
8086 FAMILY UTILITIES
USER'S GUIDE

forS080/8085-8ased
Development Systems

Manual Order Number: 9800639-04 Rev. E

Copyright © 1978, 1980 Intel Corporation
I Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 I

ii

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and may be used only to identify Intel products:

BXI' InlcHec Multibus
CREDIT iSBC Multimodule
i iSBX PROMPT
ICE Library Manager Promware
iCS MCS RMX
Imile Mcgachassis UPI
Inlel Micromap ",Scope
Inlelcvi,ion

and the combination of ICE, iCS, iSBC, iSBX, MCS, or RMX and a numerical suffix.

IA620/5821 6 K Dol

PREFACE

This manual describes and shows how to use the LINK86, LOC86, LIB86, and
OH86 commands that support 8086 program development. These commands run
under Version 3.4 and later versions of ISIS-II.

This manual is directed to the programmer who is developing programs for the 8086
with PL/M-86 or ASM86 or any other language translator that generates object
code compatible with the tools described in this manual.

This manual is divided into six chapters and four appendices:

• "Introduction," which provides an overview to the tools covered by the manual
and the 8086 itself.

• "LINK86 Command," which describes and shows examples of the use of the
LINK86 command.

• "LOC86 Command," which describes and shows examples of the use of the
LOC86 command.

• "How LINK86 and LOC86 Handle Modules," which describes how LINK86
and LOC86 prepare output modules.

• "LIB86 Command," which describes and shows examples of the use of the
LIB86 command to create and maintain program libraries.

• "OH86 Command," which describes and shows examples of the command to
convert absolute object code to the hexadecimal format.

• "Appendix A: Error Messages," which list all the error and warning messages
issued by the commands, as well as their probable causes.

• "Appendix B: Hexadecimal-Decimal Conversion," which is a table to help you
convert between the two number systems.

• "Appendix C: PL/M-86 Models of Computation," which describes the
structure of PL/M-86 output modules.

• "Appendix D: MCS-86 Absolute Object File Formats".

Related Publications

The following manuals may be helpful in various aspects of your work:

• ISIS-II User's Guide, order number 9800306, which describes the disk-based
operating system for the Intellec development systems.

• PLIM-86 Programming Manual, order number 9800466, which describes the
PL/M-86 programming language.

• ISIS-II PLIM-86 Compiler Operator's Manual, order number 9800478, which
describes how to compile programs written in PL/M-86.

• MCS-86™ Macro Assembly Language Reference Manual, order number
9800640, which describes the 8086 assembly language.

• MCS-86™ Macro Assembler Operating Instructions for ISIS-l/ Users, order
number 9800641, which describes how to assemble programs written in the 8086
assembly language.

• 8089 Macro Assembler User's Manual, order number 9800638, which describes
how to assemble programs written in 8089 Assembly language.

iii

iv

Notational Conventions

The following conventions are used in displaying command and control syntax in
this manual:

BOLDFACE

italic

[]

{ }

Information in boldface and capitals must be entered as shown
in the syntax statements. Although this information is shown in
uppercase, it can be entered in uppercase or lowercase.

Information in italics and lowercase represents variable
information that you must supply when entering the commands.

Brackets indicate parameters or controls that are optional.

Braces indicate a choice. One and only one of the items enclosed
in braces can be chosen. None can be chosen only if the items are
also enclosed in brackets.

The vertical bar indicates a choice. It is usually used within
braces to separate choices.

The ellipsis indicates that multiple items can be entered.

CHAPTER 1
INTRODUCTION

PAGE

Program Development 1-1
Mechanics of Linkage and Relocation 1-2

Relative A.ddressing 1-2
External References and Public Symbols 1-2
Use of Libraries•..................... 1-3

The LINK86/LOC86 Process 1-4
An 8086 Overview 1-4

Memory 1-4
8086 Addressing Techniques ,.................. 1-5
Segments 1-5

Segment Alignment 1-6
Segment Combining 1-7
Segment Locating :.................... 1-8

Classes 1-8
Groups 1-9

CHAPTER 2
LINK86 COMMAND
Continuation Lines 2-4
LINK86 Command Controls 2-4

Input List Controls 2-4
PUBLICSONL Y Control 2-4

Diagnostic Controls 2-5
MAP Control 2-5
PRINT Control 2-6

Output Module Controls 2-7
NAME Control 2-7
RENAME GROUPS Control 2-7
LINES Control 2-8
COMMENTS Control 2-8
SYMBOLS Control 2-9
PUBLICS Control 2-9
PURGE Control 2-10
TYPE Control 2-10

CHAPTER 3
LOC86 COMMAND
Continuation Lines 3-3
LOC86 Command Controls 3-3

Diagnostic Controls 3-4
MAP Control 3-4
PRINT Control 3-5
SYMBOLCOLUMNS Control 3-6

Output Module Controls 3-6
ADDRESSES Control 3-6
BOOTSTRAP Control 3-8
NAME Control.. 3-8
ORDER Control , 3-9
RESERVE Control 3-10

CONTENTS

PAGE

SEGSIZE Control. .. 3-10
START ControL " 3-11

Diagnostic and Output Module Controls " 3-12
OBJECTCONTROLS Control " 3-13
PRINTCONTROLS Control. " 3-13
COMMENTS Control " 3-14
LINES COlltrol " 3-14
PURGE Control " 3-15
PUBLICS Control 3-15
SYMBOLS Control. " 3-15

CHAPTER 4
HOW LINK86 AND LOC86
HANDLE MODULES
How LINK86 Combines Segments 4-1
How LOC86 Locates Segments 4-1

Assigning Addresses 4-3
How to Create Overlays With LlNK86 and LOC86 .. 4-4

Anotated Example 4-5

CHAPTERS
LIB86 COMMAND
Continuation Lines 5-1
CREATE - Create a Library File ,................. 5-1
ADD - Add Modules to a Library File 5-2
DELETE - Delete Modules from Library File 5-2
LIST - List Library Modules and

Their Public Symbols 5-2
EXIT - Return to ISIS-II 5-3

CHAPTER 6
OH86 COMMAND
OH86 Command Example 6-1

APPENDIX A
ERROR MESSAGES
LINK86 Error Messages. .. A-I
LOC86 Error Messages. .. A-5
LIB86 Error Messages " A-13
OH86 Error Messages " A-I5

APPENDIXB
HEXADECIMAL-DECIMAL
CONVERSION

APPENDIXC
PL/M-86 MODELS OF SEGMENTATION

v

APPENDIXD PAGE
MCS-86 ABSOLUTE OBJECT
FILE FORMATS
Introduction 0-1
Definitions , D-l

Definition of Terms , 0-1
Module Identification , 0-2
Module Attributes , 0-2
Physical Segment Definition , D-2
Physical Segment Addressability , 0-2
Data , , 0-3

Record Syntax , 0-3
Record Formats , 0-4

Sample Record Format (SAMREC) D-4

TABLE

2-1
3-1

TITLE

L1NK86 Controls
LOC86 Controls

PAGE

2-3
3-2

FIGURE TITLE PAGE

I-I
1-2
1-3
1-4
1-5
1-6

vi

The MCS-86™ Development Process , 1-1
Library Linkage by L1NK86 1-3
The L1NK86/LOC86 Process , 1-4
8086 Addressing 1-6
Segment Physical Relationships 1-7
Segment Alignment Boundaries , 1-7

CONTENTS (Cont'd.)

PAGE
Ignored Records. .. 0-5
T-Module Header Record (THEADR) " 0-5
L-Module Record Header (LHEADER) D-6
Module End Record (MOOEND) D-6
Physical Enumerated Oata Record (PEDA T A) D-7
Physical Iterated Data Record (PIDA T A) 0-7

Hexadecimal Object File Format D-8
Extended Address Record " 0-9
Data Record. .. D-I0
Start Address Record. .. 0-11
End of File Record. .. D-ll

Examples " " 0-12

INDEX

TABLES

ILLUSTRATIONS

FIGURE TITLE PAGE

4-1 Memory Configuration of Program With
Overlays 4-4

4-2 Link Map For :Fl:ROOT.LNK and
Module Information for Overlays 4-5

4-3 Memory Organization for Example 4-7

CHAPTER ·1
INTRODUCTION

Program Development

Program development is a process of varying complexity. The complexity depends
on the language used to develop code, the complexity of the end product, and the
tools chosen to tie the parts together.

Figure 1-1 shows the development process and the tools available for development
of an MCS-86 based product.

This manual gives you information necessary to use four parts of the MCS-86 Soft
ware Development Package. The MCS-86 Software Development Package allows
you to develop the program for your 8086-based product on an 8080-based develop
ment system.

In particular, these tools are designed to run on an Intellec Microcomputer Develop
ment System or an Intellec Series II Microcomputer Development System. In either
system, the tools run under control of ISIS-II, Version 3.4 or later.

The tools described in this manual are:

• LINK86, which is a linkage tool.

• LOC86, which is the relocation tool.

• LIB86, which is the librarian function for 8086 object modules.

• OH86, which converts 8086 absolute object information to the hexadecimal
format.

i--------·-------------::SOlV·E EXT:RNA: REF:::-;~
i PUBLICS ONLY TO OVERLAY MODULES i
i r- -, i
I ~8~~~1 I I I
o 'L ___ .J 0

L o- o- o 0-0-0-0 o-o-o-.-.-._o-.-.-.~

I & C~tkJ}E : LOC~6 : I

r---, r---, r---'
I PLM86 I RELO- I I RELO- I I
II AS':,;S6 t--I Ct;f'E'b\E I L1NK86 ~A;J~'b\E I LOC86 I

CODE I I MODULE I I
L_r_.J L ___ .J L_r_.J

PLM86
or

ASM86
SOURCE

PROGRAM

r-l-,
I ISIS-Ii I

: E~~:ciR l
L ___ .J

r-..,

USER
LIBRARY

r-l-,
I I
1 L1B86 1--------'
I I L ___ .J

I I EXECUTABLE PROGRAMS

L_...J

D FILES

ABSOLUTE
OBJECT

FILE

r---'
I I
I OH86 r--
I I L ___ .J

Figure 1-1. The MCS-86™ Development Process

r---l
I EXECUTE I
I IC~~86 I
I I L ___ .J

ABSOLUTE
HEX
FILE

r-l--,
I HEX I
I LOADER I
I I L ___ .J

639-1

1-1

Introduction

1-2

8086 Family Utilities

Mechanics of Linkage and Relocation
LINK86 and LOC86 combine object modules and convert relative addresses to
absolute addresses. They can combine any module in 8086 object module format.
These modules can be produced by the 8086 assembler, 8088 assembler, 8089
assembler, or PL/M-86.

The segment is the fundamental unit with which the linkage and relocation functions
work. First, segments are combined, then absolute addresses are assigned to
segments. Addresses that are referenced relative to the beginning of a segment are
translated to references to absolute addresses. This operation binds the segments to
a memory location; the segments cannot be executed or accessed unless they reside at
the assigned addresses.

The object modules to be combined are specified in a list in the LINK86 command.
The sequence in which the segments in the input modules are combined and absolute
addresses assigned to segments is determined by the order in which the modules are
listed, the structure of the modules, and the controls supplied with the command.
The details of module combination are described in Chapters 2 and 3.

The following information from object modules is used during linkage and
relocation:

• Addresses given as offsets into segments which must be translated into absolute
memory addresses.

• Segment definitions which identify contiguous pieces of information, usually
code or data.

• Group definitions which identify segments that must be kept within a 64K byte
range of memory.

• Class definitions which identify segments that share common attributes and
should be kept together.

• Public and external symbols by which address references between different
object modules can be resolved.

Relative Addressing

The relative addresses of instructions and data in program modules are assigned by
the source translator. The addresses are relative to the beginning of the segment in
which they reside. The relative address is actually the number of bytes from the
beginning of the segment.

LINK86 combines one or more input modules to form one output module. The com
bining is done by segments. The order in which the command combines segments is
described in Chapter 4.

After all the input segments are combined, LOC86 assigns absolute memory
addresses to all relative addresses. The resulting output module can only be executed
when its segments are loaded at the absolute addresses assigned by the command.

External References and Public Symbols

An address field that refers to a location in a different object module is called an
external reference. An external reference differs from a relative address because the
translator that generates the module knows nothing about the location of the
referenced symbol. You must declare these references as external when coding a pro
gram. This tells the translator, and subsequently the relocation and linkage (R&L)
commands, that the target of the reference is in a different module.

8086 Family Uftlities

A module that contains external references is called an unsatisfied module. To
satisfy the module, a module with a public symbol that matches the external symbol
must be found. Associated with a public symbol in a module is an address that
allows other modules, with the appropriate external reference, to reference the
module with the public symbol. You must declare these symbols as public when
coding the program. This tells the source translator and the R&L commands that
other modules can reference the symbol.

If there are external references that are not satisfied by public symbols, warning
messages are issued and the resulting module remains unsatisfied.

Use of Libraries

Libraries aid in the job of building programs. The library manager program, LIB86,
creates and maintains files containing object modules.

LINK86 treats library files in a special manner. If you specify a library file as input
to LINK86, it searches the library for modules that satisfy unresolved external
references in the input modules it has already read. This means that libraries should
be specified after the input modules that contain external references. If a module
included from the library has an external reference, the library is searched again to
try to satisfy the reference. This process continues until all external references are
satisfied or until no public symbols are found in the library that match an unsatisfied
external reference.

When LINK86 searches a library, it normally includes only library modules in the
output that satisfy external references. If no external references are satisfied by a
library, no modules from the library are included in the output module. However,
LINK86 provides the means to unconditionally include a library module even if
there is no external reference to it. Figure 1-2 shows LINK86 handling of a library
file.

MODA

MODB

MODC

MODO

MODE

MODF

MOOG

MODH

MODI

MODJ

MODK

INPUTS

MOD1

PUBLICA

PUBLICB

PUBLICC

PUBLICO

PUBLICE

PUBLlCF

PUBLlCG

PUBLICH

PUBLICI

PUBLlCJ

PUBLICK

LINK 86

MODC

MODG

OUTPUT
MODULE

Figure 1-2. Library Linkage by LINK86 639-2

Introduction

1-3

Introduction

) -4

8086 Family Utilities

The LINK86/LOC86 Process

LINK86 and LOC86 execute on Intellec Development Systems. Execution is
initiated by ISIS-II commands. Along with a list of input modules (LINK86) or a
single input module (LOC86), the commands may contain controls that affect their
output. Controls are not required for LINK86 and LOC86 execution. There are exe
cution defaults for module combination, address assignment, and output informa
tion. The controls give you capability of changing the default algorithms and the
types of output.

The inputs are object modules in disk files. The input modules can contain relative
addresses, absolute addresses, external references, and public symbols. The input
modules must be in the 8086 object module format such as is generated by the
PL/M-86 compiler, MCS-86 assembler, and LINK86 and LOC86 themselves.

LINK86 combines segments from the input modules. LOC86 orders the segments
and assigns absolute addresses according to the controls specified with the command
and/ or the default algorithms. Both commands output the module when processing
is completed along with any error messages and diagnostic information. Figure 1-3
shows the LINK86/LOC86 process.

An 8086 Overview

To fully use the R&L commands you must have an understanding of how 8086 pro
grams are structured and how memory is used.

Memory

The 8086 can address up to a maximum of a megabyte of memory. In decimal a
megabyte is 1,048,576 bytes. Memory addresses are always shown in hexadecimal. A
megabyte of memory has the addresses: OH through OFFFFFH.

Not all 8086-based systems will have a full megabyte of memory. Many systems will
have gaps in the memory that is available. The different portions of memory will
probably be implemented with different types of memory chips. The system monitor
or supervisor is usually stored in ROM or PROM chips. Because it is not modified
by execution it can be a permanent part of the system. This prevents the need to load

INPUTS
LlNK86

COMMAND
AND

CONTROLS

LIN K86 / LOC86
OUTPUTS INPUT

LINKED
OBJECT
MODULE

LOC86
COMMAND

AND
CONTROLS

Figure 1-3. The LINK86/LOC86 Process

LOCATED
ABSOLUTE

OBJECT
MODULE

639-3

8086 Family Utilities

it each time the system is turned on. The data that is referenced often is kept in high
speed RAM because it is modified frequently. It may be practical to keep data that is
referenced less often in slower-speed memory. The size and composition of a
system's memory is totally dependent on the application the system serves.

Linkage and relocation is designed to handle the linking and locating of your pro
gram, no matter how your 8086-based system memory is implemented. It provides
very flexible segment placement within any given memory configuration.

8086 Addressing Techniques

The 8086 addresses memory with a 20-bit address that is constructed from a segment
address and a 16-bit offset from that segment address. This means that with a single
segment address, 64K bytes of memory is directly addressable by only changing the
offset.

A hardware segment address is a 20-bit address. But the segment address is con
strained such that the segment is placed on a boundary that is a multiple of 16 (lOH).
The segment address can be set to any hexadecimal address ending in 0:

OH
010H
020H

OFFFFOH

Because the low four bits of the 20-bit segment address are always zero, the segment
address can be represented with only 16 bits.

The segment address is kept in one of four 16-bit segment registers. Because there
are four segment registers, the 8086 can, at any moment, access 256K (4 x 64K) bytes
of memory. The full megabyte of memory is accessed by changing the values in the
segment registers. Figure 1-4 shows the 8086 addressing concept.

Segments

Programs are comprised of pieces called segmehts, which are the fundamental units
of linkage and relocation. The basic divisions; have functional purposes related to
the hardware configuration of memory. The portions of programs that are to be
kept in ROM or PROM can be put in separate segments from the portions that will
be kept in RAM.

The 8086 Assembler allows the programmer to name the segments of the program
being developed. The PL/M86 compiler generates predefined names for segments
(see Appendix C).

A segment is a contiguous area of memory that is defined at translation time (assem
ble or compile). When defined, a segment does not necessarily have a fixed address
or size. A fixed address is assigned to a segment during the locate function. The size
can be changed by combining segments and by a control that specifies a specific size.
Some translations may produce absolute object information, with absolute
addresses and a specific segment size.

LINK86 combines all segments with the same complete (segment and class) name
and combination type (memory, stack, etc.) from all input modules. The ordering of
segments is done on the basis of these combined segments. The manner in which

Introduction

1-5

Introduction

1-6

SEGMENT
REGISTER OFFSET

S003H J t1234H I
I .. 12340H

+S003H .. I
1A343H EFFECTIVE 2O·BIT ADDRESS

64K BYTES CAN BE
ADDRESSED BY
CHANGING THE

OFFSET ONLY

MEMORY
-------- FFFFFH

...... -----------
64K BYTES

...... -----------

~----------~OH

Figure 1-4. 8086 Addressing

8086 Family Utilities

639-4

segments are combined depends on the alignment of the segments (which is
described in the next topic) and a combining attribute associated with the segment.

When we refer to combining segments, we are talking about how the segments will
be loaded in memory, not how they will be stored in the output module. The
segments in the LOC86 output module contain addresses that determine where they
will be loaded in memory. The segments reside in the output module in the same
order as they were in the input modules. Figure 1-5 shows the physical relationships
between the input modules, output module, and loaded program.

Segment Alignment

A segment can have one (and in the case of the inpage attribute, two) of five align
ment attributes:

• Byte, which means a segment can be located at any address.

• Word, which means a segment can only be located at an address that is a
multiple of two, starting from address OH.

• Paragraph, which means a segment can only be located at an address that is a
mUltiple of 16, starting from address o.

• Page, which means a segment can only be located at an address that is a multiple
of 256, starting from address O.

• Inpage, which means a segment can be located at whichever of the preceding
attributes apply plus must be located so that it does not cross a page boundary.

Figure 1-6 shows the segment alignment boundaries.

Any alignment attribute except byte can result in a gap between combined segments.
For example, when two page aligned segments are combined there will always be a
gap unless the first happens to be an exact multiple of 256 bytes in length.

8086 Family Utilities

INPUT
MODULES

SEGA

SEG a

SEG C

SEGO

SEG E

SEG F

OUTPUT
MODULE
ON DISK

SEGA

SEGa

SEGC

SEGO

SEGE

SEGF

OUTPUT MODULE
LOADED IN

MEMORY

/ SEGa I

/ SEGE 7

Figure 1-5. Segment Physical Relationships

t I, !_!3!_!_!.!'!.!' t±J c! 0 ~ '1
I BYTE

WORD = 2 BYTES

~,--------------v,--------------~

CO

DO

EO

PARAGRAPH = 16 BYTES

PAGE = 256 BYTES

I I I I I I I I I I I I I

Figure 1-6. Segment Alignment Boundaries

Segment Combining

639-5

639-6

Segments containing data and code are combined end to end. There may be a gap
between the segments if the alignment characteristics require it. The relative
addresses in the segments are adjusted for the new longer segment.

There are two special cases of segment combination: stack segments and memory
segments. PL/M86 defines these segments with the names STACK and MEMORY.
With ASM86 you must define them by adding the STACK or MEMORY parameter
to the SEGMENT directive.

Introduction

1-7

Introduction

1-8

8086 Family Utilities

When stack segments are combined, they are overlaid but their lengths are added
together.

When memory segments are combined, they are overlaid with their low addresses at
a common address. The length of the combined memory segment is the length of the
largest segment that was combined. No relative address adjusting is necessary. Nor
mally the memory segment is located above (at a higher memory address) the rest of
the program segments if no controls are used to override this.

To make sure that stack segments are combined correctly, you should always give
them the same segment name in each module. The same is true of memory segments.
If you are going to link assembly language routines to PL/M-86 routines you should
give them the names STACK and MEMOR Y to be compatible with PL/M-86.

Segment Locating

Segments are located in the order in which they are encountered in the input
modules. If classes (described in the next section) are defined, the segments from a
class are located together. The locating algorithm can be changed by using the
locating controls that are described with the commands in Chapter 3 . Detailed
descriptions of how segments are located with and without controls are in Chapter 4.

One variation to the sequential locating of segments is how the MEMORY segment
is located. When the first segment with the memory attribute is encountered, it is
placed last in the list of segments. This means that after all other segments are
located, the MEMORY segment will be assigned the highest address in the output
module.

NOTE

The MEMORY segment may not be located at the top of the module if
its name or class name appears in any LOC86 control (other than
SEGSIZE) or it has the absolute attribute.

Classes

A class is a collection of segments. When segments are defined in assembly
language, a class name can be specified. The segments generated by PL/M-86 are
generated with predefined class names. (See Appendix C for a description of
PL/M-86 generated segments and classes.) Any number of segments can be given
the same class name. Class names can extend beyond module boundaries; the same
class name can be used in different modules that are to be combined.

The primary purpose of classes is to collect together (in an arbitrary order) segments
that share a common attribute and to manipulate this collection at locate-time by
specifying only the class name.

All segments with the same class name are located together in the memory address
space of the output module. (You can override class collection by specifying the
location of segments with the LOC86 ORDER control or LOC86 ADDRESSES
control.)

Classes give you a second means of collecting like segments in the output module.
The first is giving segments the same name. If you are developing several modules
that are to be combined, you may want to give the segment containing executable
code the name CODE in each module. If there are several differently named
segments within a module that contain executable code, you may want to give these
segments the class name of CODE which causes them to be located together but not
combined. (The same name can be used for segments and classes.)

8086 Family Utilities

Groups

A group is also a collection of segments. Groups define addressing range limitations
in 8086 object modules. A group specifies a collection of segments that must be
located within a 64K byte range. This means that the entire group of segments can be
addressed with offsets from a single segment register. Or, to put it another way, the
segment register need not be changed when addressing any segment in a group. This
permits efficient addressing within the module.

Group addressing always begins at an address that is a multiple of 16 (i.e., a
paragraph boundary). R&L does not manipulate segments of a group to make sure
they fall within a 64K byte range. However, if they do not fit in the range, a warning
message is issued.

The segments included in a group do not have to be contiguous in the output
module. The only requirement is that all the segments defined in the group must
totally fall within 64K bytes of the beginning address of the group.

Introduction

1-9

CHAPTER 21
LINK86 COMMAND

The LINK86 command combines separately translated 8086 modules into a single
module. These modules can be produced by the 8086 assembler, 8088 assembler,
8089 assembler, or PL/M-86. LINK86 performs the following:

• Combines segments with the same complete name.

• Resolves external and public references between the input modules.

• Selects modules from specified libraries to resolve external references.

• Provides the facility to rename groups.

• Optionally purges p'ublic symbol, local symbol, line number, and comment
definitions from the output module.

• Generates a link map that summarizes the link process.

• Generates error messages for abnormal conditions encountered during
processing.

• Combines groups with the same name.

In combining modules, LINK86 only resolves symbolic addressing between parts of
a program. It is up to the developer to make sure that the parts work together.
LINK86 cannot check anything in this area.

The command signs On with the message:

ISIS-lIMCS-86 LINKER, Vx.y

to the current output console device. This message is also placed in the file
designated for the link map, if it is different than the console device.

The LINK86 command combines the input modules into a single output module.
This output module is the major output of the command. Secondary outputs consist
of the link map and informational, warning, and error messages.

Messages go to the current console output device and to the file designated. for the
link map, if different than the console device.

The format of the LiNK86 command is:

LINK86 inputlist [TO outputfile]{controls]{;comment]

where:

LINK86 is the command name.

inputlist is a list of items that contain the modules or symbols to be linked. Multiple
items are separated with commas (,). The items in the inputJist must be in either of
the following form:

filename[(modnaine[, ...])]

or

PUBLICSONLY(filename[, ...])

2-1

Link86 Command 8086 Family Utilities

2-2

filename specifies a single file that contains one or more object modules or a library
(created by the LIB86 command) of object modules. If the specified file does not
contain a library and modname is not entered, all modules are unconditionally
included in the output module.

If the file contains individual modules or a library and modnames are specified, only
the modules specified are included in the output module. If the file contains a library
and modnames are not specified, only those modules that satisfy an external
reference from preceding object modules or from the library itself are included in
the output module. For example, if the following inputJist is specified:

:F1 :IRON.OBJ,STEEL.LlB,:F2:0RE.OBJ

and:

• :Fl :IRON .OBJ has a single module that has an external reference to a public
symbol in the module named CARB in STEEL.LIB.

• the module CARB has an external reference to the module STAIN which is also
in STEEL.LIB.

• :F2:0RE.OBJ has a single module that has an external reference to the module
SMELT in STEEL.LIB.

the output module will contain:

:F1 :IRON.OBJ
CARB
STAIN
:F2:0RE.OBJ

and the reference to SMELT in ORE.OBJ will be unsatisfied because the library that
contains SMELT was specified before ORE.OBJ. To satisfy all external references,
the inputlist should have been specified in the following order:

:F1 :IRON.OBJ, :F2:0RE.OBJ,STEEL.LlB

PUBLICSONLY indicates that the absolute public symbols in the specified files will
be used to resolve external references only. The modules will not be included in the
output module.

TO outputfiIe is an optional parameter that specifies the name of the file that is to
contain the linked module. If TO outputfile is omitted, LINK86 uses the device and
root portion of the first filename specified in the inputlist. The extension portion of
the name (if any) is dropped and LNK is substituted. The filename specified in TO
outputfile or defaulted must not be referenced in the inputlist. If a file by that name
already exists on the specified device, it will be overwritten. The output module file
must exist on a randomly accessible device such as a disk drive.

controls specifies one or more of the optional LINK86 command controls that
modify the operation of the command. There are three categories of controls: input
list, diagnostic controls and output module controls. The following is a table of the
controls (the input list control may not appear in controls):

8086 Family Utilities Link86 Command

Table 2-1. LINK86 Controls

Control Abbrevi. Default

Input List Controls

PUBLICSONLY(filename[, ...]) PO Not applicable.

Diagnostic Controls

MAP MA MAP
NOMAP NOMA

PRINT[(filename)] PR PRINT
NOPRINT NOPR

Output Module Controls

COMMENTS CM COMMENTS
NOCOMMENTS NOCM

LINES LI LINES
NOLINES NOLI

NAME(modname) NA Name of first module in input.

PUBLICS PL PUBLICS
NOPUBLICS NOPL

PURGE PU NOPURGE
NOPURGE NOPU

RENAMEGROUPS(groupname TO RG Not applicable.
groupname(, ... J)

SYMBOLS SB SYMBOLS
NOSYMBOLS NOSB

TYPE TY TYPE
NOTYPE NOTY

;comment is an optional field that can be used for any purpose. The comment must
always be preceded by a semicolon or an ampersand. (The ampersand is the con
tinuation character and its use for continuation and commenting is described in the
next section.) The semicolon can occur anywhere a space or delimiter can occur. It
cannot be entered in the middle of a keyword or value. The comment extends to the
end of the line. This facility lets you put comments on the permanent record of the
link, if you use a hard copy PRINT file. A line with a ;comment cannot be con
tinued. However, a comment can be added to a line that is being continued (see the
following section).

If the same control appears more than once in a control list (e.g., "PRINT(:LP:)"
and "PRINT(FOO)", or "LINES" and "NOLINES"), then the rightmost control
is the only one with effect.

2-3

Link86 Command 8086 Family Utilities

2-4

Continuation Lines

A LINK86 command with several input modules and controls might not fit on a
single terminal input line (which may not exceed 122 characters). You can continue a
LINK86 command to the next line by entering an ampersand (&) before the carriage
return. Anything entered between the ampersand and the carriage return is treated
as a comment. The system prompts for the next line with two asterisks (**). An
input line may not be broken within a keyword or value. Lines can be broken
anywhere a parenthesis, comma, or space is normally used. Note that the line break
does not replace the parenthesis or comma; it can however, replace a space. Any
number of continuation lines are allowed. The following is an example of line
continuation:

LlNK86 :F1 :IRON.OBJ,ORE.OBJ,STEEL.LlB & <CR>
** TO :F1:METAL.LNK PRINT(:LP:) MAP& <CR>
** NOCOMMENTS<CR>

LINK86 Command Controls

There are three categories of LINK86 controls, those that affect the input list,. the
diagnostic output information and those that affect the output module,

Input List Control

The input list control gives you the capability to create overlay files. You can resolve
external references without including the input module that contain the public sym
bols in the output module.

PUBLICSONL Y Control

The PUBLICSONL Y control specifies that only the absolute public symbols located
will be used from the specified input modules. The input modules will not be
included in the output file. To speed up linkage, you may create a file containing
only absolute public symbols by specifying only the input control in the input list.

The format of the PUBLICSONL Y control is:

Pl!BLICSONLY(fi/ename[, ... J)

filename specifies the located file whose public symbols will be linked to the external
references in the inputlist, but the module itself will not be included in the output.

filename cannot be a library file.

PUBLICSONLY can be abbreviated PO.

PUBLICSONLY Control Example. To include the absolute public symbols of
two overlay files (:Fl :OVL.2 and :Fl :OVL.3) in a temporary file.

LlNK86 PUBLICSONLY(:F1 :OVL.2,:F1 :OVL.3) TO :F1 :PSYMB.TMP

For a more complete discussion of overlays, see Chapter 4.

8086 Family Utilitie~ LINK86 Command

DiagnQstic C9"trol!i

The diagnostic controls give you the capability of controlling where the diagnostic
output is to be directed.

MAP Control

The MAP control specifies whether a link map is to be included in the diagnostic
output file. The link map consists of six parts:

• a copy of the command tail that invoked the LINK86 command.

• the warning messages issued by LINK86 (if any).

• a header that contains the filename and module name of the output module.

• a list of the segments in the output module along with their length, class, and
address (if they are absolute).

• a list of the input modules.

• a list of unresolved external names (if any).

The LINK86 command does not detect, and thus, the link map does not show:

• gaps between segments.

• conflicts between absolute segments.

This last piece of information can be obtained from the LOC86 command.

The following is an example of a link map:

ISIS-II MCS-86 LINKER, Vx.y, INVOKED BY:
L1NK86 :F3:SHIP.OBJ,PROG.L1B(TRIG),PROG.L1B TO :F1:SHIP.WRK &
NAME(CELESTIGATION) MAP PRINT(:LP:) NOPUBLlCS&
EXCEPT(SIN,COS)

warning messages may appear here

LINK MAP FOR SHIP.WRK(CELESTIGATION)

LOGICAL SEGMENTS INCLUDED:

LENGTH ADDRESS
2345H

FAH
ABH
32H

OH
145H 32000H

INPUT MODULES INCLUDED:
SHIP.OBJ (NAVAL_PACKAGE)
PROG.L1B (TRIG)
PROG.L1B (EXP1)
PROG.L1B (EXP2)

SEGMENT
CODE
CONST
DATA
STACK
MEMORY
ABSOLUTE@CODE

CLASS
CODE
CONST
DATA
STACK
MEMORY
ACODE

2-5

Link86 Command 8086 Family Utilities·

2-6

UNRESOLVED EXTERNAL NAMES:
COSIGN IN SHIP.OBJ (NAVAL_PACKAGE)
COSIGN IN PROG.UB (EXP2)
SIGN IN PROB.UB (EXP2)

warning messages may appear here

The format of the MAP control is:

MAP I NOMAP

MAP specifies that a link map is to be produced. This is the default if no control is
specified. MAP can be abbreviated MA. Note that no map is produced if the
NOPRINT control (described next) is coded.

NOMAP specifies that a link map is not to be produced. NOMAP can be
abbreviated NOMA.

MAP Control Examples. To explicitly specify that a link map be produced:

MAP

To specify that no link map is to be produced:

NOMAP

PRINT Control

The PRINT control specifies where the diagnostic output information is to be sent.
If no control is specified, the diagnostic output goes to a disk file with the same
device and filename as the module output file but with an extension of MP 1. The
link map (if requested) and any error messages are sent to this file. The error
messages are also sent to the current console output file (if it is different from the file
specified in the PRINT control).

The format of the PRINT control is:

PRINT[(fiJename)] INOPRINT

PRINT specifies that an output diagnostic file is to be created. If filename is
specified, the diagnostic output file is created on the specified file. If filename is
omitted, the diagnostic output file is created on the disk with the same device and
root filename as the output module file and an extension of MP 1. filename cannot
be the name of any file named in the command input list or in the command TO
phrase. PRINT can be abbreviated PRo

NOPRINT specifies that no diagnostic output file is to be generated. If NOPRINT
is specified, there will be no diagnostic output other than error messages to the CUf

rent console output device, even if the MAP control is specified. NOPRINT can be
abbreviated NOPR.

8086 Family Utilities Link86 Command

PRINT Control Examples. To explicitly specify that the diagnostic output file is
to be sent to a disk file with the same name as the module output file but with an
extension of MPI:

PRINT

To send the diagnostic output file to the line printer:

PRINT(:LP:)

To specify that no diagnostic output be generated:

NOPRINT

Output Module Controls

The output module controls give you the capability of controlling the content of the
output module. You can specify the name of the output module, can change the
names of groups in the module, and can specify whether public symbols, line
numbers, local symbols, and comments are to be included.

NAME Control

The NAME control specifies a module name for the output module. If the NAME
control is omitted, the output module name is taken from the first module
encountered in the input.

The format of the NAME control is:

NAME(moduJename)

moduJename specifies the name to be assigned to the output module. The
moduJename can be 1 through 40 characters in length. It can be composed of capital
letters (A through Z), digits (0 through 9), question mark (?), colon (:), period (.),
underscore (_), and commercial at sign (@). LINK86 automatically converts lower
case letters in the command line to upper-case.

NAME can be abbreviated NA.

NAME Control Example. To assign the name OUTPUT@MOD@3 to the output
module:

NAM E(OUTPUT@MOD@3)

RENAMEGROUPS Control

The RENAMEGROUPS control lets you change the name of groups in the output
module. The control has no effect on the modules in the input list. The control can
contain a list of from-to changes. The changes take effect in a left-to-right order.
Thus you should be careful not to change a group name that you have already
changed.

The format of the RENAMEGROUPS control is:

RENAMEGROUPS(oJdname TO newname[, ...])

2-7

Link86 Command 8086 Family Utilities

2-8

oIdname is the name of a group to be changed. The oJdname can be I through 40
characters. It can be composed of capit;dletters (A through Z), digits (0 through 9),
question mark (?), colon (:), period (.), underscore (_), and commercial at sign
(@).

newname is the name to be assigned to the group. It can be from I through 40
characters and can be composed of the same characters as oJdname.

RENAMEGROUPS can be abbreviated RG.

RENAMEGROUPS Control Example. To change the names of the groups
CGROUP and DGROUP to CODEGP and DATAGP in the output module:

RENAMEGROUPS(CGROUPTOGODEGP,DGROUPTODATAGP)

LINES Control

The LINES control specifies whether line numbers from the input modules are to be
included in the output module.

The format of the LINES control is:

LINES I NOLINES

LINES specifies that line numbers are to be included in the output module. LINES is
the default ifno control is specified. LINES can be abbreviated LI.

NOLINES specifies that no lines numbers are to be included in the output module.
NOLINES can be abbreviated NOLI.

LINES Control Examples. To explicitly specify that line numbers are to be
included in the output module:

LINES

To specify that line numbers are to be excluded from the output module:

NOLINES

COMMENTS Control

The COMMENTS control specifies whether comments from the input modules are
to be included in the output module.

The format of the COMMENTS control is:

COMMENTS I NOCOMMENTS

COMMENTS specifies that comments are to be included in the output module.
COMMENTS is the default if no control is specified. COMMENTS can be
abbreviated CM.

NOCOMMENTS specifies that no comments are to be included in the output
module. NOCOMMENTS can be abbreviated NOCM.

8086 Family Utilities Link86 Command

COMMENTS Control Examples. To explicitly specify that comments are to be
included in the output module:

COMMENTS

To specify that comments are to be excluded from the output module:

NOCOMMENTS

SYMBOLS Control

The SYMBOLS control specifies whether local symbols from the input modules- are
to be included in the output module.

The format of the SYMBOLS control is:

SYMBOLS t NOSYMBOLS

SYMBOLS specifies that local symbols are to be included in the output module.
SYMBOLS is the default if no control is specified. SYMBOLS can be abbreviated
SB.

NOSYMBOLS specifies that no local symbols are to be included in the output
module. NOSYMBOLS can be abbreviated NOSB.

SYMBOLS Control Examples. To explicitly specify that local symbols are to be
included in the output module:

SYMBOLS

To specify that local symbols are to be excluded from the output module:

NOSYMBOLS

PUBLICS Control

The PUBLICS control specifies whether public symbols from the input modules are
to be included in the output module. The PUBLICS controls gives you the capability
of selectively including or excluding public symbols from the output module.

The format of the PUBLICS control is:

PUBLICS INOPUBLICS [EXCEPT(publicsymbol[, .. .])]

PUBLICS specifies that public symbols are to be included in the output module.
PUBLICS is the default if no control is specified. PUBLICS can be abbreviated PL.

NOPUBLICS specifies that no public symbols are to be included in the output
module. NOPUBLICS can be abbreviated NOPL. EXCEPT specifies one or more
public symbols that are not to be affected by the control. If an EXCEPT parameter
follows a PUBLICS control, all public symbols are included in the output module
except those specified in the EXCEPT parameter. Likewise, if an EXCEPT
parameter follows a NOPUBLICS control, all public symbols are excluded from the
output module except those specified in the EXCEPT parameter. EXCEPT can be
abbreviated EC.

2-9

Link86 Command 8086 Family Utilities

2-10

PUBLICS Control Examples. To explicitly specify that public symbols' are to be
included in the output module:

PUBLICS

To specify that public symbols are to be excluded from the output module:

NOPUBLICS

To specify that all public symbols except COSINE, SINE, and TANG are to
included in the output module:

PUBLICS EXCEPT(COSINE,SINE,TANG)

PURGE Control

The PURGE Control is a combination control. PURGE is exactly equivalent to
coding "NOLINES NOSYMBOLS NOCOMMENTS NOPUBLICS NOTYPE".
The format of the PURGE control is:

PURGE I NOPURGE

NOPURGE is exactly equivalent to coding "LINES SYMBOLS COMMENTS
PUBLICS TYPE".

TYPE Control

The TYPE control indicates that type checking on external and public symbols is to
be done. The format of the TYPE control is:

TYPE I NOTYPE

NOTYPE indicates that type checking on external and public symbols is not to be
done. NOTYPE will not specify a symbol type in the output.

CHAPTER 3
Loe86 COMMAND

The LOC86 command binds relocatable 8086 modules to absolute addresses. Addi
tionally, the command:

• Creates an absolute output object module from a single input object module.

• Generates a memory map- that summarizes the results of the address binding.

• Generates a symbol table that shows the address assignments for translator
produced symbols.

• Detects and lists errors found in the input module and the LOC86 command
itself.

• Filters relocating information and translator generated debugging information. -

The input to the LOC86 command is a single file that contains a single module. The
input is usually the output module from LINK86. However, it can be the output of a
translation.

The LOC86 absolute output module is usually the input to an 8086 loader or OH86,
but can be input to other products and their loaders.

The command signs on with the message:

ISIS-II MCS-86 LOCATOR, Vx.y

to the current output console device. A longer form of this message is also placed in
the file designated for the diagnostic information, if it is different than the console
output device. The longer form of the message is:

ISIS-II MCS-86 LOCATOR, Vx.y INVOKED BY:
LOC86 parameters

Any messages generated by the command and any diagnostic information requested
with the command are sent to the file designated for the diagnostic information. The
messages are also sent to the console output device, if it is different than the
diagnostic information file.

The format of the LOC86 command is:

LOC86 inputfile [TO outputfile Hcontrols H;comment]

where:

LOC86 is the command name.

inputfile is an ISIS-II file that contains the module to be located.

TO outputfile is an optional parameter that specifies the name of the file that is to
contain the located module. If TO outputfile is omitted, LOC86 uses the name por
tion of the inputfile, dropping the extension. If inputfile has no extension, an error
message is issued unless TO is specified.

controls specifies one or more of the optional LOC86 command controls that
modify the operation of the command. There are three categories of controls:

• Diagnostic controls which control the output and content of the diagnostic
information.

• Output module controls which control the output module.

• Diagnostic and output module controls which can be applicable to the
diagnostic output or the output module or both.

3-1

LOC86 Command 8086 Family Utilities

The following is a table of the controls:

Table 3-1. LOC86 Controls

Control Abbrevi. Default

Diagnostic Controls

MAP MA MAP

NOMAP NOMA

PRlNT[(filename) J PR PRINT
NOPRINT NOPR

SYMBOl.COLUMNS(value) SC SYMBOLCOLUMNS(2)

Output Module Controls

ADDRESSES(AD . Not applicable
SEGMENTS($egment{ lelass; }(addrH , ... J>f SM
CLASSES(class (addr){, ... 1)1 CS
GROUPS(group (addr){ •... J) GR
[, ... })

BOOTSTRAP as Not applicable

NAME(modname) NA Name of first module in input

ORDER(00 Order of appearance in input
SEGMENTS(segment[I class J[•.. ·If 8M
CLASSES(class [(segment[• ...))] cs
[, ...])

RESERVE (addr TO addr[, ... D RS Not applicable

SEGSIZE(segmefTt [I class I (value) L ...]) 55 Actual size .1f segment

START(1 pub/icsymbo/l 5T Start address taken from the
paragraph, offset J) : input module

3-2

8086 Family Utilities LOCH Command

Ta.ble 3 .. 1. LOC86 Controls (Cont'd)

Ctmtrol Abbrevi. Default

DiagnostiC and Output Module Controls

OBJECrCONTROLS(controls) OC Diagnostic and Output module
controls apply to both the out""
put file and the diagnostic out-
put file.

PRIN1CONTROlS(conttols) PC Diagnostic and Output module
controls apply to both the out-
put file and the dlagnostic out-
put file.

CQM~ENJS CM COMMENTS
NOCOMMENTS NOCM

LINES U LINES
NOUNES NOU

PUBLICS. PL PUBUCS
NOPUBUCS NOPL

PURGE PU NOPURGE
NOPURGE NOPU

SyMBOLS S8 SYMBOLS
NOSYMSOlS NOSB

;comment is any additional information you may want to enter into the hard copy of
the LOCATE map. Anything entered between a semicolon (;) and the carriage
return is treated as a comment.

A LOC86 command with several controls might not fit on a single terminal input
line (which may not exceed 122 characters). You can continue a LOC86 command to
the next line by entering an ampersand (&) before the carriage return. Anything
entered between tbe ampersand and the carriage return is treated as a comment. The
LOC86 comm:and prompts for the next line with two asterisks (**). An input line
may not be broken within a keyword or value. A line can be broken anywhere a
parenthesis, comma, Of space is normally used. Note that the line break does not
replace the parenthesis or comma; it can, however, replace a space. Any number of
continuations ate allowed. The following is an example of line continuation:

LOC86 :F1:IR()N .LNK T() STEEL &
** MAP PRfNT(:F2:IRON.OUT) OBJECTCONTROLS(NOCOMMENTS) &
* * PRINTCONTROLS(COMMENTS, NOPUBLlCS)<CR>

lOC'86 Comm'and Controls

There are three categories of LOC86 controls: those that affect the diagnostic output
information, those that affect the output module, and those that affect either or
both diagnostic output or output module. Included in the last category are two con
trols that limit certain controls to either the diagnostic output or the output module.

3-3

LOC86 Command 8086 Family Utilities

3-4

If the same control appears more then once in a control list (e.g., "PRINT(:LP:)"
and "PRINT(FOO)" ,or "LINES" and "NOLINES"), then the rightmost control
is the only one with effect. The only exception is that when a control appears within
a PRINTCONTROLS or OBJECTCONTROLS control scope, it does not cancel
other controls.

Diagnostic Controls

There are three controls in this category: MAP, PRINT, and SYMBOL
COLUMNS.

MAP Control

The MAP control specifies whether a memory map is to be included in the
diagnostic output file. The memory map consists of three parts:

• general module information such as module name, input and output files, and
start address.

• a segment map that includes segment start and stop addresses, length, alignment
attribute, name, and class name.

• a group map that includes group names, starting addresses, and component
segment names.

The memory map also shows where there are conflicts between individual segments.
A conflict is shown by the character C between the stop address and length in the
conflicting segment entry.

The following is an example of a memory map:

MEMORY MAP OF MODULE CELESTIGATION
READ FROM FILE :F1 :SHIP.LNK
WRITTEN TO FILE :F1:SHIP
MODULE START ADDRESS PARAGRAPH = 020H OFFSET = OF8H

SEGMENT MAP

START STOP LENGTH ALIGN NAME

00200H OOA40H 840H W CODE

OOA42H OOB42H 100H W CONST

OOB44H OOD50H 20BH B DATA

OOD52H OOD58H 6H W STACK

OOD5AH OOD5AH OH W MEMORY

GROUP MAP

ADDRESS GROUP OR SEGMENT NAME

00200H CGROUP

CODE
OOA40H DGROUP

CONST
DATA
STACK
MEMORY

CLASS

CODE
CONST
DATA
STACK
MEMORY

8086 Family Utilities LOC86 Command

The map shows the locations of segments, groups, and classes. The address and
lengths are always given in hexadecimal. The ALIGN column specifies. the alignment
attribute of the segments. The alignment codes are:

8- byte
W-word
G - paragraph
xR- inpage
P- page
A - absolute

Note that the x in the inpage alignment code can be any other alignment code. That
is, a segment can have the inpage attribute, meaning it must reside within a 256 byte
page and can have the word attribute, meaning it must reside on an even numbered
byte.

The format of the MAP control is:

MAP I NOMAP

MAP specifies that a map be produced and sent to the diagnostic output file
specified by the PRINT control. This is the default condition. MAP can be
abbreviated MA.

NOMAP specifies that no map be produced. NOMAP can be abbreviated NOMA.

MAP Control Example. To explicitly generate a memory map:

MAP

To specify that no map is to be produced:

NOMAP

PRINT Control

The PRINT control specifies where the diagnostic output information is to be sent.
If no control is specified, the diagnostic output goes to a disk file with the same
device and name as the output module file and an extension of MP2. The memory
map (if not suppressed), any error messages, and any other diagnostic information
are sent to this file. The error messages are also sent to the current console output
file (if it is different than the file specified in the PRINT control).

The format of the PRINT control is:

PRINT[(filename)] I NOPRINT

PRINT specifies that a diagnostic output file is to be created. If filename is
specified, the specified file is created. If filename is omitted, the file is created on the
same disk that holds the output module. The file has the same name as the output
module and an extension of MP2. filename cannot be the name of a file named
elsewhere in the command. PRINT (with no filename) is the default condition.
PRINT can be abbreviated PRo

NOPRINT specifies that no diagnostic output file is to be created. If NOPRINT is
specified, there will be no diagnostic output other than error messages to the current
console output device, even if requested with specific controls (such as MAP).
NOPRINT can be abbreviated NOPR.

3-5

LOC86 Comnumd 8086 Family Utilities

3-6

PRJNT Contr()l J!x~l1lpl~s. To ~xplieitly sp~cify that the qiagnpstic output file is
to be sent to a (:fisk file with the senne' nante as the module output file and an
exten~ion of MP2:

PRINT

To s~nd the diagnostic output file to the line printer;

PRINT(:LP:)

To specify that no dia,$nostic output is to generated:

NOPRINT

SYMBOLCOLUMNS Control

The SYMIlOLCOLUMNS, (;ootrol specifies the number of columns. the symbol table
is formatted into. The symbol table is descri-1:>ed later in this chapter.

The format of the SYMBOLCOLUMNS control is;

SYMBOLCOLUMNS(value)

SYMBOLC()LUMNS can be abbreviated se.
value specifies the number of columns into which the table is to be formatted. If the
SYMBOLCOLUMNS control is not entered, the number of columns defaults to 2.
The possible values for value are I, 2~ 3, or 4.

Output Module Controls

There are seven controls in the output module category. They control the content of
the output module, the order of the segments in the mod.ule, and the assignment of
addresses to the segments.

ADDRESSES Control

The ADDRESSES control specifies addresses for specific segments, classes, and
groups named in the control. The control is entered with any or all of three sub
controls: SEGMENTS, CLASSES, and GROUPS. All segment names for which
addresses are supplied must be included in a SEGMENTS list and likewise for
classes and groups. The subcontrols can be specified multiple times in an
ADDRESSES control.

When ADDRESSES is used to assign an address to a class, the specified address is
assigned to the segment belonging to the class that resides lowest in memory.

If an address is specified that causes a conflict with a segment specified in an
ORDER control, an error message is issued and processing is terminated. For
example, the controls:

ORDER(SEGMENTS(A,B)) ADDRESSES(SEGMENTS(A(500H),B(400H)))

specify that segments A and B be located in the sequence A,B but the addresses
specified for them are in the opposite order, B,A.

8686 family U tHities LOC86 Command

The format of the ADDRESSES control is:

ADORESSES(SEGMENTS(segm~nt [I class](addr)[, .. .]) t
CLASSES(class(a4dr)[, ...]} I
GROUPS(group(addr)[, ...]}[, ... })

The optional class specification ensures that the LOC86 command will locate the
proper segment in cases where segments in different classes have the same name.

ADDRESSES can be abbreviated AD.

SEGMENTS specifies that a list of one or more segment names is included. Each
segment name must be followed by an address enclosed in parentheses. Multiple
entries in the SEGMENTS list are separated with commas .. SEGMENTS can be
abbreviated SM.

segment is the name of a relocatable segment in the module being processed.

/dass is the name of the class to which a segment belongs~ if any.

addr is an address entered in any base to which the preceding segment is to be
bound. The address can be in the range OH through OFFFFFH.

CLASSES specifies that a list of one or more class. names is included. Each class
name must be followed by an address enclosed in parentheses. Multiple entries in the
CLASSES list are separated with commas. CLASSES can be abbreviated es.

class is the name oJ a class in the module being processed.

GROUPS specifies that a list of one or more group names must be located at the
specified addresses. Each group name should be followed by a paragraph address (if
not LOC86 will round down to a paragraph address) enclosed in parentheses. Multi
ple entries in the GROUPS list must be separated by commas. GROUPS may be
abbreviated GR.

group is the name of a group in the module being processed.

To see how the GROUPS subcontrol may be used to help create overlay modules,
see Chapter 4.

The LOC86 command is designed to detect conflicts whenever possible. However, it
is possible that you may want to cause a conflict in locating some segments. To
intentionally cause a conflict, you must specify the relocatable segments in an
ADDRESSES/SEGMENTS controL

When an address is specified for a specific segment witb the ADDRESSES control,
the segment is located exactly where specified. When CLASSES is used, the first seg
ment in the class. is located at the specified address or at the first available address
after the specified address.

For example, if there is an absolute segment, lOOH bytes in length, located at
address 800H and a LOC86 command with the control:

ADDRE.SSES(CLASSES(RAM(SOOH»))

is issued, the first segment in the class RAM will be located at address 900H: (or
higher, depending on the alignment attribute). The command does not allow a can,.
fliet at this point. If a conflict was allowed, it would not be known w,hat segment will
be involved in the conflict because the segments in RAM will be located in a first
come, first served manner.

3-7

LOC86 Command 8086 Family Utilities

3-8

If the ADDRESSES control specified a segment instead of a class, a conflict would
have been allowed.

ADDRESSES Control Examples. To specify that segment Code is to be located at
address 5 50H:

ADDRESSES(SEGMENTS(CODE(550H»)

To specify that class RAM is to be located at address 400H:

ADDRESSES(CLASSES(RAM(400H»)

To specify that segments SI and S4 are to be located at addresses 2000H and
03BFOH, respectively, and that class ROM be located at address OCOOOH:

ADDRESSES(SEGMENTS(S1(2000H),S4(03BFOH»,CLASSES(ROM(OCOOOH »)

To specify that segments SI and S4, of classes RAM and CODE, respectively, are to
be located at addresses 050H and 00F4H, respectively:

ADDRESSES(SEGMENTS (S1 I RAM (050H), S4 I CODE(OOF4H»)

BOOTSTRAP Control

The BOOTSTRAP control specifies that a long jump instruction to the module's
start address be stored at location OFFFFOH through OFFFF4H. This control
establishes a means of restarting a program when the microprocessor is reset. If no
start address is specified in the input module or with the START control, an error
message is issued.

The format of the BOOTSTRAP control is:

BOOTSTRAP

BOOTSTRAP can be abbreviated BS.

BOOTSTRAP Control Example. To cause a jump instruction to the start address
to be stored at location OFFFFOH:

BOOTSTRAP

NAME Control

The NAME control specifies a module name to be included in the output module. If
the NAME control is omitted, the first module name encountered in the input
module is used as the output module name.

The format of the NAME control is:

NAME(modulename)

NAME can be abbreviated NA.

modulename specifies the name to be assigned to the output module. The
modulename can be 1 through 40 characters. It can be composed of capital letters (A
through Z), digits (0 through 9), question mark (?), colon (:), period (.), underscore
(_), and commercial at sign (@). LOC86 automatically converts lower-case letters
to upper-case.

8086 Family Utilities LOC86 Command

NAME Control Example. To assign the name OUTPUT_MODU_44 to the out
put module:

N AM E(OUTPUT __ MODU_ 44)

ORDER Control

The ORDER control specifies the order in which segments and classes are to be
located in the output module. The ORDER control does not specify addresses for
the segments or classes. The addresses are determined by LOC86 or assigned with
the ADDRESSES control.

There are two subcontrols that are used with the ORDER control: SEGMENTS and
CLASSES. SEGMENTS precedes a list of one or more segments. CLASSES
precedes a list of one or more classes. The subcontrols can be used mUltiple times in
an ORDER control. For example, you may want to specify that three segments are
to be located before a certain class and the class is to be followed by two more
segments. This will require one CLASSES subcontrol and two SEGMENTS
subcontrols.

The order of the segments within a class specified with the CLASSES subcontrol can
be specified with the order control.

If an order specified with the ORDER control causes a conflict with a segment or
class specified in an ADDRESSES control, an error message is issued and processing
is terminated.

The format of the ORDER control is:

ORDER(SEGMENTS(segment[I class][, ...]) I CLASSES(c/ass [(segment [, ... 1)][, ...])

ORDER can be abbreviated 00.

SEGMENTS specifies that a list of one or more segments follows. The segment list is
enclosed in parentheses and separated with commas. If a non-existent segment name
(i.e., not found in the input module) appears in the list, an error message is issued.
SEGMENTS can be abbreviated SM.

CLASSES specifies that a list of one or more classes follows. The class list is
enclosed in parentheses and separated with commas. If a non-existent class name
appears in the list, an error message is issued. Optionally, the order of the segments
within a class can be specified with the CLASSES subcontrol. The segment list is
entered immediately following the class name, enclosed in parentheses and separated
with commas. The segment list does not have to be complete. That is, a partial list
can be entered. When a partial list is entered, the listed segments are located first
within the class then any remaining segments of the same class are located following
the last specified segment in the class. CLASSES can be abbreviated CS.

ORDER Control Examples. To specify that segments AI, A5, and AIO be located
in that order:

ORDER(SEGMENTS(A1,A5,A10))

3-9

LOC86 Command 8086 Family Utilities

3-10

To specify that classes RAM and ROM be located in that order and that the
segments RAIl, RA34, and RAS5 be located in that order at the beginning of the
class RAM (segments within ROM will be located in default order):

ORDER(CLASSES(AAM(RA11,RA34,AA55),ROM»

To specify the following order of segments and classes:

segments - CODE
-DATA

classes - ROM (with segments in order A5, R4, and A1)
-DATA

segments - STACK
- DATAl
-MEMORY

ORDER(SEGMENTS(CODE,DATA),CLASSES(ROM(R5,R4,R1),DATA), &
* * SEGM ENTS(STACK, DATA 1, MEMORY»

RESERVE Control

The RESERVE control specifies portions of 8086 memory space that are not to be
used in locating the output module. A list of pairs of memory locations are included
with the control. The first address of each pair must be lower or equal to the second
address or an error message is issued.

If no RESERVE control is entered, the available memory address range is assumed
to be 00200H through OFFFFFH. The memory from OH through 00200H can be
used by specifying an address in this range in an ADDRESSES control.

The format of the RESERVE control is:

RESERVE(addreSs1 TOaddress2 [, ... J)

RESERVE can be abbreviated RS.

address1 and address2 specify a range of memory addresses. The two addresses are
separated with the keyword TO. If multiple address ranges are specified, the ranges
are separated with commas. address} must be lower or equal to address2.

RESERVE Control Examples. To specify that the addresses from 0200H through
OFFFFH are not to be assigned to any segments:

RESERVE(0200H TO OFFFFH)

To reserve the areas 1000H through 2000H and 8000H through OAOOOH:

RESERVE(1000H TO 2000H,8000H TO OAOOOH)

SEGSIZE Control

The SEGSIZE control specifies the size of one or more segments in the output
module. The SEGSIZE control can be used to add or subtract a value from the size

8086 Family Utilities LOC86 Command

of a segment or to specify an exact size. If a segment size is changed such that it will
no longer hold the code or data, a warning message is issued. Normally, the error
condition ()ccurs only when a segment is reduced in size.

The m()st common usage of the SEGSIZE control is to change the size of a stack
segment.

the format of the SEGSIZE control is:

SEGSIZE(segmehtI 1 class]([+ 1-)value)[, ...])

SEGSIZE can be abbreviated SSe

segment is the name of a segment whose size is to be changed.

class is the name of the class to which a segment belongs, if any~

+ and - are optional operators that specify whether the following value is to be
added to or subtracted from the current size of the segment. If neither the + or - is
entered; the value is used as an exact size. That is, vaJue becomes the segrnent size.
The value can be in the range OH through OFFFFH.

SEGSIZE Control Examples. To specify that the STACK segment is to be 40H
bytes:

SEGSIZE(STACK(40H))

To specify that the STACK segment is to be I8H bytes larger than it is in the input
segment:

SEGSIZE(STACK(+ 18H))

To specify that the STACk segment of class CODE is to be 40H bytes:

SEGSIZE(STACK I CODE (40H)).

START Control

The START control specifies the starting address of the output module. If no
ST AR T control is included in the command, the start address is taken from the
input module.

The start address can be specified as an absolute address in the form of paragraph
and offset or symbolically as a public symbol within the module. If the latter form is
used, the public symbol must be defined in the input module or an error message is
issued.

The format of the START control is:

START(publicsymbo/l paragraph ,offset

START can be abbreviated ST.

pubJicsymboJ is the name of a public symbol defined in the input module. If pUbJic
symbol is within a group, the base address of the group is loaded into the CS register
and the offset to the public symbol is loaded into the IP register. If publicsymboJ is
not a part of a group, the base address of the segment is loaded into the CS register
and the offset to the public symbol is loaded into the IP register.

3-11

LOC86 Command 8086 Family Utilities

3-12

paragraph is a paragraph number in the range OH through OFFFFH specifying
paragraphs beginning at addresses OH through OFFFFOH. paragraph must be
followed by an offset value. The offset can be in the range OH through OFFFFH.
The paragraph value is used to initialize the CS register and the offset value is used
to initialize the IP register.

START Control Examples. To specify that the address of the public symbol
HERE is to be used as the start address in the output module:

START(HERE)

To specify that the start address of the output module is to be an offset of SOH from
paragraph number 20H (the generated address is 2S0H):

ST ART(20H ,80H)

Diagnostic and Output Module Controls

This category of controls contains seven controls. Two of the controls are used to
limit the scope of the other five. The two limiting controls specify whether the
included controls apply to the object module only or to the diagnostic output only.
The other five controls specify whether comments, line numbers, public symbols,
and local symbols are to be included in the output.

The five output controls can be included without the limiting controls. In this case
they apply to both the output module and the diagnostic output.

When the information controlled by these controls is output to the print file, it is put
into a symbol table. The following is an example of a symbol table with all types of
information included:

SYMBOL TABLE OF MODULE SHIPREK
READ FROM FILE :F1 :NAVAL.SRC
WRITTEN TO FILE :F1 :WRECK

BASE OFFSET TYPE SYMBOL

SHIPREK: SYMBOLS AND LINES
0500H 0084H LIN 1054
0500H 0088H LIN 1055
0200H 0008H SYM STARTHERE
0200H 0016H SYM LOOP1
STACK 0004H SYM NEWLOOP

BASE OFFSET TYPE SYMBOL

0400H 0032H PUB ENTERHERE
STACK 0090H PUB CHAR1PTR
0600H 0102H PUB CHARPTR
0600H 0102H BAS CHAR
STACK 0090H BAS CHAR1

A symbol may be BASED on another symbol, or non-BASED. A symbol may also
be either a local symbol or a STACK symbol. A local symbol has the address com
ponents "base" and "offset". A STACK symbol has address components of
"STACK" and "offset", the offset being relative to the register BP. In the symbol
table above, the symbols CHAR and CHARI are BASED symbols (BASED on the
symbols CHARPTR and CHARIPTR, respectively). In the table there are also two
examples of STACK symbols: NEW LOOP , which is a non- BASED STACK sym
bol, and CHARI, which is a BASED STACK symbol.

8086 Family Utilities LOC86 Command

OBJECTCONTROLS Control

The OBJECTCONTROLS control specifies that the controls included with it are to
only apply to the output module, not the diagnostic output file. The controls that
can be included with the OBJECTCONTROLS control are:

COMMENTS and NOCOMMENTS
LINE and NOLINES
PUBLICS and NOPUBLICS
PURGE and NOPURGE
SYMBOLS and NOSYMBOLS

If any other control is included, an error message is issued.

The format of the OBJECTCONTROLS control is:

OBJECTCONTROLS(contro/[, ...])

OBJECTCONTROLS can be abbreviated OC.

control is any of the allowed controls.

OBJECTCONTROLS Control Example. To specify that comments are to
excluded from the output module and that line numbers are to be included:

OBJECTCONTROLS(NOCOMMENTS,L1NES)

PRINTCONTROLS Control

The PRINTCONTROLS control specifies that the controls included with it are to
only apply to the diagnostic output file, not the output module. The controls that
can be included with the PRINTCONTROLS control are:

COMMENTS and NOCOMMENTS
LINES and NOLINES
PUBLICS and NOPUBLICS
PURGE and NOPURGE
SYMBOLS and NOSYMBOLS

If any other control is included, an error message is issued.

The format of the PRINTCONTROLS control is:

PRINTCONTROLS(contro/ [, ...])

PRINTCONTROLS can be abbreviated PC.

control is any of the allowed controls.

PRINTCONTROLS Control Example. To specify that local symbols are to be
excluded from the diagnostic output and that line numbers are to be included:

PRINTCONTROLS(NOSYMBOLS,LlNES)

3-13

LOC86 COIllmand

3-14

COMMENTS Cont.rol
The COMMENTS control specifies whether comments are to be includeQ in the out
put module. This control can be specified in the OBJECT CONTROLS and PRINT
CONTROLS controls. However, it has no. eHect on the d:iagnostic output file; com
ments cannot be included in. the diagnostic output file. Thus if COMMENTS is
specified outside the OBJ~CTCONTROLS control, it only affects the output
IDQdule.

The format of the COMMENTS control is:

COMMENTS I NOCOMMENTS

COMMENTS specifies that comments are to be included in the output module. This
is tl;le default condition if no COMMENTS control is included. CO,MMENTS can be
abbrevi.ated CM.

NOC()MMENTS specifies that no comments are to be included in the output
module. NOCOMMENTS c~n be abbreviated NOCM.

COMMENTS Control Examples. To explicitly specify that comments. be included
in the output module:

COMMENTS

The same effect can be achieved with the fonowing:

OBJECTCONTROLS(COMMENTS)

To specify that comments are to be excluded from the output module:

NOCOMMENTS

LINES Control

The LINES. control specifies whether line numbers are to be included in the output
module and whether the line num.bers and their addresses are to be included in the
diagnostic output.

If ~he LINES control is included in an OBJECTCONTROLS control, it only applies
to the output module and to. the diagnostic output if included in a
PRINTCONTROLS control. .

The format of the LINES control is:

LINES I NOLINES

LINES specifies that line numbers and line number addresses be included in the out
put module and the diagnostic output. This is the default if no LINES control is
included. LINES can be abbreviatedLI.

NOLIN"ES specifies that all line number information be excluded from the output.
NOLINES can be abbreviated NOLI.

LINES Control Examples. To explicitly specify that line numbers and their
addresses be included in the output module and line numbers and their addresses in
the diagnostic output:

LINES

8086 Family Utilities LOC86 Command

To specify that line numbers and their addresses be excluded from the diagnostic
output:

PRINTCONTROLS(NOLINES)

PURGE Control

The PURGE control is a combination control. PURGE is exactly equivalent to
coding "NOLINES NOSYMBOLS NOCOMMENTS NOPUBLICS". NOPURGE
is exactly equivalent to coding "LINES SYMBOLS COMMENTS PUBLICS".

The format of'the PURGE control is:

PURGEINOPURGE

PUBLICS Control

The PUBLICS control specifies whether public symbols and their addresses are to be
included in the output module and whether the public symbols and their addresses
are to be included in the diagnostic output.

If the PUBLICS control is included in an OBJECTCONTROLS control, it only
applies to the output module and to the diagnostic output if included in a
PRINTCONTROLS control.

The format of the PUBLICS control is:

PUBUCSINOPUBLICS

PUBLICS specifies that public symbols and their addresses be included in the output
module and the diagnostic output. This is the default if no PUBLICS control is
included. PUBLICS can be abbreviated PL.

NOPUBLICS specifies that all public symbol information be excluded from the out
put. NOPUBLICS can be abbreviated NOPL.

PUBLICS Control Examples. To explicitly specify that public symbols and their
addresses be included in the output module and the public symbols and their
addresses in the diagnostic output:

PUBLICS

To specify that public symbols and their addresses be excluded from the diagnostic
output:

PRINTCONTROLS(NOPU BLICS)

SYMBOLS Control

The SYMBOLS control specifies whether local symbols and their addresses are to be
included in the output module and whether the local symbols and their addresses are
to be included in the diagnostic output.

If the SYMBOLS control is included in an OBJECTCONTROLS control, it only
applies to the output module and to the diagnostic output if included in a
PRINTCONTROLS control.

3-15

LOC86 Command 8086 Family Utilities

3-16

The format of the SYMBOLS control is:

SYMBOLS I NOSYMBOLS

SYMBOLS specifies that local symbols and their addresses be included in the output
module and the diagnostic output. This is the default if no SYMBOLS control is
included. SYMBOLS can be abbreviated SB.

NOSYMBOLS specifies that all local symbol information be excluded from the out
put. NOSYMBOLS can be abbreviated NOSB.

SYMBOLS Control Examples. To explicitly specify that local symbols and their
addresses be included in the output module and the local symbols and their
addresses in the diagnostic output:

SYMBOLS

To specify that local symbols and their addresses be excluded from the diagnostic
output:

PRINTCONTROLS(NOSYMBOLS)

CHAPTER 4
HOW LINK86 AND LOC86

HANDLE MODULES

How LINK86 Combines Segments

LINK86 combines segments on the basis of the order in which segments are en
countered in the input and on the complete segment name. The complete segment
name consists of the segment name and the class name.

The LINK86 output module consists of one or more segments in the order in which
unique segment names were encountered in the input modules. When a non-unique
complete segment name (a name that was previously read) is encountered, the seg
ment is combined with the previous segment. The only way that you can change the
sequence in which LINK86 combines segments is to change the names of the
segments or to change the order in which modules are listed in the command input
list.

How LOC86 Locates Segments

LOC86 goes through two processes to assign addresses to segments. First, the
segments are assigned a sequence according to:

• the ORDER control (if one is included in the command)

• their sequence in the input module

• their class name.

After the segments are put in order, addresses are assigned to them. Any addresses
supplied with an ADDRESSES control are assigned. Then LOC86 assigns addresses
to any remaining segments without addresses.

When LOC86 assigns addresses, it begins at address 00200H or the first available ad
dress above a preceding segment with an address assigned. For example, if no ad
dresses are assigned with the ADDRESSES control, the first segment is assigned ad
dress 00200H. If the first segment is assigned by the LOC86 command or with the
ADDRESSES control, the next segment is assigned the first available address above
the preceding segment that meets the segments alignment attribute (byte, word,
paragraph, or page).

LOC86 keeps a list of the segments being located. To examine how LOC86 locates
segments, we will look at a simplified version of the list. Before assigning addresses
to segments, LOC86 develops the segment list in the following manner:

• Segments specified explicitly and implicitly in the ORDER control are inserted
into the list. (An explicit reference is by segment name and an implicit reference
is by class name.)

• Segments not mentioned in the ORDER control are added to the end of the list
or the end of a class collection if the class already exists in the list. Segments are
added in the order in which they are encountered in the input module.

4-1

How LINK86 and LOC86 Handle Modules 8086 Family Utilities

4-2

Let's run through an example of this sequence. The input module consists
of the following segments and classes in the given ord.er:

SEGMENT CLASS
NAME NAME

A X1
B X2
C X2

0 X1
E X3
F X1
G X2

H X2
X1

The LOC86 command contains the following ORDER control:

ORDER(SEQMENTS(D),CLASSES{X2))

The ORDER control causes the following segments to be inserted into the list:

o
B
C
G
H

Segment D is inserted because it is explicitly referenced in the ORDER control.
Segments B, C, G, and H are inserted because they are all the segments with the class
X2.

Next, LOC86 searches the input module for segments that are not yet in the list. The
first segment encountered is A which has class Xl. Although segment D, already in
the list, has class Xl, D's class is not known in the list. Therefore, the segment A is
added to the bottom of the list:

o
B
C
G
H
A

LOC86 next searches the input module for all other segments, not already in the list,
that have class X 1. Segment D is ignored because it is already in the list. Segments F,
I, which have class Xl are not in the list, so they are added. The list now looks like:

o
B
C
G
H
A
F

8086 Family Utilities How LI'NK86 and LOC86 Halldle Modules

LOC86 continues to search the input module for segments that are not in the list.
This time it finds segment E with class X3. This segment is added to the end of the
list. This is the last segment in the input module, so the process is finished. The final
list, with classes is:

SEGMENT CLASS
NAME NAME

0 X1
B X2
C X2
G X2
H X2
A X1
F X1

X1
E X3

There is a variation to this ordering algorithm. If one of the segments has the
MEMORY attribute it is automatically located at the end of the list no matter where
it was encountered in the input module and independent of its class name. It can
only be located elsewhere in the list if it is specified in the ORDER control or the
ADDRESSES control.

ASSigning Addresses

After the segments are put into the correct relative order, addresses must be
assigned. Addresses can come from:

• The translator.

• The ADDRESSES control in the LOC86 command.

• The LOC86 command defaults.

The 8086 has address space OH through OFFFFFH available for programs. LOC86
will only use address space 200H through OFFFFFH unless a lower address is
specified with the ADDRESSES control.

If there are no translator-generated absolute segments in the input module and no
ADDRESSES or RESERVE controls, LOC86 assigns the first segment the address
200H. The address assigned to the second segment depends on the length of the first
segment and the alignment attribute of the second segment. For example if the first
segment begins at address 200H and is 84H bytes long and the second segment has
the paragraph alignment attribute, the second segment will be located at address
290H, the first paragraph boundary following the first segment. If the second seg
ment had the byte alignment attribute, it would be located at address 284H.

Additionally, there must be enough available space for a segment when an address is
assigned. If in the last example, the second segment was IOOH bytes long but there
was a RESERVEd area at address 300H, the segment would be located above the
area beginning at 300H.

If addresses are assigned to some segments with the ADDRESSES control and
others are to be assigned by LOC86 there must be room for any segments that come
between user assigned addresses. If there is a conflict between the determined order
and address assignment, error messages are generated.

4-3

How LINK86 and LOC86 Handle Modules 8086 Family Utilities

4-4

How to Create Overlays With LINK86 and LOCS6

Sometimes your 8086 program is too large to fit into the memory available on the
system. Overlays permit programs to be larger than the available memory.

Typically, an overlay is composed of code and data that is executed in one phase of a
program's execution, but not used at any other time. Once executed the memory
used by this code can be overwritten with code and data used in an other phase. Sec
tions of code that occupy the same part of memory at different times during execu
tion are called overlays.

Part of an overlayed program is always resident in memory; it usually is comprised
of the main program module, frequently used routines, and the overlay loader. This
part of the program is called the root. Figure 4-1 illustrates the memory configura
tion of one program that uses overlays.

,..----,
, SPACE ,

L T ---
, RESERVED

L7 ---
, FOR ROOT

L 7 ---
, MODULE L ___ _

--------7 ,
OVERLAVSPACE ,

Figure 4-1. Memory Configuration of Program
With Overlays 639-7

Before you can create overlays, you must divide your source program into separately
translatable modules (they form the root and overlays). If you are using PL/M, you
must compile each module with the same program size control.

Once your source code has been divided and translated, there are a maximum 8 steps
required to create an executable root and overlays. These steps are listed below:

I. Link root with all necessary library routines, but without overlays. A link map is
needed.

2. Link overlays with all necessary library modules. A link map is needed. If
overlays only use externals contained in the root, this step may be skipped. The
translator's module information may be used.

3. Examine link maps or translator module information to compute overlay
placement.

4. Locate root module leaving room for overlays.

5. Link root to overlays with PUBLICSONLY control.

6. Locate overlays in area reserved when root was located.

7. Link overlays to root with PUBLICSONLY control.

8. Locate root in the same area used in step 4.

8086 Family Utilities· How LINK86 and LOC86 Handle Modules

Annotated Example

To examine how LINK86 and LOC86 are used to create overlays, let us consider the
following problem. A PL/M program has been divided into three modules (a root
and two overlays). For purpose of efficiency we want all code and all data to fit
within 64K bytes (the CS and DS registers need not be changed during execution).

First we must compile all modules with the same program size controls (either
COMP ACT or SMALL). Examples of the invocation lines are shown below.

PLM86 :F1 :ROOT.SRC SMALL
PLM86 :F1 :OV1.SRC SMALL
PLM86 :F1 :OV2.SRC SMALL

In the next step we must link the root module. There are unresolved references to
code and data in the overlays, but we will need the link map for locating purposes.
The link map shows the size of each segment in the root. Since the overlays are self
contained except for references to the root, we do not need a link map for them. The
PL/M listing files will show the size of each overlay's segments.

LlNK86 :F1 :ROOT.OBJ, USER. LIB MAP

Figure 4-2 shows the link map from the root and the Module Information from each
overlay's listing file.

OV1' s segment
MODULE INFORMATION:

CODE AREA SIZE 7531H 30001D
CONSTANT AREA SIZE 0081H 129D
VARIABLE AREA SIZE 0181H 385D
MAXIMUM STACK SIZE 0040H 64D
918 LINES READ
0 PROGRAM ERROR(S)

END OF P L/ M-86 COMPILATION

OV2' s segment
MODULE INFORMATION

CODE AREA SIZE 1B9AH 7066D
CONSTANT AREA SIZE 0101H 257D
VARIABLE AREA S I Z E 0454H 1108D
MAXIMUM STACK SIZE 0067H 1030
918 LI NES READ
0 PROGRAM ERROR(S)

END OF PL/M-86 COMPILATION

ISIS-II MCS-86 LINKER, V1.2, INVOKED BY:
LINK86 :F1:ROOT.OBJ, USER.LIB MAP
LINK MAP FOR : F1: ROOT. LNK(ROOT>
LOGICAL SEGMENTS INCLUDED:
LENGTH ADDRESS SEGMENT

8A9BH CODE
0381H CONST
0291H DATA
0030H STACK
OOOOH MEMORY
NP T MODULES INCLUDED:
F1 ROOT.OBJ(ROOT)
FO USER.LIB(LOADER)
FO USER.LIB(EXIT)
FO USER.LIB(ERROR)
FO USER.LIB(TIME)

CLASS
CODE
CONST
DATA
STACK
MEMORY

size i n forma t ion

this is the CODE segment
this is the CaNST segment
this is the DA TA segment
this is the S T A C K s e gme n t

size in forma t ion

th 5 s the CODE segment
th 5 s the CaNST segment
th 5 s the DATA segment
th 5 5 the S T A C K 5 e gme n t

Figure 4-2. Link Map for :Fl :ROOT.LNK and Module
Information for Overlays

4-5

How LINK86 and LOC86 Handle Modules 8086 Family Utilities·

4-6

Note that the length of the root's code segment and OVl's code segment just fit
within 64K. This means that the code for the overlays must be in a part of memory
contigllous with the root (to avoid altering the CS register during execution). OV2's
CONST and DATA segments are larger than OVl's so that the STACK segment
must be placed to leave room for OV2's CONST and DATA segments. If the
overlays share the STACK and MEMORY segments with the root, they must be
located at the same address.

After computing the required location for the root's DGROUP and STACK, we can
locate the root module. The resulting file will not be executable, but it allows us to
resolve references to the root's code and data symbols in the overlays. The following
LOC86 invocation will leave room for the overlays' code segments, and place the
DGROUP in the first unused memory location. (In the command line below the DS
register is initialized to OFFCH, and the CS register is initialized to 0.) The STACK
and MEMORY segments will be located above OV2's DATA segment.

LOC86 :F1 :ROOT.LNK ADDRESSES(GROUPS(CGROUP(OH}, &
DGROUP(OFFCEH}), &

SEGMENTS(CODE(OH), &
CONST(OFFCEH}, &
STACK(10B34H}» &

ORDER(SEGMENTS(CODE, CONST, DATA, STACK, MEMORY» &
SEGSIZE(ST ACK(1 OOH»

Once the root is located, we can use it to resolve external references in the overlay
modules. The overlay modules cannot call each other, since only one is resident in
memory at any time. The link commands are shown below. The NOPUBLICS with
the EXCEPT control is used to avoid conflicts when we use the located overlays to
resolve external references in the root.

LlNK86 :F1 :OV1.0BJ, PUBLICSONLY(:F1 : ROOT) &
NOPUBLICS EXCEPT(OV1CODE, OV1DATA)

LlNK86 :F1 :OV2.0BJ, PUBLICSONL Y(:F1 : ROOT) &
NOPUBLICS EXCEPT(OV2CODE, OV2DATA)

The PUBLICSONLY control resolves references to public symbols contained in the
root.

After the overlays have been linked, they must be located. The code and data
segments must be placed in the memory locations that were reserved when we first
located theroot. In this case the STACK and MEMORY segments must be the same
for the overlays and the root.

LOC86 :F1 :OV1.LNK ADDRESSES(GROUPS(CGROUP(OH), &
DGROUP(OFFCEH», &

SEGMENTS(CODE(8A9CH), &
CONST(105EOH), &
STACK(10B34H») &

ORDER(SEGMENTS(CODE, CONST, DATA, STACK, MEMORY» &
SEGSIZE(STACK(1 OOH»

LOC86 :F1:0V2.LNK ADDRESSES(GROUPS(CGROUP(OH), &
DGROUP(OFFCEH}), &

SEGMENTS(CODE(8A9CH), &
CONST(105EOH), &
STACK(10B34H)}) &

ORDER(SEGMENTS(CODE, CONST, DATA, STACK, MEMORY» &
SEGSIZE(ST ACK(1 OOH»

8086 Family Utilities How LINK86 and LOC86 Handle Modules

The CGROUP and DGROUP base address must be specified in order to compute
offset information. LOC86 will round OFFCEH to OFFCOH.

Once the overlays are located, the root is linked and located into an executable form.
The PUBLICSONL Y control will resolve references to symbols in the overlay
modules. Other than the addition of this input control, the LINK86 and LOC86
command must be identical to those used previously.

LlNK86 :F1 :ROOT.OBJ, USER.L1B, PUBLICSONL Y(:F1 :OV1, :F1 :OV2)

LOC86 :F1 :ROOT.LNK ADDRESSES(GROUPS(CGROUP(O), &
DGROUP(OF FCEH)), &

SEGMENTS(CODE(O), &
CONST(OFFCEH), &
ST ACK(1 083 4H)) &

ORDER(SEGMENTS(CODE, CONST, DATA, STACK, MEMORY)) &
SEGSIZE(STACK(100H))

The executable forms of the root and its overlay files are contained in : F 1: ROOT,
:FI :OVI, and :FI :OV2. Figure 4-3 shows the resulting layout of memory.

1 r- cs
ROOT CODE

I
SPACE

EMS
OVERLAY

SA9C

I
CODE [FFCO_OS,SS SPACE

ROOT DATA

OFFCE

I
SPACE 1050

•
OVERLAY

105EO

I
DATA

10B33
SPACE

STACK AREA

10834

10C33
10C34 III SP

MEMORY

Figure 4-3. Memory Organization for Example 639-9

4-7

CHAPTER 5
LISS6 COMMAND

The LIB86 command allows you to create specially formatted files to contain
libraries of object modules, to maintain these libraries by adding and deleting
modules, and to obtain a listing of the modules and public symbols in a library file.
Libraries can be used as input to LINK86 which may automatically link modules
from the library that satisfy external references in the modules being linked.

The library manager program is called into operation by the LIB86 command. The
format of the LIB86 command is:

L1B86

LIB86 ignores the command tail, if any.

The operation of LIB86 is controlled by entering commands to indicate which
operation LIB86 is to perform. LIB86 prompts for commands with an asterisk (*).
The commands are:

COMMAND

CREATE
ADD
DELETE
LIST
EXIT

Continuation Lines

ABBREVIA TION

C
A
o
L
E

If a command to LIB86 is longer than one line on your console (which must not be
greater than 122 characters), you can continue it by entering an ampersand (&)
before the carriage return. The ampersand cannot appear within a filename or con
trol keyword. It can be placed between a keyword and a parameter, for example:

ADD PVT.lIB &
**(MOD1)

LIB86 prompts for the continued line with a double asterisk (**). If necessary,
subsequent lines can be continued also.

CREATE - Create a Library File

The CREATE command creates an empty library file. You may use the ADD com
mand to add modules to the library file. The format of the CREATE command is:

CREATE filename

where

filename specifies the name to be assigned to the new library file. If a file with that
name already exists, an error message is sent to the console and LIB86 prompts for
another command.

5-1

LIB86 Command 8086 Family Utilities

5-2

ADD - Add Modules to a Library File

The ADD command adds object modules to a library file. The format of the ADD
command is:

ADD sourcefile [(modname, ...)][, ...] TO libfile

where

sourcefiJe can be the name of a library file or the name of a file containing one or
more object modules. If a library file is specified, all the object modules contained in
it are added to libfile unless modnames are specified.

modname can be specified only if sourcefile is a library file. Only the object
modules specified by modnames are added to Iibfile .

Iibfile is the library file being modified by the addition of modules in sourcefile .

DELETE - Delete Modules from Library File

The DELETE command deletes modules from a library file. The format of the
DELETE command is:

DELETE lib file (modname , ...)

where

modname specifies the object modules to be deleted from Iibfile .

LIST - List Library Modules and Their Public Symbols

The LIST command lists the module directory of library files. The format of the
LIST command is:

LIST libfile [(modname,. ..)], ... [TO listfile] [PUBLICS]

where

lib file is the name of the library file whose module directory is to be listed unless
modname is also specified. In that case, only information about the specified
modules is listed.

Iistfile is the name of the file to contain the library listing. If omitted, the directory is
listed on the current console output device (:CO:).

PUBLICS specifies that public names in each module are to be listed. If omitted,
only the module names are listed.

8086 Family Utilities LIB86 Command

The format of the listing when public names are requested is (note that PUBLICS is
abbreviated by P):

*LIST TEST.LIB P

TEST.LIB
OPEN

NOREX
ABEX

REDUCE
HEX
OCT
DATUM

CLOCK
TIME
LAPSE
eyC

.... 1 ---public names
L...-____ module names

L-------library name

EXIT - Return to IS IS-II

The EXIT command returns control to ISIS-II. When finished with LIB86, enter the
EXIT command, followed by a carriage return. This terminates the LIB86 program
and returns control to ISIS-II, which prompts for a command with a hyphen (-).

The format of the EXIT command is:

EXIT

Example. The following example shows the creation of a library file and the entry
in the library of two modules. The directory of the library is listed before exiting to
ISIS-II.

-L1B86
ISIS-II MCS-86 LIBRARIAN Vx.y
*CREATE FOO.L1B
*ADD SIN.OBJ,COS.OBJ TO FOO.L1B
* LIST FOO.L1B

FOO.L1B
SINE
COSINE

*EXIT

5-3

CHAPTER 61
OH86 COMMAND

The OH86 command converts a 8086 absolute object module to the hexadecimal
format. This conversion may be necessary to punch a module to paper tape for later
loading by a hexadecimal loader such as the Monitor or UPM. The conversion may
be made to put the module in a more readable format that can be displayed or
printed.

The module to be converted must be in absolute format; the output from LOC86 is
in absolute format. That is, it must not contain any relocatable records. If
relocatable records are encountered, the command processing is terminated and con
trol is returned to ISIS-II. If the input file contains symbol table information used
for debugging, this information is not converted and does not appear in the output
file.

The OH86 command signs on with the message:

ISIS-II MCS-86 OBJECT TO HEX FILE CONVERTER, Vx.y

Following a correct conversion, processing is terminated with the message:

CONVERSION COMPLETE, NO ERRORS

If error conditions are encountered, the error messages are issued to the system con
sole at this time. The possible error messages are listed in Appendix A of this
manual.

The format of the OH86 command is:

OH86 inputfile TO outputfile

where:

OH86 is the command name.

inputfiJe is the name of a file containing the 8086 absolute object module to be
converted. All restrictiot1s concerning filenames as noted in the ISIS-IJ User's
Guide apply to OH86 filenames.

outputfiJe is the name of the file which is to receive the converted object
module.

All filenames default to disk drive :FO: unless a different device is specified.

OH86 Command Example

The following command will convert the file TEST on drive :FO: (the default) to
hexadecimal format and store the result in the file TEST. HEX on drive :FI:

OH86 TEST TO :F1 :TEST.HEX

6-1

APPENDIX AI
ERROR MESSAGES

This appendix contains the error and warning messages for utility commands. The
error messages are in numerical order unless they do not contain error numbers, in
which case they are in alphabetical order.

LINK86 Error Messages

The LINK86 error messages are numbered. The error messages may be followed by
additional lines of information relating to the error.

ERROR 1: I/O ERROR; ISIS-II error
FILE: filename

ERROR 2: I/O ERROR; ISIS-II error
FILE: filename

ERROR 3: 110 ERROR; ISIS-II error
FILE: filename

ERROR 4: CONSOLE I/O ERROR; ISIS-II error

An ISIS-II I/O error was detected. The text of the message includes a description of
the error similar to the errors listed in the ISIS-II User's Guide. ISIS-II error is one
of the following:

• ILLEGAL FILENAME

• ILLEGAL DEVICE NAME

• A TTEMPT TO WRITE TO INPUT FILE

• A TTEMPT TO READ FROM OUTPUT FILE

• FULL DIRECTORY

• FILE IS ALREADY OPEN

• NO SUCH FILE

• FILE IS WRITE PROTECTED

• ATTEMPT TO SEEK ON NON-DISK FILE

• MISSING FILENAME

• MISSING FILE EXTENSION

• A TTEMPT TO DELETE OPEN FILE

ERROR 1 is issued when the error occurs in an input file, 2 for the output file, 3 for
the print file, and 4 for the console file. Processing is terminated, all open files are
closed, and control is returned to ISIS-II.

ERROR 5: INPUT PHASE ERROR
FILE: filename
MODULE: module name

This error occurs when LINK86 encounters different data during pass two than it
read during pass one. Processing is terminated, all open files are closed, and control
is returned to 'ISIS-II.

A-I

Error Messages 8086 Family Utilities

A-2

ERROR 6: CHECK SUM ERROR
FILE: filename
MODULE: module name

A bad check sum was detected in the input module. This indicates a bad input
module or transmission error. Processing is terminated, all open files are closed, and
control is returned to ISIS-II. Rerun the last operation performed on the module
(LINK86, compilation, assembly) and then reissue the LINK86 command.

ERROR 7: COMMAND INPUT ERROR

There is an error in the command. This occurs when LINK86 cannot read some por
tion of the command line or the command line is improperly terminated. Processing
is terminated, all open files are closed, and control is returned to ISIS-II.

WARNING 8: SEGMENT COMBINATION ERROR
FILE: filename
MODULE: module name
SEGMENT: segment name
CLASS: class name

Two segments with the same complete name have different combining attributes.
For example, one may be a memory segment and one may be a stack segment. Pro
cessing for error messages continues, but the output module is invalid.

WARNING 9: TYPE MISMATCH
FILE: filename
MODULE: module name
SYMBOL: symbol

The symbol named in the message has more than one definition. The mUltiple defini
tions specify different types. The first defined type is used. This is a warning
message, so processing continues.

WARNING 10: DIFFERENT VALUES FOR
FILE: filename
MODULE: module name
SYMBOL: symbol

There are multiple values for the symbol named in the message. The first value is
used. This is a warning message, so processing continues.

ERROR 11: INSUFFICIENT MEMORY
FILE: filename
MODULE: module name

The memory available for execution of LINK86 has been used up. This is generally
caused by a large number of external and public symbols, or possibly a large number
of segments in the input or a fantastically long command tail. Processing is ter
minated, all open files are closed, and control is returned to ISIS-II.

WARNING 12: UNRESOLVED SYMBOLS

The input contains unresolved symbols. This may be the result of forgetting an input
module. This is a warning, so processing continues.

8086 Family Utilities Error Messages

WARNING 13: IMPROPER FIXUP
FILE: filename
MODULE: module name
SYMBOL: symbol

There is an improper fixup in the specified input file. This may be a transmission or
translator error. Reissue the command and try again. If the error persists,
retranslate the source file and then link again. The error may also be caused by a self
relative fix up (e.g., a jump) occuring and a different segment register is assumed for
the two locations (the jump-from and jump-to locations). If this is the case, you
must fix your source code to make sure that the same segment register is assumed for
both locations. This is a warning message, so processing continues.

WARNING 14: GROUP ENLARGED
FILE: filename
GROUP: group name
MODULE: module name

Two or more groups with the same name were encountered in the input. The groups
were combined into a single group. This may cause the group to exceed the 64K max
imum group size (if so, a message to that effect will be generated by LOC86). If you
don't want the groups combined, change the name of groups to be left uncombined.
This is a warning message, so processing continues.

ERROR 15: LINK86 ERROR
FILE: filename
MODULE: module name

There is an apparent problem with the LINK86 command you entered. There might
have been a transmission error. Reconstruct the input files and try again. If the error
persists, contact your friendly neighborhood Intel service representative. Processing
is terminated, all open files are closed, and control is returned to ISIS-II.

ERROR 16: STACK OVERFLOW
FILE: filename
MODULE: module name

Type definitions within the input modules are too complex to be handled by the
current version of LINK86. Contact your Intel service representative. Processing is
terminated, all open files are closed, and control is returned to ISIS-II.

WARNING 17: SEGMENT OVERFLOW
SEGMENT: segment name
CLASS: class name

The combination of two or more segments has resulted in a segment that exceeds
64K bytes in size. Processing continues, but the output module is invalid.

ERROR 18: GROUP HAS TOO MANY ELEMENTS
FILE: filename
GROUP: group name
MODULE: module name

Internal constraints in LINK86 prohibit a group from having more than twenty
internal descriptors. The specified group has exceeded this limitation. Processing is
terminated, all open files are closed, and control is returned to ISIS-II.

A-3

Error Messages 8086 Family Utilities

A-4

ERROR 19: TYPE DESCRIPTION TOO LONG
FILE: filename
MODULE: module name

Internal constraints limit the length of the description of the type of a symbol. A
type has been encountered whose type is too long to be so described. Processing is
terminated, all open files are closed, and control is returned to ISIS-II.

WARNING 20: NO SUCH GROUP
NAME: name

The name specified in the error message is used as a group name in the
RENAMEGROUPS control of the command. No group by this name exists in the
input. This may be a typing error or you may have forgotten to include an input file.
This is a warning message, so processing continues.

WARNING 21: RENAME ERROR
NAME: name

The name specified as a new name in a RENAMEGROUPS control is already in use
as the name of another group. The group name will not be changed. Reissue the
command and specify a unique group name. This is a warning message, so process
ing continues.

ERROR 22: INVALID SYNTAX
ERROR IN COMMMAND TAIL NEAR I:
partial command tail

A syntax error was detected in the command. The command tail is repeated up to a
point near where the error was detected. A # character indicates the point where the
error was detected. Processing is terminated, all open files are closed, and control is
returned to ISIS-II.

ERROR 23: BAD OBJECT FILE
FILE: filename
MODULE: module name

There is a-record in the input that has an incorrect format. This may be the result of
an error in the translator or a data transmission error. You may also have specified a
non-object file by mistake. Processing is terminated, all open files are closed, and
control is returned to ISIS-II.

WARNING 24: CANNOT FIND MODULE
FILE: filename
MODULE: module name

The module named in the message cannot be found. You may have mistyped the
name while entering the command or you may have the wrong disk in the drive.
Make sure the file exists and then reissue the command. This is a warning message,
so processing con tin ues.

WARNING 25: EXTRA START ADDRESS IGNORED
FILE: fjlename
MODULE: module name

More than one main module was included in the input list. Or, no main module was
included and more than one non-main module with a start address was included in
the input list. The first start addresses are used in the output module, all other start
addresses encountered are ignored. This is a warning message, so processing
continues.

8086 Family Utilities Error Messages

ERROR 26: NOT AN OBJECT FILE
FILE: filename

The file named in the message, judging from its first byte of data, is not a valid
object module. This is probably caused by a mistake in entering the name. Process
ing is terminated, all open files are closed, and control is returned to ISIS-II.

ERROR27: NOOVERLAY
FILE: filename

The LINK86 overlay file, LINK86.0YO, does not exist on the disk that contained
the primary portion of the processor. The overlay may have been accidently erased,
or it may not have been copied when a new linker disk was generated. Reissue the
command making sure that both LINK86 files (LINK86 and LINK86.0YO) are on
the same disk.

WARNING 28: POSSIBLE OYERLAP
FILE: filename
MODULE: module name
SEGMENT: segment name
CLASS: class name

Absolute segments have been combined. LINK86 has no way of knowing the size of
these segments, therefore, there is the possibility of an overlap. This is a warning
message, so processing continues.

WARNING 29: GROUP HAS BAD EXTERNAL REFERENCE
GROUP: group name
SEGMENT: segment name

If the public symbol corresponds to the external reference has been specified by its
absolute address, and does not reside in any segment. This is a warning message, so
processing continues.

ERROR 30: LIBRARY IS NOT ALLOWED WITH
PUBLICSONL Y CONTROL

FILE: filename

The file specified is a library and, as such, is not permitted as an argument to the
PUBLICSONL Y control. Processing is terminated, all open files are closed, and
control is returned to ISIS-II.

WARNING 31: REFERENCED LOCATION OFFSET UNDERFLOW
FILE: filename
MODULE: module name
SYMBOL: symbol

A (8089) self relative reference destination is outside of the segment containing the
symbol. This is a warning message, so processing continues.

Loe86 Error Messages
The LOC86 error messages are numbered. The error messages may be followed by
additional lines of information relating to the error.

ERROR 1: I/O ERROR; ISIS-ll error

An ISIS-II 110 error was detected. The text of the message includes a description of
the error similar to the errors listed in the ISIS-ll User's Guide. Processing is ter
minated, all open files are closed, and control is returned to ISIS-II.

ERROR 2: INY ALID SYNTAX
ERROR IN COMMAND TAIL NEAR #:
partial command tail

A syntax error was detected in the command. The command is repeated up to and
including the point of error. A # character immediately follows the point of error.
Processing is terminated, all open files are closed, and control is returned to ISIS-II.

A-5

Error Messages 8086 Family Utilities

A-6

ERROR 3: MISSING INPUT FILE NAME
ERROR IN COMMAND TAIL NEAR I:
partial command tail

The command was issued without supplying an input file name. A # character
immediately follows the point of error. Processing is terminated, all open files are
closed, and control is returned to ISIS-II.

ERROR 4: INSUFFICIENT MEMORY

The memory available for execution of LOC86 has been used up. This is generally
caused by a large number of segments in the input or an excessively long command
tail. Processing is terminated, all open files are closed, and control is returned to
ISIS-II.

ERROR 5: BAD RECORD FORMAT
MODULE: module name

There is a record in the specified input module that has an incorrect format. This
may be the result of an error in the translator or a data transmission error. Process
ing is terminated, all open files are closed, and control is returned to ISIS-II.

ERROR 6: INVALID KEY WORD
ERROR IN COMMAND TAIL NEAR I:
partial command tail

A invalid keyword was found in the command. The command is repeated up to and
including the point of error. A ## character immediately follows the point of error.
Processing is terminated, all open files are closed, and control is returned to ISIS-II.

ERROR 7: NUMERIC CONSTANT LARGER THAN 20 BITS
ERROR IN COMMAND TAIL NEAR I:
partial command tail

A numeric constant specifying more than 20 bits in binary was found in the com
mand where a 20 bit constant was expected. Processing is terminated, all open files
are closed, and control is returned to ISIS-II.

ERROR 8: NON NUMERIC CHARACTER IN NUMERIC CONSTANT
ERROR IN COMMAND TAIL NEAR I:
partial command tail

A non-numeric character was found in a 16 bit or 20 bit constant. The characters
allowed in numeric constants are 0-9, A-F, and B, Q, H, or 0 as base identifiers.
This error is often the result of entering a hexadecimal number with a letter rather
than digit first. For example, FFH must be entered as OFFH. Processing is ter
minated, all open files are closed, and control is returned to ISIS-II.

ERROR 9: NUMERIC CONSTANT LARGER THAN 16 BITS
ERROR IN COMMAND TAIL NEAR I:
partial command tail

A numeric constant specifying more than 16 bits in binary was found in the com
mand where a 16 bit constant was expected. Processing is terminated, all open files
are closed, and control is returned to ISIS-II.

ERROR 10: INVALID SEGMENT NAME
ERROR IN COMMAND TAIL NEAR I:
partial command tail

An identifier was found where a segment name was expected. The identifier does not
represent a valid segment name. Processing is terminated, all open files are closed,
and control is returned to ISIS-II.

8086 Family Utilities Error Messages

ERROR 11: INVALID CLASS NAME
ERROR IN COMMAND TAIL NEAR I:
partial command tail

An identifier was found where a class name was expected. The identifier does not
represent a valid class name. A # character immediately follows the point of error.
Processing is terminated, all open files are closed, and control is returned to ISIS-II.

ERROR 12: INVALID INPUT MODULE
MODULE: module name

The specified input module was found to be invalid for one of several reasons: the
record order may be incorrect, an invalid field may have been detected within a
record, or a required record was found to be missing. The error is probably the
result of a translator error or you are trying to locate a non-8086-object module.
Processing is terminated, all open files are closed, and control is returned to ISIS-II.

WARNING 13: MORE THAN ONE SEGMENT WITH MEMORY ATTRIBUTE
SEGMENT: segment name

LOC86 found more than one segment with the memory attribute. The first segment
with the memory attribute is treated as such. Any other segments with the memory
attribute are treated as non-memory segments. This is a warning message, so pro
cessing continues.

WARNING 14: GROUP DEFINED BY AN EXTERNAL REFERENCE
NAME: external name
GROUP: group name

A group has been found that is defined by an external symbol. This is a form of an
unresolved external reference. This is a warning message, so processing continues.

WARNING 15: PUBLIC SYMBOL NOT ADDRESSABLE
NAME: public symbol name

One or more public symbols have been found for which an offset from the specified
base cannot be calculated. This can result from having the public symbol more than
64K bytes from the base, i.e., the segment containing the public symbol is not wholly
contained within the 64K byte range defined by the group base. This is a warning
message, so processing continues.

WARNING 16: LOCAL SYMBOL NOT ADDRESSABLE
NAME: local symbol name

One or more local symbols have been found for which an offset from the specified
base cannot be calculated. This can result from having the local symbol more than
64K bytes from the base, i.e., the segment containing the local symbol is not wholly
contained within the 64K byte range defined by the group base. This is a warning
message, so processing continues.

WARNING 17: LINE NUMBER NOT ADDRESSABLE
NAME: line number

One or more line numbers have been found for which an offset from the specified
base cannot be calculated. This can result from having the line number more than
64K bytes from the base, i.e., the segment containing the line number is not wholly
contained within the 64K byte range defined by the group base. This is a warning
message, so processing continues.

A-7

Error Messages 8086 Family Utilities

A-8

WARNING 18: SIZE OF GROUP EXCEEDS 64K
GROUP: group name

A group has been found whose component segments do not all lie within the 64K
byte range defined by the group base address. Addressing error may result from this
condition. This is a warning message, so processing continues.

WARNING 19: BOOTSTRAP SPECIFIED FOR MODULE WITHOUT START
ADDRESS

The BOOTSTRAP control was specified for an input module that does not have a
starting address. The BOOTSTRAP control is ignored. This is a warning message,
so processing continues.

ERROR 20: INVALID NAME
NAME: bad name

The input filename is not a valid ISIS-II filename. Processing is terminated, all open
files are closed, and control is returned to ISIS-II.

ERROR 21: START ADDRESS DEFINED BY SPECIFIED EXTERNAL NAME
NAME: external name

The start address for the module is defined in terms of an undefined external sym
bol. No start address is calculated and the start address in the module is left in terms
of the external name. Processing is terminated, all open files are closed, and control
is returned to ISIS-II.

ERROR 22: SEGMENT SIZE OVERFLOW; OLD SIZE + CHANGE> 64K
SEGMENT: segment name

The SEGSIZE control for the specified segment causes its size to exceed 64K bytes.
Processing is terminated, all open files are closed, and control is returned to ISIS-II.

ERROR 23: SEGMENT SIZE UNDERFLOW; OLD SIZE - CHANGE < 0
SEGMENT: segment name

The SEGSIZE control for the specified segment causes its size to be less than zero.
Processing is terminated, all open files are closed, and control is returned to ISIS-II.

ERROR 24: INVALID ADDRESS RANGE

The address range specified for the" RESERVE control is not valid. The lower
address is probably higher than the high address. Processing is terminated, all open
files are closed, and control is returned to ISIS-II.

ERROR 25: PUBLIC SYMBOL NOT FOUND
NAME: public symbol name

The public symbol specified in the START control was not found in the input
module. Processing is terminated, all open files are closed, and control is returned to
ISIS-II.

WARNING 26: DECREASING SIZE OF SEGMENT
SEGMENT: segment name

The SEGSIZE control in the command causes the size of the specified segment to be
decremented. This may result in the segment content being unaccounted for in
memory allocation, thus resulting in conflicts. This is a warning message, so pro
cessing continues.

8086 Family Utilities Error Messages

ERROR 27: SPECIFIED SEGMENT IS ABSOLUTE
SEGMENT: segment name

An attempt was made to assign an address to an absolute segment. Processing is ter
minated, all open files are closed, and control is returned to ISIS-II.

WARNING 28: PAGE RESIDENT SEGMENT CROSSES PAGE BOUNDARY
SEGMENT: segment name

The size of the specified page resident segment exceeds 256 bytes. The page residence
request is ignored. This is a warning message, so processing continues.

WARNING 29: OFFSET FIXUP OVERFLOW
MODULE: module name
REFERENCED LOCATION: 20 bit address
FRAME OF REFERENCE: 20 bit address

An offset from a group base (FRAME OF REFERENCE) exceeds 64K. This can
occur when you explicitly assign the order or addresses of segments, causing the
specified module to fall outside of the 64K physical segment of the group base. This
is a warning message, so processing continues.

WARNING 30: UNRESOLVED EXTERNAL REFERENCE TO NAME AT
SPECIFIED ADDREESS

NAME: external name
SEGMENT: segment name
ADDRESS: 20 bit address

The specified unresolved external is referenced near the specified address. This is a
warning message, processing continues.

WARNING 31: UNRESOLVED EXTERNAL REFERENCE TO NAME NEAR
SPECIFIED ADDRESS

NAME: external name
SEGMENT: segment name
ADDRESS: 20 bit address

The unresolved external is referenced near the specified address. This is a warning
message, processing continues.

WARNING 32: OVERFLOW OF LOW BYTE FIXUP VALUE
MODULE: module name
REFERENCED LOCATION: 20 bit address
FRAME OF REFERENCE: 20 bit address

An 8 bit displacement value was calculated whose value exceeds 255. This is a warn
ing message, so processing continues.

ERROR 33: GROUP HAS NO CONSTITUENT SEGMENTS
GROUP: group name

There are no segments defined for the specified group. Processing is terminated, all
open files are closed, and contro~ is returned to ISIS-II.

ERROR 34: SPECIFIED CLASS NOT FOUND IN INPUT MODULE
CLASS: class name

The specified class was not found in the input module. Processing is terminated, all
open files are closed, and control is returned to ISIS-II.

ERROR 35: SPECIFIED SEGMENT NOT FOUND IN INPUT MODULE
SEGMENT: segment name
CLASS: class name

The specified segment was not found in the input module. Processing is terminated,
all open files are closed, and control is returned to ISIS-II.

A-9

Error Messages 8086 Family Utilities

A-lO

WARNING 36: SEGMENTS OVERLAP
SEGMENT: segment name
SEGMENT: segment name
LOW OVERLAP ADDRESS: 20 bit address
HIGH OVERLAP ADDRESS: 20 bit address

The two specified segments overlap for the specified address range. This is a warning
message, processing continues.

ERROR 37: INPUT MODULE EXCEEDS 8086 MEMORY
SEGMENT: segment name

The memory required by the input module segments exceeds the available 8086
memory. Processing is terminated, all open files are closed, and control is returned
to ISIS-II.

WARNING 38: SEGMENT WITH MEMORY ATTRIBUTE NOT PLACED
HIGHEST IN MEMORY

SEGMENT: segment name

As the result of an ORDER control or an absolute address assignment the memory
segment was not located last, i.e., highest in memory. This is a warning because you
requested this location in the command or the translation of the source code, pro
cessing continues.

ERROR 39: NO MEMORY BELOW SEGMENT FOR SPECIFIED SEGMENT
SEGMENT: segment name
SEGMENT: segment name

You requested that one segment be located below another. There is not enough
memory below the specified segment, thus the ordering cannot be maintained. Pro
cessing is terminated, all open files are closed, and control is returned to ISIS-II.

WARNING 40: CAN NOT MAINTAIN SPECIFIED ORDER
SEGMENT: segment name

The ordering request cannot be maintained due to lack of available 8086 address
space and addresses already assigned to segments. LOC86 attempts to find a loca
tion for the specified segment beginning at address 00200H. This is a warning
message, processing continues.

ERROR 41: SPECIFIED CLASS OUT OF ORDER
CLASS: class name

The ORDER control and the ADDRESSES control are in conflict relative to the
specified class. Processing is terminated, all open files are closed, and control is
returned to ISIS-II.

ERROR 42: SPECIFIED SEGMENT OUT OF ORDER
SEGMENT: segment name

The ORDER control and the ADDRESSES control are in conflict relative to the
specified segment. Processing is terminated, all open files are closed, and control is
returned to ISIS-II.

ERROR 43: ADDRESS FOR CLASS SPECIFIED MORE THAN ONCE
CLASS: class name

The specified class was specified more than once in the same ADDRESSES control.
Processing is terminated, all open files are closed, and control is returned to ISIS-II.

8086 Family Utilities Error Messages

ERROR 44: SEGMENT ADDRESS PREVIOUSLY SPECIFIED IN INPUT
MODULE OR COMMAND LINE

SEGMENT: segment name

The specified segment was specified more than once in the same ADDRESSES con
trol, or the specified segment has an absolute address in the input module. Process
ing is terminated, all open files are closed, and control is returned to ISIS-II.

ERROR 45: SEGMENT SPECIFIED MORE THAN ONCE IN ORDER
SEGMENT: segment name

The specified segment was specified more than once in the same ORDER control.
Processing is terminated, all open files are closed, and control is returned to ISIS-II.

ERROR 46: CLASS SPECIFIED MORE THAN ONCE IN ORDER
CLASS: class name

The specified class was specified more than once in the same ORDER control. Pro
cessing is terminated, all open files are closed, and control is returned to ISIS-II.

ERROR 47: SPECIFIED SEGMENT NOT IN SPECIFIED CLASS
SEGMENT: segment name
CLASS: class name

The specified segment is not in the specified class. This is an error in the use of the
ORDER control. Processing is terminated, all open files are closed, and control is
returned to ISIS-II.

ERROR 48: INVALID COMMAND LINE

There is an error in the command, reenter the command correctly. Processing is ter
minated, all open files are closed, and control is returned to ISIS-II.

WARNING49: SEGMENT ALIGNMENT NOT COMPATIBLE WITH
ASSIGNED ADDRESS

SEGMENT: segment name

The alignment of the specified segment is not compatible with the address specified
in the ADDRESSES control. An address that meets the alignment criteria is assigned
and the specified address is ignored. Reexecute the command with correct values in
the ADDRESSES control if you want something different than that provided by the
command. Note that there is no way to override the alignment attribute of the seg
ment. This is a warning message, processing continues.

ERROR 50: INVALID COMMAND LINE; TOKEN TOO LONG
ERROR IN COMMAND TAIL NEAR #:
partial command tail

The command line contains a token that is too long. Processing is terminated, all
open files are closed, and control is returned to ISIS-II.

WARNING 51: REFERENCING LOCATION IS OUTSIDE 64K FRAME OF
REFERENCE

MODULE: module name
ADDRESS: 20 bit address
FRAME OF REFERENCE: 20 bit address

The address of a jump or call lies outside of the 64K frame of reference for a self
relative instruction. This warning occurs when loeating the module containing the
self relative reference. This is a warning message, so processing continues.

A-II

Error Messages 8086 Family Utilities

A-12

WARNING 52: REFERENCED LOCATION IS OUTSIDE 64K FRAME OF
REFERENCE

MODULE: module name
REFERENCED LOCATION: 20 bit address
FRAME OF REFERENCE: 20 bit address

The object being addressed by a self relative jump or call is outside the 64K frame of
reference for the self relative instruction. This warning occurs when locating the
module containing the self relative reference. This is a warning message, so process
ing continues.

WARNING 53: CAN NOT ALLOCATE CLASS AT SPECIFIED ADDRESS
ADDRESS: 20 bit address
CLASS: class name

The specified class can not be located at the specified address because a conflict
would result. The class is located at the address nearest the specified address possible
without causing a conflict. If you want conflicts, reissue the command specifying
addresses for each segment with the ADDRESSES control. This is a warning
message, processing continues.

ERROR 54: DATA ADDRESS OUTSIDE SEGMENT BOUNDARIES
SEGMENT: segment name
MODULE: module name

A data record for the specified segment contains data for addresses outside the seg
ment boundary. The specified module name is the last module name encountered
before the error. Processing is terminated, all open files are closed, and control is
returned to ISIS-II.

WARNING 55: UNDEFINABLE SYMBOL ADDRESS
SEGMENT: segment name
GROUP: group name

One or more line numbers, local symbols, or public symbols have been found that
are addressed relative to the base of the specified group, however, the specified seg
ment that contains the symbols(s) is not contained within the 64K byte address
range. This is a warning message, processing continues.

WARNING 56: SEGMENT IN RESERVE SPACE
SEGMENT: segment name

A segment is located at an area reserved by the RESERVE control. This may happen
if there is an absolute segment in the input module. This is a warning message, so
processing continues.

ERROR 57: INVALID GROUP NAME
ERROR IN COMMAND TAIL NEAR #:
partial command tail

An identifier was found where a group name was expected. The identifier does not
represent a valid group name. Processing is terminated, all open files are closed, and
control is returned to ISIS-II.

ERROR 58: SPECIFIED GROUP NOT FOUND IN INPUT MODULE
GROUP: group name

The specified group was not found in the input module. Processing is terminated, all
open files are closed, and control is returned to ISIS-II.

8086 Family Utilities Error Messages

ERROR 59: GROUP ADDRESS PREVIOUSLY SPECIFIED IN INPUT
MODULE OR COMMAND LINE
GROUP: group name

The specified group was specified more than once in the same ADDRESSES con
trol, or the specified group has an absolute address in the input module. Processing
is terminated, all open files are closed, and control is returned to ISIS-II.

WARNING 60: REFERENCED LOCATION IS NOT WITHIN 32K OF
SPECIFIED ADDRESS

MODULE: module name
ADDRESS: 20 bit address
REFERENCED LOCATION: 20 bit address

The object being referenced by a (8089) self relative reference is not within 32K of
that reference. This is a warning message, so processing continues.

ERROR 61: NO OVERLAY FILE
FILE: filename

The LOC86 overlay file, LOC86.0VO, does not exist on the disk that contains the
primary portion of the program. The overlay may have been accidently erased, or it
may not have been copied.

When a new locator disk has been generated, reissue the same command making
sure that both LOC86 and LOC86.0VO files are on the same disk.

LIB86 Error Messages

All LIB86 command error messages are nonfatal because LIB86 is an interactive
program. The command (ADD, CREATE, DELETE, EXIT, or LIST) that caused
the error is aborted. The errors that are caused by improper command entry are
followed by a partial image of the command with a cross hatch (#) in the vicinity of
the error.

INSUFFICIENT MEMORY

There is not enough memory available for execution of the command.

INVALID MODULE NAME
partial command tail

A module name in the command is invalid. The name can be from 1 through 40
characters in length and must be composed of the letters A-Z, digits 0-9, a question
mark (?), underscore (_), period (.), colon (:) or a commercial at (@) sign.

INV ALID SYNTAX
partial command tail

There is an error in the command. Check for the following:

• Misspelled keywords.

• Ampersand followed by a non-blank character.

• ADD: TO filename not followed by a <CR>.

• DELETE: libname (modname) not followed by a <CR>.

• DELETE: modname not specified.

• CREATE: filename not followed by <CR>.

• LIST: TO filename not followed by PUBLICS or <CR>.

A-13

Error Messages 8086 Family Utilities

A-14

filename FILE ALREADY EXISTS

The file specified in a CREATE command already exists.

filename, BAD RECORD SEQUENCE

The file specified in the command has an unexpected record sequence. It may not be
terminated with an EOF record. You may have attempted to ADD a non-object or
non-library file to a library.

filename, CHECKSUM ERROR

The specified file contains a record that has an invalid checksum. Go back and
generate the file again.

filename, DUPLICATE SYMBOL IN INPUT

You have attempted to ADD modules that contain more than one definition for the
same PUBLIC symbol.

filename, ILLEGAL RECORD FORMAT

The file specified in the command has an illegal format. The object file may contain
a name that has more than 40 characters. The file may contain records in an
im proper order.

filename(modname) : NOT FOUND

You have attempted to delete, add, or list a non-existent module. You may have
misspelled the name.

filename, NOT LIBRARY

The specified file is not a library.

filename, OBJECT RECORD TOO SHORT

The specified file contains a record of insufficient length.

filename, PREMATURE EOF

The EOF record occurred before the length of the file indicated it should.

LEFT PARENTHESIS EXPECTED
partial command tail

There is a missing left parenthesis "(" in the command.

modname- ATTEMPT TO ADD DUPLICATE MODULE

The specified module already exists in the library.

MODULE NAME TOO LONG
partial command tail

The specified module name exceeds 40 characters.

RIGHT PARENTHESIS EXPECTED
partial command tail

There is a missing right parenthesis ")" in the command.

8086 Family Utilities Error Messages

symbol- PUBLIC SYMBOL ALREADY IN LIBRARY

You attempted to add a module that contains a PUBLIC symbol that already exists
in the library.

'TO' EXPECTED
partial command tail

The TO file is not specified in the ADD command.

UNRECOGNIZED COMMAND

An illegal or misspelled command (i.e., not ADD, CREATE, DELETE, EXIT, or
LIST) was entered.

OH86 Error Messages

All OH86 error messages are fatal. Control is returned to ISIS-II when an error is
encountered.

See the ISIS-II User's Guide for information on ISIS-II errors that may be generated
by OH86 execution.

filename, ILLEGAL RELO RECORD

OH86 encountered a relocatable type record in the input file. Process the input
module through LOC86, creating an absolute input file, and then proceed with the
conversion.

filename, PREMATURE EOF

No end-of-file record was found after the entire file was read. The file may be
damaged or may have been processed incorrectly. Try to generate the absolute
module again with the language translator, LINK86 and LOC86.

ILLEGAL INPUT FILE

All information -required in an absolute input file is not present. Either the input file
is defective or you specified the wrong file in the command. If the file is defective,
generate a new absolute file starting from the source code. If you specified the
wrong file, reenter the command with the correct filename.

INSUFFICIENT MEMORY FOR DATA RECORD TYPE CONTAINED
IN FILE

This error indicates that an iterated data record (generated from a source language
construct that produces repetitions in the object file) whose length will not fit in
memory was encountered in the input. Use a system with more memory, if possible.
Otherwise, go back to the source code and change the program so that each iterated
data construct requires fewer repetitions.

A-I5

APPENDIX B
HEXADECIMAL-DECIMAL CONVERSION

The following table is for hexadecimal to decimal and decimal to hexadecimal con
version. To find the decimal equivalent of a hexadecimal number, locate the hexa
decimal number in the correct position and note the decimal equivalent. Add the
decimal numbers.

To find the hexadecimal equivalent of a decimal number, locate the next lower
decimal number in the table and note the hexadecimal number and its position. Sub
tract the decimal number from the table from the starting number. Find the dif
ference in the table. Continue this process until there is no difference.

BYTE BYTE BYTE

HEX DEC HEX DEC HEX DEC HEX DEC HEX DEC HEX DEC

° ° ° ° ° ° ° ° ° ° ° ° 1 1,048,576 1 65,536 1 4,096 1 256 1 16 1 1
2 2,097,152 2 131,072 2 8,192 2 512 2 32 2 2
3 3,145,728 3 196,608 3 12,288 3 768 3 48 3 3
4 4,194,304 4 262,144 4 16,384 4 1,024 4 64 4 4
5 5,242,880 5 327,680 5 20,480 5 1,280 5 80 5 5
6 6,291,456 6 393,216 6 24,576 6 1,536 6 96 6 6
7 7,340,032 7 458,752 7 28,672 7 1,792 7 112 7 7
8 8,388,608 8 524,288 8 32,768 8 2,048 8 128 8 8
9 9,437,184 9 589,824 9 36,864 9 2,304 9 144 9 9
A 10,485,760 A 655,360 A 40,960 A 2,560 A 160 A 10
B 11,534,336 B 720,896 B 45,056 B 2,816 B 176 B 11
C 12,582,912 C 786,432 C 49,152 C 3,072 C 192 C 12
0 13,631,488 0 851,968 0 53,248 0 3,328 0 208 0 13
E 14,680,064 E 917,504 E 57,344 E 3,584 E 224 E 14
F 15,728,640 F 983,040 F 61,440 F 3,840 F 240 F 15

B-1

APPENDIX C
PL/M-86 MODELS OF SEGMENTATION

The segments, classes, and groups in the PL/M-86 compiler output module vary
according to the size control specified to the compiler. The segment, class, and group
names generated by the PL/M-86 compiler for the SMALL, COMPACT, MEDIUM,
and LARGE models are shown below.

Small Model

Segment Name Class Name Group Name

CODE CODE CGROUP
CONST CONST
DATA DATA DGROUP
STACK STACK
MEMORY MEMORY

Compact Model

Segment Name Class Name Group Name

CODE CODE CGROUP
CONST CONST DGROUP DATA DATA
STACK STACK none
MEMORY MEMORY none

Medium Model

Segment Name Class Name Group Name

modname CODE CODE none
CONST CONST
DATA DATA DGROUP
STACK STACK
MEMORY MEMORY

Large Model

Segment Name Class Name Group Name

modname CODE CODE none
modname DATA DATA none
STACK STACK none
MEMORY MEMORY none

C-l

APPENDIX D
MCS-86™ABSOLUTE OBJECT

FILE FORMATS

I ntrod uction

The 8086 Absolute Object File Format herein described is a proper subset of the full
8086 Object File Formats. An absolute object file consists of a sequence of records
defining a single absolute module. An absolute module is defined as a collection of
absolute object information which is specified by a sequence of object records.

Definitions

This section defines certain terms fundamental to 8086 Relocation and Linkage
(R&L). The terms are ordered not alphabetically, but so you can read forward
without forward references.

Definition of Terms

OMF-acronym for Object Module Formats.

R&L-acronym for Relocation and Linkage.

MAS-acronym for Memory Address Space. The 8086 MAS is one megabyte
(1,048,576 bytes). Note that the MAS should be distinguished from actual memory,
which may occupy only a portion of the MAS.

MODULE-an "inseparable" collection of object code and other information pro
duced by a translator or by the LINK86 program. When a distinction must be made:

T-MODULE-will denote a module created by a translator, such as PL/M-86 or
ASM86, and

L-MODULE-will denote a module created by LINK86 from one or more consti
tuent modules. (Note that modules are not "created" in this sense by the MCS-86
Locater, LOC86; the output module from LOC86 is merely a transformation of the
input module).

Two observations about modules must be made:

1. Every module must have a name, so that the MCS-86 Librarian, LIB86, has a
handle for the module for display to the user. (If there is no need to provide a
handle for LIB86, the name may be null). Translators will provide names for
T -modules, providing a default name (possibly the file name or a null name) if
neither source code nor user specifies otherwise.

2. Every T -module in a collection of modules linked together may have a different
name, so that symbolic debugging systems can distinguish the various symbols.
This restriction is not required by R&L, and is not enforced by it.

FRAME-a contiguous region of 64K of MAS, beginning on a paragraph boundary
(i.e., on a multiple of 16 bytes). This concept is useful because the content of the
four 8086 segment registers define four (possibly overlapping) FRAME's; no 16-bit
address in the 8086 code can access a memory location outside of the current four
FRAME's. The FRAME starting at address OOOOH is FRAME O.

D-l

MCS-86 Absolute Object File Formats 8086 Family Utilities

0-2

Module Identification

In order to determine that a file contains an object program, a module header record
will always be the first record in a module. There are two kinds of header records
and each provides a module name. The additional functions of the header records
are explained below.

A module name may be generated during one of two processes: translation or link
ing. A module that results from translation is called aT-MODULE. AT-MODULE
will have aT-MODULE HEADER RECORD (THEADR). A name may be
provided in the THEADR record by a translator. This name is then used to identify
the progenitor of all debug information found in the T-MODULE. The name may
be null, i.e., of length zero.

A module that results from linking and locating is called an L-MODULE. An
L-MODULE will always have an L-MODULE HEADER RECORD (LHEADR). In
the LHEADR record a name is also provided. This name is available for use as a
means of referring to the module without using any of its constituent T-MODULE
names. An example would be two T -MODULES, A and B, linked together to form
L-MODULE C. L-MODULE C will contain two THEA DR records and will begin
with an LHEADR record with the name C provided by the linker as a directive from
the user. The L-MODULE C can be referred to by other tools such as the library
manager without having to know about the originating module's names, yet the
originating module's names are preserved for debugging purposes.

Module Attributes

In addition to a name, a module may have the attribute of being a main program as
well as having a specified starting address.

If a module is not a main module yet has a starting address, then this value has been
provided by a translator, possibly for debugging purposes. A starting address
specified for a non-main module could be the entry point of a procedure, which may
be loaded and initiated independent of a main program.

Physical Segment Definition

A module is defined as a collection of data bytes defined by a sequence of records
produced by a translator. The data bytes represent contiguous regions of memory
whose contents are determined at translation time.

Physical Segment Addressability

The 8086 addressing mechanism provides segment base registers from which a 64K
byte region of memory, called a Frame, may be addressed. there is one code segment
base register (CS), two data segment base registers (DS, ES), and one stack segment
base register (SS).

8086 Family Utilities MCS-86 Absolute Object File Formats

Data

The data that defines the memory image represented by a module is maintained in
two varieties of DATA records: PHYSICAL ENUMERATED DATA RECORD
(PEDATA) and PHYSICAL ITERATED DATA RECORD (PIDATA). Both
records specify the data to be loaded into a contiguous section of memory. The start
address of this contiguous section is given in the record. PEDATA records contain
an exact byte-by-byte copy of the desired memory image. The PIDATA record dif
fers in that the data bytes are represented within a structure that must be expanded
by the loader. The purpose of the PIDA T A record is to reduce module size by
encoding repeated data rather than explicitly enumerating each byte, as the
PEDATA record does.

Record Syntax

The following syntax shows the valid orderings of records to form an absolute
module. In addition, the given semantic rules provide information about how to
interpret the record sequence. The syntactic description language used herein is
defined in Wirth: CACM, November 1977, V20, NIl, pg. 822-823.

absolute_object_file

module

tmod

Imod

t_component

content_det

module.

tmod Ilmod.

THEADR {content_det} MODEND.

LHEADR {t_component} MODEND.

[THEADR] {content_det}

PEDATA I PIDATA.

NOTE
The character strings represented by capital letters above are not literals but
are identifiers that are further defined in the section defining the Record
Formats.

A proper Absolute Object File produced by Intel products will contain at least the
above record types. It may also contain other record types which, if present, will
follow the Module Header record and precede the Module End record. These other
record types fall into two categories:

1. extraneous-These contain information which is not pertinent to an absolute
loader. The record numbers in this category are:

7AH, 7CH, 7EH, 88H, 8CH, 8EH, 90H, 92H, 94H, 96H, 98H, 9AH, 9CH

2. erroneous-These contain information with regard to relocation, indicating
that the object module is not yet in absolute form or are erroneous record types.
The record numbers in this category are all other record type numbers.

D-3

MCS-86 Absolute Object File Formats 8086 Family Utilities

D-4

Record Formats

The following pages present diagrams of Record Formats in schematic form. Here is
a sample, to illustrate the various conventions:

Sample Record Format (SAMREC)

REC
TYP
xxH

RECORD
LENGTH SUM N:M:BCHK

~ __ ~ __________ -L __ -,_.

L rpt --1

Title and Official Abbreviation

At the top is the name of the Record Format described, together with an official
abbreviation. To promote uniformity among various programs, the abbreviation
should be used in both code and documentation. The abbreviation is always six
letters.

The Boxes

Each format is drawn with boxes of two sizes. The narrow boxes represent single
bytes. The wide boxes represent two bytes (or one word) each. In the object file, the
low order byte of a word value comes first. The wide boxes, with three dots in the
top and bottom, represent a variable number of bytes, one or more, depending upon
content.

RecTyp

The first byte in each record contains a value between ° and 255, indicating the type
of record.

Record Length

The second field in each record contains the number of bytes in the record, exclusive
of the first 2 fields.

Name

Any field that indicates a "NAME" has the following internal structure: the first
byte contains a number between ° and 40, inclusive, that indicates the number of re
maining bytes in the field. The remaining bytes are interpreted as a byte string; each
byte must represent the ASCII code of a character drawn from this set:

[?@ :._0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ].

Most translators will choose to constrain the character set more strictly; the above
set has been chosen to "cover" that required by all current processors.

Repeated Fields

Some portions of a Record Format contain a field or series of fields that may occur
an indefinite number of times (zero or more). Such fields are indicated by the
"repeated" or "rpt" brackets below the boxes.

8086 Family Utilities MCS-86 Absolute Object File Formats

Similarly, some portions of the Record Format are present only if some given condi
tion obtains; these fields are indicated by similar "conditional" brackets below the
boxes.

ChkSum

The last field in each record is a check sum, which contains the two's complement of
the sum (modulo 256) of all other bytes in the record. Therefore, the sum (modulo
256) of all bytes in the record equals O.

Bit Fields

Descriptions of contents of fields will sometimes get down to the bit level. Boxes
with vertical lines drawn through them represent bytes or words; the vertical lines in
dicate bit boundaries; thus this byte has three bit-fields of three, one, and
four bits:

Ignored Records
~--~~---------r---4.'---~--~

REC
TYP

RECORD
LENGTH

IGNORE
THIS
PART

CHK
SUM

~--~~--------~---4.'---------

All record types that may be in an object module that provide information not perti
nent to an absolute loader must be ignored. They may all be treated as if they have
the above format. Records in this category have REC TYP in the set 7 AH, 7CH,
7EH, 88H, 8CH, 8EH, 90H, 92H, 94H, 96H, 98H, 9AH, 9CH.

T-Module Header Record (THEADR)

r------r----------~--.... ...---~--~
REC
TYP
80H

RECORD
LENGTH

T
MODULE

NAME

CHK
SUM

I....------'----------~--.... ...-__ ~ __ __

Every module output from a translator must have aT-MODULE HEADER
RECORD. Its purpose is to provide the identity of the original defining module for
all debug information encountered in the module up to the following T -MODULE
HEADER RECORD m MODULE END RECORD.

This record can also serve as the header for a module, i.e., it can be the first record,
and will be for modules output from translators.

T-Module Name

The T -MODULE NAME provides a name for the T -MODULE.

D-5

MCS-86 Absolute Object File Formats 8086 Family Utilities

0-6

L-Module Header Record (LHEADR)
r_---..------.---........... ..--,r---_

REC
TYP
82H

RECORD
LENGTH

L
MODULE

NAME

CHK
SUM

__ ---" _____ ...1.-___ • _ ----1....---
Every module created by LINK86 and LOC86 will have an L-MODULE HEADER
RECORD. This record serves only to identify a module that has been processed
(output) by the MCS-86 LINKER and/or the MCS-86 LOCATER. When several
modules are linked to form another module, the new module requires a name,
perhaps unique from those of the linked modules, by which it can be referred to (by
the LIB86 program, for example).

L-Module Name

The L-MODULE NAME provides a name for the L-Module.

Module End Record (MODEND)

REC
RECORD MOD S

TYP LENGTH TYP A
8AH

TART CHK
DDRS SUM

• e__-...&------

L conditional J
This record serves two purposes. it denotes the end of a module and indicates
whether the module just terminated has a specified entry point for initiation of
execution. If the latter is true, then the execution address is specified.

ModTyp

This field specifies the attributes of the module. The bit allocation and their
associated meanings are as follows:

MATTR is a two-bit subfield that specifies the following module attributes:

MATTR

Start Addrs

o
1
2
3

MODULE ATTRIBUTE

Non-main module with no starting address
Non-main module with starting address
(invalid value for MATTR)
Main module with starting address

The START ADRS field has the following format:

FRAME
NUMBER

OFFSET

FRAME NUMBER. This field specifies a frame number relative to which the
module will begin execution. This value is appropriate for insertion into the CS
register for program initiation.

8086 Family Utilities MCS-86 Absolute Object File Formats

OFFSET. This field specifies an offset relative to the FRAME NUMBER which
defines the exact location of the first byte at which to begin execution. This value is
appropriate for insertion into the IP register for program initiation.

Physical Enumerated Data Record (PEDATA)

REC RECORD FRAME OFF CHK
TYP OAT
84H

LENGTH NUMBER SET SUM

L rpt J
This record provides contiguous data, from which a portion of an 8086 memory
image may be constructed.

Frame Number
This field specifies a Frame Number relative to which the data bytes will be loaded.

Offset
This field specifies an offset relative to the FRAME NUMBER which defines the
location of the first data byte of the DAT field. Successive data bytes in the DA T
field occupy successively higher locations of memory. The value of OFFSET is con
strained to be in the range 0 to 15 inclusive. If an OFFSET value greater than 15 is
desired, then an adjustment of the FRAME NUMBER should be done.

Dat

This field provides consecutive bytes of an 8086 memory image. The number of
DAT bytes is constrained only by the RECORD LENGTH field. The address of
each byte must be within the frame specified by FRAME NUMBER.

Physical Iterated Data Record (PIDATA)

REC RECORD FRAME OFF TYP LENGTH NUMBER SET 86H

--
ITE RATED

ATA
LOCK

0
B

CHK
SUM

- - _--
L repeated --'

This record provides contiguous data, from which a portion of an 8086 memory
image may be constructed. It allows initialization of data segments and provides a
mechanism to reduce the size of object modules when there are repeated data to be
used to initialize a memory image.

Frame Number
This field specifies a frame number relative to which the data bytes will be loaded.

Offset
This field specifies an offset relative to the FRAME NUMBER which defines the
location of the first data byte in the ITERATED DATA BLOCK. Successive data
bytes in the ITERATED DATA BLOCK occupy successively higher locations of
memory. The range of OFFSET is constrained to be between 0 and 15 inclusive. If a
value larger than 15 is desired for OFFSET, then an adjustment of FRAME
NUMBER should be done.

0-7

MCS-86 Absolute Object File Formats 8086 Family Utilities

D-8

Iterated Data Block

This repeated field is a structure specifying the repeated data bytes. It is a structure
that has the following format:

L

___ R_E_P_E_A_T __ ~ ____ B_L_O_C_K __ ~ ___ C_O __ ~:.~ COUNT COUNT _ ~

Repeat Count. This field specifies the number of times tl)at the CONTENT portion
of this ITERATED DATA BLOCK is to be repeated, and must be greater than zero.

Block Count. This field specifies the number of ITERATED DATA BLOCKS that
are to be found in the CONTENT portion of this ITERATED DATA BLOCK. If
this field has value zero then the CONTENT portion of this ITERATED DATA
BLOCK is interpreted as data bytes.

If BLOCK COUNT is non-zero then the CONTENT portion of this ITERATED
DA T A BLOCK is interpreted as that number of ITERATED DATA BLOCKS.

Content. This field may be interpreted in one of two ways, depending on the value
of the previous BLOCK COUNT field.

If BLOCK COUNT is zero, then this field is a one-byte count followed by the
indicated number of data bytes.

If BLOCK COUNT is non-zero, then this field is interpreted as the first byte of
another ITERATED DATA BLOCK.

NOTE

From the outermost level, the number of nested ITERA TED DATA
BLOCKS is limited to 17, i.e., the number of levels of recursion is limited
to 17.

The address of each data byte must be within the frame specified by
FRAME NUMBER.

Hexadecimal Object File Format
Hexadecimal object file format is a way of representing an object file in ASCII.

The function of the utility program, OH86, is to convert 8086 absolute object
modules to 8086 hexadecimal object modl,lles.

The hexadecimal representation of binary is coded in ASCII. For example, the eight
bit binary value 0011 1111 is 3F in hexadecimal. To code this ASCII, one eight-bit
byte containing the ASCII code for 3(00110011, or 33H) and one eight-bit byte con
taining the ASCII code for F(0100 0110, or 46H) are required. This representation
(ASCII hexadecimal) requires twice as many bytes as the binary.

There are four different types of records that may make up an 8086 hexadecimal
object file. They are:

• Extended Address Record

• Start Address Record

• Data Record

• End of File Record

8086 Family Utilities MCS-86 Absolute Object File Formats

Each record begins with a RECORD MARK field containing 3AH, the ASCII code
for colon (:).

Each record has a REC LEN field which specifies the number of bytes of informa
tion or data which follows the RECTYP field of each record. Note that one byte is
represented by two ASCII characters.

Each record ends with a CHECKSUM field that contains the ASCII hexadecimal
representation of the two's complement of the eight-bit sum of the eight-bit bytes
that result from converting each pair of ASCII hexadecimal digits to one byte of
binary, from and including the RECORD LENGTH field to and including the last
byte of the DATA field. Therefore, the sum of all the ASCII pairs in a record after
converting to binary, from the RECORD LENGTH field to and including the
CHECKSUM field, is zero.

Extended Address Record

RECD REC
ZEROES REC

CHK
MARK LEN

'0000' TYP USBA
SUM '.' '02' '02'

The 8086 EXTENDED ADDRESS RECORD is used to specify bits 4-19 of the Seg
ment Base Address (SBA) where bits 0-3 of the SBA are zero. Bits 4-19 of the SBA
are referred to as the Upper Segment Base Address (USBA). The absolute memory
address of a content byte in a subsequent DATA RECORD is obtained by adding
the SBA to an offset calculated by adding the Load Address Field of the containing
DATA RECORD to the index of the byte in the DATA RECORD (0, 1, 2, ... n).
The offset addition is done modulo 64K, ignoring a carry, so that offset wrap
around loading (from OFFFFH to OOOOOH) results in wrapping around from the end
to the beginning of the 64K segment defined by the SBA. The address at which a par
ticular data byte is loaded is calculated as:

SBA + ([DRLA + DRI] MOD 64K)

where

DRLA is the DATA RECORD LOAD ADDRESS.

DRI is the data byte index within a DATA RECORD.

When an EXTENDED ADDRESS RECORD defines the value of SBA, the
EXTENDED ADDRESS RECORD may appear anywhere within an 8086 hex
adecimal object file. This value remains in effect until another EXTENDED
ADDRESS RECORD is encountered. The SBA defaults to zero until an
EXTENDED ADDRESS RECORD is encountered.

Reed Mark

The RECD MARK field contains 03AH, the hex encoding of ASCII ':'.

Rec Len

The Record Length field contains 3032H, the hex encoding of ASCII '02'.

Zeroes

The Load Address field contains 30303030H, the hex encoding of ASCII '0000'.

D-9

MCS-86 Absolute Object File Formats 8086 Family Utilities

D-IO

RecTyp

The Record Type field contains 3032H, the hex encoding of ASCII '02' .

USBA

The USBA field contains four ASCII hexacecimal digits that specify the 8086 USBA
value. The high-order digit is the 10th character of the record. The low order digit is
the 13th character of the record.

ChkSum

This is the check sum on the REC LEN, ZEROES, REC TYP, and USBA fields.

Data Record

RECD REC LOAD REC
MARK LEN ADDRESS TYP D

'.' '00'
:rBCHK SUM

•
The DATA RECORD provides a set of hexadecimal digits that represent the. ASCII
code for data bytes that make up a portion of an 8086 memory image. The method
for calculating the absolute address for each byte of DATA is described in the
discussion of the Extended Address Record.

RecdMark

The RECD MARK field contains 03AH, the hex encoding of ASCII ':'.

Rec Len

The REC LEN field contains two ASCII hexadecimal digits representing the number
of data bytes in the record. The high-order digit comes first. The maximum value is
'FF' or 4646H (255 decimal).

Load Address

The LOAD ADDRESS field contains four ASCII hexadecimal digits representing
the offset from the SBA (see EXTENDED ADDRESS RECORD) defining the
address at which byte 0 of the DATA is to be placed. The LOAD ADDRESS value is
used in calculation of the address of all DATA bytes.

RecTyp

The REC TYP field in a DATA record contains 3030H, the hex encoding of
ASCII '00'.

Data

The DATA field contains a pair of hexadecimal digits that represent the ASCII code
for each data byte. The high order digit is the first digit of each pair.

ChkSum

This is the check sum on the REC LEN, LOAD ADDRESS, REC TYPE, and
DA T A fields.

8086 Family Utilities MCS-86 Absolute Object File Formats

Start Address Record

RECD REG
ZEROES

REG
MARK LEN TYP CS IP

GHK

'.' '04'
'0000'

'03'
SUM

The START ADDRESS RECORD is used to specify the execution start address for
the object file. Values are given for both the Instruction Pointer (lP) and Code Seg
ment (CS) registers. This record can appear anywhere in a hexadecimal object file.

If a START ADDRESS RECORD is not present in an 8086 hexadecimal file, a
loader is free to assign a default start address.

RecdMark

The RECD MARK field contains 03AH, the hex encoding for ASCII ':'.

Rec Len

The REC LEN field contains 3034H, the hex encoding for ASCII '04'.

Zeroes

The ZEROES field contains 30303030H, the hex encoding for ASCII '0000'.

RecTyp

The REC TYP field contains 3033H, the hex encoding for ASCII '03'.

CS

The CS field contains four ASCII hexadeCimal digits that specify the 8086 CS value.
The high-order digit is the 10th character of the record; the low-order digit is the
13th character of the record.

IP

The IP field contains the four ASCII hexadecimal digits that specify the 8086 IP
value. The high-order digit is the 14th character of the record, the low order digit is
the 17th character of the record.

ChkSum

This is the check sum on the REC LEN, ZEROES, REC TYP, CS,·and IP fields.

End of File Record

REGD REG ZEROES REC CHK
MARK LEN

'0000'
TYP SUM

'.' '00' '01' 'FF'

The END OF FILE RECORD specifies the end of the hexadecimal object file.

D-II

MCS-86 Absolute Object File Formats 8086 Family Utilities

D-12

Reed Mark

The RECD MARK field contains 03AH, the ASCII code for colon (:).

Ree Len

The REC LEN field contains two ASCII zeroes (3030H).

Zeroes

The ZEROES field contains four ASCII zeroes (30303030H).

Ree Typ

The REC TYP field contains 3031H, the ASCII code for 01H.

ChkSum

The CHK SUM field contains 4646H, the ASCII code for FFH, which is the check
sum on the REC LEN, ZEROES and REC TYP fields.

Examples

A. Sample Absolute Object File

The following is an example of an absolute object file. The file contains eight
records. The eight records perform the following functions:

Record Function

LHEADR record, begins the object module and defines the module
name.

2 THEADR record, defines the translator-generated module name
which is the same as the name in the LHEADR record.

3 PEDAT A record that defines a contiguous memory image from
00200H to 0021SH.

4 PEDA T A record that defines a contiguous memory image from
00360H to 00377H.

S PEDA T A record that defines a contiguous memory image from
0041SH to 0042BH.

6 PEDATA record that defines a contiguous memory image from
OS1620H to OS1633H.

7 PIDAT A record that defines a contiguous memory image from
OSIBOOH to OSIBIDH. The iterated data consists of three repeti
tions of "ABC" (414243H), followed by three repetitions of (four
repetitions of "D" (44H», three repetitions of "E" (4SH).

8 MODEND record that specifies that the module should be started
with CS = S162H and IP = OOOSH.

(1) 82 0008 06S3414DS04C4S AE
(2) 80 0008 06S3414DS04C4S BO
(3) 84 OOIA 0020 00

004992DB246DB6FF4891DA236CBSFE47
90D9226BB4FD 63

8086 Family Utilities MCS-86 Absolute Object File Formats

(4) 84 00lC 0036 00
0062C42688EA4CAE 1 072D43698F A5CBE
2082E446A80A6CCE 82

(5) 84 00lB 0041 05
00lD3A577491AECBE805223F5C7996B3
DOEDOA2744617E 72

(6) 84 0018 5162 00
00850A8F14991EA328AD32B73CC146CB
50D55ADF FB

(7) 86 001C 51BO 00
0003 0000 03 414243
0003 0002
0004 0000 01 44
0003 0000 01 45 FA

(8) 8A 0006 CO 5162 0005 F8

NOTE

The blank characters and carriage return and line feed characters are
inserted here to improve readability. They do not occur in an object
module. This file has been converted to ASCII hex so that it may be printed
here. All word values (RECORD LENGTH, REPEAT COUNT, etc.) have
been byte-reversed to improve readability.

B. Sample Absolute Hexadecimal Object File

The following is the hexadecimal object file representation of the object file given in
Example A.

:0200oo020020DC
: 1 00OOOOO004992DB246DB6FF4891 DA236CB5FE47B8
:0600 1 00090D9226BB4FD43
: 020000020036 C6
: 1 ooOooOOO062C42688EA4CAE 1 072D43698F A5CBEOO
:080010002082E446A80A6CCE30
:020000020041 BB
: 10000500001 D3A577491 AECBE805223F5C7996B353
:070015OODOEDOA2744617ED3
:02000002516249
:1000000000850A8FI4991EA328AD32B73CCI46CB98
:0400100050D55ADF8E
:0200000251 BOFB
:1000000041424341424341424344444444454545BF
:OE001000444444444545454444444445454524
:040000035162000541
:0000000 1 FF

D-13

8086
addressing techniques, 1-5
memory, 1-4
overview, 1-4

ADD command, 5-2
ADDRESSES Control, 3-6, 4-5
adding a library file, 5-2
addressing

relative, 1-2
techniques, 1-5

alignment of segments, 1-6
byte, 1-6
inpage, 1-6
page, 1-6
paragraph, 1-6
word, 1-6

BOOTSTRAP control, 3-8
byte alignment, 1-6

classes, 1-8
commands

LIB86,5-1
ADD,5-2
CREATE,5-1
DELETE,5-2
EXIT, 5-3
LIST,5-2

LINK86,2-1
LOC86,3-1
OH86,6-1

COMMENTS control
LINK86 command, 2-8
LOC86 command, 3-14

controls, LINK86
COMMENTS, 2-8
LINES, 2-8
MAP, 2-5
NAME,2-7
NOCOMMENTS, 2-8
NOLINES, 2-8
NOMAP, 2-5
NOPRINT,2-6
NOPUBLICS, 2-9
NOPURGE, 2-10
NOSYMBOLS, 2-9
NOTYPE, 2-10
PRINT,2-6
PUBLICS, 2-9
PUBLICSONL Y, 2-4
PURGE,2-1O
RENAMEGROUPS, 2-7
SYMBOLS, 2-9
TYPE,2-1O

controls, LOC86
ADDRESSES, 3-6
BOOTSTRAP, 3-8
COMMENTS, 3-14

INDEX

LINES, 3-14
MAP, 3-4
NAME,3-8
NOCOMMENTS, 3-15
NOLINES, 3-14
NOMAP, 3-4
NOPRINT. 3-5
NOPUBLICS.3-15
NOPURGE, 3-15
NOSYMBOLS, 3-15
OBJECTCONTROLS, 3-13
ORDER,3-8
PRINT,3-5
PRINTCONTROLS, 3-13
PUBLICS, 3-15
PURGE,3-15
RESERVE, 3-10
SEGSIZE, 3-10
START, 3-11
SYMBOLCOLUMNS, 3-6
SYMBOLS, 3-15

continuation lines, 2-3, 3-3, 5-1
converting decimal to hexadecimal, B-1
CREATE command, 5-1
creating a library file, 5-1

decimal to hexadecimal conversion, B-1
DELETE command 5-2
deleting a library file, 5-2
development process, MCS-86, 1-1

error messages, A-I
LIB86, A-12
LINK86, A-I
LOC86, A-5
OH86, A-14

EXIT command 5-3
exiting the 8086 library, 5-3
external references, 1-2

groups, 1-9

hexadecimal to decimal conversion, B-1

inpage alignment, 1-6 _
Intellec Microcomputer Development

System, 1-1
Intellec SeriesII, 1-1
introduction, 1-1
ISIS-II, 1-1

LIB86
command, 5-1
error messages, A-13

libraries, use of, 1-3
library

adding files, 5-2
creating files, 5-1
deleting files, 5-~

Index-l

Index

Index-2

LINES control
LINK86 command, 2-7
LOC86 command, 3-13

LINK86
command,2-1
controls

COMMENTS, 2-8
LINES, 2-8
MAP, 2-5
NAME,2-7
NOCOMMENTS, 2-8
NOLINES, 2-7
NOMAP, 2-5
NOPRINT,2-6
NOPUBLICS, 2-9
NOPURGE,2-1O
NOSYMBOLS, 2-9
NOTYPE, 2-10
PRINT,2-6
PUBLICS, 2-9
PUBLICSONL Y, 2-4, 4-5
PURGE,2-1O
RENAMEGROUPS, 2-7
SYMBOLS, 2-9
TYPE,2-1O

LINK86/LOCS6 process, 1-4
linkage and relocation, mechanics of, 1-2
LIST command, 5-2
LOC86

command, 3-1
controls

ADDRESSES, 3-6, 4-5
BOOTSTRAP, 3-8
COMMENTS, 3-14
LINES, 3-14
MAP, 3-4
NAME,3-S
NOCOMMENTS, 3-15
NOLINES, 3-14
NOMAP, 3-4
NOPRINT,3-5
NOPUBLICS, 3-15
NOPURGE,3-15
NOSYMBOLS, 3-15
OBJECTCONTROLS, 3-13
ORDER,3-8
PRINT,3-5
PRINTCONTROLS, 3-13
PUBLICS, 3-15
PURGE,3-15
RESERVE,3-1O
SEGSIZE, 3-10
START, 3-11
SYMBOLCOLUMNS, 3-6
SYMBOLS, 3-15

locating segments, 1-8

MAP control
LINK86 command, 2-5
LOC86 command, 3-4

MCS-86 development process, 1-1
mechanics of linkage and relocation, 1-2
memory, 1-4

messages, error, A-I
LIBS6, A-12
LINKS6, A-I
LOC86, A-5
OH86, A-14

module search, 4-2

NAME control
LINK86 command, 2-7
LOC86 command, 3-8

NOCOMMENTS control
LINK86 command, 2-8
LOCS6 command, 3-15

NOLINES control
LINK86 command, 2-8
LOCS6 command, 3-14

NOMAP control
LINK86 command, 2-5
LOC86 command, 3-4

NOPRINT control
LINK86 command, 2-6
LOCS6 command, 3-5

NOPUBLICS control
LINK86 command, 2-9
LOC86 command, 3-15

NOPURGE control
LINK86, 2-10
LOC86,3-15

NOSYMBOLS control
LINK86 command, 2-9
LOC86 command, 3-15

NOTYPE,2-1O

8086 Family Utilities

OBJECTCONTROLS control, 3-13
ORDER control, 3-S
OHS6

command, 6-1
error messages, A-15

Overlays, 4-4

page alignment, 1-6
paragraph alignment, 1-6
PL/M segments, C-l
PRINT control

LINK86 command, 2-6
LOCS6 command, 3-5

PRINTCONTROLS control, 3-12
program development, 1-1
public symbols, 1-2
PUBLICS control

LINK86 command, 2-9
LOC86 command, 3-15

PUBLICSONL Y Control, 2-4, 4-5
PURGE control

LINK86, 2-10
LOCS6,3-15

references, external, 1-2
relative addressing, 1-2
relocation and linkage, mechanics of, 1-2
RENAMEGROUPS control, 2-7
RESERVE control, 3-9

8086 Family Utilities

segment
alignment, 1-6
locating, 1-8

segments, 1-5
SEGSIZE control, 3-10
START control, 3-11
SYMBOLCOLUMNS control, 3-6

SYMBOLS control
LINK86 command, 2-9
LOC86 command, 3-15

symbols, public, 1-2

TYPE control, 2-10

use of libraries, 1-3

word alignment, 1-6

Index

Index-3

8086 Family Utilities User's Guide for 8080/8085 Based Systems
9800639-04

REQUEST FOR READER'S COMMENTS

The Microcomputer Division Technical Publications Department attempts to provide documents that meet
the needs of all Intel product users. This form lets you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of
this document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of
documents are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating.

NAME __ ___ DATE _________________ _

TITLE __ _

COMPANYNAME/DEPARTMENT ___ _
ADDRESS __ _

CITY _____________________ _ STATE _________ _ ZIP CODE ______ _

Please check here If you require a written reply. 0

WE'D LIKE YOUR COMMENTS ..•

This document is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
comments and suggestions become the property of Intel Corporation.

BUSIN ESS REPLY MAIL
FIRST CLASS PERMIT NO. 1040 SANTA CLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
Attn: Technical Publications MIS 6-2000
3065 Bowers Avenue
Santa Clara, CA 95051

I II II I NO POSTAGE
NECESSARY

IF MAILED
IN U.S.A.

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

