iRMX”
Driver Programming Concepts

Order Number: 469155-004

In the United States, additional copies of this manual or other Intel literature may be obtained by writing:
Literature Distribution Center
Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641
Or you can call the following toll-free number: 1-800-548-4725

In locations outside the United States, obtain additional copies of Intel documentation by contacting your local
Intel sales office. For your convenience, international sales office addresses are printed on the last page of
this document. Contact your local sales office to obtain the latest specifications before placing your order.

Intel Corporation (Intel) makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel assumes no
responsibility for any errors that may appear in this document. Intel makes no commitment to update nor to
keep current the information contained in this document. No part of this document may be copied or
reproduced in any form or by any means without prior written consent of Intel. Intel retains the right to make
changes to these specifications at any time, without notice.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's Software License Agreement.
U.S. GOVERNMENT RESTRICTED RIGHTS: These software products and documentation were
developed at private expense and are provided with "RESTRICTED RIGHTS." Use, duplication, or
disclosure by the Government is subject to restrictions as set forth in FAR 52.227-14 and

DFAR 252.227-7013 et seq. or its successor.

The Intel logo, i960, Pentium, and iRMX are registered trademarks of Intel Corporation, registered in the
United States of America and other countries. Above, i287, i386, i387, i486, Intel287, Intel386, Intel387,
Intel486, Intel487 and EtherExpress are trademarks of Intel Corporation.

Adaptec is a registered trademark of Adaptec, Inc. AT, IBM and PS/2 are registered trademarks and PC/XT
is a trademark of International Business Machines Corporation. All Borland products are trademarks or
registered trademarks of Borland International, Inc. CodeView, Microsoft, MS, MS-DOS and XENIX are
registered trademarks of Microsoft Corporation. Comtrol is a registered trademark and HOSTESS is a
trademark of Comtrol Corporation. DT2806 is a trademark of Data Translation, Inc. Ethernet is a registered
trademark of Xerox Corporation. Hayes is a registered trademark of Hayes Microcomputer Products.
Hazeltine and Executive 80 are trademarks of Hazeltine Corporation. Hewlett-Packard is a registered
trademark of Hewlett-Packard Co. MIXO is a registered trademark of MIX Software, Incorporated. MIX is an
acronym for Modular Interface eXtension. MPI is a trademark of Centralp Automatismes (S.A.). NetWare
and Novell are registered trademarks of Novell Corp. NFS is a trademark of Sun Microsystems, Inc. Phar
Lap is a trademark of Phar Lap Software, Inc. Soft-Scope is a registered trademark of Concurrent Sciences,
inc. TeleVideo is a trademark of TeleVideo Systems, Inc. UNIX is a registered trademark in the United
States and other countries, licensed exclusively through X/Open Company Limited. VAX is a registered
trademark and VMS is a trademark of Digital Equipment Corporation. Visual Basic and Visual C++ are
trademarks of Microsoft Corporation. All Watcom products are trademarks or registered trademarks of
Watcom International Corp. Windows, Windows 95 and Windows for Workgroups are registered trademarks
and Windows NT is a trademark of Microsoft in the U.S. and other countries. Wyse is a registered trademark
of Wyse Technology. Zentec is a trademark of Zentec Corporation. Other trademarks and brands are the
property of their respective owners.

Copyright © 1991, 1992, 1993 and 1995 Intel Corporation, All Rights Reserved

REVISION HISTORY DATE
-001 Original Issue 12/91
-002 Revision One 08/92
-003 Revision Two 12/93
-004 Update for Release 2.2 of the OS 11/95

Quick Contents

Chapter 1. Introduction

Chapter 2. Writing Loadable File Drivers

Chapter 3. DUIB and IORS: Device Driver Interfaces
Chapter 4. Writing Custom Device Drivers

Chapter 5. Writing Common or Random Access Device
Drivers

Chapter 6. Writing Terminal Drivers

Chapter 7. Handling I/O Requests

Chapter 8. Making a Device Driver Loadable

Chapter 9. Using the ICU to Configure Your Device Driver

Appendix A. Random Access Support for Interrupt-driven
Devices

Appendix B. Random Access Support for Message-based
Devices

Appendix C. Controlling Terminal I/O

Appendix D. Interpreting Bad Track Information
Appendix E. Supporting the Standard Diskette Format
Index

Service Information

Driver Programming Concepts

Notational Conventions

Most of the references to system calls in the text and graphics use C syntax insteac
of PL/M (for example, the system caktnd_messagimstead osend$message If

you are working in C, you must use the C header fifes, c.h udi_c.hand

rmx_err.h If you are working in PL/M, you must use dollar signs ($) and use the
rmxplm.ext@anderror.lit header files.

This manual uses the following conventions:

Syntax strings, data types, and data structures are provided for PL/M and C
respectively.

All numbers are decimal unless otherwise stated. Hexadecimal numbers
include theH radix character (for examplef-FH). Binary numbers include the
B radix character (for exampl#10110008B).

Bit O is the low-order bit. If a bit is set to 1, the associated description is true
unless otherwise stated.

Data structures and syntax strings appear in this font.
System call names and command names appear in this font.

PL/M data types such as BYTE and SELECTOR, and iRMX data types such as
STRING and SOCKET are capitalized. All C data types are lower case except
those that represent data structures.

The following OS layer abbreviations are used. The Nucleus layer is
unabbreviated.

AL Application Loader

BIOS Basic I/O System

EIOS Extended I/O System

HI Human Interface

uDI Universal Development Interface

Whenever this manual describes 1/0 operations, it assumes that tasks use BIO.
calls (such asg_a_read, rq_a_write, andrq_a_specia). Although not

mentioned, tasks can also use the equivalent EIOS calls (stghsasead
rq_s_write, andrq_s_specia) or UDI calls €g_read or dgq_write) to do the

same operations.

Contents

Introduction
ReEAAEN LEVEL...... e e 16
What IS @ DEVICE DIIVEI?ccociiiiiiiiieieeee e e e e e e e a e e e e e e e e e 17
What Does an 1/0 Device Consist Of? ... 18
What IS @ File DIIVEI? ..ueeiieiiiiii it e e 19
Three Types Of DEVICE DIIVEIS.........covvviiiiiiiiiiiiiiiiesn e aeene e 20
CUSLOM DIIVEIS oottt e e e e ennnn e e e e 22
Advantages of @ Custom DriVer........ccccciiiiiieeeee 22
Disadvantages of CUStOM DIHVENccccoviiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee 22
Random Access and Common DIVErS.......ccooveeeeeieeieeeeeeeeeeeeeeeee 23
Features for both Common and Random Access Drivers 24
Features for Random Access Devices Only.............ooooe e 24
TerMINAl DIIVEIS ..ottt e e 25
The Driver Development PrOCESSuvviiiiiiiiiiiiiiiiiiiiieiiiieieiieieeineennennnnnnns 26
Advantages of a Standard Driver Interfaceccccoooeeeivviiiiiineennns 26
Writing Loadable File Drivers
FIIE DIV IDS ..ttt et e et e et e aeeeaaans 28
USING File DIIVEL IDS ...cvvviiiiiiiiiiiiiiies s e s 28
File Driver Data StrUCLUIES...........vvvviiiiiiiiiiieesiiesese s e eeeeeeeeseeeeeeeeeeeeeereseennnne 29
File Driver Data Table............uuuiiiiiiiiiie e 30
DYNamiC DUIBS.......ooviiiiiiiiiiiie ettt 32
File Driver Types and DUIBS ..., 33
File Driver Configuration Tableccccoiiiiiii, 34
File Driver INfo Table..........iiiii e 36
File Driver COMPONENTS .. .uuuiiiiieiiiie ettt e e e e e e e 37
INitialization ProCeAUIEuuuuuiiiiiiieiiee e 37
/O TaSK ProCEAUNE.......uuiiiiiiiieies e 37
Update ProCRAUIEuvviiiiiiiii e 38
File Driver Interface ProCeAUIES.........ccviviiiiiiiiiiiieeeeeeeeeeeeeeeeeee e 38
Choosing Public Symbols for File Driver Procedures............... 39
AttaCh ProCedures...... ... 39
File 1/O ProCeAUIES......ccoe e a e 40
Building a Loadable File DrVer..........coiii i 41
Driver Programming Concepts Contents 5

Y E= T T 1Y, o 1o [V =T 41

Configuration MOAUIEeevuviiiiiiiiiiiiiee e 42

File Driver Support Code Library ... 43
alloc_BUff liSt. ... 44
BUFfEred 10 .ueee i 44
COMMON_ClOSE.....uuiiiiiiiiie e e e 45
common_dealloc_deVv_deSCccuiiiiiiiiiiiiiii e 45
common_detach _deviCe..........cccoeeiiiiiiiiii e, 46
common_finisSh_deViCe.........ccooiiiiiiiiii e 46
COMMON_OPEIN ittt ettt ettt e e ettt e e e e e et e e e e eebba e e e e eeebbaneas 46
dealloc_buff liSt.. ... 47
delete_I0S_0D)....coviiiiiiiii 47
ENEET Il oo 47
enter_NK_ dll.......oo i 48
flush_eios_buffers..........coee i, 48
force_detach ..., 49
et DU e 49
1T 120] o 1 49
T o U] o T o | | 50
Mark _bUff... ... ————— 50
FEeMOVE_All ..o 51
(=S oL0] Lo == o P 51
UNIINK _CONN Lo s 51
update buff liSt......ccoooiieiii e 52
write_thru_buff list........ccooooii s 52

Example File Driver Algorithms...........ccoovieiiiiiiiii e, 53
ALACH DEVICE ...ttt 53
ALACH FilE .. 53
Change File ACCESScooiiiiiiieeeeee e 53
L0 [1S 1 53
Create File ..o 54
1= = (= N = P 54
D] = Tod o [D= o = P 54
1] = T 55
Get CoNNECLioN SEALUS ..u.uiiieeeeie e e 55
Get DIreCtory ENTIYooooiiiiiiiiiieee e 55
Get EXIENSION DAta.........uuiiiiiiiiiiiieeiiiicie e 55
Get File STAtUSeviiii e 56
Get Path ComMPONENT........coooiiiiiiiiiiiiiiiiii e s 56
NUIl Change File ACCESS.......uuuuuiiiiiiiiiiiee e 56
NUI Delete File .. .coveeeieie e 56
OPEN File .. 57
Read File ..o 57

Contents

RENAME FlE ... e 57

SEEK FilB ovveiiii e 58
Set EXTENSION DALuiiiiviiiiii e 58
Set FIlEe STAtUS.....i i e 59
SPECIAL ..ot 59
TrUNCALE Fil coniiii e 59
UPAALE DEVICE . ..uiiiii i e 60
W FlB oo 60
BUIld CONNECLION.......cviiiiiieii e 61
ClOSE CONNECLION . .ccvviiciiii et 61
OPEN CONNECLION.....ciiiiiiiiiiiiiee et a e e e e 61
LOW ATACK. ... 62
LOW Change ACCESScoviviiiiiieiiiiiiiiiii e eeeaeee e 62

LOW DBIBLE ...t 62
LOW DEEACKH .. .ccuii i 62
[0 O £ =T (= PPN 63
LOW Gt DIl ENEIY.ccueniicceeeiie e 63
LOW SCaN Path........oiiiiiiii e 64
Y= o N 11 P 64
SCAN PaAth.. i 64

3 DUIB and IORS: Device Driver Interfaces

Interface Between a Device Driver and the I/O System..........cccccceeeiiieiiiees 66
DUIB Data Structure Definitioncooeiiiiiiiiiiiiieieeeeeeeeee e, 67
USING the DUIBS......ccoiiiiiiiiiiiiiie et e e e e eeeeeeaeaees 73
Creating DUIBS........covviiiiiiiiiiiiii e e e e 75
IORS Data Structure Definition........coooevuviiiiiiiieecieeeeeeeee e 76
DUIB and IORS Fields Used by Device Drivers...........cccccvvviieiieneneannn. 81
Interface Between a Driver and the DEVICEcoovvvviiiiiiiiieiiiieeeeeeeeei, 84
DMA Device CONSIAErationSc.cuuueeiiiiiieiiiiiieeiieee e 84
Call SYNTAX...eiieiiiiiiiiieeee e 85

Driver Programming Concepts Contents 7

Writing Custom Device Drivers

What YOU MUSE PrOVIEiiiiiiiiii e 87
NIt 10 PrOCEAUIE .. .uee ittt e et eeeens 88
Call SYNTAX...iieeiiiiiieeeeeer e e e e e e e e aaaaaaa 88
FiNiSh_10 ProCeAUIe........ciiiiiiie e e 89
Call SYNTAX...iieeiiiieiieeeeee e a e e e e e e e 89
QUEUE 10 ProCEAUIEccitii e e et eaees 9(
CaAll SYNTAX...eeeeieiiiieiieeee e a e e e e e e 90
CancCel_10 ProCEAUIEui i 9]
Call SYNTAX...eieeieiiieiiieee e e e e e e e 91
Implementing a ReqUESt QUEBUEcccoiiiiiieeeiiiiiccceeeeeeeeeee e 9

Writing Common or Random Access Device Drivers

I/0 System-supplied Procedures and Tasks..........ccceuuiviiiiccccenneneennnnn. 96
When the 1/0 System Calls Driver Procedures....................cccoeeeno.. . 96
INEEITUPE TASK...oi e e e e e e e e e e 98
MESSAGE TASK ...euviiiiiiiiiiie e 10c

Data Structures Supporting Random AcCess I/O..........uuvviviiiiiiiiiiiiiiiiiiennnn, 102
DINFO Table Structure for Random Access Driver.........ccccvvvvveeeeennnn. 104
UINFO Table Structure for Random Access Driver.........ccccvvvvveeeeennnn. 108

Device Data StOrage ArCaccceeeeeiiiiiiiieeeeeeeeeee e a e e e e e e 11C

Procedures Random Access Drivers Must SUpply......ccccccevvveeivimmee.. - 111
Device NIt ProCeAUIEcuvuiii e 112

(1| 1S] Y01 7= D G UPUURPR 112
Device finish Procedure..........ccoooeiiiiiiiiiiie e s 113

CaAll SYNTAX .eetiiiriiiiiiiiiie et 113
Device_start Procedure........cccoovviiiiiiiiii e 114

Call SYNIAX..uuiiiiiiiiii e 115
Device _stop Procedure.........ccoooevvviiiiiiii i 115

Call SYNIAX . .uuiiiiiiiii e 116
Device interrupt ProCeAUIEooccvveiiiiie e e e 116

Call SYNIAX . uuuiiiiiiiie e e 117

Utility Procedures Random Access Drivers Must Call...........ccccoooeeeevvennnnn, 121

N0 11 Y2 = {0 Y=o (1] = S 121

(OF- 1| IR 1= b 121
Seek_complete ProCeAUIe........covvvvueiii i eeee e 122

Call SYNIAX . euuiiiiieiiie e 122

Contents

Procedures for Long-Term Operationsccccoeeeeiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee e 123

Begin_long_term_op Procedurecccoeeeeiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeees 123
Call SYNTAX...eiieiiiiiieieeee e 124
End_long_term_op ProCedure ..o 124
Call SYNTAX...eiieeiiiiiiiieeee e 124
(1) o) 63 d o 1ot =T (U] LU 125
Call SYNTAX...eiieiiiiiiiiieee e 125
Formatting Random ACCESS DEVICESccoeeviiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeaiaee 126

6 Writing Terminal Drivers

Terminal 1/O CONCEPLS .. .coeeiiii ettt e e e e 128
Raw-input Buffer Determined by Type of Terminal Driver 129
Nonbuffered Terminal DEVICES..........uuuuuiiiiiiiiiiiiieiiiieeee e 129
Buffered Terminal DEVICES...........cuvuvuuiiiiiiiiiiiiiiiieee e e e e ee e 129
TSC Input Buffer Determined by Terminal Modecccoeeeeeeeeen. 129
Difference between Transparent and Flush Modeccccceeeeee. 130
I/0 System-supplied Procedures and Tasksccueevvvviiiieenneieiinnennns 131
Data Structures Supporting Terminal 1/O ..., 132
DUIB Structure for Terminal DIVEr.............uvvvvvviiviiiiiiiiiiiiiiniiiinnnnnns 132
DINFO Table Structure for Terminal Driver...........ccccccciiiiiieeeee, 133
UINFO Table Structure for Terminal Driver...........ccccccciiiiiiiiiiieneeen. 136
TSC Data Area SITUCTUIE......cciieiiii e 139
Additional Information for Buffered Devices..............ceeeeeinnnnnnns 146
Procedures Terminal Drivers Must SUPPIYuueeiiiiiiiiiiiiieees 155
Term_iNit ProCeAUIE........coi i 156
Call SYNTAX...ciiiiiiiie i e 157
Term_finish ProCeaureuiii i 157
(08 1| IS o] 7 3 157
Term_Setup ProCeaUIe.........oouiii i 157
Setup Procedure Must Recognize the Requested Operation 158
(O 1| IS o] - 3 R 159
Term_answer ProCeAUIEuvvieivieiie e e et emmmmm s 159
(O 1| IS o] - 3 159
Term_hangup ProCeduUre..........uii i it ememme e 160
(O 1| IS o] - 3 160
Term_cheCK ProCeAUIE.......ooeuuii i 161
Inform TSC of INterrupt TYPE...covvvvveeii e 162
Determine and Set the Baud Ratecccooevviiiiiiiiiiiiiiiiiiiie, 163
Reading the Input Character..........ccoooovvviiiiie e 163
Call SYNLAX. ...ttt 164
Term_OUL PrOCEAUIEcii i 165
Call SYNLAX. ...ttt 166

Driver Programming Concepts Contents 9

Term_utility ProCeduUre..........ooooe e 166
(0 1| 1) 0] 7= D GRS 168
TSC Utility Procedures Supplied to Driversccccceeeeeeeeeeee, 169
TS_MUEX_UNIt ProCeAUIEuuiiiiiiiiiie e 169
(011 IS) 0] 7= D GRS 169
Ts_set_out_buf Size Procedure.........cccccvieeeiiiiiiiiiiii e, 16¢
(01 1S] Y 01 7= D G USSP 169
Xts_set_output_waiting Procedure..........ccccvvviiii, 170
(=1 1S3 0] 7= N G USSP 170
G_delay ProCEAUNEuuuiiiii it e e eeaeaeeees 17C
(OF 1 1S3 0] 7= b G PPRUSRP 170
7 Handling I/O Requests
I/0 System Responses to 1/O System Calls..........ccoooeiiiiiiiiiiiiiiiii, 17:
Actions Required of @ DEVICE DIIVETuuuuuiiiiiiiiiiiiieeeeieeeeeeee e aeeaaaeaeens 174
F read Function Code O..........ccoovuiiiieeiiiiiiiie e et s 174
F write FUNCLION Code 1coiiiiiiiiiiiiee e 175
F seekFunction Code 2ceeeeiiiiiiiieee e ememe e 175
F_attachFunction Code 4.........oooiiiiiiiiiiii e 175
F _detachFunction Code 5.....coociiiiiiiiieccecee e 175
F_openFuNnction COOE B........uuiiiiiiiiiiiieeeiiiiiiicceeeeeeeeev e 176
F _CloseFUuNnction COOE 7coovviiieiiiiiiice e emmm e 176
F_speciglFuNction COde 3..........cooiiiiiiiiiiiiiiiiiiii e 176
Fs_format_trackSubfunction O............ccccceeiiiiiiiiccemn e, 176
Fs_querySubfunction 0 Fs_satisfubfunction 1........................ 177
Fs_notify, SUBFUNCLION 2.......oovviiiiiiiiiii s 177
Fs_get_drive_dat&ubfunction 3.............ccooo it 177
Fs_get_terminal_attributeSubfunction 4cccoceeeiiiiiiicnnn. 178
Fs_set terminal_attributeSubfunction 5.............cccoeeii i 178
Fs_set_signaBubfunction 6...............cccevvriiiiiiiiiiiiii 178
Fs_rewind SUbfUNCLION 7coooiiiiii e 179
Fs_read_file_markSubfunction 8ccccoooiiiiiiiicemmm e, 179
Fs_write_file_markSubfunction 9..........cccccoooiiiiiiiiicemm e, 179
Fs_retention_tap&ubfunction 10............ccoooiiiiiiiiiiecn e, 179
Fs_set bad_inf@ubfunction 12.........ccccoeeeiiiiiiiiiiieeeen e, 180
Fs_get bad_infdSubfunction 13............ccccooiiiiiiiiiieeein e, 180
Getting Terminal Statysubfunction 16ccoovviiiiiieeee. 181
Cancelling Terminal I/QSubfunction 17.............ccccovviiiiiiieene. 181
Resuming Terminal I/OSubfunction 18.................cooviiiiieeeen. 182
Performing Disk MirroringSubfunction 19.............ccccooeeiviivinnnnnn. 182
Getting Device Free Space, Subfunction 20..........cccoeeeevvvviiiiinnnnn. 182
10 Contents

8 Making a Device Driver Loadable

How to Make a Device Driver Loadablecccccooiiiiiiiiiiiiiiiiiiiiieienes 184
Making Driver Procedures Callable as Far Procedures.................cc.... 184
Adding Far Pointer Elements to DINFO Table Declarations................. 185
Preparing the Needed DUIB, DINFO, and UINFO Tahles.............. 189
Preparing an Initialization Front-endcccoovviiiiiiiiiiiiiceeeceeeeis 193

Supplied Front-end SOUIce COUEuuuvuriiiiiiiiiiiiieien e 194
Compiling/Assembling and Binding Your Device Driver Code............ 194

9 Using the ICU to Configure Your Device Driver

Adding Drivers with the UDS and ICUMRG Utilitiesc.ouuuvceiiinineennn. 198
UDS UBIIEY .ot e e e e e e e e e e 200
Creating the Input File for UDS.........ooooiiiiiiii, 200
Device INformation SCreeNS........uuvvureiiiiiiiiieeeeee e 206
Unit INfOrmation SCreeNS.........cooiiiiiiiiiiiiiiiiiii e 206
Device-Unit Information SCreens.........ccceeeeiiiiiiiiiiieeeeeeeeeeeeeeeee, 207
INvoking the UDS ULIItY.......uuuuiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeiiiiies 207
UDS EITOr MESSAQgES .. . ciieiiiiieeeeii e ettt e e e 209
ICUMRG ULIILY oeieeeiiiiiiese et e e 212
UDS Modules Screen in the ICUccccvviviiiiiiiiuieeeeeeeeeenins 213
Adding Your Driver as a Custom DIiVErccevvviviiiiieiiiiiiiieeeiveeiveienninnnees 214
Example of Adding an Existing Driver as a Custom Driver.................. 218
Contents of the Duib.inc File Specified in the (DPN) Parameter 219
Contents of the File Specified in the (TUP) Parameter................... 224
Portion of System Generation Submit File as
Changed by this ProCess.........cccceiiiiiiiiiiiiii e 226

A Random Access Support for Interrupt-Driven Devices

LV (o TN o o To =T 11 TR 229
FiNiSh_10 ProCeAUIE ... 232

QUEUE 10 PrOoCEAUIE ...t e 234
CanCel_10 ProCEAUIEccoiiii e 236
INEEITUPE TASK...oie et r e e e e e e e e e e e eeeeeeeneee 238

Driver Programming Concepts Contents 11

Random Access Support for Message-Based Devices

INIE_10 PrOCEAUIE e

FiNish_10 ProCeAUIe........ciiiiiiiie e

QUEUE 10 ProCeAUIEcvviii i
Cancel_10 ProCedUrecoooiiiiiii i
MESSAGE TaASK...cci i

Controlling Terminal I/O

Line-editing FUNCHIONSuiiiii e
Controlling Output to a Terminal..........cccooeeeeeeee e,
OSC SEUUENCES. ...ttt ettt e et e et e e e e e e e eeas

CONNECLION MOUOES.ot mmemmmmmm s

Terminal MOAESooeiiie e e
Translation and SiMUIAtioN...........coouiiiiiiiee e,

Preparing the TSC ...

Translation EXamPpPlesuuuuviiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeiiiens

Simulation EXamPpPIeS........cooviiiiiiiiiiiiiii e
ESCAPE SEQUENCES.uiiiiiiii ettt
Terminal Character SEQUENCEScoevvvviiiiiiiiiiiiiiiiene e

(010 <o) gl =0 1S3 1 o] 11 o [« U
Control Character Redefinition..........cccceveeieee
Using an Auto-answer Modem with a Terminal...............cc..ooeeeeees
Obtaining Information about a Terminal.............c...ccooeiiiiinineneninnn,
Restricting the Use of a Terminal to One Connection......................
Programmatically Stuffing Data into a Terminal's Input Stream

Interpreting Bad Track Information

Non-ESDI Bad Track Information..........cccoeeeiiiiiiiiiieeeeeeeeee e
ESDI Bad Track INformation............coiuuiieiii et ee e

Supporting the Standard Diskette Format

307

Index

311

Service Information

12

Contents

Inside Back Cover

303
305

Tables

C-1. Line Editing Control CharacCters. ...t 254
C-2. Output CoNtrol CRATACLEIS.......cvvviiiiiiiiiiiiees et e e e e e e e e e e e e e eaeeeeeeaeerenne 257
C-3. CONNECHION MOUESoeviiiiiiiiiiie i e e e e e e e e 261
C-4. TermiNal MOOESooviiiiiiiiee e e e e e e e e e e e e e e eeeeaearee 265
C-5. ESCAPE SEUUENCES ...ttt ettt e e e e e e e e s 282
C-6. Terminal Character SEQUENCEScoivviieeeeiiiiiieeeeeeeeeeeee s 291

C-7. Example OSC Sequences for Common TerminalS.........cccccvvvvvvvvvviveiieennnnnn, 294
C-8. Control Character FUNCLIONS..........coooiiiiiiiiiiieeeeeeeeeeeeeeeee e e 296
Figures

1-1. General Relationship between Device and File Drivers.........cccccvvicienneene. 17
1-2. Relationship between I/O Devices and DeviCe-UnitS............cc..uvvvvmmmereees 18

1-3. File Driver ArChiteCUEcooiiiii i 19
1-4. Required Device Driver ProCEAUIESvvvvverivviiiiiiiiiiiiiinennennnnnnnnnneeens 21
2-1. Loadable File Driver Data StrUCIUIESccoviiiiiiiieieieeeeeeeeeeeeeeeeeeee e 29
3-1. DeVice DIVEr INEITACES ...uvvviiiiiiiiiiiiiii e 67
3-2. I/O System and Device Driver Interface........ccccceveeiiiii 68
3-3. Using Multiple DUIBs for a Single DEeVICEccevvvveeviiiiiiiiiiiiiiiiiieeeeeeeen 76
3-4. Device Driver to Device Interface..........ccccviiiiiiiiiiiiiiiieieeeeeeviiees 86
4-1. REQUEST QUEBUE ...t 95
5-1. When the 1/0 System Calls the Device Driver Procedures............cc..uvveeeee... 99
5-2. Interrupt Task INLEractionccoovviiiii i 101
5-3. Message Task INtEraction............uueeiiiiiiiiiiee s 103
5-4. DUIBs, DINFO, and UINFO TabIes.........ccooviiiiiiiiiiiiiiiiiiiiiis e 105
5-5. Relationships between Random Access Driver Procedures..........cccceeeeeen.... 113
6-1. Buffers Used in Terminal /Ooooiiiiiiiiiiiiiis e 130
6-2. TSC DAtA AFBA....ceeuiii ettt e et e et e e e e e e 142
9-1. Adding Drivers with UDS and ICUMRG.............cccooiiiiiiiiine e 201
9-2. Syntax of UDS INpUt Fil€......ccoviiiiiii e eeeemea 203

9-3. Example USer DEVICES SCIEEN.......coiiiiiiieiiii e eee ettt e e s o 219

9-4, Computing Device and Device-Unit Numbers...........ccccvvvviivemccceenen. 222

9-5. Public Declarations Needed for the DINFO and UINFO Tables 227
9-6. Portion of the Modified Submit File ..., 228
A-1. Random Access Device Driver Init_io Procedure..............cccceevvmmeeeeee. 233

A-2. Random Access Device Driver Finish_io Procedure...........cccccevvvvvvvnnnnnnn. 235

A-3. Random Access Device Driver Queue_io Procedureccccvvvvvvviiieeeeeenns 237
A-4. Random Access Device Driver Cancel_io Procedure...........ccccevvvvvviinneeeenns 239
A-5. Random Access Device Driver Interrupt Task.........ocovvvveeiiiiievevenenns 241

Driver Programming Concepts Contents 13

Figures (continued)

B-1.
B-2.
B-3.
B-4.
C-1.
C-2.
C-3.
D-1.

14

Random Access Device Driver Init_io Procedure.............ccccoocvvvowenn. 245

Random Access Device Driver Finish_io Procedure............cccoevvviieeeeeeenns 247
Random Access Device Driver Queue_io Procedurecccccceeeeeeeeeennnnnn, 24
Random Access Device Driver MESSage........cuvvvvvevveeveeiieiiiiiiieeeieeeeeeeeeeneens 25¢
Composite OSC Sequence Diagram ... 25
Escape Sequence Translationccocooiiiiiieeee 277

Escape Sequence Simulationoovviiiiiiiiiiiiiiiii e 27
Format of Bad Track INformation................eevviiiiiiiiiiiiiiiiiinnnseeeeeeeeenns 307

Contents

Introduction

Driver Programming Concepis a guide to writing device drivers and file drivers

for the iRMXU Operating System (OS). To make the development task easier, use
the drivers supplied with the OS as a starting point. OS-supplied drivers are
designed according to the concepts shown in this manual.

See also: Configuring loadable jobs and device driv&rstem Configuration
and Administrationfor information on supplied drivers

This manual includes this information:

« Definition of the device driver programmatic interfaces including:
— Device-unit Information Block (DUIB)
— 1/0 Request/Result Segment (IORS)

— 0OS-supplied support code for common and random access devices and
terminals

* Guidelines and examples on writing, loading, and configuring drivers

This chapter provides some basic information that prepares you for the rest of the
manual. This information includes:

« What device drivers, 1/0 devices, and file drivers consist of
« Descriptions of the three types of device drivers
e The driver development process

This manual uses the data types described i®yseem Call Referencd hese are
constant values:

Value Defined As
0 FALSE
OFFH TRUE

Driver Programming Concepts Chapter 1 15

Reader Level

This manual assumes you are familiar with:

16

The C or PL/M programming language, and the ASM386 Macro Assembly
Language

The iIRMX OS and the concepts of tasks, segments, and other objects
The I/O System, as described3gstem Concepts

The device-specific instructions needed to do read and write operations on
your I/O devices

The configuration process for ICU-configurable systems, as described in the
ICU User's Guide and Quick Reference

Chapter 1 Introduction

What Is a Device Driver?

A device drivemprovides the software interface between a hardware deviddeand
driversin the iRMX I/O System. There must be a device driver for every

configured device in the system, and each file type has a file driver for it. This
creates a device-independent interface for file operations; a task can have access to
all files in the same manner, regardless of which devices the files reside on.

Figure 1-1 shows the general relationship between device and file drivers.

General Interface

‘r R ‘r - \ ‘ o ‘r o ‘r]

Application ‘ ‘ ‘ ‘ . . Device ‘

| software ﬁ_'_)‘ BIOS K_HFIIG drlverﬁ_'_ﬂ driver |
k

‘ tas | ‘ ‘ |]

Device Device

\ \
H controller H unit

N N

The task

invokes a BIOS
or EIOS call that
specifies which ‘
file driver and
device driver

To use a device, a file driver
calls the procedures listed in
the device driver data
structure. Every file driver

The device is merely a standard block of data
in a data structure. To a device driver, all file
drivers seem the same. The device driver
simply sees itself as being called by the I/O
System, and it returns information to the I/O

\

\

|

\

- Everyfile |
calls device drivers in the ‘
\

|

\

|

I

\

[

are being used | same way. System.
together. |
| Mass
. Storage 221 Hard
Applicat |
Egﬁ'fvi:‘;" | BIOS File driver Controller controller disk
task | (MSC) board drive
‘ driver
[
Example
W-3200

Driver Programming Concepts

Figure 1-1. General Relationship between Device and File Drivers

Chapter 1

17

What Does an I/O Device Consist of?

Each 1/0O device consists of a controller and one or more units. A device as a
whole is identified by a uniquadevice numbethat identifies the controller among
all the controllers in the system. Theit numberidentifies the unit within the
device. The uniqudevice-unit numbedentifies the unit among all the units of all
the devices. Figure 1-2 shows a simplified view of three 1/0O devices and their
device, unit, and device-unit numbers.

18

Device 0 Device 1 Device 2
Controller Controller Controller
Unit 0 Unit 1 Unit 0 Unit 1 Unit 2 Unit 0
Device- Device- Device- Device- Device- Device-
unit 0 unit 1 unit 2 unit 3 unit 4 unit 5
W-2749
Figure 1-2. Relationship between 1/0O Devices and Device-units

Chapter 1

Introduction

What is a File Driver?

File drivers implement BIOS system calls for a specific file system. They execute
in the context of an I/O task which is part of the file driver code. File drivers may

be either statically linked with the OS boot image (resident) or dynamically loaded
using thesysloadcommand (loadable). This figure shows the architecture of a file

driver.

| File driver initialization procedure I

| 1/0 task procedure (dispatch) I

File driver I/O interfaces

File driver support code I

OM02682

Figure 1-3. File Driver Architecture

The file driver initialization procedure is executed when the file driver is loaded.
The file driver I/O task receives I/O requests from the synchronous part of the
BIOS and dispatches them to the proper file driver I/O procedure. There is
typically one 1/O task per device. The file driver interface procedures implement
high-level file operations that correspond to the actions of BIOS system calls. A
standard parameter set is defined for the file driver interface procedures.

File Driver Support Code (FDSC) libraries provide a set of file driver utility
procedures. For resident file drivers, the FDSC is accessible as part of the I/O
System. For a loaded file driver, the FDSC is linked directly to the file driver.

See also: Writing loadable file drivers, in this manual

Driver Programming Concepts Chapter 1 19

Three Types of Device Drivers

The 1/0O System supports three types of device drivers:
* Custom

¢ Common and random access

e Terminal

These driver types are distinguished by whether they have a direct interface to the
I/0 System or whether they have an interface to OS-supplied high-level device
driver procedures. They are also distinguished by the set of high-level device
driver procedures they use as an interface. There are four high-level device driver
procedures for random access, common, and terminal drivers. You must supply
versions of the four high-level device driver procedures for custom drivers you
write.

Initialize 1/0
Creates the resources needed by the remainder of the driver
procedures, creates an interrupt/message task, and calls a device
driver-specific procedure that initializes the device itself.

Finish /0 Deletes the resources used by the other driver procedures, deletes the
interrupt/message task, and calls a device driver-specific procedure
that performs final processing on the device itself.

Queue I/O Places IORSs in a queue of requests. This procedure starts the devic
q q p
processing the first request in the queue.

Cancel /0 Removes one or more requests from the request queue, possibly
stopping the processing of a request that has already been started.

To use these high-level device driver procedures, you just write the set of device-
specific procedures that serve as the interface between the hardware and the high-
level device driver procedures.

Figure 1-4 shows both the high-level device driver and device-specific procedures
and indicates which ones you must write.

20 Chapter 1 Introduction

Basic I/O System

Custom
driver

Initialize 1/1O
Finish 110
Queue I/0
Cancel I/O

Random access
and
common driver
support code

Initialize 1/O
Finish 110
Queue I/O
Cancel I/O

Random access
or
common driver

Y

Device Initialize
Device Finish
Device Start
Device Stop
Device Interrupt

Device

Device

Terminal
driver
support code

Initialize 1/O
Finish 110
Queue I/O
Cancel I/0

Terminal
driver

Terminal Initialize
Terminal Finish
Terminal Setup
Terminal Answer
Terminal Hangup
Terminal Check
Terminal Output
Terminal Utility

Y

Device

Note: The shaded portions represent the code you must write for each type of driver.

Figure 1-4. Required Device Driver Procedures

Driver Programming Concepts

Chapter 1

<

W-2750

21

Custom Drivers

A custom device driver is one you create in its entirety. This type of driver can
assume any form and provide any function you wish, as long as the I/O System car
access it by calling the four high-level device driver procedures you write.

See also: Writing custom device drivers, in this manual

Advantages of a Custom Driver

By writing a custom driver, you can add support for devices that do not fit into the
common, random access, or terminal categories, and for which the OS doesn't
provide a pre-written driver.

A custom driver is not restricted by the limitations imposed by the other driver
interfaces. For example, the supplied random access high-level queue_io
procedure sets up a queue to handle device requests in a way that minimizes a
disk's seek time. If you want to handle device requests based on priority instead,
you can write a custom driver that provides that feature.

Disadvantages of Custom Driver

A custom driver must include all the functions needed to control the device,
because the I/O System does not provide the high-level device driver procedures
(for example, automatically setting up a queue to handle device requests). For this
reason, a custom driver usually takes longer to write. Debugging time tends to
increase. With more code to be written, errors are more likely to occur. Driver
code is more complicated to debug than application code because of the interactior
between the code and a physical device.

Unless you coordinate the design of your custom drivers to allow code sharing, the
code size of drivers tends to be larger. With most custom drivers, each driver must
provide all of its own functions, thereby duplicating the functions provided by other

custom drivers.

22 Chapter 1 Introduction

Random Access and Common Drivers

The OS provides a single set of high-level device driver procedures for both
common and random access devices.

A common devices a relatively simple device such as a line printer, but not a
terminal. Common devices conform to these conditions:

« Only one interrupt level is needed to service the device.

« Data either read or written by these devices does not need to be divided into
blocks.

* A FIFO mechanism for queuing requests is sufficient for accessing these
devices.

A random access deviég one in which data can be read from or written to any
address of the device, such as a disk drive. Random access devices conform to
these conditions:

« Only one interrupt level is needed to service the device.
* /O requests must be divided into blocks of a specific length.
* The device supports random access seek operations.

When writing a driver for a device that fits into either the common or random
access classification, you don't need to write the high-level device driver
procedures, only these device-specific procedures which adhere to the interface
provided by the high-level device driver procedures:

device_init
device_finish
device_start

device_stop
device_interrupt

See also: Writing common or random access device drivers, in this manual

The I/O System determines whether a device is a common or a random access
device by a value you supply in a Device-unit Information Block (DUIB). The
DUIB describes the device to the 1/0 System.

See also: DUIB and IORS: device driver interfaces, in this manual

Driver Programming Concepts Chapter 1 23

Features for both Common and Random Access Drivers
Several features are available to both common and random access devices.
« Interrupt tasks and interrupt handlers
* Request queue
* Volume change notification

* Long-term operations support

Features for Random Access Devices Only
Several features apply specifically to random access devices.
« Dividing I/O requests by sector or by track
* Seek optimization
e Seek overlap
* Retries

In this manual, common and random access devices are referred to as random
access because they share the same high-level device driver procedures.

24 Chapter 1 Introduction

Terminal Drivers

The OS also provides high-level device driver procedures needed to operate
terminals. Aterminal devicaeads and writes single characters or blocks of
characters, with an interrupt for each character or block of characters sent.

When writing a driver for a terminal device, you don't need to write the high-level
device driver procedures, just these device-specific procedures which adhere to the
interface provided by the terminal high-level device driver procedures:

term_init
term_finish
term_setup
term_answer
term_hangup
term_check
term_out
term_utility

If you use an OS-supplied terminal driver, or if you write your own driver and
adhere to the terminal driver model, you have access to all the capabilities of the
I/O System'sTerminal Support Cod€r'SC). These capabilities include using

control characters to control terminal 1/0, redefining those control characters,
setting connection and terminal modes (including setting up character translation
and simulation), using an auto-answer modem, inquiring about the current terminal
setup, limiting a terminal to one connection, and programmatically inserting text
into the terminal's input stream.

See also: Writing terminal drivers, in this manual

Driver Programming Concepts Chapter 1 25

The Driver Development Process

This manual guides you through the driver development process:

1.
2.

Decide whether or not you can use an OS-supplied driver.

Determine what type of device driver you need (custom, common/random
access, or terminal).

You will also need driver-specific information. For example, the ROM BIOS-
based hard disk driver can use three of five required device-specific
procedures: device_init, device_start, and device_interrupt. Default BIOS
procedures provide the other two: device_finish and device_stop.

Write and compile the necessary code.

Run the driver in loadable form using the Soft-Scope debuggersysteéad
command; if this is an iRMX for PCs or iRMX for Windows driver, use this
command to dynamically configure the driver into the OS.

See also: Making a device driver loadable, in this manual

If this is an ICU-configurable system, run the Interactive Configuration Utility
(ICU) to configure the driver in the OS.

See also: Using the ICU to configure your device driver, in this manual

Advantages of a Standard Driver Interface

The standard interface between device drivers and file drivers has these
advantages:

26

You can reconfigure the hardware without extensively modifying the software.
To change devices (to a larger capacity hard disk drive, for example), you just
substitute a different device driver and/or modify a data structure.

The I/O System can support any device, provided the device driver works with
file drivers in the manner described in this manual.

Chapter 1 Introduction

Writing Loadable File Drivers

File drivers in the iRMX OS are resident or loadable. Resident file drivers are
those you have configured into the OS using the ICU or are part of the
preconfigured OSs. You can add loadable file drivers to the OS at load time or run
time using thesysloadcommand. This chapter describes loadable file drivers and
how to write them. Loadable file driver support in the OS simplifies the design,
integration, and debugging of new file drivers. The BIOS provides a device-
independent interface to all file drivers.

These file drivers are provided by the iRMX OS in loadable form:

Name Description

remotefd.job Remote file driver.

nfsfd.job Network File System (NFS) file driver.
dosfd.job Native DOS file driver.

The Physical and Stream file drivers must always be present in the BIOS, and
cannot be converted to loadable versions.

See also: File driversntroducing the iIRMX Operating Systems

The overall performance of a loadable file driver is slightly slower than the resident
version. This is because calls to BIOS procedures are far instead of near, dispatch
from the file driver's 1/O task to the loadable file driver code is far instead of near,
and calls to BIOS system calls must go through a call gate instead of a near call.

Driver Programming Concepts Chapter 2 27

File Driver IDs

The file driver ID (also referred to as the file driver number) is a value that
identifies a file driver. The same ID may correspond to either a resident or loaded
version of a file driver. The assignment of file driver ID values is summarized
below:

ID Use

0 Reserved; not a valid file driver ID
Physical file driver, always present

2 Stream file driver, always present

3 Native DOS file driver, configurable/loadable

4 Named file driver, configurable/loadable

5 Remote file driver, configurable/loadable

6 EDOS file driver, configurable/loadable

7-max Available for loadable file drivers; maximum value determined by the
configuration of the OS; default = 16

The loadable versions of the DOS and Remote file drivers are installed in their own
reserved file driver ID slots. The loaded file driver supersedes a resident instance
of itself.

Using File Driver IDs

The file driver ID is assigned and returned byittetall_file_driver system call.

You specify the file driver ID in thphysical_attach_device

logical_attach_device andget_file_driver_statussystem calls. System calls

work the same regardless of whether a file driver is resident or loaded. Any
applications that contain hard-coded values for file driver IDs should be modified
to obtain the file driver ID with thget_file_driver_statussystem call to eliminate
these dependencies.

See also: install_file_driver andget_file_driver_status System Call Reference

Commands such adtachdevice logicalnames anddeviceinfoall recognize
resident and loaded file driver IDs.

See also: Command Referender more information on these commands

28 Chapter 2 Writing Loadable File Drivers

File Driver Data Structures

When you write a file driver, you should become familiar with the loadable file
driver data structures:

Master loadable Loadable file driver job
file driver table e
File driver
Driver data table File driver
present code and data
flag
File driver
configuration
table
. —

OM02681

Figure 2-1. Loadable File Driver Data Structures

TheFile Driver Data Tablecontains file driver-specific data such as the ASCII
name, I/O task priority, etc.

TheFile Driver Configuration Tableontains the File Driver Dispatch Table and
the File Driver Validation Table.

TheFile Driver Info Tablecontains tokens for important BIOS objects used by the
file driver, and pointers to several internal BIOS interface procedures.

When you install a file driver usirigstall_file_driver, the file driver data

structures are entered into a BIOS internal data structuréMaseer Loadable File
Driver Tableat the appropriate entry point for the file driver ID. The
install_file_driver system call provides the only access to this structure. You can
load a file driver on top of an existing resident file driver at the same ID. The
loaded file driver takes precedence over the resident one. This provides a way to
update file drivers without regenerating the OS boot image.

Driver Programming Concepts Chapter 2 29

File Driver Data Table

Thedata_ptr parameter ifnstall_file_driver points to the file driver data table.
Most of this structure is returned by thet_file_driver_statussystem call. This
table should reside in a data segment and must have this format:

DECLARE loadable_fd_data_tbl STRUCTURE(
conn_entries WORD_16,
att_dev_stack_size WORD_16,
dev_desc_size WORD_16,
xface_mbox SELECTOR,
flags WORD_16,
buffer_size WORD_16,
file system BYTE,
io_task_prio BYTE,
name_length BYTE,
name(14) BYTE,
reserved(19) BYTE);

or

typedef struct {

UINT_16 conn_entries;
UINT_16 att_dev_stack_size;
UINT_16 dev_desc_size;
SELECTOR xface_mbox;
UINT_16 flags;
UINT_16 buffer_size;
UINT_8 file system;
UINT_8 io_task_prio;
UINT_8 name_length;
UINT_8 name[14];
UINT_8 reserved[19];

} LOADABLE_FD_DATA_TBL

Where:

conn_entries
Size, in bytes, of the connection object for this file driver.

att_dev_stack_size
Size, in bytes, of the attach interface procedure's stack.
dev_desc_size
Size, in bytes, of the device descriptor for devices attached to this file
driver.

30 Chapter 2 Writing Loadable File Drivers

xface_mbox
Token for a mailbox to use if you supply the attach interface
procedure. If 0, the BIOS-provided attach interface procedure and its
mailbox are used.

flags Control bits defined as follows:
Bit(s) Meaning
0 User object required
1 DUIBs required
2 Convert filenames to lower case
3-15 Reserved, setto 0
buffer_size

Default buffer size for EIOS read-ahead, write-behind buffers. This
value is a configurable option.

See also: EIOS buffer siz8ystem Configuration and
Administration
read-ahead, write-behinbhtroducing the iRMX
Operating Systems
file_system
Type of file system supported by this file driver, specifying the
DUIBs that can be used with this file driver (only meaningful if bit 1
is set in thélags field). Encode as follows:
Bit(s) File System Type
Physical
Stream
DOS
iIRMX Named (or other hierarchical)
Remote
EDOS
6-7 Reserved, setto 0
io_task_priority
Default priority for 1/O tasks associated with this file driver. For file
drivers that require DUIBs:

abrwdNDEF O

Value Meaning
0 To use the DUIB priority
not 0 To override the DUIB priority

For file drivers that do not use DUIBs, must be not 0.
name_length
Actual length of the name field (excluding blanks).

name Unique file driver name of up to 14 bytes (padded with blanks).

Driver Programming Concepts Chapter 2 31

Dynamic DUIBs

32

The DUIBs requiredlag in the file driver data table notifies the BIOS of file

drivers that do not use device drivers and therefore do not require DUIBs. When
the BIOS attaches to one of these file drivers, a dynamic DUIB is created instead.
The dynamic DUIB is deleted when the device is detached. File drivers that use
dynamic DUIBs must manage device attach requests so that a device is not allowe
to be attached twice. For example, the Remote file driver manages a linked list of
servers, where each server is associated with a dynamic DUIB.

For regular DUIBs, physical device names are restricted to 14 characters or less.
However, file drivers that use dynamic DUIBs may require device names much
longer than 14 characters. For these file drivers only, physical device names are
allowed to have a maximum length of 255 (the maximum number of characters in a
STRING).

To accommodate the extended physical device name, the BIOS creates an
attach_device IORS that is large enough to fit a full 255 character device name.
File drivers that use dynamic DUIBs obtain the extended device name from this
IORS as passed to the file driver attach_device interface procedure. The dynamic
DUIB only contains part of the device name, truncated to 14 characters, with the
full device name only available from the IORS. File drivers that use regular
DUIBs can obtain the device name from either the DUIB or the IORS. The
structure of the IORS passed to the FD attach_device interface is:

DECLARE ATTACH_DEVICE_INFOSTRUCTURE (

status WORD_186,
attach_iors_t TOKEN,
resp_mbox TOKEN,
duib_ptr POINTER,
dev_name_ptr POINTER);

or

typedef struct {

UINT_16 status;
SELECTOR attach_iors_t;
SELECTOR resp_mbox;
DUIB_STRUCT far * duib_ptr ;
UINT_S8 far * dev_name_ptr;

} ATTACH_DEVICE_INFO

Chapter 2 Writing Loadable File Drivers

Where:

status iIRMX exception code set by the file driver's attach interface
procedure before it completes. Only E_OK allows the attach to
complete successfully.

attach_iors_t
Token for the IORS sent back to the original caller of
rq_a_physical_attach_device

resp_mbox Token for the user's I/O response mailbox.

duib_ptr Pointer to the DUIB for the device being attached. If this file driver
does not require DUIBS, this is a pointer to a dynamic DUIB that has
been created for the duration of the attach.

dev_name_ptr
Pointer to the device name specified in the call to
rq_a_physical_attach_device The name can be up to 255 characters
long.

File Driver Types and DUIBs

Thefile_system field in the file driver data structure specifies the file driver

type. This field is used only if the file driver requires DUIBs. For these file
drivers, thefile_system field is used to match DUIBs that have the
corresponding bit set in the DUIBIe_driver field. Six types of file drivers

are defined so that file drivers can use all DUIBs in the OS at the time the driver is
configured or loaded:

ID Type Description

1 Physical No file system, the device is seen as a single file

2 Stream Stream /O drivers

3 DOS A native DOS file system

4 Named iIRMX Named volumes, and other file systems that support a

hierarchical directory structure

Remote Network file drivers, do not require DUIBs

EDOS Encapsulated DOS file system (DOS is used as the file
server locally)

o o1

Driver Programming Concepts Chapter 2 33

A DUIB can be attached to a file driver (using the logical or physical attach system
calls) when at least one bit in the DUIBIs_driver field matches a bit in the

file driver data structurile_system field. This changes the meaning of the
DUIB's file_driver field slightly. The bits do not correspond to specific file
drivers, but instead to file driver types. This semantic change solves two problems:

1. You don't need to modify standard DUIBs every time a new file driver is
added. Specifying the file driver type allows those DUIBs with a matching bit
to work with the new file driver.

2. The 8-biffile_driver field is no longer limited to eight distinct file drivers.

See also: DUIB and IORS: device driver interfaces, in this manual

File Driver Configuration Table

The file driver configuration table contains the two basic data structures associated
with every file driver (resident or loadable): the file driver dispatch table and file
driver validation table. The file driver dispatch table contains pointers to each of
the file driver interface procedures. The /O task for the device uses it to quickly
dispatch I/O requests. The file driver validation table contains a code for each of
the file driver interface procedures indicating whether it is supported by the file
driver, not supported, or not configured. This table is used by the synchronous part
of the BIOS.

Theconfig_ptr ~ parameter irinstall_file_driver points to the file driver
configuration table. If this parameter is a null pointer, an attempt is made to
uninstall the file driver. The configuration table has this format:

DECLARE loadable_fd_config_tbl STRUCTURE(
initialize POINTER, /* Dispatch Table */
io_task POINTER,
update POINTER,
attach_funct(4) POINTER,
io_funct(21) POINTER,

valid_request(21)BYTE), /* Validation Table */

or

34 Chapter 2 Writing Loadable File Drivers

typedef struct {
void far *
void far *
void far *
void far *
void far *
UINT_8

initialize;

io_task;

update;

attach_funct[4];

io_funct[21];
valid_request[21];

} LOADABLE_FD_CONFIG_TBL

Where:

initialize
Pointer to the file driver initialization procedure. A null pointer
means no initialization is required.

io_task Pointer to the 1/O task used with the file driver. A null pointer
specifies the BIOS-provided 1/O task.

update Pointer to the file driver update procedure.

attach_funct

Array of pointers to the four attach interface procedures.

io_funct An array of pointers to the 21 file /O procedures.

valid_request

Each byte specifies whether the corresponding file I/O procedure is
valid for this file driver. The possible values are:

Value
1

2

Driver Programming Concepts

Meaning

Configured; this file driver interface procedure is
available.

Not Supported; this file driver does not support this
interface procedure.

Not Configured, this interface procedure is supported,
but has been configured out.

Chapter 2 35

File Driver Info Table

36

Theret_info_ptr parameter imnstall_file_driver points to the file driver info
table, which is filled out by the BIOS. It provides access to several BIOS objects
and procedures that you may require for correct file driver operation and are also
used by the FD support code. To use the objects within this structure, copy them
into global variables of the same name.

DECLARE loadable_fd_info_tbl STRUCTURE(
conn_region SELECTOR,
conn_ext SELECTOR,
detach_device POINTER,
cancel_dev_io POINTER,
device_io POINTER);

or

typedef struct {

SELECTOR conn_region;
SELECTOR conn_ext;
void far * detach_device;
void far * cancel_dev_io;
void far * device_io;

} LOADABLE_FD_INFO_TBL

Where:

conn_region

Token for the global BIOS connection region. This region is used for
mutual exclusion around all connection management operations.

conn_ext Token for the global BIOS connection extension object.

detach_device
Pointer to the BIOS detach device procedure. This procedure is called
by the file driver when a device is physically detached.

cancel_dev_io
Pointer to the BIOS cancel I/O procedure. This is the dispatch for the
device driver'sancel_io procedure.

device_io Pointer to the BIOS device 1/O procedure. This is the dispatch for the
device driverqueue_io procedure. It should be called to perform all
I/O from the file driver.

Chapter 2 Writing Loadable File Drivers

File Driver Components

If you are designing a custom file driver, you may need to write your own version
of these file driver components:

« Initialization procedure
* 1/Otask

« File driver interface procedures

Initialization Procedure

This optional procedure performs any necessary file driver initialization. For
resident file drivers, the BIOS calls this procedure (for all the configured file
drivers) during 1/O system initialization. For loadable file drivers, this procedure is
called by the loadable job'sain module.

I/O Task Procedure

This procedure implements the 1/O task for the file driver. The I/O task accepts I/0O
requests from the synchronous part of the BIOS using the I/O interface mailbox
(created when the device is attached). The request is received in the form of an
IORS that contains a function code, and any other required information. Once an
IORS is received, the 1/O request is dispatched to the appropriate file driver
interface procedure based upon the function code.

The BIOS provides a generic I/O task procedure that is suitable for use by most file
drivers (resident and loadable), referred to as the BIOS 1/O task. Loadable file
drivers can use this task by specifying a null pointer indhask field of the

file driver configuration table.

Driver Programming Concepts Chapter 2 37

Update Procedure

This is the update procedure calledebyipdate or the update timeout expires for

a device. This procedure writes the contents of BIOS buffers and/or internal fnodes
to the 1/0 device. All currently open files are made consistent with the storage
device. This procedure has this syntax:

<fd_update> (dev_desc _t, iors_t, io_mbox);

Where:
fd_update Public name for the update procedure.
dev_desc_t

Token for the device descriptor for the device.
iors_t Token for the IORS.

io_mbox I/0 interface mailbox (for I/O task).

See also: fnode§,ommand Reference

File Driver Interface Procedures

Each file driver implements a set of file driver interface procedures. There are four
attach procedures, each with a standard set of parameters. Also, there are 21 file
I/O procedures with a standard set of parameters. The interface procedures are
called by the synchronous side of the BIOS to perform the requested file driver
function.

While it is not required that every file driver implement every interface procedure,
the more interface procedures implemented by a file driver, the more system
utilities and applications work with that file driver. In general, a file driver should
implement every interface procedure unless limitations of the file system itself
preclude certain operations. For instance, if the target file system does not have a
directory structure, it makes no sense to implement GET_DIRECTORY_ENTRY.

38 Chapter 2 Writing Loadable File Drivers

Choosing Public Symbols for File Driver Procedures

Each file driver interface procedure is given a unique public name. For resident
file drivers, choose the names to not conflict with existing public symbols within
the BIOS. Use these steps when creating the names for your file driver interface
procedures:

1.

Create a three or four letter abbreviation for the file driver. The existing
abbreviations used in the BIOS are: PHYS, STR, NAM, DOS, REM, and
EDOS.

Use this abbreviation as a prefix to each and every public symbol within the
file driver, for example: EDOS_READ, STR_UPDATE,
NAM_GET_DIR_ENTRY.

This should guarantee that the public symbols are unique within the BIOS, and will
not cause problems when the OS is built.

Attach Procedures

You will attach procedures without a pre-existing file connection. The function
codes for the file driver attach procedures are listed below, in the order they must
appear in the file driver configuration table.

Function Code Corresponding BIOS System Call
ATTACH_FILE rq_a_attach_file

CREATE_FILE rq_a_create_file
CHANGE_ACCESS rq_a_change_access
DELETE_FILE rq_a_delete_file

These procedures have this syntax:

CALL <attach_function_code> (conn_t, xface_mbox, iors_t, io_mbox);

Where:

attach_function_code

Function code (public procedure name) for one of the attach
procedures for your file driver.

conn_t Token for the connection object.

xface_mbox

Token for the 1/O task interface mailbox.

iors_t Token for the IORS.

io_mbox BIOS-provided I/O synchronization mailbox.

Driver Programming Concepts Chapter 2 39

File 1/0 Procedures

The function codes for the 21 file driver 1/O procedures are listed below, in the
order they must appear in the file driver configuration table.

Function Code Corresponding BIOS System Call
0 READ rq_a_read

1 WRITE rq_a_write

2 SEEK rq_a_seek

3 SPECIAL rq_a_special

4 ATTACH_DEVICE rq-a-physical_attach_device

5 DETACH_DEVICE rq_a_physical_detach_device

6 OPEN rg_a_open

7 CLOSE rq_a_close

8 GET_CONNECTION_STATUS rg_a_get connection_status

9 GET_FILE_STATUS rq_a_get file_status

10 GET_EXTENSION_DATA rq_a_get _extension_data

11 SET_EXTENSION_DATA rq_a_get_extension_data

12 NULL_CHANGE_ACCESS rq_a_change_access, with null path_ptr
13 NULL_DELETE_FILE rq_a_delete_file, with null path_ptr
14 RENAME rq_a_rename_file

15 GET_PATH_COMPONENT rq_a_get path_component

16 GET_DIRECTORY_ENTRY rq_a_get_directory_entry

17 TRUNCATE rg_a_truncate

18 DETACH rq_a_delete_connection

19 SET_FILE_STATUS rq_a_set file_status

20 RESERVED Reserved for future expansion

These interface procedures have this syntax:

CALL <io_function_code> (conn_t, file_t, iors_t, io_mbox,
resp_mbox, respond_p);

Where:

io_function_code
Function code (public procedure name) for one of the file I/O
procedures for your file driver.

conn_t Token for the connection object.

file_t Token for an internal fnode that describes the file. There is always an
internal fnode for a file; only the named file driver places external
fnodes on disk.

40 Chapter 2 Writing Loadable File Drivers

iors_t Token for the IORS.

io_mbox I/0 interface mailbox (I/O task).

resp_mbox Application response mailbox token.

respond_p Pointer to a flag indicating whether the I/O task should respond back

to the application.

Building a Loadable File Driver

A loadable file driver is built from modules linked together to form a single
loadable object module.

Main module
Configuration module

File driver code, data, and FDSC library modules

Main Module

Themain module initializes and installs the file driver. This module must also
uninstall the file driver when it is unloaded. When a file driver is loaded, the
initialization procedure in thmain module callsnstall_file_driver to install the
file driver configuration tables into the BIOS. Tiain module should perform
these steps in order:

1.
2.

Initialize any global data.

Allocate any required resources (segments, mailboxes, etc.). Delete the job on
any fatal error.

Callinstall_file_driver to install the file driver and obtain a file driver ID.

Wait at the job exit mailbox for a job deletion message fronsyhl®ad
command.

Callinstall_file_driver to uninstall the file driver.
Deallocate all resources.

Delete the loadable file driver job.

Driver Programming Concepts Chapter 2 41

After the file driver installs itself into the BIOS, it should perform these steps to
uninstall itself if unloaded by th&ysload -ucommand:

1.

5.

Create a job exit mailbox whesgsloadwill send a data message upon job
unload.

Catalog this mailbox in the current job, under the nBREXIT_MBX

Wait forever at the mailbox for the exit message, signifying the job is being
unloaded.

Callinstall_file_driver with the same data table pointer used to install, and a
null config_ptr to tell the BIOS to uninstall the file driver.

The job should now delete itself by callidglete joh

See also: install_file_driver, System Call Reference

Configuration Module

42

The configuration module is similar to the ICU fitabl.a38 This module
contains the file driver configuration table and file driver data table.

You can convert an existing resident file driver to a loadable file driver by
performing these steps:

1.
2.

Add amain module.

Convert all external interface procedures (those that appear in the file driver
configuration table) to far interfaces. This conversion is commonly done in
PL/M-386 or iC-386 using thsubsystem control.

Add a configuration module that contains file driver configuration and file
driver data tables.

Bind the file driver, configuration module, and main module together with the
FDSC to produce a module which is loadable usingystbadcommand.

Chapter 2 Writing Loadable File Drivers

File Driver Support Code Library

This section defines each FDSC utility procedure, including syntax and parameter

descriptions. You may use one of two compact model libralfiédib, which is
for file drivers that use local /O and device driversifdr.lib, which is for file
drivers that use remote I/O (dynamic DUIBs, no device driver, no
blocking/deblocking). FDSC procedures perform these functions, which are

described on the next pages:

Usage
Buffer managementl{d.lib only)

Buffered I/O (Ifd.lib only)
Detach device

Get file status

Get/set extension data
Open/close connection
Open/close/seek file

Connection management

Double-precision math support

Doubly-linked list management

EIOS buffer management

Filename management

Driver Programming Concepts

Procedure(s)
dealloc_buff_list
alloc_buff_list
get_buff
mark_buff
write_thru_buff_list
update_buff_list
buffered_io
deblock_io

common_dealloc_dev_desc
common_finish_device
common_detach_device (far)
num_get file_st (far)
nam_get_ext data (far)
nam_set_ext_data (far)
common_close
common_open
num_open, num_close (far)
num_seek (far)
force_detach
link_conn
unlink_conn
common_get_conn_st (far)
dsmul, dssmul
dsdiv, sdsdiv
sdsmod
dsdivrnd
enter_dll
enter_nk_dll
lookup_dll
remove_dll
flush_eios_buffers
delete_eios_objects
lower_case
names_match

Chapter 2 43

Usage Procedure(s)

Fnode management mark_fnode
IORS management respond_seg
Null procedures null_fd_init, no_att_dev

no_attach, null_update

alloc_buff_list
Allocates buffers and invalidates them. Returns head of buffer list.
head_t = alloc_buff_list (duib_p, status_p);
head_t Token for head of buffer list (buffer token).
duib_p Pointer to DUIB for this device.
status_p Pointer to location where condition code returns.
See also: Condition codeRrogramming Techniques
If duib.num_buffers =0 orduib.dev_gran =0 , this procedure returns a
null list.
buffered_io
Handles 1/O that may need deblocking and/or concurrency.

buffered_io (dev_desc_t, funct, count, caller_buff_p,
dev_loc, dirty, iors_t, io_mbox, resp_mbox);
dev_desc_t
Token for device descriptor segment.

funct Function code F_READ or F_WRITE, otherwise implies unbuffered
1/0.
count Number of bytes to transfer.

caller_buff_p
Pointer to buffer list. Null value implies unbuffered 1/O.

dev_loc Device location to start transfer.

44 Chapter 2 Writing Loadable File Drivers

dirty How dirty to mark buffers:

Value Meaning

B_NOT _DIRTY Buffer is not dirty
B_MILD_DIRTY Buffer is mildly dirty
B_VERY_DIRTY Buffer is very dirty

B_DIRTY Buffer is mildly or very dirty
B FLUSH THRU Flush buffer through 1/O errors
iors_t Token for IORS.

io_mbox Token for I/O interface mailbox.

resp_mbox Token for callers response mailbox. If 0, synchronous I/O. If not O,
supports concurrent/overlapped I/O by allowing actual response to
resp_mbox and early return.

Concurrent I/O is allowed only if the request starts on a sector boundary, and is an
integral number of sectors long.
common_close
Closes the specified connection.
common_close(conn_t, status_p);
conn_t Connection object token.

status_p Pointer to location where condition code returns.

common_dealloc_dev_desc
Deallocates a device descriptor.
common_dealloc_dev_desc(dev_desc_t);

dev_desc_t Device descriptor segment token.

Driver Programming Concepts Chapter 2 45

common_detach_device
Detach a device.

common_detach_device (dev_conn_t, hard, det_resp_seg,
det_resp_mbox);

dev_conn_t
Device connection token.

hard If TRUE, hard detach device, otherwise soft detach device.

det_resp_seg
Response segment token.

det_resp_mbox
Response mailbox token
common_finish_device
Performs final processing on a device, and deletes the device descriptor.

common_finish_device(dev_desc _t, iors_t, io_mbox);

dev_desc_t
Token for device descriptor segment.

iors_t Token for IORS.

io_mbox Token for I/O interface mailbox.

common_open
Opens a connection.

common_open (conn_t, mode, share, status_p);

conn_t Connection object token.
mode File access mode
Value Meaning
1 Read
2 Write
3 Read AND write

46 Chapter 2 Writing Loadable File Drivers

share File share mode

Value Meaning

0 None

1 Share with readers
2 Share with writers
3 Share with all

status_p Pointer to location where condition code returns.

dealloc_buff_list
Deallocates a buffer list.
dealloc_buff_list(buff_t);
buff_t Head of singly-linked buffer list. 0 specifies a null list.

delete_eios_obj
Deletes EIOS-created objects in the supplied structure.
delete_eios_obj (eios_obj_p);

eios_obj_p Pointer to EIOS object.

enter_dll

Inserts a new entry on a doubly-linked and circular list. Returns new header and
moves the old header to the forward link.

new_header_t = enter_dll (header_t, entry_t, key,
links_offset);

new_header_t
Returns new header token for the new head of the list.

header t Token for the head of the list.

entry_t Token for the entry to be linked.
key A value that uniquely identifies the element.
links_offset

Specifies the location of the links

Driver Programming Concepts Chapter 2 47

The list is identified by a single pointer to an element; and this pointer is the
header. All links and the header are SEGMENT tokens. Links are a given offset
from the beginning of an entry segment, and take the form:

link_for SEGMENT,

link_back SEGMENT,

key WORD_32; /*not used by non-keyed
procedures*/

A header of 0 identifies an empty list.

The enter and remove system calls return a new header token, since the actual
header may change.

enter_nk_dll
Insert a new entry on a non-keyed doubly-linked list.

new_header_t = enter_nk_dll (header _t, entry t,
links_offset);
new_header_t

Returns token for new head of list.
header t Token for head of the list.

entry_t Token for entry to be linked.

links_offset
Specifies the location of the links.

flush_eios_buffers

Writes partially filled EIOS buffers. If necessary, sets a flag to indicate whether
pending driver 1/O requests should be canceled or allowed to complete before
closing connection.

cancel_conn_io = flush_eios_buffers (conn_t, file_t, iors_t,
io_mbox);
cancel_conn_io
Indicates to caller whether to cancel queued driver requests associated
with this connection.

conn_t Token for connection to be closed.
file_t Token for file descriptor segment.
iors_t Token for local IORS.

io_mbox Token for internal synchronization mailbox.

48 Chapter 2 Writing Loadable File Drivers

force_detach
Forces a connection to be detached.
force_detach(conn_t);

conn_t Token for connection object.

get_buff
Finds a buffer to use, if possible, one that matches.

buff_t = get_buff(buff_list_p, dev_loc, iors_t, io_mbox);

buff_list_p

Pointer to variable holding token of head of list.
dev_loc Device location the buffer should contain.
iors_t Token for IORS.

io_mbox Token for I/O interface mailbox.

This procedure attempts to find a buffer that contains the value specified in
dev_loc . If found, this buffer moves to front of list. If not, the least recently used
non-dirty buffer moves to the front.

Each timeget_buff is called, it may recycle any previously used buffer.

link_conn
Links a connection with its neighbors on a file.
head_t = link_conn(conn_list, conn_t);
head_t Token for new head of connection list.
conn_list Token for head of connection list.

conn_t Token for connection object.

Driver Programming Concepts Chapter 2 49

lookup_dll

Attempts to lookup an entry on a doubly-linked list, given its key. |ableup_dll
algorithm looks at the most recent entry first.

entry_t = lookup_dll (header _t, key, links_offset);
entry_t Token for the linked entry.
header t Token for the head of the list.

key Uniquely identifies the element.

links_offset
Specifies the location of the links.

This procedure returns 0 if entry is not found, otherwise it returns the entry token.

mark_buff
Marks a buffer as dirty and checks for write protect flag.
mark_buff(buff_t, how_dirty, dev_desc_t, iors_t, io_mbox);
buff_t Buffer segment token.
how_dirty How dirty to mark buffers:

Value Meaning

B_NOT _DIRTY Buffer is not dirty
B_MILD_DIRTY Buffer is mildly dirty
B_VERY_DIRTY Buffer is very dirty

B_DIRTY Buffer is mildly or very dirty
B FLUSH THRU Flush buffer through 1/O
errors
dev_desc_t
Token for device descriptor segment.
iors_t Token for IORS.

io_mbox Token for I/O interface mailbox.

This procedure must be called after modifying the contents of a buffer to insure it
gets updated.

On the first access to a device, in any service request, this procedure checks to see
if the volume is write protected.

50 Chapter 2 Writing Loadable File Drivers

remove_dll

Removes an entry from a doubly-linked list. Returns a new header, which may
have changed. If this is the only entry, 0 returns (empty list).

new_header_t = remove_dll (header_t, entry_t, links_offset);

new_header_t
Token for the new head of the list.

header t Token for the head of the list.

entry_t Token for the entry to be removed.

links_offset
Specifies the location of the links.
respond_seg
Sends an IORS to a response mailbox.
respond_seg(resp_mbox, iors_t, status, unit_status);

resp_mbox Caller's response mailbox token. If not O, this procedure fills out and
sends the IORS, then deletes the mailbox and IORS. If 0, the IORS is
deleted if it exists.

iors_t Token for IORS.
status Condition code to return.
unit_status

Unit-status code to return.

unlink_conn
Removes a connection from a connection list.
head_t = unlink_conn(conn_list, conn_t);
head_t Token for new head of connection list.
conn_list Token for head of connection list.

conn_t Token for connection object.

Driver Programming Concepts Chapter 2 51

update_buff_list

Updates a buffer list by writing out dirty buffers.

update_buff_list(buff_t, flags, iors_t, io_mbox);

buff_t
flags

iors_t

io_mbox

Token for head of buffer list.
Mask for the buffer's dirty flag:

Value Meaning

B_NOT _DIRTY Buffer is not dirty
B_MILD_DIRTY Buffer is mildly dirty
B_VERY_DIRTY Buffer is very dirty

B_DIRTY Buffer is mildly or very dirty

B FLUSH THRU Flush buffer through 1/O errors

Token for IORS.

Token for I/O interface mailbox.

The buffer list order is unchanged. If an I/O error occurs, the update stops unless
flags contains B_FLUSH_ THRU.

write_thru_buff_list

52

Checks for writing through cached buffers.

write_thru_buff_list(buff_t, funct, low_range, count, iors_t,

buff_t

funct

low_range
count
iors_t

io_mbox

io_mbox);
Token for head of cache buffer list.

F_READ or F_WRITE: function about to be performed. If F_READ,
causes buffers to be updated. If F_WRITE, just marks them non-dirty
and invalid.

Lowest device location of transfer.
Number of bytes involved in transfer.
Token for IORS.

Token for I/O interface mailbox.

This procedure assumes low_range is sector boundary, count is for an integral
number of sectors.

Chapter 2 Writing Loadable File Drivers

Example File Driver Algorithms

This section contains example algorithms for typical file driver actions. In this
example, a hierarchical file system is used. These examples include algorithms for
the public file driver interface procedures and procedures that they may call.

Attach Device

Read the volume label:
Call buffered_io to read the label (boot sector, etc.).
Verify the volume is a supported file system.
If volume not recognized:
Return, status = E_ILLEGAL_VOLUME.
Initialize the device descriptor.
Call low_attach to attach to the volume root directory.
Call build_connection to initialize the new connection.

Attach File

Call scan_path to parse the pathname and attach the file.
Determine if the user has access to the file, detach if no access.
Call build_connection to initialize the new connection.

Change File Access

Call scan_path to parse the pathname and attach the file.
Determine if the user has access to the file, detach if no access.
Call low_change_access to change the file access.

Detach the temporary attach.

Close File

Call flush_eios_buffers to flush any dirty buffers.
Call common_close to close the connection.
If error:
Return status.
If there are pending I/O requests (From flush_eios_buffers):
Call cancel_dev_io to notify device driver.
Call buffered_io (F_CLOSE).
Call delete_eios_obj to delete any EIOS buffers associated
with the connection.

Driver Programming Concepts Chapter 2 53

Create File

Call scan_path to parse the pathname and attach the parent
directory.
If pathname is null:
If parent is a directory:
Call low_create to create an unnamed temporary file.
Mark the temp file for deletion upon last detach.
Detach the parent directory.
Call low_change_access to change the file access.
Else this is an existing file:
Determine if the user has access to the file, detach if
no access.
Else create a normal file:
Determine if the user has access to the parent directory,
detach if no access.
Call low_create to create a file, either a directory or a
data file.
Call low_change_access to change the file access.
Make a new directory entry in the parent directory.
Detach the parent directory.
Call build_connection to initialize the new connection.

Delete File

Call scan_path to parse the pathname and attach the file.

Call compute_access to determine if the user has delete access to
the file, detach if no access.

Call low_delete to delete the file.

Call low_detach to detach the file.

Detach Device
This procedure, common_detach_device, is provided in the FDSC library.

Obtain the device descriptor from the connection.
If the device is marked as detaching:
Call respond_seg with E_FEXIST, return.
If a soft detach:
If there are outstanding connections to the device:
Call respond_seg with E_OUTSTANDING_CONNS, exit.
Mark device descriptor as detaching.
Call force_detach to detach the device.
Else a hard detach:
Call traverse_detach to delete all connections to the device.

54 Chapter 2 Writing Loadable File Drivers

Detach File

Decrement the file node's connection count.
If there are no more connections to the file:
If the file is marked for deletion:
Call Truncate to truncate the file to 0 bytes.
Call mark_fnode to deallocate the directory entry.
Else
Call Truncate to adjust file to it's final size.
Call update_fnode to write the new information to disk.
Delete the internal fnode.
Else just update the file:
Call update_fnode to write the new information to disk.
Decrement the device descriptor connect count.
If there are no more connections to this device:
Call common_finish_device to close the device.

Get Connection Status
This procedure, common_get_conn_st, is provided in the FDSC library.

Copy 9 bytes of connection info from the connection to the IORS.
(starting at conn.supp_opt.)

Copy the connection flags to the IORS.

Return, status = E_OK.

Get Directory Entry

If file is not a directory:
Return, status = E_FTYPE.
If connection does not have read access:
Return, status = E_FACCESS.
If connection file pointer is beyond EOF:
Return, status = E_DIR_END.
Call low_dir_entry to obtain the requested directory entry.

Get Extension Data

This procedure, nam_get_ext_data, is provided in the FDSC library.

Compute the number of extra bytes at the end of the internal fnode:
connection.fnode_size NAMED_FNODE_SIZE.

Copy the bytes to the IORS.

Return, status = E_OK.

Driver Programming Concepts Chapter 2 55

Get File Status
This procedure, num_get_file_st, is provided in the FDSC library.

Fill in the file information:
Copy 7 bytes from the internal fnode (at file.num_conn) to
the IORS:
Copy the device name from the DUIB to the IORS.
Fill in the extended information:
Copy the fnode number and id_count from the fnode to the
IORS.
Copy 24 bytes from the internal fnode (at file.type) to the
IORS.
Copy the volume name and volume flags from the device
descriptor.
Copy the accessor list from the fnode to the IORS.
Return, status = E_OK.

Get Path Component

If file is the root directory:

Return null filename, status = E_OK.
If file is marked for deletion:

Return null filename, status = E_FNEXIST.
Return the filename contained in the internal fnode.

Null Change File Access

If the connection does not have change access OR the file is marked
for deletion:

Return, status = E_FACCESS.
Call low_change_access to change the file access.

Null Delete File

If caller has delete access:

Call low_delete to delete the file.
Else

Status = E_FACCESS.

56 Chapter 2 Writing Loadable File Drivers

Open File

Obtain the mode byte from the lower 8 bits of the IORS subfunct.

Obtain the share byte from the upper 8 bits of the IORS subfunct.

If file type is not DATA and mode is not SHARE_READER or SHARE_ALL:
Return, status = E_SHARE.

Call common_open to open the connection.

If error:
Mark map_valid field in connection invalid (=0).

Read File

If connection file pointer is past EOF:
Return, status = E_OK, actual = 0.
WHILE there is more data to read:
Call map_file to get the physical disk address of the read
request.
Call buffered_io to read from the device.
Update file pointer, byte count, and data_block
If a response mailbox was specified:
Call rg_send_message to send the IORS back to the caller.
Call mark_fnode to update the last access time of the file.

Rename File

If caller does not have delete access:
Return, Status = E_FACCESS.
Call scan_path to parse the pathname and attach the new parent
directory.
Attach to the old parent directory.
Check if legal rename:
Call compute_access to determine if caller has access to the
new parent.
If trying to rename any system or special files:
Return Status = E_FACCESS.
If either the file or it's parent are marked for deletion:
Return Status = E_FNEXIST.

Driver Programming Concepts Chapter 2

57

If file to be renamed is a directory, check for a circular
rename:
If new parent the same as old parent, OK.
Call low_dos_attach to get another attach to new
parent.
Backup through pathname to root directory:
If the parent directory is the same as the
directory being renamed:
Return Status = E_ILLOGICAL_RENAME.
Attach to next parent directory.
Detach current parent.
If old parent is not the same as the new parent:
Remove file from old parent.
Make new directory entry in new parent.
Else
Update directory entry in parent with new filename.
Call low_dos_detach to detach the old parent.
Call low_dos_detach to detach the new parent.

Seek File
This procedure, num_seek, is provided in the FDSC library.

If the connection is not open:
Return, status = E_CONN_NOT_OPEN.
DO CASE seek mode (in iors.subfunct)

1: Subtract seek_loc from current file pointer.

2: Set current file pointer to seek_loc exactly.

3: Add seek_loc to current file pointer.

4: Set current file pointer to EOF minus seek_loc.

Mark file mapping invalid (conn.map_valid = 0).

Set Extension Data
This procedure, nam_set_ext_data, is provided in the FDSC library.

Compute the number of extra bytes at the end of the internal fnode:
connection.fnode_size NAMED_FNODE_SIZE.

If request is larger than the available area for extension data:
Return, status = E_PARAM.

Copy the bytes from the IORS to the internal fnode.

Call mark_fnode to update the file's last modified time.

Return, status = E_OK.

58 Chapter 2 Writing Loadable File Drivers

Set File Status

Obtain the pointer to the set_fs structure from the IORS.
If set_fs.func_code has change owner bit set:
If the requesting user has access:
Set the file owner to the new owner.
If set_fs.func_code has the change create time bit set:
If the requesting user has access:
Set the file create time to the new time.
If set_fs.func_code has the change access time bit set:
If the requesting user has access:
Set the file access time to the new time.
If set_fs.func_code has the change modification time bit set:
If the requesting user has access:
Set the file last modified time to the new time.
If any changes have been made to the fnode:
Mark the fnode dirty.
If the access time was not set above:
Set the last access time to now.

Special

If the subfunction is GET_DISK_TAPE_DATA:
Fill return structure with the pertinent data.
Else If the subfunction is GET_DEVICE_FREE:
Fill the return structure with the device free space.
Else If the connection is not a device connection:
Return status = E_NOT_DEVICE_CONN
Call buffered_io (F_SPECIAL) to pass the request on to the device
driver.

Truncate File

If file is the root directory:
Return Status = E_OK.

If connection file pointer is at or beyond End-Of-File:
Return Status = E_OK.

While there are volume blocks to truncate:
Deallocate a volume block.

If there have been changes to the file:
Call mark_fnode to update the file.

Driver Programming Concepts Chapter 2

59

Update Device

DO: Traverse all fnodes linked to the device descriptor, update any
dirty ones.
If device is not write protected:
Call update_fnode to write fnode if dirty.

Else:
If the fnode is dirty:
Call buffered_io to read in a fresh copy of the fnode
from disk.
Mark fnode not dirty.
If any error:

Return
If device is not write protected:
Call update_buff_list to write out any dirty buffers.

Write File

If the connection file pointer is beyond EOF:
Call make_sparse to add sparse space to the file.
Call alloc_file to allocate the required number of volume blocks to
the file.
WHILE there is more data to write:
Call buffered_io to write the data.
Update file pointer, byte count, and data_block.
Call map_file to get the physical disk address of the read
request.
If a response mailbox was specified:
Call rg_send_message to send the IORS back to the caller.
Call mark_fnode to update the last modified time of the file.

|:| Note

The remaining algorithms are for low-level procedures that are
only called by the algorithms previously described.

60 Chapter 2 Writing Loadable File Drivers

Build Connection

Initialize the connection with:
File driver ID.
flags, access, ch_access (parameters to this procedure).
fnode size (from device descriptor).
fnode token.
I/O interface mailbox.
Call link_conn to link the connection to the fnode.

Close Connection
This procedure, common_close, is provided in the FDSC library.

If the connection is not open:

Return, status = E_CONN_NOT_OPEN.
Decrement file readers/writers as necessary.
Adjust share information in the fnode.

Set the connection open mode/share to closed.

Open Connection
This procedure, common_open, is provided in the FDSC library.

If the connection is a device connection:
Return, status = E_NOT_FILE_CONN.
If the connection is not active:
Return, status = E_FTYPE.
If the connection is already open:
Return, status = E_CONN_OPEN.
If mode is SHARE_READER and connection does not have read access:
Return, status = E_FACCESS.
If mode is SHARE_WRITER and connection does not have write access:
Return, status = E_FACCESS.
If there is a readers/writers conflict:
Return, status = E_SHARE.
If SHARE_READER:
Increment fnode num readers.
If SHARE_WRITER:
Increment fnode num writers.
Update the connection with share and mode info.
Set the connection file pointer to zero (Implicit seek to zero on
open).

Driver Programming Concepts Chapter 2

61

Low Attach

Call lookup_dll to determine if the file is already attached
If file is already attached:
If marked for deletion:
Return status = E_FNEXIST.
Else
Increment file and device descriptor connect counts.
Return the file token.
Else file is not attached:
Create an internal fnode.
Increment the device descriptor connect count.
Return the file token.

Low Change Access

Map the requested iRMX access rights to the target file system
access rights.

Update the internal fnode with the new rights.

Call mark_fnode to write the fnode to disk.

Low Delete

If file is the root directory or file type is system/special:
Return, status = E_FACCESS.
If file is a directory, make sure the directory is empty:
WHILE there are more directory entries to read:
Call low_dir_entry to get a directory entry.
If the dir entry fnode number is not zero (not a empty
entry):
Return, status = E_DIR_NOT_EMPTY.
Call remove_from_parent to delete the file directory entry in the
parent.
Call mark_fnode to mark the file for deletion.

Low Detach
Call the external DETACH_FILE interface procedure.

62 Chapter 2 Writing Loadable File Drivers

Low Create

Create an internal fnode.
Initialize the fnode with file type, granularity, owner.
Pre-allocate space in the file if requested:
If requested size is less than the current file size:
Call Truncate.
Else
Call Alloc_file to add blocks to the file.
Call mark_fnode to update the directory entry.
If error:
Delete the internal fnode.
Increment the device descriptor connect count.
Return the file token.

Low Get Dir Entry
This function is called from READ and GET_DIR_ENTRY.

If count or file pointer is not a multiple of 16 (size of a
directory entry):
Return, status = E_SUPPORT.
WHILE there are more directory entries to read:
Call read_file to get a directory entry.
If at the end of the directory:
If called from READ:
Return status = E_OK, actual = 0.
Else
Return status = E_DIR_END.
Update file pointers.
Convert the file system directory entry into the iRMX OS
format (14 bytes plus fnode number).

Driver Programming Concepts Chapter 2

63

Low Scan Path
This function traverses a full file pathname through the directory structure.

DO FOREVER: scan loop:
If the file is marked for deletion:
Return, status = E_FNEXIST.
Call get_path_component to obtain the next part of the
pathname
If the returned path is null, done:
Return, status = E_OK.
If the path component begins with a "' (carat, up arrow):
If at the root fnode, ignore.
Call attach_parent to attach to this file's parent.
Call low_detach to detach this file.
Else this is a normal (filename) component:
If the file type is not a directory
Return, status = E_FTYPE; must be a directory.
Call find_name to lookup the filename in the parent
directory.
If couldn't find the filename in the directory:
Return, status = E_FNEXIST.
Call low_attach to attach to the filename.
Call low_detach to detach the parent.

Map File

This function computes the physical (disk) address of a file, given a logical
address. The algorithm is highly dependent on the structure of the file system.

Scan Path

If the device is marked detaching:
Return status = E_DEV_DETACHING.
If the first character of the pathname is a '$"
Remove the '$".
Else If the first character of the pathname is a '/":
Use the root directory as the prefix.
Call low_scan_path to complete the scan.

64 Chapter 2 Writing Loadable File Drivers

DUIB and IORS:
Device Driver Interfaces

A device driver transforms general instructions from the I/0O System into specific
instructions to send to the device. This chapter discusses the interfaces that a
device driver uses in the process.

« The interface between the device driver and the I1/O System : the Device-unit
Information Block (DUIB) and I/0 Request/Result Segment (IORS) data
structures

- The interface to the device itself, which is device specific

The majority of this chapter is dedicated to the DUIB and IORS structures. This
chapter defines the fields of these structures for PL/M or C, and indicates which of
these fields are used by the three types of device drivers.

BIOS

| Interface
between
7| the device

driver and

| the I/O
| System

| (the same

| for all
device

| drivers)

—————

Device
driver

| Interface
between

[— the device

| driver and
| the device
| unit

| (varies

| depending
on the

| device)

—————

Figure 3-1. Device Driver Interfaces

Driver Programming Concepts

Device

— unit

W-3201

Chapter 3

65

Interface Between a Device Driver and the 1/O
System

The interface between the device driver and the I/O System consists of two data
structures, the DUIB and IORS. The DUIB contains device-related information;
the IORS defines I/O requests. Through the DUIB for a device-unit, the 1/0
System can access the appropriate high-level device driver procedure or device-
specific driver procedure. Drivers then perform operations based upon information
provided by the I/O System in the IORS.

— [

|
| Device-unit) | Interface)
BIOS information Device between Device
| | block driver the device unit
| (DUIB) | | driverand
the device
| | 1/O request/ | |
| | resuilt |
segment
| | (IORS) :
| \i
DUIB IORS
The DUIB contains the The IORS contains information
addresses of one of the about the 1/O request that a task
following sets of routines: has made and about the unit on
which the I/O operation is to be
Device driver routines done.
(for custom drivers)
Device driver support routines
(for common, random access,
and terminal drivers)
W-3202

Figure 3-2. 1/0O System and Device Driver Interface

66 Chapter 3 DUIB and IORS: Device Driver Interfaces

DUIB Data Structure Definition

The DUIB is the primary interface between the device driver and the I/O System.
Each device-unit has its own DUIB. Each DUIB contains one pointer to a Device

Information (DINFO) table and another to a Unit Information (UINFO) table.
The DUIB is defined in PL/M or C:

DECLARE
name (14)
file_drivers
functs
flags
dev_gran
dev_size
device
unit
dev_unit
init_io
finish_io
gueue_io
cancel_io
device_info_ptr
unit_info_ptr
update_timeout
num_buffers
priority
fixed_update
max_buffers
reserved

or

Driver Programming Concepts

DUIB STRUCTURE(

BYTE,
WORD_ 16,
BYTE,
BYTE,
WORD_16,
WORD_32,
BYTE,
BYTE,
WORD_ 16,
WORD_32,
WORD_32,
WORD_32,
WORD_32,
POINTER,
POINTER,
WORD_16,
WORD_16,
BYTE,
BYTE,
BYTE,
BYTE)

Chapter 3

67

typedef struct {

UINT_8 name [14];
UINT_16 file_drivers;
UINT_8 functs;
UINT_8 flags;
UINT_16 dev_gran;
UINT_32 dev_size;
UINT_8 device;
UINT_8 unit;
UINT_16 dev_unit;
UINT_32 init_io;
UINT_32 finish_io;
UINT_32 queue_io;
UINT_32 cancel_io;
UINT_8 * device_info_ptr;
UINT_8 * unit_info_ptr;
UINT_16 update_timeout;
UINT_16 num_buffers;
UINT_8 priority;
UINT_8 fixed_update;
UINT_8 max_buffers;
UINT_8 reserved;

} DUIB_STRUCT

Where:

name The DUIB name. This name uniquely identifies the device-unit to the

I/O System. Use only the first 13 bytes. The fourteenth is used by the
I/O System. Names with less than 14 characters are extended with
spaces.

The name is assigned as part of the driver configuration process. You
specify the DUIB name when attaching a unit using the
a_physical_attach_devicesystem call. Device drivers do not read or
write this field.

68 Chapter 3 DUIB and IORS: Device Driver Interfaces

file_drivers
Specifies which file driver(s) can attach this device-unit:

Bit Driver No. Driver

5 6 EDOS

4 5 Remote

3 4 Named

2 3 DOS

1 2 Stream

0 1 Physical

See also: file driver types and duibs, in this manual
functs Specifies the valid I/O function(s) for this device-unit:

Bit Function

7 close

6 open

5 detach device (always set)

4 attach device (always set)

3 special

2 seek

1 write

0 read

To provide accurate status information, this field should indicate the
device's ability to perform the I/O functions. Each device driver must
be able to either perform the function or return a condition code
indicating the inability to perform that function. Device drivers do
not read or write this field.

Driver Programming Concepts Chapter 3 69

70

flags

See also:

dev_gran

dev_size

device

unit

This field does not apply to PC-AT ROM BIOS-based diskette driver.
Specifies characteristics of diskette devices:

Bits Value Meaning

7-5 0 Reserved; set to 0.

4 0 Standard diskette, for MB | only
1 Uniform diskette or not a diskette
0

1

Quad density
Double density

For 8 inch diskettes, set to O

Single-sided
Double-sided

Single density
Not single density

O PO

Disk
Size Bitl Bit3
3.5D 1
350 1
525D 1
525Q 1
8S 0
1

8D

©Coorokr

0 0 This field is undefined
1 Bits 7-1 are valid

Supporting the standard diskette format, in this manual

Specifies the device granularity in bytes. This field applies to random
access devices, and to some common devices such as tape drives. It
specifies the minimum number of bytes of information the device
reads or writes in one operation. If the device is a disk or tape drive,
set to the sector size for the device. Otherwise, et to

Specifies the number of bytes of information the device-unit can store.

Specifies the device number of the device with which this device-unit
is associated. Device drivers do not access this field.

The unit number of this device-unit. This distinguishes the unit from
the other units of the device.

Chapter 3 DUIB and IORS: Device Driver Interfaces

dev_unit

init_io

finish_io

gqueue_io

cancel_io

The device-unit number. This number distinguishes the device-unit
from the other units in the entire hardware system. Device drivers can
ignore this field.

Specifies the offset address of the init_io procedure associated with
this unit (the base portion is the driver code segment). Custom device
drivers must supply this procedure and the finish_io, queue_io, and
cancel_io procedures. For common, random access, and terminal
drivers, the procedures are supplied with the I/O System. For
loadable device drivers, this field specifies the driver type. Device
drivers do not access this field.

Specifies the offset address of the finish_io procedure associated with
this unit (the base portion is the driver code segment). Device drivers
do not access this field. For loadable drivers, this field specifies the
driver type.

Specifies the offset address of the queue_io procedure associated with
this unit (the base portion is the driver code segment). Device drivers
do not access this field. For loadable drivers, this field specifies the
driver type.

Specifies the offset address of the cancel_io procedure associated with
this unit (the base portion is the driver code segment). Device drivers
do not access this field. For loadable drivers, this field specifies the
driver type.

See also: Making a device driver loadable, in this manual

device_info_ptr

Pointer to a structure containing additional information about the
device: the DINFO table. Each common, random access, and
terminal device driver requires a DINFO table in a particular format.

See also: DINFO table structure

When writing a custom driver, you can place information in the
DINFO table according to the needs of the driver. Spedifjoa this
parameter if the associated device driver does not use this field.

Driver Programming Concepts Chapter 3 71

unit_info_ptr
Pointer to a structure containing more information about the unit: the
UINFO table. Random access and terminal device drivers require a
UINFO table in a particular format.

See also: UINFO table structure

When writing a custom device driver, place information in this
structure according to the needs of the driver. Spedfif the
associated device driver does not use this field.

update_timeout
Specifies the number of system clock ticks the I/O System must wait
before writing a partial sector after processing a write request for a
disk device. Except for disk device drivers, set to OFFFFH. This field
applies only to the device-unit specified by this DUIB; the field is
independent of updating done either because of the value in the
fixed_update field of the DUIB or thea_updatesystem call.
Device drivers do not access this field.

num_buffers
A 0 indicates the device is not a random access device. Otherwise,
the number of buffers afev_gran size that the I1/0O System allocates.
The I/O System uses the buffers for data blocking and deblocking, so
that data is read or written beginning on sector boundaries. The
random access high-level device driver procedures guarantee that no
data is written or read across track boundaries in a single request.
Device drivers do not access this field.

See also: UINFO table structure for random access driver

priority Specifies the priority of the 1/O System service task for the device.
Device drivers do not access this field.

fixed_update
TRUE indicates that the fixed update option was selected for the
device-unit when the driver was configured, FALSE indicates
otherwise. This option causes the I/O System to finish any write
requests that had not been finished earlier because less than a full
sector remained to be written. Fixed updates are performed
throughout the entire system whenever a time interval (specified
during configuration) elapses. This is independent of the updating
indicated for a particular device by thedate_timeout field of the
DUIB or the updating of a particular device indicated by the
a_updatesystem call of the I/O System. Device drivers do not access
this field.

Chapter 3 DUIB and IORS: Device Driver Interfaces

max_buffers
Specifies the maximum number of buffers the EIOS can allocate for a
connection to this device-unit when the connection is opened by a call
tos_open The value in this field is specified during driver
configuration. Device drivers do not access this field.

Using the DUIBs

Clusters of DUIBs for all configured devices are contained in tables set up during
configuration time or by thimstall_duibs system call at run time.

See also: DUIB nameSystem Configuration and Administration
Preparing an initialization front-end, in this manual
physnamecommand to obtain information about your system's
available DUIBsCommand Reference

To allow the I/O System to communicate with files on a device-unit, first attach the
unit by invoking thea_physical_attach_devicesystem call. The DUIB name
specified in the call selects the DUIB for the device-unit from the DUIB table.

See also: a_physical_attach_deviceSystem Call Reference

Whenever the application software makes an 1/0 request to the attached device-
unit, the I/O System determines the characteristics of that unit by examining the
associated DUIB. The I/O System looks at the DUIB and calls the appropriate
device driver or device driver support procedures listed there to process the 1/0
request.

If you want the I/O System to assume different characteristics at different times for
a particular device-unit, you can supply multiple DUIBs, each containing identical
device number, unit number, and device-unit number parameters, but a different
DUIB name. Before you can switch the DUIBs for a unit, you must detach the
unit.

Figure 3-3 illustrates this concept. It shows six DUIBs, two for each of three units
of one device. The main difference between each pair of DUIBs in this figure is
the device granularity parameter, which is either 128 or 512. With this setup, a
user can attach any unit of this device with one of two device granularities. In
Figure 3-3, units 0 and 1 are attached with a granularity of 128 and unit 2 with a
granularity of 512. To change this, the user can detach the device and attach it
again using the other DUIB name.

Driver Programming Concepts Chapter 3 73

74

NAME = UNITA
DEV_GRAN =128

NAME = UNITAL
DEV_GRAN =512

DEVICE =1 DEVICE =1
UNIT =0 UNIT =0
DEV_UNIT =6 DEV_UNIT =6
4\ \
CALL rg_a_physical_attach_device (UNITA, ..)

NAME = UNITB
DEV_GRAN =128

NAME = UNITB1
DEV_GRAN =512

DEVICE =1 DEVICE=1
UNIT=1 UNIT=1
DEV_UNIT =7 DEV_UNIT =7
ﬁ 1
CALL rg_a_physical_attach_device (UNITB, . . .)

NAME = UNITC
DEV_GRAN =128

DEVICE=1
UNIT =2
DEV_UNIT =8

NAME = UNITC1
DEV_GRAN =512

CALL rg_a_physical_attach_device

DEVICE = 1
UNIT =2

DEV_UNIT=8
(UNITCL, ..)

DUIBS for
Device - Unit 6

DUIBS for
Device - Unit 7

DUIBS for
Device - Unit 8

W-2765

Figure 3-3. Using Multiple DUIBs for a Single Device

Chapter 3

DUIB and IORS: Device Driver Interfaces

Creating DUIBs

You create the DUIB data structures for your own device driver; get the
information on device granularity and size from the documentation supplied with
the device.

See also: Making a device driver loadable, in this manual

Observe these guidelines when supplying DUIB information:

Specify a unique name for every DUIB, even those that describe the same
device-unit.

For every device-unit in the hardware configuration, provide information for at
least one DUIB. Because the DUIB contains the addresses of the high-level

device driver procedures, this guarantees that each device-unit has a device

driver to handle its 1/O.

Specify the high-level driver procedures in all of the DUIBs associated with a
particular device. There is only one set of high-level device driver procedures
for a given device, and each DUIB for that device must specify this unique set
of procedures.

If you write a common or random access device driver, supply a DINFO table
for each device. If you write a random access device driver, also supply a
UINFO table for each unit. If you are using custom device drivers and they
require tables, you must supply them, as well.

If you write a terminal driver, supply a terminal device information table for
each terminal device driver, and a unit information table for each terminal.

See also: DINFO table structure, UINFO table structure in this manual

[]

Note

When the 1/0 System accesses a device containing named files, it
obtains information such as granularity, density, size, or the
number of sides from the volume label. It is not necessary to
supply a different DUIB for every kind of volume you intend to

use. But, except for the PCI driver generic SCSI DUIBs, you
must supply a separate DUIB for every kind of volume you intend
to format using théormat command.

Driver Programming Concepts Chapter 3 75

IORS Data Structure Definition

76

An IORS is the second structure that forms an interface between a device driver
and the I/O System. The I/O System creates an IORS when an application task
requests an I/0O operation. The IORS contains information about the request and
about the unit on which the operation is to be performed. The I/O System passes
the IORS to the queue_io procedure, which then processes the request or puts it in
gueue for processing. After performing the requested operation, the device driver
must modify the IORS to indicate what it has done and send the IORS back to the
response mailbox indicated in the IORS.

When you write a custom driver, the high-level driver procedures you write

(init_io, finish_io, queue_io, and cancel_io) must be aware of the IORS structure.
When you write a common or random access driver, the device-specific procedures
you write must also be aware of the IORS structure, because the high-level driver
procedures supplied by the 1/0 System pass the IORS on for further processing.

When you write a terminal driver, your device-specific procedures do not need to
be aware of the IORS. The TSC transforms the information received from the
IORS into different structures which pass to your device-specific procedures.

See also: TSC Data Structures in this manual
The IORS is structured in PL/M or C as:

DECLARE IORS STRUCTURE(
status WORD_186,
unit_status WORD_16,
actual WORD_32,
device WORD_16,
unit BYTE,
funct BYTE,
subfunct WORD_16,
dev_loc WORD_32,
buff_ptr POINTER,
count WORD_32,
aux_ptr POINTER,
link_for POINTER,
link_back POINTER,
resp_mbox SELECTOR,
done BYTE,
fill BYTE,
cancel_id SELECTOR,
conn_t SELECTOR);

or

Chapter 3 DUIB and IORS: Device Driver Interfaces

typedef struct {

UINT_16 status;
UINT_16 unit_status;
UINT_32 actual;
UINT_16 device;
UINT_8 unit;
UINT_8 funct;
UINT_16 subfunct;
UINT_32 dev_loc;
void far * buff_ptr;
UINT_32 count;
AUX_STRUCT far * aux_ptr;
UINT_S8 far * link_for;
UINT_S8 far * link_back;
SELECTOR resp_mbox;
UINT_8 done;
UINT_8 fill;
SELECTOR cancel_id;
SELECTOR conn_t;

} A_IORS_DATA_STRUCT;

Where:

status The condition code for the 1/0O operation, placed here by the device

driver. The E_OK condition code indicates successful completion of

the operation.

See also:

Driver Programming Concepts

Condition codeSystem Call Reference

Chapter 3 77

unit_status
Additional status information provided by the device driver if the
status field indicates an E_IO condition:

Value Mnemonic Description

0 IO_UNCLASS Unclassified error

1 IO_SOFT Soft error; a retry is possible

2 IO_HARD Hard error; a retry is impossible

3 IO_OPRINT Operator intervention is required;
the device is off-line

4 IO_WRPROT Write-protected volume

5 IO_NO_DATA No data on the next tape record

6 IO_MODE A read/write was attempted before
the previous write/read completed.

7 IO_NOSPARES Number of bad tracks/sectors
exceeds the number of alternates.

8 IO_ALT_ASSIGNED An alternate track or sector was
assigned to replace a defective
one.

The I/O System reserves bits 3-0 of this field for unit status codes.
Bits 15-4 of this field can be used for any other purpose.

actual After completing an 1/O operation, the device driver must update this
value to indicate the number of data bytes actually transferred.
device The device number, placed here by the I/O System, identifying the
device for which this request is intended.
unit The unit number, placed here by the I/0O System, for which this
request is intended.
funct The function code, placed here by the 1/O System, for the operation to
be performed:
Value Function
0 f read
1 f_write
2 f seek
3 f_special
4 f_attach_dev
5 f _detach_dev
6 f_open
7 f close

See also: Handling I/O Requests, in this manual, for function
definitions

Chapter 3 DUIB and IORS: Device Driver Interfaces

subfunct The sub-function code of the operation, placed here by the I/O System
when thef_special ~ function code appears in thenct field. The
value in this field depends on the file driver being used with this

device:
File Driver Value Sub-function
Physical 0 Format track
Stream 0 Query
Stream 1 Satisfy
Physical or Named 2 Notify
Physical 3 Get disk/tape data
Physical 4 Get terminal data
Physical 5 Set terminal data
Physical 6 Set signal
Physical 7 Reset (rewind tape/reset disk)
Physical 8 Read tape file mark
Physical 9 Write tape file mark
Physical 10 Retension tape
11 Reserved
Physical 12 Set bad track information
Physical 13 Get bad track information
14-15 Reserved
Physical 16 Get Terminal Status
Physical 17 Cancel Terminal /0
Physical 18 Resume Terminal 1/O
Physical or Named 19 Perform disk mirroring
Named, DOS, EDOS 20 Get device free space
21-32767 Reserved
Physical 32768- Available for user-
65535 written/custom device drivers

dev_loc The absolute byte location on the device where the operation is to be
performed, initially placed here by the I/O System. For a write
operation, this is the address on the device where writing begins. The
I/0 System fills out this information when it passes the IORS to the
driver or the driver procedures.

Driver Programming Concepts Chapter 3 79

80

buff_ptr

count

aux_ptr

link_for
link_back

resp_mbox

done

fill

cancel_id

conn_t

For a random access driver, the high-level device driver procedures
modify this field before passing the IORS on to driver procedures.
The value placed idev_loc by these procedures depends upon the
track_size field in the unit's UINFO table:

Value Meaning

0 Divide dev_loc by the device granularity (the absolute
sector number)
not 0 Divide the absolute byte number in dev_loc by track_size

(the track and sector numbers)

A pointer, set by the 1/0O System, to the buffer where data is read from
or written to.

Number of bytes, set by the /O System, to transfer in the operation.

A pointer, set by the 1/0O System, to the location of auxiliary data.
The I/O System usesux_ptr to send or receive the additional data
as required by thsub_funct field.

See also: BIOS call_special System Call Referenckr
definitions of the data structures thak_ptr can
reference for particular subfunctions

Pointer to the next IORS in the request queue.
Pointer to the previous IORS in the request queue.

A token, placed here by the I/O System, for the response mailbox. On
completion of the I/O request, the device driver or high-level device
driver procedures must send the IORS to this response mailbox or
exchange.

TRUE indicates that the entire request has been completed; FALSE
indicates otherwise.

Reserved.

A token, placed here by the I/O System, to identify queued 1/O
requests the cancel_io procedure can remove from the queue. For I/O
operations that require multiple requests (and therefore multiple
IORSS), the I/0 System uses the sameel_id value in all IORSs

for that operation. This allows the cancel_io procedure to remove all
IORSs for a given operation.

Token for the file connection through which the request was issued.

Chapter 3 DUIB and IORS: Device Driver Interfaces

DUIB and IORS Fields Used by Device Drivers

These lists indicate, for common, random access, and custom drivers, the DUIB
and IORS fields needed for device-specific procedures. Write only to those fields
listed as written by the driver.

Common Attach Detach
DUIB Fields Device | Device | Open |[Close |Read | Write | Seek | Special

Name
File_drivers
Functs
Flags
Dev_gran
Dev_size
Device
Unit m m m m m m m m
Dev_unit
Init_io
Finish_io
Queue _io
Cancel_io
Device_info_ptr m m m m m m m m
Unit_info_ptr m m m m m m m m
Update _timeout
Num_buffers
Priority

Fixed update
Max_buffers

3(3|3
3(3|3
3(3|3
3(3|3
3(3|3
3(3|3
3(3|3
3(3|3

Common Attach Detach
IORS Device | Device | Open |Close |Read Write | Seek | Special

Status w w w w w w w w
Unit_status w w w w w w w w
Actual w w
Device
Unit m m m m m m m
Funct r r r r r r r r
Subfunct r
Dev _loc m m m
Buff_ptr r r
Count r r
Aux_ptr m
Link_for
Link back
Resp_mbox
Done w w w w w w w w
Fill
Cancel _id
Conn_t

r: read by the device driver w: written by the device driver
m: might be read by the device driver

Driver Programming Concepts Chapter 3 81

Random Access
DUIB Fields

Attach
Device

Detach
Device

Open

Close

Read

Write

Seek

Special

Name

File drivers

Functs

Flags

Dev_gran

Dev_size

3(3|3

3(3|3

3(3|3

3(3|3

3(3|3

3(3|3

3(3|3

3(3|3

Device

Unit

Dev_unit

Init_io

Finish_io

Queue io

Cancel_io

Device_info_ptr

Unit_info_ptr

Update _timeout

Num_buffers

Priority

Fixed update

Max_buffers

Random
Access IORS

Attach
Device

Detach
Device

Open

Close

Read

Write

Seek

Special

Status

w

w

w

Unit_status

w

w

w

Actual

Device

Unit

Funct

Subfunct

Dev_loc

Buff_ptr

Count

Aux_ptr

Link_for

Link back

Resp_mbox

Done

Fill

Cancel _id

Conn_t

r: read by the device driver
m: might be read by the device driver

82 Chapter 3

DUIB and IORS: Device Driver Interfaces

w: written by the device driver

Custom
DUIB Fields

Attach
Device

Detach
Device

Open

Close

Read

Write | Seek

Special

Name

File drivers

Functs

Flags

Dev_gran

Dev_size

3(3|3

3(3|3

3(3|3

3(3|3

3(3|3

3(3|3
3(3|3

3(3|3

Device

Unit

Dev_unit

Init_io

Finish_io

Queue io

Cancel_io

Device_info_ptr

Unit_info_ptr

Update _timeout

Num_buffers

Priority

Fixed update

Max_buffers

Custom
IORS Fields

Attach
Device

Detach
Device

Open

Close

Read

Write | Seek

Special

Status

w

w

w

Unit_status

w

w

w

Actual

Device

Unit

Funct

Subfunct

3|=

Dev _loc

Buff_ptr

-

3|3

Count

bl

-

Aux_ptr

Link_for

Link back

Resp_mbox

Done

Fill

(= ||

(= ||

(= ||

(= |o|o

(= ||
(= ||

o o= |o |3

Cancel _id

Slo|o|=|o|w

Conn_t

r: read by the device driver

m: might be read by the device driver

Driver Programming Concepts

w: written by the device driver
a: available for any purpose

Chapter 3

83

Interface Between a Driver and the Device

To carry out I/O requests, one or more of the device-specific procedures in every
device driver must send commands to the device itself. The steps vary depending
on the type of device. Some devices are controlled by on-board firmware; the
driver communicates by sending firmware commands and receiving status. Others
may require different methods. The I/O System places no restrictions on the
method; use the method that the device requires.

r——-"—-=—- - /7 —/ —/ —/ |
[Interface | Interface |) |
BIOS | betweenthe | | | Device | between the DeV|_<t:e |
device Driver] device uni
_l driver and | driver and |
| the 11O | | the device
System | unit |
| |
| |

The routines in this interface must vary depending on the
device itself. Use whatever method the device requires.

W-3203

Figure 3-4. Device Driver to Device Interface

DMA Device Considerations

84

The OS and most devices expect logical addresses of this form:
selector:offset

On the other hand, DMA controllers expect absolute physical addresses. For
example, writing information to a DMA device usually involves giving the

controller the address of the data buffer that holds the information. The controller
expects the 32-bit physical address of the buffer. To the device driver (or any other
program that fills the buffer), the buffer is known by its logical address. Therefore,
the driver must convert the buffer's logical address to a physical address before
passing the address to the device controller.

The iIRMX OS provides two ways of converting a logical address into a physical
address. The Nucleus provides one method with the systemeadjet _address
The BIOS provides a similar but faster method for use by device drivers.

Chapter 3 DUIB and IORS: Device Driver Interfaces

The BIOS method uses a procedure called bios_get_address that converts logical
addresses to physical addresses. For iRMX for PCs and iRMX for Windows
applications, this procedure is located in the/filex386/lib/Idd.lih for ICU-
configurable systems iinmx386/ios/xcmdrv.lib Link your driver code to this

library and call the bios_get_address procedure. Because this conversion program
is a procedure, not a system call, it runs in the calling program's environment
without invoking other BIOS routines.

Call Syntax
physical = bios_get_address (logical, except_ptr);
Where:
physical The 32-bit physical address desired.

logical A pointer specifying the logical address to be converted. The pointer
must be in the formselector:offset

except_ptr
Pointer to a location where a condition code returns:

Value Mnemonic Description

0000H E_OK No exceptional conditions
occurred.

800FH E_BAD ADDR The logical address is invalid.

Either the selector does not
point to a valid segment, or
the offset is outside the
segment boundaries.

Driver Programming Concepts Chapter 3 85

This example illustrates how a PL/M program declares and invokes
bios_get_address:

$INCLUDE(:rmx:inc/rmxplm.ext) /* Declares all system
calls */

DECLARE phys_addr WORD_32;
DECLARE buff_ptr POINTER,;
DECLARE status_ptr POINTER;

BIOSGETADDRESS: PROCEDURE(log_addr, except_ptr)
WORD_32 EXTERNAL;

DECLARE (log_addr, except_ptr) POINTER
END BIOSGETADDRESS;
SAMPLE_PROCEDURE:
PROCEDURE;
. Typical PL/M Statements
phys_addr = BIOSGETADDRESS (buff_ptr, status_ptr);

. Typical PL/M Statements

END SAMPLE_PROCEDURE;

Converting from physical addresses to logical addresses is also necessary if you
need to have access to the information returned by a device controller. The
Nucleus provides theje_create_descriptorsystem call that sets up an entry in

the descriptor table for any segment whose physical address and size you specify.
By setting up a descriptor, you allow programs to access that memory with logical
addresses.

Chapter 3 DUIB and IORS: Device Driver Interfaces

Writing Custom Device Drivers

A custom device driver is one that you create in its entirety because your device
doesn't fit into the common, random access, or terminal device category. You may
need a custom driver because your device:

e Requires a priority-based queue
* Requires multiple interrupt levels

e Has other requirements you have determined

What You Must Provide

When you write a custom device driver, you must provide all of the features of the
driver, including creating and deleting resources, implementing a request queue,
and creating an interrupt handler. You can provide the features however you
choose as long as you supply these four high-level device driver procedures for the
I/O System to call:

e init_io

« finish_io

e queue_io
e cancel_io

For the 1/0 System to communicate with your driver procedures, you must place
the addresses of these four procedures in the DUIBs that correspond to the units of
the device.

The rest of this chapter describes the format of each of these four procedures. Your
own procedures must conform to these formats.

Driver Programming Concepts Chapter 4 87

Init_io Procedure

The 1/0O System calls the init_io procedure when an application task makes an
a_physical_attach_devicesystem call and no units of the device are currently

attached.

The init_io procedure must do any initial processing necessary for the device or the
driver. If the device requires an interrupt_task, region, or device data area, the
procedure should create them.

Call Syntax

88

init_io (duib_ptr, ddata_ptr, status_ptr);

Where:

init_io

duib_ptr

ddata_ptr

status_ptr

The name of the procedure. Use any name as long as it does not
conflict with other procedure names. Include its name in the DUIBs of
all device-units that it serves.

Pointer to the DUIB of the device-unit for which the request is
intended. This is an input parameter supplied by the I/O System. The
init_io procedure uses this DUIB to determine the characteristics of
the unit.

Pointer to a token for a data storage area, if the device driver needs
such an area. If the device driver requires a data area to contain the
head of the 1/0 queue, DUIB addresses, or status information, the
init_io procedure should create this area and save its segment token
using this pointer. If the driver does not need a data area, the
procedure should return a null selector in this token.

Pointer to a location where the init_io procedure must place the status
of the initialize operation. If the operation is completed successfully,
the procedure must return the E_OK condition code. Otherwise, it
should return the appropriate condition code, and must delete any
resources it has created.

Chapter 4 Writing Custom Device Drivers

Finish_io Procedure

The 1/0O System calls the finish_io procedure after an application task makes an
a_physical_detach_devicasystem call to detach the last unit of a device.

The finish_io procedure does any necessary final processing on the device. It must
delete all resources created by other procedures in the device driver and must
perform final processing on the device itself, if the device requires such processing.

Call Syntax
finish_io (duib_ptr, ddata_t);
Where:

finish_io The name of the procedure. Specify any name as long as it does not
conflict with other procedure names. Include its name in the DUIBs
of all device-units that it serves.

duib_ptr Pointer to the DUIB of the device-unit of the device being detached.
This is an input parameter supplied by the I/O System. The finish_io
procedure needs this DUIB to determine the device on which to
perform the final processing.

ddata_t Token for the data storage area originally created by the init_io
procedure (or a null selector, if none was created). This is an input
parameter supplied by the I/O System. The finish_io procedure must
delete this resource and any others created by driver procedures.

Driver Programming Concepts Chapter 4 89

Queue_io Procedure

The 1/0O System calls the queue_io procedure to place an I/O request on a queue, <
that it can be processed when the device is not busy. The procedure must actually
start processing the next I/O request on the queue if the device is not busy.

Call Syntax
queue_io (iors_t, duib_ptr, ddata_t);
Where:

queue_io The name of the procedure. Use any name for this procedure as long
as it does not conflict with other procedure names. Include its name
in the DUIBs of all device-units that it serves.

iors_t Token for an IORS. This is an input parameter supplied by the I/O
System. The IORS describes the request and contains fields that the
device driver must fill in to indicate the success of the operation.
When the request is processed, the driver must send the IORS to the
response mailbox indicated in the IORS.

duib_ptr Pointer to the DUIB of the device-unit for which the request is
intended. This is an input parameter supplied by the 1/0 System.

ddata_t Token for the data storage area originally created by the init_io
procedure (or a null selector, if none was created). This is an input
parameter supplied by the I/O System. The queue_io procedure can
place any necessary information in this area to update the request
gueue or status fields.

90 Chapter 4 Writing Custom Device Drivers

Cancel_io Procedure

The 1/0 System calls the cancel_io procedure to cancel one or more previously
gueued I/O requests under any of these conditions:

« If the user invokes aa_physical_detach_deviceystem call with a hard
detach option. This system call forcibly detaches all device connections
associated with a device-unit.

« If the job containing the task which made an I/O request is deleted. The I/O
System calls the cancel_io procedure to remove any requests that tasks in the
deleted job might have made.

« Ifthe user deletes a connection to a device. The I/O System calls cancel_io to
remove any I/O requests pending for the device.

If the device cannot guarantee to finish a request in a fixed amount of time (such as
waiting for terminal input), the cancel_io procedure must stop the device from
processing the current request. If the device guarantees to finish requests in an
acceptable amount of time, the cancel_io procedure just has to remove requests
from the queue.

Call Syntax
cancel_io (cancel_id, duib_ptr, ddata_t);
Where:

cancel_io The name of the procedure. Use any name as long as it doesn't
conflict with other procedure names. Include its name in the DUIBs
of all device-units that it serves.

cancel_id The ID value for the 1/O requests to be canceled. This is an input
parameter supplied by the I/O System. Any pending requests with
this ID in thecancel id field of their IORSs must be removed from
the queue of requests by the procedure. The I/O System places a
CLOSE request with the samencel_id value in the queue. The
CLOSE request must not be processed until all other requests with
that value have been removed from the queue.

duib_ptr Pointer to the DUIB of the device-unit for which the request
cancellation is intended. This is an input parameter supplied by the
I/O System.

ddata_t Token for the data storage area originally created by the init_io
procedure (or a null selector, if none was created). This is an input
parameter supplied by the I/O System. This data storage area may
contain the request queue.

Driver Programming Concepts Chapter 4 91

Implementing a Request Queue

Making I/O requests using system calls and the actual processing of these requests
by 1/0 devices are asynchronous activities. When a device is processing one
request, many more can be accumulating. Unless the device driver has a
mechanism for placing 1/O requests on a queue of some sort, these requests will be
lost. For common and random access devices, the high-level queue_io procedure
forms this queue by creating a doubly-linked list. The list is used by the queue_io
and cancel_io procedures, as well as by the interrupt_task.

Using this mechanism of the doubly-linked list, the common and random access
driver procedure implements a FIFO queue for I/O requests. For a custom device
driver, you can use thmk_for ~ andlink_back fields that are provided in the
IORS and implement a scheme similar to this for queuing I/O requests.

la. The device driver procedure that actually sends data to the controller accesses
the first IORS on the queue.

b. Thelink_for field in this IORS points to the next IORS on the queue, and so
forth.

c. The last IORS on the queue, tiné_for field points back to the first IORS
on the queue.

Thelink_back fields operate in the same manner.

2a. Thelink_back field of the last IORS on the queue points to the previous
IORS, and so forth.

b. Thelink_back field in this IORS points to the previous IORS on the queue,
and so forth.

c. In the first IORS on the queue, tiné_back field points to the last IORS in
the queue.

The device driver can add or remove requests from the queue by adjusting the
link_for andlink_back pointers in the IORSs.

This kind of queue is illustrated in Figure 4-1.

92 Chapter 4 Writing Custom Device Drivers

Pointer

to head
of queue First IORS Second IORS Third IORS Last IORS
on queue on queue on queue on queue
L) I <—
>
link_for link_for link_for © 9 ©° link_for
link_back link_back link_back link_back

W-2773

Figure 4-1. Request Queue

To handle the dual problems of locating the queue and learning whether the queue
is empty, use a variable suchqague_head . If the queue is emptygueue_head
contains a null selector. Otherwisgeue_head contains the token for the first

IORS in the queue.

Driver Programming Concepts Chapter 4 93

Writing Common or
Random Access Device Drivers

This chapter describes how to write device drivers for common and random access
devices, referring to both as random access type drivers. The chapter does this:

« Lists the high-level device driver procedures the I/O System supplies,
describes the conditions under which they are called, and describes the tasks
the 1/0 System supplies

» Describes the data structures that must exist

» Describes the device-specific procedures you must supply for random access
drivers

« Describes the five utility procedures the 1/0O System supplies and describes the
conditions under which they are called

Throughout this chapter, the differences are noted between message-based and
interrupt-driven data structures and parameter descriptions. Message-based devices
use message passing; device drivers must treat them as buffered devices. Buffered
devices are those that manage their own data buffers. Interrupt-driven devices use
I/O system-provided buffers.

Driver Programming Concepts Chapter 5 95

I/O System-supplied Procedures and Tasks

The 1/0O System supplies high-level device driver procedures, which process I/O

requests:
e init_io
e finish_io

e (ueue_io
e cancel_io
See also: Appendix A and Appendix B, for procedure descriptions

These procedures distinguish between common or random access devices based c
thenum_buffers field in the DUIB.

Value Meaning
not O The device is a random access device.
0 The device is a common device.

You must write these device-specific procedures for the high-level device driver
procedures to call: device_init, device_finish, device_start, device_stop, and
device_interrupt.

When the I/O System Calls Driver Procedures

The 1/O System calls the four high-level device driver procedures in response to
specific conditions, as shown in Figure 5-1.

1. The first I/O request to each device-unit must ba grhysical_attach_device
system call. After that, the application task makes an I/O request by invoking
one of a variety of system calls.

2. If the device is not already attached, the I/O System calls the init_io procedure.

3. The I/O System calls the queue_io procedure to queue the request for
execution.

4. If the request resulted from anphysical_detach_devicaystem call, the 1/0
System checks to see if other units of the device are currently attached. If not,
the 1/0 System calls the finish_io procedure.

The I/O System calls the cancel_io procedure when:

« The user makes amn physical_detach_devicsystem call specifying the hard
detach option, to forcibly detach connection objects associated with a device-
unit.

e The job containing the task that made a request is deleted.

96 Chapter 5 Writing Common or Random Access Device Drivers

See also: a_physical_detach_deviceSystem Call Reference

@ The user makes an 1/O Request
via a system call.

Does this
request result from an

rq_a_physical_attach_device
system call?

Are
any units of the
device currently
attached?

No

The I/O System calls the Initialize I/O
procedure to initialize the device.

<]
<

Y

@ The 1/0O System calls the Queue /O

procedure to place the request on
the queue.

Does this
request result from an
rq_a_physical_attach_device
system call?

Are

any other units of
the device currently
attached?

Yes

A

The 1/0O System calls the Finish I/O
Procedure to clean up the Device
and Delete Objects.

<
Y

(Return)
W-2768

Figure 5-1. When the I/O System Calls the Device Driver Procedures

Driver Programming Concepts Chapter 5

97

Interrupt Task

98

The 1/0O System also supplies an interrupt handler and an interrupt_task for
interrupt-driven devices. The handler and task respond to all device interrupts,
process them, and start the device working on the next I/O request in the queue.
The init_io procedure creates the interrupt_task.

After processing a request, a device sends an interrupt to the processor. The
processor then calls the interrupt handler. This handler invokes the
signal_interrupt system call to tell a waiting interrupt_task to process the

interrupt. The handler doesn't process the interrupt itself because it is limited in the
types of system calls it can make and the number of interrupts that can be enabled
while it is processing.

The interrupt_task returns the results of the interrupt back to the 1/0 System:
results are either data from a read operation or status from other types of
operations. The interrupt_task then gets the next I/O request from the queue and
starts the device processing. This cycle continues until the device is detached.

Figure 5-2 shows the interaction between an interrupt_task, an 1/O device, an I/O
request queue, and the queue_io procedure.

Chapter 5 Writing Common or Random Access Device Drivers

1/0 request queue interrupt_task

i Start device
1/0 request < @ Service @
(3)Get request interrupt ﬂ
1/0 request
Device

. @ Interrupt

.

L]

queue_io procedure
1/0 request
Put request on queue

W-2766
The interrupt_task in this figure is in a continual cycle of:

1. Waiting for an interrupt

2. Processing it

3. Getting the next I/O request

4. Starting up the device again

While this is going on, the queue_io procedure runs in parallel, putting more I/O requests in the
queue.

Figure 5-2. Interrupt Task Interaction

Driver Programming Concepts Chapter 5 99

Message Task

100

The 1/0O System supplies a message_task for message-based devices. The task
responds to all device messages, processes them, and starts the device working or
the 1/0 requests in the queue.

Figure 5-3 shows the interaction between a message_task, an 1/O device, an /O
request queue, the queue_io procedure, and driver-specific procedures. The
message_task running on the CPU board is in a continual cycle of waiting for a
message, processing it, then checking the next request on the 1/O request queue.
the request has not been started, the message_task starts the device processing th
request. If the request is marked DONE, the task removes it from the queue.
While the task goes through this cycle, the queue_io procedure runs in parallel,
putting more 1/O requests in the queue.

Chapter 5 Writing Common or Random Access Device Drivers

init_io > Message task

Basic I/O System
request queue

1/0 request
/0 request : . Device_interrupt * .
. . * ! Device_start. * . * ﬂ
. B 'Us.er-i)ro.vid.ed: B . Controller
. code ST board
1/0 request
) O, v

R O

queue_io

/)

W-2767
An I/O request comes in to the queue_io procedure.

The queue_io procedure places the request on the I/O request queue.

The queue_io procedure calls the user-supplied device start procedure.

The device start procedure sends a message to the controller board.

a > w bR

After processing this device driver request, the controller board sends a message to the
message task.

6. The message task calls the user-supplied device interrupt procedure that tracks which IORS
corresponds to each transaction ID. It also marks the 1/O request as DONE, when the I/O
request is complete. If the I/O request is complete, the message task returns the IORS to the
user who originated the request.

7. The message task calls the device start procedure to start the next available unstarted
request on the 1/O request queue. The message task waits for a message from the
controller.

Figure 5-3. Message Task Interaction

Driver Programming Concepts Chapter 5 101

Data Structures Supporting Random Access I/O

102

The principal data structures supporting common and random access drivers are th
DUIB, DINFO table, and UINFO table (random access drivers only).

When you write your own device-specific procedures, the supplied high-level
device driver procedures must be able to call them. For this to happen, you must
supply the addresses of your device-specific procedures, as well as other
information, in a DINFO table. OS-supplied device drivers also use DINFO tables
to supply information about their device-specific procedures.

In addition, random access drivers require UINFO tables to process I/O requests fol
devices with multiple units (such as a disk controller with multiple drives) where
the units have different characteristics.

In setting up DUIBs, those DUIBs that correspond to units of the same device
should point to the same DINFO table. But they should point to different UINFO
tables if the units have different characteristics. Figure 5-4 illustrates this.

DINFO and UINFO tables are defined for common and random access drivers in
this section. Data structures are shown for PL/M and C.

See also: DINFO Table Structure for Terminal Driver in this manual

Chapter 5 Writing Common or Random Access Device Drivers

UNIT_INFO_1

Device=1
Unit=0

DEV_INFO_1

DEV_INFO_1

T

UNIT_INFO_1

DUIB2

Device=1
Unit=1

Unit

Device

Unit

1

DEV_INFO_1

UNIT_INFO_2

UNIT_INFO_2

DUIB3

Device =2
Unit=0

DEV_INFO_2

DEV_INFO_2

UNIT_INFO_2

Driver Programming Concepts

Unit

Device
2

Figure 5-4. DUIBs, DINFO, and UINFO Tables

Chapter 5

W-2769

103

DINFO Table Structure for Random Access Driver

The data structures shown here are set up for random access drivers. You may
append additional device-specific fields as your driver requires. The DINFO table

is defined as:

DECLARE RAD_DINFO STRUCTURE(
level WORD_16,
priority BYTE,
stack_size WORD_32,
data_size WORD_32,
num_units WORD_16,
device_init WORD_32,
device_finish WORD_32,
device_start WORD_32,
device_stop WORD_32,
device_interrupt WORD_32,
timed_out WORD_16,
reserved_a WORD_16,
reserved_b WORD_16,

/* Remaining fields apply to Message-based
random access driver only */

queue_size WORD_186,
instance BYTE,
board_id (10) BYTE)

or

104 Chapter 5 Writing Common or Random Access Device Drivers

typedef struct {

UINT_16
UINT_8

UINT_32
UINT_32
UINT_16
UINT_32
UINT_32
UINT_32
UINT_32
UINT_32
UINT_16
UINT_16
UINT_16

level;

priority;
stack_size;
data_size;
num_units;
device_init;
device_finish;
device_start;
device_stop;
device_interrupt;
timed_out;
reserved_a;
reserved_b;

/* Remaining fields apply to Message-based
random access driver only */

UINT_16 queue_size;
UINT_8 instance;
UINT_8 board_id [14];
} RAD_DINFO_STRUCT
Where:
level For interrupt-driven devices, this field specifies an encoded interrupt

level at which the device will interrupt. The interrupt_task uses this
value to associate itself with the correct interrupt level. The values
for this field are encoded:

Bits
15

14-7
6-4

Value Meaning

0 The driver procedures don't use the fields
timed_out, reserved_a, and reserved_b, even if
present.

1 This is an extended DINFO structure: the

procedures use the fields timed_out, reserved_a,
and reserved_b.

0 Reserved
0-7 First digit of the interrupt level.

0 This is a slave level and bits 2-0 specify the second
digit.
1 This is a master level and bits 6-4 specify the

entire level number.
0-7 Second digit of the interrupt level, if bit 3 is 0.

Driver Programming Concepts Chapter 5 105

For message-based devices, this field specifies the device as:

Bits Meaning

15 0
14 Set to 1 to indicate a message-based device.
13-8 0
7-0 Specifies the type of message interface. Currently only 0 is
supported.
priority For interrupt-driven controllers, the initial priority of the

interrupt_task. The actual priority of an interrupt_task might change
because the Nucleus adjusts an interrupt_task's priority according to
the interrupt level it services.

See also: Interrupt task priorities, interrupt lev8igstem
Concepts

For message-based controllers, this value specifies the fixed priority
of the task receiving messages from the controller.

stack_size
The size, in bytes, of the stack for the device_interrupt procedure and
procedures that it calls. This number should not include stack
requirements for the supplied high-level device driver procedures.
They add their own requirements to this figure.

data_size = The size, in bytes, of the user portion of the device's data storage area.
This figure should not include the amount needed by the supplied
high-level device driver procedures; it should include only that
amount needed by the device-specific procedures.

num_units Number of units supported by the driver. Units are assumed to be
numbered consecutively, starting with 0.

device_init
The offset address of this procedure which init_io calls. The format
of this procedure is described later in this chapter.

device_finish
The offset address of this procedure which finish_io calls. The format
of this procedure is described later in this chapter.

device_start
The offset address of this procedure which the queue_io procedure
and interrupt_task/message_task calls. The format of this procedure is
described later in this chapter.

106 Chapter 5 Writing Common or Random Access Device Drivers

device_stop
For interrupt-driven devices, the offset address of this procedure
which cancel_io calls. The format of this procedure is described later
in this chapter.

For message-based devices, cancel_io does not call this procedure.

device_interrupt
The offset address of this procedure which
interrupt_task/message_task calls. The format of this procedure is
described later in this chapter.

timed_out For interrupt-driven devices, the timeout value for the
timed_interrupt system call. This value represents the number of
system clock ticks the call waits without receiving an interrupt before
it returns with an error. Ievel bit 15 is set to O, the default value
for timed_out will be OFFFFH, which means the task will wait
forever.

For message-based devices, this value specifies the number of
Nucleus clock intervals the message_task should wait for a message
from the controller. If the message_task times out without having
received a message and I/O requests are pending, the message_task
tries to receive the message again. If this attempt succeeds, the
previous timeout is ignored. If it fails, all pending requests are
flushed from the queue with an E_TIME condition code. The time

the device driver procedures may take to return an IORS with this
status may vary from the timeout you specifytimeout * 2). For the
message_task to wait forever, specify OFFFFH.

reserved_a, reserved_b
Reserved.

These fields apply only to message-based drivers.

gueue_size
The maximum number of controller messages the Nucleus
Communications Service will queue at the port from which the
message_task receives these messages. Adding 1 increases this port's
memory requirements by 5 bytes.

instance Specifies a particular board in a system containing multiple
occurrences of this board name. Boards having the same name are
assumed to have instance IDs allocated in contiguous order, starting
from ID 1 for the occurrence of the board with the lowest slot id.

board_id The 10-character board name stored in registers 2-11 of the header
record in this board's interconnect space.

Driver Programming Concepts Chapter 5 107

UINFO Table Structure for Random Access Driver

Each random access device-unit's DUIB must point to one UINFO table, although
multiple DUIBs can point to the same UINFO table. The UINFO table must
include all information that is unit specific. The required fields for the UINFO
table data structure are for PL/M or C:

DECLARE RAD_UINFO STRUCTURE (
track_size WORD_16,
max_retry WORD_16,
cylinder_size WORD_16)
or
typedef struct {
UINT_16 track_size;
UINT_16 max_retry;
UINT_16 cylinder_size;
} RAD_UINFO_STRUCT
Where:
track_size Specifies the size, in bytes, of a single track of a volume on the
unit.

Value Meaning

0 The driver is a random access driver and the device
controller supports reading and writing across track
boundaries. In this case, the supplied high-level device
driver procedures place an absolute sector number in the
dev_loc field of the IORS.

not 0 The supplied high-level device driver procedures
guarantee that read and write requests do not cross track
boundaries by placing the sector and track numbers in
the dev_loc field before calling the device_start
procedure.

For message-based devices, set to 0.

108 Chapter 5 Writing Common or Random Access Device Drivers

max_retry For interrupt-driven devices, the maximum number of times an 1/O
request should be tried if an error occurs. Nine is the recommended
value for this field. When this field contains a nonzero value, the
supplied high-level device driver procedures guarantee that read or
write requests are retried if the device_start or device_interrupt
procedures return an I0_SOFT condition code in the IORS
unit_status field.

For message-based devices, this field is ignored.

cylinder_size
For interrupt-driven devices:

Value Meaning

0 The supplied high-level device driver procedures never
split a read or write into a seek/read or a seek/write.
Instead, either they expect the device driver to request seek
operations whenever a read/write begins on a cylinder
different from the one associated with the current position
of the read/write head (), or it expects the controller to
perform these seeks automatically ().

The I/O System automatically requests a seek operation to
seek to the correct cylinder before performing any read or
write. The device driver for the unit must call the
seek_complete procedure immediately following each seek
operation.

Other Specifies the number of sectors in a cylinder on the unit.
The I/O System uses this information to determine when it
should request seek operations. It automatically requests a
seek operation whenever a requested read or write
operation begins in a different cylinder than that associated
with the current position of the read/write head. The
device driver for the unit must call the seek_complete
procedure immediately following each seek operation.

For message-based devices, this field is ignored.

Driver Programming Concepts Chapter 5 109

Device Data Storage Area

110

The common and random access device drivers are set up so that all data that is
local to a device is maintained in an area of memory. The init_io procedure create:
this device data storage area, and the other driver procedures access and update
information in it as needed. Storing the device data in a central area serves two
purposes.

First, all device driver procedures that service individual units of the device can
access and update the same data. The init_io procedure passes the address of the
area back to the I/O System, which in turn gives the address to the other driver
procedures. They can then place information relevant to the whole device into the
area. The identity of the first IORS on the request queue is maintained in this area,
as well as the attachment status of the individual units and a means of accessing tt
interrupt/message task.

Second, several devices of the same type can share the same device driver code &
still maintain separate device data areas. The same init_io procedure is called for
each. Each time init_io is called, it obtains memory for the device data, from
different memory areas; only the procedures that service units of a particular device
are able to access the memory area for that device.

Chapter 5 Writing Common or Random Access Device Drivers

Procedures Random Access Drivers Must Supply
You must supply these device-specific procedures:
e device_init, called by init_io
« device_finish, called by finish_io
e device_start, called by queue_io and interrupt_task/message_task
» device_stop, called by cancel_io (interrupt-driven devices only)
« device_interrupt, called by interrupt_task/message_task

Figure 5-5 illustrates these device-specific procedures and the high-level device
driver procedures supplied by the 1/0O System.

Device
init_jio —————> device_int ———>
Creates
Unit
interrupt . L
= device_interrupt
handler —> interrupt_task —> | p
r~ / .
N Y\\ Initializes Unit
—— — — Interrupt <— T T = —
queue_io > device_start Unit
Task ’>sy|é?em
cancel_io > device_stop J Unit
finish_io > device_finish ——>

W-2770

Figure 5-5. Relationships between Random Access Driver Procedures

Driver Programming Concepts Chapter 5 111

Device_init Procedure

This procedure must do this:

Initialize any driver data structures or flags.

For message-based drivers, this procedure must initializethe and

slot_id fields of the device's data storage area. The procedure must create a
port and store its token. The procedure must also scan interconnect space for
the board instance specified in the DINFO table and return its slot ID to the
slot_id field.

See also: Host ID, socke&ystem Concepts

If you have a device that does not need to be initialized before use, use
default_init, the default procedure supplied by the I1/O System. Specify this
name in the DINFO table. Default_init does nothing but return the E_OK
condition code.

Reset the board or device, then wait for completion of the reset.

For interrupt-driven drivers, the device_init procedure will not receive the
interrupt if the device sends an interrupt to indicate the reset is complete. For
such devices, either the device_start or device_interrupt procedure should
contain special code to process the reset interrupt.

For message-based drivers, this procedure will receive initialization responses
from the controller. Either this procedure, the device_start, or device_interrupt
procedure can process such responses.

Call Syntax

112

device_init (duib_ptr, ddata_ptr, status_ptr);

Where:

device_init

The name of the procedure. Use any name, as long as it doesn't
conflict with other procedure names. Include the name in the DINFO
table.

duib_ptr Pointer to the DUIB of the device-unit being attached. Init_io

supplies this pointer as an input parameter. From this DUIB, this
procedure can obtain the DINFO table.

ddata_ptr Pointer to a memory area provided by the supplied high-level device

driver procedures. This memory is the user portion of the device data
storage area. You must specify the size of this area of memory in the

Chapter 5 Writing Common or Random Access Device Drivers

status_ptr

DINFO table. This procedure can use this data area for whatever
purpose it chooses.

For message-based devices, this portion of the device's data storage
area begins with these fields:

port_t Token for the port where the message_task waits for
messages from the controller.

slot_id The cardslot number (host ID) for this controller.

Pointer to the location of the status for the initialization operation.
This becomes an output parameter returned by the init_io procedure.
The device_init procedure must place the condition code here: E_OK
if the initialization is successful; otherwise, a condition code that
describes the failure. If initialization does not complete successfully,
this procedure must delete any resources it creates.

Device_finish Procedure

If you have a device that does not require any final processing, use the default
device_finish procedure supplied by the I/O System. It returns control to the caller.
Specify this name in the DINFO table. If your device requires special processing,
write a device_finish procedure as specified here.

Call Syntax

device_finish (duib_ptr, ddata_ptr);

Where:

device_finish

duib_ptr

ddata_ptr

The name of the procedure. Use any name, as long as it doesn't
conflict with other procedure names. Include the name in the DINFO
table.

Pointer to the DUIB of the device-unit being detached. Finish_io
supplies this parameter as an input parameter. From this DUIB, this
procedure can obtain the DINFO table, where information such as the
I/O port address is stored.

Pointer to the user portion of the device's data storage area. This is an
input parameter supplied by finish_io. The device_finish procedure
should obtain, from this data area, identification of any resources

other procedures may have created, and delete these resources.

Driver Programming Concepts Chapter 5 113

Device_start Procedure

This procedure must do this:

Start the device processing any of the 1/0 requests supported by the device anc
recognize that requests for non-supported functions are error conditions.

Update the IOR&ctual field to reflect the total number of bytes of data
transferred if data is transferred.

Set the IORStatus andunit_status fields to indicate the success or

failure of the operation. If an error occurs when this procedure tries to start the
device (such as on a write request to a write-protected dislgs should be

set to indicate an E_IO condition and the lower four bits ofititestatus

field should be set to a non-zero value. The remaining bits of the field can be
set to any value (some device drivers return the device's result byte in the
remainder of this field). If the function completes without an error, this
procedure must set the IORftus field to indicate an E_OK condition.

For message-based devices, this procedure must set thelb@&k8eld to
any even value between 0 and OFFH if the request has been started and is in
progress.

If this procedure determines that the 1/0 request has been processed
completely, either because of an error or because the request has completed
successfully, it must set the |IORBne field to TRUE. The I/O request will

not always be completed; it may take several calls to the device_interrupt
procedure to complete. However, if the request is finished and the device_star
procedure does not set the IORie field to TRUE, the supplied high-level
device driver procedures wait until the device sends an interrupt/message
indicating the request is finished and the device_interrupt procedure sets IORS
done to TRUE, before determining that the request is actually finished.

Queue_io calls this procedure on receiving an 1/O request when the request queue
is empty. Interrupt_task/message_task calls this procedure after it finishes one I/O
request if there are one or more 1/O requests in the queue.

114

Chapter 5 Writing Common or Random Access Device Drivers

Call Syntax
device_start (iors_ptr, duib_ptr, ddata_ptr);
Where:

device_start
The name of the procedure. Use any name, as long as it doesn't
conflict with other procedure names. Include the name in the DINFO
table.

iors_ptr Pointer to the IORS of the request. This is an input parameter
supplied by queue_io or interrupt_task/message_task. This procedure
must access the IORS to obtain information such as the type of /O
function requested, the address on the device of the block (absolute
sector) where 1/O is to begin, and the buffer address.

duib_ptr Pointer to the DUIB of the device-unit for which the 1/0 request is
intended. This is an input parameter supplied by queue_io or
interrupt_task/message_task. This procedure can use the DUIB to
access the DINFO table, where information such as the 1/O port
address is stored.

ddata_ptr Pointer to the user portion of the device's data storage area. This is an
input parameter supplied by queue_io or interrupt_task/message_task.
This procedure can use this data area to set flags or store data.

Device_stop Procedure

If you have a device, such as a message-based device, that guarantees all I/O
requests will finish in an acceptable amount of time, you do not need to write a
device_stop procedure. Instead, use default_stop, the default procedure supplied
with the 1/0 System, which returns to the caller. Specify this name in the DINFO
table.

For interrupt-driven devices, the cancel_io procedure calls the device_stop
procedure to stop the device from performing the current I/O function.

Driver Programming Concepts Chapter 5 115

Call Syntax

device_stop (iors_ptr, duib_ptr, ddata_ptr);

Where:

device_stop
The name of the procedure. Use any name, as long as it doesn't
conflict with other procedure names. Include this name in the DINFO
table.

iors_ptr Pointer to the IORS of the request. This is an input parameter

supplied by cancel_io. This procedure needs this information to
determine what type of function to stop.

duib_ptr Pointer to the DUIB of the device-unit on which the I/O function is

being performed. This is an input parameter supplied by cancel_io.

ddata_ptr Pointer to the user portion of the device's data storage area. This is an

input parameter supplied by cancel_io. This procedure can use this
area to store data, if necessary.

Device_interrupt Procedure

This procedure must do this:

116

For interrupt-driven devices, it must determine from the IORS which device-
unit sent the interrupt and what action to take.

For message-based devices, it must determine this information from the data
message received.

After determining the device-unit, this procedure must decide whether the
request is finished. If the request is finished, the procedure must set the IORS
done field to TRUE.

It must process the interrupt/message. This may involve setting flags in the
user portion of the data storage area, transferring data written by the device to
a buffer, or some other operation.

If an error occurred, it must set the IORStus field to an E_IO condition
and the IORSinit_status field to a nonzero value. The lower four bits of
the IORSunit_status field should be set.

See also: IORS data structure definition, in this manual

Chapter 5 Writing Common or Random Access Device Drivers

The remaining bits of the field can be set to any value (some device drivers
return the device's result byte in the remainder of this field). It must also set
the IORSdone field to TRUE, indicating that the request is finished because
of the error.

For message-based drivesttus_ptr returns an error only if an
unrecoverable controller failure occurs. Message_task will mark all pending
IORSs DONE with their status set to the error returnestdtys_ptr , then
flush them from the request queue.

* If no error has occurred, this procedure must set the €S field to
indicate an E_OK condition.

Call Syntax
For interrupt-driven devices, the call format is:
device_interrupt (iors_ptr, duib_ptr, ddata_ptr);
Where:

device_interrupt
The name of the procedure. Use any name, as long as it doesn't
conflict with other procedure names. Include this name in the DINFO
table.

iors_ptr Pointer to the IORS of the request being processed. This is an input
parameter supplied by interrupt_task. This procedure must update
information in this IORS. A null pointer value indicates either that
there are no requests on the request queue (the interrupt is
extraneous), or that the unit is completing a seek or other long-term
operation.

duib_ptr Pointer to the DUIB of the device-unit on which the I/O function was
performed. This is an input parameter supplied by interrupt_task.

ddata_ptr Pointer to the user portion of the device's data storage area. This is an
input parameter supplied by interrupt_task. This procedure can
update flags in this data area or retrieve data sent by the device.

Driver Programming Concepts Chapter 5 117

For message-based devices, the call format is:
device_interrupt (message_ptr, ddata_ptr, status_ptr);

Where:

device_interrupt
The name of the procedure. Use any name, as long as it doesn't
conflict with other procedure names. Include this name in the DINFO
table.

message_ptr
Pointer to this structure:

DECLARE message STRUCTURE (
data_ptr POINTER,
flags WORD_16,
status WORD_186,
trans_id WORD_16,
data_length WORD_32,
dummyl WORD_16,
socket WORD_32,
control(20) BYTE,
dummy?2(12) BYTE);

or

typedef struct {

MESSAGE_DATA far * data_ptr
UINT_16 flags;
UINT_16 status;
UINT_16 trans_id;
UINT_32 data_length;
UINT_16 dummyl;
UINT_32 socket;
UINT_8 control[20];
UINT_8 dummy?2[12];

} MESSAGE_STRUCT;

118 Chapter 5 Writing Common or Random Access Device Drivers

Where:

data_ptr Pointer to the data message received. If the data was in a
data chain, this points to the data chain. A null pointer
means a control message was received.

flags This field's meaning depends on the bit pattern. Patterns not
shown are reserved:

Bits Value Meaning
7-4 0000B Transactionless message
0001B Transmission or system status message
0010B Transaction request message
0100B Transaction response message
3-0 0000B The data_ptr field points to a single
buffer
0001B The data_ptr field points to a data
message buffer
status The send message status. The status codes are:
Value Meaning

0000H E_OK A new message was received.

000BH E_TRANSMISSION

A NACK, timeout, bus or host error, or retry
expiration occurred during transmission.

OOE1H E_CANCELLED

A send_rsvptransactiorhas been remotely
canceled

OOE3H E_NO_LOCAL_BUFFER

If the flags parameter indicates a transaction
request, the local port's buffer pool doesn't have
a big enough buffer to hold the message: use
receive_fragment.

If the flags parameter indicates a transaction
response, the RSVP buffer in thend_rsvp
system call is too small to hold the response.

OOE4H E_NO_REMOTE_BUFFER

Driver Programming Concepts

The remote port's buffer pool doesn't have a big
enough buffer to hold the message and message
fragmentation is disabled.

Chapter 5 119

120

trans_id

data_length

dummyl
socket
control
dummy?2
ddata_ptr

status_ptr

Chapter 5

The transaction ID for this message. If a transactionless
message was receivadins_id is invalid. The
device_interrupt procedure must megns_id to the

correct IORS. To do this, the driver must maintain a queue
of started requests and their transaction IDs.

Indicates the length of the data message received.

If theflags field indicates a newly received message, this
parameter contains the length of the message.

If theflags andstatus fields indicate request message
fragmentation, this parameter contains the length of all
message fragments to be received using receive_fragment.

Reserved. Set @

Thehost_id:port_id that indicates the message source.
The 20-byte long control part of a data message.
Reserved. Set all elementsito

Pointer to the user portion of the device's data storage area.
This is an input parameter supplied by message_task. This
procedure can update flags in this data area or retrieve data
sent by the device.

Pointer to a location containing the device status code
returned by this procedure: E_OK condition unless a board
failure occurs.

Writing Common or Random Access Device Drivers

Utility Procedures Random Access Drivers
Must Call

There are several supplied utility procedures that random access drivers must call
under certain circumstances. They are notify, seek_complete, and the procedures
for the long-term operations: begin_long_term_op, end_long_term_op, and
get_iors.

Notify Procedure

Whenever a situation like an open diskette drive occurs during an 1/0O operation on
a device, the device driver must notify the I/O System that the device is no longer
available. The driver does this by calling the notify procedure. When notify is
called, the I/O System stops accepting 1/O requests for files on that device unit.

Before the device-unit can again be available, the application must detach it by a
call toa_physical_detach_devicand reattach it by a call to
a_physical_attach_device Moreover, the application must obtain new file
connections for files on the device unit.

Besides not accepting I/O requests for files on that device unit, the I/O System will
send an object to a mailbox. For this to happen, the object and the mailbox must

have been established for this purpose by a prior callgpecial with the

spec_func argument equal to fs_notify (2). The task that awaits the object at the

mailbox must detach and reattach the device unit and create new file connections
for files on the device unit.

See also: a_special System Call Reference

Call Syntax
notify (unit, ddata_ptr);
Where:
unit The unit number of the unit on the device that went off-line.

ddata_ptr Pointer to the user portion of the device's data storage area. This is
the same pointer that the high-level device driver procedures pass to
the device_start or the device_interrupt procedure.

Driver Programming Concepts Chapter 5 121

Seek complete Procedure

In most applications, you should overlap seek operations which can take relatively
long periods of time with other operations on other units of the same device. A
device driver receiving a seek request can take these actions in this order:

1. The device_start procedure starts the requested seek operation.

2. Depending on the kind of device, either the device_start procedure or the
device_interrupt procedure sets tlmme flag in the IORS to TRUE.

* Some devices send only one interrupt/message in response to a seek
request, the one that indicates the completion of the seek. If your device
operates like this, the device_start procedure setiotiee flag to TRUE
immediately.

e Some devices send two interrupts/messages in response to a seek request
one upon receipt of the request and one upon completion of the seek. If
your device operates like this, the device_start procedure leavdsnthe
flag in the IORS set to FALSE.

When the first interrupt/message from the device arrives, the
device_interrupt procedure sets timme flag to TRUE.

3. When the interrupt/message from the device arrives (the one that indicates the
completion of the seek), the device_interrupt procedure calls the
seek_complete procedure to signal the completion of the seek operation.

This enables the device driver to handle 1/0 requests for other units on the device
while the seek is in progress, thereby increasing the performance of the 1/0 Systemr

Configure thecylinder_size field of the UINFO table for the device-unit to
greater than 0. If you configuoglinder_size to O (indicating that you don't
want to overlap seek operations), the driver should never call seek_complete.

Call Syntax

122

seek_complete (unit, ddata_ptr);
Where:

unit Number of the unit on the device on which the seek operation is
completed.

ddata_ptr Pointer to the user portion of the device's data storage area. This is
the same pointer that the high-level device driver procedures pass to
the device_start and device_interrupt procedures.

Chapter 5 Writing Common or Random Access Device Drivers

Procedures for Long-Term Operations

There are three procedures that device drivers can use to overlap long-term
operations (such as tape rewinds) with other 1/0O operations. The procedures are
begin_long_term_op, end_long_term_op, and get_iors. These are intended
specifically for use with devices that do not support seek operations such as tape
drives.

Begin_long_term_op Procedure

The begin_long_term_op procedure informs the high-level device driver
procedures that a long-term operation is in progress, and that the high-level device
driver procedures do not have to wait for the operation to complete before servicing
other units on the device. Calling begin_long_term_op allows the controller to
service read and write requests on other units of the device while the long-term
operation is in progress.

To use begin_long_term_op, the device driver receiving the request for the long-
term operation should take these actions:

1. The device_start procedure starts the long-term operation.

2. Depending on the kind of device, either the device_start procedure or the
device_interrupt procedure sets tlume flag in the IORS to TRUE.

« Some devices send only one interrupt/message in response to a request for
a long-term operation, the one that indicates the completion of the
operation. If your device operates like this, the device_start procedure sets
thedone flag to TRUE immediately.

* Some devices send two interrupt/messages in response to a request for a
long-term operation, one upon receipt of the request and one upon
completion of the operation. If your device operates like this, the
device_start procedure leaves tlvae flag in the IORS set to FALSE.

When the first interrupt/message from the device arrives, the
device_interrupt procedure sets timme flag to TRUE.

3. The procedure that just set time flag to TRUE (either the device_start or
device_interrupt procedure) calls begin_long_term_op.

Driver Programming Concepts Chapter 5 123

Call Syntax
begin_long_term_op (unit, ddata_ptr);
Where:

unit Number of the unit on the device that is performing the long-term
operation.

ddata_ptr Pointer to the user portion of the device's data storage area. This is
the same pointer that the high-level device driver procedures pass to
the device_start and device_interrupt procedures.

If your driver calls begin_long_term_op, it must also call end_long_term_op when
the device sends an interrupt/message to indicate the end of the long-term
operation.

End_long_term_op Procedure

The end_long_term_op procedure informs the high-level device driver procedures
that a long-term operation has completed. A driver that calls begin_long_term_op
must also call end_long_term_op, or the driver cannot further access the unit that
performed the long-term operation.

Specifically, when the unit sends an interrupt/message indicating the end of the
long-term operation, the device_interrupt procedure must call end_long_term_op.

Call Syntax
end_long_term_op (unit, ddata_ptr);
Where:
unit Number of the unit on the device that performed the long-term

operation.

ddata_ptr Pointer to the user portion of the device's data storage area. This is
the same pointer that the high-level device driver procedures pass to
the device_start and device_interrupt procedures.

124 Chapter 5 Writing Common or Random Access Device Drivers

Get _iors Procedure

Long-term operations on some units involve multiple operations. For example,
performing a rewind on some tape drives requires you to perform a rewind and a
read file mark. The get_iors procedure allows your device-specific procedures to
handle this without forcing you to write a custom driver for each device that is
different.

Get_iors obtains the token of the IORS for the previous long-term request, so it can
be modified to initiate new 1/O requests. The driver cannot access the IORS
without calling this procedure, because when the long-term operation completes
(and an interrupt/message occurs),itihe ptr that interrupt_task passes to the
device_interrupt procedure is set to 0 (for units busy performing a seek or other
long-term operation).

To use get_iors, the device driver performing the long-term operation should take
these actions:

1. The device driver starts the long-term operation and calls begin_long_term_op
as usual, as described earlier.

2. When the unit sends an interrupt/message indicating the end of the long-term
operation, the device_interrupt procedure calls get_iors to obtain the IORS.

3. The device_interrupt procedure modifiesfilvet andsubfunct fields of
the IORS to specify the next operation to perform. It also setiotieeflag to
FALSE.

4. The device_interrupt procedure calls end_long_term_op.

Call Syntax
iors_base = get_iors (unit, ddata_ptr);
Where:
iors_base Token for the IORS.

unit Number of the unit on the device that performed the long-term
operation.

ddata_ptr Pointer to the user portion of the device's data storage area. This is
the same pointer that the high-level device driver procedures pass to
the device_start and device_interrupt procedures.

Driver Programming Concepts Chapter 5 125

Formatting Random Access Devices

If you write a random access driver and you intend to usetirat command to
format volumes on that device, your device-specific procedures must set the
status field in the IORS in the manner that toemat command expects.

When formatting volumes, tHermat command issues system cals gpecialor
s_speciad) to format each track. It knows that formatting is complete when it
receives an E_SPACE condition code in response. To be compatibferwitt,
your driver must also return E_SPACE when formatting is complete.

In particular, if your driver must perform some operation on the device to format it,
your device_interrupt procedure must set the IGRfis to E_SPACE after the
last track has been formatted.

However, if the device requires no physical formatting (for example, when
formatting is a null operation for that device), your device_start procedure can set
IORSstatus to E_SPACE immediately after being called to start the formatting
operation.

Theformat command can report the assignment of alternate tracks, or, if no
alternate tracks are available, can mark all the sectors in the track being formatted
as unavailable using the bad block map. This lets you see the state of the media in
guestion and allows a disk with excess bad tracks (more than the available alternat
tracks can handle) to continue being used. Fofofmat command to provide

these features, the driver must return these error codes in these conditions:

* Whenever the device driver is processing an f_special (fs_format) function and
it allocates an alternate track, it must return an E_IO_ALT_ASSIGNED error
code in the IORS after marking the request DONE.

» Whenever the device driver is processing an f_special (fs_format) function and
discovers the track is bad, but no alternate tracks are available for assignment,
it must return an E_IO_NO_SPARES error code in the IORS after marking the
request DONE.

126 Chapter 5 Writing Common or Random Access Device Drivers

Writing Terminal Drivers

This chapter describes how to write device drivers for interrupt/message-driven
terminal controllers. The driver provides the software link between the high-level
device driver procedures, called Terminal Support Code (TSC), and the terminal
controller. The chapter describes:

e Terminal driver concepts

e The high-level device driver procedures and tasks the I/O System supplies
* The data structures that must exist

« The device-specific procedures you must supply for terminal drivers

e The TSC utility procedures called by terminal drivers

Driver capabilities can include handling single-character or block-mode 1/O, parity
checking, answering and hanging up functions on a modem, and automatic baud
rate recognition.

The TSC supports interrupt- and message-driven terminal drivers. It distinguishes
between these drivers through the DINFO table described in this chapter. TSC
duties include managing buffers and maintaining several terminal-related modes.

See also: Appendix C, Controlling Terminal 1/0

Driver Programming Concepts Chapter 6 127

Terminal 1/O Concepts

Input characters normally pass through three buffers on their way from the terminal
to the application task: the raw-input buffer, the TSC input buffer, and the
application task buffer. Each terminal device-unit has its own raw-input buffer and
its own TSC input buffer. Each task that reads input from a terminal has its own

buffer.
Figure 6-1 shows how these buffers interact.

Terminal

Application

Support
Code input task
buffer buffer

255 bytes

W-2751

la. First, the terminal driver takes characters from the terminal device and places them in the
raw-input buffer. Buffer size depends on the terminal driver.

b. When the device driver signals the TSC that an input interrupt has occurred, the TSC
transfers the characters from the raw-input buffer to the TSC input buffer.

c. When the I/O System passes a read request to the TSC, the TSC moves the characters from
its input buffer to the task buffer pointed to in this read request. Buffer size depends on the
application task.

2. In bypass mode, when the I/O System passes a read request to the TSC, the TSC moves the
characters directly from the raw-input buffer of the terminal device to the task buffer pointed
to in this read request.

Figure 6-1. Buffers Used in Terminal I/O

128 Chapter 6 Writing Terminal Drivers

Raw-input Buffer Determined by Type of Terminal Driver

The type of terminal driver type, nonbuffered or buffered, determines the location
of the raw-input buffer and its size.

Nonbuffered Terminal Devices

Nonbuffered devices do not have dual-port memory of their own. The terminal
driver must create a logical segment for the raw-input buffer when it initializes the
unit.

The device must send one interrupt for each input character, so there is usually only
one character in the raw-input buffer at a time. However, the buffer enables other
input characters to be sent while the TSC is processing the previous input character.
The size of the raw-input buffer provided by OS-supplied drivers is 256 bytes.

Buffered Terminal Devices

In buffered terminal devices, the raw-input buffer resides in the dual-port memory
of the terminal controller board. Buffered terminal devices do not need to send an
interrupt each time an input character is transmitted, so there might be many
characters in the raw-input buffer when an interrupt occurs. The maximum number
depends on the size of the input buffer for that device.

See also: term_init procedure, in this chapter

TSC Input Buffer Determined by Terminal Mode

The size of the TSC input buffer is fixed, with 256 bytes for each device-unit.
Each buffer is divided into two logical buffers: a type-ahead buffer and a line-edit
buffer. How input characters move through these logical buffers and into the
application task buffer depends on the input mode of the terminal.

line-edit mode Characters first move into the type-ahead buffer, then to the
line-edit buffer when the user does line-editing. When the
TSC receives a read request, it moves the line-edited
characters to the requesting task's buffer.

The maximum number of characters a task can request in this
mode is 255. If the terminal operator tries to type more
characters before typing a line terminator, the TSC discards
each extra character and echoes a bell <Ctrl-G> to the
terminal.

Driver Programming Concepts Chapter 6 129

transparent mode Characters move from the type-ahead buffer to the applicatior

flush mode buffer without being line-edited. However, the TSC still might
intercept and modify some characters before placing them intt
buffer, depending on the terminal's current connection modes.
characters are output control characters, OSC sequences, an
Character Sequences.

See also: Line editing control, Appendix C

bypass mode Characters move from the raw-input buffer to the task buffer
without any processing. This means that output control
characters, OSC sequences, and Terminal Character
Sequences are all ignored.

If you want characters to be received without modification when the terminal is in
transparent or flush mode, set the output control mode and the OSC control mode
so that the TSC does not act on these characters when they appear in the input
stream.

Difference between Transparent and Flush Mode

These modes handle read requests differently. In flush mode, the read request
returns immediately with as many characters as currently reside in the TSC's input
buffer, up to the number of characters requested. Any number of characters, from
0 to the number requested, might move into the application task buffer.

In transparent mode, the read request does not return until all characters requestec
by the task are moved into the task's buffer.

The maximum number of characters that can be read in one request, in either
transparent or flush mode, is 255 for nonbuffered devices and 255 plus the size of
the device's dual-port memory for buffered devices.

A CAUTION

In transparent mode, if any characters are lost during
transmission, an input request can remain unsatisfied and the
terminal will appear nonfunctional. Get the terminal status and
then cancel the request and recover from the problem using the
a_specialsystem call.

130 Chapter 6 Writing Terminal Drivers

I/O System-supplied Procedures and Tasks

The 1/0O System supplies these high-level device driver procedures and tasks, which
process /O requests:

e ts_ init_io

e ts finish_io

e ts_queue_io

e ts_cancel_io

e interrupt_task
* message_task

You must write these device-specific procedures for the high-level device driver
procedures to call: term_init, term_finish, term_setup, term_answer, term_hangup,
term_check, term_out, and term_utility.

Driver Programming Concepts Chapter 6 131

Data Structures Supporting Terminal 1/0O

The principal data structures supporting terminal 1/O are the DUIB, DINFO table,
UINFO table, and TSC Data Area. These data structures are defined in this
section.

DUIB Structure for Terminal Driver

This assembly language macro defines the DUIB for a terminal device driver. This
macro initializes constant numeric values and labels to suit the TSC. Lowercase
values are variables.

DUIB, in this manual for PL/M and C data declarations, and
descriptions of each field

See also:

DEFINE DUIB <

132

Chapter 6

& name, : DUIB name

& 1, ; file_drivers = physical

& OFBH, : functs = no seek

& 0, ; flags = not disk device

& 0, ; dev_gran = not random access
& 0, ; dev_size = not storage device
& device, ; (device specific)

& unit, ; (unit specific)

& dev_unit, ; (device and unit specific)

& TSINITIO, ; init_io for terminal device

& TSFINISHIO, ; finish_io for terminal device

& TSQUEUEIO, ; queue_io for terminal device
& TSCANCELIO, ; cancel_io for terminal device
& device_info_ptr, ; pointer to TERMINAL_DEVICE_INFO
& unit_info_ptr, ; pointer to TERMINAL_UNIT_INFO
& OFFFFH, ; update_timeout = not disk

& 0, ; num_buffers = none

& priority, ; (I/O System dependent)

& 0, ; fixed_update = none

& 0, ; max_buffers = none

& RESERVED, ;

& >

Writing Terminal Drivers

DINFO Table Structure for Terminal Driver

A terminal's DINFO table provides information about a terminal controller for the
device driver.

Interrupt-driven devices use this DINFO table:

DECLARE term_dinfo STRUCTURE(
num_units WORD_16,
data_size WORD_16,
stack_size WORD_32,
term_init WORD_32,
term_finish WORD_32,
term_setup WORD_32,
term_output WORD_32,
term_answer WORD_32,
term_hangup WORD_32,
term_utility WORD_32,
num_interrupts WORD_16,
interrupt_level WORD_16,
term_check WORD_32)

or

typedef struct {

UINT_16 num_units;
UINT_16 data_size;
UINT_32 stack_size;
UINT_32 term_init;
UINT_32 term_finish;
UINT_32 term_setup;
UINT_32 term_output;
UINT_32 term_answer;
UINT_32 term_hangup;
UINT_32 term_utility;
UINT_16 num_interrupts;
UINT_16 interrupt_level;
UINT_32 term_check;

} TERM_DINFO_STRUCT;

Driver Programming Concepts Chapter 6 133

134

Message-based devices use this DINFO table:

DECLARE
num_units
data_size
stack_size
term_init
term_finish
term_setup
term_output
term_answer
term_hangup
term_utility
num_interrupts
term_check
priority
reserved_a
reserved_b

or

typedef struct {
UINT_16
UINT_16
UINT_32
UINT_32
UINT_32
UINT_32
UINT_32
UINT_32
UINT_32
UINT_32
UINT_16
UINT_32
UINT_16
UINT_32
UINT_32

} MTERM_DINFO_STRUCT;

Where:

mterm_dinfo STRUCTURE(

WORD_ 16,

WORD_16,
WORD_32,
WORD_32,

WORD_32,

WORD_32,

WORD_32,

WORD_32,
WORD_32,

WORD_32,
WORD_ 16,

WORD_32,

WORD_16,

WORD_32,
WORD_32);

num_units;
data_size;
stack_size;
term_init;
term_finish;
term_setup;
term_output;
term_answer;
term_hangup;
term_utility;
num_interrupts;
term_check;
priority;
reserved_a;
reserved_b;

num_units Number of terminals on this terminal controller.

data_size Number of bytes in the driver's data area pointed to by the

user_data_ptr

Chapter 6

field of the TSC data structure.

Writing Terminal Drivers

stack_size
Number of bytes of stack needed collectively by the device-specific
procedures in this device driver.

term_init ~ Address of this procedure.

term_finish
Address of this procedure.

term_setup
Address of this procedure.

term_out Address of this procedure.

term_answer
Address of this procedure.

term_hangup

Address of this procedure.
term_utility

Address of this procedure.

See also: Procedures terminal drivers must supply, later in this
chapter

num_interrupts
For interrupt-driven drivers, the number of interrupts this controller
uses. Define amterrupt_level andterm_check for each
interrupt. For message-based drivers, set to 0. The TSC determines
the type of device from this field.

interrupt_level
For interrupt-driven drivers, the encoded level numbers of the
interrupts associated with the terminals driven by this controller.
Expand the structure here to supply one level for each interrupt the
controller uses. For message-based drivers, this field is not present.

See also: level parameterset_interrupt, System
Call Referencdor bit encoding information

term_check
For interrupt-driven drivers, specifies the offset address of the
term_check procedures. Eaelhm_check field specifies the
term_check procedure for tirgerrupt_level immediately
preceding it. If anyerm_check field is O, there is no term_check
procedure associated with it. Instead, interrupts on these levels are
assumed to be output interrupts that will cause term_out to be called.

For message-based drivers, the offset address of the term_check
procedure. Only one procedure is valid.

Driver Programming Concepts Chapter 6 135

priority For interrupt-driven drivers, this field is not present.
For message-based drivers, the priority of the TSC's message_task.
This task receives messages from the controller.

reserved_a, reserved_b
For message-based drivers, reserved fields.

You can append additional driver-specific fields to the end of this structure.

UINFO Table Structure for Terminal Driver

The UINFO table provides information about an individual terminal. Although
only one DINFO table can exist for each driver (controller), several UINFO tables
can exist if different terminals have different characteristics, such as baud rate,
parity, or modem control.

DECLARE term_uinfo STRUCTURE(
conn_flags WORD_16,
terminal_flags WORD_16,
in_rate WORD_32,
out_rate WORD_32,
scroll_number WORD_16);

or

typedef struct {

UINT_16 conn_flags;
UINT_16 terminal_flags;
UINT_32 in_rate;
UINT_32 out_rate;
UINT_16 scroll_number;

} TERM_UINFO_STRUCT;

136 Chapter 6 Writing Terminal Drivers

Where:

conn_flags
Default connection flags for this terminal:

Bits Meaning

15-10 Reserved, setto 0

9 Type-ahead buffer bypass flag

8 Service/interrupt task raw-input buffer processing flag
7-6 OSC control sequence control

5 Output control character control

4 Output parity control

3 Input parity control

2 Echo control

1-0 Line editing control

See also: connection_flags parameter, BIOS cadl_special
System Call Reference

Bits 8 and 9 affect I/O performance in these ways:

Bit 8 Bit9 Result
0 0 No performance change
0 1 Best performance (assumes flush mode), but

translation, OSC sequence, and CONTROL
character recognition capabilities are lost.

1 0 Some performance increase and translation,
OSC sequence, and CONTROL character
recognition capabilities are kept.

Requesting task must have a priority higher
than 82H.

1 1 No advantages to this setting

Driver Programming Concepts Chapter 6 137

138

terminal_flags

in_rate

out_rate

Terminal flags for this terminal:

Bits Meaning

15-13 Reserved, set to 0.

12 Vertical axis orientation control
11 Horizontal axis orientation control
10 Terminal axes sequence control
9 OSC Translation control

8-6 Output parity control

5-4 Input parity control

3 Modem indicator

2 Output medium

1 Line protocol indicator

0 Reserved, setto 1

See also: terminal_flags parameter, BIOS call
a_specia) System Call Reference

Input baud rate encoded:

Value Meaning

0 Invalid

1 Perform an automatic baud rate search
Other Actual input baud rate, such as 9600

Output baud rate encoded:

Value Meaning
0-1 Use the input baud rate for output
Other Actual output baud rate, such as 9600

Most applications require the input and output baud rates to be equal.
In such cases, uge rate to set the baud rate and specify a 0 for
out_rate

scroll_number

Number of lines to send to the terminal each time the operator enters
the appropriate control character for scrolling; <Ctrl-W> is the
default.

Depending on the requirements of the device, append additional driver-specific
information to the structure.

Chapter 6 Writing Terminal Drivers

TSC Data Area Structure

The DINFO and UINFO tables specify the initial terminal attributes. The BIOS
provides the TSC Data Area that reflects the current state of the terminal controller
and its units. The TSC Data Area consists of three parts:

« A 40H-byte controller part that contains information about the whole device

e A 500H-byte unit part for each device-unit. Then_units field in the
DINFO table specifies the number of unit portions that the BIOS creates.

- A user part that the device-specific procedures can use. The
driver_data_size field in the DINFO table specifies the length of this part.
Theuser_data_ptr field in the controller part of the TSC data area points to
the beginning of this field.

Figure 6-2 illustrates the TSC Data Area.

When the BIOS calls one of the device-specific procedures, it passes a pointer
either to the start of the TSC Data Area or to the start of one of the unit portions of
the TSC Data Area. Your procedures can then obtain information from the TSC
Data Area or modify the information there.

Driver Programming Concepts Chapter 6 139

TSC_DATA
77777777 > 40H bytes
— USER_DATA _PTR

UNIT_DATA 1 } 500H bytes
.
.
.

UNIT_DATA N } 500H bytes

Size specified in

. DRIVER_DATA_SIZE
field of device

information table

USER_DATA

W-2772

Figure 6-2. TSC Data Area

140 Chapter 6 Writing Terminal Drivers

The TSC data area has this structure:

DECLARE TSC_DATA STRUCTURE(
ios_data_segment SELECTOR,
status WORD_186,
interrupt_type BYTE,
interrupting_unit BYTE,
dev_info_ptr POINTER,
user_data_ptr POINTER,
reserved(46) BYTE);

DECLARE UNIT_DATA(*) STRUCTURE(
unit_info_ptr POINTER,
terminal_flags WORD_16,
in_rate WORD_32,
out_rate WORD_32,
scroll_number WORD_186,
page_width BYTE,
page_length BYTE,
cursor_offset BYTE,
overflow_offset BYTE,
raw_size WORD_16,
raw_data_ptr POINTER,
raw_in WORD_16,
raw_out WORD_16,
output_scroll_count WORD_16,
unit_number BYTE,
reserved(1099) BYTE,

buffered_device_data(144) BYTE);

or

Driver Programming Concepts Chapter 6 141

typedef struct {

SELECTOR ios_data_segment;
UINT_16 status;

UINT_8 interrupt_type;
UINT_8 interrupting_unit;

TERM_DINFO_STRUCT * dev_info_ptr;
DRIVER_DATA_STRUCT * user_data_ptr;
UINT_8 reserved[46];

} TSC_DATA_STRUCT

typedef struct {
TERM_UINFO_STRUCT * unit_info_ptr;

UINT_16 terminal_flags;
UINT_32 in_rate;
UINT_32 out_rate;
UINT_16 scroll_number;
UINT_8 page_width;
UINT_8 page_length;
UINT_8 cursor_offset;
UINT_8 overflow_offset;
UINT_16 raw_size;
UINT_8 * raw_data_ptr;
UINT_16 raw_in;
UINT_16 raw_out;
UINT_16 output_scroll_count;
UINT_8 unit_number;
UINT_8 reserved[1099];
UINT_8 buffered_device_data[144];
} UNIT_DATA_STRUCT
Where:

ios_data_segment
Token for the 1/O System's data segment. The ts_init_io procedure
fills in this information during initialization.

status The term_init procedure must return status information here.

142 Chapter 6 Writing Terminal Drivers

interrupt_type
The term_check procedure must return the interrupt type here. The
supported values are:

Value Meaning
0 None

1 Input interrupt

2 Output interrupt

3 Ring interrupt

4 Carrier interrupt

5 Delay interrupt

6 Special character interrupt
7 None

If the term_check procedure cannot guarantee there are no more
interrupts to service, it adds 8 to the encoded interrupt type it returns
indicating that more interrupts are available.

See also: term_check procedure description, later in this chapter
interrupting_unit
The term_check procedure must return the unit number of the
interrupting device here. This value identifies the unit that is
interrupting.
dev_info_ptr
Pointer to the terminal DINFO table for this controller. The ts_init_io
procedure fills in this data during initialization.

user_data_ptr
Pointer to the beginning of the user part of the TSC Data Area. This
user area can be used by the driver, as needed. The ts_init_io
procedure fills in this pointer value during initialization.

For message-based drivers, the first two bytes of this field are
structured as:

DECLARE DRIVER_DATA STRUCTURE(

port_token TOKEN,
other_data(*) BYTE);
or
typedef struct driver_data_struct {
SELECTOR port_token;
UINT_8 other_data[2];

Driver Programming Concepts Chapter 6 143

Where:

port_token
Token for the port/mailbox used by the TSC to receive messages
from the controller. The term_init procedure creates this token;
the term_finish procedure deletes it.

other_data
Available for driver-specific information.

reserved Reserved array for use by the TSC. Device drivers should not set
these bytes.

The UNIT_DATA structure defines each unit (terminal) of the device. When a user
attaches the unit using the physical_attach_devicesystem call or the
attachdevicecommand, the high-level device driver procedures initialize the
appropriateunit_data structure. They do so by filling in all fields of the

unit_data structure with information from the DUIB and the UINFO table.

unit_info_ptr
Pointer to the UINFO table for this terminal. This is the same
information as in thenit_info_ptr field of the DUIB for this
device-unit.

terminal_flags, in_rate, out_rate, scroll_number
The ts_queue_io procedure fills in these fields with information from
the equivalent fields in the UINFO table when the unit is attached.

See also: UINFO Table Structure in this manual for field descriptions
The TSC sets these four fields based on user input (OSC sequersms;ialcalls,
or s_speciakalls).

page_width
Number of character positions on each line of the terminal's screen.

page_length
Number of lines on the terminal's screen.

cursor_offset
Value that starts the numbering sequence of both the X and Y axes.

overflow_offset
Value to which the numbering of the axes must fall back after
reaching 127.

See also: Cursor positioning, in Appendix C

144 Chapter 6 Writing Terminal Drivers

raw_size Size of the unit's raw-input buffer in bytes. The term_init procedure
must set this size. OS-supplied drivers for message-based and
nonbuffered devices always set this size to 256. Device drivers for
buffered devices set this value according to the size of the controller's
onboard input buffer.

raw_data_ptr
Pointer to the unit's raw-input buffer. The term_init procedure must
initialize this pointer.

For buffered devices, this field should point to the controller's onboard
input buffer for this unit.

For message-based and nonbuffered devices, this field should point to
a segment that the term_init procedure creates.

raw_in Offset from theaw_data_ptr pointer indicating the head of the
circular raw-input buffer. The term_init procedure must set this value
to 0. The term_check procedure must update this value whenever
characters are moved into the raw-input buffer.

raw_out Offset from theaw_data_ptr ~ pointer indicating the tail of the
circular raw-input buffer. The term_init procedure must set this value
to 0. The TSC updates this value whenever it moves characters from
the raw-input buffer to the type-ahead buffer. The device driver
should use the difference betweaw_in andraw_out to determine
how many characters are in the raw-input buffer. After initialization,
the driver must never updatav_out .

output_scroll_count
Number of output lines that have been displayed while in scrolling
mode. This field is updated by the TSC; the terminal driver should
not update this count.

Nonbuffered terminal drivers should not change this value. Buffered
terminal drivers must decrement this number, in the term_utility
procedure function 0, by the number of lines actually output.

unit_number
The unit number of this unit, filled in by the TSC.

reserved Reserved for use by the TSC. Device drivers should not set these
bytes.

buffered_device_data
Additional information that applies to drivers of buffered devices.
The next section describes this information.

Driver Programming Concepts Chapter 6 145

Additional Information for Buffered Devices

146

A buffered devicés an intelligent processor that manages its own data buffers
separately from the ones managed by the TSC. Interrupt-driven buffered device
drivers differ from message-based buffered device drivers in how they manage the
raw-input buffer.

Multibus | (MB I) systems support a shared-memory architecture.

e An MB Il interrupt-driven terminal driver can use the dual-port input buffer on
the controller as the raw-input buffer.

« An MB | message-based terminal driver uses a mailbox to send or receive data
from another job that manages data input and output. Subsequently, the TSC
transfers the data from the driver's raw-input buffer to its type-ahead buffer.

Multibus Il (MB 1) supports connectionless data transfers.

« An MB Il message-based terminal driver must maintain its own circular raw-
input buffer in addition to the controller's input buffer. An MB Il controller
uses the MB Il Transport Protocol to send data (using messages) to the
terminal driver, which transfers the data to the raw-input buffer it maintains.

See also: Message-passing, Nucleus Communications Se3ystem
Concepts

If you write a driver for a buffered device, the device-specific procedures must
make use of thbuffered_device_data array of theunit_data structure. Use
this data structure. Some of the fields are set and updated by the TSC based on
OSC sequences, specialcalls, ors_specialcalls.

See also: OSC sequences, Appendix C

Chapter 6 Writing Terminal Drivers

DECLARE BUFFERED_DEVICE_DATA STRUCTURE(

buffered_device BYTE,
buff_input_state WORD_16,
buff_output_state WORD_16,
select(2) BYTE,
line_ram_ptr POINTER,
function_id BYTE,
in_count WORD_16,
out_count WORD_16,
units_available WORD_16,
output_buffer_size WORD_16,
user_buffer_ptr POINTER,
echo_count BYTE,
echo_buffer_ptr POINTER,
received_special WORD_186,
special_modes WORD_16,
high_water_mark WORD_16,
low_water_mark WORD_16,
fc_on_char WORD_16,
fc_off_char WORD_16,
link_parameter WORD_16,
spc_hi_water_mark WORD_16,
special_char(4) BYTE,
reserved(41) BYTE,

driver_use_only(48) BYTE);

or

Driver Programming Concepts Chapter 6 147

typedef struct {

UINT_8 buffered_device;
UINT_16 buff_input_state;
UINT_16 buff_output_state;
UINT_8 select[2];
UINT_8 * line_ram_ptr;
UINT_8 function_id;
UINT_16 in_count;
UINT_16 out_count;
UINT_16 units_available;
UINT_16 output_buffer_size;
UINT_8 * user_buffer_ptr;
UINT_8 echo_count;
UINT_8 * echo_buffer_ptr;
UINT_16 received_special;
UINT_16 special_modes;
UINT_16 high_water_mark;
UINT_16 low_water_mark;
UINT_16 fc_on_char;
UINT_16 fc_off_char;
UINT_16 link_parameter;
UINT_16 spc_hi_water_mark;
UINT_8 special_char[4];
UINT_8 reserved[41];
UINT_8 driver_use_only[48];

{ BUFFERED_DEVICE_DATA_STRUCT

Where:

buffered_ device
The term_init procedure sets to TRUE indicating the unit is a buffered
device. If 0, the rest of the fields in this structure are meaningless.

148 Chapter 6 Writing Terminal Drivers

buff_input_state
The input state between the TSC and the terminal driver encoded as:

Bits Value Meaning

15-8 Available bits for the driver's use to keep track of
its input state. The TSC does not use them.
7,6 Reserved, the driver should not set these bits.
5 0 The TSC ignores output control characters in the
input stream.
1 The device driver can examine this bit and, if the

controller supports it, direct the firmware to
process output control characters when they
appear in the input stream. The TSC sets this bit,
based on user input, to indicate whether output
control characters are processed.

4 Reserved, the driver should not set this bit.

0 This bit should be cleared by the driver whenever
it sends an input command to the firmware;
otherwise, the TSC will not accept characters
from the raw buffer if a type-ahead-buffer-full
condition previously existed.

1 The TSC sets this flag when it finds the type-
ahead buffer full; when it is no longer full, the
TSC will call for an input command from the
driver. The driver must clear the bit at this time.

2 Reserved, the driver should not set this bit.

1 1 The TSC sets this bit after taking characters from
the raw-input buffer. It calls the term_ utility
procedure, which should reset the bit after
informing the firmware about the removal of the

characters.
0 0 No modem is on-line; the driver should reset
DTR.
1 A modem is on-line; the driver should set DTR.

The TSC calls the term_utility procedure to set or
reset DTR.

Driver Programming Concepts Chapter 6 149

buff_output_state
The output state between the TSC and the terminal driver, encoded as:

Bits Value Meaning
15-8 Available bits for the driver's use to keep track of
its output state. The TSC does not use these bits.
7-3 Reserved, device drivers should not set these bits.
2 0 Scrolling mode is not set (characters appear on
the screen without stopping).
1 Scrolling mode is set (only a certain number of

characters appear on the screen; the operator must
press a key to see the next group of characters).
The TSC sets this bit, based on output control
characters entered by the operator, to indicate
whether the output device is in scrolling mode.

The device driver must examine this bit when
sending output.

1 0 Output can occur.
1 Output is stopped.

The TSC sets this bit, based on output control
characters entered by the operator. The device
driver must examine this bit when sending output.

0 0 The TSC keeps track of the number of characters
available in the device's output buffer without
requiring information from the device.

1 The terminal driver (or the device's firmware)
keeps track of the space remaining in the output
buffer. If the device is maintaining this
information, the term_ utility procedure must
place into the units_available field of this
structure the number of bytes of free space
remaining in the output buffer.

select(2) An array that the term_init procedure must fill in to identify the board
and line number of this unit. The first byte identifies the number of
this unit's controller board (where 0 is the first board). The second
byte identifies the line number on that board (where the first line is
line 0).

150 Chapter 6 Writing Terminal Drivers

line_ram_ptr
For interrupt-driven devices, a pointer to the dual-port RAM address
of the specified line. The term_init procedure must place this address
here so that it doesn't need to calculate the address each time it
accesses the unit.

For message-based devices, this field is ignored.

function_id
The TSC specifies a function that the term_utility procedure should
perform in this field.

in_count Number of bytes the TSC has moved from the raw-input buffer to the
TSC's buffer.

out_count Number of bytes to be moved from the driver's output buffer to the
device's on-board output buffer. Decrement this field by the number
of bytes actually output.

units_available
Number of characters remaining (free space) in the output buffer. The
term_utility procedure sets this field.

output_buffer_size
Size of the buffered unit's output buffer. The term_init procedure
must set this field.

user_buffer_ptr
Pointer to the user buffer containing characters to be output.

echo_count
Number of characters, indicated by the TSC, that the term_ utility
procedure should echo to the terminal. The term_utility procedure
gets these characters from #uho_buffer_ptr buffer.

echo_buffer_ptr
Pointer to the buffer containing characters to be echoed to the
terminal. The TSC provides the pointer.

received_special
Used by devices supporting Special Character mode. When Special
Character Mode is enabled and a special character interrupt occurs,
the term_check procedure sets bits 3-0 to indicate which special
character was entered. Bit O corresponds to the first character defined
in thespecial_char array. Bit 1 corresponds to the second
character, and so forth. The driver can ignore the other 12 bits.

Driver Programming Concepts Chapter 6 151

special_modes
Indicates whether the terminal is using any special modes. The TSC
sets this field based on user input as:

Bits Value Meaning

15-2 Reserved, the device driver should not set these
bits.

1 1 Enable Special Character Mode. This bit, in

conjunction with the spc_hi_water_mark field,
indicates whether the TSC responds to special
characters immediately. If your device supports
special characters, it sends an interrupt whenever
a special character is typed. When this mode is
enabled, the term_check procedure sets the
received_special field whenever a special
character interrupt occurs. If the special character
is defined as a signal character, the TSC sends a
unit to the appropriate semaphore.

0 Disable Special Character Mode. The characters
are handled when received through the normal
input stream.

0 1 Enable flow control. Indicates whether the
communications board sends flow control
characters (selected by fc_on_char and
fc_off _char, but usually XON and XOFF) to turn
input on and off. The board can use flow control
to prevent buffer overflow.

0 Disable flow control.

high_water_mark
When the communication board's input buffer fills to contain this
number of bytes, the board sends the flow control character to stop
input. The TSC sets this field based on user input.

low_water_mark
When the number of bytes in the communication board's input buffer
drops to this value, the board sends the flow control character to start
input. The TSC sets this field based on user input.

fc_on_char
ASCII flow control character that starts input. Normally, this
character tells the connecting device to resume sending data. The
TSC sets this field based on user input.

152 Chapter 6 Writing Terminal Drivers

fc_off_char

ASCII flow control character that stops input. Normally, this
character tells the connecting device to stop sending data. The TSC
sets this field based on user input.

link_parameter

The characteristics of the physical link between the terminal and a
device. The TSC sets this field based on user input. Physical link
parameters are not supported by all devices or device drivers. For
supported drivers (such as the Terminal Communications Controller
driver), when the physical link parameters are used, the TSC passes
the low-order byte of this field to the driver, which passes it directly
to the controller. The controller sets the physical link appropriately

as:

Bits Value

15 0
1

14-9

8-7 0
1
2
3

6 0
1

5-4 0
1
2
3

Driver Programming Concepts

Meaning

The link parameters are not used. The input and
output parity applies from the setting of
terminal_flags.

The link parameters are used. The TSC passes
the low-order byte of the link_parameter field to
the controller, overriding the parity settings in
terminal_flags.

Reserved, drivers should not set these bits.

Replace erroneous character (parity, framing,
or overrun errors) by ASCII NULL (0H)
Discard erroneous character

Prefix erroneous character by the two-byte
sequence: OFFH, 0. A valid OFFH character
will be replaced by the two-character sequence:
OFFH, OFFH.

Set the most significant bit of erroneous
character to 1.

Transmitter and receiver unconditionally
enabled

CTS enables transmitter; CD enables receiver

1 stop bit

1-1/2 stop bits

2 stop bits

Reserved, drivers should not set this value

Chapter 6 153

Bits Value Meaning

3-2 0 6 bits/character
7 bits/character
8 bits/character
5 bits/character

WN P

1-0 No parity

Invalid value

Even parity

w N P o

Odd parity

spc_hi_water_mark
When the device's input buffer fills to contain this number of
characters, Special Character Mode is enabled (if enabled by the
special_modes field). If the number of characters in the device's
input buffer is less than the high water mark, Special Character Mode
is disabled, even if it is turned on in theecial_modes field. The
TSC sets this field based on user input.

special_char(4)
An array of up to four characters that are defined as the device's
special characters. If Special Character Mode is on, typing any of
these characters at the keyboard generates a special-character
interrupt. When this happens, the term_check procedure sets the
received_special field of this structure to indicate which special
character was typed. If the character is a signal character, the TSC
processes it immediately. The TSC sets this field based on user input.

If you define less than four special characters, fill the remaining slots
with duplicates of the last character you define.

reserved(41)
Reserved. Device drivers should not set these bytes.

driver_use_only(48)
Reserved for use by the device driver. The TSC does not read or
write these bytes.

154 Chapter 6 Writing Terminal Drivers

Procedures Terminal Drivers Must Supply

You must supply device-specific procedures for the TSC-supplied high-level device
driver procedures to call:

term_init, called by ts_init_io
term_finish, called by ts_finish_io

term_setup, term_answer, and term_hangup, callés lopieue io and the
TSC's interrupt_task/message_task

term_check, called bthe TSC's interrupt handler/message_task
term_out, called by ts_queue_io and the TSC's interrupt handler

term_utility, called for buffered devices

The 1/0O System-supplied term_null procedure returns control to the caller. Use
term_null in place of TSC-required procedures when the driver does not require
them.

If your terminals are not used with modems, use term_null instead of writing
your own term_answer and term_hangup procedures.

If your terminal is not a buffered device, use term_null in place of the
term_utility procedure.

If your application does not need to perform special processing when the last
terminal on the controller is detached, use term_null instead of the term_finish
procedure.

To use this procedure, specify its name in the DINFO table.

Driver Programming Concepts Chapter 6 155

Term_init Procedure

156

This procedure is called when the user attaches the first unit on the terminal
controller. This procedure must initialize the controller. When finished, the
procedure must fill in thetatus field of the TSC Data Area:

« Ifinitialization is successful, setatus to E_OK (0).

« If not, setstatus to E_lO (2BH) or any other value, in which case the BIOS
returns that value to the calling task. HEte&chdevicecommand expects
E_10 status if initialization is unsuccessful.

In addition, the term_init procedure must initialize the raw-input buffer for each
unit of the device. How this is done depends on whether your system is interrupt-
driven or message-based and whether the device is buffered or nonbuffered:

e For interrupt-driven nonbuffered devices and message-based drivers, the
term_init procedure must create a logical segment for the unit's raw-input
buffer, place a pointer to the segment inthe _data_ptr field of the
unit_data portion of the TSC Data Area, place the size of the segment in the
raw_size field, and initialize theaw_in andraw_out fields to O (the offset
for the start of the segment). The recommended size of the raw-input buffer
for nonbuffered devices is 256 bytes.

» For message-based drivers, the term_init procedure must create the
port/mailbox the TSC uses to receive messages. This token is passed to the
TSC byport_token in the driver data portion of the TSC Data Area.

« For buffered devices, the term_init procedure must place a pointer to the unit's
on-board input buffer in thew_data_ptr field of that unit'sunit_data
portion of the TSC Data Area, set tlaev_size field to the size of the input
buffer, and initializeaw_in andraw_out to O (the start of the input buffer).
Finally, it must set theutput_buffer_size field of the buffered device's
buffer_device_data structure to the size of the unit's output buffer, and the
buffered_device field to TRUE to inform the TSC to use this buffer size.
The raw-input buffer size is provided by the terminal controller. The
raw_data_ptr pointer is created using the descriptor for the controller's
shared memory.

Chapter 6 Writing Terminal Drivers

Call Syntax
term_init (tsc_data_ptr);
Where:

term_init ~ The name of the procedure. Use any name as long as it doesn't
conflict with other procedure names. Include the name in the DINFO
table.

tsc_data_ptr
Pointer to the beginning of the TSC Data Area.

Term_finish Procedure

The TSC calls this procedure when a user detaches the last terminal unit on the
terminal controller. The procedure can do nothing and return, it can clean up data
structures for the driver, or it can clear the controller. It should delete any objects
created by the other terminal procedures.

Call Syntax
term_finish (tsc_data_ptr);
Where:

term_finish
The name of the procedure. Use any name as long as it doesn't
conflict with other procedure names. Include the name in the DINFO
table.

tsc_data_ptr
Pointer to the beginning of the TSC Data Area.

Term_setup Procedure

This procedure initializes a terminal according to the fields in the corresponding
unit_data portion of the TSC Data Area. The TSC calls this procedure when
attaching the unit the first time, when detaching the device (for buffered devices
only), and whenever the terminal's input baud rate, output baud rate, read parity,
and write parity attributes are changed.

When the term_setup procedure receives control, it should initialize the unit using
the information that already exists in tinét_data portion of the TSC Data
Area.

Driver Programming Concepts Chapter 6 157

If indicated, this procedure must start a baud rate search. The term_check
procedure usually finishes the search and then filis mte with the actual
baud rate.

If the terminal controller is a buffered device, the term_setup procedure must set
the buffered_device field to TRUE. It should also fill in the other fields of the
buffered_device_data structure.

In addition, this procedure should enable the communication device's on-board
receiver interrupt (the one for the unit being attached) so that it can accept data
from the connected terminal.

When a user detaches a unit on a buffered device, the TSC sets the
buffered_device field to FALSE and again calls the term_setup procedure.
This procedure should disable the communication device's on-board receiver
interrupt (the one for the unit being detached) to prevent extraneous characters
from being received.

Setup Procedure Must Recognize the Requested Operation

158

To distinguish between an attach device, a detach device, and a change terminal
characteristics operation requiring reinitialization, the term_setup procedure should
establish an internal flag for each unit in addition toltiféered_device fields.

A user bit inbuff_output_state can be used for this flag. The term_setup
procedure can use its internal flag:

1. Initially, the term_init procedure sets the flag of each unit to FALSE to
indicate that no devices are attached.

2. When the TSC calls the term_setup procedure to attach a unit, both the
buffered_device field and the internal flag are FALSE. The term_setup
procedure recognizes from this combination that the operation is an attach
device.

3. The term_setup procedure performs the attach device operation and sets the
internal flag and theuffered_device flag to TRUE to indicate that the
device is attached.

4. When the TSC calls the term_setup procedure after attaching the unit but
before detaching it, both theffered_device field and the internal flag are
TRUE. This means the line parameters (such as baud rate or parity) have
changed. The term_setup procedure must reinitialize the unit with the correct
characteristics.

Chapter 6 Writing Terminal Drivers

5. When the unit is detached, the TSC setbtiffered_device flag to

FALSE and calls the term_setup procedure. In this situation, the
buffered_device field is FALSE, but the internal flag is TRUE. The
term_setup procedure recognizes from this combination that the operation is a
detach device.

If your terminal driver supports a modem, the term_setup procedure should also set
the DTR line to active.

Call Syntax

term_setup (unit_data_n_ptr);

Where:

term_setup

The name of the procedure. Use any name as long as it doesn't
conflict with other procedure names. Include the name in the DINFO
table.

unit_data_n_ptr

Pointer to the terminallit_data structure in the TSC Data Area.

Term_answer Procedure

This procedure activates the DTR line for a particular terminal. The TSC calls the
term_answer procedure only when both of these conditions are true:

Bit 3 of terminal_flags in the terminal'sinit_data structure (the modem
indicator) is set to 1.

The TSC has received a Ring Indicate signal (the phone is ringing) or an
answer request (using an OSC modem answer sequence) for the terminal.

See also: OSC sequences, Appendix C

Call Syntax

term_answer (unit_data_n_ptr);

Where:

term_answer

The name of the procedure. Use any name as long as it doesn't
conflict with other procedure names. Include the name in the DINFO
table.

unit_data_n_ptr

Pointer to the terminallait_data structure in the TSC Data Area.

Driver Programming Concepts Chapter 6 159

Term_hangup Procedure

This procedure clears the DTR line for a particular terminal. The TSC calls the
term_hangup procedure only when both of these are true:

e Bit 3 ofterminal_flags in the terminal'sinit_data structure (the modem
indicator) is set to 1.

* The TSC has received a Carrier Loss signal (the phone is hung up) or a hanguj
request (using an OSC modem hangup sequence) for the terminal.

See also: OSC sequences, Appendix C

Call Syntax
term_hangup (unit_data_n_ptr);
Where:

term_hangup
The name of the procedure. Use any name as long as it doesn't
conflict with other procedure names. Include the name in the DINFO
table.

unit_data_n_ptr
Pointer to the terminallsit_data structure in the TSC Data Area.

|:| Note

Some modem devices recognize only carrier detect as an
indication that someone is calling and loss of carrier detect as an
indication of hangup. However, most of these devices require the
DTR line to be active before they can recognize carrier detect.
For these devices, the term_setup procedure must activate the
DTR line. Likewise, the term_hangup procedure must clear the
DTR line for about one second and then reactivate it.

160 Chapter 6 Writing Terminal Drivers

Term_check Procedure

For interrupt-driven devices, the TSC calls this procedure whenever the device
generates an interrupt (usually indicating that a key has been pressed). This
procedure should do this:

1. Check all terminals on the device for an input character. If found, put the
character in the unit's raw-input buffer, updatiag_in in the TSC Data
Area.

2. If no input character is available, check to see if any device is ready to transmit
another character to the terminal.

3. If no device is ready to transmit a character to the terminal, and if this is a
buffered device for which special character mode is enabled, check for a
special character.

4. If no special character is available, check for a change in status (such as a ring
or carrier interrupt).

When the term_check procedure finds the first valid interrupt, it should quit
scanning other units and place the unit number imtbgupting_unit field
of the TSC Data Area.

|:| Note

Because an interrupt handler calls the term_check procedure and
it runs with interrupts disabled, the length of the procedure affects
interrupt latency.

For message-based devices, the TSC calls the term_check procedure on receipt of a
message from the controller. The length of this procedure does not affect interrupt
latency since it is called from a task and runs with interrupts enabled. This
procedure must do this:

1. Examine the received message and place the sending unit number in the
interrupting_unit field of the TSC Data Area.

2. Call the TSC's terminal mutual exclusion procedure.
See also: TSC Utility Procedures Supplied to Drivers, in this chapter

3. Copy any received characters into the device driver's raw-input buffer, modify
the parity bits (if necessary), and update data_ptr in the TSC Data
Area.

4. Process the received message.

Driver Programming Concepts Chapter 6 161

Inform TSC of Interrupt Type

162

For both interrupt-driven and message-based drivers, place the type of interrupt thi:

procedure will return in thiaterrupt_type field of the TSC Data Area:

Value Meaning

0 No interrupt occurred

1 An input interrupt occurred

2 An output interrupt occurred. This signals the TSC to call the term_out
procedure to display the output character at the terminal.

3 A ring interrupt occurred. If the terminal_flags field in the unit's

unit_data structure indicates that the unit supports a modem, this signals
the TSC to call the term_answer procedure to activate the DTR line.

Value Meaning

4 A carrier-loss interrupt occurred. If the terminal_flags field in the
unit_data structure indicates that the unit supports a modem, this signals
the TSC to call the term_hangup procedure to reset the DTR line.

5 A baud rate scan is in progress and the term_setup procedure needs mor
time to determine the baud rate. This signals the TSC to delay for some
time and call the term_setup procedure again.

6 A special-character interrupt occurred. Only certain controllers can
generate these interrupts. The term_check procedure sets the
received_special field of the device's buffered_device_data structure to
identify the character. To avoid missing these occurrences, the
term_check procedure must add 8 to the value it places in the
interrupt_type field indicating that more interrupts are available.

Adding 8 to thenterrupt_type value signals the TSC to call the term_check
procedure again after it processes the current interrupt. Values returned after
processing this and subsequent interrupts are:

Value Meaning

OH No more interrupts are pending

9H An input interrupt occurred

0AH An output interrupt occurred

0BH A ring interrupt occurred

OCH A carrier-loss interrupt occurred

ODH Term_check couldn't determine the baud rate; call term_setup again
OEH A special character interrupt occurred

Unless the controller hardware guarantees that an interrupt will be set after one of
multiple pending interrupts is serviced, the term_check procedure should always
signal that more interrupts are available. This ensures that the TSC calls the
procedure again. Otherwise, the driver could lose interrupts.

Chapter 6 Writing Terminal Drivers

Determine and Set the Baud Rate

If your terminal driver supports a baud rate search on an individual terminal, the
term_check procedure must ascertain the terminal's baud rate:

1.

The first time the term_check procedure encounters an input interrupt for a
particular terminal, it should examine tinerate field of that terminal's
unit_data structure to determine the baud rate.

If thein_rate indicates automatic baud rate search, the term_check
procedure should examine the input character to determine if it is an uppercase
U from which the baud rate is determined. It can usually check for 19200,
9600, and 4800 baud in one attempt.

If the term_check procedure determines the baud rate, it should set the
in_rate field of theunit_data structure to reflect the actual input baud rate
and skip Steps 4 and 5.

If the term_check procedure cannot determine the baud rate, it should
increment then_rate field in theunit_data structure. When the next
input interrupt occurs, the procedure can try again to determine the baud rate.

The term_check procedure should place ODH irintkeerupt_type field to

tell the TSC that a baud rate scan is in progress. The TSC then waits a few
clock cycles and calls the term_setup procedure to set up the terminal for the
new baud rate. When the next interrupt occurs, the term_check procedure can
continue with the baud rate scan.

Reading the Input Character

For message-based and nonbuffered devices, the term_check procedure must also
read the input character, adjusting the parity bit according to bits 4 and 5 of the
terminal_flags field in the interrupting unit'snit_data structure, and move

that input character into the raw-input buffer pointed to bydhedata_ptr

field of theunit_data structure. Whermaw_in equalsaw_out minus 1, the

circular buffer is full. Message-based devices can handle multiple characters per
message. Nonbuffered devices handle one character per interrupt.

Driver Programming Concepts Chapter 6 163

For buffered devices, the term_check procedure does not read the input
character(s). Instead, the TSC calls the term_utility procedure to retrieve
characters from the buffered device. If the device is capable of informing the TSC
about the current values @w_in andraw_out , the term_check procedure
doesn't need to keep trackrafv_in . Later the TSC will call the term_utility
procedure again to update tfaev_in field. However, if the device is not capable
of informing the driver about the current values ofrhve _in andraw_out

fields, the term_check procedure must keep track ofitlein value. It can

either update theaw_in field each time an input interrupt occurs, or it can
maintain an internal copy eéaw_in and make the information available to the
term_utility procedure. If the interrupt is a special character interrupt, the
term_check procedure must set tpecial_received field of theunit_data
structure to identify the special character.

Call Syntax

164

term_check (tsc_data_ptr); /* Interrupt-based */
or
term_check (tsc_data_ptr, message_ptr); /* Message-based */

Where:

term_check
The name of the procedure. Use any name as long as it doesn't
conflict with other procedure names. Include the name in the DINFO
table.

tsc_data_ptr
Pointer to the start of the TSC Data Area.

message_ptr
For message-based terminal drivers, a pointer to the message receivec
from the controller using theceivesystem call, structured as:

DECLARE message STRUCTURE (
data_ptr POINTER,
flags WORD_16,
status WORD_186,
trans_id WORD_16,
data_length WORD_32,
forwarding_port SELECTOR,
remote_socket WORD_32,
control_msg(20) BYTE,
reserved(4) BYTE);

or

Chapter 6 Writing Terminal Drivers

typedef struct {

UINT_8* data_ptr
UINT_16 flags;
UINT_16 status;
UINT_16 trans_id;
UINT_32 data_length;
SELECTOR forwarding_port;
UINT_32 remote_socket;
UINT_8 control_msg[20];
UINT_8 reserved[4];

} MESSAGE_STRUCT;

Where:

data_ptr Pointer to the starting address of the data portion (if any) of the
received message. If the data was received in a data chain, this
parameter points to the data chain block. If a null pointer, there is no
optional data portion for this message.

See also: Device_interrupt Procedunessage_ptr , in this manual
Nucleus calfeceive System Call Referender descriptions of the
remaining fields of the message structure

For MB | message-based terminal drivers, the call syntax is:
term_check (controller_data_ptr, message_ptr);

Where:

controller_data_ptr
Pointer to the device data segment created by the TSC.

message_ptr
Pointer to a structure containing tokens for the object received at a
message mailbox and a token for a response mailbox.

Term_out Procedure

The TSC calls this procedure to display a character at a terminal connected to a
nonbuffered device. The TSC passes the character and a pointer to the terminal's
unit_data structure. If bits 6 through 8 of therminal_flags field of the

unit_data structure so indicate, the term_out procedure should adjust the
character's parity bit and then output the character to the terminal.

This procedure is not needed for message-based and buffered devices. They can
send more than one output character at a time. Instead, the term_utility procedure
is used to move characters to the device's output buffer.

Driver Programming Concepts Chapter 6 165

Call Syntax
term_out (unit_data_n_ptr, output_character);
Where:

term_out The name of the procedure. Use any name for this procedure, as long
as it doesn't conflict with other procedure names. Include the name in
the DINFO table.

unit_data_n_ptr
Pointer to the terminallit_data structure in the TSC Data Area.

output_character
A character that the term_out procedure sends to the terminal.

Term_utility Procedure

This call applies specifically to message-based and buffered devices. If your
device is a nonbuffered device, use term_null for the term_utility procedure.

See also: buffered_device data structure, in this chapter

When the TSC calls the term_utility procedure, it set$uhion_id field of
the unit'sbuffered_device_data structure to one of these values:

Value Meaning

0 This procedure must move the number of characters specified in the
out_count field from the user's output buffer (pointed to by the
user_buffer_ptr field) to the unit's on-board output buffer. For
message-based drivers, this step involves sending a message
containing the output data to the controller.

1 The TSC has moved a number of characters specified in the
in_count field from the unit's raw-input buffer to the type-ahead
buffer. If the device driver (or the device itself) is keeping track of
the space remaining in the unit's input buffer, the term_utility
procedure should update its count (or send a command to the
device's firmware) indicating that in_count bytes have been removed
from the unit's input buffer. The driver should also decrement
in_count.

2 When an input interrupt was received, the TSC's input buffer was
full. Therefore it didn't move any characters from the device's raw-
input buffer to the type-ahead buffer. The term_utility procedure
must send a command to the device to send the input interrupt again.

166 Chapter 6 Writing Terminal Drivers

Value Meaning

3 The modem control bit in the terminal_flags field of the unit's
unit_data structure has changed. The term_utility procedure should
set or reset DTR according to the setting of the bit.

4 One or more of the terminal attributes that apply specifically to
buffered devices have changed. In the buffered_device_data
structure, these attributes are listed in the fields from special_modes
through special_char. The term_utility procedure should issue
controller or firmware commands to modify the device attributes to
match the values listed in the buffered_device data structure.

5 The TSC calls this function to find out the amount of space available
in the unit's output buffer. When this function is called, the
term_utility procedure must indicate how much room is left in the
output buffer for more characters by placing the number of bytes of
free space in the units_available field.

6 Output has been canceled, or the TSC has received a discard output
control character, normally <Ctrl-O>. The term_utility procedure
must clear the unit's output buffer.

7 The TSC has received an output control character that changes the
output state of the terminal. The term_utility procedure must
examine the buff_output_state field and set the output state
accordingly. For example, if an operator types a <Ctrl-S>, the TSC
sets bit 1 in the buff_output_state field to 1. In this case, the
procedure must stop output to the terminal.

8 Characters must be echoed to the terminal. The term_utility
procedure must move the number of characters specified in
echo_count from the buffer pointed to by echo_buffer_ptr to the
unit's on-board output buffer. Any characters that the procedure
doesn't move are lost. For message-based drivers, this step involves
sending a message containing these characters to the controller.

9 Input has been canceled. The term_utility procedure must clear the
unit's raw-input buffer and set raw_out equal to raw _in.

OAH The term_utility procedure must update the raw_in field of the
unit_data structure to the correct value.

Driver Programming Concepts Chapter 6 167

Value Meaning
OBH, OCH Reserved

ODH If the controller does not automatically send output interrupts, the
driver must request the controller to send an interrupt/message when
the output buffer on the controller is empty. The driver must then
indicate an output interrupt to the TSC. Otherwise, ignore this
function code.

Call Syntax
term_utility (unit_data_n_ptr);

Where:

term_utility
The name of the procedure. Use any name as long as it doesn't
conflict with other procedure names. Include the name in the DINFO
table.

unit_data_n_ptr
Pointer to the terminallait_data structure in the TSC Data Area.

168 Chapter 6 Writing Terminal Drivers

TSC Utility Procedures Supplied to Drivers

Some terminal drivers make calls to TSC utility procedures. These procedures are
described here:

e ts_mutex_unit (terminal mutual exclusion)
e ts_set out buf size (terminal set output buffer size)
e Xts_set_output_waiting (terminal set output waiting)

* g_delay (time delay)

Ts_mutex_unit Procedure

For message-based drivers, the term_check procedure calls the ts_mutex_unit
procedure. The procedure gains exclusive access tmithéata structure for
the message-sending device. The procedure must be declared as an external
procedure with one pointer parameter.

Call Syntax
ts_mutex_unit (unit_data_ptr);
Where:

unit_data_ptr
Pointer to thainit_data structure for the message-sending unit.
The term_check procedure obtains this value by using the pointer to
the TSC Data Area.

Ts set out buf size Procedure

For message-based drivers, this procedure is called by the term_init procedure to
communicate the size of the controller's output buffer to the TSC. This is needed if
the initialization procedure does not inform the TSC of the buffer size. For
example, a driver that can determine the size of the output buffer only after the unit
is attached must call this procedure.

Call Syntax
ts_set_out_buf_size (udata_ptr, out_buf_size);

Where:

udata_ptr Pointer to thaunit_data structure for the attached unit.

out_buf_size
The controller's output buffer size for this unit.

Driver Programming Concepts Chapter 6 169

Xts_set_output_waiting Procedure

When a unit of a nonbuffered device is initialized, the term_setup procedure should
notify the TSC that the unit is ready to accept interrupts by calling this procedure.
The term_setup procedure must declare the xts_set_output_waiting procedure as a
external procedure with one pointer parameter. For buffered devices, this
procedure does not need to be called.

Call Syntax
xts_set_output_waiting (unit_data_ptr);

Where:

unit_data_ptr
Pointer to this unit'snit_data portion of the TSC Data Area.

G_delay Procedure

This procedure is called by drivers that need a time delay between 1/O instructions
(10 Microsecond granularity).

Call Syntax
g_delay (count, delay_factor);
Where:
count Number of 10 Microsecond intervals to wait

delay_factor
A system-dependent value that guarantees proper granularity.

See also: /rmx386/inc/sysinfo.lifile for WORD_16 that defines
delay_factor

170 Chapter 6 Writing Terminal Drivers

Handling I/0 Requests

Tasks use BIOS or EIOS calls to do I/O operations. If the operation is valid for the
requested device, the device driver translates the request into specific commands
for the device.

This chapter describes the two basic parts involved in processing the calls: the
device driver procedures that the 1/0O System calls, and the tasks that the driver
procedures must do after being called. If you are writing your own device drivers,
you will need to provide some or all of these functions.

The I/O System can make eight types of requests of a device driver. One of the
eight requests, thee_specialsystem call, has multiple subrequests associated with

it. User-specified subfunctions can have numbers from 32,768 through 65,535 and
can be used with the physical file driver only.

Driver Programming Concepts Chapter 7 171

The I/O System supports these functions.

Name

Attachdevice

Detachdevice

Open

Close

Read

Write

Seek

Special functions
Format track
Query
Satisfy
Notify
Get data
Get term data
Set term. data
Set signal
Rewind tape
Read file mark
Write file mark
Retention tape

Set info
Get info

Get Status
Cancel I/O
Resume 1/O
Disk Mirror

Get Device Free

Number

OCO~NOOPARWNRPFPOOWNREFPONO O M

16
17
18
19
20

21-32,767

Description

Prepare device for use.

Disconnect device.

Prepare device or file for I/O.
Terminate 1/O on device or file.

Read from device at current location.
Write to device at current location.

Find new location on random access device.
Perform following functions.

Format track on mass-storage device.
Find out about stream-file request.
Force stream file operation.

Find out when volume is unavailable.
Find out about hard disk or tape.

Find out about terminal.

Change current terminal configuration.
Designate keyboard signal character.
Rewind tape to load point.

Move to next tape file mark.

Write at current tape position.
Fast-forward then rewind tape to load point.
Reserved

Write bad track or sector locations.
Retrieve bad track or sector locations.
Reserved

Find out about physical terminal device.
Cancel requests to specified terminal.
Resume 1/O with specified terminal.
Mirror primary hard disk of set.

Obtain information about available space on
a disk device.

Reserved

You must provide support for the functions Attach Device through Seek. You may
omit support for Special if you do not need it.

See also:

a_specialBIOS call for complete descriptions of special functions,

System Call Reference

Chapter 7

Handling 1/0O Requests

I/O System Responses to I/O System Calls

The 1/0O System identifies the kind of request to the device driver by setting the
funct field of the IORS. If the request is anspecialrequest, the system also

sets thesubfunct field. Then it calls queue_io. This chapter explains the actions
gueue_io must take.

When a connection is deleted while I/O is in progress, such as when a job is
deleted, the I/O System calls cancel_io to remove requests from the request queue
and stop the processing of the current request, if necessary. Then the I/O System
calls queue_io with thieinct field of the IORS set tb close (7) . When this
request reaches the front of the queue, it is simply returned to the indicated
response mailbox.

When the 1/0O System calls multiple procedures, the order of the calls is significant.
The I/O System calls a different set of procedures depending on whether or not
other units of the device have already been attached.

« Onreceiving the first attach call for a device, the I/O System calls init_io, then
queue_io, with théunct field of the IORS set tb attach (4)

« On subsequent attach calls, the I/O System just calls queue_io witihdhe
field of the IORS set t6 attach (4)

- If more than one unit of the device is attached when the 1/0O System receives a
detach device request, the I/O System calls queue_io, withritte field of
the IORS set té detach (5) . Queue_io does cleanup on the selected unit,
if necessary.

- If only one unit of the device is attached, the 1/O System calls queue_io, then
finish_io to do cleanup for the device as a whole (if necessary) and to delete
any objects created by init_io.

Driver Programming Concepts Chapter 7 173

Actions Required of a Device Driver

This section summarizes the actions required of a device driver whenever it
receives any of the requests or subrequests. Unless otherwise specified, all action:
must be done by the queue_io procedure or a procedure it calls. If a driver does nc
support a particular function or subfunction, it must place the E_IDDR (2AH)
condition code in the IOR&atus field before returning.

If you write a custom terminal driver, the driver must process all requests directly.
If you write a custom random access and common driver, it must process most
requests. Unless otherwise noted, these sections assume that your device driver
handles all the actions described.

Unless otherwise specified, the descriptions of each function refer to fields of the
IORS structure such astus

See also: IORS in this manual, for descriptions of these fields

Whenstatus is returned by an operation, it should be E_OK for successful
completion. If an error occurs, place the general condition code into the IORS
status field and specific error code into the IORSt_status field.

F_read, Function Code O
The device driver must do this to support f_read requests:
1. Usecount to determine the number of bytes to read from the device.

2. Read the bytes from the location specifieddén loc , as an absolute byte
count, an absolute sector number, or as the track and sector numbers. If the
device is a diskette drive formatted in the OS standard format, calculate the
real location after accounting for the special formatting on track 0. Read the
data into the memory pointed to byff_ptr

See also: Appendix E, Supporting the Standard Diskette Format

Thedev_loc field is not used by terminal device drivers or by common
drivers such as tape drivers.

3. Place the number of bytes read iattual . If no error occurs, this value
should be the same esunt , otherwise thactual value will be less.

4. Place the read status intatus

174 Chapter 7 Handling 1/0O Requests

F_write , Function Code 1
The device driver must do this to support f_write requests:
1. Usecount to determine the number of bytes to write to the device.
2. Read the bytes from the area of memory pointed taufiyptr

3. Write the bytes to the location specifiediav_loc , as an absolute byte
count, an absolute sector number, or as the track and sector numbers. If the
device is a diskette drive formatted in the OS standard format, calculate the
real location after accounting for the special formatting on track O.

Thedev_loc field is not used by terminal device drivers or by common
drivers such as tape drivers.

4. Place the number of bytes written iataual . If no error occurs, this value
should be the same esunt , otherwiseactual will be less.

5. Place the write status ingtatus

F_seek, Function Code 2
The device driver must do this to support f_seek requests:

1. Seekto the location specifieddav_loc , as an absolute byte count, an
absolute sector number, or as the track and sector numbers. If the device is a
diskette drive formatted in the OS standard format, calculate the real location
after accounting for the special formatting on track 0.

2. Place the seek status istatus

F_attach, Function Code 4
The device driver must do this to support f_attach requests:

1. Initialize the unit specified innit and initialize any driver data structures
specific to that unit.

2. Place the attach status istatus

F_detach, Function Code 5
The device driver must do this to support f_detach requests:

1. Delete any driver data structures created by the device driver that are specific
to the unit listed irunit .

2. Place the detach status istatus

Driver Programming Concepts Chapter 7 175

F_open, Function Code 6

The device driver must do this to support f_open requests:

1. Prepare the unit for accessing a file. Usually, no processing is involved for this

operation.

2. Place the open status instatus

F_close, Function Code 7

The device driver must do this to support f_close requests:

1. Prepare the unit for closing a file. Usually, no processing is involved for this
operation.

2. Place the close status irtatus

F_special , Function Code 3

The device driver must do this to support f_special requests:

Examinesubfunct to determine the action to take. Most subfunctions use
auxiliary information pointed to by theparm_ptr pointer from thea_special
system call. The format of this information depends on the subfunction invoked.
These paragraphs describe the actions of the driver for each subfunction.

See also: BIOS call_specia) System Call Reference

Fs_format_track , Subfunction O

176

For a tape drive, do this:

1. Rewind the tape.

2. Erase the entire tape.
3. Rewind the tape again.

For a disk drive, format a track according to the information pointed to by

ioparm_ptr

1. |If thetrack_number field of theformat_track structure is greater than the
highest track on the disk, sstus to E_SPACE.

2. If thetrack_number field is valid, format the track using tireerleave
andfill_char values from théormat_track structure, and using the
device characteristics listed in the DUdBv_gran andflags . If necessary,
also use the device-specific characteristics listed in the UINFO table.

Chapter 7 Handling 1/0O Requests

3. If the drive includes information about bad sectors or bad tracks, retrieve this
information and assign alternate sectors or an alternate track for the track listed
in theformat_track structure. Depending on how the driver works, it might
not need to retrieve the data more than once. But it should check to assign
alternate sectors or an alternate track each time it formats a track.

4. |If this is a diskette drive and bit 4 of tiiags field in the DUIB is set to O
(indicating standard format), track 0 must be formatted differently.

5. Place the format statusstatus
See also: Bad sector information, Appendix D
Supporting the Standard Diskette Format, Appendix E
Fs_query , Subfunction 0
Fs_satisfy , Subfunction 1
These are stream file operations handled totally by the I/O System's stream file
driver.
Fs_notify , Subfunction 2

The random access high-level device driver procedure handles fs_notify requests
for random access and common drivers. If the driver is a custom driver, it must do
this:

1. Save the parameters passed imthiéy structure in variables for later use.

2. Whenever a media change occurs, such as opening a diskette drive door or
removing a tape cartridge (these usually cause an interrupt that the driver can
identify as a media-change interrupt), the driver must send a token to the
mailbox in thenotify structure.

If the driver is a random access driver, the 1/O System doesn't pass the fs_notify

request to the device-specific procedures. However, the driver must call the 1/0O

System-supplied notify procedure whenever it detects a media change.
Fs_get_drive_data , Subfunction 3

1. Copy the disk drive or tape drive characteristics (as obtained from the DUIB,
DINFO table, UINFO table, or the device itself) into the structure pointed to by
theioparm_ptr parameter.

2. Place the status inttatus

Driver Programming Concepts Chapter 7 177

Fs_get_terminal_attributes , Subfunction 4

For terminal drivers, the TSC does this operation without passing it on to the
device-specific procedures. Random access and common drivers do not support
this operation and should status to E_IDDR.

If custom terminal drivers support this subfunction, they should place information
about the terminal in the structure pointed to byidharm_ptr parameter.

Fs_set_terminal_attributes , Subfunction 5

For terminal drivers, the TSC places attributes ter@inal_attributes

structure that is pointed to by thparm_ptr pointer. This is the same structure
used by fs_get_terminal_attributes. The TSC calls the term_setup procedure that
changes the baud rate and parity. It also calls the term_utility procedure for
changes in those attributes that apply specifically to buffered devices. The
procedure that receives control must examine the structure and ensure that the
device is set up with the corresponding attributes.

Random access and common drivers do not support this operation and should set
status to E_IDDR.

If custom terminal drivers support this subfunction, they should examine the
structure pointed to by theparm_ptr pointer and act on the changes.
Otherwise, they should return E_IDDRsitatus

Fs_set_signal , Subfunction 6

178

For terminal drivers, the TSC performs this operation without passing it on to the
device-specific procedures.

For custom terminal drivers, thgparm_ptr pointer points to aignal_pair
structure.

To be compatible with the TSC and allow the HI <Ctrl-C> mechanism to operate
properly, the driver must do this. Otherwise, the driver can set up its own
interpretation of signal characters.

1. Save the parameters passed irsitpeal_pair structure in driver variables
for later use. The driver should accsjghal_pair.character values in
the range of 0 through 31 or 32 through 63.

« If the value is in the range of 0 through 31, it is the ASCII code of the
signal character.

Chapter 7 Handling 1/0O Requests

- If the value is in the range of 32 through 63, the driver must subtract 32
from the value to obtain the ASCII code of the signal character. These
higher values indicate that the driver must flush the terminal's input buffer
when it receives the signal character.

- If the value is greater than 63, the driver can ignore the fs_set_signal
request.

2. Whenever the character indicated inghyal_pair.character field is
entered at the terminal, send a unit to the semaphore listed in
signal_pair.semaphore . If the signal character was originally specified in
the range 32 through 63, also flush the terminal's input buffer.

Random access and common drivers do not support this operation and should set
status to E_IDDR. If the driver doesn't support this subfunction, it should return
an E_IDDR condition code.

Fs_rewind , Subfunction 7
For a tape drive, rewind the tape and return status.

For other devices, place E_IDDRdtatus and return.

Fs_read_file_mark , Subfunction 8
For a tape drive, move the tape to the next file mark and return status.

For other devices, place E_IDDRsdtatus and return.

Fs_write_file_mark , Subfunction 9

For a tape drive, write a file mark on the tape at the current tape position and return
status.

For other devices, place E_IDDRstatus and return.

Fs_retention_tape , Subfunction 10

For a tape drive, do these steps to ensure that the tape is wound evenly and is
straight in the cartridge:

1. Rewind the tape.
2. Fast forward the tape to the end.
3. Rewind the tape again and return status.

For other devices, place E_IDDRsdtatus and return.

Driver Programming Concepts Chapter 7 179

Fs_set bad_info , Subfunction 12

For an ESDI hard drive, do all of these steps. For a non-ESDI hard drive, do steps

1 through 5.

1. Examine thelev_gran field of the DUIB to determine the sector size of the
device.

2. Based on the sector size, move the head to the appropriate surface of the last
cylinder - 1:
128-byte sectors last surface
256-byte sectors last surface-1
512-byte sectors last surface-2
1024-byte sectors last surface-3
Format the entire track.

4. Write OABCDH in the first word of the track. Then write the information from
thebad_track_info structure (beginning with theount field) to the track.
Write the entire bad-track information four times.

5. NON-ESDI: Return status to the caller.

ESDI: If the operation completes successfully, continue to step 6. If an error
occurs, place the general condition code intcstas and a specific error
code intounit_status . Return to the caller.

6. Translate the information from tihad_track_info structure into the ESDI
structure.

See also: Appendix D, Interpreting Bad Track Information

7. Format the entire track of every surface of the last cylinder - 2.

8. For a given surface, write the bad track information four times at each
corresponding head of the last cylinder - 2. Write the information at 1024
bytes per sector.

9. Returnstatus to the caller.

Fs_get _bad_info , Subfunction 13

180

For an ESDI hard drive, do all of these steps. For a non-ESDI hard drive, do steps
1 through 4.

1.

Examine thelev_gran field of the DUIB to determine the sector size of the
device.

Chapter 7 Handling 1/0O Requests

2. Based on the sector size, move the head to the appropriate surface of the last

cylinder - 1:

128-byte sectors last surface
256-byte sectors last surface-1
512-byte sectors last surface-2

1024-byte sectors last surface-3
Read the bad-track information into thea_track info structure.

4. NON-ESDI: If the read operation completes successfullytses to
E_OK. If an I/O error occurs, attempt to read the next copy of the bad track
information. If 1/0 errors occur when reading all four copies of the
information, place the general condition code Bittus and a specific error
code intounit_status . Return to the caller.

ESDI: If the read operation completes successfullystaets to E_OK and
return to the caller. If the errors occur when reading all four copies of the bad
track information, continue with step 5.

5. Read the bad track information on every surface of the last cylinder - 2 into the
ESDI structure.

6. If all read operations complete successfully, continue with step 7. If I/O errors
occur when reading all four copies of information at any head, continue with
step 8.

7. Translate the ESDI structure into thel_track_info structure and set
status to E_OK and return to the caller.

8. Read the vendor bad track information on every surface of the last cylinder + 1
into the ESDI structure.

9. If all read operations complete successfullysgets to E_OK. Ifan I/O
error occurs on any surface, place the general condition codgtdtit® and
a specific error code intanit_status
Getting Terminal Status , Subfunction 16

This function applies only to physical devices. It returns the status of a terminal
that is being driven by a terminal device driver. To get a terminal's status, call
a_special

Cancelling Terminal I/O , Subfunction 17

Cancel all requests associated with a specified connection to a terminal. To cancel
all requests, cal_special

Driver Programming Concepts Chapter 7 181

Resuming Terminal I/O , Subfunction 18
Resumes an output request that is blocked because an output control character wa
entered at the terminal. To resume an output requess_csdecial

Performing Disk Mirroring , Subfunction 19

This function does disk mirroring operations on the primary hard disk of the mirror
set. The PCI device driver implements the actual mirroring, error detection and
rollover, and on-line synchronization.

Getting Device Free Space, Subfunction 20

This function gets information about the free space available on the specified
device.

See also: a_special System Call Reference

182 Chapter 7 Handling 1/0O Requests

Making a Device Driver Loadable

Now that you have written your device driver, load and run the driver using the
sysloadcommand. This command adds the driver to the OS dynamically at run
time as a child job of the HI. As such, it stays resident until the system is reset.
When a device driver is loadable, you need to have it present in your working
environment only when you have the device present.

See also: Job§ystem Concepts
Loadable jobs and device drive8ystem Configuration and
Administration

A loadable driver consists of two parts:

« Procedures that interface to the hardware controlled by the driver (described
earlier in this manual)

« An initialization front-end

This chapter explains how to write the initialization front-end and the DUIB,
DINFO, and UINFO tables that are required to add your device driver or drivers to
your application system.

Reference is made to the loadable drivers that are provided with the iIRMX product.
In addition to the executables, the OS includes source code for their initialization
front-ends found in th&lemo/ldd/subdirectories. The OS also includes source for

a loadable RAM drivemamdrv. These examples are good models to follow in

your own device driver development.

See also: Loadable Drivers in this manual
ASM386 Macro Assembler User's Guide
iC-386 Compiler User's Guide
PL/M-386 Programmer's Guide

Driver Programming Concepts Chapter 8 183

How to Make a Device Driver Loadable

Making a device driver loadable involves these steps:

1. Make the required driver procedures callablaasprocedures using the
proper compiler controls.

2. Add the required far pointer elements to the device driver's source code
declaration of the DINFO table.

3. Prepare the needed DUIB, DINFO and UINFO tables which define the
interfaces to the driver.

4. Prepare an initialization front-end for the driver.

Compile/assemble your device driver, its front-end, and its interface table
module. Bind your loadable driver as a closed COMPACT subsystem with
exported BIOS/high-level device driver procedure interfaces. Use one of the
supplied generation submit files as a template.

Once the driver is loadable, run it using fiysloadcommand or the Soft-
Scope debugger while debugging. Usedtiachdevicecommand to attach your
driver for use by the OS.

See also: Using theysloadcommand, debugging a loadable job or device
driver, System Configuration and Administration

Making Driver Procedures Callable as Far Procedures

184

Since the driver procedures reside in their own code segment (COMPACT model),
separate from the code segment of the device drivers in the OS, the BIOS needs tc
access your device driver procedures using far calls. To make the far pointers to
your device driver procedures use the EXPORT control of your iC-386 or

PL/M-386 compiler to force the exported procedures to be far.

For custom drivers, using the provided RAM driver front-end source as an
example, the subsystem declaration is:

$compact(ramdrv -const in code- has
ramdrv,

Xram;

exports

ram_init_io,

ram_finish_io,

ram_queue_io,
ram_cancel_io)

R R R A e R]

Chapter 8 Making a Device Driver Loadable

This declaration defines the loadable RAM-disk driver as a closed COMPACT
subsystem with the namamdrv . This segment contains the modutesadrv

(the driver front-end) angram (the actual RAM-disk driver written according to
the custom driver specifications). The declaration exports the four custom driver
procedures ram_init_io, ram_finish_io, ram_queue_io, and ram_cancel_io. This
same subsystem declaration must be added to other modules that make up the
loadable driver.

If you want common source between the loadable version of the driver and the
ICU-configurable version, conditionally include this subsystem declaration in the
actual driver modules. For example, in a C driver use this:

#ifdef loadable

$compact(ramdrv -const in code- has
Xram;

exports

ram_init_io,

ram_finish_io,

ram_queue_io,
ram_cancel_io)

$optimize(3)

#endif

RS2 BRI TR - o

The subsystem declaration for common, random access, and terminal drivers is
similar to the RAM driver example as can be seen in the front-end source modules
for the provided drivers of these types.

Adding Far Pointer Elements to DINFO Table Declarations

Once again using the RAM-disk driver as an example, a minimal DINFO table
declaration is required in the source code for the addresses ram_init_io,
ram_finish_io, ram_queue_io, and ram_cancel_io procedures. Use this DINFO
structure for PL/M or C programs:

LOADABLE_CUSTOM_DINFOLITERALLY 'STRUCTURE(

far_init_io POINTER,
far_finish_io POINTER,
far_queue_io POINTER,
far_cancel_io POINTER);

or

Driver Programming Concepts Chapter 8 185

186

typedef struct loadable_custom_dinfo_struct {
char *
char *
char *
char *
} LOADABLE_CUSTOM_DINFO_STRUCT

far_init_io;
far_finish_io;
far_queue_io;
far_cancel_io;

For common and random access drivers, using the Native AT Floppy driver as an
example, the required DINFO table structure is:

LOADABLE_RAD_DINFO

level WORD_16,
priority BYTE,
stack_size WORD_32,
data_size WORD_32,
num_units WORD_16,
device_init WORD_32,
device_finish WORD_32,
device_start WORD_32,
device_stop WORD_32,
device_interrupt WORD_32,
time_out WORD_16,
reserved_a WORD_16,
reserved_b WORD_16,

LITERALLY 'STRUCTURE(

[* The following POINTERS are far procedure slots */

far_dev_init_pPOINTER,
far_dev_finish_pPOINTER,
far_dev_start_pPOINTER,
far_dev_stop_pPOINTER,
far_dev_interrupt_pPOINTER)’;

or

Chapter 8

Making a Device Driver Loadable

typedef struct {

UINT_16 level;

UINT_8 priority;
UINT_32 stack_size;
UINT_32 data_size;
UINT_16 num_units;
UINT_32 device_init;
UINT_32 device_finish;
UINT_32 device_start;
UINT_32 device_stop;
UINT_32 device_interrupt;
UINT_16 time_out;
UINT_16 reserved_a;
UINT_16 reserved_b;

[* The following pointers are far procedure slots */
UINT_8 * far_dev_init_p;
UINT_8 * far_dev_finish_p;
UINT_8 * far_dev_start_p;
UINT_8 * far_dev_stop_p;
UINT_8 * far_dev_interrupt_p;

} LOADABLE_RAD_DINFO_STRUCT

Driver Programming Concepts Chapter 8 187

For terminal drivers, using the AT serial port driver as an example, the required
DINFO table structure is:

LOADABLE_TERM_DINFO LITERALLY 'STRUCTURE(
num_units WORD_16,
data_size WORD_16,
stack_size WORD_32,
term_init WORD_32,
term_finish WORD_32,
term_setup WORD_32,
term_output WORD_32,
term_answer WORD_32,
term_hangup WORD_32,
term_utility WORD_32,
num_interrupt WORD_16,
interrupt_level WORD_16,
term_check WORD_32,

[* The following POINTERS are far procedure slots */
far_term_init_p POINTER,
far_term_finish_p POINTER,
far_term_setup_p POINTER,
far_term_output_p POINTER,
far_term_answer_p POINTER,
far_term_hangup_p POINTER,
far_term_utility_p POINTER,
far_term_check_p POINTER);

or

188 Chapter 8 Making a Device Driver Loadable

typedef struct {

UINT_16 num_units;
UINT_16 data_size;
UINT_32 stack_size;
UINT_32 term_init;
UINT_32 term_finish;
UINT_32 term_setup;
UINT_32 term_output;
UINT_32 term_answer;
UINT_32 term_hangup;
UINT_32 term_utility;
UINT_16 num_interrupts;
UINT_16 interrupt_level;
UINT_32 term_check;

[* The following pointers are far procedure slots */
UINT_8 * far_term_init_p;
UINT_8 * far_term_finish_p;
UINT_8 * far_term_output_p;
UINT_8 * far_term_answer_p;
UINT_8 * far_term_hangup_p;
UINT_8 * far_term_utility_p;
UINT_8 * far_term_check_p;

} LOADABLE_TERM_DINFO;

Preparing the Needed DUIB, DINFO, and UINFO Tables

The easiest way to define DUIB, DINFO, and UINFO tables is to use one of the
provided configuration files as a template. This configuration file is an assembly
language program that invokes macros from thddidinfo.mac This discussion
uses the file for the AT COMn serial port driveomcfg.a38in the/demo/Ildd/
subdirectory.

The configuration file has a number of essential parts:
« Name specification

name comcfg : Module name
* Macro filelddinfo.mac

$include(lddinfo.mac) ; Macro include file

Driver Programming Concepts Chapter 8 189

190

Code segment declaration

comdrv_code32 segment er public
; AT COMn port driver far
; procedures part of the comdrv
; subsystem

External declarations for the driver procedures specified in the added fields of
the DINFO table (source for the procedures in this example is in the file
¢/x120sp.dn the/demo/ldd/isubdirectory.

extrn 1120SERINIT : far
extrn 1120SERFINISH : far
extrn 1120SERSETUP : far
extrn 1120SEROUTPUT : far
extrn I1120SERANSWER : far
extrn I120SERHANGUP : far
extrn 1120SERUTILITY : far
extrn 1120SERCHECK : far
comdrv_code32 ENDS

Additional segment directives

code segment er public ; segment definition
assume ds:data
assume es:nothing

DINFO structure definition using the macrold@dinfo.macthat is appropriate

for the driver type (the structure name is a PUBLIC variable so it can be
referenced from the driver front-end for any updating based on command line
input)

Chapter 8 Making a Device Driver Loadable

PUBLIC DINFO_COM

DINFO_COM term_dev_info <

& 01H,

&9,

& 256,

&0,

&0,

&0,

&0,

&0,

&0,

&0,

&1,

& 048H,

&0,

& 1120SERINIT,

& 1120SERFINISH,
& 1120SERSETUP,
& 1120SEROUTPUT,
& 1120SERANSWER,
& 1120SERHANGUP,
& 1120SERUTILITY,
& 1120SERCHECK
&>

Dw 03F8H

DB OH

DB OH

* UINFO structure definition, with the structure name as a PUBLIC variable so

: Public DINFO name

: Terminal DINFO macro
; num_units
; data_size
; stack_size
; null term_init procedure (near)
; null term_finish procedure (near)
null term_setup procedure (near)
null term_output procedure (near)
null term_answer procedure (near)
null term_hangup procedure (near)
null term_utility procedure (near)
num_interrupts
interrupt_level
; null term_check procedure (near)

; far term_init procedure
; far term_finish procedure

; far term_setup procedure

; far term_output procedure
; far term_answer procedure
; far term_hangup procedure

; far term_utility procedure

; far term_check procedure

; Serial port I/O address
; System reset character
; Monitor breakpoint character

it can be referenced from the driver front-end for any updating based on

command line input
PUBLIC UINFO_COM

UINFO_COM DW 01AH

Dw 0101H
DD 02580H
DD 00000H
Dw 012H

: Public UINFO name
; conn_flags
; terminal_flags
;in_rate
; out_rate
; scroll_count

» DUIB table structure definition, using tliefine_duib macro, with the
structure name as a PUBLIC variable so it can be referenced from the driver
front-end for any updating based on command line input

Driver Programming Concepts Chapter 8 191

This table includes from one to 255 DUIBs. The unit number must be 0. The
device and device-unit numbers must all start with 0 and increment with each
additional unit defined. The I/O system adds the next available device and
device-unit number to these values when it inserts the DUIBs into the list of
DUIBs accessible by the 1/0 system.

DUIBTABLE LABEL BYTE
PUBLIC DUIBTABLE

DEFINE_DUIB < : DUIB definition macro

& 'COMX’, : Unit 0 DUIB name

& 00001H, ; supported file drivers

& OFBH, ; supported functions

& 00, ; flags (N/A)

& 00, ; dev_gran (N/A)

& 00, ; dev_size low (N/A)

& 00, ; dev_size high (N/A)

& OH, ; dev_number (first device in the
; cluster must be 0)

& OH, ; unit number (unit 0)

& OH, ; device-unit number (first dev_unit

; in the cluster must be 0)

« Driver type, as defined ilddinfo.magc that specifies the driver type for the
init_io finish_io, queue_io, and cancel_io procedures

Value Driver Type

OFFFFFFFFH custom

OFFFFFFFEH random access

OFFFFFFFDH terminal

OFFFFFFFCH message-based random access
OFFFFFFFBH message-based terminal

& TERMINALTYPE, ; Terminal type init_io procedure

& TERMINALTYPE, ; Terminal type finish_io procedure
& TERMINALTYPE, ; Terminal type queue_io procedure
& TERMINALTYPE, ; Terminal type cancel_io procedure

* Locally defined PUBLIC names to designate the DINFO and UINFO tables
which are used by this DUIB

& DINFO_COM, ; public name of DINFO table
& UINFO_COM, ; public name of UINFO table

192 Chapter 8 Making a Device Driver Loadable

Driver type-specific fields; use the provided configuration files as templates,
based on the driver's type

& OFFFFH, ; update_timeout

& 0, ; num_buffers

& 130, ; service task priority
& FALSE, ; fixed_update

& OH, ; max_buffers

&0 : reserved

&>

Definition of a PUBLIC variable that indicates the number of DUIBs being
defined; this variable is used by timstall_duibs system call in the driver
front-end

PUBLIC NUM_DUIBS ; Public NUM_DUIBS variable
NUM_DUIBS DB 01H : Number of DUIBs defined above

Final code directives and a module END statement

code ENDS ; End of code segment declaration
END : End of module

Preparing an Initialization Front-end

The initialization front-end program of a loadable device driver does this:

Sets up an exception handler to handle exceptions inline

Gets the first argument (program name) from the command line

Creates a log file for the program namgaogram name>.logusing the EIOS
Creates a connection to the log file and opens it for writing only

Writes the sign-on message to the log file

Retrieves parameters from the command line (if applicable) one at a time and
sends them to the appropriate procedures

Creates an alias descriptor for the DINFO table; this allows updates from
information specified at the command line even though the DINFO table for
this driver is in the code segment

Calls theinstall_duibs system call to add the specified DUIBs to the list of
DUIBs managed by the 1/0O system

Determines the token of the driver job and catalogs it in the HI job's object
directory

Driver Programming Concepts Chapter 8 193

« Closes and detaches the log file

« Callssuspend_tasko put itself to sleep after it has completed its work

Supplied Front-end Source Code
Each provided loadable device driver front-end contains these subroutines:

convert This procedure converts a string of ASCII decimal characters into a
hexadecimal number. If any characters are not decimal numbers, the
procedure returns 0. Otherwise, the procedure returns the
hexadecimal-converted value of the ASCII string.

append_string
This procedure appends one ASCII string onto the end of another
ASCII string. It is used to produce a log file of the natpeogram
name>.log

check_exception
This procedure checks the condition code it receives and returns to the
caller if the condition code is E_OK. If not, the procedure decodes
the code into an ASCII string, writes the string to the log file, and
deletes its job and itself.

For an example of initialization front-end code, see thec@iradrv.cin the
/demo/ldd/subdirectory.

Compiling/Assembling and Binding Your Device Driver Code

You can compile/assemble and bind your loadable driver source modules using a
submit file. For this example, tleemdrv.csdsubmit file is used; the file does this:

» Assembles the configuration file containing the DUIB, DINFO, and UINFO
tables

asm386 comcfg.a38 pr(comcfg.Ist) oj(comcfg.obj)

* Compiles the driver front-end and device-specific support procedurety the
(debug) switch can be removed once the driver has been debugged

ic386 comdrv.c cp ex dn(2) ot(3) fp noal rom db &
df(word16) pr(comdrv.Ist) oj(comdrv.obj)

ic386 x120sp.c cp ex dn(2) ot(3) fp noal rom db &
df(loadable) df(r_32) pr(x120sp.Ist) 0j(x120sp.obj)

e Assembles the start-up code required by the C compiler

asm386 cstart.a38 pr(cstart.Ist) oj(cstart.obj)

194 Chapter 8 Making a Device Driver Loadable

« Binds the object modules with loadable device driver and iRMX libraries as a
closed compact subsystem with exported BIOS/high-level device driver
procedure interfaces

bnd386 cf(comdrv.bnd)
As specified in the fileomdrv.bngdshown below:

cstart.obj, &

comdrv.obj, &

x120sp.obj, &

comcfg.obj, &

/rmx386/lib/ldd.lib, &

/rmx386/lib/udiifc32.lib, &

/rmx386/lib/rmxifc32.lib &

object(comdrv) segsize(stack(1200)) print (comdrv.mpl) &
NAME (comdrv) RN(tsc_code to comdrv_code32, &
code32 to comdrv_code32, &

code to comdrv_code32) rc(dm(5000,0fffffh))

The file specifies an initial dynamic memory size of 5000 with a maximum
amount of dynamic memory of 1 MByte. The binder remaps the object code
found in thecode andtsccode segments into the combinedmdrv_code32

code subsystem.

Driver Programming Concepts Chapter 8 195

Using the ICU to Configure
Your Device Driver

This chapter describes how to add your driver to ICU-configurable systems. iRMX
for PCs and iRMX for Windows users can ignore this chapter.

For your driver to work in an ICU-configurable system, you must define the
device-specific procedures as reentrant, public procedures, and compile them using
therom andcompact controls. Assembly language routines must follow the
conditions and conventions used by thewpact control. In particular, the

procedures must function in the same way as high-level language procedures.

See also: ASM386 Macro Assembler User's Guide
iC-386 Compiler User's Guide
PL/M-386 Programmer's Guide

This chapter explains how to use the OS-supplied tools UDS and ICUMRG. To use
these tools, first you must:

« Assemble or compile the code for each driver you have written.

» Put the resulting object modules for terminal drivers in a single library, such as
terminal.lib.

e Put the resulting object modules for random/common/custom drivers in a
single module, such asiver.lib.

Driver Programming Concepts Chapter 9 197

Adding Drivers with the UDS and ICUMRG Utilities

198

The iIRMX Il OS has two utilities that support adding user-written device drivers
to the ICU. With these utilities, you can add screens so that configuring your
driver is just a matter of running the ICU and answering the appropriate questions.
Add information about devices, units, and device-unit screens for as many user-
written device drivers as you wish. Then the ICU can build the proper DUIB,
DINFO, and UINFO structures.

The two utilities are UDS (User Device Support) and ICUMRG (ICU Merge).

« UDS transforms files of screen specifications into files that are compatible
with the ICU.

e ICUMRG merges the new files into the ICU.

Figure 9-1 shows a flowchart overview of using these utilities. These sections
describe the utilities in detail.

Chapter 9 Using the ICU to Configure Your Device Driver

Create or modify
specification file
for input to UDS

A

Run UDS to produce
.scmand .tps files
for user device

A

Examine ./st file
generated by UDS

'

Are
new ICU
screens
correct?

No

Run ICUMRG to add
new screens to ICU

Y

Output of ICUMRG is new
.scm and .tpl files that
describe new version of ICU

W-2774

Figure 9-1. Adding Drivers with UDS and ICUMRG

Driver Programming Concepts Chapter 9

199

UDS Utility

UDS lets you set up a device information screen, a unit information screen, and a
device-unit information screen for your user-written driver. The steps are:

1. Set up the screens by placing information in a file that the UDS reads.

2. When setting up a screen, choose from a set of standard screens. For exampl
when describing a device information screen, you can choose from three
terminal support screens, two random access support screens, and a general
screen.

3. Add auxiliary lines to the device information and unit information screens.
This allows your device-specific information to be entered during
configuration.

By choosing the appropriate screens and adding the correct number of auxiliary
lines, you can set up the ICU to configure almost any device driver. Depending on
the number of auxiliary fields defined, you can provide the new auxiliary fields
with descriptive names.

After you create the input file, these steps occur:

1. Using the input file you provide, the UDS creates two files that define the new
screens. These files have extensisomand.tpl.

2. The ICU Merge Utility can merge these new files with the ICU.

3. The UDS also produces a listing file that hdstaextension; the list file shows
how the screens will look when added to the ICU.

Creating the Input File for UDS

200

The UDS includes two input file templates you can modify to suit your application
needs:

« The filetemplate_1.uds an example of a basic user input file; it contains no
auxiliary help fields.

« The filetemplate_2.uds a complete input file and contains examples of most
auxiliary fields.

You must add each user device driver separately, because a UDS input file can ad
only one driver.

Before invoking UDS, you must create an input file that defines how the ICU
screens for your driver should look. Figure 9-2 shows the format of that input file.
The information in brackets ([]) is not part of the input file; it simply describes the
lines of the file. The "xxxx" characters indicate that you must fill in a value. The
paragraphs following the figure describe the individual lines of the input file.

Chapter 9 Using the ICU to Configure Your Device Driver

#version = Xxxx [1-4 character version number]

#name = XXX [1-25 character name]

#abbr = xxx [1-3 character abbreviation]

#driver = x [driver type value, from 1 to 7]

#device [start of device information]

#dev aux = xx [number of auxiliaries, from 0 to 20]

#d01 = 'parameter name'[1-41 character parameter name, in quotes]
d01 help information [0-1024 character help information]

[Max of 1024 chars, help msgs are required]

[names and help information for other]

[auxiliary parameters]

#end [end of device information]
#unit [start of unit information]
#unit _aux = xx [number of auxiliaries, from 0 to 20]

#uO01 = 'parameter name'[1-41 character parameter name, in quotes]
u01 help information [0-1024 character help information]

[Max of 1024 chars, help msgs are required]

[names and help information for other]

[auxiliary parameters]
#end [end of unit information]
#duib
#duib _aux=0

#end [end of device unit information]

Figure 9-2. Syntax of UDS Input File

Driver Programming Concepts Chapter 9 201

202

#version

#name

#abbr

This is a one- to four-character user version number that will be used
as the new version number of the ICU. By picking consistent version
numbers, you can always keep track of the latest version of the ICU.

It is important to enter meaningful data for the version number,
because the ICU uses the version to determine whether the definition
files are current. When the ICU is invoked by using an existing
definition file, the ICU checks the version number of the definition

file against the version number of the mastemand.tpl files. If an
inconsistency occurs, the ICU displays the differing version numbers
and asks if you want to update the file. The version number that the
ICU displays is built from the value you specify here, plus the date
and time on which you run the ICUMRG utility.

The 1- to 25-character name of the driver being supported.

The 1- to 3-character abbreviation used to form screen names and
abbreviations for all three driver screens:

Screen Abbreviation Screen Name

D_<abrv> <name> Driver

U_<abrv> <name> Unit Information
|_<abrv> <name> Device-unit Information

If you enter an abbreviation aBCand a name dfigh Speed ABC
your screen abbreviations would be D ABC, U ABC, and | ABC. The
screen names would be High Speed ABC Driver, High Speed ABC
Unit Information, and High Speed ABC Device-unit Information.

Chapter 9 Using the ICU to Configure Your Device Driver

#driver The value you specify indicates the kind of driver this is and thus the
kind of screens to display. These values apply:

Value Driver

1 Terminal Support driver with one interrupt level
2 Terminal Support driver with two interrupt levels
3 Interrupt-less Multibus | and Multibus 1l Full Message-

based Terminal support driver

4 Interrupt-driven Random Access Support and common
drivers

5 Multibus Il Full Message-based Random Access devices

6 Reserved

7 General driver

#device This field indicates the start of the information that applies to the
device information screen. The information continues untilesol
field appears.

#devaux Number of auxiliary parameters on the device information screen.
The value can range from 0 to 20. If the value is 4 or less for terminal
support or random access devices, or 14 or less for general devices,
each auxiliary parameter is displayed on a separate line, and the
parameter names you specify in thkfields are displayed there too.

If more auxiliary parameters are specified, the parameters are
displayed on the device information screen in rows of five parameters
each. In this case, there is no room for the parameter names, and if
any are entered, the UDS ignores them.

When the ICU generates a system, it gets auxiliary parameters from
the device information screen. The ICU places random/common
device parameters Picdev.a3diles and places terminal parameters
in ?itdev.a3&iles, immediately after the Device Information
structure. Th& means the character can vary.

Driver Programming Concepts Chapter 9 203

#d01 Each field £d01 through#d20) identifies auxiliary parameters in the
device information table. The identifiers are fixed (D01 through
D20). If a parameter fits on a single line, the 1- to 41-character
'parameter name' you specify (surrounded by quotes) will be
included on the menu.

Even if your table contains too many auxiliary parameters to include a
parameter name for each, you must specifythéeld for a

parameter if you plan to add help information for that field. In such
cases, you can specify the field without a parameter name:

#d03 =

You can also modify the parameter names and help information for
the standard parameters that normally appear on the device
information screen you selected. For example, if you are setting up a
random access device and you want to modify the parameter name
and help information for theSfield, you could include this

information in the input file:

#ds = 'Size of Device Local Data [0-OFFFFH]'

This describes thBSfield. You can modify the other fields in the
same manner.

do1l help This is the help information for the parameters. You must include
help information for all parameters. The UDS assumes that the help
information ends whensaappears at the start of a subsequent line or
when the maximum character count is reached. The UDS displays
help information when the ICU user requests help for the
corresponding parameter. Help information is limited to a maximum
of 1024 characters.

#end This field designates the end of the device, unit, or device-unit
information.

#unit This field indicates the start of the information that applies to the unit
information screen. The information continues untittand field
appears.

204 Chapter 9 Using the ICU to Configure Your Device Driver

#unitaux Number of auxiliary parameters on the unit information screen. This
value can range from 0 to 20. If this value is 10 or less, each auxiliary
parameter is displayed on a separate line with the parameter names
you specify. With more than 10 auxiliary parameters, the parameters
are displayed two to a row, with no room for parameter names.

When the ICU generates a system, it places the auxiliary parameters
from the unit information screen in tRédev.a38or ?icdev.a38files

it creates, immediately after the Unit Information structure. The file
that is actually altered depends on the type of devicedev.a3&or
common and random devices dittlev.a38for terminal devices.

#u01 Each of fields#tu01 through#u20 identifies auxiliary parameters in
the unit information screen. The identifiers are fixed (UO1 through
U20). If each of the auxiliary parameters fits on a single line, the 1-
to 41-character parameter name you specify hepaasneter
name' (surrounded by quotes) will be included on the menu to
describe the auxiliary parameter.

You can also use similar fields to change the parameter names and
help information for any of the standard parameters of the unit
information screen.

u0l help This is the help information for the parameters. You must include
help information for all parameters. The UDS assumes that the help
information ends when a # appears at the start of a subsequent line.
The UDS displays the help information when the ICU user requests
help for the corresponding parameter. Help information is limited to a
maximum of 1024 characters.

#duib This field indicates the start of the information that applies to the
device-unit screen. The device-unit information continues until a
#end field is encountered.

#duib aux Number of auxiliary parameters on the device-unit information
screen. This value can range from 0 to 20. Currently, the UDS does
not support any auxiliary parameters; therefore, set this field:

#duib __aux=0

|:| Note

All auxiliary parameter fields#dev_aux , #unit_aux
#duib_aux) must be WORD values. The UDS will not accept
DWORDs and will write BYTE values as WORDs.

Driver Programming Concepts Chapter 9 205

Device Information Screens

This section lists the different Device Information Screens that the UDS can
generate. When adding support for your own driver, choose the screen that
matches the way the driver expects the DINFO table to look. All screens in this
group can also contain auxiliary parameter lines. You should set up auxiliary
parameter lines if none of the Device Information Screens listed contain enough
fields to support the needs of your driver.

The meanings of the individual fields in these screens are the same as the fields in
the DINFO table.

See also: DINFO Table Structure in this manual
e One-Interrupt Terminal Device Information
e Two-Interrupt Terminal Device Information

e Interrupt-less Multibus | and Multibus Il Full Message-based Terminal Device
Information

* Multibus | Random Access Device Information
* Multibus Il Random Access Device Information

* General Device Information

Unit Information Screens

206

This section lists the Unit Information Screens that the UDS can generate. These
screens are defined by placing information into a user input file, which the UDS
reads. By choosing the appropriate driver type and adding the correct number of
auxiliary lines to the driver's screens, you can set up the ICU to handle the
configuration of virtually any driver. All screens in this group can contain

auxiliary parameter lines. If none of the Unit Information Screens listed contain
enough fields to support your driver, set up auxiliary parameter lines.

The meanings of the individual fields in these screens are the same as the fields in
the UINFO table.

See also: UINFO Table Structure, in this manual
e Terminal Support Unit Information
e Random Access Support Unit Information

* General Device Unit Information

Chapter 9 Using the ICU to Configure Your Device Driver

Device-Unit Information Screens

This section lists the Device-Unit Information Screens that the UDS generates.
When adding support for your own driver, choose the screen that matches the way
the driver expects the DUIB to look. None of the screens in this group currently
allow auxiliary parameter lines.

The meanings of the individual fields in these screens are the same as the fields in
the DUIB.

See also: DUIB in this manual
e Terminal Support Device-Unit Information
« Random Access Device-Unit Information

* General Device-Unit Information

Invoking the UDS Utility

Once you have created an input file that specifies how the screens for your device
driver should appear, you are ready to invoke the UDS utility. To do this, ensure
that the directory containing the UDS program also contains the UDS database file
nameduds.scm Then invoke the utility by typing:

UDS input-file TO output-file

Where:

input-file
The name of the file that contains the information that will be used as
input to the UDS utility.
See also: UDS Input File in this section

output-file

The name portion of the output files generated by UDS. UDS adds
three-character extensions to this name when generating its output
files. The two primary output files aouitput-file.scmandoutput-
file.tpl. You will use these output files as input to the ICUMRG
utility. The other output file isutput-file.Ist a listing file that shows
exactly how the screens will appear when added to the ICU.

You should not name your UDS output files386.scnor icu386.tpl

Driver Programming Concepts Chapter 9 207

208

For example, suppose you created an input file cakbsedriver.txtand wanted the
UDS utility to generate output files callegecial.scnandspecial.tpl To do this,
you would enter this command:

uds newdriver.txt to special

Part of the output of the UDS utility are two files with extensisesand.tpl (in

the examplespecial.scnandspecial.tp). These files contain the definitions of the
ICU screens for your driver. After running the UDS utility, you will use the
ICUMRG utility to add these files to the ICU.

However, before running ICUMRG, examine the listing file (in the example,
special.ls}. This file shows how the device information screen, the unit

information screen, and the device-unit information screen will look when added to
the ICU. If there is a problem with the appearance of any of these files, you can
catch the problem early and rerun UDS, instead of adding incorrect screens to the
ICU.

Chapter 9 Using the ICU to Configure Your Device Driver

UDS Error Messages

If you make a mistake when creating the files to use as input to UDS, the UDS
utility will display an error message.

The messages in this group refer to external file and memory type errors. The
detailed message will be preceded by
*** Error in UDS

*** Cannot Attach Input File
You did not have the proper permission to access the file containing the UDS
instructions.

*** Not enough memory for buffers
Your memory partition is not large enough to permit the UDS utility to run.

*** Cannot Attach UDS SCM File
UDS needs to access a file calletb.scmbut you do not have read access to that
file.

*** Invalid UDS.SCM File
The UDS fileuds.scmhas been corrupted.

*** Cannot Create New SCM File
UDS cannot create the output fileu¢put_file.scm

*** Cannot Create New TPL File
UDS cannot create the output fileufput_file.tp).

*** Cannot Create LST File
UDS cannot create the listing fileutput_file.Is}.

**x |/O Error in File [file-name]
The specified file or directory lacks read or creation permission.

The messages in the next group refer to UDS input file errors. The detailed
message will be preceded by

*** Error in UDS Input File on line <line-number>

where<line-number> is where the error occurred in the user input file.

*** Missing User Version
The requiredtversion statement is missing.

*** ||legal Version
The#version number in the input file is outside the legal range of 1 to 4
characters.

*** Missing User Device Name
The requiredtname field is missing.

Driver Programming Concepts Chapter 9 209

*** ||legal Device Name
The#name identifier is O length or is greater than 25 characters in length.

*** Missing User Device Abbr
The requiredtabbr identifier is missing.

**x ||legal Device Abbr
The#abbr value in the user input file is outside the legal range of 1 to 3
characters.

*** Missing User Driver Type
The requiredtdriver identifier is missing.

*** ||legal Driver Type
The#driver value is outside the legal range of 1 to 7.

*** Missing User Device
The requiredtdevice identifier is missing.

*** Missing Number of Device Auxiliaries
The requiredtdev_aux identifier is missing.

*** Missing User Unit
The requiredtunit identifier is missing.

*** Missing Number of Unit Auxiliaries
The#unit_aux identifier is missing.

*** Missing User Duib
The#duib identifier is missing.

*** Missing Number of DUIB auxiliaries
The requiredtduib_aux identifier is missing.

** DUIB Screen Can Not Have Auxiliary Fields
The#duib_aux value in the user input file is set to other than 0.

*** Missing Equal Sign
The equal sign is missing from an identifier that requires one.

*** | ine Too Long
A line in the user input file is longer than the allowable 132 characters.

*** Missing Auxiliary Help Message
An auxiliary parameter line was added without its required help message.

**x Auxiliary Line Out of Sequence
Auxiliary parameter lines must be listed sequentially, beginning with line 01.

*** | ess Auxiliary Lines than Expected
The number of auxiliary lines is less than e _aux value of the user input file.

*** More Auxiliary Lines than Expected
The number of auxiliary lines is more than #x@_aux value of the input file.

**x ||legal Input
Extra characters were entered on a line after the valid input.

210 Chapter 9 Using the ICU to Configure Your Device Driver

*** |nvalid Abbreviation
The abbreviation for an auxiliary field is outside the legal range of 1 to 3
characters.

*** Abbreviation Not Found
When a standard parameter line or its help message was changed, the abbreviation
was entered incorrectly.

*** Number Exceeds Maximum
Dev_aux Orunit_aux is greater than 20.

*** Number Expected
A nonnumeric value was entered.

*** Syntax Error
The opening quote on a parameter name line is missing.

*** Do Not Use # Sign in Text
A parameter name contains a pound symbol (#).

*** Do Not Use (Sign in Text
A parameter name contains a left parenthesis "(".

*** Missing End of Text Sign
The closing quote on a parameter name line is missing.

*** Text Line Too Long
A parameter name exceeds 41 characters.

*** Help Message is too Long
The Help message you entered exceeds 1024 characters in length.

*** Eield Name Expected
A blank line was detected in the device, unit, or DUIB information.

*** Unexpected eof
The user input file is incomplete.

Driver Programming Concepts Chapter 9 211

ICUMRG Utility

212

After using UDS to generatecmand.tpl files for your new driver, use the
ICUMRG utility to combine the information in these files with the definitions of all
other ICU screens (in tHeu386.scnmandicu386.tplfiles). Before running

ICUMRG, make sure theseu386.*files reside in the same directory as the
ICUMRG command. Then, invoke the ICUMRG utility:

ICUMRG input-file TO output-file

Where:

input-file
The name (minus the extension part) of #@nand.tpl files
generated by the UDS. For example, if the UDS utility created files
calledspecial.scnandspecial.tp] you would specify the nanmspecial
here.

output-file

The name (minus the extension part) of new ICU files that ICUMRG
will create. For example, if you specified the nammew the
ICUMRG utility will create files calledcunew.scrmandicunew.tpl
These new files will contain the complete definition of the ICU,
including the screens you just defined for your new driver. By
naming the files something other than386 you can save the
previous version of the ICU files. For testing, you can change the
name of the ICU executable file to match the base name of the new
file (e.g.,icunew. Then, when you are satisfied with the updated
ICU, rename youicunew icunew.scmandicunew.tpltest files to
theiricu386 counterparts so they match the standard user
documentation.

After adding driver support to the ICU, you can configure the drivers almost as you

would any OS-supplied drivers:
1. Invoke the ICU and go to the (UDDM) UDS Device Drivers Module.

2. Enter the appropriate driver type, (T)erminal or (C)ommon, and the full
pathname for the location of the object code for your device driver.

After entering the correct value, choose the device you want to configure.

4. Fill in the appropriate values when the ICU displays the Device Information,
Unit Information, and Device-Unit Information screens.

Chapter 9 Using the ICU to Configure Your Device Driver

UDS Modules Screen in the ICU

(UDDM) UDS Device Driver Modules
Module= Driver type , Object code pathname
[T/C] , [1-55 Characters]
[1] Module=

Specify (C) for common/random/custom drivers and (T) for terminal drivers.

Place the modules according to type, with all of your terminal modules in one
module, and all your common/random/custom drivers in a separate module. For
examplel =T, terminal.lib , and2 = C, driver.lib

|:| Note

Before changing the name of any ICUMRG output files to
icu386.scrmandicu386.tp| save the original files by copying

them to other files (such &u_old.scmandicu_old.tp).

Although ICUMRG lets you add support for new drivers, once
you add that support, there is no way to remove it. If you decide
you don't want the ICU to display information about one of your
drivers, or you made a mistake when adding information about
your driver, you must revert to the original files you saved (or an
intermediate version that doesn't contain support for that driver).

Driver Programming Concepts Chapter 9 213

Adding Your Driver as a Custom Driver

If you don't want to modify the ICU, you can add your custom device driver by
doing this:

214

1.

Get the device numbers and device-unit numbers to use in the DUIBs for your
devices:

a. Use the ICU to configure a system containing all the OS-supplied and
ICU-supported user drivers you require.

b. Use the€s command to generate that system.

c. Use a text editor to examine the fliedev.a38the? means the first letter
can vary; the file extension is .a28 for iRMX Il users and .a86 for iRMX |
users). This file contains DUIBs for all the device-units defined in your
configuration.

d. Look for the %DEVICETABLES macro that appears after all the
define_duib structures. The second and third parameters in that macro
list are the next available device-unit number and the device number,
respectively. For example, suppose the %DEVICETABLES macro
appears as:

%DEVICETABLES(NUMDUIB,0000CH,005H,003E8H)

The next available device-unit number is OCH and the next available
device number is 05H.

e. Use the next available device number and device-unit number in your
DUIBs.

Create these files and tables:

a. A file containing the DUIBs for all device-units you are adding. Use the
define_duib structures, and place all the structures in the same file.
The ICU will include this file when assembling thiedev.a3dile.

b. A file containing all the device information tables of the
random/common/custom type that you are adding. Use the
radev_dev_info structures for any random access drivers you add.
Later, the ICU includes this file when assembling2telev.a3&ile.

c. If applicable, any random access or common unit information table(s).
Use theradev_unit_info structures for any random access drivers you
add. Add these tables to the file created in step 2b.

Chapter 9 Using the ICU to Configure Your Device Driver

d. A file containing all the device information tables of the terminal type you
are adding. Use a structure similar to the
terminal_device_information structure for terminal drivers. The
ICU will include this file when assembling tRédev.a3&ile.

e. |If applicable, any terminal unit information table(s). Use a structure
similar toterminal_unit_information for terminal drivers. Add
these tables to the file created in step 2b.

f. External declarations for any procedures you write. The procedure names
appear in either the DUIB or the DINFO table associated with this device
driver. Add these declarations to the file created in steps 2b and 2d.

3. Use the ICU to configure your final system. When doing so:

a. Answeryes when asked if you have any device drivers not supported by
the ICU.

b. As input to the Custom User Devices screen, enter the pathname of your
random/common/custom device driver library. This refers to the library
built earlier; for examplefl:driver.lib.

c. As inputto the Custom User Devices screen, enter the pathname of your
terminal device driver library. This refers to the library built earlier; for
example;fl:terminal.lib.

d. Enter these:
« DUIB source code pathname (the file created in step 2a).

« Device and Unit source code pathnames (the files created in steps
2b through 2f).

* Number of user-defined devices.
* Number of user-defined device-units.

The ICU does the rest.

Driver Programming Concepts Chapter 9 215

Figure 9-3 contains an example of the Custom User Devices screen. The bold text
represents user input to the ICU. In this example:

« :fl:driver.lib contains the object code for the random/common/custom drivers
« fl:terminal.lib contains the object code for the terminal driver
« :fl:duib contains the source code for the DUIBs

« fl:rinfo.inc contains the source code for the Device and UINFO tables along
with the necessary external procedure declarations for the
random/common/custom drivers

» tinfo.inccontains the source code for the Device and UINFO tables and the
necessary external procedure declarations for the terminal driver

The code in theriver.lib file supports 1 device with 2 units. The code in
terminal.lib supports 1 device with 2 units; therefore, the (ND) Number of User
Defined Devices [0-OFFH] field equals 2, and the (NDU) Number of User Defined
Device-Units [0-OFFH] field equals 4.

216 Chapter 9 Using the ICU to Configure Your Device Driver

(USERD) User Devices
(OPN) Random Access Object Code Path Name [1-45 Chars/NONE]

(TOP) Terminal Object Code Path Name [1-45 Chars/NONE]

(DPN) DUIB Source Code Path Name [1-45 Chars/NONE]

(DUP) Random Access Device and Unit Source Code Path Name
[1-4 Chars/NONE]

(TUP) Terminal Device and Unit Source Code Path Name
[1-45 Chars/NONE]

(ND) Number of User Defined Devices [0-OFFH] OH
(NDU) Number of User Defined Device-Units [0-0FFH] OH

(NO1) NONE (NO2) NONE (NO3) NONE
(NO4) NONE (NO5) NONE (NO6) NONE
(NO7) NONE (NO8) NONE (NO9) NONE
(N10) NONE (N11) NONE (N12) NONE
(N13) NONE (N14) NONE (N15) NONE
(N16) NONE _ (N17) NONE (N18) NONE

NONE

NONE

NONE

NONE

NONE

: OPN = :F1.DRIVER.LIB <CR>

: TOP = :F1.TERMINAL.LIB <CR>
: DPN = :F1:DUIB.INC <CR>

: DUP = :F1:RINFO.INC <CR>

: TUP = :F1:TINFO.INC <CR>
:ND =2 <CR>

:NDU =4 <CR>

Figure 9-3. Example User Devices Screen

Driver Programming Concepts Chapter 9

217

Example of Adding an Existing Driver as a Custom Driver

This section illustrates how to create the screens needed for adding the 544A
device to your system using the UDS. Because device configuration is complex,
the example covers this in detalil.

While reading this example, keep in mind that the code for terminal drivers is in a
different segment than the code for random or common drivers. Because of this
split in the segments, you must be careful to properly provide the correct

publics, extrns , andnopublics except , and also to properly bind the code
segments together.

(USERD) User Devices
(OPN) Random Access Object Code Path Name [1-45 Chars/NONE]
NONE
(TOP) Terminal Object Code Path Name [1-45 Chars/NONE]
NONE
(DPN) Duib Source Code Path Name [1-45 Chars/NONE]
DUIB.INC
(DUP) Random Access Device and Unit Source Code Path Name
[1-45 Chars/NONE]
NONE
(TUP) Terminal Device and Unit Source Code Path Name
[1-45 Chars/NONE]
TINFO.INC
(ND) Number of User Defined Devices [0-OFFH] 01H
(NDU) Number of User Defined Device-Units [0-OFFH] 04H
Terminal Device and Unit Names [1-16 Chars]

(NO1) DINFO_544A (N02) UINFO_544A (NO3) NONE
(NO4) NONE (NO5) NONE (N06) NONE
(NO7) NONE (NO8) NONE (N09) NONE
(N10) NONE (N11) NONE (N12) NONE
(N13) NONE (N14) NONE (N15) NONE
(N16) NONE (N17) NONE (N18) NONE

The TOP option was left at NONE in this example because the 544A driver code is
already in the driver librarycmdrv.lib If you were adding another module, you
would enter the location of the file as a full path name.

218 Chapter 9 Using the ICU to Configure Your Device Driver

The OPN and DUP options were left at NONE because the driver being configured
is a terminal driver, not a random access, common, or custom driver.

You can add up to 18 total Terminal DINFO and UINFO public names in this
screen.

Contents of the Duib.inc File Specified in the (DPN) Parameter

Figure 9-4 shows the contents of the file whose pathname you supplied in the
(DPN) DUIB Source Code Pathname parameter of the User Devices Screen. This
assembly-language file provides the information to define how the operating
system should interface with the device.

Note the lines with arrows pointing to them. These are the device number and
device-unit number for this device, and the numbers were taken from the
?icdev.a3ile:

1. Make sure that the files you start with contain all of the OS-supplied and ICU-
supported drivers you require. If you haven't generated such a system, use the
ICU to do so before continuing.

2. Use atext editor to examine the fliedev.a38the? means that the first letter
can vary; the file extension is .a28 for iRMX Il users and .a86 for iRMX |
users). You will find all of the DUIBs for your entire system in this file. Scan
this file for a line that starts with %DEVICETABLE.

3. %DEVICETABLE is a macro that appears below all of the systems'
define_duib structures. The second and third parameters in that macro are
the next available device-unit and device number, respectively. For example,
suppose the %DEVICETABLE macro appears as:

%DEVICETABLE (NUMDUIB, 0002EH, 008H, 003E8H)

In this case, the next available device-unit number is 2EH and the next
available device number is 08H.

4. Use these numbers to fill in the two lines of the file indicated by the arrows.

At the end of this file are several more lines that should be noted. Be sure to
examine the last part of this figure and read the text that goes with it.

Driver Programming Concepts Chapter 9 219

DEFINE_DUIB <

& 'T2,

& 00001H,

& OFBH,

& 00,

& 00,

& 00,

& 00,

& 08H, ~000000D000000 Putnext available DEVICE NUMBER here
& OH,

& 2EH, 000000000000 Putnext available DEVICE-UNIT NUMBER
here

& TSINITIO,

& TSFINISHIO,
& TSQUEUEIO,
& TSCANCELIO,
& DINFO_544A,
& UINFO_544A,
& OFFFFH,

&0,

& 130,

& FALSE,

& OH,

&0

&>

Figure 9-4. Computing Device and Device-Unit Numbers

220 Chapter 9 Using the ICU to Configure Your Device Driver

DEFINE_DUIB <

& 'T3,

& 00001H,

& OFBH,

& 00,

& 00,

& 00,

& 00,

& 08H, 0000000000 The DEVICE NUMBER is the same
& OH,

& 2FH, 0000000000 The DEVICE-UNIT number (T3) is equal to the
& TSINITIO, DEVICE-UNIT number of 'T2' plus one.
& TSFINISHIO,

& TSQUEUEIO,

& TSCANCELIO,

& DINFO_544A,

& UINFO_544A,

& OFFFFH,

&0,

& 130,

& FALSE,

& OH,

&0

&>

Figure 9-4. Computing Device and Device-Unit Numbers (continued)

Driver Programming Concepts Chapter 9 221

DEFINE_DUIB <

& 'T4,

& 00001H,

& OFBH,

& 00,

& 00,

& 00,

& 00,

& 08H, 0000000000 The DEVICE NUMBER is the same
& OH,

& 30H, 0000000000 The DEVICE-UNIT number (T4) is equal to the
& TSINITIO, DEVICE-UNIT number of 'T3' plus one.
& TSFINISHIO,

& TSQUEUEIO,

& TSCANCELIO,

& DINFO_544A,

& UINFO_544A,

& OFFFFH,

&0,

& 130,

& FALSE,

& OH,

&0

&>

Figure 9-4. Computing Device and Device-Unit Numbers (continued)

222 Chapter 9 Using the ICU to Configure Your Device Driver

DEFINE_DUIB <

& 'TS,

& 00001H,

& OFBH,

& 00,

& 00,

& 00,

& 00,

& 08H, 0000000000 The DEVICE NUMBER is the same
& OH,

& 31H, 0000000000 The DEVICE-UNIT number (T5) is equal to the
& TSINITIO, DEVICE-UNIT number of 'T4' plus one.
& TSFINISHIO,

& TSQUEUEIO,

& TSCANCELIO,

& DINFO_544A,

& UINFO_544A,

& OFFFFH,

&0,

& 130,

& FALSE,

& OH,

&0

&>

Figure 9-4. Computing Device and Device-Unit Numbers (continued)

Driver Programming Concepts Chapter 9 223

BIOS_CODE ENDS ~oobgooobon--
TSC_CODE SEGMENT ER PUBLIC |
extrn DINFO_544A : far |-NEW PORTION OF FILE

extrn UINFO_544A : far | TO ACCOUNT FOR NEW SEGMENT
I

TSC_CODE ENDS |
BIOS_CODE SEGMENT 00000000 -

Figure 9-4. Computing Device and Device-Unit Numbers (continued)

The lines starting witBlIOS_CODE ENDShroughBIOS_CODE SEGMENMuSst be
added to the end of the file. They provide BND386 with information on the
location of your information tables. You must providesgimn

<MODULE_NAME>: far declaration for each DINFO and UINFO public name
specified here; these names must be supplied as parameters NO1 through N18
above in the USERD screen. This declaration is required because all terminal
information is stored in a different physical segment than other driver information,
and a far call is required to access it.

Contents of the File Specified in the (TUP) Parameter

224

Figure 9-5 shows the contents of the file whose pathname you supplied in the
(TUP) Terminal Device and Unit Source Code Path Name parameter of the User
Devices Screen. This assembly-language file provides the information to define
how the operating system should interface with this device.

Chapter 9 Using the ICU to Configure Your Device Driver

extrn I544INIT : near

extrn I544FINISH : near

extrn I544SETUP : near

extrn I544CHECK : near

extrn I544ANSWER : near

extrn I544HANGUP : near

extrn I544UTILITY : near

PUBLIC DINFO_544A ~goo0oooobooooa

DINFO_544A DW 04H |
DW 9 |
%DW 300 |
%DW 1544INIT |
%DW 1544FINISH |

%DW I544SETUP |

%DW TERMNULL [
%DW I5S44ANSWER [O O PUBLIC
%DW 1544HANGUP | DECLARATIONS

%DW I544UTILITY |
DW 1 |
DW 071H I
%DW I544CHECK |
DD OFEO000H I
DW 04000H |

DB 01H |
PUBLIC UINFO_544A ~-0oooooooo
UINFO_544A DW O01AH
DW 0109H
%DW 02580H
%DW 00000H
DW 012H

Figure 9-5. Public Declarations Needed for the DINFO and UINFO Tables

Driver Programming Concepts Chapter 9 225

Provide the normadxtrn <MODULE_NAME>: near declarations for 1544INIT, ...,
I544FINISH procedures. You must also provideUBLIC <table name> label
before each DINFO and UINFO table specified.

Portion of System Generation Submit File as Changed by this Process

After completing the changes outlined above, you must generate a new system
using the ICU. During the generation process, information is sent to the screen.
Figure 9-6 presents those portions of system generation that are changed by the
steps outlined above.

;. BIOS

ASM386 ICDEV.A38
ASM386 ITDEV.A38

BND386 & ~0000000D000DO0O SEPARATE BIND OF TSC CODE
SEGMENT

ITDEV.OBJ, &

/RMX386/I0S/XDRMBL1.LIB, &

/RMX386/I0S/XCMDRV.LIB(XTSIF), &
/RMX386/I0S/XCMDRV.LIB(XTSIO), &

/IRMX386/I0S/XCMDRV.LIB, &

/INTEL/LIB/PLM386.LIB, &

/RMX386/LIB/RMXIFC32.LIB &

RENAMESEG(CODE32 TO TSC_CODE, TSC_CODE32 TO TSC_CODE, &
CODE TO TSC_CODE, DATA TO TSC_DATA) &

Figure 9-6. Portion of the Modified Submit File

226 Chapter 9 Using the ICU to Configure Your Device Driver

OBJECT (TSC.LNK) NODEBUG NOTYPE SEGSIZE(STACK(0)) &
NOLOAD NOPUBLICS EXCEPT(TSCINITIO, &
TSCFINISHIO, &
DINFO_02H, &
UINFO_8251, &
DINFO_O03H, &
UINFO_18848, &
DINFO_04H, &
UINFO_546, &
UINFO_546CC, &
DINFO_O5H, &
UINFO_547A, &
DINFO_06H, &
UINFO_547B, &
DINFO_O7H, &
UINFO_547C, &
DINFO_544A, & ~-00000000000 USER SPECIFIED PUBLIC DINFO
UINFO_544A, & ~-00000000000 USER SPECIFIED PUBLIC UINFO
TSCQUEUEIO, &
TSCCANCELIO)

BND386 &

IOS1.LNK, &

TSC.LNK, & 00000000000 INCLUSION OF TSC SUBSYSTEM IN IOS
SYSTEM BIND

ICDEV.OBJ, &

/IRMX386/I0S/XDRMBL1.LIB, &
IRMX386/I0S/XCMDRV.LIB, &
/INTEL/LIB/PLM386.LIB, &
/RMX386/LIB/RMXIFC32.LIB &
RENAMESEG(DRV_CODE TO CODE, CODE32 TO CODE, TSC_DATA TO DATA) &
OBJECT (I0S2.LNK) NODEBUG NOTYPE SEGSIZE(STACK(0)) &
NOLOAD NOPUBLICS EXCEPT (rqaiosinittask , &
RgAttachDevice , &

Figure 9-6. Portion of the Modified Submit File (continued)

Driver Programming Concepts Chapter 9 227

Random Access Support
for Interrupt-Driven Devices

Interrupt-driven devices signal the CPU host using interrupts at a specified interrupt
level. This appendix describes the operations of the random access support
procedures as they apply to interrupt-driven devices. The procedures and task
described include:

init_io

finish_io

gqueue_io

cancel_io

interrupt_task

These procedures, supplied with the OS, are called when an application task makes
an 1/0 request to support a random access or common device. The procedures
ultimately call the device-specific device_init, device_finish, device_start,
device_stop, and device_interrupt procedures.

This appendix describes the steps that an actual device driver follows. You can use
this appendix to get a better understanding of the supplied high-level procedures to
make writing the device-specific portion easier. Or you can use it as a guideline

for writing custom device drivers.

Init_io Procedure

The 1/0 System calls init_io when an application task makes an
a_physical_attach_devicesystem call and no units of the device are currently
attached.

Init_io initializes objects used by the remainder of the driver procedures, creates an
interrupt_task, and calls a user-supplied devicepimitedure to initialize the
device itself.

When the 1/O System calls init_io, it passes the following parameters:
» A pointer to the DUIB of the device-unit to initialize

e A pointer to the location where init_io must return a token for a data segment
(data storage area) that it creates

e A pointer to the location where init_io must return the condition code

Driver Programming Concepts Appendix A 229

230

Figure A-1 illustrates the steps that the init_io procedure follows to initialize the
device. The numbers in the figure correspond to the step numbers in the text.

1. The init_io procedure creates a data storage area to be used by all procedures
in the driver. The size of this area depends in part on the number of units in
the device and special space requirements of the device. Init_io then begins
initializing this area and eventually places the following information there:

« Atoken for a region. Step 2 creates this region for mutual exclusion.

e An array to contain the addresses of the DUIBs for the device-units
attached to this device. Init_io places the address of the DUIB for the first
attaching device unit into this array.

« Atoken for the interrupt_task.
e Other values indicating the queue is empty and the driver is not busy.
The procedure also reserves space in the data storage area for device data.

2. Theinit_io procedure creates a region. The other high-level procedures
receive control of this region whenever they place a request on the queue or
remove a request from the queue. Init_io places the token for this region in the
data storage area.

3. The procedure enters the region to prevent the interrupt_task from starting
before initialization is complete.

4. The init_io procedure creates an interrupt_task to handle interrupts generated
by this device. When init_io invokeseate_taskto create the interrupt_task,
it does not specify the task's data segment. Instead, it uststahseg
parameter o€reate_taskto pass the interrupt_task a token for the data storage
area. This area is where the interrupt_task will get information about the
device. Init_io places the actual data segment value, as well as a token for the
interrupt_task, in the data storage area.

5. The init_io procedure calls a device_init procedure that initializes the device
itself. It gets the address of this procedure by examining the DINFO table
specified in the DUIB.

See also: device_init procedure, Chapter 5
6. The init_io procedure exits the region.

7. It returns control to the I1/O System, passing a token for the data storage area
and a condition code which indicates the success of the initialization operation.

If an error occurs at any point in these steps, the init_io procedure exits the region,
deletes all the objects it has created up to that point, and returns an error to the I/O
System.

Appendix A Random Access Support for Interrupt-driven Devices

init_io

Creates data segment for
device and starts filling it

v

Creates the region for
access to the queue

v

Enters the region

v

Creates the interrupt task

v

Calls user-supplied procedure
to initialize device

v

Exits the region

v

Returns to 1/0 system
passing data object and
condition code

Figure A-1. Random Access Device Driver Init_io Procedure

Driver Programming Concepts

W-2775

Appendix A

231

Finish_io Procedure

The 1/O System calls finish_io when an application task makes an
a_physical_detach_devicasystem call and no other units of the device are
currently attached.

Finish_io calls a device_finish procedure to perform final processing on the device
itself, deletes the interrupt_task, and deletes objects used by the other device drive
procedures.

When the I/O System calls finish_io, it passes the following parameters:
e A pointer to the DUIB of the device-unit just detached
« Atoken for the data storage area created by init_io

Figure A-2 illustrates the steps that the finish_io procedure follows to terminate
processing for a device. The numbers in the figure correspond to the step numbers
in the text.

1. The finish_io procedure calls a device-specific device_finish procedure that
does any necessary final processing on the device itself. Finish_io gets the
address of this procedure by examining the DINFO table specified in the
DUIB.

2. The finish_io procedure deletes the interrupt_task originally created for the
device by the init_io procedure and cancels the assignment of the interrupt
handler to the specified interrupt level.

3. It deletes the region and the data storage area originally created by the init_io
procedure, allowing the operating system to reallocate the memory used by
these objects.

4. The finish_io procedure returns control to the /0O System.

See also: device_finish in Chapter 5

232 Appendix A Random Access Support for Interrupt-driven Devices

finish_io

Calls user - supplied
procedure to finish up
processing on the device

Deletes interrupt task for
device and resets interrupt

Y

Deletes region and data objects
used by this device driver

v

Returns to the 1/O system

Figure A-2. Random Access Device Driver Finish_io Procedure

Driver Programming Concepts

W-2776

Appendix A

233

Queue_io Procedure

234

The 1/0O System calls the queue_io procedure to place an I/O request on a queue O
requests. This queue has the structure of a doubly-linked list. If the device itself is
not busy, queue_io also starts the request.

When the I/O System calls queue_io, it passes the following parameters:
« Atoken for the IORS

e A pointer to the DUIB

« Atoken for the data storage area originally created by init_io

Figure A-3 illustrates the steps that the queue_io procedure goes through to place ¢
request on the I/O queue. The numbers in the figure correspond to the step
numbers in the text.

1. The queue_io procedure setsdbee field in the IORS to OH, indicating the
request has not yet been completely processed. Other procedures that start th
I/O transfers and handle interrupt processing also examine and set this field. It
also setstatus to E_OK anchctual to OH.

2. The queue_io procedure receives control of the region and thus access to the
gueue. This allows queue_io to adjust the queue without concern that other
tasks might also be doing this at the same time.

3. The queue_io procedure verifies that the request is within the range of 0 to
device size for this device. If the request is outside this range, queue_io
returns E_PARAM. For a valid request, it convésts.dev_loc from the
absolute byte position on the device, as passed by the BIOS, to the absolute
block (sector) number (if track size equals 0). If the track size is not 0,
iors.dev_loc is converted to the sector and track number. Finally, it places
the IORS on the queue in seek-optimized order.

4. If the device is busy processing an 1/O request, queue_io goes on to Step 5.
Otherwise, it calls the device-specific device_start procedure to process the
request at the head of the queue.

See also: device_start in Chapter 5

5. The queue_io procedure surrenders control of the region, thus allowing other
procedures to have access to the queue.

|:| Note

If the request is complete, queue_io returns a token for the IORS
to the response mailbox; if not, the interrupt_task returns it upon
completion. The random access support does not return a CLOSE
request until all prior requests for the same unit are completed.

Appendix A Random Access Support for Interrupt-driven Devices

queue_io

Sets status fields
in the IORS

v

Gains access
to the region

Y

Places the IORS
on the queue

Starts the processing of the
request if the device is not busy

Y

Surrenders access
to the region

Returns to the 1/O system

Figure A-3. Random Access Device Driver Queue_io Procedure

Driver Programming Concepts

W-2777

Appendix A

235

Cancel_io Procedure

236

The 1/0O System calls cancel_io to remove one or more requests from the queue an
possibly to stop the processing of a request, if it has already been started. The I/O
System calls this procedure in one of two instances:

« If atask invokes tha_physical_detach_deviceystem call and specifies the
hard detach option. The hard detach removes all requests from the queue.

See also: a_physical_detach_deviceSystem Call Reference

« If the job containing the task that makes an 1/O request is deleted. In this case,
the 1/0 System calls cancel_io to remove all of that task's requests from the
queue.

When the 1/O System calls cancel_io, it passes the following parameters:
e An ID value that identifies requests to be canceled

e A pointer to the DUIB

« Atoken for the device data storage area

Figure A-4 illustrates the steps that the cancel_io procedure follows to cancel an
I/0 request. The numbers in the figure correspond to the step numbers in the text.

1. The cancel_io procedure receives access to the queue by gaining control of the
region. This allows it to remove requests from the queue without concern that
other tasks might also be processing the IORS at the same time.

2. The cancel_io procedure locates the request(s) to be canceled by looking at th
cancel_id field of the queued IORSSs, starting at the front of the queue.

3. Ifthe request to be canceled is at the head of the queue, that is, the device is
processing the request, cancel_io calls a device-specific device_stop procedure
that stops the device from further processing.

4. If the request is finished or the IORS is not at the head of the queue, cancel_io
removes the IORS from the queue and sends it to the response mailbox
indicated in the IORS. It examines the rest of the requests on the queue,
removing all of them whoseancel_id fields match the ID of the canceled
request.

5. The cancel_io procedure surrenders control of the region, thus allowing other
procedures to gain access to the queue.

The additional CLOSE request supplied by the I1/0O System will not be processed
until all other requests with the giveancel_id value have been dealt with.

See also: device_stpim Chapter 5

Appendix A Random Access Support for Interrupt-driven Devices

cancel_io

@ Gains access

from the region

<
Y

@ Obtain IORS

with specified
cancel$id value

®

Yes Calls the user-written
device stop procedure

Is the device

currently processing

the request
?

No
Yes Is the
< request done
\% R
@ Removes the IORS

from the queue

v

Sends the IORS
to the response
mailbox

\L(

Yes

Any more

IORS to cancel
2

@ Surrenders access
to the region

¥

Returns to the
1/0 system

W-2778

Figure A-4. Random Access Device Driver Cancel_io Procedure

Driver Programming Concepts Appendix A 237

Interrupt Task

As a part of its processing, the init_io procedure creates an interrupt_task for the
entire device. This interrupt_task responds to all interrupts generated by the units
of the device, processes those interrupts, and starts the device working on the next
I/O request on the queue.

Figure A-5 illustrates the steps that the interrupt_task for the random access device
driver follows to process a device interrupt. The numbers in the figure correspond
to the step numbers in the text.

1. The interrupt_task uses the contents of the processor's DS register to obtain a
token for the device data storage area. This is possible for the following two
reasons:

* When init_io created the interrupt_task, instead of specifying the
interrupt_task's DS register in thata_seg parameter of thereate_task
call, it passed the token of the data storage area in this parameter.
Therefore, when the Nucleus created the task, it set the task's DS register
to the value of the token.

* When the init_io procedure initialized the data storage area, it included the
value of the interrupt_task's DS register there.

When the interrupt_task starts running, it saves the contents of the DS register
to use as the address of the data storage area and sets the DS register to the
value listed in the data storage area. Thus the DS register does point to the
task's data segment, and the task also knows the address of the data storage
area. This is the mechanism that is used to pass the address of the device's
data storage area from the init_io procedure to the interrupt_task.

2. The interrupt_task invokes tlet_interrupt system call to indicate that it is
an interrupt_task associated with the interrupt handler supplied with the
random access device driver. It also indicates the interrupt level to which it
will respond; it obtains this information from the DINFO table.

3. The interrupt_task begins an infinite loop by invoking the
rqe_timed_interrupt system call to wait for an interrupt of the specified level.
If the time limit expires before an interrupt occurs, the effect is the same as a
null (or spurious) interrupt, and the task waits for another interrupt. By
invoking a number ofge_timed_interrupt calls, instead of a single
wait_interrupt , the task allows lower-priority tasks to gain control between
calls. For example, if an application attempts to send data to a line printer that
isn't connected, the user can press <Ctrl-C> to cancel the operation.

238 Appendix A Random Access Support for Interrupt-driven Devices

interrupt_task

Gets selector for device data @
storage area from DS register

\4

Sets interrupt level at which to @
respond and indicates device
handler

>v

Waits for interrupt at the @
specified level

v

Gains access from region

v

Calls the user-written interrupt @
procedure to process
the interrupt

v

Is

Removes the IORS from the @
the request

gueue and sends a message to
the response mail box

?

0o

N
<
<

4

A

Starts the request at the @
head of the queue

Surrenders access

to the region

W-2779

Figure A-5. Random Access Device Driver Interrupt Task

Driver Programming Concepts Appendix A 239

240

Using a region, the interrupt_task gains access to the request queue. This
allows it to examine the first entry in the request queue without concern that
other tasks are modifying it at the same time.

The interrupt_task calls a device-specific device_interrupt procedure to process
the actual interrupt. This can involve verifying that the interrupt was
legitimate or any other operation that the device requires.

See also: Interrupt Task, Chapter 5

If the request has been completely processed, (one request can require multipl
reads or writes, for example), the interrupt_task removes the IORS from the
gueue and sends it as a message to the response mailbox indicated in the IOR
If the request is not completely processed, the interrupt_task leaves the IORS
at the head of the queue.

If there are requests on the queue, the interrupt_task initiates the processing of
the next I/0 request by calling the device-specific device_start procedure.

In any case, the interrupt_task then surrenders access to the queue, allowing
other procedures to modify the queue, and loops back to wait for another
interrupt.

Appendix A Random Access Support for Interrupt-driven Devices

Random Access Support
for Message-Based Devices

Message-based devices support asynchronous 1/0O. The CPU host and the controller
communicate using messages. In a Multibus | system, a shared-memaory queue is
used; interrupt-driven controllers signal the host through hardware interrupts, and
the host signals the controller at a flag byte I/O port. In a Multibus Il system, the
Multibus Il Transport Protocol is used; controllers signal the CPU host using virtual
interrupts that are referred to as messages throughout this appendix.

This appendix describes the operations of the random access support procedures as
they apply to message-based devices. The procedures and task described include:
init_io
finish_io
gqueue_io
cancel_io
message_task

These procedures, supplied with the /0 System, are called when an application
task makes an 1/O request to support a random access or common device. The
procedures ultimately call the device-specific device_init, device_finish,
device_start, device_stop, and device_interrupt procedures.

This appendix describes the steps that an actual device driver follows. You can use
this appendix to get a better understanding of the 1/0 System-supplied portion of a
device driver to make writing the device-specific procedures easier. Or you can
use it as a guideline for writing custom device drivers.

Driver Programming Concepts Appendix B 241

Init_io Procedure

242

The 1/0 System calls init_io when an application task makes an
a_physical_attach_devicesystem call and no units of the device are currently
attached.

The init_io procedure initializes objects used by the remainder of the driver
procedures, creates a message_task, and calls a device_init procedure to initialize
the device itself.

When the 1/O System calls init_io, it passes the following parameters:
« A pointer to the DUIB of the device-unit to initialize

e A pointer to the location where init_io must return a token for a data segment
(data storage area) that it creates

e A pointer to the location where init_io must return the condition code

Figure B-1 illustrates the steps that the init_io procedure follows to initialize the
device. The numbers in the figure correspond to the step numbers in the text.

1. The init_io procedure creates a data storage area to be used by all the
procedures in the device driver. The size of this area depends in part on the
number of units in the device and any special space requirements of the device
Init_io initializes this area and places the following information there:

« Atoken for a region. Step 2 creates this region for mutual exclusion.

e An array to contain the addresses of the DUIBs for the device-units
attached to this device. Init_io places the address of the DUIB for the first
attaching device unit into this array.

« Atoken for the message_task.
e Other values indicating the queue is empty and the driver is not busy.

« A port object used by the message_task to receive messages from the
controller. The user-supplied driver uses this object to send messages to
the controller.

It also reserves space in the data storage area for device data.

2. The procedure creates a region. The other high-level procedures receive
control of this region whenever they place a request on the queue or remove a
request from the queue. Init_io places the token for this region in the data
storage area.

3. The init_io procedure enters the region to prevent the message_task from
starting before initialization is complete.

Appendix B Random Access Support for Message-based Devices

init_io

Creates the object for
device and starts filling It

Creates the region for
access to the queue

Enters the region

Y

Creates the
interrupt/message task

Y

Calls user-supplied procedure
to initialize device

Exits the region

Y

Returns to I/O system
passing data object and
condition code

Figure B-1. Random Access Device Driver Init_io Procedure

Driver Programming Concepts

W-2780

Appendix B

243

4. The init_io procedure calls a device_init procedure that initializes the device
itself. It gets the address of this procedure by examining the DINFO table
specified in the DUIB.

See also: device_init, Chapter 5

5. The init_io procedure creates a message_task to handle messages generated
this device. When init_io invokeseate_taskto create the message_task, it
does not specify the task's data segment. Instead, it usisahseg
parameter o€reate_taskto pass the message_task a token for the data storage
area. This area is where the message_task will get information about the
device. Init_io places the actual data segment value, as well as a token for the
message_task, in the data storage area.

6. The init_io procedure exits the region.

7. ltreturns control to the I1/O System, passing a token for the data storage area
and a condition code which indicates the success of the initialization operation.

If an error occurs at any point, the init_io procedure exits the region, deletes all the
objects it has created up to that point, and returns an error to the 1/0O System.

Finish_io Procedure

244

The 1/O System calls finish_io when an application task makes an
a_physical_detach_devicasystem call and no other units of the device are
currently attached.

Finish_io calls a device_finish procedure to do final processing on the device,
deletes the message_task, and deletes the objects used by the other device driver
procedures.

When the I/O System calls finish_io, it passes the following parameters:
e A pointer to the DUIB of the device-unit just detached
« Atoken for the data storage area created by init_io

Figure B-2 illustrates the steps that the finish_io procedure follows to terminate
processing for a device. The numbers in the figure correspond to the step numbers
in the text.

1. The finish_io procedure calls a device-specific device_finish procedure that
does any necessary final processing on the device itself. Finish_io gets the
address of this procedure by examining the DINFO table specified in the
DUIB.

2. It deletes the message_task originally created for the device by the init_io
procedure.

Appendix B Random Access Support for Message-based Devices

3. It deletes the region and the data storage area originally created by the init_io

procedure, allowing the operating system to reallocate the memory used by
these objects.

4. The finish_io procedure returns control to the 1/0 System.

finish_io

@ Calls user-supplied
procedure to finish up

processing on the device

Y

Deletes message
task for device

Y

Deletes region and data objects
used by this device driver

Returns to the I/O system

W-2781

Figure B-2. Random Access Device Driver Finish_io Procedure

Driver Programming Concepts Appendix B 245

Queue_io Procedure

246

For message-based devices, the I/O System calls the queue_io procedure to place
an 1/0 request on a queue of requests on a first-in-first-out basis. This queue has
the structure of a doubly-linked list. This procedure calls a device_start procedure
to start processing the I/O requests.

When the I/O System calls queue_io, it passes the following parameters:
« Atoken for the IORS

e A pointer to the DUIB

* Atoken for the data storage area originally created by init_io

Figure B-3 illustrates the steps that the queue_io procedure follows to place a
request on the I/O queue. The numbers in the figure correspond to the step
numbers in the text.

1. The queue_io procedure setsdhbee field in the IORS to OH, indicating the
request has not yet been completely processed. Other procedures that start th
I/O transfers and provide message handling also examine and set this field. It
also setstatus to E_OK anchctual to OH.

2. The queue_io procedure receives control of the region and thus access to the
gueue. This allows queue_io to adjust the queue without concern that other
tasks might also be doing this at the same time.

3. It verifies that the request is within the range of 0 to device size for this device.
If the request is outside this range, queue_io returns E_PARAM. Then it
places the IORS on the queue.

4. Queue_io calls the device_start procedure to process the request at the head c
the queue.

5. It surrenders control of the region, thus allowing other procedures to have
access to the queue.

6. The queue_io procedure returns control to the I/O System.

|:| Note

If the request is complete, queue_io returns the IORS to the
response mailbox; if not, the message_task returns it upon
completion. The random access support does not return a CLOSE
request until all prior requests for the same unit are completed.

See also: device_start, Chapter 5

Appendix B Random Access Support for Message-based Devices

queue_io

Sets status fields in
the IORS

Gains access to the
region

Y

Places the IORS in
the queue

Y

Starts processing the
request

Y

Surrenders access to the
region

Y

Returns to the I/O
system

Figure B-3. Random Access Device Driver Queue_io Procedure

Driver Programming Concepts

W-2782

Appendix B

247

Cancel_io Procedure

This procedure does no operations for message-based devices. The message_tas
sweeps through the request queue and starts all requests. Because of this feature,
all I/0 requests are guaranteed to finish within a limited time.

|:| Note

The CLOSE request supplied by the I/O System is immediately
sent to the device_start procedure. However, the random access
support does not return it to the I/O System until all requests in
the queue have been completed.

Message Task

The init_io procedure creates a message_task for the entire device. This
message_task responds to all messages generated by the units of the device,
processes those messages, and starts the device working on the unstarted 1/O
requests on the queue.

Figure B-4 illustrates the steps that the message_task follows to process a messag
from the device. The numbers in Figure B-4 correspond to the step numbers in the
text.

1. Message_task uses the contents of the processor's DS register to obtain a toke
for the device data storage area. This is possible for these reasons:

* When init_io created the message_task, instead of specifying the
message_task's DS register indhea_seg parameter of thereate_task
call, it passed the token of the data storage area in this parameter.
Therefore, when the Nucleus created the task, it set the task's DS register
to the value of the token.

* When the init_io procedure initialized the data storage area, it included the
value of the message_task's DS register there.

When the message_task starts running, it saves the contents of the DS
register to use as the address of the data storage area and sets the DS
register to the value listed in the data storage area. Thus the DS register
does point to the task's data segment, and the task also knows the address
of the data storage area. This is the mechanism used to pass the address
the device's data storage area from the init_io procedure to the
message_task.

248 Appendix B Random Access Support for Message-based Devices

2. Message_task begins an infinite loop by invokingréoeivecall to wait at the
port for messages from the device.

See also: Send and receive messages to/from specific ports, Nucleus
Communications Servic&ucleus Programming Concepts
Setting the message task priority, Nucleus Communication
Service screedCU User's Guide and Quick Referermoanual

3. Using a region, message_task gains access to the request queue. This allows it
to examine the first entry in the request queue without concern that other tasks
are modifying it at the same time.

4. It calls a device_interrupt procedure to process the received message.
See also: device_interrupt procedure, Chapter 5
5. The message_task checks the status of each request in the queue.

6. If the request has been completely processed, (one request can require multiple
reads or writes, for example), the message_task removes the IORS from the
gueue and sends it as a message to the response mailbox (exchange) indicated
in the IORS. If the request is not completely processed, the message_task
leaves the IORS in the queue but checks to see if the request has been started.

7. If the request has not been started, the message_task calls the device_start
procedure to process the request.

8. In any case, the message_task then surrenders access to the queue, allowing
other procedures to modify the queue, and loops back to wait for another
message from the controller.

Driver Programming Concepts Appendix B 249

message_task

Gets selector for device data @
storage area from DS register

v
Waits for message at the @
specified port

v

Gains access to region :

v

Calls the user-written interruptl @
procedure to process
the message

v

Get IORS from the queue @

>
)

Is Removes the IORS from the @
the request queue and sends a message to
done the response mail box

the request
started
?

Call the user-written @
device start procedure
to start the request

Surrenders access

to the region

W-2783

Figure B-4. Random Access Device Driver Message

250 Appendix B Random Access Support for Message-based Devices

Controlling Terminal I/O

The TSC supplies a set of control functions that, when placed in the input stream of
data, affect how data flows between the BIOS and a terminal. There are two kinds
of control functions: line-editing functions and OSC sequences. The control
characters assigned to these functions are configurable.

In this appendixgurrent linerefers to the set of characters that the operator has
entered since the last line terminator.

All control functions do not take effect when entered from a terminal running under
the HI CLI. The only control functions that operate under the CLI are the delete
character, line terminator character, empty type-ahead buffer character, start output
character, and stop output character.

See also: CLI special characte@Bymmand Reference

Line-editing Functions

This section describes the control functions the TSC uses to edit data in the line-
edit buffer and the default control characters assigned to do the functions. Each
control character described here can be replaced with a different character by using
control character redefinition, described later in this chapter.

|:| Note

The line-editing control characters described in the following
paragraphs are effective only when the terminal is in line-edit
mode and when the characters appear in the input stream. The
characters have no effect when the terminal is in transparent or
flush mode, or when the characters appear in the output stream.

Driver Programming Concepts Appendix C 251

Table C-1. Line Editing Control Characters

Function

Default

Description

End line

CRor LF

Terminates current line. Entering CR or LF inserts a
carriage return and a line feed. The TSC moves the
current line (or the number of characters specified in the
input request) from the type-ahead buffer, through the
line-edit buffer (if specified), to the task's buffer. If
characters remain in the line-edit buffer, they satisfy the
next input request from the terminal.

Delete char

Rubout

Removes the last data character from the current line.
If the terminal has a monitor, the character combination
(backspace) (space) (backspace) is echoed to the
screen. If the terminal output is hard copy, the deleted
character is displayed a second time, surrounded by #
characters; for example, CAT (rubout)(rubout)(rubout)
would appear as CAT#T##A##CH#; the letters C, A, and
T would be removed from the current line.

Quote char

<Ctrl-P>

The next character entered is treated as data, even if
that character is normally a line-editing control
character. (Output control characters perform their
normal functions even if preceded by a <Ctrl-P>.) In
line-edit mode, the TSC removes the <Ctrl-P> but
leaves the disabled character that follows. Neither the
<Ctrl-P> nor the character that immediately follows it
are displayed at the terminal.

252

Appendix C

continued

Controlling Terminal I/O

Table C-1.

Line Editing Control Characters (continued)

Function

Default

Description

Show line

<Ctrl-R>

Displays a #, then skips to the next line and displays the
current line with editing already performed. If the
current line is empty, <Ctrl-R> displays the previous line.
If an operator enters <Ctrl-R> several times
successively, the TSC displays previous lines (skipping
those with carriage return/line feed only) until it can't find
any more lines; then it repeatedly displays the last line
found for the remaining <Ctrl-Rs>.

Empty buffer

<Ctrl-U>

Immediately empties the type-ahead buffer.

Delete line

<Ctrl-X>

Deletes the current line. Discards all characters entered
since the most recent line terminator and displays #.

EOF

<Ctrl-Z>

Terminates the current line and signifies the end of file.
<Ctrl-Z> does not become part of the current line.
Consequently, entering <Ctrl-Z> causes a task pending
on an a_read call to have its read request satisfied
without transferring the EOF character to the waiting
task's buffer. If this character is the only character on a
line, no characters are sent in response to the read
request.

Spec. end line

None

Terminates the current line without inserting a CR LF
into the text stream. The TSC transfers this special line
terminator to the waiting task's buffer, but it does not
expand the line terminator into a CR/LF pair.

Driver Programming Concepts

Appendix C 253

Controlling Output to a Terminal

254

When sending output to a terminal, the TSC always operates in one of four modes.
You can switch the current output mode to any of the others by entering an output
control character at the terminal. The output modes and their characteristics are:

Normal The TSC accepts output from tasks and immediately passes the outpu
to the terminal. (Default)

Stopped The TSC accepts output from tasks, up to the size of the output buffer
but it queues the output rather than immediately passing it to the
terminal.

Scrolling The TSC accepts output from tasks, up to the size of the output buffer,
and it queues the output as in the stopped mode. However, it sends
thescrolling count(a predetermined number of lines) to the terminal
whenever an operator enters an appropriate output control character at
the terminal.

Discarding The TSC discards all output for the terminal.

The output control characters in Table C-2 change the output mode for the
terminal. Each control character described here is the default, and each can be
replaced with a different control character by means of control character
redefinition, as explained later in this chapter.

|:| Note

The output control characters described in Table C-2 do their
intended operations only when they appear in the input stream.
They have no effect when they appear in the output stream.

Appendix C Controlling Terminal I/O

Table C-2. Output Control Characters

Default Character(s) Description

Discard <Ctrl-O> Toggles output infout of discarding mode. If not in
discarding mode, changes to discarding mode. If in
discarding mode, changes to the previous mode.

Start <Ctrl-Q> Places output into normal mode unless the last output
control character was <Ctrl-S>; then output mode
returns to the previous mode. This means:
<Ctrl-S>, <Ctrl-Q> returns to the previous mode.

<Ctrl-Q>, <Ctrl-Q> always changes to normal mode.

Stop <Ctrl-S> Places output into stopped mode unless output was in
the discarding mode. <Citrl-S> <Ctrl-O> changes to
stopped mode.

Scroll 1 <Ctrl-T> Places output into scrolling mode, temporarily sets the
scrolling count to 1, sends one output line to the
terminal, and changes to stopped mode.

Scroll n <Ctrl-w> Places output into scrolling mode and sends n lines to
the terminal, where nis the scrolling count, then
changes to stopped mode.

Driver Programming Concepts Appendix C 255

OSC Sequences

256

When a terminal is attached, the default terminal and connection modes are those
contained in the UINFO table. A terminal operator or a program can get or set
these modes by issui@SC sequencesThe format of the OSC sequence is as
follows:

W-2752

The opening delimiter, Escape Right Bracket, tells the TSC that the following data
is an OSC sequence, and the closing delimiter, Escape Backslash, indicates the er
of the sequence.

See also: Software control strings, ANSI publication X3.64 (1979)

If you use an OSC sequence to get the current terminal mode, the TSC responds b
sending an Application Program Command (APC) sequence to the application
program or terminal input buffer. The format of the APC sequence is as follows:

W-2753

The opening delimiter, Escape Underline, tells the application program or the
operator that the following data is an APC sequence, and the closing delimiter,
Escape Backslash, indicates the end of the sequence.

Instead of using OSC sequences, your programs can uaedpecialor s_special
system call to set most of the modes described in this appendix. Those that
a_specialcannot set are noted when described.

The TSC can accept OSC sequences as input from the terminal operator, as outpu
from a task, from both, or from neither. When the TSC accepts OSC sequences, it
strips the OSC sequence from the input or output stream and does the desired
operation.

See also: terminal_flags , UINFO table structure, Chapter 6

Figure C-1 shows an overall syntax diagram of the possible OSC sequences. The
rest of this appendix discusses portions of the diagram in more detail. You can
combine individual portions of OSC sequences as shown in Figure C-1.

Appendix C Controlling Terminal I/O

7) Esc
@ TEEIRIWlolc e decimal . .

number

LIHImIRIwITIENO[SIX]

(7 -

Y‘U‘V‘G‘D‘J‘K‘P‘Q‘N‘A

_@
—(v) AH Q

_@
AL

<
<
W-2754

Figure C-1. Composite OSC Sequence Diagram

Connection Modes

This section describes the modes that depend on the terminal connection, rather
than on the terminal itself. With these modes, when multiple connections to a
terminal exist, the terminal might operate one way when communicating using the
first connection and a different way when communicating using the second
connection.

Each mode relates directly to one or more bits irctiheection_flags field for
the connection, as defined in thespecialsystem call. Table C-3 gives the names
of the modes, the single-letter identification codes for the modes, the bits of the
connection_flags field to which they correspond, and a brief description of
their functions.

Driver Programming Concepts Appendix C 257

258

Assuming the OSC control mode is set appropriately, the modes that a terminal
inherits from a connection can be altered. The syntax of an OSC sequence that wil
change one or more of these modes is as follows:

()

A -

mode id

decimal number

W-2755

Indicates this sequence applies to a connection. Include the
colon (:) after the C.

An ID letter from the available modes

The value representing the desired mode. This number must
be of the character data type.

See also: a_special System Call Reference

Appendix C

Controlling Terminal I/O

Table C-3. Connection Modes

Mode Name ID Bit(s) Description and Values

Input T 0-1 0= Invalid entry.

1= Transparent mode. Inputis transmitted to the
requesting task without being line-edited. Before
being transmitted, data accumulates in a buffer until
the number of characters equals the number
requested by the task in its read call.

2 = Line editing mode. Input remains in the line-edit
buffer until a line terminator is entered. While in the
line-edit buffer, input control characters can be used
to edit the input. In line-editing mode, the TSC
restricts input lines to 253 characters (plus a line
terminator, such as carriage return and/or line feed).
If an operator enters more than 253 characters, only
the first 253 are passed to the requesting task's
buffer. The remaining characters are lost. If there
are more characters than requested in the buffer
when a line terminator is entered, only the requested
characters are sent. The additional characters remain
in the buffer for the next input request.

3 = Flush mode. Input is transmitted to the requesting
task without being line-edited. Before being
transmitted, data accumulates in a buffer until an
input request occurs (that is, a task issues a read
request). Then, the number of characters requested
is moved from the TSC input buffer to the requesting
task's buffer. If characters remain in the buffer, they
are saved for the next input request. If not enough
characters are in the buffer, the request is returned
immediately with all available characters, without
waiting for the number of characters requested.

Echo E 2 0= The TSC echoes characters to the terminal's display
screen.

1= No echoing.

continued

Driver Programming Concepts Appendix C 259

Table C-3. Connection Modes (continued)

Mode Name ID Bit(s) Description and Values

Input parity R 3 0 = For characters entered at the terminal, the TSC
sets the parity bit to 0.

1= The TSC does not alter the input parity bit.

Output parity W 4 0 = For characters sent to the terminal, the TSC sets
the parity bit to 0.

1= The TSC does not alter the output parity bit.

Output control O 5 0= The TSC recognizes and acts on output control
characters in the input stream.

1= The TSC ignores output control characters in the
input stream.

OSC control C 6-7 0= The TSC recognizes and acts on OSC sequences
that appear in either the input or output stream.

1= The TSC acts on OSC sequences in the input
stream only.

2= The TSC acts on OSC sequences in the output
stream only.

3= The TSC does not act on OSC sequences.

Delayed Input 8 0 = Characters are moved from the raw input to the
type-ahead buffer by the interrupt_task.

1= Characters are moved from the raw input buffer
to the type-ahead buffer by the service task.

By-Pass 9 0 = Characters are moved from the raw input buffer
to the type-ahead buffer.

1= Characters are moved from the raw input buffer
directly to the application task's buffer. The line-
edit and type-ahead buffers are bypassed.

260 Appendix C Controlling Terminal I/O

|:| Note

You can use two or more connections concurrently to obtain input
from a single terminal. In such cases, the connection associated
with the last active read request always has its connection modes

in effect. This means that if characters come in from the terminal
before another connection's read request has been issued to
receive those characters, the characters are processed in the TSC's
input buffer according to the connection modes associated with

the previous read request. To prevent data loss or corruption

when using connections with different mode settings, ensure that
read requests occur before data comes in from the terminal.

Neither Delayed Input nor By-Pass modes can be activated using
an OSC Sequence; they can only be specified programmatically
using ara_specialor s_specialsystem call.

Terminal Modes

Some terminal modes are the same regardless of the connection used to
communicate with them.

Table C-4 gives the names of these modes, the single-letter identification codes for
the modes, the bits of therminal_flags field to which they correspond, and a
brief description of their functions. The modes that do not correspond to options in
a_specialare noted with asterisks (*) in the table.

See also: terminal_attributes structurea_special System Call Reference

Assuming that the OSC control mode is set appropriately, a terminal's modes can
be altered using OSC sequences.

Driver Programming Concepts Appendix C 261

The syntax of an OSC sequence that changes one or more of the modes covered ir
this section is as follows:

W-2756

Where:

T Indicates this sequence applies to a terminal. Include the colon (3)
after the T.

mode id An ID letter from the available modes

n The decimal representation of an ASCII code, if the mode ID is C or
Z, or the number of an escape sequence, if the mode ID is E. This
parameter is valid only if the mode ID is C, E, or Z.

m If the mode ID is C, this parameter represents a function code from
Table C-8. If the mode ID is M, it is the number of a terminal
character sequence. If the mode ID is Z, it is an integer from 0 to 3
that specifies the index into the special character array. Otherwise, it
is the value to which you want to change the mode.

262 Appendix C Controlling Terminal I/O

Table C-4. Terminal Modes

Mode Name ID Bit(s) Description and Values
Line protocol L 1 0= Full duplex.
1= Half duplex.
Output H 2 0= Video display terminal.
medium 1= Printed (hard copy).
Modem M 3 = No modem connected.
indicator
1= The terminal is connected to the hardware by a
modem.
Input parity R 4-5 For drivers that support link parameters, the physical link

handling mode (ID N), when enabled, overrides this
setting. Bit 15 of the physical link field enables and
disables that mode.

0= Driver always sets input parity bit to 0. This yields
8-bit data.

1= Driver never alters the input parity bit. This yields
8-bit data.

2= Driver expects even parity on input. This yields
7-bit data.

3= Driver expects odd parity on input. This yields
7-bit data.

continued

If a transmission error occurs when even or odd parity is set, the driver sets bit 7 to
1. Otherwise the driver sets bit 7 to 0. Errors include:

A parity error
The received stop bit has 0 (framing error)

The previous character received has not yet been fully processed (overrun
error)

Driver Programming Concepts Appendix C 263

For the Terminal Communications Controller driver controlling an SBC 188/48 or
188/56 board, if a parity error occurs, the character is discarded. If a framing error
occurs, the character is returned as an 8-bit null character (O0OH) without error
indication.

Table C-4. Terminal Modes (continued)

Mode Name ID Bit(s) Description and Values

Output parity* W 6-8 For drivers that support link parameters, the physical link
handling mode (ID N) when enabled overrides this
setting.

0= Driver always sets output parity bit to 0. This
yields 8-bit data.

1= Driver always sets the output parity bitto 1. This
yields 8-bit data.

2= Driver sets output parity bit to give even parity.
This yields 7-bit data.

3= Driver sets output parity bit to give odd parity.
This yields 7-bit data.

4= Driver does not change parity. This yields 8-bit
data.
Translation T 9 Indicates whether the TSC for this terminal performs

translation between ANSI Standard X3.64 escape
sequences and unique terminal character sequences.

0= Do not enable translation.
1= Enable translation.

continued
* If you set input or output parity to even or odd, you must set both to the same value. That is, if you set
mode ID R to 2 or 3, you must also set mode ID W to the same value.

264 Appendix C Controlling Terminal I/O

Table C-4. Terminal Modes (continued)

Mode Name ID Bit(s)

Description and Values

Axes sequence F 10-12
and orientation

Each bit in this three-bit field corresponds to a
different function. Enter a value (0-7) accordingly.

10 Terminal axis sequence:
0= List or enter the horizontal coordinate first.
1= List or enter the vertical coordinate first.
11 Horizontal axis orientation:
0= Numbering of coordinates increases from
left to right.
1= Numbering of coordinates decreases from
left to right.
12 Vertical axis orientation:
0= Numbering of coordinates increases from
top to bottom.
1= Numbering of coordinates decreases from
top to bottom.
Input baud rate I N/A Corresponds to in_baud_rate field of

terminal_attributes in a_special.

0= Not applicable.
1= Do an automatic baud-rate search.
other = Actual input baud rate, such as 2400.

Output baudrate O N/A

Corresponds to out_baud_rate field of
terminal_attributes in a_special.

0= Not applicable.
1= Use the input baud rate for output.
other = Actual output baud rate, such as 9600.

Driver Programming Concepts

continued

Appendix C 265

Table C-4. Terminal Modes (continued)

Mode Name ID

Bit(s) Description and Values

Scrolling number S

N/A

Corresponds to scroll_lines field of terminal_attributes
in a_special . Specify the number of lines of output to
send to the terminal's display whenever the operator
enters the scrolling control character (default is <Ctrl-
W>),

Screen width X

N/A

Corresponds to low-order byte of x_y_size field in
a_special 's terminal_attributes structure. This is the
number of character positions on each line of the
terminal's screen.

Screen Height Y

N/A

Corresponds to high-order byte of x_y_size field in
a_special' s terminal_attributes structure. This is the
number of lines on the terminal's screen.

offset

Cursor addressing U

N/A

Corresponds to low-order byte of x_y_offset field in
a_special 's terminal_attributes structure. This value
starts the numbering sequence on both axes.

Overflow offset \Y

N/A

Corresponds to high-order byte of x_y_offset field in
a_special 's terminal_attributes structure. This is the
value to which the numbering of the axes must fall
back after reaching 127.

Flow control G

Corresponds to flow control bit in special_modes field
of terminal_attributes in a_special . This bit specifies
whether an intelligent communications board (such as
the 188/48, 186/410, or 188/56 board) sends flow
control characters to prevent input buffer overflow.

0 = Disable flow control.
1 = Enable flow control.

266

Appendix C

continued

Controlling Terminal I/O

Table C-4. Terminal Modes (continued)

Mode Name ID Bit(s) Description and Values

Special character D 1

Corresponds to special character bit of
special_modes field of terminal_attributes in
a_special . If your device supports special
characters (the 188/48, 188/56, 186/410, 546, 547,
548, and 549 boards do), the device can send an
interrupt whenever a special character (defined in the
special array) is typed.

When Special Character Mode is on, the device uses
interrupts to inform the TSC that special characters
have been entered. If a special character has also
been defined as a signal character, the TSC sends a
unit to the appropriate signal semaphore as soon as
it receives the special character interrupt. This
enables the special character to be processed ahead
of characters in the input buffer that are waiting to be
processed. However, the special character remains
in the input stream and must also be processed in
line with the rest of the input characters.

If the special character is not assigned as a signal
character, the TSC discards the special character
after receiving it. When Special Character mode is
off, the device sends special characters through the
normal input stream.

The setting of this bit is as follows:

0 = Disable Special Character Mode.
1 = Enable Special Character Mode.

The Special Character High Water mark (A) is used
in conjunction with this field to control Special
Character Mode.

Driver Programming Concepts

continued

Appendix C 267

Table C-4. Terminal Modes (continued)

Mode Name ID

Bit(s)

Description and Values

High water
mark

N/A

Corresponds to high_water_mark field of
terminal_attributes in a_special . This field
specifies the number of bytes the terminal
communication board's buffer must contain
before the board sends the flow control
character to stop input.

Low water
mark

N/A

Corresponds to low_water_mark field of
terminal_attributes in a_special . This field
specifies the number of bytes the terminal
communication board's buffer must drop to
before the board sends the flow control
character to start input.

Start input
character

N/A

Corresponds to fc_on_char field of
terminal_attributes in a_special . This
decimal value specifies an ASCII character
that the communication board sends when
the buffer drops to the low water mark.

Stop input
character

N/A

Corresponds to fc_off_char field of
terminal_attributes in a_special . This
decimal value specifies an ASCII character
that the communication board sends when
the buffer rises to the high water mark.

268

Appendix C

continued

Controlling Terminal I/O

Table C-4. Terminal Modes (continued)

Mode Name ID Bit(s) Description and Values

Physical link N N/A Corresponds to link_parameter field of
terminal_attributes in a_special . Specifies
characteristics of the physical link between
the terminal and a device. Itis not supported
by all device drivers. When enabled, this field
overrides the input and output parity modes
(IDs R and W).

0-1 Specifies the input and output parity, as
follows:

0 = No parity

1 = Invalid value
2 = Even parity
3 = Odd parity

2-3 Specifies the character length, as follows:

0 = 6 bits/character
1 = 7 bits/character
2 = 8 bits/character
3 = Invalid value

4-5 Indicates the number of stop bits, as follows:
0 =1 stop bit
1 =1-1/2 stop bits
2 = 2 stop bits

3 = Invalid value

6-14 Reserved, set to 0.

15 Specifies whether the physical link is enabled
or disabled.
0 = Disable
1 = Enable
continued

Driver Programming Concepts Appendix C 269

Table C-4. Terminal Modes (continued)

Mode Name ID

Description and Values

Special high A
water mark

For the Terminal Communications Controller driver, if
a parity error occurs on input, the character is
discarded. If a framing error occurs, the character is
returned as an 8-bit null character (00H). This method
of error reporting is different from the method used
when the terminal_flags parity specification is in effect.
Corresponds to spc_hi_water_mark field in
terminal_attributes of a_special. This field is used in
conjunction with the Special Characters field (D) to
control Special Character Mode. When the device's
input buffer fills to contain the number of characters
specified in this field, Special Character Mode is
enabled (assuming the Special Character field is
turned on). If the number of characters in the device's
input buffer is less than the high water mark, Special
Character Mode is disabled, even if the Special
Character field is turned on.

If the Special Character field (D) is turned off, this field
has no effect.

*Control
characters

Modifies the line-edit character and output control
character assignments. See also: Control Character
Redefinition

*Escape
sequence

Pairs an escape sequence with a terminal character
sequence to translate or simulate a terminal function.
See also: Translation and Simulation

*

270

continued

Function not available with a_special . The OSC Query sequence does not return information about this

option.

Appendix C

Controlling Terminal I/O

Table C-4. Terminal Modes (continued)

Mode Name ID Bit(s)

Description and Values

Special Array Z N/A

Corresponds to special_char array of
terminal_attributes field in a_special. This array can
hold as many as four characters that are defined as
the device's special characters. If Special Character
Mode is on (and the device supports Special Character
Mode), typing any of these characters at the keyboard
generates an interrupt that immediately informs the
TSC that a special character was entered. If the
character is a signal character, the TSC processes it
immediately. If the character isn't a signal character,
the TSC does nothing with the character.

The format of this sequence is Zn = m, where

m s an integer in the range 0-3, specifying this
character's index in the special character array.

nis a decimal value of the special character's ASCII
code.

If you define less than four special characters, you
must fill the remaining slots of the array with
duplicates of the last character you define.

Driver Programming Concepts

Appendix C 271

Translation and Simulation

272

The TSC's translation and simulation capabilities let application programs use a
table of predefined escape sequences to do terminal functions such as directly
controlling a terminal's cursor and setting tabs. This section describes these
capabilities.

The TSC recognizes certadgscape sequencésequences beginning with Escape)
as instructions to do terminal functions. These sequences remain the same
regardless of the terminal you connect to the system. To make application
programs terminal-independent, use escape sequences to control your terminal.
(The terminal character sequences that terminals recognize vary from terminal to
terminal. Application programs that use terminal character sequences must be
modified whenever the program is used with a different type of terminal.)

The TSC can translate device-independent escape sequences into device-specific
terminal character sequences. How this translation occurs depends on an OSC
sequence supplied either by an operator or by an application program. The OSC
sequence forms an association between a terminal character sequence and an
escape sequence. If translation for the terminal is turned on, the TSC replaces the
escape sequence with the equivalent terminal character sequence. If translation fo
the terminal is turned off, or if no association has been formed between the escape
sequence and a terminal character sequence, the TSC passes the escape sequenc
unchanged to the terminal. The TSC can also translate a single escape sequence
into multiple terminal character sequences. This operation is useful for simulating
operations that the terminal doesn't support directly.

|:| Note

The TSC translates escape sequences into terminal character
sequences consisting of a single control character or an Escape
followed by a single character. If your terminal requires
sequences that are more complicated or that require characters
other than Escape as the first character, you cannot use the TSC
for translation. Your tasks must send the other sequences
directly.

Translation and simulation relates three items: terminal character sequence, escay
sequence, and OSC sequence.

Terminal Character Sequence
A sequence of characters that is terminal-specific. It is
usually a control character or an escape code. Table C-6 lists
the sequences that the TSC supports. Some terminals have
sequences that are not supported.

Appendix C Controlling Terminal I/O

Escape Sequence

OSC Sequence

Preparing the TSC

A terminal-independent sequence of characters beginning
with an Esc character. Each escape sequence corresponds to
a terminal function. If translation is turned on, whenever the
escape sequence is sent to the terminal, the TSC replaces it
with the functionally equivalent terminal character sequence.
Alternatively, the TSC can either pass the escape sequence to
the terminal as is, or it can discard the sequence.

A sequence of characters sent to the TSC to establish a
pairing between an escape sequence and a terminal character
sequence. OSC sequences can also set other attributes of the
terminal and the connection.

To send an OSC sequence, an operator can place the OSC
sequence in a file and copy the file:to:, or a task can call
a_write ors_write_moveto send the OSC sequence to the
terminal. The operator cannot enter the sequence directly
from the terminal. The TSC intercepts the OSC sequence
and establishes the desired pairing, regardless of whether the
OSC sequence comes from a file or a task.

OSC sequences can be placed in a file and copied to the terminal, or they can be
issued from a task. To establish a pairing, the following conditions must exist:

« There must be a connection to the terminal, and it must be open for writing.

e The OSC control bits for that connection must be set to permit the TSC to
recognize and act upon OSC sequences on output. This feature can be
configured into the system with the ICU, or a task can use_tbgecialor
s_specialsystem calls to enable the I/0O System to act on OSC sequences on

output.

When these conditions exist, the operator can copy a file containing OSC
sequences to the terminal, or a task canecallrite to send the OSC sequences to

the terminal.

Whether the OSC sequences came from a task or from copying a file to the
terminal, the TSC intercepts the OSC sequence, removes it from the input or output
stream, and establishes the desired pairing.

Driver Programming Concepts Appendix C 273

274

The syntax of an OSC sequence that establishes one or more escape-
sequence/terminal-character-sequence pairings is as follows:

<)

W-2757

Where:

T Indicates that this sequence applies to the terminal. Include the colon
(:) after the T.

E Indicates that this sequence applies to Escape sequences.

n The number of an available escape sequence.

m The number of an available terminal character sequence.

For example, suppose a terminal interprets <Ctrl-H> as a terminal character
sequence that causes the cursor to move backward one position. TSC uses the
escape sequen&ac [D (n=3) to mean the same thing. To establish a
relationship between m=8 for the terminal and n=3 for the TSC, the operator or a
task can send the following OSC sequence:

Esc] T: E3=8 Esc\

Then, if translation is turned on for the termiriadd] T: T=1 Esc\),
whenever a task writes the escape sequescéD to the terminal, the terminal's
cursor will move backward one position. Figure C-2 illustrates this situation.

Appendix C Controlling Terminal I/O

User Application Terminal Support Code Terminal

Translation —> Control-H
Sends and receives Receives and
ANSI standard escape sends terminal
sequence character sequences

W-3358

Figure C-2. Escape Sequence Translation

Translation occurs when a task callsnrite to write an escape sequence. Instead
of passing an escape sequence which the terminal doesn't recognize, the TSC
intercepts the escape sequence and sends the equivalent terminal character
sequence in its place. This equivalence is established by OSC sequences.

Translation also occurs when a task callseadto read a terminal character
sequence for which an equivalent escape sequence is established.

Before translation can occur, the operator or the task must turn on translation for
the terminal by sending the following OSC sequence:

Esc] T: T=1 Esc\

If translation is turned off, the TSC does not intercept escape sequences. Instead, it
passes them on unchanged to the terminal. Changirg-th&® T=0 in the
previous OSC sequence turns off translation mode.

Driver Programming Concepts Appendix C 275

Translation Examples

276

This section lists several translation examples for Hazeltine 1510 terminals. These
examples assume the terminal's switches are set to allow the Esc character, not the
tilde character, as the lead-in character of the terminal character sequence. The
TSC cannot handle terminal character sequences that begin with the tilde characte
These examples also assume the following OSC sequence has been issued to
specify information about the terminal's coordinate system:

Esc]T: (Horizontal coordinates listed first, horizontal

F=0, numbering increases left to right, vertical numbering
increases top to bottom)

U=96, (Axis numbering starts at 96)

V=32, (Axis numbering falls back to 32 after reaching 127)

X=80, (Screen width is 80 characters)

Y=24, (Screen height is 24 lines)

E6=49, (Cursor-addressing terminal character sequence is Esc
<Ctrl-Q>)

E31=47, (Terminal character sequence to clear a line is Esc
<Ctrl-O>)

E26=51 (Terminal character sequence to delete a line is Esc
<Ctrl-S>)

Esc\

See also: Cursor Positioning, for more information about setting up the
terminal's coordinate system

Example 1. Move the cursor to the position X=2, Y=2.

Escape sequence (task) Terminal Character Sequence (terminal)
Esc[2;2H Esc <Ctrl-Q>aa
(ASCII 1B 5B (ASCII 1B 11 61 61h)

32 3B 32 48h)

Example 2. Clear the current line from the cursor position to the end of the line.

Escape sequence (task) Terminal Character Sequence (terminal)
Esc[0 K Esc <Ctrl-O>
(ASCII 1B 5Bh (ASCII 1B OFh)

30 4B)

Appendix C Controlling Terminal I/O

Example 3. Delete a line.

Escape sequence (task) Terminal Character Sequence (terminal)
Esc[1M Esc <Ctrl-S>
(ASCII 1B 5B (ASCII 1B 13h)

31 4Dh)

Simulation occurs when there is no single terminal character sequence that
corresponds exactly to a given escape sequence. Simulation is necessary because
some terminals might not have terminal character sequences to perform the
functions indicated by certain escape sequences.

Simulation is performed only on output: anwrite simulation will occur, but not
ona_read When a task calls_write to write an escape sequence, the TSC
intercepts the escape sequence and determines what the task wants the terminal to
do. Then the TSC sends a series of one or more terminal character sequences that
the terminal recognizes, producing the desired effect as shown in Figure C-3.

User Application Terminal Support Code Terminal
Simulation —> Control-H
Sends ANSI standard Sends terminal
escape sequence character sequences

W-2758

Figure C-3. Escape Sequence Simulation

For example, suppose the terminal does not support tab stops. If given the right
information about the terminal, the TSC can simulate the tab stops, creating the
impression the terminal does indeed support tab stops as if it were a typewriter. To
accomplish this, the TSC must

* Remember where the cursor is on the display
« Remember where the tab stops are supposed to be

* Be able to tell the terminal to move the cursor forward by one space

Driver Programming Concepts Appendix C 277

In general, to support simulation of escape sequences, the terminal must have
terminal character sequences for the following cursor movements:

e One position to the right
* One position to the left
e One position upward

e One position downward

Simulation Examples

These examples assume the terminal has the following terminal character
sequences for cursor movement:

Cursor Movement Terminal Character Sequence

Cursor up <Ctrl-L> (ASCII 0Ch)
Cursor down <Ctrl-K> (ASCII 0Bh)
Cursor left <Ctrl-H> (ASCII 08h)
Cursor right <Ctrl-J> (ASCII OAh)

In addition, the examples assume the following OSC sequence has been sent to
translate the right, left, up, and down cursor movements:

Esc] T: E2=10, E3=8, E4=12, E5=11 Esc\
Example 1. Move the cursor to x=2, y=8 (current position is x=1, y=5).

The escape sequences are simulated as follows:

Escape Sequence Terminal Character Sequence
(Output from Task) (Actually Sent to Terminal)
Esc[8;2H <Ctrl-J>

<Ctrl-K>

<Ctrl-K>

<Ctrl-K>
(ASCII 1B (ASCII OA 0B OB 0Bh)

5B 38 3B 32 48h)

278 Appendix C Controlling Terminal I/O

Example 2. Simulate tab stops.

Although the terminal does have a terminal character sequence for moving to the
right, it does not support functions n=10 (advancing to the next tab stop) and n=11
(setting a tab stop). Therefore, the TSC must simulate these functions. The
following OSC sequence sets up the terminal to support tabs:

Esc] T:E2=10, E3=8, E4=12, E5=11, E10=192, E11=192 Esc\

Before operators can set tab stops, they must provide the TSC with the location of
the cursor. This can be done by resetting the terminal; that is, by sending the
following escape sequence to the terminal:

Escc

Resetting the terminal works only if the terminal has a reset terminal command and
if you established a relationship between that command and the escape sequence
Esc c using an OSC sequeltEsc] T:E0=m Esc\ , wherem s the number of a
terminal character sequence.

Having done this, you can set a horizontal tab stop by entesitng0 W at the
terminal, and you can advance the cursor to the next tab stop by eBtaring

I . The TSC keeps track of the locations of the horizontal tab stops as well as the
position of the cursor.

Escape Sequences

Table C-5 lists the escape sequences you can pair with terminal character
sequences using OSC sequences. The following remarks apply to the table:

« The Code column contains codes used in the ANSI X3.64 document.

* The expression 99 represents any decimal number. Unless otherwise specified,
omitting the number causes the TSC to supply a default value of 1.

* In some cases, you can combine multiple escape sequences into a single,
compound escape sequence. The table identifies these cases.

e The TSC can simulate the escape sequences numbered 0, 1, 6 through 11, 13,
15, 18 through 20, 22, and 23. The remaining escape sequences can only be
translated.

« In almost all cases, tasks issue the escape sequences byecalliitg. The
exceptions concern escape sequences 7 and 18, and they are described in the
table.

Driver Programming Concepts Appendix C 279

Table C-5. Escape Sequences

Code

Escape
Sequence

Function

*0

RIS

Escc

Returns the terminal to its initial state. This consists of
resetting the horizontal tab stops to four spaces apart,
beginning with the first space, and returning the cursor
to the upper- left corner of the display.

*1

HTS

Esc H

Sets a horizontal tab at the current cursor position.

CUF

Esc[99 C

Moves the cursor forward the specified number of
positions.

CcuB

Esc[99 D

Moves the cursor backward the specified number of
positions.

Cuu

Esc[99 A

Moves the cursor upward the specified number of
positions.

CubD

Esc[99B

Moves the cursor downward the specified number of
positions.

*6

CUP

Esc[99;
99 H

Moves the cursor to the position specified by the
decimal numbers. The first number specifies the
vertical coordinate position, and the second number
specifies the horizontal coordinate position. The
horizontal coordinates are numbered from left to right,
beginning with 1, and the vertical coordinates are
numbered from top to bottom, also beginning with 1. If
the parameters are omitted, this sequence moves the
cursor to the upper-left corner of the display.

*

280

Function that can be simulated.

Appendix C

continued

Controlling Terminal I/O

Table C-5. Escape Sequences (continued)

Escape

n Code Sequence Function

*7 CPR Esc[99; Reports the coordinates of the current cursor position. The
99 R TSC places this sequence into the terminal's input stream

in response to sequence number 19, which asks for the
cursor's coordinates. The first number specifies the
vertical coordinate position, and the second number
specifies the horizontal coordinate position. The horizontal
coordinates are numbered from left to right, beginning with
1, and the vertical coordinates are numbered from top to
bottom, also beginning with 1.

*8 CBT Esc[99 Z

Moves the cursor backward by the specified number of
horizontal tab stops. For example, if the specified number
is 2, the cursor moves backward to the second tab stop it
encounters.

*9 CHA Esc[99 G

Moves the cursor to the specified position in the current
line.

*10 CHT Esc[99|

Moves the cursor forward by the specified number of
horizontal tab stops. For example, if the specified number
is 2, the cursor moves forward to the second tab stop that
it encounters.

* Function that can be simulated.

continued

Driver Programming Concepts Appendix C 281

Table C-5. Escape Sequences (continued)

Code

Escape
Sequence

Function

*11

CTC

Esc[OW

Sets a horizontal tab stop at the current cursor
position. You can combine this and any other
CTC escape sequence to form a compound CTC
escape sequence. An example of such a
combined sequence is Esc [0;1 W, which sets
both horizontal and vertical tab stops at the cursor
position.

12

CTC

Esc[1W

Sets a vertical tab stop at the current cursor
position. See the description of escape sequence
number 11.

*13

CTC

Esc[2W

Clears a horizontal tab stop if there is one at the
current cursor position. See the description of
escape sequence number 11.

14

CTC

Esc[3 W

Clears a vertical tab stop if there is one at the
current cursor position. See the description of
escape sequence number 11.

*15

CTC

Esc[4 W

Clears all horizontal tab stops on the line
containing the cursor. See the description of
escape sequence number 11.

16

CTC

Esc[5W

Clears all horizontal and vertical tab stops. See
the description of escape sequence number 11.

17

CTC

Esc[6W

Clears all vertical tab stops. See the description
of escape sequence number 11.

* Function that can be simulated.

282

Appendix C

continued

Controlling Terminal I/O

Table C-5. Escape Sequences (continued)

Code

Escape
Sequence

Function

*18

DA

Esc[99c

Tasks send this sequence with the number 0 to
request the ID number of the terminal to which the
request is being sent. The TSC intercepts the
request and returns to the requesting task an
identical sequence, except that the number (which
is greater than 0) is the requested ID number.

*19

DSR

Esc[6n

Asks the TSC to report the coordinates of the
current cursor position. See sequence number 7
for a description of the response.

*20

TBC

Esc[Og

Clears a horizontal tab stop if there is one at the
current cursor position. You can combine this and
any other TBC escape sequence to form a
compound TBC escape sequence. An example of
such a combined sequence is Esc [0;1 g, which
clears both horizontal and vertical tab stops from
the current cursor position.

21

TBC

Esc[1lg

Clears a vertical tab stop if there is one at the
current cursor position. See the description of
escape sequence number 20.

* 22

TBC

Esc[2g

Clears all horizontal tab stops on the line containing
the cursor. See the description of escape
sequence number 20.

*23

TBC

Esc[3g

Clears all horizontal and vertical tab stops. See the
description of escape sequence number 20.

* Function that can be simulated.

Driver Programming Concepts

continued

Appendix C 283

Table C-5. Escape Sequences (continued)

Escape
n Code Sequence Function

24 TBC Esc[4g Clears all vertical tab stops. See the description of
escape sequence number 20.

25 DCH Esc[99 P Deletes the specified number of characters,
beginning at the current cursor location.

26 DL Esc[99 M Deletes the specified number of lines, beginning at
the line containing the cursor.

27 ECH Esc [99 X Replaces the specified number of characters with
blanks, beginning at the current cursor location.

28 ED Esc[0J Places blanks at all positions from the cursor to the
end of the display. You can combine this and any
other ED escape sequence to form a compound ED
escape sequence. An example of such a combined
sequence is Esc [0;1 J, which clears the entire
display.

29 ED Esc[1J Places blanks at all positions from the beginning of
the display to the cursor. See the description of
escape sequence number 28.

30 ED Esc[2J Fills the entire display with blanks. See the
description of escape sequence number 28.

31 EL Esc[0K Places blanks at all positions from the cursor to the
end of the line. You can combine this and any other
EL escape sequence to form a compound EL
escape sequence. An example of such a combined
sequence is Esc [0;1 K, which places blanks
throughout the line currently containing the cursor.

continued

284 Appendix C Controlling Terminal I/O

Table C-5. Escape Sequences (continued)

Escape

n Code Sequence Function

32 EL Esc[1K Places blanks at all positions from the beginning of the
line containing the cursor to the cursor itself. See the
description of escape sequence number 31.

33 EL Esc[2K Places blanks at all positions in the line containing the
cursor. See the description of escape sequence number
31.

34 ICH Esc[99 @ Inserts the specified number of blanks, beginning at the
location of the cursor.

35 IL Esc[99 L Inserts the specified number of blank lines, beginning at
the location of the cursor.

36 NP Esc[99 U Moves the display forward in a multiple-page file by the
specified number of pages. If 0, the display moves to the
next page.

37 PP Esc[99 V Moves the display backward in a multiple-page file by
the specified number of pages. If 0, moves to the
previous page.

38 SD Esc[99 T Moves the display downward (forward) by the specified
number of lines. If 0, moves to the next line.

39 SuU Esc[99 S Moves the display upward (backward) by the specified
number of lines. If 0, moves to the previous line.

40 SGR Esc[99 m Described in the 1979 ANSI X3.64 standard.

41 RM Esc[Ol An error condition.

continued

Driver Programming Concepts Appendix C 285

Table C-5. Escape Sequences (continued)

Escape

n Code Sequence Function

42 RM Esc[1l Described in the 1979 ANSI X3.64 standard.

43 RM Esc[2]1 Unlocks the terminal's keyboard, allowing all characters
to be entered.*

44 RM Esc[31 Prevents control characters from being displayed, but still
causes those characters to have their normal effects.*

45 RM Esc[4] Causes output characters to overwrite characters on the
display.*

46 RM Esc[5| Described in the 1979 ANSI X3.64 standard.

47 RM Esc[6| Described in the 1979 ANSI X3.64 standard.

48 RM Esc[7I Described in the 1979 ANSI X3.64 standard.

49 RM Esc[81 Reserved.

50 RM Esc[9] Reserved.

51 RM Esc[101 Described in the 1979 ANSI X3.64 standard.

52 RM Esc[111 Described in the 1979 ANSI X3.64 standard.

53 RM Esc[121 Causes characters to be displayed on the terminal's
display screen as they are entered.

54 RM Esc[131 Described in the 1979 ANSI X3.64 standard.

55 RM Esc[141 Described in the 1979 ANSI X3.64 standard.

56 RM Esc[151 Described in the 1979 ANSI X3.64 standard.

57 RM Esc[161 Described in the 1979 ANSI X3.64 standard.

58 RM Esc[171 Described in the 1979 ANSI X3.64 standard.

*

286

This is the default setting for most terminals.

Appendix C

continued

Controlling Terminal I/O

Table C-5. Escape Sequences (continued)

Escape

n Code Sequence Function

59 RM Esc[18]1 Causes horizontal tab stops to apply equally to all lines,
not line-by-line.*

60 RM Esc[19] Causes data on the terminal's display screen to be
treated as a continuous stream, not a collection of
disjoint, independent pages.*

61 RM Esc[201 Prevents the line feed character from automatically
performing a carriage return when sent to the terminal.*

62 SM Esc[Oh An error condition.

63 SM Esc[1h Described in the 1979 ANSI X3.64 standard.

64 SM Esc[2h Locks the terminal's keyboard, preventing characters
from being received when they are typed.

65 SM Esc[3h Enables the display of control characters for debugging
purposes.

66 SM Esc[4h Enables output characters to be inserted in the display,
rather than always overwriting existing characters.

67 SM Esc[5h Described in the 1979 ANSI X3.64 standard.

68 SM Esc[6h Described in the 1979 ANSI X3.64 standard.

69 SM Esc[7h Described in the 1979 ANSI X3.64 standard.

70 SM Esc[8h Reserved.

71 SM Esc[9h Reserved.

72 SM Esc[10h Described in the 1979 ANSI X3.64 standard.

* This is the default setting for most terminals. continued

Driver Programming Concepts

Appendix C 287

Table C-5. Escape Sequences (continued)

Escape

n Code Sequence Function

73 SM Esc[11lh Described in the 1979 ANSI X3.64 standard.

74 SM Esc[12h Prevents characters from being displayed on the
terminal's screen as they are typed.

75 SM Esc[13 h Described in the 1979 ANSI X3.64 standard.

76 SM Esc[14 h Described in the 1979 ANSI X3.64 standard.

77 SM Esc[15h Described in the 1979 ANSI X3.64 standard.

78 SM Esc[16 h Described in the 1979 ANSI X3.64 standard.

79 SM Esc[17 h Described in the 1979 ANSI X3.64 standard.

80 SM Esc[18h Causes horizontal tab stops to apply only to the line on
which they are entered.

81 SM Esc[19h Causes data to be treated as a collection of disjoint,
independent pages. A terminal operator typically
accesses the pages in a file by pressing keys such as
next page, previous page, or go to page.

82 SM Esc[20 h Causes the line feed character to automatically
perform a carriage return when sent to the terminal.

*

This is the default setting for most terminals.

Terminal Character Sequences

288

Table C-6 lists the terminal character sequences that you can pair with escape
sequences using OSC sequences. The assignment portion of the OSC sequence t

the form Eb=m, wheren is the escape sequence numberrang the terminal

character sequence number. The vails the decimal representation of the code
the terminal requires for the given function. If the function requires a character
plus a lead-in Escape, add 32 to the character's decimal representation. The ASCI

code 1BH (Escape) by itself cannot be the result of a translation.

Appendix C

Controlling Terminal I/O

Table C-6. Terminal Character Sequences

m Terminal Character Sequence or Special Instructions

0 Disable the translation of escape sequence: pass to the terminal without TSC
translation or simulation.
01H <Ctrl-A>

2 02H <Ctrl-B>

26 1AH <Ctrl-Z>

27 This sequence (1BH - Escape) is not supported.

28 1CH (FS)

29 1DH (GS)

30 1EH (RS)

31 1FH (US)

32 Esc OOH

33 Esc 01H

159 Esc 7FH

160-191 Reserved

192 Simulate the escape sequence.

193 Discard the escape sequence: do not translate, simulate, or pass it to the

terminal.

Driver Programming Concepts

Appendix C

289

Cursor Positioning

290

Before the TSC can monitor or control the position of a cursor, it must know the
coordinate numbering conventions for that terminal. The TSC has its own model
of the terminal coordinate numbering scheme, as follows.

e The horizontal coordinates are numbered from left to right, beginning with 1.

* The vertical coordinates are numbered from top to bottom, also beginning
with 1.

Whenever programs refer to cursor positions, they should use this convention.

Not all terminals use this numbering scheme. The TSC can translate the terminal
numbering scheme into its own model, if the terminal numbering scheme obeys the
following rules:

e The numbering of the axes can start at any point left or right, top or bottom.
However, the numbering of both axes must start with the same positive value.

e From there, numbering of both axes must increase by ones until it reaches 127

« If the numbering reaches 127, it must fall back to a lower positive value, then
increase by ones again.

* If the numbering of both axes reaches 127, the numbering of each must fall
back to the same value.

If the terminal numbering scheme meets these criteria, you can set up the TSC
using OSC sequences to handle that numbering scheme. The terminal modes F, L
V, X, and Y enable you to specify information about the terminal numbering
conventions. Once you send the proper OSC sequences, the TSC translates the
terminal numbering conventions into its own standard conventions. Then, your
programs can use the TSC standard conventions when referring to all terminals.

For example, suppose the terminal horizontal positions (the columns) are numbere
left to right as 80, 81, 82, ..., 127, 16, 17, 18, ..., 31. Also, suppose its vertical
positions (the rows) are numbered top to bottom as 103, 102, 101, ..., 80. Finally,
suppose that when referring to a particular position on the terminal screen, you
must specify the vertical position first, followed by the horizontal position.

Appendix C Controlling Terminal I/O

This numbering convention differs from the TSC numbering conventions in these
ways:

e The numbering on each axis starts with 80, not 1.

* When the horizontal axis numbering reaches 127, it falls back to 16 before
resuming its climb.

* The vertical axis numbering increases from bottom to top, not top to bottom.

e The coordinates of a given screen position are vertical coordinate first, then
horizontal coordinate, not horizontal first and vertical second.

The numbering convention of this terminal obeys the rules listed earlier in this
section. To set up this terminal for use with the TSC, you can issue the following
OSC sequence:

Esc] T: F=5, U=80, V=16, X=64, Y=24 Esc\

TheF=5 portion tells the TSC the vertical coordinate is called out first, the
horizontal numbering increases from left to right, and the vertical numbering
increases from bottom to top. Tbie80 portion specifies the starting number,
V=16 indicates the fall-back valu®=64 specifies the line length, arve24
specifies the number of lines on the screen.

Table C-7 lists OSC sequences you can use to set up the cursor positioning and

control characters of some common terminals. The OSC sequences listed in the
table do not take full advantages of the features of the terminals. You can add to
these sequences to support more features of the terminals.

Driver Programming Concepts Appendix C 291

Table C-7. Example OSC Sequences for Common Terminals

Hazeltine 1500,
1510, 1520; TeleVideo
Executive 80 950 Description
Esc] Esc] OSC sequence opening delimiter
T:T=1, T:T=1, Turn on translation
F=0, F=1, Specify terminal coordinate system
U=96, uU=32, Start of axes number sequence
V=32, V=32, Fall back value when cursor reaches 127 on either
axis
X=80, X=80, Number of character positions per line
Y=24, Y=24, Number of lines per screen
E2=16, E2=12, Cursor right
E3=8, E3=08, Cursor left
E4=44, E4=11, Cursor up
E5=43, E5=22, Cursor down
E6=49, E6=93, Cursor position
E31=47 E31=148 Clear line, cursor to end
Esc\ Esc\ OSC sequence closing delimiter
292 Appendix C Controlling Terminal I/O

Control Character Redefinition

You can dynamically assign any control character to a control function provided by
the TSC, as described in this section.

If you assign a control character to a control function, the assignment applies only
when the character appears as input from the terminal. In particular, assigning a
new control character to be the Escape character does not change the Escape
character used for output translation; it is still the ASCII Esc character, 1BH. Any
new Escape character you define cannot be used as part of an OSC sequence.

The characters you can assign to control functions include the following:

Character Decimal ASCIl Code Hexadecimal ASCII Code
<Ctrl-@ 0 0

<Ctrl-A> - <Ctrl-Z> 1-26 1-1AH

ESC 27 1BH

FS 28 1CH

GS 29 1DH

RS 30 1EH

us 31 1FH

DEL 127 7FH

The syntax of the OSC sequence used to assign control characters to control
functions is as follows:

W-2760

Where:

T Indicates that this sequence applies to the terminal. Include the :
(colon) at the end.

C Indicates that this sequence applies to control characters.

Driver Programming Concepts Appendix C 293

n If this control character is already assigned as a signal character, this
assignment to a control function is ignored. The decimal
representation of the ASCII code for the desired control character.
The range is 0-31 or 127.

See also: Signal characterSystem Concepts

If this control character is assigned to another control function, this
OSC sequence reassigns the character to a new function.

m A number indicating the function to assign to the control character.
Table C-8 lists these numbers, with descriptions and defaults.

The following sequence cancels the default assignment of Rubout (DEL) as the
deletion character and assigns Backspace (BS) in its place:

Esc] T: C127=0, C8=11 Esc\

Table C-8. Control Character Functions

Function # Description Default Assignment

0 Don't change char All control characters not assigned as line-
edit, escape, output control, or signal
characters

1 Stop output <Ctrl-S>

2 Start output <Ctrl-Q>

3 Discard output <Ctrl-O>

4 Scroll n lines <Ctrl-w>

5 Scroll 1 line <Ctrl-T>

6 Empty type-ahead buffer <Ctrl-U>

7 Escape Escape (ASCII 1BH)

8 Line terminator <Ctrl-J>, <Ctrl-M> (CR, LF)

9 End of file <Ctrl-z>

10 Quote next char <Ctrl-P>

11 Delete char Rubout (ASCII 7FH)

12 Delete line <Ctrl-X>

13 Redisplay line <Ctrl-R>

14 Special line terminator None

294 Appendix C Controlling Terminal I/O

Using an Auto-answer Modem with a Terminal

The TSC supports terminals that interface with an iRMX-based application system
through an auto-answer modem. It does this by controlling the RS232 Data
Terminal Ready (DTR) line and by providing OSC sequences to enable
handshaking between a task and a terminal connected to a modem.

If your system contains a modem and the system is configurable, you can configure
the BIOS to support modem control. Then during system initialization, the BIOS
establishes the initial link to the modem. Or, your tasks can use OSC sequences to
establish modem mode, to break the link (hang up), and to reestablish the link (dial
and answer). Other than these operations, tasks and terminals communicate
through a modem as if linked by a dedicated line.

See also: For ICU-configurable systems, Modem control configurd@an,
User's Guide and Quick Reference
For iRMX for Windows and iRMX for PCs systems, Configuring
terminals for a modengystem Configuration and Administration

The following diagram illustrates the syntax of the OSC sequences relating to
modem control. Unlike other OSC sequences, only tasks should send these OSC
sequences to the TSC. An operator at a terminal should never send them.

< ()

_@

H (Esc\)

W-2761

Driver Programming Concepts Appendix C 295

Where:

M: Indicates that this sequence applies to a modem. Include the : (colon)
after the M.

A Causes the TSC to answer the phone (DTR active). This indicates
that the task is ready to send or receive data.

H Uses the TSC to hang up the phone (DTR clear). This breaks the
phone link.

Q Queries the TSC for the status of the modem. In response, the TSC

sends an APC sequence in this form:
Esc _ M:x Esc\

Wherex is either A if the modem is answered (DTR active) or H if
the modem is hung up (DTR clear).

WAIT Requests the TSC to notify the task when the modem is in the proper
state (only the W is requiredyv = A requests notification when DTR
becomes activew = H requests notification when DTR becomes
clear.

When the modem is in the proper state, the TSC inserts an APC
sequence of the following form in the input stream:

Esc _ M:x Esc\

Wherex is either A if the modem has been answered (DTR active) or
H if the modem has been hung up (DTR clear).

The following example illustrates how a task can use the OSC modem sequences t
communicate with a terminal using a modem.

Assume that one task is dedicated to monitoring the modem and communicating
through it. Assume further that the task has a connection to the modem and that
the connection is open for both reading and writing. Typical protocol using the
connection is the following:

1. The task writes the following OSC sequence to the terminal:
Esc] M:H Esc\

This sequence hangs up the phone (breaks the link). It is an initialization step.

296 Appendix C Controlling Terminal I/O

2. The task writes the following OSC sequence to the terminal:
Esc] C:T=1,E=1 Esc\

This sets transparent mode so the task can later read a certain number of
characters or wait until they appear and turns off echoing to the terminal's
screen. These changes are for this connection only, not for other connections
to the modem.

3. The task writes the following OSC sequence to the terminal:
Esc] M:WAIT=A Esc\

This requests that the TSC return a notification (an APC sequence) when the
modem has been answered (DTR active).

4. The task issues a read request to read seven characters from the terminal.
Eventually, when DTR becomes active, the TSC inserts an APC sequence of
the following form in the input stream:

Esc_ M:A Esc\

This message means a terminal user has dialed up the modem and is ready to
communicate.

5. The task writes the following OSC sequence to the terminal:
Esc] M:WAIT=H Esc\

This causes the TSC to send the APC sequesiceM:H Esc\ to the task
when the terminal user hangs up.

6. The terminal and the task communicate as if on a dedicated line for as long as
is necessary. However, whenever the task receives input, it must scan the
input for the APC sequen&sc_ M:H Esc\

During this time, the task should operate the modem in transparent or flush
mode, not line-edit mode. In line-edit mode, each line received from the
modem must be terminated with a line terminator (such as a carriage
return/line feed). However, the last set of characters (the APC sequence) will
probably not be followed by a line terminator. Therefore, if the connection is
operating in line-edit mode, the application task will never receive the final
hangup message from the TSC.

7. Eventually, the operator hangs up the phone. When this happens, the TSC
inserts the following APC sequence in the input stream:

Esc_ M:H Esc\

This means the terminal user has hung up and the link is broken.

Driver Programming Concepts Appendix C 297

8. The task returns to step 2.

This protocol is a model and is not the only one possible.

|:| Note

Only the task, and never the terminal, should send OSC
sequences to the TSC for modem control. This restriction does
not apply to other OSC sequences.

Under some circumstances, a task needs to find out whether a terminal is ready to
talk to the task using the modem. The task can ascertain the state of the modem
(answered or hung up) by performing the following steps, in order:

1. Calla_write to send the following OSC sequence to the modem:
Esc] C:T=1,E=1 Esc\

This sets transparent mode (disabling line editing) and turns off the echoing to
the terminal's screen. This is for this connection only, not for other
connections to the modem.

2. Calla_write to send the following OSC sequence to the modem:
Esc] M:Q Esc\

This requests information about the status of the modem; that is, answered, A,
or hung up, H.

3. Calla_readto read seven characters from the modem. This receives from the
TSC an APC sequence of the form:

Esc_ M:x Esc\

Wherex is A if the modem is answered and H if the modem is hung up. This
technique will work because the TSC places the APC sequence, without a line
terminator, at the front of the line buffer for the connection where data is
awaiting input requests from the task.

After performing these steps, the task can restore the connection's line editing and
echo modes to their original states.

298 Appendix C Controlling Terminal I/O

Obtaining Information about a Terminal

You can use OSC sequences to request information about the terminal's current
settings. The syntax of the Terminal Query OSC sequence that requests
information about the terminal is as follows:

Esc] (¢ Q\ Esc\

W-2762

Where:
Q Indicates that this sequence is a query for information.

In response, the TSC sends an APC sequence that lists the current values of all
modes for a terminal and all modes for the connection through which the request
was made. However, the TSC does not return information about the escape-
sequence/terminal-character-sequence pairings or about the input/output control
character assignments.

A task obtains the query information by doing the following steps, in order:
1. Calla_write to send the following OSC sequence to the terminal:
Esc] Q Esc\

This queries the TSC for information about the terminal. In response, the TSC
returns information in the form of an APC sequence without a line terminator
at the front of the type-ahead buffer for the connection. If echoing mode is
enabled, this information will echo at the terminal when the task reads it.

2. Calla_readto read the appropriate number of characters from the connection.
The number of characters returned depends on the values of the modes, and
some of these modes, such as the input baud rate (1) for the terminal, can vary
in length. Allow two spaces for thesc_ at the beginning, two spaces for the
Esc\ at the end, and enough spaces for the modes in between. A safe way to
obtain this data is to read one byte at a time, @stl appears. The modes
are separated by commas and packed together without blanks. An example of
a returned APC sequence follows:

Esc_ C:T=2,E=0,R=0,W=1,0=0,C=0;T:L=0,H=0,M=0,R=2,W=2,T=1,F=0,
1=9600,0=0,5=18,X=64,Y=24,U=80,V=16,G=1,J=0,K=0,P=0,Q=0 Esc\

Driver Programming Concepts Appendix C 299

Restricting the Use of a Terminal to One Connection

If there are multiple connections to a terminal, you can send OSC sequences using
any one of the connections to lock the terminal. When you do this, the terminal
temporarily cannot communicate using any other connection.

Tasks that communicate using the first connection can use the connection
according to how it was opened, and I/O requests through that connection are
processed normally. However, if tasks make 1/O requests using the locked-out
connections, the TSC queues those 1/O requests until the terminal is unlocked.

The syntax of the Lock and Unlock OSC sequences are as follows:

—(E— e

(u)
W-2763
Where:
L Locks the terminal, temporarily preventing 1/0 on other connections.
U Unlocks the terminal, allowing 1/0O on all connections to the terminal.

The only way to lock a terminal is for a task or a terminal operator to send the
Lock OSC sequence. However, there are two ways to unlock a terminal:

* Atask (using the connection that locked the terminal) or the terminal operator
can send the Unlock OSC sequence.

* Atask can close the connection used to lock the terminal.

After a terminal is unlocked, the queued I/O requests are processed in the order in
which they were queued.

|:| Note

If there is a chance of a terminal becoming locked, tasks should
use BIOS system calls to communicate using other connections to
the terminal. If the tasks invoke system calls such asad and
a_write without specifying a response mailbox, a deadlock can
occur.

300 Appendix C Controlling Terminal I/O

Programmatically Stuffing Data into a Terminal's Input
Stream

A task can use an OSC sequence to stuff (insert) data into a terminal's input stream.
This process is useful when operators must enter large blocks of data that vary only
slightly from one occurrence to the next. The syntax of the Stuffing OSC sequence

is as follows:
Esc] S: text Esc\
W-2764
Where:
S: Indicates that this sequence stuffs data into the input stream. Include

the : (colon) after the S.

text A maximum of 126 characters to be placed in the terminal's input
stream. If the connection's echo mode is enabled, the stuffed text
displays on the screen. If the connection's line-editing mode is
enabled, the operator can edit the stuffed text.

If you send composite OSC sequences, the composite sequence can contain only
one Stuffing OSC sequence, and that subsequence must be the last subsequence.

Driver Programming Concepts Appendix C 301

Interpreting
Bad Track Information

Hard disk drives record information about which tracks or sectors of the disk are
unreliable and should not be used. The device driver can read the bad track
information and map out the unreliable areas when formatting the disk.

To help you add this mapping capability to the drivers you write, this appendix
describes the format used when writing the bad track information. Any hard disk
drivers you write should be able to obtain this bad track information and map out
the bad tracks whenever they format the disks.

This appendix provides two bad track information standards for hard disk drives:
non-ESDI and ESDI. A non-ESDI drive has only the non-ESDI form of bad track
information. An ESDI drive using a 221 controller should have both the ESDI and
non-ESDI forms present.

Non-ESDI Bad Track Information

Non-ESDI bad track information is recorded on the highest-numbered cylinder - 1
(the highest-numbered cylinder is reserved for diagnostic tracks). The last four
tracks of that cylinder contain the bad track information. Each track contains the
same information but is formatted with a different sector size:

Track Sector Size

Last cylinder - 1, Last surface 128 bytes/sector
Last cylinder - 1, Last surface -1 256 bytes/sector
Last cylinder - 1, Last surface - 2 512 bytes/sector
Last cylinder - 1, Last surface - 3 1024 bytes/sector

If a disk has less than four recording surfaces (and therefore less than four tracks
per cylinder), the tracks on the next cylinder (last cylinder - 2) are used for the
remaining bad track information.

Driver Programming Concepts Appendix D 303

304

Recording the information in four different sector sizes allows the driver to access
the information during format time, regardless of the sector size chosen by the user
For example, if the user decides to format the disk with a volume granularity
(sector size) of 512 bytes, the driver sets up the controller for 512-byte sectors and
accesses the bad track information from the location (last cylinder - 1, last

surface - 2). Likewise, when formatting in 1024-byte sectors, the driver obtains the
bad track information from the location (last cylinder - 1, last surface - 3).

On each of those tracks, 1024 bytes of bad track information is recorded four times
starting at sector 0, with a 1024-byte gap between each recording. The multiple
occurrences are insurance against bad spots in this area of the disk. If an error
occurs when the driver attempts to access the first occurrence of the bad track
information, it tries again with the second occurrence, and so forth.

The non-ESDI bad track header information has the following format:

Type Description

16-bits Must contain the value OABCDH

16-bits Number of bad tracks in this list
(max 255)

The Non-ESDI Bad Track Defect Record Information for each bad track contains
the following information:

Type Description

16-bits Cylinder number of bad track
8-bits Surface number of bad track
8-bits Setto 0

Figure D-1 illustrates the position of this bad track information on the disk.

Appendix D Interpreting Bad Track Information

Surface n
Surface n-1
Last
Surface n-2 > cylinder
(diagnostic
Surface n-3 cylinder)
L]
L]
L]
Surface 0
Sector numbers at which
NG bad track or sector information begins 7/
0 16 32 48
Surface n (128-byte sectors) ——]]] —{ -
0 8 16 24
Surface n-1 (256-byte sectors)—— — —{ —{ —
0 4 8 12
Surface n-2 (512-byte sectors)—— 1] — —
0 2 4 6
Last
Surface n-3 (1024-byte sectors)——
(Y) H - - - cylinder-1
Surface n-4 (alternate tracks)
] L]
L] L]
] L]

Surface 0 (alternate tracks)

W-2784

Figure D-1. Format of Bad Track Information

ESDI Bad Track Information

ESDI bad track information is recorded on the highest-numbered cylinder - 2 (the
highest-numbered cylinder is reserved for diagnostic tracks). The defect list is
written at 1024 bytes per sector only. Defect information found on any surface are
defects for that surface only. Each track contains four copies of the 1024 byte bad
track information block, with a 1024 byte gap between each recording. The four
redundant 1024 blocks will be found at sectors 0, 2, 4, and 6. The multiple
occurrences are insurance against bad spots in this area of the disk. If an error
occurs when the driver attempts to access the first occurrence of the bad track
information, it tries again with the second occurrence, and so forth.

Driver Programming Concepts Appendix D 305

306

The ESDI bad track header information on each surface has the following format:

Type
16-bits
16-bits
8-bits
8-bits

Description
Must contain the value C5DFH
Must contain the value 3031H

Surface number (0 through n-1; n is the total surfaces)
Must contain 0

The ESDI Bad Track Defect Record Information for each bad track contains the
following information:

Type
8-bits
8-bits
8-bits
8-bits
8-bits

Appendix D

Description

Cylinder number most significant byte (MSB)
Cylinder number least significant byte (LSB)
Bytes from which MSB (set to 0)

Bytes from which LSB (set to 0)

Error length (set to 0)

Interpreting Bad Track Information

Supporting the
Standard Diskette Format

Standard format is only required for booting Multibus | systems and is not
recommended for any other use. Use uniform format, in which all tracks of a
diskette have the same format, whenever possible.

Standard formatting means the supplied device drivers can format the beginning
tracks of all diskettes in the same manner, regardless of the format of the remainder
of the diskette.

The standard formatting for cylinder 0 on diskettes is as follows:
For 5-1/4" diskettes

e Cylinder 0, side 0 is formatted with 128-byte sectors, single density, 16
sectors per track.

« If the diskette is double-sided, cylinder 0, side 1 is formatted like the rest
of the tracks on the diskette.

For 8" diskettes

e Cylinder 0, side 0 is formatted with 128-byte sectors, single density, 26
sectors per track.

« If the diskette is double-sided, cylinder 0, side 1 is formatted with
256-byte sectors, double density, 26 sectors per track.

Theflags field in a device's DUIB indicates whether that device expects (reads,
writes, and formats) diskettes in standard or uniform format.

To be consistent with the supplied drivers, and to be able to correctly access
standard format diskettes from other systems, random access diskette drivers that
you write must be able to read, write, and format diskettes in this standard format.

To access standard-formatted diskettes, a device driver must be able to translate a
logical block number (as supplied to it in tiev_loc field of the IORS by the I/O
System) into a physical address (cylinder, head, and sector). It must take into
consideration that track 0 might be formatted differently than the rest of the
diskette, and that there might be a different number of logical blocks on track 0.

Driver Programming Concepts Appendix E 307

Use the following algorithm to calculate the physical address for 5-1/4" flexible
diskette requests. It assumes the program has access to the IORS and the DUIB.
Use a similar algorithm for 8" diskettes including the special formatting of
cylinder 0, side 1 on double-sided diskettes.

I* Calculate the number of logical blocks on the standard-
* formatted track O using the standard granularity and

* standard number of sectors per track.

*/

track-0-blocks = (128 hytes/sector x 16 sectors/track)

(device-granularity in bytes/sector)

[* Calculate the number of blocks missing from track 0

* (those that would be there if the diskette were uniformly
* formatted). The normal track size equals the number of
* sectors per track on the rest of the disk (obtained from
* the driver-specific unit information table).

*/

track-0-blocks-missing = normal-track-size - track-0-blocks

I* If the logical block number of this request indicates a track 0
* request, calculate the address.
*/

IF block-number < track-0-blocks THEN

DO
[* Set the cylinder and head number to 0 because this is
* track O
*/

cylinder-num =0
head-num =0

[* Add 1 to this equation because diskette sectors start at
* 1,notO
*/

sector-num = (block-number x device-granularity) + 1
(128 bytes/sector)

308 Appendix E Supporting the Standard Diskette Format

END

ELSE
DO

I* See if the request goes beyond track 0

*/

IF (bytes-requested) > (track-0-blocks - block-number) THEN
(device-granularity)

DO

I* If the request goes beyond track 0, then calculate the

* number of bytes to read or write that are past track O.

* Save the number until track O operations are complete.

* Then use the number to complete the read or write

* operation.

*/

remainder = bytes-requested - (track-0-blocks - block-number)
x device-granularity
END

/*

* Calculation of physical address is complete for
* requests that access track 0.

*/

RETURN

/*

* If the request is past track 0, adjust the block number

* for this request by adding the number of logical blocks
* missing from track 0 and calculating the cylinder, head,
* and sector as if this were a uniformly-formatted flexible
* disk.

*/

Driver Programming Concepts Appendix E

309

END

310

adjust-block-num = block-number + track-0-blocks-missing

/*

* First calculate the cylinder number of this request
*

cylinder-num = adjust-block-num

(total-num-of-heads x track-size)

/*

* Next calculate the head number

*/

IF total-num-of-heads = 1 THEN

DO
/*
* This is a one-sided flexible diskette
*/
head-num =0
END
ELSE
DO
/*
* This is a double-sided flexible diskette
*/
temp = adjust-block-num MOD (track-size x 2)
head-num = _temp_
track-size
END
/*
* Finally, calculate sector number for this request,
* adding 1 because flexible diskette sectors start at 1.
*/

sector-num = temp MOD track-size + 1

Appendix E Supporting the Standard Diskette Format

Index

<Ctrl-O> character, 255
<Ctrl-P> character, 252
<Ctrl-Q> character, 255
<Ctrl-R> character, 253
<Ctrl-S> character, 255
<Ctrl-T> character, 255
<Ctrl-U> character, 253
<Ctrl-W> character, 255
<Ctrl-X> character, 253
<Ctrl-Z> character, 253

A

a_physical_attach_device call, 73, 96
a_physical_detach_device call, 96
a_special call, to recover from nonfunctional
terminal, 130
absolute physical addresses, 84
adding
device driver to application system, 183
device drivers, example, 218
addresses
absolute physical, 84
converting logical to physical, 85
logical, 84
APC sequences, 256
assigning control character functions, 293
AT COMn serial port driver, 189
attach device command, 184
attach procedures, 38
attach_device IORS, 32
auto-answer modem, 295
axes
sequence and orientation, 265
sequence control, 138

Driver Programming Concepts

B

bad tracks and sectors, 180, 303

ESDI, 305

non-ESDI, 303
baud rate

input, 138, 265

output, 265
begin_long_term_op procedure, 123
binding, device driver, 194
bios_get_address procedure, 85

example, 86
board ID, 107
buffered devices,, 95
buffered_device_data structure, 146
buffers

EIOS maximum number, 73

line-edit, 129

number of, 72

raw-input, 128

terminal input, 128

TSC, 129

type-ahead, 129

using for terminal input, 128
bypass mode

processing terminal input, 130

terminal, 128

C

cancel_io procedure, 20, 71, 80, 91, 96
for interrupt-driven devices, 236
for message-based devices, 248
closing, files, 176
common device
definition, 23
described by DUIB, 23

Index 311

common device drivers, 20, 71, 95
and IORS structure, 76
DUIB different from random access
devices, 96

high-level device driver procedures, 24

required tables, 75

supplied procedures, 71

writing, DUIB and IORS fields, 81
COMPACT segmentation model, 184
compiling, device driver, 194
configuration files, 189
configuration module, 41, 42

configuring, device drivers with the ICU, 197

connection modes, 257
connections
flags, 137
terminal mode, changing, 258
to restrict terminal use, 300
control characters, 270
default for terminal output, 254
output, 260
redefining, 293
syntax, 293
terminal output, 254
control functions

entered from terminal under CLI, 251

for terminal line-editing mode, 251
for terminal output, 251
controlling, modem, syntax, 295

converting, logical addresses to physical

addresses, 85
current line, definition, 251
cursor
addressing offset, 266
positioning, 290
custom device drivers
advantages and disadvantages, 22
and IORS structure, 76
and UINFO table, 72
definition, 22
necessary procedures, 71
reasons for writing, 87
required procedures, 87
required tables, 75
writing and DINFO table, 71
writing, DUIB and IORS fields, 81

312 Index

D

data, flow to terminal, using control
functions, 251
default mode for terminal output, 254
define_duib macro, 191
delete character, 252
deleting lines, 253
device data storage area, 110
device drivers
adding as loadable device, 183
adding without modifying ICU, 214
adding, example, 218
common, 23,71
high-level device driver
procedures, 24

compiling/assembling and binding, 194

configuring with the ICU, 197
definition, 17
for interrupt-driven terminals, 127
for message-driven terminals, 127
loadable, 184
procedures, 229
random access, 23, 71, 72
high-level device driver
procedures, 24
shared by devices, 110
source code, 183
terminal, 71, 72, 76
definition, 25
types, 20
writing
and DUIB fields, 81
and IORS fields, 76, 81
common or random access, 75
terminal, 75
device granularity, 70
device information (DINFO) table, 71,
104, 133
interrupt-driven, 133
message-based, 134
device information screens for UDS
utility, 206
device name, extended physical, 32
device_finish procedure, 106, 113
device_init procedure, 106, 112

device_interrupt procedure, 107, 116, 117

device_start procedure, 106, 114
device_stop procedure, 107, 115
devices
common, definition, 23
random access, definition, 23
Device-Unit Information Block, 23, 65, 132
device-unit information screens of UDS
utility, 207
device-unit number, 18
DINFO table, 102
defining, 189
for interrupt-driven devices, 133
for message-based devices, 134
for terminal device driver, 133
structure of, 104
discarding
mode, 254
output, 255
disk free space, subfunction of a_special
call, 182
disk mirroring, subfunction of a_special
call, 182
diskettes
characteristics, 70
format, standard, 307
DMA controller, 84
doubly-linked list, 92
drive characteristics, 177
DUIB, 65, 102
creating, 75
defining, 189
describes type of device, 23
for terminal device driver, macro, 132
generic SCSI, 60, 75
multiple for one device, 73
operation of, 73
structure of, 67
using, 73
writing for common device drivers, 81
writing for custom drivers, 81
writing for random access drivers, 81
duplex, 138, 263
dynamic DUIB, 32

Driver Programming Concepts

E

echoing, 259

EDOS file driver, 28

emptying type-ahead buffer, 253

end of file character, 253

end_long_term_op procedure, 124

escape sequences, 270, 273, 274, 279

example algorithms, 53

examples
adding device drivers, 218
bios_get_address procedure, 86
initialization front-end code, 194
interrupt-driven device, 229
message-based device, 241
simulation, 278
translation, 276

explicit seeks, 109

exported procedures, 184

extended physical device name, 32

F

f_attach requests, 175
f_close requests, 176
f_detach requests, 175
f_open requests, 176
f_read requests, 174
f_seek requests, 175
f_special requests, 176
f_write requests, 175
far pointers, to device driver procedures, 184
FDSC, 19
library modules, 41
utility procedure, 43
file drivers, 17, 19, 69, 79
actions, 53
code, 41
configuration table, 29, 34, 42
data table, 29, 42
dispatch table, 34
I/O procedures, 40
ID, 28,41
info table, 29, 36
interface procedures, 37, 38, 53

Index 313

number, 28

support code (FDSC), 19

type, 33

validation table, 34
file 1/0 procedures, 38
file marks, 179
File System Type, 31
finish_io procedure, 71, 89

for interrupt-driven devices, 232

for message-based devices, 244
finish_io procedure 1, 20
flow control, 266
flush mode, 259
flush terminal input mode, 130
format command, 60, 75, 126
formatting, tracks, 176
fs_format_track requests, 176
fs_get_bad_info requests, 180
fs_get_drive_data requests, 177
fs_get_terminal_attributes requests, 178
fs_notify requests, 177
fs_query requests, 177
fs_read_file_mark requests, 179
fs_retention_tape requests, 179
fs_rewind requests, 179
fs_satisfy requests, 177
Fs_set_bad_info requests, 180
fs_set_signal requests, 178
fs_set_terminal_attributes requests, 178
fs_write_file_mark requests, 179

G

g_delay procedure, 170
generic /O task, 37
get_file_driver_status call, 28
get_iors procedure, 125
granularity, device, 70

H

handling, interrupts, 98

handling interrupts, 229, 241

hard disk drives, bad track information, 303
high water mark, special, 270

314 Index

I/O device, description, 18
I/0 interface mailbox, 37
I/O processing, sequence of calls and
procedures, 96
I/O Request/Result Segment, 76
I/O Request/Result Segment /t, 65
I/O requests, 23,171
I/O systems, functions supported, 171
I/O task, 37
ICU
ICUMRG (ICU Merge) utility, 198
UDS (User Device Support) utility, 198
using to configure device drivers, 197
ilfd.lib file, 43
ilfdr.lib file, 43
implied seeks, 109
init_io procedure, 20, 71, 88, 96, 110
for interrupt-driven devices, 229
for message-based devices, 242
initialization front-end program
description, 193
for device driver, 183
initialization procedure, 37
input baud rate, 138, 265
input buffer
for raw-input, 129
for Terminal Support Code, 129
input parity, 138, 260, 263
inserting data into the input stream, 301
install_duibs call, 73
install_file_driver, 34, 36, 41
install_file_driver call, 28
installing a file driver, 41
interface procedures, 38
interrupt handler, 98
interrupt task, 238
priority, 106
interrupt_task, 98
interrupt-driven devices, 95
cancel_io procedure, 236
finish_io procedure, 232
init_io procedure, 229
queue_io procedure, 234
random access support procedures, 229

interrupts, 95, 135 message, 95, 164

level, 135 structure, 118
invoking, UDS utility, 207 message task, 248
IORS description, 100
description, 76 message-based devices, 95
fixed_update field, 72 cancel_io procedure, 248
funct and subfunct fields, 173 finish_io procedure, 244
num_buffers field, 72 init_io procedure, 242
struc_ture, 76 gueue_io procedure, 246
update_timeout field, 72 random access support procedures, 241

mode
connection, 257
special character, 154
terminal, 261
terminal in flush, 259
terminal in line-editing, 259
L terminal in transparent, 259
modem, 138, 295
control syntax, 295
indicator, 263

writing for common device drivers, 81

writing for custom drivers, 81

writing for random access drivers, 81
IORS (I/O Request/Result Segment), 65

limitations, EIOS maximum number of
buffers, 73
line editing control, 137
line protocol, 263
indicator, 138 N
line terminator, 252

special, 253 Named file driver, 28

i dit Native AT Floppy driver, 186
Ine-ed native DOS file driver, 28

buﬁgr, 1,29 notify procedure, 121
terminal input mode, 129 notify requests, 177
line-editing num_buffers field, differences between
functions, 251 common and random access devices, 96
mode, 259
loadable device drivers, front-end subroutines
included, 194 O
loadable f!le dr!ver, 41 opening, files, 176
loadable file drivers, 19, 27 OSC control. 260
data structures, 29 0sC sequen’ces 273
locking the terminal, 300 syntax diagram, general, 256
logical addresses, 84 syntax, assigning control characters to
converting to physical addresses, 85 control functions, 293
long-term operations, 123 syntax, changing terminal connection
low water mark, 268 mode, 262
syntax, changing terminal connections
M mode, 258
syntax, controlling modem, 295
Main module, 41 syntax, establishing escape-sequence, 274
mapping, bad track information, 303 syntax, locking and unlocking
Master Loadable File Driver Table, 29 terminals, 300

Driver Programming Concepts Index 315

syntax, restricting terminal
connection, 300
syntax, stuffing data into terminal's input
stream, 301
output baud rate, 265
output control characters, 260
table of, 255
output medium, 138, 263
output parity, 138, 260, 264
output queue
output to terminal discarded, 254
to terminal, 254
overflow offset, 266

P

parity
input, 260, 263
output, 260, 264
physical file driver, 28
physical link, 269
positioning the cursor, 290
procedures
begin_long_term_op, 123, 124
bios_get_address, 85
called by terminal drivers, 127
cancel_io, 20, 71, 80, 91, 96
for interrupt-driven devices, 236
for message-based devices, 248
device_finish, 113
device_init, 112
device_interrupt, 116, 117
device_start, 114, 115
device_stop, 115, 116
end_long_term_op, 124
far pointers to, 184
finish_io, 20, 71, 89
for interrupt-driven devices, 232
for message-based devices, 244
for long-term operations, 123
for RAM disk driver, 185
g_delay, 170
get_iors, 125
init_io, 20, 71, 88, 96, 110
for interrupt-driven devices, 229
for message-based devices, 242
notify, 121

316 Index

queue_io, 20, 71, 90, 96
for interrupt-driven devices, 234
for message-based devices, 246
random
access drivers must call, 121
access drivers must supply, 111
required in custom device driver, 87
seek_complete, 109, 122
supplied by I/O System, 96, 131
term_answer, 159
term_check, 164
term_finish, 157
term_hangup, 160
term_init, 156, 157
term_null, 155
term_out, 166
term_setup, 157, 159
term_utility, 168
terminal device drivers must supply, 155
ts_mutex_unit, 169
ts_set_out_buf_size, 169
xts_set_output_waiting, 170
processing 1/O, sequence of calls and
procedures, 96
public name, 39

Q

query requests, 177

queue, size, 107

gueue_io procedure, 20, 71, 90, 96
for interrupt-driven devices, 234
for message-based devices, 246

quoting character, 252

R

RAM, driver front-end source, 184
RAM-disk, driver, procedures, 185
random access device
definition, 23
described by DUIB, 23
random access device driver, 20, 71, 95
and IORS structure, 76
and UINFO table, 72

DUIB different from common devices, 96
required tables, 75
writing, DUIB and IORS fields, 81
random access device drivers
high-level device driver procedures, 24
procedures to call, 121
procedures to supply, 111
supplied procedures, 71
random access support procedures
for interrupt-driven devices, 229
for message-based devices, 241
raw-input buffer, 128, 145
nonbuffered terminal device, 129
size for buffered terminal, 129
size for nonbuffered terminal, 129
read requests, 174
reading, bad track information, 303
redefining control characters, 293
redisplaying lines, 253
Remote file driver, 28, 32
request queue, 92
Resident file drivers, 27

rq_a_physical_attach_device call, 73, 96, 229
rq_a_physical_detach_device call, 96, 232, 236
rq_a_special call, to recover from nonfunctional

terminal, 130
rq_get_file_driver_status call, 28
rq_install_duibs call, 73
rq_install_file_driver call, 28
rq_s_open call, 73
rqe_create_descriptor call, 86
rqe_get_address call, 84

S

s_open call, 73
satisfy requests, 177
screen height, 266
screen width, 266
scrolling mode, 255
scrolling number, 138, 266
seek_complete procedure, 109, 122
seeking, 175
explicit, 109
implied, 109
sending, information to terminal, with APC
sequence, 256

Driver Programming Concepts

service information, inside back cover
setting, terminal mode with system calls, 256
signal characters, 178

signal_interrupt call, 98

simulation, 272, 277

Soft-Scope debugger, 184

source code

for device driver initialization
front-ends, 183
for loadable ramdrv device driver, 183
special array, 271
special character mode, 154
special characters, 267
special high water mark, 154, 270
special line terminator, 253
stack size, 106, 135
standard diskette format, 307
starting, output, 255
start-up code, 194
stop bits, 269
stopping output, 255
stream file driver, 28
stuffing data into the input stream, 301
submit file, functions, 194
subroutines in loadable device driver
front-end, 194
subsystem declaration, 185
syntax of APC sequences, 256
syntax of OSC sequences
assigning control characters to control
functions, 293
changing terminal connection mode, 258,
262
controlling modem, 295
establishing escape-sequence, 274
general, 256
locking and unlocking terminals, 300
restricting terminal connection, 300
stuffing data into terminal's input
stream, 301
terminal query, 299
sysload command, 19, 27, 41, 183, 184

Index 317

T

tape requests, 179
tasks
interrupt, 98
message, 100
term_answer procedure, 159
term_check procedure, 164
term_finish procedure, 157
term_hangup procedure, 160
term_init procedure, 157
term_null procedure, 155
term_out procedure, 166
term_setup procedure, 159
term_utility procedure, 168
terminal connection, mode OSC syntax, 262
terminal device drivers, 20, 25, 71, 76
and UINFO table, 72
procedures to supply, 155
required tables, 75
supplied procedures, 71
terminal 1/0, 128
cancelling, 181
resuming, 182
terminal input
application task buffer, 128
bypass mode, 130
flush mode, 130
line-edit mode, 129
line-editing functions, 251
raw-input buffer, 128
stuffing data into stream, 301
transparent mode, 130
TSC input buffer, 128
terminal mode, 259
changing, OSC sequence, 262
depending on the connection to
terminal, 256
depending on the type of terminal, 261
sending information in an APC
sequence, 256
setting with system calls, 256
syntax diagram, 256
terminal output, 254
control characters, 254
default mode, 254

318 Index

lines scrolled from queue, 254
placed in queue, 254
Terminal Support Code /t, 25
terminals
answer procedure, 135, 159
attributes, 178
character sequence, 272, 288
check procedure, 135, 161
connections, changing mode, 258
deadlock, avoiding, 300
finish procedure, 135, 157
flags, 138
hangup procedure, 135, 160
initialization procedure, 135, 156
interrupt types, 143
lock OSC sequence syntax, 300
mutual exclusion procedure, 169
output procedure, 135, 165
query OSC sequence syntax, 299
raw-input buffer, 129
set output buffer size procedure, 169
set output waiting procedure, 170
settings, query syntax, 299
setup procedure, 135, 157
status, 181
unlock OSC sequence syntax, 300
utility procedure, 135, 166
time delay procedure, 170
track
formatting, 176
size, 108
translation, 264, 272, 275
transparent mode terminal, 130
transparent mode, terminal, 259
ts_mutex_unit procedure, 169
ts_set_out_buf_size procedure, 169
TSC, 127
data area, 139
data area structure, 141
definition, 25
input buffer, 129
type-ahead buffer, 129

U

UDS (User Device Support) utility
creating input files, 200
device information screens, 206
device-unit information screens, 207
error messages, 209
invoking, 207
steps to use, 200
unit information screens, 206
UDS utility, 198
UINFO (unit information) table, 72, 102,
108, 144
defining, 189
structure, 108, 136
uninstall, file driver, 41
unit information screens of UDS utility, 206
unit information table /t, 72
unit number, 18
unlocking the terminal, 300
update procedure, 38
User Device Support utility, 198

Driver Programming Concepts

write requests, 175
writing

common and random access device
drivers, 23, 75

custom device driver and DINFO table, 71

custom device driver, advantages, 22

custom device driver, disadvantages, 22

custom device driver, reasons, 87

device drivers for interrupt-driven
terminals, 127

device drivers for message-driven
terminals, 127

device drivers, and DUIB, 81

device drivers, and IORS, 76, 81

terminal device drivers, 25, 75

xts_set_output_waiting procedure, 170

Index 319

iRMX® Driver Programming Concepts

469155-004

WE'D LIKE YOUR OPINION

Please rate the following: Excellent Good Fair Poor

»« Manual organization O O O O

» Technical accuracy 0 O O O

» Completeness 0 O O O

» Clarity of concepts and wording O O O O

» Quality of examples and illustrations O O O O

» Overall ease of use O O O O

Comments:

Please list any errors you found (include page number):

Name

Company Name

Address

May we contact you? Phone

Thank you for taking the time to fill out this form.

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 79 HILLSBORO, OR

POSTAGE WILL BE PAID BY ADDRESSEE

OPD Technical Publications, HF2-72
Intel Corporation

5200 NE Elam Y oung Parkway
Hillsboro, OR 97124-9978

Please fold here and close the card with tape. Do not staple.

WE'D LIKE YOUR COMMENTS....

This document is one of a series describing Intel products. Your
comments on the other side of this form will help us produce better
manuals. Each reply will be reviewed. All comments and suggestions
become the property of Intel Corporation.

If you are in the United States and are sending only this card, postage
is prepaid.

If you are sending additional material or if you are outside the United
States, please insert this card and any enclosures in an envelope. Send
the envelope to the above address, adding "United States of America" if
you are outside the United States.

Thanks for your comments.

International Sales Offices

AUSTRALIA

Intel Australia Pty. Ltd.

Unit 1A

2 Aquatic Drive

Frenchs Forest, NSW, 2086
Sydney

Intel Australia Pty. Ltd.
711 High Street

1st Floor

East Kw. Vic., 3102
Melbourne

BRAZIL

Intel Semiconductores do Brazil LTDA
Avenida Paulista, 1159-CJS 404/405
CEP 01311-Sao Paulo - S.P.

CANADA

Intel Semiconductor of Canada, Ltd.
999 Canada Place

Suite 404, #11

Vancouver V6C 3E2

British Columbia

Intel Semiconductor of Canada, Ltd.
2650 Queensview Drive

Suite 250

Ottawa K2B 8H6

Ontario

Intel Semiconductor of Canada, Ltd.
190 Attwell Drive

Suite 500

Rexdale MOW 6H8

Ontario

Intel Semiconductor of Canada, Ltd.
1 Rue Holiday

Suite 115

Tour East

Pt. Claire H9R 5N3

Quebec

CHINA/HONG KONG

Intel PRC Corporation

China World Tower, Room 517-518
1 Jian Guo Men Wai Avenue
Beijing, 100004

Republic of China

Intel Semiconductor Ltd.
32/F Two Pacific Place
88 Queensway

Central

Hong Kong

FINLAND

Intel Finland OY
Ruosilantie 2
00390 Helsinki

FRANCE

Intel Corporation S.A.R.L.

1, Rue Edison-BP 303

78054 St. Quentin-en-Yvelines
Cedex

GERMANY

Intel GmbH

Dornacher Strasse 1

85622 Feldkirchen bei Muenchen
Germany

INDIA

Intel Asia Electronics, Inc.
4/2, Samrah Plaza

St. Mark's Road
Bangalore 560001

ISRAEL

Intel Semiconductor Ltd.

Atidim Industrial Park-Neve Sharet
P.O. Box 43202

Tel-Aviv 61430

ITALY

Intel Corporation Italia S.p.A.
Milanofiori Palazzo E

20094 Assago

Milano

JAPAN

Intel Japan K.K.

5-6 Tokodai, Tsukuba-shi
Ibaraki, 300-26

Intel Japan K.K.
Hachioji ON Bldg.
4-7-14 Myojin-machi
Hachioji-shi, Tokyo 192

Intel Japan K.K.

Bldg. Kumagaya

2-69 Hon-cho
Kumagaya-shi, Saitama 360

Intel Japan K.K.
Kawa-asa Bldg.

2-11-5 Shin-Yokohama
Kohoku-ku, Yokohama-shi
Kanagawa, 222

Intel Japan K.K.
Ryokuchi-Eki Bldg.

2-4-1 Terauchi
Toyonaka-shi, Osaka 560

Intel Japan K.K.
Shinmaru Bldg.

1-5-1 Marunouchi
Chiyoda-ku, Tokyo 100

Intel Japan K.K.
Green Bldg.

1-16-20 Nishiki
Naka-ku, Nagoya-shi
Aichi 460

KOREA

Intel Korea, Ltd.

16th Floor, Life Bldg.

61 Yoido-dong, Youngdeungpo-
Ku

Seoul 150-010

MEXICO

Intel Technologica de Mexico
S.A.de C.V.

Av. Mexico No. 2798-9B, S.H.
44620 Guadalajara, Jal.,

NETHERLANDS

Intel Semiconductor B.V.
Postbus 84130

3009 CC Rotterdam

RUSSIA

Intel Technologies, Inc.
Kremenchugskaya 6/7
121357 Moscow

SINGAPORE

Intel Singapore Technology, Ltd.
101 Thomson Road #08-03/06
United Square

Singapore 1130

SPAIN

Intel Iberia S.A.
Zurbaran, 28
28010 Madrid

SWEDEN

Intel Sweden A.B.
Dalvagen 24

171 36 Solna

TAIWAN

Intel Technology Far East Ltd.
Taiwan Branch Office

8th Floor, No. 205

Bank Tower Bldg.

Tung Hua N. Road

Taipei

UNITED KINGDOM

Intel Corporation (U.K.) Ltd.
Pipers Way

Swindon, Wiltshire SN3 1RJ

If you need to contact Intel Customer Support

Contacting us is easy. Be sure that you have the following information available:

or software config

Your phone and FAX numbers ready
Complete description of your hardware o

Your

uration(s) Com

product’s product code

Current version of all software you use

plete problem description

Type of Service

How to contact us

FaxBACK*

Using any touch-tone phone,

U.S. and Canada: (800) 628-2283

fax-on-demand system have technical documents sentfto (916) 356-3105
your fax machine. Know your

24 hrs a day, 7 days a wee¢kax number before calling. Europe: +44-1793-496644

Intel PC and LAN Information on products, U.S and Canada: (503) 264-7999

Enhancement Support documentation, software driversEurope: +44-1793-432954

BBS

24 hrs a day, 7 days a wet

firmware upgrades, tools,
presentations, troubleshooting.
2k

Autobaud detect
8 data bits, no parity, 1 stop

CompuServe*
Information Service

24 hrs a day, 7 days a wet

Worldwide customer support:
information and technical
support for designers, engineer
and users of 32-bit iRMX OS
cland Multibus product families.

Worldwide Locations:

(check your local listing)
Sl
Type: GO INTELC once online.

Customer Support

Intel Multibus Support engineer
offering technical advice and
troubleshooting information on
the latest Multibus products.

sU.S. and Canada: (800) 257-5404
(503) 696-5025
FAX: (503) 681-8497
Hrs: M-F; 8-5 PST
Europe: +44-1793-641464
FAX: +44-1793-496385

Hrs: M-F; 9-5:30 GMT

Hardware Repair

Multibus board and system
repair.

U.S. and Canada: (800) 628-8686
(602) 554-4904
FAX: (602) 554-6653
Hrs: M-F; 7-5 PST
Europe: +44-1793-40352(
FAX: +44-1793-496156
Hrs: M-F; 9-5:30 GMT

Sales Intel Sales engineers offering | Worldwide: Contact your local Intel
information on the latest iRMX office or distributor
and Multibus products and theif U.S. and Canada: (800) 438-4769
availability. (503) 696-5025
FAX: (503) 681-8497
Hrs: M-F; 8-5 PST
Correspondence Worldwide: Europe:

Mail letters to:

Intel Customer Support
Mailstop HF3-55

5200 NE Elam Young Parkway
Hillsboro, Oregon 97124-6497

European Application Support
Intel Corporation (UK) Ltd.
Pipers Way

Swindon, Wiltshire

England SN3 1RJ

* Third-party trademarks are the property of their respective owners.

	Other iRMX Manuals
	iRMX® Driver Programming Concepts
	Quick Contents
	Contents
	1. Introduction
	Reader Level
	What Is a Device Driver?
	What Does an I/O Device Consist of?

	What is a File Driver?
	Three Types of Device Drivers
	Custom Drivers
	Random Access and Common Drivers
	Terminal Drivers

	The Driver Development Process
	Advantages of a Standard Driver Interface

	2. Writing Loadable File Drivers
	File Driver IDs
	Using File Driver IDs

	File Driver Data Structures
	File Driver Data Table
	File Driver Configuration Table

	File Driver Components
	Initialization Procedure
	I/O Task Procedure
	File Driver Interface Procedures
	File I/O Procedures

	Building a Loadable File Driver
	Main Module
	Configuration Module
	File Driver Support Code Library
	Example File Driver Algorithms

	3. DUIB and IORS: Device Driver Interfaces
	Interface Between a Device Driver and the I/O System
	DUIB Data Structure Definition
	IORS Data Structure Definition

	DUIB and IORS Fields Used by Device Drivers
	Interface Between a Driver and the Device
	DMA Device Considerations

	4. Writing Custom Device Drviers
	What You Must Provide
	Init_io Procedure
	Call Syntax

	Finish_io Procedure
	Call Syntax

	Queue_io Procedure
	Call Syntax

	Cancel_io Procedure
	Call Syntax

	Implementing a Request Queue

	5. Writing Common or Random Access Device Drivers
	I/O System-supplied Procedures and Tasks
	When the I/O System Calls Driver Procedures
	Interrupt Task
	Message Task

	Data Structures Supporting Random Access I/O
	DINFO Table Structure for Random Access Driver
	UNIFO Table Structure for Random Access Driver

	Device Data Storage Area
	Procedures Random Access Drivers Must Supply
	Device_init Procedure
	Device_finish Procedure
	Device_start Procedure
	Device_stop Procedure
	Device_interrupt Procedure

	Utility Procedures Random Access Drivers Must Call
	Notify Procedure
	Seek_complete Procedure

	Procedures for Long-Term Operations
	Begin_long_term_op Procedure
	End_long_term_op Procedure
	Get_iors Procedure

	Formatting Random Access Devices

	6. Writing Terminal Drivers
	Terminal I/O Concepts
	Raw-input Buffer Determined by Type of Terminal Driver
	TSC Input Buffer Determined by Terminal Mode

	I/O System-supplied Procedures and Tasks
	Data Structures Supporting Terminal I/O
	DUIB Structure for Terminal Driver
	DINFO Table Structure for Terminal Driver
	UINFO Table Structure for Terminal Driver
	TSC Data Area Structure

	Procedures Terminal Drivers Must Supply
	Term_init Procedure
	Term_finish Procedure
	Term_setup Procedure
	Term_answer Procedure
	Term_hangup Procedure
	Term_check Procedure
	Term_out Procedure
	Term_utility Procedure

	TSC Utility Procedures Supplied to Drivers
	Ts_mutex_unit Procedure
	Ts_set_out_buf_size Procedure
	Xts_set_output_waiting Procedure
	G_delay Procedure

	7. Handling I/O Requests
	I/O System Responses to I/O System Calls
	Actions Required of a Device Driver
	F_read, Function Code O
	F_write, Function Code 1
	F_seek, Function Code 2
	F_attach, Function Code 4
	F_detach, Function Code 5
	F_open, Function Code 6
	F_close, Function Code 7
	F_special, Function Code 3

	8. Making a Device Driver Loadable
	How to Make a Device Driver Loadable
	Making Driver Procedures Callable as Far Procedures
	Adding Far Pointer Elements to DINFO Table Declarations
	Preparing the Needed DUIB, DINFO, and UINFO Tables
	Preparing an Initialization Front-end
	Compiling/Assembling and Binding Your Device Driver Code

	9. Using the ICU to Configure Your Device Driver
	Adding Drivers with the UDS and ICUMRG Utilities
	UDS Utility
	ICUMRG Utility

	Adding Your Driver as a Custom Driver
	Example of Adding an Existing Driver as a Custom Driver

	A. Random Access Support for Interrupt-Driven Devices
	Init_io Procedure
	Finish_io Procedure
	Queue_io Procedure
	Cancel_io Procedure
	Interrupt Task

	B. Random Access Support for Message-Based Devices
	Init_io Procedure
	Finish_io Procedure
	Queue_io Procedure
	Cancel_io Procedure
	Message Task

	C. Controlling Terminal I/O
	Line-editing Functions
	Controlling Output to a Terminal

	OSC Sequences
	Connection Modes
	Terminal Modes
	Translation and SImulation

	Escape Sequences
	Terminal Character Sequences
	Control Character Redefinition
	Using an Auto-answer Modem with a Terminal
	Obtaining Information about a Terminal
	Restricting the Use of a Terminal to One Connection
	Programmatically Stuffing Data into a Terminal's Input Stream

	D. Interpreting Bad Track Information
	Non-ESDI Bad Track Information
	ESDI Bad Track Information

	E. Supporting the Standard Diskette Format
	Index
	Service Information

