SMOOTH is a procedure declared elsewhere.*/
IF (X-FINAL) < DELTA THEN ROUGH = FALSEj

This LITERALLY declaration example defines the boolean values TRUE and
FALSE in a manner consistent with the way PL/M-51 handles relational operators
(see section 5.4). This kind of literal substitution for fixed values often makes a
program more readable.

Another LITERALLY declaration use: the declaration of quantities that are fixed
for one compilation but may change from one compilation to the next. Consider the
following example:

DECLARE BUFFERSSIZE LITERALLY '32' j
DECLARE PRINTSBUFFER(BUFFERSSIZE) WORDj

PRINTSBUFFER(BUFFERSSIZE - 10) = 'G'j

A future change to BUFFER$SIZE can be made in one place, at the first declara
tion, and the compiler will propagate it throughout the program during compilation.
Thus, the programmer is saved the tedious and error-prone process of searching the
program for the occurrences of "32" that are buffer size references and not some
other reference.

3.5 Declarations of Names for Labels

A label marks the location of an instruction as opposed to a data item. Labels are
permitted only on an executable statement, not on declarations.

A name may be declared a label either explicitly or implicitly. The explicit label
declaration is used mainly to allow module-to-module references, which are discussed
in detail in Chapter 9. The three possible forms for explicit label declarations look
like this:

DECLARE PART3 LABEL;
DECLARE START1 LABEL PUBLICi /*for intermodule reference*/
DECLARE PHASE2 LABEL EXTERNAL; /*for intermodule reference*/

The rules for the PUBLIC and EXTERNAL label declarations are discussed in
Chapter 9.

3-9

Declarations

3-10

The more common implicit label declaration is simpler than the explicit label decla
ration: the name is placed at the very beginning of the executable statement to which
it is supposed to point:

START2: 1 27 i

PL/M-51

L 1: L 2 :
ALPHA =
L 3: L 4 : 1* four labels on an empty statement *1

This label declaration statement defines the label STAR T2 as pointing to the location
of the PL/M-51 instruction shown. If this block has no explicit declaration of
STAR T2, i.e., no statement like:

DECLARE START2 LABELi

then the compiler considers the definition in the label declaration an implicit decla
ration and a definition-as if the declaration had occurred at the start of the inner
most simple DO or procedure block in which the label is contained. (If an explicit
declaration is present, the actual placement of the label remains simply a definition.)

Labels are used to indicate significant instructions or the starting point of instruction
sequences. They can be useful reference points for understanding the parts of a
program; they are also useful as targets for the transfer of control during execution
(as discussed under GOTO in Chapter 7).

Results

The results of a valid label declaration are:

I. The declared name can be used to point to an executable instruction.

2. The use of a declared name as a variable in the block in which it is declared is
disallowed.

3. If the label defined in this block appears on an executable statement, the address
of that statement is assigned as the value of the label.

3.6 Combining DECLARE Statements

A separate DECLARE statement is not required for each and every declaration.
Instead of writing the two DECLARE statements:

DECLARE CHR BYTE COMSTANT ('A')i
DECLARE COUMT WORDi

you may write both declarations in a single DECLARE statement, as follows:

DECLARE CHR BYTE COMSTANT ('A'), COUMT WORDi

This DECLARE statement contains two declaration elements, separated by the
comma. Every DECLARE statement contains at least one declaration element. If it
contains more than one, they are separated by commas.

Most of the examples shown up to this point have only one declaration element in
each DECLARE statement. A declaration element is the text for declaring one
identifier (or one factored list of identifiers). In the example just cited, the text CHR
BYTE CONSTANT(,A') is one declaration element, and the text COUNT WORD
is another.

PL/M-51

Another way of combining declaration elements is called a factored declaration. For
example,

DECLARE A BYTE,
DECLARE C WORD,
DECLARE E BYTE,

can be combined as:

B BYTEi
D WORDi
F BYTEi

DECLARE (A,B) BYTE,(C,D) WORD, (E,F) BYTEi

In each factored declaration, the allocated locations will be contiguous.

The declaration elements appearing in a single DECLARE statement are completely
independent of each other, as if they were declared in separate DECLARE
statements.

3. 7 Declarations for Procedures

As already shown, the declaration of a procedure begins by giving its name, with a
statement of the form:

name: PRO C E D U R E

followed optionally by parameters, type, and/or attributes. The definition of the
procedure then follows, i.e., the set of statements declaring items used in the proce
dure (including any parameters) and the executable statements of the procedure itself.
The definition ends with an END statement, optionally including the procedure name
from the declaration.

The complete declaration of a procedure includes all of the statements from the
PROCEDURE statements through the END statement. This whole definition/
declaration must appear before the procedure name is used in an executable state
ment, just as variable and constant names must be declared before their use.

The only exceptions occur when the full definition appears in another module where
it is declared PUBLIC. If a separate module intends to make use of that public
definition, the using module is required to:

1. Declare the procedure as having the attribute EXTERNAL (so RL51 will search
for it).

2. Declare each formal parameter the procedure uses, thereby allowing the
compiler to verify correct usage when the current module calls the procedure.

3. End the local declaration with an END statement, as follows:

SUMMER: PROCEDURE (A,B) EXTERNAL;
DECLARE A WORD, B BYTE;

END SUMMERi

The full details of intermodule referencing are in Chapter 9. The discussion of
procedure definition and usage is in Chapter 10.

Declarations

3-11

CHAPTER 4
DATA TYPES AND BASED VARIABLES

4. 1 BYTE and WORD Arithmetic

The value of a BYTE variable is an 8-bit binary number ranging from 0 to 255 and
occupying one byte of memory. The value of a WORD variable is a 16-bit binary
number ranging from 0 to 65535 and occupying two contiguous bytes of memory.
Values of WORD and BYTE variables are treated as unsigned binary integers.

Unsigned integer arithmetic is used in performing any arithmetic operation upon
WORD and BYTE variables. All of the PL/M-51 operators may be used with them
(see Chapter 5). Arithmetic and logical operations on such variables yield a result of
type BYTE or WORD, depending on the operation and the operands. Relational
operations always yield a true or false result of type BIT.

With unsigned arithmetic, if a large value is subtracted from a smaller one, the result
is the two's complement of the absolute difference between the two values. For
example, if a BYTE value of 1 (00000001 binary) is subtracted from a BYTE value
of 0 (00000000 binary), the result is a BYTE value of 255 (11111111 binary).

Also, the result of a division operation is always truncated (rounded down) to a whole
number. For example, if a WORD value of 7 (0000000000000111 binary) is divided
by a BYTE value of 2 (00000010 binary), the result is a word value of 3
(0000000000000011 binary).

4.2 The Dot (.) Operator

A location reference is formed by using the "." operator. A location reference has a
value of type WORD-that is, a location address.

The basic form of a location reference is:

• variable-ref

where

variable-ref is the name of some non-BIT variable.

The value of this location reference is the actual location at run time of the variable.

variable-ref may also refer to an unqualified array or structure name (e.g.\\ARRA Y 1
instead of ARRA Yl(O)), in which case the pointer value is the location of the first
element or member of the array or structure.

For example, suppose you have the following declarations:

DECLARE RESULT WORD;
DECLARE XHUM(10) BYTE;
DECLARE RECORD STRUCTURE (KEY BYTE,

IHFO(2) BYTE,
HEAD WORD);

DECLARE LIST (4) STRUCTURE (KEY BYTE,
IHFO (2) BYTE,
HEAD WORD);

4-1

Data Types and Based Variables

4-2

.RESULT is the location of the WORD scalar RESULT, while .XNUM(5) is the
location of the 6th element of the array XNUM .. XNUM is the location of the begin
ning of the array, i.e., the location of the first element (XNUM(O)).

The RECORD structure declares a byte called KEY followed by 2 bytes called
INFO(O) and INFO(1). After these comes the WORD variable named HEAD. Since
KEY INFO(O), INFO(I), and HEAD are all declared part of the RECORD struc
ture, their contents must be referred to as RECORD. KEY,
RECORD.INFO(0),RECORD.INFO(2), and RECORD. HEAD.

The addresses KEY INFO(O), INFO(1), and HEAD can be referred to using the
dot operator. .RECORD.HEAD is the location of the WORD scalar
RECORD.HEAD, while .RECORD is the location of the structure, which is the
same as that of the BYTE scalar RECORD. KEY .. RECORD.INFO is the location
of the first element of the 2-BYTE array RECORD. INFO, whereas
.RECORD.INFO(1) is the location of the 2nd element of the same array.

LIST is an array of structures. The location reference .LIST(2).KEY is the location
of the scalar LIST(2).KEY. Note that .LIST.KEY is illegal because it does not
identify a unique location, i.e., the KEY of which LIST.

The location reference .LIST(0).INFO(1) is the location of the scalar
LIST(O).INFO(I). Also, .LIST(O).INFO is the location of the first element of the
same array, i.e., the location of the array itself.

A special case exists when the identifier used as variable-ref is the name of a proce
dure. This use of a procedure name will not activate the procedure, and hence no
actual parameters may be specified. The value of the location reference in this case
is the location of the entry point of the procedure.

4.3 Storing Strings and Constants via
Location Reference

Another form of location reference is:

, (constant list)

where

constant list is a sequence of one or more byte constants or strings
separated by commas, and enclosed in parentheses.

When this type of location reference is made, space is allocated for the contents, the
constants are stored in CO NST ANT memory-space (contiguously, in the order given
by the list), and the value of the location reference is the location of the first constant.

Strings may be included in the list. For example, if the operand

,('NEXT VALUE')

appears in an expression, it causes the string 'NEXT VALUE' to be stored in memory
(one character per byte, thus occupying 10 contiguous bytes of storage). The value
of the operand is the location of the first of these bytes-in other words, a pointer to
the string.

The following is an example of a string stored via a location reference.

PL/M-51

PLfM-51 Data Types and Based Variables

4.4 Based Variables

Sometimes the address of a variable is not known until the program is actually run.
For instance, if you write a procedure to swap two bytes, and want to call it from
various places in your code, the addresses of the two bytes are only known after
the call.

To permit this type of manipulation, PL/M-51 uses based variables. A based varia
ble is one that is pointed to by another variable, called its base. This means that the
base contains the address of the desired (based) variable.

A based variable is not allocated storage by the compiler. At different times during
the program run it may actually refer to different places in memory because its base
may be changed by the program.

A based variable is declared by first declaring its base, which must be of type WORD
or BYTE, and then declaring the based variable itself, which must not be of
type BIT. Following is an example of how to declare a based variable.

DECLARE ITEMSPTR WORDj
DECLARE ITEM BASED ITEMSPTR BYTE MAINi

Given these declarations, a reference to ITEM is, in effect, a reference to whatever
BYTE value is pointed to by the current value of ITEM$PTR. This means that the
sequence

ITEMSPTR = 34Hi
ITEM = 77Hi

will load the BYTE value 77 (hex) into the MAIN memory location 34 (hex).

A variable is made BASED by inserting in its declaration the word BASED and the
identifier of the base (which must already have been declared).

The following restrictions apply to bases:

• The base must be of type BYTE or WORD. BYTE is valid only if the based
variable is MAIN or IDATA.

• The base may not be subscripted-that is, it may not be an array element.

• The base may not itself be a based variable.

The word BASED must immediately follow the name of the based variable in its
declaration, as in the following examples:

DECLARE (AGESPTR, INCOMESPTR, RATINGSPTR, CATEGORYSPTR) WORDi
DECLARE AGE BASED AGESPTR BYTE MAINi
DECLARE (INCOME BASED INCOMESPTR, RATING BASED RATINGSPTR) WORD MAlHi
DECLARE (CATEGORY BASED CATEGORYSPTR) (100) WORD CONSTANTi

In the first DECLARE statement, the WORD variables AGE$PTR, INCOME$PTR,
RATING$PTR, and CATEGORY$PTR are declared. They are used as bases in the
last three DECLARE statements.

In the second DECLARE statement, a BYTE variable called AGE is declared. The
declaration implies that whenever AGE is referenced by the running program, its
value will be found at the on-chip RAM location given by the value of the WORD
variable AGE$PTR.

4-3

Data Types and Based Variables

4-4

The third DECLARE statement declares two based variables, both of type WORD,
and both in MAIN (on-chip RAM) memory.

The fourth DECLARE statement defines a IOO-element WORD ROM array called
CATEGORY, based at CATEGORY$PTR. This means that when any element of
CATEGORY is referenced at run time, the value of CATEGORY$PTR at that same
time is the location of the array CA TEGOR Y in ROM, i.e., its first element.

The other elements follow contiguously. The parentheses around the tokens
CATEGORY BASED CATEGORY$PTR are optional. They help make the state
ment more readable, but may be omitted.

4.5 Location References and Based Variables

An important use of location references is to supply values for bases. Thus, the dot
operator, together with the based variable concept, gives PL/M-51 a very powerful
facility for manipulating pointers.

For example, suppose three different WORD variables are in off-chip RAM:
NORTH$ERROR, EAST$ERROR, and HEIGHT$ERROR. You want to be able
to refer to them at different times by means of the single identifier ERROR. This
can be done as follows:

DECLARE (HORTH$ERROR, EASTSERROR, HEIGHT$ERROR) WORD AUXILIARYj
DECLARE ERROR$PTR WORDj
DECLARE ERROR BASED ERRORSPTR WORD AUXILIARYj

ERROR$PTR = .HORTHSERRORj

At this point, the value of ERROR$PTR is the location of NORTH$ERROR. A
reference to ERROR will be, in effect, a reference to NORTH$ERROR. Later in
the program, we can write:

ERRORSPTR = .HEIGHTSERRORj

Now, a reference to ERROR will be, in effect, a reference to HEIGHT$ERROR. In
the same way, we can cause the value of the pointer to be the location of
EAST$ERROR, and a reference to ERROR will be a reference to EAST$ERROR.

This technique is useful for manipulating complicated data structures and for passing
locations to procedures as parameters. Examples of manipulating complicated data
structures are given in Chapter 10. Some care must be used though; see the cautions
that follow.

Cautions on Using Based Variables

Here's a quick way to get no end of bugs into your program:

DECLARE X BYTE AUXILIARY, Y(*) BYTE CONSTAtiTC'FOO')j
DECLARE POINTER WORDj
DECLARE Z BASED POINTER BYTEj
POI ti T E R = . X j

PL/M-51

PL/M-51 Data Types and Based Variables

1* you might think Z is now another name for Xj but
no: Z is a MAIH variable, whose address in on
chip RAM is the same as X's address in off-chip
RAM. This is about as much use as getting
someone's mail who lives in the same address as
yours, but in a different town *1

POINTER = .Vi
/* again, Z has no reason to equal 'Fj' it is an on

chip RAM variable, located at the same address in
RAM that V has in ROM. */

You might think that this is enough of a roundabout construction to be quite rare;
however, because this is the way PL/M-51 procedures get many of their parameters,
it can happen fairly often. To help prevent such errors, the PL/M-51 compiler tells
you, in the compilation summary, how many BASED variables lack an explicit suffix
(and thus reside in on-chip RAM whether or not this is what you wanted). If you
want, you can get this count down to zero by specifying MAIN in each BASED
declaration in which you want MAIN; the message (e.g., "77 DEFAULTED BASED
V ARIABLES") will then disappear.

Here is another example of the same type of error:

MOVE: PROCEDURE(COUNT,ADDRESS_OF_SOURCE,ADDRESS_OF_DESTINATION) PUBLIC;
DECLARECCOUNT,ADDRESS_OF_SoURCE,ADDRESS_OF_DESTINATION) WORD;
DECLARE SOURCE BASED ADDRESS_OF_SOURCE BYTE; /* defaults to RAM */

DECLARE DESTINATION BASED ADDRESS_OF_DESTINATION BYTE; /* defaults

DECLARE I WORD;
DO 1 .. 1 TO COUNT;

DESTINATION-SOURCE;
ADDRESS_oF_SOURCE = ADDRESS_OF_SOURCE + 1;
ADDRESS_OF_DESTINATION = ADDRESS_OF_DESTINATION + 1;

END;
END MOVE;

DECLARE YC*) BYTE CONSTANTC'FOO')j
DECLARE Z(10) BYTEj
CALL MDVECSIZECY), ,Y , .Z)j

CALL MOVE will copy whatever three bytes are in RAM at the Y address to Z;
CALL MOVE will not copy the string 'FOO' to Z. CALL MOVE does this because
MOVE dialed the correct number but used the MAIN area-code rather than the
correct area-code of CONSTANT.

4.6 Contiguity of Storage

PL/M-51 only guarantees that variables will be stored in contiguous memory locations
in certain situations:

The elements of an array are stored contiguously, with the Oth element in the
lowest location and the last element in the highest location. (No storage is
allocated for a based array, but the elements are considered to be contiguous in
memory.)

• The members of a structure are stored contiguously, in the order in which they
are specified. (No storage is allocated for a based structure, but the members are
considered to be contiguous in memory.)

to RAM */

4-5

Data Types and Based Variables

4-6

N on-based variables declared in a factored declaration; that is, variables within
a parenthesized list are stored contiguously, in the order specified. (If a based
variable occurs in a parenthesized list, it is ignored in allocating storage. The
same is true for formal procedure parameters.)

4.7 The AT Attribute

The AT attribute has the form:

A T (location)

where

location must be a restricted expression, that is, either a location
reference formed with the dot operator, or a single constant
expression in the range 0 to 65535, or a location reference
plus or minus a constant expression.

If it includes a location reference, it must refer to a non-based variable that has
already been declared. The current variable and the referred one must reside in the
same address space. The only exception is that an address of structures of bits may
be used to locate the MAIN variable (this is the way to make equivalence between
bytes and bits). If a subscript expression is present, it must be a constant expression
containing no operators except + and -.

If the location is a whole-number constant, it represents an absolute storage location.
The value of the whole-number must not exceed the last address valid in the address
space in which the variable is to reside.

The following are examples of valid AT attributes:

AT (4096)
AT (.A - 7 + 5 - 13)
AT (.BUFFER)
AT (.BUFFER+28)
AT (.NAMES(17»

The effect of an AT attribute is to cause the address of a variable to be the location
specified within the parenthesis. The first scalar in the declaration will refer to the
location. Other scalars in the same declaration will, in sequence, refer to successive
locations thereafter.

For example, the declarations

DECLARE BUFFER (3) BYTEj
DECLARE (CHARtA, CHARtB, CHARSC) BYTE AT (.BUFFER)j

cause the BYTE variable CHAR$A to be at the location of the array BUFFER. The
variables CHAR$B and CHAR$C are located in the next two bytes after CHAR$A.
The declarations

DECLARE DATAtBUFFER(30) BYTEj

DECLARE T (5) STRUCTURE (X(2) BYTE,
Y(2) BYTE,
Z(2) BYTE) AT (.DATASBUFFER)j

PL/M-51

PL/M-51 Data Types and Based Variables

set up structure references to 30 bytes. They are organized such that each of the five
members of T refers to 6 bytes, the first two using the name X, the second two Y,
the last two Z.

The declaration just given, using the AT attribute, causes the beginning of the
structure T-namely the scalar T(O).X(O)-to be located at the same location as a
previously declared variable array called DAT A$BUFFER. The other scalars making
up the structure will follow this location in logical order: T(O).X(1), T(O).Y(O), and
so on up to T(5).Z(I), the last scalar, which is located in the 29th byte after the
location of DA T A$BUFFER.

Notice that since no memory locations are allocated for a variable that is declared
AT another variable, care must be taken when declaring such a variable. If, for
example, DA T A$BUFFER in the example just given is 10 bytes long, and T remains
as is, then the 20 last bytes of T overlap some other data variabes. Since the value of
those bytes is usually unpredictable, changing those bytes may be dangerous.

The following rules apply to the AT attribute:

The AT attribute cannot be used with based variables.

• It can be used with the PUBLIC attribute, in which case it must immediately
follow the word PUBLIC. However, the location in this case may not be a location
reference to a variable that is EXTERNAL.

It cannot be used with the EXTERNAL attribute.

It is invalid for non-REGISTER BITs.

A T must appear before any declaration suffix.

The AT attribute can be used to make variables equivalent, providing more than one
way of referring to the same information. For example,

DECLARE DATUM WORDi
DECLARE ITEM BYTE AT (.DATUM)i

causes ITEM to be declared a BYTE variable at the same location in which DATUM
resides (i.e., where the high-order byte of DATUM is found). The following is another
example:

DECLARE VECTOR (6) BYTEi
DECLARE SHORTSVECTOR STRUCTURE (FIRST (3) BYTE,

SECOND (3) BYTE)
AT (VECTOR)i

Here, you first declare a six-element BYTE array, VECTOR. Then, you declare a
structure of two three-BYTE arrays, SHOR T$VECTOR.FIRST and
SHOR T$VECTOR.SECOND. The first scalar of this structure
SHORT$VECTOR.FIRST(O)-is located at the same location as the first element
of the array VECTOR.

Thus, we have two different ways of referring to the same six bytes. For example, the
fifth byte in the group can be referenced as either VECTOR(4) or
SHORT$VECTOR.SECOND(1).

Equivalent variables can also be successive. For example,

DECLARE (A, B) WORD PUBLICi
DECLARE (C , D, E, F) BYTE PUBLIC AT (.A)i

Here, C and D are the high and low order bytes of A. E and F are the high and low
order bytes of B.

4-7

CHAPTER 5
EXPRESSIONS AND ASSIGNMENTS

A PL/M-51 expression consists of operands (values) combined by the various arith
metic, logical, and relational operators. Following are examples of combined operands:

A + B
A + C - C
A*B + C/D
A*(B + C) - (D - E)/F
A XOR B

where

+, -, *, and I are arithmetic operators for addition, subtraction, multi
plication, and division.

A, B, C, D, E, and F represent operands.

() group operands and operators, as in ordinary algebra.

This chapter presents a complete discussion of the rules governing PL 1M -51 expres
sions. Although these rules may appear complex, most of the expressions used in
actual programs are simple and easy to understand. In particular, when the operands
of arithmetic and relational operators are all of the same type, the resulting
expression is easy to understand.

5. 1 Operands

Operands are the building blocks of expressions. An operand is something with a
value at run time which can be operated upon by an operator. Thus, in the examples
just given, A, B, C, etc., might be the identifiers of scalar variables that have values
at run time.

Numeric constants and variables may appear as operands in expressions. The follow
ing sections describe all of the types of operands permitted.

Variable References

A variable operand must refer to a single scalar value. For example, in the declara
tion:

DECLARE A(S) BYTE, B WORD;

B is a valid operand, and so is any scalar element of A, such as A(2). However, A is
NOT a valid operand, as it is not a scalar. When the expression is evaluated, the
reference to the scalar variable is replaced by the value of that scalar.

Constants

Any numeric constant may be used as an operand in an expression. Its type must be
appropriate, as discussed in the following paragraphs.

A whole-number constant is treated as a BYTE value if it is equal to or less than
255; as a WORD value if it is greater than 255 and equal to or less than 65,535.

5-1

Expressions and Assignments

5-2

A string constant containing two characters or less may also be used as an operand.
If a string constant has only one character, it is treated as a BYTE constant whose
value is the eight-bit ASCII code for the character. If a string constant is a two
character string, it is treated as a WORD constant whose value is formed by string
ing together the ASCII codes for the two characters, with the code for the first
character forming the most significant eight bits of the sixteen-bit number.

Strings of more than two characters (called string constants) are illegal as operands
in expressions.

Function and Location References

A function reference is the name of a typed procedure that has previously been
declared, along with any actual parameters required by the procedure declaration.
The value of a function reference is the value returned by the procedure.

For example, consider the built-in function PROPAGATE, which converts bit values
to bytes:

= J + PROPAGATECMAGIC_BIT)j

MAGIC_BIT will be converted to a byte (0 or OFFH) and then added to the value
of J before being stored in I. If MAGIC_BIT is 1, the result is the same as if you
had written:

= J + OFFHj

For a complete discussion of procedures and function references, see Chapter 10.

Location references, which act as WORD operands, have already been described in
Chapter 4.

Subexpressions

A subexpression is simply an expression enclosed in parentheses. A sUbexpression
may be used as an operand in an expression. That is, parentheses may be used to
group portions of an expression together, just as in ordinary algebraic notation.

Compound Operands

All the operand types described above are primary operands. An operand may also
be a value calculated by evaluating some portion of the total expression. For example,
in the expression:

A + B * C

(where A, B, and C are BYTE variable references), the operands of the * operator
are Band C. The operands of the + operator are A and the compound operand
B * C-or more precisely, the value obtained by evaluating B * C. Notice that this
expression is evaluated as if it had been written:

A +CB * C)

Section 5.6 discusses analyzing an expression to determine which operands belong to
which operators, and which groups of operators and operands form compound
operands.

PLfM-51

PL/M-51 Expressions and Assignments

5.2 Operand and Expression Types

Every operand must be of one of these types: BIT, BYTE or WORD. In general,
BYTEs and WORDs contain numerical values, and BITs contain boolean values, i.e.,
TRUE and FALSE. However, in PL/M-51, boolean values are not represented by
the words TRUE and FALSE, but by the BIT values 1 and o. PL/M-51 provides
automatic conversion between BYTEs and WORDs, but NO automatic conversion
between boolean and numerical values. For example,

has no obvious interpretation. Therefore, the compiler regards this as an error. The
goal is to cause compile-time errors that take minutes to resolve, rather than run
time errors that can be very dangerous. If you want to mix boolean values and numeric
values in an expression, you must explicitly ask for conversion.

Numeric values can be converted to BIT values by using the built-in function
BOOLEAN, which returns the low order bit of the number as its BIT value. BIT
values can be made numeric by using EXPAND and PROPAGATE. Both convert 0
(FALSE) to the number o. EXPAND converts 1 (TRUE) to the number 1, and
PROPAGATE converts 1 to the number OFFH (255).

As already mentioned, every operand-including compound operands and sub
expressions-has a type. Even the complete expression has a type that must fit its
usage. In the example following the first paragraph of this section, a numeric expres
sion is being assigned to a BIT variable-which is illegal. The type of the expression
depends on the type of its operands and the operators used. The details follow, but it
is usually sufficient to inspect the expression.

For example, assume that A, B, C and D are BYTEs, and BIT_l is a BIT. The
expression A > B clearly returns a boolean value-either TRUE or FALSE. There
fore, the statement:

makes sense, and is a legal PL/M-51 statement (BIT_l becomes TRUE if either
A> B or C> D, or else BIT_l becomes FALSE). However, the statement:

A • A>B + C>Oj

makes no sense, and is illegal. Following are a few examples of legal constructs:

IF A > B THEM
IF BIT_1 THEM
IF BOOLEANCA) THEM /*tests the low-order bit of A*/

Following are examples of illegal constructs:

IF A THEN ••• /*illegal, as A is
IF A> BIT_1 THEN ••• /*illegal:

numeric,
compares

not boolean*/
a BIT to a BYTE*/

Automatic boolean/numeric conversion occurs in only one special case: with constant
expressions, i.e., expressions whose operands are all numeric constants. For example,

x • 1 j

5-3

Expressions and Assignments

5-4

if X is a BYTE, it is assigned the number 1. If it is a BIT, it gets the BIT value 1
(i.e., TRUE). Thus, the constant 1 can be either a BIT or numeric, depending on the
context. This also applies to other constants (e.g., BIT_I = 3 is legal), and to constant
expressions (e.g., 3 + 5 -7). See section 5.8 for further details.

5.3 Arithmetic Operators

PL/M-51 has five principal arithmetic operators:

+ - f / MOD

(two other arithmetic operators-PLUS and MINUS-are described in Chapter 12).
As in ordinary algebra, these operators are used to combine two operands. Each
operand may have a BYTE or WORD type.

The +, -, *, and / Operators

The +, -, *, and 1 operators perform addition, subtraction, multiplication, and
division on operands of any type except BIT. The following rules govern these opera
tions:

I. If both operands are of the same type, the result is of the same type as the
operands, with only one exception: if both operands are of type BYTE, the * and
1 operations produce results of type WORD.

2. Only one combination of mixed operand types is allowed. A BYTE operand can
be combined with a WORD operand. The BYTE operand is extended by 8 high
order zero bits to produce a WORD value. The operation is then performed on
two operands of type WORD.

3. If one operand is a whole-number constant and the other is a WORD or BYTE
operand, the whole-number constant is treated as a BYTE value if it is equal to
or less than 255; as a WORD value if it is greater than 255. The operation is
then performed under rule 1 or rule 2. If the whole-number constant exceeds
65535, the operation is invalid.

4. If both operands are whole-number constants, the operation depends on the
context in which it occurs; see section 5.8 for details.

The result of division by 0 is undefined.

A unary - operator, also defined in PL/M-51, takes a single operand-to which it
is prefixed. That is, a minus sign that has no operand to the left of it is regarded as a
unary minus.

As in ordinary algebra, a unary + operator has no effect, and + A is exactly equiv
alent to A.

The MOD Operator

MOD performs exactly the same as I, except that the result is not the quotient, but
the remainder left after integer division.

For example, if A and B were WORD variables with values of 35 and 16, respec
tively, A MOD B would yield a WORD result of 3.

Unlike the 1 operator, the MOD operator must be separated from surrounding letters
and digits by blanks or other separators.

PL/M-51

PLfM-Sl Expressions and Assignments

5.4 Relational Operators

Relational operators are used to compare any two operands of the same type, or to
compare BYTE and WORD values. The relational operators are:

< less than
> greater than
< = less than or equal to
> = greater than or equal to
< > not equal to

equal

Relational operators, always binary operators, take two operands to yield a BIT result.
If both operands are of the same type, unsigned arithmetic is used to compare two
BYTE values, two WORD values, or two BIT values. If the specified relation between
the operands is true, the result is a BIT value of 1. Otherwise, the result is a BIT
value of O.

(6> 5) result is 1
(6 = 4) result is 0

(lltrue ll)
(llfalse ll)

Values of true and false that result from relational opera:ions are useful in conjunc
tion with DO WHILE statements and IF statements, as will be seen in Chapter 7.

5.5 Logical Operators

PL/M-51 has four logical (boolean) operators:

HOT AHD OR XOR

The four logical operators are used with BIT, BYTE or WORD operands to perform
logical operations on 1, 8, or 16 bits in parallel.

NOT, a unary operator, takes only one operand. It produces a result of the same type
as its operand: each bit of the result is the one's complement of the corresponding bit
of the original value.

The remaining operators, each of which take 2 operands, perform bitwise and, or,
and exclusive or, respectively. The bits of an AND result are 1 only where the corre
sponding bit in each operand is 1. The bits of an OR result are 1 where the corre
sponding bit of either operand was a 1, and 0 only where both operands have a O.
The bits of an XOR result are 0 only where the corresponding bits of the operand
are the same, i.e., both 1 or both 0; the result has a 1 wherever one operand has a 1
and the corresponding bit of the other operand is O.

If both operands are of the same type, the result is the same type as the operand.

As with the arithmetic and relational operators, the only legal mixed combination of
operand types is BYTE/WORD-in which case, the BYTE value is extended by 8
high order zero bits.

HOT BIT_X I*whose value is
HOT 11001100B
10101010B AHD 11001100B
10101010B OR 11001100B
10101010B XOR 11001100B

1*1 result is 0
result is 001100118
result is 100010008
result is 11101110B
result is 011001108

5-5

Expressions and Assignments

5-6

Note: true and false values resulting from relational operations can be combined
meaningfully by means of logical operators, as shown in the following example.

NOT(6)5)
(6)5) AND (1=2)
(6)5) OR (1=2)
(LIM = Y) XOR (Z=2)

result is 0 (lifaise ll
)

result is 0 (lifaise ll
)

result is 1 (litrue ll
)

result is 0 (lifalse ll
) if both

relations (LIM = Y and Z=2)
are true) or both
otherwise) result

are falsei
is 1 (litrue ll)

5.6 Expression Evaluation

Precedence of Operators: Analyzing an Expression

Operators in PL/M-51 have an implied order (stated in the following paragraphs)
that determines how operands and operators are grouped and analyzed during
compilation.

The PL 1M -51 operators are listed in table 5-1 from highest to lowest precedence
(that is, those which take effect first are listed first). Operators in the same line are
of equal precedence and are evaluated as encountered in a left-to-right reading of an
expression.

Jihe order of evaluation in an expression is controlled first by parentheses, then by
operator precedence, and finally by left-to-right order.

The compiler first evaluates operands and operators enclosed in paired parentheses
as subexpressions, working from innermost to outermost pairs of parentheses. The
value of the subexpression is then used as an operand in the remainder of the expres
sion as a whole.

(Parentheses are also used around subscripts and the parameters of function or proce
dure references. The subscripts and the parameters of function or procedure refer
ences are not subexpressions, but they too must be evaluated before the remainder of
the expressions or references can be evaluated to a higher level.)

Table 5-1. Operators' Precedence

Operator Operator Interpretation
Class

Parenthesis (,) Controls order of evaluation: expressions within
parentheses are evaluated before the action of any
outside operator on the parenthesized items

Unary +,.,- Single positive operator, address operator, single
negative operator

Arithmetic *,f,MOD Multiplication, division, modulo (remainder) division,

+, - ,PLUS, MINUS addition, subtraction

Relational <,<=,<>,=,>=,> Less than, less than or equal to, not equal to, equals,
greater than or equal to, greater than

Logical NOT Logical negation
AND Logical conjunction

OR, XOR Logical inclusion disjunction,
logical exclusive disjunction

PL/M-51

PLfM-51 Expressions and Assignments

When more than one operator appears in an expression, you can evaluate the results
by beginning with the one having the highest precedence. If the operators are of equal
precedence, evaluate them from left-to-right.

Example

(A + B)IC is not the same as
A+B'C

A + B I C means the same as
A + (B'C)

AlBIC means the same as
(A/B)'C

Reason

Parentheses form subexpres
sions

Operator precedence

Left-to-right, equal precedence

The precedence ranking application can also be seen in the following examples:

A + B t C is equivalent to A + (B t C)
A + B - C t D is equivalent to (A + B) - (C t D)
A + B + C + D is equivalent to «A + B) + C) + D
A B t C D is equivalent to ((A I B) t C) I D
A>B AND NOT B>C - 1 is equivalent to (A>B) AND(NOT(B>(C -

Notes on Relational Operators

1)))

Due 1.0 operator precedence, some combinations can validly occur in the same
instruction without being directly combined. In the following logical expression:

F> G AND H< K

the subexpression F>G yields a bit value, as does the subexpression H<K. Thus,
the bit values are ANDed together. This expression is legal despite an apparent mixing
of types. G and H are not the operands of AND because the relational operators are
of higher precedence than the AND operator.

The algebraic meaning of A<=X<=B is well-defined on paper, but in PL/M-51
the valid way to express this is:

A <= X AND X <= B

Order of Evaluation of Operands

The binding of operators and operands is not the same thing as the order in which
operands are evaluated.

The rules of analysis completely and unambiguously specify which operands are bound
to each operator. In the expression:

A + B'C

Band C are the operands of the * operator, while A and the value of B*C are the
operands of the + operator. Band C must be evaluated before the * operation can
be carried out. Also, the compound operand B*C must be evaluated before the + is
carried out.

5-7

Expressions and Assignments

5-8

It is not obvious, however, whether B will be evaluated before C, or vice versa. Indeed,
A could be evaluated before either B or C, and its value stored until the + operation
is performed.

The rules of PL/M-51 do not specify the order in which subexpressions or operands
are evaluated in each statement. This flexibility allows the compiler to optimize the
object code it produces.

In most cases, the order of evaluation makes no difference. However, special care
must be exercised when a function which has side-effects is used as an operand.

5.7 Assignment Statements

Results of computations can be stored as values of scalar variables. At any given
moment, a scalar variable has only one value-but this value may change with
program execution. The PL/M-51 assignment statement changes the value of a
variable. The simplest form of a PL/M-51 assignment statement is:

variable = expression;

where

expression is any PL/M-51 expression described in the preceding
sections.

The expression just cited is evaluated, and the resulting value is assigned to (that is,
stored in) a variable. This variable may be any legal scalar variable, but may not be
a function reference. The old value of the variable is lost.

For example, after execution of the statement:

RESULT .. A + Bj

the variable RESULT will have a new value, calculated by evaluating the expression
A + B.

Implicit Type Conversions

In an assignment statement, if the type of the value of the right-hand expression is
not the same as the type of the variable on the left side of the equal sign, then either
the assignment is illegal (and will be flagged as an error), or an implicit type conver
sion occurs. Except for constant expressions, only byte or word values are converted
automatically. The built-in functions BOOLEAN, EXPAND and PROPAGATE can
be used to perform explicit conversions for use in expressions or assignments. Details
on performing explicit conversions for use in expressions or assignments are given in
Chapter II. The following paragraphs spell out the rules for implicit conversions.

Expression with a BYTE value. WORD variable on the left: the BYTE value is
extended by 8 high-order zero bits to convert it to a WORD value. BIT variable on
the left: illegal.

Expression with a WORD value. BYTE variable on the left: The 8 high-order bits of
the WORD value are dropped to convert it to a BYTE value. BIT variable on the
left: illegal.

Expression with a BIT value. BYTE or WORD variable on the left: illegal.

PL/M-51

PL/M-51 Expressions and Assignments

Multiple Assignment

It is often convenient to assign the same value to several variables at the same time.
This is accomplished in PL/M-51 by listing several variables on the left of the equal
sign, separated by commas. The variables LEFT, CENTER and RIGHT can all be
set to the value of the expression INIT + CaRR with one multiple-assignment state
ment, as follows:

lEFT, CENTER, RIGHT = INIT + CORRj

The variables on the left-hand side of a multiple assignment must be all of the same
type, with one exception: variables of types BYTE and WORD may be mixed. When
they are mixed, the conversion rules just given are applied separately to each
assignment.

5.8 Special Case: Constant Expressions

Constant expressions (e.g., 88, or 51-44) can be of type BIT, BYTE or WORD,
depending on their value and context. As subexpressions, constant expressions act as
BYTEs if they are less than 256; as WORDs, otherwise. If a BIT is required, constant
expressions also act as BITs (unlike BYTE and WORD expressions). When constant
expressions act as BITs, their BIT value is the low-order bit of the constant.

If the constant expression is the entire expression, then it is one of the following:

• right-hand part of an assignment statement: gets the same type as the variable
to .which the expression is assigned

• subscript of an array variable: gets a type of WORD

condition of an IF statement: gets a type of BIT

• expression in a DO WHILE statement: gets a type of BIT

start or step expression in an iterative DO statement: gets the type of the index
variable in that iterative DO

limit expression in an iterative DO statement: type is BYTE or WORD, depend
ing on its value

• expression in a DO CASE statement: gets a type of BYTE

• an actual parameter in a CALL statement or function reference: gets the type of
the formal parameter in the procedure declaration

• expression in a RETURN statement: gets the type of the (typed) procedure that
contains the RETURN statement

Constant expressions and subexpressions are evaluated modulo 65536.

Negative Numbers

PL/M-51 has no negative numbers: all numbers are either zero or positive. Whenever
you expect a computation to deliver a negative result, modulo-65536 or modulo-256
arithmetic gives you a positive (or zero) result. Following are examples of how
PL/M-51 deals with negative numbers:

DCl (W1,W2) WORD, (B1,B2) BYTEj

W1=1 l*work5 O.K. */j W1=-W1 1* become5 65535 */i

B1=3 1* O.K. */j B1=-B1 1* become5 253 */j

5-9

Expressions and Assignments

5-10

W2=-4 If becomes 65532 f /j

82=-4 If becomes 252) due to truncationf/j

For arithmetic using modulo 65536 (signed and unsigned), addition, subtraction and
multiplication are identical. You can use WORD variables to represent signed integers
if you never divide or compare them (equality checking works correctly, though); if
you regard 65535 as -1 (and so on), the three operations permitted above will work
correctly as long as no result is above 32767, or below - 32767.

You can do the same with BYTE variables; note, however, that the following
statements:

82=-4 IF 82=-4 THEM ... j If i.e. j IF 252=65532 fl

would not give the expected results because of the code generated for modulo 65536
representation of -4(=65532) and the modulo 256 representation of 4(=252).
Therefore, the workable solution for this example is:

82=-4 IF 82=LOW(-4) THEM ... j

If i.e. j IF 252=LOW(65532) =252 f/

The LOW built-in is used to produce predictable results by converting the
BYTE_ VARIABLE(B2) = WORD_ VARIABLE(-4) comparison to a
BYTE_VARIABLE = BYTE_VARIABLE comparison.

PL/M-51

CHAPTER 6
STRUCTURES AND ARRAYS

As mentioned briefly in Chapter 3, it is often desirable to use a single identifier to
refer to a whole group of scalars and to distinguish the individual scalars with a
subscript, i.e., a value enclosed in parentheses. The scalars are all the same type. A
list of identifiers and subscripts is called an array.

The list is declared by using a dimension specifier, which is an asterisk, or a non-zero
whole-number constant enclosed in parentheses. The value of the constant specifies
the number of array elements (individual scalar variables) making up the array. For
example,

DECLARE ITEMS (100) BYTE AUXILIARYj

causes the identifier ITEMS to be associated with 100 array elements, each of type
BYTE. One byte of AUXILIARY storage is allocated for each of these scalars.

The declaration

DECLARE (WIDTH, LENGTH, HEIGHT) (7) BYTEj

is equivalent to the following sequence:

DECLARE WIDTH (7) BYTE;
DECLARE LENGTH (7) BYTEj
DECLARE HEIGHT (7) BYTEj

except that contiguous storage is guaranteed for variables declared in a single paren
thesized list, while variables declared in consecutive declarations are not necessarily
stored contiguously.

The declaration causes the identifiers WIDTH, LENGTH, and HEIGHT each to be
associated with 7 array elements of type BYTE, so that 21 elements of type BYTE
have been declared in all.

6. 1 Arrays and Subscripted Variables

To refer to a single element of a previously declared array, use the array name followed
by a subscript enclosed in parentheses. This construct is called a subscripted variable.

For example, given the DECLARE statement

DECLARE ITEMS (100) BYTE AUXILIARYj

you can refer to each byte as an individual item using ITEMS(0), ITEMS(1),
ITEMS(2), and so on up to ITEMS(99).

Notice that the first element of an array has subscript 0, not 1. Thus, the subscript
of the last element is 1 less than the dimension specifier.

If you want to add the third element of the array ITEMS to the fourth, and store the
result in the fifth, you can write the PL/M-51 assignment statement:

ITEMS(4) II ITEMS(2) + ITEMS(3)j

6-1

Structures and Arrays

6-2

Much of the power of a subscripted variable lies in the fact that the subscript need
not be a whole-number constant, but can be another variable, or any PLfM-51
expression that yields a BYTE or WORD value. This enables the same program
statement to access different memory locations at different times in which this state
ment is executed. Thus, the construction

VECTOR(ITEMS(3) + 2)

refers to some element of the array VECTOR. The element referred to depends on
the expression ITEMS(3) + 2. This value in turn depends on the value stored in
ITEMS(3) (the fourth element of array ITEMS) when the reference is processed by
the running program.

If ITEMS(2) contains the value 5, then ITEMS(3)+ 2 is equal to 7 and the reference
is to VECTOR(7), the eighth element of the array VECTOR.

The following sequence of statements will sum the elements of the 10-element array
NUMBERS by using an index variable named I, which takes on values from 0 to 9.

DECLARE SUM BYTEj
DECLARE NUMBERS (10) BYTEj
DECLARE I BYTE;

SUM • OJ
DO I = 0 TO 9;

SUM = SUM + NUMBERS(I)j
ENDj

Subscripted array variables are permitted anywhere PL fM -51 permits an expression.
They may also appear on the left side of an assignment statement.

PLfM-51 only checks to see if a subscript is required or permitted; PLfM-51 does
not check whether the value of a subscript is within the defined range.

Remember, however, that BIT arrays are illegal in PLfM-51.

6.2 Structures

An array allows one identifier to refer to a collection of elements of the same type; a
structure allows one identifier to refer to a collection of structure members that may
have different types. Each member of a structure has a member identifier.

The following is an example of a structure declaration:

DECLARE AIRPLANE STRUCTURE (SPEED BYTE) ALTITUDE WORD)j

This example declares two scalars, both associated with the identifier AIRPLANE.
Once this declaration has been made, the first scalar can be referred to as
AIRPLANE.SPEED; the second, AIRPLANE.AL TITUDE. These names are also
called the "members" of this structure.

The members of a single structure must be all of BIT type, or all of non-BIT type.
Individual structure members may not be based and may not have any attributes, as
discussed in Chapters 4 and 3, respectively. Successive members of a structure reside
in contiguous memory locations.

PL/M-51

PL/M-51 Structures and Arrays

Arrays of Structures

As previously noted, PL/M-51 allows arrays of scalars. PL/M-51 also allows arrays
of structures. The following DECLARE statement creates any array of structures
that can be used to store SPEED and ALTITUDE for twenty AIRPLANEs instead
of one.

DECLARE AIRPLANE (20) STRUCTURE (SPEED BYTE, ALTITUDE WORD);

This example declares twenty structures associated with the array identifier
AIRPLANE. Each structure is distinguished by subscripts from 0 to 19. Each consists
of two scalar members. Thus, storage is allocated for 60 BYTEs.

To refer to the ALTITUDE of AIRPLANE number 17, you would write:
AIRPLANE(16).ALTITUDE.

Remember, however, that an array of structures may not have bit members.

Arrays within Structures

An array may be used as a member of a structure, as in the following DECLARE
statement:

DECLARE PAYCHECK STRUCTURE (
LASTSNAME(15)BYTE,
FIRSTSNAME(15)BYTE,
MI BYTE,
AMOUNT WORD);

This structure consists of the following members: two 15-element BYTE arrays,
PAYCHECK.LAST$NAME and PAYCHECK.FIRST$NAME; the BYTE scalar
PA YCHECK.MI; and the WORD scalar PA YCHECK.AMOUNT.

To refer to the fourth element of the array PA YCHECK.LASTNAME, you would
write: PA YCHECK.LASTNAME(3).

Arrays of Structures with Arrays Inside the Structures

Given that an array can be made up of structures, and a structure can have arrays as
members, you can combine the two constructions to write:

DECLARE FLOOR (30) STRUCTURE (OFFICE (55) BYTE) AUXILIARY;

The identifier FLOOR refers to an array of 30 structures, each of which contains
one array of 55 BYTE scalars. This could be thought of as a 30 X 55-matrix of
BYTE scalars. To reference a particular scalar value-for example, element 46 of
structure 25-you would write FLOOR(24).OFFICE(45). Note that the scalar
elements of each OFFICE array are stored contiguously, and the OFFICE arrays
themselves are elements of the FLOOR array and are stored contiguously.

You can alter the PAYCHECK structure declaration (just given) with the following
declaration to make it an array of structures.

DECLARE PAYROLL (100) STRUCTURECLASTSNAME(1S)BYTE,
FIRSTSNAME(1S) BYTE,
MI BYTE,
AMOUHT WORD) AUXILIARY;

6-3

Structures and Arrays PL/M-51

6-4

You now have an array of 100 structures, each of which can be used during program
execution to store the last name, first name, middle initial, and amount for one
employee. LAST$NAME and FIRST$NAME in each structure are I5-BYTE arrays
for storing the names as character strings. To refer to the Kth character of the first
name of the Nth employee, you would write:

PAYROLL(H-1).FIRSTSNAME(K-1)

where

Nand K are previously declared variables to which we have assigned
appropriate values.

This might be convenient in a routine for printing out payroll information.

6.3 References to Arrays and Structures

The preceding sections contained numerous examples of variable references. A varia
ble reference is simply the use, in program text, of the identifier of a variable that
has been declared.

A variable reference may be fully qualified, partially qualified, or unqualified.

Fully Qualified Variable References

A fully qualified variable reference is one that uniquely specifies a single scalar. For
example, if you have the declarations

DECLARE AVERAGE BYTEj
DECLARE ITEMS (100) BYTE AUXILIARYj
DECLARE RECORD STRUCTURE (KEY BYTE, INFO WORD)j
DECLARE NODE (25) STRUCTURE (SUBLIST (100) BYTE, RANK BYTE)
AUXILIARYj

then AVERAGE, ITEMS(5), RECORD.lNFO, AND NODE(2I).sUBLIST(32) are
all fully qualified variable references: each refers unambiguously to a single scalar.

Qualification, however, may only be applied to variables that have been appropriately
declared. A subscript may only be applied to an identifier that has been declared with
a dimension specifier. A member-identifier may only be applied to an identifier
declared as a structure identifier. The compiler flags violations of these rules as errors.

Unqualified and Partially Qualified Variable References

Unqualified and partially qualified variable references are allowed only in location
references, as discussed in Chapter 4, and in the built-in procedures LENGTH, LAST,
and SIZE, as discussed in Chapter 11.

An unqualified variable reference is the identifier of a structure or array without any
member-identifier or subscript. For example, in the declarations cited as examples of
fully qualified variable references, ITEMS and RECORD are unqualified variable
references. An unqualified variable reference is a reference to the entire array or
structure . .ITEMS is the location of the entire array ITEMS, that is, the location of
its first byte. Similarly, .RECORD is the location of the first byte of the structure
RECORD.

PLfM-51 Structures and Arrays

A partially qualified variable reference fails to refer uniquely to a single scalar even
using a subscript and/or member-identifier with an identifier. For example, given the
declarations cited as examples of fully qualified variable references, NODE(15) and
NODE(12).sUBLIST are partially qualified variable references.

When used with the dot operator, such references are taken to mean the first byte
that could fit the description. Thus, .NODE(15) is the location of the first byte of
the structure NODE(15), which itself is an element of the array NODE. Similarly,
.NODE(12).SUBLIST is the location of the first byte of the array
NODE(12).sUBLIST, which itself is a member of the structure NODE(12), which
in turn is an element of the array NODE.

Note that .NODE.SUBLIST is not permitted because it is completely ambiguous: in
a location reference referring to an array made up of structures, a subscript must be
given before a member-identifier can be added to the reference. The rule is different
for partially qualified variable references in connection with the built-in procedures
LENGTH, LAST, and SIZE, as explained in Chapter 11.

6-5

CHAPTER 7
FLOW CONTROL STATEMENTS

This chapter describes statements that alter the sequence of execution of PL/M-51
statements and group statements into blocks.

7. 1 DO and END Statements: DO Blocks

Procedures and DO blocks are the basic units of modular programming in PL/M-51.
(Procedures are discussed in Chapter 10.)

This chapter discusses all four kinds of DO-blocks: the simple DO block, the DO
CASE block, the DO WHILE block, and the iterative DO BLOCK. Each DO-block
begins with a DO statement and includes all subsequent statements through the closing
END statement. Following are examples of the four kinds of DO-blocks.

• The simple DO block

DO; I' all statements executed, each in order 'I
statement-O;
statement-1 ;
statement-2;

The DO CASE block

DOC AS E selecLexpression; I * e x act 1 yon est ate men t ex e cut e d I I

case-O-statement; I I e x e cut e d i f s e I e c t _ e x pre s s ion I I
case-1-statement; I I e x e cut e d i f s e I e c t _ e x pre s s ion I I

1* etc. 'I

END;

The DO WHILE block

DOW H I L E expression_true; I I a 1 I e x e cut e d rep eat e d I Y i f e x pre s s ion i s

statement-O;
statement-1 ;

END;

• The iterative DO block

true, *1

1* none if expression false. 'I

D 0 counter = start-expr T 0 limit-expr B Y step-expr;
statement-O; I I a 1 1st ate men t sex e cut e dan u m b e r I I

statement-1; I * 0 f tim e s d e pen din 9 0 nco m par i son I I
I' of counter with limit-expr.'1

END;

7-1

Flow Control Statements PL/M-51

7-2

The DO WHILE block and the iterative DO block are also referred to as DO-loops
because the executable statements within them may be executed repeatedly (in
sequence) depending on the expressions in the DO statement.

Any DO statement may have multiple labels on it, and the last (only) of these may
appear between the word END and the next semicolon. For example:

A: B: C: D: EM: DOj

EtiD EM I' indicates end of block EMj II
I' A, B, C, D also end here. II

As previously stated, the placement of declarations is restricted. Except in proce
dures, declarations are permitted only at the top of a simple DO block before any
executable statements of the block. (This DO can, of course, be nested within other
DOs or procedures. Chapter 9 discusses the scope of declared names.)

Each DO block can contain any sequence of executable statements, including other
DO blocks. Each block is considered by the compiler as a unit, as if it were a single
executable statement. This fact is particularly useful in the DO CASE block and the
IF statement, both of which are discussed later in this chapter.

Only simple DO blocks may also contain DECLARE statements, which declare local
variables. Such declarations must precede all executable statements in the block.

The discussions that follow describe the normal flow of control within each kind of
DO block. The normal exit from the block passes through the END statement to the
statement immediately following it. None of the statements in the blocks in the
following discussions are assumed to cause control to bypass that process. A GOTO
statement with the target outside the block would be one such bypass. (GOTOs are
discussed later in this chapter.)

Simple DO Blocks

A simple DO block merely groups, as a unit, a set of statements that will be executed
sequentially (except for the effect of GOTOs or CALLs). For example,

DOj

E ti D ;

statement-O;
statement-1 ;

statement-n;

Another example of a simple DO block is:

DOj

EtiD;

tiEWSVALUE = OLDSVALUE + TEMP;
COUtiT = COUtiT + 1

The second simple DO block adds the value of TEMP to the value of OLD$V ALUE
and stores it in NEW$VALUE. It then increments the value of COUNT by one.

PL/M-Sl Flow Control Statements

DO blocks may be nested within each other, as shown in the following example:

able: DO;

baker:

END able;

statement-O;
statement-1 ;
DO;

statement-a;
statement-b;
statement-c;

END baker;
statement-2;
statement-3;

In the example just cited, the first DO statement and the second END statement
bracket one simple DO block. The second DO statement and the first END statement
bracket a different DO block inside the first one. Indentation (using tabs or spaces)
is used to make the sequence readable; thus, it is easy to see that one DO block is
nested inside another. Nesting, permitted up to 16 levels, is highly recommended for
writing PLfM-51 programs.

A simple DO block can delimit the scope of variables, as discussed in Chapter 9.

DO CASE Blocks

A DO CASE block begins with a DO CASE statement, and selectively executes one
of the statements in the block. The statement is selected by the value of an expres
sion. The maximum number of cases is 84. The form of the DO CASE block is:

DOC A 5 E selecLexpression;
statement-O;
statement-1 ;

statement-n;
END;

statement-O through statement-n can also be DO blocks.

In the DO CASE statement, expression must yield a BYTE or WORD value. If it is
a constant expression, it is evaluated as if it were being assigned to a BYTE variable.
The value of expression must lie between ° and n (call the value K). K is used to
select one of the statements in the DO CASE block, which is then executed. The first
case (statement-O) corresponds to K = 0, the second (statement-1) corresponds to K
= 1, and so forth. Only one statement from the block is selected. This statement is
then executed only once. Control then passes to the statement following the END
statement of the DO CASE block.

If the run time value of the expression in the DO CASE statement is greater
than n (where n+ 1 is the number of cases in the DO CASE block), then the
effect of the DO CASE statement is undefined. This may disastrously effect
program execution. Therefore, if any chance exists for this out-of-range
condition to occur, the DO CASE block should be contained within an IF
statement, which will test the expression to make sure that it has a value that
will produce meaningful results.

7-3

Flow Control Statements

7-4

Following is an example of a DO CASE block:

DO CASE SCORE:

END j

CONVERSIONS=CONVERSIONS+1 j
SAFETIES = SAFETIES + 1 j
FIELDGOALS = FIELDGOALS + 1j

DOj

ENDj

1* the whole DO-END block
TOUCHDOWNS=TOUCHDOWNS+1 j
SCORE = OJ

/ *
/ *
/ *
/ *
/ *
/ *

i s

/ *

cas e 0 * /
cas e 1 * /
case 2 * /
cas e 3 * /
case 4 * /
cas e 5 * /

statement-n * /

case 6 * /

When execution of this CASE statement begins, the variable SCORE must be in the
range 0-6. If SCORE is 0, 4, or 5, a null statement (consisting of only a semicolon,
and having no effect) is executed; otherwise, the appropriate statement is executed,
causing the corresponding variable to be incremented.

DO WHILE Blocks

DO WHILE and IF statements examine the BIT value resulting from the evaluation
of an expression. If the value is 1, it will be considered true; if 0, it will be considered
false.

A DO WHILE block begins with a DO WHILE statement and has the form:

DOW H I L E expression; I * expression m u sty i e 1 d * I
1* a BIT value*/

END j

statement-O;
statement-1 ;

statement-n;

The effect of this statement is as follows:

1. First, the expression following the reserved word WHILE is evaluated as if it
were being assigned to a variable of type BIT . If the result is 1, the sequence of
statements up to the END is executed.

2. When the END is reached, expression is evaluated again, and again the sequence
of statements is executed only if the value of the expression is 1.

3. The block is executed over and over until expression has a value of 0. Execution
then skips the statements in the block and passes to the statement following the
END statement.

Consider the following DO WHILE statement:

AMOUNT = 1j
DO WHILE AMOUNT <=3j

AMOUNT = AMOUNT + 1 j
ENDj

The statement AMOUNT = AMOUNT + 1 is executed exactly 3 times. The value
of AMOUNT when program control passes out of the block is 4.

PL/M-51

PL/M-51 Flow Control Statements

Iterative DO Blocks

An iterative DO block begins with an iteration statement and executes each state
ment in the block in order, repeating the entire sequence as described in the following
paragraphs. The form of the iterative DO block is:

D 0 counter = start-expr T 0 limit-expr B Y step-expr;
statement-O ;
statement-1 ;

EHD;

The BY step-expr phrase is optional; if it is omitted, a step value of 1 is the default.

The counter must be a simple (i.e., non-BASED, non-subscripted) variable of type
BYTE or WORD. The start-expr, limit-expr, and step-expr may be any valid
PL/M-51 expressions, also of BYTE or WORD types.

The iterative DO is equivalent to:

counter= start-expr;
DOW H I L E counter < = limit-expr;

statement-O;
statement-1 ;

counter= counter+ step-expr;
If if this causes counter to overflow, exit the

WHILE loop II
EHD;

Following is an example of an iterative DO block.

DOl

EHD;

where

BELL

TO 1 0 ;
CALL BELL;

is the name of a procedure that causes a bell to be rung.

The bell is rung ten times.

The following iterative DO block example shows how the index-variable can be used
within the block.

AMOUNT •
DOl

END;

o ;
TO 1 0 ;
AMOUHT • AMOUHT + I ;

The assignment statement is executed 10 times, each time with a new value for I.
The result is to sum the numbers from 1 to 10 (inclusive) and to leave the sum
(namely, 55) as the value of AMOUNT.

7-5

Flow Control Statements

7-6

The next iterative DO block example uses the "BY step_expr" construct.

I*Compute the product of the first M odd integers*1
PROD 1j
DO I 1 TO (2*H-1) BY 2j

PROD = PROD* I j
EHDj

The following distinctions can be important.

• In every case, start-expr is evaluated only once and limit-expr is evaluated before
any execution.

• A negative step does not exist. For example, if step-expr is -5, and the counter is
a BYTE, 251 is used. Furthermore, stepping down to a limit-expr that is less than
start-expr is not possible because the loop will be exited immediately.

If you have a BYTE counter, but limit-expr or step-expr are WORDs,
the semantics of the iterative DO may be different from what you would
expect.

7.2 The IF Statement

The IF statement provides conditional execution of statements. It takes the form:

I F expression THE H statemenLa;
E L 5 E statemenLb; I * 0 P t ion a 1 * I

The reserved word THEN and the statement following it are required; they are called
the "THEN part." The reserved word ELSE and the statement following it are
optional; they are called the "ELSE part."

The IF statement has the following effect: the expression is evaluated as if it were
being assigned to a variable of type BIT.

If the result is true (i.e., 1) statemenLa is executed. If the result is false (i.e., 0),
statemenLb is executed. Following execution of the chosen alternative, control passes
to the next statement following the IF statement. Thus, one and only one of the two
statements (statemenLa and statemenLb) is executed.

Consider the following program fragment:

IF HEW> OLD THEM RESULT = MEWj
ELSE RESULT = OLDj

RESULT is assigned the value of NEW or the value of OLD, whichever is greater.
This code causes exactly one of the two assignment statements to be executed.
RESULT always gets assigned some value, but only one assignment to RESULT is
executed.

If statmenLb is not needed, the ELSE part may be omitted entirely. An IF statement
with the ELSE part omitted takes the form:

I F expression THE M statemenLa;

PLfM-51

PLJM-51 Flow Control Statements

statemenLa is executed if the value of expression is 1 (true). Otherwise, nothing
happens and control immediately passes to the next statement following the IF state
ment.

For example, the following sequence of PLJM-51 statements will assign INDEX the
number 5 or the value of THRESHOLD, whichever is larger. The value of INIT will
change during execution of the IF statement only if THRESHOLD is greater than
5. In any case, the final value of INIT is copied to INDEX.

IHIT II 5i
IF THRESHOLD> IHIT THEN IHIT II THRESHOLDi
IHDEX .. INITi

The power of the IF statement is enhanced by using DO blocks in the THEN and
ELSE parts. Since a DO block is allowed wherever a single statement is allowed,
each of the two statements in an IF statement may be a DO block. For example:

IF A = B THEH

E H D i

ELSE

DOi
EQUALSEVEHTS • EQUALSEVEHTS + 1 j

PAIRSVALUE = Ai
BOTTOM" Bi

DOi
UHEQUALSEVEHTS
TOp .. Ai
BOTTOM .. Bi

E H D i

U~EQUALSEVEHTS + 1 i

DO blocks nested within an IF statement can contain further nested DO blocks, IF
statements, variable and procedure declarations, and so on.

Nested IF Statements

Any IF statement (including the ELSE part, if any) may be considered a single
PLJM-51 statement (although it is not a block). Thus, the statement to be executed
in a THEN or an ELSE clause may in fact be another IF statement.

An IF statement inside a THEN clause is called a nested IF. Nesting may be carried
to several levels without enclosing any of the nested IF statements in DO blocks, as
in the following construction:

I F expression-1 THE N
I F expression-2 THE H

I F expression-3 THE H statement-a;

The example just given has three levels of nesting. Note that statement-a will be
executed only if the values of all three expressions are true. Thus, the construction
just cited is equivalent to:

I F (expression-1) AND (expression-2) A H D (expression-3) THE H
statement-a;

7-7

Flow Control Statements

Note: the example of nesting just given has no ELSE part. If you have nested IFs,
with as many ELSE clauses as IFs, you have only one valid way to match IFs and
ELSEs. For instance (matching clauses are indented equally-deep):

IF BOOLEAHCfoo) THEN IF gorp>4 THEN
ELSE

ELSE

If no ELSE clauses are present, matching up will be no problem. But, if the IF clauses
outnumber the ELSE clauses, only one way will exist to match ELSE clauses to IFs.
If the example just given had only one ELSE, it could be interpreted as:

IF BOOLEAHCfoo) THEN IF gorp>4 THEN
ELSE

or as:

IF BOOLEANCfoo) THEH IF gorp>4 THEN
ELSE

The ambiguity is resolved by matching an ELSE clause to the nearest (as yet
unmatched) IF clause that comes before it; thus, the first of the two interpretations
just cited is correct.

Sequential IF Statements

Consider the following case: an ASCII -coded character is stored in a BYTE variable
named CHAR. If the character is an A, you want to execute statement-a. If the
character is a B, you want to execute statement-b. If the character is a C, you want
to execute statement-c. If the character is not A, B, or C, you want to execute state
ment-x. The code for executing statement-x could be written as follows using IF state
ments completely independent of one another.

I F C H A R I A I THE N statement-a;
I F C H A R'B I THE N statement-b;
I F C H A R'C I THE N statement-c;

PL/M-51

I F C H A R <> I A I AND C H A R <> I B I and C H A R <> I C'T HEN statement-x;

7-8

The sequence just given is inefficient because all four IF statements (six tests in all)
will be carried out in every case, which is wasteful when one of the earlier tests
succeeds.

You need to test for' A' in all cases. But, you need to test for 'B' only if the test for
'A' fails; you need to test for 'C' only if both previous tests fail. Finally, if the tests
for A, B, C all fail, no further tests are needed-you must execute statement-x. To
improve the code, rewrite it as follows.

I F C H A R ' A I THE N statement-a;
E L S ElF C H A R'B I THE N statement-b;
E L 5 ElF C H A R • 'C I THE H statement-c;
E L 5 E statement-x;

Note: this sequence is not a case of nested IF statements as described in the preceding
section. IF statements are said to be nested only when an IF statement is inside the

PL/M-51 Flow Control Statements

THEN part of another IF statement. In the example just given, you have IF state
ments inside the ELSE parts of other IF statements. This construction is called
sequential IF statements. It is equivalent to the following construction:

I F C H A R = I A I THE N statement-a;
ELSE DOi

I F C H A R = I B'T HEN statement-b;
ELSE DOi

I F C H A R = I C'T HEN statement-c;
E L 5 E statement-x;

ENDi

Sequential IF statements are useful whenever a set of tests is to be made, but you
should skip the remaining tests whenever one of the tests succeeds. This construction
works because all the remaining tests are in the ELSE part of the current test. See
the DO CASE for a possible alternative.

7.3 GOTO Statements

A GO TO statement alters the sequential order of program execution by transferring
control directly to a labeled statement. Sequential execution then resumes, beginning
with the target statement. The GOTO statement has the following form:

GOT 0 label;

The following is an example of a GOTO statement:

GOTO ABORTi

The appearance of label in a GOTO statement is not a label definition-it is a label
reference.

The reserved word GOTO can also be written GO TO, with an embedded blank.

For reasons discussed in Chapter 9, GOTO statements are restricted. The only
possible GOTO transfers are the following:

• From a GOTO statement in the outer level of some block to a labeled statement
in the outer level of the same block.

• From a GOTO statement in an inner block to a labeled statement in the outer
level of an enclosing block (not necessarily the smallest enclosing block). However,
if the inner block is a procedure block, the transfer may only be to a statement
in the outer level of the main program module.

• From any point in one program module to a labeled statement in the outer level
of the main program module. To jump to such a label, you must declare the label
to have extended scope, i.e., declare it PUBLIC in the main module and
EXTERNAL in the module containing the GOTO. The main program and the
procedure containing the GOTO must use the same register-bank (see USING
in Chapter 10).

GOTOs are necessary in some situations. However, when control transfers are desired,
an iterative DO, DO WHILE, DO CASE, IF, or a procedure activation (see Chapter
10) is preferable. Indiscriminate use of GOTOs will result in a program that will be
difficult to understand, correct, and maintain.

7-9

Flow Control Statements

7-10

7.4 The CALL and RETURN Statements

The CALL and RETURN statements are discussed in detail in Chapter 10. They
are mentioned here only because they control program-flow.

The CALL statement is used to activate an untyped procedure (one that does not
return a value).

The RETURN statement is used within a procedure body to cause a return of control
from the procedure to the point from which it was activated.

7.5 The Null Statement

A null statement contains nothing (except spaces and comments) before its terminat
ing semicolon. It is an executable statement that has no effect whatsoever on a
program. It mayor may not be labeled. Also, a null statement is useful as part of a
DO CASE construct.

PL/M-51

CHAPTER 8
SAMPLE PROGRAM 1

At this point, all of the constructions available in PL/M-51, except procedures, have
been examined. A complete PL/M-51 program can now be considered.

8. 1 Insertion Sort Algorithm

The sample program in this chapter implements a straight insertion sort algorithm
based on Knuth's Algorithm S in The Art ojComputer Programming, Vol. 3, page 81.
Readers who refer to Knuth's algorithm should note the following differences between
his algorithm and the one implemented in the sample program:

• The algorithm has been adapted to PL/M-51 usage by using an array of struc
tures to represent the records to be sorted. The sort key for each record is a
member of the structure for that record.

• The algorithm has been modified by using a DO WHILE block to achieve the
same logical effect as the GOTOs implied in steps S3 and S4 of Knuth's
algorithm.

• The index I is used in a slightly different manner (it is initialized to J instead
of J-l).

The effect of the algorithm is to arrange 50 records in order according to the values
of their keys, with the smallest key at the beginning (lowest location) and the largest
key at the end (highest location).

The sorting method is as follows. Assume that the records are all in memory, stored
as an array of structures. The key for each record is a member of the structure.

Now, go through the array from the second record (record number 1) upwards. When
you reach any given record (the current record), you will already have sorted the
preceding records. (The first time through, when you look at record number 1, record
number 0 is the only preceding record.)

Take the current record, store it temporarily in a buffer, and look backwards through
the preceding records until you find one whose key is not greater than that of the
current record. Then, put the current record just after this record.

Following is a sample program (shown in figure 8-1) and a detailed explanation.
Study the program and the explanation until you understand how the program works
(especially the DO WHILE block, which is controlled by a more complex condition
expression than you have seen up to this point).

Now, consider the text of this program. First, declare the following variables:

• RECORD-an AUXILIARY array of 50 structures to hold the 50 records. Each
structure has a BYTE member that is the sort key, and a WORD member that
could contain anything (in a working program, this would be the data content of
the record).

• CURRENT -a structure used as a buffer to hold the current record while you
look back through the records already sorted. Its members are like those of one
structure element of RECORD.

• J-which will be used as an index variable in an iterative DO statement. J is
always the subscript of the current record. When J becomes greater than 49, the
sort is completed.

8-1

Sample Program 1 PL/M-51

M: DO j /'Beginning of module'/

8-2

DECLARE RECORD CSO) STRUCTURE CKEY BYTE, INFO WORD) AUXILIARYj

DECLARE CURRENT STRUCTURE CKEY BYTE, INFO WORD)j

DECLARE CJ, I) BYTE;

/'Data is read in to initialize the records.'/

END Mj

SORT: DO J = 1 to 49j
CURRENT. KEY = RECORDCJ).KEYj
CURRENT. INFO = RECORDCJ). INFOj
I = J j

FIN D : DO WHILE I > 0 AND RECORDCI-1).KEY > CURRENT.KEYj
RECORDCI).KEY = RECORDCI-1).KEYj
RECORDCI). INFO = RECORDCI-1) .INFOj
I = I - 1 j

END FINDj

RECORDCI).KEY = CURRENT.KEYj
RECORDCI). INFO = CURRENT.INFOj

END SORTj

/'Data is written out from the records.'/

/'End of module'/

Figure 8-1. Insertion Sort Algorithm

• I-which will be used like an index variable in controlling a DO WHILE block.
1-1 is always the subscript of a previously sorted record.

A working program would include code to read data into the array RECORD. At
the end of the program, enough code would be generated to write out the data from
RECORD. In this example, you omit this code because it would make the example
too lengthy and because the method used for I/O would depend on the particular
system used to execute the program. Comments have been inserted in place of this
code.

The executable part of the program is organized as two DO blocks, one nested within
the other. The outer block (labeled SORT) is an iterative DO block that goes through
the records one at a time. The record selected by the index variable J each time
through this block is the current record. (Notice that J is never O. Because of the way
the algorithm is defined, you must have a preceding element to look back at; so, you
start with the second element of the array and look back at the first.)

PLfM-51 Sample Program 1

The first two assignment statements in the block transfer the current record into
CURRENT. The next statement sets the initial value for I, which will be used to
control the inner block.

The inner block (labeled FIND) is the one that looks back through previously sorted
records to find the right place to put the current record. The way this block is
controlled is worth examining. The variable I is used like an index variable in an
iterative DO, but it is changed explicitly inside the block, instead of automatically as
in an iterative DO statement. The DO WHILE construction is used instead of an
iterative DO because it allows two or more tests to be combined-in this case, by
means of an AND operator.

I is set to J before the first time through the DO WHILE block and decremented
each time through. As long as I remains greater than 0, the first half of the DO
WHILE condition is satisfied.

The value 1-1 is the subscript of the record being looked back at. The second half of
the DO WHILE condition is that the key of this record must be greater than the key
of the current record.

You are looking for a previously sorted record whose key is not greater than the key
of the current record. Thus, the condition in the DO WHILE statement will cause
the DO WHILE block to be executed repeatedly until such a record is found, or until
I reaches 0 (meaning that all previously sorted records have been examined).

Each time the DO WHILE block is executed, it moves the (1-1)st record up into the
Ith position, and then decrements I.

When the condition in the DO WHILE statement is not met, one of the following is
true:

• I = 0 because you have looked through all the previously sorted records without
finding one whose key is not greater than that of the current record. All of the
previously sorted records have been moved up by one.

• 1-1 is the subscript of a record whose key is not greater than the key of the
current record. All of the previously sorted records whose keys are greater than
that of the current record have been moved up by one.

In either case, the failure of the DO WHILE condition means that the current record
(being held in CURRENT) belongs in the Ith position. It is transferred into this
position by the two assignment statements that form the remainder of the outer DO
block.

To consider the next unsorted record, the outer DO block IS repeated with an
incremented value of J.

Notice that the entire program is contained within a simple DO block labeled M.
This makes it a module.

8-3

CHAPTER 9
BLOCK STRUCTURE, SCOPE,

AND LIFETIME RULES

This chapter is intended to clarify the meaning of outer level and the concept of
scope, including the use of the linkage attributes, PUBLIC and EXTERNAL. Lifetime
rules will also be explained.

9.1 Scope

The outer level of a block means statements (or labels) contained in the block but
not contained in any nested blocks. The term exclusive extent also has this meaning.
The inner level, or inclusive extent, includes this outer level and all nested blocks
as well.

A block at the same level as another block means both are contained by exactly the
same outer blocks.

The scope of an object means those parts of a program where its name, type, and
attributes are recognized, i.e., handled according to a given declaration. An object
means a variable, label, procedure, or symbolic (named) constant (i.e., a compilation
constant or execution constant as discussed in Chapter 3).

A program is the complete set of modules that are ultimately linked together and
located as a unit.

These definitions are explained further by the text and examples that follow.

9.2 Names Recognized within Blocks

PLjM-51, like Pascal, is a block-structured language.

You create blocks of code containing declarations, followed by executable statements.
You order and nest the blocks in such a way as to simplify and clarify the flow of
data and control. (The maximum nest is 16 blocks deep.) A collection of these blocks
that performs a single function, or a small set of related functions, is usually compiled
as one module.

Beyond the advantages of modularity, simplicity, and clarity, the nesting of blocks
serves another very basic purpose: names declared at an outer level are known to all
statements of all nested blocks as well.

You can always declare a new meaning for any such name within a nested simple
DO or procedure block, thereby cutting off its earlier meaning for this block. But, if
you don't choose this option, its meaning is established by a single declaration at an
outer level. (The only objects that don't require declarations prior to use are labels.)

In figure 9-1, everything inside the solid line constitutes the inclusive extent of block
MMM (in this case, module MMM). KK is known throughout this block, including
within all nested blocks.

Everything inside the dashed line constitutes the inclusive extent of block SORT. JJ
and II is known throughout this block, but not outside it, that is, not before the label
SORT or after the END SORT statement.

9-1

Block Structure, Scope, and Lifetime Rules PL/M-51

MMM:

9-2

DOj I'Beginning of module'l
DECLARE RECORD CSO) STRUCTURE

CKEY BYTE,
INFO WORD) AUXILIARYj

DECLARE CURRENT STRUCTURE
CKEY BYTE,
INFO WORD)j

DECLARE KK BYTE:
KK = 49j
IIInstructions here would read in data.'1

SORT: I
I
I
I
I
I
I
I

DO;
DECLARE CJJ, II) INTEGER;
DO JJ = 1 TO 49j

CURRENT.KEY = RECORDCJJ).KEYj
CURRENT. INFO = RECORDCJJ).INFOj

I
I
I
I
I
I
I
I
I'

II = JJj I

:··60··iiA·(L·E··iy·:;··O··A·N·O······················· : :
I
I

: FIN D :
I
I
I
I
I
I
I
I
I
I
I
I

RECORDCII-1).KEY > CURRENT.KEYj
RECORDCII).KEY = RECORDCII-1).KEYj

. RECORDCII).INFO = RECORDCII-1).INFOj
II = II-1j

' ... ~ ~. ~ .. f . I. ~. ~ .j •• :
RECORDCII).KEY = CURRENT.KEYj
RECORDCII).INFO = CURRENT.INFOj

: END;
I END SORTj : L __ ----

l'Instructions here would write out
data from the records.'1

END MMM; I l'End of module'l

Figure 9-1. Inclusive Extent of Blocks

Everything inside the dotted line constitutes the inclusive extent of block FIND. Since
this is not a simple-DO or procedure block, declarations are not allowed. All prior
declarations shown are available for use within FIND.

See also figure 9-2.

The shaded area is the exclusive extent (the outer level) of block SORT. The unshaded
area within SORT is the exclusive (and inclusive) extent of block FIND. To the
instructions within the FIND block, SORT's exclusive extent is an outer level. The
outermost level (or module level) is the area outside the solid lines enclosing the
SORT block.

PL/M-51

MMM:

Block Structure, Scope, and Lifetime Rules

DOi /'Beginning of module'/
DECLARE RECORD (50) STRUCTURE

(KEY BYTE)
INFO WORD) AUXILIARYi

DECLARE CURRENT STRUCTURE
(KEY BYTE)
INFO WORD)i

DECLARE KK BYTE:
KK = 49i
/'Instructions here would read in data.'/

SORT:

/'Instructions here would write out
data from the records. 1/

END MMMi /'End of module'/

Figure 9-2. Outer Level of Block SORT

9.3 Restrictions on Multiple Declarations

In any given block, a known name cannot be redeclared at the same level as its origi
nal declaration. A new declaration is permitted inside a nested simple-DO or proce
dure block, where it automatically identifies a new object despite the existence of the
same name at a higher level. The new object will be the only one known by this name
within its block, and it will be unknown outside its block, where the prior name
maintains its meaning. These observations also apply when a name is redeclared in
another block at the same level as the block containing the original declaration.

When a name is declared only in a separate block at the same level, it can only be
accessed in that block where it was declared. The definition is not at an outer level
to the block in which you are not programming. Any local declaration you supply
will establish a new separate object whose values bear no relation to those of the
other.

9-3

Block Structure, Scope, and Lifetime Rules

9-4

The reason for these rules, as for many in programming, is that each name in the
program must unambiguously define address/location. The declaration rules given in
the first paragraph of this section give you freedom to choose whatever names seem
appropriate within a given block without interfering with exterior uses of them. But,
when you redeclare a name, its outer-level meaning is inaccessible until execution
exits the block containing the new declaration. For example:

A : DO j

DECLARE XJ Y J Z BYTEj
L1: X=2j

B:

Y = X j
Z=Xj

DOj
DECLARE XJ Y BYTE;
X = 3 j

Y = X j
L2: Z=Xj
END Bj
L3: I*At this pointJ X=2J Y=2 J Z=3 J because the

value of the redeclared X was used to fill Z*/
I*If statement L2 were outside the DO block

labeled BJ Z would be 2 because the outer X
value would be used.*/

9.4 Lifetime Rules

Given the following block:

M Y _B L 0 C K: D 0 j

DECLARE (XJY,Z)

x, Y and Z become inaccessible as soon as the END MY_BLOCK statement is
executed. Since X, Y and Z are no longer accessible, the memory locations they
occupy become available for other uses, exactly tohe way they would be in Pascal. The
next time your program enters this block, do not be surprised if the values of X, Y
and Z are entirely different from what they were when END MY_BLOCK was
executed. Note that, if you enter a block nested within MY_BLOCK, the space
occupied by X, Y and Z will not be available for reuse, even if (due to redeclarations)
they become inaccessible.

If a block contains CALLs (or function references), that block's variables may also
become inaccessible while the procedure it calls is executing. But, since execution of
the block will resume as soon as the procedure returns, the variables do not let go of
the space they use. Thus, X = X + FUNC(Y) will work as expected; the call to FUNC
is guaranteed not to wipe out X. The same goes for IF X = 7 THEN CALL PROC.
This rule, like the one in the previous paragraph, also applies to Pascal.

9.5 Extended Scope: The PUBLIC and EXTERNAL
Attributes

The PUBLIC and EXTERNAL attributes permit you to extend the scope of names
for all objects except modules; a module name may not be declared with either
attribute.

PL/M-51

PL/M-51 Block Structure, Scope, and Lifetime Rules

To extend the scope means to make the names available for use in modules other
than the one where they are defined (the names are already available to nested blocks
in this module.) To be specific, this includes names of variables, labels, procedures,
and execution CONSTANTs.

For example, the statement:

DECLARE FLAG BIT PUBLICi

causes a BIT to be allocated, named FLAG, and its address made known to any other
module where the following declaration occurs:

DECLARE FLAG BIT EXTERNALi

Similarly, if one module has a procedure declaration block that begins:

SUMMER: PROCEDURE (A,B) BIT PUBLICi
DECLARE (A,B) BYTEi

/'other declarations can go here'/
/'executable statements go here,

defining the procedure'/

END SUMMERi

then any other module may invoke SUMMER if it first declares:

SUMMER: PROCEDURE (A,B) BIT EXTERNALi
/'A,B can be any names'/

DECLARE (A,B) BYTEi
/'but these names must match

them, and each type must
match its public definition'/

END SUMMERi

Since ambiguity of location or definition is not permissible, the use of PUBLIC and
EXTERNAL must follow a strict set of rules, as follows:

1. These attributes may only be used in a declaration at the outermost level of a
module, i.e., never in a nested block.

2. Only one may appear on any declaration, and only once. Thus,

DECLARE ZETA BYTE PUBLIC EXTERMALi /'error'/
DECLARE RHO WORD PUBLIC PUBLICi /'error'/

and similar constructs are all invalid.

3. Names may be declared PUBLIC at most once. The PUBLIC declaration is the
defining declaration: the address it creates is used in each procedure or module
where the same name is declared EXTERNAL. You must not create more than
one PUBLIC address for any name.

4. Names may only be declared EXTERNAL if they are also declared PUBLIC in
a different module of the program. The EXTERNAL attribute is essentially a
request to use a PUBLIC address. An EXTERNAL without a PUBLIC is a
dead letter. Lack of a definition elsewhere will result in a link-time error.

5. The location where the name is declared EXTERNAL must be given the same
type and address space as the location where it is declared PUBLIC. Any contra
diction of type, although not detected by the compiler, would violate the intention
to use the location(s) and content(s) defined elsewhere and will probably cause
run-time errors.

9-5

Block Structure, Scope, and Lifetime Rules

9-6

6. Similarly, a name declared EXTERNAL must not be given a location, i.e., with
the AT phrase, or an initialization, i.e., using CONST ANT(. ..). Such usage would
again contradict being defined in another module.

However, in that other module, where this name is declared PUBLIC, the use of
A T or CONSTANT(. ..) is allowed with it.

7. Neither PUBLIC nor EXTERNAL may be applied to a name that is based. For
example,

DECLARE PTR1 WORDj
DECLARE V1 BASED PTR1 PUBLICi

is invalid. The reason: by definition, V 1 has no home of its own; its location is
always determined by PTRI. Thus to declare VI PUBLIC or EXTERNAL does
not permit the correct assignment of addresses. PTR 1, on the other hand, always
contains the current address of V 1. Declaring the base, PTR 1 in this case, to be
PUBLIC or EXTERNAL is always permissible.

(Three additional restrictions on the use of EXTERNAL procedures appear lfl

Chapter 10.)

Following the rules just given will permit consistent and reliable execution of programs
using names with extended scope. A PUBLIC definition occurring in one module will
then be used by all related references to that name in separate modules, that is, refer
ences which declare the name EXTERNAL. An example of a PUBLIC definition
occurring in one module follows.

MOD1: DO MOD2: DOj
DECLARE V1 BYTE PUBLICj DECLARE V1 BYTE EXTERNALj

END MOD1 j

QQ4: PROCEDURE PUBLIC;

END QQ4j
END MOD2j

Both references to VI will use the same definition (location) for VI, namely, that in
module MODI. Similarly, if any module needed to call procedure QQ4, it would first
need a declaration like the one that follows-

QQ4: PROCEDURE EXTERNAL i
END QQ4 j

so that a subsequent CALL QQ4 would correctly pass control to that procedure in
module MOD2.

9.6 Scope of Labels and Restrictions on GOTOs

Labels are subject to exactly the same rules of scope discussed in the previous section.

One consequence is that a label is unknown outside the block where it is declared. As
discussed earlier, a label is either declared explicitly at the beginning of a simple-DO
or procedure block, or the compiler considers it declared there as soon as it is defined
(by appearing in front of a colon) anywhere in the block. Therefore, the discussion of
what names are known in which blocks applies directly to labels as well as to other
names.

PLfM-51

PL/M-Sl Block Structure, Scope, and Lifetime Rules

The label on a block is not part of the block it names. For example, the name on the
DO enclosing the module itself is not part of that block; it merely names it. For
nested blocks, a label is again not part of the block it names, but belongs instead to
the outer level, as part of that first enclosing block.

If a name used as a label on a block is defined inside that block, it will name something
new, whether it is a label, variable, or constant. This fact leads to important restric
tions on use of the GOTO statement:

1. It is impossible for a GO TO to transfer control from an outer block to a labeled
statement inside a nested block.

2. Moreover, a GOTO can transfer control from one block to another in the same
module only if the target block encloses the one containing the GOTO (and only
if the name of that target label is not declared in the nested block.)

Furthermore, a label with the PUBLIC attribute is permitted only in the main module.
(This forces all other transfers of control, that is, those not involving a return to the
main module, to use procedure calls. Forcing all other transfers of control to use
procedure calls favors the development of orderly, modularized, traceable programs.)

Following are some examples of valid and invalid GOTOs.

DOj
X: DO j

DOj
GOTO Xj /* valid - X is in an outer block */

END j
ENDj

ENDj

GOTO Vj /* invalid -- Y is in an inner block */
DOj

V :
ENDj

DECLARE L LABEL EXTERNALj /* L must be in module-level

DOj
GOTO Lj /* valid */

ENDj

code*/

9-7

CHAPTER 10
PROCEDURES AND INTERRUPTS

A procedure is a section of PL/M-51 code that is declared and then activated from
other parts of the program. A function reference or CALL statement activates the
procedure, causing the procedure code to be executed: program control is transferred
from the point of activation to the beginning of the procedure code, the code is
executed, and upon return from the procedure code, program control is passed back
to the statement immediately after the point of activation.

The use of procedures forms the basis of modular programming. It facilitates making
and using program libraries, eases programming and documentation, and reduces the
amount of object code generated by a program. The following sections review how to
declare procedures, and describe how to activate procedures.

10. 1 Procedure Declarations

You must declare procedures, just as you must declare variables. Thereafter, any
reference to a procedure must occur within the scope defined by the procedure decla
ration. Also, a procedure may not be used (called, or invoked in an expression) until
after the END statement of the procedure declaration.

A procedure declaration consists of three parts: a PROCEDURE statement, a
sequence of statements forming the procedure body, and an END statement.

The following is a simple example of a procedure declaration:

DOORSCHECK:PROCEDUREj
IF FRONT$DOORSLOCKED AND SIDESDOORSLOCKED THEN

CALL POWERSONj
ELSE CALL DOORSALARMj

END DOOR$CHECKj

where

POWER$ON and
DOOR$ALARM

FRONT$DOOR$LOCKED and
SIDE$DOOR$LOCKED

are procedures declared elsewhere in the
same program.

are BIT variables declared elsewhere.

NOTE
The name in a PROCEDURE statement has the same appearance as a label
definition; but, it is not considered a label definition, and a procedure name
is not a label. PROCEDURE statements may not be labeled.

The name is a PL/M-51 identifier, which is associated with this procedure. The scope
of a procedure is governed by the placement of its declaration in the program text,
just as the scope of a variable is governed by the placement of its DECLARE state
ment (see Chapter 9 for a detailed description of the DECLARE statement). Within
this scope, the procedure can be activated by the name used in the PROCEDURE
statement.

10-1

Procedures and Interrupts

10-2

A procedure declaration, like a DO block, controls the scope of variables (as described
in Chapter 9). Also, like a simple DO block, a procedure declaration may contain
DECLARE statements; these DECLARE statements must precede the first execut
able statement in the procedure body.

As in a DO block, the identifier in the END statement has no effect on the program,
but aids legibility and debugging. If used, it must be the same as the procedure name.

Parameters

Formal parameters are non-based scalar variables declared within a procedure decla
ration whose identifiers appear in the parameter list in the PROCEDURE statement.
The identifiers in the list are separated by commas and the list is enclosed in paren
theses. No subscripts or member-identifiers are allowed in the parameter list.

If the procedure has no formal parameters, the parameter list (including the paren
theses) is omitted from the PROCEDURE statement.

Each formal parameter in the procedure statement must be declared as a non-based
scalar variable in a DECLARE statement preceding the first executable statement
in the procedure body. Formal parameters may not be declared with a suffix (other
than MAIN). However, procedure parameters are not stored according to the same
rules as other declared variables. In particular, do not assume that a parameter is
stored contiguously with other variables declared in the same factored variable
declaration.

When a procedure that has formal parameters is activated, the CALL statement or
function reference contains a list of actual parameters. Each actual parameter is an
expression whose value is assigned to the corresponding formal parameter in the
procedure before the procedure begins to execute, i.e., PL/M-51 uses call by value
for parameter passing.

For example, the following procedure takes four parameters, called PTR, N, LOWER,
and UPPER. It examines N contiguously stored BYTE variables in MAIN memory.
The parameter PTR is the location of the first of these variables. If any of these
variables is less than the parameter LOWER or greater than the parameter UPPER,
the ERRORSET procedure (declared elsewhere in the program) is activated.

RANGE$CHECK: PROCEDURE(PTR,N,LOWER,UPPER)j
DECLARE PTR WORDj
DECLARE CN,LOWER,UPPER,I)BYTEj
DECLARE ITEM BASED PTR (1) BYTEj

DO I = 0 TO N -1 j
IF (ITEM(I) < LOWER) OR (ITEM(I) > UPPER)
THEN CALL ERRORSETj

"ERRORSET is a procedure declared elsewhere"

END j
END RANGE$CHECKj

Note that the scalar byte I and the array ITEM are not parameters of
RANGE$CHECK, but local variables declared within the procedure. A procedure is
considered to start a block that is terminated by the final END statement of the
procedure definition.

PLfM-51

PL/M-Sl Procedures and Interrupts

Note also that the array ITEM is declared to have only one element. Since it is a
based array, a reference to any element of ITEM is really a reference to some location
relative to the location represented by PTR. In writing the procedure
RANGE$CHECK, a dimension specifier above zero must be supplied for ITEM so
that references to ITEM can be sUbscripted. The dimension specifier is unimportant;
in the example just given, 1 is used arbitrarily.

Having made this declaration, suppose that you have 25 variables stored contiguously
in a MAIN array called QUANTS. Check that all of these variables have values
within the range defined by the values of two other BYTE variables, LOW and HIGH .

. Write:

CALL RANGE$CHECK (.GUANTS, 25, LOW, HIGH)j

When this call statement is processed, the following sequence occurs:

• The four actual parameters in the CALL statement-.QUANTS, 25, LOW, and
HIGH-are assigned to the formal parameters PTR, N, LOWER, and UPPER,
all of which were declared within the procedure RANGE$CHECK. Since ITEM
is based on PTR and the value of PTR is .QUANTS, every reference to an
element of ITEM becomes a reference to the corresponding element of
.QUANTS.

• The executable statements of the procedure RANGE$CHECK are executed, and
if any of the values are less than the value of LOW or greater than the value of
HIGH, the procedure ERRORSET is activated.

• Finally, control returns to the statement following the CALL statement.

Note how the use of a based variable, with the base passed as a parameter, allows
the procedure to have its own unchanging name (ITEM) for a set of variables that
may be a different set each time the procedure is activated.

When a procedure has more than one parameter, PL/M-51 does not guaran
tee the order in which actual parameters will be evaluated when the proce
dure is activated. If one actual parameter changes another actual parameter,
the results are undefined. This can occur if an expression used as an actual
parameter contains·a function reference that changes another actual param
eter for the same procedure. See also the next caution, located near the end
of the next topic "Typed Versus Untyped Procedures."

Typed versus Untyped Procedures

The procedure shown in section 10.1 is an untyped procedure. No type is given in the
PROCEDURE statement, and it does not return a value. An untyped procedure is
activated by using its name in a CALL statement, as shown in section 10.1 and as
explained in section 10.2.

A typed procedure, also called a function, has a type in its PROCEDURE statement:
BIT, BYTE or WORD. Such a procedure returns a value of this type to be used in
an expression or stored as the value of a variable. The procedure is activated by using
its name as an operand in an expression as a special kind of variable reference called
a function reference.

10-3

Procedures and Interrupts

10-4

When the expression is processed at run time, the function reference causes the
procedure to be executed. The function reference itself is then replaced by the value
returned by the procedure. The expression containing the function reference is then
evaluated, and program execution continues in normal sequence.

Like an untyped procedure, a typed procedure may have parameters. They are handled
as described in the preceding paragraphs.

The body of a typed procedure must always contain a RETURN statement with an
expression, as explained later in this chapter.

The body of a typed procedure may contain code (such as an assignment
statement) that changes the value of some variable declared outside the
procedure. This change is called a side effect.

Remember, PL/M-51 does not guarantee the order in which operands in an expes
sion are evaluated. Therefore, if a function used in an expression has the side effect
of changing the value of another variable in the same expression, the value of the
expression depends on whether the function reference or the variables are evaluated
first.

If the analysis of the expression does not force one of these operands to be evaluated
before the other, then the value of the expression is undefined. This situation can be
avoided by using such a procedure in an assignment statement first, thereby creating
an unambiguous sequence.

10.2 Activating a Procedure: Function References and
CALL Statements

Procedure activation, which depends on whether a procedure is typed or untyped,
involves CALL statements and function references. An untyped procedure is activated
by a CALL statement with the form:

CAL L name;

or:

CAL L name (parameter list) ;

Following is an example of a CALL statement activating an untyped procedure.

CALL REORDER (.RAHKSTABLE,3);

(An alternate form of the CALL statement is discussed later.)

A typed procedure is activated by a function reference, which is an operand in an
expressfon; it has the form:

name

or

name (parameter list)

PL/M-51

PLfM-51 Procedures and Interrupts

A function reference occurs as an operand in an expression, as in the following
example:

TOTAL SUBTOTAL + SUMSARRAY (.ITEMS, COUHT)j

where

SUM$ARRAY is a previously declared typed procedure.

The value added to SUBTOTAL will be the value returned by SUM$ARRA Y using
the actual parameters (.ITEMS, COUNT). See the first caution on procedures with
more than one parameter in section 10.1.

In both forms of procedure activation, the elements of the parameter list are called
actual parameters to distinguish them from the formal parameters of the procedure
declaration. At activation-time, each actual parameter is evaluated and the result
assigned to the corresponding formal parameter in the procedure declaration. Then
the procedure body is executed. Any PLJM-51 expression may be an actual param
eter if its type is the same as that of the corresponding formal parameter.

The actual parameter list in a procedure activation must also match the formal
parameter list in the procedure declaration-that is, it must contain the same number
of parameters of the same type in the same order. If the procedure is declared without
a formal parameter list, no actual parameter list can be used in the activation.

As in expression evaluation and assignment statements (see Chapter 5), a few type
conversions are performed automatically, when necessary, in activating and returning
from a procedure. The built-in explicit type conversion procedures of Chapter 11 can
also be used to force the value of an expression to a desired type.

Indirect Procedure Activation

The CALL statement, in the form shown in section 10.2, activates an untyped proce
dure by its name. It is also possible to activate an untyped procedure by its location.
This is done by a CALL statement with the form:

CAL L identifier;

The identifier may not be subscripted, though it may be a structure member reference.
It must be a fully qualified WORD type variable reference, and its value is assumed
to be the location of the entrypoint of the procedure being activated.

In an indirect procedure activation, parameters are not permitted.

Following is an example of indirect procedure activation.

DECLARE ADDR WORD COHSTAHT(.PROC_77)j
DECLARE ADDR_BACKUP WORD AUXILIARYj
ADDR_BACKUP = .PROC_77j
CALL ADDRj
CALL ADDR_BACKUPj

(both CALLs reach PROC_77).

10-5

Procedures and Interrupts

10-6

10.3 Exit from a Procedure: The RETURN Statement

The execution of a procedure is terminated in one of three ways:

• By execution of a RETURN statement within the procedure body. A typed
procedure must contain a RETURN statement with an expression.

• By reaching the END statement that terminates the procedure declaration.

• By executing a GO TO to a statement outside the procedure body. The target of
the GOTO must be at the outer level of the main program (see Chapter 9).

The RETURN statement has one of two forms:

RETURNj

or

RET URN expression;

The first form is used in an untyped procedure. The second form is used in a typed
procedure. The value of expression becomes the value returned by the procedure. It
is evaluated as if it were being assigned to a variable of the same type as used on the
PROCEDURE statement.

10.4 The Procedure Body

The statements within the procedure body may be any valid PL/M-51 statements,
including CALL statements and nested procedure declarations.

Example 1

The following is a typed procedure declaration:

AVG: PROCEDURE (X, Y) WORDj
DECLARE (X, Y) WORDj
RETURN (X + Y)/2j

END AVGj

The typed procedure declaration could be used as follows:

LOW" 300j
HIGH II 400j
MEAN" AVG (LOW, HIGH)j

The effect would assign the value 350 to MEAN.

Example 2

The following is an untyped procedure:

AOUT: PROCEDURE (ITEM)j
DECLARE ITEM WORDj

END AOUTj

IF ITEM >= 07FH THEN COUNTER
RETURNj

COUNTER + 1 j

PL/M-51

PL/M-51 Procedures and Interrupts

COUNTER is some variable declared outside the procedure, i.e., it is a global varia
ble. The untyped procedure could be activated as follows:

CALL AOUT (UHKHOWH)j

If the value of the variable UNKNOWN is greater than or equal to 07FH, the value
of COUNTER will be incremented.

Example 3

The following example demonstrates an important use of based variables.

SUMSARRAY: PROCEDURE (PTR,H) BYTEj
DECLARE PTR WORD,

SUM=Oj
DO!

ENDj

ARRAY BASED PTR(1) BYTE MAIH,
(H,SUM)BYTEj

o TO H j
SUM = SUM + ARRAYC!)j

RETURN SUMj
END SUMSARRAYj

The procedure just given returns the sum of the first N + 1 elements (from the Oth
to the Nth) of a MAIN (on-chip RAM) BYTE array pointed to by PTR. Notice that
ARRA Y is declared to have 1 element. Since it is a based variable, no space is
allocated for it. It must be declared as an array (with a non-zero dimension) so that
it can' be subscripted in the iterative DO block. The choice of 1 as the constant in the
dimension specifier is arbitrary, and does not restrict the value of N that may be
supplied when the procedure is activated.

This procedure could be used as follows to sum the elements of a 20-element MAIN
BYTE array named PRICE, and to assign the sum to the variable TOTAL.

TOTAL = SUMSARRAYC.PR!CE,19)j

10.5 The Attributes: PUBLIC and EXTERNAL, INTERRUPT,
USING, INDIRECTL V_CALLABLE

The PUBLIC and EXTERNAL attributes can be included in PROCEDURE state
ments to give procedures extended scope. Extended scope is discussed in Chapter 9.

A procedure declaration with the PUBLIC attribute is called a defining declaration.
A procedure declaration with the EXTERNAL attribute is called a usage declara
tion. Most of the rules for PUBLIC and EXTERNAL appear in Chapter 9. The
following additional rules apply to the use of the EXTERNAL attribute in a proce
dure declaration.

1. A use (EXTERNAL) declaration of a procedure should have the same number
of parameters as the defining (PUBLIC) declaration. Variable types should match
the same sequence in both declarations. The names of the parameters need not
be the same. Note that a discrepancy between the parameter lists in the defining
declaration and a usage declaration will not be automatically detected, but
execution will fail.

10-7

Procedures and Interrupts

10-8

2. The procedure body of a usage declaration may not contain anything except the
declarations of the formal paremeters. The formal parameters must be declared
with the same types as in the defining declaration.

3. No labels may appear in a usage declaration.

For example, the procedure A VG from Example I above can be altered by giving it
the PUBLIC attribute:

AVG: PROCEDURE ex, Y) WORD PUBLICi
DECLARE ex, Y) WORDj
RETURN ex + Y)/2i

END AVGi

In another module, you can have a usage declaration:

AVG: PROCEDURE ex, Y) WORD EXTERNALi
DECLARE ex, Y) WORDi

END AVGi

At this point, in the module with the usage declaration, you can reference A VG in
an executable statement-

MIDDLE = AVG (FIRST, LATEST)j

thereby activating the procedure A VG as declared in the first module.

Interrupts and the INTERRUPT Attribute: ENABLE and DISABLE

The INTERRUPT attribute allows you to define a procedure to handle some condi
tion signaled by an 80S I interrupt, e.g., from a peripheral device. A procedure with
this attribute is activated when the corresponding interrupt signal is received in the
80S I-based system.

The INTERRUPT attribute can only be used at the outermost level of a program
module to declare an untyped procedure with no parameters. The form of an
INTERRUPT attribute is:

INTERRUPT n

with an optional USING attribute, where n is a number. Each number can only be
used once in a program. Each such procedure is then referred to as an interrupt
procedure.

Each MCS-SI interrupt can be individually enabled or disabled (the 8051 has five:
Ext 0 (0), Timer 0 (1), Ext I (2), Timer I (3), and Serial Int (4); other members of
the family may have more or less). The PL/M-SI programmer is responsible for
enabling or disabling each MCS-SI interrupt by using the relevant bits of the IE
hardware register. Each interrupt has a priority (high or low) that is set using bits in
the IP register. Each interrupt also has a global flag in IE that disables all interrupts;
it is controlled indirectly by the ENABLE and DISABLE statements, or directly by
a REGISTER variable. At power-up time, the 80S 1 CPU always starts with all inter
rupts disabled.

The PL/M-SI DISABLE statement disables all interrupts. The PL/M-SI ENABLE
statement will enable any interrupt that is not specifically disabled via its correspond
ing bit in the IE register.

PL/M-51

PL/M-51 Procedures and Interrupts

When an interrupt is pending, it is ignored if the interrupt mechanism is disabled. If
interrupts are enabled, the interrupt is processed as follows:

1. The CPU completes any instruction currently in action.

2. All interrupts of equal or lower priority are disabled.

3. The current CPU state is stacked (see Appendix H).

4. Control passes to the correct interrupt procedure.

5. When the procedure is complete (has executed a RETURN or reached the END
of the procedure), the interrupt system state is restored so other devices may be
serviced; the CPU state (stacked at step 3) is unstacked; and control is returned
to the point where the interrupt occurred.

It is possible (as with other untyped procedures) for the procedure to terminate by
executing a GOTO with a target outside the procedure in the outer level of the main
program module. In this case, control will never be returned to the point where the
program was interrupted, and interrupts will not be automatically enabled.

The following is an example of an interrupt procedure servicing interrupt number o.
The interrupt procedure turns on an annunciator light, updates a status word, and
returns control to the program.

HITEMP: PROCEDURE INTERRUPT Oi
/* EXTERNAL 0 INTERRUPT ON 8051 */
CALL ANNUNCIAToR(1)i

/*This will result in an output
from the 8051 to turn on annun-
ciator Light number 1, the high-
temperature warning.*/

ALERT ALERT OR 00000010Bi
/*This puts a 1 in one of the bit

positions of ALERT, which
contains a bit pattern represent
ing current alerts.*/

END HITEMPi

Since PL/M-51 is a generic compiler, supporting all members of the MCS-51 family,
it cannot check that the interrupt number is valid for the chip you intend to use. But,
the compilation summary will reveal the highest-numbered interrupt used. (Note:
interrupt numbers start at zero.)

The USING Attribute

The 8051 has 4 register-banks, each of which contains 8 registers: RO-R7. PL/M-51
makes a critical assumption about interrupts: an interrupt procedure must never use
the same register-bank as the procedure it interrupts.

The register bank required is selected with the USING attribute of a procedure. If
you declare

X: PROCEDURE USIHG 0

X will use register-bank 0; the same goes for 1,2 and 3. Omit the USING attribute
and you get the register-bank currently in effect, which is 0, unless you change the
default by the $REGISTERBANK control (which is effectively a global USING).

10-9

Procedures and Interrupts

10-10

It is unneccessary to calculate who is going to interrupt whom, and when; but, on the
8051, no two interrupts of the same priority can be active simultaneously. Therefore,
if you use one USING value for all non-interrupt code, a different value for all low
priority interrupts, and a different value again for all high-priority interrupts, you
will stay out of trouble.

The INDIRECTLY_CALLABLE Attribute

It may be necessary to locally suppress certain compiler optimizations when proce
dures are called in certain roundabout ways. Suppressing compiler optimizations
locally may be done by specifying the INDIRECTLY_CALLABLE attribute in the
procedure declaration. Refer to the $OPTIMIZE control in Chapter 14 for a complete
explanation and examples.

PL/M-51

CHAPTER 11
BUILT-IN PROCEDURES

Built-in procedures act as if they were declared in an all-encompassing global block
invisible to the programmer.

Built-in procedure identifiers are subject to the rules of scope, which means the name
of a built-in procedure can be declared to have a local meaning within the program.
Within the scope of such a declaration, the built-in procedure is unavailable. This
distinguishes these identifiers from reserved words, listed in Appendix C, which cannot
be used as identifiers in declarations.

No built-in procedure may be used within a location reference.

11. 1 Obtaining Information about Variables

PL/M-51 has three built-in procedures that take variable names as actual parame
ters and return information based on the declarations of the variables: LENGTH,
LAST and SIZE.

The LENGTH Function

LENGTH is a WORD function that returns the declared number of elements in an
array. It is activated by a function reference with the form:

L E H G T H (variable-ref)

where

variable-ref must be a non-subscripted reference to an array.

The array may be a member of a structure.

The WORD value returned is the number of elements in the array-that is, it is
equal to the dimension specifier in the array declaration.

If the array is not a structure member, then the reference must be an unqualified
variable reference. If the array is a structure member, then the reference is a partially
qualified variable reference (see section 6.3). For example, given the declaration

DECLARE RECORD STRUCTURE (KEY BYTE,
IHFO(3) WORD);

LENGTH(RECORD.lNFO) is a valid function reference and returns a WORD
value of 3.

If the array is a member of a structure, and the structure is an element of an array,
a special case arises. Given the declaration

DECLARE LIST (4) STRUCTURE (KEY BYTE,
IHFO (3) WORD);

all of the following function references are correct and return the value 3.

11-1

Built-In Procedures

11-2

LEHGTH(LIST(O) .INFO)
LEHGTH(LIST(1).IHFO)
LEHGTH(LIST(2).INFO)
LEHGTH(LIST(3).INFO)

In other words, the subscript for the array LIST is irrelevant when a member
identifier is supplied because the arrays within the structure are all the same length.

PL/M-51 allows a shorthand form of partially qualified variable reference in the
LENGTH, LAST, and SIZE function references. For example,

LEHGTH(LIST. INFO)

is a valid reference and returns the value 3.

The LAST Function

LAST is a WORD function that returns the subscript of the last element declared in
an array. It is activated by a function reference with the form:

LAS T (variable-ref)

where

variable-ref must be a non-subscripted reference to an array.

The array may be a member of a structure.

The WORD value returned is the subscript of the last element of the array. Note
that for a given array, LAST will always be one less than LENGTH.

As in the LENGTH function, a shorthand form of partially qualified variable
reference is allowed when the array is a member of a structure and the structure is
an array element.

The SIZE Function

SIZE is a WORD function that returns the declared size, in bytes, of its operand. It
is activated by a function reference with the form:

S I Z E (variable-ref)

where

variable-ref is a fully qualified, partially qualified, or unqualified refer
ence to any scalar (except a BIT), array or structure.

The WORD value returned is the number of bytes required by the object referenced.

If the reference is partially qualified, it refers either to a structure member that is an
array, or to an array element that is a structure. The value is the number of bytes
t:equired for the array or structure.

As in the LENGTH function, a shorthand form of partially qualified variable refer
ence is allowed when that array or scalar is a member of a structure and the structure
is an array element.

PL/M-51

PL/M-51 Built-In Procedures

11.2 Explicit Type and Value Conversions

The functions in this section provide explicit conversion from one type to another.

Explicit type-conversion functions are invoked by:

function-name (expression)

LOW and HIGH are BYTE functions that convert WORD values to BYTE values.
They are activated by function references with the form:

LOW (expression)
H I G H (expression)

where

expression has a WORD or BYTE value.

If expression has a WORD value, LOW returns the value of the low-order (least
significant) byte of the expression value, whereas HIGH returns the value of the
high-order (most significant) byte of the expression value.

If expression has a BYTE value, then LOW will return this value unchanged. HIGH,
however, will return O.

DOUBLE is a WORD function that converts a BYTE value to a WORD value. It
is activated by a function reference with the form:

DO U B L E (expression)

where

expression has a BYTE or WORD value.

If expression has a BYTE value, the function appends 8 high-order O-bits to convert
it to a WORD value and returns this WORD value. IF expression has a WORD
value, it is unchanged.

BOOLEAN converts a non-BIT to a BIT. All odd numbers are converted to 1 (true),
all even numbers to 0 (false).

EXP AND converts a BIT to a BYTE. EXP AND(0) is a byte whose value is 0;
EXP AND(1) a byte whose value is 1.

PROPAGATE converts a BIT to a BYTE. PROPAGATE(O) is a byte whose value
is 0; PROP AGA TE(1) a byte whose value is OFFH.

BOOLEAN, EXPAND and PROP AGATE are the only way to convert to/from the
BIT type in PL/M-51.

11.3 SHIFT and ROTATE Functions

In shift and rotate operations, a value is handled as a pattern of 8 bits (for a BYTE
value) or 16 bits (for a WORD value). The pattern is moved to the right or left by a
specified number of bits called the bit count.

In a shift, bits moved off one end of the pattern are lost, and O-bits move into the
pattern from the other end. In a rotate, bits moved off one end move onto the other
end.

11-3

Built-In Procedures

11-4

Logical-Shift Functions: SHL and SHR

SHL and SHR are functions whose type depends on the type of the expression given
as an actual parameter. They are activated by function references with the form:

5 H L (pattern, count)
5 H R (pattern, count>

where

pattern and count are expressions with BYTE or WORD values.

If count has a WORD value, all but the 8 low-order bits will be dropped to produce
a BYTE value. If the value of count is 0, no rotation occurs.

The value of pattern may be either a BYTE or WORD value and will not be converted.
If it is a BYTE value, the function will return a BYTE value. If pattern is a WORD
value, the function will return a WORD value.

The value of pattern is shifted left (by SHL) or right (by SHR), with the bit count
given by count.

A shift operation can force a I-bit out of the pattern. For example,

SHL(1000S0001B, 1)

becomes

0000$0010

losing the former high-order bit, and

SHR(1000$0001B, 1)

becomes

0100$0000

losing the former low-order bit.

If the specified pattern and count do not cause such a loss of information, then a
shift of one bit position has the effect of multiplication by 2 for a left shift, or division
by 2 for a right shift. For example, suppose that VAR is a BYTE variable with a
value of 8. This is represented as 0000$1000. SHL(V AR, 1) will return 0001 $0000,
which represents 16, while SHR(V AR, I) will return 0000$0 I 00, which represents 4.

Rotation Functions: ROL and ROR

ROL and ROR are functions whose type depends on the type of the expression given
as an actual parameter. They are activated by function references with the form:

R 0 L (pattern, count)
R 0 R (pattern, count)

where

pattern and count are expressions with BYTE or WORD values.

If count has a WORD value, all but the 8 low-order bits will be dropped to produce
a BYTE value. If the value of count is 0, no rotation occurs.

PL/M-51

PL/M-51 Built-In Procedures

The value of pattern may be either a BYTE or WORD value and will not be converted.
If it is a BYTE value, the function will return a BYTE value. If pattern is a WORD
value, the function will return a WORD value.

The value of pattern is rotated left (by ROL) or right (by ROR), with the bit count
given by count.

Following are examples of the ROL and ROR functions.

R 0 R (1 0 0 1 1 1 0 1 B, 1) returns a value of
R 0 L (1 0 0 1 1 1 0 1 B, 2) returns a value of
R 0 L (1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 B , 8) returns

11.4 INPUT and OUTPUT

11001110B.
01110110B.
0000000011111111B.

PL/M-51 has no INPUT/OUTPUT built-ins because I/O is accomplished by
accessing the right hardware REGISTER (which has been pre-declared, like any
other PL/M-51 variable) at the proper hardware location. See Appendix I for the
assigned hardware REGISTER addresses.

11.5 Miscellaneous Built-Ins

The TESTCLEAR Procedure

TESTCLEAR is a BIT procedure that returns the value of a BIT variable. The BIT
variable is tested and cleared in one indivisible operation (i.e., it cannot be inter
rupted). It can be used to provide semaphore or test-and-set control of a resource.

The TIME Procedure

The untyped procedure TIME causes a time delay specified by its actual parameter.
It is activated by a CALL statement with the form:

CAL L TIM E (expression) ;

where

expression is converted, if necessary, to a BYTE quantity.

The length of time measured by the procedure is a multiple of 100 microseconds. If
the actual parameter evaluates to n, then the delay caused by the procedure is 100*n
microseconds. For example, the statement

CALL TIME (45);

causes a delay of 4.5 milliseconds. Since the maximum delay offered by the proce
dure is about 25.6 milliseconds, longer delays must be obtained by repeated activa
tions. The following block takes about one second to execute.

DO I· 1 TO 50;
CALL TIME (200);

EHD;

The TIME procedure is based on 8051 CPU cycle times, and assumes that the system
is running with a 12 MHz crystal, without i terruption.

11-5

CHAPTER 12
FEATURES INVOLVING

8051 HARDWARE FLAGS

The PLfM-SI features described in this chapter make use, directly or indirectly, of
the 80S 1 hardware flags or toggles-the carry and auxiliary carry BITs. As explained
in the following section, these features cannot be guaranteed to produce correct results;
the programmer should only use them with caution.

Instead of using these features, it may be more convenient to link the PLfM-51
program to modules containing code to perform the same functions, but written in
ASM-Sl.

12. 1 Optimization and the 8051 Hardware Flags

To produce an efficient machine-code program from a PLfM-Sl source, the
PLfM-Sl compiler performs extensive optimization of the machine code. This means
that the exact sequence of machine code produced to implement a given sequence of
PLfM-SI source statements cannot be predicted.

Consequently, the state of the 80S 1 hardware flags cannot be predicted for any given
point in the program. For example, suppose a source program contains the following
fragment:

SUM SUM + 250;

where

SUM is a BYTE variable.

If the value of SUM before this assignment statement was greater than S, the addition
will cause an overflow and the hardware CARRY flag will be set.

If the machine code were not optimized, you could follow this assignment statement
with one of the PLfM-Sl features described in the following sections and be sure
that the feature would operate in a certain fashion depending on whether or not the
addition caused the CARRY flag to be set. However, because of optimization, some
machine code instructions may occur immediately after the addition and change the
CARR Y flag. You cannot safely predict if this will happen.

Accordingly, any PLfM-Sl feature that is dependent on the CARRY flag (or any of
the other hardware flags) may cause the program to run incorrectly. These features
must therefore be used with caution, and any program that uses them must be checked
carefully (using the $CODE control) to make sure that it operates correctly.

12.2 The PLUS and MINUS Operators

In addition to the arithmetic operators described in section S.3, PLfM-51 has two
more arithmetic operators: PLUS and MINUS.

12-1

Features Involving 8051 Hardware Flags

12-2

PLUS and MINUS perform similarly to + and -, and have the same precedence.
However, they take account of the current setting of the 8051 CPU hardware CARR Y
flag performing the operation. In PLUS, the carry flag is added in (e.g., the result is
equal to that of "+" if the carry is off, one more if it is on). In MINUS, the carry
is subtracted.

12.3 Carry-Rotation Built-In Functions

SCL and SCR are built-in rotation functions whose type depends on the type of the
value of an expression given as an actual parameter. They are activated by function
references with the forms:

S C L (pattern, count)
S C R (pattern, count)

where

pattern and count are both expressions.

The value of count will be converted, if necessary, to a BYTE quantity. If count is 0,
no rotation occurs.

The value of pattern may be either a BYTE value or a WORD value and will not be
converted. If it is a BYTE value, the function will return a BYTE value. If it is a
WORD value, the function will return a WORD value.

The value of pattern is rotated left (by SCL) or right (by SCR), with the bit count
given -by count, just as with the ROL and ROR functions described in Chapter 11.
With SCL and SCR, however, the rotation includes the CARRY flag: the bit rotated
off one end of pattern is rotated into CARRY, and the old value of CARRY is rotated
into the other end of pattern. In effect, SCL and SCR perform 9-bit rotations on
8-bit values, and 17 -bit rotations on 16-bit values.

12.4 The DEC Function

DEC is a built-in BYTE function that uses the value of the hardware auxiliary carry
flag internally. It is activated by a function reference with the form:

DEC (expression)

where the value of expression will be converted, if necessary, to a BYTE value. The
procedure uses the DA A machine instruction to perform a decimal adjust operation
on the actual parameter value and returns the result of this operation. (See the
MCS-5J Macro-Assembler User's Guide for a description of the DA instruction).

PL/M-51

CHAPTER 13
SUPPORT LIBRARY: PLM51.LIB

To run any PL/M-51 program, RL51 must link the object-code file with the
PLM51.LIB library, locate the code (i.e., decide where in memory everything is to
reside), and create a file-an absolute object file-that can be loaded into ICE,
PROM, EPROM or EEPROM. If you want to combine two or more modules of
PL/M-51 or ASM51 code into one program, you must, of course, link them together
using RL51. But, the PLM51.LIB run-time library is always necessary.

Thus, if you have compiled your program :Fl:MYPROG.P51 successfully, type:

R L 5 1 : F 1 : M Y PRO G • 0 B J, P L M 5 1 • LIB [options]

to obtain an executable file. If you have 3 modules, MYMOD1.0BJ, MYMOD2.0BJ,
and MYMOD3.0BJ, at least one of which was written in PL/M, type:

R L 5 1 M Y MOD 1 • 0 B J, M Y MOD 2 • 0 B J, M Y MOD 4 . 0 B J, P L M 5 1 . LIB [options]

The RL51 controls that can be specified as [options] are described in the MCS-5J
Utilities User's Guide.

The PUBLICs and EXTERNALs used to link PLM51.LIB begin with a question
mark followed by the character P (?P). Be careful when using such PUBLIC and
EXTERNAL names of your own in any ASM51 code you may want to link to
PL/M-51 code.

13-1

CHAPTER 14
COMPILER INVOCATION AND CONTROLS

14. 1 Introduction to Compiler Controls

The simplest way to start a PL/M-51 compilation is to type:

P L M 5 1 pathname

(pathname is the name of your source file), which works if the compiler is on :FO:, or
the following:

: F 2 : P L M 5 1 pathname

if the compiler is on :F2:. This is enough to compile the program if it is syntactically
correct, to produce error-messages if it is not, and to generate a listing file. In some
cases you will want to use various compiler options such as DEBUG, which generates
symbols to help you use ICE-51 or EV -5l. To get these symbols, type:

P L M 5 1 pathname DEB U G

or

P L M 5 1 pathname D B

Another important option is to suppress the listing of your program, except for lines
with errors in them. Such compilations are faster, and the errors are easier to find
than listing the entire program (each error message specifies the source line number).
You invoke this option by typing:

: F 1 : P L M 5 1 pathname H 0 L I

The exact operation of the compiler is affected by a number of controls that specify
options such as the type of listing to be produced and the destination of the object
file. Controls may be specified as part of the command invoking the compiler, or as
control lines appearing within the source input file.

A control line is a source line containing a dollar sign ($) in the left margin (i.e., in
column one). Control lines are introduced into the source to allow selective control
over sections of the program. For example, you may want to suppress the listing of
certain sections of the program, or cause page ejects at certain places.

On a control line, the dollar sign is followed by zero or more blanks and then by a
sequence of controls. The controls must be separated from each other by one or more
blanks.

Examples of Control Lines

SHOCODE XREF
S EJECT CODE

PL/M-51 has three types of compiler controls: primary, general, and conditional.
Primary controls must occur either in the invocation command or in a control line
that precedes the first non-control line of the source file. Primary controls may not
be changed within a module. General controls may occur either in the invocation
command or on a control line located anywhere in the source input, and may be

14-1

Compiler Invocation and Controls

14-2

changed freely within a module. Conditional compilation controls cannot appear in
the invocation command; however, they may appear on control lines located anywhere
in the source file.

A large number of controls are available, but you may only need to specify a few of
them for most compilations because a set of defaults is built into the compiler. The
controls are summarized in alphabetic order in table 14-1.

A control consists of a control-name which, depending on the particular control, may
be followed by a parenthesized-control parameter.

Examples of Controls

LIS T
NOXREF
OBJECT(PROG2.0BJ)

All primary and general controls have two-letter abbreviations (see table 14-1).

Table 14-2 shows the compiler controls by category.

14.2 The WORKFILES Control
The WORKFILES control is a primary control with the form:

W 0 R K F I L E 5 (directory-name J [directory-name])
Default: W 0 R K F I L E 5 (: W 0 R K : J : W 0 R K :), where : W 0 R K: is the drive on

which the source-file resides.

Each directory-name represents a direct access device such as a disk drive.

During compilation, the compiler creates work files that are deleted at the end of
compilation. If the WORKFILES control is not used, these files will be on the drive
on which the source-file resides.

The WORKFILES control allows you to specify any two devices for storage of these
files. If only one device is specified, all work files will reside on this device.

Following is an example of the WORKFILES control.

Generally, the space required for work files on each device is roughly equal to the
total space required for the PLjM-51 source (including included source files-see
section 14.5). If only one device is used for work files, it should have twice this amount
of space available.

14.3 The Object File Controls
The object file controls determine what type of object file is to be produced and on
which device it is to appear. The controls are discussed in the following order:

INTVECTORjNOINTVECTOR
OPTIMIZE
OBJECT jNOOBJECT
DEBUG/NODEBUG
ROM
REGISTERBANK

PL/M-51

PL/M-51 Compiler Invocation and Controls

Table 14-1. Compiler Controls

Compiler Control Abbreviations Default
Names

DATE DA none

DEBUG/NODEBUG DB NODEBUG

INTVECTOR/NOINTVECTOR IV INTVECTOR

OBJECT /NOOBJECT OJ OBJECT(source-file .OBJ)

OPTIMIZE OT OPTIMIZE(2)

PAGING/NOPAGING PI PAGING

PAGELENGTH PL PAG ELENGTH(60)

PAGEWIDTH PW PAGEWIDTH(120)

PRINT /NOPRINT PR PRINT(source-file .LST)

REGISTERBANK RB REGISTERBANK(O)

ROM RO ROM(MEDIUM)

SYMBOLS/NOSYMBOLS SB NOSYMBOLS

WORKFILES WF WORKFILES (:WORK:),
where :WORK: is the device
from which the source is
read

XREF /NOXREF XR NOXREF

CODE/NOCODE CO NOCODE

EJECT EJ -

INCLUDE IC -
LIST /NOLIST LI LIST

SAVE/RESTORE SAfRT -
TITLE TT TITLE (module name)

IF/ELSEIF/ELSE/ENDIF - -

SET/RESET - -

Table 14-2. Controls by Categories

Category Compiler Control

Compiler Resources *WORKFILES

Object File *INTVECTOR/NOINTVECTOR
*OPTIMIZE
*OBJECT/NOOBJECT
*DEBUG/NODEBUG
*ROM
*REGISTERBANK

Listing Content *PRINT /NOPRINT
L1ST/NOLIST
CODE/NOCODE

*XREF/NOXREF
*SYMBOLS/NOSYMBOLS

Listing Format *PAGING/NOPAGING
*PAGELENGTH
*PAGEWIDTH
TITLE
EJECT

*DATE

Source Inclusion and Control Status INCLUDE
SAVE/RESTORE

Conditional Compilation IF /ELSEIF /ELSE/ENDIF
SET/RESET

*Denotes primary control.

14-3

Compiler Invocation and Controls

14-4

INTVECTOR / NOINTVECTOR

INTVECTOR/NOINTVECTOR are primary controls with the form:

II'lTVECTOR
NOII'lTVECTOR
Default: I N T V E C TOR

Under the INTVECTOR control, the compiler creates an interrupt vector consisting
of an 8-byte entry for each interrupt procedure in the module. For interrupt n, the
interrupt vector entry is located at absolute location 8*n + 3. See Chapter 10 and
Appendix H for further discussion of interrupt processing and INTVECTOR/
NOINTVECTOR.

Alternatively, you may want to create the interrupt vector independently, using
ASMSl. In this case, the NOINTVECTOR control is used and the compiler does
not generate any interrupt vector. The implications of this are discussed in
Appendix H.

OPTIMIZE

OPTIMIZE is a primary control with the form:

OPTIMIZE (n)

Default: 0 P TIM I Z E (2)

where

n may be 0, 1,2, or 3.

This control governs the kinds of optimization to be performed in generating object
code. Each level of optimization includes all optimizations performed at lower levels.

OPTIMIZE{O)

OPTIMIZE(O) only specifies folding of constant expressions.

Folding means recognizing (at compilation time) operations that are superfluous and
removing or combining them in order to save memory space and/or execution time.
Examples include addition with a zero operand, multiplication by one, and logical
expressions with "true" or "false" constants. Also, in the statement

A = 6 + 3 + Aj

the compiler will add 6 and 3, producing code to add 9 to A.

OPTIMIZE{ 1)

Under OPTIMIZE(1), the contents of various MCS-Sl registers (e.g., RO-R 7) are
remembered between statements. It is therefore possible to avoid loading a value into
R3 or R6, for example, if the correct value has been left there by previous statements.

PL/M-51

PL/M-51 Compiler Invocation and Controls

OPTIMIZE(2)

Under OPTIMIZE(2), the following optimizations are done:

Overlaying of on-chip local data variables.

Elimination of dead (unreachable) code.

The following paragraphs explain data overlaying, paying particular attention to why
it is needed and how it can be used without causing any trouble.

On-chip RAM is a scarce resource on the MCS-51. The PL/M-51 compiler therefore
tries to stretch it as far as it will go.

Since the variables of a DO block become undefined when the block is exited, varia
bles of disjoint DO blocks are always subject to overlaying no matter what the
OPTIMIZE level.

The variables of a procedure also become undefined when the procedure RETURNs
or ENDs (but not when it CALLs another). Therefore, the compiler will try to make
any pair of procedures which can never be active simultaneously, share RAM.
Following is an example of this forced sharing.

T H R E E_B EAR S: PRO C E D U R E j
DECLARE LITTLE BEAR S BED BITj
IF LITTLE_BEAR_S_BED THEN CALL MSG('SOMEONE"S BEEN IN MY BED!' ,0) j
LITTLE_BEAR_S_BED=Oj

END THREE_BEARSj

GOLDILOCKS: PROCEDUREj
DECLARE SPARE_BED BITj
SPA R E_B E D = 1 j

END GOLDILOCKSj

CALL THREE_BEARSj
CALL GOLDILOCKSj
CALL THREE_BEARSj

In this example, the compiler reserves the right to use the little bear's bed as a spare
bed because the two are never active simultaneously. Therefore, the value of
LITTLE_BEAR_S_BED is undefined the second time you enter the
THREE_BEARS procedure. It mayor may not be set to I by Goldilocks.

This optimization is done only under OPTIMIZE(2) and OPTIMIZE(3) because
debugging can get harder: you can never trust a variable to remain unchanged when
no one refers to it; the compiler assumes that all CALLs in your source can get
executed, and that any computed (indirect) call can call any procedure whose address
gets computed. However, PL/M-51 looks only at the module being compiled; it ignores
the possibility of various sneaky calls that use other modules to set up an intra-module
call. Thus, the compiler can get into trouble. The two instances of compiler trouble
are described in Case 1 and Case 2, which follow.

CASE I: a CALL is made to another module, which (directly, or after some more
CALLs) causes a CALL to a procedure in the module being compiled.

14-5

Compiler Invocation and Controls

14-6

Example I

MAIN: DO;
READER: PROCEDURE EXTERNAL; END;
I_O_ERROR: PROCEDUREC ...) PUBLIC;

CALL READER;

END MAINi

while, in another module, you have:

I_O_ERROR: PROCEDUREC •..) EXTERNALi END;
READER: PROCEDURE PUBLIC;

END READER;

Example 2

MAIN: DO;
READER: PROCEDURECERR_PROC_ADDR) EXTERNAL; END;
I_O_ERROR: PROCEDURE;

END I _O_E R R 0 R ;
PROC_X:

END MAIN;

while, in another module, you have:

READER: PROCEDURECERR_PROC_ADDR) PUBLIC;

EtiD READER;

CASE 2: an indirect (computed) CALL is made, and a procedure whose address is
not computed within the module being compiled is called but calculated in another
module, and re-imported to the module being compiled.

PL/M-51

PLfM-51 Compiler Invocation and Controls

Example 3

OLD_SMUGGLER: PROCEDURE WORD EXTERNALj END OLD_SMUGGLERj
SNEAKY: PROCEDURE PUBLICj ... END SNEAKY;
/* .SNEAKY never gets computed in this module! */

x = OLD_SMUGGLERj
CALL Xj

while, in another module, you have

SNEAKY: PROCEDURE EXTERNALj END SNEAKYj
OLD_SMUGGLER: PROCEDURE WORD PUBLICj RETURN .SNEAKYj ENDj

Since the compiler cannot figure out what other modules are doing, and since too
many optimizations would have to be foregone if the compiler were pessimistic about
such CALLs, it assumes they do not occur. If the CALLs do occur, errors may be
introduced. To avoid these errors, the routine should have the
INDIRECTL Y _CALLABLE attribute (e.g., in the three examples just given,
I_O_ERROR and SNEAKY should have that attribute).

OPTIMIZE(3)

Under OPTIMIZE(3}, the compiler assumes that BASED variables do not overlay
non-BASED variables, and that therefore an assignment to a BASED variable does
not alter the value of any non-BASED variable. This assumption enables the contents
of the registers (e.g., R4) to be remembered between statements when they would
not be remembered otherwise.

Variables that always share the same address (e.g., such that one is AT the address
of the other) are handled correctly.

OBJECT I NOOBJECT

OBJECT /NOOBJECT are primary controls with the form:

OBJECT
o B J E C T (pathname)
NOOBJECT
Default: 0 B J E C T (source-file. 0 B J)

The OBJECT control specifies that an object module is to be created during the
compilation. The pathname is a standard ISIS-II pathname that specifies the file to
receive the object module. If the control is absent, or if an OBJECT control appears
without a pathname, the object module is directed to the same device and file name
as that used for source input, but with the extension OBJ. Following is an example
of the OBJECT control.

OBJECT(:f1 :OTHER.OBJ)

This would cause the object code to be written to file :FI :OTHER.OBJ.

The NOOBJECT control specifies that no object module is to be produced. It implies
NOCODE.

14-7

Compiler Invocation and Controls

14-8

DEBUG/NODEBUG

DEBUGjNODEBUG are primary controls with the form:

DEBUG
NODEBUG
Default: NOD E BUG

The DEBUG control specifies that the object module is to contain the statement
number and relative address of each source program statement, and information about
each symbol (except EXTERNAL variables, BASED variables and LITERALL Ys).
This information may be used later for symbolic debugging by ICE-Sl or EMV-S1.

The NODEBUG control specifies that this information is not to be placed in the
object module.

ROM

ROM is a primary control. It can have one of three forms:

ROM(SMALL)
ROM(MEDIUM)
ROM(LARGE)
Default: ROM (M E DIU M)

Under ROM(SMALL), the compiler assumes that your entire application fits within
a single 2047-byte chunk that starts on the 2K byte boundary (known in RLSI and
ASMSI as a block). The 80S 1 has special 2K-byte jumps and CALLs that can only
jump within BLOCK to improve code density; no 3-byte CALLs and jumps are ever
generated.

Under ROM(MEDIUM)-the default-the module being compiled is assumed to fit
IN BLOCK; but, other modules (including those from PLMS1.LIB) can fit anywhere.
This forces some CALLs to be long (3 bytes); most of the jumps, however, and some
of the CALLs, remain short.

Under ROM(LARGE), no assumptions are made. The code generated will be longer.

REGISTERBANK

REGISTERBANK is a primary control with the form:

REG 1ST E R BAN K (bank)

where

bank is 0,1 2 or 3.

The REGISTERBANK control specifies which of the four 80S 1 register-banks is to
be used in code-generation. The control can be overridden for a procedure by the
USING attribute.

PLjM-SI assumes that an interrupt proceo 11re will always use a different register
bank from the one used in the procedure it interrupts. Therefore, if you compile the
code for each interrupt in a separate module, you should compile all non-interrupt

PL/M-51

PLJM-51 Compiler Invocation and Controls

code under one REGISTERBANK setting, all low-level interrupts under another,
and all high-level interrupts under yet another. This way, you can stay out of trouble
without using the USING attribute.

14.4 Listing Selection and Content Controls

PRINT I NOPRINT

PRINT /NOPRINT are primary controls with the form:

P R I H T
P R I H T (pathname)
HOPRltiT
Default: P R I ti T (source-file. L 5 T)

The PRINT control specifies that printed output is to be produced. pathname is a
standard operating system pathname that specifies the file to receive the printed
output. Any output-type device, including a disk file, may also be given. If the control
is absent, or if a PRINT control appears without a pathname, printed output is sent
to a file that has the same name (filename extension .LST) as the source file.

The NOPRINT control specifies that no printed output is to be produced, even if
implied by other listing controls such as LIST and CODE.

LIST I NOLIST

LIST /NOLIST are general controls with the form:

LIS T
tiOLIST
Default: LIS T

The LIST control specifies that listing of the source program is to resume with the
next source line read.

The NOLIST control specifies that listing of the source program is to be suppressed
until the next occurrence, if any, of a LIST control.

When LIST is in effect, all input lines (from the source file or from an INCLUDE
file), including control lines, are listed. When NOLIST is in effect, only source lines
associated with error messages are listed; the compilation summary is also produced.

Note: the LIST control cannot override a NOPRINT control. If NOPRINT is in
effect, no listing whatsoever is produced.

CODE/NOCODE

CODE/NOCODE are general controls with the form:

CODE
tiOCODE
Default: ti 0 COD E

The CODE control specifies that listing of the generated object code in standard
assembly language format is to begin. This listing is placed at the end of the program
listing on the listing file.

14-9

Compiler Invocation and Controls

14-10

The NOCODE control specifies that listing of the generated code is to be suppressed
until the next occurrence, if any, of a CODE control.

Note: the CODE control cannot override a NOPRINT control. Also, NOOBJECT
implies NOCODE.

XREF INOXREF

XREF jNOXREF are primary controls with the form:

XREF
NOXREF
Default: H 0 X REF

The XREF control specifies that a cross-reference listing of source program identi
fiers and their attributes are to be produced on the listing file.

The NOXREF control suppresses the cross-reference listing.

The XREF control always implies SYMBOLS.

Note: the XREF control cannot override a NOPRINT control.

SYMBOLS/NOSYMBOLS

SYMBOLSjNOSYMBOLS are primary controls with the form:

SYMBOLS
NOSYMBOLS
Def a ul t: Ii 0 S Y M B 0 L S

The SYMBOLS control specifies that a listing of all identifiers and their attributes
in the PLjM-51 source program is to be produced on the listing file.

The NOSYMBOLS control suppresses such a listing.

Note: the SYMBOLS control cannot override a NOPRINT control.

14.5 Listing Format Controls

Format controls determine the format of the listing output of the compiler. The listing
format controls are discussed in the following order:

PAGINGjNOPAGING
PAGELENGTH
PAGEWIDTH
TITLE
EJECT

PAGING/NOPAGING

PAGINGjNOPAGING are primary controls with the form:

PAGING
HOPAGIHG
Default: P A GIN G

PL/M-51

PL/M-51 Compiler Invocation and Controls

The PAGING control specifies that the listed output is to be formatted onto pages.
Each page carries a heading identifying the compiler and a page number, and possi
bly a user specified title.

The NOPAGING control specifies that page ejecting, page heading, and page
numbering are not to be performed. Thus, the listing appears on one long "page"
suitable for a slow serial output device. If NOPAGING is specified, a page eject is
not generated if an EJECT control is encountered.

PAGELENGTH

PAGELENGTH is a primary control with the form:

P AGE L E H G T H (length)
Default: P AGE L E H G T H (6 0)

where

length is an integer specifying the maximum number of lines to be
printed per page of listing output. The number includes the
page headings appearing on the page.

The minimum value for length is 5.

PAGEWIDTH

PAGEWIDTH is a primary control with the form:

P AGE WID T H (width)
Default: P AGE WID T H (1 2 0)

where

width is an integer specifying the maximum line width, in charac
ters, to be used for listing output.

width must be between 78 and 132.

TITLE

TITLE is a general control with the form:

TIT L E (text>

where

text is a header-text that is to appear at the head of each page.

The default title is the module name. Titles must be 60 characters long or less. Each
time a $TITLE control appears, a new page is begun.

DATE

DATE is a primary control with the form:

D ATE (text>

14-11

Compiler Invocation and Controls

14-12

The text (maximum 9 characters) will be printed at the right-hand side of every page
heading.

EJECT

EJECT is a general control with the form:

EJECT

EJECT terminates printing of the current page and starts a new page. The control
line containing EJECT control is the first printed line (following the page heading)
on the new page.

14.6 Program Listing

During the compilation process, a listing of the source input is produced. Each page
of the listing carries a numbered page-header that identifies the compiler and option
ally gives a title and/or a date.

The listing begins with the compiler identification. The command line used to invoke
the compiler is then reproduced.

The listing contains a copy of the source input plus additional information. Two
columns of numbers appear to the left of the source image. The first column provides
a sequential numbering of PL/M-SI statements. Error messages, if any, refer to these
statement numbers. The second column gives the block nesting depth of the current
statement.

Lines included with the INCLUDE control are marked with an equals sign (=) just
to the left of the source image. If the included file contains another INCLUDE control,
lines included by this nested INCLUDE are marked with = I. For yet another level
of nesting, = 2 is used to mark each line, and so forth up to the compiler's limit of
five levels of nesting. The markings make it easy to see where included text begins
and ends.

If a source line is too long for the page, it will be continued on the following line.
Continuation lines such as this are marked with a hyphen (-) just to the left of the
source image.

The CODE control may be used to obtain the 80S 1 assembly code produced in the
translation of each PL/M-Sl statement. This code listing appears after the source
text in six columns of information in a pseudo-assembly language format:

1. Location counter (hexadecimal notation)

2. Resultant binary code (hexadecimal notation)

3. Label field

4. Opcode mnemonic

S. Symbolic arguments

6. Comment field

Not all six of these columns will appear on anyone line of the code listing. Compiler
generated labels (e.g., those which mark the beginning and end of a DO WHILE
loop) contain a question-mark (?). Labels from PLMSl.LIB (used, for example, to
divide words) also contain a question mark.

PL/M-51

PL/M-51 Compiler Invocation and Controls

14.7 Symbol and Cross-Reference Listing

If specified by the XREF or SYMBOLS control, a summary of all identifier usage
appears after the program listing.

Six or seven types of information are provided in the symbol or cross-reference listing.
The number depends upon whether the SYMBOLS or XREF control was used to
request the identifier usage summary. Among the types of information are:

1. Statement number where identifier was defined

2. Size of object identified (in bytes)

3. The identifier

4. Attributes of the identifier

5. Statement numbers where identifier was referenced (XREF control only)

Note: a single identifier may be declared more than once in a source module (i.e., an
identifier defined twice in different blocks). Every unique object, even though named
by the same identifier, appears as a separate entry in the listing.

Identifiers in the SYMBOLS or XREF listing are given in alphabetical order.

14.8 Warnings and Compilation Summary

The following line gives the number (if any) of indirect (computed) calls in the module.

n IHDIRECT CALLS

The following line gives the number (if any) of BASED variables declared without
an explicit suffix.

n DEFAULTED BASED VARIABLES

The following line gives the number (if any) of the highest-numbered INTERRUPT
procedure in the module.

n IS THE HIGHEST USED IHTERRUPT

The following is a compilation summary.

'SCODE' OVERRIDDEH - 'SHOOBJECT' IH EFFECT

'SXREF' IGHORED - HOT EHOUGH MEMORY

CODE SIZE gives the size in bytes of the executable-code section of the output
module.

CONST ANT SIZE gives the size in bytes of the constants section of the output
module.

DIRECT VARIABLE SIZE gives the size in bytes of the direct-access on-chip RAM
(MAIN) section (i.e., RL51 DATA segments) of the output module. It appears as
X + Y, where X is the non-overlayable part, and Y is the overlayable part.

INDIRECT VARIABLE SIZE gives the size in bytes of the indirect-access on-chip
RAM section (IDATA segments) of the output module. Format is the same as for
direct variable size.

14-13

Compiler Invocation and Controls

14-14

BIT SIZE gives the size in bits of the BIT section of the output module. Format is
the same as for direct variable size.

BIT-ADDRESSABLE SIZE gives the size in bytes of the BITADDRESSABLE
DATA section (see "BITADDRESSABLE" in the MCS-5J Utilities User's Guide)
of the output module. Format is the same as for direct variable size.

AUXILIAR Y VARIABLE SIZE gives the size in bytes of the off-chip RAM section
of the output module.

MAXIMUM STACK SIZE gives an upper bound on the size in bytes of the stack
section required for the output module.

Each of these sizes appears on a separate line. If any of these values has not been
computed in a compilation (due to errors, or-for code size-due to a NOOBJECT
control) such values will appear as question-marks.

REGISTER-BANK(S) USED: - gives the register banks used by the module.

The items up to this point will be suppressed if any syntax errors are present.

LINES READ gives the number of source lines processed during compilation.

PROGRAM ERRORS gives the number of error messages issued during
compilation.

The sign-off message appears at the end of the compilation listing.

14.9 Source Inclusion Controls

Source inclusion controls allow the input source to be changed to a different file. The
source inclusion controls are:

INCLUDE
SA VE/RESTORE

INCLUDE

INCLUDE is a general control with the form:

INC L U D E (pathname)

where

pathname is a standard operating system pathname specifying a file.

An INCLUDE control must be the rightmost control in a control line.

The INCLUDE control causes subsequent source lines to be input from the specified
file. Input will continue from this file until an end-of-file is detected. At that time,
input will be resumed from the file which was being processed when the INCLUDE
control was encountered.

An included file may itself contain INCLUDE controls. Note: such nesting of included
files may not exceed a depth of five .

PL/M-51

PL/M-51 Compiler Im'ocation and Controls

SAVE/RESTORE

SAVE/RESTORE are general controls with the form:

SAVE
RESTORE

These controls allow the settings of certain general controls to be saved on a stack
before an INCLUDE control switches the input source to another file, and then to
be restored after the end of the included file. However, SAVE and RESTORE can
be used for other purposes as well. The controls whose settings are saved and restored
are:

LIST/NOLIST
CODE/NOCODE

The SAVE control saves all of these settings on a stack. This stack has a maximum
capacity of five sets of control settings, which corresponds to the maximum nesting
depth of five for the INCLUDE control.

The RESTORE control restores the most recently saved set of control settings from
the stack.

14.10 Conditional Compilation Controls

Conditional compilation controls allow different portions of the source code to be
compiled depending on conditions known at compile time. SET and RESET are
general controls used to set the least significant bit of various "switches." These can
then be combined in a limited way to form conditions that can be tested by the IF
and ELSEIF controls. The results of the test then determine which portions of code
are compiled.

Conditional compilation controls have a variety of uses. For example, consider a
program that will be ported to different architectures, or one that contains several
features that mayor may not be required depending on the implementation. Rather
than writing a separate program for each particular case, a single program can be
written that uses conditional compilation to select the portions of code to be compiled
according to the requirements.

Listing control is another application where conditional compilation is helpful, as
shown in the following example.

$ I F S 1
$ NOOBJECT 1* Syntax check * I
$ NOLIST
$ ELSEIF S2
$ XREF 1* Debugging run * I
$ CODE
$ SYMBOLS
$ DEBUG
$ E L S E
$ OPTIMIZE(3) 1* Default * I
$ NOPRINT
$ END I F

Here, S 1 and S2 are switches that determine the form of the printout and the object
code. The default is to optimize the object code and not generate a printout. However,

14-15

Compiler Invocation and Controls

14-16

two alternatives are possible. A run to check syntax produces no object code and a
listing containing only errors. On the other hand, a run to get debugging information
produces a full listing and debug information in the object code. To obtain one of the
alternatives, set the corresponding switch in the invocation of the compiler. For
example, to perform the syntax check, use the following:

P L M 5 1 pathname SET (S 1)

IF I ELSEIF IELSE / ENDIF

These controls provide the actual conditional capability. Like general controls, they
may appear anywhere in the source program. However, they are meaningless (and
erroneous) when used in the invocation of the compiler. In addition, each conditional
control must be the only compiler control in its control line.

The simplest form of a conditional compilation statement is:

$ I F condition
text

$ ENDIF

Here, condition is evaluated and if the least significant bit is I then text is compiled.
Otherwise, text is skipped and compilation resumes after the ENDIF.

The next form of conditional compilation is:

$ I F condition
text 1

$ E L S E
text2

$ END I F

Here, condition is evaluated and if the least significant bit is 1 then text1 is compiled
and compilation resumes after the ENDIF. If the least significant bit is 0, however,
text2 is compiled instead of text1.

The most general form of conditional compilation is:

$ I F condition 1
text 1

$ E L S ElF condition2
text2

$ E L S ElF condition3
text3

$ E L S ElF condition n
text n

$ E L S E
text n+ 1

$ ENDIF

Here, each condition is evaluated until the first one is found with least significant bit
I. The corresponding text is then compiled and compilation resumes after the ENDIF.
If, however, all conditions had least significant bits equal to 0, then the text following
the ELSE (if any) is compiled and compilation resumes after the ENDIF.

PL/M-51

PL/M-51 Compiler Invocation and Controls

Conditional compilation selections are made using limited expressions contammg
switches. A switch is a name formed according to the PLjM-51 rules for identifiers,
that is, it cannot be a keyword. In particular, a switch may be another identifier in
the program. In a conditional compilation statement, each condition is a limited form
of PLjM statement. The only operators allowed are OR, AND, and NOT. The only
operands allowed are switches. Parenthesized subexpressions are not permitted. In
addition, a carriage return must follow each condition.

The text in conditional compilation statements may be a mixture of PL/M-51 source
code and compiler controls. However, if any text is skipped, any controls within it are
not processed.

SET/RESET

These are general controls. They have the following form:

$ 5 E T (switch[, ...])
$ RES E T (switch[, ...])

Here, each switch is an identifier as described above.

SET assigns 1 to the least significant bit of each switch. RESET assigns o.

14-17

CHAPTER 15
OBJECT MODULE SECTIONS

Although the most important output of the PL/M-51 compiler is the output object
file, the program development process does not require that the user be concerned
with the content and structure of that file. However, knowledge of this file may help
the user to have a better understanding of RL51 output and thus overcome RL51
problems, if they develop. This chapter describes the various entities of the object
file, paying particular attention to PL/M-51 generated symbols. The terminology
used in this chapter follows ASM51 and RL51; prior experience with those products
will help in understanding this chapter.

If all you want to do is write pure PL/M-51 code, or if you have not yet read the
RL51 documentation, this chapter will be of very limited use to you.

The object file generated by PL/M-51 consists of one module, which contains segments
(memory areas definition), linkage information (i.e., PUBLICs and EXTERNALs),
debug information, and the image of the executable code.

15. 1 Modules

The name of the module generated by PL/M-51 is the same as the user given module
name. RL51 will mention this module as one of the input modules when the object
file participates in a linkage process.

15.2 Segments

Segments are generated by PL/M-51 as needed by the user declarations. Segment
names are of the form

? module? XX

or

? module? XX? Z

where

module

XX

Z

is the module name (as given by the user).

is a two character code indicating address space, as shown in
table 15-1.

is a digit (0-3) that reflects the register bank, which must be
used when this segment is accessed (this register bank is
determined by the active USING attribute or by the
REGISTERBANK primary control). This digit suffix is used
for on-chip RAM segments only; such segments contain data
that is local within DO blocks or procedures.

As stated before, segments are generated only if needed. For example, the module
XYZ only contains the segment ?XYZ?XD if at least one non-absolute
AUXILIAR Y variable exists.

The two-letter codes are explained in table 15-1.

15-1

Object Module Sections

15-2

Table 15-1. Address Space Codes

Code
Segment Type (RL51)

Source Suffix (PLlM-51) (address space)

PR CODE - executable code -
CO CODE CONSTANT
XD XDATA AUXILIARY
DA DATA MAIN
10 I DATA I DATA
BI BIT BIT
BA DATA BITADDRESSABLE - structure with BIT members -

Each declaration of an absolute symbol (i.e., of a symbol declared AT an absolute
address) will result in an absolute segment definition. Absolute segments have no
names.

Most of the generated segments have a relocation attribute of UNIT. This means
that they may be located at any available place in the appropriate address space.
However, the two exceptions to this are:

1. The PRogram segment will usually have the INBLOCK relocation type, which
means that it must be located within a BLOCK (a 2047-byte chunk that begins
on a 2K boundary). This restriction on the relocation type enables the compiler
to generate short branches within the module which occupy 2 bytes each instead
of 3 (ACALL or AJMP instead of LCALL or LJMP). The PRogram segment
will only have the UNIT attribute if the module is compiled under the
ROM(LARGE) control.

2. Another (less frequent) exception is the DATA BITADDRESSABLE segments
(BA), which are generated for structures with BIT members, and have the
BITADDRESSABLE relocation type.

Segments appear in the RL51 link map, along with their names (for relocatable
segments only), their attributes, and their final location within the machine memory.

15.3 Linkage Information

The compiler inserts two groups of PUBLIC and EXTERNAL symbol definitions
into the object file. The first group consists of all the user defined symbols; the second
group consists of compiler generated symbols. While the first group is self
explantory, the second deserves elaboration.

There are three kinds of compiler-generated symbols:

1. The parameter-list area

2. PLM51.LIB run-time routines

3. Reset and interrupt vectors

The name of the parameter list area is of the form ? procname? BIT or
?procname?BYTE. These names are used for passing parameters to an EXTERNAL
procedure. Since PL/M-51 passes parameters directly through memory (rather than
through registers or the stack), the parameter area must be known to the calling
module (in which the called procedure is declared as EXTERNAL) and to the
PUBLIC procedure as well. PL/M does this by making those areas PUBLIC. If
PROCI is a public procedure that accepts BYTE and BIT parameters, the byte
parameters are passed starting at ?PROC 1 ?BYTE, and the bit parameters are passed
starting at ?PROCI ?BIT (see Appendix G).

PL/M-51

PL/M-51 Object Module Sections

External symbols of the form ?POOxx, where xx is a two digit number, are the names
of run-time routines; the names are used to pull these routines out of PLMS1.LIB.
The compiler uses run-time routines when implementation of an operation using
in-line code may be too wasteful.

External symbols of the form ?PIVnn or ?PIPnn, and public symbols of the form
?PIHnn and ?PSW nn are used for implementing the reset vector and the interrupt
vectors. If nn is the string "OR," then the symbols are used to implement the reset
vector; otherwise, they must constitute a two-digit decimal number and are used for
handling that interrupt number. For instance, ?PIVOI is an EXTERNAL generated
to pull the prolog of the interrupt 1 handler from PLMSl.LIB. Appearance of such
externals indicates that the module has a service routine for interrupt 1. The ?PIHOI
and ?PSWOl public symbols must appear if ?PIVOI was used; ?PIHOI is the address
of the user-written interrupt handler procedure (i.e., equals the address of the proce
dure with the INTERRUPT 1 attribute). ?PSWOl is the required setting of the PSW
for that handler, as determined by the USING attribute of the user procedure. See
Appendix H for a further explanation.

All symbols (user symbols and generated symbols), will appear in the IXREF listing
of RLS1. In addition, if the module is compiled under the DEBUG option, user
symbols will appear in the RLSI symbol table, and will be known to the symbolic
debugger (ICE-Sl or EMV -S1).

15.4 Debug Information

As mentioned in Chapter 14, a module that is compiled under the DEBUG option
contains debug information. This information, updated by RLSI and the source for
the RLSI symbol table, is passed to the final load able object module, and is available
to the symbolic debugger. Debug information comprises the address and type of all
local and public symbols that were declared by the user, line numbers and their
addresses, and scope information (start and end of modules and procedures).

15-3

CHAPTER 16
ERROR MESSAGES

The compiler issues five varieties of error messages:

• Source PL/M-51 errors

• Fatal command tail and control errors

• Fatal input/output errors

• Fatal insufficient memory errors

• Fatal compiler failure errors

Source errors are reported in the listing only; fatal errors in the listing and on the
console.

16.1 Source PL/M-S1 Errors

Nearly all of the source PL/M-51 errors are interspersed in the listing at the point
of error and resemble the following general format:

t t t ERR 0 R # mmm) 5 TAT E MEN T # nnn) LIN E # LLL I NFl L E ftf) N EAR 'aaa, , message

where

mmm

nnn

LLL

tff

aaa

message

is the error number from the list in section 16.6.

is the source statement number where the error occurs.

is a line number.

is an INCLUDE file name.

is the source text close to where the error is detected.

is the error explanation from the list in section 16.6.

Any of the above information that is not applicable is deleted from the message.

16.2 Fatal Command-Tail and Control Errors

All errors in the command tail, or in the primary-control lines of the source file, are
fatal. The error-message appears on the console only. The error-message consists of
the invocation-line up to the point where the offending control occurred, followed by
a pound-sign(#), and a line describing the error (e.g., unrecognized control).

16.3 Fatallnput/Output Errors

If an ISIS-II I/O error occurs during compilation, the compilation aborts, with an
error-message on the console. Its format is:

PL/M-S1: ISIS lID ERROR
F I L E: capacity in which file appears (e.g., OBJECT)
N A ME: name of file involved in error
ERR 0 R: number & identification of ISIS error

COMPILATION TERMINATED

16-1

Error Messages

16-2

Following is an example of an ISIS-II I/0 error message.

PL/M-51 ISIS lID ERROR:
FILE: SOURCE
NAME: :F4:PLM51E.P51
ERROR: #13-NO SUCH FILE

COMPILATION TERMINATED

16.4 Fatal Insufficient-Memory Errors

If the compiler runs out of memory during compilation, a fatal error results. The
error messages produced by insufficient memory errors have the same format as source
PL/M-51 errors.

16 .5 Fatal Compiler Failure Errors

Compiler-failure errors indicate that something is wrong with your compiler. They
should never occur. The error message has no information in it that you can use.

16.6 Error Messages

Following is the list of error messages.

20 SYNTAX ERROR
21 IDENTIFIER TOO LONG
22 UNPRINTABLE CHARACTER
23 EOF IN STRING
24 STRING TOO LONG
25 INVALID DIGIT
26 NUMBER TOO LARGE
27 NUMBER TOO LONG
28 INVALID NUMBER TYPE
29 EOF IN COMMENT
30 ILLEGAL PL/M-51 CHARACTER
31 MISPLACED UNDERSCORE
32 ERROR IN CONTROL LINE
34 'SAVE'S NESTED TOO DEEP
35 'RESTORE' WITHOUT MATCHING 'SAVE'
37 'LITERALLY'S NESTED TOO DEEP
38 'INCLUDE'S NESTED TOO DEEP
39 LINE TOO LONG
40 SYNTAX ERROR
41 EXPRESSION TOO COMPLICATED
42 EOF BEFORE 'END' OF MODULE
43 TEXT AFTER 'END' OF MODULE
44 INVALID MODULE HEADER
45 INVALID INTERRUPT NUMBER
46 DUPLICATE INTERRUPT ATTRIBUTE
47 INVALID REGISTER-BANK NUMBER
48 DUPLICATE REGISTER-BANK ATTRIBUTE
50 TOO MANY MEMBERS IN FACTORED DECLARATION
51 TOO MANY MEMBERS IN FACTORED DECLARATION
52 ILLEGAL STAR DIMENSION

PL/M-51

PL/M-Sl

53
54
55
56
57
58
59
60
6 1
62
63

64
65
66
67
68
69
7 0
7 1
72
73
7 4
7 5
76
77
78
79
80
8 1
82

83

84
85
86
87
88

89
90
9 1
92
93
94
96
97
98

1 0 0

1 0 1

1 1 0
1 1 1
1 1 2
1 1 3
1 1 4

STRUCTURE WITHIN STRUCTURE
TWO MEMBERS WITH SAME NAME
NOT AT MODULE LEVEL
CONFLICTING ATTRIBUTES
ILLEGAL REDECLARATION
ILLEGAL ATTRIBUTE FOR LABEL
ILLEGAL ATTRIBUTE FOR REGISTER
INVALID REGISTER ADDRESS
ILLEGAL ATTRIBUTE FOR PARAMETER
ILLEGAL ATTRIBUTE OF THE AT VARIABLE
ROM OR AUXILIARY VARIABLES MAY BE BASED ONLY
ON WORDS
ILLEGAL ATTRIBUTE FOR BIT
ILLEGAL ADDRESS-SPACE FOR BIT
ILLEGAL ATTRIBUTE FOR 'LITERALLY'
FACTORED 'LITERALLY'
BITS AND NON-BITS IN ONE STRUCTURE
ILLEGAL 'AT'
UNDECLARED IDENTIFIER
IDENTIFIER IS OUT OF SCOPE
NOT A SIMPLE VARIABLE
ILLEGAL STRUCTURE REFERENCE
NON-EXISTENT MEMBER
NOT A VARIABLE
ILLEGAL USE OF LABEL
INVALID SUBSCRIPT
MULTIPLE SUBSCRIPTS
WRONG NUMBER OF PARAMETERS
TWO PARAMETERS EXPECTED
ONE PARAMETER EXPECTED
'LENGTH' AND 'LAST' REQUIRE AN ARRAY, NOT
AN ARRAY MEMBER
'LENGTH' AND 'LAST' REQUIRE AN ARRAY AS
PARAMETER
ILLEGAL USE OF 'SIZE'
MISSING INDEX
MISSING MEMBER
CALL TO A TYPED PROCEDURE
'CALL' MUST BE FOLLOWED BY A PROCEDURE NAME OR
A WORD VARIABLE
NO PARAMETERS ALLOWED IN A COMPUTED CALL
EXPRESSION TOO COMPLICATED
EXPRESSION TOO COMPLICATED
SYNTAX ERROR
SYNTAX ERROR
STRING LENGTH HERE MUST BE 1 OR 2
'IF' NESTED TOO DEEP
SYNTAX ERROR
INVALID PROCEDURE REFERENCE
DECLARE STATEMENT IN THE EXECUTABLE PART OF
A BLOCK
PROCEDURE DECLARATION IN THE EXECUTABLE PART OF
A BLOCK
BLOCKS NESTED TOO DEEP
SYNTAX ERROR
SYNTAX ERROR
THIS PROCEDURE CONTAINS AN UNDECLARED PARAMETER
THIS EXTERNAL PROCEDURE CONTAINS EXECUTABLE
STATEMENTS

Error Messages

16-3

Error Messages PL/M-51

16-4

115 NO RETURN IN TYPED PROCEDURE
116 TYPED RETURN IN UNTYPED PROCEDURE
117 UNTYPED RETURN IN TYPED PROCEDURE
118 UNDEFINED LABEL
119 GOTO TO NON-LABEL
120 LABEL IS BEING REDEFINED--IT MUST BE EXPLICITLY

REDECLARED
121 MISMATCHED IDENTIFIER AFTER 'END'
122 MISMATCHED IDENTIFIER AFTER 'END'
123 EXTERNAL LABEL REDEFINED LOCALLY
124 ILLEGAL DECLARATION INSIDE AN EXTERNAL

PROCEDURE
125 INVALID OPERAND FOR I.' OPERATOR
126 EITHER THIS MUST BE A SIMPLE VARIABLE OR AN

INDEX IS MISSING
127 TOO MANY PROCEDURES
128 ILLEGAL ARRAY DIMENSION
129 ILLEGAL INITIALIZATION
130 STAR DIMENSION WITHOUT INITIALIZATION
131 VALUE MUST FIT IN A BYTE
132 ASSIGNMENT TO ROM
133 NON-BIT REQUIRED
134 BIT REQUIRED
135 ILLEGAL BIT OPERATION
136 MIXED BIT AND NON-BIT OPERANDS
137 MIXED BIT AND NON-BIT TARGETS
138 NON-BIT ASSIGNED TO BIT
139 BIT ASSIGNED TO NON-BIT
140 MEMBER NAME NOT PRECEDED BY ITS STRUCTURE NAME
141 MAXIMUM 84 CASES IN A CASE STATEMENT
142 A DIRECT ADDRESS IN RAM IS AT MOST 127
143 AN ADDRESS IN RAM IS AT MOST 255
144 INTERRUPT NUMBER REUSED
145 INTERRUPT PROCEDURES MAY NOT BE CALLED
146 THE CALLED PROCEDURE USES A DIFFERENT

REGISTER-BANK
147 INTERRUPT PROCEDURES MAY NOT HAVE PARAMETERS
148 THE 'AT' VARIABLE IS IN A DIFFERENT

ADDRESS-SPACE
149 A PUBLIC VARIABLE AT AN EXTERNAL ONE
1 5 0 MIS P LAC ED D'o L L A R
151 PARAMETERS EXPECTED
152 BITS OR BASED VARIABLES NOT ALLOWED HERE
153 THIS IDENTIFIER MUST BE A VARIABLE OR REGISTER
154 INITIAL VALUE FOR AN EXTERNAL VARIABLE
155 INTERRUPT PROCEDURES MAY NOT BE TYPED
156 INITIALIZATION FOR MORE VARIABLES THAN DECLARED
157 RECURSION IS NOT ALLOWED
158 THE BIT-ADDRESSABLE ADDRESSES ARE 32 TO 48
159 THE 'AT' VARIABLE MUST BE A BIT STRUCTURE
160 INVALID COMMAND LINEi TOKEN TOO LONG
161 INVALID COMMAND LINE SYNTAX
162 INVALID FILE NAME
163 NOT A DISK FILE
164 INVALID CONSTANT
166 INVALID KEY WORD
167 FILE USED IN CONFLICTING CONTEXT
169 PRIMARY CONTROL RESPECIFIED
170 TOO MANY SAVES

PL/M-51 Error Messages

171 RESTORE WITHOUT MATCHING SAVE
172 INVOCATION LINE TOO LONG
173 PREMATURE EOF
174 ISIS-II lID ERROR
175 CONTROL LINE TOO LONG
176 INVALID OPERAND OR OPERATOR IN IF CONTROL
177 MISPLACED ELSE CONTROL
178 MISPLACED ENDIF CONTROL
179 INVALID SET OR RESET PARAMETER
180 TOO MANY ERRORS
181 DYNAMIC MEMORY OVERFLOW
182 INTERNAL ERROR
183 INCOMPATIBLE OVERLAY VERSION
190 STATEMENT TOO COMPLICATED
200 DATA SPACE OVERFLOW
201 IDATA SPACE OVERFLOW
202 BIT SPACE OVERFLOW
203 STACK SPACE OVERFLOW
204 ROM SPACE OVERFLOW
205 OFF-CHIP RAM SPACE OVERFLOW
210 TOO MANY EXTERNAL SYMBOLS
211 PROGRAM CODE GREATER THAN 2047 BYTES USE

ROM(LARGE)
212 PROGRAM CODE OVERFLOW
213 ROM SPACE OVERFLOW
214 CONSTANT 'AT' OUT-OF-BOUNDS ADDRESS
255 INTERNAL ERROR--UNKNOWN ERROR CODE

16-5

APPENDIX A
GRAMMAR OF THE PL/M-51 LANGUAGE

This appendix lists the entire syntax of the PL/M-51 language in BNF-like form.
Since BNF syntax has been designed for convenience in constructing concise and
rigorous definitions, it is often quite unreadable. To make it shorter and easier to
understand, a textual definition is sometimes given (as a PLM-style comment). Also,
since the semantic rules are not included in the syntax rules, the BNF permits certain
constructions that are not actually allowed. Again, PLM-style comments are
sometimes used to explain semantic dependencies.

A sequence of three periods (...) is used to indicate that the preceding syntactic element
may be repeated any number of times. Curly brackets are used to indicate that exactly
one of the items stacked vertically between them is to be used. Square brackets indicate
that whatever is between them may be omitted. Square brackets containing a comma
and ellipses [, ...] indicate that the preceding syntactic element may be repeated, but
each repetition must be separated by a comma.

module = name: D a block

block = [decl-part] [execute-part] END [block-name] j

{

declare-stmt }
decl-part = []. . .

procedure-block

procedure-block = proc-header block

{

PUBLIC }
BIT EXTERNAL

proc-header = name: PRO C E D U R E [params][{ B Y T E }] [I N D IRE C T L Y _ CAL LAB L E]...
W 0 R DIN T ERR U P T number

U 5 I N G number

params = (name [, ...])

{

VariableS}
declare-stmt = DEC L ARE labels

literal
[, ...];

literal = name LIT ERA L L Y • string

labels = {name }

(name [, ...])
{

PUBLIC }
LABEL []

EXTERNAL

variables =

one-var [({ number})] B Y T E

I
BIT I

* WORD
{ (one-var [, ...]1 } 5 T R U CT U REmembers

{

MA IN } PUBLIC IDATA
[{ }] [A T (restricted-expr)] [REG 1ST E R]

EXTERNAL AUXILIARY
CON 5 TAN T [init]

A-l

Grammar of the PLfM-Sl Language

one-var = name [B A SED simple-var]

members = (one-mem-or-few [, ...])

one-mem-or-few = {name }
{

BIT }
[(number)] B Y T E

(name [, ...])

{

string }
init = ([, ...]>

restricted-expr

execute-part = [exec-stmt] ...

{

simple-stmt

exec-stmt = [label-name:]... if-st~t
do-stmt

assignment
GOT 0 label-name
GOT 0 label-name

WORD

simple-stmt = CAL L proc-name [(param-value [, ...])]
CAL L simple-var
RET URN expr
ENABLE
DISABLE

param-value = expr

assignment = var-ref [, ...] = expr

if-stmt = I F expr THE N exec-stmt [E L S E exec-stmt]

I
D 0 j block

do-stmt = DOC A S E expr j exec-stmt exec-block
DOW H I L E expr j exec-block
D 0 simple - var = expr T 0 expr [B Y expr]

exec-block = [execute-part] END [block-name];

exec-block I
{

AND}
expr = [N 0 T] boolean-element [0 R [H 0 T] boolean-element] ...

A-2

boolean-element = operand [

operand = primary [I

MOD
P L U S
MIN U 5

X 0 R

operand]. ..

primary]. ..

PL/M-51

PLfM-51 Grammar of the PL/M-51 Language

{

Var_ref }
+ number

primary = [{ }] address-:ef
- short-strmg

(expr)

{

var-name [(subscript>] }
var-ref = structure-name [(subscript>] . member-name [(subscript>]

proc-name [(param-value [, ...])]

subscript = expr

{

. var-ref }
address-ref =

. (constant [, ...])

{

nUmber}
constant = .

strmg

short-string = string j*of length 1 or 2*/

{

[add-or-sub] constant [add-or-sub constantJ ... }
restricted-expr = . restricted-ref [add-or-sub constant] ...

add-or-sub ~ { : }

{

var [(lim-exp)] }
restricted-ref =

structure-name [(lim-exp)] . [(member-name [(lim-exp) n

lim-exp = constant [add-or-sub constant). ..

{

var-name
simple-var =

structure-name . member-name
rmay not be BAS ED·, }

var-name = name j*of a variable already declared (see decl-stmt)* /
structure-name = name j*of a structure already declared (see decl-stmt)* /
member-name = name /*of a structure member already declared (see decl-stmt)* /
proc-name = name /*of a procedure already declared (see procedure-block)*/

label-name = name /*of a label (see exec-stmt and labels)* /

block-name = name /*of a block: proc-name for procedure blocks, the label
preceding the D 0 for all other blocks* /

name = letter [/etter-or-digit-or-special] ...

letter-or-digit-or-special = /*one of these: letter, decimal-digit, $, _ * /

string = '[[printable-except-quote][I I n ... I

printable-except-quote = j*any printable character and also tab,

carriage-return, and line-feed, but not a quote* /

A-3

Grammar of the PL/M-51 Language PLfM-51

binary-digit [binary-digit J [$ J J ••• B
octal-digit [octal-digit] [$ J J ••• Q

number = octal-digit [octal-digit] [$ J J ••• 0
decimal-digit [[decimal-digit] [$ J J ••• [D J
decimal-digit [[hexa-digit] [$ J J ••• H

binary-digit = /* a or 1 *j
octal-digit = /* one of these: 0 , 1, 2 , 3 , 4 , 5 , 6 , 7 */
decimal-digit = /* one of these: octal-digit, 8 , 9 */
hexa-digit = /* one of these: decimal-digit, A , 8, C , D, E , F f /

A-4

APPENDIX B
PROGRAM CONSTRAINTS

Certain fixed size tables within the compiler constrain various features of a user
program to certain maximums. These limits are summarized below:

Nesting of LITERALLY invocations .. .
Nesting of INCLUDE controls .. .
Nesting of blocks
Number of elements in a factored list .. .
Number of characters in an input line
Length of a string constant
Number of cases in a DO CASE block .. .
Number of EXTERNAL items .. .
Number of non-EXTERNAL procedures in a module
Number of (1 O-character) names in a module

5
5

16
32

122
254

84
255
254

appr. 700

B-1

APPENDIX C
PL/M-S1 RESERVED WORDS

These are the reserved words of PL/M-51. They may not be used as identifiers.

ADDRESS
AND
AT
AUXILIARY
BASED
BIT
BY
BYTE
CALL
CASE
CONSTANT
DECLARE
DISABLE
DO
ELSE
ENABLE
END
EXTERNAL
GO
GOTO
IDATA
IF

INDIRECTLY_CALLABLE
INTERRUPT
LABEL
LITERALLY
MAIN
MINUS
MOD
NOT
OR
PLUS
PROCEDURE
PUBLIC
REGISTER
RETURN
STRUCTURE
THEN
TO
USING
WHILE
WORD
XOR

C-l

APPENDIX D
PREDECLARED IDENTIFIERS

These are the identifiers for the built-in procedures. If one of these identifiers is
declared in a DECLARE statement, the corresponding built-in procedure becomes
unavailable within the scope of the declaration.

BOOLEAN
DEC
DOUBLE
EXPAND
HIGH
LAST
LENGTH
LOW
PROPAGATE

ROL
ROR
SCL
SCR
SHL
SHR
SIZE
TESTCLEAR
TIME

D-l

APPENDIX E
DIFFERENCES BETWEEN
PL/M-80 AND PL/M-51

Most PL/M-80 programs cannot be used as PL/M-51 programs unless they are
modified. Approximately ninety-five percent of the statements in a PL/M-80 program
need no modifications whatsoever. The main changes to keep in mind are memory,
I/O, interrupts, bits, overlaying variables, and words-all of which are discussed in
the following paragraphs.

E.1 Memory

The biggest difference between the 8080/8085 and the 8051 (and hence between
their PL/Ms) is the way memory is organized. The 8080 has a single memory, from
byte 0 to byte 65535. Therefore, a PL/M-80 variable has a type and an address
nothing more.

The 8051 has more than one memory: it has on-chip RAM, off-chip RAM, and ROM,
and if you specify a BYTE at address 17, it can still be in one of 3 places (it is like
specifying "140 main street" without naming the town; or phone number 555-1212
without an area code). Therefore, a PL/M-51 variable has a type, an address, and a
suffix specifying the memory space it occupies. If you do not specify a suffix, MAIN
is assumed. If you want to use the PL/M-80 DATA initialization (renamed to
CONSTANT), CONSTANT is assumed. Thus, in an application without off- chip
RAM (alias AUXILIARY), most non-BASED declarations get you the memory you
want. But, BASED declarations are dangerous. For example, if you get the message
"3 defaulted based variables," make sure these 3 declarations do what you want.

E.2 I/O

The 8051 has no I/O operations; all I/O is done using special-function registers,
which are variables at on-chip RAM (or BIT) addresses 128-255. To read port 0 and
copy it to port 1, write the following in ASM51:

MOV P1,PO

PL/M-51 has no I/O operations either. It lets you declare the hardware registers you
want to use (e.g., DECLARE PCON AT(87H) REGISTER), or-the easier option
$INCLUDE a file of such declarations; when available, this kind of file will be
supplied for every member of the MCS-51 family.

Once the REGISTER variables are declared-and if your PL/M-51 program wants
to copy port 0 to port l--you can write PI = PO.

E.3 Interrupts

8051 has 4 register-banks. PL/M-51 assumes that you will never let an interrupt
procedure use the same bank as the procedure it interrupts; total chaos can result if
you do. The USING attribute of a procedure, or the $REGISTERBANK control,
can be used to ensure that you never let an interrupt procedure use the same bank as
the procedure it interrupts. To avoid any problems, use one register-bank for non
interrupt code, one for low-priority interrupts, and one for high-priority interrupts.

E-l

Differences Between PL/M-80 and PL/M-51

E-2

E.4 Bits

In order to use the 8051's Boolean processor, PL/M-51 has a BIT data type. BITs
are 1 bit long, and can be 1 (true) or 0 (false). The results of comparisons in
PL/M-51 are of BIT type, rather than BYTE, as in PL/M-80. Automatic conver
sions to/from BITs do not occur; you must explicitly use the applicable built-in
functions.

E.S Overlaying Variables

3ince MAIN and BIT memory is extremely scarce, the default setting of the
$OPTIMIZE control lets the compiler overlay the variables of any two different
procedures or DO blocks if it is sure they both cannot be active simultaneously (see
$OPTIMIZE(2) in Chapter 14}. Thus, you have to start thinking like an Algol or
Pascal programmer unless you have RAM to spare: the variables of a procedure or
DO block become undefined upon procedure exit.

E.6 Words

A minor point is the order of bytes within a word. In PL/M-51, unlike PL/M-80,
the first byte of a word contains its high-order byte. Thus, if a WORD variable has
value 1234H, its first byte will be 12H and its second will be 34H. If you avoid
overlaying BYTEs on top of WORDs, this should not affect your program.

PL/M-51

ASCII HEX PL/M-S1
CHARACTER CHARACTER?

NUL 00 no
SOH 01 no
STX 02 no
ETX 03 no
EaT 04 no
ENQ 05 no
ACK 06 no
BEL 07 no
BS 08 no
HT 09 no
LF OA no
VT OB no
FF OC no
CR 00 no
SO OE no
SI OF no
OLE 10 no
OCI 11 no
OC2 12 no
OC3 13 no
OC4 14 no
NAK 15 no
SYN 16 no
ETB 17 no
CAN 18 no
EM 19 no
SUB 1A no
ESC 1B no
FS 1C no
GS 10 no
RS 1E no
US 1F no
space 20 yes
! 21 no
" 22 no
23 no
$ 24 yes
% 25 no
& 26 no

27 yes
(28 yes
) 29 yes
* 2A yes
+ 2B yes
, 2C yes
- 20 yes

2E yes
/ 2F yes
0 30 yes
1 31 yes
2 32 yes
3 33 yes
4 34 yes
5 35 yes
6 36 yes
7 37 yes
8 38 yes
9 39 yes
: 3A yes
; 3B yes
< 3C yes
= 3D yes
> 3E yes
? 3F no

ASCII
CHARACTER

@
A
B
C
0
E
F
G
H
I
J
K
L
M
N
a
P
Q
R
S
T
U
V
W
X
Y
Z
[
\
]

A(t)
-

\

a
b
c
d
e
f

9
h
i
j
k
I

m
n
0
p
q
r
s
t
u
v
w
x
y
z
{

I
}

,......,
DEL

HEX

40
41
42
43
44
45
46
47
48
49
4A
4B
4C
40
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
50
5E
5F
60
61
62
63
64
65
66
67
68
69
6A
6B
6C
60
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
7B
7C
70
7E
7F

APPENDIX F
ASCII CODES

PL/M-51
CHARACTER?

yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
no
no
no
no
yes
no
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
no
no
no
no
no

F-l

APPENDIX G
INTERFACING PL/M-51 TO ASM51

The segments and PUBLICs generated by the PL/M-51 compiler must have names.
A user who writes only PL/M-51 code may ignore all of these names. A user who
interfaces PL/M-51 with ASM51 must know the naming conventions for PUBLICs.
The naming conventions for PUBLICs are described in the following paragraphs.

G. 1 Calling Sequence

If a procedure is called FOO, the entry-point for calls to it is called FOO . To pass
parameters, two PUBLICs are supplied: the starting addresses of two regions, one in
DA T A space and one in BIT space, where parameters have to be placed. These two
addresses are named ?FOO?BYTE and ?FOO?BIT, respectively.

During the procedure call, parameters are placed in on-chip RAM starting at these
addresses. BIT parameters start at ?FOO?BIT, and BYTE parameters at
?FOO?BYTE. A WORD parameter is regarded as two BYTE parameters, with its
high-order byte coming first.

For example, consider a PL/M-51 procedure:

Q: PROCEDURECBIT1 ,BYTE1 ,BIT2,WORD1) PUBLICi

Its first BIT parameter will be put in ?Q?BIT, and its second in ?Q?BIT+ 1, in the
BIT address space. Its first BYTE parameter will be put in ?Q?BYTE, and its WORD
parameter in ?Q?BYTE+ 1 (high-order byte) and ?Q?BYTE+2 (low-order byte),
in MAIN memory. The procedure's entry-point will be called Q.

To call this procedure from ASM51 code, we have to move its parameters to their
proper destination. Thus, to simulate

CALL Q(1,72,O,747)

in ASM51, write

EXTRN
EXTRN
EXTRN
SETB
MOV
CLR
MOV
MOV
CALL

CODECQ)
BITC?Q?BIT)
DATAC?Q?BYTE)

?Q?BIT
?Q?BYTE,'72
?Q?BIT+1
?Q?BYTE+1,'HIGH(747)
?Q?BYTE+2,'LOW(747)
Q

To write an assembly-language procedure to do Q's job, you have to write

PUBLIC Q
PUBLIC ?Q?BIT
PUBLIC ?Q?BYTE
BITS SEGMENT BIT
BYTES SEGMENT DATA
PROC SEGMENT CODE
RSEG BITS

G-l

Interfacing PL/M-51 to ASM51

G-2

?Q?BIT:
BIT1: OBIT
BIT2: OBIT 1

RSEG BYTES
?Q?BYTE:
BYTE1: OS
WORD1: OS 2

RSEG PROC
Q :

The labels for BITl, BIT2, BYTEI and WORDI are not strictly necessary, but they
let us avoid some arithmetic. For example, it is easier to write WORD 1 than
?Q?BYTE+l.

G.2 Procedure Epilogue

To return from the procedure, the compiler inserts a RET instruction at any point a
RETURN is to be executed (including the final END statement, which is an implied
RETURN).

G.3 Value Returned from Typed Procedure

The result of a typed procedure is returned as shown in table G-l.

Table G-l. Typed Procedure Values

Procedure Type Result Returned In

BYTE A Register

WORD R6 and R7

BIT C Register (the carry bit)

PLJM-51

APPENDIX H
RUN-TIME INTERRUPT PROCESSING

H. 1 General Information

An interrupt is initiated when the CPU receives a signal from some device (on-chip
or off-chip).

Note that the CPU does not respond to this signal unless interrupts are enabled, and
unless the specific interrupt in question is also enabled. In PLfM-51, the user is
responsible for enabling and disabling interrupts, which is done by using the IE regis
ter and the ENABLE and DISABLE statements.

If the interrupt is enabled, the following actions take place:

1. The CPU completes any instruction currently in execution.

2. The PC register is placed on the stack (occupying two bytes of stack storage).

3. Interrupts whose priority is the same or lower than the one being serviced are
disabled.

4. The low-level interrupt handler (supplied by PLM51.LIB) saves the A,B, DPTR
and PSW registers on the stack, switches to the interrupt procedure's register
bank, and then activates the interrupt procedure corresponding to the interrupt
number.

5. When that procedure terminates, the stack is automatically restored to its state
when the interrupt was received, A, B, DPTR and PSW are restored, and control
returns to the point where it was interrupted.

The mechanism for this activation and restoration, the interrupt vector, is described
below.

H.2 The Interrupt Vector

If the NOINTVECTOR control is not used, an interrupt vector entry is automati
cally generated by the compiler for each interrupt procedure. Collectively, the inter
rupt vector entries form the interrupt vector. If NOINTVECTOR is used, the
programmer must supply the interrupt vector as explained in section H.3.

The interrupt vector is an absolute chunk of code beginning at location 3. The n-th
entry is at location 8*n + 3, and contains a jump to another (relocatable) chunk of
code (referred to here as the low-level interrupt handler) that first saves A, B, DPTR
and PSW, sets PSW to select the correct register-bank, and then calls the procedure
declared with the INTERRUPT n attribute. These two pieces of code come from
PLM51.LIB during RL51-time.

Figure H-I is an example of the code used to implement the interrupt vector entry
and the low-level interrupt handler for interrupt 2. ?PIV02 is the start address of the
interrupt vector entry, ?PIP02 is the start address of the low-level interrupt handler,
?PIH02 is the start address of the user written interrupt procedure. ?PSW02 is the
appropriate setting of the PSW for the interrupt procedure as implied by the USING
attribute used for that procedure.

H-l

Run-Time Interrupt Processing

H-2

-----MODULE ?PIV02 -----

the interrupt-vector entry

NAME ?PIV02
PUBLIC ?PIV02
EXTRN CODEC?PIP02)

CSEG AT 02 * 8 + 3
?PIV02:

LJMP ?PIP02
END

----- MODULE ?PIP02 -----

low level interrupt handler

?PIP02S

?PIP02:

NAME

PUBLIC
EXTRN

SEGMENT
RSEG

PUSH ACC
PUSH B
PUSH DPH
PUSH DPL
PUSH PSW

?PIP02

?PIP02
CODEC?PIH02),
NUMBERC?PSW02)

code
?PIP02S

MOV PSW,I?PSW02
L CAL L ? P I H 0 2
POP PSW
POP DPL
POP DPH
POP B
POP ACC
RET I
END

Figure H-1. ASM51 Code for Interrupt Vector and CPU Status Stacking

H.3 Writing Low-Level Interrupt Handlers Separately

To achieve faster response by pushing less (if you are sure that Band DPTR do not
have to be saved), you may want to write the interrupt vector entry and the low-level
interrupt handler yourself.

If you want to handle interrupts yourself, compile your PL/M-51 interrupt-service
routine without giving it the INTERRUPT attribute. Then, make it PUBLIC, call
it, for example, MY_HANDLER and make sure it has the right register-bank (i.e.,
USING attribute, or $REGISTERBANK setting).

PL/M-51

PLfM-51 Run-Time Interrupt Processing

Now, assemble an ASM51 program to call your handler. Your ASM51 program
must look like the one that follows.

EXTRN CODE(MY_HAHDLER)
MY_HANDLER_S_BAHK EQU 3 i for instance
MY_HAHDLER_S_INTERRUPT_HO EQU 5 i for instance

CSEG AT(8*MY_HANDLER_S_INTERRUPT_NO+3) the correct vector
address

LJMP MY_LOW_LEVEL_INTERRUPT_HAHDLER
HANDLER SEGMENT CODE

RSEG HANDLER
MY_LOW_LEVEL_INTERRUPT_HANDLER:

PUSH ACC
PUSH B, DPL and DPH were eliminated

PUSH PSW
MOV PSW,I8*MY_HANDLER_S_BANK
LCALL MY_HANDLER
POP PSW

POP DPH, DPL ad B were eliminated
POP ACC
RET I
END

H.4 Writing Interrupt Vectors Separately

The only code at the interrupt-vector address is an LJMP to the low-level interrupt
handler supplied by PLM51.LIB. If you want to write your own vector and use the
existing low-level handler, you have to know that handler's PUBLIC name. For inter
rupt number 0, this name is ?PIPOO; for interrupt number 1, ?PIPO 1; and so on.

Thus, to produce your own vector-entry for interrupt no.4, write

EXTRN
CSEG
LJMP
END

CODE(?PIP04)
AT(4*8+3)
?PIP04

and assemble under ASM51.

The PL/M-51 interrupt handler must have the INTERRUPT attribute so the low
level interrupt handler will have access to its entry-point. The interrupt handler must
be compiled under $NOINTVECTOR.

H.5 PL/M-51 Errors Detected at RL51-Time

It is illegal to have two different procedures with the same INTERRUPT attribute.
If you break this rule in one module, the compiler will detect it; but, if the two proce
dures are in different modules, RL51 will have to detect the error. RL51 detects the
error by complaining about a doubly-defined symbol with a name like ?PIH05. Similar
RL51 error messages will appear if module-level code ("main program" in Fortran
parlance) appears in more than one module.

H-3

• 0
APPENDIX I

THE PROCESSOR DESCRIPTOR FILES n

The REGnn.DCL files, listed below, are supplied with the PL/M-51 compiler. Each
file contains all the REGISTER declarations needed for the appropriate machine
(e.g., REG51.DCL contains the declarations for the 8051 microcomputer). All regis
ters below have the same name in the appropriate 8051 series manual. $INCLUDE
ing it in your source file will ensure that you never have to declare a register.

If, in some module, you have no use for a register, you can delete its definition from
this file.

NOTE
The compiler uses the ACC, B, PSW, DPL and DPH registers to accomplish
various computations and to hold temporary results. Use of these registers in
the user program, although permitted, may cause unpredictable results (e.g.,
PSW = OFFH is dangerous).

/* REGISTER DECLARATIONS FOR 8051 */

DECLARE REG LITERALLY 'REGISTER'i

/********* BYTE REGISTERS ********/
DECLARE

PO
P 1
P2
P3
PSW
ACC
B
SP
DPL
DPH
PCON
TCON
TMOD
TLO
T L 1
THO
TH1
I E
I P
SCON
SBUF

BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE

ATCBOH)
ATC90H)
ATCOAOH)
ATCOBOH)
ATCODOH)
ATCOEOH)
ATCOFOH)
ATCB1H)
ATCB2H)
ATCB3H)
ATCB7H)
ATCBBH)
AT.CB9H)
ATCBAH)
ATCBBH)
ATCBCH)
ATCBDH)
ATCOABH)
ATCOBBH)
ATC9BH)
ATC99H)

REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG i

T*-f**-i** * * BIT REGISTERS * * * * * * * * /

/********* PSW BITS ********/
DECLARE

C Y BIT
A C BIT
FOB I T
RS1 BIT
RSO BIT

ATCOD7H) REG,
ATCOD6H) REG,
ATCOD5H) REG,
ATCOD4H) REG,
ATCOD3H) REG,

1-1

The Processor Descriptor Files PL/M-Sl

OV BIT ATCOD2H) REG)
P BIT ATCODOH) REG)

Ifffffffff TCOH BIT S ffffffffl

T F 1 BIT ATCSFH) REG)
T R 1 BIT ATCSEH) REG)
TFO BIT ATCSDH) REG)
T R 0 BIT ATCSCH} REG)
I E 1 BIT ATCSBH} REG)
I T 1 BIT ATCSAH} REG)
lEO BIT ATCS9H} REG)
ITO BIT ATCSSH} REG)

Ifffffffff I E BIT S ffffffffl

EA BIT ATCOAFH} REG)
ES BIT ATCOACH} REG)
E T 1 BIT ATCOABH} REG)
E X 1 BIT ATCOAAH} REG)
E TO BIT ATCOA9H} REG)
EX 0 BIT ATCOASH} REG)

Ifffffffff I P BIT S ffffffffl

PS BIT ATCOBCH) REG)
P T 1 BIT ATCOBBH} REG,
P X 1 BIT ATCOBAH} REG)
PTO BIT ATCOB9H} REG,
P X 0 BIT ATCOBSH} REG)

If.fffffff P3 BITS ffffffffl

RD BIT ATCOB7H} REG,
lAIR BIT ATCOB6H} REG)
T 1 BIT ATCOBSH} REG,
TO BIT ATCOB4H} REG)
I H T 1 BIT ATCOB3H} REG)
I H TO BIT ATCOB2H} REG)
TXD BIT ATCOB1H) REG)
RXD BIT ATCOBOH} REG)

Ifffffffff SCOH BITS ffffffffl

SMO BIT ATC9FH} REG)
S M 1 BIT ATC9EH) REG)
SM2 BIT ATC9DH} REG)
REH BIT ATC9CH} REG)
TBS BIT ATC9BH) REG)
RBS BIT ATC9AH} REG)
T I BIT ATC99H} REG)
R I BIT AT(9SH} REGj

1-2

PLfM-51 The Processor Descriptor Files

I f REGISTER DECLARATIONS FOR S044 f I

DECLARE REG LITERALLY 'REGISTER' ;

Ifffffffff BYTE REGISTERS ffffffffl

DECLARE
P 0 BYTE AT(SOH) REG,
P 1 BYTE AT(SOH) REG,
P 2 BYTE AT(OAOH) REG,
P3 BYTE AT(OBOH) REG,
PSW BYTE AT(ODOH) REG,
ACC BYTE AT(OEOH) REG,
B BYTE AT(OFOH) REG,
SP BYTE AT(S1H) REG,
DPL BYTE AT(S2H) REG,
DPH BYTE AT(S3H) REG,
TCOH BYTE AT(SSH) REG,
TMOD BYTE AT(SSH) REG,
TLO BYTE AT(SAH) REG,
T L 1 BYTE AT(SBH) REG,
THO BYTE AT(SCH) REG,
T H 1 BYTE AT(SDH) REG,
I E BYTE AT(OA8H) REG,
I P BYTE AT(OB8H) REG,

E I NT BYTE AT(OSEH) REG,
EBUF BYTE AT(OSFH) REG,

STS BYTE AT(OC8H) REG,
SMD BYTE AT(OCSH) REG,
RCB BYTE AT(OCAH) REG,
RBL BYTE AT(OCBH) REG,
RBS BYTE AT(OCCH) REG,
RFL BYTE AT(OCDH) REG,
STAD BYTE AT(OCEH) REG,
DMACNT BYTE AT(OCFH) REG,
NSHR BYTE ATCOD8H) REG,
S IUS T BYTE AT(ODSH) REG,
TCB BYTE AT(ODAH) REG,
TBL BYTE AT(ODBH) REG,
TBS BYTE ATCODCH) REG,
F I F 0 1 BYTE AT(ODDH) REG,
F I F 0 2 BYTE AT(ODEH) REG,
F I F 0 3 BYTE AT(ODFH) REGj

Ifffffffff BIT REGISTERS ffffffffl

Ifffffffff PSW BIT S ffffffff/

DECLARE
CY BIT AT(OD7H) REG,
AC BIT ATCOD6H) REG,
F 0 BIT ATCODSH) REG,
R S 1 BIT AT(OD4H) REG,
RSO BIT AT(OD3H) REG,
OV BIT AT(OD2H) REG,
P BIT AT(ODOH) REG,

1-3

The ProcessorDescriptor Files PL/M-51

1*******1* TCOH BITS ********1

T F 1 BIT ATCBFH) REG,
T R 1 BIT ATCBEH) REG,
TFO BIT ATCBDH) REG,
TRO BIT ATCBCH) REG,
I E 1 BIT ATCBBH) REG,
I T 1 BIT ATCBAH) REG,
lEO BIT ATCB9H) REG,
ITO BIT ATCBBH) REG,

1 1 ******** I E BIT S * * * I * * * * I
EA BIT ATCOAFH) REG,
ES BIT ATCOACH) REG,
E T 1 BIT ATCOABH) REG,
EX 1 BIT ATCOAAH) REG,
ETO BIT ATCOA9H) REG,
EX 0 BIT ATCOABH) REG,

1********* I P BIT S ********1
PS BIT ATCOBCH) REG,
P T 1 BIT ATCOBBH) REG,
P X 1 BIT ATCOBAH) REG,
PTO BIT ATCOB9H) REG,
P X 0 BIT ATCOBBH) REG,

1**1****** P3 BIT S * * * * * I * * I
RD BIT ATCOB7H) REG,
WR BIT ATCOB6H) REG,
T 1 BIT ATCOB5H) REG,
TO BIT ATCOB4H) REG,
I H T 1 BIT ATCOB3H) REG,
I H T 0 BIT ATCOB2H) REG,
TXD BIT ATCOB1H) REG,
RXD BIT ATCOBOH) REG ,

1********* STS BIT S ****1***1

TBF BIT ATCOCFH) REG,
RBE BIT ATCOCEH) REG,
RTS BIT ATCOCDH) REG,
S I BIT ATCOCCH) REG,
BOV BIT ATCOCBH) REG,
OPB BIT ATCOCAH) REG,
AM BIT ATCOC9H) REG,
RBP BIT ATCOCBH) REG,

1****1**** H S H R BIT 5 ********/
HS2 BIT ATCODFH) REG,
H S 1 BIT ATCODEH) REG,
HSO BIT ATCODDH) REG,
SES BIT ATCODCH) REG,
HR2 BIT ATCODBH) REG,
H R 1 BIT ATCODAH) REG,
HRO BIT ATCOD9H) REG,
SER BIT ATCODBH) REGi

1-4

PL/M-51

1* REGISTER DECLARATIONS FOR S052 *1

DECLARE REG LITERALLY 'REGISTER'j

1********* BYTE REGISTERS ********1
DECLARE

PO
P 1
P2
P3
PSW
A C C
B
SP
DPL
DPH
PC ON
TCON
TMOD
TLO
T L 1
THO
T H 1
I E
I P
SCON
SBUF
T2CON
TL2
TH2
RLDL
RLDH

BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE

AT(SOH)
AT(90H)
AT(OAOH)
AT(OBOH)
AT(ODOH)
AT(OEOH)
AT(OFOH)
AT(S1H)
AT(S2H)
AT(S3H)
AT(S7H)
AT(SSH)
AT(S9H)
AT(SAH)
AT(SBH)
AT(SCH)
AT(SDH)
AT(OASH)
AT(OBSH)
AT(9SH)
AT(99H)
AT(OCSH)
AT(OCAH)
AT(OCBH)
AT(OCCH)
AT(OCDH)

REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REGj

1********* BIT REGISTERS ********1

1********* PSW BITS ********1
DECLARE

CY BIT
AC BIT
FOB I T
RS1 BIT
RSO BIT
OV BIT
P BIT

1*********
TF1 BIT
TR1 BIT
TFO BIT
TRO BIT
IE1 BIT
IT1 BIT
lEO BIT
ITO BIT

AT(OD7H) REG,
AT(OD6H) REG,
AT(ODSH) REG,
AT(OD4H) REG,
AT(OD3H) REG,
AT(OD2H) REG,
AT(ODOH) REG,

TCON BITS ********1
AT(SFH) REG,
AT(SEH) REG,
AT(SDH) REG,
AT(SCH) REG,
AT(SBH) REG,
AT(SAH) REG,
AT(S9H) REG,
AT(SSH) REG,

The ProcessorDescriptor Files

1-5

The ProcessorDescriptor Files

1-6

,
EA BIT
E S BIT
ET1 BIT
EX1 BIT
ETO BIT
EXO BIT

,
P S BIT
PT1 BIT
PX1 BIT
PTO BIT
PXO BIT

,
RD BIT
WR BIT
T 1 BIT
TO BIT
INT1 BIT
INTO BIT
TXD BIT
RXD BIT

,
SMO BIT
SM1 BIT
SM2 BIT
REN BIT
TB8 BIT
RB8 BIT
T I BIT
RIB I T

IE BITS •••••••• ,
ATCOAFH) REG,
ATCOACH) REG,
ATCOABH) REG,
ATCOAAH) REG,
ATCOA9H) REG,
ATCOA8H) REG,

IP BITS •••••••• ,
ATCOBCH) REG,
ATCOBBH) REG,
ATCOBAH) REG,
ATCOB9H) REG,
ATCOB8H) REG,

P3 BITS •••••••• ,
ATCOB7H) REG,
ATCOB6H) REG,
ATCOBSH) REG,
ATCOB4H) REG,
ATCOB3H) REG,
ATCOB2H) REG,
ATCOB1H) REG,
ATCOBOH) REG,

SCON BITS •••••••• ,
ATC9FH) REG,
ATC9EH) REG,
ATC9DH) REG,
ATC9CH) REG,
ATC9BH) REG,
ATC9AH) REG,
ATC99H) REG,
ATC98H) REG,

, ••••••••• T2CON BITS •••••••• ,
TF2 BIT ATCOCFH) REG,
T21P BIT ATCOCEH) REG,
T21E BIT ATCOCDH) REG,
T2RSEN BIT ATCOCCH) REG,
BGEN BIT ATCOCBH) REG,
TR2 BIT ATCOCAH) REG,
C_T BIT ATCOC9H) REGj

,. RESERVED BIT ATCOC8H) REGj .,

PL/M-51

APPENDIX J
SAMPLE PROGRAM 2

This appendix lists an entire PL/M-51 application. The sample program was compiled,
linked and run, and gave correct results.

The program is divided into 3 separate modules:

1. CALC, which contains the main program.

2. NUMIO, which handles I/O of numbers, and is mainly concerned with convert
ing numbers to/from ASCII and binary representation.

3. CHARlO, which is concerned with the hardware-dependent I/O details (it
performs I/O through the serial port SBUF).

Coding this example in ASM51 takes many hundreds of statements (partly because
this example does 16-bit arithmetic, yet 8051 only supplies 8-bit arithmetic). It is
recommended that you compare the sample program given here to the somewhat
similar one given in Appendix G of the MCS-5J Macro Assembler User's Guide.

PLlM-S1 COMPILER calculator for unSigned 16 bit arithmetic

ISIS-II PL/M-S1 V1.0

COMPILER INVOKED BY: PLMS1 :F1:CALC.pS1 pw(90) pICBB)

Stitle C'calculator for unSigned 16 bit arithmetic')

calc: DO;

print: PROCEDURECstrSp) EXTERNAL;

DECLARE strSp ADDRESS; END; Ifprints a null terminated

string residing in ROM and pointed at by STRSP fl

getSnum: PROCEDURE WORD EXTERNAL; END; Ifgets a number from SBUFfl

1 0

12

13

1 7

18

19

20

21

22

23

24
2S

getSoper: PROCEDURE BYTE EXTERNAL; END; Ifgets operation from

SBUF I I

outSnum: PROCEDURECnum) EXTERNAL; I'prints a number to SBUF'I
DECLARE num WORD; END;

DECLARE CRLF LITERALLY 'ODH, OAH'; Ifcarriage-return, line-feed'l

DECLARE (in1, in2) WORD, oper BYTE;

SINCLUDE (:f1:regS1.dcl)

If REGISTER DECLARATIONS FOR BOS1 II

SNOLIST

TMOD = 20H; I'set timer mode to auto reloadfl

TH1 = -253; Ifset timer for 110 BAUD fl

SCON = OCAH;/fprepare the serial portll

TR1 = 1; Ifstart clockfl

CALL print(.('CALCULATOR FOR UNSIGNED 16 BIT ARITHMETIC.', CRLF,

'TYPE A DECIMAL NUMBER (UP TO 5 DIGITS FOLLOWED BY 'RETURN'),',

C R L F ,

'THEN AN OPERATION (+, - f OR I), THEN THE SECOND NUMBER. " CRLF,

0» ;

DO WHILE 1; Ifdo foreverfl

CALL print('(CRLF, 'FIRST NUMBER:' 0»;

in1 = getSnumj

oper = getsoper j

J-l

Sample Program 2 PL/M-51

J-2

26
27
28
29
30 3
31 3

32

34

35
36
37

CALL printc.C'SECoND NUMBER: " 0))j
in2 = getSnumj
DO CASECoper)j

110: + II CALL outSnumCin1 +in2)j
111: - II CALL outSnumCin1 -in2)j
112: I II CALL outSnumCin1 'in2)j
113: II

IF in2=0
THEN CALL printC.C'ATTEMPT TO DIVIDE BY 0', CRLF, 0))j
ELSE CALL outSnumCin1 lin2)j

ENDj I'of DO CASE'I
ENDj I'of DO forever'l

END calcj

MODULE INFORMATION: CSTATIC+oVERLAYABLE)
CODE S I Z E o 0 B 5 H
CONSTANT SIZE o 0 E 0 H
DIRECT VARIABLE S I Z E 05H+00H
INDIRECT VARIABLE S I Z E OOH+OOH
BIT SIZE OOH+OOH
BIT-ADDRESSABLE S I Z E OOH+OOH
AUXILIARY VARIABLE S I Z E 0000 H
MAXIMUM STACK S I Z E o 004 H
REGISTER-BANK(S) USED: 0
125 LINES READ
0 PROGRAM ERROR(S)

END OF PLlM-51 COMPILATION

PL/M-51 COMPILER liD for numbers and operation

ISIS-II PL/M-51 V1.0
COMPILER INVOKED BY: PLM51 :F1:NUMIo.p51 pw(90)

stitle ('liD for numbers and operation')
numSio: DOj

print: PRoCEDURECstrSp) EXTERNALj

181 D
224D

5D+ o D
o D + o D
o D + o D
o D + o D
OD
4D

DECLARE strSp ADDRESSj ENDj I'print a null terminated
string residing in ROM and pointed at by STRSP II

get$char: PROCEDURE BYTE EXTERNALj ENDj I'get char from SBUF and echo
i t I I

8

1 0

11

12
13

14

15

16
1 7

19

20

3

putSchar: PRoCEDURECchar) EXTERNALj
DECLARE char BYTEj ENDj

DECLARE CR LITERALLY 'ODH'j
DECLARE CRLF LITERALLY 'ODH, OAH' j

I'print a char to SBUF'I

getSnum: PROCEDURE WORD PUBLICj I'gets a number from SBUF'I
DECLARE num WORD,

Ci, char) BYTEj
num, i = OJ
char = getschar j
I'each loop iteration handles one input character'l
DO WHILE char<>CR AND i<5j

IF char < '0' OR char> '9' THEN DOj I'error'l
CALL printC.CCRLF, 'NOT A DECIMAL DIGIT. RETYPE NUMBER:
) j

n u m, i OJ l're-initialize·1

o)

PL/M-51 Sample Program 2

21

22

23

24

25

26

27

28

30

31

32

33

34

35

36

37

38

39

40

4 1

43

44

45

46

4 7

48

3

3

3

3

3

UID;

ELSE DO; Ifadd digit to numberfl

num num f10 +char -'0';

i = i + 1 ;

EtiD;

char = getSchar;

EtiD;

IF char <> CR I'possible only if input had over 5 digitsfl

THEti CALL print(,(' FIRST DIGITS USED', 0));

CALL print('(CRLF, 0));

RETURti(num) i

EtiD getSnum;

getSoper: PROCEDURE BYTE PUBLIC; Ifgets operation from SBUFfl

DECLARE (i, char) BYTE;

DECLARE op_code(4) BYTE CotiSTAtiT('+-f/'};

DO WHILE 1; If DO forever (until a legal operation is typed)fl

CALL print(.('OPERATIoti: ',0) }i

char = getschar;

CALL print('(CRLF, O});

DO i = 0 to 3; I'ched if input char is an operation*1

IF char = op_code<i} THEti RETURti(i};

EtiD;

CALL print(,('ERROR, PLEASE TYPE + f OR I', CRLF, O));

EtiD; Ifof DO foreverfl

EtiD getSoper;

out$num: procedure(num} PUBLIC; Ifprints a number to SBUFf,

DECLARE num WORD;

49 DECLARE (i, j, digit) BYTE;

PL/M-51 COMPILER 110 for numbers and operation

50 DECLARE power_10 WORD,

5 1

52

53

54

55

56

57

58

59

60

61

62

63

64

65

powers_10(6} WORD CotiSTAtiT<10000, 1000, 100, 10, 1, OJ;

CALL print(,('RESULT IS: " O});

i = 0;

DO WHILE num < powers_10U}i "skip printing leading zeroes f /

i = i + 1 i

EtiDi

DO j = i to 3; Ifl oop prints all digits except lastf/

power _ 1 0 = power s_ 1 0 (j) i

digit = num /power_10;

CALL putSchar('O' +digit}i

num = num - digit 'power_10i

EtiD;

CALL putschar('O' +num)i Ifprint last digit'/

CALL print('(CRLF, 0));

EtiD outsnum;

EtiD numSio;

MODULE IMFORMATIOH: (STATIC+OVERLAYABLE)

CODE S I Z E o 169 H 361D

COHSTAHT S I Z E 0090H 14 4 D

DIRECT VARIABLE S I Z E 00H+07H o D + 7D

IHDIRECT VARIABLE S I Z E OOH+OOH OD+ OD

BIT SIZE OOH+OOH o D + OD

BIT-ADDRESSABLE S I Z E OOH+OOH on+ OD

AUXILIARY VARIABLE S I Z E o 00 0 H on
MAXIMUM STACK S I Z E o 0 0 2 H 2D

REGI STER-BAHK(S) USED: 0

J-3

Sample Program 2 PL/M-51

J-4

70 LINES READ
o PROGRAM ERROR(S)

END OF PL/M-51 COMPILATION

PLlM-51 COMPILER character lID through SBUF

ISIS-II PL/M-51 V1.0
COMPILER INVOKED BY: PLM51 :F1 :CHARIO.p51 pw(90) pl(66)

6

8 3
9 2

1 0
11

12 2
13 2
14 3
15 3
16 2
17
18 2
19
20

21
22

23
24
25
26
27
28

29

Stitle ('character 1I0 through SBUF')
charSio: DO;

SINCLUDE (:f1:reg51.dcl)
If REGISTER DECLARATIONS FOR 8051 fl

SNOLIST
putSchar: PROCEDURE(char) PUBLIC; Ifprint a char to SBUFfl

DECLARE char BYTE;
DO WHILE NOT TI; If wait till ready for outputfl
ENDi
T I = 0;

5buf = char;
END putSchar;

getSchar: PROCEDURE BYTE PUBLIC; Ifget char from SBUF and echo itfl
DECLARE char BYTE;
DO WHILE NOT RI; Iflllait till there i5 inputfl
END;
R I = 0;

char = 5bufi
CALL putSchar(char);
RETURN(char);

END getSchar;

print: procedure(5trSp) PUBLICi
DECLARE 5trSp ADDRESS; Ifprint a null terminated

5tring re5iding in ROM and pointed at by STRSP fl

DECLARE char BASED 5tr$p BYTE CONSTANT;
DO WHILE char <> 0; 1ft ill null terminatorfl

CALL putSchar(char)i
5trSp = 5trlp +1;

END;
END print;

END charSio;

MODULE INFORMATION: (STATIC+OVERLAYABLE)
CODE SIZE
CONSTANT SIZE
DIRECT VARIABLE SIZE
INDIRECT VARIABLE SIZE
BIT SIZE
BIT-ADDRESSABLE SIZE
AUXILIARY VARIABLE SIZE
MAXIMUM STACK SIZE
REGISTER-BANK(S) USED:
119 LINES READ
o PROGRAM ERROR(S)

~ND OF PL/M-51 COMPILATION

0043H
OOOOH

00H+03H
OOH+OOH
OOH+OOH
OOH+OOH

o 0 0 0 H
o 004 H
0

67D
OD
o D + 3D
o D + OD
o D + OD
o D + OD
OD
4D

APPENDIX K
HOW TO GENERATE BETTER CODE

If you write PLjM-51, the object-code produced will neither be as compact, nor as
fast, as the best ASM51 code you can write for the job. But, you have a good chance
of exceeding most ASM51 programmers in the efficient use of on-chip RAM.

It is worth noting, though, that certain computations can require many instructions
and execute very slowly on the 8051, even in assembly-language. If X and Yare
WORD variables, it takes only 3 keystrokes to write XjY in your program; but, the
code to do this job can take 500 microseconds or so (at 12 MHz). The following
paragraphs describe actions to avoid if time or space are critical.

WORD operations are always more expensive than BYTE operations. Do not use
WORD variables if BYTEs will do the job; and do as little arithmetic with them as
you can. Remember that "DECLARE A ... BASED B;" is legal even if B is a BYTE,
as long as A has a MAIN or IDATA suffix.

"DECLARE X <type> CONSTANT(17);" is much more expensive than
"DECLARE X LITERALLY '1 T; ". The former construct causes X to be fetched
from ROM each time it is used (by one or two MOVC instructions, with the attendant
set-up overhead). The latter causes the value of X to appear in the code as an
immediate (e.g., #17).

The code to handle AUXILIARY variables is expensive and slow. Try to put only
rarely-accessed variables in AUXILIARY.

Division of a BYTE variable by anything is fairly cheap. Division of a WORD
variable, even by a BYTE, can be very slow, depending on the divisor. Keep in mind
that SHR can be much cheaper than division.

On the other hand, procedure CALLs (and function calls), with or without parame
ters, are fairly cheap; they are much faster and more compact than in PLjM-80.
Thus, the benefits of using procedures (programs are easier to understand and
maintain) are available without the overhead that is usually associated with them.

K. 1 RAM Space Efficiency

Since all members of the 8051 family have 4K bytes or more of ROM, efficiency in
using ROM space is not a critical issue. On-chip RAM is a different matter, however.
All members of the 8051 family have only 128-256 bytes of on-chip RAM. From this
128-256 bytes, the register banks and stack must be deducted. Keep in mind, too,
that you lose an additional byte of the on-chip ROM that remains for each 8-bit
variable you use.

$OPTIMIZE(2) (the default) goes some way to help here. It makes one critical
assumption: that, when your code exits a PROCEDURE or DO block, you no longer
care about the values of items declared inside it, and that, if you ever re-enter it, you
are ready to accept garbage in them (until you reinitialize them). If you are ready to
live by these rules (which are those of Pascal and Ada, and also those referring to the
variables of REENTRANT procedures in PLjM-80 and PLjM-86), the
$OPTIMIZE(2) default will assume it has permission to share the same piece of on
chip RAM between procedures that do not call each other, and thus, to make 128

K-l

How to Generate Better Code

K-2

bytes do the work of 200 or 300. The compiler is careful not to play this trick if two
procedures call each other; but, it assumes that all such possible calls appear in the
module it compiles. See the $OPTIMIZE control in Chapter 14.

Based upon the information given in the preceding paragraphs, it follows that global
(module level) variables are more expensive than local variables because the former
cannot be overlaid.

PL/M-51

• ®
APPENDIX L

VALID PL/M-S1 STATEMENTS n

This appendix contains various types of valid PL/M-51 statements that may help you
remember where the commas, semicolons, etc., must appear.

X,Y,Z = 8 XOR Y*MAXC'??', .Z);
X = X + 1 ;
CALL FOOCBAZ,GORP,THUD);
CALL STRUC.WORD_MEMBER;
CALL ZILCH;

IF 1>2 THEN CALL FOR HELPC.C'S.O.S !' ,0»;
ELSE RETURN;

DECLARE CKING,DAVID) BIT MAIN, STRC*) BYTE CONSTANTC'JERUSALEM');
DECLARE EIGHT_BITS LITERALLY 'BYTE';
DECLARE PCON BYTE ATC87H) REGISTER;
DECLARE Q WORD CONSTANT PUBLIC, QQ LABEL EXTERNAL;
DECLARE S STRUCTUREC NAME(31) BYTE, AGE BYTE, SEX BYTE);

DECLARE T STRUCTURE C
CBIT_1, BIT_2) BIT) AT(22H);

DECLARE WORD AUXILIARY, XX BASED X BYTE CONSTANT;
DECLARE Y ATC.YY+1) BYTE IDATA;

DO 1=1 TO 7;
END;

DO; END;

X: DO i

END X i

DO CASE Ii
i /* case ° -- null statement */
i /* case 1 */
CALL 1_IS_2;

/* case 3 */

END;

DO 1=1 TO 77 BY 13;
END;

GO TO END;
X: PROCEDURE INDIRECTLY_CALLABLE;
X: PROCEDURE INTERRUPT 4 USING 1;

MAX: PROCEDURECX,Y) BYTE; DECLARE (X,Y) BYTE;
IF X>Y THEN RETURN X; ELSE RETURN Yj

END MAX;

ZILCH: PROCEDURE EXTERNAL; END ZILCH;
RETURN Y;
RETURN;

L-l

APPENDIX M
ASSEMBLER UTILITY LIBRARY: UTILS1.LIB

The assembler utility library, UTILS1.LIB, contains a number of procedures useful
for string manipulation. These have been coded in ASMSI and have been optimized
for speed. Each procedure has a name determined by the memory types involved. The
generic forms, however, are as follows:

M 0 Vxyi (tram, to, count) - move string
R M Vxxi (tram, to, count)

eM P xyi (tram, to, count) - compare strings

F N D Bxi (tram, to, count) - search string for element
F N D Wxi (tram, to, count)

5 K P Bxi (tram, to, count) - search string for mismatch
5 K P Wxi (tram, to, count)

5 E T Bxi (tram, to, count) - set string elements to value
5 E T Wxi (tram, to, count)

M. 1 Using UTILS1.LIB

Two things are required when using one or more of the procedures from UTILSI.LIB
in a program module:

The module's object-code file must be linked with UTILSI.LIB.

• Any UTILS1.LIB procedure used in the module must be declared as an EXTER
NAL procedure before it is called.

To link the assembler utility library with the module's object-code file, use RLSI.
For example, if the object-code file is called MYMOD.OBJ, then the necessary linkage
is performed by the following:

R L 5 1 M Y MOD . 0 B J, UTI L 5 1 . LIB, P L M 5 1 . LIB [options]

Here, the PLMS1.LIB support library is necessary as described in Chapter 13. The
options are RLSI controls described in the MCS-5J Utilities User's Guide.

The EXTERNAL declarations needed for UTILS1.LIB are shown in M.3. These are
contained in the declaration file UTILS1.DCL. For example, the MOV procedure
for moving strings from on-chip RAM (DATA or IDATA) to external RAM
(XDATA) has the following declaration:

MOVDX1: PROCEDURE (from, target, count) EXTERNAL USING 1;
DECLARE from BYTE, target WORD, count BYTE;
END;

The parameters of each UTILSI.LIB procedure have either BYTE or WORD
(ADDRESS) values. To save space, BYTEs are used wherever possible. For example,
the from parameter of MOVDX I is declared a BYTE because any address in on-chip
RAM will be FFH or less. That is, a BYTE is sufficient to express any address in
the from address space. On the other hand, the target parameter of MOVDX I requires
a WORD declaration because the size of the address space (XDATA) is larger than
FFH.

M-I

Assembler Utility Library UTIL51 . LIB

M-2

As noted in 10.S, PL/M-Sl makes the following assumptions about interrupts: an
interrupt procedure must never use the same register bank as the procedure it inter
rupts. It is recommended that one register bank be used for the main program, one
for the high level interrupt, and one for the low level interrupt.

Because it is likely that UTI LSl.LI B procedures will be used by both interrupt
handlers and the main program, three copies of each procedure are included in the
library. Each copy differs only in the suffix of its procedure name. For example,
UTILSl.LIB contains the following three procedures: MOVDXO, MOVDXI, and
MOVOX2. Each of the three procedures is identical, except that each should be
declared USING a different register bank. Although it is not necessary, it is recom
mended that the suffix of each procedure matches the register bank used by the
procedure. The simplest way to do this is to edit a copy of UTILS1.0CL and replace
each occurrence with the desired register bank number.

M.2 The UTILS1.LIB Procedures

The generic forms of the UTILSI.LIB procedures contain the following mnemonics:

x, y the address spaces of the source and target respectively. These can have
the following designations:

x - xdata (AUXILARY)
C constant (ROM)
0-- data or idata (MAIN)

the register bank used by the UTILSI.LIB procedure (0, I, or 2).

The following are descriptions of the general forms of the UTI L5I. LI B procedures.

MOVxyi

MOV xyi is an untyped procedure that copies a BYTE string from an x address space
to a y address space. It is activated by

CAL L M 0 V xyi (source, destination, count)

where

source and destination are expressions that evaluate to address values in address
spaces x and y respectively.

count is an expression with a BYTE or WORD value.

denotes the register bank (0, 1, or 2) used by the
procedure.

The string elements are copied in ascending order. This will work in every situation
except for those cases where all of the following are true:

x and yare the same address space.

the destination address is higher than the source address.

• both strings overlap.

In this particular case, elements in the overlap region get copied over before they
have a chance to be copied. For this particular case, use RMV, which is the same as
MOV, but copies elements in descending order.

PL/M-51

PL/M-Sl Assembler Utility Library UTILSl.LIB

RMVxxi

RMV xxi is an untyped procedure that copies a BYTE string from an x address space
to the same address space. It is activated by

CAL L R M V xxi (source, destination, count)

where

source and destination are expressions that resolve to address values in x.

count is an expression with BYTE or WORD value.

is the register bank (0, 1, or 2) used by the procedure.

RMV is the same as MOV except that elements are copied in descending order. This
is needed for the special case of overlapping source and destination strings in the
same address space having destination address higher than the source address.

CMPxyi

CMPxyi is a WORD function that compares two BYTE strings. It is activated by a
function reference with the following form:

eM P xyi (source1, source2, count)

where

source1 and source2 are expressions that evaluate to address values in address
spaces x and y respectively.

count is an expression with BYTE or WORD value.

is the register bank (0, 1, or 2) used by the procedure.

CMP compares two BYTE strings of length count whose locations start at source1
and source2 in address spaces x and y. CMP returns the index (position within the
strings) of the first pair of elements found to be unequal. If both strings are equal,
CMP returns the WORD value OFFFFH.

FNDBxilFNDWxi

FNDBxi is a WORD function that searches a BYTE string to find an element that
has a specified value. It is activated by a function reference with the form:

F N D Bxi (source, target, count)

where

source

target

count

is an expression that evaluates to an address value in the
address space x.

is an expression with BYTE or WORD value (if it is a
WORD, the 8 high-order bits will be dropped to produce a
BYTE value).

is an expression with BYTE or WORD value.

is the register bank (0, 1, or 2) used by the procedure.

FNDB returns the index (position within the string) of the first occurrence of the
BYTE value of target in the source string. If no elements of the string match the
BYTE value of target, the function returns OFFFFH.

M-3

Assembler Utility Library UTIL51. LIB

M-4

FNDW is the same as FNDB except that it searches a WORD string instead of a
BYTE string. If target has a BYTE value, it is first extended by 8 high-order O-bits
to produce a WORD value.

SKPBx;/SKPWx;

SKPB and SKPW are the converses of FNDB and FNDW (see above). Instead of
searching for the first element of the source string that matches the target, SKPB
and SKPW search for the first element that does not match the target. In every other
respect, these functions operate the same as FNDB and FNDW.

SETBx;/SETWx;

SETBxi is an untyped procedure that sets each element of a BYTE string to a single
specified value. It is activated by

CAL L 5 E T Bxi (destination, newvalue, count)

where

destination

newvalue

count

is an expression that evaluates to an address value in the x
address space.

is an expression with a BYTE or WORD value (if it has a
WORD value, the 8 high-order bits are dropped to produce
a BYTE value).

is an expression with BYTE or WORD value.

is the register bank (0, 1, or 2) used by the procedure.

SETB assigns the BYTE value of newvalue to each element of the BYTE string of
count length beginning at destination.

SETW is the same as SETB except that it assigns a single WORD value to all the
elements of a WORD string. If newvalue is a BYTE, it is first extended by 8 high
order O-bits to produce a WORD value.

M.3 UTILS1.LIB Procedure Declarations

The following is a list of the declarations for the procedures and functions included
in UTILSl.LIB. These declarations are included in the file UTILSl.DCL. The file
contains declarations for the utilities that use register banks 0, 1, or 2. The user
should select those needed, or if he desires to use procedures that use another register
bank, edit UTIL51.DCL to include the desired register bank number.

MOVDD1: PROCEDURE (from, target, count) EXTERNAL USING 1j
/* MOVE DATA BYTES TO DATA */

DECLARE from BYTE, target BYTE, count BYTEj
ENDj

MOVXD1: PROCEDURE (from, target, count) EXTERNAL USING 1j
/* MOVE XDATA BYTES TO DATA */

DECLARE from WORD, target BYTE, count BYTEj
ENDj

PL/M-51

PL/M-Sl Assembler Utility Library UTILSl.LIB

MOVCD1: PROCEDURE (from, target, count) EXTERNAL USING 1 j
/* MOVE ROM BYTES TO DATA */

DECLARE from WORD, target BYTE, count BYTEj
ENDj

MOVDX1: PROCEDURE (from, target, count) EXTERNAL USING 1 j
/* MOVE DATA BYTES TO XDATA */

DECLARE from BYTE, target WORD, count BYTEj
ENDj

MOVCX1: PROCEDURE (from, target, count) EXTERNAL USING 1 j
/* MOVE ROM BYTES TO XDATA */

DECLARE from WORD, target WORD, count WORDj
ENDj

MOVXX1: PROCEDURE (from, target, count) EXTERNAL USING 1 j
/* MOVE XDATA BYTES TO XDATA */

DECLARE from WORD, target WORD, count WORDj
ENDj

RMVDD1: PROCEDURE (from, target, count) EXTERNAL USING 1 j
/* REVERSE MOVE DATA BYTES TO DATA */

DECLARE from BYTE, target BYTE, count BYTEj
ENDj

RMVXX1: PROCEDURE (from, target, count) EXTERNAL USING 1j
/* REVERSE MOVE XDATA BYTES TO XDATA */

DECLARE from WORD, target WORD, count WORDj
ENDj

CMPDD1: PROCEDURE (from, target, count) WORD EXTERNAL USING 1 j
/* COMPARE BYTES IN DATA TO BYTES IN DATA */

/* RETURN INDEX OR OFFFFH */

DECLARE from BYTE, target BYTE, count BYTEj
EHDj

CMPXD1: PROCEDURE (from, target, count) WORD EXTERNAL USIHG 1 j
/* COMPARE BYTES IH XDATA TO BYTES IH DATA */

/* RETURN INDEX OR OFFFFH */

DECLARE from WORD, target BYTE, count BYTEj
EHDj

CMPCD1: PROCEDURE (from, target, count) WORD EXTERNAL USING 1 j
/* COMPARE BYTES IN ROM TO BYTES IN DATA */

/* RETURN INDEX OR OFFFFH */

DECLARE from WORD, target BYTE, count BYTEj
ENDj

CMPCX1: PROCEDURE (from, target, count) WORD EXTERNAL USING 1 i
/* COMPARE BYTES IN ROM TO BYTES IN XDATA */

/* RETURN INDEX OR OFFFFH */

DECLARE from WORD, target WORD, count WORDi
ENDi

CMPCC1: PROCEDURE (from, target, count) WORD EXTERNAL USING 1i
/* COMPARE BYTES IN ROM TO BYTES IN ROM */

/* RETURN INDEX OR OFFFFH */

DECLARE from WORD, target WORD, count WORDj
ENDi

M-5

Assembler Utility Library UTIL51 . LIB

M-6

CMPXX1: PROCEDURE (from, target, count) WORD EXTERNAL USING 1 j
1* COMPARE BYTES IN XDATA TO BYTES IN XDATA fl
1* RETURN INDEX OR OFFFFH *1
DECLARE from WORD, target WORD, count WORDj
ENDj

FNDBX1: PROCEDURE (from, target, count) WORD EXTERNAL USING 1 j
1* FIND target BYTE IN XDATA, RETURN INDEX DR OFFFFH *1
DECLARE from WORD, target BYTE, count WoRDj
ENDj

FNDBC1: PROCEDURE (from, target, count) WORD EXTERNAL USING 1 j
1* FIND target BYTE IN ROM, RETURN INDEX OR OFFFFH *1
DECLARE from WORD, target BYTE, count WoRDj
ENDj

FNDBD1: PROCEDURE (from, target, count) WORD EXTERNAL USING 1 j
If FIND target BYTE IN DATA, RETURN INDEX OR OFFFFH *1
DECLARE from BYTE, target BYTE, count BYTEj
ENDj

FNDWX1: PROCEDURE (from, target, count) WORD EXTERNAL USING 1 j
If FIND target WORD IN XDATA, RETURN INDEX OR OFFFFH *1
DECLARE from WORD, target WORD, count WORDj
ENDj

FNDWC1: PROCEDURE (from, target, count) WORD EXTERNAL USING 1 j
,If FIND target WORD IN ROM, RETURN INDEX OR OFFFFH *1
DECLARE from WORD, target WORD, count WORDj
ENDj

FNDWD1: PROCEDURE (from, target, count) WORD EXTERNAL USING 1 j
If FIND target WORD IN DATA, RETURN INDEX OR OFFFFH *1
DECLARE from BYTE, target WORD, count BYTEj
ENDj

SKPBX1: PROCEDURE (from, target, count) WORD EXTERNAL USING 1 j
If SKIP target BYTE IN XDATA, RETURN INDEX DR OFFFFH *1
DECLARE from WORD, target BYTE, count WORDj
ENDj

SKPBC1: PROCEDURE (from, target, count) WORD EXTERNAL USING 1;
1* SKIP target BYTE IN ROM, RETURN INDEX DR OFFFFH *1
DECLARE from WORD, target BYTE, count WORDj
END ;

SKPBD1: PROCEDURE (from, target, count) WORD EXTERNAL USING 1;
If SKIP target BYTE IN DATA, RETURN INDEX DR OFFFFH *1
DECLARE from BYTE, target BYTE, count BYTEj
END;

SKPWX1: PROCEDURE (from, target, count) WORD EXTERNAL USING 1 j
1* SKIP target WORD IN XDATA, RETURN INDEX OR OFFFFH *1
DECLARE from WORD, target WORD, count WORD;
ENDj

PL/M-51

PL/M-Sl Assembler Utility Library UTILSl.LIB

SKPWC1: PROCEDURE (from, target, count) WORD EXTERNAL USING 1;
/* SKIP target WORD IN ROM, RETURN INDEX OR OFFFFH */

DECLARE from WORD, target WORD, count WORD;
END;

SKPWD1: PROCEDURE (from, target, count) WORD EXTERNAL USING 1;
/* SKIP target WORD IN DATA, RETURN INDEX OR OFFFFH
*/ DECLARE from BYTE, target WORD, count BYTE;
END;

SETBX1: PROCEDURE (from, target, count) EXTERNAL USING 1;
/* SET BYTE IN XDATA TO target VALUE */

DECLARE from WORD, target BYTE, count WORD;
END;

SETBD1: PROCEDURE (from, target, count) EXTERNAL USING 1;
/* SET BYTE IN DATA TO target VALUE */

DECLARE from BYTE, target BYTE, count BYTE;
END;

SETWX1: PROCEDURE (from, target, count) EXTERNAL USING 1;
/* SET WORD IN XDATA TO target VALUE */

DECLARE from WORD, target WORD, count WORD;
END;

SETWD1: PROCEDURE (from, target, count) EXTERNAL USING 1;
/* SET WORD IN DATA TO target VALUE */

DECLARE from BYTE, target WORD, count BYTE;
END;

M-7

8051,12-1
8051 Hardware Flags, 12-1
8080/8085, 1-1
$, 14-1
-,2-2
" 2-2
; , 2-2
:, 2-2
<>,2-2
> =,2-2,5-5
< =,2-2,5-5
>, 2-2, 5-5
<, 2-2, 5-5
*, 2-2, 5-4
',2-2
-, 2-2, 5-4
+, 2-2, 5-4
), 2-2
(, 2-2
* /' 2-2
/*, 2-2
/, 2-2, 5-4
·,2-1,4-1
=,2-2

Activating a Procedure, 10-4
Addition, 5-4
ADDRESS, 3-1
Address-space, 3-3
Address space codes, 3-3
Algorithms, 8-1, 8-2
"ALGORITHM S", 8-1
Analyzing an Expression, 5-2
AND, C-l
Apostrophe, 2-2
Arithmetic, 5-4
Arithmetic Operators, 2-1, 2-2, 5-4

Principal, 5-4
Arithmetic, 4-1, 5-4

Unary, 5-5
Array Member, 6-2
Arrays, 1-2,6-1 thru 6-5

Of Structures, 6-3
Within Structures, 6-3, 6-4

ASCII Character Set, 2-1, F-I
ASCII Codes, F-I
Assembly Language, 1-2
Assignments, 5-9
Assignment Statement, 5-8
ASM51, G-l, J-l

Coded Procedures, G-I , G-2
Asterisk, 2-2
AT,4-6

Statement, 4-7
Attribute, 4-6
AUXILIARY Suffix, 3-3, 3-8

Based Variables, 4-3
Cautions, 4-4

BIT,2-4
Addressable Size, 3-2
Arrays, 6-3
Restrictions, 6-3, 3-2
Size, 2-4
Value, 2-4

Blank, 2-1, 2-2
Block, 7-1 thru 7-5

Nesting, 7-7
Structure, 1-2, 1-4,7-1

BNF, A-I
Body,

Of a procedure, 10-6
Boolean, 1-2

Operations, 1-2, 5-3
Buffer, 8-2
Built-Ins, II-I, 11-5
Built-In Procedures, 1-8, 11-1 thru 11-5
BYTE,2-3

Value, 2-4, 4-1

CALL statement, 7-10
Carriage Return, 2-2
Carry Flag, 12-2
Carry-Rotation, 12-2
Character, 1-2
Character String Constants, 2-3
CMP, M-3
Code, E-l, F-I, G-l
Colon, 2-2
Comma, 2-2
Command Tail Errors, 16-1
Comments, 2-4
Compatibility Checking, 1-2
Compilation, 14-1

Constants, 14-4
Summary, 14-13

Compiler, 1-1
Controls, 14-1

By category, 14-3
Errors, 16-2

Compound Delimiters, 2-3
Computer Programming,

The Art of, 8-1
Conditional Compilation, 14-14
Constant Expressions, 5-1

Special case, 5-9
Constant, 2-3, 5-1
Constants, 2-3, 5-1

Compilation, 3-8, 14-13
Storing, 2-3
Whole-number, 2-4

CONSTANT Suffix, 3-5
Control Constructs, 1-2, 1-3
Control Errors, 16-1

INDEX

Index-l

REQUEST FOR READER'S COMMENTS

PL/M-51 User's Guide
121966-003

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all Intel product
users. This form lets you participate directly in the publication process. Your comments will help us correct and
improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this publi
cation. If you have any comments on the product that this publication describes, please contact your Intel repre
sentative. If you wish to order publications, contact the Intel Literature Department (see page ii of this manual).

1. Please describe any errors you found in this publication (include page number).

2. Does the publication cover the information you expected or required? Please make suggestions for improve
ment.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of publications are
needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating). _____________ _

NAME ______________________________ ___ DATE _______ _

TITLE ___ _

COMPANY NAME/DEPARTMENT __ _

ADDRESS ______________________________________ __

CITY _______________ _ STATE _________ __ ZIP CODE _____ _

(COUNTRY)

WE'D LIKE YOUR COMMENTS ...

This document is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 1040 SANTA CLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

I ntel Corporation
Attn: Technical Publications MIS 6-2000
3065 Bowers Avenue
Santa Clara, CA 95051

IIIIII NO POSTAGE
NECESSARY

IF MAILED
IN U.S.A.

inter
INTEL CORPORATION, 3065 Bowes Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

