

8086 Family Utilities Error Messages

ERROR 44: SEGMENT ADDRESS PREVIOUSLY SPECIFIED IN INPUT
MODULE OR COMMAND LINE

SEGMENT: segment name

The specified segment was specified more than once in the same ADDRESSES con­
trol, or the specified segment has an absolute address in the input module. Process­
ing is terminated, all open files are closed, and control is returned to ISIS-II.

ERROR 45: SEGMENT SPECIFIED MORE THAN ONCE IN ORDER
SEGMENT: segment name

The specified segment was specified more than once in the same ORDER control.
Processing is terminated, all open files are closed, and control is returned to ISIS-II.

ERROR 46: CLASS SPECIFIED MORE THAN ONCE IN ORDER
CLASS: class name

The specified class was specified more than once in the same ORDER control. Pro­
cessing is terminated, all open files are closed, and control is returned to ISIS-II.

ERROR 47: SPECIFIED SEGMENT NOT IN SPECIFIED CLASS
SEGMENT: segment name
CLASS: class name

The specified segment is not in the specified class. This is an error in the use of the
ORDER control. Processing is terminated, all open files are closed, and control is
returned to ISIS-II.

ERROR 48: INVALID COMMAND LINE

There is an error in the command, reenter the command correctly. Processing is ter­
minated, all open files are closed, and control is returned to ISIS-II.

WARNING49: SEGMENT ALIGNMENT NOT COMPATIBLE WITH
ASSIGNED ADDRESS

SEGMENT: segment name

The alignment of the specified segment is not compatible with the address specified
in the ADDRESSES control. An address that meets the alignment criteria is assigned
and the specified address is ignored. Reexecute the command with correct values in
the ADDRESSES control if you want something different than that provided by the
command. Note that there is no way to override the alignment attribute of the seg­
ment. This is a warning message, processing continues.

ERROR 50: INVALID COMMAND LINE; TOKEN TOO LONG
ERROR IN COMMAND TAIL NEAR #:
partial command tail

The command line contains a token that is too long. Processing is terminated, all
open files are closed, and control is returned to ISIS-II.

WARNING 51: REFERENCING LOCATION IS OUTSIDE 64K FRAME OF
REFERENCE

MODULE: module name
ADDRESS: 20 bit address
FRAME OF REFERENCE: 20 bit address

The address of a jump or call lies outside of the 64K frame of reference for a self
relative instruction. This warning occurs when loeating the module containing the
self relative reference. This is a warning message, so processing continues.

A-II

Error Messages 8086 Family Utilities

A-12

WARNING 52: REFERENCED LOCATION IS OUTSIDE 64K FRAME OF
REFERENCE

MODULE: module name
REFERENCED LOCATION: 20 bit address
FRAME OF REFERENCE: 20 bit address

The object being addressed by a self relative jump or call is outside the 64K frame of
reference for the self relative instruction. This warning occurs when locating the
module containing the self relative reference. This is a warning message, so process­
ing continues.

WARNING 53: CAN NOT ALLOCATE CLASS AT SPECIFIED ADDRESS
ADDRESS: 20 bit address
CLASS: class name

The specified class can not be located at the specified address because a conflict
would result. The class is located at the address nearest the specified address possible
without causing a conflict. If you want conflicts, reissue the command specifying
addresses for each segment with the ADDRESSES control. This is a warning
message, processing continues.

ERROR 54: DATA ADDRESS OUTSIDE SEGMENT BOUNDARIES
SEGMENT: segment name
MODULE: module name

A data record for the specified segment contains data for addresses outside the seg­
ment boundary. The specified module name is the last module name encountered
before the error. Processing is terminated, all open files are closed, and control is
returned to ISIS-II.

WARNING 55: UNDEFINABLE SYMBOL ADDRESS
SEGMENT: segment name
GROUP: group name

One or more line numbers, local symbols, or public symbols have been found that
are addressed relative to the base of the specified group, however, the specified seg­
ment that contains the symbols(s) is not contained within the 64K byte address
range. This is a warning message, processing continues.

WARNING 56: SEGMENT IN RESERVE SPACE
SEGMENT: segment name

A segment is located at an area reserved by the RESERVE control. This may happen
if there is an absolute segment in the input module. This is a warning message, so
processing continues.

ERROR 57: INVALID GROUP NAME
ERROR IN COMMAND TAIL NEAR #:
partial command tail

An identifier was found where a group name was expected. The identifier does not
represent a valid group name. Processing is terminated, all open files are closed, and
control is returned to ISIS-II.

ERROR 58: SPECIFIED GROUP NOT FOUND IN INPUT MODULE
GROUP: group name

The specified group was not found in the input module. Processing is terminated, all
open files are closed, and control is returned to ISIS-II.

8086 Family Utilities Error Messages

ERROR 59: GROUP ADDRESS PREVIOUSLY SPECIFIED IN INPUT
MODULE OR COMMAND LINE
GROUP: group name

The specified group was specified more than once in the same ADDRESSES con­
trol, or the specified group has an absolute address in the input module. Processing
is terminated, all open files are closed, and control is returned to ISIS-II.

WARNING 60: REFERENCED LOCATION IS NOT WITHIN 32K OF
SPECIFIED ADDRESS

MODULE: module name
ADDRESS: 20 bit address
REFERENCED LOCATION: 20 bit address

The object being referenced by a (8089) self relative reference is not within 32K of
that reference. This is a warning message, so processing continues.

ERROR 61: NO OVERLAY FILE
FILE: filename

The LOC86 overlay file, LOC86.0VO, does not exist on the disk that contains the
primary portion of the program. The overlay may have been accidently erased, or it
may not have been copied.

When a new locator disk has been generated, reissue the same command making
sure that both LOC86 and LOC86.0VO files are on the same disk.

LIB86 Error Messages

All LIB86 command error messages are nonfatal because LIB86 is an interactive
program. The command (ADD, CREATE, DELETE, EXIT, or LIST) that caused
the error is aborted. The errors that are caused by improper command entry are
followed by a partial image of the command with a cross hatch (#) in the vicinity of
the error.

INSUFFICIENT MEMORY

There is not enough memory available for execution of the command.

INVALID MODULE NAME
partial command tail

A module name in the command is invalid. The name can be from 1 through 40
characters in length and must be composed of the letters A-Z, digits 0-9, a question
mark (?), underscore (_), period (.), colon (:) or a commercial at (@) sign.

INV ALID SYNTAX
partial command tail

There is an error in the command. Check for the following:

• Misspelled keywords.

• Ampersand followed by a non-blank character.

• ADD: TO filename not followed by a <CR>.

• DELETE: libname (modname) not followed by a <CR>.

• DELETE: modname not specified.

• CREATE: filename not followed by <CR>.

• LIST: TO filename not followed by PUBLICS or <CR>.

A-13

Error Messages 8086 Family Utilities

A-14

filename FILE ALREADY EXISTS

The file specified in a CREATE command already exists.

filename, BAD RECORD SEQUENCE

The file specified in the command has an unexpected record sequence. It may not be
terminated with an EOF record. You may have attempted to ADD a non-object or
non-library file to a library.

filename, CHECKSUM ERROR

The specified file contains a record that has an invalid checksum. Go back and
generate the file again.

filename, DUPLICATE SYMBOL IN INPUT

You have attempted to ADD modules that contain more than one definition for the
same PUBLIC symbol.

filename, ILLEGAL RECORD FORMAT

The file specified in the command has an illegal format. The object file may contain
a name that has more than 40 characters. The file may contain records in an
im proper order.

filename(modname) : NOT FOUND

You have attempted to delete, add, or list a non-existent module. You may have
misspelled the name.

filename, NOT LIBRARY

The specified file is not a library.

filename, OBJECT RECORD TOO SHORT

The specified file contains a record of insufficient length.

filename, PREMATURE EOF

The EOF record occurred before the length of the file indicated it should.

LEFT PARENTHESIS EXPECTED
partial command tail

There is a missing left parenthesis "(" in the command.

modname- ATTEMPT TO ADD DUPLICATE MODULE

The specified module already exists in the library.

MODULE NAME TOO LONG
partial command tail

The specified module name exceeds 40 characters.

RIGHT PARENTHESIS EXPECTED
partial command tail

There is a missing right parenthesis ")" in the command.

8086 Family Utilities Error Messages

symbol- PUBLIC SYMBOL ALREADY IN LIBRARY

You attempted to add a module that contains a PUBLIC symbol that already exists
in the library.

'TO' EXPECTED
partial command tail

The TO file is not specified in the ADD command.

UNRECOGNIZED COMMAND

An illegal or misspelled command (i.e., not ADD, CREATE, DELETE, EXIT, or
LIST) was entered.

OH86 Error Messages

All OH86 error messages are fatal. Control is returned to ISIS-II when an error is
encountered.

See the ISIS-II User's Guide for information on ISIS-II errors that may be generated
by OH86 execution.

filename, ILLEGAL RELO RECORD

OH86 encountered a relocatable type record in the input file. Process the input
module through LOC86, creating an absolute input file, and then proceed with the
conversion.

filename, PREMATURE EOF

No end-of-file record was found after the entire file was read. The file may be
damaged or may have been processed incorrectly. Try to generate the absolute
module again with the language translator, LINK86 and LOC86.

ILLEGAL INPUT FILE

All information -required in an absolute input file is not present. Either the input file
is defective or you specified the wrong file in the command. If the file is defective,
generate a new absolute file starting from the source code. If you specified the
wrong file, reenter the command with the correct filename.

INSUFFICIENT MEMORY FOR DATA RECORD TYPE CONTAINED
IN FILE

This error indicates that an iterated data record (generated from a source language
construct that produces repetitions in the object file) whose length will not fit in
memory was encountered in the input. Use a system with more memory, if possible.
Otherwise, go back to the source code and change the program so that each iterated
data construct requires fewer repetitions.

A-I5

APPENDIX B
HEXADECIMAL-DECIMAL CONVERSION

The following table is for hexadecimal to decimal and decimal to hexadecimal con­
version. To find the decimal equivalent of a hexadecimal number, locate the hexa­
decimal number in the correct position and note the decimal equivalent. Add the
decimal numbers.

To find the hexadecimal equivalent of a decimal number, locate the next lower
decimal number in the table and note the hexadecimal number and its position. Sub­
tract the decimal number from the table from the starting number. Find the dif­
ference in the table. Continue this process until there is no difference.

BYTE BYTE BYTE

HEX DEC HEX DEC HEX DEC HEX DEC HEX DEC HEX DEC

° ° ° ° ° ° ° ° ° ° ° ° 1 1,048,576 1 65,536 1 4,096 1 256 1 16 1 1
2 2,097,152 2 131,072 2 8,192 2 512 2 32 2 2
3 3,145,728 3 196,608 3 12,288 3 768 3 48 3 3
4 4,194,304 4 262,144 4 16,384 4 1,024 4 64 4 4
5 5,242,880 5 327,680 5 20,480 5 1,280 5 80 5 5
6 6,291,456 6 393,216 6 24,576 6 1,536 6 96 6 6
7 7,340,032 7 458,752 7 28,672 7 1,792 7 112 7 7
8 8,388,608 8 524,288 8 32,768 8 2,048 8 128 8 8
9 9,437,184 9 589,824 9 36,864 9 2,304 9 144 9 9
A 10,485,760 A 655,360 A 40,960 A 2,560 A 160 A 10
B 11,534,336 B 720,896 B 45,056 B 2,816 B 176 B 11
C 12,582,912 C 786,432 C 49,152 C 3,072 C 192 C 12
0 13,631,488 0 851,968 0 53,248 0 3,328 0 208 0 13
E 14,680,064 E 917,504 E 57,344 E 3,584 E 224 E 14
F 15,728,640 F 983,040 F 61,440 F 3,840 F 240 F 15

B-1

APPENDIX C
PL/M-86 MODELS OF SEGMENTATION

The segments, classes, and groups in the PL/M-86 compiler output module vary
according to the size control specified to the compiler. The segment, class, and group
names generated by the PL/M-86 compiler for the SMALL, COMPACT, MEDIUM,
and LARGE models are shown below.

Small Model

Segment Name Class Name Group Name

CODE CODE CGROUP
CONST CONST
DATA DATA DGROUP
STACK STACK
MEMORY MEMORY

Compact Model

Segment Name Class Name Group Name

CODE CODE CGROUP
CONST CONST DGROUP DATA DATA
STACK STACK none
MEMORY MEMORY none

Medium Model

Segment Name Class Name Group Name

modname CODE CODE none
CONST CONST
DATA DATA DGROUP
STACK STACK
MEMORY MEMORY

Large Model

Segment Name Class Name Group Name

modname CODE CODE none
modname DATA DATA none
STACK STACK none
MEMORY MEMORY none

C-l

APPENDIX D
MCS-86™ABSOLUTE OBJECT

FILE FORMATS

I ntrod uction

The 8086 Absolute Object File Format herein described is a proper subset of the full
8086 Object File Formats. An absolute object file consists of a sequence of records
defining a single absolute module. An absolute module is defined as a collection of
absolute object information which is specified by a sequence of object records.

Definitions

This section defines certain terms fundamental to 8086 Relocation and Linkage
(R&L). The terms are ordered not alphabetically, but so you can read forward
without forward references.

Definition of Terms

OMF-acronym for Object Module Formats.

R&L-acronym for Relocation and Linkage.

MAS-acronym for Memory Address Space. The 8086 MAS is one megabyte
(1,048,576 bytes). Note that the MAS should be distinguished from actual memory,
which may occupy only a portion of the MAS.

MODULE-an "inseparable" collection of object code and other information pro­
duced by a translator or by the LINK86 program. When a distinction must be made:

T-MODULE-will denote a module created by a translator, such as PL/M-86 or
ASM86, and

L-MODULE-will denote a module created by LINK86 from one or more consti­
tuent modules. (Note that modules are not "created" in this sense by the MCS-86
Locater, LOC86; the output module from LOC86 is merely a transformation of the
input module).

Two observations about modules must be made:

1. Every module must have a name, so that the MCS-86 Librarian, LIB86, has a
handle for the module for display to the user. (If there is no need to provide a
handle for LIB86, the name may be null). Translators will provide names for
T -modules, providing a default name (possibly the file name or a null name) if
neither source code nor user specifies otherwise.

2. Every T -module in a collection of modules linked together may have a different
name, so that symbolic debugging systems can distinguish the various symbols.
This restriction is not required by R&L, and is not enforced by it.

FRAME-a contiguous region of 64K of MAS, beginning on a paragraph boundary
(i.e., on a multiple of 16 bytes). This concept is useful because the content of the
four 8086 segment registers define four (possibly overlapping) FRAME's; no 16-bit
address in the 8086 code can access a memory location outside of the current four
FRAME's. The FRAME starting at address OOOOH is FRAME O.

D-l

MCS-86 Absolute Object File Formats 8086 Family Utilities

0-2

Module Identification

In order to determine that a file contains an object program, a module header record
will always be the first record in a module. There are two kinds of header records
and each provides a module name. The additional functions of the header records
are explained below.

A module name may be generated during one of two processes: translation or link­
ing. A module that results from translation is called aT-MODULE. AT-MODULE
will have aT-MODULE HEADER RECORD (THEADR). A name may be
provided in the THEADR record by a translator. This name is then used to identify
the progenitor of all debug information found in the T-MODULE. The name may
be null, i.e., of length zero.

A module that results from linking and locating is called an L-MODULE. An
L-MODULE will always have an L-MODULE HEADER RECORD (LHEADR). In
the LHEADR record a name is also provided. This name is available for use as a
means of referring to the module without using any of its constituent T-MODULE
names. An example would be two T -MODULES, A and B, linked together to form
L-MODULE C. L-MODULE C will contain two THEA DR records and will begin
with an LHEADR record with the name C provided by the linker as a directive from
the user. The L-MODULE C can be referred to by other tools such as the library
manager without having to know about the originating module's names, yet the
originating module's names are preserved for debugging purposes.

Module Attributes

In addition to a name, a module may have the attribute of being a main program as
well as having a specified starting address.

If a module is not a main module yet has a starting address, then this value has been
provided by a translator, possibly for debugging purposes. A starting address
specified for a non-main module could be the entry point of a procedure, which may
be loaded and initiated independent of a main program.

Physical Segment Definition

A module is defined as a collection of data bytes defined by a sequence of records
produced by a translator. The data bytes represent contiguous regions of memory
whose contents are determined at translation time.

Physical Segment Addressability

The 8086 addressing mechanism provides segment base registers from which a 64K
byte region of memory, called a Frame, may be addressed. there is one code segment
base register (CS), two data segment base registers (DS, ES), and one stack segment
base register (SS).

8086 Family Utilities MCS-86 Absolute Object File Formats

Data

The data that defines the memory image represented by a module is maintained in
two varieties of DATA records: PHYSICAL ENUMERATED DATA RECORD
(PEDATA) and PHYSICAL ITERATED DATA RECORD (PIDATA). Both
records specify the data to be loaded into a contiguous section of memory. The start
address of this contiguous section is given in the record. PEDATA records contain
an exact byte-by-byte copy of the desired memory image. The PIDATA record dif­
fers in that the data bytes are represented within a structure that must be expanded
by the loader. The purpose of the PIDA T A record is to reduce module size by
encoding repeated data rather than explicitly enumerating each byte, as the
PEDATA record does.

Record Syntax

The following syntax shows the valid orderings of records to form an absolute
module. In addition, the given semantic rules provide information about how to
interpret the record sequence. The syntactic description language used herein is
defined in Wirth: CACM, November 1977, V20, NIl, pg. 822-823.

absolute_object_file

module

tmod

Imod

t_component

content_det

module.

tmod Ilmod.

THEADR {content_det} MODEND.

LHEADR {t_component} MODEND.

[THEADR] {content_det}

PEDATA I PIDATA.

NOTE
The character strings represented by capital letters above are not literals but
are identifiers that are further defined in the section defining the Record
Formats.

A proper Absolute Object File produced by Intel products will contain at least the
above record types. It may also contain other record types which, if present, will
follow the Module Header record and precede the Module End record. These other
record types fall into two categories:

1. extraneous-These contain information which is not pertinent to an absolute
loader. The record numbers in this category are:

7AH, 7CH, 7EH, 88H, 8CH, 8EH, 90H, 92H, 94H, 96H, 98H, 9AH, 9CH

2. erroneous-These contain information with regard to relocation, indicating
that the object module is not yet in absolute form or are erroneous record types.
The record numbers in this category are all other record type numbers.

D-3

MCS-86 Absolute Object File Formats 8086 Family Utilities

D-4

Record Formats

The following pages present diagrams of Record Formats in schematic form. Here is
a sample, to illustrate the various conventions:

Sample Record Format (SAMREC)

REC
TYP
xxH

RECORD
LENGTH SUM N:M:BCHK

~ __ ~ __________ -L __ -,_.

L rpt --1

Title and Official Abbreviation

At the top is the name of the Record Format described, together with an official
abbreviation. To promote uniformity among various programs, the abbreviation
should be used in both code and documentation. The abbreviation is always six
letters.

The Boxes

Each format is drawn with boxes of two sizes. The narrow boxes represent single
bytes. The wide boxes represent two bytes (or one word) each. In the object file, the
low order byte of a word value comes first. The wide boxes, with three dots in the
top and bottom, represent a variable number of bytes, one or more, depending upon
content.

RecTyp

The first byte in each record contains a value between ° and 255, indicating the type
of record.

Record Length

The second field in each record contains the number of bytes in the record, exclusive
of the first 2 fields.

Name

Any field that indicates a "NAME" has the following internal structure: the first
byte contains a number between ° and 40, inclusive, that indicates the number of re­
maining bytes in the field. The remaining bytes are interpreted as a byte string; each
byte must represent the ASCII code of a character drawn from this set:

[?@ :._0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ].

Most translators will choose to constrain the character set more strictly; the above
set has been chosen to "cover" that required by all current processors.

Repeated Fields

Some portions of a Record Format contain a field or series of fields that may occur
an indefinite number of times (zero or more). Such fields are indicated by the
"repeated" or "rpt" brackets below the boxes.

8086 Family Utilities MCS-86 Absolute Object File Formats

Similarly, some portions of the Record Format are present only if some given condi­
tion obtains; these fields are indicated by similar "conditional" brackets below the
boxes.

ChkSum

The last field in each record is a check sum, which contains the two's complement of
the sum (modulo 256) of all other bytes in the record. Therefore, the sum (modulo
256) of all bytes in the record equals O.

Bit Fields

Descriptions of contents of fields will sometimes get down to the bit level. Boxes
with vertical lines drawn through them represent bytes or words; the vertical lines in­
dicate bit boundaries; thus this byte has three bit-fields of three, one, and
four bits:

Ignored Records
~--~~---------r---4.'---~--~

REC
TYP

RECORD
LENGTH

IGNORE
THIS
PART

CHK
SUM

~--~~--------~---4.'---------

All record types that may be in an object module that provide information not perti­
nent to an absolute loader must be ignored. They may all be treated as if they have
the above format. Records in this category have REC TYP in the set 7 AH, 7CH,
7EH, 88H, 8CH, 8EH, 90H, 92H, 94H, 96H, 98H, 9AH, 9CH.

T-Module Header Record (THEADR)

r------r----------~--.... ...---~--~
REC
TYP
80H

RECORD
LENGTH

T
MODULE

NAME

CHK
SUM

I....------'----------~--.... ...-__ ~ __ __

Every module output from a translator must have aT-MODULE HEADER
RECORD. Its purpose is to provide the identity of the original defining module for
all debug information encountered in the module up to the following T -MODULE
HEADER RECORD m MODULE END RECORD.

This record can also serve as the header for a module, i.e., it can be the first record,
and will be for modules output from translators.

T-Module Name

The T -MODULE NAME provides a name for the T -MODULE.

D-5

MCS-86 Absolute Object File Formats 8086 Family Utilities

0-6

L-Module Header Record (LHEADR)
r_---..------.---........... ..--,r---_

REC
TYP
82H

RECORD
LENGTH

L
MODULE

NAME

CHK
SUM

__ ---" _____ ...1.-___ • _ ----1....---
Every module created by LINK86 and LOC86 will have an L-MODULE HEADER
RECORD. This record serves only to identify a module that has been processed
(output) by the MCS-86 LINKER and/or the MCS-86 LOCATER. When several
modules are linked to form another module, the new module requires a name,
perhaps unique from those of the linked modules, by which it can be referred to (by
the LIB86 program, for example).

L-Module Name

The L-MODULE NAME provides a name for the L-Module.

Module End Record (MODEND)

REC
RECORD MOD S

TYP LENGTH TYP A
8AH

TART CHK
DDRS SUM

• e__-...&------

L conditional J
This record serves two purposes. it denotes the end of a module and indicates
whether the module just terminated has a specified entry point for initiation of
execution. If the latter is true, then the execution address is specified.

ModTyp

This field specifies the attributes of the module. The bit allocation and their
associated meanings are as follows:

MATTR is a two-bit subfield that specifies the following module attributes:

MATTR

Start Addrs

o
1
2
3

MODULE ATTRIBUTE

Non-main module with no starting address
Non-main module with starting address
(invalid value for MATTR)
Main module with starting address

The START ADRS field has the following format:

FRAME
NUMBER

OFFSET

FRAME NUMBER. This field specifies a frame number relative to which the
module will begin execution. This value is appropriate for insertion into the CS
register for program initiation.

8086 Family Utilities MCS-86 Absolute Object File Formats

OFFSET. This field specifies an offset relative to the FRAME NUMBER which
defines the exact location of the first byte at which to begin execution. This value is
appropriate for insertion into the IP register for program initiation.

Physical Enumerated Data Record (PEDATA)

REC RECORD FRAME OFF CHK
TYP OAT
84H

LENGTH NUMBER SET SUM

L rpt J
This record provides contiguous data, from which a portion of an 8086 memory
image may be constructed.

Frame Number
This field specifies a Frame Number relative to which the data bytes will be loaded.

Offset
This field specifies an offset relative to the FRAME NUMBER which defines the
location of the first data byte of the DAT field. Successive data bytes in the DA T
field occupy successively higher locations of memory. The value of OFFSET is con­
strained to be in the range 0 to 15 inclusive. If an OFFSET value greater than 15 is
desired, then an adjustment of the FRAME NUMBER should be done.

Dat

This field provides consecutive bytes of an 8086 memory image. The number of
DAT bytes is constrained only by the RECORD LENGTH field. The address of
each byte must be within the frame specified by FRAME NUMBER.

Physical Iterated Data Record (PIDATA)

REC RECORD FRAME OFF TYP LENGTH NUMBER SET 86H

--
ITE RATED

ATA
LOCK

0
B

CHK
SUM

- - _--
L repeated --'

This record provides contiguous data, from which a portion of an 8086 memory
image may be constructed. It allows initialization of data segments and provides a
mechanism to reduce the size of object modules when there are repeated data to be
used to initialize a memory image.

Frame Number
This field specifies a frame number relative to which the data bytes will be loaded.

Offset
This field specifies an offset relative to the FRAME NUMBER which defines the
location of the first data byte in the ITERATED DATA BLOCK. Successive data
bytes in the ITERATED DATA BLOCK occupy successively higher locations of
memory. The range of OFFSET is constrained to be between 0 and 15 inclusive. If a
value larger than 15 is desired for OFFSET, then an adjustment of FRAME
NUMBER should be done.

0-7

MCS-86 Absolute Object File Formats 8086 Family Utilities

D-8

Iterated Data Block

This repeated field is a structure specifying the repeated data bytes. It is a structure
that has the following format:

L

___ R_E_P_E_A_T __ ~ ____ B_L_O_C_K __ ~ ___ C_O __ ~:.~ COUNT COUNT _ ~

Repeat Count. This field specifies the number of times tl)at the CONTENT portion
of this ITERATED DATA BLOCK is to be repeated, and must be greater than zero.

Block Count. This field specifies the number of ITERATED DATA BLOCKS that
are to be found in the CONTENT portion of this ITERATED DATA BLOCK. If
this field has value zero then the CONTENT portion of this ITERATED DATA
BLOCK is interpreted as data bytes.

If BLOCK COUNT is non-zero then the CONTENT portion of this ITERATED
DA T A BLOCK is interpreted as that number of ITERATED DATA BLOCKS.

Content. This field may be interpreted in one of two ways, depending on the value
of the previous BLOCK COUNT field.

If BLOCK COUNT is zero, then this field is a one-byte count followed by the
indicated number of data bytes.

If BLOCK COUNT is non-zero, then this field is interpreted as the first byte of
another ITERATED DATA BLOCK.

NOTE

From the outermost level, the number of nested ITERA TED DATA
BLOCKS is limited to 17, i.e., the number of levels of recursion is limited
to 17.

The address of each data byte must be within the frame specified by
FRAME NUMBER.

Hexadecimal Object File Format
Hexadecimal object file format is a way of representing an object file in ASCII.

The function of the utility program, OH86, is to convert 8086 absolute object
modules to 8086 hexadecimal object modl,lles.

The hexadecimal representation of binary is coded in ASCII. For example, the eight­
bit binary value 0011 1111 is 3F in hexadecimal. To code this ASCII, one eight-bit
byte containing the ASCII code for 3(00110011, or 33H) and one eight-bit byte con­
taining the ASCII code for F(0100 0110, or 46H) are required. This representation
(ASCII hexadecimal) requires twice as many bytes as the binary.

There are four different types of records that may make up an 8086 hexadecimal
object file. They are:

• Extended Address Record

• Start Address Record

• Data Record

• End of File Record

8086 Family Utilities MCS-86 Absolute Object File Formats

Each record begins with a RECORD MARK field containing 3AH, the ASCII code
for colon (:).

Each record has a REC LEN field which specifies the number of bytes of informa­
tion or data which follows the RECTYP field of each record. Note that one byte is
represented by two ASCII characters.

Each record ends with a CHECKSUM field that contains the ASCII hexadecimal
representation of the two's complement of the eight-bit sum of the eight-bit bytes
that result from converting each pair of ASCII hexadecimal digits to one byte of
binary, from and including the RECORD LENGTH field to and including the last
byte of the DATA field. Therefore, the sum of all the ASCII pairs in a record after
converting to binary, from the RECORD LENGTH field to and including the
CHECKSUM field, is zero.

Extended Address Record

RECD REC
ZEROES REC

CHK
MARK LEN

'0000' TYP USBA
SUM '.' '02' '02'

The 8086 EXTENDED ADDRESS RECORD is used to specify bits 4-19 of the Seg­
ment Base Address (SBA) where bits 0-3 of the SBA are zero. Bits 4-19 of the SBA
are referred to as the Upper Segment Base Address (USBA). The absolute memory
address of a content byte in a subsequent DATA RECORD is obtained by adding
the SBA to an offset calculated by adding the Load Address Field of the containing
DATA RECORD to the index of the byte in the DATA RECORD (0, 1, 2, ... n).
The offset addition is done modulo 64K, ignoring a carry, so that offset wrap­
around loading (from OFFFFH to OOOOOH) results in wrapping around from the end
to the beginning of the 64K segment defined by the SBA. The address at which a par­
ticular data byte is loaded is calculated as:

SBA + ([DRLA + DRI] MOD 64K)

where

DRLA is the DATA RECORD LOAD ADDRESS.

DRI is the data byte index within a DATA RECORD.

When an EXTENDED ADDRESS RECORD defines the value of SBA, the
EXTENDED ADDRESS RECORD may appear anywhere within an 8086 hex­
adecimal object file. This value remains in effect until another EXTENDED
ADDRESS RECORD is encountered. The SBA defaults to zero until an
EXTENDED ADDRESS RECORD is encountered.

Reed Mark

The RECD MARK field contains 03AH, the hex encoding of ASCII ':'.

Rec Len

The Record Length field contains 3032H, the hex encoding of ASCII '02'.

Zeroes

The Load Address field contains 30303030H, the hex encoding of ASCII '0000'.

D-9

MCS-86 Absolute Object File Formats 8086 Family Utilities

D-IO

RecTyp

The Record Type field contains 3032H, the hex encoding of ASCII '02' .

USBA

The USBA field contains four ASCII hexacecimal digits that specify the 8086 USBA
value. The high-order digit is the 10th character of the record. The low order digit is
the 13th character of the record.

ChkSum

This is the check sum on the REC LEN, ZEROES, REC TYP, and USBA fields.

Data Record

RECD REC LOAD REC
MARK LEN ADDRESS TYP D

'.' '00'
:rBCHK SUM

•
The DATA RECORD provides a set of hexadecimal digits that represent the. ASCII
code for data bytes that make up a portion of an 8086 memory image. The method
for calculating the absolute address for each byte of DATA is described in the
discussion of the Extended Address Record.

RecdMark

The RECD MARK field contains 03AH, the hex encoding of ASCII ':'.

Rec Len

The REC LEN field contains two ASCII hexadecimal digits representing the number
of data bytes in the record. The high-order digit comes first. The maximum value is
'FF' or 4646H (255 decimal).

Load Address

The LOAD ADDRESS field contains four ASCII hexadecimal digits representing
the offset from the SBA (see EXTENDED ADDRESS RECORD) defining the
address at which byte 0 of the DATA is to be placed. The LOAD ADDRESS value is
used in calculation of the address of all DATA bytes.

RecTyp

The REC TYP field in a DATA record contains 3030H, the hex encoding of
ASCII '00'.

Data

The DATA field contains a pair of hexadecimal digits that represent the ASCII code
for each data byte. The high order digit is the first digit of each pair.

ChkSum

This is the check sum on the REC LEN, LOAD ADDRESS, REC TYPE, and
DA T A fields.

8086 Family Utilities MCS-86 Absolute Object File Formats

Start Address Record

RECD REG
ZEROES

REG
MARK LEN TYP CS IP

GHK

'.' '04'
'0000'

'03'
SUM

The START ADDRESS RECORD is used to specify the execution start address for
the object file. Values are given for both the Instruction Pointer (lP) and Code Seg­
ment (CS) registers. This record can appear anywhere in a hexadecimal object file.

If a START ADDRESS RECORD is not present in an 8086 hexadecimal file, a
loader is free to assign a default start address.

RecdMark

The RECD MARK field contains 03AH, the hex encoding for ASCII ':'.

Rec Len

The REC LEN field contains 3034H, the hex encoding for ASCII '04'.

Zeroes

The ZEROES field contains 30303030H, the hex encoding for ASCII '0000'.

RecTyp

The REC TYP field contains 3033H, the hex encoding for ASCII '03'.

CS

The CS field contains four ASCII hexadeCimal digits that specify the 8086 CS value.
The high-order digit is the 10th character of the record; the low-order digit is the
13th character of the record.

IP

The IP field contains the four ASCII hexadecimal digits that specify the 8086 IP
value. The high-order digit is the 14th character of the record, the low order digit is
the 17th character of the record.

ChkSum

This is the check sum on the REC LEN, ZEROES, REC TYP, CS,·and IP fields.

End of File Record

REGD REG ZEROES REC CHK
MARK LEN

'0000'
TYP SUM

'.' '00' '01' 'FF'

The END OF FILE RECORD specifies the end of the hexadecimal object file.

D-II

MCS-86 Absolute Object File Formats 8086 Family Utilities

D-12

Reed Mark

The RECD MARK field contains 03AH, the ASCII code for colon (:).

Ree Len

The REC LEN field contains two ASCII zeroes (3030H).

Zeroes

The ZEROES field contains four ASCII zeroes (30303030H).

Ree Typ

The REC TYP field contains 3031H, the ASCII code for 01H.

ChkSum

The CHK SUM field contains 4646H, the ASCII code for FFH, which is the check
sum on the REC LEN, ZEROES and REC TYP fields.

Examples

A. Sample Absolute Object File

The following is an example of an absolute object file. The file contains eight
records. The eight records perform the following functions:

Record Function

LHEADR record, begins the object module and defines the module
name.

2 THEADR record, defines the translator-generated module name
which is the same as the name in the LHEADR record.

3 PEDAT A record that defines a contiguous memory image from
00200H to 0021SH.

4 PEDA T A record that defines a contiguous memory image from
00360H to 00377H.

S PEDA T A record that defines a contiguous memory image from
0041SH to 0042BH.

6 PEDATA record that defines a contiguous memory image from
OS1620H to OS1633H.

7 PIDAT A record that defines a contiguous memory image from
OSIBOOH to OSIBIDH. The iterated data consists of three repeti­
tions of "ABC" (414243H), followed by three repetitions of (four
repetitions of "D" (44H», three repetitions of "E" (4SH).

8 MODEND record that specifies that the module should be started
with CS = S162H and IP = OOOSH.

(1) 82 0008 06S3414DS04C4S AE
(2) 80 0008 06S3414DS04C4S BO
(3) 84 OOIA 0020 00

004992DB246DB6FF4891DA236CBSFE47
90D9226BB4FD 63

8086 Family Utilities MCS-86 Absolute Object File Formats

(4) 84 00lC 0036 00
0062C42688EA4CAE 1 072D43698F A5CBE
2082E446A80A6CCE 82

(5) 84 00lB 0041 05
00lD3A577491AECBE805223F5C7996B3
DOEDOA2744617E 72

(6) 84 0018 5162 00
00850A8F14991EA328AD32B73CC146CB
50D55ADF FB

(7) 86 001C 51BO 00
0003 0000 03 414243
0003 0002
0004 0000 01 44
0003 0000 01 45 FA

(8) 8A 0006 CO 5162 0005 F8

NOTE

The blank characters and carriage return and line feed characters are
inserted here to improve readability. They do not occur in an object
module. This file has been converted to ASCII hex so that it may be printed
here. All word values (RECORD LENGTH, REPEAT COUNT, etc.) have
been byte-reversed to improve readability.

B. Sample Absolute Hexadecimal Object File

The following is the hexadecimal object file representation of the object file given in
Example A.

:0200oo020020DC
: 1 00OOOOO004992DB246DB6FF4891 DA236CB5FE47B8
:0600 1 00090D9226BB4FD43
: 020000020036 C6
: 1 ooOooOOO062C42688EA4CAE 1 072D43698F A5CBEOO
:080010002082E446A80A6CCE30
:020000020041 BB
: 10000500001 D3A577491 AECBE805223F5C7996B353
:070015OODOEDOA2744617ED3
:02000002516249
:1000000000850A8FI4991EA328AD32B73CCI46CB98
:0400100050D55ADF8E
:0200000251 BOFB
:1000000041424341424341424344444444454545BF
:OE001000444444444545454444444445454524
:040000035162000541
:0000000 1 FF

D-13

8086
addressing techniques, 1-5
memory, 1-4
overview, 1-4

ADD command, 5-2
ADDRESSES Control, 3-6, 4-5
adding a library file, 5-2
addressing

relative, 1-2
techniques, 1-5

alignment of segments, 1-6
byte, 1-6
inpage, 1-6
page, 1-6
paragraph, 1-6
word, 1-6

BOOTSTRAP control, 3-8
byte alignment, 1-6

classes, 1-8
commands

LIB86,5-1
ADD,5-2
CREATE,5-1
DELETE,5-2
EXIT, 5-3
LIST,5-2

LINK86,2-1
LOC86,3-1
OH86,6-1

COMMENTS control
LINK86 command, 2-8
LOC86 command, 3-14

controls, LINK86
COMMENTS, 2-8
LINES, 2-8
MAP, 2-5
NAME,2-7
NOCOMMENTS, 2-8
NOLINES, 2-8
NOMAP, 2-5
NOPRINT,2-6
NOPUBLICS, 2-9
NOPURGE, 2-10
NOSYMBOLS, 2-9
NOTYPE, 2-10
PRINT,2-6
PUBLICS, 2-9
PUBLICSONL Y, 2-4
PURGE,2-1O
RENAMEGROUPS, 2-7
SYMBOLS, 2-9
TYPE,2-1O

controls, LOC86
ADDRESSES, 3-6
BOOTSTRAP, 3-8
COMMENTS, 3-14

INDEX

LINES, 3-14
MAP, 3-4
NAME,3-8
NOCOMMENTS, 3-15
NOLINES, 3-14
NOMAP, 3-4
NOPRINT. 3-5
NOPUBLICS.3-15
NOPURGE, 3-15
NOSYMBOLS, 3-15
OBJECTCONTROLS, 3-13
ORDER,3-8
PRINT,3-5
PRINTCONTROLS, 3-13
PUBLICS, 3-15
PURGE,3-15
RESERVE, 3-10
SEGSIZE, 3-10
START, 3-11
SYMBOLCOLUMNS, 3-6
SYMBOLS, 3-15

continuation lines, 2-3, 3-3, 5-1
converting decimal to hexadecimal, B-1
CREATE command, 5-1
creating a library file, 5-1

decimal to hexadecimal conversion, B-1
DELETE command 5-2
deleting a library file, 5-2
development process, MCS-86, 1-1

error messages, A-I
LIB86, A-12
LINK86, A-I
LOC86, A-5
OH86, A-14

EXIT command 5-3
exiting the 8086 library, 5-3
external references, 1-2

groups, 1-9

hexadecimal to decimal conversion, B-1

inpage alignment, 1-6 _
Intellec Microcomputer Development

System, 1-1
Intellec SeriesII, 1-1
introduction, 1-1
ISIS-II, 1-1

LIB86
command, 5-1
error messages, A-13

libraries, use of, 1-3
library

adding files, 5-2
creating files, 5-1
deleting files, 5-~

Index-l

Index

Index-2

LINES control
LINK86 command, 2-7
LOC86 command, 3-13

LINK86
command,2-1
controls

COMMENTS, 2-8
LINES, 2-8
MAP, 2-5
NAME,2-7
NOCOMMENTS, 2-8
NOLINES, 2-7
NOMAP, 2-5
NOPRINT,2-6
NOPUBLICS, 2-9
NOPURGE,2-1O
NOSYMBOLS, 2-9
NOTYPE, 2-10
PRINT,2-6
PUBLICS, 2-9
PUBLICSONL Y, 2-4, 4-5
PURGE,2-1O
RENAMEGROUPS, 2-7
SYMBOLS, 2-9
TYPE,2-1O

LINK86/LOCS6 process, 1-4
linkage and relocation, mechanics of, 1-2
LIST command, 5-2
LOC86

command, 3-1
controls

ADDRESSES, 3-6, 4-5
BOOTSTRAP, 3-8
COMMENTS, 3-14
LINES, 3-14
MAP, 3-4
NAME,3-S
NOCOMMENTS, 3-15
NOLINES, 3-14
NOMAP, 3-4
NOPRINT,3-5
NOPUBLICS, 3-15
NOPURGE,3-15
NOSYMBOLS, 3-15
OBJECTCONTROLS, 3-13
ORDER,3-8
PRINT,3-5
PRINTCONTROLS, 3-13
PUBLICS, 3-15
PURGE,3-15
RESERVE,3-1O
SEGSIZE, 3-10
START, 3-11
SYMBOLCOLUMNS, 3-6
SYMBOLS, 3-15

locating segments, 1-8

MAP control
LINK86 command, 2-5
LOC86 command, 3-4

MCS-86 development process, 1-1
mechanics of linkage and relocation, 1-2
memory, 1-4

messages, error, A-I
LIBS6, A-12
LINKS6, A-I
LOC86, A-5
OH86, A-14

module search, 4-2

NAME control
LINK86 command, 2-7
LOC86 command, 3-8

NOCOMMENTS control
LINK86 command, 2-8
LOCS6 command, 3-15

NOLINES control
LINK86 command, 2-8
LOCS6 command, 3-14

NOMAP control
LINK86 command, 2-5
LOC86 command, 3-4

NOPRINT control
LINK86 command, 2-6
LOCS6 command, 3-5

NOPUBLICS control
LINK86 command, 2-9
LOC86 command, 3-15

NOPURGE control
LINK86, 2-10
LOC86,3-15

NOSYMBOLS control
LINK86 command, 2-9
LOC86 command, 3-15

NOTYPE,2-1O

8086 Family Utilities

OBJECTCONTROLS control, 3-13
ORDER control, 3-S
OHS6

command, 6-1
error messages, A-15

Overlays, 4-4

page alignment, 1-6
paragraph alignment, 1-6
PL/M segments, C-l
PRINT control

LINK86 command, 2-6
LOCS6 command, 3-5

PRINTCONTROLS control, 3-12
program development, 1-1
public symbols, 1-2
PUBLICS control

LINK86 command, 2-9
LOC86 command, 3-15

PUBLICSONL Y Control, 2-4, 4-5
PURGE control

LINK86, 2-10
LOCS6,3-15

references, external, 1-2
relative addressing, 1-2
relocation and linkage, mechanics of, 1-2
RENAMEGROUPS control, 2-7
RESERVE control, 3-9

8086 Family Utilities

segment
alignment, 1-6
locating, 1-8

segments, 1-5
SEGSIZE control, 3-10
START control, 3-11
SYMBOLCOLUMNS control, 3-6

SYMBOLS control
LINK86 command, 2-9
LOC86 command, 3-15

symbols, public, 1-2

TYPE control, 2-10

use of libraries, 1-3

word alignment, 1-6

Index

Index-3

8086 Family Utilities User's Guide for 8080/8085 Based Systems
9800639-04

REQUEST FOR READER'S COMMENTS

The Microcomputer Division Technical Publications Department attempts to provide documents that meet
the needs of all Intel product users. This form lets you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of
this document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of
documents are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating.

NAME __ ___ DATE _________________ _

TITLE __ _

COMPANYNAME/DEPARTMENT ___ _
ADDRESS __ _

CITY _____________________ _ STATE _________ _ ZIP CODE ______ _

Please check here If you require a written reply. 0

WE'D LIKE YOUR COMMENTS ..•

This document is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
comments and suggestions become the property of Intel Corporation.

BUSIN ESS REPLY MAIL
FIRST CLASS PERMIT NO. 1040 SANTA CLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
Attn: Technical Publications MIS 6-2000
3065 Bowers Avenue
Santa Clara, CA 95051

I II II I NO POSTAGE
NECESSARY

IF MAILED
IN U.S.A.

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

