

APPENDIX E
SYSTEM INITIALIZATICN

System initialization may be considered as a sequence of activities
that brings a 432-based system from an arbitrary state to a known
state where execution can begin. Although the initialization
sequence will vary widely among applications, this appendix outlines
the basic procedure. The first section describes how the system may
be reset to a krnm state. The second section shows how an
Interface Processor running in physical reference mode may be used
to initialize memory and interconnect components thereby
establishing an environment in which execution can take place. The
final section discusses system startup, the procedure for commencing
execution.

E-I. SYSTEM RESEr

r.t>st systems include a reset swi tch that is used to initialize the
system after power-up and to restart the running system if
necessary. In a 432 system, the !NIT pins of all IPs (see iAPX
43203 VISI Interface Processor Data Sheet, Order No. 171874, for
details)and GDPs, and the RESEr (or equivalent) pins of all
Peripheral Subsystem components must be activated when a full system
reset is performed. However, system designers may also decide to
provide the option to selectively initialize elements of a 432
system.

Although this is subject to variation, a typical Attached Processor
responds to a reset pulse by aborting any current operation,
disabling interrupts and then vectoring execution to the code
located at same predefined address (typically in non-volatile
merrory) • The code will normally initialize I/O devices and enable
interrupts, at which point normal execution begins. The 432 makes
no special demands of the Peripheral Subsystem except that it should
be prepared to handle an interrupt request from the IP shortly after
system reset.

E-l

iAPX 432 Interface Processor Architecture Reference Manual

An Interface Processor responds to an INIT pulse by aborting any
current operation, entering physical reference mode, configuring its
windows as shown in table E-l, clear ing broadcast acceptance node,
and then issuing an interrupt request to its Attached Processor.
The interrupt request signals the IP controller that the Interface
Processor has initialized itself and will accept subrange address
references, including physical reference node function requests
written through window 4. Any attempt by the IP controller (or any
active agent in the Peripheral Subsystem) to reference a subrange
prior to receiving the IP's interrupt request produces an undefined
result. An IP switches from physical to logical reference mode. upon
receipt of the startup IPC as defined below.

A General Data Processor responds to an !NIT pulse by aborting any
current activity and then waiting in a quiescent state for the
startup IPC. The startup IPC is defined as the first local IPC
received following an INIT pulse; a GOP will ignore any intervening
global IPC.

To surnnarize, shortly after system reset, Attached Processors (and
Peripheral Subsystems) will be able to run as desired, IPs will be
able to run in physical reference mode, and GOPs will be waiting for
a signal to begin execution.

E-2. ESTABLISHING AN EXECUTICN ENVRIOOMENT

Prior to starting any GOP (or switching any IP to logical reference
node) an environment in which the processor can execute must be
created in 432 memory. This environment consists of a set of
interrelated system objects; a minimal environment, sufficient to
start one process running on a GOP, could be char acter ized as
follows:

o the initial object table directory (loaded
at physical address 8);

o an object table;
o a processor object;
o a dispatching port;
o a process object (queued at the dispatching port).

E-2

SYSTEM INITIALIZATION

L ~ Processor ,...,
Object

(n) Storage Descriptor (Processor Number n)

Processor
~ ~ :: ~ Object

(Processor Number 1)
(1) Storage Descriptor

([I) Object Table Header
.....
~

Object Table

J; 1
(1) Storage Descriptor ~

([I) Object Table Header
~Physical Address 8

Initial Object Table Directory

Figure E-l Processor Object Location

E-3

iAPX 432 Interface Processor Architecture Reference Manual

Note that the term "processor obj ect" above is meant to include
ccmnunication segments, am a processor carrier, in addition to
processor access and data segments. Likewise, "process object"
includes a domain, instruction segments, context objects, etc. This
environment may be extended to include nnre processors, processes,
ports and so on, as is appropriate for a given application.

The initial execution environment may not pre-exist in 432
non-volatile memory, since the processors routinely update the
objects during execution. Therefore, the initial environment must
be loaded from a Peripheral Subsystem (where it may, in fact, reside
in non-volatile storage). One Peripheral Subsystem will typically
be designated to load the initial environment in physical reference
mode; in this discussion this Peripheral Subsystem is referred to as
the initializing AP.

At no time during system initialization should nnre than one
Peripheral Subsystem be updating 432 system memory. In most
applications, the remaining Peripheral Subsystems will refrain from
accessing the 432 system until their IPs have switched to logical
reference mode. It is possible, however, for a second Peripheral
Subsystem to read 432 system memory while still in physical
reference mode; some applications may wish to designate a second
Peripheral Subsystem to monitor the activity of the initializing AP
in this way.

Same systems will need to perform a number of preliminary activities
before the initial environment can be loaded. These acti vi ties,
which will be defined by each application, may include:

o ascertaining the system configuration
(i.e., the number and type of processors
present, and the amount of memory
available);

o verifying that system components
are operational;

o initializing registers located in the
interconnect space (e.g., address range
or error count registers in memory
controllers);

o initializing error checking and correcting
(EOC) memory.

Windows 0 and 1 may be useful in connection with these preliminary .
activities. Window 1 could be used to read system configuration
information encoded in predefined registers of the interconnect
address space, for example. Window 1 may also be used to initialize
registers in memory controllers, provided these registers are
located in the first 32K bytes of the interconnect address space.

E-4

SYSTEM INITIALIZATION

Before any function request is made by the IP, enough 432 memory
must be initialized to allCM Ip· execution. This is necessary
because the IP will attempt to update the segment maWed by windCM 4
in response to the function request. Once this path to mennry has
been established, windCM I can be opened onto another 32K byte
segment by the ALTER MAP AND SELECr PHYSICAL SEGmNT function if
addi tional interconnect catpOnents need to be referenced; this
should normally be necessary only in very large systems.

If a system employs error checking and correcting memory (EOC) that
does not initialize itself, the initializing AP can initialize it if
the memory is organized in units eight or fewer bytes wide. Window
o comes up in block node set for a 64K byte transfer starting at
physical address O. Any data written through this window (e.g. all
zero bits) is written by the IP in eight-byte blocks. The window
can be moved through the entire mempry space in 64K byte segments.

Once the system configuration has been established, the interconnect
path set up and memory initialized, the initializing AP can load the
initial execution environment. The simplest and fastest way to do
this is to write all the required binary images through window O.
An alternative is to load the min~l object set required to support
one IP in logical reference mode, am possibly one GOP. The rest of
the environment (other processes, etc.) can then be loaded in
logical reference mode by the initializing AP working alone, or
under the direction of a GOP process. This approach has the
advantage of getting the system into logical reference mode as soon
as possible, where operations are inherently more protected than in
physical reference mode.

E-3. SYSTEM STARrUP

Each processor in the system must be started independently by
sending it a startup IPC (the first local IPC after INIT). At least
one 432 processor, perhaps its CMn IP, must be started by the
ini tializing AP using the SEND TO PRCXESSOR function (physical
node) • The remaining processors must be star ted one at a time, and
this can be done by the initializing AP, or by a processor already
started by it. Note that the initializing AP (as well as all IPs)
remains in physical reference mode until it receives a startup IPC.

GOPs and IPs respond to the startup IPC identically except that the
IP additionally switches to logical reference mode. The basic
response is to first qualify its execution environment and then to
interpret the IPC and respond to it normally. The processor
qualifies its execution environment by first reading a unique
processor IO contained in the ICM order byte of interconnect
register o.

E-5

iAPX 432 Interface Processor Architecture Reference Manual

Having established its identity, the processor proceeds to locate
its processor object. It does this by assuming that the initial
object table directory is located at physical mennry address 8 (see
figure E-I). A segment header field of eight bytes precedes the
initial object table directory. It further asstmles that the first
storage descriptor in the directory locates an object table
containing storage descriptors for processor objects. Using its
processor ID as an index, the processor selects the storage
descriptor from the object table which locates its processor
object. After qualifying its processor object, the IP is able to
find its localoomnuncation segment, where it examines the IPC
message field. Now in logical reference mode, the IP can respond to
the IPC message and per form all normal operations.

As usual, an IP will generate an interrupt after it responds to the
IPC message. This second interrupt following reset indicates to the
IP controller software that the IP is in logical reference mode and
that normal execution may begin. Note that window 4 will then be
configured as defined by the attributes encoded in the IP's
processor object. Since window 4 provides the data path to the
function request facility, the other windows may be configured
inmediately by means of the ALTER MAP AND SELECI' mTA SEGmNr
function.

E-6

SYSTEM INITIALIZATION

Table E-l Window Configuration Following !NIT

Attt"ibute WindCM 0 Window 1 WindCM 4

Window Status Open Open Open

Transfer Mode Block Interconnect Random

Subrange Base Address 07EOOH 08000H 07FOOH

Subrange Size OOIOOH 08000H OOIOOH

Segment Base 0 0 0

Segment Length 65,535 65,535 65,535

Direction Write Read/Write Read/Write

Transfer State In Progress In Progress In Progress

Overlay Yes Yes Yes

E-7

APPENDIX F
INTERPROCESS CCMruNICATICN AND DISPA'lCHIt.;x;

EXAMPLE

In Chapter 1, a printer example was used to demonstrate the flow of
data between 432 processes and AP tasks. In this appendix, the
printer example is again discussed. However, this time the view
taken is that of a programmer writing an Attached Processor task to
direct an IP to accomplish printer output. The program contained in
this appendix is written in a PL,!M-86-like dialect typical of the
developnent environment which will be at the disposal of the AP
program developer. This program is included to clarify an earlier
example and is not suggested as a scheme for actual ~lementation.

The program exanple which follows assumes that a set of 432 system
objects preexists in 432 memory. These objects are illustrated in
Figure F-l. This system contains:

o IP processor object;
o a print request port to which a 432 process (GOP or IP) can send

print requests;
o a print reply port to which an IP process can return the status

of the print action;
o an IP dispatching port where IP processes await service.
o several IP processes are shown, though only one is required for

the purposes of the example;
o one print object, a simple data segment, which carries printer

data and is reused when returning printer status.

There are four main sections to this program:

o Variable declarations;
o Utility procedures;
o Initialization;
o Print driver body.

In the variable declarations section, notice that the control
window, window 4, is declared as a structure whose canponents are
defined from the definition in Appendix A. This program assumes
that window 4, the control window, is opened onto the function
request facility in the IP's processor object. It also assumes that
all initialization has been performed and that the IP is operating
in logical reference mode.

F-I

F-2

iAPX 432 Interface Processor Architecture Reference Manual

IP
PROCESSOR
OBJECT

IP
DISPATCHING
PORT

PRINT
OBJECT

CONTEXT

PRINT
REQUEST
PORT

432 OBJECTS

432 PROCESS

Figure F-l Print Example Objects

IP AP

PHYSICAL PROCESSORS

INTERPIO::FSS mHlNlCATICN AND DISPA'lCHING EXAMPLE

Procedures in the utilities section demonstrate how a programmer can
construct facilities to invoke IP functions. Recall from the
function sunmary in Aweooix B that an AP requests an IP function by
writing a process selection index, all required operands, and
finally depositing a function code into the appropriate slots in the
function request facility (frf). The IP begins execution of the
function only after the function code has been written. This is
demonstrated by the procedures Open_window and Close_window.

The ini tialization section of the prog ram points out sane
simplifying assumptions which are made for the ~rpose of this
example. First, interrupts are disabled. This converts the three
tasks of the printer example (printer server task, printer task, and
printer reply task) of Chapter I into sequential tasks rather than
concurrent tasks. It also makes it easier to demonstrate changes in
the state of the system and illustrate them with the accompanying
figures. Second, the calIon the Dispatch procedure asstnnes that
only one IP process exists in the 432 system. The IP supports
multiple process environments but only one is required in this
example.

The print driver body contains an aggregation of code which
acoamplishes the three tasks of the Chapter 1 example. Notice that
the three tasks are performed sequentially.

Imbedded in the program text are references to Figures 2 through 6
which depict the state of the 432 system objects and the logical I/O
processor (the IP/AP pair).

F-3

iAPX 432 Interface Processor Architecture Reference Manual

Printer task:
Procedure:

/*****~**/
/* */
/* Data Structures and Constants * /
/* */
/**/

/**/
/* Declare the 256 byte structure for the Control Window and map it beginning at */
/* an offset of 07FOOH into the 64K byte segment which is reserved for the IP. * /
/* For the IUrpcses of this example, the base of the IP' s reserved area is at location* /
/* 080000H 'Jf the Attached Processor memory space. */
/**********lr***/
Declare I! base literally '080000H';
Declare Window 4 structure (

ps state
i~ state
alarm state
disp state
reserved 1
frfyrcs =idx
frf function state
frf=operabor-(7)
frf result (10)
i~=fun_req
reserved 2
mf block - oount
mf-432 dIsp
mfys_disp
reserved 3
mf_windoW_info (5) structure (

entry state
mask-
base disp

mf fault information (14)
selected-idx
se 1ec ted-state.
psor fault information (13)
reserved _ 4-(2)

word,
"'NOrd,
word,
'NOrd,
word,
'NOrd,
word,
word,
word,
word,
word,
WOrd,
word,
'NOrd,
word,

word,
'NOrd,
word) ,
byte,
word,
'NOrd,
byte,
'NOrd) at (IP_base + 07FOOH);

Declare subrange (1024) byte at (IP base. + 4096);
- /* byte array COllprising windowed subrange */

:Jec1are offset word; /* offset into subrange */

Declare true
Declare false

F-4

literally 'OOOlH'; /* Io;Jical value true
literally 'OOOOH' /* IDgical value false

*/
*/

INTERPR:nSS C(l.MJNICATICN AND DISPATCHING EXAMPLE

/**/
/* Seven object selectors are required. One for the message slot in the COntext */
/* Acx:ess Segment, sioce this is where the hardware will put the Access * /
/* Descriptor (AD) for the Print Request Message following the Receive instruction. */
~ ~
/* One for the Print Request Port am one for the Print Reply Port. We assume * /
/* that at system initialization ~ for these ports were stored in slots nine */
/* am ten of the Context Access Segment in Process Obj eet 1. * /
/* */
/* One for the IP Dispatching Port, one for the IP Processor Carrier data segment, */
/* one for the IP Processor Carrier access segm~t, and for a null access descriptor. */
/* These are required so that blocking Receives am blocking sends can be handled. */
/* We assume ADs for these objects are stored in slots eleven, twelve, and thirteen, */
/* respectively of the Context Access Segment in Process Object 1 at initialization. */
/**/

Declare message obj sel
Declare reques(Jx>r~obj_ sel
Declare rep1Y.J?Ort_ obj_ sel
Declare dispa:chirgyort _ obj_sel
Declare psoi:' carrier as obj sel
Declare psor-carrier-ds-obj-sel
Declare null: destination _ obJ_ sel

literally 'OOllOOB';
literally '100l00B';
literally'lOlOOOB';
literally '10ll00B';
literally 'llOOOOB';
literally '110100a';
literally '11l000B';

/**/
/* The process selection index for process number 1. Note that this number is a byte * /
/* imex into the process selection list in the IP processor access segment. * /
/**/
Declare process_l literally'OOOOOOOOOOOOOlOOB';

/**/
/* */
/* Utility Procedures */
/* */
/**/

Await function completion:
Procedure; -

/***w**********************************/
/* This procedure b..l~ waits for the previous function request to canplete. It */
/* Spins waiting for the function completion field of the function state to */
/* equal zero. */
/**/

Ik> While (Wirxlow 4.frf fuoction state am OOOFH) <> 0; EM;
Em - - -

~lit_function_completion;

F-5

iAPX 432 Interface Processor Architecture Reference Manual

Dispatch:
Procedure~

/**/
/* This procedure hangs the IP's processor carrier on the IP's dispatching */
/* port. This allcws blocking sends and receives to be handled.*/
1* This example assumes that the IP processor carrier blocks at the dispacthing * /
/* port. No "select process" IPC is received if the Surrogate Receive does not */
/* block. */
/**/

Window_4.disp_state = false;

/* Unlock the IP' s processor carr ier •
Window_4.frf-prcs.idx = process_Ii
Window 4.frf operand(O) = psor carrier ds obj se1;
Window: 4.frf:operator = OllH; - - - -

Call AwaJ.t _ function_completion;

/* Hang processor carrier on the dispatching port.
Window_4.frf-prcs_idx = process_l;
Window_4.frf_operand(O) = dispatching-POrt_obj_se1:
Window 4.frf operam (2) = null destination obj sel;
Window -4. frf-operand (3) = poor-carrier as obj sel:
Window=4.frf=operator = 017H: - - - -

Call Await furction ~letion:
End - -

Dispatch;

Open windCM:
PrOcedure:

/* Use process object 1.
/* Data segment
/* Unlock function code.

/* Use process object l.
/* port
/* destination
/* carrier
/* Surrogate receive
/* function rode.

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

/**/
/* Open a windcw to the message, Figure F-5 * /
/**/

W!ndow_4.frf-prcs_idx
Wl.ndow 4. frf operand (O)
Window-4.frf-operand(1)
Wiooow -4. frroperand'(2}
Windcw-4.frf-operand(3)
Wiooow -4. frf-operand (4)
Window-4. frf-operand (5)
Window=4.frf=operator

= process 1;
= 3; -
= 000010lBi
= 4096;
= lllll10000000000B:
= Iressage obj se1;
= 0; --
= OOOH;

Call Await furction canpletion:
EM - -

<.pen _ windO!l;

F-6

/* process obj ect index * /
/* window index * /
/* entry state */
/* base address */
/* mask */
~ data segment */
/* base displacement */
/* Alter Map and Select Data * /

/* Segment function code */

INTERPRXESS exM-UNICATICN AND DISPA'ICHING EXAMPLE

Get-print_message:
Procedure:

/**/
/* Attempt to Receive a message fran the Print Request Port, Figure F-2 */
/**/

W~ndow_4.frf-prcs_idx = process_l;
Wl.rrlow_ 4. frf_operand (0) = requestJ'Ort_obj_sel:

/* Use process obj ect 1.
/* port

*/
*/
/ Window_4.frf_operator = Ol4H: / Receive function code.

Call Await_function_oampletion;

If oqinnow 4.frf function state and 0020H) <> 0 Then
Do - - -

/**/
/* Receive instruction blocked, 00 outstaming print requests */
/* Busy wait until a GOP process sends a print request to the print */
/* request port. See Figure F-3 for the SEND unblocking the blocked RECEIVE */
/* Such an event will trigger an interrupt in the AP */
/* (which we have disabled) am set windCM 4.disp state true */
/* indicating the nature of the interrupt.- - */
/* See Figure F-4 for details on the wakeup IPC and subsequent interrupt. */
/**/

/**/
/* At this point WindcM 4.selected index contalns the index of the */
/* process object which-was dispatched. Since we are using only process */
/* object one selected index will equal one. Window 4.selected state */
/* contains software defined info~tion concerning~he action~taken, */
/* if any, by software in cx::mpleting this instruction. * /
/**/

Call Dispatch: /* Hang IP processor carrier on dispatching port. */
Em:

Em;
Em

Get-print_message:
Close_windcM:

F-"1

iAPX 432 Interface Processor Architecture Reference Manual

Clooe wirrlow:
ProCedure~

/**/
/* Close windCM, note only ~ operarrls are Ie<;uired. * /
/**/

Window_4.frf-prcs_idx
Window 4. frf operand (0)
Window-4.frf-operand(1}
Window:4.frf:operator

= process 1;
= 3; -
= 0000100B;
= OOOH~

Call Await_functi~oampletion~
End

C1ose_window~

F-8

/* process obj ect inde..'C * /
/* window index */
/* entry state */
/* Alter Map and Select Data * /
/* Segment function code * /

INTERP:rocESS CGMJNICATICN AND DISPATCHING EXAMPLE

Return-print_message:
Procedure;

/**/
/* Sem message to Print Reply Port. See Figure F-6 */
/**/

W~ndow_4.frf-prcs_idx
Window 4.frf.operand(O)
Window-4.frf operand(l)
Window=4.frf=operator

= process 1;
= replY-PQrt_obj_sel;
= message obj sel;
= 016H; - -

/* process object index
/* port
/* message
/* Send function code

*/
*/
*/
*/

If ~imow_4.frf_function_state and OOlOH) <> 0 Then
Jk)

/**/
/* Sem instruction blocked, wait for a GOP process to receive a */
/* message from the Print Reply Port. Busy wait for a GOP process */
/* to receives a message fran the Print Reply Port. Such an event */
/* will trigger an AP interrupt and set Window 4.disp state true */
/* to indicate the nature of the interrupt. - - */
/**/
Jk) While not (Window_4.disp_state = 1); End;

/**/
/* At this point WindCM 4.selected index contains the index of the */
/* process object which-was dispatChed. Since 'we are using only process * /
/* object o~ selected index will equal one. Window 4.selected state */
/* contains software defined information concerning-the action-taken, if */
/* any, by roftware in completing this instruction. * /
/**/

call Dispatdl;
Em;

/* Hang IP processor carrier on dispatching port. */

Em:
Em

Return-print_message:

F-9

iAPX 432 Interface Processor Architecture Reference Manual

/**/
P ~
/* Initialization */
/* */
/***k******/

Call Disable_Interrupts: /* Busy waiting will be used, not the interrupt mechanism */
/* Also assume that 00 faults will occur */

Call Dispatch ~

/**/
P ~
/* Print Driver Body */
/* */
/**/

Call GetJ>rint _message:

Call Open _ winda-r:

Do offset = 0 to l023~
Call Print (subrange(offset»~

Em:

Call Close_windCMi

Call ReturnJ>rint_message~
End~

End
Printer __ task~

F-lO

/* loop forever */

/* Receive a message from the Print Request Port. */

/* Open a window onto the message. */

/* Read and print the contents of the message */
/* using the mapped subrange and the AP's native */
/* instruction. Assume Print is a system routine. * /
/* Close the windOll. * /
/* Send the message to the Print Reply Port. * /

IP
DISPATCHI G

PORT

INTERPROCESS a::MruNICATIGl AND DISPAroIING EXAMPLE

IP
OCESSOR PR

o BJECT

~

IPI
PR~ESS

~

iF c1r"

PRINT
REQUEST

PORT

(f4

CARRI~4

432
PROCESS

~.

P

P

RINT
REPLY

ORT

PRINT
OBJECT

IP

Figure F-2 IP Performs Blocking Receive

--EJ
"RECEIVE"
function

F-ll

iAPX 432 Interface Processor Architecture Reference Manual

IP
DISPATCHING

PORT IP AP

C~
.:- /

-.tIo "c, / CARRIER - IP ~/ IP ~~/ 4

PROCESSOR PROCESS
~ /~<v OBJECT ~'v«;/'\:

~Cj/

/

1 /
/

/
/

(
I

PRINT I PRINT
REQUEST f REPLY

PORT I
PORT

I , ..
CARRIER I

...... ~
rJl

I ~
0

I

J

432
PROCESS

.....

PRINT
OBJECT·

Figure F-3 GOP Executes SEND and Unblocks RECEIVE

F-l2

INTERP~S ~ICATIrn AND DISPATCHING EXAMPLE

INTERRUPT ,----,
;' ...

1/ '-
IP AP IP -- A.~ SELECTED (-

DISPATCHING v -v

PORT STATE

SELECTED
INDEX

£ARRIEB J IP IP -- PROCESSOR J PROCESS OBJECT

-
i

PRINT PRINT
REQUEST REPLY

PORT PORT

CARRIER

STATE

INDEX
432

PROCESS

PRINT
OBJECT

Figure F-4 IP Resporrls to IPC

F-13

F-l4

iAPX 432 Interface Processor Architecture Reference Manual

PRINT
REQUEST

PORT

IP
PROCESS

-

PRINT
REPLY
PORT

,fA
CARRIE'

(~

432
PROCESS

IP

r ~ WINDOW

III' ~

PRINT
OBJECT

~ EJ
"ALTER
SELECT
SEGMEN

MAP AND
DATA

T" function

Figure F-S Window Manipulation

PRINT
REQUEST
PORT

INTERPRXESS <XMvIDNICATIOO AND DISPATCHING EXAMPLE

.-.--_/
IP .J

PROCES,

I
f

--
432

PROCESS

,,­
/

PRINT
REPLY
PORT

r
I
,~

PRINT
OBJECT

IP

·SEND"
function

Figure F-6 Print Reply

AP

F-15

infel"
REQUEST FOR READER'S COMMENTS

IAt-'X 40~ Interrace t-'rocessor
Architecture Reference Manual

171863-001

Intel Corporation attempts to provide documents that meet the needs of all Intel product users. This form lets
you participate directly in the documentation process.

Please restrict your comments to the usabi lity, accuracy, readability, organization, and completeness of this
document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of document for you r needs? Is it at the right level? What other types of documents are
needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating. _____ _

NAME ___ DATE ____________ _

TITLE

COMPANY NAME/DEPARTMENT __ _

ADDRESS __ _

CITY --_______________________________________ STATE ______ ZI P CODE ____ _

Please check here if you require a written reply. 0

E'O LIKE YOUR COMMENTS ...

lis document is one of a series describing Intel products. Your comments on the back of this form
II help us produce better manuals. Each reply will be carefully reviewed by the responsible
rson. All comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 79 BEAVERTON, OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
SSO Technical Publications Dept.
3585 SW 198th Ave.
Aloha, OR 97007

AL3-2-485

111111 NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

inter
INTEL CORPORATION, 3585 SW 198th Avenue, Aloha, Oregon 97007 • (503) 681-8080

Printed in U,SA1Y63/ 1 K/ 0781 1 AP

