
inter

RUN-TIME SUPPORT MANUAL
FOR iAPX, 86,88 APPLICATIONS

Copyright © 1981, 1982 Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 950151 Order Number: 121776-002

intJ

RUN· TIME SUPPORT MANUAL
FOR iAPX 86,88 APPLICATIONS

Copyright © 1981, 1982 Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 Order Number: 121776-002

ii

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes
no responsibility for any errors that may appear in this document. Intel Corporation makes no commitment
to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, dupli
cation or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used to identify Intel
products:

BXP
CREDIT
i
ICE
iCS
im
iMMX
Insite

Intel
Intel
Intelevision
Intellec
Intellink
iOSP
iPDS
iRMX

iSBC
iSBX
iSXM
Library Manager
MCS
Megachassis
Micromainframe
Micromap

Multibus
Multichannel
Multimodule
Plug-A-Bubble
PROMPT
RMX/80
System 2000
UPI

A 1169/684/S.SK JAY

REV. REVISION HISTORY DATE

-001 Original issue. 12/81

-002 Modified VDI procedures in Chapters 5, 6 and 7. 7/82
Appendix A completely revised.

iii

HOW TO USE THIS MANUAL

The software portiori of a microcomputer application consists of more than
the applications programs that you write. Intel provides a number of
software tools that assist you not only when you are compiling and debugging
application programs, but also when these programs are running. This manual
focuses on the run-time aids that Intel offers for the iAPX 86,88 family of
processors. The documentation of these run-time aids is useful regardless of
which Intel languages you are using to implement your application and
regardless of which operating systems you are using.

Figure 0-1 provides a general model of how application software is supported
at run-time by layers of software and hardware. This model (at varying
levels of refinement) organizes the information contained in the manual.

Layer 1, applications programming, is the subject of Chapter 1 and Chapter
2. Chapter 1 provides an overview of the programming languages that Intel
offers. Chapter 2 discusses the development process, with emphasis on the
debugging aids available in each development environment. These chapters are
primarily introductory, defining the context for later chapters that deal
more directly with run-time support.

Layer 2, run-time libraries, is the subject of Chapter 3. This section
identifies the run-time support available for each Intel language and
explains how to utilize that support.

Chapter 4 expla ins laye r 3 of the model, connect i ng appl ica t ion to systeHl
environment. This section explains how layer 3 contributes to portability of
your application from one iAPX 86,88 environment to another. It also deals
with some aspects of application programming that might interfere with such
portability if not carefully considered in advance. Chapter 4 introduces
concepts and terms that are developed in more detail in Chapters 5 through
9 •

Chapters 5, 6, and 7 concern layer 40 They apply the concepts introduced in
Chapter 4 to each of Intel's operating system environments, namely Series
III, iRMX 86, and iRMX 88. You may skip chapters that deal with operating
systems in which you are not interested.

Chapter 8 tells how to apply the concepts of Chapter 4 when dealing with an
operating system other than one provided by Intel.

Chapter 9 gives techniques for configuring Intel's run-time software to
better suit your application.

Appendix A presents specifications for the Universal Development Interface
(UOI), Intel's standard for layer 3 of the model.

-Appendix B explains how to transport an application from a development
environment to a target environment that does not include an operating
system.

v

Programming Solution (Application)

(I) *

Run-Time Libraries

(2)

Interface Between Application and System Environment

(3)

System Functions

(4)

Execution Environment

(5)

* Level numbers are in parentheses.

Figure 0-1. General Run-Time Model

AUDIENCE

This manual assumes that you are an applications programmer who:

o Is familiar with programming in an application language (Pascal or
FORTRAN) that is being used to develop an application

o Plans to develop an application in a development environment, such as
an Intellec Microcomputer Development System or iRMX 86-based OEM
system

o Has heard about Intel operating systems, such as iRMX 86 and iRMX 88,
but does not necessarily know what run-time support is available or how
it is used

If you are planning to use PL/M-86 or ASM-86 to develop your application,
this manual will still be of use to you, although much of Chapter 3 does not
apply.

The manual may also be used by an operating system programmer to:

vi

o Understand and use Intel-supplied libraries and standard interfaces

o Write an implementation of layer 3 (the Universal Development
Interface) for an operating system other than one supplied by Intel

o Implement custom device drivers

RELATED UOCUMENTATION

Throughout this manual are frequent references to related information on
specific subjects. These references do not, however, include order numbers
and may use abbreviated titles. Use the following lists to look up order
numbers and complete titles.

1. Intel languages

o Pascal-86 User's Guide, 121539

o FORTRAN-86 User's Guide, 121570

o PL/M-86 User's Guide, 121636

o 8086/8087/8088 Macro Assembly Language Reference Manual for
8086-8asea- Deve10pment syst~~, 121627

o An Introduction to ASM86, 121689

2. General debugging aids

o ICE-86A Microsystem In-Circuit Emulator Operating Instructions for
ISIS-II Users, 162554

o ICE-88 In-Circuit Emulator 9perating Instructions for ISIS-II
Users, 9800949

3. Intellec Series III Microcomputer Development System

o Intellec Series III Microco~puter Development System Product
Overview, 121575

o Intellec Series III Microcomputer Development System Console
Operating fnstructlons, 121609

o Intellec Series III Microcomputer Development System Programmer's
Reference Manua!, 121618 -

4. iRMX 86 Operating System

o Introduction to the iRMX 86_0perating System, 9803124

o User's Guide for the iSBC 9578 iAPX 86,88 Interface and Execution
Pac ka g e, 1-4397 9

o iRMX 86 Sy~tem Debug Monitor Reference Manual, 143908

vii

o iRJV1X 86 Nucleus Reference l~~nual, 9803122

o iRfvIX 86 Terminal Handler Reference Manua~, 143324

o iRMX 86 Debugger Reference Manual, 143323

o iRMX 86 Basic I/O System Reference Manua~, 9803123

o iRMX 86 Extended I/O System Reference Manual, 143308

o iRMX 86 Loader Reference Ma~ual, 143318

o iRMX 86 Human Interface Reference Manual, 9803202

o iRMX 86 Configuration Guid~, 9803126

o Guide to Using iRMX 86 Lang~ages, 143907

o iRMX 86 System Prog~ammer'~ Reference Manual, 142721

o iRlvlX 86 P rog ramming 'l'echniques, 142982

5. iHMX 88 Operating System

o In t rod u c t ion tot h e i Ri"! X 8 0 / 8 8 Rea 1-rl' i me [v! u 1 tit ask in g Ex e cut i v e s ,
143238

o iRMX 88 Installation Instr~ctions, 143241

o iRMX 88 Reference Manual, 143232

o iRMX 80/88 Interactive Configuration Utilities, 142603

o G u i d e to W r i tin g De vic e Dr i ve r s f 0 r< the i RMX 86 and i RMX 8 8 I /0
Systems, 142926

6. Utilities

o iAPX 86,88_Family Utilities User's Guide, 121616

7. Numeric Data Processing

o iAPX 86,88 User's Manual, 210201

o 8087 Support Library Reference Manual, 121725

o iSBC 337 Multimodule Numeric Data Processor Hardware Reference
Manual, 142887

8. Device Drivers

o iSBC 86/12A Single Board Computer Hardware Reference Manual,
9803074

o Peripheral Design Handbook, 205610

viii

RELATED SOFTWARE VERSION

The information in this manual that relates to specific features of the
l<'OR'rRAN-86/88 and Pascal-86/88 compilers refers to version 2.0 or later
versions of both compilers.

ix

CONTENTS

CHAPTEH 1
INTHODUCTION TO INTEL'S PROGRAMMING LANGUAGES

Application Languages .
FORTHAN-86/88 •
Pascal-8bl88

System Implementation Languages
PL/fvl-86 .
ASM-86

Connecting Modules Written in Different Languages .
The Linkage Mechanism .•
Interface Considerations

Stlar ing Da ta
Data Types
Shared Memory Area
Parameter Passing ••

Stack Usage
Conventions for Register Usage

CHAPTER 2
THE DEVELOPMENT ENVIRONMENT

Systems .•
Intellec Series III Microcomputer Development System
OEM Systems ••
Custom Systems

Debugging Tools .
The iAPX bb,8b Monitor Program
The iRMX 86 System Debug Monitor
The iRMX 86 System Debugger • •
Debug-86
ICE-86 and ICE-ti8 In-Circuit Emulators

Translator Support for Symbolic Debugging •.

CHAPTER 3
RUN-TIME SUPPORT LIBRARIES

Application Language Run-Time Support
SIL Run-Time Support
Non-Mathematical Run-Time Libraries •.
8087 Support Library
Using the Hun-Time Libraries

Version Numbers .•
Linking for Reentrancy
Linking Multi-Language Jobs .
Using the 8087 Sup~ort Library with Multi-Language Jobs •.
Initialization for Subprograms
Run-Time Detection of Linkage Errors

CHAPTER 4
INTERFACE BETWEEN APPLICATION AND OPERATING SYSTEM

Universal Development Interface CUDI)

xi

· 1-1
• 1-1
· 1-1
· 1-1

· . 1-2
· 1-2
· 1-2
· 1-3

• • 1-4
• 1-4
· 1-4
· 1-6

• • 1-6
• 1-'"{
· 1-7

.2-1

.2-1

.2-2

.2-2

.2-2

.2-2

.2-3

.2-3

.2-3

.2-3

.2-4

· 3-1
.3-2
.3-3
.3-5
.3-8
· 3-11
· 3-1 1
.3-12
.3-14
.3-14
.3-14

.4-1

Error Re~orting .
Interrupt Handling

CHAPTER 5
S~RIES III RUN-TIME SUPPORT

UDI for the Series III Operating System ••
Libraries ••
Implementation Considerations •
Exception Codes

Interrupt Handling
8087 Support
Reentrancy and l"1ultitasking ••
Example Program •

Compiling ••
Linking for Serles III Execution
Invoklng
Linking for Execution on an iRMX 86 System

CHAPTER 6
iRMX 86 RUN-TIME SUPPORT

UDI for the iRMX 86 Operating System
Libraries •.
Implementation Considerations
Exception COdes •••

Interrupt Handling
Logical Names •
Reentrancy
Multitasking
Using Overlays in an iRMX 86 Environment
Example Program •

Compiling
Linking ••
Invoking

C HAPT ER r(

iRMX 88 RUN-TIME SUPPORT

UDl for the iRMX 88 Operating System
Implementation Considerations
Exception Codes ••
Libraries, Compiling, Linking.

lnterrupt Handling

CHAPTER 8
RUN-TIME CONSIDERATIONS FOR NON-INTEL OPERATING SYSTEMS

UDI Procedures Used by Run-Time Libraries •
Implementing a Unlversal Development Interface

CHAPTER 9
CONFIGURING THE RUN-TIME SYSTEM

Establishing an Alternate Exception Handler
Eliminating Preconnectlon Parsing ••

xii

• • • 4-2
.4-3

.5-2

.5-2

.5-2
· .5-3

.5-4

.5-4

.5-6

.5-6

.5-7
· .5-8

.5-8

.5-9

.6-1
• • 6-1

.6-2

.6-4
· .6-6

.6-6

.6-6
• .6-6

.6-6

.6-8

.6-8

.6-9

.6-9

· .7-1
.7-2
.7-3

· .7-4
.7-4

.8-1

.8-2

.9-1

.9-2

Changing Default Preconnections•.•.••••••••. 9-2

APPENDIX A
UDI SPECIFICATIONS

Introduction
Overview ..•

.A-1

.A-1
· • A-1

• •• A-2
Utility Procedures ..
Memory Management .•
File Management ..
Program Control . .

• • • • • • • • A - 2
· .A-4

Exception Handling •. • . • . • A-4
General Assumptions .. • • • •• •• A - 8

Multitasking ..•.
Coprocessor Support
Format of Primitives. . • • • . . ••.

Utility and Command Parsing Service Procedures ..
DQGETTIME • • . . • • • •
DQ$DECODE$TIME •.•
DQGETSYSTEM$ID.
DQGETARGUMENT . . • . • . .
DQ$SWITCH$BUFFER •.

Memory Management Procedures ..
DQ$ALLOCATE .
DQ$F REE • . • . . . •
DQGETSIZE . . . • •
DQ$RESERVE$IO$MEMORY

File Connection Procedures .•
DQ$ATTACH
DQ$CREATE
DQ$DETACH
DQ$DELETE
DQGETCONNECTION$STATUS
DQ$FILE$INFO. " •.•

File Naming Procedures.
DQ$RENAME . • . • • •
DQ$CHANGE$EXTENSION ••••
DQ$CHANGE$ACCESS ••••.

File Usage Procedures.
DQ$OPEN
DQ$SEEK .•
DQ$READ . •
DQ$SPECIAL.
DQ$WRITE
DQ$TRUNCATE •
DQ$CLOSE

Program Control Procedures ..
DQ$EXIT . . • • . • • • .
DQ$OVERLAY ...•••.•.•

Exception Handling Procedures
DQ$TRAP$EXCEPTION • • . . • .
DQGETEXCEPTION$HANDLER
DQ$DECODE$EXCEPTION •
DQ$TRAP$CC. • " • • . • •

Minimal Primitives Needed For Application Runtime Support
86/88 Family And Operating System Dependencies •••••.

xiii

.A-8

.A-8
• .A-8

• . • . • A-9
.A-9
.A-10

· • A-1 1
.A-12
.A-15

• .A-17
.A-17
.A-18
.A-19
.A-20

• •• A-22
• .A-22

. • • • A-2 3
• .A-24
· .A-25

.A-26
· .A-28

.A-30
· .A-30
· .A-31

.A-32

.A-33

.A-33

.A-35

.A-37

.A-38
· .A-40
• .A-41
• .A-42

.••• A-43
· .A-43

.A-44
• •• A-45
· .. A-45

· .A-46
.A-48

· .A-49
• .A-50
· .A-51

APPENDIX B
WRITING YOUR OWN LOGICAL RECORD SYSTEM

Why Use an Alternate LRS?
What is Involved in Writing an LH~?

Logical Record Interface Specifications
keentrancy
Exception Hanaling
~peciflcation Format
Data Types
Data Structures

File Descriptors
File/Device Driver Tables

Connectlon Procedures
TQ$FILE$DESCRIPTOR
TQ!liDEVICE

Control Procedures
TQ$INITIALIZE
TI;JGETPRECON
TQ~EXIT

Device Driver Procedures
File Markers
Buffering
Upen
Cluse
Read
~~rite

Seek
Skip
End Record
Rewind
Backspace
End File

Exception Handler Prucedures
TQSETEHH
T(.JGETERH

Memory Management Procedures
TQ$ALLOCATE
TQ$FREE
T(.J$G~T$SMALL$HEAP

Example Device Drivers

INDEX

xiv

• B-1
• B-1
· B-2
.B-3
.B-3
.B-4
· B-5
.B-5
· B-5
.B-6
.B-8
· B-8
.B-10
.B-12
.B-12
.B-15
.B-17
.B-18
.B-18
.B-18
.B-19
.B-23
.B-25
.B-27
.B-29
.B-31
.B-32
.B-34
• B-3 6
.B-37
.B-38
.B-38
· B-4 0
.B-42
.B-43
.B-45
• B-4 6
• B-4 9

FIGURE

0-1
3-1
3-~

3-3
3-4
j-5
3-6
3-'7
3 -tJ
4 -1
5-1
~-2

5-3
6 -1
6-2
'(-1
8-1
jJ -1
B-2

TABLE

1 -1
3 -1
3-2
4 -1
5 -1
6-1
'1_1
B-1
B-2
B-3
13-4

ILLUSTRATIONS

TITLE

General Run-Time Model
Application Language Run-Time Support .
SIL Run-Time Support
Detail of Non-Mathematical Run-Time Support
FORTRAN-86/88 Run-Time Libraries
Pascal-86/88 Run-Tlme Libraries .•
8087 Support Libraries
Linkage Structure of a Reentrant Pascal-86/88 Job
Linkage Structure of a Multi-Language Job
UDI Support ••
Intel's Serles III Solution.
Series III 8087 Interrupt Initializatlon
Series III Example Program
Intel's iRMX 86 Solution
iRMX 86 Example Program •.
Intel's iRMX 88 Solution
Interfacing to Non-Intel Operating System.
Run-Time Support Without an Operating System
Table of Address for File/Device Drivers

TABLES

TITLE

Compatible Data Types
Contents of Non-Mathematical Run-Time Librarles
Contents of Numerics Run-Time Libraries .•
Language Interfaces for Interrupt Processing
Series III Exceptj.on CodE::s and Mnemonics
iRMX 86 Exception Codes and Mnemonics .
ikMX 88 Exception Codes and Mnemonics ..
Required Exception Codes
Attribute Bit Items for ~!!
Disposition Parameters for ClC?~

Mode Parameters fur Seek

PAGE

• v i
.3-2
.3-3
.3-4
.3-9

• • 3-1 0
.3-10
.3-12
.3-13
.4-2
.5-1
.5-6
.5-7
.6-2
.6-8
.7-2
.8-1
• B-1
.B-6

PAGE

• 1 -5
.3-5
· 3-7
.4-4
.5-4
.6-5
.7-3
• B-4
.B-20
.B-23
.B-30

CHAP'l'ER 1
INTRODUCTION TO INTEL'S PROGRAMMING LANGUAGES

This chapter introduces you to four Intel languages designed for use with
the iAPX 86,88 Family of processors: FORTRAN-86/88, Pascal-86/88, PL/M-86,
and ASM-86. Of these, FORTRAN-86/88 and Pascal-86/88 are applications
languages, and PL/M-86 and ASM-86 are system implementation languages
(SIL's) •

APPLICATION LANGUAGES

An application language is designed to let the programmer concentrate on the
problem to be solved rather than on the environment in which it is solved.
An application language conforms to some industry-wide standard and thereby
makes it possible to transport applications written in that language from
one environment to another.

FOR'l'RAN-8 6 /8 8

FORTRAN is the oldest application language designed for expressing formulas.
It supports many built-in functions for arithmetic and numeric calculations,
including double-precision and extended-precision floating point; it is
therefore ideal for scientific calculations. Huge libraries of engineering
programs already exist in FORTRAN.

Intel's FOHTRAN-86/88 implements a superset of the FORTRAN 77 subset defined
by the American National Standards Institute (ANSI). FOR'l'RAN-86/88 also
includes additional features helpful in microcomputer applications. Refer to
the FORTRAN-86 User's Guide for more detailed information.

Pascal-86/88

Pascal was originally designed by Niklaus Wirth as a language to teach
programming. It was designed to be small, easy to understand, and therefore
easy to use. It encourages and enforces a rigid structure to instill good
programming practices and reduce programming errors. Pascal's structures
make it relatively easy to prove that a program does what the programmer
intends.

Intel's Pascal-86/88 implements a superset of standard Pascal as defined in
the ISO Draft Proposal for a standard Pascal. Pascal-86/88 also includes
additional features useful in microcomputer applications. Refer to the
Pascal-86 User's Guide for details.

SYSTEM IMPLEMENTATION LANGUAGES

A system implementation language (SIL) is designed to help programmers fully
exploit tbe capabilities of the hardware.

1-1

PL/M-86

PL/M-86 provides access to hardware functions while offering the benefits of
a high-level language. Block structure, complex expressions, and
parameterized procedure and function calls are some of the powerful features
of the language. At the same time, machine level features such as port I/O,
interrupt handling, and unrestricted pointer manipulation, make PL/M-86 a
useful tool for the systems programmer. Refer to the PL/M-86 User's Guide
for detailed information.

ASM-86

For systems or ap~lications that require the utmost in efficiency or machine
intimacy, Intel offers the 8086/8087/8088 Macro Assembly Language (ASM-86).
Refer to An Introduction to ASM86 or the 8086/8087/8088 Macro Assembly
Language Reference Manual for more informatlon.

CONNECTING MODULES WRITTEN IN DIFFERENT LANGUAGES.

The translators (i.e., compilers and assemblers) for Intel's application
languages and SIL~roduce object modules. Object modules can be combined
to form larger programs by using the utility programs LIB86 and LINK86.
(Refer to iAPX 86,88 Family Utilities User's Guide for complete information
on using LlNK86 and LIB86.) Not only can you combine modules produced by the
same translator, but you can also combine modules produced by different
translators. For example, you could combine a main program module written in
Pascal-86/88 with a module containing a subroutine written in PL/M-86.

The ability to combine object modules gives you several major benefits:

o You can debug smaller, more manageable portions of your application
before integrating them into the entire application system.

o You can implement and enforce the principles of stepwise refinement and
information hiding to produce more understandable and maintainable
programs.

o You can choose the language that is most suitable for eacll aspect of
your application. For example, you might choose Pascal-86/88 as the
primary language for your application because its control structures
support structured programming principles. However, if your application
depends on some involved mathematical calculations, you may wish to use
FORTRAN-86/88's powerful mathematical functions to implement these
calculations. They would be linked as subroutines to the main
Pascal-86/88 program. Suppose that your application has a complex data
structure involving many memory cross-references. You may choose to
take advantage of PL/M-86's unrestricted pointers and implement a set
of PL/M-86 subroutines to maintain this data structure.

o You can connect your application logic to the run-time support logic
provided by Intel. Intel's run-time support consists of a number of
libraries, each containing procedures that execute a class of run-time
functions. You use the LINK86 utility to bind these procedures to your
application programs. All Intel run-time libraries documented in this

1-2

manual obey PL/M-86 linkage conventions. Linking an Intel run-time
proced ur e to your Pa scal-86/88 0 r FOR'I'RAN-86 /8 8 prog ram is just the
same as linking a PL/M-86 procedure that you code yourself.

The following discussion concerning linking of modules written in different
languages is primarily intended to help you to link run-time libraries to
your FORTRAN-86/88 or Pascal-86/88 programs. However, it is written in a
general way that enables you to link from any of Intel's application
languages or SILls to any other.

THE LINKAGE MECHANISM

LINK86 uses four kinds of information to link object modules together:

1. Module identification. A module is a collection of related data and
procedures that is treated as a unit by LINK86. If anyone data item or
procedure is referenced by another module, the entire module is linked.
A module is identified by one of the following means:

o In FOR'l'RAN-86/88, by the ini tial statement (PROGRAM, FUNCTION, or
SUBROU'I'INE)

o In Pascal-86/88, by the MODULE heading

o In PL/M-86, by the name of the outer block

o In ASM-86, by the NAME directive

2. Public definitions. You must define as "public" any data item or
procedure in a module that is to be referenced by another module. Such
a definition tells the cOffiIJiler or assembler to generate address
information about the item or procedure in a special format that LINK86
can recognize. Data items or procedures are identified as public by the
following means:

o In FORTRAN-86/88, by the SUBROUTINE and FUNCTION statements (all
FORTRAN-86/88 subprograms are automatically public)

o In Pascal-86/88, by a PUBLIC section for a module that is the same
as the module in which the PUBLIC section appears

o In PL/M-86, by the PUBLIC attribute

o In ASM-86, by the PUBLIC directive

3. External declarations. When you reference a data item or procedure that
is defined as a public object in some other module, you must tell the
compiler or assembler that this is an "external" reference. This
informs the compil~r or assembler that the address of that object is to
be supplied by LINK86 after compilation or assembly. Data items or
procedures are declared external by the following means:

o In FORTRAN-86/88, by referencing the procedure in an executable
statement (using the EXTERNAL statement where necessary to
distinguish an external reference from an internal variable

1-3

reference)

o In Pascal-86/88, by a PUBLIC section for a module other than the
module in which the PUBLIC section appears

o In PL/M-86, by the EXTERNAL attribute

o In ASM-86, by the EXTRN directive

4. Libraries. A library is a file containing a collection of related
modules. The utility LIB86 is used to create and maintain libraries
consisting of one or more modules. By giving LINK86 the pathname of a
library, you tell LINK86 where to look for the modules it may need to
link together. Only those modules actually referenced are included in
the output of the linker.

IN~ERFACE CONSIDERATIONS

If you wish to link modules written in different languages, then you must
not only know how to use the above linkage techniques, but you must conside
differences in the nature and implementation of the languages to be linked.
The following sections identify the most significant interface
considerations. For further details, refer to the FORTRAN-86 User's Guide
and the Pascal-86 User's Guide.

Sharing Data

When trying to share data among modules written in different languages, you
must be aware of the data types supported by each language and the
mechanisms by which data can be shared.

DATA TYPES

Each language has its own model of data, which may be only partially
compatible with that of other languages. Table 1-1 summarizes the
correspondences among data types in iAPX 86,88 languages.

1-4

Table 1-1. Compatible Data Types

FORTRAN-db/dB

(none)

Pascal-86/88

CHAR; enumeration,
unsigned sUbrange, or
set stored in 8 bits

CHARACTER*1 {CHAR, INTEGER}

CHAHACTER*n (n)1) (none)

LOGICAL* 1 BOOLEAN (* 1)

LOGICAL*2 (none)

LOGICAL*4 (none)

INTEGER*1 (none)

INTEGER*2 INTEGER or subrange
stored in 16 bits

INTEGER*4 LONGINT

(none) Enumeration or set
stored in 16 bits or
WORD or subrange in
O •• 64K-1

(none) Pointer to any type

BYTE

{BYTE, INTEGER}

(none)

BYTE (* 1)

WORD (* 1)

DWORD (* 1)

BYTE (*2)

INTEGER

DWORD (* 3)

WORD

POINTER

ASM-86

DB

{DB, DW}

(none)

DB (* 1)

DW (* 1)

DD (* 1)

DB (signed)

DW (signed)

DD (signed)

DW

DD

(none) Pointer (SMALL) POINTER (SMALL) DW

REAL

REAL*8 or

TEMPREAL

(.!!.)

(none)

NOTES:

REAL

LONGREAL

TEMPREAL

ARRAY [me .n] of
baSE~ type

RECORD

REAL

(none)

(none)

STRUCTURE

DD (8087 single
precision)

DQ (8087 double
precision)

DT (8087 extended
precision)

(none)

STRUC

(*1) Only rightmost bit significant; remaining bits are undefined
except for Pascal-86/88, which requires them to be zero.

(*2) For values 0 through 127 only.
(*3) PL/M-86 DWORD is an ~sianed 32-bit number.

1-5

SHARED MEMORY AREA

Except for FORTRAN-86/88 modules, data items defined PUBLIC in one module
may be declared EXTERNAL by other modules that need to share the items. By
this method, the modules actually access the same locations in memory. This
method is particularly effective for sharing large data structures.

FORTRAN-86/88 modules share data by use of the COMMON statement. The COMMON
statement establishes data segments and controls the layout of data items in
those segments. The linker causes segments that are defined in different
FORTRAN-86/88 modules but which have the same name to share the same memory
area. ASM-86 modules can share these COMMON areas by defining data segments
with the same names and formats. The name of a FORTRAN-86/88 COMMON segment
is the name supplied in the COMMON list prefixed by the character @ ("at"
sign) or just @ for unnamed lists. Other languages can gain access to a
COMMON area if one of the FORTRAN-86/88 modules discloses the address of the
COMMON area by passing a reference to the first data item in the COMMON
a rea.

PAHAfV1E'l'ER PASS ING

All of Intel's high-level languages (FORTHAN-86/88, Pascal-86/88, and
PL/M-86) support the use of parameters with subprogram definitions and
calls. Parameters define passing of arguments to subprograms. Not only can
arguments be passed to subprograms within one module but also between
modules. All the high-level languages use a common parameter-passing
mechan i sm fo r the data types they have in common.

The calling module passes arguments via the processor stack in one of two
ways:

1. By value. The value of the argument is given to the subprogram.

2. By reference. The address of the argument is given to the subprogram.
The subprogram can then use the address to access the value directly.

The called 8uhprogram must know which method is being used for each
parameter and must know the format of the data being passed.

The default method of parameter passing in FORTRAN-86/88 is by reference.
Pascal-86/88 passes variable (VAR) parameters by reference. PL/M-86 passes
by reference when a pointer is used as a parameter.

The non-ANSI function %VAL can be used with FORTRAN-86/88 INTEGER*n and
LOGICAL*n parameters to interface with other languages that pass parameters
by value. Pascal-86/88 passes value parameters by value. The default method
in PL/M-86 is by value.

ASM-86 modules can use either method, but they must conform to the method
used by the higher-level language.

1-6

Stack Usage

The calling module places arguments on either the 8086 stack or the 8087
register stack from left to right in the order in which they are declared.
The first seven floating-point arguments passed by value are placed on the
8087 stack; parameter references and all other arguments (including
floating-point arguments after the first seven) are placed on the 8086
stack.

Conventions for Register Usage

Each of the high-level languages has expectations about what registers are
changed by subprograms and about the contents of registers when subprograms
are called. Intel's high-level languages for the iAPX 86,88 family are
compatible with each other in this regard. ASM-86 programmers must be
careful to follow the conventions of the high-level languages when
interfacing with them.

1-7

CHAPTER 2
THE DEVELOPMENT ENVIRONMENT

The hardware and software requirements for running a target application are
rarely the same as those for developing the application. The development
process requires tools such as editors, compilers, assemblers, linkers, and
debuggers, all of which need hardware support in the form of memory, mass
storage, and peripheralso If your target hardware is a fully featured OEM
system, it may be possible for you to do your development on the same
system. However, if your target hardware is a custom, specialized
microsystem with minimal memory and peripherals, development must be carried
out on a microcomputer develo~ent system or an adequately featured OEM
system.

This chapter introduces the Intel systems and debugging products that are
available to your application development effort.

SYSTEMS

Intellec Series III Microcomputer D~velopment System

To aid you in developing your application, Intel offers the Intellec Series
III Microcomputer Development System. The hardware and software features of
this system are specially designed to help at every stage of product
development. These features include:

o ISIS II operating system, to give you control of the Intellec System's
resources.

o CREDIT CRT-based text editor, to help you create and modify source
programs.

o Intel's application language and system implementation language
translators and utilities.

o Built-in 8086 processor and operating system, to help you test
application software modules.

o DEBUG-86 debugging tool, to help you find and eliminate faults in the
software being tested on the built-in 8086.

o Hardware support for optional iSBC 957B iAPX 86,88 Interface and
Execution Package. If your target system uses one of Intel's iAPX 86,88
single-board computer products such as the iSBC 86/12A, you can install
the board in a separate chassis, down-load your programs, and perform
board-level debugging ~ith the aid of the Intellec Systems console.

o Hardware support for the optional iSBC 337 Multimodule Numeric Data
Processor. This "piggyback" board may be installed either on the
built-in 8086 processor board or on the iSBC 957B board. The iSBC 337
Multimodule Numeric Data Processor provides floating-point instruction
capability for all Intel languages.

2-1

o Hardware and software support for optional In-Circuit Emulator (ICE)
products. If your target hardware is a custom design that uses one of
Intel's iAPX 86,88 components, the ICE products permit you to connect
your Series III to your prototype hardware in place of the iAPX 86,88
component. The ICE software then gives you a "debugging window" into
your prototype to help you work out hardware/software integration
problems.

OEM Systems

Intel's OEM systems are general pu~pose microcomputer systems featuring the
Multibus system bus, iSBC processor and memory boards, and Winchester and
flexible disk storage. Extra slots are available for customer configuration,
which might include line printer, CRT interface, or other peripherals.

The features that make Intel OEM systems suitable as a development
environment include:

o Intel's application language and SIL translators and utilities

o I'rex t ed i to r

o iRMX 86 Real-Time Multitasking Operating System, designed for
interrupt-driven, multitasking applications

o System Debug Monitor, for machine-level debugging

o Debugger module of the operating system, for symbolic debugging of the
interactions between application tasks and the operating system

Custom Systems

You can also build your own system using Intel components, boards, and
peripherals, as well as Intel's translators and iRMX 86 operating system.

DEBUGGING 'l'QOLS

All of Intel's debuggers give you a "window" into the otherwise invisible
process of program execution. You can define points at which you want
processing to stop, and you can examine or change the state of data being
processed. Intel offers a variety of debugging tools to suit various levels
of debugging and to suit the various development environments.

The iAPX 86,88 Monitor Program

The iAPX 86,88 Monitor Program provides machine-level debugging capabilities
for iAPX 86,88 single-board computer products (for example, the iSBC
86/12A). The iAPX 86,88 Monitor Program resides in PROM on the board. The
monitor enables you to:

o Examine and modify the contents of iAPX 86,88 registers and absolute
memory locations (including those of the 8087 Numeric Data Processor)

2-2

o Set breakpoints

o Single step program execution

o Do I/O to and from ports

o Move or compare blocks of memory

To learn more about the Monitor Program, refer to the User's Guide for the
iSBC 957B_iAPX 86,88 Interface and Ex~cution Package.

The iRMX 86 System Debug Monitor

The iRMX 86 System Debug Monitor extends the capabilities of the iAPX 86,88
Monitor Program to include recognizing iRMX 86 system calls and displaying
iRMX 86 data structures. For more information, refer to the iRMX 86 System
Debug Monitor Reference Manual.

The iRMX 86 System Debugger

The iRMX 86 System Debugge!r is an optional layer of the iRMX 86 Operating
System. Like the System Debug Monitor, ~he Debugger Module also recognizes
iRMX 86 system calls and data structures, but offers several important
additional capabilities:

o You can examine or manipulate one task while other tasks continue to
run undisturbed.

o You can monitor operating system activity without interfering with
execution.

o The Debugger Module can serve as the exception handler for system and
application tasks. This feature puts a task into debugging mode only
when a system exception occurs.

To learn more about the iRMX 86 Debugger refer to the iRMX 86 Debbuger
Reference Manual.

Debug-86

Debug-86 resides in ROM on the Intellec Series III Microcomputer Development
System. Debug-86 not only provides access to all of the on-board 8086's
registers and ports, but it also permits you to reference the locations of
procedures and variables in your application programs by the symbolic names
that you assign to them in your source code. Refer to the Intellec Series
III Microcomputer Development System Console Operating Instructions for more
lnformatlon on Debug-86.

ICE-86A and ICE-88 In-Circuit Emulators

The ICE-86A and ICE-88 in-circuit emulators are hardware and software

2-3

systerlls that work witb Intellec Development Systems to help you develop
custom hardware/software systems that use iAPX 86,88 components. ICE
hardware consists of three boards that are installed in the chassis of an
Intellec System and a cable and buffer box that connect the Intellec System
to your hardware. The interface between the in-circuit emulator and your
hardware system is implemented at the connector pins of your system's
processor chip. These pins carry the information that establishes the
characteristics and status of your system. This interface makes it possible
for ICE-86A or ICE-88 to emulate the function of the processor chip as it
would perform in controlling and reacting to its hardware environment. 'l'he
in-circuit emulators use the resources of the Intellec System to load
programs, to emulate their execution, and to give you the power to monitor
and control the emulation process.

ICE-86A and ICE-88 assist in all stages of development:

1. Before prototype hardware is available, the debugging capabilities can
be used to facilitate software testing. Intellec System memory can be
substituted for missing prototype hardware.

2. To begin integration of software and hardware development efforts, your
prototype need consist of no more than a CPU socket. As each section of
your hardware is completed, it can be added to the prototype. As
prototype memory becomes available, you can replace the Intellec Systerr
equivalent. Thus each section of the hardware and software can be
"system tested" as it becomes available.

3. When your prototype is complete, it can be tested using the software
that will drive the final product. ICE-86A or ICE-88 can be used for
real-time emulation of the iAPX 86 or iAPX 88 Processor to debug the
system as a complete unit.

The most significant debugging features of the in-circuit emulators include:

o Access to and control of iAPX 86,88 registers, flags, and pins
(including those of the 8087 Numeric Data Processor)

o Symbolic references to the data and procedures of your application
programs

o A wide range of breakpoint conditions, through comparison of processor
chip states with predesignated states

o Selective tracing

To learn more about in-circuit emulators, refer to ICE-86A Microsystem
In-Circuit Emulator Operating Instructions for ISIS-II Users and ICE-88
In-Circuit Emulator Operating-InStrucTIOns, for ISIS-II Users.

TRANSLA'l'OR SUPPORT E'OR SYMBOLIC DEBUGGING

Several of the above-mentioned debugging aids (namely, Debug-86, ICE-86A,
and ICE-88) feature symbolic references to objects in your application
programs. This is made possible through use of the DEBUG control in the
FORTRAN-86/88, Pascal-86/88, and PL/M-86 compilers and the ASM-86 assembler.

2-4

The DEBUG control causes the translator (compiler or assembler) to emit
records in the object files that associate symbolic names with memory
addresses. These records are then merged as required into the output files
of LINK86 and LOC86, so that they are available in any executable module
that may be processed by a debugger.

2~

CHAPTER 3
RUN-TIME SUPPORT LIBRARIES

This chapter discusses layer 2 of the model shown in Figure 0-1: the
run-time libraries. Run-time libraries are libraries of procedures that you
can link to your application programs. The procedures in the run-time
libraries implement common compiler functions, thereby reducing the size of
compilers and the code they generate, and they enable you to configure your
application to eliminate costly features that are not needed.
Configurability is discussed in Chapter 9 and Appendix B. This chapter
identifies the libraries offered by Intel and explains their functions and
usage.

APPLICATION-LANGUAGE RUN-TIME SUPPORT

The application languages FORTRAN-86/88 and Pascal-86/88 have two classes of
libraries:

1. Those that support processing of floating-point and mathematical
functions using the 8087 Numerics Data Processor or the 8087 NDP
Emulator

2. Those that do not deal with mathematical data processing

Figure 3-1 is a refinement of figure 0-1, showing how these two classes of
libraries interface with application languages in an iAPX 86,88 processing
environment. Each horizontal line in the diagram represents a direct
interface between layers of software or hardware. For example, application
languages (through calls generated by the compilers) call procedures in the
run-time libraries; the non-mathematical run-time libraries call procedures
in layer 3, while the 8087 Support Library either calls procedures in the
8087 Emulator software or executes instructions of a hardware 8087 Numeric
Data Processor. The diagram also illustrates that application languages
(through calls that you program in the source code) may bypass layer 2 and
directly call procedures in layer 3 and layer 4.

3-1

Intel Application Languages

(1) *

Run-Time Libraries for
Non-Mathematical Features

(2)

(3)

(4)

(5)

Interface Between O.S.
and Application

Operating System

iAPX 86, 88

8087
Support
Library

(2)

8087 or
Emula to r

(5)

* Level numbers in parentheses correspond to those in figure 0-1

Figure 3-1. Application Language Run-Time Support

SIL RUN-TIME SUPPOR'l'

System imI->lemeIltation languages (SILls) have no need for the extensive
non-mathematical run-time support libraries provided with application
languages, since the SILls do not provide the high-level language features
that those libraries implement. However, floating-point arithmetic and
mathematical functions using the 8087 Numeric Data Processor or 8087 NDP
Emulator are supported by the 8087 Support Library, as illustrated in figure
3-2. Figure 3-2 shows that SILls interface directly to layer 3. You
implement this interface through explicit procedure calls that you write in
the source language.

3-2

(1)

(3)

Intel System Implementation Languages

Interface Between O.S.
and Application

Operating System

1

1

1

1

1

1

1

1
(4) 1 1

8087
Support
Library

(2)

r~---
1 1
1 iAPX 86, 88 1

1 1
1 (5) 1 (5)

8087 or
Emula to r

1--
* Level numbers in parentheses correspond to those in figure 0-1

Figure 3-2. SIL Run-Time Support

NON-MATHEMATICAL RUN-TIME LIBRARIES

The non-mathematical run-time libraries provide run-time execution of such
application language features as:

o Sequential and direct access I/O
o Formatted and unformatted I/O
o Console input and output
o File management
o String processing
o Set manipulation
o Integer arithmetic
o Dynamic storage allocation
o Interrupt processing
o Run-time exception handling

You invoke these functions indirectly through your use of
application-language syntax.

Figure 3-3 illustrates the non-mathematical run-time interfaces in greater
deta il.

3-3

I

(1)

Intel Application Languages--Pascal-86, FORTRAN-86

Non-Mathematical Run-Time Support System

high-level 1/0 and memory management sets, strings,
integer

-- arithmetic
(2) Logical Record Interface

(5)

(4)

exception handling, low-level 1/0
and memory management

Default Logical
Record System

User-Written Logical
Record System

(optional)
Interface Between O.S.

and Application
(3)

Operating System

iAPX 86, 88

Figure 3-3. Detail of Non-Mathematical Run-Time Support

In figure 3-3, the longer vertical line in the interior of the box labelled
"Non-Mathematical Run-Time Support System" divides the functions into two
classes:

1. Those that are independent of the operating environment, requiring only
the services of an iAPX 86,88 processor for their implementation (for
example, procedures that process sets, strings, and integer arithmetic)

2. Those that depend ultimately on further support from the operating
environment (for example, procedures that deal with 1/0, memory
management, and exception handling)

The operating environment assumed by the latter class of functions is the

3-4-

Logical Record System (LRS). A standardized interface. called the Logical
Record Interface (LRI). has been defined for the LRS. The LRS translates
from the idealized operating environment defined by LRI onto the real
operating environment. ThlS can be done in one of two ways:

1. Intel provides procedures (contained in the run-time libraries) that
translate to the Universal Development Interface (UDI) standard for
layer 3. Layer 3 and UUI are discussed in following chapters.

2. You can write procedures to replace the Intel-supplied procedures. You
need to ao this if the target environment for your application does not
include an operating system. Appendix B defines LRI and explains how to
structure your own LR8.

Table 3-1 lists the FORTRAN-86/88 and Pascal-d6/88 non-mathematical run-time
libraries. and summarizes the functions performed by each library.

Table 3-1. Contents of Non-Mathematical Run-Time Libraries

1---
Library Name I I

I I I Description of Contents ,------------------------------, ,
I FORTRAN-8o/d8 I Pascal-86/88 II
1===

F86RNO.LIB P86RNO.LIB

I

I I , ,
I I , ,
I I , ,

Non-reentrant interfaces.
local data to support reentrancy.

,---,
I lOS-independent functions (sets.

F86RN1.LIB P86RN1.LIB II strings. integer arithmetic. high-
I I level I/O and memory management).

I I ,---,
F86RN2.LIB

I I
, I
I I , ,
I I , :

Edit descriptor tables and
null edit descriptor procedures.

-------------------------.--1
F86RN3.LIB P86RN2.LIB

I I , ,
I I , ,
I I
, I

Default LRS (exception handling. low
level I/O and memory management).

---1
F'86RN4.LIB P86RN3.LIB

I I , ,
I I , , Default LRS device driver tables and
II null device driver procedures.

-------------------------.--1
RTNULL.LIB RTNULL.LIB I I , ,

I I , ,
Null procedures linked in place of
default LRS libraries when you
supply an alternate LRS.

---1
8087 SUPPORT LIBRARY

The 8087 Support Library implements floating-point calculations and
mathematical functions in cooperation with the 8087 Numeric Data Processor

3-5

or (for those systems which do not have an 8087 processor) the 8087 software
emulator. For more information about the 8087, refer to the iAPX 86,88
User's Manual.

The FORTRAN-86/88 and Pascal-86/88 products each include the 8087 Support
Library. The compilers generate calls to procedures in these libraries when
you program operations on REAL data items or call certain intrinsic
mathematical functions. Refer to the FORTRAN-86 User's Guide or the
Pascal-86 User's Guide for details of how to use this library.

The PL/M-86 product offers run-time support for operations on data items of
type HEAL (single precision). The compiler generates calls to these support
routines when you use REAL items in arithmetic and relational expressions.

If you wish to use the full power of 8087 numerics processing in your
PL/M-86 and ASM-86 programs you must obtain the 8087 Support Library. The
8087 Support Library used with PL/M-86 and ASM-86 is the same as that used
with FORTRAN-86/88 and Pascal-86/88. The code generated by the PL/M-86
compiler uses the 8087 Support Library when you program operations on
single-precision REAL data items; to use the other mathematical functions in
the library, you execute procedure calls with the required parameters. For
ASM-86 programs, you must explicitly program calling sequences for the
routines in the Library. Refer to the 8087 Support Library Reference Manual
for detailed information.

Table 3-2 summarizes the library files contained in the 8087 Support Library
along with the floating-point subset available with PL/M-86.

3-6

Table 3-2. Contents of Numerics Run-Time Libraries

1---------------------------·-----------------------------
I File Name II
1--------------------------11 Description
I I 8087 I I of
I PL/fvl-86 I Support I I Contents
I I Library I I
1==
I I I I Conversion between ASCII
I I DCON87.LIB II decimal formats and
I I I I internal binary formats.

8087.LIB

I
I CEL87.LIB

I I Common elementary functions
II (logarithmic, exponential,

I

I

I I trig, hyperbolic, etc.).

I I Floating-point
EH87.LIB I I exception-handling utility

I I procedures.

I I
8087.LIB I I Interface to 8087

I I processo r.

I I
E8087.LIB I E8087.LIB I I Interface to 8087 emulator.

PE8087

I

E8087

I ~

I I 8087 emulator for use with
I I systems that do not have
II an 8087 processor.

I I Partial 8087 emulator for
i lsi m p 1 ear i thm e tic 0 n
I I REAL data types.

I I I Null procedures linked in
I NULL87.LIB I I place of above libraries
I II when no 8087 is used.

The file DCON87.LIB is used only by PL/M-86 and ASM-86 programs to perform
type conversions; type conversion is invoked implicitly in the high-level
languages FORTRAN-86/88 and Pascal-86/88.

The file EH87.LIB contains a foating-point exception-handling procedure
called FILTER. FILTER implements the proposed IEEE floating-point standard
for normalized arithmetic and non-trapping NaN's as defined in "A Proposed
Standard for Binary Floating Point Arithmetic," Draft 8.0 of IEEE Task P754,
Computer, March 1981, pp. 51-62. Refer to the 8087 Support Library Reference
Manual for details about FILTER. The interface libraries 8087.LIB ,
E8087.LIB, and NULL87.LIB also contain a procedure called FILTER; however,
this version of FILTER does nothing except return the value zero. When
invoked to report an 8087 exception, the run-time system's error handler

3-7

calls FILTER. If you link EH87.LIB ahead of the interface library, then
certain exceptions involving denormalized operands and non-trapping NaN's
are filtered out. If you do not link EH86.LIB, the run-time system's error
handler displays a message and terminates the job when any 8087 exception
occurs.

USING THE RUN-TIME LIBRARIES

Figures 3-4, 3-5, and 3-6 summarize the run-time libraries available with
each of Intel's languages. Link these libraries as needed to your
application programs. Refer to the language manuals and the iAPX 86,88
Family Utilities User's Guide for details.

In figures 3-4, 3-5, and 3-6, the vertical lines in the box titled "8087
Support Library" delineate linkage options that depend on the execution
enviroment.

o If your application uses 8087 features and your system includes an 8087
processor, then the LINK86 syntax should include CEL87.LIB, EH87.LIB,
8087.LIB.

o If your application uses 8087 features but your system does not have an
8087 processor, then the LINK86 syntax should include CEL87.LIB,
EH87.LIB, E8087.LIB, E8087.

a If your application does not use 8087 features, you may need to link
NULL87.LIB to resolve any unneeded references to 8087 Support Library
procedures. (For example, the run-time system contains calls to 8087
initialization procedures even though your FORTRAN-86/88 or
Pascal-86/88 source programs use no 8087 features.)

Refer to the 8087 Support Library Reference Manual for more information.

Not shown in figures 3-4, 3-5, and 3-6 is RTNULL.LIB. You should link this
library to your application in place of the default LRS libraries
(F86RN3.LIB and F86RN4.LIB for FORTRAN-86/88, or P86RN2.LIB and P86RN3.LIB
for Pascal-86/88) when you supply an alternate LRS. RTNULL.LIB resolves
references to procedures that you don't supply in your LRS. Refer to
Appendix B for more information on how to write an LRS and on the procedures
of RTNULL.LIB.

3-8

E'OR rl'RAN-86 18 8
(1)

(2)
Run-Time Libraries

F86RN0.LIB F86RN3.LIB
F86RN1.LIB F86RN4.LIB
F86RN2.LIB

Interface Between O.S.
and Application

(3)

Operating System
(4)

iAPX 86, 88
(5)

(2)

8087 Support Library

I
I
I
I
I
I
I

NULL87.LIBI
I
I

DCON87.LIB
CEL87.LIB
EH87.LIB

E8087.LIB
E8087

8087.LIB

8087

Figure 3-4. FORTRAN-86/88 Run-Time Libraries

3-9

----------.--1
Pascal-86/88

(1)

(2) (2)
Run-Time Libraries

P86RN0.LIB P86RN2.LIB
P86RNl.LIB P86RN3.LIB

8087 Support Library

1

---------------------------- 1
1 1

Interface Between O.S. 1 1
and Application 1 1

1 (3) 1 1

1------------------------------- 1

DCON87.LIB
CEL87.LIB
EH87.LIB

1 1 NULL87.LIB/ E8087.LIB 8087.LIB
1 Operating System 1 1 E8087
1 (4) 1 1 1

1--
I 1
I iAPX 86, 88 1 8087
I (5) 1

1--
Figure 3-5. Pascal-86/88 Run-Time Libraries

1--
I
I
1
I (1)

Intel System Implementation Languages
PL/M-86, ASM-86

1---------------------------- ----------------------------------
I 1 1
I 1 1
I Interface Between O.S. 1 1
I and Application 1 1
I 1 1
1 1 1
1 (3) 1 1

1------------------------------- 1

8087 Support Library

DCON87.LIB
CEL87.LIB
EH87.LIB

I 1 1 1 1
I Operating System 1 INULL87.LIBI E8087.LIB 1 8087.LIB
1 (4) 1 1 1 E8087 1

1--
I 1
I iAPX 86,88 1 8087
1 (5) 1

1--
Figure 3-6. 8087 Support Libraries

3-10

1

Version Numbers

Each run-time library file has a version number stored in the file. Always
use the latest version of each library.

To find the version number of a run-time library file use the LIB86 utility.
For example, to find the version number of the FORTRAN-86/8B library file
F86RN4.LIB, execute LIB86 and enter the command:

LIST F86RN4.LIB

LIB86 ~roduces a listing such as the following:

F86RN4.LIB
COPYRIGH'r_INTEL_COHP _yyyy
VERSIONNUMBERV0nm

'rhe symbols "nm" indicatE~ that this is version n.m of the library file. The
version number may also appear as:

VERSIONNUMBERVnPm

This indicates a library file of version n.m. Note that E8087 is not a
library file. Its version number is incorporated in the module name for
E8087, which appears on a link map.

Linking for Reentrancl

If an ap~lication job consists of more than one task, you may wish to link a
single copy of the run-time libraries to several tasks. If, however, one
task may be arbitrarily interrupted to execute another task that shares any
of the same libraries, the procedures in the shared libraries must be
reentrant. All of the procedures in the runtime libraries except for those
in F86RN0.LIB and P86RN0.LIB are reentrant and may be shared. With
F86RN0.LIB and P86RN0.LIB, however, each task must be linked to its own
copy.

Figure 3-7 illustrates the permissible library sharing for a two-task
Pascal-86/88 job. A FORTRAN-86/88 job would be similar, except that the four
libraries F86RNl.LIB, F86RN2.LIB, F86RN3.LIB, and F86RN4.LIB can be shared;
F86RN0.LIB must be linked to each task. Each task must be a main module to
allow separate init.ialization of the run-time system.

Note that tasks that are compiled according to the SMALL model of
segmentation and ar'e linked as shown in figure 3-7 cannot use the default
version of the LRS procedure TQGETSMALL$HEAP. The tasks would interfere
wlth each other in their use of the heap. 'ro find out how to supply an
alternate implementation of TQGETSMALL$HEAP, refer to Appendix B.

3-11

/------_._---/
/ / /
/ TASKl.OBJ / TASK2.0BJ
/ /

/----------------------------------/----------------------------------
/ /

/ P86RN0.LIB / P86RN0.LIB
/ /

/---
/

1 P86RNl.LIB, P86RN2.LIB, P86RN3.LIB
1

1---
1
/ 8087 Support Library
1

1---
1 /

1 Operating System Libraries /
1 1
/---/

Figure 3-7. Linkage Structure of a Reentrant Pascal-86/88 Job

To create a job with the structure illustrated in figure 3-7, you must first
link each task separately to P86RN0.LIB. For example:

LINK86 TASKl.OBJ, P86RN0.LIB TO TASKl.RN0

LINK86 TASK2.0BJ, P86RN0.LIB TO TASK2.RN0

Then the two resulting files may be linked to the remaining libraries; for
exampl e:

LINK86 TASKl.RN0, TASK2.RN0, &
P86RNl.LIB, &
P86RN2.LIB, &
P86RN3.LIB, &
NULL87.LIB, &
<0.8. library> &

TO MYJOBI BIND

This produces warning messages about duplicate symbols, since two copies of
P86RN0.LIB publics are being linked. These warnings may be ignored, or, if
there is no requirement that TASKI and TASK2 publics be available, the
NOPUBLICS or the PURGE control may be used in the first two linkage steps.

Such a job is reentrant only if the operating system supports reentrancy.
Refer to Cha~ter 4 and following cha~ters for more information on Intel's
operating systems.

Linking Multi-Language Jobs

When a program contains modules written in both FORTRAN-86/88 and

3-12

Pascal-86/88, you may link both to the same pair of LRS libraries (either
F86RN3.LIB and F86RN4.LIB, or P86RN2.LIB and P86RN3.LIB). Be sure to use the
latest pair of libraries.

Figure 3-8 illustrates the possible sharing of libraries in a job that
contains four reentrant tasks, two written in FORTRAN-86/88 and two written
in Pascal-86/88. In this example the LRS libraries from FORTRAN-86/88 are
used by all tasks.

1 1
TASKI.OBJ 1 1'ASK2. OBJ 'l'ASK3. OBJ 1 TASK4. OBJ

(FOR'l'HAN-86/88) 1 (:F'OR1'RAN-86/88) (Pascal-86/88) 1 (Pascal-86/88)
1 1

----------------1------------------ ----------------1-----------------
1 1

F86RN0.LIB 1 F86RN0.LIB P86RN0.LIB 1 P86RN0.LIB
1 1

F86RNI.LIB, F86RN2.LIB P86RNI.LIB

F86RN3.LIB, F86RN4.LIB

8087 Support Library

Operating System Libraries

Figure 3-8. Linkage Structure of a Multi-Language Job

To create a job with the structure illustrated by figure 3-8, use
a sequence of LINK86 commands such as these:

3-13

LINK86 TASKI.OBJ, F86RN0.LIB

LINK86 TASK2.0BJ, F86RN0.LIB

LINK86 TASK3.0BJ, P86RN0.LIB

LINK86 TASK4.0BJ, P86RN0.LIB

LINK86 TASKI.FN0, TASK2.FN0,

LINK86 TASK3. PN 0, TASK4. PN0,

T3N4. LNK, &
&

LINK86 TIN2.LNK,
F86RN3.LIB,
F86RN4.LIB,
NULL87.LIB,
<O.S. library>

&
&
&

TO MYJOB2 BIND

'}'O 'I'ASKI. FN0

TO TASK2.FN0

TO TASK3. PN0

TO TASK4.PN0

F86RNI.LIB, F86RN2.LIB

P86RNI.LIB TO T3N4.LNK

Using the 8087 Support Library with Multi-Language Jobs

TO rl' IN 2 • LN K

When PL/lV1-86 or ASM-86 modules are included in a job with FORTRAN-86/88 and
Pascal-86/88 modules, the PL/M-86 and ASM-86 modules can use the 8087
Support Library from either FORTRAN-86/88 or Pascal-86/88. The full 8087
emulator (E8087) from the 8087 Support Library can be used in place of the
PL/M-86 partial emulator (PE8087).

Initialization for Subprogram~

When FORTRAN-86/88 or Pascal-86/88 subprograms are linked to a main module
written in ASM-86 or PL/M-86, you must code explicit calls in the main
module to initialize both the non-mathematical run-time system and the 8087
Support Library. To initialize the non-mathematical run-time system, call
TQ 001; to terminate the non-mathematical run-time system, call TQ 999. Note
that only one call to TQ 001 and one call to TQ·999 are required, even
though the program contaIns both FORTRAN-86/88 ind Pascal-86/88 subprograms.
To initialize the 8087 Support Library procedures and the 8087, call INITFP.
Following are example external declarations that you must include in a
PL/M-86 module for these procedures. All are FAR procedures.

TQ 001: PROCEDURE EXTERNAL;
- END;

TQ_999: PROCEDURE EXTERNAL;
END;

INITFP: PROCEDURE EXTERNAL;
END;

Run-Time Detection of Linkage Errors

Some cases of incorrect linkage of run-time libraries are detected at run

3-14

time. This fact is reported to the current exception handler via the
exception codes 1300H and 8017H. If either of these exception conditions
occurs, check the commands that you gave to LINK86 to be sure that all the
needed libraries are linked in the proper order. Exception code 8017H may
also result from other conditions; refer to the FORTRAN-86/88 or
Pascal-86/88 User's Guide for more information.

3-15

CHAPTER 4
INTERFACE BETWEEN APPLICATION AND OPERATING SYSTEM

This chapter deals with operating system interfaces in a general way. It
introduces terms and concepts that should be considered early in the
development process, if you want an application that can be transported from
one operating environment to another. The terms and concepts discussed in
this chapter are applied to each of Intel's operating systems in Chapters 5,
6, and 7.

UNIVERSAL DEVELOPMENT INTERFACE (UOI)

Intel has defined the Universal Development Interface (UOI) so that you can
transport your applications from one operating environment to another (for
example, from the development environment to the target production
environment). UOI is a specification of a set of procedure calls that are
used to request operating system functions. The kinds of functions that are
available through UOI procedure calls include:

o Creating and breaking connections to data files
o Opening, reading, seeking, writing, and closing data files
o Changing names of data files
o Controlling program execution
o Controlling memory allocation
o Handling system exception conditions
o Controlling the processing of console input
o parsing the text of a command line
o Fetching the current date and time
o Fetching the name of the operating system

For complete specification of UOI, refer to appendix A.

Each Intel operating system for the iAPX 86,88 Family provides a Universal
Development Interface or a subset thereof. The UOI specifications are
implemented in one of two ways, depending on the operating system:

1. By the operating system itself, whose system calls follow the UOI
specifications

2. By modules that translate from the UDI standard to the actual operating
system calls

In either case, the UDI interfaces are implemented as libraries that must be
linked to your application modules.

Figure 4-1 illustrates the second method of UDI implementation, showing how
UDI libraries (layer 3) fit into t~e run-time support model. The figure
illustrates three points worth considering in more detail:

1. The non-mathematical run-time libraries make UOI calls when they need
operating system services to carry out their functions. The run-time
libraries, therefore, are operating-system independent and can be
transported to any operating environment that supports UOI.

2. You can make UOI calls directly from your application if you need

4-1

operating system services beyond those supplied by the run-time
libraries. Adhering to UDI specifications ensures that your application
remains operating-system independent and transportable.

3. You can make operating system calls directly from your application
(subject to system and language restrictions). If you do so, however,
you may not be able to transport your application to another operating
env i romnen t.

If your application must run under an operating system other than one
supplied by Intel, you can make your application transportable to that
environment, too. To do so, you need to implement a library of routines that
translate from the UDI specifications to that operating system's native
interfaces. For more information on how to do this, refer to Chapter 8.

As Figure 4-1 illustrates, the 8087 Support Library does not depend on an
operating system; therefore it can be tranported to any iAPX 86,88 operating
environment.

Intel Application Languages

(1)

Run-Time Libraries for
Non-Mathematical Features

(2)

UOI Libraries

(3)

Operating System

(4)

iAPX 86, 88

(5)

Figure 4-1. UOI Support

ERROR REPORTING

8087
Support
Library

(2)

8087 or
Emulator

(5)

UOI procedures return a condition code that indicates the results of
executing a UOI procedure. You must check the condition code after each UDI
call to determine whether the procedure produces the results that you

4-2

expect. Certain condition codes are identified in the UDI specifications
(Ap~endix A); however, each operating system is free to return additional
condition codes. The condition codes returned by one opera~ing system may
not be the same as those returned by another.

You should take care to design your E!rror-handling log ic to accomodate the
condition codes returned in all of the environments in which your
application may run.

INTERRUPT HANDLING

There are two different styles of interface available for interrupt
processing:

1. Special interrupt-related constructs in the programming languages

2. Calls to operating-system procedures

Using the language constructs for interrupt processing is adequate for
environments where there is no operating system or where the operating
system does not provide any other interface. Where the operating system does
provide an interrupt-processing interface, that interface should be used.
Using the operating-system interface ensures that the operating system has
enough information to effectively control the operating environment.

To sim~lify transportation of your application between an environment where
language constructs are used and an environment where operating-system calls
are used, you should isolate all interrupt processing in a separate module.
By having a separate interrupt-processing module:

1. You can hide from other application modules any knowledge of which
interface is actually in use.

2. You can test each interface separately, before linking to the rest of
the application.

All of Intel's operating systems for the iAPX 86,88 Family provide interrupt
handlers for interrupts caused by the run-time system. These interrupts
include:

0 Interrupt 0--Divide exception

0 Interrupt 4--0verflow

0 Interrupt 5--Range check

0 Interrupt 16--Floating-point exception

0 Interrupt 17--Case range, procedure stack overflow

If you are not using one of Intel's operating systems but are using the
run-time system, you must supply your own interrupt handlers for these
interrupt levels.

Table 4-1 identifies for each language the syntax or logic that is used for

4-3

interrupt processing.

Table 4-1. Language Interfaces for Interrupt processing

I I PROGRAMMING LANGUAGE INTERFACE INTERRUPT
PROCESSING
F'UNCrrION

I 1--
I I Pascal-86/88 I FORTRAN-86/88I PL/M-86 I ASM-86

===
I I I

Associate I I SET INTERRUPT SETIN'I' INTVECTOR/ I You
procedure I I built-in built-in NOINTVECTOR I declare
with I I procedure or procedure compiler I interrupt
interrupt I I INTERRUPT control, I vector.
level. II compiler SET$INTERRUPTI

I I control built-in, I
I I INTERRUPT I
I I procedure I
I I attribute ,

--------------++-----------------+--------------+--------------+----------
Save and "INTERRUPT 'INTERRUPT' INTERRUPT 'You ,
restore " control in , compiler 'procedure ,code.
state. 'I interface specs.' control ,attribute ,

---------------++-----------------+--------------+--------------+----------
Finish " END statement 'RETURN or 'RETURN or I
,lJrocessing "in interrupt 'END statement, END statementl IRET
interrupt. 'I procedure , in interrupt I in interrupt ,

, , 'procedure 'procedure ,
--------------++-----------------+--------------+--------------+----------

Reentrancy "All procedures I REENTRANT 'REENTRANT 'Use
" are reentrant. 'compiler 'procedure ,stack-
" , control I attribute ,relative
I' , I , variables

--------------++-----------------+--------------+--------------+----------
Enable and 'I ENABLEINTERRUPT,I Automatically' ENABLE, ,
disable " DISABLEINTERRUPTI disabled on 'DISABLE 'STI
interrupts. I I buil t-in , entry and ,statements I CLI

" procedures , enabled on , ,
I' I exit' I

---------------++-----------------+--------------+--------------+----------
Cause 'I CAUSEINTERRUPT , , INTERRUPT$PTR'
interrupt "buil t-in I , buil t-in, 'INT
from 'I procedure' I CALL , INTO
software. " , ,interrupt,

, I , , proced ur,e ,

4-4

CHAP'rER 5
SERIES III RUN-TIME SUPPORT

The Intellec Series III contains two processors: an 8085 and an 8086.
ISIS-II is the operating system that runs on the 8085 processor, and the
Series III Operating Systeill runs on the 8086 processor. The Series III
Operating System takes control when you enter the ISIS-II command RUN to
execute programs on the 8086. To fulfill many of its functions, the Series
III Operating System communicates with ISIS-II which continues to run on the
8085.

The Series III Operating System provides support for application programs
being developed for the 8086 and for application development tools that run
on the 8086. Figure 5-1 illustrates how the Series III Operating System fits
into the run-time support model. Details on the Series III Operating System
are to be found in the Intellec Series III Microcomputer Develo~ment System
programmer's Reference Manual.

Intel Application Languages

(1)

Run-Time Libraries for
Non-Mathematical Features

(2)

UDI Libraries
(SMALL. LIB, COMPAC.LIB, LARGE. LIB)

(3)

Series III Operating System

ISIS-II
(4)

8085 iAPX 86

(5)

Figure 5-1. Intel's Series III Solution

5-1

8087
Support
Library

(2)

8087 or
Emulator

(5)

Programs interface with the Series III Operating System according to tile UDI
~candard defined in Appendix A. All the procedure calls defined by the
standard are supported.

Libraries

The Series III Uperating System provides the UDI interface in the form of
libraries. Tne libraries are named SMALL. LIB, COMPAC.LIB, and LARGE. LIB. To
execute an application program which uses UUI, you must link the program to
the library or libraries that match the program's segmentation scheme.
(LARGE.LIB may also be used for the MEDIUM model of segmentation.)

..!.!!!~mellta t io n Co nsid e'ra ti on!!

The UDI speci~cations (as documented in Appendix A) permit variations in
implementation that depend on the style and capablities of individual
operating systems. The Ser'les III variations are identified in this section,
along with any deviations from the UDI standard. References to particular
procedures are understood to refer to the Series III versions of these
procedures.

UQ$ATTACH

This procedure supports a maximum of 12 files attached at anyone time. Only
one connection can be establlshed to a particular disk file. However,
multiple connections to physical files (tor example, :LP:) and logical
devices (for example, :BB: and :CI:) are allowed. The logical file :WORK:
may not be attached (use DQ$CREATE instead).

DQ$CHANGE$ACCESS

For ISIS flIes CLASS is ignored. The ISIS WRITE PROTECT attribute will be
UFf (0) if the ACCESS bits for UPDATE and DELETE or WRITE and DELETE are ON
(1). OtherWise, the WRITE PROTECT attribute is ON (1).

For NUS II files the values are as specified by the DQ$CHANGE$ACCESS
procedure in Appendix A.

DQ$CIH::ATE

This procedure internally opens the file to check whether it exists and then
closes it. This action can impact the limit on the number of open
connections.

UQ$DELETE

You may not delete a file that is connected.

5-2

DQ$EXIT

The completion$code is not used by the Series III Operating System.

DQ$FILE$INFO

For ISIS files, OWNER is always returned as "4,ISI8", LENGTH is the current
file length, TYPE is 1 for ISIS.DIR and 0 for all other files. OWNER$ACCESS
and WORLD$ACCESS is 02H if the WRITE PROTECT and/or FORMAT attribute is set,
otherwise they are OFH. CREATE$TIME is always 0 while LASTMODTIME is 0 if
ISIS DIRTY attribute is off (0) and 1 if it is on (1).

For NOS II files the values are as specified by the DQ$FILE$INFO procedure
in Appendix A.

DQGETTIME, DQ$DECODE$TIME

System time is not maintained by the Series III Operating System. E$SUPPORT
is returned.

DI.,/$OPEN

This procedure is restricted to six files maximum open at one time including
:CI: and excluding :CO:.

DQ$RENAME

Renaming a file to which a connection has been established is valid. The
connection to the renamed file remains established.

DQ~RE8ERVEIOMEMORY

Returns E$MEM if NUMBEH$FILES exceeds twelve files.

D(J$TRUNCATE

During the truncate operation, a workfile is opened and remains open until
truncation completes. This may impact the limit of six open files.

Every UUI call returns an exception code that specifies the status of the
call. If the operating system returns an exception code of zero, it did not
find any errors when it processed the call. However, if the operating system
returns a non-zero exception code, it did find errors.

Table 5-1 lists all the exception codes, along with thelr mnemonics, that
the Serles III Operating System can return from its UDI calls. For

5··3

definitions of the conditions and details as to which routines can return
w hi c h con d i t ion s, ref e r tot t1 e 1. n t ~g!:..£ S e r i ~~-I..!.1..1:U:..£,!:££.2.~~1~-R~ e 1 0 £!.I!~!!!
~~ t em P ~.e. In mer's Ref ere n c e . .l!2.!!.!! a 1 •

Table 5-1. Series III Exception Codes and Mnemonics

HEX COVE MNEMONIC HEX CODE , MNEMONIC
--

0000 E$OK 0104 E$NOPEN
0002 E$MEM 0105 E$OPEN
0020 E$FEXIST 0106 E$OREAD
0021 E$FNEXIST 0107 E$OWRITE
0023 E$SUPPORT 0108 E$PARAM
002b E$FACCESS 0109 E$PTR
0028 E$SHARE 010A E$SIX
0029 E$SPACE 010C E$SYNTAX
0081 E$STRING$BUF 010E E$UNSAT
0101 E$CONTEXT 010F E$ADDRESS
0102 E$CROSSFS 011 0 E$BAD$FILE
0103 E$EXIST

I~TERRUPT HANVLING

The Intellec Series III System maps the seven Multibus interrupt lines
(INTO through INT7) onto interrupt vector entries numbered 56 through 63;
therefore your application may not use interrupts 56 through 63 for
software interrupts. Interrupt vector entries available for user software
include 64 through 183. Refer to ttle Intellec Series III Microc.o!!!1?~te!:

V eve lop me u t S ~~~.!:.£~ ram ~,~~,R e f e !.~.£~2!2.!!.!!~! for d eta i 1 s •

8 0 8 '{ S U P PO R 1:

You may incorporate an 80d7 Numeric Data Processor in your Intellec Series
III System by installing the iSBC 337 Multimodule Numeric Data Processor.
Refer to the iSBC 337 Multimodule Numeric Data Processor Hardware Reference
Man u a 1 for m 0 rei n for mat ion. You m u s· tal so inc 0 r po rat e i n you r 'a p p 1 i cat ion
two ~ftware procedures that help to handle 8087 interrupts.

When the iSBC 337 Multimodule NDP is installed in a Series III system, the
interrupt output of the 8087 (MINT) is connected to the IR7 pin of the
b259A Programmable Interrupt Controller, which associates the 8087
interrupt with interrupt type number 63. The run-time system, however,
expects the 8087 interrupt to arrive at interrupt number 16. To translate
from interrupt 63 to interrupt 16, you must link to your application
programs an interrupt procedure such as the one shown in figure 5-2.

If necessary the run-time system writes at entry 16 of the system interrupt
vector the address of the interrupt procedure that is to process 8087
lnterrupts. To find the location of that interrupt procedure, the run-time

5-4

system calls a procedure of the form shown below:

TQ$WHERES~TRAP87:
PROCEDURE (hanalerptrptr) WORD REENTRANT PUBLIC;
DECLARE handlerptrptr POINTER;

END;

The parameter handler$.E,tr.!.E.1!:. points to a four-byte area where
TQ$WHERES$TRAP87 stores a long pointer containing the address of the
interrupt handler procedure that is to handle 8087 interrupts.

The WORD returned by TQ$WHERES$TRAP87 contains either the value 16, the
number of the interrupt vector entry (ultimately) associated with the 8087,
or the value zero, indicating that the operating system has already set up
an interrupt procedure for handling 8087 interrupts.

The default version of TQ$WHERES$TRAP87 in the run-time libraries returns a
value of zero. However, the Series III Operating System does not initialize
the interrupt vector for 8087 interrupt handling. Therefore, you must
supply a version of TQ$WHERES$TRAP87 that returns the value 16 and writes
out the address of an 8087 interrupt procedure. Intel provides an interrupt
procedure (with the PUBLIC identifier TQ TRAP87) that fieldS 8087
interrupts and calls the current excepti~n handler. You may use the address
of TQ TRAP87 in your version of TQ$WHERES$TRAP87. You must link your
versi;n of TQ$WHERES$TRAP87 before the run-time libraries, so that the
linker fetches your version in place of the default version. Figure 5-2
shows an example of a TQ$WHERES$TRAP87 procedure that uses the address of
TQ_TRAP8 r

(•

5·-5

$LARGE

MYSIII8087CONFIG: DO;

TQ TRAP87:
- PROCEDURE EXTERNAL;

END;

TQ$WHERES$TRAP87:
PROCEDURE (ADDR$PTR) WORD REENTRANT PUBLIC;
DECLARE ADDR$PTR POINTER,

DESIRED$TRAP$HANDLER
BASED ADDH$PTR POINTER;

DISABLE;
OUTPUT(0C2H) = INPUT(0C2H) AND 7FH;

/* Change 8259A mask to enable IR7. */
ENABLE;

/* Set address of default 8087 trap handler. */
DESIRED$TRAP$HANDLER = @TQ_TRAP87;

RETURN (16); /* Tell run-time system which interrupt
table entry to initialize with
address in desired$trap$handler. */

END TQ$WHERES$TRAP87;

MY8087TRAP:
PROCEDURE INTERRUPT 63; /* Maps to IR7 in Series III. */

CAUSE$INTERRUPT (16);

OUTPUT{0C0H) = 67H;

END MY8087TRAP;

END MYSIII8087CONFIG;

/* Translate to interrupt 16. */

/* Send specific EOI for IR7. */

Figure 5-2. Series III 8087 Interrupt Initialization

REENTRANCY AND MULTITASKING

The Series III Operating System is designed for use by a single operator
and supports neither reentrancy nor multitasking.

EXAMPLE PROGRAM

The following example illustrates the process of using an Intellec Series

5-6

III L"l'icrocomputer Development System to compile, 1 ink (both to the UDI and
to the run-time libraries), load, and execute a simple Pascal-86/88 program
(shown in fig ure 5-3).

Although this program makes no direct UDI calls, the code generated by the
Pascal-86/88 translator does call UDI procedures for I/O to the console.
The example shows how to link this program both for execution on the Series
III, and for execution on an iRMX 86 system.

(* Convert a number of inches into yards, feet, and inches *)

PROGRAM inch(input,output);
VAR yards, feet, finch, number :: integer;

quitchar : char;
PROCEDURE convert (ins: integer; VAR y, f, i

BEGIN

END;

BEGIN

Y := ins DIV 36;
ins := ins MOD 36;
f := ins DIV 12;
i := ins IViOD 12;

REPEAT
writeln; writeln;
w r i t e (• N urn b e r· 0 fin c he s :i s : .);
readln(number);
writeln;
convert(number, yards, feet, finch);
writeln(yards:4, • yards" "

feet:1, • feet, and "
f inch:2, • inches');

writeln;-writeln;
write('Another number--y or n1 :');
read(quitchar);

UNTIL NOT (quitchar in ['Y' ,Oy'])
END.

integer);

Figure 5-3. Series III Example program

Compiling

The following line invokes the Series III pascal-86/88 compiler. This
e~ample assumes the compiler is in the system and that the program is to be
compiled on the default device.

-RUN PASC86 INCHES.SRC

The compiler places the object module in file INCHES.OBJ and produces a
listing file called INCHES.LST. If the compiler finds no errors, it
responds as follows:

5··7

SERIES-III Pascal-86, Vx.y
PARSE(0) , ANALYSE(0) , NOXREF, OBJECT

COMPILATION OF INCHES COMPLETED, 0 ERRORS DETECTED,
END OF Pascal-86 COMPILATION.

Linking for Series III Execution

If there are no errors, you are ready to link the compiled program to the
necessary run-time support libraries and the large model UDI library as
follows.

-RUN :Fl:LINK86 INCHES.OBJ, &
»P86RN0.LIB, &
»P86RNl.LIB, &
»P86RN2.LIB, &
»P86RN3.LIB, &
»NULL87.LIB, &
»LARGE.LIB &
»TO :Fl:INCHES.86 BIND

The BIND control directs LINK86 to produce :Fl:INCHES.86 in a load time
locatable format. Refer to the iAPX 86,88 Family Utilities User's Guide for
more information concerning the BIND control.

The system responds as follows:

SERIES-III 8086 LINKER, Vx.y

LINK86 produces a map file (INCHES.MPl) and a loadable module (INCHES.86).

Invoking

You can now invoke the program. Type

-RUN :Fl:INCHES

The program responds with

Number of inches is :

Assume you enter "38". The program displays the number in yards, feet, and
inches.

1 yard, 0 feet, and 2 inches

The program tben asks if you want to enter another number.

Another number--y or n?-

Answer with N if you wish to exit the program.

5-8

Linking for Execution on an iRMX 86 System

After testing the program on the Series III system, you are ready to relink
the compiled prograHl for running on the target system, which in this
example is an iRMX 86 system. You use the linker again, this time
substituting the iHMX 86 large model UDI library and omitting the .86
suffix from the name of the output file:

-RUN :FI:LINK86 INCHES.OBJ, &
»P86RN0.LIB, &
»P86RNl.LIB, &
»P86RN2.LIB, &
> > p 8 6 RN 3 • LIB, '&
»NULL87.LIB, &
»URXLRG.LIB &
»TO :FI:INCHES BIND MEMPOOL(+2000H)

The BIND control directs LINK86 to produce :It"''I:INCHES in a load time
locatable format. The MEMPOOL (+2000H) control dynamically allocates 2000H
more bytes of memory for the program and connections. Refer to the iAPX
86,88 Family Utilities User's Guide for more information concerning the
BIND and MEMPOOL controls.

The system responds as follows:

SERIES-III 8086 LINKER, Vx.y

LINK86 produces a map file (INCHES.MPl) and a loadable module (INCHES).

Refer to the Guide to Using iRMX 86 Languages for further information
concerning compiling, linking, and executing application programs you want
to run on the iRMX 86 Operating System.

5-9

CHAPTER 6
iRMXTM 86 RUN-TIHE SUPPORT

The Intel iRMX 86 Operating System is a software package designed for use
with the Intel iAPX 86- and iAPX 88-based microcomputers. It is a powerful
and flexible system around which you can build your application.

The iHMX b6 Operating System consists of a number of layers. In order to use
the complete UDI, you must have the Human Interface, Application Loader,
Extended 1/0 System, Basic 1/0 System and Nucleus. The following list
contains short descriptions of the layers you need to support the UDI.

o

o

o

o

o

Nucleus

Basic 1/0 System

Ex tend ed 1/0
System

Application
Lo ad er

Human Interface

The Nucleus is the core of the iRMX 86
Operating System and is required by every
application system. It provides services
for the remainder of the software running in
the system.

The Basic 1/0 System provides asynchronous
file access capabilities for software
running under the supervision of the Nucleus.

The Extended 1/0 System provides high
level, synchronous file access capabilities
for software running under the supervision
of the Nucleus.

The Application Loader provides the
capability to load object files into memory
from disk under the control of the operating
system.

The Human Interface provides an interactive
interface between a user and the software
running under the supervision of the Nucleus.

You must include these layers when you configure the iRMX 86 Operating
System. You must also include the UDI layer when you configure. Refer to the
iHMX 86 Corlfis.uration_GuidE~ for more information.

Programs interface with the iRMX 86 Operating System according to the
standard defined in Appendix A. All the procedure calls defined by the
standard are supported.

Libraries

The iHMX 86 Operating System provides the UOI interface in the form of
libraries. In order to exec.ute an application program (on the iRMX 86
Operating System) that uses UDI, you must link the program to one of three
iRMX 86 UUI libraries. These libraries are called LARGE. LIB, COMPAC.LIB, and
SMALLL.LIB. If your program corresponds to the LARGE or MEDIUM model of

6-1

segmentation, link it to LARGE. LIB. If your program corresponds to the SMALL
or COMPACT models of segmentation, link it to SMALLL.LIB or COMPAC.LIB,
respectively. After you link your programs to the UOI libraries, you can put
the resultant code in RAM or ROM.

The iRMX 86 f.L~ramming Techn..!...g.!!.~ manual and the iRMX 86 Confls..!:!!.~ti£!!
Guide discuss selecting a model of segmentation. While these models deal
with the PL/M 86 language, they apply to ASM86 and Pascal-86/88 as well. In
contrast, Fortran-86/88 always requires the LARGE library.

Refer to the iA!!-~£~~~_famil~tilities Use~~guide for more details
concerning linking to libraries.

Figure 6-1 shows how the iRMX 86 Operating System fits the model of Intel
solutions. Note that both the 8087 and the emulator are included in this
model. However, if you are running a multitasking 8087 program on the iRMX
d6 Operating Sys~em you cannot use the emulator.

I I 1--1
Intel Application Languages

(1)
I I 1------------------------------------ ---------------1

Run-Time Libraries
(2)

I 1--
UUI Libraries

(LARGE. LIB, COMPAC.LIB, SMALLL.LIB)
(3)

iRMX 86 Operating System

(4)

;4 D)(86, 88

(5)

Figure 6-1. Intel's iRMX 86 Solution

lmelementation Consideration~

8087
Support
Library

(2)

8087

(5)

The UDI specificatians (as documented in appendix A) permit variations in
imp I em en tat ion t hat d e pen don the sty I e· and cap a b iIi tie s 0 fin d i v i d u a 1
operating systems. The iRMX 86 variations are identified in ths following
sections, along with any deviations from the UOI standard. References to
particular procedures are understood to refer to the iRMX 86 versions of
these procedures.

6-2

DQ$ALLOCATE

The iRMX 86 Operating System allocates bytes in multiples of 16 whereas the
UDI standard s~ecifies allocation of the exact number of bytes you request.
If you request a number of bytes that is not a multiple of 16, the iRMX 86
Operating System rounds this number to the next higher multiple of 16.
DUGETSIZE returns the number of bytes actually allocated.

DQ$ATTACH

Attaching a file that is already connected is valid. A connection to the
existing file is made, ana all prior connections remain established.

Attaching the logical file :WORK: is valid for reading only. The first read
operation returns the end-of-file exception code.

DQ$DECODE$EXCEPTION

The OQ$DECOOE$EXCEPTION call returns iRMX 86 messages for the exception
codes in a format specified by the Human Interface rather than returning UOI
exception codes. Refer to the iRMX 86 Human Interface Reference Manual for
information about iHMX 86 messages. -

DQ$DELETE

When this procedure is called, the file associated with the specified path
name is .!!!2!'.~~.9. for deletion. If connections to the specified file exist,
they remain valid until detached by calling either OQ$OETACH or OQ$EXIT.
He fer to the iHHX 86._Ex tel2d ed I/O~~te~~fe~!2~.2!2.~! for more
information concerning connections.

UQGETCONNECTION$STATUS

DQGETCONNECTION$STATUS returns either a value of 0 (zero) or a value of 3
for the seek mode. This is unlike the UUI standard, Which allows an
operating system to support (independently) either a forward or a backward
seek.

DQGETTIME

This UDI call returns the date and time. On the iRMX 86 Operating System,
the date and time are set when you enter the DATE and TIME commands (iRMX 86
Human Interface Heference Manual) or invoke the RQSETTIME system ca~-
(iRMX 86 Basic I/O ~x~~m-Refer~~anual).

OQ$RENAME

Renaming a file to which a connection has been established is valid. The
connection to the renamed file remains established.

6-3

Exceetion Codes

Every UDI call returns an exception code that specifies the status of the
call. If the operating system returns an exception code of zero, it did not
fina any errors when it processed the call. However, if the operating system
returns a non-zero exception code, it did find errors. Table 6-1 lists all
the exception codes and the mnemonics that the iRMX 86 Operating System can
for its UDI calls.

~4

Table 6-1. iRMX 86 Exception Codes and Mnemonics

HEX CODE MNEMONIC HEX CODE MNEMONIC
=:::::::::::::::::::::=::::::::::==::::::::::==::::=::======================

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
OOOA
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
002A
002B
002C
0020
002£
0040
0041
0042
0044
0045
0046
004 '7
0050
0051
0052
0053
0054
0060
0061
0062

E$OK
E$TIME
E$MEM
E$BUSY
E$LIMIT
E$CONT~XT

E$EXIST
E$STATE
ENOTCONFIGURED
E$INTERRUPT$SATURATION
E$INTERRUPT$OVERFLOW
E$FEXIST
E$FNEXIST
E$DEVFD
E$SUPPORT
E$EMPTY$ENTRY
EDIREND
E$FACCESS
EFTYPE
E$SHARE
E$SPACE
E$1DDR
E$10
E$FLUSH1NG
E$1LLVOL
EDEVOFFLINE
ELOGNAME$SYNTAX
E$CANNOT$CLOSE
E10MEMORY
E$MED1A
ELOGNAME$NEXIST
ENOTOWNER
EIOJOB
EIOCLASS
EIOSOFT
EIOHARD
EIOPRINT
EIOWPROT
EABSADDRESS
EBADGROUP
EBADHEADER

0063
0064
0065
0066
0067
0068
0069
006A
006B
006C
006D
006E
006F
0080
0081
0082
0083
0085
0087
0089
008B
8000
8001
8002
8003
8004
8005
8006
8007
8017
8020
8021
8022
8040
8041
8042
8060
8080
8083
8084

EBADSEGMENT
E$CHECKSUM
E$EOF
E$FIXUP
ENOLOADER$MEM
ENOMEM
ERECFORMAT
ERECLENGTH
ERECTYPE
ENOSTART
EJOBSIZE
E $0 VL Y
E$LOADER$SUPPORT
E$LITERAL
E$STRING$BUFFER
E$SEPARATOR
E$CONTINUED
E$LIST
E$PREPOSITION
E$CONTROL$C
E$EXTRA$SO
E$ZERO$DIVIDE
E$OVERFLOW
E$TYPE
EBBOUNDS
E$PARAM
EBADCALL
EEARRAY$BOUNDS
ENDPERROR
E$CHECK$EXCEPTION
E$IFDR
ENOUSER
ENOPREFIX
ENOTPREFIX
ENOTDEVICE
ENOTCONNECTION
E$J013$PARAM
E$PARSE$TABLES
E$DEFAULT$SO
E$STRING

For more information about these exception calls, refer to the iRMX 88 Human
Interface Reference Manual.

6-5

INTERRUPT HANDLING

Programs that run under the iRMX 86 Operating System should use iRMX 86
interrupt management techniques to handle interrupts. The UOI libraries do
not include interrupt management. If you wish to use interrupts for
application specific functions rather than iRMX 86-provided device drivers
and timers, you must write interrupt handlers and possibly interrupt tasks.
To handle interrupts, you should use iRMX 86 system calls to process
interrupts and set up interrupt levels; you should not use direct
programming language statements to enable and disable interrupt levels.

The iRMX 86 Operating System reserves certain interrupts for special
purposes. Interrupts 56-63 are reserved for external interrupts using the
8259A master levels; interrupts 64-127 are also reserved for external
interrupts using the 8259A slave levels. Refer to the l!MX_~~_Nucl~
li~~~_Ma~.e..! for more in formati on conc er n i ng in terr upt man agem en t
techniques.

LOGICAL NAMES

The UOI uses certain logical names to mean special things. For example, :LP:
means "line printer", :CO: means "console output", and :CI: means "console
input." When you configure your operating system. be sure to assign these
reserved logical names to the correct devices. Failure to do this will cause
your UDI to differ from the UOI standard. Refer to the iRMX OEe~ator'!
Manual for a more complete explanation of logical names. Refer to the iRMX
&.§..-f2.nf,ts..~r..§~io.!!_Quide for more information concerning configuring the-riM"X
86 Operating System.

R£ENTRANCY

UUI libraries are fully reentrant.

MULTITASKING

The UOl libraries are fully compatible with a multitasking environment.
However, there are no UOI calls to create and aelete tasks. While the iRMX
86 Operating System allows you to divide your application programs into
tasks, doing so takes you outside the scope of the UOI. However, if you want
to take advantage of iRMX 86 multitasking under UOI you must use
RQ$CHEATE$TASK and related iRMX 86 system calls to manipulate tasks. These
system calls are fully described in the iRMX 86 Nucleus Reference Manual).

USING OVERLAYS IN AN iRMX 86 ENVIRONMENT

If your assembly language or PL/M-86 programs use overlays and use UOl calls
to load the overlays (the OQ$OVERLAY procedure), you should take care to
ensure that you link the UOI library to your program correctly. The iAPX 86.
ti8 Famil~ Ut.ilities User's Guide contains an example of linking an overlay
program. This example lists a two-step link process, as follows:

1. Link the root and each of the overlays separately. specifying the

6-6

OVERLAY control, but not the BIND control, in each LINK86 command.

2. Link all the output modules together in one module, specifying the BIND
control, but not the OVERLAY control.

This is the same process that you should use when linking your iRMX 86
overlay programs. However, you must ensure that you link the entire UDI
library to the root portion of the program and not to any of the overlays.
To do this, use the INCLUDE control to include the UDI externals file
(UDI.EXT) with the PL/M-86 compilation of the root portion of the program.
By including this file with the root, you make external references to all
UDI routines from that root. Then when you link the root to the UDI library,
LINK86 pulls in all of the UDI routines, not just the ones called in the
root. Since you are linking the UDI library to the root only, this prevents
you from having unsatisfied externals when you link the root to the
overlays.

For example, suppose your program consists of three files, ROOT.OBJ,
OV1A.OBJ, and OV2A.OBJ, the root and overlay files, respectively. You have
compiled these program modules with the PL/M-86 compiler and included the
UDI externals file UDI.EXT with the compilation of the root. Assuming that
LINK86 resides on the default logical device in directory SYSTEM and that
the object files reside in :F1:PROG, the following LINK86 commands will link
the overlay program and produce an executable module. This happens in two
steps.

1. The first three LINK8b commands separately link the root and overlay
portions of the program. The root portion of the program is linked to
the UD! library.

-L!NK86 :F1:PROG/ROOT.OBJ, &
**:Fl:PROG/LARGE.LIB OVERLAY

iRMX 86 8086 LINKER Vx.y

-LINK86 :F1:PROG/OV1A.OBJ OVERLAY(OVERLAY1)

iRMX 86 8086 LINKER Vx.y

-LINK86 :F1:PROG/OV2A.OBJ OVERLAY(OVERLAY2)

iRMX 86 8086 LINKER Vx.y

2. The next LINK86 command links together in one module all the output
modules produced in the first step.

-LINK86 :F1:PROG/ROOT.LNK, &
**:F1:PROG/OV1A.LNK, &
**:Fl:PROG/OV2A.LNK &
**TO :F1:PROGRAM1 BIND MEMPOOL(+2000H)

~7

iRMX 86 8086 LINKER Vx.y

EXAHPLE PROGRAH ---------
The following example illustrates the process of using an iRMX 86-based
system to compile, link (both to the UDI and to the run-time libraries),
loading, and execute a simple Pascal-86/88 program (shown in figure 6-2).

Although this program makes no direct UDI calls, the code generated by the
Pascal-86/88 translator does call UDI procedures for I/O to the console. If
you compile and link this program as shown in the example, you can run it on
the iRMX 86 Operating System.

(* Convert a number of inches into yards, feet, and inches *)

PROGRAM inch(input,output);
VAR yards, feet, f_inch, number: integer;

quitchar : char;
PROCEDURE convert (ins: integer; VAR y, f, i

BEGIN

END;

Y := ins DIV 36;
ins := ins MOD 36;
f := ins DIV 12;
i := ins HOD 12;

BEGIN

END.

REPEAT
writeln; writeln;
write('Number of inches is: ');
readln(number);
writeln;
convert(number, yards, feet, finch);
writeln(yards:4, ' yards,' -

feet:1, feet, and "
f_inch:2, ' inches');

writeln; writeln;
write('Another number--y or n? : ');
read(quitchar);

UNTIL NOT (quitchar in ['Y','y'])

integer);

Figure 6-2. iRMX 86 Example Program

Comeiling

The fDllowing line invokes the iRMX 86 Pascal-86/88 compiler on an iRMX 86
system. This example assumes the compiler is in the system and that the
program is to be compiled on the default device.

6-8

-PASC86 INCHES.SRC

The compiler places the object module in file INCHES.OBJ and produces a
listing file called INCHES.LST. If the compiler finds no errors, it responds
as follows:

iRMX ti6 Pascal-86/88, Vl.0
PARSE(O), ANALYSE(O), NOXREF, OBJECT

COMPILATION OF INCHES COMPLETED, 0 ERRORS DETECTED,
END OF Pascal-86/88 COMPILATION.

If there are no errors, you are ready to link the compiled program to the
necessary run-time support libraries and the large model UDI library as
follows.

-:Fl:LINKti6 INCHES.OBJ, &
**P86RNO.LIB, &
**P86RN1.LIB, &
**P86RN2.LIB, &
**P86RN3.LIB, &
**NULL87.LIB, &
**LARGE.LIB &
**TO :F1:INCHES BIND MEMPOOL(+2000H)

The BIND control directs LINK86 to produce :F1:INCHES in a load time
locatable format. The MEMPOOL (+2000H) control dynamically allocates 2000H
of memory for the program and connections. Refer to the iAPX 86,88 Fami!z
Utiliti~s User's Guide for more information concerning the BIND and MEMPOOL
controls.

The system responds as follows:

iRMX 86 8086 LINKER, Vx.y

LINK 86 produces a map file (INCHES.MP1) and a loadable module (INCHES).

Invoking.

You can now invoke the program. Type

-:fl:inches

The program responds with

Number of inches is :

Assume you enter "38". The program displays the number in yards, feet, and
lnches.

1 yard, 0 feet, and 2 inches

The program tilen asks if you want to enter another number.

Another number--y or n?o

Answer with N if you wish to exit the program.

Refer to the iAPX 86, 88 Fa~ilx_Qti~it~~Use~Gulde for further
information concerning compiling, linking and executing application programs
you want to run on the iRMX 86 Operating System.

6-10

CHAPTER 7
i H M X TM 88 RUN - TIM E SUP P 0 R T

The iRMX ti8 Real-Time Multitasking Executive is a small, high-performance
operating system that provides functions needed in software that monitors
and/ur controls external events occurring asynchronously in real time.

UDI FOR THE iHMX 88 OPERATING SYSTEM

The iRMX 88 Operating System offers a subset of UDI adequate to support the
application language run-time libraries. This implementation of UDI is
comprised of the folluwing UDI calls:

DQ$ALLOCATE
DQ$ATTACH
DQ$CLOSE
DCol$CHEATE
DQ$DECODE$EXCEPTION
DQ$DELETE
DQ$DETACH
DQ$EXIT
DQ$FREE
DQGETARGUMENT
DQ$GET,CONNECTION$STATUS

DQGETEXCEPTION$HANDLER
DQGETSIZE
DQ$OPEN
DQ$READ
DQ$RENANE
DQ$SEEK
DQ$SPECIAL
DQ$TRAP$EXCEPTION
DQ$TRUNCATE
DQ$WRITE

The remaining UDI calls are not available in the iRMX 88 Executive. They
are:

DQ,CHANGE$ACCESS
DQ$CHANGE$EXTENSION
D(.JGETSYSTEM$ID

DQGETTIME

DQ$DECODE$TIME
DQ$OVERLAY
DQ$SWITCH$BUFFER

The iRMX 88 subsystems required to support UDI are:

DQ$FILE$INFO
DQ$RESERVE$IO$MEMORY
DQ$TRAP$CC

o The Nucleus, which coordinates all the many concurrent activities in an
executing iRMX S8-based application system

o The Free Space Manager, which maintains a pool of free RAM, allocating
blocks to tasks on request and reclaiming blocks returned by tasks

o The 1/0 System, which provides file management capabilities, allowing
tasks to perform 1/0 to and from secondary storage devices and other
devices such as operator terminals, without disrupting normal
processing

Figure 7-1 shows how the iRMX 8d Executive fits the model of Intel
solutions. Note that levels (3) and (4) are shown as being a single,
integrated level. This is because the iRMX 88 Executive contains UDI calls,
rather than being a separate entity that is called by UDI.

7-1

--1

(1)

(2)

Intel Application Languages

Run-Time Libraries
for Non-Numerics Features

i«MX 8d Real-Time Multitasking Executive
(includes RTI-d~)

(3) and (4)

iAPX 86, 88

(~)

8087
Support
Library

(2)

8087

(5)
I --,

Figure 7-1. Intel's iRMX 88 Solution

Imelementation Consideration!

The UDI specifications (as documented in Appendix A) permit variations in
implementation that depend on the style and capablities of individual
operating systems. The variations from UDr as defined in Appendix A are
identified in the following sections. References to particular procedures ar~

understood to refer to the iRMX 88 implementation of these procedures.

DQ$ATTACH

Attaching a file that is already connected is valid. A connection to the
existing file is made, and all prior connections remain established.

An attempt to attach the file :WORK: returns the exception code E$SUPPORT.

UQ$DECODE$EXCEPTION

The DQ$DECODE$EXCEPTION call returns a string of zero length (one byte
coutaining 0), rather than returning a string with a condition code and
other information.

DQ$DELETE

When this procedure is called, the file associated with the specified path

7-2

name is .!!!~~ for ('eletion. If connections to the specified file exist,
they remain valid until detached by calling either DQ$DETACH or DQ$EXIT.

DQGETARGUNENT

The DQGETARGUMENT call always places a string of zero length (one byte
containing 0) at the location pointed to by the ARGUMENT$P parameter, and it
always returns the value ODH (A0CII carriage return).

D(.JGETTIME

System time is not maintained by the iRMX 88 Real-Time Multitasking
Executive.

DIJ$RENAME

Renaming a file to which a connection has been established is valid. Any
connection to the renamed file remains established.

DQ$TRAP$EXCEPTION

In iRMX 8S-based systems, there is a single, system-wide exception handler;
therefore, when a task calls DQ$TRAP$EXCEPTION, the exception handler
changes for that task and for all other tasks in the system as well.

Each of the RTI-B8 procedures returns an exception code when called. Table
7-1 lists the exception codes that these procedures can return.

Table 7-1. iRMX 88 Exception Codes and Mnemonics

HEX GODE MNEMONIC
-------_._--

0000
0002
0005
0006
0008
oo;:~o

0021
0023
0029
OO;:?B
OO;:?C
OUL~ 4
8004
8020

7-3

E$OK
E$MEM
E$CONTEXT
E$EXIST
ENOTCONFIGURED
E$FEXIST
E$FNEXIST
E$SUPPORT
E$SPACE
E$IO
E$FLUSHING
E$MEDIA
E$PARAM
E$IFDR

For information about the handling of exceptional conditions (those other
than E~OK), and for information about which exceptional conditions are
ret urn e d 0 yea c h 0 f the R T 1-·8 b call s, see the i R M L.§..§.-1! e f e !.~~~l.

The process of configuring an iRMX 88 application (during which the
requirements of the application are defined) occurs at the console of an
Intellec Development System where you carryon a dialogue with a special
software mOdule called the Interactive Configuration Utility (ICU). The ICU
prOduces a SUBMIT file containing the linking commands needed to produce a
working application system. Before suomitting the file, you must make
available all of the task modules, which must have been compiled under
either the COMPACT or LARGE moael of segmentation.

INTEHRUPT HANDLING ._-------
In iHMX 8S-based systems, interrupts are handled in either of two ways,
depending upon how the programmer wanted that particular level of interrupt
to be serviced.

One way is to have an interrupt task wait at a special interrupt exchange.
(An exchange is a place where tasks wait for messages that are sent either
by other tasks or by the Nucleus.) Each time an interrupt arrives at that
level, the Nucleus sends a message to the exchange. The task receives the
message, services the interrupt, and then waits again at the exchange.

The other way is for a special interrupt service routine to receive
immediate control whenever an interrupt arrives. This routine can service
the interrupt itself, or it can invoke an interrupt task that services the
task ana then returns control to the interrupt service routine. The
interrupt service routine finally signals to the Nucleus that it is finishec
and relinquishes control.

For more information aoout interrupt handling in the iRMX 88 environment,
see the iRMX 88 Heference Manual.

7-4

CHAPTER 8
RUN-TIME CONSIDERATIONS FOR NON-INTEL OPERATING SYSTEMS

Even though the target operating system for your application is not one
supplied by Intel, you can still take advantage of Intel's application
languages and application-language run-time support. By implementing your
own Ulliversal Development Interface (UOI), you can translate from the
environment assumed by Intel's application-language run-time support
libraries to the actual environment provided by your operating system.
Figure 8-1 illustrates the role of a user-written UOI in interfacing to a
foreign operating system.

/
1

1

1
(2)

1

1

1
1
\

(1)

(5)

Intel Application Languages--Pascal-86/88, FORTRAN-86/88

1
1 Non-Numeric Run-Time Support System
1

1---
1 Logical Record Interface
1--
1 1
1 Default Logical 1 User-Written Logical
1 Record System 1 Record System
1 1

(optional)
User-Written UDI

(3)

Non-Intel Operating System

(4)

iAPX 86, 88

Figure 8-1. Interfacing to Non-Intel Operating System

UOI PROCEDURES USED BY RUN-TIME LIBRARIES

To implement your UOI, follow the specifications in Appendix A. The run-time
system does not use all of the procedure interfaces defined for UOI in
Appendix A. The UOI procedures actually used by the run-time system include:

8-1

DQ$ALLOCATE
DQ$ATTACH
DQ$CLOSE
DQ$CREATE
DQ$DELETE
DQ$DETACH
DQ$EXIT
DQ$FREE
DQGETARGUMENT
DQGETCONNECTION$STATUS
DQGETEXCEPTION$HANDLER
DQGETSIZE
DQ$OPEN
DQ$READ
DQ$SEEK
DQ$SPECIAL (type 1 only)
DQ$TRAP$EXCEPTION
DQ$TRUNCATE
DQ$WRITE

This list is subject to change; however, LINK86 will flag as UNRESOLVED
EXTERNALS any UDI routines that are used by the run-time system but are not
implemented.

Note that the 8087 Support Library does not depend on operating system
support and therefore can be transported to any operating environment.

IMPLEMENTING A UNIVERSAL DEVELOPMENT INTERFACE

An implementation of UDI can take one of two forms:

1. A library of modules that embody all the interface logic and are linked
to applications programs. This approach may be feasible when the
functions performed by your operating system correspond closely to
those of UDI.

2. A stand-alone program that acts as a sub-operating-system, running
under control of your operating system. This approach gives more
control to your UDI. It may be necessary to use this approach when the
dissimilarity between the interfaces of your operating system and those
of UDI force you to perform operating-system-like functions in your UDI
implementation. You will still need to have a library of interface
routines that transform a UDI procedure call in your application
modules into an interrupt that invokas your sub-operating-system.

Following is a checklist to help you evaluate how much logic you will need
to write in order to implement a UDI for your operating system. Ask yourself
these questions, substituting the name of your operating system in place of
MYOS:

o Command Language

1. Does MYOS make the command tail available for parsing?

8-2

2. Is the syntax of UDI's predefined path names (for example, :CI:,
:CO:, :WORK:) compatible with the command language of MYOS?

3. Does MYOS preprocess the command tail in ways that are
incompatible with UDI? (For example, does it translate lower-case
characters into upper-case even when enclosed in quotation marks?)
If so, are these differences significant in my application?

o File management

1. Is disk addressing in MYOS character-oriented as in UDI, or must I
translate character addresses into some other form (such as sector
addresses)?

2. Does MYOS implement file connection (CREATE, ATTACH, DETACH)
separately from file OPEN and CLOSE operations, or is translation
required?

3. Can attached files be described with a 2-byte value (a UDI
CONNECTION), or is a longer value needed?

4. Does MYOS handle work files as defined for UDI, or do I have to
keep track of work files and delete them on termination?

5. Does MYOS limit the size of disk files to less than the size
permitted by UDI?

6. Does MYOS support a file truncation operation as in DQ$TRUNCATE,
or do I have to simulate truncation?

7. Does MYOS handle console I/O as defined for UDI, with both
line-edited and transparent modes; or do I have to write the logic
to do this?

o Memory management

1. Is memory management in MYOS adequate to support UDI, or do I need
to include a memory manager in my implementation of UDI?

8-3

CHAPTER. 9
CONFIGURING THE RUN-TIME SYSTEM

One of the purposes of the run-time system is to make it possible for you to
eliminate costly features that are unnecessary in your application and to
provide alternative implementations of certain features. Appendix B
discusses alternatives to the Intel-supplied Logical Record System (LRS).
This chapter discusses tailoring of various other features of the run-time
system.

ESTABLISHING AN ALTERNATE EXCEPTION HANDLER

The Intel-supplied run-time system provides a UDI standard exception
handler. This exception handler displays a message and terminates the job
(except for 8087 exceptions, which are discussed later). You can write your
own exception handler to take whatever action is appropriate for your
application. Appendix A presents the UDI standard interface for exception
handlers. The run-time system establishes its exception handler as the
current exception handler in the procedure TQ$ESTART. TQ$ESTART is called
during initialization.

You can establish your exception handler as the current exception handler by
writing your own version of TQ$ESTART and linking it in place of the default
TQ$ESTART. TQ$ESTART is a FAR procedure and has no parameters. Your version
should call the run-time procedure TQSETERH as follows:

TQSETERH: PROCEDURE (handler$ptr) EXTERNAL;
DECLARE handler$ptr POINTER;
END;

CALL TQSETERH (@MYHANDLER);

Link your version of TQ$ESTART before the run-time libraries, so that the
linker uses your version instead of the version in the run-time libraries.

The default exception handler calls the 8087 Support Library procedure
FILTER (using the alias TQ 312) to handle 8087 exceptions. You may wish to
do the same in your exceptTon handler. Refer to the 8087 Support Library
Reference Manual for details about FILTER. The interface to FILTER is
defined as follows:

FILTER: PROCEDURE (errors87) BYTE EXTERNAL;
DECLARE errors87 WORD;
END;

The parameter errors87 is the 8087 status word that is passed to your
exception handler.

The BYTE returned by FILTER indicates whether FILTER was able to handle the
exception. FILTER retries the instruction according to various options of
the proposed IEEE floating-point standard. A value of zero means that FILTER
could not handle the exception; your exception handler should then take
appropriate recovery action. A value of 0FFH means that FILTER has recovered
from the exception; your exception handler may return to your application

9-1

without further action, provided it can restore the state of the iAPX 86,88
Processor.

FILTER pops the parameter errors87 from the 8086 stack before returning.

ELIMINATING PRECONNECTION PARSING

Preconnection parameters are used in the command line that invokes a
FORTRAN-86/88 or Pascal-86/88 program to associate external path names with
internal program objects (the program-parameter-list of the PROGRAM
statement in Pascal-86/88; unit numbers in FORTRAN-86/88). The run-time
system calls its procedure TQ$PARSECL during initialization to parse any
preconnection parameters that may have been entered in the command line.

If your application does not use preconnection, you may wish to eliminate
the preconnection code. You can do so by supplying a version of TQ$PARSECL
such as this:

DECLARE TQ$DEFAULTPL POINTER EXTERNAL;

TQ$PARSECL: PROCEDURE (LIST$ADDR$PTR) PUBLIC;
DECLARE LIST$ADDR$PTR POINTER,
DECLARE LIST$ADDR BASED LIST$ADDR$PTR POINTER;

LIST$ADDR = @TQ$DEFAULT$PL;

END;

TQ$DEFAULTPL is a list, supplied by the run-time system, of the standard
preconnections.

Link your version of TQ$PARSECL before the run-time libraries, so that the
linker uses your version instead of the default version.

CHANGING DEFAULT PRECONNECTIONS

The run-time system provides a default preconnection list with the PUBLIC
name TQ$DEFAULTPL. TQ$DEFAULTPL is a linked list each entry of which has the
following format:

POINTER BYTE BYTE (n)

I I I
I LOCATION OF NEXT ENTRY I STRING LENGTH I STRING •••
I I I

For the last entry in the linked list, the LOCATION OF NEXT ENTRY is zero,
or else the last entry is a null entry indicated by a STRING LENGTH of zero.
Each (non-null) STRING contains one preconnection assignment in the same
form as it would appear in a program invocation line. The strings contained
in TQ$DEFAULTPL are the standard preconnections defined by FORTRAN-86/88 and
Pascal-86/88:

9~

UNIT5=:CI:
UNIT6=:CO:
INPUT=:CI:
OUTPUT=:CO:

ro supply different preconnections, code a data structure that has the
)ublic name TQ$DEFAULTPL and contains the preconnections needed by your
lpplication. If you need no preconnections, code your list with a single
lull entry. Link your version of TQ$DEFAULTPL before the run-time libraries.

9-3

APPENDIX A
UDI SPECIFICATIONS

INTRODUCTION

The Universal Develop~ent Interface (UDI) is an interface to the
operating system that provides the user a standard set of support
procedures. These procedures are supported on all of Intel's 86/88
fami ly operating systems.

The purpose of UDI is two-fold. First, it presents a consistent
model of operating system support by providing a set of procedures
for the programmer to write applications to run on the different
operating systems supporting UDI. Secondly, application programs
become portable in that operating system dependencies have not been
programmed into the application code.

It is the goal of UDI to achieve object level .Q.ortability as software
is moved across the various operating systems using the same OMFs for
a particular CPU. The object level programs normally can be ported
to another operating system by simply linking in the proper UDI
support for that operating system. When software is ported to a new
CPU, source level. portabi 1 it,t with minimal code changes can be due to
a change in op-codes, object module formats, and the technology level
of the CPU.

OVERVIEW

The operating system procedures provided by UDI can be divided into
five general categories. These are utility, memory management, file
management, program control, and exception handling. In this section
the general background and definitions needed in order to discuss the
basic model of each of these areas is given. The dependencies for
each Intel iAPX-86, 88 operating system are discussed in chapters 5,
6, & 7.

Utility. Procedures

Utility procedures provide for date and time stamping, system
identification, and the ability to pass parameters to a program.
Parameters are passed to a program by parsing the command line, that
is, the text line that invokes the program, for example, ----

PASC86 PROG.SRC NOLIST<cr>

The first argument in the text (in this case PASC86) is the name of
the program file to be loaded fJr execution. Some operating systems
accept additional syntax before the program-file argument; for
example, the Debugger in a Series III environment might be invoked as
follows:

DEBUG PASC86 PROG.SRC NOLIST<cr>

A-I

The portion of the command line after any such preliminary syntax
(i.e., beginning with the name of the program file) is called the
command tail. In the preceding DEBUG example, the command tail is
Slmply- ---

PAS C 8 6 PRO G • S R C NO LIS T< c r >

Since the arguments are passed as they are parsed, the program must
save any of them that will be reused later. This general line parsing
capability is available to the programmer for parsing other input.

Memory Management

When a program is loaded, it is allocated a specific amount of memory
for its code and data. The portion of memory not oc~upied by loaded
code and data is available through procedures in this section for
dynamic use either by the program or by the operating system. There
is no guarantee that the unallocated memory is contiguous.

File Management

To the user UDI makes no major distinction between logical secondary
storage files and physical devices other than the naming conventions.
Thus we will use the term file to indicate a logical secondary storage
file or a UDI recognized device.

Those files and their corresponding predefined names a user can assume
to be supported are

Console Input
Console Output
Line Printer
Byte Bucket
Work Files

and optionally

Serial Input
Serial Output

UDI distinguishes between

: C I :
: CO:
: L P :
: B B :
:WORK:

: T I :
:TO:

1. Establishing an association between a program and a file.
2. Operating on the file.

The association between a program and a file is known as a connection.

A connection is established by DQ$ATTACH or DQ$CREATE and severed by
DQ$DETACH. When your program establishes a connection via DQ$ATTACH
or DQ$CREATE, it receives a CONNECTION token of the type WORD from
the operating system. This connection is then used in all further
communications with the operating system that have to do with the
associated file. This distinction allows for the time-consuming
operations involving directory searches to be separated from the
resource operation of memory allocation.

A-2

The procedure DQ$OPEN prepares an already established connection for
subsequent input/output operations. Input and output are performed
by DQ$READ and DQ$WRITE. When reading from the console input device
you may select the mode of input using DQ$SPECIAL. Line edited and a
non-edited transparent mode are supported. DQ$SEEK is used to change
position in the file without transferring data. DQ$CLOSE is used to
close a file when input/output is finished. Closing a file frees
buffer space.

Compared to the processing involved in DQ$ATTACH, DQ$CREATE, and
DQ$DETACH the amount of processing done by DQ$OPEN and DQ$CLOSE is
relatively minimal. Once a connection is established, it may be
opened and closed as often as necessary.

Memory may be reserved for system I/O space by calling
DQ$RESERVE$IO$MEMORY and declaring the maximum number of buffers and
files to be attached at anyone time. Use of this procedure assures
the user that when memory is dynamically allocated sufficient memory
will remain to allocate I/O buffers and thus in turn to open the
desired number of files.

The user may assume that by calling DQ$RESERVE$IO$MEMORY sufficient
I/O space will be reserved to attach at least twelve files and open
at least six files.

No assumption is made as to the type of directory structure. Path
names are character strings (normally with special delimiters)-that
are-used to identify files. The rules for forming path names are
operating system dependent. To ensure that your programs remain
operating system independent,

• Never examine file names.

• Modify file name strings only by calling the UDI procedure
DQ$CHANGE$EXTENSION.

• Use only

1. Path names supplied by the user
2. Path names created by calling DQ$CHANGE$EXTENSION
3. Predefined file names

Anything written to the byte bucket :BB: disappears immediately. A
read from it returns an end of file condition.

The work file :WORK: may be created any number of times (within the
limit on number of connections and opens), each time creating a new
work file. Each work file is temporary; it is automatically deleted
when the file is detached.

UDI-conforming systems- need not include a serial port; but, if they
do, they must recognize the device reserved names representing serial
input :TI: and serial output :TO:.

~3

In order that input and output from devices may be redirected to
secondary storage, input devices are always attached while output
devices are created. Thus, Console Input and Serial Input, if
supported, may only be connected with DQ$ATTACH. Console Output and
Serial Output, if supported, may only be connected with DQ$CREATE.

A DQ$OPEN requesting zero buffers is honored, making interactive
communication feasible.

~rogram .fontr~

DQ$EXIT terminates a program. All files are closed and those
resources allocated by the program are freed.

DQ$OVERLAY provides the ability to invoke overlays that have been
pre-structured by the system linker. Only one layer of overlays is
allowed and the overlay procedure may be called only from the root of
the program.

Exception Handli.!!.9.

UDI standardizes the handling of exceptional conditions by system
software. Applications may follow the same standard for error
conditions that they detect. The standard includes

• A format for encoding exceptional conditions

• A classification of condition codes

• An interface that permits you to establish a procedure for
handling certain exceptional conditions

• An interface that permits any executing software to locate the
current exception handler

• An interface for reporting exception conditions to the current
exception handler task

Detected exceptions are classified as either environmental conditions
or programmer errors.

Environment conditions are generally caused by exceptional conditions
outside the control of a program; for example, "fi le not found" or
"insufficient memory". Every UDI procedure (except' DQ$EXIT) has an
argument, called excep$~, that points to a WORD in which the operating
system returns an exception code. If the returned exception code is
nonzero, it identifies the environmental exception. This type of
exception does not pass control to the current exception handler,
thus after-everyUDI call the program should check the exc~ption word
to determine whether an environmental exceptional conditi In prevented
successful completion of the procedure.

A-4

The list of possible exceptional conditions that follows this section
is not exhaustive~ It is intentionally restricted to those specific
errors that a programmer may need to test against. The operating
system is free to return additional exceptional conditions. A
programmer can detect those as only being non-zero.

Programmer errors are typically caused by coding errors (for example,
IIbad parameter ll

), but IIdivide-by-zero", lIoverflow ll
, "range check ll

,

IIspecial bounds check", and errors detected by the Numerics Data
Coprocessor are also referred to as programmer errnrs.

When a programmable error occurs, the operating system passes control
to the current exception handler. Each operating system supplies a
default error handler. The action of this handler is to display an
exception message and terminate the program. However, you may
establish your own procedure to handle programmer errors by using
DQ$TRAP$EXCEPTIONo

Your application programs may also report error conditions to the
current error handler. The UDI procedure DQGETEXCEPTION$HANDLER is
used to fetch the address of the current handler so that your programs
can formulate an indirect call.

When a console operator types control-C, a special type of exception
occurs. The default action is to cancel the current interactive
program.

Exceptional conditions may originate in any part of the system,
including the operating system, the UDI procedures, the run-time
support system, or the application. In addition, certain processor
generated interrupts are fielded by the operating system and reported
to the exception handler. Codes for some of the possible conditions
are defined by UDI. These should be used wherever applicable. Other
operating system codes may exist, but they are not part of UDI.

A·5

PROGRAMMER ERRORS

Symbolic Name Hex Value

E$ZERO$DIVIDE 8000

E$OVERFLOW 8001

E$ARRAY$BOUNDS 8006

E$NDP 8007

E$SPECIAL$BOUNDS$CHECK 8017

(Run-Time Support) 9100 to 95FF

(Other)

Me ani n.9.

Integer divide by zero.

Integer overflow.

Bounds check violation.

Exception detected by the
Numerics Data Co-Processor.

Case range, procedure.
Stack overflow.

(Reserved)

Other exception codes are
system dependent and not
defined by UDI.

ENVIRONMENTAL CONDITIONS

Symbolic Name

E$OK

E$MEM

E$FEXIST

E$FNEXIST

E$SUPPORT

E$FACCESS

E$SHARE

E$SPACE

E$STRING$BUF

(Run-Time Support)

(Other)

HEX VALUE

0

2

20

21

23

26

28

29

81

1100 to 15FF

A-6

MEANING

The operation completed
normally.

Insufficient memory for
requested operation.

The named file exists.

The file does not exist.

Device or system does not
support requested operation.

Access to a file is denied.

File may not be shared.

Insufficient space on direct
access device.

The string is too long.

(Reserved)

Other exception codes are
system dependent and not
defined by UDI.

An exception handler must be a FAR procedure that conforms to the
following interface specification:

exception$handler:
PROCEDURE (excep$code, param$num, reserved, NDP$status)

PUBLIC;
DECLARE excep$code WORD,

param$num WORD,
reserved WORD,
NDP$status WORD;

END;

excep$code is a code that indicates what exception has occurred.

param$num is the number of the erroneous parameter in the called
procedure (1 for the first parameter, 2 for the second, etc.). If
the condition was not caused by an erroneous parameter, param$num is
zero.

!.~rved is reserved for future use.

If excep$code is E$NDP, NDP$stat~s contains the value of the numerics
data processor status word. The numerics data co-processor exception
will have been cleared when the handler gets control.

An exception handler may exit either by jumping to a label in the
main module or by executing a long RETURN. If the exception handler
RETURNs, it must preserve the registers and flags of the interrupted
procedure and thus should be coded in assembly language.

DATA TYPES

The following data types are used in the specification:

BYTE

BOOLEAN

STRING

WORD

DWORD

CONNECTION

POINTER

SELECTOR

An eight-bit item.

A BYTE taking on the values TRUE (OFFH) and FALSE
(0 H) •

A sequence of bytes, the first of which contains the
length (in bytes) of the remaining portion of the
string. A length of zero indicates a null string.

A two-BYTE item (16 bits).

A four-BYTE item (32 bits).

A two-byte identifier of an attachment between a
program and a file.

The address of a storage location. Two bytes under
the SMALL model of segmentation; four bytes in other
models. A four-byte pointer consists of a selector
and a two-byte offset from the selector.

The base portion of a four-byte POINTER.

A-7

GENERAL ASSUMPTIONS

Multitask~

The UDI libraries are fully compatible with a multitasking
environment. However, UDI does not define procedures to create,
delete, or synchronize tasks.

Coprocessor Support

The use of coprocessors such as numerics or I/O coprocessors are not
excluded from being used in a UDI application. If the operating
system allows for concurrency of multiple programs then the operating
system must preserve and restore the state of the coprocessors as
appropriate.

Format of Primitives

In the following specifications, the formal definition of the inter
face to each procedure is presented in PL/M. For the parameters
printed in lower case, you may substitute your own identifiers.

The parameter excep$~ is not described with each procedure since it
is common to all procedures (except DQ$EXIT). It points to a WORD
item in your program in which the operating system places the
exception code.

If you are programming .in assembly language, refer to the example
calling sequences at the end of each specification for the order in
which to push parameters onto the stack. The examples shown are
directly applicable to programs (or subsystems) compiled according to
the COMPACT and LARGE models of segmentation. For the SMALL model,
do not push the segment register before pushing the register
containing the parameter.

A~

UTILITY AND COMMAND PARSING SERVICE PROCEDURES

DQGETTIME

Description

DQGETTIME returns the current date and time in character format.
This procedure should be replaced by the more general procedure
DQ$DECODE$TIME that returns both the binary DWORD system time and
date and the decoded ASCII strings.

Declaration Syntax

DQGETTIME:
PROCEDURE (dt$p, excep$p) EXTERNAL;
DECLARE dt$p POINTER,

excep$p POINTER;
END;

Output Parameters

~ is a pointer to a structure that you declare in your
program. This structure has the form

DECLARE DT STRUCTURE
(DATE (8) BYTE,

TIME (8) BYTE);

DATE has the form MM/DD/YY for month, day, and year. TIME has
the form HH:MM:SS for hours, minutes, and seconds. The value for
hours ranges from 0 through 23.

Standard Exception Codes

E$OK

Comments

There is no requirement that any given operating system update either
the time or the date value.

Example Calling Seguertce

CALL DQGETTIME (@DT, @ERR); PLM

A-9

DQ$DECODE$TIME

Description

DQ$DECODE$TIME decodes the operating system dependent time and date
DWORD into ASCII date and time strings. It may also be used to
return the current date and time in either binary DWORD format or as
a decoded ASCII string.

Declaration Syntax

DQ$DECODE$TIME:
PROCEDURE (dt$P, excep$p) EXTERNAL;
DECLARE dt$p POINTER,

excep$p POINTER;
END;

Input Parameters

~ is a pointer to a user declared structure of the following
form:

DELCARE DT STRUCTURE
(SYSTEM$TIME DWORD,

DATE(8) BYTE,
TIME(8) BYTE);

system$time is an operating system dependent formatted DWORD
containing the time and date. If system$time is zero then the
system clock is first read to obtain the current date and time.
If system$time is non-zero, it is simply decoded into ASCII date
and time strings.

Output Parameters

system$time will contain the binary format of the current date
and time if selected by the input value zero. The specified
format is in seconds beginning with January 1, 1978.

DATE has the form MM/DD/YY for month, day, and year. TIME has
the form HH:MM:SS for hours, mi·nutes, and seconds. The value for
hours is in the range from 0 to 23.

Standard Exception Codes

EOK, ESUPPORT

Comments

There is no requirement that a system maintain date and time.

Example Calling Sequence

CALL DQ$DECODE$TIME (dt$p, excep$p); PLM

A-lO

DQGETSYSTEM$ID

Description

DQGETSYSTEM$IO returns a string that identifies the operating
system.

Declaration Syntax

DQGETSYSTEM$ID:
PROCEDURE (id$p, excep$p) EXTERNAL;
DECLARE id$p POINTER,

excep$p POINTER;
END;

Output Parameters

..:!Ji12. must point to a buffer of at least 21 bytes in length that
you define in your program. The length of the remainder of the
string (in bytes) is contained in the first byte of the output
area. The text returned is the name of the operating system, for
example

••• 0 r •••
SERIES-III

iRMX 86

Standard Exception Codes

E$OK

Comments

Any program that examines the returned string is not operating-system
independent.

Example Calling Sequence

CALL DQGETSYSTEM$ID (@ID, @ERR);

A-II

DQGETARGUMENT

Description

DQGETARGUMENT parses either text in the tail of a command line or
(with the help of DQ$SWITCH$BUFFER) text you have read into your
program. This function is ~rimarily used for parsing arguments to a
user's program.

Declaration Syntax

DQGETARGUMENT:
PROCEDURE (argument$p, excep$p) BYTE EXTERNAL;
DECLARE argument$p POINTER,

excep$p POINTER;
END;

Output Parameters

argument$p points to an area that you declare in your program to
receive an argument string from the command tail. This area must
be at least 81 bytes long. The actual length of the output string
(in bytes) is stored in the first byte of this area.

This is a typed procedure (a function). The value of the
procedure is a BYTE containing the delimiter that terminates the
argument. A delimiter is returned only if the exception code is
zero. Delimiters include

, () = # ! %' 'V + - ; & I [] < > and DEL

as well as any characters with hexadecimal values between 0 and
20H (space) or between 7FFFH and OFFFFH. The operating system
may screen certain control characters such as

; & I [] < > and DEL

that are likely to have special meaning to the operating system
and therefore may never appear as outputs of DQGETARGUMENT when
parsing a command tail.

The following rules apply to the arguments and delimiters
returned by DQGETARGUMENT:

• Multiple adjacent blanks separating two arguments are treated
as one blank. One or more blanks adjacent to any other
delimiter are ignored. A tab is treated as a blank and
returned as a blank.

A-12

• lowercase characters are converted to uppercase unless part of
a quoted string.

• If two delimiters are adjacent, the argument returned has
length zero.

• Strings enclosed within a matching pair of single or double
quotes are considered literals. The enclosing quotes are not
returned as part of the argument. Quotes can be included
inside a quoted string by using quotes of the other type or by
doubling the quote character.

• If an argument contains more than 80 characters the first 80
are returned with exception E$STRING$BUF. The user can obtain
the rest of the argument or the next 80 characters by calling
OQGETARGUMENT again.

• The command tail is exhausted when the delimiter is CR.

Standard Exception Codes

EOK, ESTRING$BUF

Comments

The operating system's command line interpreter (ClI) may pre-edit
the command line (removing comments and continuation characters)
before your program is executed. The command line interpreters of
some operating systems may make additional modifications to the
command 1 i ne.

Example Calling Sequences

OElIM = OQGETARGUMENT (@ARG, @ERR); PlM

lEA AX,ARG ASM
PUSH OS 1
PUSH AX 2
lEA AX,ERR
PUSH OS 3
PUSH AX ; 4
CAll OQGETARGUMENT
~10V OElIM,Al

A·13

Example Usage

The following examples illustrate the arguments and delimiters
returned by successive calls to DQGETARGUMENT:

•

•

•

PLM.86 LINKER.PLM PRINT(:LP:) NOLIST

ARGUMENT
LENGTH VALUE

8 PLM86.86
10 LINKER.PLM

5 PRINT
4 : L P:
6 NOLIST

PLM86.86 MODULE.SRC P R I N T (: Fl : T HIS IS. IT)
TITLE('MY MODULE')

ARGUMENT
LENGTH VALUE

8 PLM86.86
10 MODULE.SRC

5 PRINT
13 :Fl :THISIS. IT

8 OPTIMIZE
1 0
5 TITLE
9 MY MODULE
0

LINK86.86 :F4:X.OBJ,LLIB(MODL),SYSTEM.LIB
(:F3:FUNNY.LIB(MODl)) PUBLICS MAP

LENGTH

9
9
4
4
o

10
13

4
o
7
3

ARGUMENT
VALUE

LINK86.86
:F4:X.OBJ
LLIB
MODL

SYSTEM.LIB
:F3:FUNNY.LIB
MODI

PUBLICS
r~AP

A-14

DELI~lITER

(space)
(space)

(
)

CR

OPTIMIZE(O)&

DELIMITER

(space)
(space)

(
)
(
)
(
)

CR

&

DELI~lITER

(space)

,

~
~f

(space)
CR

------------------------------~

DQ$SWITCH$BUFFER

Description

DQ$SWITCH$BUFFER is used with DQGETARGUMENT to parse syntax
contained within your program; for example, Intel's translators call
this procedure along with DQGETARl.iUMENT to process control 1 ines
imbedded in source files as if they were invocation commands.

Declaration Syntax

DQ$SWITCH$BUFFER:
PROCEDURE (buffer$p, excep$p) WORD EXTERNAL;
DECLARE buffer$p POINTER,

excep$p POINTER;
END;

Input Parameters

p-uffer$p points to the beginning of the text to be parsed. It
would normally be set to the first character after the '$' of a
control line.

Output Parameters

This is a typed procedure (function). The value returned by the
function is a WORD, containing the offset (from the start of the
buffer) of the first character past the latest delimiter returned
by DQGETARGUMENT.

Standard Exception Codes

E$OK

Comments

This procedure should not be called until the entire command tail of
the invocation line has been parsed; there is no way to switch back
to the original command tail, since only the operating system knows
where its buffer is.

DQ$SWITCH$BUFFER actually has two uses:

1. To start parsing at a new location
2. To return the current position in the text

The first time you call this procedure, it switches to the indicated
location and returns a value of zero. If, after parsing the text with
DQGETARGUMENT, you wish to find the current location in the buffer
being parsed, call DQ$SWITCH$BUFFER again. For this second
invocation, the value returned is the offset from the start of the
buffer to the first character past the last delimiter returned by
DQGETARGUMENT.

If you then wish to continue scanning with DQGETARGUMENT, you must
reset the buffer to be scanned to the location at which you desire to
resume parsing.

A-15

Text parsed after using DQ$SWITCH$BUFFER is not pre-edited by the
command line interpreter as is the case when reading from the console
in the line edit mode.

Exam~Calling Seguence~

ARG COUNT

LEA
PUSH
PUSH
LEA
PUSH
PUSH
CALL
MOV

= DQ$SWITCH$BUFFER (@COMMAND_BUF, @ERR);

AX.COMMAND BUF;
OS - 1
AX 2
AX. ERR
DS 3
AX ; 4
DQSWITCHBUFFER
ARG_COUNT,AX

A-16

PLM

ASM

MEMORY MANAGEMENT PROCEDURES

DQ$ALLOCATE

Description

DQ$ALLOCATE requests that a specific amount of contiguous free memory
be added to that used by the calling program.

Declaration Syntax

DQ$ALLOCATE:
PROCEDURE (size, excep$p) SELECTOR EXTERNAL;
DECLARE size WORD,

excep$p POINTER;
END;

Input Parameters

The number of bytes of memory being requested is specified by
size. A size of zero means a request for 64K bytes.

Output Parameters,

This is a typed procedure (function). It returns a SELECTOR the
contents of which depend on whether the requested memory is
available:

• If enough memory is available, the selector value returned
represents the start of the acquired memory segment.

• If the request fails, the procedure returns a SELECTOR of
OFFFFH, and the exception code is E$MEM.

Standard Exception Codes

EOK, EMEM

Example Calling Sequences

ARRAY BASE = DQ$ALLOCATE (128, @ERR); PLM

MOV AX,80H ASM
PUSH AX 1
LEA AX,ERR
PUSH DS 2
PUSH AX 3
CALL DQAILLOCATE
MOV ARRAY_BASE,AX

A-17

DQ$FREE

Description

DQ$FREE returns to the memory manager a segment of memory acquired
earlier by DQ$ALLOCATE.

Declaration Syntax

DQ$FREE:
PROCEDURE (segment, excep$p) EXTERNAL;
DECLARE segment SELECTOR,

excep$p POINTER;
END;

Input Parameters

segment is a SELECTOR representing a memory segment to be freed.

Output Parameters

None

Standard Exception Codes

E$OK

Comments

You cannot return a part of a segment allocated by DQ$ALLOCATE; you
can only return the entire segment.

Example Calling Seguences

CAL L DQ$FREE (ARRAY_BASE, @ERR); PLM

PUSH ARRAY_BASE; 1 ASM
LEA AX,ERR
PUSH OS 2
PUSH AX 3
CALL DQFREE

A-I8

DQGETSIZE

Description

DQGETSIZE returns the size of an already allocated memory segment.

Declaration S~~

DQGETSIZE:
PROCEDURE (segment, excep$p) WORD EXTERNAL;
DECLARE segbase SELECTOR,

excep$p POINTER;
END;

Input Parameters

segbase is a SELECTOR for a memory segment.

Output Parameters

This is a typed procedure (function) that returns a WORD
containing the size (in bytes) of the indicated segment. A size
of zero means 64K bytes.

Standard Exc~.£.1i2.!!...-£.odei

E$OK

Comments

Relocatable PL/M-86 programs that are compi led under the SMALL model
nf segmentation and have expanding data segments can determine the
size of their data segments with a statement of the form

DQ$SIZE = DQ$GET$SIZE (STACKBASE, @EXCEP);

Example Calling Sequence

ARRAY_SIZE = DQGETSIZE (ARRAY BASE, @ERR);

A-19

DQ$RESERVE$IO$MEMORY

Descr i pt i o,n

DQ$RESERVE$IO$MEMORY informs the operating system of the maximum
number of files that will be attached and the maximum number of
buffers that will be requested during the execution of a particular
program. It requests that the system reserve enough memory to assure
that the creates, attaches, and opens will be successful. If this
function is not called, this specification does not require that
implementations reserve any specific amount of memory for attaches
and opens (although individual implementations may choose to do so).
In other words, the default value for the two maximums specified in
this function is zero. Further, the user may assume that at least
twelve attaches and six opens will be supported by calling
DQ$RESERVE$IOSMEMORY, although some operating systems may allow for
more.

Declaration Synta~

DQ$RESERVE$IO$MEMORY:
PROCEDURE (number$files, number$buffers, excep$p) EXTERNAL;
DECLARE number$files WORD,

number$buffers WORD,
excep$p POINTER;

END;

Input Parameters

number$files is the maximum number of files that will be attached
at anyone time. If this value is exceeded, the application
takes the responsibility for ensuring that the additional memory
is preconfigured or available for allocation when the calls to
DQ$ATTACH and DQ$CREATE are made.

number$buffers is the maximum number of buffers that will be
required for any concurrent set of open files. More precisely,
it is a bound on the sum of the values specified in the num$buf
parameters in any set of calls to DQ$OPEN for which corresponding
calls to DQ$CLOSE have not been made. If this limit is exceeded,
the application takes the responsibility for ensuring that the
additional memory is available for allocation when the calls to
DQ$OPEN are made.

Standard Exception Codes

EOK, EMEM

A-20

Comments

The purpose of thils function is to allow an application to foreshadow
calls to DQ$ATTACH and DQ$OPEN that it will make. By warning the
operating system about these calls, the system can reserve memory
ahead of time so that intervening calls to DQ$ALLOCATE do not prevent
the attaches and opens from being successful. Successive calls to
this function are valid. They simply change the current number of
buffers requested for the corresponding program. A request to
increase the number of buffers can fail due to lack of memory,
especially if calls to DQ$ALLOCATE have been made since the previous
call to DQ$RESERVE$IO$MEMORY. By the same token, the original call
to DQ$RESERVE$IO$MEMORY should occur before the first DQ$ALLOCATE to
maximize the chance that it will be successful.

The size and number of buffers reserved by DQ$RESERVE$IO$MEMORY is
operating system dependent and in some cases may be configurable.
Each implementation of UDI should use a buffer size that maximizes
the chance that a set of opens to commonly-used devices will succeed.
The implementation may also include recovery mechanisms such as
drawing upon other available memory or reducing the number of buffers
used for a particular open (at the expense of subsequent performance).

Example Calling Seguenc~

DQ$RESERVE$IO$MEMORY (NUMBER-FILES, NUMBER-BUFFERS, @ ERR); PLM

A-21

FILE CONNECTION PROCEDURES

DQ$ATTACH

Description

DQ$ATTACH creates a connection to an existing file.

Declaration Syntax

DQ$ATTACH:
PROCEDURE (path$p, excep$p) CONNECTION EXTERNAL;
DECLARE path$p POINTER,

excep$p POINTER;
END;

Input Parameters

Rath$p points to a STRING that contains the pathname of the
file. If the named file does not exist, the operation fails.

Output Parameters

This is a typed procedure (function). If the procedure is
successful, it returns a connection of type CONNECTION to the
named file.

Standard Exc~~~odes

EOK, EFNEXIST, EMEM, ESUPPORT

Comments

Attaching an output device such as Console Output will return
E$SUPPORT. The result of attaching :WORK: is Operating System
dependent. The result of attaching a file that is already connected
is Operating System dependent. Attempting to attach console output
or line printer returns E$SUPPORT. E$MEM is returned if insufficient
memory exists to attach the file.

Example Calling Sequence

INPUT CONN = DQ$ATTACH (@FILE_NAME, @ERR); PLM

A-22

DQ$CREATE

Description

DQ$CREATE creates a connection to a new file.

Declaration Syntax

DQ$CREATE:
PROCEDURE (path$p, excep$p) CONNECTION EXTERNAL;
DECLARE path$p POINTER,

excep$p POINTER;
END;

Input Parameters

path$p points to a STRING containing a pathname. If a file of
the same name already exists and is not connected, either it is
truncated (deleting any data therein) or it is deleted and a new
file is created with the same name. This action is performed
before completion of the procedure. If the file exists but is
connected and open, an error condition results.

Output Parameters

This is a typed procedure (function). If the procedure is
successful, it returns a connection of type CONNECTION to the new
file. An attempt to create console input returns an E$SUPPORT
except i on code.,

Standard Exception Codes

EOK, EMEM, E$SPACE, E$SUPPORT

Comments

Creating an input device such as Console Input will return an
E$SUPPORT error.

Example Calling Sequence

OUTPUT CONN = OQ$CREATE (@NEW_FILE, @ERR);

A-23

DQ$DETACH

Description

DQ$DETACH breaks the connections established by DQ$ATTACH or
DQ$CREATE.

Declaration Syntax

DQ$DETACH:
PROCEDURE (conn, excep$p) EXTERNAL;
DECLARE conn CONNECTION,

excep$p POINTER;
END;

Input Parameters

conn identifies the connection. If the connection is open, it is
clos"ed before being detached.

Output Parameters

None

Standard Exception Codes

E$OK

Comments

Example Calling Seguence~

CALL DQ$DETACH (INPUT_CONN, @ERR); PLM

PUSH
LEA
PUSH
PUSH
CALL

INPUT CONN; 1
AX,ERR
OS 2
AX 3
DQOETACH

ASM

A-24

DQ$DELETE

Description

DQ$DELETE eliminates an existing file.

Declaration Syntax

DQ$DELETE:
PROCEDURE (path$p, excep$p) EXTERNAL;
DECLARE path$p POINTER,

excep$p POINTER;
END;

Input Parameters

path$p points to a STRING containing the name of the file to be
deleted.

Output Parameter~

None

Standard Exception Codes

EOK, EFNEXIST, E$FACCESS

Comments

The results of trying to delete an attached file are operating system
dependent.

Example Calling Sequences

CALL DQ$DELETE (@FILE_NAME, @ERR); PLM

LEA
PUSH
PUSH
LEA
PUSH
PUSH
CALL

AX,FILE NAME;
OS - 1
AX 2
AX,ERR
OS 3
AX 4
DQ$DELETE

ASM

A-25

DQGETCONNECTION$STATUS

Description

DQGETCONNECTION$STATUS returns information associated with a file
connection.

Declaration Syntax

DQGETCONNECTION$STATUS:
PROCEDURE (conn, info$p, excep$p) EXTERNAL;
DECLARE conn CONNECTION,

info$p POINTER,
excep$p POINTER;

END;

Input Parameters

conn identifies a connection established earlier by DQ$ATTACH or
DQ$CREATE.

Output Parameters

info$p points to a structure of the following form that you
declare to receive the connection data:

DECLARE INFO STRUCTURE
(OPEN BOOLEAN,

ACCESS BYTE,
SEEK BYTE,
FILE$PTR DWORD);

These fields are interpreted as follows:

OPEN:
TRUE if connection is open, otherwise FALSE.

ACCESS:
Access privileges of the connection. The right is granted
if the corresponding bit is set.

BIT ACCESS BYTE VALUE ----
0 delete 1
1 read 2
2 write 4
3 update 8 (read and write)

4-7 reserved (must be 0)

A-26

SEEK:
Types of seek supported.

BIT ACCESS BYTE VALUE

0 seek forward 1
1 seek backward 2

2-7 reserved (must be 0)

FILE$PTR:
Forms a 4-byte unsigned integer (OWORO) that indicates the
current position in the file. The position is expressed as
the number of the current byte from the beginning of the
file with byte 0 being the first byte. This field is
undefined if the file is not open or if backward seek is not
supported by the device (for example, the printer cannot be
rewound).

Standard Exception Codes

E$OK

Comments

Example Calling Sequences

CALL OQGETCONNECTION$STATUS (INPUT_CONN, @FILE_STATUS, @ERR); PLM

PUSH
LEA
PUSH
PUSH
LEA
PUSH
PUSH
CALL

INPUT CONN; 1
AX,FILE STATUS
OS 2
AX 3
AX,ERR
OS 4
AX 5
OQGETCONNECTIONSTATUS

A-27

ASM

DQ$FILE$INFO

Description

DQ$FILE$INFO returns the file information normally associated with
user security and accounting.

Declaration Syntax

DQ$FILE$INFO:
PROCEDURE (conn, mode, file$info$p excep$p) EXTERNAL;
DE~LARE conn CONNECTION,

END;

Input Parameters

mode BYTE,
file$info$p POINTER,
excep$p POINTER;

conn identifies the connection of a currently attached file.

mode indicates whether the file owner is to be identified.

BYTE VALUE !:LSAGE

0 owner name or identification is not to be
returned.

1 owner name or identification is to be
returned.

Output Parameters

file$info$p points to the structure that you declare to receive
the file information;

DECLARE FILE$INFO STRUCTURE
(OWNER(15) STRING,
LENGTHOFFILE DWORD,
TYPE BYTE,
OWNER$ACCESS BYTE,
WORLD$ACCESS BYTE,
CREATE$TIME DWORD,
LASTMDDTIME DWORD,
RESERVED(20) BYTE);

The~e fields are interpreted as follows:

OWNER:
A string that identifies the system name of the owner of the
f i 1 e •

A-28

TYPE:
Indicates the usage of the file.

.YA.LUE

o
1
2

255

FILE TYPE

data file
directory file
reserved

OWNER$ACCESS, WORLD$ACCESS:
Describes the access rights of the file owner and the rest
of the world.

BIT ACCESS

o delete
1 read (data), display (directory)
2 write (data), addentry (directory)
3 update (read and write)

4-7 reserved

CREATE$TIME, LAST$MOD$TIME:
Indicates the date and time of creation and last modification
for a file. If the file has been created but not modified,
the LASTMODTIME should be the same as the CREATE$TIME. A
modification consists of a write or truncate on the file.
The contents of the time DWORD is the number of seconds
since January 1, 1"978. This may be decoded into an ASCII
string with DQ$DECODE$TIME.

Standard Exception Code~

EOK, ESUPPORT

Example Calling Sequence

CALL DQ$FILE$INFO (conn, mode, file$info$p, excep$p);

A-29

FILE NAMING PROCEDURES

Description

DQ$RENAME changes the name of a file.

Declaration ~nta~

DQ$RENAME:

DQ$RENAME

PROCEDURE (oldp, newp, excep$p) EXTERNAL;
DECLARE old$p POINTER,

new$p POINTER,
excep$p POINTER;

END;

Input Parameters

old$p points to a STRING containing the pathname of the file to
be renamed.

new$p points to a STRING giving a new pathname for the file. The
exception code E$FEXIST is returned if the new name already
exists.

Output Param~ter~

None

Standard Exception Codes

EOK, EFEXIST, E$FNEXIST

Comments

Both the old name and the new must refer to files on the same volume.

The results of trying to rename an attached file are operating system
dependent.

Example Calling Sequence

CALL DQ$RENAME (@FILE_NAME, @NEW_FILE, @ERR); PLM

A-30

DQ$CHANGE$EXTENSION

Description

DQ$CHANGE$EXTENSION changes or adds the extension at the end of a
file name; for example, :F4:FILE.SRC can be changed to :F4:FILE.OBJ
or to :F4:FILE.LST.

Declaration Syntax

DQ$CHANGE$EXTENSION:
PROCEDURE (path$p,
DECLARE path$p

extension$p
excep$p

END;

Input Parameters

extension$p, excep$p) EXTERNAL;
POINTER,
POINTER,
POINTER;

~ath$p points to a STRING containing the pathname to be changed.

extension$~ points to a three character extension that is to be
added to the pathname. The three character extension may not
contain delimiters recognized by DQGETARGUMENT but may contain
trai ling blanks.

Output Parameter~

None

Standard Exception Codes

EOK, ESTRING$BUF

Comments

If the first character addressed by extension$p is a space, any prior
extension is deleted (including the preceding period).

Example Calling Seguence

CALL DQ$CHANGE$EXTENSION (@FILE NAME, @EXTENSN, @ERR);

A-31

DQ$CHANGE$ACCESS

Descripti~!!.

DQ$CHANGE$ACCESS changes the access rights of the owner of the file or
the world.

Declaration Syntax

DQ$CHANGE$ACCESS:
PROCEDURE (path$p, class, access, excep$p) EXTERNAL;
DECLARE path$p POINTER,

class BYTE,
access BYTE,
excep$p POINTER;

END;

Input Parameters

path$p. points to a STRING containing the pathname of the file
whose access rights is to be changed.

class specifies the class of users whose access rights are to be
changed.

Value
o
1

2-255

Access rights of
owner of file
world
reserved

access specifies the type of access to be granted to the class of
file users specified. If all bits are set to 0 the specified
users access to the file will be denied. If any bits are set to
1 the access is granted as indicated:

Bit Access
o delete (data), delete (directory)
1 read (data), display (directory)
2 write (data), add entry (directory)
3 update (read and writt)

Output Parameters

None

Standard Exception Codes

EOK, EFNEXIST, E$FACCESS, E$SUPPORT

Comments

The privilege to use this procedure is assured to the owner of the
file. The granting of this privilege to other users is operating
system dependent. If the privilege is not granted, the error
E$FACCESS is returned. E$FNEXIST indicates the file does not exist;
E$SUPPORT indicates an attempt to change the access rights of a non
disk file. The access rights of the file will be changed immediately
but will not affect ot~er connections to the file until they are
detached.

A-32

FILE USAGE PROCEDURES

DQ$OPEN

Description

DQ$OPEN opens a previously established connection. The open process
involves allocating buffers, checking access privileges, setting the
file pointer to the start of the file and, in general, preparing the
connection for read or write commands.

Declaration S~ta~

DQ$OPEN:
PROCEDURE (conn,
DECLARE conn

END;

Input Parameters

ac c e s s
n um$b uf
excep$p

access II num$buf,
CONNECTION,
BYTE,
BYTE,
POINTER;

excep$p) EXTERNAL;

conn represents a connection established earlier via DQ$ATTACH or
DQ'fCREATE.

access specifies the type of access desired:

VALUE ---
1
2
3

INTERPRETATION

read access only
write access only
update (both read and write)

num$buf specifies an optimal number of buffers, and should have
one of the values 0, 1, or 2~ Zero means that no buffering
should occur; each DQ$READ or DQ$WRITE should result in a
physical I/O operation (as is necessary for interactive devices).
If you normally execute a seek before doing a read or write (as
for random disk file processing), num$buf should be 1. In all
other cases it should be 2 for double buffering (as for sequential
file processing).

Interactive programs should open console input, console output,
serial input, and serial output with num$buf set to zero to
eliminate buffering. Such a request is honored by the operating
system so that interactive communication is feasible. For all
other files~ num$buf is used for optimization, but the operating
system may provide-Qther buffering according to its buffering
algorithms.

Output Parameters

None

A-33

Standard Execution Codes

EOK, EMEM, E$FACCESS, E$SHARE

Comments

The use of OQ$OPEN must not violate physical limitations; for example,
the line printer must not be opened for read or update. The byte
bucket may be opened with any type of access. The act of opening a
file does not change file contents.

An open with access = 1 may allow file sharing for readers only.
Successful opens with access = 2 or 3 guarantee exclusive access to
the file until it is closed. Console input, console output, and byte
bucket are exceptions, since any of these may be attached and opened
as many times as needed up to the limit as set by
OQ$RESERVE$IO$MEMORY. Support for multiple connections to line
printer is operating-system dependent.

A successful open guarantees that subsequent OQ$REAOs, OQ$WRITEs or
both (as implied by access) will be valid.

Example Calli!!LSequences

CALL OQ$OPEN (INPUT_.CONN, 1, 2, @ERR); PLM

PUSH INPUT CONN; 1 ASM
MOV AL,lH- read only
PUSH AX 2
MOV AL,2H double buffering
PUSH AX 3
LEA AX, ERR
PUSH OS 4
PUSH AX 5
CALL OQOPEN

A-34

DQ$SEEK

Description

DQ$SEEK changes the file position pointer.

Declaration Syntax

DQ$SEEK: PROCEDURE
(conn, mode, offset,
DECLARE conn

END;

Input Parameters

mode
offset
excep$p

excep$p) EXTERNAL;
CONNECTION,
BYTE,
DWORD"
POINTER;

conn represents an open connection.

mode indicates the type of seek required.

VALUE INTERPRETATION

1 Move file pointer back by offset.
2 Move file pointer t()offset.
3 Move file pointer f~rward by offset.
4 Move file pointer to end of file minus offset.

offset forms a four-byte (DWORD) unsigned integer that represents
either a position in the file or the number of bytes to move the
file position pointer, dependin9 on the setting of mode.

Output ~arameters

None

Standard Exception Code~

EOK, ESUPPORT

Comments

If you seek past end of file, a subsequent DQ$WRITE causes the file
to be extended. A subsequent DQ$READ returns an end-of-file
condition.

A DQ$SEEK to a position before the beginning of a file is the same as
a DQ$SEEK to the beginning of the file. A seek to 0 goes to the
beginning of the file.

A-35

Example Callin9 Sequences

CALL OQ$SEEK (INPUT_CONN, 3 t 1442040, @ERR); PLM

PUSH INPUT_CONN; 1 ASM
MOV AL,3H seek forward
PUSH AX 2
MOV AX,16H 22
PUSH AX 3
MOV AX,OF8H 248
PUSH AX 4
LEA AX,ERR
PUSH OS 5
PUSH AX 6
CALL OQSEEK

In this example the pointer is moved forward by 22 times 2**16
plus 248 bytes, which evaluates to 1,442,040 bytes.

A-36

DQ$READ

Description

DQ$READ fetches data from an open file.

Declaration Syntax

DQ$READ:
PROCE DURE (conn,
DECLARE conn

buf$p
count
excep$p

END;

Input Parameter's

buf$p, count,
CONNECTION,
POINTER,
WORD,
POINTER;

£onn represents an open connection.

excep$p) WORD EXTERNAL;

buff$p points to an area to be used for input.

count specifies the desired number of bytes to be read.

Output Parameters

buff$p points to a buffer area, at least count bytes long, that
you allocate to receive the data read.

This is a typed procedure (function). It returns as type WORD
the number of bytes actually transferred. This number equals
count unless an error occurs or end of file is encountered. If
the procedure returns a value less than requested and an exception
code of E$OK, end of file was encountered.

Standard Exception Codes

EOK, ESUPPORT

Comments

The requested number' of bytes is read from the file at the current
file pointer location. The file pointer is updated by the value
returned. When reading from the console input device, DQ$READ
supports a line-edited and transparent read. The default mode is
line-edited and can be changed by calling DQ$SPECIAL. In the 1ine
edited mode the carriage return character CR is always converted to
CRLF, a carriage return/line feed sequence of characters. The user
should supply a large enough buffer to hold the input line and the
CRLF. In the case of single character reads an additional read will
be needed to clear the LF.

Example Calling Sequence

BYTES READ = DQ$READ (INPUT_CONN, @IN BUFFER, BUFFER_COUNT, @ERR);

A-37

DQ$SPECIAL

Description

DQ$SPECIAL specifies whether subsequent reads from the console input
are to be in the line-edited or transparent mode.

Declaration Synta~

DQ$SPECIAL:
PROCEDURE (type,
DECLARE type

conn$p
excep$p

END;

Input Parameters

conn$p, excep$p) EXTERNAL;
BYTE,
POINTER,
POINTER;

£on~ points to a connection previously established by a
DQ ATTACH of console input.

!l££ is a BYTE whose value indicates the mode of input.

Value
1

In1ut Mode
Al characters except control-C and control-D are
placed uninterpreted in the user's buffer and are not
echoed to the screen. This is referred to as
transparent mode.

2 Characters are placed in a system buffer and are
interpreted for editing commands. Upon a carriage
return, the system buffer is passed to the user's
buffer. This is referred to as line-edited mode.

3 Similar to (1) except only those characters already in
the system input buffer are returned. This is referred
to as polling mode.

The default type from the console device when a program starts
executing is 2 (line editing).

Output Parameter~

None

Standard Exception Codes

EOK, ESUPPORT

Comments

Line editing of input means that the console operator has the opportu
nity to correct typing errors. Data from the console is not actually
returned by a DQ$READ until the operator types CR. Editing characters
(such as the backspace character) are removed from the input. The
characters used for editing are operating-system dependent. The final
CR is always converted to the CRLF.

A-38

Interactive programs often need to obtain characters from the console
as they are typed. This is made possible by using DQ$SPECIAL to
switch to transparent mode. In transparent mode, all characters
typed except control-C and control-D are placed in the buffer. The
DQ$READ function returns when count characters have been typed. The
system does not echo the characters· read in transparent mode.

When console input is assigned to a console, the four characters,
control-C, control-D, ESCAPE, and control-Z, are likely to have
special meaning to the operating system and may never appear in the
input stream.

Regardless of whether transparent or line-edited mode is in effect,
the abort character (control-C) and the debugger character (control-D)
have the usual effect.

Another type (4) may be supported by some operating systems. This is
not part of the UDI standard, and programs that use this type are
operating-system dependent. It is defined here to ensure consistency
of use. If ~ is 4 and the E$DK condition code is returned, then
conn$p is assumed to point to a used-declared structure of the form

DECLARE CRT$ID BASED CONN$P STRUCTURE
(CRTIDNUM WORD,

PATHNAME$LEN BYTE,
PATHNAME (45) BYTE);

An exception code of E$OK with CRT$ID$NUM=O indicates an undefined
CRT. PATHNAME$LEN=O indicates there is no system CRT configuration
file PATHNAME defined. CRTIDNUM=1 is used to indicate the Series-IV
CRT.

This mechanism is used by screen-oriented programs to identify the
console CRT and/or the configuration file containing CRT character
istics.

When DQ$SPECIAL is used to switch from line-oriented mode (t~ 2) to
one of the transparent modes (~ 1 or 3), the contents of-the line
currently being line-edited are not carried over to the new mode of
input. When DQ$SPECIAL is used to switch from one of the transparent
modes to line-edited mode, any type-ahead input will be available in
the new mode. The contents of the line currently being line-edited
will remain unchanged when switching from mode 2 to mode 2.

Example Calling Sequences

CALL DQ$SPECIAL (1, @CI_CONN, @ERR);

MOV
PUSH
LEA
PUSH
PUSH
LEA
PUSH
PUSH
CALL

AL,1H ; transparent input
AX ; 1
AX,CI CONN
DS - 2
AX 3
AX,ERR
DS 4
AX ; 5
DQSPECIAL

A-39

P Lr~

ASM

DQ$WRITE

Description

DQ$WRITE transfers data from main memory to a file.

Declaration Syntax

DQ$WRITE:
PROCEDURE (conn,
DECLARE conn

buf$p
count
excep$p

END;

Input Parameters

buf$p, count,
CONNECTION,
POINTER,
WORD,
POINTER;

excep$p) EXTERNAL;

£onn represents an open connection to a file.

buf$~ points to the start of the data to be written.

count is the number of bytes to be written.

Output Parameters

None

Standard E~ception Codes

EOK, ESUPPORT, E$SPACE

Comments

The error E$SPACE is returned when there is not enough space on the
secondary storage device to extend file resulting from the write.
Writing begins at the current position indicated by the file pointer,
which is zero if no prior reads, seeks, or writes to this file have
occurred.

Writing beyond end of file causes the file to be extended.

Example Calling Sequence

CALL DQ$WRITE (OUTPUT_CONN, @OUT BUFFER, 256, @ERR);

A-40

DQ$TRUNCATE

Description

DQ$TRUNCATE frees previously occupied space from the current file
pointer position to end of file.

Declaration Syntax

DQ$TRUNCATE:
PROCEDURE (conn, excep$p) EXTERNAL;
DECLARE conn CONNECTION,

excep$p POINTER;
END;

Input Parameters

conn represents a connection to a file that is open for write or
update.

Output Parameters

None

Standard Exception Codes

EOK, ESUPPORT

Comments

This procedure frees all previously allocated secondary storage space
from the location indicated by the file pointer to the end of the
file. (If the pointer is at or past end of file, truncation has no
effect.) The effects of truncating console input, console output,
line printer, and work files are operating system dependent.

Example Calling Sequences

CALL DQ$TRUNCATE (EDIT_CONN, @ERR); PLM

PUSH
LEA
PUSH
PUSH
CALL

EDIT CONN; 1
AX,ERR
OS 2
AX ; 3
IDQTRUN CATE

ASM

A-41

DQ$CLOSE

Description

DQ$CLOSE waits for completion of I/O operations taking place on the
file (if any), ensures that output buffers are empty, and frees
buffers.

Declaration Syntax

DQ$CLOSE:
PROCEDURE (conn, excep$p) EXTERNAL;
DECLARE conn CONNECTION,

excep$p POINTER;
END;

Input Parameters

£onn represents an open connection.

Output Parameters

None

Standard Exception Codes

E$OK

Comments

Once closed, a connection may be either re-opened or detached.

Example Calling Sequences

CALL DQ$CLOSE (OUTPUT_CONN, @ERR);

PUSH OUTPUT CONN; 1
LEA AX, ERR-
PUSH OS 2
PUSH AX 3
CALL DQCLOSE

A-42

PROGRAM CONTROL PROCEDURES

DQ$EXIT

Description

DQ$EXIT terminates a program. All files are closed and all resources
are freed.

Declaration Syntax

DQ$EXIT:
PROCEDURE (completion$code) EXTERNAL;
DECLARE completion$code WORD;
END;

Input Parameters

completion$code indicates the nature of the termination. It must
contain one of the following values:

VALUE --
o
1
2
3
4

Output Parameters

INTERPRETATION -----------
Termination was normal.
Warning messages were issued.
Errors were detected.
Fatal errors were detected.
The program was aborted.

This procedure has no exception pointer as an argument; a DQ$EXIT
call can never generate an exception.

Standard Exception Codes

None

Comments

The support of the £ompletion$cod~ is operating system dependent.

Example Calling Sequence

CALL DQ$EXIT (3);

A-43

DQ$OVERLAY

Description

DQ$OVERLAY causes loading of an overlay.

Declaration Syntax

DQ$OVERLAY:
PROCEDURE (name$p, excep$p) EXTERNAL;
DECLARE name$p POINTER,

excep$p POINTER;
END;

Input Parameters

name$p points to a STRING containing the name of the overlay to
be loaded. This name must be the same as used in the LINK86
OVERLAY control to name the overlay.

Output Parameters

None

Standard Exception Codes

EOK, ESUPPORT

Comments

Only one level of over"lays is allowed; therefore, this procedure may
be called only from the root (non-overlaid) phase.

Example Calling Sequences

CALL DQ$OVERLAY (@OVLY_NAME, @ERR); PLM

LEA
PUSH
PUSH
LEA
PUSH
PUSH
CALL

AX,OVLY NAME;
DS 1
AX 2
AX,ERR
OS 3
AX 4
DQOVERLAY

ASM

A-44

EXCEPTION HANDLING PROCEDURES

DQ$TRAP$EXCEPTION

Des c r i.£.!iQ!!.

DQ$TRAP$EXCEPTION substitutes an alternate programmer exception
handler for the default programmer exception handler provided by the
operating system.

Declaration Syntax

DQ$TRAP$EXCEPTION:
PROCEDURE (address$p, excep$p) EXTERNAL;
DECLARE address$p POINTER,

excep$p POINTER;
END;

Input Parameters

address$p is the address of a four-byte area containing a long
pointer to the entry point of the alternate exception handler. A
long pointer has the form:

DECLARE LONG$P STRUCTURE
(LONG$OFFSET WORD,

Output Parameters

None

Standard Exception Codes

E$OK

Comments

LONG$BASE SELECTOR);

A PL/M procedure compiled under the SMALL model of segmentation can
neither serve as an exception handler nor form a long pointer to an
exception handler in another module.

Example Calling Sequence

CALL DQ$TRAP$EXCEPTION (@HANDLER_ADDRESS, @ERR);

A-45

DQGETEXCEPTION$HANDLER

Descriptio~

DQGETEXCEPTION$HANDLER fetches the address of the current
programmer exception handler.

Declaration Syntax

DQGETEXCEPTION$HANDLER:
PROCEDURE (handler$p, excep$p) EXTERNAL;
DECLARE handler$p POINTER,

excep$p POINTER;
END;

Output Parameters

handler$~ points to a four-byte area declared in your program
that the system fills with a long pointer to the current
avoidable-exception handler. This is the address specified in
the last call to DQ$TRAP$EXCEPTION, if it has been called;
otherwise the value returned is the address of the system default
handler.

Standard Exception Codes

ESOK

Comments

The output of this procedure is always a four-byte pointer, even if
called from a program compiled under the SMALL model of segmentation.

This pointer has two primary uses:

• It is used to formulate an indirect call to the current error
handler. You should always call DQGETEXCEPTION$HANDLER before
calling the exception handler to ensure that the address used in
the call refers to the most recently established handler.

• It can be saved to later restore the current exception handler
after another handler has been temporarily substituted.

A-46

Example Calling Sequences

Call DQGETEXCEPTIONSHANDLER (@HANDLER_ADDRESS, @ERR); PLM

LEA
PUSH
PUSH
LEA
PUSH
PUSH
CALL

Example Usage

SLARGE

.

AX,HANDLER ADDRESS;
CIS r
AX 2
AX,ERR
[IS 3
AX ; 4
OQGETEXCEPTIONHANDLER

DECLARE HANDLER$AODRESS POINTER,
ERRSCODE WORD;

DQSGET$EXCEPTION$HANDLER:
PROCEDURE (ADDRESS$P, EXCEP$P) EXTERNAL;
DECLARE ADDRESS$P POINTER,

EXCEP$P POINTER;
END;

.
CALL DQGETEXCEPTION$HANDLER (@HANDLERSADDRESS, @ERRSCODE);

CA L L HAN D L E R$ A D [) RES S (15 2 ~H, 0, 0, 0); / * In d ire c t call * /

A-47

ASM

DQ$DECODE$EXCEPTION

Descripti~!!

DQ$DECODE$EXCEPTION supplies a message that describes the meaning of
an exception code.

Declaration Syntax

DQ$DECODE$EXCEPTION:
PROCEDURE (exception$code, message$p, excep$p) EXTERNAL;
DECLARE exception$code WORD,

message$p POINTER,
excep$p POINTER;

END;

Input Parameters

exception$cod~ contains the exception code to be translat~d.

message$~ points to an area used for output.

Output Parameters

message$p is a pointer to an 8I-byte area you declare to receive
the exception message. The first byte of the message holds the
actual length of the string. The string contains the error code
and whatever additional information the operating syst~~ can
provide. The message will not terminate with a CRLF.

Standard Exception Codes

E$OK

A-48

DQ$TRAP$CC

Description

DQ$TRAP$CC establishes an alternate procedure to receive control when
the operator types control-C at the physical console.

Declaration Synta~

DQ$TRAP$CC:
PROCEDURE (cc$procedure$p, excep$p) EXTERNAL;
DECLARE cc$procedure$p POINTER,

excep$p POINTER;
END;

Input Parameters

cc$routine$e is the entry point address of your control-C handler.

Output Parameters

None

Standard Exception Codes

E$OK

Comments -----
The default control-C handler terminates the program. By supplying
your own control-C handler you can take other action.

When the control-C handler receives control, the registers and flags
are those of the program that set the control-C handler. The
control-C handler must preserve all flags and registers, and execute
a long return at completion.

Note
This condit"ion is not supportable in all multi-tasking
environments and is likely to be changed in the future.
In order to safely avoid the multi-tasking dilemma of
receiving an asynchronous contro1-C when the registers
are not those of the event that is meant to be inter
rupted the user's handler should set a flag which the
main procedure can poll at a convenient place.

The control-C character that activates the handler must come from
the user's physical console even in the case where the :CI: file has
been redirected. If a DQ$READ of console input is outstanding when
control-C is typed and you have supplied a control-C procedure, after
the control-C procedure has been executed the DQ$READ procedure
returns a value of zero and a result code of ESOK.

Example Calling Sequence

CALL DQ$TRAP$CC (@CC_HANDLER, @ERR); PLM

A-49

MINIMAL PRIMITIVES NEEDED FOR APPLICATION RUNTIME SUPPORT

The iAPX 86, 88 high level language run-time support interface is a
subset of UDI. The following procedures may be supported in a
minimal fashion by returning E$SUPPORT as an exception code. This
exception code is used to indicate to any call to the procedure that
its service was not performed.

DQ$CHANGE$EXTENSION
DQGETSYSTEM$ID
DQ$OVERLAY
DQ$TRAP$CC
DQ$RENAME
DQ$RESERVE$IO$MEMORY
DQ$SWITCH$BUFFER
DQ$FILE$INFO
DQ$DECODE$TIME

Although the above procedures are not presently used by the high
level language run-time support package, there is no guarantee that
they will not be used at some point in the future.

The following pracedures that are called by the high-level language
run-time support may be supported with the indicated minimal
functionality:

DQ$DECODE$EXCEPTION may return a string containing the ASCII
error code without the corresponding message.

DQGETARGUMENT may return a string of zero length at the
location pointed to be ARGUMENT$P, and a function value of an
ASCII carriage return (ODH).

DQ$SPECIAL need only support the l~ parameter with value 2.
Any other value may return the exception code E$SUPPORT. (The
terminal driver need only support the line-editing mode.)

A-50

86/88 FAMILY AND OPERATING SYSTEM DEPENDENCIES

Device Names

Con so 1 e Input
Console Output
Line Printer
Word Directory Prefix
Seri a 1 Input
Serial Output
Byte Bucket

: C I :
: CO:
: L P :
:WORK:
: T I :
:TO:
:BB:

Interrupt and Excep~ion Mapping

o
4
5

16
17

E$ZERO$DIVIDE
E$OVERFLOW
E$ARRAY$BOUNDS
E$NDP
E$SP.ECIAL$BOUNDS$CHECK

integer divide by zero
integer overflow
bounds check violation
8087 numerics data processor
software interrupt used for
runtime special bounds
checking

Calling Conventions

UDI conforms to PL/M usage. Only registers CS, OS, SS, IP, SP, and BP
are preserved by the UDI system calls. Other registers and flags will
be undefined on return from a UDI call.

Numerics Data Coprocessor (8087) Support Initial State (optional)

If the operating system allows more than one 8087 program or task to
execute concurrently, then the operating system is responsible for
saving and restoring the 8087 state as required so that programs
cannot interfere with each other. The operating system must also
associate 8087 execution interrupts with the correct program.

Attributes of the 8087 processor must also be maintained for every
program that uses it. These attributes and their initial values are

PRECISION
ROUNDING
CLOSURE
ERROR MASKS
INTERRUPT MASK

=
=
=
=
=

64 b'its
round to nearest or even
projective affinity
all 8087 errors unmasked
8087 error interrupt unmasked

A program may change these values; the system will maintain a separate
value of the 8087 Control Word for each program.

A-51

APPENDIX 8
WRITING YOUR OWN LOGICAL RECORD SYSTEM

WHY USE AN ALTERNATE LRS?

The Logical Record System (LRS) supplied by Intel with the application
languages FORTRAN-86/88 and Pascal-86/88 provides I/O, memory-management,
and exception-handling support by calling on operating system functions
through the Universal Development Interface (UDI). If, however, the target
environment for your FORTRAN-86/88 or Pascal-86/88 application does not
include an operating system, you need to write an LRS that provides I/O,
memory-management, and exception-handling support for your application.

If your target environment includes an operating system that does not
support UDI, refer to Chapter 8 and Appendix A, which provide information on
how to implement UDI.

WHAT IS INVOLVED IN WRITING AN LRS?

Figure 8-1 illustrates how a user-written LRS fits into the run-time support
model when there is no operating system.

/
I
I
I
I
I
I

(2)
I
I
I
I
I
I
I
\

(1)

(5)

Intel Application Languages--pascal-86, FORTRAN-86

Non-Mathematical Run-Time Support System

high-level I/O
and memory management

Logical Record Interface

User-Written Logical Record System

physical I/O, exception handling,
and memory management

iAPX 86, 88

sets, strings,
integer
arithmetic

Figure 8-1. Run-Time Support Without an Operating System

B-1

A standard interface, called the Logical Record Interface (LRI), has been
defined for the LRS. The LRI consists of the following components:

o Control procedures

1. TQ$INITIALIZE
2. TQGETPRECON
3. TQ$EXI'f

o Input-output support

1. Data structures

File-Device Descriptors
Device Driver Tables

2. Connection procedures

TQ$FILE$DESCRIPTOR
TQ$DEVICE

3. Device driver procedures

Open
Close
Read
Write
Seek
Skip
End record
Rewind
Backspace
End file

o Exception handler procedures

1. TQSETERH
2. TQGETERH

o Memory management procedures

1. TQ$ALLOCATE
2. TQ$FREE
3. TQGETSMALL$HEAP

You construct your LRS by supplying substitutes for some or all of the above
data structures and procedures in accordance with the LRI specifications.
Most applications do not require all of these interfaces, and neither
FORTHAN-86/88 nor pascal-86/88 require all of them. Read the following
s~ecifications for more details on how the LRS works and when each of these
interfaces is required.

LOGICAL RECORD INTERFACE SPECIFICATIONS

The following sections define a standard interface to the Logical Record

B-2

System.

Reentrancy

If your application consists of several concurrent tasks, you may wish to
link all the tasks to a single copy of the run-time libraries. If you do so
and if any of your application tasks that use the LRS may be arbitrarily
interrupted to execute other LRS tasks, the LRS procedures must be
reentrant. Except where noted in the following specifications, the
~rocedures of the default LRS are reentrant. To make your LRS procedures
reentrant, too, you must adhere to these guidelines:

o Local variables must be kept on the stack. (In PL/M-86, this is
accomplished by the REENTRANT attribute of a procedure declaration.)

o No LRS procedure may assign a value to a fixed memory location.

o The code must not modify itself. (This requirement prohibits overlays.)

o Sub-procedures called by LRS procedures must also be reentrant.

The LRS procedure interfaces are designed to help make these guidelines
attainable.

Exception Handling

Many of the LRS procedures return codes that identify exceptional conditions
that arise from executing those procedures. The run-time system handles
exceptions according to the UDI standard. (Refer to the UDI Specifications
in Appendix A.) The default LRS contains an exception handler that displays
a message at the system console and terminates the job. You may, however,
substitute your own UDI standard exception handler by supplying a TQ$ESTART
procedure. Refer to the TQ$INITIALIZE procedure for details of how to do
this •.

The exception codes listed in table 8-1 are recognized by the run-time
system and are used to control its execution. They do not necessarily result
in calling the current exception handler. You must return these codes from
your LRS to signal the indicated conditions.

B-3

Table 8-1. Required Exception Codes

SYtvlBOLIC NAME HEX VALUE MEANING
===

E$OK 0 The operation completed normally.

E$PHECON 1501 Invalid syntax has been detected in
command line preconnection parameters.

E$NWRITE 1503 The file is not open for writing.

E$NREAD 1504 The file is not open for read ing •

E$EOF l5FF A read was attempted but the file was
positioned at end of file.

E$EOR l5FE A read was attempted past the end of
a record.

E$PA'l'HEQ l5FD The name of the file already open was
not equal to the name specified.

E$lVIE!Vl 0002 Insufficient memory for requested
operation.

E$FEXIST 0020 The file, which should not have
existed, does in fact exist.

E$FNEXIST 0021 The file, which should have existed,
does not in fact exist.

Your LRS procedures may return other codes to signal other exceptional
conditions. The range of codes from l520H through l5EFH is reserved for your
use. When the run-time system encounters any of these codes (except E$OK) or
any other codes it does not recognize, it calls the current exception
handler.

Specification Format

The specifications of each of the LRS procedures are divided into identical
sections. The DESCRIPTION section gives a brief summary of the function
performed by the routine and indicates under what conditions you might wish
to provide your own version of the routine.

The PROCEDURE INTERFACE section shows the general form of the PL/M-86 syntax
you should use to declare the procedure if you write your own version in
PL/M-86. Identifiers printed in lower case are merely descriptive; you may
use other identifiers in your own procedure declarations. PL/M-86 is used as
the standard for definition since all LRS procedures conform to PL/M-86
usage in calling sequence and register usage.

B-4

If a procedure returns an exception code, the REQUIRED EXCEPTION CODES
section defines which codes have special meaning to the run-time system.
Your LRS procedures may return other codes to denote other exceptional
conditions. Codes that the run-time system does not recognize are passed to
the current exception handler.

The run-time library RTNULL.LIB contains minimal versions of the LRS
procedures. The sections entitled RTNULL VERSION define the actions taken by
the procedures in RTNULL.LIB. You may find that some of the RTNULL versions
suit the needs of your application~ You can use the procedures in RTNULL.LIB
if you are supplying an entire LRS and therefore not linking to the
libraries that contain the default LRS. If you link RTNULL.LIB after the
libraries that contain your LRS, any LRI procedures that you do not supply
are linked from RTNULL.LIB.

Following the specifications you will find an example implementation of a
set of specialized device drivers.

Data Types

The following data types are used in the specifications:

BYTE

WORD

POINTER

SELECTOR

Data Structures

An eight-bit item.

A two-BYTE item.

Equivalent to PL/M-86 type POINTER (four bytes).

Equivalent to PL/M-86 type SELECTOR. A 16-bit
iAPX 86,88 paragraph number (the base portion
of a four-byte POINTER).

Two types of data structures are central to the operation of an LRS:

1. File descriptors
2. File/device driver tables

FILE DESCRIPTORS

A block of memory, called a file descriptor, is needed to store attributes
of an active file. Memory space for file descriptors is supplied by the LRI
procedure TQ$FILE$DESCRIPTOR. Each file descriptor is 48 bytes long and
begins at a paragraph boundary (i.e., at an address that is evenly divisible
by 16). The first (lowest addressed)' 16 bytes of a file descriptor are used
by device drivers. If you are supplying all of the device driver procedures
for a file (i.e. you are not using any of the default driver procedures),
your drivers may use this area for information specific to the file (for
example, for storing the open attributes of the file). The remaining 32
bytes are reserved for higher levels of the run-time system.

8-5

FILE/DEVICE DRIVER TABLES

Routines that actually transfer data and communicate with external files or
devices are called file/device drivers or just device drivers. Because of
the unique requirements of different devices and file types, there is a need
for different device drivers. The default logical record system supplies two
sets of drivers: one for formatted files and one for unformatted files. Each
set contains ten procedures to perform ten file actions: open, close, read,
write, seek, skip to the end of a record, mark the end of a record, rewind,
backspace, and mark the end of a file.

You can replace or supplement the default device drivers by writing your own
driver routines in accord with the LRI procedure specifications that follow.
The mechanism for connecting your device drivers to the run-time system
consists of device driver tables used together with the LRI procedure
TQ$DEVICE. A device driver table is an array of long pointers to the entry
~oints of the ten device driver procedures. When you supply a set of device
driver routines, you must also supply a device driver table containing the
addresses of those routines. The run-time system uses these addresses to
form indirect calls to your driver routines. In addition, you must supply
your own TQ$DEVICE routine to inform the run-time system which device driver
table to use for any given file. The device driver table is illustrated in
figure 8-2.

OPEN (low addresses)

CLOSE

READ

WRITE

SEEK *

SKIP

END RECORD

REWIND

BACKSPACE *

END FILE * (high addresses)

* Not used for Pascal-86/88 support.

Figure B-2. Table of Addresses for File/Device Drivers

Note that the order of entries in the table is important. The function of a
driver routine determine~ its position in the table. For example, when the
run-time system needs to perform a file open, it always calls the first
routine in the table. Since the run-time system forms indirect calls using
the. address in the dev ice d river tables, you may assign any names to your

B-6

driver routines.

The following example shows one way of setting up a device driver table in
PL/M-86.

DECLARE VT DRIVER TABLE (10) POINTER;

VT DRIVER TABLE (0) = @VT OPEN;
VT DRIVER-TABLE (1) @VT-CLOSE;
VT-DRIVER-TABLE (2) = @VT READ;
VT-DRIVER-TABLE (3) = @VT-WRI'TE;
VT DRIVER TABLE (4) = @VT SEEK;
VT DRIVER TABLE (5) = @VT-SKIP;
VT - DRIVER-'I'ABLE (6) @VT- RECORD; = END
vrr DRIVER TABLE (7) = @VT-REWIND;
VT DRIVER TABLE (8) = @VT-BACKSPACE;
VT - DRIVER-TABLE (9) @VT= END FILE; = -

B-7

connection Procedures

The following procedures are used to establish connections at run time
between the logical record system and your device driver procedures.

TQ$FILE$DESCRIPTOR

DESCRIPTION

This routine supplies space for file descriptors. It is called by the
run-time system before each file open if the run-time system does not
already have a free file descriptor. The default version of
TQ$F'ILE$DESCHIPTOR calls the UDI procedure DQ$ALLOCATE. You should provide
your own version of TQ$FILE$DESCRIPTOR if one of the following conditions
prevail:

1. Your system does not include DQ$ALLOCATE.

2. Your application requires only a fixed number of file descriptors,
thereby enabling you to use a simpler allocation algorithm.

PROCEDURE INTERFACE

TQ$FILE$DESCRIPTOR:
PROCEDURE (fdselp) WORD PUBLIC REENTRANT;
DECLARE fdselp POINTER;
DECLARE fd BASED fdselp SELECTOR;
DECLARE err$code WORD;
;
RETURN err$code;
END;

INPUT PARAMETERS

fdselp contains the address of the output item fd.

OUTPUT

fd identifies a 48-byte area that the run-time system may use for a file
descriptor.

This is a typed procedure (function). The value of the procedure is a
WORD (here called err$code) that indicates the result of calling this
procedure.

REQUIRED EXCEPTION CODES

B-8

E$OK

COMMENTS

The run-time system does not return space when a file descriptor is freed by
a file close. However, when a file is to be opened and a free file
descriptor exists, the run-time system re-uses that space and does not call
TQ$FILE$DESCRIPTOR.

RTNULL VERSION

The version of TQ$FILE$DESCRIPTOR in RTNULL.LIB provides six file
descriptors in a statically allocated memory space.

TQ$DEVICE

DESCRIPTION

This procedure determines which set of device drivers is to be used for a
given file. The procedure is called prior to every file open. If you wish to
provide your own device drivers you must supply a TQ$DEVICE procedure, since
it is the sole means of enabling the run-time system to call the drivers in
your LRS.

PROCEDURE INTERFACE

TQ$DEVICE:
PROCEDURE (name$p, name$length, driver$table$addr$p)

WORD PUBLIC REENTRANT;
DECLARE name$p POINTER,

name$length BYTE,
driver$table$addr$p POINTER;

DECLARE driver$table$addr
BASED driver$table$addr$p POINTER;

DECLARE err$code WORD;
;
RETURN err$code;
END;

INPUT PARAMETERS

name$p points to the path name of the file that is to be opened, and
name$length contains its length. If you want your device drivers to
operate on some, but not all, files, your TQ$DEVICE must examine the
path name to determine which device drivers to use. For example, if your
application requires a special set of device drivers to handle a
videotape machine, you may decide to select them whenever the logical
device :VT: is used as the pathname. Take care not to create any
unnecessary system dependencies by the way your TQ$DEVICE examines path
names. Do not change the path name; the run-time system assumes that the
contents of the area addressed by name$p are not changed.

driver$table$addr$p points to an area that contains the address
(driver$table$addr) of one of the default device-driver tables. Do not
change this area if you wish to use the default table.

OUTPUT

If you do wish to substitute one of your device-driver tables for the
table determined by the run-time system, overwrite driver$table$addr
with the address of your table.

B-IO

This is a typed procedure (function). The value of the procedure is a
WORD (here called err$code) that indicates the result of calling this
procedure.

REQUIRED EXCEPTION CODES

E$OK

COMMENTS

RTNULL VERSION

There is no version of TQ$DEVICE in RTNULL.LIB. If your application does no
I/O, the compilers do not generate calls to TQ$DEVICE. If you are supplying
your own device drivers, you must code your own version of TQ$DEVICE.

RTNULL.LIB does, however, contain null versions of the default driver tables
and driver routines. These cause the processor to halt, if they are ever
called. Therefore, if you do not want to use any of the default drivers,
your TQ$DEVICE routine must always overwrite the default driver table
address with the address of one of your driver tables.

B-ll

Control Procedures

The procedures in this section control execution of the LRS.

TQ$INITIALIZE

DESCRIP'rION

This procedure sets up an exception handler, processes file preconnection
~arameters that may be entered in the program invocation line, and performs
any other initialization of the LRS. TQ$INITIALIZE is called at the
beginning of program execution.

PROCEDURE INTERFACE

TQ$INITIALIZE:
PROCEDURE (list$addr$p) WORD PUBLIC REENTRANT;
DECLARE list$addr$p POINTER;
DECLARE list$addr BASED list$addr$p WORD;
DECLARE err$code WORD;

RETURN err$code;
END;

INPUT PARAMETERS

list$addr$p contains the address of the output item list$addr.

OUTPUT

TQ$INITIALIZE must fill list$addr with the address of the list that it
creates of preconnection parameters. This value is passed later to
TQGETPRECON. (If you code your TQ$INITIALIZE to be reentrant, the
preconnection list can not be stored in memory local to TQ$INITIALIZE.)
If your application does not use preconnection, list$addr may be filled
with a zero pointer ~r a pointer to a dummy list entry (five bytes of
zeros) •

This is a typed procedure (function). The value of the procedure is a
WORD (here called err$code) that indicates the result of calling this
procedure.

REQUIRED EXCEPTION CODES

E$OK

B-12

COMIV1EN'rS

The default version of TQ$INITIALIZE does nothing but make the following
calls to subsidiary LRS procedures and check their returned condition codes.
All of these functions should return E$OK if they complete successfully.

ECODE = TQ$ESTART; /* Set up exception handler. */
ECODE = TQ$PARSECL(list$addr$p); /* parse command line. */
ECODE = TQ$INITIO; /* Initialize I/O system. */
ECODE = TQ$INITMM; /* Initialize memory manager. */

Associated with the procedure TQ$PARSECL is the data structure TQ$DEFAULTPL.
You may either selectively override any of these subsidiary features in the
LRS, or override the entire TQ$INITIALIZE procedure.

The default TQ$ESTART establishes the LRS's exception handler as the current
exception handler by calling the UDI procedure DQ$TRAP$EXCEPTION. The LRS's
exce~tion handler displays a message on the console and causes the job to be
aborted. You need to supply your own version of TQ$ESTART if you wish to use
another exception handler.

The default TQ$PARSECL parses any preconnection parameters that may have
been entered in the program invocation command. Preconnection parameters
associate external path names with internal program objects (the
~ro9ram-parameter-list of the PROGRAM statement in pascal-86/88; unit
numbers in FORTRAN-86/88). TQ$PARSECL fills list$addr with a POINTER to the
list that it creates of preconnection parameters. This pointer is passed
later to TQGETPRECON. If your application does not use dynamic
preconnection, you may wish to provide a version of TQ$PARSECL that merely
fills list$addr with a POINTER to TQ$DEFAULTPL.

The data structure TQ$DEFAULTPL contains the default proconnections defined
by FORTRAN-86/88 and pascal-86/88. The defaults are:

o For FORTRAN-86/88 •••

1. UN I T5 = : C I:
2. UNIT6 = :Co:

o For Pascal-86/88 •••

1. INPUT = : C I:
2. OUTPUT = :CO:

You may supply your own version of TQ$DEFAULTPL if you wish to change the
default preconnections. Refer to the discussion of TQGETPRECON for the
format of a preconnection list.

The default TQ$INITIO does nothing. You may supply your own version of
TQ$INITIO to perform any initialization required by your device drivers.

The default TQ$INITMM does nothing. You may supply your own version of
TQ$INITMM to perform any initialization required by your memory management
routines TQ$ALLOCATE, TQ$FREE, and TQGETSMALL$HEAP.

If you supply your own version of TQ$INITIALIZE, you must perform your own

B-13

preconnection parsing and supply your own preconnection lookup routine
(TQGETPRECON) and your own exception handling routines (TQSETERH,
TQGETERH, and an exception handler). Supplying your own version of
TQ$INITIALIZE overrides the default initialization required by these default
LRS procedures.

RTNULL VERSION

The null version of TQ$INITIALIZE sets up the default preconnections, but
does no preconnection parsing and does not establish a default exception
handler. It does initialize the null version of TQ$FILE$DESCRIPTOR. (Refer
to the discussion of TQ$FILE$DESCRIPTOR.)

The null version of TQ$ESTART does nothing (i.e., if an exception handler is
already established, it remains so).

The null version of TQ$PARSECL returns a pointer to TQ$DEFAULTPL.

TIle null version of TQ$DEFAULTPL is an empty list (no preconnections).

B-14

TQ$G E'r$ PRECON

DESCRIPTION

This procedure is called before every file open to look up any preconnection
parameter that may have been specified for the file.

PROCEDURE INTERFACE

TQGETPRECON:
PROCEDURE (unit, l$filename$p, l$filename$length,

p$filename$addr$p, precon$root) BYTE
PUBLIC REENTRANT;

DECLARE unit
l$filename$p
I $ f i 1.~naIl1e$1 eng th
p$filename$addr$p
precon$root

DECLARE p$filenarne$addr

BYTE,
POINTER,
By'rE,
POINTER,
SELECTOR;

BASED p$filename$addr$p POINTER;
DECLARE p$filename$length BYTE;
;
RETURN p$filename$length;
END;

INPUT PARAMETERS

The input parametc~rs depend on whether the calling program is written in
FORTRAN-86/88 or pascal-86/88:

o If l$filename$length is zero, then the calling program is written
in It'ORTRAN-86/88 and unit contains the unit number of the file.

o Otherwise, the calling program is written in pascal-86/88;
l$filename$p points to a string containing the logical file name
(Pascal-86/88 file variable) and l$filename$length contains the
(non-zero) length of the string.

p$filenaIoe$addr$p points to the output item p$filename$addr.

precon$root indicates the beginning of the preconnection list to be used
for converting the unit number or logical file name to a physical file
name (actual path name). (This will help you if you design your LRS
procedures to be reentrant, since the preconnection list will not be in
memory that is local to this procedure.) Refer to the TQ$INITIALIZE
procedure for information on how the preconnection list is built.

OUTPUT

B-15

This is a typed procedure (function). The value of the procedure is a
BYTE that indicates the length of the physical file name (path name)
that corresponds to the input unit number or logical file name. If no
corresponding entry is found in the preconnection list or if your
a~plication does not use preconnection, the value returned by the
procedure must be zero.

If a corresponding entry is found, place a pointer to the physical file
name in p$filename$addr, and return the length of the physical file
name.

REQUIRED EXCEPTION CODES

This procedure returns no explicit exception code. If no match is found
in the preconnection list, the procedure must return a value of zero.

COt'1!VJ.ENTS

If you do not supply your own version of TQ$INITIALIZE or TQSPARSECL, the
~arameter precon$root of TQ$GET$PRECON points to a linked list, each entry
of which has the following format:

POINTER BYTE BYTE (n)

I I I
I LOCATION OF NEXT ENTRY I STRING LENGTH I STRING •••
I I I

For the last entry in the linked list, the LOCATION OF NEXT ENTRY is zero,
or else the last entry is a null entry indicated by a STRING LENGTH of zero.
Each (non-null) STRING contains one preconnection assignment in the same
form as a~pears in the program invocation line; for example:

DATAFILE=:Fl:CUST12.DAT
UNIT4=:LP:

RTNULL VERSION

(Pascal-86/88)
(FORTRAN-86/88)

The version of TQGETPRECON in RTNULL.LIB always returns a length of zero.

B-16

TQ$EXIT

DESCRIPTION

This procedure terminates execution of the job. You must supply your own
version of this procedure if your system does not have the UDI procedure
DQ$EXIT. (The default version of TQ$EXIT calls DQ$EXIT.)

PROCEDURE INTERFACE

TQ$EXIT:
PROCEDURE (termination$type) PUBLIC REENTRANT;
DECLARE termination$type WORD;

END;

INPUT PARAMETERS

termination$type has a value of zero or one. Zero means normal
termination; one indicates that termination is due to an exception.

OUTPUT

(None.)

REQUIRED EXCEPTION CODES

(None.)

COMMENTS

This procedure must not attempt to return control to the calling procedure.

RTNULL VERSION

The RTNULL.LIB version of TQ$EXIT causes the processor to halt.

B-17

Device Driver Procedures

The device driver procedures perform I/O operations for a file. When you
supply your own device drivers, the code you write is concerned only with
generalized aspects of I/O such as buffering, transferring bytes of dBta to
and from ~hysical devices, and recognizing record boundaries. You do not
have to be concerned with assembling bytes into integers, reals, strings, or
other item types. This work is done by higher levels of the run-time system.

FILE lVJ.ARKERS

The model of file processing assumed by the LRI uses three kinds of file
markers:

1. End-of-record mark
2. End-of-file mark
3. Current file position pointer

Your device drivers may implement these markers in any way that is
appropriate for the files and devices you deal with. The following
suggestions illustrate some of the possible implementations:

o The end-of-record mark may be a CR-LF (carriage return, line feed) pair
in a text file, the inter-record gap on a magnetic tape file, or
whatever form of record seperator is suitable for the file or device.

o For disk storage devices, the end-of-file mark may be a position
pointer. Magnetic tape files might use a tape-mark as the end-of-file
mark.

o The current file position pointer marks a specific character, which is
not necessarily at the beginning or end of a record.

BUFE'ERING

No file buffering is performed in the run-time system above the LRI level.
The default device drivers (i.e., those in the LRS supplied by Intel)
provide buffering (except fo-r text files and formatted output to
non-seekable devices). If you are supplying your own device drivers, you
must also provide whatever buffering is necessary for your application.

B-18

OPEN

DESCRIPTION

The run-time system calls open before performing any input or output on a
file. 'l'he open routinE~ makesthe connection to a physical file, allocates
buffers, sets the file pointer to the beginning of the file, and otherwise
prepares the file for subsequent I/O operations.

The default open procedure uses the UDI procedures DQ$OPEN, DQ$ATTACH,
DQ$DETACH, DQ$CREATE, DQ$ALLOCATE, DQ$F'REE, DQ$SPECIAL, and
DQGETCONNECTION$STATUS. You must supply your own open procedure if your
system is missing any of these interfaces.

PROCEDURE INTERFACE

open:
PROCEDURE (fd, name$p, name$length, attribute,

rec$length) WORD PUBLIC REENTRANT;
DECLARE fd

DECLARE

name$p
name$length
attribute
rec$length
err$code

RETURN err$code;
END;

INPUT PARAMETERS

SELECTOR,
POINTER,
BYTE,
WORD,
WORD;
WORD;

fd identifies the file descriptor for the file to be affected.

name$p points to an are~a containin~J the path name of the file, and
nalne$length contains its length in bytes. The path name comes either
from the FORTRAN-86/88 or Pascal-86/88 module or from the TQGETPRECON
routine. (Do not modify the contents of the area addressed by name$p.
The run-time system assumes that the contents of this area remain
unmodified.) If name$length is zero, the driver should assume that it is
a scratch file (work file) to be deleted after the close operation.

The attribute WORD contains several bit parameters that provide more
information about the file. Your open driver may either use or ignore
these parameters, depending on the:trrelevance to the files and devices
the driver is designed to support. Some of the parameters may be
relevant to other driver procedures that will be called later to operate
on the file. In this case you should store the parameters in the user
portion of the file descriptor for the file. The bit parameters are
defined in table 8-2. The bits are numbered from least significant (bit

B-19

zero) to most significant (bit 15).

rec$length contains the record length to be associated with the file. A
value of zero indicates that the record length is variable.

Table B-2. Attribute Bit Items for Open

BITS VALUE INTERPRETATION
==

1,0

00

01

10

11

2

1

3

1

4

5

1

Status of file.

Unknown status; file mayor may not already exist.
(This is the default setting and the only setting for
Pascal-86/88.)

New file; file must not already exist.

Old file; file must already exist.

Scratch file; file must be deleted on execution
of close.

Access to file.

Sequential access; seek driver routine will not
be called. (This is the only setting for
pascal-86/88.)

Direct access; seek driver routine may be called.

Format of file.

Unformatted; file contains binary data.

Formatted; file contains character data (typically
ASCII-encoded and printable on line printer).

(Reserved.)

Record delimiter.

None. The first character of a record is treated as
any other character. (This is the only setting for
Pascal-86/88.)

The first character of every record is a vertical
spacing control for a printer.

B-20

'rable B--2. Attribute Bit Items for Open (cont'd.)

Brrs VALUE INTERPRETATION
===

6

o

1

7

1

9,8

00

01

10

11

10-15

OU'fPU'l'

Interactivity.

Not an interactive file.

Possibly interactive file. The device should be
treated as an interactive console (no buffering).
For FORTRAN-86/88 CARRIAGE = CONSOLE files,
this is used for the $ (dollar-sign) edit descriptor,
which can suppress the record terminator in
sequential formatted output statements.
In pascal-86/8B this is used to indicate
TEXTFILE output.

Path check.

I/O

No action required. (This is the only setting for
Pascal-86/88 support.)

Compare the path name supplied with this call to
open against that associated with the open
conn e c t ion. If th e y are un e qua 1, ret urn th e E $ PAT H E Q
exception code without taking any other action. If
they are equal, accept the new open attributes
without changing the file pointer. This feature is
used to support the FORTRAN-86/88 OPEN statement.

mode.

Destructive write only.

Read only.

(Re!served .)

Update. (FORTRAN-86/88 onl y.)

(Reserved.)

This is a typed procedure (function). The value of the procedure is a
WORD (here called err$code) that indicates the result of calling this
proced ure.

REQUIRED EXCEPTION CODES

B-21

E$OK. For FORTRAN-86/88, also E$FEXIST (for a new file that already
exists), E$FNEXIST (for an old file that does not exist), and E$PATHEQ
(for failure of a path check) •

COMMENTS

RTNULL VERSION

Causes the processor to halto

B-22

CLOSE

DESCRIPTION

This procedure closes a file, flushing out any data that may be left in
buffers and returning buffer space.

PROCEDURE INTERFACE

close:
PROCEDURE (fd, dispose) WORD PUBLIC REENTRANT;
DECLARE fd SELECTOR,

dispose BYTE;
DECLARE err$code WORD;

RE'rURN err$code;
END;

INPUT PARAlVIETERS

fd identifies the file descriptor for the file to be affected.

dispose contains several bit items that specify what to do with the
file. These bits are defined in table B-3. The bits are numbered from
least significant (bit zero) to most significant (bit seven) •

Table B-3. Disposition Parameters for Close

BITS VALUE INTERPRETATION
==

1,0

00

01

10

11

2-7

Disposition of file:

Dispose as appropriate for status of file as
specified in ~~n. (For example, if work file,
delete.) This:is the only setting for pascal-86/88.

Do not delete the file.

DelE!te the file.

(Reserved.)

(ReservE!d .)

B-23

OUTPUT

This is a typed procedure (function). The value of the procedure is a
WORD (here called err$code) that indicates the result of calling this
procedure.

REQUIRED EXCEPTION CODES

E$OK

COMMENTS

Note that, when a file is closed, the space used by its file descriptor is
not returned. The file descriptor is re-used by the run-time system if
another file is opened, and TQ$FILE$DESCRIPTOR is not called before that
open.

HTNULL VERSION

Causes the processor to halt.

B-24

READ

DESCRIPTION

This procedure reads a specified number of bytes from a file.

PROCEDURE INTERFACE

read:
PROCEDURE (fd, buffer$p, count,

actual$count$p) WORD PUBLIC REENTRANT;
DECLARE fd SELECTOR,

buffer$p POINTER,
count WORD,
actual$count$p POINTER;

DECLARE actual$count BASED actual$count$p WORD;
DECLARE err$code WORD;

RETURN err$code;
END;

INPUT PARAMETERS

fd identifies the file descriptor for the file to be affected.

count specifies the number of bytes to be read.

buffer$p and actual$count$p contain the addresses of output items.

OUTPUT

Store the data read by this procedure at the location addressed by
buffer$p.

Fill actual$count with the number of bytes actually read.

This is a typed procedure (function). The value of the procedure is a
WORD (here called err$code) that indicates the result of calling this
procedure.

REQUIRED EXCEPTION CODES

E$OK; E$EOF when end of file is encountered before count bytes are read;
E$EOR when end of record is encountered before count bytes are read.

COMMENTS

B-25

The run-time system calls this routine to read all or part of a record. When
only part of a record is read, several calls may be necessary to read the
entire record. The E$EOR exception signals when the end of a record is
reached. For files with fixed length records, the run-time system never
tries to read more bytes than the fixed number defined for the record.
However, this driver must be able to recognize the end of a record, and be
able to position the file pointer to the beginning of the next record before
the next read operation.

RTNULL VERSION

Causes the processor to halt.

B-26

WRITE

DESCRIPTION

This procedure writes a specified number of characters to a file.

PROCEDURE INTERFACE

write:
PROCEDURE (fd, buffer$p, count) WORD PUBLIC REENTRANT;
DECLARE fd SELECTOR,

buffer$p POINTER,
count WORD;

DECLARE err$code WORD;

RETURN err$code;
END;

INPUT PARAMETERS

fd identifies the file descriptor for the file to be affected.

buffer$p points to the beginning of the data to be written.

count specifies the number of bytes to be written.

OUTPUT

This is a typed procedure (function). The value of the procedure is a
WORD (here called err$code) that indicates the result of calling this
procedure.

REQUIRED EXCEPTION CODES

E$OK

COMMENTS

The run-time system may call this procedure several times in order to
complete an entire record, even if the records are fixed in length. When the
record is complete, the run-time system calls the end$record driver to mark
the end of the record. It is the responsibility of write to perform any
output buffering that may be desired.

RTNULL VERSION

Causes the processor to halt.

B-28

SEEK

DESCRIP'fION

This routine is called for files opened for direct access to position the
file pointer before a read or write operation. (This routine is not used by
the Pascal-86/88 run-time system.)

PROCEDURE INTERFACE

seek:
PROCEDURE (fd, mode, high$offset, low$offset) WORD

PUBLIC REENTRANT;
DECLARE fd SELECTOR,

mode BYTE,
low$offset WORD,
high$offset WORD;

DECLARE err$code WORD;

RE'rURN er r$code;
END;

INPu'r PARAMETERS

fd identifies the file descriptor for the file to be affected.

low$offset and high$offset together form a four-byte (DWORD) unsigned
integer (here c~lled offset) that represents either a position in the
file or the number of bytes to move the file position pointer, depending
on the setting of mode.

mode indicates the type of seek required. The values of mode are defined
in table 8-4.

B-29

Table 8-4. Mode Parameters for Seek

VALUE INTERPRETATION
==

1

2

3

4

OUTPUT

Seek to the record number specified in offset.
Note that the first record of a file is record number 1.

Move file pointer back by offset bytes within
current record.

Set file pointer to offset within current record.

Move file pointer forward by offset bytes within
current record.

Move file pointer to end of file.

This is a typed procedure (function). The value of the procedure is a
WORD (here called err$code) that indicates the result of calling this
procedure.

REQUIRED EXCEPTION CODES

E$OK

COMMENTS

Modes 1 through 4 are not currently supported or required.

RTNULL VERSION

Causes the processor to halt.

B-30

SKIP

DESCRIPTION

'l'bis procedure moves the file pointer forward to the beginning of the next
sequential record. The procedure is called when processing of a record is
finished, even though only part of the record was read (as caused by a slash
(/) in a FORTRAN-86/88 format or by READLN in Pascal-86/88).

PROCEDURE INTERFACE

skip:
PROCEDURE (fd) WORD PUBLIC REENTRANT;
DECLARE fd SELECTOR;
DECLARE err$code WORD;

RETURN err$code;
END;

INPUT PARA1VlETERS

fd identifies the file descriptor for the file to be affected.

OUTPUT

This is a typed procedure (function). The value of the procedure is a
WORD (here called err$code) that indicates the result of calling this
procedure.

REQUIRED EXCEPTION CODES

E$OK; E$EOF if end of file is encountered.

COMIVlENTS

RTNULL VERSION

Causes the processor to halt.

B··31

END RECORD

DESCRIPTION

This procedure marks the end of a record. The run-time system calls this
routine every time output to a record (even a fixed-length record) is
completed (as caused by a slash format in FORTRAN-86/88 or by a Pascal-86/88
wRITELN) •

PROCEDURE INTERFACE

end$record:
PROCEDURE (fd) WORD PUBLIC REENTRANT;
DECLARE fd SELECTOR;
DECLARE err$code WORD;

RETURN err$code;
END;

INPUT PARAMETERS

fd identifies the file descriptor for the file to be affected.

OUTPUT

This is a typed procedure (function). The value of the procedure is a
WORD (here called err$code) that indicates the result of calling this
procedure.

REQUIRED EXCEPTION CODES

E$OK

COMMENTS

Your driver should mark the file in a manner appropriate for the particular
device and access mode being used. (For example, for text files you may want
to write carriage return and line feed characters.) For files with
fixed-length records, the driver may either increment the record pointer or
~ad the balance of the record with a distinguishable character. A call to
this driver implies that the program has terminated output to the record,
and that the rest of the record is either undefined or defined by this
driver.

B-32

RrrNULL VERS ION

Causes the processor to halt.

B-33

REWIND

DESCRIPTION

This routine sets the file pointer to the beginning of file and performs any
device control functions necessary to rewind the physical device.

PROCEDURE INTERFACE

rewind:
PROCEDURE (fd, mode) WORD PUBLIC REENTRANT;
DECLARE fd SELECTOR,

mode BYTE;
DECLARE err$code WORD;

RETURN err$code;
END;

INPUT PARAtVlETERS

fd identifies the file descriptor for the file to be affected.

mode specifies access rights to the file after it is rewound. The values
correspond to those of bits 8 and 9 of the attribute parameter of the
open driver:

OUTPUT

VALUE

" 1
2
3

INTERPRETATION

Destructive write only.
Read only.
(Reserved.)
Update.

This is a typed procedure (function). The value of the procedure is a
WORD (here called err$cod~) that indicates the result of calling this
procedure.

REQUIRED EXCEPTION CODES

E$OK

COtVlMENTS

B-34

Rtf NULL VERSION

Causes the processor to halt.

B-35

BACKSPACE

DESCRIP'rION

This procedure positions the file pointer to the beginning of the previous
record. (It is not used for Pascal-86/88 support.)

PROCEDURE INTERFACE

backspace:
PROCEDURE (fd) WORD PUBLIC REENTRANT;
DECLARE fd SELECTOR;
DECLARE err$code WORD;

RETURN err$code;
END;

INPUT PARAMETERS

fd identifies the file descriptor for the file to be affected.

OUTPUT

This is a typed procedure (function). The value of the procedure is a
WORD (here called err$code) that indicates the result of calling this
procedure.

REQUIRED EXCEPTION CODES

E$OK

COML"lEN'rS

RTNULL VERSION

Causes the processor to halt.

B-36

END FILE

DESCRIPTION

This procedure marks the current position of the file pointer as the end of
the file. (This procedure is not used for pascal-86/88 support.)

PROCEDURE INTERFACE

end$file:
PROCEDURE (fd) WORD PUBLIC REENTRANT;
DECLARE fd SELECTOR;
DECLARE err$code WORD;
;
RETURN err$code;
END;

INPUT PARAMETERS

fd identifies the file descriptor for the file to be affected.

OU'l'PUT

This is a typed procedure (function). The value of the procedure is a
WORD (here called err$code) that indicates the result of calling this
procedure.

REQUIRED EXCEPTION CODES

COMLVlENTS

If there is data in the file beyond the location indicated by the current
file pointer, that data is truncated.

RTNULL VERSION

Causes the processor to halt.

B-37

Exception Handler Procedures

Refer also to the TQ$INITIALIZE procedure.

TQSETERH

DESCRIPTION

This procedure establishes the address of the exception handler to be used
in processing all subsequent exceptional conditions. The run-time system
calls this procedure from TQ$INITIALIZE once at the start of program
execution to establish the default exception handler. You must supply your
own version of TQSETERH if your system does not have the UDI procedure
DQ$TRAP$EXCEPTION.

PROCEDURE INTERFACE

TQSETERH:
PROCEDURE (handler$addr) PUBLIC REENTRANT;
DECLARE handler$addr POINTER;

END;

INPUT PARAMETERS

handler$addr is the address of the new exception handler.

OUTPUT

(None.)

REQUIRED EXCEPTION CODES

(None.)

COMMENTS

The handler address should be stored so that it is accessible by TQGETERH.
At anyone time, only one exception handler can be in effect for the set of
modules linked to one LR~; therefore, handler$addr may be stored in local
memory without limiting reentrancy of the LRS.

In multitasking systems a contention condition can occur wherein one task
has updated only one word of the handler address when interrupted by anothel
task that needs to read the entire address. If this condition can occur in
your application, you must provide for synchronization to prevent it from

B-38

occurring.

If you supply your own version of TQSETERH, you should do the same for
TQGETERH.

RTNULL VERSION

The version of TQSETERH in RTNULL.LIB returns without actually
establishing an exception handler. Refer also to the null version of
TQGETERH.

B-39

TQGETERH

DESCRIPTION

This procedure is called by any procedure in the run-time system that has an
exception condition to report. TQGETERH delivers the address of the
current exception handler so that the calling procedure can formulate an
indirect call to that error handler. You must supply your own version of
TQGETERH if your system does not have the unI procedure
DQGETEXCEPTION$HANDLER.

PROCEDURE INTERFACE

TQ$G Err$ ERH:
PROCEDURE (handler$addr$p) PUBLIC REENTRANT;
DECLARE handler$addr$p POINTER;
DECLARE handler$addr BASED handler$addr$p POINTER;

END:

INPUT PAHAIVJ.ETERS

handler$addr$p contains the address of the output item handler$addr.

OUTPUT

Fill handler$addr with the address of the current exception handler (as
provided earlier by TQSETERH).

REQUIRED EXCEPTION CODES

(None.)

COIVll"lENTS

The pointer fetched by TQGETERH has two primary uses:

1. It is used to formulate an indirect call to the current exception
handler. The run-time system always calls TQGETERH before calling the
exception handler to ensure that the address used in the call refers to
the most recently established handler.

2. It can be saved to be used later in a call to TQSETERH to restore the
current exception handler after another handler has been temporarily
substituted.

B-40

If you provide your own version to TQGETERH, you should do the same for
TQSETERH.

RTNULL VERSION

The version of TQGETERH in RTNULL~LIB causes the processor to halt, since
the null version of TQSETERH does not establish an exception handler.

B-41

lVIernory Management Pr~cedure~

Several data structures of the run-time system have dynamic memory
requirements; namely:

o Preconnection list
o File descriptors
o File buffers
o Pascal-86/88 heap

The run-time system takes two different approaches to allocation of space
for these structures.

1. The first three of these structures (the preconnection list, file
descriptors, and file buffers) are managed by LRS procedures. When you
provide your own versions of the procedures that deal with these
structures, you also take on the responsibility for allocating memory
for those structures.

2. The Pascal-86/88 heap is not managed by LRS procedures but rather by
procedures at higher levels of the run-time system. The heap-management
procedures calIon LRS procedures for allocation of memory space for
the heap. Therefore, while you cannot provide your own procedures for
heap management, you can provide your own procedures for allocation of
space for the heap.

The Pascal-86/88 heap is used for storage of dynamic variables. You allocate
space for a dynamic variable by using the Pascal-86/88 procedure NEW; you
free dynamic variable space by using DISPOSE.

The run-time system provides two memory managers to control the heap. The
Pascal-86/88 program automatically determines which memory manager to use
depending on the model of segmentation you select for the module being
compiled. Pointer types defined under the SMALL model (with -CONST IN DATA-)
are l6-bit pointers and require that storage be allocated in the data group
DGROUP. Pointer types defined under other models use 32-bit pointers and
have no restriction on which segment or group they point to. Both memory
managers can be used in one program if the program contains modules compiled
both under SMALL (-CONST IN DATA-) and under other models.

The SMALL model memory manager calls the LRS procedure TQGETSMALL$HEAP to
determine the size and location of the small heap. The other memory manager
(called the large model memory manager) calls the LRS procedures TQ$ALLOCATE
and TQ$FREE to dynamically control space for the heap. These LRS procedures
are explained in the following sections.

Note that neither of the memory managers is reentrant. This means that no
two tasks in a multitasking environment may invoke the same memory manager
concurrently. One way to avoid this problem is to provide synchronization in
your Pascal-86/88 program for the calls to NEW and DISPOSE, to ensure that
no two calls to either of these procedures are active at the same time. This
method works for either the large or the SMALL-model memory manager.

B-42

TQ$ALLOCATE

DESCRIPTION

This procedure is invoked only by the large model memory manager to expand
the Pascal-86/88 heap. TQ$ALLOCATE allocates an additional area of memory
for the heap. You need to supply your own version of TQ$ALLOCATE if your
system does not include the UDI procedure DQ$ALLOCATE.

PROCEDURE INTERFACE

'fQ$ALLOCATE:
PROCEDURE (size, err$code$p) SELECTOR PUBLIC REENTRANT;
DECLARE size WORD,

err$code$p POINTER;
DECLARE err$code BASED err$code$p WORD;
DECLARE seg$addr SELECTOR;
;
RE'l'URN seg $ add r ;
END;

INPUT PARA!V1ETERS

size specifies the number of contiguous bytes of memory that the
run-time system needs to obtain ..

err$code$p contains the address for the output item err$code.

OUTPUT

Fill err$code with a code that indicates the result of executing this
procedure.

This is a typed procedure (function). The value of the procedure is a
SELECTOR that identifies a block of memory for the run-time system to
add to the heap.

REQUIRED EXCEPTION CODES

EOK, EMEM if there is not enough memory

CO!V11V1ENTS

The large model memory manager performs buffering between NEW requests for
heap space and calls to TQ$ALLOCATE. TQ$ALLOCATE is called only to satisfy
NEW requests for large dynamic structures and when no more heap space is

B-43

available for smaller NEW requests.

If you supply your own version of TQ$ALLOCATE, you should also supply your
own version of TQ$FREE.

RTNULL VERSION

The version of TQ$ALLOCATE in RTNULL.LIB returns E$MEM.

B-44

TQ$FREE

DESCRIPTION

This procedure is invoked only by the large model memory manager to return a
memory segment when pascal-86/88 DISPOSE requests have eliminated all the
dynamic variables previously stored in that segment. TQ$FREE returns memory
from the heap to the system. You need to supply your own version of TQ$FREE
only if your system does not have the UDI procedure DQ$FREE.

PROCEDURE INTERFACE

TQ$FREE:
PROCEDURE (seg$addr, err$code$p) PUBLIC REENTRANT;
DECLARE seg$addr SELECTOR,

err$code$p POINTER;
DECLARE err$code BASED err$code$p WORD;
;
END;

INPUT PARAMETERS

seg$addr identifies the memory block to be freed. This can only be a
block that was previously allocated via TQ$ALLOCATE.

err$code$p contains the address for the output item err$code.

OUTPUT

Fill err$code with a code indicating the result of executing this
procedure.

REQUIRED EXCEPTION CODES

E$OK

COMMENTS

If you supply your own version of TQ$FREE, you should also supply a
TQ$ALLOCATE.

RTNULL VERSION

The version of TQ$FREE in RTNULL.LIB returns E$OK without doing anything.

B-45

TQGETSMALL$HEAP

DESCRIPTION

Pascal-86/88 programs compiled according to the SMALL model of segmentation
(-CONS~ IN DATA-) do not use TQ$ALLOCATE and TQ$FREE to dynamically allocate
s~ace for the heap. Instead, space is allocated from a static area in the
program's data group (DGROUP). This procedure fetches the size and location
of that memory area. The run-time system calls this procedure the first time
an allocation request is made via the Pascal-86/88 built-in procedure NEW.
(Not used for FORTRAN-86/88 support.)

PROCEDURE INTERFACE

TQGETSMALL$HEAP:
PROCEDURE (offset$p, size$p, err$code$p) PUBLIC REENTRANT;
DECLARE offset$p POINTER,

size$p POINTER,
err$code$p POINTER;

DECLARE offset BASED offset$p WORD,
size BASED size$p WORD,
err$code BASED err$code$p WORD;

END;

INPU'l"' PARAME'I'ERS

offset$E, size$p, and err$code$p all point to areas used for output
(offset, size, and err$code, respectively).

OUTPUT

Fill offset with the offset within DGROUP of the beginning of the heap.

Fill size with the size of the heap in bytes.

Fill err$code with a code indicating the result of executing this
procedure.

REQUIRED EXCEPTION CODES

EOK, ESUPPORT

COMMENTS

For the heap in SMALL-model programs, Pascal-86/88 creates a segment called

B-46

MEMORY, which is located within DGROUP. The size of this segment can be
adjusted at link time. The size at run time must be at least 13 bytes.

The default version of TQGETSMALL$HEAP works with run-time locatable (RTL)
object modules. It calls the UDI procedure DQGETSIZE to find the size of
DGROUP and calculates the size of the heap. This is possible since the
relocatable loader calls the UDI procedure DQ$ALLOCATE to get space for the
segments. This approach does not work if the UDI procedures DQ$ALLOCATE and
DQGETSIZE are not present or if the object module has been absolutely
located by LOC86. In these cases you must code your own version of
TQGETSMALL$HEAP.

In your version of TQGETSMALL$HEAP, the heap does not necessarily have to
be located in the MEMORY segment, but it does have to be at least 13 bytes
longr Your version should be linked before the run-time libraries.

RTNULL VERSION

(None.)

EXAl"lPLE USAGE

NAl"lE DQG E:'rSl"lALLHEAP
i
iThis procedure demonstrates overriding the default
iTQGETSMALLHEAP in the Pascal-86/88 Logical Record System
i
iParameters:

OFFSErr PTR POINTER to the WORD in which the offset
of the heap from the start of DGROUP is
returned.

SIZE PTR POINTER to the word in which the heap
size is returned.

EXCEPTION PTH POINTER to the WORD in which the
exception status is returned.

DGROUP GROUP CONST,DATA,MEMORY,MYHEAP
i
; Declare
CONST
CONSrr
DATA
DArrA

DGROUP segme'n ts
SEGMENT PUBLIC 'DATA'
ENDS
SEGMENT PUBLIC 'DATA'
ENDS

MEM.OR':l
t"1EMORY

SEGMENT MEMORY 'MEMORY'
ENDS

;
; Define small heap
Sl"1ALLHEAPS I Z E
& EQU 2000H
MYHEAP SEGMENT PUBLIC 'DATA'
SMALLHEAP DB SMALLHEAPSIZE DUP(?)
MYHEAP ENDS
;
; Define parameters

B-47

OFFSET_PTR EQU
SIZE_PTR EQU
EXCEPTION PTR
& EQU
PARAtY1_SIZE EQU

DWORD PTR [BP+14]
DWORD PTR [BP+10]

DWORD PTR [BP+6]
12

;
; Begin procedure

ASSUME CS:MYCODE,SS:DGROUP
PUBLIC TQGETSMALLHEAP

MYCODE SEGMENT PUBLIC 'CODE'
TQGETSMALLHEAP
& PROC FAR

PUSH BP Save old BP value
MOV BP,SP

Store heap offset
LES SI,OFFSET PTR
MOV WORD PTR ~S:[SI] ,OFFSET DGROUP:SMALLHEAP

Store heap size
LES SI,SIZE PTR
MOV WORD PTR ES:[SI] ,SMALLHEAPSIZE

Set exception flag to 0
LES SI,EXCEPTION PTR
MOV WORD PTR Es:TSI] ,9

Return
POP
RET

TQG ETSlVIALLHEAP
& ENDP
!VIYCODE ENDS

END

BP
PARAM SIZE

B-48

EXAMPLE DEVICE DRIVERS

The remaining pages of this chapter contain an example of a set of
user-written device drivers. This set of drivers is intended for use with a
receive-only CRT display. The code in these driver routines does not make
any calls to UOI or system procedures; therefore, the drivers are suitable
for use without an operating system.

In the configuration for which this example is designed, the CRT is
connected to the serial port of the RPB-86 board of an Intellec Series III
Microcomputer Development System. The RPB-86 board is similar to an iSBC
86/12A Single Board Computer. The CRT driver procedures control the CRT with
the aid of an Intel 8251 Universal Synchronous/Asynchronous
Receiver/Transmitter (USART) and an Intel 8253 Programmable Interval Timer,
both of which reside on the board. Refer to the iSBC 86/l2A Single Board
Computer Hardware Reference Manual and the Peripheral Design Handbook for
more information on using these devices.

Following the drivers is a simple Pascal-86/88 program that exercises the
drivers. Normally, device drivers are implemented at the LRS level only in
cases where the target environment does not include an operating system. For
testing purposes, however, this example uses console I/O as implemented by
the operating system via the default LRS. Note that, except for its use of
the special device name :Tl:, the Pascal-86/88 program does not "know" about
the special device drivers.

An example of LINK86 commands to create an executable module on an Intellec
Series III Microcomputer Development System is:

RUN LINK86 SHORT1.OBJ, &
P86RN0.LIB, &
P86RNl.LIB, &
TQNEW.OBJ, &
P86RN2.LIB, &
P86RN3.LIB, &
NULL87.LIB, &
LARGE.LIB TO SHORT1.86 BIND

Since TQ$NEW.OBJ appears before the default LRS in P86RN2.LIB and
P86RN3.LIB, LINK86 links in the new version of TQ$DEVICE instead of the
default version. Both the new CRT driver and the default drivers are linked;
the default drivers are still needed to support console I/O for the example
Pascal-86/88 program.

B~

PL/M-86 COMPILER TQCRTMODULE PAGE 1

ISIS-II PL/M-86 V2.1 COMPILATION OF MODULE TQCRTMODULE
OBJECT MODULE PLACED IN :Fl:TQNEW.OBJ
COMPILER INVOKED BY: PLM86 :Fl:TQNEW.SRC

1

2

3

4
5
6
7
8
9

10

11
12
14
16
18
19
21
22
23
24
25
26
27
28
29
30
31
32
33
34

1

1

2
2
2
2
2
2
2

2
2
2
3
3
2
3
3
3
3
3
3
3
3
3
3
3
3
2
2

$PAGEWIDTH(73)
$LARGE
TQCRTMODULE: DO;

DECLARE TRUE LITERALLY 10FFHI,
FALSE LITERALLY 10 1,
E$OK LI'1'ERALLY 10';

TQDEVICE:
PROCEDURE (NAME$PTR,NAME$LENGTH,

DRIVER$TABLE$PTR) WORD PUBLIC;
DECLARE (NAME$PTR,DRIVER$TABLE$PTR) POINTER;
DECLARE NAME$LENGTH BYTE;
DECLARE (MATCH$FLAG,I) BYTE;
DECLARE DRIVER$BASE BASED DRIVER$TABLE$PTR POINTER;
DECLARE DRIVER$NAME BASED NAME$PTR(I) BYTE;
DECLARE NAME(4) BYTE DATA(I:Tl: I);
DECLARE DRIVER$TABLE(10) FOINTER;

/* IF SPECIAL LINE PRINTER DEVICE
THEN REASSIGN DEVICE DRIVER TABLE */

MATCH$FLAG = TRUE;
IF NAME$LENGTH <> 4 THEN MATCH$FLAG = FALSE;
IF MATCH$FLAG = TRUE THEN DO 1=0 TO 3;

IF NAME(I) <> DRIVER$NAME(I) THEN MATCH$FLAG = FALSE;
END;
IF MATCH$FLAG = TRUE THEN DO;

DRIVER$BASE = @DRIVER$TABLE;
DRIVER$TABLE(0) = @OPEN$NEW$DEVICE;
DRIVER$TABLE(I) = @CLOSE$NEW$DEVICE;
DRIVER$TABLE(2) = @READ$NEW$DEVICE;
DRIVER$TABLE(3) = @WRITE$NEW$DEVICE;
DRIVER$TABLE(4) = @SEEK$NEW$DEVICE;
DRIVER$'rABLE (5) = @NEW$MOVE;
DRIVER$TABLE(6) = @NEW$MARK$END;
DRIVER$TABLE(7) = @NEW$REWIND;
DRIVER$TABLE(8) = @NEW$BACKSPACE;
DRIVER$rrABLE (9) = @NEW$END$FILE;

END;
RErl'URN E $OK;

END TQDEVICE;

/***/
/***/
/* D E V ICE D R I V E R S */
/************************~************~***************~***/
/***/

/***/
/* OPEN A FILE */

B-50

PL/M-86 CaMPI LER TQCRTMODULE PAGE 2

35

36
37
38
39

40
41
42

43
44

45
46

47
48

49

50
51
52

53
54
55

1

2
2
2
2

2
2
2

2
2

2
2

2
2

2

2
2
2

2
2
2

/***/
OPENNEWDEVICE:

PROCEDURE (FD$SEG, NAME$P'l'R, NAME$LENGTH,
ATTRIB,REC$LENGTH) WORD PUBLIC;

DECLARE (FD$SEG,ATTRIBgREC$LENGTH) WORD;
DECLARE NAME$PTR POINTER;
DECLARE NAME$LENGTH BYTE;
DECLARE CNTL$PORT$8253 LITERALLY '0D6H'

/* 3-4 OF 86/12A HRM */

DECLARE COUNTREG8253 LITERALLY '0D4H' ;
DECLARE STAT$PORT$8251 LITERALLY '0DAH' ;
DECLARE CONTROL$8YTE$8253 LITERALLY '086H'

/* COUNTER 2 */
/* READ/LOAD LEAST SIG. BYTE FIRST */
/* MODE 3 - SQUARE WAVE RATE GENERATOR */
/* 16 BIT BINARY COUNTER */

DECLARE RESET8251TO$MODE LITERALLY '40H'
DECLARE CONTROL$BYTE$8251 LITERALLY '4FH'

/* BAUD RATE - ASYN X64 */
/* 8 BIT CHARACTER LENGTH */
/* NO PARITY */
/* ONE STOP BIT */

DECLARE BAUD$CODE LITERALLY '0040H' ;
DECLARE ENABLE$8251 LITERALLY '27H';

/* TRANSMIT ENABLE */
/* RECEIVE ENABLE */
/* DTH BAR = 0 (READY) */
/* RTS BAR = 0 (READY) */

/* FILE DESCRIPTOR HAS 16 BYTES TO STORE NECESSARY
INFOkMATION. VAR WILL CONTAIN THE POINTER TO THE
FILE DESCRIPTOR. FD$SEG FORMS THE BASE PORTION OF
THE ADDRESS POINTING TO THE FILE DESC.
STORE INFO REGARDING TYPE OF FILE TO BE USED WHEN
MARKING END OF RECORDu */

DECLARE VAR POINTER;
DECLARE VAR$DESCRIPTOR STRUCTURE (OFFSET WORD, BASE WORD)

AT (@VAR);
DECLARE FILE$DESCRIPTOH BASED VAR STRUC'l'URE (

AVAILABLE (16) BYTE,
RESERVE (32) BYTE);

VAR$DESCRIPTOR.OFFSET = 0;
VAR$DESCRIPTOR.BASE = FD$SEG;
FILE$DESCRIPTOR.AVAILABLE(0)=(ATTRIB AND 08H);

/* FORM OF FILE *1

/* INITIALIZE THE INTERVAL TIMER (8253) */

OUTPUT (CNTL$PORT$8253) = CONTROL$BYTE$8253;
OUTPUT (COUNTREG8253) = LOW(BAUD$CODE);
OUTPUT (COUNTREG8253) = HIGH(BAUD$CODE);

B-Sl

PL/M-86 COMPILER 1'QCR'l'iV10DU LE PAGE 3

56
57
58

59
60
61

62
63

64
65
66
67
68

69

70
71
72
73

74

75
76
77
78
79
80
81

82
83

84
85
86
87
88

2
2
2

2
2
2

2
2

1
2
2
2
2

1

2
2
2
2

1

2
2
2
2
2
2
2

2
3

4
3
3
2
2

/* INITIALIZB THE USART (8251).
SEND 3 ZER01S TO CLEAR FIRST. */

OUTPUT (STAT$POR'I'$8251) = "H;
OUTPUT (STAT$PORT$8251) = 0H;
OUTPUT (STAT$PORT$82 51) = 0H;

OUTPUT (STAT$PORT$8251) = RESET8251TO$MODE;
OUTPUT (STAT$PORT$8251) = CONTROL$BYTE$8251;
OUTPUT (STAT$PORT$8251) = ENABLE$8251;

/* RETURN STATUS OF ZERO TO INDleATE SUCCESSFUL OPEN */
RETURN E$OK;
END OPENNEWDEVICE;

/***/
/* CLOSE A FILE */
/***/

CLOSENEWDEVICE: PROCEDURE (FD$SEG,DISPOSE) WORD PUBLIC;
DECLARE FD$SEG WORD;
DECLARE DISPOSE BYTE;
RE'fURN E $OK ;
END CLOSENEWDEVICE;

/***~*/
/* READ A BLOCK */
/***/

READ$N-EW$DEVIC E:
PROCEDURE (FD$SEG,BUFFER,COUNT,ACTUAL$PTR) WORD PUBLIC;
DECLARE (FD$SEG,COUNT) WORD;
DECLARE (BUFFER,ACTUAL$PTR) POINTER;
RETURN E$OK;
END READNEWDEVICE;

/***/
/* WRITE A BLOCK */
/***/

WRITENEWDEVICE:
PROCEDURE (FD$SEG,BUFFER,COUNT) WORD PUBLIC;
DECLARE (FD$SEG,COUNT) WORD;
DECLARE BUFFER POINTER;
DECLARE STATUS BYTE;
DECLARE I WORD;
DECLARE BUF BASED BUFFER(l) BYTE;
DECLARE STAT$PORT$8251 LITERALLY 10DAHI;
DECLARE DATA$PORT$8251 LITERALLY 10D8H 1;

DO 1=0 TO COUNT-I;
DO WHILE «INPUT(STAT$PORT$8251)

/* CHECK FOR TxEMPTY
END;
OUTPUT (DATA$PORT$8251) = BUF(I);

END;
RETURN E$OK;
END WRITENEWDEVICE;

B-52

AND 4H) = 0);
*/

PL/M-86 COMPI LER TQCRTMODULE PAGE 4

89

90
91
92
93

94
95
96
97

98
99

100
101
102
103

104
105

106

107
108
109

III
112
113
114
115
116
117
118

1

2
2
2
2

1
2
2
2

1
2
2
2
2
2

2
2

2

2
2
2

3
4
3
3
4
3
3
2

/***/
/* RECORD SEEK */
/***/

SEEI<NEWDEVICE:
PROCEDURE {FD$SEG,MODE,HIGH$OFFSET,

LOW$OFFSET) WORD PUBLIC;
DECLARE (FD$SEG,HIGH$OFFSET,LOW$OFFSET) WORD;
DECLARE MODE BYTE;
RETURN E$OK;
END SEEKNEWDEVICE;

/***/
/* MOVE FORWARD */
/***/

NEW$MOVE: PROCEDURE (FD$SEG) WORD PUBLIC;
DECLARE FD$SEG WORD;
RErrURN E$OK;
END NEW$MOVE;

/***/
/* MARK RECORD END */
/***/

NEW$MARK$END: PROCEDURE (FD$SEG) WORD PUBLIC;
DECLARE FD$SEG WORD;
DECLARE DATA$PORT$8251 LITERALLY '0D8H';
DECLARE STAT$PORT$8251 LITERALLY '0DAH';
DECLARE CR LITERALLY '0DH';
DECLARE LF LITERALLY '0AH';

/* FILE DESCRIPTOR HAS 16 BYTES TO STORE NECESSARY
INFORMATION. VAR WILL CONTAIN THE POINTER TO THE FILE
DESCRIPTOR. FD$SEG FORMS THE BASE PORTION OF THE ADDRESS
POINTING TO THE FILE DESC. RETRIEVE INFO REGARDING TYPE
OF FILE TO KNOW HOW TO END A RECORD. */

DECLARE VAH POINTER;
DECLARE VAR$DESCRIPTOR

STRUCTURE (OFFSET WORD, BASE WORD) AT (@VAR);
DECLARE F'ILE$DESCRIP,]~OR BASED VAH S'rRUC'!'URE (

VAR$DESCRIPTOR.OFFSET = 0;
VAR$DESCRIPTOR.BASE = FD$SEG;

AVAILABLE (16) BYTE,
RESERVE (32) BYTE);

IF (FILE$DESCRIPTOR.}\VAILABLE (0) = 08H) THEN DO;

/* WRITE CARRIAGE RETURN AND LINE FEED
FOR FORMATTED FILES. */

DO WHILE ((INPUT(STAT$PORT$8251) AND 4) = 0);
END;
OUTPUT{DATA$PORT$8251) = CR;
DO WHILE ({INPUT(STAT$PORT$8251) AND 4) = 0);
END;
OUTPUT{DATA$PORT$8251) = LF;

END;
RE'l'URN E $OK;

B-53

PL/M-86 COMPILER TQCR'l'MODULE PAGE 5

119

120
121
122
123
124

125
126
127
128

129
130
131
132

133

2

1
2
2
2
2

1
2
2
2

1
2
2
2

1

END NEW$MARK$ENDi

/***/
/* REWIND A FILE */
/***/

NEW$REWIND: PROCEDURE (FD$SEG,MODE) WORD PUBLICi
DECLARE FD$SEG WORDi
DECLARE MODE BYTEi
RE'l'URN E $OK i
END NEW$REWINDi

/***/
/* BACKSPACE */
/***/

NEW$BACKSPACE: PROCEDURE (FD$SEG) WORD PUBLICi
DECLARE FD$SEG WORDi
RETURN E$OKi
END NEW$BACKSPACEi

/***/
/* END FILE */
/***/

NEWENDFILE: PROCEDURE (FD$SEG) WORD PUBLICi
DECLARE FD$SEG WORDi
RE'l'URN E $OK i
END NEWENDFILEi

END TQCRTMODULEi

MODULE INFORMATION:

CODE AREA SIZE
CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
250 LINES READ
o PROGRAM ERROR(S)

= 0258H
= 0000H
= 0035H
= 000EH

END OF PL/M-86 COMPILATION

600D
0D

53D
14D

B-54

SERIES-III Pascal-86, Vx.y
SHORT

Source File: SHORTl.PAS
Object File: SHORTl.OBJ
Controls Specified: DEBUG.

LINE
1
2
3
4
5

NESrrING
o 0
o 0
o 0
o 0
o 0

5 701

690 1

7
8

9
10

11 0 1
12 0 1

14 0 1
15 0 1

SOURCE TEXT: SHORTl.PAS
PROGRAM SHORT(INPUT,OUTPUT};
VAR I: INrrEGER;

A: CHAR;
N EWDEVI C E : TEX'r ;

BEGIN

REWRITE(NEWDEVICE,':Tl: '};

WRITE('INPUT AN INTEGER '};
READLN (I);

WRITE('INPUT A CHARACTER '};
READLN CA} ;

WHI'rELN;
WRITELN('THE CHARACTER YOU INPUT IS ',A};

PAGE 1

11
12
13
14

17 0 1
18 0 1
19 0 1
20 0 1

WHI'I'ELN (NEWDEVICE, 'THE CHARACTER YOU INPUT IS ',A);
WRITELN('THE INTEGER YOU INPUT IS ',I};
WRITELN(NEWDEVICE,'THE INTEGER YOU INPUT IS ',I}
END.

SERIES-III Pascal-86, Vx.y PAGE

Summary Information:

PROCEDURE
SHORT

OFFSET CODE SIZE DATA SIZE STACK SIZE
006CH 0183H 387D 001BH 27D 00~EH 14D

Total 01EFH 495D 001BH 27D 0042H 66D

21 Lines Read.
o Errors Detected.

39% Utilization of Memory.

B-55

2

INDEX

%VAL, 1-6
:BB:, 5-2, A-3, A-34
:CI:, 5-2, 6-8, 8-3, 9-3, A-2, A-33, A·-34, A-38, A-39, B-13
:CO:, 6-8, 8-3, 9-3, A-2, A-22, A-33, A-34, B-13
: LP:, 5-2, 6-4, 6-8, 7-3, 1\-3, A-22, A·-34
: T I:, A- 3, A-33
:TO:, A-3, A-33
:WORK:, 5-2, 6-3, 8-3, A-3, A-22
8085, 5-1
8087 Emulator, 3-1, 3-2, 3-6, 3-7, 3-14, 6-2
8087 Numerics Data Processor, 1-7, 2-2, 2-4, 3-1, 3-2, 3-5 thru 3-10,

5-4 thru 5-6, 6-2, 9-1
8087 Support Library, 3-1, 3-2, 3-5 thru 3-10, 3-12 thru 3-14, 4-2, 8-2, 9-1
8087.LIB, 3-7 thru 3-10
8251 Universal Synchronous/Asynchronous Receiver/Transmitter (USART), B-49
8253 programmable Interval Timer, B-49
8259A programmable Interrupt Controller, 5-4, 5-6, 6-6

allocate (See memory management)
American National Standards Institute (ANSI), 1-1
ASM-86, Chapter 1, 3-6, 3-7, 3-10, 3-14, 4-4
avoidable exception conditions, A-5, A·-46, A-48

backspace, B-2, B-6, B-36
buffers and Duffering, A-2, A-3, A-33, A-37, A-39, A-42, 8-18, B-19, B-23,

B-27~-42, B-43

cancel (See termination)
CEL87.LIB, 3-7 thru 3-10
close, 8-3, A-24, A-43, B-2, B-6, B-9, B-20, B-23, B-24
command tail, 8-2, 8-3, A-i, A-12, A-16
comlnand line, 4-1, 9-2, A-i, A-12, A-1.5, B-4
command line interpreter (eLI), A-13, A-16
COMMON, 1-6
COMPAC.LIB, 5-2
compiling, 5-7, 6-8, 6-9, 7-4
condition code (See exception code)
configuration ----

iRMX 86 Operating System! 6-6
iRMX 88 application, 7-4
run-time system, 3-1

connection, 4-1, 5-2, 5-3, 6-3, 6-4, 7-2, 7-3, 8-3, A-1, A-2, A-7,
A-22 thru A-25, A-33, A-37, A-38, A-40, A-41, A-43, B-19, B-21

console, 3-3, 4-1, 5-3, 5-7, 6-7, 8-3, A-2, A-38, A-39, B-3, B-21, B-49
contention, B-38
control-C, 5-3, A-39
control-D, 5-3, A-39
contro1-Z, A-39
CREDIT text editor, 2-1
CRT display, A-39, B-49
custom system, 2-1, 2-2, 2-4

Index-l

data types, 1-4, 1-5, 3-7, A-7, B-5
DCON87.LIB, 3-7, 3-9, 3-10
DEBUG control, 2-4, 2-5
DEBUG-86, 2-1, 2-3, 2-4
debuggers and debugging, Chapter 2, A-39

(See also DEBUG-86, iAPX 86,88 Monitor program,
iRrv1X 86 System Deou':! Moni tor, iRMX 86 System Debugger,
and symbolic debugging)

delimiters, A-13, A-31
denormalized operands, 3-8
device driver, 3-5, B-2, 8-5 tnru B-8, B-10, B-ll, B-13,

B-18 thru B-37, B-49
DGROUP, B-42, B-46, B-47
disk addressiny, 8-3
DISPOSE, B-42, B-45
DQ$ALLOCATE, 6-3, 6-5, 7-1, 8-2, A-17, B-8, B-19, B-43, B-47
DQ$ATTACH, 5-2, 6-3, 7-1, 7-2, 8-2, A-22, B-19
DQ$CHANGE$ACCESS, 5-2, A-32
OQ$CHANGE$EXTENSION, 7-1, A-31
DQ$CLOSE, 7-1, 8-2, A-42
DQ$CREATE, 5-2, 7-1, 8-2, A-23, B-19
OQ$DECODE$EXCEPTION, 6-3, 7-1, 7-2,A-48
DQ$DECODE$TIME, 5-3, A-10
OQ$DELETE, 5-2, 6-3, 7-1, A-25
DQ$DETACH, 7-1, 8-2, A-24, B-19
DQ$EXIT, 5-2, 7-1, 8-2, A-43, B-17
DQ$FILE$INFO, 5-3, A-28, A-29
DQ$FREE, 7-1, 8-2, A-18, B-19, B-45
OQGETARGUMENT, 7-1, 7-3, 8-2, A-7, A-12 thru A-14
DQ$GErr~CONNECTION$STATUS, 6-3, 7-1, 8-2, A-26, A-27
DQGETEXCEPTION$HANDLER, 7-1, 8-2, A-46,A-47, B-40
UQGETSIZE, 6-3, 7-1, 8-2, A-19, B-47
DQ$GE'r$SYSTEM$ID, 7-1, A--ll
DQGETTIME, 5-3, 6-3, A-9
DQ$OPEN, 5-3, 7-1, 7-3, 8-2, A-33, A-34, B-19
DQ$OVERLAY, 7-1, A-44
DQ$READ, 5-3, 7-1, 8-2, A-37
DQ$RENAME, 5-3, 6-3, 7-1, 7-3, A-30
DQ$RESERVE$IO$MEMORY, 5-3, A-20, A-21
DQ$SEEK, 5-3, 7-1, 8-2, A-35, A-36
DQ$SPECIAL, 7-1, 7-3, 8-2, A-38, A-39, B-19
DQ$SWITCH$BUFFER, 7-1, A-15, A-16
DQ$TRAP$CC, A-49
DQ$TRAP$EXCEPTION, 7-1, 7-3, 8-2, A-45, B-13, B-38
DQ$TRUNCATE, 5-3, 7-1, 8-2, 8-3, A-41
DQ$WRITE, 7-1, 8-2, A-40
dynamic variables, B-42, B-43, B-45

E80 87, 3-7 thru 3-11, 3-14
E8087.LIB, 3-7 thru 3-10
editor (See text editor)
EH87.LIB~-7 thru 3-10
end of record, B-2, B-6, B-18, B-25 thru B-27, B-32, B-33
end of file, 5-3, A-38, B-2, B-4, B-6, B-18, B-25, B-30, B-37
error (See exception)
ESCAPE, A-46

Index-2

exception codes, 3-15, 4-2, 4-3, 5-3, 5-4, 6-3, 6-6, 6-7, 7-2 thru 7-4, A-3,
A-4, A-6, B-3 thr u B-·5

for UDI procedures, A-9 thru A-49
for LRS procedures, B-8 thru B-49

exception conditions, A-2 thru A-4, B-4, B-17, B-38, B-40
exception handler and exception handling, 2-3, 3-3, 3-4, 3-7, 3-8, 3-15,

4-3, 5-5, 7-3,-9-1, A-3, A-4, A-7, A-45 thru A-49, B-1 thru B-5,
B-12 thru B-14, B-38 thru B-41

extension, A-31
EXTERNAL, 1-3, 1-4, 1-6
external labels, 1-3
EXTRN, 1-4

F86RNx.LI~, 3-5, 3-8, 3-9, 3-11, 3-13, 3-14
file descriptors, B-5, B-8, B-9, B-19, B-23 thru B-25, B-27, B-29, B-31,

B-32, B-34, B-36, B-37, B-42
file/device driver (See device driver)
file markers, B-18 ---
file name, 4-1, A-7, A-25, A-30 thru A-32, B-4, B-15, B-16

(See also path name)
file position pointer, A-26, A-33, A-36, A-37, A-40, A-41, B-18, B-19, B-26,

B-29 thru B-31, B-36, B-37
FILTER, 3-7, 9-1, 9-2
floating point, 1-7, 2-1, 3-1, 3-5, 3-7, 4-3
formatted files, B-6, B-20
FORTRAN-86/88, Chapter 1, 3-1, 3-5 thru 3-9, 3-11 thru 3-15, 4-4, 8-1, 9-2,

B-1, B-2, B-13, B-15, B-16, B-19, B-21, B-22, B-31, B-32, B-46
free (See memory manag emen t)
FUNCTION, 1-3

group, B-42, B-46

heap, 3-11, B-42, B-43, B-46

I/O, 2-3, 3-3 thru 3-5, 5-7, 6-1, 6-7, 7-1, 8-3, A-35, B-1, B-18, B-49
iAPX 86,88 Monitor Program, 2-2
ICE In-Circuit Emulator, 2-2 thru 2-4
IEEE proposed floating-point standard, 3-7, 9-1
initialization

of 8087, 5-5, A-6
of run-time system, 3-11, 3-14, 9-2~ B-12, B-13

INITFP, 3-14
Intellec Microcomput:er Development System, 2-4, 7-4

(See also Intellec Series III Microcomputer Development system)
Intellec Series III Microcomputer Development System, 2-1 thru 2-3, 5-1,

5 - 6, 5 - 7, B- 4 9
Interactive Configuration Utility (ICU), 7-4
interactive files and programs, A-35, A-45, B-2l
interrupt, 1-2, 3-3, 4-3, 4-4, 5-4 thru 5-6, 6-6, 7-4, 7-5, A-4 thru A-6
iRMX 86 Real-Time Multitasking Executive, 2-2, 2-3, 5-7, 5-9, Chapter 6
iRMX 86 System Debug Monitor, 2-2, 2-3
iRMX 86 System Debugger, 2-2, 2-3, 6-1
iRMX 88 Real-Time Multitasking Executive, Chapter 7
iSBC 337 Multimodule Numeric Data Processor, 2-1, 5-4
iSBC 86/12A Single Board Computer, 2-1, 2-2, B-49
iSBC 957B iAPX 86,88 Interface and Execution Package, 2-1

Index-3

ISIS-II, 2-1, 5-1
ISO, 1-1

Job, 3-11 tnru 3-14, A-1, A-17

LARGE.LIB, 5-2, 5-8
LIB86, 1-2, 1-4, 3-11
library, 1-2 thru 1-4, 3-1, 3-5, 3-6, 3-8, 3-11 thru 3-15, 4-1, 4-2,

5-2, 5-5, 5-7, 6-1, 6-2, 6-6 thru 6-7, 7-1, 7-4, 8-1, 8-2,
9-1 thru 9-3, B-47

line editing, A-38, A-39
LINK86, 1-2 thru 1-4, 2-5, 3-8, 3-12 thru 3-15, 5-8, 5-9, 6-7, 6-9,

8 -2, A-44, B-44
linkage and linking, 1-3, 2-1, 3-8, 3-11 thru 3-15, 4-1, 5-5, 5-7 thru 5-9,

6-2,~6, 6-9, 7-4, 9-1 thru 9-3, B-5, B-47
LOC86, 2-5, B-47
logical names, 6-8
Logical Record Interface (LRI), 3-4, 3-5, Appendix B
Logical Record System (LRS), 3-4, 3-5, 3-11, 3-13, 9-1, Appendix B

main module, 1-2, 3-11
memory mana~er and memory management, 3-4, 3-5, 4-1, 6-3, 6-4, 7-1, 8-3,

A-I, A-2, A-7, A-17 thru A-20, A-42, A-43, B-1, B-2, B-8, B-9, B-13,
B-42 thru B-48

memory pool (See memory management)
MEMORY segmen~B-47
MEMPOOL, 5-9, 6-7
models of segmentation, 3-11, 5-2, 6-2, 7-4, A-7, A-19, A-45, A-46, B-42,

B-46
MODULE, 1-3
module identification, 1-3
multitasking, 5-6, 6-1, 6-2, B-38, B-42

NA1'iE, 1-3
NaN, 3-8
NEW, B-42 thru B-44, B-46
NOPUBLICS, 3-12
NULL87.LIB, 3-7 thru 3-10, 3-12, 3-14, 5-3, 5-9, 6-12

OEM system, 2-1, 2-2
open, 8-3, A-24, A-33, A-37, A-41, B-2, B-4, B-5, B-6, B-8, B-9, B-10, B-15,

B-19 thru B-24
operatlng system, 3-5, 3-12, 3-13, 4-1 thru 4-3, 7-2, Chapter 8,

A-I thru A-4, A-9, A-II, A-13, A-25, A-33, A-38 A-45, .B-1, B-49
(See also iRMX 86, iRMX 88, ISIS-II, Series III Operating System)

overlays, 6-9, A-49, B-3

P86RNX.LIB, 3-5, 3-8, 3-10 thru 3-14, 5-8, 5-9, 6-12, B-49
parameter, 1-2, 1-6, 1-7, 3-6, 9-1, 9-2, A-4, A-6, A-8, B-15

for UDI procedures, A-9 thru A-49
for LRS procedures, B-8 thru B-49

parsing, 4-1, 9-2, A-7, A-12, A-IS, A-16, B-14
Pascal-86/88, Chapter 1, 3-1, 3-5 thru 3-8, 3-10 thru 3-15, 4-4, 5-7, 5-8,

6-10, 6-11, 8-1, 9-2, B-1, B-2, B-13, B-15, B-16, B-19 thru B-21,
B-23, B-29, B-31, 8-32, B-36, B-37, B-42, B-43, B-45, B-46, B-49

path name, 1-4,6-3,8-3,9-2, A-2, A-22, A-23, A-30, B-10, B-13, B-15,

Index-4

B-16, 8-19, B-21
PE8087, 3-7, 3-14
PL/M-86, Chapter 1, 3-6, 3-7, 3-10, 3-14, 4-4, 6-9, A-8, A-19, A-45,

B-3 thru B-5
preconnection, 9-2, 9-3, 8-4, B-12 thru B-16, B-42
printer, A-3, A-34, B-20
port, 2-3
PROGRAM, 1-3, 9-2, B-13
PUBLIC, 1-3, 1-4, 1-6, 9-2
public labels, 1-3, 3-12
PURGE, 3-12

read, A-33, A-40, B-2, 8-4, B-6, B-21, B-25, B-26, B-29, B-35
reentrancy, 3-5, 3-11 thru 3-13, 4-4, 5-6, 6-6, B-3, B-12, B-15, B-38, B-42
registers, 1-7, 2-2 thru 2-4, A-8, B-4
rewind, 8-2, B-6, B-34, B-35
RPB-86, B-49
RTI-88, 7-1, 7-2
RTNULL.LIB, 3-5, 3-8, B-5
RUN, 5-1, 5-7 thru 5·-9

scratch file (See workfile)
seek, 6-3, A-27A-33, A-40, B-2, B-6, B-20, B-29, B-30
segment, B-42, B-46, 8-47
Series III (See Intel1ec Series III Microcoluputer Development System)
SerIes III Operating System, Chapter 5
skip, B-2, B-6, B-31
SMALL. LIB, 5-2
s t a c k, 1-7, 4 - 3, 4 - 4, 9 - 2, A-8, B- 3
SUBMIT, 7-4
subprogram, 1-2, 1-7
subroutine (See subprogram)
SUBROUTINE, 1-3
symbolic debugging, 2-3 thru 2-5
synchronization, B-38, B-42
system calls, 2-3, 4-1, 4-2

task, 2-3, 3-11 thru 3-13, 6-6, A-1, A-6
termination, A-4, A-43, B-3, B-17
text editor, 2-1, 2-2
TEXT FILE, B- 21
TQ 001, 3-14
TQ-312, 9-1
TQ-999, 3-14
TQ$ALLOCATE, B-2, B-13, B-42 thru B-46
TQ$DEFAULTPL, 9-2, 9-3, B-13, B-14
TQ$DEVICE, B-2, B-6, B-10, B-11, B-49
TQ$ESTART, 9-1, B-3, B-13, B-14
TQ$EXIT, B-2, B-17
TQ$FILE$DESCRIPTOR, B-2, 8-5, B-8, B-9, B-14, B-24
TQ$FREE, B-2, B-13, B-42, B-44 thru B-46
TQGETERH, B-2, B-14, B-38 thru B-41
TQGETPRECON, B-2, 8-12 thru B-16, B-19
TQGETSMALL$HEAP, 3-11, B-2, B-13, B-42, B-46 thru B-48
T Q $ I N I'r I A LIZ E , B-2, B- 3, B-12 t h r u B-15, B- 3 8
TQ$INITIO, B-13

Index-5

TQ$INlrrMM, B-13
TQ$PARSECL, 9-2, B-13, B-14
TQSETERH, 9-1, B-2, B-14, B-38 thru B-41
TQ TRAP87, 5-5, 5-6
TQ$WHERES$TRAP87, 5-5, 5-6
transparent console input, A-38, A-39
transporting applications programs, 4-1, 4-2, A-2
truncate, 5-3, 8-3, B-37

unavoidable exception conditions, A-3, A-5
unformatted files, B-6, B-20
u nit n urn be r s, 9 - 2, 9 - 3, B--1 3, B -15, B-16
Universal Development Interface (UDI), 3-5, 4-1 thru 4-3, 5-2, 5-3, 5-7,

5-9, 6-1 thru 6-3, 6-6 thru 6-10, 7-1, 7-2, Chapter 8, 9-1,
Appendix A, B-1, B-3, B-8, B-13, B-17, B-19, B-38, B-40, B-43, B-45,
8-47, B-49

update, A-33, A-41, B-21, B-35
URXCOM.LIB, 6-2
URXLRG.LIB, 5-9, 6-2, 6-10, 6-12
URXSML.LIB, 6-2

version, ix, 3-11

workfile, 5-3, 8-3, A-3, B-19, B-20, B-23
write, A-33, A-39, A-41, B-2, B-4, B-6, B-21, B-27 thru B-29, B-35

Index-6

Run-Time Support Manual for iAPX 86,88 Applications
121776-002

REQUEST FOR READER'S COMMENTS

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all Intel product
users. This form lets you participate directly in the publication process. Your comments wi" help us correct and
improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this
publication. If you have any comments on the product that this publication describes, please contact your Intel
representative. If you wish to ordc~r publications, contact the Intel Literature Department (see page ii of this
manual).

1. Please describe any errors you found in this publication (include page number).

2. Does the publication cover tlhe information you expected or required? Please make suggestions for
improvement.

3. Is this the right type o'f publication for your needs? Is it at the right level? What other types of publications
are needed?

4. Did you have any difficulty unclerstanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating). _______________ _

NAME ______________________ , ___________ _ DATE _______ _

TITLE _______ , ___ , ______ , ______________________ _

COMPANY NAME/DEPARTMENT
ADDRESS ___________________ _ ______________________ ___

CITY _______ , __ _ STATE _________ _ ZIP CODE _____ _

(COUNTRY)

Please check here if you require a written reply. 0

WE'D LIKE YOUR COMMENTS ..•

This document is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 1040 SANTA CLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
Attn: Technical Publications MIS 6-2000
3065 Bowers Avenue
Santa Clara,CA 95051

IIIIII NO POSTAGE
NECESSARY

IF MAILED
IN U.S.A.

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

