
GUIDE TO USING
iRMX 86™ LANGUAGES

Order Number: 143907-001

Copyright © 1981 Intel Corporation
I Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 I

REV. REVISION HISTORY PRINT
DATE

-001 Original Issue 9/81

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Intel Corporation assumes no responsibility for any errors that may appear in this document.
Intel Corporation makes no commitment to update nor to keep current the information
contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry
embodied in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel
Corporation. Use, duplication or disclosure is subject to restrictions stated in Intel's software
license, or as defined in ASPR 7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without
the prior written consent of Intel CorPoration.

The following are trademarks ofIntel Corporation and its affiliates and may be used only to
identify Intel products:

BXP Intelevision Micromap
CREDIT Intellec Multibus
i iRMX Multimodule
ICE iSBC Plug-A-Bubble
iCS iSBX PROMPT
im Library Manager Promware
INSITE MCS RMX/80
Intel Megachassis System 2000
Intel Micromainframe UPI

pScope

and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, or RMX and a numerical suffix.

IA604/4821 2K Dol

PREFACE

The iRMX 86 languages are a group of language products and utilities that
run under the iRMX 86 Operating System as Human Interface commands. This
manual provides a general description of each product and refers you to
other manuals where you can find more detailed information about the
products. This manual also contains information, not found in the other
manuals, which describes how to use the language products in an iRMX 86
environment.

This manual is not intended to be a comprehensive reference manual; it
provides summary information and refers you to other manuals for most of
the detailed reference information. However, you should read this manual
before using the language products and utilities on an iRMX 86-based
system. This manual provides additional information needed by the iRMX
86 language user and identifies portions of the language and utilities
manuals that do not apply to the iRMX 86 language user.

READER LEVEL

This manual is intended for application programmers who are already
familiar with:

• The notions of program translation, linking, and locating

• The assembler, compiler, and utilities, as described in the Intel
language and utilities manuals

• The iRMX 86 Operating System, especially the Human Interface

NOTATIONAL CONVENTIONS

This manual uses the following conventions to illustrate syntax.

UPPERCASE

lowercase

[]

Uppercase information must be entered or coded
exactly as shown. You can, however, enter this
information in either uppercase or lowercase.

Lowercase fields contain variable information. You
must enter the appropriate value or symbol for
variable fields.

Fields within brackets are optional.

iii

underscore

The elipsis indicates that the preceding syntactic
item can be repeated an indefinite number of
times. It is often used within brackets following
a comma [, •••] to indicate that the preceding item
can be repeated, but each repetition must be
separated by a comma.

In examples of dialog at the terminal, user input
is underscored to distinguish it from system output.

Also, this manual uses the "railroad track" schematic to illustrate the
syntax of commands that invoke the language and utility products. This
schematic consists of what looks like an aerial view of a model railroad
setup, with syntactic elements scattered along the track. To interpret
the command syntax, you start at the left side of the schematic, follow
the track through all the syntactic elements you desire (sharp turns and
backing up are not allowed), and exit at the right side of the
schematic. The syntactic elements that you encounter comprise a valid
command. For example, a command that consists of a command name, a
pathname, and any number of optional controls would have the following
schematic representation:

You could enter this command in any of the following forms:

COMMAND pathname
COMMAND pathname control
COMMAND pathname control control •••

The arrows indicate the possible flow through the tracks; they are
omitted in the remainder of this manual.

Syntactic elements that appear close together, such as:

must be entered without spaces or other characters separating them.
Syntactic elements that appear farther appart must be entered with spaces
separating them. Syntactic elements that can be entered more than once
must also be separated with spaces.

iv

RELATED PUBLICATIONS

The following manuals provide additional information that may be helpful
to users of this manual.

Manual

8086/8087/8088 Macro Assembly Language Reference Manual for
8086-Based Development Systems

8086/8087/8088 Macro Assembler Operating Instructions for
8086-Based Development Systems

PL/M-86 User's Guide for 8086-Based Development Systems

Pascal-86 User's Guide

FORTRAN-86 User's Guide

iAPX 86,88 Family Utilities User's Guide for 8086-Based
Development Systems

Run-Time Support Manual for iAPX 86,88 Applications

iRMX 86'" Nucleus Reference Manual

iRMX 86'" Basic I/O System Reference Manual

iRMX 86'" Extended I/O System Reference Manual

iRMX 86'" Loader Reference Manual

iRMX 86'" System Programmer's Reference Manual

iRMX 86'" Human Interface Reference Manual

,EDIT Reference Manual

v

Number

121627

121628

121636

121539

121570

121616

121776

9803122

9803123

143308

143318

142721

9803202

143587

CHAPTER 1
INTRODUCTION

CONTENTS

iRMX 86 Languages and unr
iRMX 86 UD! Libraries •..................•.......•...•••.•..••.•..•.
Installing the Languages •••
Using the Language Products in an iRMX 86 Environment ••••••••••••••

System Hardware ••
Product Invocation •••
File Names and Device Names ••••••••••••••••••••••••••••••••••••••

Using the Rest of This Manual ••••••••••••••••••••••••••••••••••••••

CHAPTER 2
8086/8087/8088 MACRO ASSEMBLER
Writing Assembly Language Programs •••••••••••••••••••••••••••••••••
Invoking Operating System Calls ••••••••••••••••••••••••••••••••••••
Using the Assembler ••

Invoking the Assembler •••
Assembler Controls~ ••
Error Messages •••
Examp Ie ••

CHAPTER 3
PL/M-86 COMPILER
Writing PL/M-86 Programs •••
Making Operating System Calls ••••••••••••••••••••••••••••••••••••••
Using the Compiler •••

Invoking the PL/M-86 Compiler ••••••••••••••••••••••••••••••••••••
Compiler Controls ••
Error Messages ..••.••..•..•.•..•••......••..•....•...••••.•..•••.
Examp Ie ••

CHAPTER 4
PASCAL-86 COMPILER
Writing Pascal-86 Programs •••
Invoking Operating System Calls ••••••••••••••••••••••••••••••••••••
Using the Compiler •••

Invoking the Pascal-86 Compiler ••••••••••••••••••••••••••••••••••
Compiler Controls ••
Error Messages •••

Linking Pascal-86 Programs •••

vii

PAGE

1-2
1-2
1-3
1-4
1-4
1-5
1-5
1-6

2-1
2-1
2-1
2-2
2-3
2-6
2-6

3-1
3-2
3-2
3-3
3-4
3-8
3-9

4-1
4-2
4-2
4-2
4-3
4-6
4-7

CHAPTER 5
FORTRAN-86 COMPILER

CONTENTS (continued)

Writing FORTRAN-86 Programs •••••••••••••••••••••••••••••••.••••••••
Invoking Operating System Calls ••••••••••••••••••••••••••••••••
Using the Compiler •••••••••••••••••••••••••••••••••••••••

Invoking the FORTRAN-86 Compiler •••••••••••••••••••••••
COlllJ? iler Controls•....................................

Linking FORTRAN-86 Programs ••••••••••••••••••••••••••••••••••••••

CHAPTER 6
LINK86
Invoking LINK86.
LINK86 Controls •

...
Error Messages •••
Using Overlays in an iRMX 86 Environment •••••••••••••••••••••••••••

CHAPTER 7
LOC86
In voking LOeB 6 ..•••.••••••••••.••••.•.•....•..••..•••••..••.•.•••••
LoeB 6 Cont rol s •..•....•.•...•........•.•...••.•....••....•.•••..•••
Error Messages •••
Example •........•.....••.•...•.•......••..•.••••••.•....•..••...•.•

CHAPTER 8
LIB86
Invoking LIB86 •••
LIB86 Comrna.nds •.•••••.••.••

CHAPTER 9
OH86 •••

APPENDIX A
MEMORY REQUIREMENTS ••

viii

PAGE

5-1
5-2
5-2
5-3
5-4
5-7

6-1
6-2
6-6
6-6

7-1
7-2
7-6
7-6

8-1
8-2

9-1

A-I

l-l.
2-l.
3-l.
4-l.
5-l.
6-l.
7-l.
8-l.
A-l.

TABLES

Release Diskettes
8086/8087/8088 Macro Assembler Controls Summary ••••••••••••
PL/M-86 Compiler Controls Summary ••••••••••••••••••••••••••
Pascal-86 Compiler Controls Summary ••••••••••••••••••••••••
FORTRAN-86 Compiler Controls Summary •••••••••••••••••••••••
LINK86 Controls Summary ••••••••••••••••••••••••••••••••••••
LOC86 Controls Summary •••••••••••••••.•••••••••.•••••••••••
LIB86 Command Summary ••••••••••••••••••••••••••••••••••••••
Memory Requirements •..••....•..•....•....•...•.••••....••.•

ix

PAGE

1-3
2-3
3-4
4-4
5-4
6-3
7-3
8-2
C-l

CHAPTER 1. INTRODUCTION

The iRMX 86 languages and utilities are a group of products that provide
the iRMX 86 user with full program-development capability. The iRMX 86
languages and utilities include:

EDIT

ASM86

PLM86

PASC86

FORT86

LINK86

LOC86

LIB86

OH86

A powerful text editor.

The 8086/8087/8088 macro assembler.

The PL/M-86 compiler.

The Pascal-86 compiler.

The FORTRAN-86 compiler.

The 8086 Linker, which combines
individually-compiled object modules into a single,
relocatable object module.

The 8086 Locater, which assigns absolute addresses
to relocatable object modules.

The 8086 Librarian, which creates and maintains
object module libraries.

A program which converts absolute object modules to
hexadecimal format.

All of these products run on iRMX 86 systems, and they are totally
compatible with the corresponding language and utility products available
with Intel Series III development systems. The products that generate
object code (the assembler and the compilers) all generate modules in a
standard 8086 object module format that is compatible with UDI (the
Universal Development system Interface). Thus programs developed with
the iRMX 86 language products can run on any system that supports UDI, as
long as the programs make only UDI calls.

1-1

INTRODUCTION

iRMX 86 LANGUAGES AND UDI

The Universal Development system Interface (UDI) is a set of routines
that provides a standard method for applications to request operating
system services. Instead of requesting services directly from the
operating system (such as by making iRMX 86 or ISIS-II system calls), an
application program can call standard UDI routines to obtain the
services. These UDI calls are the same, regardless of the operating
system on which the application runs. (The RUN-TIME SUPPORT MANUAL FOR
iAPX 86, 88 APPLICATIONS describes these UDI routines in detail.) By
using this UDI interface, an application program can be ported from one
operating system to another without changing the source code.

Each operating system that supports UDI supplies separate sets of UDI
routines, in the form of UDI libraries. Each library translates the
individual UDI calls into specific operating system calls. Thus, in
order to run an application program on a Series III development system,
you would link that program to a Series III UDI library. To run the same
program on an iRMX 86-based system, you would instead link the program to
an iRMX 86 UDI library.

The iRMX 86 language products conform to the UDI standard. With the
exception of EDIT, which is not currently available with the Series III,
all iRMX language products are compatible with their Series III
counterparts. Therefore you can develop any portion of your code on
either system. Regardless of where it was developed, the code can run on
an iRMX 86 application system as long as you link it to an iRMX 86 UDI
library.

iRMX 86 UDI LIBRARIES

Three UDI libraries are delivered as part of the iRMX 86 Operating
System. These are interface libraries that you can link with your
programs to allow them to run in an iRMX 86 environment. You should use
the library that corresponds to the model of segmentation for your
program. The libraries include:

Library Model of Segmentation

URXLRG.LIB LARGE or MEDIUM

URXCOM.LIB COMPACT

URXSML.LIB SMALL

The language you use when writing your programs and the activities which
those programs perform determine whether you need to link the programs to
a UDI library. If you write programs in assembly language or PL/M-86,
you do not have to link your programs to a UDI library unless the
programs invoke specific UDI calls. This is because your assembly
language and PL/M-86 programs cannot access operating system services
without invoking specific operating system calls (either UDI calls or

1-2

INTRODUCTION

iRMX 86 calls). However, if you write your programs in Pascal-86 or
FORTRAN-86, you may have to link your program to a UDI library, even if
you made no explicit UDI calls. Both Pascal-86 and FORTRAN-86 have
formatted I/O features, which, if used, require you to link your programs
to UDI libraries.

INSTALLING THE LANGUAGES

The iRMX 86 language products reside on four diskettes. Table 1-1 lists
the pathnames of the products and their corresponding diskettes.

Table 1-1. Release Diskettes

RELEASE DISKETTE PATHNAME

iRMX 86 Assembler Diskette ASM86

iRMX 86 Language Utilities Diskette LINK86
LOC86
LIB86
OH86
EDIT

iRMX 86 Pascal Diskette PASC86

iRMX 86 PL/M Diskette PLM86

iRMX 86 FORTRAN Diskette FORT86

To install any of the products on your iRMX 86-based system, you must
copy the corresponding file from its diskette to a file on one of your
iRMX 86 secondary storage devices. (It is recommended that you place the
product on a file of the same name in directory SYSTEM.) This process
requires you to be familiar with the iRMX 86 file-naming conventions and
the Human Interface. If you need more information on these subjects,
refer to the iRMX 86 HUMAN INTERFACE REFERENCE MANUAL. The steps
required to install a language product include:

1. Place the release diskette into one of your diskette drives (this
procedure assumes drive Fl, an iSBC 204 drive).

1-3

INTRODUCTION

2. If you have not already attached drive FI, do so by entering the
following Human Interface command:

ATTACHDEVICE F1 AS :F1:

This command attaches the drive with physical name F1 and
associates it with logical name :F1:. The physical name "F1"
implies that the system expects your diskette to have been
formatted with a 128-byte volume granularity, the granularity of
the release diskette.

3. Copy the product from the release diskette to a file on one of
your secondary storage devices by entering the following Human
Interface command (this procedure assumes that you want to place
the product on the drive associated with your default prefix):

COpy :F1:product TO SYSTEH/product

where product is the name of the iRMX 86 language product.

Note that if you try to copy all your language products to files on a
single diskette, you will run out of space. If you have a diskette-based
system, you will have to store your language products on mUltiple
diskettes.

USING THE LANGUAGE PRODUCTS IN AN iRMX 86 ENVIRONHENT

After you have installed the language products on your iRMX 86-based
system, you can invoke them by specifying, at your Human Interface
terminal, the pathnames of the products followed by any necessary
parameters. Chapters 2 through 9 describe in more detail the invocation
lines for all products except EDIT. The EDIT REFERENCE MANUAL describes
the EDIT invocation line.

Chapters 2 through 9 also contain summaries of the controls or commands
associated with the products. Each chapter refers you to additional
manuals where you can find detailed reference information. However, you
should be aware of some additional information, not described in the
language and utility manuals, that will help you to use these language
products in an iRMX 86 environment. The following sections describe the
basic differences between using the language products on an Intel
development system, such as the Series III, and using the products on an
iRMX 86-based system.

SYSTEM HARDWARE

Host of the language and utility manuals state that you must have a
Series III development system in order to run the products. However, you
can run the iRMX 86 language products on your iRMX 86 system. You should
disregard all references to Series III hardware in the language and
utilities manuals.

1-4

INTRODUCTION

PRODUCT INVOCATION

The language and utility manuals state that you must use the RUN command
before invoking the products. The RUN command applies to Series III
development systems only. When you invoke the products on your iRMX
86-based system, you do not enter the RUN command. Therefore, disregard
all references to RUN.

FILE NAMES AND DEVICE NAMES

The language and utility manuals describe the Series III file- and
device-naming conventions. When you use the products on your iRMX
86-based system, you should specify iRMX 86 logical names and pathnames
for devices and files. Refer to the iRMX 86 HUMAN INTERFACE REFERENCE
MANUAL for more information on iRMX 86 logical names and pathnames.

Most of the language products produce output files. If you do not
explicitly specify an output file, the product will place the output on a
file whose pathname is a modification of the input pathname. The
language and utility manuals describe this as placing the output in a
file with the same pathname as the input file, but with a different
extension. In an iRMX 86-based system, the extension portion of the
pathname consists of all characters after the last period in the last
pathname element. For example, in the file:

PROG/TEST1.S0URCE

the extension consists of the characters "SOURCE." If you compile this
program with the following statement:

PLM86 PROG/TEST1.S0URCE

the compiler, by default nlaces the output in the following file:

PROG/TEST1.0BJ

If thp l~st element of the pathname does not contain a period (even if
somp of the directory names in the pathname do contain periods), the
language products add an appropriate extension to the input pathname to
create an output file. For example, the following file:

PROG/IN.PRG/TEST

has no extension. If you compile this program with the following command:

PLM86 PROG/IN.PRG/TEST

the compiler, by default, places the output in a file whose pathname is:

PROG/IN.PRG/TEST.OBJ

1-5

INTRODUCTION

USING THE REST OF THIS MANUAL

Chapters 2 through 9 of this manual describe the individual language
products (except EDIT). Each chapter discusses a single product and
includes the following information:

• A short discription of the product

• A description of the invocation line for the product

• A short list of the product's controls or commands

• A reference to other manuals where you will find more detailed
information about the product

• Additional information about the product that affects the way you
use it in an iRMX 86 environment

This manual does not contain a separate chapter for EDIT. The EDIT
REFERENCE MANUAL provides the complete description of how to use EDIT in
an iRMX 86 environment.

1-6

CHAPTER 2. 8086/8087/8088 MACRO ASSEMBLER

The 8086/8087/8088 Macro Assembler is a software development tool that
assembles programs written in the 8086/8087/8088 Macro Assembly
Language. This assembly language allows you to invoke 8086/8087/8088
machine instructions which let you use all the hardware functions of the
8086, 8087, and 8088 processors.

WRITING ASSEMBLY LANGUAGE PROGRAMS

The 8086/8087/8088 MACRO ASSEMBLY LANGUAGE REFERENCE MANUAL FOR
8086-BASED DEVELOPMENT SYSTEMS is the primary reference source for the
assembly language. You should refer to this manual for information on
data types, registers, the instruction set, codemacros, and the macro
processing language.

INVOKING OPERATING SYSTEM CALLS

Assembly language programs can call the operating system directly in two
ways: they can call UDI procedures or they can invoke iRMX 86 system
calls. For information about UDI procedures, refer to the RUN-TIME
SUPPORT MANUAL FOR iAPX 86,88 APPLICATIONS. For information about iRMX
86 system calls, refer to the iRMX 86 reference manuals listed in the
preface.

USING THE ASSEMBLER

The 8086/8087/8088 MACRO ASSEMBLER OPERATING INSTRUCTIONS FOR 8086-BASED
DEVELOPMENT SYSTEMS is the primary source of information for the
assembler. However, that manual is written specifically for users of
Series III development systems. Therefore, some of the information in
that manual does not accurately reflect how to use the assembler in an
iRMX 86 environment. Chapter 1 describes most of the differences between
using the assembler on a Series III and using it on an iRMX 86-based
system. The following sections provide the additional information that
you need to operate the assembler in an iRMX 86 environment. When the
information in the following sections conflicts with the information in
the assembler operating instructions manual, ignore the information in
the assembler operating instructions manual.

2-1

8086/8087/8088 MACRO ASSEMBLER

INVOKING THE ASSEMBLER

To invoke the 8086/8087/8088 macro assembler, enter the following command
at your Human Interface terminal:

~l(GVlf

where:

directory

inpath

control

Portion of the pathname that identifies the device
and directories which contain ASM86. You can omit
the device designation if the device corresponds to
the default prefix for your system. Otherwise,
enter the device's logical name, as specified in
the last ATTACHDEVICE Human Interface command.
Refer to the iRMX 86 HUMAN INTERFACE REFERENCE
MANUAL for more information about file and device
names.

Pathname of the file containing containing assembly
language source code. Refer to the iRMX 86 HUMAN
INTERFACE REFERENCE MANUAL for more information
about pathnames.

Controls give the assembler information that it
needs to define files, identify devices, and
produce the desired kind of object code. The next
section contains a list of assembler controls. You
can enter any number of controls in a single
invocation of the assembler. If you do not specify
a particular control, the assembler assumes the
default for that control.

As with any Human Interface command, you can continue the assembler
invocation on additional lines by entering the continuation character (&)
after any parameter (as the last character in a line). However, the,
Human Interface restricts a command to contain no more than 255
characters, including punctuation, embedded blanks, continuation
characters, non-executable comments, and carriage returns.

2-2

8086/8087/8088 MACRO ASSEMBLER

ASSEMBLER CONTROLS

The 8086/8087/8088 MACRO ASSEMBLER OPERATING INSTRUCTIONS FOR 8086-BASED
DEVELOPMENT SYSTEMS is the primary reference source for assembler
controls. However, Table 2-1 provides a summary of all assembler
controls. The following information applies to this table:

• Brackets ([]) denote optional parts of controls. The description
lists the default condition if you omit the optional part.

• Controls preceded by the * character are default controls.
Unless you explicitly specify otherwise, these controls are in
effect.

• Unless otherwise stated, you can enter the controls on the
assembler invocation line or include them in the source file.
However, some of the controls have little utility unless they are
included in the source file.

Table 2-1. 8086/8087/8088 Macro Assembler Controls Summary

CONTROL DESCRIPTION

DEBUG Places local symbol information in the object
DB file for symbolic debugging.

*NODEBUG Does not place local symbol information in the
NODB object file.

EJECT Indicates a page break location.
EJ

ERRORPRINT[(pathname)] Generates a list that summarizes the errors
EP encountered in assembly. The default file is

:CO:.

*NOERRORPRINT Does not generate a list of the errors
NOEP encountered.

* Default control

2-3

8086/8087/8088 MACRO ASSEMBLER

Table2-l. 8086/8087/8088 Macro Assembler Controls Summary (continued)

CONTROL

GEN
GE

NOGEN
NOGE

*GENONLY
GO

INCLUDE(pathname)
IC

*LIST
LI

NOLIST
NOLI

*MACRO
MR

NOMACRO
NOMR

*OBJECT[(pathname)]
OJ

NOOBJECT
NOOJ

* Default control

DESCRIPTION

Provides a full listing of all macro calls at all
levels, as well as the macro expansions, in the
listing file.

Provides a listing of source file lines only.
The bodies of macros are not printed, except
those macro expansion lines that contain errors.

Provides a listing of the text of the fully
expanded source file.

Includes the specified file as input to the
assembler.

Directs the assembler to include listing lines.

Directs the assembler to suppress printing of
listing lines. Error messages, with appropriate
line numbers and lines, are printed, however.

Directs the assembler to process macros.

Allows the user who has included no macro calls
in the source text to save assembly time.

Generates object code and writes that code to the
specified file. If you omit the pathname
parameter, the default object file has the same
pathname as the source file (with an extension
of OBJ) and resides on the same device as the
source file.

Does not generate object code.

2-4

8086/8087/8088 MACRO ASSEMBLER

Table 2-1. 8086/8087/8088 Macro Assembler Controls Summary (continued)

CONTROL DESCRIPTION

*PAGELENGTH(n)
PL

*PAGEWIDTH(n)
PW

*PAGING
PI

NOPAGING
NOPI

*PRINT[(pathname)]
PR

NOPRINT
NOPR

SAVE ••• RESTORE

SYMBOLS
SB

*NOSYMBOLS
NOSB

*TITLE(name)
TT

* Default control

Indicates the number of lines to be contained on
each page of the listing file. Default is 60
lines.

Sets the maximum number of characters allowed on
each line of the listing file. Default is 120
characters/line.

Formats the listing file into numbered pages with
headers at each page break.

Does not format the listing file into numbered
pages.

Generates a listing file on the specified file or
device. If you specify neither PRINT nor NOPRINT
on the command line, the listing file has the
same pathname as the source file (but with the
extension LST) and resides on the same device as
the source file.

Suppresses the listing file. The result is that
NOPAGING, NOSYMBOLS, and NOXREF are implied.

These controls allow the settings of certain
general controls to be saved on a stack (before
an INCLUDE control switches the input source to
another file) and then restored after the INCLUDE.

Produces a symbol table at the end of the listing
file.

Omits the symbol table from the end of the listing
file.

Gives a page or set of pages a title. The
default title is the module name specified with
the NAME directive.

2-5

8086/8087/8088 MACRO ASSEMBLER

Table 2-1. 8086/8087/8088 ~cro Assembler Controls Summary (continued)

CONTROL DESCRIPTION

*WORKFILES(:10gnm1:, Assigns the temporary assembler-generated files
:10gnm2:) to the devices or directories corresponding to

WF the specified logical names. Refer to the iRMX
86 HUMAN INTERFACE REFERENCE MANUAL for a
description of logical names. The default is
placement of the temporary files on the : WORK:
directory.

XREF Provides a symbol list with a cross-reference of
XR the lines where user-defined symbols are defined,

referenced, and purged. XREF overrides NOSYMBOLS.

*NOXREF Does not produce cross-referencing information.
NOXR

* Default control

ERROR MESSAGES

If the assembler returns an ASM86 I/O ERROR message, it also returns an
iRMX 86 condition code. To interpret this condition code, refer to the
iRMX 86 EXTENDED I/O SYSTEM REFERENCE MANUAL.

The 8086/8087/8088 MACRO ASSEMBLER OPERATING INSTRUCTIONS FOR 8086-BASED
DEVELOPMENT SYSTEMS provides complete descriptions for'the remaining
error messages.

EXAMPLE

Suppose the assembler resides in file SYSTEM/ASM86 on drive :FO: (where
:FO: is the default prefix) and your assembly language source program
resides in file PROG/TEST1.SRC on drive :Fl:. The following command
assembles that program:

-ASM86 :F1:PROG/TEST1.SRC
iRMX 86 8086/8087/8088 MACRO ASSEMBLER Vl.O

ASSEMBLY COMPLETE, NO ERRORS FOUND

The assembler places the object code in file PROG/TEST1.0BJ on drive :F1:.

2-6

CHAPTER 3. PL/M-86 COMPILER

The PL/M-86 compiler is a software development tool that compiles
programs written in the PL/M-86 language. This language is a high-level
language designed for both system and application programming.

WRITING PL/M-86 PROGRAMS

The PL/M-86 USER'S GUIDE FOR 8086-BASED DEVELOPMENT SYSTEMS is the
primary reference for information concerning the PL/M-86 language. You
should refer to this manual for information on the language elements and
for information on how to write PL/M-86 programs. However, the PL/M-86
user's guide contains some information that is either incomplete or does
not apply to programs that run in an iRMX 86 environment. This
information includes:

• INPUT AND OUTPUT

PL/M-86 does not provide formatted I/O capabilities like those of
FORTRAN or PASCAL, but it does provide built-in procedures (such
as INPUT and OUTPUT) which perform I/O functions. Th~ PL/M-86
user's guide discusses these procedures. However, in order to
use these functions, you must specify the correct input and
output port numbers. The iRMX 86 Basic and Extended I/O Systems
also provide you with I/O capabilities and a complete file
system. Refer to the iRMX 86 BASIC I/O SYSTEM REFERENCE MANUAL
and the iRMX 86 EXTENDED I/O SYSTEM REFERENCE MANUAL for more
information.

• FLOATING-POINT ARITHMETIC

The PL/M-86 user's guide states that you can use the REAL math
facility if your system contains an 8087 Numeric Data Processor
or if you link your program to an 8087 emulator. However, the
iRMX 86 Operating System does not support the use of the
emulator. If you intend to use the REAL math facility in a
multitasking environment, ensure that your iRMX 86 hardware
system contains an 8087 Numeric Data Processor.

3-1

PL/M-86 COMPILER

• INTERRUPT PROCESSING

The PL/M-86 user's guide contains an appendix which describes
run-time interrupt processing. The information in this appendix
is intended for users who run PL/M-86 programs in a non-iRMX 86
environment. You should disregard this appendix unless you are
writing programs tha.t will run in a non-iRMX 86 environment. To
set up interrupt handlers and tasks for an iRMX 86-based system,
refer to the iRMX 86 NUCLEUS REFERENCE MANUAL.

MAKING OPERATING SYSTEM CALLS

PL/M-86 programs can call the operating system directly in two ways: they
can call UDI procedures or they can invoke iRMX 86 system calls. For
information about UDI procedures, refer to the RUN-TIME SUPPORT MANUAL
FOR iAPX 86,88 APPLICATIONS. For information about iRMX 86 system calls,
refer to the iRMX 86 reference manuals listed in the preface.

USING THE COMPILER

The PL/M-86 USER'S GUIDE FOR 8086-BASED DEVELOPMENT SYSTEMS is the
primary reference source for information on how to use the PL/M-86
compiler. However, the chapters of that manual that discuss compiler
invocation and compiler controls are written specifically for users of
Series III development systems. Therefore, some of the information in
those chapters does not accurately reflect how to use the compiler in an
iRMX 86 environment. Chapter 1 describes most of the differences between
using the compiler on a Series III and using it in an iRMX 86
environment. However, the following item also applies:

• INTERMODULE CROSS-REFERENCE INFORMATION

The PL/M-86 user's guide describes a program called IXREF that
produces an intermodule cross-reference listing. This program
does not currently run on an iRMX 86-based system. Therefore,
you should ignore all references to the IXREF program.

The following sections provide the additional information you need tb
operate the PL/M-86 compiler in an iRMX 86 environment. When the
information in the following sections conflicts with the information in
the PL/M-86 user's guide, ignore the information in the user's guide.

3-2

PL/M-86 COMPILER

INVOKING THE PL/M-86 COMPILER

To invoke the PL/M-86 compiler, enter the following command at your Human
Interface terminal:

where:

directory

inpath

control

[)
-l~~~-~~~_c_on_t_ro_'_)-::-:~J-

Portion of the pathname that identifies the device
and directories which contain PLM86. You can omit
the device designation if the device corresponds to
the default prefix for your system. Otherwise,
enter the device's logical name, as specified in
the last ATTACHDEVICE Human Interface command.
Refer to the iRMX 86 HUMAN INTERFACE REFERENCE
MANUAL for more information about file and device
names.

Pathname of the file containing PL/M-86 source
code. Refer to the iRMX 86 HUMAN INTERFACE
REFERENCE MANUAL for more information about
pathnames.

Controls give the compiler information that it
needs to define files, identify devices, and
produce the desired kind of object code. The next
section contains a list of compiler controls. You
can enter any number of controls in a single
invocation of the compiler. If you do not specify
a particular control, the compiler assumes the
default for that control.

As with any Human Interface command, you can continue the compiler
invocation on additional lines by entering the continuation character (&)
after any parameter (as the last character in a line). However, the
Human Interface restricts a command to contain no more than 255
characters, including punctuation, embedded blanks, continuation
characters, non-executable comments, and carriage returns.

3-3

PL/M-86 COMPILER

COMPILER CONTROLS

The PL/M-86 USER'S GUIDE FOR 8086-BASED DEVELOPMENT SYSTEMS is the
primary reference source for the PL/M-86 compiler controls. However,
Table 3-1 provides a summary of all compiler controls. The following
information applies to this table:

• Brackets ([]) denote optional parts of controls. The
description lists the default condition if you omit the optional
part.

• Controls preceded by the * character are default controls.
Unless you specify otherwise, these controls are in effect.

• Unless otherwise stated, you can enter the controls on the
compiler invocation line or include them in the source file.
However, some of the controls have little utility unless they
are included in the source file.

Table 3-1. PL/M-86-Compiler Controls Summary

CONTROL DESCRIPTION

CODE Directs the compiler to display the generated
object code, in standard assembly language
format. This code is interleaved with the
program code on the listing file.

*NOCODE

*COND

NOCOND

DEBUG

*NODEBUG

* Default control

Directs the compiler to suppress the listing of
the generated object code.

Causes the compiler to display on the listing
file all text within IF blocks, even if the IF
blocks are not compiled.

Causes the compiler to suppress the listing of IF
blocks, if those IF blocks are not compiled.,

Places local symbol information in the object
file for symbolic debugging.

Does not place local symbol information in the
object file.

3-4

PL/M-86 COMPILER

Table 3-1. PL/M-86 Compiler Controls Summary (continued)

CONTROL DESCRIPTION

EJECT Indicates a page break location. The line
containing the EJECT control begins a new page.

IF Provide conditional compilation capabilities.
ELSE These controls cannot be used on the compiler
ELSIF invocation line.
ENDIF

INCLUDE(pathname) Includes the specified file as input to the
compiler.

*INTVECTOR Creates an interrupt vector consisting of a
4-byte entry for each interrupt procedure in the
module.

NOINTVECTOR Does not generate an interrupt vector.

IXREF[(pathname)] Writes an intermediate intermodule cross-
reference listing to the specified file. The
default intermediate cross-reference file has the
same pathname as the source file but with the
extension IXI.

*NOIXREF Does not generate an intermediate intermodule
cross-reference file.

*LEFTMARGIN(column) Specifies the left margin of the source input.
If not specified, the default is LEFTMARGIN(1).

*LIST Directs the compiler to include listing lines in
the listing file.

NOLIST Directs the compiler to suppress printing of
listing lines. Error messages, with appropriate
line numbers and lines, are printed, however.

* Default control

3-5

PL/M-86 COMPILER

Table 3-1. PL/M-86 Compiler Controls Summary (continued)

CONTROL DESCRIPTION

*OBJECT[(pathname)] Generates object code and writes that code to the
specified iRMX 86 file. The default object file
has the same pathname as the source file (but
with an extension of OBJ) and resides on the same
device as the source file.

NOOBJECT Does not generate object code.

*OPTIMIZE(n) Governs the kind of optimization performed in
generating object code. The n can range from 0 to
3. If you omit this control, OPTIMIZE(l) is the
default.

OVERFLOW Detects overflow conditions in signed (INTEGER)
arithmetic.

*NOOVERFLOW Does not check for overflow conditions.

*PAGELENGTH(n) Indicates the number of lines to be contained on
each page of the listing file. Default is 60
lines/page.

*PAGEWIDTH(n) Sets the maximum number of characters allowed on
each line of the listing file. Default is 120
characters/line.

*PAGING Formats the listing file into numbered pages with
headers at each page break.

NOPAGING Does not format the listing file into numbered
pages. The symbol table is separated from the
source file by four lines.

* Default control

3-6

PL/M-86 COMPILER

Table 3-1. PL/M-86 Compiler Controls Summary (continued)

CONTROL DESCRIPTION

*PRINT[(pathname)] Generates a listing file on the specified file or
device. If you specify neither PRINT nor NOPRINT
on the command line, the listing file has the same
pathname as the source file (but with an extension
of LST) and resides on the same device as the
source file.

NOPRINT

*RAM

ROM

SAVE ••• RESTORE

SET(switch assign-I
ment)

RESET(switch list)

* SMALL
COMPACT
MEDIUM
LARGE

SUBTITLE('name')

SYMBOLS

*NOSYMBOLS

* Default control

Suppresses the listing file.

Places constants within the DATA segment for all
segmentation models except LARGE, in which
constants are placed in the CODE segment.

Places constants in the CODE segment.

These controls allow the settings of certain
general controls to be saved on a stack before an
INCLUDE control switches the input source to
another file and then restored after the INCLUDE.

Sets values for compiler switches.

Sets all switches in the switch list to "false" (0).

Specifies the memory size requirements of the
program being compiled.

Causes the specified subtitle to appear on all
pages until another SUBTITLE control appears.

Produces a symbol table at the end of the listing
file.

Omits the symbol table from the end of the listing
file.

3-7

PL/M-86 COMPILER

Table 2-1. PL/M-86 Compiler Controls Summary (continued)

CONTROL DESCRIPTION

*TITLE('name') Places the specified name on the title line of
each page of listed output. If not specified,
the default name is the module name.

*TYPE Places information about the types of symbols
into the object module.

NO TYPE Does not place type definitions into the object
module.

*WORKFILES(:lognml:, Assigns the temporary assembler-generated files
:lognm2:) to the devices or directories corresponding to

WF the specified logical names. Refer to the iID1X
86 HUMAN INTERFACE REFERENCE MANUAL for a
description of logical names. The default is
placement of the temporary files on the : WORK:
directory.

XREF Provides, in the listing file, a symbol list with
a cross-reference of the lines where user-defined
symbols are defined, referenced, and purged.

*NOXREF Does not produce cross-referencing information.

* Default control

ERROR MESSAGES

If the compiler returns a PL/M-86 I/O error message, it also returns an
iRMX 86 exception code. To interpret this exception code, refer to the
iRMX 86 EXTENDED I/O SYSTEM REFERENCE MANUAL.

The PL/M-86 USER'S GUIDE FOR 8086-BASED DEVELOPMENT SYSTEMS provides
complete descriptions of the remaining error messages.

3-8

PL/M-86 COMPILER

EXAMPLE

Suppose the PL/M-86 compiler resides in file PLM86 on device :Fl: and a
PL/M-86 source program, DEVELOP/SOURCE/TEST2, resides on device :F2:.
The following command compiles the source program:

-:Fl:PLM86 :F2:DEVELOP/SOURCE/TEST2 &
** OBJECT(:F2:DEVELOP/OBJECT/TEST2) LARGE
iRMX 86 PL/M-86 COHPILER VLO
PL/M-86 COMPILATION COMPLETE. 0 WARNINGS, 0 ERRORS

The compiler reads the input from file TEST2 in directory DEVELOP/SOURCE
and places the object code in file TEST2 in directory DEVELOP/OBJECT.

3-9

CHAPTER 4. PASCAL-86 COMPILER

The Pascal-86 compiler is a software development tool that compiles
programs written in the Pascal-86 language. This language is a
higher-level language than PL/M-86, and therefore well suited to
application programming.

WRITING PASCAL-86 PROGRAMS

The PASCAL-86 USER'S GUIDE is the primary reference for information
concerning the Pascal-86 language. You should refer to this manual for
information on the language elements and for information on how to write
Pascal-86 programs. However, the PASCAL-86 USER'S GUIDE contains some
information that is either incomplete or does not apply to programs that
run in an iRMX 86 environment. This information includes:

• FLOATING-POINT ARITHMETIC

The PASCAL-86 USER'S GUIDE states that your programs can use
floating-point arithmetic if the hardware system on which you run
your program contains an 8087 Numeric Data Processor or if you
link your program to an 8087 emulator. However, the iRMX 86
Operating System does not support the use of the emulator. If
you intend to use floating-point arithmetic in an iRMX 86
multitasking environment, ensure that your hardware system
contains an 8087 Numeric Data Processor.

• INPUT AND OUTPUT

Pascal-86 provides both formatted I/O capabilities (such as
READLN and WRITELN) and port I/O procedures (such as INBYT and
OUTBYT). Parts of the PASCAL-86 USER'S GUIDE may lead you to
believe that you can't use the formatted I/O facilities if you
intend to run your programs in an iRMX 86 environment. This is
not correct. Programs that run in an iRMX 86 environment can use
either method of I/O, although to use port I/O you must specify
the correct port addresses.

• INTERRUPT CONTROL PROCEDURES

The PASCAL-86 USER'S GUIDE describes several procedures that aid
in interrupt processing. Since the iRMX 86 Operating System
implements its own form of interrupt processing (refer to the
iRMX 86 NUCLEUS REFERENCE MANUAL), Pascal-86 programs that run in
an iRMX 86 environment must not use these Pascal-86 interrupt
control procedures.

4-1

PASCAL-86 COMPILER

• RUN-TIME INTERFACE

The PASCAL-86 USER'S GUIDE contains an appendix describing the
run-time interface. This appendix states that you must provide
your own interface procedures if your programs run in any
environment other than that of the Series III. However, this is
not true for the iRMX 86 environment. You do not need to develop
your own run-time interface as long as you link your programs to
the UDI interface library URXLRG.LIB. Therefore, when running
your programs in an iRMX 86 environment, you can ignore the
run-time interface appendix.

INVOKING OPERATING SYSTEM CALLS

Pascal-86 programs cannot directly call the operating system, either by
calling UDI procedures or by invoking iRMX 86 system calls. Currently,
the only way to access the iRMX 86 Operating System is through Pascal-86
built-in procedures such as READLN and WRITELN.

USING THE COMPILER

The PASCAL-86 USER'S GUIDE is the primary reference source for
information on how to use the PASCAL-86 compiler. However, the chapters
of that manual that discuss compiler invocation and compiler controls are
written specifically for users of Series III development systems.
Therefore, some of the information in those chapters does not accurately
reflect how to use the compiler in an iRMX 86 environment. Chapter 1
describes most of the differences between using the assembler on a Series
III and using it on an iRMX 86-based system. The following sections
provide the additional information you need to operate the Pascal-86
compiler in an iRMX 86 environment. When the information in the
following sections conflicts with the information in the PASCAL-86 USER'S
GUIDE, ignore the information in the user's guide.

INVOKING THE PASCAL-86 COMPILER

To invoke the Pascal-86 compiler, enter the following command at your
Human Interface terminal:

~l(~)J

4-2

where:

directory

inpath

control

PASCAL-86 COMPILER

Portion of the pathname that identifies the device
and directories which contain PASC86. You can omit
the device designation if the device corresponds to
the default prefix for your system. Otherwise,
enter the device's logical name, as specified in
the last ATTACHDEVICE Human Interface command.
Refer to the iRMX 86 HUMAN INTERFACE REFERENCE
MANUAL for more information about file and device
names.

Pathname of the file containing Pascal-86 source
code. Refer to the iRMX 86 HUMAN INTERFACE
REFERENCE MANUAL for more information about
pathnames.

Controls give the compiler information that it
needs to define files, identify devices, and
produce the desired kind of object code. The next
section contains a list of compiler controls. You
can enter any number of controls in a single
invocation of the compiler. If you do not specify
a particular control, the compiler assumes the
default for that control.

As with any Human Interface command, you can continue the compiler
invocation on additional lines by entering the continuation character (&)
after any parameter (as the last character in a line). However, the
Human Interface restricts a command to contain no more than 255
characters, including punctuation, embedded blanks, continuation
characters, non-executable comments, and carriage returns.

COMPILER CONTROLS

The PASCAL-86 USER'S GUIDE is the primary reference source for the
Pascal-86 compiler controls. However, Table 4-1 provides a summary of
all compiler controls. The following information applies to this table:

• Brackets ([]) denote optional parts of controls. The description
lists the default condition if you omit the optional part.

• Controls preceded by the * character are default controls.
Unless you specify otherwise, these controls are in effect.

• Unless otherwise stated, you can enter the controls on the
compiler invocation line or include them in the source file.
However, some of the controls have little utility unless they are
included in the source file.

4-3

PASCAL-86 COMPILER

Table 4-1. Pascal-86 Compiler Controls Summary

CONTROL DESCRIPTION

CHECK Checks for invalid references, overflow, and
out-of-range assignments and subscripts during
compilation and run time.

*NOCHECK Does not do any checking.

CODE Lists the approximate assembly code on the list
file.

*NOCODE Suppresses the listing of assembly code.

DEBUG Generates debug records in the object module. -

*NODEBUG Does not generate debug records.

EJECT Forces the start of a new page of printed output.

*ERRORPRINT[{path- Writes all compiler-generated error messages to
name)] the specified file. If you omit this control (or

the pathname), the compiler writes the
information to :co:.

NOERRORPRINT Does not write compiler-generated error messages.

*EXTENSIONS_ Allows Intel extensions to standard Pascal.

NOEXTENSIONS Issues an extension warning whenever the source
program contains any Intel extensions to standard
Pascal.

INCLUDE{pathname) Includes the specified file as input to the
compiler.

INTERRUPT{proc[-u] Designates procedures as interrupt procedures and
[, ...]) generates an interrupt vector.

* Default condition

4-4

PASCAL-86 COMPILER

Table 4-1. Pascal-86 Compiler Controls Summary (continued)

CONTROL DESCRIPTION

*LIST Lists source lines in the listing file.

NOLIST Suppresses the listing of source lines.

*OBJECT[(pathname) Generates object code and writes that code to the
specified iRMX 86 file. The default object file
has the same pathname as the source file (but with
an extension of OBJ) and resides on the same device
as the source file.

NOOBJECT Does not generate an object file.

*PRINT[(pathname») Generates a listing file on the specified file or
device. If you specify neither PRINT nor NOPRINT
on the command line, the listing file has the same
pathname as the source file (but with an extension
of LST) and resides on the same device as the
source file.

NOPRINT Suppresses the listing file.

SUBTITLE('name') Causes the specified subtitle to appear on all
pages until another SUBTITLE control appears.

*TITLE('name') Places the specified name on the title line of each
page of listed output. If you do not specify this
control, the default name is the module name.

*TYPE Places information about the types of symbols into
the object module.

NOTYPE Does not place type definitions into the object
module.

*XREF Provides, in the listing file, a cross-reference
listing of source program identifiers.

NOXREF Does not produce cross-referencing information.

* Default control

4-5

PASCAL-86 COMPILER

ERROR MESSAGES

If the Pascal-86 compiler returns a fatal error whose number is in the
range 9000-9002 or 9006-9017, it also returns an iR}~ 86 exception code.
To interpret this exception code, refer to the iRMX 86 E~TENDED I/O
SYSTEM REFERENCE MANUAL.

EXAMPLE

Suppose the Pascal-86 compiler resides in file PASC86 on drive :FO: (the
default prefix for your system) and a Pascal-86 source program,
PROG/TEST3.SRC resides on drive :F1:. The following command compiles
that program:

-PASC86 :F1:PROG/TEST3.SRC
iRMX 86 Pascal-86 V1.0
PARSE(O), ANALYSE(O), NOXREF, OBJECT

COMPILATION OF TEST3 COMPLETED, 0 ERROR DETECTED,
END OF Pascal-86 COMPILATION.

Pascal-86 places the object code in file PROG/TEST3.0BJ on drive :F1:.

LINKING PASCAL-86 PROGRAMS

The PASCAL-86 USER'S GUIDE describes the run-time support libraries that
you need to link with your programs in order for those programs to run on
a Series ~II development system. With two exceptions, this is the same
set of libraries that you need in order to run your programs on an iRMX
86-based system. The exceptions are:

• The modules E8087.LIB and E8087 provide support for the 8087
emulator. This emulator is not supported in an iRMX 86
environment.

• The module LARGE.LIB, which is described in the manual, is the
system services (UDI) library for the Series III environment. To
obtain system services from an iRMX 86 environment, link your
programs to the iRMX 86 UDI library (URXLRG.LIB) instead of to
LARGE!LIB. You do not need to provide any other special
libraries.

The remainder of the libraries provide the same functions as listed in
the PASCAL-86 USER'S GUIDE. Therefore, when linking your Pascal-86
programs, include some or all of the following libraries (in the order
listed here):

CEL.LIB The floating-point built-in function library. You
must link your program to this library if the
program calls any floating-point functions.

4-6

P86RNO.LIB
P86RNI.LIB

P86RN2.LIB
P86RN3.LIB

8087.LIB

URXLRG.LIB

PASCAL-86 COMPILER

Formatting and I/O libraries which are required for
any run-time I/O support. If your programs do not
perform any I/O, you should link your program to
RTNULL.LIB to resolve external references.

Default logical record system libraries. If your
programs perform I/O and run in an iRMX 86
environment, you should link the programs to these
libraries.

The 8087 Numeric Data Processor support library.
If you require floating-point arithmetic, you
should include the 8087 Numeric Data Processor in
your hardware system and link your program to this
library. If your program does not perform any
floating-point arithmetic, you should link it to
87NULL.LIB to resolve external references.

The iRMX 86 UDI library. If you plan to run your
program in an iRMX 86 environment, you should link
it to this library.

For example, the following command links a Pascal-86 program
(INCHES.OBJ), which does not use floating-point arithmetic, to the
libraries it needs for execution in an iRMX 86 environment.

-:LINK86 :FI:INCHES.OBJ,
** :FI:P86RNO.LIB,
** :FI:P86RNI.LIB,
** :FI:P86RN2.LIB,
** :FI:P86RN3.LIB,
** :FI:87NULL.LIB,
** :FI:URXLRG.LIB
** TO :FI:INCHES BIND

iRMX 86 8086 LINKER, VI.O

&
&
&
&
&
&
&

MEMPOOL(+2000H)

4-7

CHAPTER 5. FORTRAN-86 COMPILER

The FORTRAN-86 compiler is a software development tool that compiles
programs written in the FORTRAN-86 language. This language is a superset
of the FORTRAN 77 subset defined by the American National Standards
Institute (ANSI).

WRITING FORTRAN-86 PROGRAMS

The FORTRAN-86 USER'S GUIDE is the primary reference for information
concerning the FORTRAN-86 language. You should refer to this manual for
information on the language elements and for information on how to write
FORTRAN-86 programs. However, the FORTRAN-86 USER'S GUIDE contains some
information that is either incomplete or does not apply to programs that
run in an iRMX 86 environment. This information includes:

• INPUT/OUTPUT STATEMENTS

The FORTRAN-86 USER'S GUIDE states that the console input device
and the console output device are preconnected for units 5 and 6
respectively in a Series III system. This is also true for an
iRMX 86 environment.

You cannot use the FORTRAN statements BACKSPACE and ENDFILE to
manipulate iRMX 86 physical files, such as :CI:, :CO:, line
printers, or other such files. FORTRAN-86 returns a run-time
error in such cases.

You cannot use the OPEN statement to open an iRMX 86 physical
file for direct access. Physical files are by definition
sequential files and must be opened for sequential access only.
Attempts to open physical files for direct access result in
run-time errors.

If you use the OPEN statement to open an iRMX 86 file and specify
a status of UNKNOWN or specify no status at all, the iRMX 86
Operating System will open the file with a mode appropriate to
the file. That is, it will open iRMX 86 physical files for
reading if they correspond to input devices (such as :CI:), for
writing if they correspond to output devices (such as :CO: and
line printers), and for both reading and writing if they
correspond to I/O devices such as disk drives. The Operating
System will open named files for both reading and writing. Refer
to the description of the S$OPEN system call in the iRMX 86
EXTENDED I/O SYSTEM REFERENCE MANUAL for more information about
access modes.

5-1

FORTRAN-86 CONPILER

• FLOATING-POINT ARITHNETIC

The FORTRAN-86 USER'S GUIDE states that you can use the
floating-point data types (REAL, DOUBLE PRECISION, and TE}WREAL)
and perform floating-point operations if your system contains an
8087 Numeric Data Processor or if you link your program to an
8087 emulator. However, the iRMX 86 Operating System does not
support the use of the emulator. If you intend to use
floating-point arithmetic in a multitasking environment, ensure
that your iRMX 86 hardware system contains an 8087 Numeric Data
Processor.

• INTERRUPT PROCESSING

The FORTRAN-86 USER'S GUIDE contains an appendix which describes
run-time interrupt processing. The information in this appendix
is intended for users who run FORTRAN-86 programs in a non-iRMX
86 environment. You should disregard the sections that discuss
interrupt procedures unless you are writing programs that will
run in a non-iRMX 86 environment. To set up interrupt handlers
and tasks for an iRNX 86-based system, refer to the iRMX 86
NUCLEUS REFERENCE MANUAL.

INVOKING OPERATING SYSTEM CALLS

FORTRAN-86 programs cannot directly call the operating system, either by
calling UDI procedures or by invoking iRMX 86 system calls. Currently,
the only way to access the iRMX 86 Operating System is through FORTRMi-86
statements such as OPEN, CLOSE, BACKSPACE, REWIND, ENDFILE, READ, WRITE,
and PRINT.

USING 'I'HE-CQMPILER

The FORTRAN-86 USER'S GUIDE is the primary reference source for
information on how to use the FORTRAN-86 compiler. However, the chapters
of that manual that discuss compiler invocation and compiler controls are
written specifically for users of Series III development systems.
Therefore, some of the information in those chapters does not accurately
reflect how to use the compiler in an iRMX 86 environment. Chapter 1
describes most of the differences between using the compiler on a Series
III and using it on an iRMX 86-based system. The following sections
provide the additional information you need to operate the FORTRAN-86
compiler in an iRMX 86 environment. When the information in the
following sections conflicts with the information in the FORTRAN-86
USER'S GUIDE, disregard the information in the user's guide.

5-2

FORTRAN-86 COMPILER

INVOKING THE FORTRAN-86 COMPILER

To invoke the FORTRAN-86 compiler, enter the following command at your
Human Interface terminal:

--..I(~~~...&.)--:I-L:=::J ~ ~ ' ___ I

where:

directory

inpath

control

Portion of the pathname that identifies the device
and directories which contain FORT86. You can omit
the device designation if the device corresponds to
the default prefix for your system. Otherwise,
enter the device's logical name, as specified in
the last ATTACHDEVICE Human Interface command.
Refer to the iRMX 86 HUMAN INTERFACE REFERENCE
MANUAL for more information about file and device
names.

Pathname of the file containing FORTRAN-86 source
code. Refer to the iRMX 86 HUMAN INTERFACE
REFERENCE MANUAL for more information about
pathnames.

Controls give the compiler information that it
needs to define files, identify devices, and
produce the desired kind of object code. The next
section contains a list of compiler controls. You
can enter any number of controls in a single
invocation of the compiler. If you do not specify
a particular control, the compiler assumes the
default for that control.

As with any Human Interface command, you can continue the compiler
invocation on additional lines by entering the continuation character (&)
after any parameter (as the last character in a line). However, the
Human Interface restricts a command to contain no more than 255
characters, including punctuation, embedded blanks, continuation
characters, non-executable comments, and carriage returns.

5-3

I

FORTRAN-86 COMPILER

COMPILER CONTROLS

The FORTRAN-86 USER'S GUIDE is the primary reference source for the
FORTRAN-86 compiler controls. However, Table 5-1 provides a summary of
all compiler controls. The following information applies to this table:

• Brackets ([]) denote optional parts of controls. The description
lists the default condition if you omit the optional part.

• Controls preceded by the * character are default controls.
Unless you specify otherwise, these controls are in effect.

• Unless otherwise stated, you can enter the controls on the
compiler invocation line or include them in the source file.
However, some of the controls have little utility unless they are
included in the source file.

Table 5-1. FORTRAN-86 Compiler Controls Summary

CONTROL DESCRIPTION

CODE Lists pseudo-assembly code on the list file.
CO

*NOCODE Suppresses the listing of pseudo-assembly code.
NOCO

DEBUG Generates debug records in the object module.
DB

*NODEBUG Does not generate debug records.
NODB

D066 Assumes that all DO-loops in the program conform
to the ANSI 1966 standard (DO-loops must perform
at least one iteration during execution).

*D077 Assumes that all DO-loops in the program conform
to the ANSI 1977 standard (zero iteration
DO-loops are permitted).

* Default control

5-4

FORTRAN-86 COMPILER

Table 5-1. FORTRAN-86 Compiler Controls Summary (continued)

CONTROL DESCRIPTION

EJECT[(number)] Forces the start of a new page of printed output.
EJ

ERRORLIMIT(number) Terminates compilation prematurely after the
EL compiler detects the specified number of errors.

*NOERRORLIMIT Allows compilation to continue until the end of
NOEL the program, regardless of the number of errors

the compiler encounters.

EXCEPTION Compiles the subroutine as an exception handling
procedure.

FREEFORM Accepts programs written in nonstandard input
FF format.

*NOFREEFORM Accepts programs only if they are written in
NOFF standard format.

IGNORE(control[, •••] Ignores the specified general controls during
IN compilation.

INCLUDE(pathname) Includes the specified file as input to the
IC compiler.

INTERRUPT(proc[=n] Designates procedures as interrupt procedures.
[, • • • J)

IT

*LIST Lists source lines in the listing file.
LI

NOLIST Suppresses the listing of source lines until the
NOLI occurrence of the next LIST control.

* Default control

5-5

FORTRAN-86 COMPILER

Table 5-1. FORTRAN-86 Compiler Controls Summary (continued)

CONTROL DESCRIPTION

*OBJECT[(pathname)]
OJ

NOOBJECT
NOOJ

*PAGELENGTH(n)
PL

*PAGEWIDTH(n)
PW

*PRINT[(pathname)]
PR

NOPRINT
NOPR

REENTRANT
RE

STORAGE(INTEGER
intlen[,
LOGICAL*
loglen])

STORAGE (LOGICAL*
IQglen[,
INTEGER*
intlen])

ST

* Default control

Generates object code and writes that code to the
specified iRMX 86 file. The default object file
has the same pathname as the source file (but
with an extension of OBJ) and resides on the same
device as the source file.

Does not generate an object file.

Indicates the number of lines to be contained on
each page of the listing file. Default is 60
lines.

Sets the maximum number of characters allowed on
each line of the listing file. Default is 120
characters/line.

Generates a listing file on the specified file or
device. If you specify neither PRINT nor NOPRINT
on the command line, the listing file has the
same pathname as the source file (but with an
extension of LST) and resides on the same device
as the source file.

Suppresses the listing file.

Indicates that a particular subroutine or functipn
can call itself.

Specifies the default lengths, in bytes, applied
to INTEGER and/or LOGICAL data items. Default
is STORAGE(INTEGER*2,LOGICAL*1).

5-6

I

I

FORTRAN-86 COMPILER

Table 5-1. FORTRAN-86 Compiler Controls Summary (continued)

CONTROL DESCRIPTION

SUBTITLE('name') Causes the specified subtitle to appear on all
ST pages until another SUBTITLE control appears.

SYMBOLS Produces a symbol table at the end of the listing
SB file.

*NOSYMBOLS Omits the symbol table from the end of the listing
NOSB file.

*TITLE('name') Places the specified name on the title line of
TT each page of listed output. If not specified,

the default name is the module name.

*TYPE Places information about the types of symbols
TY into the object module.

NOTYPE Does not place type definitions into the object
NOTY module.

*XREF Provides a symbol-table listing of source program
XR identifiers.

NOXREF Does not produce symbol table information.
NOXR

* Default control

LINKING FORTRAN-86 PROGRAMS

The FORTRAN-86 USER'S GUIDE describes the run-time support libraries that
you need to link with your programs in order for those programs to run on
a Series III development system. With two exceptions, this is the same
set of libraries that you need in order to run your programs on an iRMX
86-based system. The exceptions are:

• The modules E8087.LIB and E8087 provide support for the 8087
emulator. This emulator is not supported in an iRMX 86
multitasking environment.

5-7

FORTRAN-86 COMPILER

• The module LARGE.LIB, which is described in the user's guide, is
the system service (UDI) library for the Series III environment.
To obtain system-service support for an iRMX 86 environment, link
your programs to the iRMX 86 UDI library (URXLRG.LIB) instead of
to LARGE.LIB. You do not need to provide any other special
libraries.

The remainder of the libraries provide the same functions as listed in
the FORTRAN-86 USER'S GUIDE. Therefore, when linking your FORTRAN-86
programs, include some or all of the following libraries (in the order
shown here):

CEL.LIB The floating-point intrinsic function library. You
must link your program to this library if the program
calls any floating-point functions.

F86RNO.LIB
F86RNl.LIB
F86RN2.LIB

Formatting and I/O libraries which are required for any
run-time I/O support. If your programs do not perform
I/O, you should link your program to RTNULL.LIB to
resolve external references.

F86RN3.LIB
F86RN4.LIB

Default logical record system libraries. If your
programs perform I/O and run in an iRMX 86
environment, you should link the programs to these
libraries.

8087.LIB The 8087 Numeric Data Processor support library. If
you require floating-point arithmetic, you should
include the 8087 Numeric Data Processor in your
hardware system and link your program to this
library. If your program does not perform any
floating-point arithmetic, you should link it to
87NULL.LIB to resolve external references.

URXLRG.LIB The iRMX 86 UDI library. If you plan to run your
program in an iRMX 86 environment, you should link it
to this library.

For example, the following command links a FORTRAN-86 program
(PROG/MULT3.0BJ), which uses floating-point arithmetic, to the libraries
it needs for execution in an iRMX 86 environment.

-LINK86 : Fl:PROG/MULT3.0BJ, &
** :Fl:CEL.LIB 2 &
** :Fl:F86RNO.LIB 2 &
** :Fl:F86RNl.LIB, &
** :Fl:F86RN2.LIB, &
** :Fl:F86RN3.LIB, &
** : Fl: F86RN4.LIB, &
** :Fl:8087.LIB, &
** :Fl:URXLRG.LIB &
** TO : Fl : PROG/MUL T3 BIND MEMPOOL(+2000H)
iRMX 86 8086 LINKER, Vl.O

5-8

CHAPTER 6. LINK86

LINK86 combines 8086 object modules (produced by the assembler and
compilers) and resolves references between independently translated
modules. If the BIND and MEMPOOL controls are specified, the resulting
module can be run in an iRMX 86 environment without using LOC86 to assign
absolute addresses.

The iAPX 86,88 F~fILY UTILITIES USER'S GUIDE FOR 8086-BASED DEVELOPMENT
SYSTEMS is the primary reference source for information on LINK86. You
should refer to this manual for detailed descriptions of each LINK86
control. However, that manual is written specifically for users of
Series III development systems. Therefore, some of the information in
the manual does not accurately reflect how to use LINK86 in an iRMX 86
environment. Chapter 1 describes most of the differences between using
LINK86 on a Series III and using it on an iRMX 86-based system. The
following sections provide the additional information you need to operate
LINK86 in an iRMX 86 environment. When the information in the following
sections conflicts with the information in the family utilities manual,
disregard the information in the family utilities manual.

INVOKING LINK86

To invoke LINK86, enter the following command at your Human Interface
terminal:

where:

directory

)--00(inpath-list :>-or--< outpath

control

Portion of the pathname that identifies the device
and directories which contain LINK86. You can omit
the device designation if the device corresponds to
the default prefix for your system. Otherwise,
enter the device's logical name, as specified in
the last ATTACHDEVICE Human Interface command.
Refer to the iRMX 86 HUMAN INTERFACE REFERENCE
MANUAL for more information about file and device
names.

6-1

inpath-list

outpath

control

LINK86

Pathnames, separated by commas, of the files and
libraries which are to be linked together. Refer
to the iRMX 86 HUMAN INTERFACE REFERENCE MANUAL for
more information about pathnames.

Pathname of the file to receive the linked output
module. If you omit both the outpath parameter and
the BIND control, LINK86 places the output module
in a file that has the same pathname as the first
element in inpath-list, but has an extension of
LNK. If you omit the outpath parameter but include
the BIND control, LINK86 places the output module
in a file that has the same pathname as the first
element in inpath-list, but has no extension.

Controls give LINK86 information that it needs to
combine modules and generate output. The next
section contains a list of LINK86 controls. You
can enter any number of controls in a single
invocation of LINK86. If you do not specify a
particular control, LINK86 assumes the default for
that control.

As with any Human Interface command, you can continue the LINK86 command
on additional lines by entering the continuation character (&) after any
parameter (as the last character in a line). However, the Human
Interface restricts a command to contain no more than 255 characters,
including punctuation, embedded blanks, continuation characters,
non-executable comments, and carriage returns.

LINK86 CONTROLS

The iAPX 86,88 FAMILY UTILITIES USER'S GUIDE FOR 8086-BASED DEVELOPMENT
SYSTEMS is the primary reference source for the LINK86 controls.
However, Table 6-1 provides a summary of all controls. The following
information applies to this table:

• Brackets ([]) denote optional parts of controls. The description
lists the default condition if you omit the optional part.

• Controls preceded by the * character are default controls.
Unless you specify otherwise, these controls are in effect.

6-2

CONTROL

BIND
BI

*NOBIND
NOBI

*COMMENTS
CM

NOCOl1MENTS
NOCM

*LlNES
LI

NOLlNES
NOLI

*MAP
MA

NOMAP
NOMA

Table 6-1.

MEMPOOL(minsize[,maxsize])
MP

NAME(module name)
NA

* Default Control

LINK86

LINK86 Controls Summary

DESCRIPTION

Combines input modules into a
load-time-Iocatable (LTL) module which can
be loaded and executed in an iRMX 86
environment.

Does not produce an LTL module.

Includes object file comment records
in the output file.

Removes all but nonpurgable comment
records from the output file.

Includes line number information in
the output file.

Removes line number information from
the output file.

Produces a link map and inserts it in
the PRINT file.

Inhibits production of a link map.

Specifies the dynamic memory
requirements of the program. If your
programs run in an iRMX 86 environment, you
should use this control to specify the
amount of dynamic memory needed to create
iRMX 86 objects.

Assigns the specified module name to
the output module.

6-3

LINK86

Table 6-1. LINK86 Controls Summary (continued)

CONTROL DESCRIPTION

OBJECTCONTROLS(controls)
OC

ORDER(group name(segment name
[class name overlay name]
[, ...])

OD

OVERLAY[(overlay name)]
OV

*NOOVERLAY
NOOV

*PRINT[(pathname)]
PR

NOPRINT
NOPR

* Default Control

Applies the specified controls to the
object file only, instead of to both
the object and print files. Valid
controls include:

LINES/NOLINES
COMMENTS/NOCOMMENTS
SYMBOL S/NO SYMBOL S
PUBLICS[EXCEPT]/NOPUBLICS[EXCEPT]
TYPE/NOTYPE
PURGE/NOPURGE

Specifies partial or complete order
for the segments in one or more
groups.

Combines all input modules into a
single overlay module.

Does not create an overlay module.

Directs the link map and other
diagnostic information to the
specified file. If omitted, the
listing file has the same pathname as
the input file (but with an extension
of MPl).

Suppresses the map file.

6-4

LINK86

Table 6-1. LINK86 Controls Summary (continued)

CONTROL

PRINTCONTROLS(controls)
PC

*PUBLICS [EXCEPT(public symbol
[, ...])]

PL [EC]

NOPUBLICS [EXCEPT(public symbol
[, ...])]

NOPL [EC]

PUBLICSONLY(pathname[, •••])
PO

PURGE
PU

*NOPURGE
NOPU

RENAMEGROUPS(group name1 TO
group name 2[, •••])

RG

SEGSIZE(segment name[class name
overlay name](minsize
[,maxsize]) [, •••])

SS

* Default Control

DESCRIPTION

Applies the specified controls to the
print file only, instead of to both
the object and print files. Valid
controls include:

LINES/NOLINES
COMMENTS/NOCOMMENTS
SYMBOLS/NO SYMBOLS
PUBLICS[EXCEPT]/NOPUBLICS[EXCEPT]
TYPE/NOTYPE
PURGE/NOPURGE

Includes the public symbol records in
the output file. If not specified,
all public symbol records are
included.

Omits public symbol records from the
output file.

Includes only the absolute public
symbol records of the argument files
in the output file.

Removes all debug and public records
from the output file.

Includes all debug and public records
in the output file.

Changes the group names assigned by
the translator.

Specifies the minimum memory space
needed for any segment.

6-5

LINK86

Table 6-1. LINK86 Controls Summary (continued)

CONTROL DESCRIPTION

*SYMBOLS Includes all local symbol records in
SB the output file.

NOSYMBOLS Omits local symbol records from the
NOSB output file.

*SYMBOLCOLUMNS(n) Specifies the number of columns to be
SC used when producing the symbol table

for the object module. The default
is SYMBOLCOLUMNS(2).

*TYPE Performs type checking on the object
TY file.

NOTYPE Does not perform type checking.
NOTY

* Default Controls

ERROR MESSAGES

If LINK86 returns an error message whose number is in the range 1-4, it
also returns an iRMX 86 exception code. To interpret this exception
code, refer to the iRMX 86 EXTENDED I/O SYSTEM REFERENCE MANUAL.

USING OVERLAYS IN AN iRMX 86 ENVIRONMENT

If your assembly language or PL/M-86 programs use overlays and use UDI
calls to load the overlays (the DQ$OVERLAY procedure), you should take
care to ensure that you link the UDI library to your program correctly.
The family utilities manual contains an example of linking an overlay
program. This example lists a two-step link process, as follows:

1. Link the root and each of the overlays separately, specifying the
OVERLAY control, but not the BIND control, in each LINK86 command.

2. Link all the output modules together in one module, specifying
the BIND control, but not the OVERLAY control.

6-6

LINK86

This is the same process that you should use when linking your iRMX 86
overlay programs. However, you must ensure that you link the entire UDI
library to the root portion of the program and not to any of the
overlays. To do this, use the INCLUDE control to include the UDI
externals file (UDI.EXT) with the assembly or compilation of the root
portion of the program. By including this file with the root, you make
external references to all UDI routines from that root. Then when you
link the root to the UDI library, LINK86 pulls in all of the UDI
routines, not just the ones called in the root. Since you are linking
the UDI library to the root only, this prevents you from having
unsatisfied externals when you link the root to the overlays.

For example, suppose your program consists of three files, ROOT.OBJ,
OVIA.OBJ, and OV2A.OBJ, the root and overlay files, respectively. You
have compiled these program modules with the PL/M-86 compiler and
included the UDI externals file UDI.EXT with the compilation of the
root. Assuming that LINK86 resides on the default logical device in
directory SYSTEM and that the object files reside on device :Fl: in
directory PROG, the following LINK86 commands will link the overlay
program and produce an executable module. This happens in two steps.

1. The first three LINK86 commands separately link the root and
overlay portions of the program. The root portion of the program
is linked to the UDI library.

-LINK86 :Fl:PROG/ROOT.OBJ, &
:Fl:PROG!URXLRG.LIB OVERLAY

iRMX 86 8086 LINKER, Vl.0

-LINK86 :Fl:PROG/OVIA.OBJ OVERLAY(OVERLAYl)
iRMX 86 8086 LINKER, Vl.0

-LINK86 :Fl:PROG/OV2A.OBJ OVERLAY(OVERLAY2)
iRMX 86 8086 LINKER, Vl.O

2. The next LINK86 command links together in one module all the
output modules produced in the first step.

-LINK86 :Fl:PROG/ROOT.LNK, &
:Fl:PROG!OVlA.LNK, &
:Fl:PROG/OV2A.LNK &

TO :Fl:PROGRAMl BIND MEMPOOL(+2000H)
iRMX 86 8086 LINKER, Vl.0

6-7

CHAPTER 7. LOC86

LOC86 changes relocatable object modules into absolute object modules.
It takes a single object module as input and generates a print file and a
located object file.

The iAPX 86,88 FAMILY UTILITIES USER'S GUIDE FOR 8086-BASED DEVELOPMENT
SYSTEMS is the primary reference source for information on LOC86. You
should refer to that manual for detailed descriptions of each LOC86
control. However, that manual is written specifically for users of
Series III development systems. Therefore, some of the information in
the manual does not accurately reflect how to use LOC86 in an iRMX 86
environment. Chapter 1 describes most of the differences between using
LOC86 on a Series III and using it on an iRMX 86-based system. The
following sections provide the additional information you need to operate
LOC86 in an iRMX 86 environment. When the information in the following
sections conflicts with the information in the family utilities manual,
disregard the information in the family utilities manual.

INVOKING LOC86

To invoke LOC86, enter the following command at your Human Interface
terminal:

where:

directory

inpath outpath

control

Portion of the pathname that identifies the device
and directories which contain LOC86. You can omit
the device designation if the device corresponds to
the default prefix for your system. Otherwise,
enter the device's logical name, as specified in
the last ATTACHDEVICE Human Interface command.
Refer to the iRMX 86 HUMAN INTERFACE REFERENCE
MANUAL for more information about file and device
names.

7-1

inpath

outpath

control

LOC86

Pathname of the file to be located. Refer to the
iRMX 86 HUMAN INTERFACE REFERENCE MANUAL for more
information about pathnames.

Pathname of the file to receive the located output
module. If you omit the outpath parameter, LOC86
places the output module in a file that has the
same pathname as the input file, but has no
extension.

Controls give LOC86 information that it needs to
assign addresses and generate output. The next
section contains a list of LOC86 controls. You can
enter any number of controls in a single invocation
of LOC86. If you do not specify a particular
control, LOC86 assumes the default for that control.

As with any Human Interface command, you can continue the LOC86 command
on additional lines by entering the continuation character (&) after any
parameter (as the last character in a line). However, the Human
Interface restricts a command to contain no more than 255 characters,
including punctuation, embedded blanks, continuation characters,
non-executable comments, and carriage returns.

LOC86 CONTROLS

The iAPX 86,88 FAMILY UTILITIES USER'S GUIDE FOR 8086-BASED DEVELOPMENT
SYSTEMS is the primary reference source for the LOC86 controls. However,
Table 7-1 provides a summary of all controls. The following information
applies to this table:

• Brackets ([]) denote optional parts of controls. The description
lists the default condition if you omit the optional part.

• Controls preceded by the * character are default controls.
Unless you specify otherwise, these controls are in effect.

7-2

LOC86

Table 7-1. LOC86 Controls Summary

CONTROL DESCRIPTION

ADDRESSES (SEGMENTS(segment
[class[overlay]]
(address)[, •••])
CLASSES(class(address)

[, ...]),

AD(SM)
AD(CS)
AD(GR)

BOOTSTRAP
BS

*COMMENTS
CM

NOCOMMENTS
NOCM

GROUPS(group(address)
[, ...])

INITCODE[(address)]
IC

*LlNES
LI

NOLlNES
NOLI

*MAP
MA

NOMAP
NOMA

NAME(module name)
NA

* Default Control

Overrides the LOC86 default address
assignment algorithm and assigns
absolute addresses.

Places the code for a long jump to the
module's start address at location
OFFFFOH.

Includes object file comment records
in the output file.

Removes all but nonpurgable comment
records from the output file.

Includes code to initialize the
segment registers.

Includes line number information in
the output file.

Removes line number information from
the output file.

Produces a link map and inserts it in
the PRINT file.

Inhibits production of a link map.

Assigns the specified ~odule name to
the output module.

7-3

LOC86

Table 7-1. LOC86 Controls Swnmary (continued)

CONTROL DESCRIPTION

OBJECTCONTROLS(controls)
OC

-ORDER(SEGMENTS(segment[class
[overlay]] [, •••]),
CLASSES(class[(segment
[, ...]) [, ...]))

OD

*PRINT[(pathname)]
PR

NOPRINT
NOPR

PRINTCONTROLS(controls)
PC

* Default Control

Causes the specified controls to be
applied to the object file only,
instead of to both the object and
print files. Valid controls include:

LINES/NOLINES
COMMENTS/NOCOMMENTS
SYMBOLS/NOSYMBOLS
PUBLICS/NOPUBLICS
PURGE/NO PURGE

Specifies partial or complete order
for the segments in one or more
groups.

Directs the locate map and other
diagnostic information to the
specified file. If omitted, the
listing file has the same pathname as
the input file (but with an extension
of MP2). '

Suppresses the map file.

Causes the specified controls to be
applied to the print file only,
instead of to both the object and
print files. Valid controls include:

7-4

LINES/NOLINES
COMMENTS/NOCOMMENTS
SYMBOLS/NOSYMBOLS
PUBLICS/NOPUBLICS
PURGE/NOPURGE

LOC86

Table 7-1. LOC86 Controls Summary (continued)

CONTROL

*PUBLICS
PL

NOPUBLICS
NOPL

PURGE
PU

*NOPURGE
NOPU

RESERVE(addressl TO address2
[, ...]

RS

SEGSIZE(segment name[class name
[overlay name]](size)

SS

START(public symbol)
START (paragraph ,offset)
ST

*SYMBOLS
SB

NO SYMBOLS
NOSB

*SYMBOLCOLUMNS(n)
SC

* Default Controls

DESCRIPTION

Includes the public symbol records in
the output file. If not specified,
all public symbol records are
included.

Omits public symbol records from the
output file.

Removes all debug or public records
from the output file.

Includes all debug or public records
in the output file.

Prevents LOC86 from locating segments
in the specified areas of memory.

Specifies the memory space used by a
segment.

Specifies the start address of the
program.

Includes all local symbol records in
the output file.

Omits local symbol records from the
output file.

Specifies the number of
used when producing the
for the object module.
is SYMBOLCOLUMNS(2).

7-5

columns to be
symbol table
The default

LOC86

ERROR MESSAGES

If LOC86 returns an I/O error message (error number 1), it also returns
an iRMX 86 exception code. To interpret this exception code, refer to
the iRMX 86 EXTENDED I/O SYSTEM REFERENCE MANUAL.

EXAMPLE

The following command assigns absolute addresses to the module
PROG/TEST3.LNK and places the located module on file PROG/TEST3. It
orders the classes and assigns addresses starting with the CODE class.
It also generates a map file on file PROG/TEST3.MP2.

-LOC86 PROG/TEST3.LNK TO PROG/TEST3 &
** ORDER (CLASSES (CODE, DATA, STACK, HEMORY)) &
** ADDRESSES (CLASSES (CODE (3COOH))) &
** MAP PRINT (PROG/TEST3.MP2)

7-6

CHAPTER 8. LIB86

LIB86 allows you to create, modify, and examine library files. It is an
interactive program which you enter by specifying a LIB86 invocation
line. Then, you enter individual LIB86 commands to manipulate the
library files.

The iAPX 86,88 FAMILY UTILITIES USER'S GUIDE FOR 8086-BASED DEVELOPMENT
SYSTEMS is the primary reference source for information on LIB86. You
should refer to that manual for detailed descriptions of the LIB86
commands. However, that manual is written specifically for users of
Series III development systems. Therefore, some of the information in
the manual does not accurately reflect how to use LIB86 in an iRMX 86
environment. Chapter 1 describes most of the differences between using
LIB86 on a Series III and using it on an iRMX 86-based system. The
following sections provide the additional information you need to operate
LIB86 in an iRMX 86 environment. When the information in the following
sections conflicts with the information in the family utilities manual,
disregard the information in the family utilities manual.

INVOKING LIB86

To invoke LIB86, enter the following command at your Human Interface
terminal:

where:

directory

l~l~J

Portion of the pathname that identifies the device
and directories which contain LIB86. You can omit
the device designation if the device corresponds to
the default prefix for your system. Otherwise,
enter the device's logical name, as specified in
the last ATTACHDEVICE Human Interface command.
Refer to the iRMX 86 HUMAN INTERFACE REFERENCE
MANUAL for more information about file and device
names.

8-1

LIB86

comment Any comment you wish to include on the invocation
line. This comment is ignored by LIB86.

LIB86 COMMANDS

After you enter the invocation line, LIB86 responds by displaying an
asterisk (*). You can then enter any of the LIB86 commands. The iAPX
86,88 FAMILY UTILITIES USER'S GUIDE FOR 8086-BASED DEVELOPMENT SYSTEMS is
the primary reference source for the LIB86 commands. However, Table 8-1
provides a summary of all commands. The following information applies to
this table:

• Brackets ([]) denote optional parts of commands. The description
lists the default condition if you omit the optional part.

Table 8-1. LIB86 Command Summary

COMMAND DESCRIPTION

ADD inpath[(module [, •••]) Adds modules from the files specified
[, •••] TO libpath by the inpath parameters to the

A library specified by the libpath
parameter.

CREATE pathname Creates the specified file as a
C library.

DELETE pathname(module [, •••]) Deletes modules from the specified
D library file.

EXIT Terminates the LIB86 session and
E returns control to the Human

Interface.

LIST pathname(module [, ...]) Lists modules contained in the
[, ...] [TO pathname] specified file and optionally lists
[PUBLICS] all publics.

L [P]

8-2

CHAPTER 9. OH86

OH86 converts 8086 absolute object modules to 8086 hexadecimal format.
The iAPX 86,88 FAMILY UTILITIES USER'S GUIDE FOR 8086-BASED DEVELOPMENT
SYSTEMS is the primary reference source for information on OH86.
However, that manual is written specifically for users of Series III
development systems. Therefore, some of the information does not
accurately reflect how to use OH86 in an iRMX 86 environment. Chapter 1
describes most of the differences between using OH86 on a Series III and
using it on an iRMX 86-based system. The following paragraphs provide
the additional information you need to operate OH86 in an iRMX 86
environment. When the information in the following sections conflicts
with the information in the family utilities manual, disregard the
information in the family utilities manual.

To invoke OH86, enter the following command at your Human Interface
terminal:

where:

directory

inpath

outpath

Portion of the pathname that identifies the device
and directories which contain OH86. You can omit
the device designation if the device corresponds to
the default prefix for your system. Otherwise,
enter the device's logical name, as specified in
the last ATTACHDEVICE Human Interface command.
Refer to the iRMX 86 HUMAN INTERFACE REFERENCE
MANUAL for more information about file and device
names.

Pathname of the file which contains an 8086
absolute object module. Refer to the iRMX 86 HUMAN
INTERFACE REFERENCE MANUAL for more information
about pathnames.

Pathname of the file to receive the 8086
hexadecimal format module. If you omit the outpath
parameter, OH86 places the output module in a file
that has the same pathname as the input file, but
has the extension HEX.

9-1

APPENDIX A. MEMORY REQUIREMENTS

Table A-I lists the memory requirements for the iRMX 86 language
products. This table assumes that you store your language products on
secondary storage devices and that you load and run them with the Human
Interface. The Total column indicates the minimum amount of free space
(RAM not reserved for the operating system or other programs) that your
iRMX 86 system must contain when running the language products. The
other columns divide this minimum memory into code, data, and dynamic
memory.

Table A-I. Memory Requirements

LANGUAGE STATIC DYNAMIC
PRODUCT CODE DATA MEMORY TOTAL

ASM86 Vl.0 31.5K 64K 19.1K

I

114.6K

PLM86 V1.0 30.1K 64K 17.9K 112K

LINK86 Vl.0 28K 64K 18.6K 110.6K

LOC86 V1.0 32K 64K 12K 108K

LIB86 VI.O 12.3K 64K 12K 88.3K

OH86 Vl.0 7.2K 64K 12K 83.2K

EDIT Vl.O 12K 64K 4.9K 80.9K

A-I

INDEX

8086/8087/8088 Macro Assembler 2-1

assembler 2-1
controls 2-3
error messages 2-6
invocation 2-2
operating system calls 2-1

ATTACHDEVICE command 1-4

controls
assembler 2-3
FORTRAN-86 5-4
LINK86 6-2
LOC86 7-2
Pascal-86 4-3
PL/M-86 3-4

cross-reference information 3-2

device names 1-5
differences 1-4

file and device names 1-5
product invocation 1-5
system hardware 1-4

error messages
assembler 2-6
LINK86 6-6
LOC86 7-6
Pascal-86 4-6
PL/M-86 3-8

extensions 1-5

file names 1-5
floating-point arithmetic

FORTRAN-86 5-2
Pascal-86 4-1
PL/M-86 3-1

FORTRAN-86 5-1
controls 5-4
floating-point arithmetic 5-2
I/O 5-1
interrupt processing 5-2
invocation 5-3
linking programs 5-7
operating system calls 5-2

hardware 1-5

Index-1

INDEX (continued)

I/O
FORTRAN-86 5-1
Pascal-86 4-1
PL/M-86 3-1

installing the languages 1-3
intermodule cross-reference 3-2
interrupt processing

FORTRAN-86 5-2
Pascal-86 4-1
PL/M-86 3-2

invocation
assembler 2-2
FORTRAN-86 5-3
LIB86 8-1
LINK86 6-1
LOC86 7-1
OH86 9-1
Pascal-86 4-2
PL/M-86 3-3

invoking the language products 1-4
iRMX 86 environment 1-4

LIB86 8-1
commands 8-2
invocation 8-1

libraries 1-2, 4-6
LINK86 6-1

controls 6-2
error messages 6-6
invocation 6-1
overlays 6-6

linking programs 6-1
FORTRAN-86 5-7
Pascal-86 4-6

LOC86 7-1
controls 7-2
error messages 7-6
invocati.on 7-1

macro assembler 2-1

OH86 9-1
operating system calls 2-1, 3-2, 4-2, 5-2
overlays 6-6

Pascal-86 4-1
controls 4-3
error messages 4-6
floating-point arithmetic 4-1
I/O 4-1
interrupt control procedures 4-1
invocation 4-2
linking programs 4-6
operating system calls 4-2
run-time interface 4-2

physical files 5-1

Index-2

INDEX (continued)

PL/M-86 3-1
controls 3-4
cross-reference information 3-2
error messages 3-8
floating-point arithmetic 3-1
I/O 3-1
interrupt processing 3-2
invocation 3-3
operating system calls 3-2

real arithmetic
FORTRAN-86 5-2
Pascal-86 4-1
PL/M-86 3-1

release diskettes 1-3

Series III differences 1-4
file and device names 1-5
product invocation 1-5
system hardware 1-4

system hardware 1-5

UDI 1-2
universal development system interface 1-2
URXCOM.LIB 1-2
URXLRG.LIB 1-2, 4-6, 5-8
URXSML.LIB 1-2
using the language products 1-4

Index-3

REQUEST FOR READER'S COMMENTS

Guide to Using
iRMX 86™ Languages

143907-001

Intel Corporation attempts to provide documents that meet the needs of all Intel product users. This form lets
you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this
document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of documents are
needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating. _____ _

NAME __________________________ DATE _____ _

TITLE

COMPANY NAME/DEPARTMENT _______________________ _

ADDRESS ______________________________________ __

CITY _____________________ STATE ___ ZIP CODE ___ _

Please check here if you require a written reply. 0

WE'D LIKE YOUR COMMENTS ...

This document is one of aseries describing Intel products. Your comments on the back of this form
will help us produce better manuals. Each reply will be carefully reviewed by the responsible
person. All comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 79 BEAVERTON, OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
5200 N.E. Elam Young Pkwy.
Hillsboro, Oregon 97123

O.M.S. Technical Publications

I II II I NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

intJ
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

