
intef
• • • • • •

• •
• •
•

• • • • • • • •
• • • • • • • •

• • • • • • • •
• • • • • • • • •
• • • • • • •
• • • • • • • • •
• • • •

• • • • • •
• • • • •

• • • • •
• • • • •
• • • • • • • •

• • • • •
• • • • • • •

• • • • •
• • • • • • • •
• • • • •

• • •
• • • • • •

• • • • •
• • • • •

• •
• • •

• •
• •

• •
• •

•
• •

•

•
•
•

•
• •

•
• •
•
• •

•
• •

•
•

•
•

•
•
•
•

•
•

•
•

•
•
•
•
•
•

•
•

•
•

•
•
•

•

•

iRMKTM Kernel
Reference Manual

Order Number: 467231-001

iRMKTM Kernel
Reference Manual

Order Number: 467231-001

Intel Corporation

3065 Bowers Avenue
Santa Clara, California 95052-8126

Copyright © 1990, Intel Corporation, All Rights Reserved

In the United States, additional copies of this manual or other Intelliberature may be obtained by writing:

Literature Distribution Center
Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641

Or you can call the following toll-free number:

1-800-548-4725

In locations outside the United States, obtain additional copies of Intel documentation by contacting your local Intel
sales office. For your convenience, international sales office addresses are printed on the last page of this document.
Contact your local sales office to obtain the latest specifications before placing your order.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the
implied warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes no
responsibility for any errors that may appear in this document. Intel Corporation makes no commitment to update nor
to keep current the information contained in this document. Intel Corporation assumes no responsibility for the use of
any circuitry other than circuity embodied in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication or
disclosure is subject to restrictions stated in Intel's Software License Agreement, or in the case of software delivered
to the government, in accordance with the software license agreement as defined in FAR 52.227-7013.

No part of this document may be copied or reproduced in any form or by any means without prior wirtten consent of
Intel Corporation. Intel Corporation retains the right to make changes to these specifications at any time, without
notice.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel products.
(Registered trademarks are followed by a superscripted ® .)

Above Intelevision MICROMAINFRAME SLD
ACE51 inteligent Identifier MULTI CHANNEL SugarCube
ACE96 i8 inteligent Programming MULTIMODULE SUPERCHARGER
ACEl86 I2ICE Intellecl!ll MultiSERVER SatisFAXtion
ACEl96 ICE Intellink NETPORT SX
ACE960 iCEL iOSP ONCE ToolTALK
ActionMedia ICEVIEW iPAT OpenNET UNIPATH
BITBUS iCS iPDS OTP UPI
Code Builder iDBP iPSCI!II PR0750 VAPI
COMMputer iDIS iRMK PROMPT Visual Edge
CREDIT iLBX iRMXI!II Promware VLSiCEL
Data Pipeline iMDDX iSBCI!II QUEST WYPIWYF
DVI iMMX iSBX QueX ZapCode
ETOX Inboard iSDM Quick-Erase 287
FaxBACK Insite iSXM Quick·Pulse Programming 376
Genius Intell!ll Library Manager READY-LAN 386
i486 intel8 MAPNET RMX/80 387
i750® Intel386 MCS® RUPI 4·SITE
i860 intelBOS Megachassis Seamless 486

Intel Certified

IBM and PC AT are registered trademarks and PC and PC XT are trademarks of International Business Machines
Corporation. XENIX, MS-DOS and Microsoft are registered trademarks of Microsoft Corporation. Ethernet is a
registered trademark of Xerox Corporation. Soft-Scope is a registered trademark of Concurrent Sciences, Inc. UNIX
is a registered trademark of UNIX System Laboratories, Inc.. Hazeltine and Executive 80 are trademarks of Hazeltine
Corporation. TeleVideo is a trademark of TeleVideo Systems Inc. Wyse and WY-75are registered trademarks of
Wyse Technology. MetaWare and High C are registered trademarks of MetaWare, Inc. Phar Lap is a trademark of
Phar Lap Software, Inc.

MIX is an acronym for Modular Interface eXtension. MIX® is a registered trademark of MIX Software,
Incorporated.

ii

Rev. Revision History Date

-001 Original Issue. 12/90

iii

PREFACE

Reader Level
This manual describes the features, concepts, and usage of the iRMKTM 1.3 Real-time
Kernel. It provides technical information necessary to develop Kernel applications.
The manual assumes the reader's familiarity with the following:

• Intel386™ family microprocessors including the 486™ processor and the 376™
embedded processor

• C, ASM386, FORTRAN, and/or PLM-386 programming languages as required
for the user's application

• Real-time operating system programming concepts

• Multibus II hardware, if an application uses message passing

Manual Organization

Preface

This manual consists of five chapters and four appendices:

• Chapter I provides an explanation of the syntax, data types, and description
headings used in the Kernel system calls descriptions.

• Chapter 2 provides a detailed, alphabetically arranged, description of each Kernel
system call. The chapter includes a cross-reference chart listing the system calls
by function.

• Chapter 3 describes the stdio library functions supplied with the Kernel and
provides programming models showing how to include the stdio library in
various application formats. This chapter provides quick reference material for
the stdio functions provided by the Kernel.

• Chapter 4 describes interfaces for handlers that you may supply to the Kernel to
perform additional operating system functions.

• Chapter 5 describes configuration for the Kernel.

• Appendix A lists the exception codes that can be received while running a Kernel
application.

v

• Appendix B discusses the stack requirements of application tasks. It also
discusses the stack requirements for the Kernel's internal tasks, and how to set up
the internal stacks.

• Appendix C provides information on making Kernel system calls using the
assembly language interface.

• Appendix D lists the conditions for using the address translation mechanisms,
modifying alias selectors for GDT and IDT slots, modifying the I/O permission
bit map for a task, and collected notes on using the 82380 and 82370 devices.

Conventions
In this manual, the term "Kernel" refers to the iRMK Kernel.

The KN_ prefix begins all Kernel system calls when called from C or PL/M, except
initialize_stdio. When the Kernel primitives are called from ASM, the KNA_ prefix
must be used. When referring to the system calls in text, this manual uses a
shorthand notation and omits the prefix. For example, KN _create_task is written as
create_task. The prefix is included when listing code sequences.

All Kernel system calls referenced within discussions are printed in bold type.

Related Publications

vi

The following documents may be of interest to you. They are available through your
local Intel sales office:

• 386™ DX Microprocessor Programmer's Reference Manual
order number 230985

• '386™ SX Microprocessor Programmer's Reference Manual
order number 240331

• 80386 System Software Writer's Guide
order number 231499

• ASM386 Assembler Language Reference Manual
order number 480251

• iC-386 Compiler User's Guide
order number 483326

• C: A Reference Manual
order number 555107

• PLIM Programmer's Guide
order number 452161

iRMK ™ Kernel Reference Manual

Preface

• FORTRAN-386 Compiler User's Guide
order number 481837

• Inte1386TIA Family System Builder User's Guide
order number 481342

• Intel386TIA Family Utilities User's Guide
order number 481343

• Microprocessors Handbook
order number 230843

• Peripherals Handbook
order number 296467

• Firmware User's Guidefor Multibus II System Architecture (MSA) Firmware
order number 506090

• Multibus llInterconnect Interface Specification
order number 149299

• Multibus II Transport Protocol Specification and Designer's Guide
order number 453508

• IEEE 1296 Specification
order number 281065

• MPC User's Guide
order number 176526

• Debugging System VIiRMKTIA Applications
order number 467236

• System VIiRMK Installation and User's Guide
order number 467241

• System VIiRMK
TIA C Libraries

order number 467226

• Intel@ System V/386 Multibus Reference Manual
order number 463328

• Soft-Scope@ III Debugger User's Guide
Target: 386TIA with System V/iRMKTIA Kernel
Host: System V/386

order number 467246

vii

viii

Additional publications for products that may be used with the Kernel can be
obtained from the following companies:

• Microcomputer Components SAB 82258 Advanced DMA Controller for 16-Bit
Microcomputer Systems (ADMA) User's Manual 11.85. Munchen, Federal
Republic of West Germany: Siemens AG, Bereich Bauelemente, Produkt
Information. Order number B2-B3372-X-X-7600

• Phar Lap Software Incorporated
60 Aberdeen Avenue, Cambridge, MA 02138
Phone: (617) 661-1510

• Meta Ware Incorporated
2161 Delaware Avenue, Santa Cruz, CA 95060-5706
Phone: (408)429-6382

iRMKTM Kernel Reference Manual

CONTENTS

Chapter 1. Introduction

Syntax ... 1-1
Data Types .. 1-2
Description headings .. 1-3

Description .. 1-3
Scheduling Category ... 1-3
Return Value .. 1-3
Parameters ... 1-4

Chapter 2. Kernel System Calls

Dictionary of System Calls ... 2-1
attach_protocoI_handler .. 2-6
attach_receive_mailbox ... 2-8
cancel_dl. ... 2-1 0
cancel_tp .. 2-12
ci ... ~ 2-13
co ... 2-14
create_alarm .. 2-15
create_area ... 2-18
create_mailbox .. 2-20
create_pool .. : 2-23
create_semaphore .. 2-25
create_task ... 2-27
csts ... 2-35
current_task_token .. 2-36
delete_alarm .. 2-37
delete_area ... 2-38
delete_mailbox .. 2-39
delete_pool .. 2-40
delete_semaphore , , 2-41
delete_task ... 2-42
get_code_selector .. 2-43
get_ da ta_selector : .. 2-44
geCdescriptor_attributes ... 2-45
get_interconnect , ... , 2-51
get_PIT _intervaL ... 2-52

Contents ix

Chapter 2. Kernel System Calls (continued)

get_pool.:,..a ttri butes 2-53
get_priority .. 2-54
get_slot::; :.: : ... \ :.' .. . 2-55
get_time ... 2-56
initialize ... 2-57
initialize_console ... 2-63
initialize_interconnect. .. 2-65
initialize_LDT ... 2-67
initialize_message_passing 2-69
initialize_NDP ... 2-74
initialize_PIes ... 2-77
initialize_PIT ... 2-79
initialize_RDS ... 2-81
initialize_stdio ... 2-86
initialize_subsystem .. 2-87
linear_to_ptr .. 2-89
local_host_ID 2-90
mask_slot. .. 2-91
mp_ working_storage_size ... 2-92
new_masks .. : 2-94
null_descriptor ... 2-95
ptr_to_linear 2-96
receive.:...data ... 2-97
receive_unit ... 2-99
reset_alarm 2-1 0 1
reset_handler .. 2-1 02
resume_task ... 2-1 03
send_data ... ~ 2-104
send_dl 2-1 06
send_EOI 2-113
send_priority _data ... 2-114
send_tp 2-116
send_unit: 2-127
secdescriptor_attributes .. 2-128
set_handler 2-134
set_interconnect. 2-136
set_interrupt. 2-137
set_priority: .. 2-138
set_time 2-139
sleep 2-140
start_PIT ... 2-141
start_sched uling 2-142

x iRMK ™ Kernel Reference Manual

Chapter 2. Kernel System Calls (continued)

stop_scheduling ... 2-143
suspend_task ... 2-144
tick ... 2-145
token_to_ptr ... 2-147
translate_pointer .. 2-148
unmask_slot. .. 2-150

Chapter 3. Standard Input And Output Functions

Kernel I/O Overview .. 3-1
I/O Initialization Required. .. 3-3
Character I/O System Calls ... 3-3
Kernel Standard I/O Functions .. 3-4
putchar ... 3-5
getchar ... 3-6
printf .. 3-7
Type Conversion Modifiers ... 3-8
Conversion Characters ... 3-11
Escape Sequences .. 3-12
printf Conversion Character Examples ... 3-13
scanf .. 3-14
Conversion Characters and Modifiers ... 3-16

Using Kstdio Libraries .. 3-19
Usage Notes .. 3-20

Chapter 4. Kernel Handlers

Overview of User-supplied Task Handlers4-1
Task Handlers Called by the KerneL .. .4-2
Installing and Removing Task Handlers .. .4-3
create_task_handler ... 4-4
delete_task_handler ... 4-5
disaster_handler ... 4-6
level_x7 _handler ... 4-8
priority _change_handler4-9
task_s witch_hand ler .. , 4-10
KN_ T ASK_STATE Structure .. .4-12

Contents xi

Chapter 5. Configuration And Initialization

Optional Modules ... 5-1
Configuration Data Structures .. 5-2

Configuration Structure for initialize_RDS System Call 5-3
Configuration Structure for initialize System Call. 5-4
Configuration Structure for initialize_PICs .. 5-6
Configuration Structure for initialize_PIT .. 5-8
Configuration Structure for initialize_NDP .. 5-9
Configuration Structure for initiaIize_interconnect 5-10
Configuration Structure for initiaIize_message_passing 5-11
Configuration Structure for initiaIize_console ; 5-13

Kernel Initialization .. 5-14

Appendix A. Exception Codes

Classification of System Calls ... A-l
Numerical List of Exception Codes ... A-4
Descriptions of Exception Codes ... A-6

Appendix B. Stack Requirements

Stack Requirements of Application Tasks ... B-l
Protected and Unprotected Stacks .. B-3

The Kernel's Internal Tasks' Stacks ... B-4
Creating and Modifying Kernel Tasks' Stacks ... B-6
Default Stacks Within the Kernel's Data Segment.. B-6
Creating Separate Segment Stacks Using the Builder.. B-6
Modifying Stack Size .. B-7
Example of Code for Separate Kernel Task Stack Segments B-7

Appendix C. Assembly Language Interfaces to the Kernel

Making Calls to the KerneL ... C-l
Values Returned from the Kernel.. ... C-4

xii iRMKTM Kernel Reference Manual

Appendix D. Application Notes

Using Address Translation Mechanisms ... 0-1
Alias Selectors for GOT and lOT Slots .. 0-2

I/O Permission Bit Maps 0-3
82380/82370 Notes .. 0-5

82380/82370 Functions 0-5
82380/82370 PIC Slot Numbering ... 0-5

Index

Service Information .. Inside Back Cover

Contents xiii

Tables

1-1. Kernel Data Types Referenced to Other Languages ~ 1-2
2-1. Kernel System Calls ... 2-1
2-2. Initialization Values for the 82530 Device .. 2-64
3-1. printf Type Conversion Modifiers ... 3-1 0
3-2. printf Type Conversion Characters .. 3-12
3-3. printf Escape Sequences ... 3-13
3-4. scanf Conversion Modifiers ... 3-16
3-5. scanf Type Conversion Characters ... 3-18
3-6. Include Files for Stdio Models ... 3-19
A-I. System Calls that Return Exceptions ... A-l
A-2. System Calls that Return Null Pointers .. A-2
A-3. System Calls that Invoke Disaster Handlers .. A-2
A-4. System Calls That Do Not Return an Exception A-3
A-5. Exception Codes ... A-4
A-6. MPC Errors Returned ... A-5
B-1. Bytes of Stack Used by Interrupt Handlers ... B-l
B-2. Bytes of Stack Used by Kernel System calls .. B-2
B-3. Kernel Stack Pointers .. B-6
B-4. Kernel Stack Literals ... B-7
C-1. Assembly Language Kernel Interface ... C-2
C-2. Processor Registers for Returned Values in Assembler C-4

xiv iRMKTM Kernel Reference Manual

Figures

3-1. Character I/O Access Paths3-2
4-1. Kernel Invoking of Task Handlers .. .4-2
5-1. Example Configuration of the initialize_RDS Structure 5-3
5-2. Kernel Configuration Data Structure for initialize System Call 5-5
5-3. Example Configuration of an Interrupts Data Structure 5-7
5-4. Example Configuration of a Timer Data Structure 5-8
5-5. Example Configuration for a Numeric Coprocessor 5-9
5-6. Example Configuration for an Interconnect Data Structure 5-1 0
5-7. Example Configuration for Message Passing .. 5-12
5-8. Example Configuration for Console Configuration Structure 5-13
B-1. Two Methods for Creating Kernel Task Stacks .. B-5
B-2. Kernel Build File Listing Separate Segments ... B-8
0-1. Task Structure ... 0-4
0-2. Slot Ordering on the 82380 .. 0-6

Contents xv

OVERVIEW 1
This manual provides detailed descriptions of all the Kernel system calls. The
system calls are organized alphabetically in Chapter 2. Chapter 3 describes the
Kernel standard I/O functions. Chapter 4 describes the handler interfaces you can
use to supply additional operating system functions. For background information
about these calls, refer to the Installation and User's Guide.

Syntax

Overview

Throughout this manual, the system calls, data structures, and data types are
specified using the C language syntax. If you write your programs in C, you can
access the system calls using this syntax.

The Kernel also provides support for PL/M, FORTRAN, and assembly language
programs. The PL/M interface requires including a different set of source files in the
compilation of your programs and possibly linking to a different interface library.
The assembly language interface is a register interface in which you must set up a
group of registers with parameter values before calling the system calls.

See also: Assembly Language Interfaces, Appendix C
Program Development, Installation and User's Guide

1-1

Data Types

1-2

Throughout this manual a special set of Kernel data types is used to describe
parameters and structures. With one exception (POINTER), these data types are
defined in the include files that accompany the product. The Kernel data types
correspond to PL/M, C, and FORTRAN data types as listed in Table 1-1 below.

The header file rmk_type.l contains the definition of data types for C. The header
file rmk_ type. lit contains the definition of data types for PL/M. The header file
rmk_type.par contains the definition of data types for FORTRAN.

Table 1-1. Kernel Data Types Referenced to Other Languages

Kernel PL/M C Language FORTRAN
Data Types Data Types Data Types Data Types

UINT_8 BYTE char INT*1
UINT_8 BYTE boolean INT*1
UINT_16 HWORD unsigned short INT*2
UINT_32 WORD unsigned int INT*4
UINT_64 DWORD unsigned long

.
Not Applicable

POINTER POINTER See note below Not Available

• The Kernel defines the UINT_64 type as along integer type for use in some system calls.
You mayor may not want the long type to be a 64-bit quantity. In iC-386, the default
1 0 n 9 is 32 bits. Each application module can define 64-bit long types if they are needed
in that module. Use the -1 ong64 control when invoking the compiler or place the following
pragma in the source code:

#pragma long64

NOTE

In small model, each pointer is a 32-bit offset relative to the
Kernel's data or code segment. In compact model, each pointer is
a 48-bit quantity. A fill parameter is used in small model to ensure
structures are the same size in both small and compact models.

There is no generic pointer type in C. Pointers must be typed and
they can be cast. In general, when the system calls return pointers,
they return pointers to UINT _8 items (DINT _8 *). When you pass
a pointer to a system call, pass a reference to the code or data item.

iRMKTM Kernel Reference Manual

Description headings
When describing the system calls, Chapter 2 provides several standard categories of
information that are always listed in the same order. The categories include:

Description

This section describes how the system call works.

Scheduling Category

This category indicates what effect a system call may have on task scheduling and
whether a scheduling lock changes that effect. It also indicates whether the system
call can be safely used by interrupt handlers, which should not lose control of the
CPU when they run. The possible types are:

Non-scheduling (Safe). The system call does not cause rescheduling, and interrupt
handlers can safely use it.

Signalling. The system call could put other tasks in the ready state. If those tasks
are higher priority, rescheduling would occur, pre-empting the calling task. If this
system call is called from an interrupt handler, the handler could lose control. A
scheduling lock will prevent rescheduling when using such a system call. Any task
state change caused by a signalling system call takes place immediately, but the
running task is not switched until scheduling is started again.

Blocking. The system call could put the running task to sleep causing rescheduling .
. An interrupt handler should not call this system call unless it knows that the running
task won't be put to sleep as a result (the system call will complete its operation
without blocking the calling task). A scheduling lock does not prevent a blocking
system call from causing rescheduling.

Rescheduling (Unsafe). This system call always causes rescheduling. An interrupt
handler should never call this system call. A scheduling lock does not prevent
rescheduling for this system call.

Return Value

If the system call is a function, this section describes the value returned by the
function.

Overview 1-3

Parameters

This section describes the parameters, if any, that you must specify when calling the
system call.

The Kernel declares literals to define many of the data structures and parameter
values needed. To use the Kernel-defined values when setting up data structures and
calling the system calls, include the appropriate literal files in your programs.

See also: Include Files, Installation and User's Guide

All structures in this manual are shown in small model. Fill parameters are used in
structures to account for the difference between compact model, which uses 48 bit
pointers, and small model, which uses 32 bit pointers.

Flags Parameters

Masks typically refer to a single bit field in the flag. A mask is used to isolate a
value in the flags field when you examine a flag. To·set a flag, choose one literal
value for each mask listed. Then OR the values together to form the flags value.

For example, these are the flags for the create_semaphore system call.

flags A KN_FLAGS whose bit structure specifies the following attributes of the
semaphore:

1-4

Type Specifies the type of semaphore. The following literals apply to this
flag:

Literal Meaning

KN_EXCH_ TYPE_MASK A mask for this field of the flag.

The semaphore uses FIFO queueing

KN_PRIORITY _QUEUEING
The semaphore uses priority queueing

The exchange is a region with one unit

Units Specifies the number of initial units the semaphore receives. The
following literals apply to this flag:

Literal Meaning

KN_INITIAL_SEM_STATE_MASK

KN_ZERO_UNITS

KN_ONE_UNIT

A mask for this field of the flag.

The semaphore is created with no units

The semaphore is created with one unit

iRMKTM Kernel Reference Manual

Overview

To set up a semaphore that uses FIFO queueing and has one unit, the literal values
you should choose for the flags are:

KN_FIFO_QUEUEING OR KN_ONE_UNIT

1-5

KERNEL SYSTEM CALLS 2
This chapter provides detailed descriptions of all the Kernel system calls, organized
alphabetically by system call name. Table 2-1 provides a dictionary of system calls
organized by functional groups and is useful for locating the specific system call
name and reference desired.

Dictionary of System Calls
Table 2-1 presents the various Kernel system calls by functional groups. Within
each group each system call is listed with a description of its basic function and the
page reference for the detailed description. Table 2-1 shows the header files to
include for C-Ianguage programs. Include files for other languages have the same
base name with a different filename extension.

See also: Include Files, Installation and User's Guide

Table 2·1. Kernel System Calls

System Call Name System Call Function Include Page

CHARACTER I/O DEVICE SUPPORT

KN_ci Read ASCII character from console input rmk_dev.h o 2-13
device

KN_co Transfer a character to console output rmk_dev.h 2-14
device

KN_csts Read immediate character, if any, from rm~dev.h 2-35
console input device

KN_initialize_console Initialize the console device rmk_dev.h 2-63
initialize_stdio Initialize stdio library functions kstdio.h 2-86
stdio functions See Chapter 3. kstdio.h

Kernel System Calls 2-1

Table 2-1. Kernel System Calls (Continued)

System Call Name System Call Function Include Page

COMMUNICATION AND SYNCHRONIZATION

KN_create_mailbox Create a mailbox rmk_base.h 2-20
KN_create_semaphore Create a semaphore rmk_base.h 2-25
KN_delete_mailbox Delete a mailbox rmk_base.h 2-39
KN_delete_semaphore Delete a semaphore rmk_base.h 2-41
KN_receive_data Request a message from a mailbox rmk_base.h 2-97
KN_receive_unit Receive a unit from a semaphore rmk_base.h 2-99
KN_send_data Send data to a mailbox rmk_base.h 2-104
KN_send_priority _data Place priority message at head of mailbox rmk_base.h 2-114

queue
KN_send_unit Add a unit to a semaphore rmk_base.h 2-127

DEBUGGER INITIALIZATION

KN_initialize_RDS Initialize the debugger rmk_base.h 2-81

DESCRIPTOR TABLE MANAGEMENT

KN_geCcode_selector Get the selector for the current code rmk_dt.h 2-43
segment

KN_geCdata_selector Get the selector for the current data rmk_dt.h 2-44
segment

KN_geCdescriptor_attributes
Get a descriptor's attributes rmk_dt.h 2-45

KN_initialize_LDT Initialize a descriptor to reference an LOT rmk_dt.h 2-67
KN_linear_toJ)tr Generate a pointer corresponding to a rmk_dt.h 2-89

given linear address
KN_nulLdescriptor Overwrite a descriptor with the null rmk_dt.h 2-95

descriptor
KN_ptr_to_linear Generate a linear address corresponding rmk_dt.h 2-96

to a given pointer
KN_seCdescriptor_attributes

Set a descriptor's attributes rmk_dt.h 2-128

INTERCONNECT SPACE MANAGEMENT

KN_geCinterconnect Get the value of an interconnect register rmk_is.h 2-51
KN_initialize_interconnect

Initialize the interconnect module rmk_is.h 2-65
KN_locaLhosCI D Get the host 10 of the local host rmk_is.h 2-90
KN_seCinterconnect Set the value of an interconnect register rmk_is.h 2-136

2·2 iRMKTM Kernel Reference Manual

Table 2-1. Kernel System Calls (Continued)

System Call Name System Call Function Include Page

INTERRUPT AND PIC MANAGEMENT

KN_geCslot Return the highest priority active interrupt rmk_dev.h 2-55
slot

KN_initialize_PICs Initialize a PIC rmk_dev.h 2-77
KN_mask_slot Mask out interrupts on a specified slot rmk_dev.h 2-91
KN_new_masks Change the masking of interrupt slots rmk_dev.h 2-94
KN_send_EOI Signal PIC that interrupt on specified slot rmk_dev.h 2-113

has been serviced
KN_set_interrupt Establish an interrupt handler for a rmk_base.h 2-137

particular lOT slot
KN_unmask_slot Unmask interrupts on a specified slot rmk_dev.h 2-150

KERNEL INITIALIZATION

KN_initialize Initialize the Kernel rmk_base.h 2-57

MEMORY MANAGEMENT

KN_create_area Create a memory area from a pool rmk_base.h 2-18
(allocate memory)

KN_create_pool Create a memory pool rmk_base.h 2-23
KN_delete_area Return the memory from a memory area rmk_base.h 2-38

to the memory pool
KN_delete_pool Delete a memory pool rmk_base.h 2-40
KN_geCpool_attributes Get a memory pool's attributes rmk_base.h 2-53

Kernel System Calls 2-3

Table 2-1. Kernel System Calls (Continued)

System Call Name System Call Function Include Page

MESSAGE PASSING MANAGEMENT

KN_attach_protocoLhandler
Establish an interrupt handler for receiving rmk_mp.h 2-6
data link messages

KN_attach_receive_mailbox
Associate a mailbox with a port I D rmk_mp.h 2-8

KN_canceLdl Cancel a data link buffer request rmk_mp.h 2-10
KN_canceLtp Cancel a solicited message or rmk_mp.h 2-12

request-response transaction
KN_initialize_message_passing

Initialize the message passing module rmk_mp.h 2-69
KN_mp_working_storage_size

Compute work space size needed for rmk_mp.h 2-92
message passing

KN_send_dl Send a data link message rmk_mp.h 2-106
KN_send_tp Send a transport protocol message rmk_mp.h 2-116

NUMERIC COPROCESSOR MANAGEMENT

KNjnitialize_NDP Initialize the Numeric Coprocessor rmk_dev.h 2-74

PIT MANAGEMENT

KN_get_PIT _interval Return the PIT interval rmk_dev.h 2-52
KN_initialize_PIT Initialize a PIT rmk_dev.h 2-79
KN_start_PIT Start the PIT counting rmk_dev.h 2-141

SUBSYSTEM SUPPORT

KN_initialize_subsystem Allows application to be divided into multiple rmk_dev.h 2-87
subsystems when application interfaces to
Kernel through a call gate

KN_translate_ptr Converts pointer that will be based on rmk_base.h 2-148
user-specified selector

2-4 iRMKTM Kernel Reference Manual

Table 2·1. Kernel System Calls (Continued)

System Call Name System Call Function Include Page

TASK MANAGEMENT

KN_create_task Create a task rmk_base.h 2-27
KN_currenLtask_token Return a token for the current task rmk_base.h 2-36
KN_delete_task D.elete a task rmk_base.h 2-42
KN_geLpriority Return static priority of a task rmk_base.h 2-54
KN_reseLhandler Remove previously set task handler rmk_base.h 2-102
KN_resume_task Cancel one level of task suspension rmk_base.h 2-103
KN_seLhandler Set task handler dynamically rmk_base.h 2-134
KN_seLpriority Set the static priority of a task rmk_base.h 2-138
KN_starLscheduling Cancel one scheduling lock rmk_base.h 2-142
KN_stop_scheduling Temporarily lock the scheduling mechanism rmk_base.h 2-143
KN_suspend_task Add one level to task suspension rmk_base.h 2-144
KN_token_to-ptr Return a pointer to the area holding the rmk_base.h 2-147

object

TIME MANAGEMENT

KN_create_alarm Create and start a virtual alarm clock rmk_base.h 2-15
KN_delete_alarm Delete an alarm rmk_base.h 2-37
KN_geLtime Get the current value of the Kernel clock rmk_base.h 2-56

timer
KN_reseLalarm Reset an existing alarm rmk_base.h 2-101
KN_seLtime Set the kernel clock timer rmk_base.h 2-139
KN_sleep Put the calling task to sleep rmk_base.h 2-140
KN_tick Notify Kernel that a clock tick has occurred rmk_base.h 2-145

Kernel System. Calls 2-5

attach_protocol_handler

void KN_attach_protocol_handlerCprotocol_id, handler_ptr,
flags):

Data Type
KN_PROTOCOL_ID

void
KN_FLAGS

Parameter
protocoCid

* handler_ptr
flags

Description

2·6

The attach _protocol_handler system call is used with the data link layer of the
message passing module. This system call associates a user-written protocol handler
with a particular protocol ID. Whenever a message arrives at the host, the data link
layer's interrupt handler notes th(! protocol ID encoded in the message and invokes
the corresponding protocol handler to deal with the message.

If a protocol handler is already established for the specified protocol ID, the new
handler overrides the existing handler. The data link layer will start invoking the
new protocol handler the next time a message arrives which specifies that protocol
ID.

Before the data link layer's interrupt handler invokes the protocol handler, it stops
the Kernel scheduling (calls stop_scheduling). When the protocol handler returns,
the interrupt handler re-starts scheduling (calls start_scheduling).

Protocol handlers should perform whatever operations are necessary to handle
arriving messages. However, they should not send data link messages themselves.
Instead, they should signal other tasks to send responses to the messages they
receive.

See also: Message Passing, Installation and User's Guide

iRMKTM Kernel Reference Manual

attach_protocol_handler

NOTE

To receive Multibus II MIC type (interrupt control) messages,
which are four bytes in length, attach a protocol handler with a
protocol 10 of O. Whenever a four-byte message is received, the
data link module invokes the user-supplied handler. The
environment for this handler is the same as that for other protocol
handlers.

The message remote host 10 and type (KN_UNSOL) are the only
defined fields of a received MIC message. Users can send
messages to a MIC-based host using the send_dl system call.

Scheduling Category

Unsafe for use by interrupt handlers.

Parameters

protocol_id
A KN_PROTOCOL_ID specifying the protocol 10 to be associated with a specific
protocol handler. Specify any value between 80h and OFFh. Values 1 through 7Fh
are reserved for Intel applications.

handler _ptr
A pointer to the first instruction of the protocol handler. The protocol handler must
be re-entrant. In the small model interface, the handler pointer is assumed to be
relative to the caller's CS register. This handler must have the following calling
sequence:

protocol_handler(message_ptr):

Where:

message _ptr: A pointer to an area where the incoming message resides. This
message has the KN_DATA_LINK_MSG structure shown in the send_dl system call.

Kernel System Calls 2-7

attach_receive_mailbox

status

Data Type
KN_PORT_ID

KN_TOKEN

Parameter
port_ID
mailbox

Description

The attach_receive_mailbox system call is used with the transport layer of the
message passing protocol. It associates a mailbox with a port ID. Once this
association has been made, all incoming messages for the specified port are queued
at the associated mailbox. Port IDs can be assigned to the range O-OFFFFh. The
application assigns port IDs and must maintain their consistent use.

Each port can be serviced by only one mailbox. Assigning another mailbox to the
same port ID overrides the existing mailbox assignment. A single mailbox can be
assigned to service more than one port.

Transport protocol messages received via this mailbox have the structure
KN_TRANSPORT _MBX_REMOTE_MSG or KN_TRANSPORT _MBX_LOCAL_MSG.
Refer to the description of the send _ tp system call for more information about these
structures. The message type is KN_UNSOL, KN_BROADCAST, or
KN_BUFFER_REQUEST.

Scheduling Category

Rescheduling. Unsafe for use by interrupt handlers.

Returned Value

status A KN_STATUS indicating the result of the requested operation. Values are:

Literal Meaning

E_OK Indicates that the call completed successfully.

E_RESOURCE_LlMIT Indicates that an internal resource limit has been reached.

2-8 iRMKTM Kernel Reference Manual

Parameters

portJd

mailbox

A KN_PORT_ID indicating the value of the port ID for which messages are to be
queued. This parameter can have any value from 0 through OFFFFh.

A KN_ TOKEN for the mailbox at which messages for the specified port ID are to be
queued.

Kernel System Calls 2-9

cancel_dl

Data Type
KN_STATUS
KN_DATA_LINK_MSG

Parameter
status

* message_ptr

Description

The cancel_dl system call is used with the data link layer of the message passing
protocol. It cancels a previously queued buffer request, buffer grant, or ongoing
solicited message transfer.

Cancel a sent solicited message any time after the buffer request is sent, until the
transfer is complete. Cancel a received solicited message any time after the buffer
grant is sent, until the transfer is complete.

See also: Message Passing, Installation and User's Guide

Scheduling Category

Rescheduling. Unsafe for use by interrupt handlers.

Returned Value

status A KN_STATUS indicating the result of the requested operation. Values are:

Literal Meaning

The call completed successfully.

The request came too late to cancel the message.

2-10 iRMKTM Kernel Reference Manual

Parameters

message _ptr
A pointer to the buffer request or buffer grant message associated with the solicited
transfer. A sending task points to the buffer request message; a receiving task points
to the buffer grant message. The pointer should point to a KN_DA T A_LINK_MSG
structure. See the send_dl system call for a description of the
KN_DA T A_LINK_MSG structure.

If the solicited message is successfully cancelled (status=E_OK), the Kernel changes
the data_status value in the message to E_SO_CANCEL or E_SCCANCEL (cancel
solicited output or cancel solicited input).

Kernel System Calls 2-11

status

Data Type
KN_STATUS
void

Parameter
status

* message_ptr

Description

The cancel_tp system call is used with the transport layer of the message passing
protocol. It cancels an ongoing solicited message or request-response transaction.
This system call is a local operation only. It does not send a cancellation message to
the other host.

Cancel a solicited message any time after the buffer request is sent, until the transfer
is complete. Cancel a solicited message any time after the buffer grant is sent, until
the transfer is complete. Cancel a request-response transaction any time after the
request is sent, until the response is received.

Scheduling Category

Rescheduling. Unsafe for use by interrupt handlers.

Return Value

status A KN_ST ATUS indicating the result of the requested operation. Values are:

Literal

E~OK

E_TOO_LATE

E_TRANS_ID

Meaning

The call completed successfully.

The request came too late to cancel the message.

Non-unique or invalid transaction 10 in the message.

Parameters

message _ptr

2-12

A pointer to a KN_TRANSPORT_MSG or a KN_RSVP _TRANSPORT_MSG structure
containing the message to be cancelled. See the send_tp system call for descriptions
of these structures.

iRMKTM Kernel Reference Manual

Data Type
UINT_8

Description

Parameter
char

The ci system call reads an ASCII character from the console input device. This
system call waits for console input if a character is not immediately available.

See also: initialize_console

Scheduling Category

Blocking. Use with caution in interrupt handlers.

Return Value

char A UINT_8 variable which receives the ASCII character entered at the console.

Kernel System Calls

ci

2·13

co

void KN_co(char):

Data Type
UINT_8

Description

Parameter
char

The co system call transfers an ASCII character to the console output device. Before
this system call transfers the character, it checks to see if a CONTROL-S was entered
at the console. If it was, co waits for the operator to enter CONTROL-Q before
transmitting the character.

Seealso: initialize console

Scheduling Category

Blocking. Use with caution in interrupt handlers.

Parameters

char A UINT_8 containing the ASCII character to be output to the console.

2·14 iRMKTM Kernel Reference Manual

alarm = KN_create_alarm(area_ptr, handler_ptr, time_limit,
flags);

Data Type
KN_TOKEN
UINT_32
void
UINT_32
KN_FLAGS

Description

Parameter
alarm

* area_ptr
* handler_ptr

time_limit
flags

The create_alarm system call creates and starts a virtual alarm clock. With this
system call, specify a time limit and a handler. When the time limit elapses, the
Kernel invokes the handler, thereby simulating a timer interrupt. When the alarm
handler is invoked, interrupts are disabled and scheduling is locked.

Two types of alarms can be set, depending on the value of the flags parameter. A
single shot alarm becomes inactive after its initial time interval elapses, and its
memory becomes available for reuse. A repetitive alarm resets after each invocation
of the handler so that the handler is called again after the next interval elapses.
Repetitive alarms generate periodic interrupts until they are explicitly deleted.

See also: Time Management, Interrupt Management, Installation and User's
Guide

Scheduling Category

Non-scheduling. Safe for use by interrupt handlers.

Return Value

alarm· A KN_TOKEN for the newly created alarm.·

Kernel System Calls 2-15

create alarm

Parameters

area_ptr
A pointer to an area to be used to hold the alarm's state. The area supplied must be
at least KN_ALARM_SIZE bytes long.

handler _ptr
A pointer to a procedure to be executed when the time period elapses. This
procedure is called with scheduling stopped and interrupts disabled. The application
must ensure that the mapping of the han d 1 e r _p t r parameter to physical memory
remains constant until either the alarm is deleted or until a single-shot alarm handler
is invoked. This pointer is assumed to be relative to the caller's code segment. The
entry point for an alarm interrupt handler is written as follows:

alarm_handlerCalarm_ptr);

Where:

alarm_ptr A pointer to the area holding the alarm's state. If additional
information is associated with the alarm, this pointer can be used to
access it.

time_limit
A UINT_32 specifying the number of clock ticks which must'elapse before the
handler is invoked. A value of 0 indicates that the alarm handler is called on the
next clock tick (and for repetitive alarms, on every clock tick).

A value of 1 indicates that the remainder of the current clock tick and one complete
clock tick occurs before the alarm handler is called.

flags A KN_FLAGS whose bit structure specifies the following attributes of the alarm:

2·16

Alarm Type Specifies whether the alarm generates a single interrupt or repeated
interrupts. The following literals apply to this flag:

Literal Meaning

KN_ALARM_REPETITION_MASK
A mask for this field of the flag.

The alarm object is to generate a single
interrupt.

The alarm object is to generate repeated
interrupts.

iRMKTM Kernel Reference Manual

create_alarm

Calling Convention

Kernel System Calls

Specifies whether the handler is in the same subsystem or a different
subsystem from the Kernel. The following literals apply to this flag:

Literal Meaning

KN_HANDLER_CONVENTION_MASK
A mask for this field of the flag.

The handler is in the same subsystem as
the Kernel.

The handler is in a different subsystem
from the Kernel's.

2-17

area KN_create_area(pool. size);

Data Type
void
KN_TOKEN
UINT_32

Description

Parameter
* area

pool
size

The create_area system call allocates an area of memory of the specified size from
the specified memory pool (previously created using the create_pool system call).
If the memory pool was created from memory aligned on a four-byte boundary, the
area assigned with this system call will also be aligned on a four-byte boundary. If
there is insufficient contiguous memory in the pool to satisfy the request, a null
pointer is returned.

To allocate an area of size X, an available area of size X + KN_AREA_OVERHEAD
must exist within the pool. KN_AREA_OVERHEAD is the number of bytes of
overhead associated with each area allocated from the pool.

See also: Memory Management, Pool and Area Overhead, Installation and
User's Guide

SchedUling Category

Blocking. Use with caution in interrupt handlers.

Return Value

area A pointer to an area of the desired size. If no area can be allocated, the Kernel
returns a null pointer.

2·18 iRMKTM Kernel Reference Manual

create area

Parameters

pool A KN_ TOKEN for the memory pool from which the area is to be allocated. This is
the token returned from a create_pool system call.

size A UINT_32 specifying the size of the requested area in bytes. This value can range
from KN_MINIMUM_AREA_SIZE to the po 0 ,_, a r 9 est value returned by the
get_pool_attributes system call. If you specify a value smaller than
KN_MINIMUM_AREA_SIZE, the Kernel rounds up the request to the minimum size.

Kernel System Calls 2-19

create mailbox

mailbox KN_create_mailbox(area_ptr, message_size. queue_size,
flags):

Data Type
KN_TOKEN
UINT_32
UINT_32
UINT_32
KN_FLAGS

Parameter
mailbox

* area_ptr
message_size
queue_size
flags

Description

The create_mailbox system call creates a mailbox in a specified area of memory.
Once the mailbox is created, tasks can send messages to it by calling the send_data
system call or the send_priority_data system call, and they can receive messages
from it by calling the receive_data system call.

When you create a mailbox, you specify the queuing mechanism that is used when
tasks wait for messages at the mailbox. Both FIFO and priority queuing are possible.
FIFO queuing means that tasks are queued in the order that they arrive at the
mailbox. In priority queuing, the tasks are queued based on their task priority.

When you create a mailbox, you can specify one of the slots in its queue as reserved
for a high priority message. When the high priority message comes, the Kernel
attempts to place this message ahead of all the other messages in the regular queue.
If the message queue is full, the Kernel puts the high-priority message into the
reserved slot instead. If the reserved slot is also taken, an exception
(E_LIMIT_EXCEEDED) is returned. This is the same exception code that is returned
when a non-priority message cannot be sent because the mailbox queue is full.

The purpose of the reserved slot is to ensure at least one high priority message is
accepted even when the mailbox queue is full.

Scheduling Category

Non-scheduling. Safe for use by interrupt handlers.

2-20 iRMKTM Kernel Reference Manual

create_mailbox

Return Value

mailbox
A KN_ TOKEN for the newly created mailbox.

Parameters

area_ptr
A pointer to the area in which the mailbox is to be created. For better performance,
this area should be aligned on a four-byte boundary. The size of this area must be:

KN_MAILBOX_SIZE + (message_size + KN_MAILBOX_MSG_OVERHEAD) *
queue_size

message_size

Literal Meaning

The number of bytes required for a
mailbox object, excluding the message
queue.

KN_MAILBOX_MSG_OVERHEAD
The number of bytes of overhead for each
message in the message queue of a
mailbox.

A UINT_32 specifying the maximum size in bytes of the messages to be exchanged
through this mailbox. When sending messages to the mailbox, never send messages
larger than the maximum message size specified for the mailbox. Sending messages
which are larger than the maximum specified message size may produce unexpected
results.

NOTE

Keep messages as small as possible. Transferring large messages
. can degrade the interrupt latency of the system.

Kernel System Calls 2-21

create mailbox

queue_size
A UINT _32 specifying the maximum number of messages that can be stored in the
mailbox. When the Kernel assigns messages to the mailbox, it assigns them in a
circular fashion, assuming that the number of message slots is equal to que u e_s i z e
and the size of each message is equal to mes s a ge_s i ze.

Even if the number of messages queued at the mailbox never reaches que u e_s i z e,
the circular queuing means that all the memory allocated for messages will be
accessed at one time or another. Therefore it is important that the amount of
memory you assign to the mailbox matches the values you specify for
message_s i ze and queue_s i ze.

flags A KN_FLAGS specifying the type of mailbox to be created.

2·22

Exchange Type
Specifies whether the mailbox uses FIFO or Priority queueing. The
following literals apply to this flag:

Literal Meaning

KN_EXCH_ TYPE_MASK A mask for this field of the flag.

The mailbox uses FIFO queueing.

KN_PRIORITY _QUEUEING
The mailbox uses priority queueing.

Reserved Priority
Specifies whether the mailbox queue has a slot reserved for a high
priority message.

Literal Meaning

KN_RESERVE_PRIORITY _DATA_MASK
A mask for this field of the flag.

KN_DONT _RESERVE_PRIORITY _DATA
Don't reserve a slot for a high priority
message.

KN_RESERVE_PRIORITY _DATA
Reserve a slot for a high priority message.

iRMKTM Kernel Reference Manual

Data Type
KN_TOKEN
void
UINT_32

Description

Parameter
pool

... pool_ptr
size

The create_pool system call creates a memory pool in a specified range of memory.
Once the memory pool is created, tasks can access portions of this memory by
invoking the create_area system call, but they should not access the memory
without calling create_area. If the memory used to contain the pool is aligned on a
four-byte boundary, all areas allocated from the pool are also aligned on four-byte
boundaries.

See also: Memory Management, Pool and Area Overhead, Installation and
User's Guide

Scheduling Category

Non-scheduling. Safe for use by interrupt handlers.

Return Value

pool A KN_TOKEN for the newly created memory pool.

Kernel System Calls 2-23

Parameters

pool_ptr
A pointer to the first location in memory to be included in the new memory pool.

size A UINT _32 specifying the number of bytes to incl ude in the new memory pool.

2-24

One way to determine the size needed is to consider the number of areas that could
conceivably be allocated at the same time. For many applications, all areas allocated
from a memory pool are of the same size. Therefore, to create a pool that can
exactly allocate N areas all of size M, an area of the following size is required for the
pool. M must be greater than or equal to KN_MINIMUM_AREA_SIZE:

N '" (M + KN_AREA_OVERHEAO) + KN_POOL_OVERHEAO

Literal Meaning

KN_AREA_OVERHEAO The number of bytes of overhead
associated with each area allocated from
the pool.

KN_POOL_OVERHEAO The number of bytes of overhead in a new
pool. If a pool of X bytes is desired, a
pool of X + KN_POOL_OVERHEAO must
be requested using the create_pool
system call. The smallest pool size is
therefore:

KN_MINIMUM_POOL_SIZE +
KN_POOL_OVERHEAO

KN_MINIMUM_POOL_SIZE
The minimum number of bytes necessary
for a pool object.

KN_MINIMUM_AREA_SIZE
The smallest area which can be allocated
from a memory pool.

iRMKTM Kernel Reference Manual

create_semaphore

semaphore = KN_create_semaphore<area_ptr. flags):

Data Type
KN_TOKEN
UINT_32
KN_FLAGS

Description

Parameter
semaphore

* area_ptr
flags

The create_semaphore system call creates one of three kinds of semaphores with
zero or one initial units. The kinds of semaphores that can be created are FIFO,
priority, and region. With FIFO semaphores, tasks that wait for units at the
semaphore are queued in the order they arrive. With priority semaphores, tasks are
queued according to their task priorities. FIFO and priority semaphores can contain
as many as 65,535 units, which are placed in the semaphore by calling send_unit
once for each unit. If more than 65,535 units are sent to the semaphore, the Kernel
does not increment the semaphore, but rather invokes the disaster handler with an
exception code of E_LIMIT_EXCEEDED and an invoked function code of
KN_SEND_UNIT_CODE.

Regions are special cases of priority semaphores that manage a single unit. A task
holding a region's unit is the owner of the region, and its priority is dynamically
adjusted depending on the priority of other tasks waiting to access the region. If a
low-priority task has access to the region and a high-priority task requests access
(via the receive_unit system call), the priority of the task holding the region is
temporarily raised to the priority of the waiting task. The new, higher priority of this
task prevents it from being placed in the ready queue by the Kernel until it finishes
its work within the region. When the task relinquishes all regions (by calling the
send_unit system call), its priority returns to its normal (static) level.

If a region is created with 0 units, the creating task is considered to be holding the
region's unit and is therefore the owning task. If a region is created with 1 unit, no
task owns the region until it invokes receive_unit for that region.

Scheduling Category
Non-scheduling. Safe for use by interrupt handlers.

Kernel System Calls 2-25

create_semaphore

Return Value

semaphore

A KN_TOKEN for the newly created semaphore.

Parameters

area_ptr

A pointer to the area in which the semaphore is to be created. This area must be at
least KN_SEMAPHORE_SIZE bytes long. For better performance, this area should be
aligned on a four-byte boundary.

flags A KN_FLAGS whose bit structure specifies the following attributes of the
semaphore:

2-26

Type Specifies the type of semaphore. The following literals apply to this
flag:

Literal Meaning

KN_EXCH_ TYPE_MASK A mask for this field of the flag.

KN_FIFO_QUEUEING The semaphore uses FIFO queueing

KN_PRIORITY _QUEUEING
The semaphore uses priority queueing

The exchange is a region with one unit

Units Specifies the number of initial units the semaphore receives. The
following literals apply to this flag:

Literal Meaning

KN_INITIAL_SEM_STATE_MASK

KN_ZERO_UNITS

KN_ONE_UNIT

A mask for this field of the flag.

The semaphore is created with no units

The semaphore is created with one unit

iRMKTM Kernel Reference Manual

task KN_create_taskCarea_ptr. stack_ptr. cOde_ptr.

DATA TYPE
KN_TOKEN

UINT_32

void
void
void
UINT_16
KN_FLAGS

Description

data_seg. priority. flags);

PARAMETER
task

'" area_ptr
'" stack_ptr
'" code_ptr
'" data_seg

priority
flags

The create_task system call creates a new task using the supplied resources. The
Kernel assigns this new task its own task state and, by default. gives it the same LDT
as the calling task.

When you invoke create_task, specify the initial values associated with the task (its
code, data and stack segments, its priority, and whether it is created in the ready or
suspended state). Also supply an area that the Kernel uses to store the task's state.

When you invoke create_task, the Kernel overwrites most of the fields in the task
state. However, you can set some of these fields before calling create_task to set up
the task in special ways. For example, you can set up the stacks for different
privilege rings before calling create_task. Other fields that the Kernel initializes
can be set after calling create_task, so that you can change the Kernel's defaults.
For example. you can change the LDT associated with the new task and change its
time slice, but not until after you call create_task.

See the description of KN_TASK_STATE in this section for more information about
the fields that can be changed and the fields that must be left as is.

Kernel System Calls 2·27

create task

The new task's segments, referenced by the stack_ptr, code_ptr and data_seg
parameters, must all have the same descriptor privilege level (DPL). This privilege
level determines the initial CPL (current privilege level) of the new task. The
create_task system call sets up a stack for the new task only at this privilege level.
If the task must execute at any other privilege levels, the application is responsible
for setting up additional stacks for the task.

The application can set up additional stacks by reserving memory for the stack,
accessing the task state area, and assigning values to the S S i and ESP i
(where i = 0, 1, or 2) fields. These changes can be made before calling create_task,
because the Kernel doesn't initialize these fields of the TSS. The application can
provide a task creation handler to perform this function, or the calling task can
access the KN_ T ASK_STATE structure pointed to by are a_p t r and fill in those
fields before calling create_task.

Tasks must always have a ring 0 stack. Thus if a task is created whose initial CPL is
greater than 0, a ring 0 stack must be supplied by one of the methods mentioned.

Tasks can access their own task states and the task states of other tasks in mUltiple
ways. A task can access its own task state by using the current_task system call,
which provides a pointer to the state of the current task. A task can access the state
of another task by supplying the second task's token as a parameter to the
token_to_ptr system call.

The Kernel implements task switches using software routines. Although the Kernel
does not use hardware task switching, it still creates a task state segment for each
task.

See also: Kernel Handlers, Chapter 4
Stacks, Task Management, Installation and User's Guide

Scheduling Category

Signalling. Use scheduling lock in interrupt handlers.

Return Value

task A KN_TOKEN for the newly-created task.

2-28 iRMK ™ Kernel Reference Manual

Parameters

area_ptr
A pointer to the area in which the Kernel stores the new task's task state. This area
must be at least KN_TASK_SIZE bytes long, and it must be aligned on a four-byte
boundary. If you include the Kernel's numeric coprocessor support in your system
and you use the default processor state handler, you must allocate an additional
KN_387_SAVE_AREA_SIZE bytes for the Kernel to use to save and restore the state
of the coprocessor. Refer to the description of initialize_NDP for more information
about setting up the Numeric Coprocessor Module.

KN_ TASK_SIZE
The number of bytes of memory required to contain the task state.

KN_387 _SA VE_AREA_SIZE
The number of bytes of memory required to contain the coprocessor
state.

KN_ TASK_STATE

Kernel System Calls

A structure that can overlay a task state to provide access to the
individual fields. This structure has the format shown below. The
fields from 1 ; n k through 10_rna p_b a s e correspond to fields in the
TSS. The remaining fields are specific to the Kernel.

Only the fields ESP;, SS; (where i = 0 through 2), CR3_reg,
LOT_reg, TRAP_reg, IO_map_base,and task_51 ice can be
written by applications. If applications attempt to write other fields,
the results are undefined. Only the ESP; and SS; fields can be
written before calling create_task. The create_task system call
initializes the other fields regardless of how they were set before the
system call was invoked.

2-29

2·30

typedef struct {
KN_SELECTOR
UINT_16
UINT_32
KN_SELECTOR
UINT_16
UINT_32
KN_5ELECTOR
UINT_16
UINT_32
KN_SELECTOR
UINT_16
UINT_32
UINT_32
UINT_32
UINT_32
UINT_32
UINT_32
UINT_32
UINT_32
UINT_32
UINT_32
UINT_32
KN_SELECTOR
UINT_16
KN_SELECTOR
UINT_16
KN_SELECTOR
UINT_16
KN_SELECTOR
UINT_16
KN_SELECTOR
UINT_16
KN_SELECTOR
UINT_16
KN_SELECTOR
UINT_16
UINT_16
UINT_16
KN_TOKEN
UINT_32
UINT_16
UINT_16
KN_FLAGS

KN_TASK_STATE;

1 ink;
link_h:
ESP0;
SS0;
SS0_h;
ESP1:
551;
SS1_h;
ESP2:
SS2;
SS2_h;
CR3_reg;
ElP_reg:
EFLAGS_reg;
EAX_reg;
ECX_reg:
EOX_reg;
EBX_reg;
ESP_reg;
EBP_reg:
ESI_reg:
EOI_reg:
ES_reg:
ES_h;
CS_reg;
CS_h;
SS_reg;
SS_h;
OS_reg:
OS_h:
F5_reg;
FS_h;
GS_reg;
GS_h:
LOT_reg;
LOT_h:
TRAP_reg:
IO_map_base;
task token:
task slice;
dynamic priority;
static_priority;
flags;

iRMKTM Kernel Reference Manual

Where:

link

link h

ESPO

SSO

SSO h

ESP!

SSt

SSt h

ESP2

SS2

SS2_h

CR3_reg

A back link to the previous TSS.

A reserved field in the TSS.

ESP register for privilege ring 0 operation.

SS register for privilege ring 0 operation.

A reserved field in the TSS.

ESP register for privilege ring 1 operation.

SS register for privilege ring 1 operation.

A reserved field in the TSS.

ESP register for privilege ring 2 operation.

SS register for privilege ring 2 operation.

A reserved field in the TSS.

CR3 register.

EIP _reg EIP register.

EFLAGS_reg EFLAGS register.

EAX _reg EAX register.

ECX_reg

EDX_reg

EBX_reg

ESP _reg

EBP_reg

ESI_reg

EDI_reg

ES_reg

ES h

CS_reg

CS h

Kernel System Calls

ECX register.

EDX register.

EBX register.

ESP register.

EBP register.

ES! register.

ED! register.

ES register.

A reserved field in the TSS.

CS register.

A reserved field in the TSS.

2·31

create task

2·32

SS_reg

SS h

DS_reg

DS h

FS_reg

FS h

GS_reg

GS_h

LDT_reg

LDT h

TRAP_reg

SS register. Tasks that use the message passing module should not
change this descriptor.

A reserved field in the TSS.

DS register.

A reserved field in the TSS.

FS register.

A reserved field in the TSS.

as register.

A reserved field in the TSS.

Selector for the LOT. By default, the new task's LDT is the same as
its parent task's. To give the task a different LOT, you should assign
memory for the LOT, set up an LDT descriptor in the GOT, and place
a selector for that descriptor in the LOT_reg field.

A reserved field in the TSS.

The trap bit is bit 0 of the low-order byte.

10_ map_base Offset to the start of the I/O permission map from the base of the
TSS.

task token

task_slice

A token for the task.

The total number of clock ticks in the task's time slice. Once
changed, this value becomes effective the next time the task receives
a new time slice.

dynamic_priority
The current dynamic priority of the task. This field is equal to the
static priority field unless the task's priority has been adjusted
because of region ownership, in which case it is equal to the adjusted
priority. The dynamic priority of tasks is used in scheduling the
processor.

static_priority The current static priority of the task. This field gives the priority of
the task if priority adjustment due to regions is ignored.

iRMKTM Kernel Reference Manual

flags A KN_FLAGS whose bit structure specifies the following attributes
of the task:

Idle task Specifies whether the task is the idle task. The following literals
apply to this flag:

Literal Meaning

KN_IDLE_ TASK_MASK
A mask for this field of the flag.

The task is the idle task.

KN_NOT _I DLE_ TASK The task is not the idle task.

Initial state Specifies the initial state of the task. The following literals apply
to this flag:

Literal Meaning

KN_INITIAL_ TAS K_STAT E_M AS K
A mask for this field of the flag.

KN_CREATE_READY
Create the task in the ready state.

KN_CREATE_SUSPENDED
Create the task in the suspended state.

stack_ptr
A pointer to the stack to be used by the task. The task's SS and ESP registers are
initialized using this pointer. The pointer must point to the highest memory address
of the stack. Therefore, if you have a pointer to the start of the memory area that
will be used as the stack, add the stack size to the offset portion of the pointer.

If the task is to execute in any other privilege rings, the application must set up
additional stacks for the task and directly store pointers to them in the task's TSS.
The application must ensure that the mapping of the stack_ptr parameter to
physical memory remains constant for as long as the task executes in the stack.
Stacks should be 4-byte aligned.

Compact applications can provide protected stacks by setting up descriptors for the
area of memory used as the stack. In small model the stack and data are combined
into the data segment, so no protected stacks can be created. For both compact and
small applications, you must ensure that the area of memory reserved for the stack is
large enough for the task's needs. However, for small model, extra care should be
taken because stack overflows can cause unexpected errors by overwriting important
information.

Kernel System Calls 2-33

code_ptr
A pointer to the initial instruction to be executed by the new task. In the small
model interface, this pointer is assumed to be relative to the caller's code segment.
The application must ensure that the mapping of the code_ptr parameter to
physical memory remains constant for as long as the task executes in the code
segment.

data_seg

priority

A pointer to the new task's data segment. The task's DS, ES, FS, and OS registers
are loaded with the selector portion of this pointer (or for small model applications,
the caller's DS is used). The application must ensure that the mapping of the
d a t a_s e 9 parameter to physical memory remains constant fofas long as the task
uses the data segment.

A UINT_16 specifying the priority of the new task. This parameter must be in the
range 0-511, with 0 being the highest priority.

flags A KN_FLAGS whose bit structure specifies the following attributes of the task:

2-34

Task State Specifies whether the task should be created in the ready state or in
the suspended state. The following literals apply to this flag:

Literal Meaning

KN_CREATE_READY The task is to be created in the ready state.

KN_CREATE_SUSPENDED
The task is to be created in the suspended state.

iRMKTM Kernel Reference Manual

csts

char = KN_csts():

Data Type
UINT_8

Description

Parameter
char

The csts system call reads an ASCII character from the console input device. It is
similar to the ci system call but does not wait if a character is not immediately
available. If no console input character is available, csts returns an ASCII null
character (value zero).

See also: initialize_console

Scheduling Category

Non-scheduling. Safe for use by interrupt handlers.

Return Value

char A UINT_8 variable which receives the ASCII character entered at the console. Its
value is zero if there is no character available at the input device.

Kernel System Calls 2·35

Data Type
KN_TOKEN

Description

Parameter
task

The current_task_token system call returns the token of the currently running task.

Scheduling· Category

Non-scheduling. Safe for use by interrupt handlers.

Return Value

task A KN_TOKEN for the currently running task.

2.36 iRMK ™ Kernel Reference Manual

void KN_delete_alarm(alarm):

Data Type
KN_TOKEN

Description

Parameter
alarm

delete_alarm

The delete_alarm system call deletes a previously created alarm. As a result of this
call, the handler associated with the alarm will not be invoked. The area occupied by
the alarm is available for reuse.

If the alarm you intend to delete is a single-shot alarm, you might not know if the
alarm has already gone off (and thus has been deleted) when you invoke the
delete_alarm system call. Therefore, it is acceptable to delete alarms even if they
have already been deleted when they executed. This prevents race conditions in
which task execution speed is responsible for error conditions.

NOTE

Do not delete an alarm that has not yet been created.

See also: Time Management, Installation and User's Guide

Scheduling Category

Non-scheduling. Safe for use by interrupt handlers.

Parameters

alarm A KN_TOKEN for the alarm to be deleted.

Kernel System Calls 2-37

void KN_delete_area<area. pool):

Data Type
void
KN_TOKEN

Description

Parameter
* area

pool

The delete_area system call returns an area of memory to the memory pool from
which it was allocated. The area becomes a part of the available space in the pool
and should no longer be accessed directly by the application.

Scheduling Category

Blocking. Use with caution in interrupt handlers.

Parameters

area A pointer to the area to be deleted.

pool A KN_ TOKEN for the memory pool from which the area was allocated.

2·38 iRMK ™ Kernel Reference Manual

void KN_delete_mailbox(mailbox):

Data Type
KN_TOKEN

Description

Parameter
mailbox

delete_mailbox

The delete_mailbox system call deletes the specified mailbox. All tasks waiting at
the mailbox are awakened and given an E_NONEXIST status, and all messages
queued at the mailbox are lost. After this call, the memory assigned to the mailbox
is available for reuse.

Scheduling Category

Signalling. Use scheduling lock in interrupt handlers.

Parameters

mailbox
A KN_ TOKEN for the mailbox to be deleted.

Kernel System Calls 2-39

delete_pool

void KN_delete_pool (pool):

Data Type
KN_TOKEN

Description

Parameter
pool

The delete_pool system call deletes a memory pool. This system call makes the
entire address range of the memory pool available for reuse. No system calls that
use the pool (such as create_area and delete_area) should be invoked after the pool
has been deleted.

Memory pools can be deleted even if tasks currently have access to areas of memory
allocated from those pools. The tasks accessing the areas will still have access to
them. However, the Kernel does not prevent other tasks from accessing these in-use
areas after the pool is deleted.

Scheduling Category

Non-scheduling. Safe for use by interrupt handlers.

Parameters

pool A KN_TOKEN for the memory pool to be deleted.

2.40 iRMKTM Kernel Reference Manual

delete_semaphore

void KN_delete_semaphore(semaphore):

Data Type
KN_TOKEN

Description

Parameter
semaphore

The delete_semaphore system call deletes the specified semaphore. All tasks
waiting at the semaphore are awakened with the E_NONEXIST status code.

If you delete a region semaphore while a task has access to the region, that task is no
longer guarded by a region. Any dynamic adjustments that were made to that task's
priority as a result of accessing the region are nullified and the task resumes its static
priority. Because the region no longer exists, the task must not send the region's unit
back to the region.

See also: Semaphores, Installation and User's Guide

Scheduling Category

Signalling. Use scheduling lock in interrupt handlers.

Parameters

semaphore
A KN_ TOKEN for the semaphore to be deleted.

Kernel System Calls 2-41

delete task

Data Type
KN_TOKEN

Description

Parameter
task

The delete_task system call deletes the specified task regardless of the task's current
state. The delete_task system call may be used to delete any task including the
calling task. Delete_task does not return if it is invoked on the running task. All
resources dedicated to the task are available for reuse when this system call returns.

The task to be deleted should not be inside a region, because the region will never
again be available.

If you have defined a deletion task handler, the Kernel invokes the handler as part of
executing the delete_task system call.

Scheduling Category

Non-scheduling. Safe for use by interrupt handlers.

Rescheduling when performed on the calling task. Unsafe for use by interrupt
handlers when performed on the calling task.

Parameters

task A KN_ TOKEN for the task to be deleted.

2-42 iRMK 1M Kernel Reference Manual

get_code _selector

Data Type
KN_SELECTOR

Description

Parameter
code_sel

The get_code_selector system call is provided only with the Kernel's small-model
interface library (c _ call. lib). It returns a selector for the current code segment.

Scheduling Category

Non-scheduling. Safe for use by interrupt handlers.

Return Value

code_sel
A KN_SELECTOR in which the Kernel returns the selector for the current code
segment.

Kernel System Calls 2-43

Data Type
KN_SELECTOR

Parameter
data_seg

Description

The get_ data_selector system call is provided only with the Kernel's small-model
interface library, (c_call.lib). It returns a selector for the current data segment.

Scheduling Category

Non-scheduling. Safe for use by interrupt handlers.

Return Value

data_seg

2·44

A KN_SELECTOR in which the Kernel returns the selector for the current data
segment.

iRMKTM Kernel Reference Manual

get_descriptor _attributes

void KN_get_descriptor_attributes(table, descriptor,
attribute_ptr);

Data Type
KN_SELECTOR
KN_SELECTOR

void

Description

Parameter
table
descriptor

* attribute_ptr

The get_descriptor_attributes system call returns a structure containing the
attributes of a specified descriptor. The first byte of the structure (the access byte)
determines the type of the descriptor. The remaining fields of the structure depend
upon the type. For invalid descriptors, the attributes are undefined.

Scheduling Category

Non-scheduling. Safe for use by interrupt handlers.

Parameters

table A KN_SELECTOR for the descriptor table containing the descriptor whose attributes
are to be returned. Possible values are:

• A KN_SELECTOR for the GDT alias

• A KN_SELECTOR for an LDT (a GDT descriptor that references an LDT)

descriptor
A KN_SELECTOR for the descriptor whose attributes are to be returned.

attribute _ptr
A pointer to an area where the Kernel returns the attributes of the descriptor. If the
descriptor represents a segment, the attributes are returned in the
KN_SEGMENT _A TTRIBUTES_STRUC structure. If the descriptor represents a gate,
the attributes are returned in the KN_GATE_ATTRIBUTES_STRUC structure. When
the system call returns, you can determine which structure to apply to the area by
examining the first byte, which is the access byte in both structures.

Kernel System Calls 2-45

get_descriptor_attributes

2·46

When assigning memory for this area, you should allow enough room for the Kernel
to return the largest possible structure (KN_SEGMENT_ATTRIBUTES_STRUC) unless
you already know which type of descriptor will be returned.

When using the small model interface, the following structures have the format
shown. For compact model, the s e 1 field is not present because the base field is a
full 48-bit pointer.

typedef struct
UINT_8 access;
UINT_8 mode:
UINT_8 * base;
KN_SELECTOR sel;
UINT_32 size;

KN_SEGMENT_ATTRIBUTES_STRUC;

typedef struct
UINT_8 access;
UINT_8 word_count;
UINT_8 * base;
KN_SELECTOR sel :

KN_GATE_ATTRIBUTES_STRUC:

Where:

access (applies to both structures) Indicates the type of descriptor this is.
This field corresponds to the access byte of the descriptor (bits 7
through 15 of the descriptor's second doubleword). Refer to the 386
DX Programmer's Reference Manual for more information about the
access byte. There are several masks that you can apply to this field
to obtain the access information. The flags are described at the end
of this section.

iRMKTM Kernel Reference Manual

mode

get_descriptor_attributes

A UINT_8 that indicates whether the segment is a 16-bit or a 32-bit
segment. The following literals apply.

Literal

KN_MODE_BIT

KN_MODE_32

KN_MODE_16

Meaning

A mask for this field of the value.

The segment is a 32-bit segment.

The segment is a 16-bit segment.

base (applies to both structures) A pointer that specifies the beginning
address of the segment. In small-model applications, this pointer is
a 32-bit offset and the 5 e 1 parameter indicates the selector for the
segment from which the offset starts. In compact-model
applications, this pointer is a full 48-bit pointer encompassing both
the offset and the selector.

sel (applies to both structures) A KN_SELECTOR that identifies the
segment from which the bas e is assumed to start. This field is only
present for small-model applications.

size A UINT _32 indicating the size of the segment in bytes. The
get_descriptor_attributes system call returns a 0 value in this field
to indicate a 4G-byte segment.

word count A UINT_8 indicating the number of words that are transferred from
the calling procedure's stack to the new stack whenever a procedure
makes an inter-level call using this gate.

The following flag literals can be used to get information from the ace e s s field.

KN_DATA_SEG

The descriptor represents a data segment. Data segments can have
the following attributes:

Writable Determines if the data segment is writable.

Kernel System Calls

Literal Meaning

KN_DATA_D_ WRITABLE_BIT

KN_WRITABLE

KN_NOT _WRITABLE

A mask for this field.

The data segment is writable.

The data segment is not writable.

2-47

get_descriptor _attributes

2-48

Expand Determines if the data segment is expand-up or expand-down.

Literal Meaning

KN_DATA_D_EXPAND_DIR_BIT

KN_EXPAND_DOWN

KN_EXPAND_UP

KN_EXEC_SEG

A mask for this field.

The segment is expand down.

The segment is expand up.

The descriptor represents an executable code segment. Executable
segments can have the following attributes:

Readable Determines if the executable segment is readable.

Literal Meaning

KN_EXEC_READABLE_BIT

KN_READABLE

KN_NOT _READABLE

A mask for this field.

The segment is readable.

The segment is not readable.

iRMKTM Kernel Reference Manual

get_descriptor _attributes

Conforming
Attributes of conforming segments are taken from the following
literals:

Literal Meaning

KN_EXEC_D_CONFORMING_BIT
A mask for this field.

KN_CONFORMING The segment is conforming.

KN_NOT_CONFORMING The segment is not conforming.

KN_SYS_SEG
The descriptor represents a system segment (a gate, a TSS, or an
LDT). It can have the following attributes:

Literal Meaning

KN_286_COMPATIBLE The segment is 286-compatible.

KN_386_SPECIFIC The segment is 386-specific.

KN_AVAILABLE_286_ TSS
The segment is an available 286 Task
State Segment.

The segment is an LDT.

The segment is a busy 286 Task State
Segment.

The segment is a 286 call gate.

KN_286_ OR_386_ TASK_GATE
The segment is a 286 or 386 task gate.

KN_286_INTR_GATE The segment is a 286 interrupt gate.

KN_286_TRAP _GATE The segment is a 286 trap gate.

KN_AVAILABLE_386_ TSS
The system is an available 386 Task State
Segment.

KN_BUSY _386_ TSS The segment is a busy 386 Task State
Segment.

KN_386_CALL_GATE The segment is a 386 call gate.

KN_386_INTR_GATE The segment is a 386 interrupt gate.

KN_386_TRAP _GATE The segment is a 386 trap gate.

Kernel System Calls 2-49

get_descriptor _attributes

In addition to the information that is specific to particular types of descriptors, the
following masks apply to all descriptors:

Privilege Level
Determines the privilege level of the descriptor.

Literal

KN_DPL_MASK

KN_DPL_O

KN_DPL_1

KN_DPL_2

KN_DPL_3

Meaning

A mask for this field.

The descriptor is privilege level O.

The descriptor is privilege level 1 .

The descriptor is privilege level 2.

The descriptor is privilege level 3.

The value KN_DPL_SHIFf_COUNT can be used to shift the mask left
to the proper bit position in the access byte.

Present Determines if the data is present in memory.

Literal

KN_PRESENT _BIT

KN_PRESENT

KN_NOT _PRESENT

Meaning

A mask for this field.

The data is present in memory.

The data is not present in memory.

Accessed Indicates whether the descriptor is currently accessed (that is,
whether a selector for it is currently loaded into a segment register).

Literal -Meaning

KN_ACCESSED_BIT A mask for this field.

KN_ACCESSED The descriptor is currently accessed.

KN_NOT _ACCESSED The descriptor is not currently accessed.

2-50 iRMKTM Kernel Reference Manual

get_interconnect

value = KN_get_interconnect<slot_number. register_number);

Data Type
UINT_8
UINT_8
UINT_16

Description

Parameter
value
slocnumber
register_number

The getJnterconnect system call retrieves the value in the specified interconnect
register.

Scheduling Category

Non-scheduling. Safe for use by interrupt handlers.

Return Value

value A UINT_8 in which the Kernel returns the value of the ~pecified interconnect
register.

Parameters

slot number
A UINT _8 that specifies the Multibus II card slot ID of the board on which the
specified interconnect register is located. Values 0-20 indicate a slot on the Parallel
System Bus. Values 24-29 indicate slots on the LBX II bus. A value of 31 indicates
the current host. All other values are invalid.

register_number
A UINT_16 specifying the interconnect register to be read. Refer to the hardware
manual for the particular board type to determine the proper register number.

Kernel System Calls 2-51

interval

Data Type
UINT_16

Parameter
interval

Description

The get_PIT Jnterval system call returns the value of the time interval generated by
the PIT. This value can be used to translate clock ticks into absolute time values.

Scheduling Category

Non-scheduling. Safe for use by interrupt handlers.

Parameters

interval
A UINT _16 specifying the current value of the PIT interval in milliseconds.

2-52 iRMKTM Kernel Reference Manual

Data Type
KN_TOKEN

KN_POOL_A TIRIBUTES_STRUC

Description

Parameter
pool

* attributes_ptr

The get_pool_attributes system call provides information about the specified
memory pool. The memory pool must previously be established with the
create_pool system call.

Scheduling Category

Non-scheduling. Safe for use by interrupt handlers.

Parameters

pool A KN_ TOKEN for the memory pool whose attributes are requested.

attributes_ptr
A pointer to a KN_POOL_A TIRIBUTES_STRUC in which the Kernel returns the
attributes of the specified memory pool. The format of this structure is as follows:

typedef struct
UINT_32 pool_size:
UINT_32 pool_available:
UINT_32 pool_largest:

KN_POOL_ATTRIBUTES_STRUC:

Where:

pool size The total number of bytes in the memory pool. That is, the size of
the memory supplied when the memory pool was created.

pool_available The total number of bytes of available space in the memory pool.

poolJargest The number of bytes in the largest contiguous available space in the
memory pool.

Kernel System Calls

priority

Data Type
UINT_16
KN_TOKEN

Description

Parameter
priority
task

The get_priority system call returns the static priority of the specified task. This is
either the priority that the application assigned to a task when the task was created or
the priority the application set later with set_priority. Priority adjustment due to the
task's ownership of a region has no effect on the result of this system call (that is, a
task's static priority rather than its dynamic priority is always returned).

See also: Task Management, Priority Adjustment, Installation and User's
Guide

Scheduling Category

Non-scheduling. Safe for use by interrupt handlers.

Return Value

priority A UINT_16 in which the Kernel returns the static priority of the specified task.

Parameters

task A KN_TOKEN for the task whose priority is requested.

2-54 iRMKTM Kernel Reference Manual

Data Type
UINT_8

Description

Parameter
slot

The get_slot system call returns the highest priority interrupt slot currently in
service. This identifies the highest priority interrupt source for which an interrupt
handler is active (the handler has not yet sent an end-of-interrupt signal).

Scheduling Category

Non-scheduling. Safe for use by interrupt handlers.

Return Value

slot A UINT_8 indicating the highest priority active interrupt source. This value is an
index into the lOT (that is; 1 indicates lOT slot 1, 2 indicates lOT slot 2, and so on).
If no interrupt sources are currently active, the value 0 is returned.

Kernel System Calls 2-55

Data Type
UINT_64

Description

Parameter
time

The get_time system call returns the current value of the counter that' the Kernel
uses to keep track of the number of clock ticks that have occurred. When the Kernel
is initialized, the count is set to zero. Applications can set the count to any value
with the set_time system call.

See also: Time Management, Installation and User's Guide

Scheduling Category

Non-scheduling. Safe for use by interrupt handlers.

Return Value

time A UINT _64 containing the current value of the system clock.

2-56 iRMKTt.I Kernel Reference Manual

initialize

task KN_initializeCconfiguration_ptr, area_ptr,
idle_task_area_ptr);

Data Type
KN_TOKEN

KN_CONFIGURATION_DATA_STRUC
UINT_32
UINT_32

Description

Parameter
task

* configuration_ptr
'" area_ptr
'" idle_task_area_ptr

The initialize system call initializes the Kernel and transforms the calling program
into the initial Kernel task. In the initialization you may set up the entry points for
the task creation handler, the task deletion handler, the disaster handler, the task
switch handler, and the priority change handler. If you are going to debug your
code, you must call initialize _ RDS before any other call. The initialize system call
must be invoked before calling any other Kernel system call and before invoking any
of the device managers supplied with the Kernel. The procedure that calls initialize
becomes a Kernel task.

Before your program invokes this system call, the processor must be in protected
mode.

The con f; 9 u rat; 0 n_p t r parameter indicates the task handlers supplied by the
application. For the calling format of the handlers, see Kernel Handlers, Chapter 4.

See also: Configuration, Chapter 5

Scheduling Category

Rescheduling. Unsafe for use by interrupt handlers.

Return Value

task A KN_ TOKEN for the current running task (created from the caller).

Kernel System Calls 2-57

initialize

Parameters

configuration _ptr

2-58

A pointer to a KN_CONFIGURA TION_DATA_STRUC structure specifying the
configuration parameters for the Kernel. The structure has the following format:

typedef struct
UINT_32 time_slice;
UINT_32 real_time_fence;
UINT_16 priority;
void * task_creation_handler_ptr;
UINT_16 task_creation_handler_ptr_fill;
KN_FLAGS task_creation_handler_flags;
void * task_deletion_handler_ptr;
UINT_16 task_deletion_handler_ptr_fill;
KN_FLAGS task_deletion_handler_flags;
void * task_switch_handler_ptr;
UINT_16 task_switch_handler_ptr_fill;
KN_FLAGS task_switch_handler_flags;
void * priority_change_handler_ptr;
UINT_16 priority_change_handler_fill:
KN_FLAGS priority_change_handler_flags;
void * disaster_handler_ptr;
UINT_16 disaster_handler_ptr_fill;
KN_FLAGS disaster_handler_flags;

KN_CONFIGURATION_DATA_STRUC;

Where:

time_slice The value of the time slice (in clock ticks) to be used for time-sliced
tasks.

real_time_fence

priority

The priority value (between 0 and 511, with 0 being the highest
priority) that determines which tasks are to be time-sliced. All tasks
with priorities equal to or lower (numerically higher) than this value
are time-sliced.

The priority (in the range 0-511) of the initial task created by this
system call.

iRMKTM Kernel Reference Manual

initialize

task creation handler ptr
- - A point~r to a procedure used as the task creation handler. The

Kernel calls this procedure whenever it creates a new task except for
this initial task. If the pointer is null, the Kernel does not call a
handler at task creation. This pointer is assumed to be relative to the
caller's CS. The application must ensure that the mapping of this
pointer to physical memory remains constant.

task_creation _handler _ptr Jill

task_deletion_handler _ptr _fill

task_switch _handler _ptr Jill

priority_change _handler_fill

disaster_handler _ptr _fill

Do not set this field. In small model, it is a placeholder. In compact
model, it holds the selector of the preceding pointer.

task_creation _handler_flags
A KN_FLAGS for the task creation handler. The following literals
apply to this flag:

Literal Meaning

KN_HANDLER_CONVENTION_MASK
A mask for this field of the flag.

The handler is in the same subsystem as
the Kernel.

The handler is in a different subsystem
from the Kernel's.

task_deletion _handler _ptr

Kernel System Calls

A pointer to a procedure to be used as the task deletion handler. If
null, the Kernel does not call a handler at task deletion. This pointer
is assumed to be relative to the caller's CS. The application must
ensure that the mapping of this pointer to physical memory remains
constant.

2·59

initialize

2·60

task _ deletion_handler_flags
A KN_FLAGS for the task deletion handler. The following literals
apply to this flag:

Literal Meaning

KN_HANDLER_CONVENTION_MASK

task _switch _handler _ptr

A mask for this field of the flag.

The handler is in the same subsystem as
the Kernel.

The handler is in a different subsystem
from the Kernel's.

A pointer to a procedure to be used as the task switch handler. If
null, the Kernel does not call a handler at task switch time. This
pointer is assumed to be relative to the caller's CS. The application
must ensure that the mapping of this pointer to physical memory
remains constant.

task _switch_handler_flags
A KN_FLAGS for the task switch handler. The following literals
apply to this flag:

Literal Meaning

KN_HANDLER_CONVENTION_MASK

priority_change _handler _ptr

A mask for this field of the flag.

The handler is in the same subsystem as
the Kernel.

The handler is in a different subsystem
from the Kernel's.

A pointer to a procedure to be used as the priority change handler. If
null, the Kernel does not call a handler at priority change time. This
pointer is assumed to be relative to the caller's CS. The application
must ensure that the mapping of this pointer to physical memory
remains constant.

iRMKTM Kernel Reference Manual

initialize

priority_change _handler_flags
A KN_FLAGS for the priority change handler. The following literals
apply to this flag:

Literal Meaning

KN_HANDLER_CONVENTION_MASK
A mask for this field of the flag.

The handler is in the same subsystem as
the Kernel.

The handler is in a different subsystem
from the Kernel's.

disaster_handler _ptr
A pointer to a procedure to be used as the disaster handler. If null,
the Kernel executes an INT3 instruction when a disaster occurs.
This pointer is assumed to be relative to the caller's CS. The
application must ensure that the mapping of this pointer to physical
memory remains constant.

disaster_handler_flags

Kernel System Calls

A KN_FLAGS for the disaster handler. The following literals apply
to this flag:

Literal Meaning

KN_HANDLER_CONVENTION_MASK
A mask for this field of the flag.

The handler is in the same subsystem as
the Kernel.

The handler is in a different subsystem
from the Kernel's.

2-61

initialize

area_ptr
A pointer to an area in which the Kernel stores the initial task's task state. This area
must be at least KN_TASK_SIZE bytes long, and it must be aligned on a four-byte
boundary. If you are using the numeric coprocessor, the area must be at least
KN_ TASK_SIZE plus KN_387 _SA VE_AREA_SIZE bytes long. The Kernel applies a
KN_ T ASK_STATE structure on this area when it maintains the state.

The minimum number of bytes of memory required for a task object.

KN_ T ASK_STATE
A structure that can overlay a task state to provide access to the
individual fields. See the create_task system call for the
KN_ T ASK_STATE structure.

idle_task _area _ptr

2·62

A pointer to the area in which the Kernel stores the idle task's task state. This area
must be at least KN_ TASK_SIZE plus KN_387 _SA VE_AREA_SIZE bytes long, and it
must be aligned on a four byte boundary. The Kernel applies a KN_TASK_STATE
structure on this area when it maintains the state. See the create_task system call
for the KN_ T ASK_STATE structure.

iRMK ™ Kernel Reference Manual

initialize_console

void KN_initialize_console(configuration_ptr);

Data Type Parameter
KN_CONSOLE_CONFIGURATION_STRUC * configuration_ptr

Description

The initialize_console system call provides initialization for the 82530 Serial
Communication Controller device, used for character I/O functions. This system call
should be invoked before starting any character I/O. The 82530 Serial
Communication Controller is not used in interrupt driven mode.

See also: Configuration, Chapter 5
Device Management, Installation and User's Guide

Scheduling Category

Unsafe.

Parameters

configuration_ptr
A pointer to a data structure specifying the configuration of the I/O device. The
configuration data structure is not modified, and thus may reside in ROM. The
format of this data structure is:

typedef struct{
UINT_8 type;
UINT_32 data_port;
UINT_32 control_port;
UINT_32 clock_frequency_hi:
UINT_32 clock_frequency:
UINT_32 baud_rate;
UINT_32 interrupt_level;

}KN_CONSOLE_CONFIGURATION_STRUC;

Kernel System Calls 2·63

initialize_console

Board

Where:

type The type of the I/O device. KN_82530A_USART supports channel A,
and KN_82530B_USART supports channel B.

data_port Data port address for the I/O device.

control_port Control port address for the I/O device.

clock_frequency _hi
High word of the clock frequency in hertz of the I/O device.

clock_frequency
Low word of the clock frequency in hertz of the I/O device.

baud rate Character transmission rate allowed by the I/O device.

interru pt Jevel
This parameter is not used.

Table 2-2 gives initialization values for some Intel boards. For other boards, refer to
the appropriate hardware reference manual.

Table 2-2. Initialization Values for the 82530 Device

Data Control Frequency
Port Port (hz) Baud

iSBC 386/133 9830400 (960000h) 300-38400 in increments
iSBC 486/125 4915200 (4BOOOOh) 300-38400 in increments
Connector J1 OOEh OOCh
Connector J2 OOAh 008h

* iSBX 354, on Intel boards 4915200 (4BOOOOh) 300-19200 in increments
Connector J1 86h 84h
Connector J2 82h 80h

Intel boards use BOH as the base I/O port address for the iSBX connector. Other boards may
use a different address, so that an iSBX 354 module attached to those boards would have
different port addresses.

2-64 iRMKTM Kernel Reference Manual

initialize_interconnect

void KN_initialize_interconnectCconfiguration_ptr):

Data Type
KN_INTERCONNECT _STRUC

Description

Parameter
... configuration_ptr

The initialize_interconnect system call initializes the interconnect space interface
module, providing the configuration information necessary for tasks to access
interconnect space. This system call must be invoked after the initialize system call
but before accessing interconnect space.

See also: Configuration, Chapter 5

Scheduling Category

Non-scheduling. Safe for use by interrupt handlers.

Parameters

configuration _ptr
A pointer to a KN_INTERCONNECT _STRUC structure specifying configuration
information necessary to access interconnect space. The structure has the following
format:

typedef struct
UINT_16
UINT_16
UINT_8

KN_INTERCONNECT_STRUC:

Where:

address_port:
data_port:
port_separation:

address_port The I/O port used to specify the address for interconnect operations.

data_port The first of the I/O ports used to read and write data in interconnect
operations.

Kernel System Calls 2-65

initialize interconnect

2·66

port_separation
The number of bytes separating the data ports used to access
interconnect space.

iRMKTM Kernel Reference Manual

initialize_LOT

void KN_initialize_LDTCdescriptor. base_ptr. entries):

Data Type
KN_SELECTOR
void
UJNT~16

Description

Parameter
descriptor

* base_ptr
entries

The initialize_LDT system call sets up a specified descriptor in the GDT as a local
descriptor table (LDT) descriptor. It also initializes all descriptors in the new LDT
with null descriptors. The previous contents of the GDT descriptor are overwritten.

The calling task has direct control over all fields in the descriptor for the LDT,
except the pre sen t b; t and the 0 P L field. The Kernel initializes the LDT
descriptor with 0 P L = 0 and present = 1.

If another task invokes the get descriptor attributes system call on the same
descriptor entry while the initi-;lize_LDT ;ystem call is underway, that task will get
either the old or new attributes of the descriptor, but not a combination of the two.
Once the new descriptor for the LDT is in place, all the entries in the LDT are also
initialized.

Scheduling Category

Non-scheduling. Safe for use by interrupt handlers.

Kernel System Calls 2·67

initialize LOT

Parameters

descriptor
A KN_SELECTOR for the GOT descriptor to be initialized.

base_ptr

entries

2-68

A pointer to the area to be used for the LOT. This area must be large enough to
contain the number of descriptors requested. The new table contains:

entries * KN_DESCRIPTOR_SIZE bytes.

KN_DESCRIPTOR_SIZE
The number of bytes required for each descriptor in a descriptor
table. Multiply this value by the number of entries in a descriptor
table to determine the amount of memory required by the table.

A UINT_16 specifying the number of descriptors in the new LOT.

iRMKTM Kernel Reference Manual

initialize_message_passing

void KN_initialize_message_passing(configuration_ptr,
working_storage_ptr);

Data Type
KN_MP _CONFIGURA TION_STRUC
void

Description

Parameter
'" configuration_ptr
'" workin~storage_ptr

The initialize_message_passing system call initializes the message passing module.
You must invoke this system call before using the message passing system calls.
You must invoke the initialize Jnterconnect call prior to making this call. The
interconnect code initializes the host ID that the message passing code will use when
dealing with the MPC.

Before initializing message passing, you must initialize the PIC and the PIT, in that
order. If these steps are out of order, or interconnect is not initialized, message
passing will function incorrectly.

Tasks that use the message passing module must not change the task descriptor in
their TSS.

See also: Configuration, Chapter 5

Scheduling Category

Unsafe for use by interrupt handlers.

Parameters

configuration ptr
A pointer to a KN_MP _CONFIGURA TION_STRUC area containing the configuration
information for the message passing module. The structure has the following
format:

Kernel System Calls 2·69

initialize_message_passing

2·70

typedef struct {
/* Data Link Configuration */

UINT_8 max_protocol_id:
UINT_16 number_data_chain_elements:
UINT_32 PSB_MPC_port:
UINT_8 MPC_config:
UINT_8 MPC_int_slot:
UINT_8 MPC_duty_cycle:
UINT_32 delay_scale:
UINT_8 si_failsafe_timer:
UINT_8 so_failsafe_timer:

/* DMA Configuration */
UINT_32 DMA_port:

auxiliary_DMA_support:
auxiliary_DMA_port:
in_channel:

UINT_8
UINT_32
UINT_8
UINT_8
UINT_16
UINT_32
UINT_8

/* Transport
UINT_16
UINT_32
UINT_32
UINT_32
UINT_32

out_channel:
data_link_task_priority;
data_link_rcv_queue_size:
number_of_data_link_retries:

Configuration */
transport_task_priority:
transport_mbx_queue_size:
attached_mbx_hash_table_size:
transaction_hash_table_size:
number_attached_mbxs:

KN_MP_CONFIGURATION STRUC:

Where:

max_protocol_id
The maximum value of any protocol handler protocol ID that can be
attached. The default value is 4. Non-Intel protocol handlers must
use the range 80h-FFh.

number_data _chain _elements
The maximum number of data chain elements that can be
constructed. The default value is 64.

PSB_MPC_port
The I/O port address of the Multibus II MPC device. The default
value is O.

iRMKTM Kernel Reference Manual

initialize_message_passing

MPC _ config The value of the MPC configuration register. The default value is
8AH.

The interrupt IDT slot of the MPC MINT interrupt. The default value
is 58.

MPC_duty_cycIe
Used to determine the MPC buffer grant duty cycle to allocate the
local bus bandwidth for the ADMA or the 82380/82370 Integrated
System Peripheral.

The following values specify the percentage of the local bus
bandwidth devoted to message passing. The default value is 3.

0 100%
1 75%
2 50%
3 25%
4 12%
5 6%
6 3%
7 1%

Note that DMA bus bandwidth can affect CPU bus bandwidth and
hence processor interrupt latency and execution times.

delay_scale Used to set delays in timing-dependent operations. The larger the
delay scale, the longer the Kernel waits before checking the status of
an operation. If the processor or MPC execution rates change in
future hardware products, you can change the delay scale to make
the message passing module function correctly. The default value is
3.

si_ failsafe_timer
Used on buffer grant messages to control the fail-safe counter.
When set (s i _ fa i 1 sa f e_ time r == 80H), the counter operation is
disabled. When not set (si_fai 1 safe_timer == 00H), the counter
operation is enabled. The default value is 80H.

so failsafe timer - -

Kernel System Calls

Used on buffer request messages to control the fail-safe counter.
When set (so_fai 1 safe_timer == 80H), the counter operation is
disabled. When not set (so_fai 1 safe_t imer == 00H), the counter
operation is enabled. The default value is 80H.

2-71

initialize_message_passing

2-72

The I/O port address of the ADMA (82258) component or the
82380/82370 Integrated System Peripheral. The default value is
200H.

auxiJiary_DMA_support
A Boolean value indicating whether burst mode support is desired.
This value should be TRU E when using the iSBC 386/133, 486/125,
386/020 or 486/133 boards and burst mode is desired; otherwise it
should be FALSE. The default value is FALSE.

auxiliary _ D MA _port
The I/O port address of the high speed DMA component of an iSBC
386/133,486/125,386/020 or 486/133 board. The default value is
0300H.

in channel The ADMA or 82380/82370 Integrated System Peripheral channel
number used for Multibus II solicited input. The default value is 2.

out channel The ADMA or 82380/82370 Integrated System Peripheral channel
number used for Multibus II solicited output. The default value is 3.

data_link_task _priority
The priority of the internal Kernel task that handles the in channel
and out channel DMA. The default value is 4.

data_I ink_ rcv _queue_size
The size, in number of queue elements, of the data link mailbox used
by the data link internal Kernel task. The default value is 16.

number of data link retries - - - -
The number of times the message passing software attempts to send
an unsolicited message when the hardware status upon transmission
indicates an E_RETRY _EXPIRED error. The default value is O.

transport_task _priority
The priority of the transport protocol internal task. This priority
should be less (numerically greater) than the solicited channel tasks.
The default value is 5.

transport _ m bx _ queue_size
The size, in number of queue elements, of the transport mailbox
used by the transport protocol internal Kernel task. The default
value is 16.

iRMKTt.1 Kernel Reference Manual

initialize_message_passing

attached _ mbx _hash_table_size
The size, in number of buckets, of the hash table used to keep track
of attached receive mailboxes. The default value is 256.

transaction_hash_table_size
The size, in number of buckets, of the hash table used to keep track
of outstanding RSVP transactions and send next fragment messages.
The default value is 256.

number attached mbxs - -
The number of mailboxes that can be attached as transport protocol
receive mailboxes. The default value is 64.

working_storage _ptr

Kernel System Calls

A pointer to an area of memory to be used as working storage by the
message passing module. The exact size of this area can be
determined from the mp _ working_storage _size system call.

2·73

initialize_NDP

void KN_initialize_NDP(configuration_ptr);

Data Type Parameter
KN_NDP _CONFIGURATION_STRUC '" configuration_ptr

Description

2-74

The initialize_NDP system call initializes the Kernel's optional Numeric
Coprocessor Module. This module provides an Interrupt 7 handler that is invoked
whenever a coprocessor instruction is executed. If there has -been a task switch, the
handler saves the coprocessor state for the task that previously invoked the
coprocessor, and restores the coprocessor state for the task that is accessing the
coprocessor now. If you include the coprocessor module, you must invoke the
initialize_NDP system call before using coprocessor instructions, but after invoking
the initialize system call.

Applications can include the support module to avoid implementing their own code
that saves and restores the coprocessor state. To use this module, tasks must include
an area of size KN_387 _SA VE_AREA_SIZE in the task state immediately following
the area allocated for Kernel task management. The support module uses this area to
save the state of the coprocessor for each task.

By default, the support module initializes the coprocessor state area for the current
task and every task created thereafter in the application. Initialization occurs when
the task is created. This initialization places reasonable values into the coprocessor
save area so that no errors occur the first time the task executes a coprocessor
instruction. However, by setting a flag in the initialize_NDP system call, you can
prevent the Kernel from initializing the coprocessor save areas. By preventing
initialization, you can selectively initialize save areas for only the tasks that use the
coprocessor.

iRMK ™ Kernel Reference Manual

initialize_NDP

If no initialization handler is specified, the Kernel initializes only one save area, the
save area for the calling task. If other tasks need to use the coprocessor, they must
set up and initialize coprocessor save areas of their own, immediately following the
memory used for the task state. You can determine the correct initialization values
to use in other tasks by saving the coprocessor state immediately after invoking the
initialize_NDP system call. Perform the following steps:

1. Disable interrupts, so that you can perform the entire operation without being
interrupted by other tasks.

2. Call initialize_NDP to initialize the Numeric Coprocessor Module.

3. Execute the FSAVE instruction to save the coprocessor state in an area of
memory you can pass on to other tasks.

4. Set the TS (task switch) flag in the eRO register. This tells the CPU to cause
an interrupt 7 the first time a numeric coprocessor instruction occurs after a
task switch. The interrupt 7 invokes the Kernel's coprocessor module so that it
can save and restore the coprocessor state.

5. Enable interrupts and continue processing.

Scheduling Category

Non-scheduling. Safe for use by interrupt handlers.

Kernel System Calls 2-75

initialize NDP

Parameters

configuration _ptr

2-76

A pointer to a KN_NDP _CONFIGURATION_STRUC structure containing
configuration data for the coprocessor. The format of this structure is as follows:

typedef struct
UINT_8 ndp_type;
KN_FLAGS flags;

KN_NDP_CONFIGURATION_STRUC;

Where:

flags

Indicates the type of coprocessor. The only value currently
supported is KN_387_NDP.

A KN_FLAGS whose bit structure specifies characteristics of the
coprocessor support. Currently only one flag is defined, which
indicates whether or not the coprocessor manager initializes the
coprocessor save areas in tasks. The following literals apply to this
flag:

Literal Meaning

KN_387 _HANDLER_MASK
A mask for this field of the flag.

KN_387 _NO_HANDLER Don't use the default 387 initialization
handler for this task.

KN_387_DEFAULT_HANDLER
Use the default 387 initialization handler
for this task.

If the default initialization handler is specified for this flag, the
Kernel initializes a coprocessor save area in the calling task, and it
also initializes coprocessor save areas for all subsequently created
tasks during task creation. With the default initialization handler in
effect, all tasks must allocate space at the end of the task state for a
coprocessor save area.

iRMKTM Kernel Reference Manual

initialize Pies

void KN_initialize_PICs(configuration_ptr):

Parameter Data Type
KN_PIC_CONFIGURATION_STRUC * configuration_ptr

Description

The initialize_PIes system call lets you specify the configuration of the 8259A or
82380/82370 PICs in the system. The system call also initializes the PICs so that
interrupt processing can begin. After this call, the PICs are set up as if all slots had
been masked by the mask_slot system call and the new_masks system call had been
invoked with a parameter of 255.

See also: Configuration, Chapter 5

Scheduling Category

Non-scheduling. Safe for use by interrupt handlers.

Parameters

configuration _ptr
A pointer to a KN_PIC_CONFIGURA TION_STRUC structure specifying the PIC
configuration. This structure consists of an array of nine KN_PIC_INDIV _STRUC

structures, each of which specifies configuration information for an individual PIC.
The first structure specifies the characteristics of the master PIC. The remaining
eight specify the slave PIes, with 0 first, then 1, and so on. If a slave PIC is not
present, set its f; r s t_s lot field to zero.

Kernel System Calls 2-77

The format of each KN_PIC_INDIV _STRUC data structure is as follows:

typedef struct{
UINT_16
UINT_8
UINT_8
UINT_8
UINT_8
·UINT_8

KN_PIC_INDIV_STRUC:

Where:

port_address;
port_separation:
first_slot:
sources_map;
type:
mode:

port_address The first I/O port used to program the PIC.

port_separation
The distance in bytes between consecutive I/O ports used to program
the PIC.

first slot The number of the entry in the interrupt descriptor table (IDT)
corresponding to the highest priority (lowest numeric) PIC input.
The seven IDT entries that follow correspond to the remaining seven
PIC inputs.

sources_map A bit map indicating which of the PIC inputs are connected to
interrupt sources. Bit 0 corresponds to input 0, bit 1 to input 1, etc.
A one in a bit position indicates the corresponding input is
connected. A zero in a bit position indicates either that the
corresponding input is not connected or that the input is connected to
a slave PIC.

type Indicates the type of PIC. Currently the values KN_8259A_PIC and
KN_82380_PIC are supported. If you use the 82380/82370 Integrated
System Peripheral, be sure to call out the pic_8259 module in the
82380/82370 library during the bind sequence.

mode Indicates whether the PIC should be programmed for edge or level
mode. If the PIT manager module is used, the PIC that is connected
to the PIT's timer must be programmed for edge mode. Use the
literal KN_EDGE_MODE or KN_LEVEL_MODE to indicate the mode.

2-78 iRMKTM Kernel Reference Manual

initialize PIT

void KN_initialize_PIT(configuration_ptr);

Data Type Parameter
KN_PIT _ CONFIGURATION_STR UC * configuration_ptr

Description

The initialize_PIT system call lets you specify configuration information about the
8254 or 82380/82370 timer. It initializes the timer to supply clock ticks to the
Kernel at the specified interval. The PIT is not actually started by this system call;
the start_PIT system call must be used for that purpose.

You must call initialize_PIC before calling initialize_PIT.

See also: Configuration. Chapter 5

Scheduling Category

Non-scheduling. Safe for use by interrupt handlers.

Parameters

configuration _ptr
A pointer to a KN_PIT_CONFIGURATION_STRUC data structure specifying the PIT
configuration. The format of this data structure is as follows:

typedef struct
UINT_16 port_address;
UINT_8 port_separation;
UINT_16 in_frequency;
UINT_8 slot;
UINT_8 type;
UINT_8 timer_out;

KN_PIT_CONFIGURATION_STRUC;

Where:

port_address The port address of the first I/O port to be used in programming the
PIT.

Kernel System Calls 2·79

2-80

slot A UINT _8 indicating the IDT slot number to which the PIT handler
is assigned.

port_separation
The distance in bytes between I/O ports used in programming the
PIT. The default value for the 8254 device is 2. The default value
for the 82370/82380 device is 1.

in _frequency The input frequency to the PIT, expressed in kHz.

type

timer out

The type of the PIT. Currently, the values KN_8254_PIT and
KN_82380_PIT are supported. If you use the 82380/82370 Integrated
System Peripheral, be sure to call out the piC8254 module in the
82380/82370 library during the bind sequence.

Indicates which timer on the PIT is to be used. The values supported
are 0, 1, 2, and 3. The default timer for the 8254 device is timer O.
The default timer for the 82370/82380 device is timer 3.

iRMK ™ Kernel Reference Manual

initialize RDS

status

, I'

Data Type
KN_STATUS
KN_RDS_STRUC

Description

Parameter
status

* configuration_ptr

The initialize _ RDS system call sets values used by the Kernel part of the debugger
software. This should be the first executable statement in the application. Only the
code following this call can be debugged.

The initialize _ RDS system call also sets up the trace queue for the ktrace debugger
command, and does device and console setup.

For the System VjiRMK environment, if the application is not built with RDS, the
call simply returns, and the debugger is not initialized. If the application is built
with RDS, RDS checks the BL_debu9_on_boot BPS parameter, with the following
results:

• If B L_debu9_on_boot = i M, the application breaks to the iM III Monitor and
waits for synchronization from the Soft_Scope III debugger.

• If BL_debu9_on_boot = on, RDS is initialized, but the application continues
to run. The application does not break to the Monitor (and Soft-Scope cannot
synchronize) unless an Interrupt 3 is encountered.

• If B L_debu9_on_boot is other than i M or on, RDS will not be initialized.

NOTE

With the B L_debu9_on_boot parameter set to ; M, the application
stops in the middle of the initialize _ RDS system call. The call
does not return until a Soft-Scope command (go or step) starts the
application running. The first executable statement you see with
the debugger is the return from the initialize _RDS call.

Kernel System Calls 2-81

initialize RDS

See also: Configuration, Chapter 5
Table of cc_cons ole device names, Installation and User's
Guide

Scheduling Category

Rescheduling. Unsafe for use by interrupt handlers.

Return Value

status A KN_STATUS indicating the result of the call. Values are:

Literal Meaning

E_OK Either RDS successfully initialized or RDS
is not present in the application.

E_NOT_CONFIGURED RDS did not initialize. The application
does not break to the Monitor, and Soft
Scope III will not be able to synchronize.

2-82 iRMKTM Kernel Reference Manual

initialize_RDS

Parameter
configuration _ptr

A pointer to the following structure containing initialization values. If you don't use
the ktrace and kmsgq debugger commands, the fields dl_trace_queue_s i ze
through rcv_buf_ptr may be null. To enable full trace capability, all trace-related
values should be set.

Where:

typedef struct
UINT_32
UINT_32
UINT_8
UINT_8
UINT_16
UINT_8
UINT_16
UINT_32
UINT_32
UINT_32
UINT_32
UNIT_32
UINT_8
UINT_16
UINT_8
UINT_16
UINT_8
UINT_16

KN_RDS_STRUC:

*

*

*

*

*

reserved1 [8]:
dl_trace_queue_size:
reserved2 [14]:
xmit_buf_ptr:
xmit_buf_ptr_fill:
rcv_buf_ptr:
rcv_buf _ptr _fill:
debug_flags:
MPC_base_address:
MPC_port_separation:
IC_base_address:
IC_port_separation:
default_cc_stdin:
default_cc_stdin_fill:
default_cc_stdout:
default_cc_stdout_fill:
default_cc_stderr:
default_cc_stderr_fill:

reserved[n] Set to zero.

dl_trace_queue_size The maximum number of data-link messages that can be
held in the trace queue of the ktrace debugger command. If
null, no trace can be maintained.

Kernel System Calls

A pointer to a user buffer where traced transmit messages
are stored. This buffer must be large enough to hold all
transmitted messages stored in the queue. If the pointer is
null, transmitted messages are not stored.

2-83

initialize RDS

2-84

Do not set this field. In small model, it is a placeholder. In:
compact model, it holds the selector of the preceding
pointer.

A pointer to a user buffer where traced received messages
are stored. This buffer must be large enough to hold all
received messages stored in the queue. If the pointer is null,
received messages are not stored.

Do not set this field. In small model, it is a placeholder. In
compact model, it holds the selector of the preceding
pointer.

debug_flags Reserved. Set to zero.

MPC_base_address The I/O port address of the MPC device. The value is 0 for
Intel boards.

MPC _base _port_separation
The number of bytes separating the MPC ports. The default
value is 4.

Ie base address The I/O port address of interconnect operations. Typically,
it is MPC_base_address + Ox30.

IC _port_separation The number of bytes separating the data ports used to access
interconnect space. The default value is 4.

default_cc_stdin A pointer to a null terminated string of the device name that
represents the default standard input. The System V /iRMK
BPS parameter C C_c 0 n sol e overrides this field.

default_cc_stdin_fill Do not set this field. In small model, it is a placeholder. In
compact model, it holds the selector of the preceding
pointer.

default _ cc _ stdout A pointer to a null terminated string of the device name that
represents the default standard output. The System V /iRMK
BPS parameter C C_c 0 n sol e overrides this field.

default_cc_stdout_fill Do not set this field. In small model, it is a placeholder. In
compact model, it holds the selector of the preceding
pointer.

A pointer to a null terminated string of the device name that
represents the default standard error console. The System
V/iRMK BPS parameter CC_consol e overrides this field.

iRMKTM Kernel Reference Manual

initialize RDS

default_cc_stderr_fill Do not set this field. In small model, it is a placeholder. In
compact model, it holds the selector of the preceding
pointer.

Kernel System Calls 2·85

initialize_stdio

void initialize_stdio():

Description

The initialize_stdio system call prepares the Kernel for using standard I/O functions
by making the functions reentrant. Although stdio initialization does not have to be
done at Kernel initialization, the initialize_stdio system call must be called before
any stdio functions are used.

NOTE

The initiaIize_stdio system call does not have a KN_ prefix.

See also: Chapter 3
kstdio libraries, Installation and User's Guide

Scheduling Category

Non-scheduling. Safe for use by interrupt handlers.

2-86 iRMKTM Kernel Reference Manual

initialize_subsystem

void KN_initialize_subsystem(configuration_ptr);

Data Type
KN_SUBSYSTEM_CONFIG

Description

Parameter
* configuration_ptr

All application subsystems that run outside the Kernel's subsystem must invoke the
initialize_subsystem system call before any other system call. There is one
exception to this rule. One of the subsystems must first invoke the Kernel initialize
system call (and may invoke initialize_RDS). The initialize system call should
execute before any of the initialize_subsystem system call invocations.

The initialize_subsystem system call has different effects, depending on whether it
is called from a "direct call" model or a "gated call" model.

• Direct call. An application using the direct call model is in the same subsystem
as the Kernel. In this case, the initialize_subsystem system call has no effect. If
you never intend to port your application to the gated call model, you can
eliminate the initialize_subsystem system call.

• Gated call. The initialize_subsystem system call saves the configuration data.
The Kernel then uses the configuration data to transform returned pointer values
into values accessible by the application.

Normally, the Kernel returns pointers relative to the Kernel's subsystem (that is,
the pointer has the selector for the Kernel's data segment). However, if you've
issued an initialize_subsystem system call, the Kernel translates the pointer into
one containing the selector specified in KN_SUBSYSTEM_CONFIG.

Scheduling Category

Non-scheduling: Safe for interrupt handlers.

Kernel System Calls 2·87

initialize_subsystem

Parameters

configuration _ptr
A pointer to a KN_SUBSYSTEM_CONFIG data structure specifying the subsystem
configuration. The format of this data structure is as follows:

typedef struct
KN_SELECTOR
KN_FLAGS

KN_SUBSYSTEM_CONFIG;

Where:

subsystem_rel_sel

subsystem_rel_sel;
subsystem_flags;

A KN_SELECTOR that the Kernel uses for pointer translation. For
example, in the small model, you can obtain the value used for this
parameter with the get_code_selector or the get_data_selector
system call. If you supply a null for this parameter, the Kernel
performs no translation.

subsystem_flags
A KN_FLAGS specifying whether or not the user segment is
restricted to 4 gigabytes. The following literals apply to this flag:

Literal Meaning

KN_RELAX_LlMIT _MASK The mask for this field of the flag.

KN_RELAX_LlMIT The limit in the descriptor pointed to by
the pointer's selector is determined by the
Kernel. The Kernel sets the limit to 4
gigabytes. This is one way of ensuring
that you don't go beyond a segment limit.

KN_NO_RELAX_L1MIT The limit in the descriptor painted to by
the pointer's selector is not changed by
the Kernel. It is your responsibility to
ensure that you don't go beyond a
segment limit. This is the default.

2-88 iRMKTM Kernel Reference Manual

Data Type
UINT_8

UINT_32

Description

Parameter
'" abs_ptr

lineacaddress

Given a linear address, the Iinear_to_ptr system call generates a pointer that refers
to the same location. This system call is useful for referencing memory or for
passing configuration parameters to Kernel interfaces. For example, linear addresses
might be specified during the configuration of a system or as input from a human
interface.

Scheduling Category

Non-scheduling. Safe for use by interrupt handlers.

Return Value

abs_ptr
A pointer that refers to the specified linear address.

Parameters

linear_address
A UINT_32 containing a linear address to be translated into a pointer.

Kernel System Calls 2·89

local host 10 - -

Data Type
KN_HOST_ID

Parameter
hosCID

Description

The local_host _ID system call returns the host ID of the board on which the
application is executing.

During initialization, the Kernel determines the host ID by reading the Multibus II
Interconnect Space host ID record. If the host ID field is non-zero, the Kernel uses
that value as the local host TD. If the field is zero, or if the record does not exist, the
Kernel uses the host's slot ID as the host ID. If the slot ID is used, the Kernel fills in
the Interconnect Space host ID record (if it exists) with that slot ID, so that the
Kernel's local host ID and the Interconnect Space host ID are equal.

Scheduling Category

Non-scheduling. Safe for use by interrupt handlers.

Return Value

host ID
A KN_HOST _ID containing the local host ID.

2·90 iRMKTM Kernel Reference Manual

Data Type
UINT_8

Description

Parameter
slot

The mask_slot system call causes the Ple(s) to mask interrupts that occur on the
specified interrupt line until a corresponding unmask_slot system call is invoked on
the slot.

See also: Masks and Interrupt Sources, Installation and User's Guide

Scheduling Category

Non-scheduling. Safe for use by interrupt handlers.

Parameters

slot A UINT _8 indicating the entry (slot number) in the IDT to be masked. This slot must
be one that was assigned to the PIe with the initialize_PIes system call.

Kernel System Calls 2·91

mp_working_storage_size

Data Type
UINT_32
KN_MP _CONFIGURA TION_STRUC

Parameter
storage_size

* configuration_ptr

Description

The mp _working_storage _size system call calculates the size in bytes of the area of
memory to be used by the message passing module. All data chain elements must be
in the GOT or same LOT table. The calculation is based on the same configuration
information used in the initialize_message_passing system call. Use the storage
size calculated to create an area of the size needed for initiaJize_message_passing.

Scheduling Category

Non-scheduling. Safe for use by interrupt handlers.

Return Value

storage_size
A UINT _32 that contains the calculated size of the working storage area in bytes.

2-92 iRMK ™ Kernel Reference Manual

Parameters

configuration_ptr
A pointer to a KN_MP _CONFIGURATION_STRUC area containing the configuration
information for the message passing module. See initialize_message_passing for
the structure.

Kernel System Calls 2·93

new masks

Data Type
UINT_8

Description

Parameter
slot

The new_masks system call changes the masking of interrupt sources based upon a
specified entry (slot number) in the IDT. All interrupt lines less important than the
one corresponding to the specified slot are masked out. The specified interrupt line
and all lines more important are unmasked, as long as they have been unmasked by
the unmask_slot system call. Higher priority sources are associated with lower IDT
slot numbers.

See also: Masks and Interrupt Sources, Installation and User's Guide

Scheduling Category

Non-scheduling. Safe for use by interrupt handlers.

Parameters

slot A UINT _8 specifying the entry (slot number) in the IDT for the new mask interrupt
line.

2·94 iRMKTM Kernel Reference Manual

void KN_null_descriptor<table. descriptor);

Data Type
KN_SELECTOR

KN_SELECTOR

Description

Parameter
table
descriptor

null_descriptor

The null_descriptor system call overwrites a specified descriptor with a null
descriptor. The null descriptor is a descriptor with a DPL of 3 that points to an
unused one-byte, read-only data location within the Kernel. A selector for a null
descriptor can be loaded into a segment register without generating a fault, but
almost any attempt to use a null descriptor for referencing memory will generate a
fault.

Scheduling Category

Non-scheduling. Safe for use by interrupt handlers.

Parameters

table A KN_SELECTOR for the descriptor table containing the descriptor to be nulled.

descriptor
A KN_SELECTOR for the descriptor to be nulled.

Kernel System Calls 2-95

linear_address KN_ptr_to_linear(table. self ptr): (SMALL)

linear_address

Data Type
UINT_32

KN_SELECTOR

KN_SELECTOR

void

Description

Parameter
linear_address
table
sel

* ptr

(COMPACT)

The ptr _to _linear system call returns the linear address referred to by a given
pointer. The descriptor table in which the pointer is valid must be supplied by the
caller.

Scheduling Category

Non-scheduling. Safe for use with interrupt handlers.

Return Value

linear address
A UINT _32 containing the linear address referred to by the specified pointer.

Parameters

table A KN_SELECTOR for the descriptor table containing the segment descriptor for the
specified pointer.

sel A KN_SELECTOR indicating the segment from which the pt r parameter is offset.
This parameter is present only in the small-model interface library (c _call. lib). In
the compact-model interface, the pt r parameter includes both the selector and the
offset.

ptr A pointer to the location whose linear address is requested. In the small-model
interface, this parameter is a 32-bit offset. In the compact-model interface, the
parameter is a full pointer, containing both a selector and an offset.

2-96 iRMKTM Kernel Reference Manual

status

receive data

KN_receive_data(mailbox. data_ptr. length_ptr.
time_limit);

Data Type
KN_STATUS
KN_TOKEN

void
UINT_32

UINT_32

Parameter
status
mailbox

... data_ptr

... length_ptr
time_limit

Description

The receive_data system call requests a message from the specified mailbox. If the
mailbox currently contains at least one message, the oldest message (or the latest
high-priority message) is removed from the message queue and returned to the
calling task. If there are no messages queued at the mailbox and the task is willing
to wait, it is put to sleep and queued at the mailbox for the amount of time it is
willing to wait. The task is queued at the mailbox in either FIFO or priority-based
order, depending on the type of mailbox. The task will be awakened by one of three
events:

• The task is at the head of the mailbox queue and another task invokes send_data
on the mailbox.

• The number of clock ticks specified by the task expires.

• The mailbox is deleted.

When receiving (using the receive_data system call) and sending (using the
send_data system call) mailbox messages, interrupts are disabled for the time it
takes to copy the message. Hence, a large data transfer via mailboxes may affect
interrupt latency.

Scheduling Category

Blocking. Use with caution in interrupt handlers.

Kernel System Calls 2·97

receive data

Return Value

status A KN_STATUS indicating the result of the call. Values are:

Literal Meaning

E_OK

E_TIME_OUT

E_NONEXIST

Indicates that the task received a message.

Indicates that the time limit expired.

Indicates that the mailbox was deleted while the task was
waiting.

NOTE

If the mailbox is deleted before the task begins waiting, the call
will not return the E_NONEXIST message. It is the responsibility
of the application to ensure that the mailbox has not been deleted
before a task begins waiting.

Parameters

mailbox
A KN_ TOKEN for the mailbox from which the message is requested.

data_ptr
A pointer to an area where the message is to be placed. The size of this area must be
equal to the message size parameter specified when the mailbox was created.

length_ptr
A pointer to a UINT _32 where the Kernel specifies the length (in bytes) of the
message it returns.

time limit
A OINT _32 specifying the number of clock ticks the caller is willing to wait for a
message. Values are:

Literal Meaning

KN_DONT_WAIT Indicates the task will not wait at all.

KN_WAIT_FOREVER Indicates that the task is willing to wait indefinitely.

UINT _32 value Indicates that the task will wait for the specified number of
clock ticks.

2·98 iRMKTM Kernel Reference Manual

receive_un it

status

Data Type
KN_STATUS

KN_TOKEN

UINT_32

Description

Parameter
status
semaphore
time_limit

The receive_unit system call requests a unit from the specified semaphore. If the
semaphore currently contains units, the count of units is decremented by one and the
task proceeds. If the semaphore has no units and the task is willing to wait, the task
is put to sleep and placed into the semaphore's task queue. The task will be
awakened by one of three events:

• The task is at the head of the semaphore queue and another task invokes
send_unit on this semaphore.

• The number of clock ticks specified by the task expires.

• The semaphore is deleted.

Scheduling Category

Blocking. Use with caution in interrupt handlers.

Return Value

status A KN_STATUS indicating the result of the call. Values are:

Literal Meaning

E_OK

E_TIME_OUT

E_NONEXIST

Kernel System Calls

Indicates that the task received the requested unit.

Indicates that the time limit expired.

Indicates the semaphore was deleted while the task was
waiting.

2-99

receive unit

Parameters

semaphore

NOTE

If the semaphore is deleted before the task begins waiting, the call
will not return the E_NONEXIST message. It is the responsibility
of the application to ensure that the semaphore has not been
deleted before a task begins waiting.

A KN_ TOKEN for the semaphore from which a unit is requested.

time limit
A UINT _32 indicating the number of clock ticks the calling task is willing to wait for
the unit. Possible values are:

Literal Meaning

KN_DONT_WAIT Indicates the task will not wait at all.

KN_WAIT_FOREVER Indicates that the task is willing to wait indefinitely.

UINT _32 value Indicates that the task will wait for the specified number of
clock ticks.

2-100 iRMKTM Kernel Reference Manual

Data Type
KN_TOKEN

Description

Parameter
alarm

reset alarm

The reset_alarm system call returns a previously created alarm to its creation state.
In all cases, this operation is equivalent to invoking the delete_alarm system call,
then invoking the create_alarm system call.

Because reset_alarm may be invoked on single-shot alarms even if the alarm has
gone off, synchronization between an alarm reset and the expiration of the alarm
time interval is not necessary.

See also: Time Management, Installation and User's Guide

Scheduling Category

Non-scheduling. Safe for use by interrupt handlers.

Parameters

alarm A KN_ TOKEN for the alarm to be reset.

Kernel System Calls 2-101

reset handler

Data Type
KN_HDLR_STRUC

Parameter
* hdlr_area

Description

The reset_handler system call dynamically removes an application-supplied task
handler previously set by the set_handler system call or at initialization.

See also: Installing and Removing Task Handlers, Chapter 4

Scheduling Category

Non-scheduling. Safe for use by interrupt handlers.

Parameters

2-102

A pointer to a KN_HDLR_STRUC used to set and reset the task
creation, task deletion, task switch, and task change priority handlers
dynamically. See the set_handler system call for the format of this
structure.

iRMKTM Kernel Reference Manual

Data Type
KN_TOKEN

Description

Parameter
task

The resume_task system call cancels one level of suspension for the specified task.
If the suspension depth for the task is one when this system call is called, the Kernel
removes the task from the suspended state and does one of the following:

• Puts it in the ready state if it was suspended.

• Puts it in the asleep state if it was asleep-suspended.

An attempt to resume a task that is not suspended causes the disaster handler to be
invoked with an exception code of E_ST ATE and an invoked function code of
KN_RESUME_ TASK_CODE.

See also: Disaster Handler, Chapter 4

Scheduling Category

Signalling. Use scheduling lock in interrupt handlers.

Parameters

task A KN_ TOKEN for the task to be resumed.

Kernel System Calls 2-103

send data

status KN_send_data(mailbox. data_ptr. length);

Data Type
KN_STATUS

KN_TOKEN
void
UINT_32

Parameter
status
mailbox

* data_ptr
length

Description

The send_data system call sends a message to the specified mailbox. If a task is
waiting at the mailbox, it receives the message; otherwise, the message is queued. If
the mailbox is full, an exception is returned.

When receiving (using the receive_data system call) and sending (using the
send_data system call) mailbox messages, interrupts are disabled for the time it
takes to copy the message. Hence, a large data transfer via mailboxes may affect
interrupt latency.

Scheduling Category

Signalling. Use scheduling lock in interrupt handlers.

Return Value

status A KN_STATUS indicating the result of the call. Values are:

Literal Meaning

E_OK Indicates that the mailbox accepted the message.

E_LlMIT _EXCEEDED Indicates that the message was rejected because the
mailbox was full.

2.104 iRMKTM Kernel Reference Manual

Parameters

mailbox
A KN_TOKEN for the mailbox to which the message is to be sent.

data_ptr
A pointer to an area containing the message to be sent.

length
A UINT _32 indicating the number of bytes in the message to be sent. Its maximum
value is the maximum message size specified when the mailbox was created.

Kernel System Calls 2·105

send dl

status

Data Type
KN_STATUS
KN_DA T A_LINK_MSG

Parameter
status

* message_ptr

Description

The send _ dJ system call is used with the data link layer of the message passing
protocol. It sends a data link message to the specified protocol handler on the
specified host. If the message to be sent initiates a solicited transfer (a buffer request
or buffer grant message), the following items are required:

• The data that will be transferred must reside in the area of physical memory
required by the specific DMA device.

• The message area and any referenced data must remain stable until a
transmission complete indication is received.

• The message pointer must be valid within an arbitrary addressing context,
because a data link protocol handler can be called, with a message pointer, from
any task that permits the handling of message interrupts. You can meet this
criterion by making the message GDT -based.

If the message to be sent is unsolicited, the message area is free for reuse when the
system call returns.

See also: Performance Considerations for Message Passing, Aligning Message
Passing Buffers, Installation and User's Guide

Scheduling Category

Rescheduling. Unsafe for use by interrupt handlers.

2-106 iRMKTM Kernel Reference Manual

send dl

Return Value

status A KN_STATUS indicating the results of the requested operation. Values are:

Literal Meaning

E_OK Indicates the message was sent or, in the case of a buffer
request or grant, queued successfully for later transmission.

E_BUS_ERROR Indicates a Parallel System Bus error.

E_BUS_ TIME_OUT Indicates a Parallel System Bus timeout.

E_RETRY _EXPIRED Indicates the backoff-retry algorithm expired without
successfully delivering the unsolicited message.

E_ TRANSMISSION Indicates a combination of retry expired, bus error, and/or
bus timeout occurred.

Parameters

message _ptr
A pointer to a KN_DAT A_LINK_MSG structure containing all parameters for the
message transmission.

typedef struct
UINT_8
KN_HOST_IO
UINT_8
KN_MESSAGE_TYPE
UINT_8
UINT_8
KN_PROTOCOL_IO
UINT_8
UINT_8
KN_STATUS
KN_OATA_TYPE
UINT_8
UINT_32
UINT_8
UINT_16
UINT_8

KN_OATA_LINK_MSG:

Kernel System Calls

reservedl[16]:
remote_host_IO;
reserved2[4];
type;
liaison_IO;
reserved3[4];
protocol_IO;
reserved4;
unsol_data[26J;
data_status:
data_type:
reserved5[3]:
data_length;

* data_ptr;
data_ptr _fi 11 ;
reserved6[2];

2-107

2-108

Where:

reserved[n] Various reserved fields defined by Kernel message passing which
should not be written (should be preserved) by data link
applications. Erroneous or unpredictable results can occur if the
application modifies these fields.

remote host ID

type

A 16-bit host ID that defines the destination host (when sending a
message) or source host (when receiving a message). The remote
host ID must be in the range 0-254. When tasks send messages, the
remote host ID serves as the PSB destination message ID. When
messages are received, this field contains the PSB source message
ID to identify the host that sent the message.

A KN_MESSAGE_TYPE that specifies the type of Multibus II
message being passed. The following types are permitted:

Literal Meaning

Unsolicited message. When receiving
messages of this type, only the fields
reservedl through unsol_data are
defined.

Unsolicited broadcast message. When
receiving messages of this type, only the
fields reservedl through unsol_data
are defined.

KN_BUFFER_REQUEST Solicited buffer request message. When
receiving messages of this type, only the
fields reservedl through data_l ength
are defined.

KN_BUFFER_GRANT Solicited buffer grant message.

KN_BUFFER_REJECT Solicited buffer reject message.

KN_SEND_COMPLETE Message sent by the Kernel to the
protocol handler indicating that the entire
solicited message has been sent.

KN_RECEIVE_COMPLETE
Message sent by the Kernel to the
protocol handler indicating that the entire
solicited message has been received.

iRMKTM Kernel Reference Manual

send dl

The remainder of the KN_DA T A_LINK_MSG structure items listed in this section
contain the actual data link message.

liaison ID An identifier that associates buffer requests and buffer grants. It is
defined only for received buffer request messages and transmitted
buffer grant and buffer reject messages. When a task sends a buffer
request message, the Kernel fills in the 1 i a i so n_I 0 field with an
ID. When the host that fields the buffer request message sends
either a buffer grant or buffer reject message in reply, it must specify
the same ID in the 1 i a i son_I 0 field.

protocol_ID A KN_PROTOCOL_ID that identifies the protocol handler that should
receive this message. You attach a protocol handler with a given
protocol ID with the attach_protocol_handler system call. The
data link layer's interrupt handler will call that protocol handler
(with scheduling stopped) whenever it receives a message with the
protocol handler's ID in the protocol_I 0 field. Protocol IDs can
have the following values: 0 -- a 4-byte message (remote_host_I 0
through type=KN_UNSOL)is being sent to a MIC host; 1-7FH -- Intel
reserved; 80H-OFFH -- non-Intel applications.

unsol data When a task sends an unsolicited message (type KN_BROADCAST

or KN_UNSOL) or sends unsolicited data with a
KN_BUFFER_REQUEST, it can fill in this field with any
information it wishes to send. This is the space remaining for
unsolicited messages after the hardware and data link fields are
accounted for. However, for KN_BUFFER_REQUEST messages,
only the first 22 bytes of the un so l_d a t a field are available for use.

data status A KN_ST ATUS field that the Kernel fills in when it sends
KN_SEND_COMPLETE and KN_RECEIVE_COMPLETE messages.
This status field indicates the status of the solicited message that was
transformed. The possible values are as follows:

Kernel System Calls

Literal

E_OK

E_BUS_ERROR

E_BUS_ TIMEOUT

E_NO_RESOURCE

Meaning

Message transmission successful.

A Parallel System Bus error occurred.

A Parallel System Bus timeout occurred.

Solicited channel resources were busy
(masked by the data link).

2-109

send dl

2-110

The backoff-retry algorithm expired
without successfully delivering the
message.

Solicited input was cancelled due to a
canceLdl system call from the message
originator or a buffer reject message from
the receiver.

E_SLFAIL_SAFE_EXPIRED
The solicited input failsafe counter
expired, indicating data packets stopped
coming in.

Solicited output was cancelled due to a
canceLdl system call from the message
originator or a buffer reject from the
receiver.

E_SO_FAIL_SAFE_EXPIRED
The solicited output failsafe counter
expired, indicating no buffer grant or reject
was received.

E_SO_PROTOCOL A solicited output error occurred due to a
Parallel System Bus problem.

E_SO_RETRY _EXPIRED The backoff-retry algorithm expired
without successfully delivering a data
packet of a solicited output transfer.

E_ TRANSMISSION A combination of retry expired, bus error,
and/or bus timeout occurred.

A KN_DAT A_TYPE field that defines whether a segment or a data
chain is being transferred as a solicited message. If the type is
KN_SEGMENT, the d a t a_pt r field refers to a single, contiguous
processor segment. If the type is KN_CHAIN, the data_ptr field
refers to an array of KN_CHAIN_STRUC structures. Each structure
in the array indicates one data block of the chain. In the case of
KN_CHAIN, the message-passing DMA controller must support data
chain blocks. The format for KN_CHAIN_STRUC is as follows:

iRMKTM Kernel Reference Manual

send dl

typedef struct
UINT_32
UINT_8
UINT_16
UINT_8

byte_count;
*data_ptr;
data_ptr _fi 11 :
reserved[2]:

} KN_CHAIN_STRUC;

Where:

reserved

The length of a data block in bytes. A maximum
value of OFFFFH is permitted. A count of 0
indicates a null block and the end-of-chain. The
remainder of the fields in this structure are
undefined following a byte count of O.

A pointer to the start of the data block. All data in
the chain must be in the same descriptor table.

Do not set this field. In small model, it is a
placeholder. In compact model, it holds the
selector of the preceding pointer.

Should not be used by the application.

dataJength For buffer request messages, the size of the data being sent. For
buffer grant messages, this field specifies the total length of the
segment or data chain to be received. If the data is chained, then the
data length is the total length of the data chain (the sum of all data
chain byte counts). The data length should be a multiple of 4 (for
fast mode transfers) or 16 (for burst mode transfers) for best
performance in data transfers.

data_ptr

Kernel System Calls

Pointer to the segment or data chain that is being transferred as a
solicited message. KN_BUFFER_REQUEST and
KN_BUFFER_GRANT messages are used to initiate the transfer of
solicited messages. When the solicited message transfer is
complete, the Kernel sends KN_SEND_COMPLETE and
KN_RECEIVE_COMPLETE messages to the protocol handlers of the
sending and receiving hosts, respectively. The data pointer should
be a multiple of 4 (for fast mode transfers) or 16 (for burst mode
transfers) for best performance in data transfers.

2-111

send dl

If this is a pointer to a chain block, it must be in the same descriptor
table as the elements in the chain block. The application must
preserve buffers used for buffer requests and buffer grants, as well as
the solicited data, from the time a KN_BUFFER_REQUEST or
KN_BUFFER_GRANT message is sent until a KN_SEND_COMPLETE

or KN_RECEIVE_COMPLETE message is received.

data_ptr_fill Do not set this field. In small model, it is a placeholder. In compact
model, it holds the selector of the preceding pointer.

2.112 iRMKTM Kernel Reference Manual

send EOI

Data Type
UINT_8

Description

Parameter
slot

The send_EOI system call is used by interrupt handlers to indicate to the PIC(s)
that the specified interrupt has been processed, and that another interrupt from the
same interrupt line can be serviced.

Scheduling Category

Non-scheduling. Safe for use by interrupt handlers.

Parameters

slot A UINT _8 indicating the entry (slot number) in the IDT that corresponds to the
interrupt line to which the EOI is to be sent.

Kernel System Calls 2-113

status

Data Type
KN_STATUS

KN_TOKEN

void
UINT_32

Parameter
status
mailbox

* data_ptr
length

Description

The send_priority_data system call sends a high priority message to the specified
mailbox. If a task is waiting at the mailbox, it receives the 'message; otherwise, the
message is queued. If the mailbox is full, an exception is returned.

Mailboxes normally store messages in a FIFO queue. Send _priority_data places a
message at the head of the queue. A series of send _priority_data calIs results in
messages being queued in LIFO order.

When you create a mailbox, you can specify one of the slots in its queue as reserved
for a high priority message. The reserved slot ensures that at least one high priority
message is accepted even when the mailbox queue is full. When the high priority
message arrives, the Kernel attempts to place this message ahead of all the other
messages. If the message queue is full, the Kernel puts the high-priority message
into the reserved slot instead. If that reserved slot is also taken, an exception
(E_LIMIT _EXCEEDED) is returned. This is the same exception code that is returned
when a non-priority message cannot be sent because the mailbox queue is full.

Scheduling Category

Signalling. Use scheduling lock in interrupt handlers.

2-114 iRMKTM Kernel Reference Manual

Return Value

status
A KN_STATUS indicating the result of the call. Values are:

Literal Meaning

E_OK Indicates that the mailbox accepted the message.

E_LlMIT _EXCEEDED Indicates that the message was rejected because the
mailbox was full.

Parameters

mailbox
A KN_ TOKEN for the mailbox to which the message is to be sent.

data_ptr
A pointer to an area containing the message to be sent.

length
A UINT_32 indicating the number of bytes in the message to be sent. This value can
be no greater than the maximum message size specified when the mailbox was
created.

Kernel System Calls 2·115

status

Data Type
KN_STATUS

void

Parameter
status

* message_ptr

Description

2·116

The send_tp system call is used to send a transport protocol message. The type of
message you send determines the actions you must take to ensure proper receipt of
the message.

If you send an unsolicited message that is not part of a transaction, you are free to
reuse the message area as soon as the system call completes.

If your message initiates a solicited transfer (a buffer grant or buffer request) that is
not part of a transaction, the message area and any referenced data must remain
stable until you receive a transmission complete indication from the completion
mailbox. If a completion mailbox is not used in a non-transaction buffer request,
you must otherwise ensure the transmission is complete before reusing the message
area or changing the referenced data.

If your message initiates a request/response transaction (either unsolicited or a buffer
request message, with a non-zero transaction ID and a transaction control field of
KN_REQUEST), the message area and any referenced data must remain stable until
you receive a transmission complete indication from the response mailbox.
Transaction response messages do not initiate a transaction and can be considered as
either unsolicited or solicited messages for the purpose of calculating transmission
completion.

If your message initiates the reception of the next fragment of a request message (the
transaction control field is set to KN_SEND_NEXT _FRAGMENT), the message area
and any referenced data must remain stable until you receive a transmission
complete indication from the completion mailbox.

For solicited or transaction messages, the message pointer must be valid within an
arbitrary addressing context, because the transport protocol handler can be called,
with a message pointer, from any task that permits the handling of message
interrupts. This criterion can be met by making messages GDT-based, for example.

iRMKTM Kernel Reference Manual

See also: Aligning Message Passing Buffers, Message Passing, Installation
alld User's Guide
Multibus 1/ Transport Protocol Specification

Scheduling Category

Rescheduling. Unsafe for use by interrupt handlers.

Return Value

status A KN_STATUS indicating the results of the requested operation. Values are:

Literal Meaning

E_OK Indicates the message was sent or, in the case of a buffer
request or grant, successfully queued for later transmission.

E_RETRY _EXPIRED Indicates the backott-retry algorithm expired without
successfully delivering the unsolicited message.

E_BUS_ERROR Indicates a Parallel System Bus error.

E_BUS_TIME_OUT Indicates a Parallel System Bus timeout.

E_ILLEGAL_PARAM Indicates the message has an invalid structure.

E_RESOURCE_LlMIT Indicates a configuration-defined resource limit has been
reached.

E_ TRANS_ID Indicates the specified transaction ID is not unique or is
invalid.

E_ TRANSMISSION Indicates a combination of retry expired, bus error, and/or
bus timeout errors occurred.

Parameters

message _ptr
A pointer to a KN_RSVP _TRANSPORT_MSG or a KN_TRANSPORT_MSG structure
containing the message to be sent.

KN_RSVP _TRANSPORT _MSG is a structure that shows the format of a
request/response message. It contains two of the following KN_TRANSPORT_MSG
structures. Send a KN_RSVP _TRANSPORT_MSG only when initiating a transaction.

typedef struct {
KN_TRANSPORT_MSG
KN_TRANSPORT_MSG

KN_RSVP_TRANSPORT_MSG;

Kernel System Calls

request_message;
response_message;

2-117

In the res pon s e_mes sage fields, remote_hos t_I 0 through t ra ns_cont ro 1 are
ignored. In other words, the response message specifies response message buffers;
the request message specifies the host port ID and the transaction ID of the request
response transaction.

The KN_ TRANSPORT _MSG structure shows the format of the request or response
portion of a transport message. This structure can also be used for the entire
message if the message is not a request-response transaction. Its format is as
follows:

typedef struct
UINT_8
KN_HOST_IO
UINT_8
KN_MESSAGE_TYPE
UINT_8
KN_PORT_ID
KN_PORT_IO
KN_TRANS_IO
KN_TRANS_CONTROL
UINT_8
KN_STATUS
KN_OATA_TYPE
UINT_8
UINT_32
UINT_8
UINT_16
UINT_8
KN_TOKEN
UINT_8

KN_TRANSPORT_MSG:

reservedl[16]:
remote_host_IO;
reserved2[4]:
type;
dl_part[7]:
dst_port_ID:
src_port_IO;
trans_IO:
trans_control;
control_message[20]:
data_status;
data_type;
reserved3[3];
data_length:

* data_ptr:
data_ptr_fill:
reserved4[2];
completion_mbx;
transport_reserved[64];

reserved[n] Several fields defined by Kernel message passing that should not be
written (should be preserved) by applications. Erroneous or
unpredictable results can occur if the application modifies these
fields.

2·118 iRMKTt.1 Kernel Reference Manual

remote_host _ ID

type

Kernel System Calls

A 16-bit host ID that defines either the destination or source of a
message. The remote_host_I 0 must be in the range 0-254. When
tasks send messages, they must fill in the low-order byte of this field
with the host ID of the board that is to receive the message. When
the message is received, this field contains the PSB source message
ID to identify the host that sent the message. When sending
KN_BROADCAST messages, this field is ignored.

Specifies the type of Multibus II message being passed. The
following types are permitted:

Literal Meaning

Unsolicited message. When receiving
messages of this type, only the fields
reservedl through control_message
are defined.

Unsolicited broadcast message. When
receiving messages of this type, only the
fields res e rved 1 through
cant ro l_mes sage are defined.

KN_BUFFER_REQUEST Buffer request message. When receiving
messages of this type, only the fields
reservedl through data_l ength are
defined.

KN_BUFFER_GRANT Buffer grant message.

KN_BUFFER_REJECT Buffer reject message.

KN_SEND_COMPLETE Kernel-specified value in a received
message, indicating that the entire
solicited message has been sent.

KN_RECEIVE_ COMPLETE
Kernel-specified value in a received
message, indicating that the entire
solicited message has been received.

2·119

Data link-defined message fields. Transport messages are defined so
that they can overlay data link messages. The application should
treat the d '_pa rt field as reserved by the transport protocol.

The d '_pa rt field of a KN_BUFFER_GRANT or
KN_BUFFER_REJECT message must match the d '_pa rt field of a
received KN_BUFFER_REQUEST message. Unpredictable or
erroneous results can occur otherwise.

dst_port_ID Specifies the port ID of the port that receives the message.

src _port _ID Specifies the port ID of the port that is sending the message.

trans ID Specifies the transaction ID. This ID associates the request and
response portions of transactions so that, for example, a task that
receives several response messages knows which request messages
correspond to those responses. The transaction ID also associates a
response buffer with a particular transaction. You can establish your
own conventions for assigning transaction IDs, in the range 1-255.
For messages that are not request/response messages, use the value
KN_NO_ TRANSACTION.

trans control Defines transport transaction control. This field indicates the
portion of the transaction that this message provides. There are two
basic values you can specify: KN_REQUEST and KN_RESPONSE.

You can OR these values with additional values to provide more
information about the request or response.

For KN_REQUEST messages, you can OR the KN_REQUEST value
with one of the following:

Literal Meaning

KN_NO_FRAGMENT ATION
The client (in a client/server transaction)
will not permit fragmentation. If the server
replies with a KN_BUFFER_REJECT
message, the transaction is terminated.

KN_FRAGMENTATION The client permits fragmentation. If the
server replies with a
KN_BUFFER_REJECT message, the
Kernel does not terminate the transaction,
but waits for a server message with a
KN_SEND_NEXT_FRAGMENT control, to
initiate fragmentation.

2-120 iRMKTM Kernel Reference Manual

KN_SEND_NEXT_FRAGMENT
The server requests the next fragment of
the data. A message with this control
must have message type KN_UNSOL and
use the data fields and completion
mailbox to receive the next fragment of a
message.

KN_NEXT_FRAGMENT This control is reserved for the Kernel. It
uses this control when sending fragments
to the server.

For KN_RESPONSE messages, you can OR the KN_RESPONSE value
with one of the following:

Literal Meaning

This message contains only a fragment of
the response. There are more fragments
remaining.

This message contains the last fragment
of the response.

This control is reserved for the Kernel. It
is returned to the client when the remote
port if not available (not attached to a
mailbOX).

control_message
The Multibus II unsolicited message application-defined bytes
available to transport applications. After the hardware, data link,
and transport-defined fields are accounted for, the remaining control
message bytes can be used for application data in unsolicited
messages. Note that if a message is of type KN_BUFFER_REQUEST,

only the first 16 bytes of control_message are available for use.

data status Defined only in KN_SEND_COMPLETE and
KN_RECEIVE_COMPLETE messages. It gives asynchronous
transmission status. The possible values are as follows:

Kernel System Calls

Literal

E_OK

E_BUS_ERROR

E_BUS_ TIMEOUT

Meaning

Message transmission successful.

A Parallel System Bus error occurred.

A Parallel System Bus timeout occurred.

2-121

2-122

A requesVresponse transaction has been
cancelled by the Kernel because the
remote port was not available.

In a request message, the fragmentation
transmission failed
(a KN_SEND_NEXT _FRAGMENT
message could not be satisfied or
contained a fragment length of zero).

The backoff-retry algorithm expired
without successfully delivering the
message.

Solicited input was cancelled due to a
canceLtp system call from the client or a
buffer reject from the server.

E_SI_FAIL_SAFE_EXPIRED
The solicited input failsafe counter
expired, indicating data packets stopped
coming in.

Solicited output was cancelled due to a
canceLtp system call from the client or a
buffer reject from the server.

E_SO_FAIL_SAFE_EXPIRED
The solicited output failsafe counter
expired, indicating no buffer grant or reject
was received.

A solicited output error occurred due to a
Parallel System Bus problem.

E_SO_RETRY _EXPIRED The backoff-retry algorithm expired

E_ TRANSMISSION

without successfully delivering a data
packet of a solicited output transfer.

A combination of retry expired, bus error,
and/or bus timeout errors occurred.

iRMKTM Kernel Reference Manual

data_type A KN_DATA_TYPE field that defines whether a segment or a data
chain is being transferred as a solicited message. If the type is
KN_SEGMENT, the data_ptr field refers to a single, contiguous
processor segment. If the type is KN_CHAIN, the d a ta_pt r field
refers to an array of KN_CHAIN_STRUC structures. Each structure
in the array indicates one data block of the chain. In the case of
KN_CHAIN, the message-passing DMA controller must support data
chain blocks.

typedef struct {
UINT_32

UINT_8 *
UINT_16

UINT_8
KN_CHAIN_STRUC;

byte_count:
data_ptr:
data_ptr _fi 11 :
reserved[2];

Where:

byte_count

data_ptr

reserved

The length of a data block in bytes. A maximum
value of OFFFFH is permitted. A count of 0
indicates a null block and the end-of-chain. The
remainder of the fields in this structure are
undefined following a byte count of O.

A pointer to the start of the data block. All data in
the chain must be in the same descriptor table.

Do not set this field. In small model, it is a
placeholder. In compact model, it holds the
selector of the preceding pointer.

Should not be used by the application.

data Jength For buffer request messages, the size of the data being sent. For
buffer grant messages, this field specifies the total length of the
segment or data chain to be received. If the data is chained, the data
length is the total length of the data chain (the sum of all data chain
byte counts). The data length should be a multiple of 4 (for fast
mode transfers) or 16 (for burst mode transfers) for best
performance in data transfers.

Kernel System Calls 2-123

2-124

data_ptr Pointer to the segment or data chain that is being transferred as a
solicited message. KN_BUFFER_REQUEST and
KN_BUFFER_GRANT messages are used to initiate the transfer of
solicited messages. When the solicited message transfer is
complete, the Kernel sends KN_SEND_COMPLETE and
KN_RECEIVE_COMPLETE messages to the completion mailboxes of
the sending and receiving hosts, respectively. The data pointer
should be a mUltiple of 4 (for fast mode transfers) or 16 (for burst
mode transfers) for best performance in data transfers.

If this is a pointer to a chain block, it must be in the same descriptor
table as the elements in the chain block. The application must
preserve buffers used for buffer requests and buffer grants, as well as
the solicited data, from the time a KN_BUFFER_REQUEST or
KN_BUFFER_GRANT message is sent until a KN_SEND_COMPLETE

or KN_RECEIVE_COMPLETE message is received.

data_ptr _fill Do not set this field. In small model, it is a placeholder. In compact
model, it holds the selector of the preceding pointer.

completion_mailbox
A KN_ TOKEN for a mailbox where the calling task expects a
message to be sent when the solicited message transfer is complete.
If the send_tp system call initiates a request-response message, the
completion mailbox in the request portion indicates the mailbox that
should be notified when the request is transmitted. (The request
portion of the message is the first KN_ TRANSPORT _MSG structure
of a KN_RSVP _TRANSPORT,--MSG structure.) The completion
mailbox in the response portion indicates the mailbox that should be
notified when the response has been received. When sending a
response message, the camp 1 et; on_rna; 1 box field specifies a
transaction completion mailbox.

If the calling task is sending an unsolicited, non-transaction
message, or does not want to receive a completion indication, it
should specify KN_NULL_ TOKEN for this field.

The completion mailbox will receive a message of type
KN_TRANSPORT_MBX_LOCAL_MSG. If this mailbox is also used
to receive messages for a port (the attach_receive_mailbox call),
the task must be able to differentiate this type from the
KN_ TRANSPORT _MBX_REMOTE_MSG type. These are described
below. The first field of the structures identifies the structure type.

iRMK TIA Kernel Reference Manual

Data message completion and transaction response messages are received by
reference from mailboxes (that is, the data received from the mailbox contains a
pointer to the actual message). These messages originate locally and use the
structure KN_ TRANSPORT _MBX_LOCAL_MSG, as follows:

typedef struct
UINT_16 mbx_message_type;
UINT_8 * mbx_message;
UINT_16 mbx_message_fill;

KN_TRANSPORT_MBX_LOCAL_MSG;

Kernel mailboxes attached to port IDs with the attach_receive_mailbox system call
receive messages in the following structure. This includes all fields in the
KN_TRANSPORT_MSG through data_' ength (the first 68 bytes). The format of
this structure is:

typedef struct{
UINT_16 mbx_message_type;
UINT_8 mbx_message[66];

KN_TRANSPORT_MBX_REMOTE_MSG;

Where:

mbx_message_type

Kernel System Calls

(Applies to both structures) Indicates the origin of the message. For
remote messages, the mbx_message_type field overlays the first
two bytes of the received message (res e rved 1 [0] and
re s e rv ed 1 [1]). Possible values include:

Literal Meaning

The message originates remotely and is
received by value. The entire message is
contained in the mbx_message field.

The message originates locally and is
received by reference. The
mbx_message field contains a pointer to
the actual message.

If application-defined messages are also sent to mailboxes that are
being concurrently used for transport message passing, they should
include an mbx_message_type UINT_16 field as well. The
application-defined messages should have a mbx_message_type
value different than KN_REMOTE_MSG and KN_LOCAL_MSG, so
that they can be distinguished from transport messages.

2-125

2·126

mbx_message (Applies to both structures) A mailbox message of
mbx_message_type KN_REMOTE_MSG contains a received
message that is unsolicited, broadcast, or a buffer request. Received
remote messages have a length of68 bytes (fields reservedl
through dataJ ength). Received unsolicited and broadcast
messages do not contain a valid data_l ength field.

A mailbox message of mbx_mes sage_type KN_LOCAL_MSG

contains a pointer to a message previously supplied in a send_tp
system call, with returned information in the appropriate fields.
Received local messages have a length of 8 bytes (two bytes for the
mbx_mes sage_type field and six bytes for the pointer).

Applications must supply a buffer of at least
KN_REMOTE_MSG_OVERHEAD bytes when receiving data from a
port mailbox. Applications must supply a buffer of at least 8 bytes
when receiving data from a completion mailbox.

KN_REMOTE_MSG_OVERHEAD

mbx_message_fill

The minimum amount of space that should be reserved for
receiving a remote message from a port mailbox. If the task
uses the same buffer to send a return message, it must
instead reserve a buffer the length of
KN_ TRANSPORT _MSG.

Do not set this field. In small model, it is a placeholder. In compact
model, it holds the selector of the preceding pointer.

iRMKTM Kernel Reference Manual

void KN_send_unit(semaphore);

Data Type
KN_TOKEN

Description

Parameter
semaphore

send unit

The send_unit system call adds a unit to the specified semaphore. If tasks are
waiting at the semaphore, the task at the head of the queue is awakened and given
the unit.

If send_unit is invoked on a semaphore that contains 65,535 units, the count of units
in the semaphore is not incremented, and the disaster handler is invoked with an
exception code of E_LIMIT_EXCEEDED and an invoked function code of
KN_SEND_UNIT _CODE.

Scheduling Category

Signalling. Use scheduling lock in interrupt handlers.

Parameters

semaphore
A KN_ TOKEN for the semaphore to which the unit is to be sent.

Kernel System Calls 2-127

set_descriptor _attributes

void KN_set_descriptor_attributes(table, descriptor,
attribute_ptr);

Data Type
KN_SELECTOR
KN_SELECTOR
void

Parameter
table
descriptor

* attribute_ptr

Description

2-128

The set_descriptor_attributes system call sets the attribute values of a specified
descriptor. You provide the new attributes by specifying a
KN_SEGMENT _A TTRIBUTES_STRUC or KN_GATE_A TTRIBUTES_STRUC structure
containing the new information.

When changing the attributes of a segment descriptor, you can modify the ba s e and
s i z e fields of the descriptor to specify the section of memory accessible with the
segment descriptor. For both expand-up and expand-down segments, you must set
the base and sel fields oftheKN_SEGMENT_ATTRIBUTES_STRUC structure to
refer to the starting address of the segment and the s i z e field to refer to the segment
length.

For expand-up segments, the Kernel sets the descriptor's bas e field with the base
address you specify and the 1 i mi t field with a value derived from the size field as
described later.

For expand-down segments, the Kernel derives the 1 i mi t field by subtracting the
s i z e value you supply from the upper bound of the segment (4 gigabytes for 32-bit
segments and 1 Mbyte for 16-bit segments). It sets the bas e field of the descriptor
by subtracting the derived 1 i mi t field from the ba s e and s e 1 combination you
specified. Refer to the 386 DX Programmer's Reference Manual for a description of
address translation using expand-down segments.

When you use the set_descriptor _attributes system call, you cannot set the
granularity bit of a segment descriptor. The system call attempts to use byte
granularity whenever possible. Therefore, segment descriptors whose limit values
are less than 1 Mbyte are given byte granularity. Larger segments are given page
granularity (4K bytes).

iRMK ™ Kernel Reference Manual

set_descriptor _attributes

If you use set_descriptor _attributes to set up segments that are larger than
1 Mbyte, the limit value must be a mUltiple of 4K bytes (the page size), or results are
undefined. This means that you must include a size field that is a multiple of 4K
bytes for expand-up segments that are greater than or equal to 1 Mbyte and for all
mode-32 expand-down segments.

The operation of set_descriptor_attributes is indivisible. That is, two
set_descriptor _attributes system calls simultaneously invoked on the same
descriptor are performed one after the other. Also, if a get_descriptor _attributes
system call is invoked on a descriptor while a set_descriptor _attributes system call
is invoked on the same descriptor, the Kernel returns either the old or the new
attributes of the descriptor, but not a combination of the two.

Scheduling Category

Non-scheduling. Safe for use by interrupt handlers.

Parameters

table A KN_SELECTOR for the descriptor table containing the descriptor whose attributes
are to be set. Possible values are:

• A KN_SELECTOR for the GDT alias (in slot I of the GDT)

• A KN_SELECTOR for an LDT alias (a GDT descriptor that references an LDT)

• A KN_SELECTOR for an LDT

descriptor
A KN_SELECTOR for the descriptor whose attributes are to be set.

attribute _ptr
A pointer to an area containing the values of the new attributes for the specified
descriptor. To set the attributes of a segment, use the
KN_SEGMENT_ATTRIBUTES_STRUC structure for this area. To set the attributes of
a gate, use the KN_GATE_A TTRIBUTES_STRUC structure.

When using the small model interface, KN_SEGMENT_ATTRIBUTES_STRUC has the
following format (for compact model, the s e 1 field is not be present because the
ba s e field is a full 48-bit pointer):

Kernel System Calls 2-129

set_descriptor _attributes

2-130

typedef struct
UINT_8 access;
UINT_8 mode;
UINT_8 * base;
KN_SELECTOR sel;
UINT_32 size;

KN_SEGMENT_ATTRIBUTES_STRUC;

typedef struct
UINT_8 access;
UINT_8 word_count;
UINT_8 * base;
KN_SELECTOR sel ;

KN_GATE_ATTRIBUTES_STRUC;

Where:

access

mode

base

se)

(applies to both structures) Indicates the type of descriptor this is.
This field corresponds to the access byte of the descriptor (bits 7
through 15 of the descriptor's second doubleword). Refer to the 386
DX Programmer's Reference Manual for more information about the
access byte. There are several masks that you can apply to this field
to obtain the access information. The flags are described at the end
of this section.

A UINT _8 that indicates whether the segment is a 16-bit or a 32-bit
segment. The following literals apply.

Literal

KN_MODE_BIT

KN_MODE_32

KN_MODE_16

Meaning

A mask for this field of the value:

The segment is a 32-bit segment.

The segment is a 16-bit segment.

(applies to both structures) A pointer that specifies the beginning
address of the segment. In small-model applications, this pointer is
a 32-bit offset and the s e 1 parameter indicates the selector for the
segment from which the offset starts. In compact-model
applications, this pointer is a full 48-bit pointer encompassing both
the offset and the selector.

(applies to both structures) A KN_SELECTOR that identifies the
segment from which the base is assumed to start. This field is only
present for small-model applications.

iRMKTM Kernel Reference Manual

set_descriptor _attributes

size A UINT _32 indicating the size of the segment in bytes. The
get_descriptor_attributes system call returns a 0 value in this field
to indicate a 4G-byte segment.

word_count A UINT _8 indicating the number of words that are transferred from
the calling procedure's stack to the new stack whenever a procedure
makes an inter-level call using this gate.

The following flag literals can be used to get information from the ace e s s field.

KN_DATA_SEG:
The descriptor represents a data segment. Data segments can have
the following attributes:

Writable Determines if the data segment is writable.

Literal Meaning

KN_DATA_D _WRIT ABLE_BIT

KN_WRITABLE

KN_NOT _WRITABLE

A mask for this field.

The data segment is writable.

The data segment is not writable.

Expand Determines if the data segment is expand-up or expand-down.

Literal Meaning

KN_DATA_D_EXPAND_DIR_BIT

KN_EXPAND_DOWN

KN_EXPAND_UP

KN_EXEC_SEG

A mask for this field.

The segment is expand down.

The segment is expand up.

The descriptor represents an executable code segment. Executable
segments can have the following attributes:

Readable Determines if the executable segment is readable.

Kernel System Calls

Literal Meaning

KN_EXEC_READABLE_BIT

KN_READABLE

KN_NOT _READABLE

A mask for this field.

The segment is readable.

The segment is not readable.

2-131

set_descriptor_attributes

Conforming
Attributes of conforming segments are taken from the following
literals:

Literal Meaning

KN_EXEC_O_CONFORMING_BIT
A mask for this field.

KN_CONFORMING The segment is conforming.

KN_NOT_CONFORMING The segment is not conforming.

KN_SYS_SEG
The descriptor represents a system segment (a gate, a TSS, or an
LDT). It can have the following attributes:

Literal Meaning

KN_286_COMPATIBLE The segment is 286-compatible.

KN_386_SPECIFIC The segment is 386-specific.

KN_AVAILABLE_286_ TSS

KN_LOT

KN_BUSY _286_ TSS

The segment is an available 286 Task
State Segment.

The segment is an LOT.

The segment is a busy 286 Task State
Segment.

The segment is a 286 call gate.

KN_286_ OR_386_ TASK_GATE
The segment is a 286 or 386 task gate.

KN_286_INTR_GATE The segment is a 286 interrupt gate.

KN_286_ TRAP _GATE The segment is a 286 trap gate.

KN_AVAILABLE_386_ TSS
The system is an available 386 Task State
Segment.

KN_BUSY _386_ TSS The segment is a busy 386 Task State
Segment.

KN_386_CALL_GATE The segment is a 386 call gate.

KN_386_INTR_GATE The segment is a 386 interrupt gate.

KN_386_TRAP _GATE The segment is a 386 trap gate.

2-132 iRMKTM Kernel Reference Manual

set_descriptor _attributes

In addition to the information that is specific to particular types of descriptors, the
following masks apply to all descriptors:

Privilege Level
Determines the privilege level of the descriptor.

Literal

KN_DPL_MASK

KN_DPL_O

KN_DPL_1

KN_DPL_2

KN_DPL_3

Meaning

A mask for this field.

The descriptor is privilege level O.

The descriptor is privilege level 1.

The descriptor is privilege level 2.

The descriptor is privilege level 3.

The value KN_DPL_SHIFf _COUNT can be used to shift the mask left
to the proper bit position in the access byte.

Present Determines if the data is present in memory.

Literal

KN_PRESENT_BIT

KN_PRESENT

KN_NOT_PRESENT

Meaning

A mask for this field.

The data is present in memory.

The data is not present in memory.

Accessed Indicates whether the descriptor is currently accessed (that is,
whether a selector for it is currently loaded into a segment register).

Literal Meaning

KN_ACCESSED_BIT A mask for this field.

KN_ACCESSED The descriptor is currently accessed.

KN_NOT _ACCESSED The descriptor is not currently accessed.

Kernel System Calls 2-133

set handler

Data Type
KN_HDLR_STRUC

Parameter
'" hdlr_area

Description

The set_handler system call dynamically installs an application-supplied task
handler. MUltiple task handlers for creation, deletion, task switching, and priority
change may be installed by invoking set_handler multiple times. Install a user
supplied disaster handler with the initialize system call at Kernel initialization. Only
one disaster handler is allowed.

See also: Installing and Removing Task Handlers, Chapter 4

Scheduling Category

Non-scheduling. Safe for use by interrupt handlers.

Parameters

hdlr area

2-134

A pointer to a KN_HDLR_STRUC that is used to set and reset the task creation, task
deletion, task switch, and task change priority handlers dynamically. Its format is:

typedef struct
UINT_32
KN_FLAGS
void
KN_HDLR_TYPE
UINT_8

KN_HDLR_STRUC:

reserved[2]:
hdlr_flags:

* hdlr_ptr:
hdlr_type:
hdlr_res[3]:

iRMKTM Kernel Reference Manual

Where:

reserved

hdlrJlags

hdlr_ptr

hdlr_type

hdlr res

set handler

Should not be used by the application.

A KN_FLAGS specifies whether the handler is in the same subsystem
or a different subsystem from the Kernel. The following literals
apply to this flag:

Literal Meaning

The handler is in the same subsystem as
the Kernel.

The handler is in a different subsystem
from the Kernel.

A pointer to the task handler.

A KN_HDLR_TYPE. Possible values are:

KN_ TASK_CREATION_HANDLER
KN_ T ASK_DELETION_HANDLER
KN_ TASK_SWITCH_HANDLER
KN_TASK_PRIORITY _CHANGE_HANDLER

Should not be used by the application.

NOTE

This structure must be preserved by the application until the
associated handler is reset using the reset_handler system call.
Do not reuse the handler structure.

Kernel System Calls 2-135

set_interconnect

void KN_set_interconnect(value, slot_number,
register_number):

Data Type
UINT_8

UINT_8

UINT_16

Parameter
value
sIocnumber
register_number

Description

The set Jnterconnect system call sets the contents of the specified interconnect
register to a specified value.

Scheduling Category

Non-scheduling. Safe for use by interrupt handlers.

Parameters

value A UINT_8 containing the value to which the specified interconnect register is to be
set.

slot number
A UINT_8 specifying the Multibus II card slot ID of the board on which the specified
interconnect register is located. Values 0-20 indicate a slot on the Parallel System
Bus. Values 24-29 indicate slots on the LBX II bus. A value of 31 indicates the
current host. All other values are invalid.

register_number

2-136

A UINT_16 specifying the interconnect register to be set. This parameter must be in
the range 0-511. Refer to the hardware manual for your Multibus II board to
determine the proper register number.

iRMKTM Kernel Reference Manual

set_interrupt

void KN_set_interrupt(slot. handler_ptr):

Data Type
UINT_8
void

Description

Parameter
slot

>I< handler_ptr

The setJnterrupt system call establishes an interrupt handler for the specified
hardware interrupt source. It places an interrupt gate referring to that interrupt
handler in the specified IDT slot. The interrupt source is identified by the slot
number (not the selector) of the descriptor in the IDT. Therefore an interrupt source
is identified by a value in the range 0-255.

When you assign an interrupt handler to an IDT slot, any previous assignment of an
interrupt handler to the IDT slot is overwritten.

Scheduling Category

Non-scheduling. Safe for use by interrupt handlers.

Parameters

slot A UINT _8 indicating the IDT slot number to which the specified handler is to be
assigned. You can specify values in the range 0-255.

handler _ptr
A pointer to the first instruction of the interrupt handler. In the small model
interface, this pointer is assumed to be relative to the caller's code segment.

Kernel System Calls 2-137

void KN_set_priorityCtask. priority);

Data Type
KN_TOKEN
UINT_16

Parameter
task
priority

Description

The set_priority system call changes the static priority of the specified task. If the
task's dynamic priority has been adjusted due to ownership of a region and the
requested priority change would lower the static priority of the specified task, the
Kernel delays the priority change until the task gives up control of all regions. Even
if the priority change is delayed, the system call returns immediately.

See also: Region Semaphores, Installation and User's Guide

Scheduling Category

Signalling. Use scheduling lock in interrupt handlers.

Parameters

task A KN_ TOKEN for the task whose priority is to be changed.

priority
A UINT_16 specifying the new priority for the task.

2·138 iRMKTM Kernel Reference Manual

Data Type
UINT_64

Description

Parameter
time

set time

The set_time system call sets the value of the counter that the Kernel uses to keep
track of the number of clock ticks that have occurred. When the Kernel is initialized,
the count is set to zero. Applications can determine the current value of the clock by
calling the get_time system call.

Scheduling Category

Non-scheduling. Safe for use by interrupt handlers.

Parameters

time A UINT _64 specifying the new value of the system clock.

Kernel System Calls 2·139

sleep

Data Type
UINT_32

Parameter
time_limit

Description

The sleep system call puts the calling task in the asleep state for the specified
number of clock ticks.

Scheduling Category

Rescheduling. Unsafe for use by interrupt handlers.

Parameters

time limit

2-140

A UINT _32 specifying the number of clock ticks for which the task is to sleep, or one
of the following literals.

Literal Meaning

KN_DONT _WAIT Indicates a zero length time interval.

KN_WAIT_FOREVER Indicates an infinite time interval.

KN_DONT_ WAIT does not cause the running task to go to sleep. It has an effect only
if there are other ready tasks of equal priority. In that case, the running task is made
ready and put in the ready queue after all other ready tasks of equal priority. If there
are no other ready tasks of equal priority, the current task remains running.

The value KN_ WAIT _FOREVER causes the task to sleep forever. This effectively
deletes the task but the task's memory is not released.

iRMKTM Kernel Reference Manual

Data Type
UINT_16

Parameter
interval

start PIT

Description

The start_PIT system call starts the PIT counting using the specified interval. You
must initialize the PIT (with the initialize_PIT system call) before invoking this
system call. If the PIT is already counting when this system call is called, the PIT is
reprogrammed and restarted using the new interval specified.

Scheduling Category

Non-scheduling. Safe for use by interrupt handlers.

Parameters

interval
A UINT_16 specifying the interval in milliseconds to be used by the PIT. The value
must be in the range 1 to (2 16)/(input clock frequency in kHz).

Kernel System Calls 2-141

start_scheduling

void KN_start_scheduling():

Description

The start_scheduling system call cancels one scheduling lock imposed by
stop_scheduling. If the lock that is cancelled is the last outstanding scheduling lock,
all task state transitions that were temporarily delayed are carried out, and the
highest priority ready task begins executing.

NOTE

The Kernel sometimes stops scheduling internally, so that
scheduling might not restart immediately even though the
application has cancelled all the scheduling locks that it
established.

If start_scheduling is invoked when scheduling is not stopped, the results are
undefined.

SchedUling Category

Signalling. Use scheduling lock in interrupt handlers.

2-142 iRMKTt.I Kernel Reference Manual

stop_scheduling

void KN_stop_scheduling():

Description

The stop_scheduling system call temporarily locks the scheduling mechanism (or
places an additional lock on the mechanism) for the running task. Any task state
transitions that would move the task from the running state to the ready state are
delayed until scheduling is resumed. For example, with scheduling stopped, if the
running task sends a message to a mailbox at which a higher-priority task is waiting,
that waiting task becomes ready, but it would not become the running task until
scheduling is resumed.

The stop_scheduling system call does not necessarily halt task switching. If the
running task invokes a blocking system call (such as waiting at a mailbox for a
message or suspending itself) while scheduling is stopped, the task enters the asleep
or suspended state immediately and the highest priority ready task becomes the
running task. The new task is restored with all its scheduling locks in place. When
the first task is again restored to the running state, its scheduling locks are also
restored to the level they were at the time of the block.

Scheduling can be stopped repeatedly. That is, stop_scheduling can be invoked
when scheduling is locked. Scheduling is resumed only when all scheduling locks
are cancelled.

Scheduling Category

Non-scheduling. Safe for use by interrupt handlers.

Kernel System Calls 2-143

void KN_suspend_task(task);

Data Type
KN_TOKEN

Description

Parameter
task

The suspend_task system call puts the specified task in the suspended state (or
asleep-suspended, if the task is currently asleep.) If the task is already suspended,
this system call increases its suspension depth by one. The maximum suspension
depth for any task is 255. An attempt to exceed the maximum suspension depth of a
task causes the disaster handler to be invoked with the exception code
E_LIMIT_EXCEEDED and the invoked function code of KN_SUSPEND_TASK_CODE.

See also: Disaster Handler, Chapter 4

Scheduling Category

Signalling. Use scheduling lock in interrupt handlers.

Rescheduling when performed on the calling task. Unsafe for use by interrupt
handlers when performed on the calling task.

Parameters

task A KN_TOKEN for the task to be suspended.

2-144 iRMKTM Kernel Reference Manual

tick

void KN_tick();

Description

The tick system call is used by applications to notify the Kernel that another clock
tick has occurred. Rescheduling can occur as a result of this call. Applications that
use the initialize_PIT and start_PIT system calls should not call tick: it is invoked
automatically by the default PIT manager.

Normally, the tick system call is used in applications that have their own PIT
handlers and omit the Kernel's PIT management module. A typical PIT handler is an
interrupt handler that receives control when the timer sends an interrupt. In
response, the PIT handler invokes the tick system call to inform the Kernel that a
timer tick has occurred.

The Kernel cannot guarantee how long the tick system call takes to return. Because
the tick system call can cause alarm handlers to start running (see the description of
the create_alarm system call in this chapter), tick often enables interrupts during
its processing. This prevents PIT handlers from having unbounded interrupt latency.
(Interrupts are disabled when the timer interrupt occurs, and they aren't normally
enabled until the handler executes an IRET instruction.) Because tick can enable
interrupts, a PIT handler should send an end of interrupt (EOI) signal to the timer
interrupt before calling tick.

It may seem that sending an EOI before invoking tick could cause two potential
problems:

• Another interrupt could occur while the tick system call is active, causing tick to
be called while tick is still active. This could happen even if the PIT handler
doesn't enable interrupts before calling tick, because tick itself enables interrupts
under many circumstances.

• Another timer interrupt could occur before the PIT handler returns. If this
happens often enough, stack overflow could occur.

However, the tick system call has been designed to avoid both problems. First, tick
is reentrant, so calling tick while tick is active causes no problems. In addition, tick
maintains a counter to keep track of outstanding tick calls, so that it can return
quickly and eliminate the stack overflow problem.

Kernel System Calls 2·145

tick

Each time tick is called, it increments its internal counter. If tick increments the
counter to 1, it proceeds to start the full tick processing, which may enable
interrupts, and will return an indeterminate time later. However, if tick increments
the counter to 2 or greater, it simply increments the counter and returns. This takes
much less time than the full tick processing, so it happens with interrupts disabled.
Because interrupts are disabled, the PIT handler is not interrupted until it returns,
therefore eliminating the risk of stack overflow.

Scheduling Category

Signalling. Use scheduling lock in interrupt handlers.

2-146 iRMKTM Kernel Reference Manual

Data Type
void
KN_TOKEN

Description

Parameter
* area_ptr

object

The token_to _ptr system cal1 accepts a token for an object and returns a pointer to
the area that holds the contents of the object.

Scheduling Category

Non-scheduling. Safe for use by interrupt handlers.

Return Value

area_ptr
A pointer to the area containing the state of the specified object.

Parameters

object A KN_ TOKEN that specifies the object.

Kernel System Calls 2-147

translate _ptr

Data Type
void
void
KN_SELECTOR

Parameter
* .alias_ptr
* original_ptr

alias_base

Description

The translate_ptr system call accepts a pointer (called the original pointer) and a
selector (called the alias base). It returns a pointer that points to the same memory
location as the original pointer. The new pointer contains the alias base as a selector.
The system caB calculates the appropriate offset. It is the responsibility of the caller
to verify or guarantee that the linear address spaces for the segments overlap
sufficiently for the translated pointer to be valid.

This system caB is useful when the application uses the Kernel's gate-based
interface. If the application calls a Kernel system call that returns a pointer, but
expects a pointer based on a selector different from the one set up in
initialize_subsystem, use the translate_ptr system call.

Scheduling Category

Non-scheduling. Safe for use by interrupt handlers.

Return Val ue

alias_ptr

2-148

A pointer that is an alias for the original pointer, using the selector from the
ali a s_ba s e variable.

iRMKTM Kernel Reference Manual

Parameters

original_ptr
A pointer that is assumed by the Kernel to be valid.

alias base
A UINT_16 containing a selector for the desired segment. The selector is used to
construct the alias pointer which is returned.

Kernel System Calls 2-149

Data Type
UINT_8

Parameter
slot

Description

The unmask_slot system call unmasks the specified slot in the IDT. It causes the
PIC(s) to unmask interrupts on the line serviced by the specified entry in the IDT.

If the specified slot is currently masked due to the effects of the new_masks system
call, the slot remains masked until it is unmasked by the new_masks system call.
Thus the unmask_slot system call overrides the effect of the mask_slot system call,
but not the effect of the new_masks system call.

Scheduling Category

Non-scheduling. Safe for use by interrupt handlers.

Parameters

slot A UINT _8 indicating the entry (slot number) in the IDT corresponding to the
interrupt line that is to be unmasked.

2·150 iRMKTM Kernel Reference Manual

STANDARD INPUT AND
OUTPUT FUNCTIONS 3

This chapter discusses the on-board input and output capabilities provided by the
Kernel.

Kernel 1/0 Overview
The Kernel provides two methods of sending and receiving data using a serial device
on the host running the Kernel application:

• Console I/O system calls via an optional 82530 serial communication controller
(SCC) manager

• Standard I/O functions that are a subset of C library stdio

The SCC manager is a standard interface provided with the Kernel. It supports low
level access to character I/O through several Kernel system calls. The Kernel
standard I/O library functions are built on these character I/O system calls. The
library functions are based on standard C stdio library functions and can be used
with PL/M or C language applications. An application may use either of these
methods for character I/O or may combine Kernel system calls and Kernel standard
I/O functions.

Standard Input and Output Functions 3-1

3-2

Figure 3-1 shows the relationship between the Kernel and the different methods of
character I/O.

nelllO Ker
System Calls

v

Application

,~

I
Kernel
1/0 Fu

Standard
nctions

Kernel Standard I
I/O Library

,~

Kernel Library

W-1373

Figure 3·1. Character 1/0 Access Paths

iRMKTM Kernel Reference Manual

1/0 Initialization Required

Before the character I/O system calls can be used, console driver initialization must
be performed using the initialize_console system call. This system call provides an
initialization structure (KN_CONSOLE_CONFIGURA TION_STRUC) for the 82530
serial communication controller device on the Kernel host board.

Before the Kernel standard I/O functions can be used, the application must call
initialize_console, then initialize the standard I/O library using the initialize_stdio
system call.

See also: Standard I/O, Kstdio, Installation and User's Guide

Character 1/0 System Calls

The Serial Communication Controller (SCC) manager, provided as a standard Kernel
interface. supports low-level character I/O functions. The SCC manager source code
is included and can be modified to provide a custom SCC module. The Kernel
system calls supported through this interface provide direct character I/O support
and also provide a basis for the Kernel standard I/O functions. These system calls
are described in Chapter 2, and include:

• KN _initialize_console: initializes the 82530 see device.

• KN_ci: waits for character input from console.

• KN_csts: checks for character input from console and returns immediately.

• KN _co: transfers an ASCII character to the console output device but first
checks for CONTROL-S or CONTROL-Q.

Standard Input and Output Functions 3-3

Kernel Standard I/O Functions

3-4

These functions are provided in the kstdios.lib library (small model) and kstdioc.lib
library (compact model). The appropriate library must by bound with the
application. The following functions are described more fully on the reference pages
which follow.

• putchar: writes a single character to the standard output stream.

• getchar: reads a single character from the input stream and returns it as an
integer value, waiting for a character if one is not immediately available.

• printf: formats output characters based on a format control string and sends
them to the standard output stream.

• scanf: parses formatted character input, reading characters from the standard
input stream and produces sequences of characters based on a control string
format.

NOTE

These functions may block the calling task. Use them with caution
in interrupt handlers.

iRMKTM Kernel Reference Manual

putchar

void putchar(c);

Data Type
UINT_8

Description

Parameter
c

The putchar function writes a single character to the standard output stream. Values
sent by putchar are ASCII values. For example, the following use of putchar
places the letter "A" into the standard output stream:

putchar (65):

Assigning values to the variable and calling the putchar function also sends the
letter "A":

x == • A':
putchar (X):

Scheduling Category

Blocking. Use with caution in interrupt handlers.

Parameters

c Any possible 8-bit value.

Standard Input and Output Functions 3·5

getchar

c getchar():

Data Type
UINT_8

Description

Parameter
c

The getchar function reads a single character from the input stream and returns it as
an integer value. The getchar function waits for a character if one is not
immediately available. It is defined to return all possible character values.

Scheduling Category

Blocking. Use with caution in interrupt handlers.

Return Value

c A DINT _8 representing the ASCII value of the character input. For example, if the
input stream contains the letter "A", the returned value is 65.

3-6 iRMKTM Kernel Reference Manual

printf

count printf(format_str. argl. arg2 •...):

Description

The printf function formats character output, controlling such things as numeric
format, field size, and print position. This formatting is accomplished through type
conversion characters, conversion modifiers, and escape sequences.

The following are simple printf examples.

Example 1:

INPUT printf("The number is: %d", 5) :

OUTPUT: The number is: 5

Example 2:

INPUT a = 5:
pri ntf("The number is: %d" , a) :

OUTPUT: The number is: 5

NOTE

The binder-generated map will have the following warning when
the printf function is used from a PL/M application. This warning
does not cause any error.

*** WARNING 126: SYMBOL TYPES MISMATCH
FILE: kstdio.lnk
MODULE: KSTDIO
SYMBOL: PRINTF

Scheduling Category

Blocking. Use with caution in interrupt handlers.

Standard Input and Output Functions 3·7

printf

Return Value
count An integer that returns the actual number of characters printed. This parameter is

usually ignored in C programs.

Parameters

format str
A character string that describes how the remaining arguments (if any) are to be
displayed.

The forma t_s t r contains a string of characters enclosed in quotation marks.
Characters not preceded by a percent sign (%) or a backslash (\) are written literally
to standard output. If various conversion controls are used, each control is preceded
by a %. Conversion controls can affect the format, prefix, and padding of a value to
be output. For example, controls can format a numeric value as an integer with a
plus sign as a prefix and number of spaces to position it properly within a field.

argl, arg2 •..
The arguments to be displayed.

The a rg parameter(s) specify literal or variable values to be associated with formats
in the forma t_s t r parameter. Each % in forma t_s t r corresponds sequentially
with one a rg value.

Type Conversion Modifiers

3-8

The printf function provides flexibility by providing character modifiers that can be
specified between the percent sign and a type conversion character. The general
format of a conversion specification is shown below. Optional fields are enclosed in
brackets.

% (f1ags] [width] [.precision] [I] type

flags Values that modify how a number will appear. They control such
things as left justification and whether the number is preceded by a
plus or minus sign or a space.

iRMKTM Kernel Reference Manual

width

.precision

type

printf

A decimal value specifying the minimum field width when a number
is output. If the number is less than the minimum, the field is
padded with spaces or zeros. The width value may also be specified
by an asterisk (*) in which case the next arg value from the printf
call (which must be an integer) will be used as the minimum field
width.

This modifier has different effects depending upon the type
conversion character that follows it. It is expressed as a period
followed by an optional integer. If the integer is missing, it is
assumed to be zero. The precision may also be specified using an
asterisk (*) in which case the next arg value from the printf call
(which must be an integer) will be used.

The lowercase L is used to signify that a value is a long integer.

The final part of the conversion specification is a type conversion
character as described in Table 3-2.

Standard Input and Output Functions 3·9

printf

The effects of individual modifiers are described in Table 3-1.

Table 3-1. printf Type Conversion Modifiers

Modifier Meaning

flag
- left justify the value
+ precede the value with + or -

<space> precede a positive value with a space character
The # sign has several effects depending on the type

conversion character that follows it. The effects are:
precede an octal value with 0
precede a hexadecimal value with Ox (or OX)
display a decimal point for floating point numbers
leave the trailing zeros on for g or G format

width minimum size of field (integer value or an *)
* means take next argument as field width

.precision minimum number of digits to display for integers
number of decimal places for e and f formats
maximum number of significant digits to display for g
maximum number of characters for s format

* means take the next argument as field width

I display long integer

type a type conversion character (see Table 3-2)

3-10 iRMKTM Kernel Reference Manual

printf

Conversion Characters

The conversion characters are allowed in the forma t_s t r parameter. Conversion
characters control numeric and character formatting for specific arguments.

d

u

o

x

x

f

e

E

g

G

c

Signed integer conversion from type i nt or long. Negative values
are preceded by a minus sign. (The + flag, described later, is used to
display a + or - sign before numbers.)

Unsigned integer conversion from type uns; gned or uns i gned
long.

Unsigned octal conversion from type uns i gned or uns; gned
long.

Unsigned hexadecimal conversion from type uns i gned or
un signed long. The x conversion operation uses the values: 0 1 2
3456789abcdef.

Unsigned hexadecimal conversion from type uns i gned or
un signed long. The X conversion operation uses the values: 0 1
23456789ABCDEF.

Signed decimal floating-point conversion. The general output
format is [-]ddd.ddd. The actual precision is controlled by the
precision flag, described in the Type Conversion Modifiers section.

Signed decimal floating-point conversion. The general format is
scientific notation using a small e character: [-]d.ddddde+dd. The
actual number of digits following the decimal point is controlled by
the precision flag, described in the Type Conversion Modifiers
section.

Signed decimal floating-point conversion. The general format is
scientific notation using a capital E character: [-]d.dddddE+dd. The
actual number of digits following the decimal point is controlled by
the precision flag, described in the Type Conversion Modifiers
section.

Signed decimal floating-point conversion. The format is the for e
format described above, whichever is more compact.

Signed decimal floating-point conversion. The format is the for E
format described above, whichever is more compact.

The argument is output as a single character.

Standard Input and Output Functions 3-11

printf

s

%

The argument is output as a null-terminated character string.

The percent sign precedes each conversion character. To print an
actual percent sign, place two percent signs together in a format
field.

Table 3-2 summarizes these type conversion characters.

Table 3-2. printf Type Conversion Characters

Char Use for Printing

d signed integers
u unsigned integers
0 octal integers
x hexadecimal integers, using a-f; example: c6
X hexadecimal integers, using A-F; example: C6

f floating point numbers
e floating point numbers in exponential format using e before the

exponent
E floating point numbers in exponential format using E before the

exponent
g floating point numbers in f or e format, whichever is more

compact
G floating point numbers in f or E format, whichever is more

compact

c single characters
s null-terminated character strings
% percent sign: precedes format characters

Escape Sequences

3-12

The final set of printf forma t_s t r value modifiers are the escape sequences, which
perform formatting functions such as carriage returns or form feeds. Escape
sequences are characters preceded by a backslash (\).

NOTE

The PL/M compiler does not support the '\" escape. The ASCn
value corresponding to the escape sequence must be placed in the
format string by the programmer.

iRMKTM Kernel Reference Manual

printf

Table 3-3 describes the effect of the various escape sequences.

Table 3-3. printf Escape Sequences

Symbol Purpose

\a alarm: generates an audible or visible alarm
\b causes a backspace
\f generates a form feed
\n starts a newline (CR LF)
\r performs a carriage return without a line feed (CR)
\t moves to the next horizontal tab
\v moves to the next vertical tab

printf Conversion Character Examples

The following examples illustrate several of the type conversion format options.

INPUT:

OUTPUT:

INPUT:

OUTPUT:

Standard Input and Output Functions

int a = 55;
double b = 8888.88888;
printf("\n%d".a);
printf("\n%g".b);

55
8888.89

int a = 55;
double b = 8888.88888;
printf("\n%3d".a);
printf("\n%.3f".b);

55
8888.889

3-13

scanf

count scanf(format_str. argl. arg2);

Description

The scanf function parses formatted input text, reading characters from the standard
input stream. The scanf function control forma t_s t r accepts a number of
modifiers which allow the user to set up character input as desired. Arguments may
be included after forma t_s t r. Each argument must be a pointer to the location
where converted values from the input stream are to be stored.

If the input operation terminates prematurely because of an EOF indication or a
conflict between the forma t_s t r controls and the input characters, scanf returns
the number of successful assignments performed before termination occurred.

NOTE

The binder-generated map will have the following warning when
the scanf function is used from a PL/M application. This warning
does not cause any error.

*** WARNING 126: SYMBOL TYPES MISMATCH
FILE: kstdio.lnk
MODULE: KSTDIO
SYMBO L: SCAN F

Scheduling Category

Blocking. Use with caution in interrupt handlers.

Return Value

count An integer that returns the number of items matched. This parameter is usually
ignored in C programs.

3-14 iRMKTM Kernel Reference Manual

scanf

Parameters
format str

The forma t_s t r control is essentially a picture of the form expected of the input
characters. It controls whitespace and character conversions. Each conversion
specification in format_str begins with a % character. The format_str control
can include both conversion characters and conversion modifiers.

argl, arg2 ...
A list of arguments corresponding to the characters to be input. The number of
arguments must match the number and type of input specifications in the
fa rma t_s t r control.

Standard Input and Output Functions 3-15

scant

Conversion Characters and Modifiers

3-16

The forma t_s t r parameter can include both conversion characters and conversion
modifiers in the following general form:

%[*] [size] [I] [h]type

%

[*]

size

[I]

[h]

The percent sign precedes each field in the format string.

The asterisk indicates a field which is to be skipped.

The optional maximum field width specification must be a positive
(nonzero) integer.

Lowercase L indicates the value is to be stored as along i nt or
double.

Lowercase H indicates the value is to be stored as a s ho rt i nt.

Table 3-4 lists the meanings of the scanf conversion modifiers.

type

Table 3·4. scanf Conversion Modifiers

Modifier Meaning

. field to be skipped and not assigned
size maximum size of the input field

I value is to be stored in long integer or double
h value is to be stored in short integer

type conversion character

Conversion characters declare the type of character expected or the
way a character string is expected to be terminated.

iRMK ™ Kernel Reference Manual

scanf

The type conversion characters are:

d

u

o

x

e, f, g

c

s

[••• J

[A •••]

<space>

An input that can be converted to a signed decimal is expected. A
value of type i nt, short, or long is assigned, depending on the
size specification.

An input that can be converted to a unsigned decimal is expected. A
value of type unsigned, unsigned short or unsigned long is
assigned, depending on the size specification.

An input that can be converted to unsigned octal is expected. A
value of type unsigned short, or unsigned long is assigned,
depending on the size specification.

An input that can be converted to unsigned hexadecimal is expected.
A value of type uns i gned. uns i gned short, or uns i gned
1 0 n g is assigned, depending on the size specification. The x
operation will accept either abcde or ABCDE characters as input.

An input that can be converted to a signed floating-point number is
expected. A value of type float or doubl e is assigned, depending
on the size specification. All of these operations are identical.
Capital E floating-point input is also accepted.

Characters are expected; the number depends on the size
specification.

A string terminated by whitespace is expected. An extra terminating
null character is appended.

A string terminated by any character not within the brackets is
expected.

A string terminated by any character within the brackets is expected.

A whitespace character in the format control string causes
whitespace characters in the input to be read and discarded until a
non-whitespace character is read.

Standard Input and Output Functions 3-17

scanf

Table 3-5 lists the scanf input type conversion characters.

3-18

Table 3-5. scanf Type Conversion Characters

Character Use for reading:

d integers
u unsigned integers
0 octal integers
x hexadecimal integers, using a-f

e,f,g floating point numbers
c single character
s character strings terminated by whites pace

[...] character strings terminated by any character not
listed in brackets

[1\ ...] character strings terminated by any character listed
inside brackets

<space> causes whitespace input characters to be discarded
until a non-whitespace character is read

0/0 percent sign precedes each format field

In the following example, if you input 555, you will get an output of 555.

PROGRAM:

INPUT:

OUTPUT:

int a;

scanf("%d". &a);

printf("%d\n". a);

555

555

iRMK ™ Kernel Reference Manual

Using Kstdio Libraries
The Kernel package supplies two standard I/O libraries. These libraries provide a C
language interface for the four Kernel standard I/O functions discussed earlier.
Applications in languages other than C and PL/M should use appropriate compiler
controls to invoke these functions.

The Kernel provides library support for both small and compact programming
models using kstdi as. 1 i band kstdi oc. 1 i b respectively. These libraries are
used in several programming models including:

• Small. The entire application is in the small programming model.

• Compact. The entire application is in the compact programming model, or you
are using multiple segments.

Compact model is also used for mixed models, since mixed models must use
multiple segments.

In addition to binding the appropriate libraries, include files need to be used in the
applications as shown in Table 3-6. Include files are not available for FORTRAN or
Assembly for the Kernel standard I/O libraries.

Table 3·6. Include Files for Stdio Models

COMPACT SMALL

PUM kstdioc.inc kstdios.inc
kstdio,lit kstdio.lit
kstdio.ext kstdio.ext

C kstdio.h kstdio.h

Standard Input and Output Functions 3·19

Usage Notes

3-20

All Kernel standard I/O functions use C calling conventions. Use proper compiler
controls so that these conventions are observed. You must include the Kernel
standard I/O header files to use the Kernel standard I/O functions from a C
application.

If an iC-386 library is used with the Kernel standard I/O library, ks td; oc. 1 ; b or
kstdi os. 1 i b must be bound before the iC-386 library.

A compiler that allows variable length parameters is required to use the Kernel
standard I/O libraries. The PL/M version required is 3.3 or later.

More than one task can use a Kernel standard I/O function at the same time. The
Kernel ensures that each use of the function is completed properly. However, an
interrupt handler or an alarm handler runs in the context of the current task. Using a
Kernel standard I/O function within one of these handlers while the task is also using
the function causes deadlock.

If you use a serial line for Soft-Scope III host-target debugging communication, you
cannot use the same port for I/O by the application.

"'

iRMK ™ Kernel Reference Manual

KERNEL HANDLERS 4
This chapter discusses installation and removal of user-supplied task handlers and
the Kernel system calls used to invoke these handlers. It also describes the handlers
supplied by the Kernel to handle spurious interrupts. These are called level_x7
handlers.

The calling format shown in this chapter is the format used when the Kernel calls the
handler.

Overview of User-supplied Task Handlers
At certain points in manipulating tasks, your application may need to add functions
to those provided by the Kernel. For example, you may want to set up particular
data structures when a task is created, and remove the structures when the task is
deleted. The Kernel allows you to set up task handlers that it automatically calls at
critical points in manipUlating tasks.

Task handlers are procedures that may be installed at Kernel initialization using the
initialize system call. Task handlers may also be installed and removed dynamically
using the Kernel system calls set_handler and reset_handler.

The following task handlers can be provided by the application:

• create_task_handler

• delete_task_handler

• disaster_handler

• task_switch_handler

• priority _change_handler

NOTE

A disaster_handler can only be installed during Kernel
initialization. Only one disaster_handler is allowed.

By providing these procedures, you can add functionality to your Kernel-based
system and/or handle error situations.

Kernel Handlers 4-1

Task Handlers Called by the Kernel

4-2

Task handlers are procedures the Kernel invokes. Task handlers may then invoke
Kernel system calls and perform needed application operations. The Kernel expects
these procedures to be as correct as one of its own internal calls. Incorrect task
handler code can impact performance and can corrupt application operation.

Task handlers are invoked by the Kernel when the task makes a system call such as
create_task or delete_task, or a system call that causes a task switch or change in
priority of a task. All handlers are invoked with interrupts disabled and scheduling
locked.

Figure 4-1 illustrates the interrelation between the Kernel and task handlers. The
application has a task handler associated with it. When the application makes a
Kernel call that would be affected by the task handler, the Kernel calls the task
handler.

I

Application I Task

I Handlers

I

II'

'V

Kernel

W-1420

Figure 4-1. Kernel Invoking of Task Handlers

iRMK ™ Kernel Reference Manual

Installing and Removing Task Handlers

User-supplied task handlers may be installed at Kernel initialization using the
initialize system call or dynamically using the set_handler system call. Using
set_handler you may install more than one handler of the same kind. The
reset_handler system call dynamically removes a specific task handler previously
installed using set_handler or the initialize system call.

NOTE

Multiple task handlers degrade the performance of your system
and should be removed using reset_handler when they are no
longer needed.

The following example describes Kernel operation using task creation handlers.

1. With no task creation handlers installed, the application calls create_task. No
handlers are invoked.

2. Using set_handler, the application installs two task creation handlers
CcreateA_hdl rand createB_hdl r).

3. Then, when the application calls the create_task system call, the Kernel
initializes the new task. Before the task is allowed to execute, the Kernel calls
createA_hdl r, then createB_hdl r. Finally, it allows the task to execute.

4. Next, reset_handler is used to remove createA_hdl r. When create_task is
next called, the Kernel initializes the new task. It calls createB_hdl r, then
allows the task to execute.

5. Now the application reinstalls c rea teA_hd 1 r using set_handler. When
create_task is called, the Kernel initializes the new task, calls createB_hdl r,
then createA_hdl r, then allows the new task to execute.

6. Finally, the application removes both task creation handlers using
reset_handJer. When create_task is called, the Kernel performs only its
standard create task functions.

See also: Task Management, Installation and User's Guide

Kernel Handlers 4-3

Data Type
void

Parameter
* task_ptr

Description

The create_task _handler is a user-supplied procedure that the Kernel invokes
whenever it creates a task. When you initialize the Kernel (via the initialize system
call), you indicate which procedure the Kernel should use by placing a pointer to the
procedure in the KN_CONFIGURATION_DATA_STRUC structure.

The create_task_handler can also be set up using the set_handler system call.

During task creation, the Kernel invokes create_task_handler after it initializes the
new task but before the task is allowed to execute. The handler will typically
perform additional task initialization, either to the Kernel maintained task state, or to
any additional task state maintained by the application.

Task creation handlers are invoked with interrupts disabled and scheduling locked.

See also: initialize, set_handler, Chapter 2

Parameters

task_ptr

4-4

A pointer to the area containing the state of the new task. This area is supplied by
the user with the create_task system call. Part of this area can be dereferenced
using the structure KN_ TASK_STATE. This is the only part of the task structure that
is visible to the user. Some parts of this structure can be changed by the user. See
the KN_TASK_STATE structure at the end of this chapter.

See also: create_task, Chapter 2

iRMKTM Kernel Reference Manual

delete task handler

Data Type
void

Description

Parameter
* task_ptr

- -

The delete_task_handler is a user-supplied procedure that the Kernel invokes
whenever it deletes a task. When you initialize the Kernel (via the initialize system
call), you indicate which procedure the Kernel should use by placing a pointer to the
procedure in the KN_CONFIGURATION_DATA_STRUC structure.

The delete_task_handler can also be set up using the set_handler system call.

When a task deletes another task, the Kernel invokes the task deletion handler after
the task is removed from any scheduling queues (to prevent it from executing), but
before the task state is destroyed. When a task deletes itself, the Kernel invokes the
task deletion handler before removing the task from any scheduling queues. The
deletion handler will typically perform additional task cleanup, either to the Kernel
maintained task state, or to any additional task state maintained by the application.

Task deletion handlers are invoked with interrupts disabled and with scheduling
locked.

See also: initialize, set_handler, Chapter 2

Parameters

task_ptr
A pointer to the area containing the state of the task to be deleted. This area is
supplied by the user with the create_task system call. Part of this area can be
dereferenced using the structure KN_TASK_STATE. This is the only part of the task
structure that is visible to the user. Some parts of this structure can be changed by
the user. See the KN_TASK_STATE structure at the end of this chapter.

See also: create_task, Chapter 2

Kernel Handlers 4·5

disaster handler

void disaster_handler(;nfo_ptr);

Data Type
KN_DISASTER_INFO_STRUC

Parameter
* info_ptr

Description

The Kernel provides the disaster_handler interface to notify application programs
when a catastrophic event has occurred. When you initialize the Kernel (via the
initialize system call), you indicate which procedure the Kernel should use by
placing a pointer to the procedure in the KN_CONFIGURATlON_DATA_STRUC

structure.

The disaster_handler can also be set up using the set_handler system call.

The Kernel provides a default disaster handler which causes an interrupt 3 when it is
invoked.

Disaster handlers are invoked with interrupts disabled and scheduling locked.

See also: initialize, set_handler, Chapter 2

Parameters

info_ptr

4·6

A pointer to a structure containing information describing the current disaster. The
format of this structure is as follows:

typedef struct
KN_STATUS
UINT_32
UINT_32

exception_code;
invoked_function:
addl_info;

KN_DISASTER_INFO_STRUC;

Where:

exception_code The exception code associated with the current disaster. The
following values are possible:

iRMKTM Kernel Reference Manual

disaster handler

Literal Meaning

E_STATE A resume_task system call attempted to resume a task that
wasn't suspended (that is, the task's suspension depth was
already 0).

E_LIMIT _EXCEEDED One of the following conditions occurred:

A send_unit system call attempted to send a unit to a
semaphore that already contained the maximum number of
units (65,535).

A suspend_task system call attempted to increase a task's
suspension depth beyond the maximum (255).

invoked function

addl info

Kernel Handlers

Indicates the operation that was underway when the disaster
occurred. The following values are possible:

Literal Meaning

KN_SUSPEND_ TASK_CODE
A suspend_task operation caused the
disaster.

KN_RESUME_ TASK_CODE
A resume_task operation caused the
disaster.

KN_SEND_UNIT _CODE A send_unit operation caused the
disaster.

A field reserved for expansion. It is intended to provide additional
information regarding the disaster.

4-7

level x7 handler - -

void KN_level_{M7IM15107117127137147157167177}_handler();

Description

4·8

The level_x7 handlers are different in two respects from the other handlers described
in this chapter:

• They are supplied in the Kernel package as part of the optional PIC management
module, rather than being written by the user.

• They are not called directly by the Kernel. The level_x7 handlers are a set of
interrupt handlers, which means they are invoked by the processor hardware,
rather than by the Kernel.

The level_x7 handlers are interrupt handlers that you can use to handle spurious
interrupts. A spurious interrupt is one in which the interrupt signal does not remain
asserted long enough for the PIC to determine its source. The 8259A PIC and the
82380/82370 Integrated System Peripheral PIC report spurious interrupts on level 7
of the PIC involved.

The Kernel supplies ten handlers for use in your application. The procedure
level_M7 _handler can be used to handle spurious interrupts on the master PIC.
Procedures level_ 07 _handler through level_77 _handler can handle spurious
interrupts on any of eight slave PICs. The level_MIS_handler is used to set up the
1.5 level input when an 82380/82370 is used.

If your application does not connect level 7 PIC inputs to real interrupt sources, you
can use these level_x7 handlers to handle spurious interrupts. These handlers merely
signal EOI and return. You can install any or all of these procedures as interrupt
handlers by using the setJnterrupt system call or by using the Builder utility.

If an application uses level 7 PIC inputs for real interrupt sources, its interrupt
handlers must distinguish spurious interrupts from real interrupts. To do this, the
interrupt handler should invoke the get_slot system call, and compare the results of
the call with the slot it believes it is servicing. If the get_slot system call returns the
expected slot, then the interrupt is real; otherwise, the interrupt is spurious and an
EOr should be sent.

See also: Bytes of stack used by interrupt handlers, Appendix B

iRMKTM Kernel Reference Manual

priority_change_handler

void priority_change_handler(task_ptr);

Data Type
void

Description

Parameter
* task_ptr

Normally the highest priority task is the running task, but when scheduling is
stopped, the highest priority task might be one of the other ready tasks. Whenever
the priority of one of the running or ready tasks changes, and that change causes the
highest priority to change, the Kernel invokes the priority_change _handler if it is
provided. The priority could change if a task calls the set_priority system call, or if
it calls send_units or receive_units on a region.

When you initialize the Kernel (via the initialize system call), you indicate which
procedure the Kernel should use by placing a pointer to the procedure in the
KN_CONFIGURATION_DATA_STRUC structure.

The priority_change_handler can also be set up using the set_handler system call.

An example of using this handler would be to maintain a relationship between the
priority of the running task and the set of interrupt slots that are masked.

Priority change handlers are invoked with interrupts disabled and with scheduling
locked.

See also: initialize, set_handler, Chapter 2

Parameters

task_ptr
A pointer to the area containing the state of the task whose priority has been
changed. This area is supplied by the user with the create_task system call. Part of
this area can be dereferenced using the structure KN_TASK_STATE. This is the only
part of the task structure that is visible to the user. Some parts of this structure can be
changed by the user. See the KN_TASK_STATE structure at the end of this chapter.

See also: create_task, Chapter 2

Kernel Handlers 4-9

Data Type
void

Parameter
* new _task_ptr

Description

The task_switch_handler is a user-supplied procedure that the Kernel invokes
whenever a task switch occurs. When you initialize the Kernel (via the initialize
system call), you indicate which procedure the Kernel should use by placing a
pointer to the procedure in the KN_CONFIGURA TION_DA TA_STRUC structure.

The task_switch_handler can also be set up using the set_handler system call.

Whenever the Kernel switches the running task, it invokes the task switch handler.
The handler is invoked in the context of the "old" task (the task giving up the
processor). A pointer to the new running task is supplied as a parameter to the
handler. A pointer to the state of the old running task can be obtained from the
public variable KN_CURRENT_TASK.

The task switch handler typically performs changes such as changing the set of
interrupt sources that are disabled. The task switch handler should not change the set
of ready tasks.

Task switch handlers are invoked with interrupts disabled and with scheduling
locked.

See also: initialize, set_handler, Chapter 2

Parameters

new _task _ptr

4-10

A pointer to the area containing the state of the task that will be the next running
task. This area is supplied by the user with the create_task system call. Part of this
area can be dereferenced using the structure KN_TASK_STATE. This is the only part
of the task structure that is visible to the user. Some parts of this structure can be
changed by the user. See the KN_ T ASK_STATE structure at the end of this chapter.

See also: create_task, Chapter 2

iRMKTM Kernel Reference Manual

Exported Values

A pointer to the task state of the current running task. For compatibility with future
versions of the Kernel, KN_CURRENT_TASK should be used only in places where a
parameterless procedure is valid. For example, structures should not be directly
based on KN_CURRENT_TASK. Instead, KN_CURRENT_TASK should be
assigned to the base of appropriate structures.

Kernel Handlers 4-11

KN TASK STATE Structure

4-12

- -
KN_ T ASK_STATE is a structure describing the state of a task. It is used in the
Kernel handler procedures create_task_handler. delete_task_handler.
priority_change_handler. and task_switch_handler.

The KN_ T ASK_STATE structure can overlay a task state to provide access to the
individual fields. This structure has the format shown below. The fields from 1 ink
through 10_rna p_ba s e correspond to fields in the TSS. The remaining fields are
specific to the Kernel.

Only the fields ESP;, SS; (where i = 0 through 2), CR3_reg, LOT_reg, TRAP_reg,
IO_rnap_base, and task_51 ice can be written by applications. Ifapplications
attempt to write other fields, the results are undefined:

iRMKTM Kernel Reference Manual

typedef struct {
KN_SELECTOR
UINT_16
UINT_32
KN_SELECTOR
UINT_1p
UINT_32
KN_SELECTOR
UINT_16
UINT_32
KN_SELECTOR
UINT_16
UINT_32
UINT_32
UINT_32
UINT_32
UINT_32
UINT_32
UINT_32
UINT_32
UINT_32
UINT_32
UINT_32
KN_SELECTOR
UINT_16
KN_SELECTOR
UINT_16
KN_SELECTOR
UINT_16
KN_SELECTOR
UINT_16
KN_SELECTOR
UINT_16
KN_SELECTOR
UINT_16
KN_SELECTOR
UINT_16
UINT_16
UINT_16
KN_TOKEN
UINT_32
UINT_16
UINT_16
KN_FLAGS

KN_TASK_STATE:

Kernel Handlers

KN TASK STATE Structure - -

1 ink:
link_h:
ESP0:
SS0:
SS0_h:
ESP1:
SSl:
SSl_h:
ESP2:
SS2:
SS2_h:
CR3_reg:
EI P _reg:
EFLAGS_reg:
EAX_reg:
ECX_reg:
EOX_reg:
EBX_reg:
ESP_reg:
EBP_reg;
ESI_reg:
EOI_reg;
ES_reg:
ES_h:
CS_reg:
CS_h:
SS_reg;
SS_h:
OS_reg:
OS_h:
FS_reg:
FS_h:
GS_reg:
GS_h:
LOT_reg:
LOT_h:
TRAP_reg:
IO_map_base:
task token:
task slice:
dynamic priority:
static_priority:
flags:

4-13

4-14

Where:

link

link h

ESPO

SSO

SSO_h

ESP}

SS!

SS! h

ESP2

SS2

SS2_h

A back link to the previous TSS.

A reserved field in the TSS.

ESP register for privilege ring 0 operation.

SS register for privilege ring 0 operation.

A reserved field in the TSS.

ESP register for privilege ring 1 operation.

SS register for privilege ring 1 operation.

A reserved field in the TSS.

ESP register for privilege ring 2 operation.

SS register for privilege ring 2 operation.

A reserved field in the TSS.

CR3_reg CR3 register.

EIP _reg EIP register.

EFLAGS_reg EFLAGS register.

EAX_reg

ECX_reg

EDX_reg

EBX_reg

ESP _reg

ERP _reg

ESI_reg

EDI_reg

ES_reg

ES h

CS_reg

CS h

EAX register.

ECX register.

EDX register.

EBX register.

ESP register.

EBP register.

ESI register.

EDI register.

ES register.

A reserved field in the TSS.

CS register.

A reserved field in the TSS.

iRMKTM Kernel Reference Manual

SS_h

DS_reg

DS_h

FS_reg

FS h

GS_reg

GS h

LDT_reg

LDT h

TRAP _reg

SS register. Tasks that use the message passing module should not
change this descriptor.

A reserved field in the TSS.

DS register.

A reserved field in the TSS.

FS register.

A reserved field in the TSS.

GS register.

A reserved field in the TSS.

Selector for the LOT. By default, the new task's LDT is the same as
its parent task's. To give the task a different LOT, you should assign
memory for the LOT, set up an LOT descriptor in the GDT, and place
a selector for that descriptor in the LOT _re 9 field.

A reserved field in the TSS.

Trap bit (bit 0 of the low-order byte).

10 _map_base Offset to the start of the I/O permission map from the base of the
TSS.

task token

task slice

A token for the task.

The total number of clock ticks in the task's time slice. Once
changed, this value becomes effective the next time the task receives
a new time slice.

dynamic_priority
The current dynamic priority of the task. This field is equal to the
static priority field unless the task's priority has been adjusted
because of region ownership, in which case it is equal to the adjusted
priority. The dynamic priority of tasks is used in scheduling the
processor.

static_priority The current static priority of the task. This field gives the priority of
the task if priority adjustment due to regions is ignored.

Kernel Handlers 4·15

flags

Idle task

Initial state

4-16

A KN_FLAGS whose bit structure specifies the following attributes
of the new task:

Indicates whether the task is the idle task.

Literal Meaning

KN_IDLE_ TASK_MASK Mask for this field of the flag.

KN_IDLE_ TASK The task is the idle task.

KN_NOT_IDLE_TASK The task is not the idle task.

The initial state of the task.

Literal Meaning

KN_INITIAL_ TASK_ST ATE_MASK
Mask for this field of the flag.

Create the task in the ready state.

KN_CREATE_SUSPENDED
Create the task in the suspended state.

iRMKTM Kernel Reference Manual

CONFIGURATION AND INITIALIZATION 5
This chapter discusses how to specify configuration parameters. how to make
optional Kernel modules available in the application. and how to initialize the
Kernel. Using optional Kernel modules is described in the Installation and User's
Guide

Optional Modules
To include an optional module in your system. you must call one of that module's
system calls in your application. When you bind your application to the Kernel, and
the application references a primitive in an optional module, that module is bound
into the system. If an optional module is not referenced by the application, that
module is not bound with the system. Many of the optional modules must be
initialized with a system call.

The optional modules include:

• Device Manager Modules. These modules consist of managers for the 8259A
PIC. the 8254 PIT, the Numeric Coprocessor, the 82380/82370 Integrated
System Peripheral, and the 82530 USART driver.

• Message Passing Support Module. This module supports Multibus II message
passing.

• Interconnect Space Support Module. This module provides interfaces for
applications to access interconnect space on Multibus II systems.

• Memory Management Module. This module manages free space.

• Descriptor Table Management Module. This module provides system calls that
manage descriptor tables.

• Exchanges. This module includes mailbox management and semaphore
management.

Subsystem support consists of the gate-based interface. This module consists of a
library (mux.lib) to be bound with an application when that application exists in a
different subsystem than the Kernel. There is a corresponding file to be bound with
the Kernel. You must explicitly bind these library files.

Configuration and Initialization 5-1

Configuration Data Structures

5-2

One of the first things the application must do is to set up configuration data
structures for the Kernel and for any device managers you have included. These
structures are then used as input to initialization system calls. Configuration data
structures for the optional modules include:

• An configuration structure for the system debugger, if used (initialize_RDS)

• An interrupts data structure for any PICs

• A timer data structure for any PITs

• An interconnect data structure

• A data structure for the message passing module

• The initialize_console primitive must be used for 82530 initialization.

There are also handler interfaces that you can supply. The four task management
extension handlers include:

• create_task_handler

• delete_task_handler

• task_switch_handler

• priority _change_handler

In addition, you can supply a disaster handler. These handlers are configured into
the system with the data structures that you supply to the initialize primitive.

Once these data structures are assembled or compiled, they are part of the object
code which can then be bound to the Kernel.

Each configuration data structure must be declared. The data structures are not
modified and so may reside in ROM.

iRMK ™ Kernel Reference Manual

Configuration Structure for initialize_RDS System Call

Figure 5-1 shows an RDS configuration data structure using the C language. The
information sets fields in the KN_RDS_STRUC structure used in the initiaJize_RDS
system call. Only three fields are set in the structure; the other fields are set to zero
in the default configuration.

rds_config.MPC_port_separation
rds_config.IC_base_address
rds_config.IC_port_separation

Figure 5-1. Example Configuration of the initialize _ RDS Structure

Configuration and Initialization

4 ;
0x30:
4· ,

5-3

Configuration Structure for initialize System Call

5·4

Figure 5-2 shows a Kernel configuration data structure using the C language. The
values used are from the BIST example. The information to provide the
configuration data structure includes:

time_slice

real time fence

priority

The time interval of the time slice.

The priority value at which the real-time fence is set.

The priority of the initial task.

task_creation _handler _ptr
A pointer to a procedure to be used as the task creation
handler.

task_deletion_handier _ptr
A pointer to a procedure to be used as the task deletion
handler.

task _ switch_handler _ptr
A pointer to a procedure to be used as the task switch
handler.

priority_change _handler _ptr
A pointer to a procedure to be used as the priority change
handler.

disaster _handler _ptr A pointer to a procedure to be used as the disaster handler.
(If this pointer is NIL, the Kernel executes an TNT 3
instruction when a disaster occurs.)

task_creation _handler_flags

task_deletion _handler_flags

task_switch _handler_flags

priority_change _handler_flags

disaster_handler_flags
Flags for each of the above procedures.

iRMKTM Kernel Reference Manual

config_data

config_data.time_slice
config_data.real_time_fence
config_data.priority
config_data.task_creation_handler_ptr
config_data.task_creation_handler_flags
config_data.task_deletion_handler_ptr
config_data.task_deletion_handler_flags
config_data.task_switch_handler_ptr
config_data.task_switch_handler_flags
config_data.priority_change_handler_ptr
config_data.priority_change_handler_flags
config_data.disaster_handler_ptr
config_data.disaster_handler_flags

50:
= 256:
= 100:
= 0:
= 0:
... 0:
= 0:
= 0:

0:
0:

= 0:
0:
0:

Figure 5-2. Kernel Configuration Data Structure for initialize System Call

Configuration and Initialization 5-5

Configuration Structure for initialize_PICs

5-6

To configure the interrupts data structure for the 8259A PIC(s) or the 82380/82370
Integrated System Peripheral, set up a master PIC data structure. Then set up data
structures for any slave PICs that are being used. Finally, establish data structures
for those PICs not being used. The fields of the PIC data structure include the
following, as shown in Figure 5-3:

port_address

port_separation

The first I/O port used to program the PIC.

The distance between consecutive I/O ports used to program
the PIC.

first slot The highest priority (numerically lowest) interrupt slot
controlled by the PIC. (If a slave PIC is not present, its
fi rst_sl at field should contain the value 0.)

type

mode

See also:

A bit map indicating which PIC inputs are connected to
interrupt sources; bit ° corresponds to input 0, etc.

The type of PIC.

Edge or level mode.

NOTE

If you have an iSBC 386/120, or iSBC 386/133 board with a
Master PIC and slave PIC, you must initialize the slave PIC even if
you do not use it.

initialize_PIes, Chapter 2

iRMKTM Kernel Reference Manual

/* Master PIC */

picp[0J.port_address
picp[0J.port_separation
picp[0J.first_slot
picp[0J.sources_map

0xC0:
2 :
56:

= 1:
/* If you have an 8259A use the following: */

picp[0J.type = KN_8259A_PIC:
1* If you have an 82380/82370 Integrated System Peripheral. use

the following: */
picp[0J.type = KN_82380_PIC:
picp[0J.mode = KN_EDGE_MODE:

/* Slave PIC not used but initialized anyway. Note
that if you have an 82380/82370 Integrated System Peripheral.
the slave PIC is 2.*/
picp[8J.port_address
picp[8J.port_separation
picp[8J.first_slot
picp[8J.sources_map

= 0xC4:
2 :

= 120:
= 0:

/* If you have an 8259A use the following: */
picp[8J.type = KN_8259A_PIC:

/* If you have an 82380/82370 Integrated System Peripheral. use the
following: */
picp[8J.type
picp[8J.mode

KN_82380_PIC:
KN_EDGE_MODE:

/* Those PICs which are not being used *1
picp[lJ.first_slot = 0:
picp[2J.first_slot = 0:
picp[3J.first_slot = 0;
picp[4J.first_slot = 0:
picp[5J.first_slot
picp[6J.first_slot
picp[7J.first_slot

= 0:
= 0:
= 0:

Figure 5-3. Example Configuration of an Interrupts Data Structure

Configuration and Initialization 5-7

Configuration Structure for initialize_PIT

5-8

The Kernel supplies two optional PIT modules, one for the 8254 and one for the
82380/82370. You may supply your own PIT manager module.

To use the optional 8254 PIT module or the 82380/82370 Integrated System
Peripheral to provide the clock ticks required by the Kernel, a PIT manager module
must be initialized and available for use. To configure the PIT, set up a data
structure with the following information, shown in Figure 5-4:

port_address

port_separation

The first I/O port used in programming the PIT.

The distance between I/O ports used in programming the
PIT.

in _frequency

slot

The input frequency to the PIT expressed in kHz.

The interrupt slot used by the PIT.

The type of PIT. type

timer out

See also:

Which timer on the PIT is to be used.

initialize_PIT, Chapter 2

PIT.port_address
PIT. port_separation
PIT. in_frequency
PIT.slot
PIT. type
PIT. timer_out

PIT:

0xD0:
2 :
1250:

= 56:
KN_8254_PIT:
0:

Figure 5-4. Example Configuration of a Timer Data Structure

iRMKTM Kernel Reference Manual

Configuration Structure for initialize_NDP

The Kernel provides an optional manager for the Numeric Coprocessor. Figure 5-5
provides an example for configuring a numeric coprocessor. To configure the
coprocessor, set up a data structure with the following information:

ndp_type

flags

Literal

The type of coprocessor.

Specifying whether or not the Numeric Coprocessor
manager should initialize the coprocessor save areas in
tasks.

Meaning

KN_387 _HANDLER_MASK
A mask for this field of the flag.

Don't use the default 387 initialization handler for this task.

KN_387_DEFAULT_HANDLER
Use the default 387 initialization handler for this task.

See also: initialize_NDP, Chapter 2

NOP.ndp_type
NOP. fl ags

= KN_387_NOP:
= KN_387_NO_HANOLER;

Figure 5·5. Example Configuration for a Numeric Coprocessor

Configuration and Initialization 5-9

Configuration Structure for initialize_interconnect

5-10

Configuration information is necessary for accessing interconnect space. Figure 5-6
provides an example for configuring interconnect space. The fields of the
interconnect configuration data structure include:

I/O port used to specify the address for interconnect
operations.

data_port The port used to read and write data in interconnect
operations.

port_separation The separation between ports used to access interconnect
space.

See also: initialize_interconnect, Chapter 2

interconnect:

interconnect. address_port
interconnect.data_port
interconnect. port_separation

0x30:
0x3C:
4:

Figure 5-6. Example Configuration for an Interconnect Data Structure

iRMK ™ Kernel Reference Manual

Configuration Structure for initialize_message_passing

The message passing module must be initialized before being used. In order to
initialize it, you must provide the following configuration infonnation:

• Infonnation about the Message Passing Coprocessor: its interrupt slot, its I/O
port address, and the device configuration values.

• Information about the DMA device: its I/O port address and channel usage.

• Internal task priorities: priorities for tasks inside the message passing module.

See also: initialize_message _passing, Chapter 2

In addition, the message passing module requires some memory to use as working
storage for initialization. The amount of memory depends upon a number of
parameters controlled by the application. The exact size is a function of the
configuration data and a number of constants. This size can be obtained with the
primitive KN_mp_working_storage_size.

For detailed explanations of the fields in the message passing configuration data
structure, see the initialize_message_passing primitive. The values shown in Figure
5-7 are for the iSBC 386/120, 386/133, and 486/125 boards except as noted. These
values are reasonable default values.

See also:

NOTE

The DMA_d u ty _cy c 1 e value, in conjunction with the length of
application messages, affects the interrupt latency of the processor.
If the minimum number of clock cycles between DMA burst
accesses is zero, then for the duration of a solicited message
transfer, the ADMA or the 82380/82370 Integrated System
Peripheral can keep the CPU from gaining access to the local bus.

Microcomputer Components SAB 82258 Advanced DMA Controller
for 16-bit Microcomputer Systems (ADMA)

Configuration and Initialization 5-11

5·12

KN_MP_CONFIGURATION_STRUC config;

/* Data Link Configuration */
config.max_protocol_id
config.number_data_chain_elements
config.PSB_MPC_port

4;
16:
0:

/* this value is true if using the iSBC boards */
config.MPC_config 0x08a:
/* this value is true in 32_bit MPC mode */
config.MPC_int_slot 58:

/* this value is true if using the iSBC boards */
config.MPC_duty_cycle = 0:

/* this value is true if using the i SBC boards */
config.delay_scale

/* set si counter operation is disabled */
config.si_failsafe_timer

/* set so counter operation is disabled */
config.so_failsafe_timer

/* DMA Configuration */
config.DMA_port

0;

0x80:

0x80:

= 0x0200:
/* following value = TRUE if 386/133 or 486/125 Burst mode DMA
support is needed */
config.auxiliary_DMA_ support
config.auxiliary_DMA_port
/* this value is true if using the iSBC
config.in_channel
config.out_channel
config.data_link_task_priority
config.data_link_rcv_queue_size
config.number_of_data_retries
/* Transport Configuration */
config.transport_task_priority
config.transport_mbx_queue_size
config.attached_mbx_hash_table_size
config.transaction_hash_table_size
config.number~attached_mbxs

= FALSE;
== 0x0300;

boards */
2 ;
3 ;

= 4;
32;
0;

5 ;
= 64:

16 ;
64:
16 :

Figure 5·7. Example Configuration for Message Passing

iRMKTM Kernel Reference Manual

Configuration Structure for initialize_console

Configuration information is necessary for initializing the console for Kernel
standard I/O. Figure 5-8 provides an example for configuring the console. The
fields of the console configuration data structure include:

type The type of the I/O device. KN_82530A_USART supports
Channel At and KN_82530B_USART supports Channel B.

data_port Data port address for the I/O device.

control_port Control port address for the I/O device.

clock_frequency _hi High word of the clock frequency of the I/O device.

clock_frequency Low word of the clock frequency of the I/O device.

baud_rate Character transmission rate allowed by the I/O device.

interruptJevel This parameter is not used.

console_config;

= KN_82530A_USART; console_config.type
console_config.data_port
console_config.control_port
console_config.clock_frequency_hi=
console_config.clock_frequency
console_config.baud_rate
console_config.interrupt_level

0x86;
0x84;
0;
0x4b0000;
9600;
0:

Figure 5·8. Example Configuration for Console Configuration Structure

Configuration and Initialization 5·13

Kernel Initialization

5-14

The Kernel provides an explicit initialization entry point which you must invoke
before invoking any other Kernel system calls. You must then invoke the entry
points of any device managers you are using after the Kernel has been initialized.
The Kernel expects the processor to be in protected mode when initialize is called.
Refer to the examples to see how initialization is done.

To initialize the Kernel you must:

1. If you will be using the debugger, initialize RDS.

status = KN_initialize_RDSCconfiguration_ptr);

2. Make sure interrupts are disabled before initializing the Kernel.

3. Supply two parameters to the Kernel initialization entry point:

a. A work area in memory (used to create a Kernel task out of the caller) of
at least size KN_TASK_SIZE bytes. Add KN_387_SAVE_AREA_SIZE if
the numeric coprocessor manager will be used.

b. A configuration data structure of type
KN_ CONFIG URATION_DAT A_STR UC.

4. Call KN initialize:

KN_initializeC&confi9_data. area_ptr.
idle_task_area_ptr);

5. If a real interrupt source is not connected to a level 7 input, set up the spurious
interrupt handler for that input. The first parameter is the IDT slot number for
the level_x7 _handler. (If an interrupt handler is not set up to handle spurious
interrupts, the Kernel uses a default handler.)

KN_set_interruptC63. KN_level_M7_handler);
KN_set_interruptC127. KN_level_77_handler);

Note: if an 82380/82370 is used, the 1.5 level input must be set up as follows:

KN_set_interruptC58. KN_level_M15_handler);

iRMKTM Kernel Reference Manual

6. Call any device managers, optional modules, or other items that need to be
initialized. The following system calls must be invoked before using their
respective modules or functions:

KN_initialize_PICs(picp);
KN_initialize_PIT(&PIT);

/* interrupt use */
/* timer use */

/* 82530 init (iSBX 354 board) for console I/O */
KN_initialize_console(configuration_ptr);

initialize_stdio(); /* stdio library use */

/* interconnect space use */
KN_initialize_interconnect(&interconnect);

KN_initialize_NDP(NDP_ptr); /* math coprocessor use */

/* message passing use */
working_storage_size

fig_ptr);
KN_initialize_message_passing(config_ptr.

working_storage_ptr);

7. If you have included the 8254 PIT in your system, you must start the clock with
a separate call:

KN_start_PIT(interval) ;

8. If the application is in a subsystem different from the Kernel's, issue the system
call to initialize the subsystem:

KN_initialize_subsystem(configuration_ptr);

9. Enable interrupts and start application processing.

Configuration and Initialization 5-15

EXCEPTION CODES A
Only a subset of Kernel system calls return exception codes. The Kernel does not
validate parameters, so the number of calls that generate exceptions is restricted.
This appendix lists the calls that return exception codes, those that indicate
exceptional conditions by returning a null pointer, and those that do not return any
exception code.

This appendix lists the exception codes in numerical order by hexadecimal value,
and describes all exception codes in alphabetical order.

The format of the returned exception code is:

Data Type
KN_STATUS

Parameter
status

where KN_ST A TUS is a UINT _32 value.

Classification of System Calls
System calls can indicate a problem by returning exceptions, by returning null
pointers, or by invoking a disaster handler. Many system calls do not return any
status information.

Table A-I lists the system calls that return exceptions.

Table A-I. System Calls that Return Exceptions

System Call System Call

KN_attach_receive_mailbox KN_receive_unit

KN_canceLdl KN_send_data

KN_canceLtp KN_send_dl

KN_initialize_R OS KN_send_priority _data

KN_receive_data KN_send_tp

Exception Codes A-I

Table A-2 lists system calls that return null pointers as an indication that the call did
not succeed.

Table A-2. System Calls that Return Null Pointers

System Call System Call

Table A-3 lists system calls that invoke disaster handlers as an indication that the
call did not succeed.

Table A-3. System Calls that Invoke Disaster Handlers

System Call Exception Code Function Code

KN_send_unit E_LlMIT_EXCEEDED KN_SEND_UNIT _CODE

KN_suspend_task E_LlMIT _EXCEEDED KN_SUSPEND_TASK_CODE

A-2 iRMKTM Kernel Reference Manual

Table A-4 lists system calls that do not return an exception.

Table A-4. System Calls That Do Not Return an Exception

System Call System Call

KN_attach_protocol_handler KN_initialize_PICs
KN_ci KN _initial ize_PIT
KN_co initialize_stdio
KN_create_alarm KN_initialize_subsystem
KN_create_mailbox KN_linear_to_ptr
KN_create_pool . KN_Iocal_hoscID
KN_create_semaphore KN_mask_slot
KN_create_task KN_mp_ working_storage_size
KN_csts KN_new _masks
KN_currenctask_token KN_null_descriptor
KN_delete_alarm KN _ptr _to _I inear
KN_delete_area KN_reset_alarm
KN_delete_mailbox KN_reset_handler
KN_delete_pool KN_resume_task

r KN_delete_semaphore KN_send_EOI
KN_delete_task KN_set_descriptor_attributes
KN~et_code_selector KN_seChandler
KN~ecdata_selector KN_set_interconnect
KN~et_descriptocattributes KN_set_interrupt
KN~ecinterconnect KN_set_priority
KN~eCPIT _interval KN_sectime
KN~et_pool_attributes KN_sleep
KN~ecpriority KN_starCPIT
KN~ectime KN_starcscheduling
KN_initialize KN_stop_scheduling
KN_initialize_console KN_tick
KN_initialize_interconnect KN_token_to_ptr
KN_initialize_LDT KN _trans late _ptr
KN_initialize_message_passing KN_unmask_slot
KN_initialize_NDP

Exception Codes A-3

Numerical List of Exception Codes

A·4

System calls that return exceptions will return the code E_OK when an operation is
successful.

Table A-5 lists the hexadecimal values of the exception codes that can be returned
by the Kernel.

Table A-S. Exception Codes

Hex Exception

OOOOH E_OK
0OO1H E_TIME_OUT
0OO3H E_L1MIT_EXCEEDED
0OO4H E_NONEXIST
0OO5H E_NOT_CONFIGURED
0012H E_ILLEGAL_PARAM
001BH E_NOT _PRESENT
0025H E_STATE
OOFOH E_ TRANSMISSION
0102H E_CANCELLED
0103H E_FRAGMENT
0104H E_RESOURCE_L1MIT
0105H E_TOO_LATE
0106H E_TRANS-'0

iRMKTM Kernel Reference Manual

Table A-6 lists the MPC errors that can be returned when using the Kernel.

Table A·6. MPC Errors Returned

Hex Exception

0010H E_RETRY _EXPIRED

0020H E_NO_RESOURCE

OQ40H E_BUS_ERROR

OOaOH E_BUS_ TIMEOUT

0010H E_SO_CANCEL

0020H E_SO_FAIL_SAFE_EXPIRED

0040H E_SO_RETRY _EXPIRED

OOaOH E_SO_PROTOCOL

0010H E_SLCANCEL
0020H E_SLFAIL_SAFE_EXPIRED

Exception Codes A-S

Descriptions of Exception Codes
The descriptions which follow provide a summary of causes for each exception code.
The Kernel System Calls chapter provides more detailed descriptions of the
exception codes. .

For more information on processor-related exceptions, refer to the 386™ DX
Programmer's Reference Manual and the MPC User's Manual.

E_BUS_ERROR
Processor-related exception.

E_BUS_ TIMEOUT
Processor-related exception.

0040H

0080H

0102H
A request/response transaction has been cancelled remotely (a cancel message was
received in response to a requested message).

0103H
In a request message, the fragmentation transmission failed
(a KN_SEND_NEXT _FRAGMENT message could not be satisfied or contained a
fragment length of 0).

E_ILLEGAL_PARAM
Indicates the message has an invalid structure.

E_LIMIT _EXCEEDED
Indicates that the message was rejected because the mailbox was full.

E_NO_RESOURCE
Processor-related exception.

0012H

0003H

0020H

0004H
Returned from a receive_unit on a semaphore or receive_data on a mailbox when
the semaphore or mailbox is deleted.

E_NOT_CONFIGURED OOOSH
RDS did not initialize.

E_NOT _PRESENT (Processor Fault) OOlBH
A reference occurred to a descriptor that is not present.

A·6 iRMKTM Kernel Reference Manual,

OOOOH
No exceptional conditions occurred. System calls that return exceptions return the
code E_OK when an operation is successful.

E_RESOURCE_LIMIT
Indicates that an internal resource limit has been reached.

E_RETRY _EXPIRED
MPC-related exception.

E_SCCANCEL
MPC-related exception.

E_SCFAIL_SAFE_EXPIRED
MPC-related exception.

E_SO~CANCEL

MPC-related exception.

E_SO_FAIL_SAFE_EXPIRED
MPC-related exception.

E_SO_PROTOCOL
MPC-related exception.

E_SO_RETR Y _EXPIRED
MPC-related exception.

Ol04H

OOlOH

OOIOH

0020H

OOIOH

0020H

0080H

0040H

0025H
If you attempt to resume a task that is not suspended, a disaster will occur and an
exception code will not be returned.

OOOlH
The time specified by the time_limit parameter expired before the specified action,
such as receive, was completed.

E_TOO_LATE Ol05H
The request to cancel the message came too late to cancel the message.

E_TRANS_ID Ol06H
Non-unique or invalid transaction ID in the message.

Exception Codes A-7

E_ TRANSMISSION OOFOH

A-8

A Multibus II message transmission error occurred in executing this system call.
Whatever was being transmitted is lost; a retry may be successful.

iRMKTt.A Kernel Reference Manual

STACK REQUIREMENTS B
This appendix discusses the stack requirements of application tasks. It also
discusses the stack requirements for the Kernel's internal tasks, and how to set up the
internal stacks.

Stack Requirements of Application Tasks

Bytes

124
60

228
12
68
68
68

When creating a task, specify a stack to be used by the task. This stack must be
large enough to handle three kinds of use. First, it must have enough room to meet
the requirements of the task's code (for example, to pass parameters to procedures or
to hold local variables in re-entrant procedures). In addition, when the task invokes
a Kernel system call, the processing associated with the system call uses some of the
task's stack. The amount of stack required depends on which system calls are used.
Finally, when an interrupt occurs, the interrupt handler uses the task's stack while it
services the interrupt.

When calculating the amount of stack needed for a task, add the following values:

• Amount needed by the task's code

• Amount needed by the most demanding system cal1 the task calls

• Sum of the amounts needed by all interrupt handlers that could become active

Tables B-1 and B-2 on the following pages list stack requirements of Kernel
provided interrupt handlers and Kernel system calls.

Table B-1. Bytes of Stack Used by Interrupt Handlers

Interrupt Handler Bytes Interrupt Handler

PIT handler 68 leveL37 _handler
PIT handler, invoked while active 68 leve'-47 _handler
Message passing handler 68 level_57 _handler
NDP handler 68 leveL67 _handler
leveL07 _handler 68 leve,-77 _handler
leveL17 _handler 68 leveLM7 _handler
leveL27 _handler 68 leveLM15_handler

Stack Requirements B-1

Table B-2. Bytes of Stack Used by Kernel System calls

Bytes System call Bytes System call

44 attach_protocoLhandler 256 initialize_RDS
108 attach_receive_mailbox 512 initialize_stdio
176 canceLdl 16 initialize_subsystem
204 canceLtp 16 linear_to_ptr
80 ci 16 10caLhosCID
80 co 16 mask_slot
40 create_alarm 64 mp_working_storage_size

124 create_area 16 new_masks
40 create_mailbox 40 null_descriptor
24 create_pool 32 ptctoJinear
16 create_semaphore 68 receive~data

136 create_task 116 receive_unit
80 csts 32 reseCalarm
16 currenCtask_token 16 reseChandler
16 delete_alarm 16 resume_task

124 delete_area 16 send_data
24 delete_mailbox 16 send_EOI
16 delete_pool 416 send_dl
16 delete_semaphore 16 send_priority _data
16 delete_task 444 send_tp
16 geCPIT jnterval 76 send_unit
8 geCcode_selector 16 seC descriptor_attributes
8 get_data_selector 16 set_handler

16 get_descriptor _attributes 16 setjnterconnect
16 get_interconnect 16 setjnterrupt
16 geCpooLattributes 16 secpriority
16 get_priority 16 seCtime
16 get_slot 64 sleep
16 geCtime 16 starCPIT.

172 initialize 56 start_scheduling
80 initialize_console 16 stop_scheduling
40 initialize_LOT 16 suspend_task
24 initialize_NDP 84 tick
16 initialize_PIGs 16 tOken_to_ptr
28 initialize_PIT 16 translate_ptr
68 initialize_interconnect 16 unmask_slot

244 initialize_message_passing

B-2 iRMKTM Kernel Reference Manual

Protected and Unprotected Stacks

If programs use the compact model of segmentation, the BLD386 utility or the
Kernel's address management system calls can be used to create protected stacks for
the application.

However, programs that use the small model of segmentation cannot use protected
stacks. In small model, the data and stack are combined into the data segment; the
compiler sets DS equal to SS. When calling create_task, most small model
programs should pass only DS-relative stack pointers.

Because small model stacks are unprotected and reside in the same segment as data,
take great care to accurately determine the stack usage of small model applications.
Because the stacks are unprotected, stack overflow can cause other important data to
be overwritten.

Re-entrant procedures can cause stack overflow problems, and C functions are by
default re-entrant. If you create a task from a re-entrant function, be particularly
aware of the potential for stack overflow. All data declared in the function are
placed on the task's stack when you create the task. The stack pointer is immediately
moved by the amount of data declared. The stack pointer could be set beyond the
memory allocated to stack in the task's TSS, causing potential problems when you
access that portion of memory. The Kernel does not protect you from such an error.
In small model, the first warning may be corrupted code or data. In compact model,
you should receive a Stack Protection fault.

Stack Requirements B-3

The Kernel's Internal Tasks' Stacks

B-4

The Kernel has three internal tasks, the system idle task and two message passing
tasks. These reside in the Kernel's code segment and their stacks normally reside in
the Kernel's data segment. The default stack size for each task is 4K bytes.

The Kernel can be used in different models of segmentation that allow different
stack arrangements. Depending upon the model chosen, the user may need to, or
want to, alter the default stack arrangements for these internal tasks. There are two
basic arrangements possible:

•. The stacks for each internal task may reside in separate segments. This is the
method used in release 1.2 of the Kernel. This method may be used to create
expand-Up stacks or expand-down stacks.

• All of the stacks may reside in the Kernel's data segment. This method allows
the use of the FLAT programming model as well as other models. This is the
default method used in the current version of the Kernel.

Regardless of the type of stacks chosen, the user may alter the stack size of these
internal tasks. The following sections describe how to implement these stack
choices and how to modify stack size. Figure B-1 illustrates the two basic task stack
possibilities.

iRMKTM Kernel Reference Manual

Kernel's internal tasks residing
within the Kernel's code segment.

Separate stacks for Kernel's.internal tasks.

Method A: Provide three separate stacks for the Kernel's three internal tasks.

Kernel's Data Segment

Kernel's internal tasks residing
within the Kernel's code segment.

Method B: Place all of the stacks in the Kernel's data segment.

Stack for Task 3

Stack for Task 2

Stack for Task 1

Figure B-1. Two Methods for Creating Kernel Task Stacks

Stack Requirements

W·2603

B·5

Creating and Modifying Kernel Tasks' Stacks

The following sections describe how to create the various forms of Kernel tasks'
stacks and how to modify the size of the stacks. The final section provides sample
code for creating task stacks in segments separate from the Kernel's data segment.

Default Stacks Within the Kernel'S Data Segment

To obtain task stacks that exist within the Kernel's data segment, use the default
stacks. If you use the defaults, nothing must be changed. When using default stacks,
the stack size can still be altered. Changing the stack size is discussed later in this
appendix.

Creating Separate Segment Stacks Using the Builder

B·6

To use the builder to create the Kernel's tasks' stacks in separate segments from the
Kernel's data segment, perform the following:

1. Update the build file to include definitions for stack segments for those tasks.

2. Modify the mp _stk.a38, and the idle _stk.a38 files so that the stacks are imported
from the builder and the appropriate pointer variables (listed in Table B-3) are
set.

3. Set the stack pointers according to the type of stack desired.

• For expand-up stacks: stack pointer = selector of segment:(size of segment)

• For expand-down stacks: stack pointer = selector of segment:O

4. Modify the stack size, if desired, as described later.

Table B-3. Kernel Stack Pointers

Variable Name

KNI~ TP _ TASK_STACK_PTR
KNI_DL_ TASK_STACK_PTR
KNIJ DLE_ TASK_STACK_SEG

File

mp_stk.a38
mp_stk.a38
idle_stk.a38

iRMKTM Kernel Reference Manual

Modifying Stack Size

In addition to modifying the location of the Kernel tasks' stacks, the user may want
to change the default 4K byte size of these stacks. Change the stack size by altering
the literals in Table B-4. Their values and file locations are shown in the table.

To change the stack sizes:

1. Change the stack size literals.

2. Recompile the modules.

3. Use LIB386 to replace the existing modules in kernel.lib or place the new object
modules ahead of kernel.lib in the bind sequence.

This can be done for all programming models.

Table B-4. Kernel Stack Literals

Literal Name

TP _TASK_STACK_SIZE
DL_ TASK_STACK_SIZE
I DLE_ TASK_STACK_SIZE

File

mp_stk.a38
mp_stk.a38
idle_stk.a38

DEFAULT VALUE
(UINT_32)

1024
1024
1024

Example of Code for Separate Kernel Task Stack Segments

This section provides an example and an explanation of a build file which creates
three separate stack segments for the Kernel tasks.

The default method, using the Kernel's data segments for the Kernel tasks' stacks, is
discussed and illustrated in the Installation and User's Guide in the section on
building the application. Figure B-2 contains a build file which demonstrates how to
create separate stack segments for the Kernel's tasks.

In the mp_stk.a38 file, import KNCDL_TASK_STACK_PTR and
KNC TP _ T ASK_ST ACK_PTR segments from the builder.

In the idle_stk.a38 file, import KNCIDLE_TASK_STACK_SEG.

The build file listed in Figure B-2 contains five kinds of definitions, labeled
CREATESEG, SEGMENT, TASK, TABLE, and MEMORY. Three of these pertain
specifically to creating separate segments for stacks (CREATESEG, SEGMENT, and
TA BLE). The definitions for TASK and MEMORY are found in the I nstallatioll and
User's Guide in the section on building the application.

Stack Requirements B-7

B·8

test;
CREATESEG

dl_stack_seg (SYMBOL = KNI_dl_task stack_seg).
tp_stack_seg (SYMBOL = KNI_tp_task_stack_seg).
idle_stack_seg (SYMBOL =

KNI_idle_task_stack_seg);
SEGMENT

TASK

test
test.data
dl_stack_seg
tp_stack_seg
idle_stack_seg

(DPL = 0).
(BASE = 10000H).
(DP L = 0) .
(DPL = 0).
(DP L = 0);

initial_kernel_task

TA~LE

MEMORY

ENO

(OPL = 0. OBJECT = test. IOPRIVILEGE = 0.
NOT INTENABLEO. INITIAl);

GOT

lOT

(OPL = 0.
RESERVE = (3 .. 63. 1024 .. 1025).
BASE = 20000H.
ENTRY = (100:(test

dl_stack_seg.
tp_stack_seg.
idle_stack_seg»)
) ,

(OPL = 0.
RESERVE = (126 .. 127)
BASE = 30000H);

(RESERVE = (0 .. 0FFFFH.
0100000H .. 0FFFFFFFFH»;

Figure B-2. Kernel Build File Listing Separate Segments

iRMKTr.A Kernel Reference Manual

Createseg

The CREATESEG definition instructs the Builder to create three new segments. The
first two (KNCDL_ TASK_STACK_SEG and KNI_ TP _ T ASK_STACK_SEG) are stack
segments required by the message passing module if message passing and builder
created stack segments are desired. If the application uses message passing system
calls, include these entries in the build file exactly as listed here. If you don't use the
message passing module, omit these entries.

The third segment created in Figure B-2 is the stack segment for the Kernel's idle
task. When building Kernel applications, you must create this segment, specifying
the public symbol name KNCIDLE_TASK_STACK_SEG for the SYMBOL field. To
create other stack segments for tasks other than the idle task, include their definitions
here also. (small RAM applications cannot have separate stack segments.)

Segment

Table

The SEGMENT definition specifies information about the individual fields in the
segment descriptors. The definition in Figure B-2 provides information for all the
segments in the application (test), more specific information about the application's
data segment (test.data), information about the stack segments used by the message
passing module (dl_stack_seg and tp_stack_seg), and information about the
stack segment of the Kernel's idle task (i dl e_stack_seg). The definition
establishes a privilege level for all the segments (DPL=O), and it supplies
information about the location of the data segment. The name in the SEGMENT
definition (test) is the name assigned using the BND386 NAME control.

The TABLE definition establishes descriptor tables. The field:
100:test

specifies that all the descriptors in module test should be placed into the ODT,
beginning at entry 100. Without this field, BLD386 creates an LDT and places the
descriptors there. The entry number (100) is the recommended starting entry.

The remaining fields in the ODT definition specify other descriptors in the ODT.
Because there are no numbers specified with these fields, the Builder places these
descriptors immediately after the descriptors for module test. The first two
(dl_stack_seg and tp_stack_seg) are required by the message passing module.
Applications that use message passing facilities (and want the builder to build the
stacks) must include these descriptors. Other applications should omit them. The
last field (i d 1 e_s ta c k_s eg) specifies a descriptor for the idle task's stack segment.
This entry is required for Builder-created stack segments.

Stack Requirements B-9

(

ASSEMBLY LANGUAGE C
INTERFACES TO THE KERNEL

This appendix provides information on making Kernel system calls using the
assembly language interface.

Making Calls to the Kernel
Table C-l, on the following pages, lists the assembly language interface to each of
the Kernel system calls. Each row in the table represents a particular system call.
Each column represents a processor register. To find out which registers must hold
which values for a particular system call, examine all the entries in the row
designated for that system call. The numbers in the table represent the order of the
parameters as listed in each system call description in Chapter 2. For example, in
the set_priority system call, the first parameter (task) must be placed in the EAX
register and the second parameter (priority) in the EBX register.

Some of the entries in Table C-I also contain letters. These letters indicate which
part of a multiple-part parameter should be placed in that register. The following
letters are used:

n(S)

n(O)

This is the selector part of the pointer that makes up parameter
number n.

This is the offset part of the pointer that makes up parameter
number n.

n(H)

n(L)

This is the high 32 bits of the UINT _64 that makes up parameter n.

This is the low 32 bits of the UINT _64 that makes up parameter n.

As Table C-l shows, some pointers must be passed in the ES:EOI register pair. If
the parameter is actually based on the DS register, ES probably does not need to be
set before calling the system call, because ES is normally set equal to DS. However,
if ES is not set to a different value, be aware that the Kernel might not set ES back to
the OS value upon return from the system call. When writing a high-level language
interface that requires ES to be set equal to OS, the interface procedures must ensure
that ES is restored after these system calls return.

After setting up the registers with the correct values, invoke a Kernel system call by
executing a CALL instruction.

Assembly Language Interfaces c-}

Table C-l. Assembly Language Kernel Interface

Registers
System Calls EAX EBX ECX EOX ES EOI ESI FS GS

KNA attach receive mailbox 1 2
KNA=attach=protocol_handler 1 2(S) 2(0) 3
KNA cancel dl 1 (S) 1 (0)
KNA=canceCtp 1 (S) 1(0)
KNA_ci

KNA_co 1
KNA create alarm 3 4 2(S) 2(0) 1 (S) 1 (0)
KNA - create-area 1 2
KNA -create - mailbox 3 4 2 1 (S) 1 (0)
KNA=create:=pool 2 1 (S) 1(0)

KNA_create_semaphore 2 1 (S) 1 (0)
KNA create task 1(0) 2(0) 3(0) 4(S) 1 (S) 5 6 2(S) 3(S)
KNA-csts -
KNA=currenLtask_token
KNA_delete_alarm 1

KNA delete area 2 1 (S) 1 (0)
KNA - delete-mailbox 1
KNA=delete=pool 1
KNA_delete_semaphore 1
KNA_delete_task 1

KN_geLcode_selector No ASM interface. Available only in c_call.lib library.
KN_geLdata_selector No ASM interface. Available only in c_call./ib library.

KNA_geLdescriptor_attributes 1 2 3(S) 3(0)
KNA_geLinterconnect 1 2
KNA_geLPIT _interval
KNA_geLpooLattributes 1 2(0) 2(S)
KNA_get_priority 1

KNA_geLslot
KNA_get_time
KNA initialize 1 (S) 1(0) 3(S) 3(0) 2(S) 2(0)
KNA -initialize console 1 (S) 1(0)
KNA=initialize=interconnect 1 (S) 1 (0)

KNA initialize LOT 1 2(S) 2(0) 3
KNA=initialize=message_passing 1 (S) 1(0) 2(S) 2(0)
KNA initialize NOP 1 (S) 1(0)
KNA -initialize-PICs 1 (S) 1(0)
KNA:=initialize:=PIT 1 (S) 1 (0)

C-2 iRMKTM Kernel Reference Manual

Table C-l. Assembly Language Kernel Interface (continued)

System Calls Registers
EAX EBX ECX EDX E5 EDI E51 F5 G5

KNA initialize RD5 1 (5) 1 (0)
initiaiize stdio
KNA_initlalize_subsystem 1 (0) 1 (5)

KNA_linear _to_ptr 1
KNA_local_hosCID

KNA_mask_slot 1
KNA_mp_working_storage 1 (5) 1 (0)
KNA new masks 1
KNA=:null]jescriptor 1 2
KNA_ptr_to_linear (small) 1 2(5) 3(0)

KNA_ptr_to_linear 1 2(5) 2(0)
KNA receive data 1 4 2(5) 2(0) 3(0) 3(5)
KNA -receive-unit 1 2
KNA=:reset_aTarm 1
KNA_reset_handler 1 (0) 1 (5)

KNA resume task 1
KNA -send data 1 3 2(0) 2(5)

KNA=send=dl 1 (5) 1 (0)
KNA_send_EOI 1
KNA_send_priority _data 1 3 2(0) 2(5)

KNA_send_tp 1 (5) 1 (0)
KNA_send_unit 1
KNA_seCdescriptor_attributes 1 2 3(0) 3(5)
KNA set handler 1 (0) 1 (5)
KNA=:seCinterconnect 1 2 3

KNA_set_interrupt 1 2(5) 2(0)
KNA_seCpriority 1 2
KNA set time 1 (H) 1 (L)
KNA=:sleep 1
KNA_starCscheduling

KNA start PIT 1
KNA=:stop=:scheduling
KNA_suspend_task 1
KNA_tick
KNA_token_to_ptr 1

KNA_translate_ptr 1 (0) 2 1 (5)
KNA_unmask_slot 1

Assembly Language Interfaces C-3

Values Returned from the Kernel

C·4

Upon completion of a call to the Kernel, the system call performs a parameterless
near return. Those system calls that return values (typed procedures) use the PL/M-
386 register conventions for returning values. These conventions are shown in Table
C-2. (

Table C-2. Processor Registers for Returned Values in Assembler

Returned Values Register

8-bit value AL
16-bit value AX
32-bit value EAX
64-bit value EDX:EAX
Short Pointer (32 bits) EAX
Long Pointer (48 bits) EDX:EAX
Selector AX

iRMKTM Kernel Reference Manual

APPLICATION NOTES D
This appendix provides information on a number of topics that apply to specific
application needs.

Using Address Translation Mechanisms
The Kernel puts these conditions on the use of address translation mechanisms by
applications:

• Applications should not alter the mapping of the Kernel's data and code segments
to physical memory.

• Mapping of any pointer parameters by an application must stay constant while
the pointer is in use by the Kernel. In addition, the mapping of any pointer
retained by the Kernel after the system call returns should stay constant.

• After the Kernel is given memory for constructing an object, the linear to
physical mapping (that is, page tables) should not be altered while the object
exists.

• The GDT must contain a segment descriptor referencing the IDT and the GDT
itself. The Builder automatically creates such descriptors in slot numbers 1 and
2. See the following section.

Application Notes D-l

Alias Selectors for GOT and lOT Slots

D·2

The Kernel needs to know the alias selectors for referencing the global descriptor
table (GDT) and the interrupt descriptor table (lDT). For systems built with Intel
tools these values are 8H and lOH respectively. These selectors are for GDT slots 1
and 2. Slot 1 contains a descriptor for the GDT itself, and slot 2 contains a
descriptor for the IDT. These are considered default values, and the user does not
need to configure the aliases for the GDT and IDT if GDT slots 1 and 2 contain these
descriptors.

However, the selector values do not have to be 8H and lOH. When these aliases are
not the default values, the user must edit the dt_alias.a3B file, assemble it, and
replace the old version in the kernel.lib file (or place dt_alias.obj before kernel. lib in
the bind list).

Within the dt _alias.a3B file are two public variables that determine these two alias
values. They are:

KNI_GOT_alias_sel
KNI_IOT_alias_sel
TSS_alias
LOT_alias

(default value:
(default value:
(default value:
(default value:

NOTE

8H)
10H)
88H)
30H)

The default values for TSS_a 1 i a s and LOT _a 1 i a s are only
required for outside product support.

iRMKTM Kernel Reference Manual

I/O Permission Bit Maps
The following discussion applies only if the privilege level for the given task is less
than the I/O privilege level (lOPL). Otherwise the I/O permission bit map is not
used.

Intel386TIA family processors selectively trap references to specific I/O addresses
through the I/O permission bit map located in the TSS segment. Its size and location
in the TSS segment are variable.

If the code being executed contains an I/O instruction, the code's current privilege
level is first checked against its IOPL. If the IOPL for a task is lower than required
by a particular I/O instruction, the processor checks the I/O permission map. Each
bit in the map corresponds to an I/O port address. The processor tests all the bits that
correspond to the I/O addresses spanned by an I/O operation. If any tested bit is set,
the processor signals a general protection fault.

Because the I/O permission map is in the TSS segment, different tasks can have
different maps. Thus, the application can allocate I/O ports to a task by changing the
I/O permission map in the task's TSS.

The processor locates the I/O permission bit map by means of the I/O_map_base
field in the fixed portion of the TSS. This field is 16 bits wide and contains the
offset of the beginning of the I/O permission bit map. The value of this field can be
set using a task handler. The literal KN_TSS_IO_BIT_MAP _OFFSET indicates the
offset of this field relative to the TSS base. (KN_ TSS_IO_BIT _MAP _OFFSET is
found in rmk_base./it, rmk_base.equ, rmk_base.l, and rmk_base.par files.)

The upper limit of the map is the same as the limit of the TSS segment. The same
literal files contain another literal, KN_ TASK_ TSS_LIMIT, which is the offset into the
task area where the given task's TSS limit field exists. The create_task call sets this
field to 67H (that is, no I/O permission bit map).

If I/O permission bit maps are desired, perform the following:

• Set the UINT_16 value pointed to by the offset KN_TSS_IO_BIT_MAP_OFFSET to
the beginning of the area where the bit map will exist:

(start addr of lID map) minus (start addr of task area)

• Modify the UINT_16 value at the location pointed to by the offset
KN_ T ASK_ TSS_LIMIT to indicate the upper limit of the TSS, inel uding the I/O
permission bit map:

(size of the task area in bytes) - 1

• Modify the bit map area to set the I/O privileges desired for the given task.

Application Notes D-3

D-4

Figure D-1 shows the task structure, the I/O permission bit map portion of the TSS,
and the offsets which allow access to the values which must be modified to show the
start and limit of the I/O bit map.

See also:

110 Permission
Bit Map Area

User Area

NDP Area

T
(B)

fl
Limit Field for TSS Descriptor*

I/O Map Base -t 1------- -

Tt
S

Offset Values:
(A) KN_TSS_IO_BIT_MAP _OFFSET
(B) KN_TASK_TSS_LlMIT

* If 110 map is used, this field must be modified.

Figure D-l. Task Structure

386 DX Programmer's Reference Manual

/

"

t-

--,

1

1

1

1

1

I
1

1

_I

W-1423

iRMKTM Kernel Reference Manual

82380/82370 Notes
This section provides an overview to using the 82380 or 82370 Integrated System
Peripheral devices and references other portions of the manual for specific
discussions. The 82380 and the 82370 devices are software compatible and are
referred to as the 82380/82370.

82380/82370 Functions

The 82380/82370 device provides three functions: PIT, PIC, and DMA.

An application may use either the 8254 device or the 82380/82370 but not both.

The PIT portion of the 82380/82370 device provides four timers. (There are three
timers in the 8254 device.) The source code for the PIT manager is provided as part
of the 82380/82370 manager.

See also: initialize_PIT, Chapter 2

The PIC portion of the 82380/82370 device provides three banks of controllers. The
Kernel supports only banks A (master) and B (slave). The source code for the PIC
manager is provided as part of the 82380/82370 manager.

See also: initialize_PIes, Chapter 2

The DMA portion of the 82380/82370 device provides eight channels of DMA. It
works with the MPC device for message passing. The interface for the DMA
function is not public. The source code provided with the 82380/82370 manager is
strictly for message passing.

See also: initialize_message _passing, Chapter 2

Development information for the 82380/82370 is found in the Installation and
User's Guide under the topic Binding with the 82380/82370.

82380/82370 PIC Slot Numbering

The Kernel supports banks A (master) and B (slave) of the 82380/82370 PIC
functions. The numbering of these slots is consecutive beginning with the number
the developer chooses for the initial slot of each bank. However, not all of the slots
are accessible to the user. Figure D-2 provides an example of slot numbering and
access.

Application Notes D-S

D·6

Kernel Slot #

Slot (80) TOUTO# (IR008#)

Slot (81) DREO/IR009#

(IR010#)

Slot (83) IR011#

Slot (84) IR012#

Slot (85) IR013#

Slot (86) IR014#

Slot (87) IR015#

Slot (56) TOUT3# (IROOO#)

Slot (57) CHAINING (IR001#)

Slot (58)

Slot (59)

ICW2 (IRQ1.5)

(IR002#)

TOUT2#/1 R003#

Slot (60) SW REO TC (IR004#)

Not Used

Not Used

Slot (63) Default (IR007#)

0

1

2

3

4

5

6

7

0

1

1.5

2

3

4

5

6

7

Cascade to Bank C
upported by Kernel not S

Bank B (Slave_2)

Int

Bank A (Master)

To CPU

W·1422

Figure D-2. Slot Ordering on the 82380

iRMKTM Kernel Reference Manual

82380/82370, overview D-5
82380/82370 PIC slot numbering D-5

A
Additional publications vi
Address translation mechanisms D-l
Alarms

alarm handler invoked 2-15
alarm handler pointer 2-16
clock ticks until handler

invocation 2-16
create_alarm system call 2-15
delete_alarm system call 2-37
repetitive and single-shot alarms 2-15
reseCalarm system call 2-101
resetting a single shot alarm 2-101

Alias selectors, default or user values D-2
Assembly language

registers used C-l, C-4
attach_protocol_handler system call 2-6
attach_receive_mailbox system call 2-8
Auxiliary DMA support 2-72

8
BL_debug_on_boot 2-81
Blocking system calls 1-3

c
C language syntax used in

descriptions 1-1
Calling in assembler C-I
cancel_dl system call 2-10
cancel_tp system call 2-12
CHAIN_STRUC defined 2-110
character handling

character input, ci system call 2-13
character input immediate, csts system

call 2-35
character output, co system call 2-14
csts system call 2-35

iRMKTM Kernel Reference Manual

INDEX

initialize_console system call 2-63
initialize_stdio system call 2-86
KN_CONSOLE_CONFIGURATION

_STRUC defined 2-63
ci system call 2-13
Clock ticks 2-16
co system call 2-14
Code segment pointer 2-34
Code segment selector value 2-43
Configuration data structures,

overview 5-2
CONFIGURATION_DATA_STRUC

defined 2-58
CONSOLE_CONFIGURA TION_STRUC

defined 2-63
Coprocessors

coprocessor management
module 2-74

initialization 2-74
initialize_NDP system caII 2-74
initializing save areas, steps 2-74
KN_NDP _CONFIGURATION_

STRUC defined 2-76
save area 2-29

CPL of a task 2-28
Create task handler, entry point 2-57
create_alarm system call 2-15
create_area system call 2-18
create_mailbox system call 2-20
create_pool system call 2-23
create_semaphore system call 2-25
create_task system call 2-27
create_task_handler procedure 4-4
csts system call 2-35

. currenctask_token system call 2-36
Currently running task token 2-36

Index-1

o
Data and code segment mapping,

caution D-l
Data chains, configuration 2-70
Data segment pointer 2-34
Data segment selector value 2-44
Data types, reference table 1-2
Data-link messages 2-83
DATA_LINK_MSG defined 2-11,2-107
Debugger initialization 2-81
Delete task handler 2-42
Delete task handler, entry point 2-57
delete_alarm system call 2-37
delete_area system call 2-38
delete_mailbox system call 2-39
delete_pool system call 2-40
delete_semaphore system call 2-41
delete_task system call 2-42
delete_task_handler procedure 4-5
Descriptor privilege level (DPL)

of tasks 2-28
Descriptor table management

address conversions 2-89
alias base 2-148
descriptor attribute value 2-45
descriptor table selector 2-45, 2-129
direct calls and gated calls 2-87
expand-up and expand-down

segments, limit field 2-128
expand-up and expand-down

segments, settings 2-128
gate attributes, setting 2-129
gates 2-148
geCdescriptor_attributes

system call 2-45
granularity bit 2-128
initialize LDT 2-67
initializing subsystems, effects 2-87
KN_GATE_ATTRIBUTES_STRUC

defined 2-46, 2-130
KN_SEGMENT _A TTRIBUTES_STR

UC defined 2-46, 2-129

Index-2

KN_SUBSYSTEM_CONFIG
defined 2-88

,linear address from a pointer 2-96
linear_to_ptr system call 2-89
null_descriptor system call 2-95
privilege level 2-50,2-133
ptr_to_linear system call 2-96
segment descriptor attributes,

modifying 2-128
secdescriptor_attributes, operation

indivisible 2-129
seCdescriptor_attributes

system call 2-128
translate_pointer system call 2-148

Descriptor table management entries
LDT 2-27

Development
optional modules 5-1
subsystem support 5-1

Device management
82380/82370, overview D-5
82380/82370 PIC slot numbering D-5
coprocessor management

module 2-74
coprocessor save area 2-29
get_PIT_interval system call 2-52
initialize_console data structure,

example 5-13
initialize_PIT system call 2-79
numeric coprocessors 2-74
start_PIT system call 2-141

Disaster handler
entry point 2-57
invoked during create_

semaphore 2-25
invoked during resume_task 2-103
invoked during send_unit 2-127
invoked during suspend_task 2-14~
proced ure 4-6
system calls that invoke A-2

DMA configuration 2-70, 2-72
Dynamic resetting of task handlers 2-102

iRMKTM Kernel Reference Manual

E
Entry,point, task handlers 2-57

F
Failsafe timers 2-70
Flags 1-4

G
Gate 2-45
Gate-based interface 5-1
GA TE_A TTRIBUTES_STRUC

defined 2-46, 2-130
GDT

alias selectors, default D-2
alias selectors, user values D-2
GDT reference to itself, caution D-l
LDT descriptor setup in GDT 2-67

get_code_selector system call 2-43
get_data_selector system call 2-44
geCdescriptor_attributes system call 2-45
get_interconnect system call 2-51
gecPIT _interval system call 2-52
gecpool_attributes system call 2-53
gecpriority system call 2-54
gecslot system call 2-55
get_time system call 2-56
getchar function 3-6

H
HDLR_STRUC defined 2-134
Host IDs 2-108

I/O permission bit map, overview D-3
I/O permission bit map, setup D-3
IDT

alias selectors, default D-2
alias selectors, user values D-2
assigning an interrupt handler 2-137
mask_slot system call 2-91
new_masks system call 2-94
PIC entry number 2-78
PIT entry number 2-80

iRMKTM Kernel Reference Manual

slot value 2-55
unmask_slot system call 2-150

Initialize
coprocessor 2-74
initialize system call 2-57
initialize_LDT system call 2-67
initialize_message_passing

system call 2-69
initialize_NDP system call 2-74
initialize_PICs system call 2-77
initialize_PIT system call 2-79
initialize_RDS system call 2-81
initialize_stdio 2-86
initialize_subsystem system call 2-87
kernel initialization example 5-14
message passing, PIC and PIT

order 2-69
serial communication 2-63

initialize system call 2-57
configuration data structure

example 5-4
initialize_console system call 2-63

configuration data structure
example 5-13

initialize_interconnect system call 2-65
configuration data structure

example 5-10
initialize_LDT system call 2-67
initialize_message_passing

system call 2-69
configuration data structure

example 5-11
initiaIize_NDP system call 2-74

configuration data structure
example 5-9

initialize_PICs system call 2-77
configuration data structure

example 5-6
initialize_PIT system call 2-79

configuration data structure
example 5-8

Index-3

I (continued)
initialize_ROS system call

configuration data structure
example 5-3

initialize_stdio system call 2-86
initialize_subsystem system call 2-87
Interconnect space

current host slot number value 2-51
get_interconnect system call 2-51
initialize_interconnect

system call 2-65
interconnect register 2-51
KN_INTERCONNECT _STRUC

defined 2-65
LBX II slot number values 2-51
local host 10 record 2-90
port separation, defined 2-66
ports used, defined 2-65
PSB slot number values 2-51
registers 2-136
seCinterconnect system call 2-136

INTERCONNECT _STRUC defined 2-65
Internal tasks' stacks

creating/modifying B-6
example code B-7
modifying stack size B-7
overview B-4

Interrupt handler
at data link layer 2-6
pointer to first instruction 2-137
safe and unsafe system call

categories 1-3
send_EOI system call 2-113
stack requirements B-1

Interrupt management
effect of tick system call 2-145
end-of-interrupt signal 2-55
end-of-interrupt signal needed, special

case 2-145
get_slot system call 2-55
initialize_PICs system call 2-77
interrupt handler, highest

active value 2-55

Index-4

interrupt handler, MINT
interrupt 2-71

interrupt slot value, obtained 2-55
interrupts data structure, example 5-6
interrupts disabled during mailbox

messages 2-97
KN_PIC_CONFIGURATION_STRU

C defined 2-77
KN_PIC_INOIV _STRUC

defined 2-77
level x7 handlers 4-8
mask_slot system call 2-91
new_masks system call 2-94
PIC mode, edge or level, setting 2-78
PIC type, indicated 2-78
port address of PIC 2-78
port separation 2-78
secinterrupt system call 2-137
slave PIC 2-78
slot number 2-94, 2-150
sources map 2-78
spurious interrupts 4-8
unmask_slot system call 2-150

K
Kernel

initialization example 5-14
initializing subsystems, effects 2-87
internal task priority 2-72
internal task's data link mailbox 2-72
optional modules 5-1

KN_ prefixes vi
KN_CHAIN_STRUC defined 2-110
KN_CONFIGURATION_OATA_STRU

C defined 2-58
KN_CONSOLE_CONFIGURATION_

STRUC defined 2-63
KN_DAT A_LINK_MSG

defined 2-11,2-107
KN_GATE_A TTRIBUTES_STRUC

defined 2-46,2-130
KN_HDLR_STRUC defined 2-134
KN_INTERCONNECT _STRUC

defined 2-65

iRMKTM Kernel Reference Manual

K (continued)
KN_MP _CONFIGURA TION_STRUC

defined 2-69
KN_NOP _CONFIGURATION_STRUC

defined 2-76
KN_PIC_CONFIGURATION_STRUC

defined 2-77
KN_PIC_INDIV _STRUC defined 2-77
KN_PIT _CONFIGURATION_STRUC

defined 2-79
KN_POOL_A TTRIBUTES_STRUC

defined 2-53
KN_RDS_STR UC 2-83
KN_RSVP _TRANSPORT _MSG

defined 2-117
KN_SEGMENT _A TTRIBUTES_STRUC

defined 2-46,2-129
KN_ T ASK_STATE, TSS overlay

structure 2-29
KN_ TRANSPORT _MBX_LOCAL_MSG

defined 2-8, 2-125
KN_ TRANSPORT _MBX_REMOTE_MS

G defined 2-8, 2-125
KN_TRANSPORT_MSG defined 2-118
ktrace command 2-83

L
LOT

default value 2-27
initialize 2-67
LOT descriptor setup in GOT 2-67
new task LDT setup 2-32

Level x7 handlers 4-8
Linear to physical mapping, caution D-l
Linear_to_ptr system call 2-89
Local_host_ID system call 2-90

M
mailboxes

attach to port ID 2-8
attach_receive_mailbox

system call 2-8
create_mailbox system call 2-20

iRMKTM Kernel Reference Manual

delete_mailbox system call 2-39
message size 2-98, 2-105
port IDs, limitations 2-8
priority messages 2-20,2-114
receive_data system caIl 2-97
reserved slot 2-20, 2-114
send_data system call 2-104
send_priority _data system call 2-114
time a task will wait, specifying 2-98
wakeup events at a mailbox 2-97

Manual organization v
Manual writing conventions vi
mask_slot system call 2-91
Masks 1-4
Memory management

calculating pool overhead 2-24
create_area system call 2-18
create_pool system call 2-23
delete_area system call 2-38
delete_pool system call 2-40
get memory pool information 2-53
gecpool_attributes 2-53
KN_POOL_A TTRIBUTES_STRUC

defined 2-53
memory alignment 2-18
minimum area size 2-19

Message passing management
application defined messages 2-125
attach_protocol_handler

system call 2-6
auxiliary OMA support 2-70
broadcast message,

specifying 2-108, 2-119
buffer grant messages 2-71
buffer grant or request, cancel 2-10
buffer request/grants/

rejects 2-108,2-119
buffers, preserving

required 2-112,2-124
burst mode 2-70
cancel_dl system call 2-10
cancel_tp system call 2-12

Index-5

M (continued)
Message passing management (continued)

completion mailbox 2-124
control messages 2-121
data chain configuration 2-70
data chain, specifying 2-123
data chain usage 2-110'
data link configuration 2-70
data link interrupt handler 2-109
data structure, example 5-11
delay scale 2-71
dl_part field 2-120
DMA configuration 2-70
fragmentation, message area

stability 2-116
fragmentation, specifying 2-120
hash tables 2-73
host ID, transport messages 2-119
initialize_message_passing

system call 2-69
internel task's data link mailbox 2-72
interrupt handler at data link layer 2-6
KN_CHAIN_STRUC defined 2-110
KN_DATA_LINK_MSG 2-107
KN_DA T A_LINK_MSG

defined 2-11
KN_MP _CONFIGURATION_

STRUC defined 2-69
KN_RSVP _TRANSPORT _MSG

defined 2-117
KN_ TRANSPORT _MBX_LOCAL_

MSG defined 2-125
KN_ TRANSPORT _MBX_REMOTE_

MSG defined 2-125
KN_TRANSPORT_MSG

defined 2-118
liaison_ID 2-109
local message 2-125
local_host_ID system call 2-90
mailbox message type,

specifying 2-126
message to protocol handler from

Kernel 2-111, 2-124

Index-6

messages and structure used 2-8
mp_ working_storage_size

system call 2-92
number of data link retries 2-72
port ID, destination specifying 2-120
port ID, source specifying. 2-120
protocol handler, establishing 2-6
protocol ID configuration 2-70
protocol_ID, specifying 2-109
remote host ID, specifying 2-108
remote message 2-125
request-response transaction, proper

cancelling 2-12
request-response transaction,

specifying 2-118
request/response transaction message

area reuse 2-116
response message values 2-121
send_dl system call 2-106
send_tp system call 2-116
si_failsafe_timer 2-71
so_failsafe_timer 2-71
solicited and unsolicited message

types 2-108,2-119
solicited message area reuse

caution 2-116
solicited message transfer,

cancel 2-10, 2-12
solicited transfer requirements 2-106
transaction ID, non-zero 2-116
transaction ID, specifying 2-120
transport layer configuration 2-70
transport message overlaying data link

message 2-120
transport protocol task, internal

priority 2-72
transport task mailbox size 2-72
transport transaction control,

specifying 2-120
unsolicited message area reuse 2-116
unsolicited message, data 2-109
unsolicited message,

specifying 2-108,2-119

iRMK ™ Kernel Reference Manual

M (continued)
MIC (interrupt control) messages,

receiving 2-7
MINT interrupt 2-71
Modules

optional modules 5-]
MP _CONFIGURATION_STRUC

defined 2-69
mp_ working_storage_size

system call 2-92
MPC

configuration 2-70, 2-71
delay scale 2-71
duty cycle 2-71
failsafe timers 2-70
MINT interrupt 2-71

N
NDP _CONFIGURATION_STRUC

defined 2-76
new_masks system call 2-94
non-scheduling system cal1s 1-3
Null pointer, system calls that return A-2
null_descriptor system call 2-95
Numeric coprocessor 2-74,5-9

p
Parallel System Bus 2-122
PIC_CONFIGURATION_STRUC

defined 2-77
PIC_INDIV _STRUC defined 2-77
PIT _CONFIGURATION_STRUC

defined 2-79
Pointer parameters, caution D-l
Pointers]-2
POOL_A TTRIBUTES_STRUC

defined 2-53
port IDs

attach_receive_mailbox
system call 2-8

printf function 3-7

iRMKTM Kernel Reference Manual

Priority change handler 2-60
entry point 2-57
pointer to 2-60

Priority messages 2-20
Priority queues 2-20
Priority range of tasks 2-34
Priority _change_handler procedure 4-9
Processor registers

used in assembler C- I, C-2
Protected mode, required 2-57
Protected stacks B-3
Protocol handler

proper usage 2-6
Protocol handler and IDs,

establishing 2-6
Protocol ID, configuration 2-70
ptr_to_Iinear system call 2-96
putchar function 3-5

R
re-entrant procedures B-1
Reader level v
Real time fence, configuration 2-58
receive_data system call 2-97
receive_unit system call 2-99
Regions

use when deleting tasks, warning 2-42
Registers

used in assembler C-l, C-2
Related publications vi
Repetiti ve alarms 2-15
Request-response transaction, proper

cancelling 2-12
Rescheduling system calls 1-3
Reserved mailbox slot 2-20
resecalarm system call 2-101
reset_handler system call 2-102
resume_task system call 2-103
RSVP _TRANSPORT_MSG

defined 2-117

Index-'

S
safe system calls 1-3
scanf function 3-14
Scheduling

attach_protocol_handler effect 2-6
categories of system calls 1-3
dynamic priority used in

scheduling 2-32
locked with alarm handler 2-15

Scheduling 1-3
SEGMENT _A TTRIBUTES_STRUe

defined 2-46,2-129
Semaphores

available units 2-25
create_semaphore system call 2-25
delete_semaphore system call 2-41
deleting 2-41
deleting regions 2-41
how long a task will wait,

specifying 2-100
priority adjustment 2-25
receive_unit system call 2-99
regions 2-25
regions, warning when deleting

tasks 2-42
send_unit system call 2-127
static priority resumes 2-41
wake up events 2-99

send_data system call 2-104
send_dl system call 2-106
send_EOl system call 2-113
send_priority _data system call 2-114
send_tp system call 2-116
send_unit system call 2-127
Serial communication

character I/O 3-2
character input, ci system call 2-13
character input immediate, csts system

call 2-35
character output, co system call 2-14
ci system call 2-13
co system call 2-14
console input & output, overview 3-1

Index-8

csts system call 2-35
getchar function 3-6
initialization required 3-3
initialize_console system call 2-63
initialize_stdio system call 2-86
Kernel I/O system calls, summary 3-3
Kernel standard I/O functions, basis

for 3-1
KN_CONSOLE_eONFIGURA TION

_STRUe defined 2-63
printf function 3-7
putchar function 3-5
scanf function 3-14
sec manager 3-1
stdio application models,

overview 3-19
stdio functions, overview 3-4

seC descri ptor _a ttri bu tes
system call 2-128

set_handler system call 2-134
seCinterconnect system call 2-136
secinterrupt system call 2-137
secpriority system call 2-138
sectime system call 2-139
si_failsafe_timer 2-71
Signalling system calls 1-3
Single-shot alarms 2-15
sleep system call 2-140
Slot number 2-94
so_failsafe_timer 2-71
Solicited messages

transfer message, cancel 2-10
Spurious interrupts 4-8
Stack

kernel use of B-1
overflow B-3
requirements B-1
size B-1

start_PIT system call 2-141
start_scheduling system call 2-142

iRMKTM Kernel Reference Manual

s (continued)
static priority

after semaphore deletion 2-41
setting 2-138
setup 2-32

status codes
E_BUS_ERROR 2-107,2-109,2-117,

2-121
E_BUS_TIME_OUT 2-107,2-117
E_BUS_TIMEOUT 2-109,2-121
E_CANCELLED 2-122
E_FRAGMENT 2-122
E_ILLEGAL_P ARAM 2-117
E_LIMIT _EXCEEDED 2-20, 2-25,

2-104,2-114,2-115,2-127,
2-144,4-7

E_NO_RESOURCE 2-109
E_NONEXIST 2-39,2-41,2-99
E_NOT _CONFIGURED 2-82
E_OK 2-8,2-10,2-12,2-82,2-99,

2-104,2-107,2-109,2-115,
2-117, 2-121

E_RESOURCE_LIMIT 2-8, 2-117
E_RETRY _EXPIRED 2-107, 2-110,

2-117,2-122
E_SCCANCEL 2-11,2-110,2-122
E_SCFAIL_SAFE_

EXPIRED 2-110, 2-122
E_SO_CANCEL 2-11,2-110,2-122
E_SO _FAIL_SAFE_

EXPIRED 2-110, 2-122
E_SO_PROTOCOL 2-110,2-122
E_SO_RETRY _

EXPIRED 2-110, 2-122
E_STATE 4-7
E_ST ATE, KN_RESUME_ T ASK_

CODE 2-103
E_ TIME_OUT 2-99
E_TOO_LATE 2-10,2-12
E_TRANS_ID 2-12,2-117
E_TRANSMISSION 2-107,2-110,

2-117,2-122

iRMKTM Kernel Reference Manual

KN_RECEIVE_ COMPLETE 2-108,
2-109,2-119

KN_RESUME_TASK_CODE 4-7
KN_SEND_COMPLETE 2-108,

2-109,2-119
KN_SEND_UNIT_CODE 4-7
KN_SUSPEND_ TASK_CODE 4-7
numerical list A-4
summary of causes A-6
system calls that do not return a status

code A-3
system calls that invoke disaster

handlers A-2
system calls that return

exceptions A-I
system calls that return null

pointers A-2
Stdio

initialize_stdio system call 2-86
stop_scheduling system call 2-143
Structures defined

configuration data structures,
overview 5-2

initialize configuration data structure,
example 5-4

initialize_console configuration data
structure, example 5-13

initialize_interconnect configuration
data structure, example 5-10

initialize_message_passing
configuration data structure,
example 5-11

initialize_NDP configuration data
structure, example 5-9

initialize_PICs configuration data
structure, example 5-6

initialize_PIT configuration data
structure, example 5-8

initialize_RDS configuration data
structure, example 5-3

Index-9

S (continued)
KN_CHAIN_STRUC 2-110
KN_CONFIGURATION_DATA_

STRUC 2-58
KN_CONSOLE_CONFIGURATION

_STRUC 2-63
KN_DA T A_LINK_MSG 2-11, 2-107
KN_GATE_A TTRIBUTES_

STRUC 2-46,2-130
KN_HDLR_STRUC 2-134
KN_INTERCONNECT _STR UC 2-65
KN_MP _CONFIGURATION_

STRUC 2-69
KN_NDP _CONFIGURATION_

STRUC 2-76
KN_PIC_CONFIGURATION_

STRUC 2-77
KN_PIC_INDIV _STRUC 2-77
KN_PIT _CONFIGURATION_

STRUC 2-79
KN_RSVP _TRANSPORT _MSG 2-

117
KN_SEGMENT _A TTRIBUTES_

STRUC 2-46,2-129
KN_SUBSYSTEM_CONFIG 2-88
KN_ TRANSPORT _MBX_LOCAL_

MSG 2-125
KN_ TRANSPORT _MBX_REMOTE_

MSG 2-125
KN_TRANSPORT_MSG 2-118
timer data structure, example 5-8

Subsystem support 5-1
SUBSYSTEM_CONFIG defined 2-88
Subsystems

initialization and effects 2-87
suspend_task system call 2-144
Suspension depth 2-103
System calls

listed by function 2-1
scheduling categories 1-3
stack requirements of B-1

Index-10

T
Task handler

access structure, KN_ T ASK_
STATE 4-4

create_task_handler procedure 4-4
delete_task_handler procedure 4-5
disaster handler status codes 4-7
disaster_handler procedure 4-6
install and remove 4-3
invocation conditions 4-2
KN_RESUME_TASK_CODE 4-7
KN_SEND_UNIT_CODE 4-7
KN_SUSPEND_TASK_CODE 4-7
level x7 handlers 4-8
multiple example 4-3
overview 4-1
priority change handler, example 4-9
priority change handler uses 4-9
priority _change_handler

procedure 4-9
task_switch_handler procedure 4-10

Task management
asleep state from asleep

suspended 2-103
asleep state, length of time 2-140
changing the task's processor

state 2-27
code segment pointer 2-34
CPL greater than 0 2-28
CPL of a new task 2-28
create task handler, pointer to 2-59
create_task system call 2-27
currenctask_token system call 2-36
data segment pointer 2-34
delete task handler invoked 2-42
delete task handler, pointer to 2-59
delete_task system call 2-42
disaster handler, pointer to 2-61
disaster handler, special

requirements 2-134
DPL of task's segments 2-28
dynamic priority 2-54
dynamic priority change 2-138

iRMKTM Kernel Reference Manual

T (continued)
Task management (continued)

dynamic priority setup 2-32
dynamic resetting of handlers 2-102
dynamically installing handlers 2-134
execution state

transitions 2-142, 2-143
get_priority system call 2-54
initial execution state 2-34
KN_HDLR_STRUC defined 2-134
KN_TASK_STATE, TSS overlay

structure 2-29,2-12
new task LDT setup 2-32
priority adjustment 2-54
priority change task handler, pointer

to 2-60
priority, configuration 2-58
priority range and assignment 2-34
processor task state, changing 2-28
protected stacks 2-33
ready state 2-103
ready state when creating 2-33
real time fence, configuration 2-58
region returns 2-42
reseChandler system call 2-102
resume_task system call 2-103
running to ready transition

example 2-143
scheduling categories listed 1-3
scheduling effect of

attach_protocol_handler 2-6
scheduling from dynamic

priority 2-32
scheduling lock, cancel 2-142
scheduling lock, create 2-143
scheduling lock effects 2-143
scheduling lock, multiple 2-143
scheduling restart 2-142
set_handler system call 2-134
set_priority system call 2-138
sleep limit values 2-140
sleep system call 2-140

iRMKTM Kernel Reference Manual

stack overflow 2-33
stack pointer requirements 2-33
start_scheduling system call 2-142
states 2-103
static priority, get value 2-54
static priority, setting 2-138
static priority setup 2-32
stop_scheduling system call 2-143
suspend_task system call 2-144
suspended state when creating 2-33
suspending and resuming 2-103
suspension depth 2-103
suspension depth increase 2-144
suspension depth limit

exceeded 2-144
switch task handler, pointer to 2-60
task handlers, entry points 2-57, 2-58
task slice value setup 2-32
token_to_ptr system call 2-147
TSS access 2-28
TSS, coprocessor save area 2-29
wakeup events at a mailbox 2-97

Task switch handler, entry point 2-57
Task_switch_handler procedure 4-10
tick system call 2-145
Time management

alarms 2-16
clock tick translation to

absolute time 2-52
geCPIT _interval system call 2-52
geCtime system call 2-56
initial clock count 2-139
initialize_PIT system call 2-79
input frequency 2-80
interconnect data structure,

example 5-10
KN_PIT _CONFIGURA TION_

STR UC defined 2-79
PIT interval 2-141
port address of PIT 2-79
port separation 2-80
set_time system call 2-139

Index-ll

T (continued)
Time management (continued)

start_PIT system call 2-141
tick system call 2-145
timer data structure, example 5-8
timer selection 2-80
type of PIT 2-80

Time slice 2-32
token_to_ptr system call 2-147
Trace queue 2-83
Transaction ID 2-116
translate_ptr system call 2-148
Transport layer 2-70
Transport protocol

messages and structure used 2-8
TRANSPORT _MBX_LOCAL_MSG

defined 2-125
TRANSPORT_MBX_REMOTE_MSG

defined 2-125
TRANSPORT_MSG defined 2-118
TSS

access 2-28
KN_TASK_STATE, overlay

structure 2-29
manipulation 2-28
small and compact stacks

compared 2-33

U
unmask_slot system call 2-150
unsafe system calls 1-3

Index-12 iRMKTM Kernel Reference Manual

Request For Reader's Comments

iRMKTI
• Kernel

Reference Manual
467231-001

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all Intel
Product users. This form lets you participate directly in the publication process. Your comments will
help us correct and improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, organization, and completeness of this
publication. If you have any comments on the product that this publication describes, please contact
your Intel representative.

1. Please describe any errors you found in this publication (include page number).

2. Does this publication cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What types of
publications are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of I to 5 (5 being the best rating).

Name ___ Date ________________ _

Title __________________________________ _

Company NamenDepartment ___ _
Address __________________________________ __

City ___________________ ,State _____ Zipcode ______ _

(Country) Phone _____________ _

Please check here if you require a written reply 0

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 79 HILLSBORO OR

POSTAGE WILL BE PAID BY ADDRESSEE

OMSO Technical Publications, HF3-72
INTEL CORPORATION
5200 NE ELAM YOUNG PKWY
HILLSBORO OR 97124-9978

11.1'1 I. 11111 .111111 I. 11111.1111.111 III. II •• 11111111

Please fold here and close the card with tape. Do not staple.

WE'D LIKE YOUR COMMENTS

This document is one of a series describing Intel products. Your
comments on the other side of this form will help us produce better
manuals. Each reply will be reviewed. All comments and suggestions
become the property of Intel Corporation.

If you are in the United States and are sending only this card, postage
is prepaid.

If you are sending additional material or if you are outside the United
States, please insert this card and any enclosures in an envelope. Send
the envelope to the above address, adding "United States of America" if
you are outside the United States.

Thanks for your comments.

intel"
International Sales Offices

AUSTRALIA
Intel Australia Pty. Ltd.
Unit 13
Allambie Grove Business Park
25 Frenchs Forest Road East
Frenchs Forest, NSW 2086

BRAZIL
Intel Semicondutores do Brazil L TDA
Av. Paulista, 1159-CJS 404/405
01311-SaoPaulo-S.P.

CANADA
Intel Semiconductor of Canada, Ltd.
4585 Canada Way, Suite 202
Burnaby V5G 4L6
British Columbia

Intel Semiconductor of Canada, Ltd.
2650 Queensview Drive
Suite 250
Ottawa K2B 8H6
Ontario

Intel Semiconductor of Canada, Ltd.
190 Attwell Drive
Suite 500
Rexdale M9W 6H8
Ontario

Intel Semiconductor of Canada, Ltd.
620 St. Jean Boulevard
Pointe Claire H9R 3K2
Quebec

CHINNHONG KONG
Intel PRC Corporation
15/F, Office 1, Citic Bldg.
Jian Guo Men Wai Street
Beijing, PRC

Intel Semiconductor Ltd.
10/F East Tower
Bond Center
Queensway, Central
Hong Kong

DENMARK
Intel Denmark NS
Glentevej 61, 3rd Floor
2400 Copenhagen NV

FINLAND
Intel Finland OY
Ruosilantie 2
00390 Helsinki

FRANCE
Intel Corporation S.A.R.L.
1, Rue Edison-BP 303
78054 St. Quentin-en-Yvelines
Cedex

WEST GERMANY
Intel Semiconductor GmbH
Dornacher Strasse 1
8016 Feldkirchen bei Muenchen

Intel Semiconductor GmbH
Hohenzollern Strasse 5
3000 Hannover 1

Intel Semiconductor GmbH
Abraham Lincoln Strasse 16-18
6200 Wiesbaden

Intel Semiconductor GmbH
Zettachring 10A
7000 Stuttgart 80

INDIA
Intel Asia Electronics, Inc.
4/2, Samrah Plaza
St. Mark's Road
Bangalore 560001

ISRAEL
Intel Semiconductor Ltd.
Atidim Industrial Park-Neve Sharet
P.O. Box 43202
Tel-Aviv 61430

ITALY
Intel Corporation Italia S.p.A.
Milanofiori Palazzo E
20090 Assago
Milano

JAPAN
Intel Japan K.K.
5~6 Tokodai, Tsukuba~shi
Ibaraki, 300-26

Intel Japan K.K.
Daiichi Mitsugi Bldg.
1-8889 Fuchu-cho
Fuchu-shi, Tokyo 183

Intel Japan K.K.
Bldg. Kumagaya
2-69 Hon-cho
Kumagaya-shi, Saitama 360

Intel Japan K.K.
Kawaasa Bldg., 8-9F
2-11-5, Shinyokohama
Kohoku-ku, Yokohama-shi
Kanagawa, 222

Intel Japan K.K.
Ryokuchi-Eki Bldg.
2-4-1 Terauchi
Toyonaka-shi, Osaka 560

Intel Japan K.K.
Shinmaru Bldg.
1-5-1 Marunouchi
Chiyoda-ku, Tokyo 100

Intel Japan K.K.
Green Bldg.
1-16-20 Nishiki
Naka-ku, Nagoya-shi
Aichi 450

KOREA
Intel Technology Asia, Ltd.
16th Floor, Life Bldg.
61 Yoido-Dong, Youngdeungpo-Ku
Seoul 150-010

NETHERLANDS
Intel Semiconductor B. V.
Postbus 84130
3099 CC Rotterdam

NORWAY
Intel Norway A/S
Hvamveien 4-PO Box 92
2013 Skjetten

SINGAPORE
Intel Singapore Technology, Ltd.
101 Thomson Road #21-05/06
United Square
Singapore 1130

SPAIN
Intel Iberia S.A.
Zurbaran, 28
28010 Madrid

SWEDEN
Intel Sweden A.B.
Dalvagen 24
171 36 Solna

SWITZERLAND
Intel Semiconductor A.G.
Zuerichstrasse .
8185 Winkel-Rueti bei Zuerich

TAIWAN
Intel Technology Far East ltd.
8th Floor, No. 205
Bank Tower Bldg.
Tung Hua N. Road
Taipei

UNITED KINGDOM
Intel Corporation (U.K.) Ltd.
Pipers Way
Swindon, Wiltshire SN3 1 RJ

intJ
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

• • • • • • • • • • • • • • • • • • •

INTEL CORPORATION
3065 Bowers Avenue
Santa Clara, California 95051
(408) 987-8080

SOFTWARE

Printed in U.S.A.

• • •
• • • • •
• • • • •

