IC-386 Compiler
User’'s Guide

Order Number: 469163-004



In the United States, additional copies of this manual or other Intel literature may be obtained by writing:
Literature Distribution Center
Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641
Or you can call the following toll-free number: 1-800-548-4725

In locations outside the United States, obtain additional copies of Intel documentation by contacting your local
Intel sales office. For your convenience, international sales office addresses are printed on the last page of
this document. Contact your local sales office to obtain the latest specifications before placing your order.

Intel Corporation (Intel) makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel assumes no
responsibility for any errors that may appear in this document. Intel makes no commitment to update nor to
keep current the information contained in this document. No part of this document may be copied or
reproduced in any form or by any means without prior written consent of Intel. Intel retains the right to make
changes to these specifications at any time, without notice.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's Software License Agreement.
U.S. GOVERNMENT RESTRICTED RIGHTS: These software products and documentation were
developed at private expense and are provided with "RESTRICTED RIGHTS." Use, duplication, or
disclosure by the Government is subject to restrictions as set forth in FAR 52.227-14 and

DFAR 252.227-7013 et seq. or its successor.

The Intel logo, i960, Pentium, and iRMX are registered trademarks of Intel Corporation, registered in the
United States of America and other countries. Above, i287, i386, i387, i486, Intel287, Intel386, Intel387,
Intel486, Intel487 and EtherExpress are trademarks of Intel Corporation.

Adaptec is a registered trademark of Adaptec, Inc. AT, IBM and PS/2 are registered trademarks and PC/XT
is a trademark of International Business Machines Corporation. All Borland products are trademarks or
registered trademarks of Borland International, Inc. CodeView, Microsoft, MS, MS-DOS and XENIX are
registered trademarks of Microsoft Corporation. Comtrol is a registered trademark and HOSTESS is a
trademark of Comtrol Corporation. DT2806 is a trademark of Data Translation, Inc. Ethernet is a registered
trademark of Xerox Corporation. Hayes is a registered trademark of Hayes Microcomputer Products.
Hazeltine and Executive 80 are trademarks of Hazeltine Corporation. Hewlett-Packard is a registered
trademark of Hewlett-Packard Co. MIXO is a registered trademark of MIX Software, Incorporated. MIX is an
acronym for Modular Interface eXtension. MPI is a trademark of Centralp Automatismes (S.A.). NetWare
and Novell are registered trademarks of Novell Corp. NFS is a trademark of Sun Microsystems, Inc. Phar
Lap is a trademark of Phar Lap Software, Inc. Soft-Scope is a registered trademark of Concurrent Sciences,
inc. TeleVideo is a trademark of TeleVideo Systems, Inc. UNIX is a registered trademark in the United
States and other countries, licensed exclusively through X/Open Company Limited. VAX is a registered
trademark and VMS is a trademark of Digital Equipment Corporation. Visual Basic and Visual C++ are
trademarks of Microsoft Corporation. All Watcom products are trademarks or registered trademarks of
Watcom International Corp. Windows, Windows 95 and Windows for Workgroups are registered trademarks
and Windows NT is a trademark of Microsoft in the U.S. and other countries. Wyse is a registered trademark
of Wyse Technology. Zentec is a trademark of Zentec Corporation. Other trademarks and brands are the
property of their respective owners.

Copyright © 1991, 1992, 1993 and 1995 Intel Corporation, All Rights Reserved

REVISION HISTORY DATE
-001 Original Issue 12/91
-002 Revision One 08/92
-003 Revision Two 11/93
-004 Revision Three 11/95



Quick Contents

Chapter 1. Overview

Chapter 2.  Compiling and Binding
Chapter 3. Compiler Controls

Chapter 4. Segmentation Memory Models
Chapter 5.  Listing Files

Chapter 6.  Processor-specific Facilities
Chapter 7. Assembler Header File
Chapter 8.  Function-calling Conventions
Chapter 9. Subsystems

Chapter 10. Language Implementation
Chapter 11. Messages

Glossary

Index

Service Information

iC-386 Compiler User's Guide 3



Notational Conventions
TheiC-386 Compiler User's Guideses the following notational conventions:

Italics indicate a symbol that is replaced with an identifier, an
expression, or a value.

italics

Type of this style represents syntax, filenames, program

monospace type
examples, or computer output.



Contents

1 Overview

Software Development With iC-3886...........cooiviviiiiiiiiiii e 13
Using the Run-time Libraries ..........ccccoieeiiiiiiiiieee e 14
[D7=T o100 o 1o Vo P SRRR 16
(0] 0111001419 Lo R 17
USING the ULHILIES ...ooeeeeeieee e 17
Programming for Embedded ROM Systems ..........cccoeevviiiiiii, 18

Compiler Capabilities ..........uuuuuiiiiiiiiiiie e 18

Compatibility With Other Development TOOIS...........ccooeeeeeeiiii, 19

ADOUL THIS MANUAL ...ttt 20
Related PUbliCatiONS............uuuiiiiiiiiiiii e 20

2 Compiling and Binding

Using Files and Dir@CIOMES .......coieiuuuiiiaeiieiiiie e 21
Invoking the iIC-386 COMPIIET..........cuvviiiiiiiiiiiiie e 22
Invocation Syntax on iIRMX SYStemS .......ccooevviiiiiiiiiiceeeieee e 22
Invocation Syntax on DOS SYStEMS .......uvvvviiiiiiiieiiieeeeeeeeeeeiiennns 23
Sign-on and SigNn-0ff MESSAQES.......uuiiiiiiiieiiiiiiiiiieie e 24
Files That the Compiler USES ......ccoviiiiiiiiiiieeeee 25
WOTK FIIES e 26
ODBJECE FlE et 26
LIStING FlES ..vvviiiiiiiiii e 26
Using Submit, Batch and Command FileS .........ccccccoiviiiii, 29
Using IRMX SUubmit FileS .....uuuueeiiiiiiiii e, 29
Using DOS Batch Files for iRMX for Windows Systems...................... 30
Using DOS Command Files in iRMX for Windows Systems.......... 32
Binding ODBJECE FIlES ..vunniiiiiiii e 34
Choosing the Files to Bind ..........ccooeeeiiiiiiiiieeii e, 34
Examples of BiNAING ......cooouuiiiiiiiiiii e 36
BND386 Example on DOS SysStemS ........cceeveeeeeeieviiiiceeeennnen, 36
IN-IINE FUNCHIONS ..o 37

iC-386 Compiler User’s Guide Contents 5



Compiling at Different Optimization Levels..........ccocciiiiiiii, 39

Results at Optimization Level O......cccoooviiiiiieiiiiiiiiieeeeeeee 39
Results at Optimization Level L. 43
Results at Optimization Level 2........cccccoveeeeiiiiiiiiieeeeee 45
Results at Optimization Level 3. 47

Compiler Controls

How Controls Affect the Compilation ..., 51
Where t0 USE CONIOIS ...ttt 52
Alphabetical Reference of ControlS.......ccccceiviiiiiiii, 56
=X To [ I I aTo = 1L To | o 1SR 57
[odo o (=38 I g Lo Tedo o 1= TSP 6!
[odo o [=1ST=To [ g 1= o | PSS SURPPP 6!
[od0] 1 1] 0 1= To! F TP UPPT PRI 6€
(oo ] oo I I g Lo oo o [ UURUPPPPPUPPPRRRT 6€
(o Eo N = R To ] 0= o | SRR 6!
(o l=T 10 Lo I I aToTo [T o 18 o [P SSSPPP 7
ETINE e 72
(o Tz 1o a0 1] £ o 74
=1 o PR 7€
L] oo I I o123 = o o PP 7
FIXEAPAIAMS. . eee e e 78
INCIUAE <. e e e e e e e e e e e e e 81
1L (T 0 U o) P 83

TN I o] 11 = TSSO 84
T I T = ST 85
listexpand | NONSEXPANG ......ccovviiiiiiie e 87
listinclude | NONSEINCIUAE .........ccooiiiiiii e 88
IONGB4 | NOIONGBA ... 90
MOd486 | NOMOAA86 .......ccceeiiiiiiiiiieeiii e e 91
MOUIENAIMIE ...ttt e e e e e r e e e e e e e e s 3
(o] o] =] il T T o = o 94
(o] 1110 11 96
PAGEIENGLN. ... 10(
PAGEWIALN. ... 101
(o1 (=T o1 (1) A I Lo 0] £=1 o] 1 1 SR 102
PINT | NOPIINT. ettt 104
(= 10 £ T I (] 1 4 PSP PPPPTPPRR 106
searchinclude | nosearchinClude.................uuuuiiiiiiiiiiiiiiiii 10¢
signedchar | NOSIGNEACNAN ............uuuuiuiiiiii e 11
SICINES | NOSICIINES....ci i s 111
SUDISYS. ettt ettt 112

Contents



SYMDBOIS | NOSYMDBOLS......coiiiiiiie e 114

TADWIATN ... e 115

L1 PP PP PP PUPUUUUP TR 116

translate | NOtranSIate..........oooiiiiiiie e 117

107 S L3N I 110117/ ¢ LSOO PUPPRPPRTTRRN 118

VAIPAIAITIS ...eitieiit ettt ettt e et et e e e et e et b e e e ta e e eea e e eetaeeetneeeenaeennnaaeennaee 120

XEEE | MOXIET e e e 123

4 Segmentation Memory Models

How the Binder Combines SegmeNnts ........ccuuuuiiiiiiiiiiiiiiieeeeeeeii e 125
Combining iC-386 Segments With BND386 ..............ccvvvvevrsceecnn 126
How Subsystems Extend Segmentation ................cuevvvvvevvivveieeeeeeeeeennnn. 126

Compact Segmentation Memory Model ... 127
(070 ga] o= Tox 011/ oo L] 1R 128

USING NEAr @nd far........cooiiiiiiiiiii e e 131
Addressing Under the Segmentation Models ..........cccccceevvvi . 132
Using far and near in DeclarationsS.........ccccceeiiiiieeeeeeeeeeeee 133
Examples UsiNg far ... 134

5 Listing Files

Preprint File ... . e 137
Y= T o 1= T SOP PPN 138
INCIUAE FHlES.... e 139
Conditional Compilation .............oovviiiiiiiiii e 140
Propagated Dir€CHVES.........cooiiiiiiiiiiiiiiiiiiiiire e e e e ae e e aa e 140

PHINE FIIE e 141
Print File CONENES.......uuiiiiiiiiiiieee e 141
Page HEAUEN ..o 142
Compilation HEAdiNg ........covvviiiiiiiiiiie e 142
SOUIrCe TeXE LISTING .eevvviiiiiiiiiiiieiiie ettt e e e e e e e e e e e eeeeees 143
Remarks, Warnings, and EITOIS...........uu i 144
Pseudo-assembly LiStNg..........ooiiiieiiiiiiiiiiiiiiiiie e 144
Symbol Table and Cross-referencCe ........ccccovvvvvviiiiiiiiiiiiiiiieeeeeievieiiiiees 145
Compilation SUMMATY .....oooeeiiiii e 145

iC-386 Compiler User’s Guide Contents 7



Processor-specific Facilities

Making Selectors, Far Pointers, and Near Pointers ...........cccccuvvviieeeenenn. 150
Using Special Control FUNCLIONS .........cocoiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeviaieees 151
Examining and Modifying the FLAGS Register .........ccccccccviiiiiiiieneeen. 152
Examining and Modifying the Input/Output Ports ...........ccccceevveeeeeeenn. 156
Enabling and Causing INterruptS........cooeviiiiiiiie e 158
INtErrUPt HANAIEIS. ... oo 158
Protected Mode Features of Intel386 and Higher Processors....................... 16/
Manipulating System Address Registers.........cccccvvvviiiiucceeeneennns 160
Manipulating the Machine Status Word.............ccooeeeeeeiiii, 162
Accessing Descriptor INformation.................eeeeeiiiiiiiiiiiiiin 164
Adjusting Requested Privilege Level.......cccoooviiiii 170
Manipulating the Control, Test, and Debug Registers of Intel386™,

Intel486™ , and Pentiufl ProCESSOIS.............ooveveeeeeeereeeeeeereeeneen. 171
Managing the Features of the Intel486 and Pentium Processors.................. 17
Manipulating the NUMeric COPrOCESSOI........uiiiieeeieiiiiiieeeeeeeeeeee e e e e e eeeanns 176

L= o TR/ o ISP 178
CONEIOL WOK ... e 178
SEALUS WOI....cc oo e 181
Intel387™ Numeric Coprocessor, and Intel486 or

Pentium Processor FPU Data Pointer and Instruction Pointer ........... 186
Saving and Restoring the Numeric Coprocessor State............ccccvvveennn. 187

Assembler Header File

MACTO SEIECHION «.cvuiiii e e 189
L F= Vo T 1Y = (ol o 1SS UUPPPPRRPPPRRIN 195
REQGISEI IMACTOS ...ttt san e e e e e e e e e eeeeeaene 19€
SEOMENT MBCIOS. ... ittt ettt e e e et e e e e aeaan s 19°
TYPE MACKOS ..ttt et e et e e e e e e e e eaans 199
OPEratioN MACIOS.......coiiiiiieiiiiiiie ettt e e e ettt r e e s s e e e e aeaaeaeeeeeeeenes 20C
External Declaration MaAcCIOS ..........ovvvviuiiiiiiieeeiie e 200
INSTFUCEION IMACTIOS....civvi it e e e eaes 201
ConditioNal MACIOS .....cvvniiiii e 202
Function Definition MaCIOS........c..cviiiiiiiieeiiieeeeeee e 202
18] 411 10 1R TR 203
0] L= U= Lo F PP P PP PPPPTI 20¢
Qoparam_flIt ... 205
L 3Y= LU 1 (o RPNt 20¢
0] oL (o] [T TR 207
B L=] 11 Lo o PPN 208
3] (=] PSS 20¢
=T 010 | SRR 210

Contents



iC-386 Compiler User’s Guide Contents

8 Function-calling Conventions
PasSiNg ArQUMENLIS........uiiiiiii e e et aeeaaans 213
FPL Argument PasSing...........uuuuuiiiiieeeieeieeeeieeiiiiiinnsneeeeeeeeeesennennes 214
VPL Argument PasSiNg.......ooooeeiiiiiiiiiiiiiiiiiie et 215
REtUrNING @ VAIUE .....coeviiiiiiiiii e 216
Saving and Restoring RegIStErS .....cooovveii e 217
Cleaning Up the StaCK...........coveiiiiiiiiiiiiie e 218
9 Subsystems
Dividing a Program into SUDSYSIEMS.........cooiiiiiiiiiiiiiiii e, 220
Segment Combination in SUDSYSTEMS..........cooviiiiiiiiiiiiiiiieeeeeeeeeeeveees 223
Compact-model SUDSYSIEMS......uuiuiiiiiiiiiiiiee e 223
Efficient Data and Code References.........cocceeviiiiiiiiiiiiiiieieee e 224
Creating Subsystem DefiNitioNS .........uuuieiiiiiiiii i 225
Open and Closed SUbSYStEMS .....ccooeeeeeieiiciie s 225
5} 115 I PP TPPPTRPPPTRPIR 226
Example DefiNitioNS .......oooiiiiiiie e 231
Creating Three Compact-model RAM Subsystems..........cccccvvvvvvvvvenneee. 231
10 Language Implementation
(D1 = R DY 01T T TP 235
Yo 1F- T g Y/ o 1= S SUUPUPUPPPPRPPRIN 236
AQOregate TYPES ..ttt et e eeas 238
RV oo I 5/ o1 TR 238
iC-386 Support for ANSI C FEAUrES........ccvvvvviiiiiiiiiiiiiii e 239
Lexical Elements and 1dentifiers ..........ccccceeriiiiiiiiiiiiieeeeei 239
(=T o] fo ot TSI ] Vo PSP 239
Implementation-dependent iC-386 Features .............ooeeeeeveeeeemccccennn. 241
CRATACLEIS ... e e 241
[ a1 C=To =T £ TP 241
Floating-point NUMDBErS..........oooiiiiiiiiiiiiiice e eeemceee 242
Arrays and POINTEIS ......ooviviiiiiiiiiiiiiii e e e e e e eeeeeaens 242
Register Variables ...........ooovviiiiiiiii 243
Structures, Unions, Enumerations, and Bit FieldS............ccccccceeeeiiiinen. 243
Declarators and Qualifiers..........ccceeiiiiiiiiiiin e 244
Statements, Expressions, and References...........cccccoeevvvvviiiiiiiee e, 245
Virtual Symbol Table ..., 245
9



11 Messages

Fatal ErrOr IMESSAGES . .uuuueeiieiiiiie ettt e et e e et eaaeeebaaa s 24¢
ErTOr MBSSAGES ... ittt ettt e e e e et e e e e 253
LT = U a1 o T PSSP 263
REMEAIKS ..ttt ettt e e e 268
SUDSYSIEM DIiAgNOSTICS. . .uuiiiieeeeeeieiiiiiiiie e e e e e e e e e e eeeeaes 269
INtErNAl ErrOr MESSAQgES. . .uuvvieiiiiiiiiiiiiiee e e e e e e e e e e ettt s 217(
iIRMX Condition Codes in Error Messages.........ccoceeveeeeeeeiiceeiiieeeeeeeees 270
Glossary 273
Index 281
Service Information Inside Back Cover

10 Contents



Tables

1-1.
1-2.
2-1.
3-1.
3-2.
4-1.
4-2.
5-1.
5-2.
5-3.
6-1.
6-2.
6-3.
6-4.
6-5.
6-6.
6-7.
6-8.
6-9.
6-10.
6-11.

6-12.
6-13.
6-14.

6-15.
7-1.
7-2.
7-3.
7-4.
7-5.
7-6.

8-1.
8-2.
9-1.
9-2.
10-1.

Assemblers, Compilers, Debuggers, and UtilitieS..........cccoooeieiiiinneeeene
Intel386, Intel486, or Pentium Processor and Tool Publications..........
IN-lINE FUNCLIONS ..ot e e e e e
Compiler ControlS SUMMALY.......uuuiiiiieeeiiiieeeiiiiiiie e e e e e eeeereeeeeen
Compiler EXIt STAtUS .....cooeeeiiiiiieeceeeeei e a e
iC-386 Segment Definitions for Compact-model Modules.....................
Segmentation Models and Default Address Sizes.........cccceeevieeeeeeeennnn.
iC-386 Predefined MacCrQS............uuuviiiiiiieeiiiieeeeeeiiiee e
Controls That Affect the Print File Format.............ccccccociiiiiiiiiic,
Controls That Affect the Source Text Listing........cccooeevvvvvevvievvviininnnnn.
Built-in FUNCHIONS 1N 186,01, . ..ot
Built-in FUNCLioNS INI186.1......coovviiiiiiiiiie e,
Built-in FUNCLIONS INi286.0......cooviiiiiiiiiiie e
Built-in FUNCLioNS INi386.1......ccooviiiiiiiiiie e
Built-in FUNCLioNS INi486.0.......cooviiiiiiiie e
[ = T Y= T 0 L=
Machine Status WOord MaCKOS............cuuuuuiiiiiiieeeeeeeieeeeie e
General Descriptor Access Rights Macros.........cccoveevvvviiieevveiinneeeennnn,
Segment Descriptor Access Rights Macras..........cccevevvvvviiiieeveeiiineeeeennn,
Special Descriptor Access Rights MacroS........coceueviieviiiiiiieeeeeiiiieeenns

Control Register 0 Macros for Intel386, Intel486,

and Pentium PrOoCESSOIS......ccuuuiiiiiiiiiieeeee ettt e e e e e e eeeeeaenane
Numeric Coprocessor Tag Word MacIQS..........cccevvivieeeiiiiieeereiinieeennns
Numeric Coprocessor Control Word Macros..........c.ceevvevveviieeieeeennnnnnnn.

Intel387 Numeric Coprocessor, and Intel486 or

Pentium Processor FPU Condition Codes..........cccevvivieiiiiiiiieeiiiinnnnnn,
Numeric Coprocessor Status Word Macras..........cooevveeviieeeeeeinnieeeennnn.
Assembler Header Controls for Macro Selection...............ccccovvvvvvennnnnes
Assembler Flag Macros Set by Header Conttals............c.occovvvveeeneeenne.
Assembler RegiSter MacCIDS. ........iii i
ASM386 Segment Macro Expansion for Compact Memory Madel......
ASM386 Type Macro Expansion for Compact Memory Madel..............

ASM386 External Declaration Macro Expansion for

Compact Memory Model..........ooooiiiiiiiiiiii e

iC-386 Compiler User’s Guide Contents

11



Figures

1-1.
2-1.
2-2.
2-3.
2-4,
2-5.
2-6.
2-7.
2-8.
3-1.
3-2.
4-1.
4-2.
6-1.
6-2.
6-3.
6-4.
6-5.
6-6.
6-7.

6-8.
6-9

6-10.

6-11.
6-12.
6-13.
6-14.

7-1.
8-1.
9-1.
9-2.

9-3.

12

32-bit Protected Mode iRMX Application Development...........c............ 15
INPUt aNd OULPUL FIlES ... e e e 25
Controls That Create or SUPPress FileS.......cccccic 2
Redirecting Input to a DOS Batch File.........cccooiiiiiiiiiiiiiiiciiiees 31
Choosing Libraries to Bind with iC-386 Modules............cccccoviiieeeeeennn.n. 35
Pseudo-assembly Code at Optimization Level.Q............cccovvvvvvvivvinnnnnn. 40
Part of the Pseudo-assembly Code at Optimization Level .1................ 43
Part of the Pseudo-assembly Code at Optimization Level 2................. 45
Part of the Pseudo-assembly Code at Optimization Level 3................. 47
Effect of iG386 align Control on Example Structure Type........ccccceenn... 61
Effect of iC-386 noalign Control on Example Structure Type w.......... 62
Creating a Compact RAM Program ............coeioinnnnnneeeeeneeeee e eeeeeeeeeeeeeeeeees 129
Creating a Compact ROM Program .......... oo eeeee e 13C
FLAGS and EFLAGS REQISIEL........uiiiiiiiiii e 153
LCT= LECI L= TTor 1 o] (o] PR 159
Maching Status WOrd ............uuuuiueiiiiiiiiisiiieeee e e 162
SY=Te =T LT ol o] (o TN 164
SpPECial DESCHPIOL. .. e ieiiii e e 167
1= =T ol (o] SR RSUURT 170
Control, Test, and Debug Registers of Intel386, Intel486,

and Pentium PrOoCESSAIS.....coiiiiiiiiiiiiiii et e e ettt e e e e e eeeeeeeennes 172
Control Register 0 of Intel386, Intel486, and Pentium Processors...... 174
Numeric Coprocessor Stack of Numeric Data Registers...................... 176
Intel387 Numeric Coprocessor or Intel486 and

Pentium Processor FPU Environment Registers.........ccccvevvevvvvinnnnnnn. 177
Numeric Coprocessor Tag Ward.........ccccueiieriiiiiniieeeeiee e 178
Numeric Coprocessor Control Word...........cooeveiiieiveiiiin e 179
Numeric Coprocessor Status Word...........coovevviiiiiieiiiccin e 182
Intel387 Numeric Coprocessor, and Inteld86

Pentium Processor FPU Data Pointer and Instruction Painter.......... 186
Precedence Levels of Assembler Header Controls..........cccceevvveeeeeennn. 193
Four Sections of Code for a Function Call............ccccceeeiiiiiis 212
Subsystems Example Program StrUuCtULE.........covevvviviiieeeieiiie e 220
Subsystems Example Program in Regular

Compact Segmentation Memory Model.............ccccoviiiiiiiiiinee, 221
Subsystems Example Program Using Small-model Subsystems......... 222

Contents



Overview

This chapter provides an overview of the iC-386 compiler and run-time libraries
(referred to as iC-386) and their role in developing applications. References
throughout the chapter direct you to more detailed information. This chapter
contains information on:

» Development of an application using an iC-386 compiler and related Intel
development tools

e Compiler capabilities
« Compatibility with other translators and utilities

e This manual and related publications

Software Development With iC-386

The iC-386 compiler supports modular, structured development of applications.
Figure 1-1 shows the development paths using the iC-386 compiler. Some of the
tasks in developing a modular, structured iC-386 application are:

e Compile and debug application modules separately.
* Select appropriate optimizations for the code.

« Use BND386 to bind the compiled modules and libraries to create a loadable
file. Use BLD386 to create a bootloadable file for ICU-configurable iRMX
systems.

See also: Examples of binding, in Chapter 2
e Use OH386 to prepare the code for programming into ROM.

* For ICU-configurable systems, use the interactive configuration utility (ICU)
to combine an application with the first level or 1/O layer of an iRMX system.

* Use the Soft-Scope debugger to debug your application. You can also use an
ICE in-circuit emulator or the iRMX Bootstrap Loader and the iRMX System
Debugger.

iC-386 Compiler User's Guide Chapter 1 13



Using the Run-time Libraries

14

The iIRMX Operating System (OS) C library and interface library support the entire
ANSI C library definition and provide a useful variety of supplementary functions
and macros. These supplementary library facilities are defined by the IEEE Std
1003.1-1988 Portable Operating System Interface for Computer Environments

(POSIX), the AT&T System V Interface Definition (SVID), or widely used
non-standard libraries.

See also: C Library Referencéor description of the iC-386 libraries,
supplementary functions and macros
Library file names, binding, in Chapter 2

Chapter 1 Overview



Create and Maintain
Libraries With

LIB386 Bound
@ Modules
Translate U Bind Object A
With A Files With Using
ASM386 Linkable BND386 | ”O°'fad
> @ >( OwmFass Y 5 @ ption
Object Usin
9
Write Source U Code 0 load
File With Option
Text Editor | iC-386 Debug Application Y
Source N | © - Software on Target
© > Code > With Executable
D O Soft-Scope N
- 32-hit
A A DEijger IRI\gX Target Program
stem
PL/M-386 | U ~| Y
> O H J >
———
Fortran-386
9 Load for On-target

»

O
0

Correct Errors Found During Translation

Correct Errors Found During Debugging

Combine Into
iRMX Il Operating

System With
ICU386
O [
<
0 Build
Application
¢ System With
iRMX
BLD386 Application
> System with
@ 32-bit First

Level
or /O Job

0

(BLD386 Automatically
Invoked by Submit File)

Correct Errors Found During Debugging

Assembly-language
Debugging Using SDB/SDM

With
Bootstrap |
Loader

0

Load for On-target
Symbolic Debugging With

Bootstrap | Soft-Scope |
Loader Debugger
> > ) H

iIRMX
Target System

°
°

Load for Cross-hosted
Symbolic Debugging With
Soft-Scope
Debugger 1

J

Load into Emulation and Analysis
Tools for Cross-hosted Debugging

—>

= ICU-configurable systems only.

—

—=[d ]

W-3359

Figure 1-1. 32-bit Protected Mode iRMX Application Development

iC-386 Compiler User's Guide

Chapter 1

15



Debugging

16

At logical stages in the application development, use a source-level symbolic
debugger such as Soft-Scope or an in-circuit emulator to debug and test the
application. iC-386 supports debugging by enabling you to specify the amount of
symbolic information in the object code and to customize the output listing. Use
these controls when compiling modules for debugging:

e Thepreprint  control creates a listing file of the code after preprocessing but
before translation.

* Thetype control includes function and data type definitioypédef )
information in the object file for intermodule type checking and for debuggers.

e Thedebug control includes symbolic information in the object file which is
used by Intel symbolic debuggers and emulators.

e Theline control includes source-line number information in the object file,
which debuggers use to associate source code with translated code.

* Thecode control generates a pseudo-assembly language listing of the
compiled code.

¢ Theoptimize(0) control ensures the most obvious match between the source
text and the generated object code.

« The listing selection and format controls customize the contents and
appearance of the output listings.

e The debugging information generated by the iC-386 compiler is compatible
with current versions of Soft-Scope and in-circuit emulators capable of loading
Intel's object module format (OMF).

See also: Detailed descriptions of each control, in Chapter 3

Chapter 1 Overview



Optimizing
Optimized code is more compact and efficient than unoptimized code. The iC-386

compiler has several controls to adjust the level of optimization performed on your
code. These controls adjust optimization:

e Thealign |noalign control specifies whether to generate aligned STRUCTS
or non-aligned STRUCTS.

e Theoptimize control specifies the level of optimization the compiler
performs when generating object code. The iC-386 compiler provides four
levels of optimization: 0, 1, 2, and 3; the higher the number, the more
extensive the optimization. Object code generated with a higher level of
optimization usually occupies less space in memory and executes faster than
the code generated with a lower level of optimization. However, the compiler
takes longer to generate code at a high level of optimization than at a low
level.

e Thecompact control sets the memory segmentation model.

See also: Memory segmentation model in Chapter 4, examples of code
generated at each optimization level in Chapter 2, and detailed
descriptions of each control in Chapter 3

Using the Utilities

The Intel utilities also support modular application development. A list of all the
publications for the utilities is included in this chapter. These utilities aid in the
software development process:

» LIB386 organizes frequently used object modules into libraries.

« BND386 binds together object modules from Intel translators. The binder
produces a relocatable loadable module or a module for incremental binding.

* For ICU-configurable systems, BLD386 locates or builds an executable,
bootloadable system.

e OH386 converts object code into hexadecimal form for programming into
ROM.

» For ICU-configurable systems, use the Interactive Configuration Utility (ICU)
to generate a submit file that builds the final application system. IniRMX
applications, the submit file automatically invokes BLD386 to assign the
absolute addresses to the application.

See also:  LIB386, BND386, and OH386tel386(1 Family Utilities User's
Guide
BND386, Intel386 Family System Builder User's Guide

iC-386 Compiler User's Guide Chapter 1 17



Programming for Embedded ROM Systems
This section only applies to ICU-configurable systems.

Use therom compiler control to locate constants with code in the object module.
Bind your object modules with startup code. Use the BLD386 utility to assign
absolute addresses to your linked application.

Absolutely located Intel OMF object code is ready to use with the Intel iPPS
PROM programming software. The OH386 utilities convert absolute or OMF386
code into hexadecimal form for use with non-Intel PROM programming utilities.

See also: ram |rom control description in Chapter 3

Compiler Capabilities

The iC-386 compiler translates C source files and produces code for the Intel386,
Intel486] or Pentiur® processors.

The executable programs can be targeted for these environments:
* An Intel386/Intel486/Pentium processor-based system running the iRMX OS

* A custom-designed Intel386/Intel486/Pentium processor-based system running
the iRMX OS

The iC-386 compiler generates floating-point instructions for the Intel387
numeric coprocessor, and the Intel486 or Pentium microprocessor floating-point
unit.

The iC-386 compiler conforms to the 1989 American National Standard for
Information Systems - Programming Language C (ANS X3.159-1989), and
provides some useful extensions enabled byttend compiler control.

See also: extend control description in Chapter 3

18 Chapter 1 Overview



Compatibility With Other Development Tools

Table 1-1 shows the compatible Intel assemblers, compilers, debuggers, and

utilities.
Table 1-1. Assemblers, Compilers, Debuggers, and Utilities
Tool Name for Each Intel386,
Tool Intel486, or Pentium Processor
assembler ASM386
C compiler iC-386
FORTRAN compiler Fortran-386
PL/M compiler PL/M-386
Soft-Scope debugger
binder BND386
absolute locator BLD386*
librarian LIB386
cross-reference utility MAP386
object-to-hex converter OH386

* For ICU-configurable systems only

The iC-386 compiler is largely compatible with previous Intel C compilers. The

extend control enables the compilers to recognizedien

keywords.

, far , andnear

See also: extend control description in Chapter 3y andnear keywords in

Chapter 4alien

keyword in Chapter 10

Modules compiled by the iC-386 compiler can refer to object modules created with
Intel assemblers and other Intel compilers. Use only Intel compilers or translators
to ensure compatibility with the memory segmentation model of the application.

See also: Memory segmentation models in Chapter 4, facilities that aid

interfacing with assembler modules in Chapter 7, function-calling
conventions of iC-386 in Chapter 8

iC-386 Compiler User's Guide

Chapter 1

19



About This Manual

TheiC-386 Compiler User's Guiddescribes how to use the iC-386 compiler in the
iRMX and DOS environments. This manual applies to Versions 4.5 and later of the
iC-386 compiler.

This manual does not teach either programming techniques or the C language.

Related Publications

Table 1-2 identifies additional publications that describe the other development
tools you are most likely to use when programming with iC-386. The table also
identifies the programmer's reference manuals for the processors for which the
iC-386 compiler generates object code.

Table 1-2. Intel386, Intel486, or Pentium Processor and Tool Publications

Title Contents

ASM386 Macro Assembler Operating assembler operation

Instructions

ASM386 Assembly Language Reference assembly language for the Intel386 and

Manual Intel486 processors

Intel386 Family System Builder User's Guide utility for building complete systems

Intel386 Family Utilities User's Guide utilities for binding, mapping, and
maintaining libraries

80386 System Software Writer's Guide advanced programming guidelines

386 DX Microprocessor Programmer's Intel386 DX architecture and assembly

Reference Manual language

387 DX Microprocessor Programmer's Intel387 DX coprocessor architecture and

Reference Manual numerics assembly instructions

Pentium Processor User's Manual Intel Pentium processor operation and use

(3 volume set)

See also:  Th€ustomer Literature Guidir part numbers and to identify other
appropriate user's guides and manuals

20 Chapter 1 Overview



Compiling and Binding

This chapter provides the information you need to compile and bind an iC-386
program. If you are an experienced iRMX user and have used other Intel
development tools, the most important information you need is in Invoking the
iC-386 Compiler, and in Binding Object Files. Less experienced developers can
obtain information on all of these topics:

« Invoking the compiler - syntax, compiler messages, and the files that the
compiler uses

e Using iRMX submit files
e Using DOS batch and command files

e Binding object files - general syntax, how to choose the libraries you need, and
examples

e Compiling an example at different optimization levels

See also:  Various sample programs inrthe386\demo\c\intraompiler
directory

Using Files and Directories

The iIRMX OS arranges files and directories in a hierarchical structure. You can
reference a file or directory literally, by specifying the entire pathname, or
indirectly, by specifying a logical name. A logical name has the format:

: logicalname
Thelogicalname is a short name that represents a full pathname.

See also: Logical nameSpmmand Reference

iC-386 Compiler User's Guide Chapter 2 21



Invoking the iC-386 Compiler

This section describes the syntax for invoking the iC-386 compiler, the messages
that the compiler displays on the screen, and the files that the compiler uses.

Invocation Syntax on iRMX Systems

22

On iRMX systems, the iC-386 compiler invocation command has the format:

ic386 sfile [ controls ]

Where:
ic386 is an alias used to invoke the compiler. Case is not significant. The
alias is:
run86 :lang:ic386
sfile is the name of the primary source file; compilation starts with this file.

This source file can cause other files to be included by using the
#include preprocessor directive.

controls are the compiler controls. Separate consecutive controls with at least
one space. Case is not significant in controls; however, case is
significant in some control arguments.

See also: Syntax of individual controls in Chapter 3

If you do not specify a logical name or pathname for the directory containing the
compiler, the IRMX system searches through a list of directories. The search path
is set at system configuration time. Theg: directory is included in the

default search path.

See also:  iRMX directory structurimstallation and Startup
search pathCommand Reference

This invocation line causes the iRMX system to expand the iC-386 alias and find
the compiler in the directory specified by the iC-386 alias:

-ic386 demo.c

To continue an invocation command on another screen line, type the ampersand
continuation characteg) at the end of each line, press <Enter>, and continue
typing on the next screen line.

Chapter 2 Compiling and Binding



iIRMX limits the invocation line to 80 characters. If your screen width is less than

80 characters, an invocation command longer than the screen width automatically
wraps to the next screen line. If you want to force an invocation line to continue on
another screen line, type the ampersand continuation character (&) at the end of the
first line, press <Enter>, and continue typing at*thgorompt on the next screen

line.

For example, this command on an iRMX system invokes the iC-386 compiler to
compile the contents of the fiteyprog.c in the current directory§: ) and print
the titleExample Program on each page of the listing:

- ic386 myprog.c &
** title("Example Program™)

Invocation Syntax on DOS Systems
On DOS, the iC-386 compiler invocation has the format:
ic386 sfile [ controls ]
Where:

sfile is the name of the primary source file; compilation starts with this file.
This source file can cause other files to be included by using the
#include preprocessor directive.

controls are the compiler controls. Separate consecutive controls with at least
one space. Case is not significant in controls; however, case is
significant in some control arguments.

See also: Syntax of individual controls in Chapter 3

DOS limits the invocation line to 128 characters. If your screen width is less than
128 characters, an invocation command longer than the screen width automatically
wraps to the next screen line.

Names of DOS directories and files are limited to eight characters preceding the
optional period, plus a three-character extension. DOS truncates longer names
from the right.

iC-386 Compiler User's Guide Chapter 2 23



Sign-on and Sign-off Messages

The compiler writes information to the screen at the beginning and the end of
compilation. On invocation, the compiler displays the message:

system-id iC-386 COMPILERV x.y
Intel Corporation Proprietary Software

Where:
system-id
identifies your host system.
Vx.y identifies the version of the compiler.
On normal completion, the compiler displays this message if the diagnostic level
is O:
iC-386 COMPILATION COMPLETE. x REMARKS, y WARNINGS, z ERRORS
Where:

X, y, andz indicate how many remarks, warnings, and non-fatal error messages,
respectively, the compiler generated. If the diagnostic level is 1
(default), the message does not identify the number of remarks. If the
notranslate  control is in effect, the message does not appear.

See also: diagnostic  andnotranslate  control descriptions in
Chapter 3
On abnormal termination, the compiler displays the message:

iC-386 FATAL ERROR --
message
COMPILATION TERMINATED

Where:
message  describes the condition causing the fatal error.

The print file lists the error that ended the compilation. Ifhib@int control is
in effect, the compiler does not generate a print file, and the console displays any
diagnostics.

24 Chapter 2 Compiling and Binding



Files That the Compiler Uses

Output from the compiler usually consists of one object file and zero, one, or two
listing files according to the compiler controls in effect. Figure 2-1 shows the input
and output for files that the compiler uses. The compiler also uses temporary work
files during the compilation process. For iRMX for Windows systems, the DOS
config.sys  file, files  specification controls the maximum number of files that
DOS allows open at the same time.

See also: preprint  andinclude control descriptions in Chapter 3, for
information on how many files the compiler has open at one time

The installation utility for the compiler identifies necessary changes to your system
configuration.

Input
o =) i
File File(s)

I
A4 \/‘L

iC-386
Compiler
Y Y Y
Object Preprint Print
File File File
Output

W-3360

Figure 2-1. Input and Output Files

iC-386 Compiler User's Guide Chapter 2 25



Work Files

The compiler creates and deletes temporary work files during compilation. The
compiler puts the work files either in the root directory of@helrive or in the
directory specified by thevork: DOS environment variable. To specify a RAM
disk or specific directory for the compiler work files, sairk:  to point to the
specific path location. Using a RAM disk can decrease compilation time. For
example, this command directs the temporary files to the root directory dn the
drive:

C:> set :work:=d:

Be certain not to enter a space between the equals sign (=) and the DOS path
designationd: in this example. If your host system loses power or some other
abnormal event prevents the compiler from deleting its work files, you can delete
the work files that remain. Such files have a filename consisting of a series of
digits and no extension.

See also: Your DOS documentation for information on RAM disks and
environment variables

Object File

By default, the compiler produces an object file. Usentlobdject control or the
notranslate ~ control to suppress creation of an object file.

See also: noobject andnotranslate  control descriptions in Chapter 3

The default name for the object file is the same as the primary source filename witt
the.obj extension substituted. By default, the compiler places the object file in
the directory containing the source file. If a file with the same name already exists,
the compiler writes over it. To override the defaults, uselbfet control.

The obiject file contains the compiled object module, which is the relocatable code
and data resulting from successful compilation. Compiler controls and
preprocessor directives specify the information content and configuration of the
object module.

Listing Files

26

The compiler can produce two listing files: a preprint file and a print file. The
preprint file contains the source text after preprocessing. The print file can contain
the source text and pseudo-assembly language code listings, messages, symbol
table information, and summary information about the compilation.

See also: Preprint and print files in Chapter 6;
preprint ~ andprint control descriptions in Chapter 3

Chapter 2 Compiling and Binding



Figure 2-2 summarizes the controls that create or suppress files.

Yes (Default)

Preprocess Preprocess

- Yes
Preprint

preprint
File ?

No Pre_print
(Default) File
<
I~
Compile

DCL and Yes

Interactive?

print
?

No No Specify Print
Y

Print
< File

object Yes (Default)
?

Object
o

A

N &
,¢\

Figure 2-2. Controls That Create or Suppress Files

W3361

iC-386 Compiler User's Guide Chapter 2 27



28

The compiler generates the preprint file only whenptleprint  or

notranslate ~ control is specified. The default name for the preprint file is the
same as the primary source filename with.thextension substituted. By default,

the compiler places the preprint file in the directory containing the source file. If a
file with the same name already exists, the compiler writes over it. To override the
defaults, use thgreprint  control.

The preprint file contains an expanded source text listing. The preprint file is
especially useful for observing the results of macro expansion, conditional
compilation, and file inclusion. Compiling the preprint file produces the same
results as compiling the source file, assuming the compiler can expand any macros
without errors.

The compiler generates the print file by default. Usentipeint  control to
suppress the print file. The default name for the print file is the same as the
primary source filename with thist  extension substituted. By default, the
compiler places the print file in the directory containing the source file. If a file
with the same name already exists, the compiler writes over it. To override the
defaults, use thgrint  control.

Chapter 2 Compiling and Binding



Using Submit, Batch and Command Files

An iRMX submit file contains one or more commands that the iRMX system
executes sequentially. On iRMX systems, use a submit file to invoke the compiler.

DOS offers two ways to invoke a series of commands automatically: batch files
and command files.

Using IRMX Submit Files

Using submit files lets you consistently repeat complex commands without having
to retype the entire command sequence each time. You can create a submit file
with any text editor.

To invoke a submit file, use tilseibmit command as follows:
submit filename

Thefilename can be a simple name for a submit file in the current directory, or it
can be a pathname to a submit file in a different directory.

To save the console output of the submit file to a file narsa¢k.out |, enter:
- submit filename over csave.out echo

Commands in a submit file can contain continuation lines. To continue a command
over two or more lines in a submit file, place an ampers@ndt(the end of each
line to be continued, the same as when typing the command at the system prompt.

You can pass arguments to a command in a submit file by putting parameters as
arguments to the command in the submit file. A parameter in a submit file takes
the form:

Ynumber

Wherenumber indicates the position of the argument in $hilbmit command
invoking the submit file.

In this iIRMX example, the paramet#0contains the valukello

- submit /intel/gen/bind (hello)

iC-386 Compiler User's Guide Chapter 2 29



Using DOS Batch Files for iRMX for Windows Systems

30

A DOS batch file contains one or more commands that DOS executes
consecutively. Batch file commands are valid at the DOS command-line prompt
and include special commands that are valid only within a batch file. All batch
files must have thébat extension.

You can pass arguments to a DOS batch file. In this examplggabbdat

batch file contains a command invoking the iC-386 compiler. Any primary source
file with the.c extension can be the argument366c.bat . The batch file

contains one line:

C:\intel\bin\ic386 %1.c

DOS replaces th&1parameter with thprogl argument in this example. To
invoke the batch file, type the pathname of the batch file withoutaits
extension followed by the name of the primary source file without iEsxtension.
For example:

C:> 386¢ progl

When386c¢c.bat  executes, DOS replaces theparameter byrogl , resulting in
the command:

C:\intel\bin\ic386 progl.c

DOS batch files have several other useful features, suth, @sto , for , and
call commands.

See also:  Your DOS documentation for explanation of these and other batch file
commands

Consider these characteristics when developing a batch file for the iC-386
compiler:

* An enhancement available in DOS V3.30 and successive versions enables one
batch file to call another batch file and enables control to return to the original
batch file. Use theall filename command.

In earlier versions of DOS, control passes to the called batch file but does not
return to the calling batch file. Place at most one direct batch file invocation
as the last line in a batch file.

« Batch files can contain command labels and control flow commands such as
if andgoto . For example, in this command the result of program execution
from the previously executed batch file determines at which label the current
batch file continues execution:

if errorlevel ngoto label

Chapter 2 Compiling and Binding



The value o is the error code that the last program returned. If the error
code is the same or greater than the value obntrol transfers to the line
immediately aftevabel . The label is any alphanumeric string significant up
to eight characters, on its own line, and prepended by a colon.

See also: diagnostic

information onerrorlevel

control description in Chapter 3 for more

values

« Although a batch file can contain multiple DOS commands, each command
must fit on a single line (128 characters). You cannot use continuation lines in
batch files. To process a longer line, specify a command to redirect input from
a file containing the remainder of the line. The redirected file can contain

continuation lines.

This example shows how to redirect additional input from another file, how to use
parameters, and how to call another batch file in DOS 3.30. Figure 2-3 shows the
tid86cl.bat  batch file, the3gécl.1tx  file of filenames,

and themake_map.bat batch file. The example demonstrates the use of
redirection and calling a batch file, and is not a functional example of how to
compile and bind an iC-386 program.

relationships between

Redirect Input to
Get Filenames to

386¢l.bat Complete 386¢l.Itx
ic386 %1.c Invocation prog0.obj, &
of BND386
bnd386 %1.0bj, & < %0.Itx< \intel\lib\cifc32.lib
IF ERRORLEVEL 1 GOTO FAIL
CALL make_map %I
ECHO. Success <
make_map.bat
GOTO STOP Execute 5
Second _ )
‘FAIL Batch File \inte\bin\map386 %21.bnd
’ if Linking
ECHO. Failure is Successful
and Return
:STOP
W3362
Figure 2-3. Redirecting Input to a DOS Batch File

iC-386 Compiler User's Guide

Chapter 2 31



The DOS batch fil&0parameter always represents the name of the batch file itself
(without the.bat extension). In the preceding example, sigggrl.bat and
386cl.1tx have identical names except for the extensd86i¢cl.bat can refer

t0 386c1.1tx  as0%.1tx .

To execute thé86cl.bat batch file and paggogl as an argument, at the DOS
command prompt type:

C:> 386¢1 progl

When386¢cl.bat executes, it invokes the iC-386 compiler to compitgjl.c ,
then invokes BND386 to bind the resulting object moduiegl.obj , to another
object module and a library specified3g6c1.1tx . If the binding is successful,
themake_map.bat file produces a map file namecbgl.map .

Using DOS Command Files in iRMX for Windows Systems

You can invoke the DOS command processamnmand.com, with input
redirected from a file called a command file. A DOS command file contains a
sequence of DOS commands and as the final command. Be certain that a
<CR> follows theexit command, not an end-of-file character.

See also: DOSommandandexit commands, in your DOS documentation

For example, thexemakec.cmd command file contains these commands (not a
functional example of how to compile and bind an iC-386 program):

ic386 prog0.c

ic386 progl.c

bnd386 prog0.obj, progl.obj, &
progxs.lib

exit

To sequentially execute the commands in the command file, redirect
exemakec.cmd tocommand.com by typing, at the DOS prompt:

C:> command < exemakec.cmd

32 Chapter 2 Compiling and Binding



Consider these characteristics when developing a command file for the iC-386
compiler:

e This method of redirecting commands works for a command file containing a
fixed sequence of commands only. You cannot pass arguments to a command
file.

e The flow of control is always sequential, from top to bottom of the command
file. Command files do not allow conditional commands sucdh as goto .

* You can nest command files. If a command file reinvalo@smand.com with
a secondary command file, control returns to the primary command file when
the secondary command file exits. To invoke a second command file, insert a
line in the first command file such as:

command < comfile2.cmd

The secondary command file must contiin  as its final command

followed by a <CR>. If it does not, control does not return to the primary
command file until you entesxit at the DOS prompt. Control returns to the
point in the primary file immediately following the point from which the
secondary file was invoked.

+ Unlike batch files, command files can contain continuation lines.

If you invoke a command file with output redirected to a file, the command-line
interpreter records all commands from the first line of the command file through
the commaneaxit and all console input and output to the file. For example, this
command invokes thexemakec.cmd command file and creates a log file named
exemakec.log containing a record of all commands:

C:> command < exemakec.cmd > exemakec.log

iC-386 Compiler User's Guide Chapter 2 33



Binding Object Files

The iC-386 compiler supports modular, structured development of applications.
You can compile and debug application modules separately, then bind them
together to create an application. Use the BND386 binder utility for iC-386
modules.

The binder can perform type checking and resolve intermodule references. The
binder can automatically select modules from specified libraries to resolve
references.

This is the general syntax (without device and path designations) for BND386:

bnd386 input_file_list [ controls ]
Where:
input_file_list is one or more names of linkable files separated by commas.
A linkable file is generated from a high-level language
translator or assembler, or is an incrementally linked module.
controls are the binder controls separated by spaces.

See also: BND38dntel386Family System Builder User's Guide

Choosing the Files to Bind

34

An iC-386 application can consist of many separately translated modules. The
application can call functions from libraries. To create an executable file, you
must use a binder to bind all translated code and libraries together. The iRMX OS
includes thesifc32.lib C interface library; you can include other libraries.

See also: C Library Referencdor more information on the C interface library

The iIRMX C interface library supports only the compact memory segmentation
model.

The library's segmentation model must be compatible with the application's
segmentation model and whether you compiled withdlreor rom control.

See also: compact , ram, androm compiler control descriptions in Chapter 3;
segmentation model for iC-386 in Chapter 4

Chapter 2 Compiling and Binding



Figure 2-4 shows how to select libraries for binding with iC-386 modules.

Startup Code

Program
Object
Modules

Optional
User
Libraries

cifc32.lib

iRMXO

Yes

UDI ]

udiifc32.lib

No

rmxifc32.lib

W3363

Figure 2-4. Choosing Libraries to Bind with iC-386 Modules

iC-386 Compiler User's Guide Chapter 2

35



Examples of Binding

You can bind applications for iRMX systems in several different ways to
accomplish several different objectives. This section lists examples of binding
modules for different purposes.

See also:  Various sample programs inrthe386\demo\c\intraompiler
directory

BND386 Example on DOS Systems
Thedemo.cexample is cross-compiled to run under the iRMX OS.

See also:  makefile sample codenimx386\demo\c\intraompiler directory for
demo.cexample, invocation and binder parameters

The BND386 invocation links the object modules with the startup code and
libraries and creates a loadable file nardetho

First, the binder invocation list must specify the object module for the C startup
code and the application routines, in that order. Next, the binder links in the C
interface library. Last, the binder links in the IRMX OS interface library.

Therenameseg control ensures all library module code segments are named
CODE32 for combining with iC-386 code segments. Témnfigure  control

causes BND386 to produce a single-task loadable module that can be loaded by th
iRMX loader. Theobject control names the executable filemo instead of the
defaultdemo.bnd .

The iIRMX C interface library is included with iC-386 for use with applications
written for the IRMX OS. The iRMX system interface library is part of the iIRMX
os.

The application uses the near version of the common elementary functions library.
Because the application runs in the compact segmentation memory model, functior
calls are near calls.

See also: compact control description in Chapter 3 and segmentation memory
models in Chapter 4 of this manual
C Library Referencéor more information omstart  startup code

36 Chapter 2 Compiling and Binding



In-line Functions

The compiler generates in-line machine code by default for several run-time library
functions. The 1989 ANSI C standard specifies that the header file containing the

function declaration can additionally contain a macro definition; the compiler uses

this feature to define in-line versions of some functions. Using the in-line versions

of the functions produces more efficient code. To use the in-line functions, simply

include the appropriate header file.

For example, thetdlib.h header file contains this declaration for ths
absolute value function:

int  abs(int value); /* function prototype declaration */
#pragma _builtin_("_abs_"=33) /* tell compiler about the in-line version */
int  _abs_(int value); [* prototype for the in-line version */
#define abs(x) _abs_(x) [* use the in-line version when the abs() */
[* function is called */

Taking advantage of the in-line versions of the functions is transparent within the
program. A fragment of code such as this uses the iratimgunction:

#include <stdlib.h> /* including the appropriate header */
int main (int argc, char * argv([])
{
int i,j;
/* assume that j holds an appropriate value */
i=abs(j); /*uses the in-line function */

}

You can use either of two methods to override the in-line version of the function,
and call the actual function instead: enclose the function name in parentheses
when it is called, or use thndef preprocessing directive to remove the macro
definition that maps the function to the in-line version. This example calls the
function but allows other calls to use the in-line version:

#include <stdlib.h>
int main (int argc, char * argv([])
{
intij;
/* assume that j holds an appropriate value */
i = (abs)(j); /* function call */

}

iC-386 Compiler User's Guide Chapter 2 37



38

This example un-defines the macro and thus disables the in-line version for the
remainder of the module:

#include <stdlib.h>
#undef abs
int main (int argc, char * argvl])
{
intij;
[* assume that j holds an appropriate value */
i = abs(j); /* function call */

}

Table 2-1 lists the iC-386 in-line functions, the header file in which each is defined,
and a brief description of each.

Table 2-1. In-line Functions

Header File Function Description
<string.h> memcpy copies specified number of bytes
memcmp compares specified number of bytes
memset fills memory area with a byte value
strepy? copies a constant string
strcmp? compares to a constant string
<stdlib.h> abs absolute value of integer
labs absolute value of long integer
<math.h> fabs absolute value of floating-point
sqrt non-negative square root
log? natural logarithm
log102 base 10 logarithm
cos? cosine of angle in radians
sin? sine of angle in radians
tan? tangent of angle in radians
acos? arc cosine of angle in radians
asin? arc sine of angle in radians
atan? arc tangent of angle in radians
atan2? principal value of arc tangent of angle in radians

1 The compiler issues in-line instructions for these functions only if the appropriate arguments are constant
values.
This in-line function is provided by the iC-386 compiler only.

Chapter 2 Compiling and Binding



|:| Note

In-line functions perform no range or domain checking; this
checking is particularly important for floating-point functions.
Use the library function if your application needs such checking.

Compiling at Different Optimization Levels

Theoptimize  control specifies the compiler's optimization level. The compiler
has four optimization levels: 0, 1, 2, and 3, where 0 provides the least optimization
and 3 provides the most optimization. Each level performs all the optimizations of
the lower levels.

Theoptimiz.cexample provides source text that demonstrates optimization at each
level. Figures 2-5 through 2-8 show the significant results of compiling with
iC-386 at different optimization levels.

See also: optimize  control description in Chapter 3, which includes an
explanation of each type of optimization
Sample code ifTmx386\demo\c\intraompiler directory fobptimiz.c
example

Results at Optimization Level O

Figure 2-5 shows the iC-386 pseudo-assembly language code for optimization level
0. At this level, constant-folding occurs in statement #10 and operator strength
reduction occurs in statement #15.

iC-386 Compiler User's Guide Chapter 2 39



iC-386 COMPILER Optimization Level O
ASSEMBLY LISTING OF OBJECT CODE

40

00000000
00000001

00000003
00000009
0000000F

00000015

0000001F
00000025
0000002B

00000031
00000037
0000003D

00000043
00000049
0000004B

00000051
00000057
0000005C
00000062

 STATEMENT #9
main PROC NEAR
55 PUSH EBP
8BEC MOV EBP,ESP
@1:

 STATEMENT # 10
8B0504000000 MOV EAX|

81C002000000 ADD EAX,2H
890500000000 MOV i,EAX

; STATEMENT # 11
C7050800000003000000

MOV  k,3H

; STATEMENT # 12
8B0508000000 MOV EAXk
81C003000000 ADD EAX,3H
890504000000 MOV j,EAX

; STATEMENT # 13
8B0508000000 MOV EAXk
81C003000000 ADD EAX,3H
890500000000 MOV i,EAX

; STATEMENT # 15
8B0500000000 MOV EAXii
D1EO SAL EAX1
0F8416000000 JZz @2

; STATEMENT # 16
FF3500000000 PUSH i i1
E800000000 CALL isquare
890500000000 MOV i,EAX
E911000000 JMP @3

; STATEMENT # 17

@2:

mm/dd/yy hh:mm:ss PAGE 2

Figure 2-5. Pseudo-assembly Code at Optimization Level O

Chapter 2

Compiling and Binding



00000067
0000006D
00000072

00000078

0000007F

00000085
0000008A

0000008F

00000099

0000009E

000000A8
000000AE

000000B4
000000BA

000000CO
000000C1

000000C4

Figure 2-5 Pseudo-assembly Code at Optimization Level O (continued)

; STATEMENT # 18
FF3504000000 PUSH | 71
E800000000 CALL isquare
890500000000 MOV i,EAX
@3:

; STATEMENT # 19
833D0800000000 CMP  k,0H
OF840A000000 JZ (@4

; STATEMENT # 20
E9OF000000 JMP 11

E90A000000 JMP @5
; STATEMENT # 21
@4:
; STATEMENT # 22
C7050800000064000000
MOV  k,64H
@5:
; STATEMENT # 24
11:
E900000000 JMP 12
; STATEMENT # 25
12:
C7050400000064000000
MOV  j,64H
; STATEMENT # 26

8B050C000000 MOV EAX,a

C700C8000000 MOV [EAX],0C8H

; STATEMENT # 27
8B0504000000 MOV EAX,
890500000000 MOV i,EAX

; STATEMENT # 28
5D POP EBP
C20800 RET 8H

; STATEMENT # 30
C70508000000C8000000

MOV  k,0C8H

; STATEMENT # 31
main ENDP

; STATEMENT # 31

iC-386 Compiler User's Guide

Chapter 2

41



MODULE INFORMATION:

CODE AREA SIZE = 000000CEH 206D
CONSTANT AREA SIZE = 00000000H 0D
DATA AREA SIZE = 00000010H 16D
MAXIMUM STACK SIZE = 00000014H 20D

iC-386 COMPILATION COMPLETE. 0 WARNINGS, 0 ERRORS

42

Figure 2-5. Pseudo-assembly Code at Optimization Level O (continued)

Chapter 2 Compiling and Binding



Results at Optimization

Figure 2-6 shows the changes in statements #12 through #16 when the invocation

Level 1

uses optimization level 1. The code area size decreases from 208 bytes at
optimization level 0 to 182 bytes at optimization level 1.

iC-386 COMPILER Optimization Level 1

mm/dd/yy hh:mm:ss PAGE 2

ASSEMBLY LISTING OF OBJECT CODE

0000001F B803000000

00000024 D1EO SHL

00000026 890504000000
0000002C 890500000000

00000032 D1EO SAL

00000034 0F8416000000
0000003A FF3500000000
00000040 E800000000
00000045 890500000000
0000004B E911000000
@2
00000050 FF3504000000
00000056 E800000000
0000005B 890500000000
@3

00000061 833D0800000000 CMP

00000068 0F840A000000
0000006E E90F000000
00000073 E90A000000

@4:

Figure 2-6. Part of the Pseudo-assembly Code at Optimization Level 1

iC-386 Compiler User's Guide

STATEMENT # 12
MOV  EAX,3H
EAX,1
MOV  j,EAX
STATEMENT # 13
MOV i,EAX
STATEMENT # 15
EAX,1
JZ @2
STATEMENT # 16
PUSH i i1
CALL isquare
MOV i,EAX
JMP @3
STATEMENT # 17

STATEMENT # 18
PUSH | i1

CALL isquare
MOV i, EAX

STATEMENT # 19

k,OH
JZ @4

STATEMENT # 20

JMP 11

JMP @5

STATEMENT # 21

Chapter 2

43



; STATEMENT # 22
00000078 C7050800000064000000

MOV  k,64H
@5:
 STATEMENT # 24
11:
00000082 E900000000 JMP 12
; STATEMENT # 25
12:
00000087 C7050400000064000000
MOV j,64H

Figure 2-6. Part of the Pseudo-assembly Code at Optimization Level 1 (continued)

44 Chapter 2 Compiling and Binding



Results at Optimization Level 2

Figure 2-7 shows the changes in statements #16 through #24 and #30 when the
invocation uses optimization level 2. Labels also change on several instructions.
The code area size decreases from 182 bytes at optimization level 1 to 123 bytes at
optimization level 2.

iC-386 COMPILER Optimization Level 2 mm/dd/yy hh:mm:ss PAGE 2
ASSEMBLY LISTING OF OBJECT CODE

 STATEMENT # 16
0000002F FF3500000000 PUSH i i1
00000035 EBO6 JMP @1

 STATEMENT # 17

@2:

; STATEMENT # 18

00000037 FF3504000000 PUSH | i1
@1:

0000003D E800000000  CALL isquare
00000042 A300000000 MOV iEAX

; STATEMENT # 19
00000047 833D0800000000 CMP  k,0H
0000004E 750A JNZ 11
; STATEMENT # 20
; STATEMENT # 21
; STATEMENT # 22
00000050 C7050800000064000000
MOV  k,64H
; STATEMENT # 24
11:
; STATEMENT # 25
12:

Figure 2-7. Part of the Pseudo-assembly Code at Optimization Level 2

iC-386 Compiler User's Guide Chapter 2 45



0000005A C7050400000064000000
MOV  j64H
: STATEMENT # 26
00000064 A10C000000 MOV EAX.a
00000069 C700C8000000 MOV  [EAX],0C8H
: STATEMENT # 27
0000006F A104000000 MOV  EAXj
00000074 A300000000 MOV iEAX

; STATEMENT # 28
00000079 5D POP EBP
0000007A C20800 RET 8H
; STATEMENT # 30
; STATEMENT # 31
main ENDP
; STATEMENT # 31
MODULE INFORMATION:
CODE AREA SIZE = 0000007DH 125D
CONSTANT AREA SIZE = 00000000H 0D
DATA AREA SIZE = 00000010H 16D
MAXIMUM STACK SIZE =00000014H 20D

iC-386 COMPILATION COMPLETE. 0 WARNINGS, 0 ERRORS

Figure 2-7. Part of the Pseudo-assembly Code at Optimization Level 2 (continued)

46 Chapter 2 Compiling and Binding



Results at Optimization Level 3

Figure 2-8 shows the change in statement #27 when the invocation uses
optimization level 3. In this case, because a pointer is aliasing a variable, the
change introduces an error. The code area size stays the same from optimization
level 2, but one assembly instruction substitutes for two in statement #27.

iC-386 COMPILER Optimization Level 3 mm/dd/yy hh:mm:ss PAGE 2
ASSEMBLY LISTING OF OBJECT CODE

; STATEMENT # 12

0000001A B803000000 MOV EAX,3H
0000001F D1EO SHL EAX,1
00000021 A304000000 MOV j,EAX
; STATEMENT # 13
00000026 A300000000 MOV i,EAX
; STATEMENT # 15
0000002B D1EO SAL EAX!1
0000002D 7408 JZ @2
; STATEMENT # 16
0000002F FF3500000000 PUSH i i1
00000035 EBO6 JMP @1
; STATEMENT # 17
@2:
; STATEMENT # 18
00000037 FF3504000000 PUSH | i1
@1:

0000003D E800000000  CALL isquare
00000042 A300000000 MOV iEAX

; STATEMENT # 19
00000047 833D0800000000 CMP  k,0H
0000004E 750A JNZ 11

Figure 2-8. Part of the Pseudo-assembly Code at Optimization Level 3

iC-386 Compiler User's Guide Chapter 2 47



; STATEMENT # 20

; STATEMENT # 21
; STATEMENT # 22
00000050 C7050800000064000000
MOV  k,64H
; STATEMENT # 24
11:
; STATEMENT # 25
12:
0000005A C7050400000064000000
MOV  j,64H
; STATEMENT # 26
00000064 A10C0O00000 MOV EAX,a
00000069 C700C8000000 MOV [EAX],0C8H
; STATEMENT # 27
0000006F C7050000000064000000
MOV  i,64H
; STATEMENT # 28
00000079 5D POP EBP
0000007A C20800 RET 8H
; STATEMENT # 30
; STATEMENT # 31
main ENDP
; STATEMENT # 31

MODULE INFORMATION:

CODE AREA SIZE

= 0000007DH 125D

CONSTANT AREA SIZE = 00000000H
DATA AREA SIZE = 00000010H 16D
MAXIMUM STACK SIZE =00000014H 20D

iC-386 COMPILATION COMPLETE. 0 WARNINGS,

0 ERRORS

48

Chapter 2

Figure 2-8. Part of the Pseudo-assembly Code
at Optimization Level 3 (continued)

Compiling and Binding



When you cast a floating point number to an integer, the compiler rounds the result
at Optimization level 3, instead of truncating it as it does at levels 0, 1, and 2. For
example, this code produces different results at different levels:

void main()

{
float f=3.67;

inti;
i = (int)f;
}

Under optimization levels 0, 1, and 2, the compiler truncates the vairiallé sets
it equal to 3. At optimization level 3, the compiler rounds it and sets it to 4.

If you want floating point variables to be truncated when they are cast to an integer,
use an optimization level other than 3.

iC-386 Compiler User's Guide Chapter 2 49






Compiler Controls

The compiler controls specify compiler options such as the location of source text
files, the amount of debugging information in the object module, and the format
and location of the output listings. You need not use any controls when you invoke
the compiler. Most of the controls have default settings. Table 3-1 provides
default settings and a brief description of each control.

This chapter contains these topics:
* How controls affect the compilation
*  Where to use controls

« Alphabetical reference of controls

How Controls Affect the Compilation

Each control affects the compilation in one of three ways:

Source-processing specify the names and locations of input files or define

controls macros at compile time.

Object-file-content determine the internal configuration of the object file.
controls

Listing controls specify the names, locations, and contents of the output

listing files.

iC-386 Compiler User's Guide Chapter 3 51



Where to Use Controls

52

You can use a compiler control once, multiple times, or only on invocation,
depending on which kind of control it is:

Primary controls apply to the entire module. Specify a primary control in the
compiler invocation or in a #pragma preprocessor directive.
A primary control in a #pragma preprocessor directive must
precede the first executable statement or data definition
statement in the source text. A primary control in the
invocation line overrides any contradictory control specified
in a #pragma.

General controls can change freely within a module. Specify a general
control as often as necessary in the compiler invocation and
in #pragma preprocessor directives anywhere in the source
text.

Invocation-only ~ must never appear in a #pragma preprocessor directive.
controls Specify an invocation-only control as often as necessary in
the invocation line.

Case is not significant in control names, though it can be significant in arguments
to controls. The iIRMX system preserves the case of arguments to controls. DOS
requires quotation marks) around arguments to controls to preserve case.

Table 3-1 lists the controls with descriptions, defaults, precedence, effects, and
usage classes. Some controls optionally use one or more arguments, indicated by
[ a] . Some controls require one or more arguments, indicated Bertain

controls override other controls, even if stated explicitly. Table 3-1 summarizes
such precedence.

Chapter 3 Compiler Controls



Table 3-1. Compiler Controls Summary

iC-386 Compiler User's Guide

Control Description, Default, and Precedence Effect Usage
align [&] Aligns or suppresses aligning all structures  Object General
noalign [a] of a type to specified byte boundaries.
Default: 4-byte boundaries
code Generates or suppresses pseudo-assembly  Listing General
nocode object code in the print file. content
Default: nocode.
codesegmenta  Names the iC-386 code segment. Object Primary
Default: CODE32.
compact Specifies segment allocation and segment Object Primary
register addressing in object module.
Default: small.
cond Includes or suppresses uncompiled Listing General
nocond conditional code in the print file. content
Default: nocond.
datasegment a Names the iC-386 data segment. Object Primary
Default: DATA.
debug Includes or suppresses debug information in  Object Primary
nodebug the object module.
Default: nodebug.
nodebug overrides line.
define a Defines a macro. Source Invocation
diagnostic a Specifies the level of diagnostic messages.  Listing Primary
Default: diagnostic level 1. content
eject Inserts form feed in print file. Listing General
format
extend Recognizes or suppresses Intel extensions.  Source General
noextend Default: noextend.
fixedparams [a] ~ Specifies the FPL or VPL function-calling Object General
varparams [&] convention.
Default:fixedparams for all functions.
continued

Chapter 3 53



Table 3-1. Compiler Controls Summary (continued)

Control Description, Default, and Precedence Effect Usage
include a Specifies a file to process before the primary Source Invocation
source file

interrupt a Specifies a function to be an interrupt Object General

handler.
line Generates or suppresses source line Object Primary
noline number debug information in the object file.

Default: line if debug or noline if nodebug.
list Includes or suppresses source code in the Listing General
nolist print file. content

Default: list.

nolist overrides cond, listexpand, listinclude.
listexpand Includes or suppresses macro expansion in  Listing General
nolistexpand the print file. content

Default: nolistexpand.
listinclude Includes or suppresses text of include files in  Listing General
nolistinclude the print file. content

Default: nolistinclude. nolistinclude overrides
listexpand and cond for include files.

long64 Sets the size for objects declared with the Object Primary
nolong64 long data type.
Default: nolong64.
mod486 Uses the Intel486 processor instructions, or  Object Primary
nomod486 restricts to the Intel386 processor instruction
set.
Default: nhomod486.
modulename a Names object module. Object Primary
Default: sourcename.
object [a] Generates and names or suppresses the Object Primary
noobject object file.

Default: object named sourcename.ob;.
noobject overrides all object controls except
as affects the print file.

optimize a Specifies the level of optimization. Object Primary
Default: optimization level 1.

continued

54 Chapter 3 Compiler Controls



Table 3-1. Compiler Controls Summary (continued)

Control Description, Default, and Precedence Effect Usage
pagelength a Specifies the number of lines per page in the Listing Primary
print file. format
Default: 60
pagewidth a Specifies the number of characters per line  Listing Primary
in the print file. format
Default: 120
preprint [a] Generates and names or suppresses the Listing Invocation
nopreprint preprint file. content

Default: nopreprint if translate or preprint
sourcename if notranslate.

print [a] Generates and names or suppresses the Listing Primary
noprint print file. content

Default: print file named sourcename.lst.

noprint overrides all listing controls except

preprint.
ram Puts constants in the data segment or in the  Object Primary
rom code segment.

Default: ram (constants in data segment).

searchinclude a  Specifies a path to prepend to include files or Source General
nosearchinclude limits the path to the source directory plus

the :include: path.

Default: nosearchinclude.

signedchar Sign-extends or zero-extends char objects Object Primary
nosignedchar when promoted.
Default: signedchar.
subsys a Reads a subsystem specification file. Object Primary
symbols Generates or suppresses the identifier listin  Listing Primary
nosymbols the print file. content
Default: nosymbols.
tabwidth a Specifies the number of characters between Listing Primary
tabstops in the print file. format
Default: 4.
title "a" Places a title on each page of the print file. Listing Primary
Default: "modulename". format
continued

iC-386 Compiler User's Guide Chapter 3 55



Table 3-1. Compiler Controls Summary (continued)

Control Description, Default, and Precedence Effect Usage
translate Compiles or suppresses compilation after Source Invocation
notranslate preprocessing.

Default: translate. notranslate overrides all
object and listing controls. notranslate
implies preprint.

type Generates or suppresses type information in  Object Primary
notype the object module.

Default: type.
xref Adds or suppresses identifier cross- Listing Primary
noxref reference information in the print file. content

Default: noxref xref overrides nosymbols

Alphabetical Reference of Controls

The entries in this section describe in detail the syntax and function of each
compiler control.

Square bracket§] () enclose optional arguments for controls. If you do not specify
optional arguments for a particular control, do not use an empty pair of parentheses
either.

Some controls use an optional list of arguments. Separate multiple argument
definitions with commas. Brackets surrounding a comma and an ellipsis ( )
indicate an optional list with entries separated by commas.

Enclose a control argument in quotation marRsf(the argument contains spaces
or any of these characters:

,ZHTB "N~ + - &[] <>

Enter all other punctuation as shown, for example, pound siyrs{ equals
signs €).

56 Chapter 3 Compiler Controls



General control align | noalign

align | noalign

Aligns structures on a specified boundary.

Syntax
align[(  structure_tag [= size 1[,--D]
noalign [( Structure_tag [---D]
#pragma align [( Structure_tag [= size 1[,--D]
#pragma noalign [( Structure_tag [---D]
Where:

Structure_tag
is a structure tag defined in the source text (not a structure identifier).

size is the number of bytes. Th#&e can be 1 for unaligned (byte
alignment), 2 for alignment to byte addresses evenly divisible by 2, or
4 for alignment to byte addresses evenly divisible by 4.

Abbreviation

[no]al

Default

For iRMX applications, useoalign . The default imlign . Data structures
supplied for the iRMX OSs are all unaligned. Useribalign  control for each
structure individually, instead of globally.

The default value fosize is 4 bytes for iC-386. The compiler attempts to place
structure components so that they do not cross 4-byte (iC-386) boundaries.

iC-386 Compiler User's Guide Chapter 3 57



align | noalign General control

Discussion

58

Use thealign control to minimize the number of alignment boundaries a structure
component can cross. The compiler allocates memory for an aligned-structure
component on the next alignment boundary if the component would otherwise span
that boundary. If a structure component is larger than the space between alignmen
boundaries, the component starts on an alignment boundary and still crosses one ¢
more boundaries. Use thealign control or thealign control with asize of 1

to allocate structure components on adjacent bytes, leaving no unused bytes.

The processor can require less time to access aligned structures. However, aligne
structures can occupy more space than unaligned structures in memory. The
compiler attaches no symbol or value to holes. The third example shows a map of
how the compiler allocates memory for an aligned structure. The fourth example
shows a map of how the compiler allocates memory for an unaligned structure.

Bit fields smaller than one byte cannot cross byte boundaries regardless of
alignment. Although an unaligned structure cannot contain any unused bytes, it
can contain undefined bits.

To specify 4-byte alignment (iC-386 default) for all structures, usalitre

control without arguments. To specify byte alignment for all structures, use the
noalign  control without arguments. To specify alignment for all structures of a
given type, identify them bytructure tag . Do not specify structure or type
definition identifiers. To ensure alignment, specify the alignment for the structure
tag before defining the actual structure.

Thenotranslate control overrides thelign andnoalign controls. The
noobject control overrides thalign andnoalign controls except for their
effect on the print file.

Chapter 3 Compiler Controls



General control align | noalign

Examples

These examples show different uses ofdlyen  andnoalign  controls.

1.

In this example, only structures of the typaigument list ~ are unaligned,;
all other structures in the subsequent source text are aligned on 4-byte
boundaries for iC-386. Use this in the compiler invocation:

noalign (  argument_list )
Or use this in the source text:
#pragma noalign ( argument_list )

This example aligns all structures of the types in the argument list on the
specified boundaries; all other structures in the subsequent source text are
allocated regardless of word boundaries. Use this in the compiler invocation:

noalign align ( argument_list )
Or, use this in the source text:

#pragma noalign

#pragma align ( argument_list )

This example aligns components of a structure on even-byte boundaries. The
structure is declared as follows:

struct std_struct

{
unsigned char m1a;
unsigned char m1b;
unsigned long m4a;
unsigned m2a;
unsigned mba:5;
unsigned mbb:7;
unsigned mbc:6;
double m8a;

iC-386 Compiler User's Guide Chapter 3 59



align | noalign General control

To align all structures of a particular type, use a type definition:

typedef struct std_struct

{
unsigned char m1a;
unsigned char m1b;
unsigned long m4a;
unsigned m2a;
unsigned mba:5;
unsigned mbb:7;
unsigned mbc:6;
double m8a;

} std_struct_id;

In either case, specify theructure tag  , not a type identifier, in thalign
control:

align (std_struct=2)

Figure 3-1 shows how the iC-386 compiler allocatelastruct  structure,
assuming th@olong64 control is in effect.

60 Chapter 3 Compiler Controls



General control align | noalign

m8a (Continued) 20
m8a (Continued) 18
m8a (Continued) 16
m8a 14
1.9,9.9.9.9.9.9,9,9,9,9,0,9,9,9,9,9,0.4 mbc 12
XXXXXXX mbb mba 10
m2a (Continued) 8
m2a 6
md4a (Continued) 4
mda 2
mlb mila byte 0
[ T I B I [ O O S B
7 07 0

W-3365

Figure 3-1. Effect of iC-386 align Control on Example Structure Type

4. This example aligns the components of the structure in the previous example
on 1-byte (unaligned) boundaries. Use this control in the compiler invocation:

noalign (std_struct)

(Thealign (std_struct=1) control achieves the same alignment.)

iC-386 Compiler User's Guide Chapter 3 61



align | noalign General control

Figure 3-2 shows how the iC-386 compiler allocatetiastruct  structure,
assuming th@olong64 control is in effect.

m8a (Continued) 20
m8a (Continued) 18
m8a (Continued) 16
m8a (Continued) 14
m8a XXXXXXXXXXX | mbe | 12
mbc mbb mba 10
m2a (Continued) 8
m2a 6
m4a (Continued) 4
mda 2
mlb mla byte 0
I I O O N I O
7 07 0

W-3366

Figure 3-2. Effect of iC-386 noalign Control on Example Structure Type

Cross-references

long64 | nolong64
object | noobject
translate | notranslate

62 Chapter 3 Compiler Controls



General control code | nocode

code | nocode

Generates or suppresses pseudo-assembly language code in a listing.

Syntax
[no]code

#pragma [no]code

Abbreviation

[no]co

Default

nocode

Discussion

Use thecode control to produce a pseudo-assembly language listing equivalent to
the object code that the compiler generates. The compiler places this listing in the
print file following the source text listing. Use thecode control (default) to
suppress the pseudo-assembly language listing.

Thecode control produces a pseudo-assembly listing even ifidhbject

control is specified (suppressing the object file) but not ihthenslate

control is specified (suppressing code generation). nbpent  control causes

the compiler to suppress all of the print file, including the pseudo-assembly listing,
even ifcode is specified.

Use thecode control:

« To view the effects of different levels of optimization set bydpiémize
control

« To view the difference in code the compiler generates undendti4sé and
nomod486 controls (iC-386)

« To view the differences in pointer types the compiler generates under the
extend ornoextend controls

e To detect errors when debugging at the assembly-code level

See also: Chapter 5 for more information on the print file

iC-386 Compiler User's Guide Chapter 3 63



code | nocode

General control

Cross-references

64

extend | noextend
mod486 | nomod486
object | noobject
optimize

print | noprint
translate | notranslate

Chapter 3

Compiler Controls



Primary control codesegment

codesegment

Names the code segment.

Syntax
codesegment (code_segment_name )
#pragma codesegment ( code_segment_name )

Where:

code_segment_name
is the name of the iC-386 code segment in the object module.

Abbreviation

CS

Default

The iC-386 compiler usgsODE320r the subsystem identifier as specified in the
subsystem definition file.

Discussion

Use the iC-38@odesegment control to name the code segment in the object
module. The code segment name is used by the BND386 binder and BLD386
builder. This name also appears in output from MAP386.

This control is provided for compatibility with C-386, Intel's previous compiler for
Intel386 processor code.

|:| Note

Do not use theodesegment control in an invocation that
specifies theubsys control. The compiler issues an error or a
warning, depending on whether thésys control is found in
the invocation line or in #pragma preprocessor directive,
respectively.

Cross-references

datasegment
modulename
subsys

iC-386 Compiler User's Guide Chapter 3 65



compact Primary control

compact

Specifies the compact segmentation memory model.

Syntax
compact

#pragma compact

Abbreviation
cp

Default

For iRMX applications useompact . The default ismall .

Discussion

Use thecompact control to specify the compact segmentation model. The
compiler produces an object module containing a code segment, a data segment,
and a separate stack segment. The binder combines the code segments for all
modules into a single code segment in memory and the data segments for all
modules into a single data segment in memory, and reserves a separate segment i
memory for the stack. The compact segmentation model is efficient in both
program size and memory access, and offers the maximum possible space for the
stack.

For Intel386 processors, each segment can occupy up to 4 gigabytes of memory.

The processor addresses the compact model program's code segment relative to tt
CS register, the data segment relative to the DS register, and the stack segment
relative to the SS register. Depending on whetherotheor ram control is in

effect, the compiler places constants in the code segment or data segment,
respectively. All functions have near pointers and calls. All data pointers are far
pointers.

See also: extend|noextend  control description in Chapter 3 for more
information about théar andnear keywords

66 Chapter 3 Compiler Controls



Primary control compact

If notranslate is specified, the compiler does not generate object code and the
memory model control has no effect.ntfobject is specified, the effect of the
memory model control on the object code can be seen in the print file, although the
compiler does not produce a final object file.

See also:  Segmentation and teenpact memory model in Chapter 4

Cross-references

extend | noextend
object | noobject

ram | rom

translate | notranslate

iC-386 Compiler User's Guide Chapter 3 67



cond | nocond General control

cond | nocond

Includes or suppresses uncompiled conditional code in listing.

Syntax
[no]cond

#pragma [no]cond

Abbreviation
[no]cd

Default

nocond

Discussion

Use thecond control to include in the program listing code not compiled because
of conditional preprocessor directives. Usertbeond control (default) to
suppress listing of code eliminated by conditional compilation.

Regardless of these controls, the conditional preprocessor dire¢ifvesifdef ,
#ifndef , #elif |, #else , and#endif ) delimiting the code appear in the source
text listing in the print file.

Thenolist , notranslate , andnoprint  controls override theond control. If
any of these is in effect, the compiler does not list any source text. The
nolistinclude control overrides theond control for include files. Neither
cond nornocond has any effect on the preprint file.

See also: Preprint and print files in Chapter 5

Cross-references

list | nolist

listinclude | nolistinclude
print | noprint

translate | notranslate

68 Chapter 3 Compiler Controls



Primary control datasegment

datasegment

Names the data segment.

Syntax
datasegment (  data_segment_name )
#pragma datasegment ( data_segment_name )

Where:

data_segment_name
is the name of the iC-386 data segment in the object module.

Abbreviation
ds

Default

The iC-386 compiler usé3ATAor the subsystem identifier as specified in the
subsystem definition file.

Discussion

Use the iC-38@atasegment control to name the data segment in the object
module. The data segment name is used by the BND386 binder and BLD386
builder. This name also appears in output from the MAP386 mapper.

This control is provided for compatibility with Intel's previous compiler for the
Intel386 processor.

|:| Note

Do not use theatasegment control in an invocation that
specifies theubsys control. The compiler issues an error or a
warning, depending on whether thésys control is found in
the invocation line or in #pragma preprocessor directive,
respectively.

Cross-references

codesegment
modulename
subsys

iC-386 Compiler User's Guide Chapter 3 69



debug | nodebug Primary control

debug | nodebug

Includes or suppresses debug information in the object module.

Syntax
[no]debug
#pragma [no]debug

Abbreviation
[no]db

Default
nodebug

Discussion

Use thedebug control to place symbolic debug information used by symbolic
debuggers in the object module. Userbeebug control (default) to suppress
symbolic debug information. Suppressing symbolic debug information reduces the
size of the object module. Debug information is composed of the name, relative
address, and type of every object and function definition, and the relative address
of each source line both in the source file and in the object file.

Thenoobject andnotranslate controls override théebug andnodebug
controls.

Choose one of these combinations ofdbieug or nodebug andtype or notype
controls to aid debugging:

type debug to include all debug and type informatiateug implies
line ). This combination allows both type checking and
symbolic debugging using the Soft-Scope source-level
debugger.

type debug noline
to include debug and type information, but no source line
numbers. This combination enables linker type checking and
symbolic debugging, but not source-level debugging.

70 Chapter 3 Compiler Controls



Primary control debug | nodebug

type nodebug to include type definition information for external and public
symbols only. This combination allows type checking by the
binder. Use this combination to reduce the size of the object
module when you are not using a symbolic debugger.

notype nodebug to suppress all debug and type information. This
combination reduces the size of the object module by
omitting information not necessary for execution.

Theoptimize  control can further reduce the size of the object module. However,
higher levels of optimization reduce the ability of most symbolic debuggers to
accurately correlate debug information to the source codelinEhecontrol puts
source file and object file line-number information in the object file. shheols
control puts a listing of all identifiers and their types into the print file. xréie
control puts a cross-reference listing of all identifiers into the print file.

Cross-references

object | noobject
optimize

symbols | nosymbols
translate | notranslate
type | notype

xref | noxref

iC-386 Compiler User's Guide Chapter 3 71



define Invocation control

define

Defines a macro.

Syntax

define (  namd= body][,...])

Where:

name is the name of a macro.

body is the text (i.e., value) of the macro. If thedy contains blanks or

punctuation, surround the entivedy with quotation marks'().

Abbreviation

df
Default

If the definition contains néody, the default value of the macrolis

Discussion

Use thedefine control to create an object-like macro at invocation time. The
body of an object-like macro contains no formal parameters. A macro so defined
in the compiler invocation is in effect for the entire module, untikthrelef
preprocessor directive removes iAn attempt to redefine a macro isdefine
preprocessor directive causes an error.

Available memory limits the number of active macro definitions, including macros
defined in the compiler invocation and macros defined #d#fine in your

source text. Macros are useful when used with conditional compilation
preprocessor directives to select source text at compile time. Do not use the
define control for function-like macros; use thdefine preprocessor directive

in the source text instead.

72 Chapter 3 Compiler Controls



Invocation control define

Examples

In this example, using thiefine control in the invocation determines the result
of conditional compilation. The invocation contains the control:

define (SYS)
The source text contains the lines:

#if SYS

#define PATHLENGTH 128
#else

#define PATHLENGTH 45
#endif

The value of the symb@YSdefaults tal. PATHLENGTHjets the valua28.

iC-386 Compiler User's Guide Chapter 3 73



diagnostic Primary control

diagnostic
Specifies the level of diagnostic messages.
Syntax
diagnostic ( level )
#pragma diagnostic ( level )
Where:
level is the value, 1, or2. The values correspond to all diagnostic

messages, no remarks, and only errors, respectively.

Abbreviation
dn

Default

diagnostic level 1

Discussion

Use thediagnostic ~ control to specify the level of diagnostic messages that the
compiler produces. A remark points out a questionable construct, such as using an
undeclared function name. A warning points out an erroneous construct, such as a
pointer type mismatch. An error points out a construct that is not part of the C
language, such as a syntax error.

Use the different levels of thitagnostic  control:

diagnostic (0) for the compiler to issue all remarks, warnings, and errors

diagnostic (1) (the default) for the compiler to issue warnings and errors but
no remarks

diagnostic (2) for the compiler to issue only error messages

74 Chapter 3 Compiler Controls



Primary control

diagnostic

The compiler's exit status is equal to the highest level of diagnostic reported. For

example, if the diagnostic level is 2, the compiler's exit status is O if the program

contains no errors but could contain remarks or warnings. At level 2, the

compiler's exit status is non-0 only if the program contains errors, as shown in

Table 3-2.
Table 3-2. Compiler Exit Status
Diagnostic
Level Fatal Errors  Errors Warnings Remarks Exit Status
2 no no not used not used zero
no yes not used not used nonzero
yes yes or no not used not used nonzero
1 (default) no no no not used zero
no no yes not used nonzero
no yes yes or no not used nonzero
yes yes or no yes or no not used nonzero
0 no no no no zero
no no no yes nonzero
no no yes yes or no nonzero
no yes yes or no yes or no nonzero
yes yes or no yes or no yes or no nonzero

Thenotranslate ~ control causes preprocessing diagnostics to appear at the

console. Thaoprint control causes the compiler to display all diagnostic

messages at the console.

Cross-references

print | noprint
translate | notranslate

iC-386 Compiler User's Guide

Chapter 3

75



eject General control

eject

Causes form feed.

Syntax
eject

#pragma eject

Abbreviation

ej

Discussion

Use theeject control to cause a form feed in the print file at the point where the
control is specified. If you specify tlegect control on the invocation line, the
form feed occurs before the text of any source file is listed.

Thenoprint andnotranslate  controls suppress the print file, causing the
eject control to have no effect.

Thepagelength , pagewidth |, tabwidth , andtitle  controls also affect the
format of the print file.

See also:  Chapter 5 for a description of the print file

Theeject control is a general control. Use it as often as you like in the compiler
invocation or inkpragma preprocessor directives.

Cross-references

pagelength
pagewidth
tabwidth
title

76 Chapter 3 Compiler Controls



General control extend | noextend

extend | noextend

Recognizes or suppresses Intel C extensions.

Syntax
[no]extend

#pragma [no]extend

Abbreviation

[no]ex

Default

noextend

Discussion

Use theextend control to enable the compiler to recognize the non-Adi&h |

far , andnear keywords in the source text, and to allow the dollar &ignto be a
non-significant character in identifiers in the source text. Usedteaend

control (default) to suppress recognition of Intel's extensions. These extensions
allow compatibility with earlier versions of Intel C.

See also: fixedparams andvarparams control descriptions in Chapter 3 for
information on calling convention compatibility with earlier versions
of Intel C;
alien, far andnear keywords in Chapter 10

Cross-references

fixedparams
ram | rom
varparams

iC-386 Compiler User's Guide Chapter 3 77



fixedparams General control

fixedparams

Specifies fixed parameter list calling convention.
Syntax

fixedparams [( function  [,...])]

#pragma fixedparams [( function  [,...])]

Where:

function is the name of a function defined in the source text. Function-name

arguments are case-significant.

Abbreviation

fp
Default

Of the two calling convention specificatiorfix¢dparams ~ andvarparams ), the
default isfixedparams . If you specify thdixedparams  control but do not
supply afunction  argument, théixedparams control applies to all functions in
the subsequent source text.

Discussion

78

Use thefixedparams  control (default) to require the specified functions to use the
fixed parameter list (FPL) calling convention. Most of Intel's non-C compilers
generate object code for function calls using the FPL calling convention. Some
earlier versions of Intel C use the variable parameter list (VPL) calling convention.

A function's calling convention dictates the sequence of instructions that the
compiler generates to manipulate the stack and registers during a call to a function.
The FPL calling convention is:

1. The calling function pushes the arguments onto the stack with the leftmost
argument pushed first before control transfers to the called function.

2. The called function removes the arguments from the stack before returning to
the calling function.

The FPL calling convention uses fewer instructions and therefore occupies less
space in memory and executes more quickly than the VPL calling convention.

Chapter 3 Compiler Controls



General control fixedparams

A calling convention specified without an argument in the compiler invocation
affects functions throughout the entire module. If a function uses a calling
convention other than the one in effect for the compilation, specify the calling
convention before declaring the function.

If FPL is in effect globally, you can use an ellipsis in a prototype or declaration to
declare a VPL function, or use tharparams control. If VPL is in effect

globally, you must use thfixedparams  control in a#pragma preprocessor
directive to declare an FPL function.

If notranslate is specified, the compiler does not generate object code and the
calling convention control has no effect.ntfobject is specified, the effect of the
calling convention control on the object code can be seen in the print file, although
the compiler does not produce a final object file.

|:| Note

An error occurs if a function in the source text explicitly declares
a variable parameter list and also is named irfuhetion  list

for thefixedparams  control. In this example, the ellipsis in the
fvprs  function prototype indicates a VPL convention for this
function. Specifying théixedparams (fvprs)  control in this
case causes a compilation error:

#include <stdarg.h>
fvprs (int a, ...);

See also: FPL and VPL calling conventions in Chapter 8,
extendlnoextend  control description for other information on code
compatibility with previous versions of Intel C,
varparams control description for information on the variable
parameter list calling convention

iC-386 Compiler User's Guide Chapter 3 79



fixedparams General control

Examples

1. This combination of controls specifies the variable parameter list convention
(VPL) for all functions in the source file except those in the argument list. Use
the controls on the invocation line as follows:

varparams fixedparams ( argument_list )
Or use the controls ipragma preprocessor directives:

#pragma varparams
#pragma fixedparams ( argument_list )

2. This control specifies the fixed parameter list convention (FPL) for all
functions in the source file except those in the argument list. Use the
varparams control on the invocation line to override the default for the
functions in the argument list:

varparams (argument_list )
Or use thevarparams control in a#pragma preprocessor directive:

#pragma varparams ( argument_list )

Cross-references

extend | noextend
object | noobject
translate | notranslate
varparams

80 Chapter 3 Compiler Controls



Invocation control include

include

Inserts text from specified file.

Syntax
include ( filename [,...])
Where:

filename is the file specification (including a directory name or pathname, if
necessary) to be included and compiled before the primary source file.
You do not have to encloséil@name in quotation marks, even if it
contains a pathname.

Abbreviation

ic

Discussion

Use theinclude control to insert and compile text from files other than the
primary source file. These files are called include files. The compiler processes
include files in the order specified in thiename list before processing the
primary source file.

Use thdistinclude control to list the contents of the include files in the source
code listing in the print file. Use tlearchinclude  control to specify a search

path for include files. Use thmeprint  control and theotranslate  control
together to view the resulting order and names of include files without compilation.

Files included by thanclude control on the invocation line are within the scope
of all macros defined by thiefine control on the invocation line, regardless of
the order of the controls. Files included by ititude  control on the invocation
line precede the scope of macros defined byttleéine preprocessor directive in
the primary source file. If more than onelude control occurs in the

invocation, the compiler includes files in the order specified in the invocation line.

The maximum number of filenames in an instance ofritlede  control is 19.

The maximum number of files open simultaneously during compilation is system-
dependent. The maximum nesting level of include files is 10, unless the

preprint  control is in effect, in which case the maximum nesting level is 7.

iC-386 Compiler User's Guide Chapter 3 81



include Invocation control

The iC-386 compiler on DOS has two added facilities for searching for files. The
compiler maps slashes)(in flenames to backslashes) ( When a pathname

begins with an environment variable, the compiler uses the value of the
environment variable as the directory path prefix and applies the mappings to all
filenames including prefixes specified with earchinclude  control.

See also: Example of using tinelude control on DOS in Chapter 3, Chapter
5 for a description of the print file

Cross-references

82

listinclude
preprint | nopreprint
searchinclude

Chapter 3 Compiler Controls



General control interrupt

interrupt

Specifies a function to be an interrupt handler.

Syntax
#pragma interrupt ( function  [,...])
Where:

function is the name of a function defined in the source text.

Abbreviation

in

Discussion

Use thenterrupt control to specify a function in the source text to handle some
condition signaled by an interrupt. An interrupt-handler function must be of type
void and can neither take arguments nor return a value. The interrupt designation
must precede the function definition. Tiherrupt  control causes the compiler

to generate prolog and epilog code to save and restore registers and return from the
interrupt.

Use therg_set_interrupt iRMX system call to associate an interrupt function with
an interrupt number. The_set_interrupt call puts the address of the function
into the Interrupt Descriptor Table (IDT) for you; do not manipulate this table
directly from your code.

Thenotranslate control overrides thiaterrupt control. Thenoobject
control overrides thinterrupt control except for its effect on the print file.

See also: interrupt control description, in Chapter 3 of this manual
Interrupts, andq_set_interrupt, System Call Reference
Cross-references

object | noobject
translate | notranslate

iC-386 Compiler User's Guide Chapter 3 83



line | noline Primary control

line | noline

Generates or suppresses source line number debug information.

Syntax
[no]line

#pragma [no]line

Abbreviation
[no]in
Default
line when thedebug control is in effect
noline when thenodebug control is in effect
Discussion

Use thdine control (default) to generate source line number information in the
object file. Use theoline control to suppress this information, reducing the

object file size by as much as 80%. Source line number information is useful when
using a symbolic debugger for source-level debugging.

Thenodebug control, thenoobject  control, and th@otranslate control
override thdine control.

Cross-references

cond | nocond
listexpand | nolistexpand
listinclude | nolistinclude
pagelength

pagewidth

print|noprint

tabwidth

title

translate | notranslate

84 Chapter 3 Compiler Controls



General control list | nolist

list | nolist

Specifies source text listing in the print file.

Syntax
[no]list

#pragma [nol]list

Abbreviation

[no]li

Default

list

Discussion

Use thdist control (default) to generate a listing of the source text. The
compiler places the source listing in the print file. Usenthist  control to
suppress the source listing.

Thenoprint andnotranslate  controls suppress the entire print file, even if
list is specified. Theolist control overrides theond control and the
listexpand  andlistinclude controls.

Several other controls affect the contents of the listing:

* Thecode control causes pseudo-assembly code to appear after the source
listing.

e Thecond control causes uncompiled conditional code to appear in the listing.
e Thelistexpand  control causes macros to be expanded in the listing.

e Thelistinclude control causes text from include files to appear in the
listing.

Theeject , pagewidth , pagelength ,tabwidth , andtitte  controls affect the
format of the print file.

See also:  Chapter 5 for a description of the print file

iC-386 Compiler User's Guide Chapter 3 85



list | nolist

General control

Cross-references

86

cond | nocond

eject

listexpand | nolistexpand
listinclude | nolistinclude
pagelength

pagewidth

print | noprint

tabwidth

title

translate | notranslate

Chapter 3

Compiler Controls



General control listexpand | nolistexpand

listexpand | nolistexpand

Includes or suppresses macro expansion in listing.

Syntax
[no]listexpand

#pragma [no]listexpand

Abbreviation

[no]le

Default

nolistexpand

Discussion

Use thdistexpand  control to show the results of macro expansion in the source
text listing in the print file. Use theolistexpand  control (default) to suppress
the results of macro expansion. Neither control has any effect on the preprint file.

The compiler marks the macro expansion lines in the listing with alus the
line-number column. Macro expansions appear only in the listing for compiled
code. If the preprocessor suppresses compilation of conditional code, the listing
does not include the expansion of any macro invocations in the suppressed code.

Use thecond control to list uncompiled conditional code.

Thenolist , notranslate  , andnoprint  controls override thistexpand
control. If any of these is in effect, the compiler does not list any source text. The
nolistinclude control overrides thiistexpand  control for include files.

See also: Chapter 5 for a description of the print file

Cross-references

cond | nocond

list | nolist

listinclude | nolistinclude
print | noprint

translate | notranslate

iC-386 Compiler User's Guide Chapter 3 87



listinclude | nolistinclude General control

listinclude | nolistinclude

Includes or suppresses text from include files in listing.

Syntax
[no]listinclude

#pragma [nollistinclude

Abbreviation

[no]lc

Default

nolistinclude

Discussion

Use thdistinclude control to list the text of include files in the source text
listing in the print file. Use theolistinclude control (default) to suppress the
listing of include files. Neither control has any effect on the preprint file.

The compiler lists files included with theclude control before the first line of
source listing. The compiler adds the text of files included withitietude
preprocessor directive after the line with #ieclude  directive. The compiler
lists include files in the order they are specified.

Thenolist , notranslate , andnoprint  controls override théstinclude
control.

When thenolistinclude control is in effect, diagnostic messages for include
files appear in the print file:

e For files included with thanclude control, diagnostic messages precede the
first line of source text.

e For files included with the&include preprocessor directive, diagnostic
messages appear on the lines immediately aftefithide  directive.

The compiler lists diagnostic messages in the order in which the associated
conditions occur. Use thitagnostic  control to specify the level of messages
the compiler issues.

See also:  Chapter 5 for a description of the print file

88 Chapter 3 Compiler Controls



General control listinclude | nolistinclude

Cross-references

diagnostic

include

list | nolist

print | noprint
translate | notranslate

iC-386 Compiler User's Guide Chapter 3 89



long64 | nolong64 Primary control

long64 | nolong64

Specifies the size of long objects.

Syntax

[no]long64
#pragma [no]long64

Abbreviation

[no]i64

Default

For iRMX applications, use the defaulilong64 unless you are using iRMK calls
that requirdong64 .

Discussion

Thenolong64 control (default) specifies that objects declared withdhg type
qualifier are 32 bits in length.

Thelong64 control specifies that objects declaredoag are 64 bits in length.
For compatibility, change argngs that need to stay 32 bitsitmg32 . Header
files are independent and not affected bylthg64 control.

Thelong64 compiler switch may be used with C modules that make iRMK system
calls. Under certain circumstances, however, the compiler may hang when
compiling programs wittong64 set. C library and POSIX functions do not
supportiong64 .

If notranslate is specified, the compiler does not generate object code and the
long64 andnolong64 controls have no effect. iibobject is specified, the

effect of thelong64 andnolong64 controls on the object code can be seen in the
print file, although the compiler does not produce a final object file.

See also:  iC-386 data types in Chapter 10

Cross-references

90

object | noobject
translate | notranslate

Chapter 3 Compiler Controls



Primary control mod486 | nomod486

mod486 | nomod486

Generates Intel486 processor code or Intel386 processor code.

Syntax
[nojmod486

#pragma [nojmod486

Abbreviation

(none)

Default
nomod486

Discussion

Use the iC-386nod486 control to cause the compiler to generate code for the
Intel486 processor. This code is particularly suited for fast execution on Intel486
processor-based systems. The code includes code alignment for the CALL
instruction, and different instruction sequences to take advantage of the on-chip
cache. Use theomod486 control (default) to cause the compiler to generate code
for the Intel386 processor, which also executes on the Intel486 processor.

If notranslate is specified, the compiler does not generate object code and the
instruction set control has no effect.ntfobject is specified, the effect of the
instruction set control on the object code can be seen in the print file, although the
compiler does not produce a final object file.

|:| Note

An object module compiled with theod486 control can execute
on an Intel386 processor, but may execute more slowly than if
compiled with thenomod486 control.

Do not execute aod486-compiled object module that contains
Intel486 processor built-in functions on an Intel386 processor.
The behavior of such code on an Intel386 processor is
unpredictable.

iC-386 Compiler User's Guide Chapter 3 91



mod486 | nomod486 Primary control

Cross-references

object | noobject
translate | notranslate

92 Chapter 3 Compiler Controls



Primary control modulename

modulename

Names the object module.

Syntax
modulename ( name)
#pragma modulename (  name)
Where:

name is the name of the object module (not the object file).

Abbreviation

mn

Default

The compiler uses the source filename without its extension. For example, the
compiler names the object modubain for the source filenain.c .

Discussion
Use themodulename control to name the object module.

The object module name is used by the binder, and builder. BND386 can rename
object modules. The object module name also appears in the print file.

Thenotranslate control overrides thmodulename control. Thenoobject
control overrides thenodulename control except for its effect on the print file.

|:| Note

A #pragma preprocessor directive specifying tihedulename
control must precede ampragma directives that specify the
subsys control.

Cross-references

object | noobject
translate | notranslate

iC-386 Compiler User's Guide Chapter 3 93



object | noobject Primary control

object | noobject

Generates and names or suppresses object file.

Syntax
object [( filename )]
noobject
#pragma object [( filename )]

#pragma noobject
Where:

filename is the file specification (including a directory name or pathname, if
necessary) in which the compiler places the object code.

Abbreviation

[no]oj

Default
object

By default, the compiler places the object file in the directory containing the source
file. The compiler composes the default object filename from the source filename,
as follows:

sourcename .obj

Where:

sourcename
is the filename of the primary source file without its file extension.

For example, by default the compiler creates an object file naraiachbj for
the source filenain.c .

94 Chapter 3 Compiler Controls



Primary control object | noobject

Discussion

Use theobject control to specify a non-default name or directory for the object
file. Use thenoobject control to suppress creation of an object file.

Thenotranslate  control suppresses all translation of source code to object code
and suppresses creation of the object file and the print file.nddigect control

does not suppress translation, and the compiler can produce a print file. The
noobject control overrides other object file controls except for their effect on the
print file.

To place a pseudo-assembly language version of the object code in the print file,
use thecode control.

Cross-references

code | nocode
translate | notranslate

iC-386 Compiler User's Guide Chapter 3 95



optimize Primary control

optimize
Specifies the level of optimization.
Syntax
(level )
#pragma optimize ( level )
Where:
level is0, 1, 2, or3. The values correspond to the levels of optimization,
with 0 being the lowest level (least optimization) and 3 being the
highest level (most optimization).
Abbreviation
ot
Default

optimization level 1

Discussion

Use theoptimize  control to improve the space usage and execution efficiency of

a program. Use level 0 when debugging to ensure the closest match between a lin
of source text and the generated object code for that line. Each optimization level
performs all the optimizations of all lower levels.

Theoptimize  control is a primary control. Use it in the compiler invocation or in
a#tpragma preprocessor directive. A primary control iipgagma preprocessor
directive must precede the first line of data definition or executable source text. A
primary control in the invocation overrides any contradictory controkipragma
preprocessor directive.

See also: compact , debug|nodebug |, line|noline , andtype|notype
control descriptions for other ways to optimize code size

Folding of Constant Expressions at All Levels

96

The compiler recognizes operations involving constant operands and removes or
combines them to save memory space or execution time. Addition with 0,
multiplication by 1, and operations on two or more constants fall into this category.
For example, the expressian2+3 becomes+5.

Chapter 3 Compiler Controls



Primary control optimize

Reducing Operator Strength at All Levels

The compiler substitutes quick operations for longer ones, such as shifting left by 1
instead of multiplying by 2. The substituted instruction requires less space and
executes faster. The addition of identical subexpressions can also generate left
shift instructions.

Eliminating Common Subexpressions at Levels 1, 2, and 3

If an expression reappears in the same block of source text, the compiler generates
object code to reuse rather than recompute the value of the expression. It generates
code to save intermediate results during expression evaluation in registers and on
the stack for later use. The compiler also recognizes commutative forms of
subexpressions. For example, in this block of code the compiler generates code to
compute the value afd/3 for the first expression and to save and retrieve it for

the second expression:

a=b+c*d/3;
c=e +d*c/3;
Optimizing the Machine Code of Short Jumps and Moves at Levels 2 and 3
The compiler saves space in the object code by using shorter forms for identical
machine instructions.
Eliminating Superfluous Branches at Levels 2 and 3

The compiler combines consecutive or multiple branches into a single branch.

Reusing Duplicate Code at Levels 2 and 3

Duplicate code can be identical code at the ends of two converging paths, or it can
be machine instructions immediately preceding a loop identical to those ending the
loop. In the first case, the compiler inserts code on only one path and inserts a
jump to that path in the other path. In the second case, the compiler generates a
branch to reuse the code generated at the beginning of the loop.

Removing Unreachable Code at Levels 2 and 3

The compiler eliminates code that can never be executed. The optimization that
removes the unreachable code takes a second pass through the generated object
code and finds areas that can never be reached due to the control structures created
in the first pass.

iC-386 Compiler User's Guide Chapter 3 97



optimize Primary control

Reversing Branch Conditions at Levels 2 and 3

The compiler optimizes the evaluation of Boolean expressions, so only the shorter
of two mutually exclusive conditions is evaluated. For exampleifthigatement
on the left has the execution order of its branches reversed:

if (1) if (a)

{ {

* (block 1) */ * (block 2) */
} /* becomes */ '}
else else
{ {

* (block 2) */ * (block 1) */
} }

Optimizing Indeterminate Storage Operations at Level 3

98

The indeterminate storage operations involve pointer indirection. When code
assigns a pointer to refer to a variable, it creates an alias for that variable. A
variable referenced by a pointer has two aliases: the pointer and the name of the
variable itself. Use optimization level 3 when the compiler need not insert code to
guard against aliasing.

The compiler performs this level 3 optimization as follows:

*  When the code assigns an expression to a variable, the compiler generates coc
to evaluate the expression and assign the result to the variable. The result alsc
remains in the register used in evaluating the expression.

*  When the code subsequently uses the same alias to access the variable, the
compiler does not generate code to access the variable; instead it inserts a
reference to the register.

e The compiler refers to the same register each time the code uses the alias.
Run-time performance is improved because accessing the register executes
faster than accessing the variable in memory.

Chapter 3 Compiler Controls



Primary control optimize

This optimization can introduce errors when the code uses multiply-aliased
variables. The compiler does not insert code to check for intermediate references
to a variable using a different alias. If the code modifies a variable using a
different alias, the value in the variable is not necessarily the same as the value in
the register referenced by the compiler. For example, in this code under
optimization level 3y erroneously acquires the valuénstead o. If the

optimization level is less than 3, the compiler codes the assignment correctly:

int x,y;

int *a = &x; /* *ais aliasing x */
X =1; [* putavalueinx */
*a=2; /* x now has value 2 */
y=X; /* trouble at level 3! */

Using the Numeric Coprocessor for Floating-point-to-integer Conversions at
Level 3

Unsafe conversions of floating-point types to integral types can occur at
optimization level 3. The 1989 ANSI C standard specifies that these conversions
must use truncation. At optimization level 3, the numeric coprocessor controls the
method used in rounding. After RESET, the rounding mode of the numeric
coprocessor is round-to-nearest. Therefore, at optimization level 3, the conversion
of floating-point types to integral types usually uses rounding, contrary to the
standard. At lower optimization levels, these conversions use truncation, which is
according to the standard.

Cross-references

code | nocode
compact
debug | nodebug

type | notype

iC-386 Compiler User's Guide Chapter 3 99



pagelength Primary control

pagelength

Specifies lines per page in the print file.
Syntax

pagelength control ( lines )

#pragma pagelength ( lines )
Where:

lines is the length of a page in lines. This value can range fro
32767 .

Abbreviation
pl

Default
60 lines per page

Discussion

Use thepagelength  control to specify the maximum number of lines printed on a
page of the print file before a form feed is printed. The number of lines on a page
includes the page headings.

Thenoprint andnotranslate  controls suppress the print file, causing the
pagelength  control to have no effect.

See also: Chapter 5 for a description of the print file

Cross-references

eject

print | noprint

title

translate | notranslate

100 Chapter 3 Compiler Controls



Primary control pagewidth

pagewidth

Specifies line length in the print file.
Syntax

pagewidth control ( chars )

#pragma pagewidth ( chars )

Where:
chars is the line length in number of characters. This value ranges7zom
through132.
Abbreviation
pw
Default

120 characters

Discussion

Use thepagewidth control to specify the maximum length, in characters, of lines
in the print file.

Thenoprint andnotranslate  controls suppress the print file, causing the
pagewidth control to have no effect.

See also: Chapter 5 for a description of the print file

Cross-references

pagelength

print | noprint
tabwidth

translate | notranslate

iC-386 Compiler User's Guide Chapter 3 101



preprint | nopreprint Invocation control

preprint | nopreprint

Generates or suppresses a preprocessed source text listing file.

Syntax

preprint [( filename )]
nopreprint

Where:

filename is the file specification (including a directory name or pathname, if
necessary) in which the compiler places the preprint information.

Abbreviation
[no]pp

Default
nopreprint
when theranslate  control is in effect.
preprint when thenotranslate control is in effect.

By default, the compiler places the in the directory containing the source file. The
compiler composes the default preprint filename from the source filename as
follows:

sourcename.i

Where:

sourcename
is the filename of the primary source file without its file extension.

For example, by default the compiler creates a preprint file namedi  for the
source fileproto.c

Discussion

Use thepreprint  control to create a file containing the text of the source after .
Use thenopreprint  control (default) to suppress creation of a preprint file.
Preprocessing includes file inclusion, macro expansion, and elimination of
conditional code. The preprint file is the intermediate source text after
preprocessing and before compilation.

102 Chapter 3 Compiler Controls



Invocation control preprint | nopreprint

The preprint file is especially useful for observing the results of macro expansion,
conditional compilation, and the order of include files. If the preprint file contains
no errors, compiling the preprint file produces the same results as compiling the
and any files included in the compiler invocation.

Thepreprint  control creates a file different from the print file. Tdject |,
pagelength , pagewidth ,tabwidth , andtitte  controls have no effect on the
preprint file.

When thepreprint  control is in effect, the maximum nesting level of include
filesis 7.

See also:  Chapter 5 for a description of the print and preprint files

Cross-reference

print | noprint

iC-386 Compiler User's Guide Chapter 3 103



print | noprint Primary control

print | noprint

Generates or suppresses the print file.

Syntax
print [( filename )]
noprint
#pragma print ( filename )

#pragma noprint
Where:

filename is the file specification (including a directory name or pathname, if
necessary) in which the compiler places the print information.

Abbreviation
pr

Default
print

By default the compiler places the print file in the directory containing the source
file. The compiler composes the default print filename from the source filename,
as follows:

sourcename.lst

Where:

sourcename
is the filename of the primary source file without its file extension.

For example, the compiler creates a print file namaidh.Ist  for the source file
main.c .

Discussion

Use theprint  control to produce a text file of information about the source and
object code. Use theprint  control to suppress the print file. Theprint
control causes the compiler to display diagnostic messages only at the console.

104 Chapter 3 Compiler Controls



Primary control print | noprint

Thenoprint  control overrides all other listing controls except ghaprint
control. Thenotranslate control overrides thprint  control. Thenoprint
control causes diagnostic messages to appear at the console.

Theprint  control creates a print file different from the preprint file.

Thelistexpand|nolistexpand andlistinclude|nolistinclude
qualifiers and theode|nocode |, cond|nocond , diagnostic , list|nolist ,
listexpand|nolistexpand , listinclude|nolistinclude ,

symbols|nosymbols , andxref|noxref controls affect the contents of the print
file. Thepagewidth , pagelength ,tabwidth , andtitte  controls affect the
format of the print file.

See also:  Chapter 5 for a description of the print file

Cross-references

code | nocode

cond | nocond
diagnostic

eject

list | nolist

listexpand | nolistexpand
listinclude | nolistinclude
pagelength

pagewidth

preprint | nopreprint
symbols | nosymbols
tabwidth

title

translate | notranslate
xref | noxref

iC-386 Compiler User's Guide Chapter 3 105



ram | rom Primary control

ram | rom

Specifies the placement of constants in the object module.

Syntax

ram control
rom control

#pragma ram

#pragma rom

Abbreviation

(none)

Default

ram

Discussion

Use theram control (default) to place constants in the data segment in memory.
When theram control is in effect, the compiler initializes to zero all static
variables not explicitly initialized in the source text.

Use theom control to place constants in the code segment in memory. When the
rom control is in effect, the compiler does not initialize any static variables not
explicitly initialized in the source text. Also, the compiler produces warning
messages for all static variables the code explicitly initializes.

Constants can be defined in the code or defined by the compiler. Constants includ
the values of string literals, floating-point literals, and static variables declared with
theconst attribute specifier.

Therom orram control does affect the value of theROM_predefined macro.
See also: Predefined macros in Chapter 5

Thecompact control determines the segmentation model for the object code. The
segmentation model determines how many code and data segments are present in
the object code.

Thenotranslate control overrides theam androm controls. Theoobject
control overrides theam androm controls except for their effect on the print file.

See also: Segmentation in Chapter 4

106 Chapter 3 Compiler Controls



Primary control ram | rom

Cross-references

compact
object | noobject
translate | notranslate

iC-386 Compiler User's Guide Chapter 3 107



searchinclude | nosearchinclude General control

searchinclude | nosearchinclude

Specifies search paths for include files.

Syntax

searchinclude ( pathprefix — [,...])
nosearchinclude

#pragma searchinclude ( pathprefix — [,...])
#pragma nosearchinclude

Where:

pathprefix
is a string of characters that the compiler prepends to the filename
argument of an instance of tlelude orsubsys control, or to the
file argument of aminclude preprocessor directive. If the path
prefix contains special characters such as the slaskriclose the
pathprefix ~ in quotation marks'().

Abbreviation

[no]si

Default

nosearchinclude

The three default path prefixes are derived from the directory containing the
primary source file, thenclude: logical name from the iRMX OS, or the

sinclude : environment variable from DOS, and the null prefix (current directory).
The compiler always uses the path prefix in:theude: logical name from the
iIRMX OS or theinclude: environment variable from DOS after the list
specified by theearchinclude  control.

The:include: logical name igintel/gen/inc on iRMX systems. The
submit file is/intel/gen/inc/bind.csd . Attach the library asnclude:
explicitly using the iRMXattachfile command.

108 Chapter 3 Compiler Controls



General control searchinclude | nosearchinclude

Discussion

Use thesearchinclude  control to specify a list of possible path prefixes for
include files. Use theosearchinclude  control (default) to limit the compiler to
the three default search path prefixes. Bathprefix ~ argument is a string that,
when concatenated to a filename, specifies the relative or absolute path of a file
(including a device name and directory name, if necessary). The compiler tries
each prefix in the order in which they are specified, until a legal filename is found.
If a legal filename is not found, the compiler issues an error.

The DOS:include: environment variable can specify a path prefix to the name
of a directory containing include files.

Include files are files specified with tirelude control or thesubsys control in
the compiler invocation or with theinclude  preprocessor directive in the source
text.

When the compiler searches for a file specified irittlade  control, or when it
searches for a source file specified in#artlude preprocessor directive, the
compiler tests the prefixes in this order:

1. The source directory prefix
2. The directories specified by thearchinclude  list

3. The directory or directories specified by timelude: logical name for the
iIRMX OS or environment variable for DOS, if defined

4. The null prefix, that is, the current directory

The iC-386 compiler on DOS has two added facilities for searching for files. The
compiler maps slashes)(in flenames to backslashes) ( When a pathname

begins with an environment variable, the compiler uses the value of the
environment variable as the directory path prefix and applies the mappings to all
filenames including prefixes specified with earchinclude  control.

Cross-references

include
subsys

iC-386 Compiler User's Guide Chapter 3 109



signedchar | nosignedchar Primary control

signedchar | nosignedchar

Sign-extends or zero-extends char objects when promoted.

Syntax
[no]signedchar

#pragma [no]signedchar

Abbreviation

[no]sc

Default

signedchar

Discussion

Use thesignedchar  control (default) to specify that objects declared to be the

char data type are treated as if they were declared asgtieel char data type.

The compiler sign-extends these objects when they are converted to a data type th
occupies more memory.

Use thenosignedchar  control to specify that objects declared ascihee data

type are treated as if they were declared asribigned char  data type. The
compiler zero-extends these objects when they are converted to a data type that
occupies more memory.

If notranslate is specified, the compiler does not generate object code and the
signedchar andnosignedchar controls have no effect. iibobject is

specified, the effect of th@gnedchar andnosignedchar  controls on the object
code can be seen in the print file, although the compiler does not produce a final
object file.

Thesignedchar  control does not affect the interpretation of objects specifically
declared as eithaigned char  orunsigned char  data types.

Cross-references

object | noobject
translate | notranslate

110 Chapter 3 Compiler Controls



Primary control srclines | nosrclines

srclines | nosrclines

Generates or suppresses debug information (iC-386 only).

Syntax
[no]srclines

#pragma [no]srclines

Abbreviation

[no]sl

Default
srclines when thedebugandline controls are in effect

nosrclines when the nodebug or noline control is in effect

Discussion

Use the iC-386rclines  control (default) to cause the compiler to add source file
name and source line offset information to the object file. Useaddrelines

control to suppress this information, reducing the object file size by as much as
80%. This source file name and offset information is used by some symbolic
debuggers for source-level debugging. Other debuggers, such as Soft-Scope lll, do
not require this information.

This control also modifies the amount of object code line offset information
generated by thine control. Whersrclines  is in effect, object code offset
information is generated for every line in the source file (and include files),
beginning with the first line of the source file. Whessrclines s in effect, the
compiler starts emitting object code offset information only when the first
executable statement is encountered; non-executable statements preceding the first
executable statement, such as the definitions and declarations typically contained in
header files, do not cause object code offsets to be emitted.

Thenoline control, thenodebug control, thenoobject  control, and the
notranslate control override therclines  control.
Cross-references

debug | nodebug

line | noline

object | noobject
translate | notranslate

iC-386 Compiler User's Guide Chapter 3 111



subsys Primary control

subsys
Reads a subsystem specification.
Syntax
subsys ( filename [,...])
#pragma subsys ( filename [,...])
Where:

filename is the file specification (including a device name and directory name
or pathname, if necessary) in which the compiler finds the subsystem
definition.

Abbreviation

(none)

Default

(none)

Discussion

Use thesubsys control to cause the compiler to read one or more files for
subsystem definitions. The compiler searches for the named files the same way
that it searches for source files surrounded by quotation marks#inthele
preprocessor directive.

See also: searchinclude  control description for the search method,
defining subsystems in Chapter 9

The compiler preserves case distinction in identifieexports  lists. The
compiler always ignores dollar sigri {n identifiers, even if thextend control

is not in effect. The compiler ignores valid PL/M controls unrelated to
segmentation, such & and$INCLUDE. The compiler ignores lines whose first
character is not a dollar sigh)(

A subsystem can export only function and variable names with file scope. The
compiler implicitly modifies declarations of exported symbols, if necessary, by
inserting thefar  keyword in the appropriate place. The maodifications occur even
if the extend control is not in effect.

112 Chapter 3 Compiler Controls



Primary control subsys

If notranslate is specified, the compiler does not generate object code and the
subsys control has no effect. Hoobject is specified, the effect of thsibsys

control on the object code can be seen in the print file, although the compiler does
not produce a final object file.

|:| Notes
A #pragma preprocessor directive specifying tihedulename
control must precede ampragma directives that specify the
subsys control.

Do not use theodesegment or datasegment controls in an
invocation that specifies theibsys control. The compiler

issues an error or a warning message, depending on whether the
subsys control is found in the invocation line or iftpragma
preprocessor directive.

See also: Subsystems in Chaptesx@nd|noextend  control in Chapter 3,
segmentation memory models and fdre keyword in Chapter 4

Cross-references

codesegment

datasegment

extend | noextend

modulename

object | noobject

searchinclude | nosearchinclude
translate | notranslate

iC-386 Compiler User's Guide Chapter 3 113



symbols | nosymbols Primary control

symbols | nosymbols

Generates or suppresses identifier list in print file.

Syntax
[no]symbols

#pragma [no]symbols

Abbreviation
[no]sb

Default

nosymbols

Discussion

Use thesymbols control to include in the print file a table of all identifiers and
their attributes from the source text. Usertbhsymbols control (default) to
suppress the table.

Thenoprint  andnotranslate controls overridaymbols . Thexref control
causes the compiler to generate a cross-referenced symbol table even if the
nosymbols control is specified.

See also: Chapter 5 for a description of the print file

Cross-references

print | noprint
translate | notranslate
xref | noxref

114 Chapter 3 Compiler Controls



Primary control tabwidth

tabwidth

Specifies characters per tab stop in the print file.
Syntax

tabwidth control ( width ')

#pragma tabwidth ( width ')

Where:
width is a value froml to 80. This value is the number of characters from
tab stop to tab stop in the print file.
Abbreviation
tw
Default

4 characters per tab stop

Discussion

Use thetabwidth  control to specify the number of characters between tab stops in
the print file.

Thenoprint andnotranslate  controls suppress the print file, causing the
tabwidth  control to have no effect.

Cross-references
eject
pagelength
pagewidth
print | noprint
title
translate | notranslate

iC-386 Compiler User's Guide Chapter 3 115



title

Primary control

title

Specifies the print file title.
Syntax

title control (" string ")

#pragma title (" string ")

Where:

string is the title.
Abbreviation

tt
Default

The compiler uses the object module name.
Discussion

Use thetitle  control to specify the print file title. The compiler places the title at
the top of each page of the print file.

To specify no title, use at least one blank in the title string. Do not use the null
string.

A title can be up to 60 characters long. A narrow page width can restrict a title to
fewer than 60 characters. In such cases, the compiler truncates the title from the
right.

Thenoprint andnotranslate  controls suppress the print file, causing the
tite  control to have no effect.

See also: Chapter 5 for a description of the print file

Cross-references

116

eject pagewidth
modulename print | noprint
object | noobject  tabwidth

pagelength translate | notranslate

Chapter 3 Compiler Controls



Invocation control translate | notranslate

translate | notranslate

Compiles or suppresses compilation after preprocessing.

Syntax

[no]translate

Abbreviation

[najtl

Default

translate

Discussion

Use thetranslate  control (default) to cause the compilation to continue after
preprocessing. Translation includes parsing the input, checking for errors,
generating code, and producing an object module. Usetlamslate  control
to cause compilation to cease after preprocessing.

Thenotranslate control implies thereprint ~ control. Thenotranslate

control overrides all other object and listing controls except for their effect on the
print file. Thenotranslate  control causes preprocessing diagnostic messages to
appear at the console.

Cross-references

object | noobject
preprint | nopreprint

iC-386 Compiler User's Guide Chapter 3 117



type | notype Primary control

type | notype

Generates or suppresses type information in the object module.

Syntax

[no]type
#pragma [no]type

Default
type

Abbreviation
ty

Discussion

Use thetype control (default) to include type information for public and external
symbols in the object module. Use titgype control to suppress generation of
type information. Suppressing type information reduces the size of the object
module.

Type information can be useful to other tools in the application development
process. The binder uses type information to perform type checking across
modules. A debugger or an emulator uses type information to display symbol
attributes.

Thenoobject andnotranslate controls causgpe andnotype to have no
effect.

See also: debug control description for information on combining controls that
affect the size of the object module, such agitlee control

Theoptimize  control can further reduce the size of the object module. However,
higher levels of optimization reduce the ability of most symbolic debuggers to
accurately correlate debug information to the source codelinEhecontrol puts
source line number information into the object file. Ehmbols control puts a

listing of all identifiers and their types into the print file. ™nef control puts a
cross-reference listing of all identifiers into the print file.

118 Chapter 3 Compiler Controls



Primary control type | notype

Cross-references

debug | nodebug
object | noobject
optimize

symbols | nosymbols
translate | notranslate
xref | noxref

iC-386 Compiler User's Guide Chapter 3 119



varparams General control

varparams
Specifies variable parameter list calling convention.
Syntax
varparams control [( function  [,...])]
#pragma varparams [( function  [,...])]
Where:
function is the name of a function defined in the source text. Case is
significant in function-name arguments.
Abbreviation
vp
Default

The default igixedparams . If you specifyvarparams but do not supply a
function  argument, thearparams control applies to all functions in the
subsequent source text.

Discussion

Use thevarparams control to require the specified functions to use the variable
parameter list (VPL) calling convention. Most of Intel's non-C compilers generate

object code for function calls using the fixed parameter list (FPL) calling

convention. Some earlier versions of Intel C use the variable parameter list calling

convention.

A function's calling convention dictates the sequence of instructions that the

compiler generates to manipulate the stack and registers during a call to a function.

This is the VPL calling convention:

1. The calling function pushes the arguments onto the stack with the rightmost

argument pushed first before control transfers to the called function.

2. The calling function removes the arguments from the stack after control
returns from the called function.

The VPL calling convention provides more flexibility than the FPL calling
convention. Use the VPL calling convention for functions that take a variable
number of parameters.

120 Chapter 3 Compiler Controls



General control varparams

See also:  FPL and VPL calling conventiofisgdparams  control description

A calling convention specified without an argument in the compiler invocation
affects functions throughout the entire module. If a function uses a calling
convention other than the one in effect for the compilation, specify the calling
convention before declaring the function.

If FPL is in effect globally, you can use an ellipsis in a prototype or declaration to
declare a VPL function, or use tharparams control. If VPL is in effect

globally, you must use thfixedparams  control in a#pragma preprocessor
directive to declare an FPL function.

If notranslate is specified, the compiler does not generate object code and the
calling convention control has no effect.ntfobject is specified, the effect of the
calling convention control on the object code can be seen in the print file, although
the compiler does not produce a final object file.

|:| Note

An error occurs if a function in the source text explicitly declares
a variable parameter list and also is named irfuhetion  list

for thefixedparams  control. In this example, the ellipsis in the
fvprs  function prototype indicates a VPL convention for this
function. Specifying théixedparams (fvprs ) control in this
case causes an error:

#include <stdarg.h>

fvprs (int a, ...);

Thevarparams andfixedparams controls are general controls. Use them freely

in the compiler invocation or ifpragma preprocessor directives. If you specify

both controls without arguments in the invocation, the compiler acts on the most
recently encountered control. These controls only affect the subsequent source text
and remain in effect until the compiler encounters a contrary control or the end of
the source text.

See also:  extend|noextend control for other information on code
compatibility with previous versions of Intel Gixedparams
control for information on the fixed parameter list calling convention

iC-386 Compiler User's Guide Chapter 3 121



varparams General control

Examples

1. This combination of qualifiers specifies convention (VPL) for all functions in

the source file except those in the argument list. Use the qualifiers on the
invocation line as follows:

varparams fixedparams ( argument_list )
Or use the controls ipragma preprocessor directives:

#pragma varparams
#pragma fixedparams ( argument_list )

This control specifies fixed parameter list convention (FPL) for all functions in
the source file except those in the argument list. Useatparams control

on the invocation line to override the default for the function in the argument
list:

varparams (argument_list )
Or use thevarparams control in a#pragma preprocessor directive:

#pragma varparams ( argument_list )

Cross-references

122

extend | noextend
fixedparams

object | noobject
translate | notranslate

Chapter 3 Compiler Controls



Primary control xref | noxref

xref | noxref

Specifies symbol table cross-reference in listing.

Syntax
[no]xref

#pragma [no]xref

Abbreviation

[no]xr

Default

noxref

Discussion

Use thexref control to add cross-reference information to the symbol table listing
in the print file. Use thaoxref control (default) to suppress the cross-reference
information.

Thenoprint  andnotranslate controls override theref control. Thexref
andsymbols controls are similar, except that tkref control adds a
cross-reference listing of identifiers from the source program.xiehe control
causes the compiler to generate a cross-referenced symbol table even if the
nosymbols control is specified.

The print file lists the cross-reference line numbers on the far right under the
"Attributes" column in the symbol table listing. The "Attributes" column describes
the data or function type. A number with an asterigkr(dicates the line where

the object or function is declared. A number without an asterisk indicates a line
where the object or function is accessed. The cross-reference line numbers refer to
the line numbers in the source text listing in the print file.

See also:  Symbol table and print file in Chapter 5

Cross-references

print | noprint
symbols | nosymbols
translate | notranslate

iC-386 Compiler User's Guide Chapter 3 123






Segmentation Memory Models

This chapter discusses how segmentation memory models manage code, data, and
stacks for the Intel386 segmented architecture. This chapter contains these topics:

e How the binder combines the compiler-created segments
e Characteristics of the compact memory model
e How to use and interpret tffie@ andnear keywords

Use the compact segmentation memory model for iRMX applications.

How the Binder Combines Segments

Segmentation divides a program into units that contain the program's code, data,
and stack. Segmentation makes references to memory locations more efficient.
The compiler places information defining segment attributes and content into each
object module. The binder combines the compiler's segments according to their
definitions, thereby implementing the segmentation memory model.

A segment represents a contiguous set of memory locations, but does not
necessarily have a fixed address or fixed size until placed in memory for execution.
The BLD386 system builder or operating system loader assigns a fixed address to a
segment and establishes its size. The maximum size of an Intel386 processor
segment is 4 gigabytes.

iC-386 Compiler User's Guide Chapter 4 125



Combining iC-386 Segments With BND386

The BND386 binder combines segments from the input object modules if they have
these characteristics:

e The same segment name

* The same kind of contents, i.e., code or data

e The same privilege level

e Compatible granularity, default operand, and address size
* Compatible access rights

e Compatible combine-types

« A combined length no greater than 4 gigabytes

The iC-386 compiler places in each object module these segment definition
characteristics for each compiler-created segment:

e The segment name

*  Whether the segment is code or data

* Privilege level 3

» Byte granularity and 32-bit operand and address size

e Segment access rights: non-conforming, not present, and not expand-down for
all segments; and whether code is readable or data is writeable

e The combine-type
e The size of the segment

See also: Intel386 processor segment characteristics in Chapter 6

How Subsystems Extend Segmentation

126

A subsystem is a collection of modules that use the same segmentation model. A
program can be made up of one or more subsystems. Subsystems allow collection
of program modules that are compiled with different segmentation controls to be
combined into the same program.

See also:  Use and syntax of subsystems in Chapter 9

Chapter 4 Segmentation Memory Models



Compact Segmentation Memory Model

The segmentation memory model determines the number of segments and the
contents of those segments in the compiler-created object module. The binder uses
the segments from each compiled object module to create the bound object module.
Thecompact compiler control determines the segmentation model that the

compiler uses to create an object module.

|:| Note

The iIRMX OS supports the compact segmentation memory
model.

There are four components of object code:
e Code (executable instructions)
» Data (global and static variables)

» Stack (function-activation records, automatic variables, and any
compiler-generated temporary storage not explicitly declared in the source
module)

* Constants (statically allocated constant objects, character strings and
floating-point literals, and other compiler-generated constant values)

The compiler creates a code segment for executable instructions, a data segment
for global and static variables, and a stack segment for stack activityant leed

rom controls determine whether the compiler puts the constants with the code
segment or the data segment. If you specifydhecontrol during compilation,

the compiler places the constants in the code segment. [f you spectynthe

control during compilation or accept the default, the compiler places the constants
in the data segment.

iC-386 Compiler User's Guide Chapter 4 127



Compact Model

128

The BND386 binder combines compiler-generated segments that have the same
name, compatible combine-types, and the same access attributes.

A program using the compact segmentation memory model contains three
segments:CODE32(iC-386),DATA andSTACK The CS, DS, and SS registers
contain the selectors for ti®ODE32 DATA andSTACKsegments, respectively.
For iC-386, the ES register contains the same value as the DS register.

Table 4-1 shows the compiler segment definitions for a module compiled with the
compact control. When you specify them control, the compiler places the
constants in the module's code segment. When you specigntheontrol, the

iC-386 compiler places the constants in the module's data segment.

Table 4-1. iC-386 Segment Definitions for Compact-model Modules

Description Name Combine-type Access

code segment CODE32 normal execute-read
data segment  DATA normal read-write
stack segment STACK stack read-write

The resulting bound compact model module contains one code segment up to 4
gigabytes long, one data segment up to 4 gigabytes long, and one stack segment u
to 4 gigabytes long.

The compact segmentation memory model is efficient in program size, and offers
the maximum possible space for stack activity. Using the compact segmentation
memory model restricts your program to 12 gigabytes of memory, but has a full 4
gigabytes for stack activity, and allows access to multiple data segments.

Since all the executable instructions fall within one segment, function pointers are
near by default (the offset-only address format). Since data (constants, program
variables, or temporary variables) can be in different segments (code, data, or
stack), data pointers af&r by default (the segment-selector-and-offset address
format).

See also:  Near and far address formats in Chapter 4

Because all data pointers de pointers by default, a compact model program
can dynamically allocate one or more additional data segments up to 4 gigabytes
long.

Figures 4-1 and 4-2 show the process of binding a compact RAM and a compact
ROM program from two modules. The relative sizes of the final segments are not
to scale. The order of modules in the binder input list affects the order of segments
in the output file.

Chapter 4 Segmentation Memory Models



Source Code

main.c setup.c
\ \L |
iC-386
| |
main.obj Compiled Code setup.obj
\4 Y
BND386
\4
From CODE32 From STACK
main.obyj main.obj
and and
setup.obj setup.obj <ss
<-CS DATA
4 Gigabytes Max.
With Constants
<-DS
W-3367
Figure 4-1. Creating a Compact RAM Program
iC-386 Compiler User's Guide Chapter 4 129



Source Code

main.c setup.c
\ \L |
iC-386
| |
main.obj Compiled Code setup.obj
Y \4
BND386
\4
From CODE32 From STACK
main.obj main.obj
and DATA and
setup.obj setup.obj <ss
<-DS

With Constants

4 Gigabytes Max.

130

Figure 4-2. Creating a Compact ROM Program

Chapter 4

Segmentation Memory Models

W-3368



Using near and far

Thenear andfar keywords are type qualifiers that allow programs to override the
default address size generated for a data or code reference, which is determined by
the segmentation memory model. You must compile programs that ussathe

andfar keywords with thextend control.

See also: extend control in Chapter 3

Table 4-2 shows the default address sizes focdhmpact memory model.

Table 4-2. Segmentation Models and Default Address Sizes

Segmentation Model  Code Reference Data Reference
compact RAM offset selector and offset
compact ROM offset selector and offset

Thenear type qualifier causes the compiler to generate an offset-only address. An
offset-only address occupies less space and results in quicker execution than a
selector-and-offset address. An offset-only address can reference memory only
within its segment. Thiar type qualifier causes the compiler to generate a
segment-selector-and-offset address. A selector-and-offset address can reference
all addressable memory.

Use thefar type qualifier:

To call a library Some libraries require access through a selector-and-offset

that requires a call.

selector-and-offset

call

To refer to code or In multiple subsystem applications, non-local references
datain a can require the far type qualifier.

subsystem See also: Using multiple subsystems within an

application in Chapter 9

To call a function  Functions at different privilege levels are always in different
at a different segments. A call to an interrupt handler is a far call.
privilege level or

handle an interrupt

iC-386 Compiler User's Guide Chapter 4 131



Use thenear type qualifier:

To discard the Casting a pointer to near discards the selector. Reference
selector portion of through an offset-only pointer is more efficient.
an address

To override the For efficient data references, override the default far

default data references to data that occur when the DS register already
address size has the correct selector.

To override the For efficient code references, override the default far
default code references to code that occur when the CS register already
address size has the correct selector.

Addressing Under the Segmentation Models

132

In compact model programs, the CS register contains the code segment selector,
the DS register contains the data segment selector, and the SS register contains th
stack segment selector.

A reference to a selector-and-offset object requires a load to a segment register. Ir
iC-386, the FS and GS registers are typically used to de-reference
selector-and-offset addresses, and the ES register is expected to contain the same
value as the DS register.

A variable or a function is near if the segmentation model assigns offset-only
addresses by default, or if the variable or function is declared wittethhetype
qualifier. A variable or a function is far if the segmentation model assigns
selector-and-offset addresses by default, or if the variable or function is declared
with thefar type qualifier.

In a call to a near function, the processor uses the segment selector in the CS
register with the offset-only address of the function to form the address of the
function. In a reference to a near variable, the processor uses the segment selecto
in the DS register with the offset-only address of the variable to form the address of
the variable.

In a call to a far function, the processor loads the segment selector portion of the
address into the CS register, and then uses the CS register with the offset portion o
the function's address to form the address of the function. In a reference to a far
variable, the processor loads the segment selector portion of the address into the F
or GS register (Intel386 CPU) if neither contains the necessary selector. Then the
processor uses either the FS or GS register with the offset portion of the variable's
address to form the address of the variable.

Chapter 4 Segmentation Memory Models



Using far and near in Declarations

Thenear andfar type qualifiers can occur anywhere in a list of declaration
specifiers. Declaration specifiers include storage-class specifiers and type
specifiers. Declaration specifiers can also occur after an asteriskg pointer
declarator.

See also:  Chapter 10 for the way iC-386 extends the syntax of declarators

You can declare any variable or function with eitherrié® orfar type qualifier

to indicate whether it is declared in the same segment from which it is referenced
or in a different one. You can specify whether a pointer variable contains a near or
a far address.

For example, these declarations override the default addresses in a module where
all addresses are near by default:

int far m; /* m is a local integer that */
/* is referenced from some */
/* other segment */
extern int far n; /* nis an integer in some */
/* other segment */

/* being referenced here */

int far * mn_ptr; /* mn_ptr is a local pointer */
/* to an integer like m or */
/* nin a different segment */

extern int far * far nm_ptr;/* nm_ptr is a pointer in  */
/* some other segment to an */
[* integer like nor min a*/
[* different segment */

extern int * far k_ptr;  /* k_ptr is a pointerin  */
[* some other segment to a */
[* local integer in this  */
[* segment */

iC-386 Compiler User's Guide Chapter 4 133



Examples Using far

All of the examples that follow assume the compilation usesdineact control.
In these examples, each single letter in an identifier stands for a type or a type
qualifier. The identifiers are spelled so that if you read each letter in the identifier
from left to right, the types the letters stand for create a description of the example
declaration. Interpret the phrase "smmethingto be the same asdmethingn a
different segment". These are the identifiers and types in the examples:

i int

F far

f  function returning

p pointer to

1. This example declares two integers. The intégerin the current data
segment, referenced through the DS register. The inkégsrin a different
data segment, and a reference causes a load to a segment register. The addre
ofi, &, is a near address (offset-only). The address$ pbr &Fi, is a far
address (selector-and-offset). If tveern storage class specifier did not
exist in the declaration &fi , references t6i would use near addresses, but
the address d¢fi would still be a far address.

externint  i; /* Where "i" is read as "int */
extern int far Fi; /* Where "Fi" is read as "far int" */

2. This example declares two functions. Call§ tare near calls, and calls to
Ffi are far calls. The addressfof, or&fi , is a near address. The address of
Ffi , or&Ffi ,is a far address. If thextern storage class specifier did not
exist in the declaration &fii , calls toFfi would still be far calls.

externint  fi(); /* Where "fi"is read as */
/* "function returning int"  */

extern int far Ffi(); /* Where "Ffi" is read as */
/* "far function returning int" */

3. This example declares four pointer variables. The addressesoflpFi are
near addresses, and the addressepiofindFpFi are far addresses. The
values ofpi andFpi are near addresses (near pointers), and thqse aind
FpFi are far addresses (far pointers). ReferenégitoFpFi , *pFi , or
*FpFi causes a load to a segment register.

externint * pi;
externint *far Fpi;
extern int far * pFi;

extern int far * far FpFi;

134 Chapter 4 Segmentation Memory Models



4. This example declares four functions that return pointers. Cdlis tand
fpFi are near calls. Calls tdpi andFfpFi are far calls. Botfpi and
Ffpi return near pointers, afigFi andFfpFi return far pointers.

externint *  fpi();
externint  * far Ffpi();
externint far*  fpFi();
extern int far * far FfpFi();

Reading the last identifier from left to right, the type~fpfFi is read "far
function returning pointer to far int." Reading the declarator inside-out
(right-to-left), which is the standard way of reading complex C declarators,
gives "function returning far pointer to far int," as follows:

Element Interpretation

FfpFi() "function returning"”
* far "far pointer to"
int far "far int"

Such an inside-out interpretation is illogical because a function's return value
must be in a register, not in memory (as a far pointer would be). Adding
parentheses and writing the same declaration as follows preserves inside-out
interpretation and matches the left-to-right reading of the lettettphi :

extern int far * (far FfpFi)();

Element Interpretation

int far "far int"

* "pointer to"

(far FfpFi)() "far function returning”

The last declaration uses a non-standard type qualifier syntax explained in
Chapter 10.

5. This example declares four variables whose values point to a function. Such
functions can be called indirectly. Referencefto or pFfi uses the DS
register. Reference fpfi orFpFfi causes a load into a segment register.
Calls throughpfi orFpfi are near calls. Calls throughfi orFpFfi are
far calls.

externint  (*  pfi)();
externint  (* far Fpfi)();
extern int far (*  pFfi)();
extern int far (* far FpFfi)();

iC-386 Compiler User's Guide Chapter 4 135



136

6. This example declares eight pointers to functions that return pointers. Three

different kinds of memory references can occur: referencing the pointer to a
function, calling the function, and referencing the value indirectly specified by
the return value of the function. Referenc€&pépi , FpFfpi , FpfpFi , and
FpFfpFi all cause a load into a segment register; these functions are declared
with thefar type qualifier in the third column. Calls p&fpi , FpFfpi |,
pFfpFi , andFpFfpFi are far calls; these functions are declared witHahe
type qualifier in the second column. The values returnggddsy , FpfpFi |,
pFfpFi , andFpFfpFi are far pointers; these functions are declared with the
far type qualifier in the first column.

externint * (¥ pfpi)();

externint * (*far Fpfpi)();

externint *far (* pFfpi)();

externint  *far (* far FpFfpi)();

externintfar* (* pfpFi)();

extern intfar*  (* far FpfpFi)();

extern int far * far (*  pFfpFi)();

extern int far * far (* far FpFfpFi)();

Chapter 4 Segmentation Memory Models



Listing Files

The iC-386 compiler provides listing information in two optional listing files: the
preprint file and the print file. These two files embody two phases in compiling.
The preprint file contains the source text after textual preprocessing, such as
including files and expanding macros. The print file contains information about the
results of compiling, that is, using the source text to create object code. The term
compiling often refers to both the preprocessing and compiling phases as one.

By default, the compiler does not generate a preprint file; ugedpent

control to produce a preprint listing file. By default, the DOS- and iRMX system-
hosted compilers generate a print file; useniby@int  control to suppress the

print file.

See also: preprint  andnoprint  controls in Chapter 3

Preprint File

This section describes the preprint file generated by the preprocessing phase of the
compiler. The preprint file contains the preprocessor output, which is used as input
for the compiling phase. Compiling the preprint file produces the same results as
compiling the source file, assuming the compiler can expand any macros without
errors.

The compiler preprocesses the source text to produce the preprint text:

« Expands macros by substituting the body, or textual value, of each macro for
each occurrence of its name.

» Inserts source text from files specified with thelude compiler control or
the#include preprocessor directive; inserts tHime preprocessor directive
to bracket sections of included source text in the preprint file.

« Eliminates parts of the source text based ortithe #ifdef , #ifndef
#else , #elif , and#endif conditional compilation directives.

* Propagates the preprocessor direct#le® , #error , and#pragma from
the source text to the preprocessed source text.

iC-386 Compiler User's Guide Chapter 5 137



Macros

Use thedefine control or thetdefine preprocessor directive to define a textual
value for a macro name. The preprocessor substitutes the textual value everywher
the macro name appears in the subsequent source text.

The iC-386 compiler provides several predefined macros for your convenience.
Table 5-1 shows these macros and their values.

See also: Using thdefine control to define macrgsng64 | nolong64 ,
nomod287, mod486 | nomod486 , optimize , rom, andram control
descriptions in Chapter 3; segmentation memory models and
addressing formats in Chapter 4

Table 5-1. iC-386 Predefined Macros

Name Value
__DATE_ _ Date of compilation (if available)
__FILE_ _ Current source filename
__LINE_ _ Current source line number
__STDC_ _ Conformance to ANSI C standard:
1 indicates conformance
__TIME_ _ Time of compilation (if available)
_ARCHITECTURE_ Intel386 for iC-386 compiler and nomod486

control (default)
Intel486 for iC-386 compiler and mod486 control

_FAR_CODE_ Default address size for function pointers and default
range for function calls:
0 (near) for the compact segmentation model

continued

138 Chapter 5 Listing Files



Table 5-1. iC-386 Predefined Macros (continued)

Name Value
FAR_DATA _ Default address size for data pointers:
1 (far) for all ROM and compact RAM segmentation
models
LONG64_ Default type size for long data types in iC-386:
1 for 8-byte long data types if using long64 control
0 for 4-byte long data types if using nolong64 control
OPTIMIZE_ Current optimization level as set by optimize control:
0,1,2,0r3
ROM_ Placement of constants with code or data:
1 if using rom control
0 if using ram control
Include Files

Use théanclude

control in the compiler invocation or tienclude
directive in the source text to specify an include file. The preprocessor inserts the
contents of a file included with theclude

control before the first line of the

preprocessor

source file. The preprocessor inserts the contents of a file included with the

#include

the#include
See also:

Paired occurrences of théne
The compiler inserts thiline
of the included text and anothgine

control in Chapter 3

iC-386 Compiler User's Guide Chapter 5

preprocessor directive into the source text in place of the line containing
directive.

preprocessor directive bracket the included text.
directive in the preprint listing file at the beginning
directive at the end of the included text.

139



Conditional Compilation

Conditional preprocessor directives delimit sections of source text to be compiled
only if certain conditions are met. The preprocessor evaluates the conditions and
determines which sections of source text are kept. The source text that is not kept
does not appear in the preprint file unlessctbrel control is in effect.

See also: cond |nocond control in Chapter 3

The conditional directives akéf |, #else , #elif , #endif |, #ifdef , and
#ifndef . The#if directive can take a specusdfined operator.

Propagated Directives

140

The preprocessor propagates the directilies , #error , and#pragma from the
source text to the preprint file to ensure that the preprint text is equivalent to the
source text after preprocessing.

See also: Individual directive descriptions in Chapter 11, list of controls that a
#pragma directive can use in Chapter 3

Chapter 5 Listing Files



Print File

This section describes the print file generated by the compiling phase of the
compiler. The print file contains information about the source text read into the
compiler and the object code generated by the compiler. These controls (and the
equivalent DCL-style qualifiers) affect the format and contents of the print file:

code | nocode listexpand | nolistexpand  pagelength
cond | nocond listinclude | nolistinclude pagewidth
diagnostic modulename tabwidth

eject symbols | nosymbols title

list | nolist  xref | noxref

Table 5-2 shows the compiler controls that affect the entire print file format.

Table 5-2. Controls That Affect the Print File Format

Control Effect

eject specifies a form feed (new page)

pagelength determines number of lines per page
pagewidth determines number of characters per line
tabwidth determines number of characters per tab stop

Print File Contents
The print file contains these sections:

page header identifies the compiler and the object module name and gives
the date and time of compilation.

compilation heading identifies the host OS, the compiler, the object module name,
and describes the parameters with which the compiler was
invoked.

source text listing  is the listing of the C program.

remark, warning, and error messages

are generated by the compiler and are listed with the source
text.

pseudo-assembly listing
is a listing of the assembly language object code produced by
the compiler. The code does not contain all the assembler
directives necessary for a complete assembly language
program.

iC-386 Compiler User's Guide Chapter 5 141



symbol table and cross-reference
provide symbolic information and cross-reference
information.

compilation summary
tabulates the size of the output module, the number of
diagnostic messages, and the completion status (successful
termination or fatal error) of the compilation.

Page Header

Each page of the output listing file begins with a page header. The page header
describes the compiler, identifies the module compiled, and shows the date and
page number.

This page header shows the iC-386 compiler compiling the matiuie on the
25th of January, 1991. This example shows the header from the first page of the
print file.

iC-386 COMPILER MAIN 01/25/91 10:28:20 PAGE 1

Page numbers range from 1 to 999, then start over at O.

Compilation Heading

The compilation heading is on the first page of the print file. The compilation
heading gives the name of the object module, the pathname of the object module
file, and the compiler controls specified in the compiler invocation. It also
identifies the compiler version and host system.

For example, to invoke the compiler on a DOS host system:

C:\CEXAMPLE> ic386 main.c compact define(NPAPER) &
>> include(prags.h) &
>> searchinclude(\intelinclude\,includes\)

The compiler processes thmin.c source file and puts the object module into the
file main.obj . The compilation heading shows the host OS, the compiler version,
the module name, and the controls used on invocation:

system-id iC-386 COMPILER V Xx.y , COMPILATION OF MODULE MAIN
OBJECT MODULE PLACED IN main.obj
COMPILER INVOKED BY: \INTEL\bin\IC386.EXE main.c compact
define(NPAPER)

include(prags.h)
searchinclude(\intel\include\,includes\)

142 Chapter 5 Listing Files



If the invocation includes th@odulename control and uses th@object control
to suppress the object file, the invocation looks like:

C:\CEXAMPLE> ic386 main.c compact define(NPAPER) &
>> include(prags.h) &

>> searchinclude(\intelinclude\,includes\) &

>> modulename(NewName) &

>> noobject

The resulting compilation heading shows the different module name in the first
line, and shows the lack of object file in the second line:

iC-386 COMPILER V x.y , COMPILATION OF MODULE NEWNAME

NO OBJECT MODULE PRODUCED
COMPILER INVOKED BY: \INTEL\bin\IC386.EXE main.c compact
define(NPAPER)

include(prags.h)

searchinclude(\intel\include\,includes\)

modulename(NewName) noobject

Source Text Listing

The source text listing contains a formatted image of the source text. It also gives
the statement number, block nesting level, and include nesting level of each source
text statement. If a source line is too long to fit on one line, it continues on as
many following lines as are needed. Continued lines contain a hyphien (

column 17, followed by the source text.

Statement numbers range from 1 to 99999. Error, warning, and remark messages,
when present, refer to the statement numbers in the source text listing. Statement
numbers do not always correspond to the sequence of lines in the source text:
source text lines that end in a backslash (\) are continuations of the previous line.
The listing statement numbers do not increment for continuation lines.

The block nesting level describes how many source text block control constructs
surround the statement. It ranges from O (for a statement outside of any function
definition) to 99. When its value is 0, this field is blank.

The include nesting level describes how mginglude preprocessor directives

or instances of thiaclude control the preprocessor encountered to get to this
statement in the source text. For the input source file, the nesting depth is 0, and
this field is blank. Each nestethclude preprocessor directive orclude

control increments the include nesting level. The include nesting level column has
a value only if thdistinclude control is in effect. The maximum nesting of
include files depends on the number of files open simultaneously during
compilation and can vary with the OS.

iC-386 Compiler User's Guide Chapter 5 143



In addition to the format controls shown in Table 5-2, Table 5-3 shows the
compiler controls that affect the source text listing portion of the print file.

See also: Limitations on the number of nested include files in Chapter 11,
control descriptions in Chapter 3

Table 5-3. Controls That Affect the Source Text Listing

Control Effect

cond | nocond Generates or suppresses uncompiled conditional code.
diagnostic Determines class of messages that appear.

list | nolist Generates or suppresses source text listing.

listexpand | nolistexpand Generates or suppresses macro expansion listing.
listinclude | nolistinclude  Generates or suppresses text of include files.

Remarks, Warnings, and Errors

Compiler messages indicate errors (including fatal errors), warnings, and remarks.
The source text listing contains these messages. The compiler prints each messag
on a separate line immediately following the offending statement. If the offending
statement is not printed, the compiler prints the messages in the listing as the
compiler generates them.

Use theadiagnostic  control to suppress generation of lower-level messages.

See also: diagnostic  control in Chapter 3

Pseudo-assembly Listing

144

The pseudo-assembly listing is an assembly language equivalent to the object code
produced in compilation. It contains a location counter, a source statement
number, and the equivalent assembly code. The location counter is a hexadecimal
value that represents an offset address relative to the start of the object code.

The assembler cannot assemble the pseudo-assembly language listing; it is not a
complete program. It describes the object code produced by the compiler and is
useful for noticing program variations, such as those that result from changing
optimization levels.

Use thecode ornocode control to generate or suppress the pseudo-assembly
listing.

See also: code | nocode  control in Chapter 3

Chapter 5 Listing Files



Symbol Table and Cross-reference

The symbol table lists all objects and their attributes from the compiled code. The
table includes the name, type, size, and address of each object. The table can
optionally include source text cross-reference information. The compiler generates
the table in alphabetical order by identifier. A source module can declare a unique
identifier more than once, but each object, even if named by a duplicate identifier,
appears as a separate entry in the symbol table.

Use thesymbols ornosymbols control to generate or suppress the symbol table.
Use thesymbols andxref controls together to generate additional cross-reference
information.

See also:  Control descriptions in Chapter 3

Compilation Summary

The final line of the compilation summary in the print file is identical to the
sign-off message displayed on the screen when the compilation is complete.
Before this final line, the compiler lists information about the compiled object
module.

If the compilation completes normally (without errors), the compilation summary is
similar to:

MODULE INFORMATION:

CODE AREA SIZE =0000028BH 651D
CONSTANT AREA SIZE = 000002A7H 679D
DATA AREA SIZE = 00000000H 0D
MAXIMUM STACK SIZE = 0000001AH 26D

iC-386 COMPILATION COMPLETE. 0 WARNINGS, 0 ERRORS
If the compilation ends with a fatal error, this line is displayed on the console:

COMPILATION TERMINATED

iC-386 Compiler User's Guide Chapter 5 145






Processor-specific Facilities

This chapter describes the functions, macros, and data types available in the
i86.h ,i186.h ,i286.h ,i386.h, andi486.h header files. These facilities
enable the program to manipulate the unique characteristics of the Intel386,
Intel486, and Pentium family of processors. This chapter contains these topics:

e Making selectors, far pointers, and near pointers

» Using special control functions

« Examining and modifying the flags register

» Examining and modifying the 1/O ports

* Enabling and causing interrupts, with guidelines for creating interrupt handlers

* Manipulating the protected mode features of the Intel386, Intel486, and
Pentium processors

* Manipulating the special control, test, and debug registers in the Intel386,
Intel486, and Pentium processors

* Managing the data cache and paging translation lookaside buffer using special
Intel486 and Pentium processor instructions

*  Manipulating the Intel387 numeric coprocessor, and the Intel486 and Pentium
floating-point units

The functions and macros take the place of assembly language routines you usually
need to write, saving coding time. The functions and macros also improve

run-time performance, because the compiler generates in-line instructions instead
of generating calls to your assembly language routines.

Header files define the functions, macros, and data types. The header files are
designed so that your code includes only the file named for the target processor,
and your application has access to all appropriate features.

iC-386 Compiler User's Guide Chapter 6 147



Tables 6-1 through 6-5 list the function names in the header files. All the functions
are discussed in this chapter. The function names are available only if your code
includes the appropriate header file, and if your code does not redeclare the
function names.

Theig6.n header file defines functions, macros, and data types that apply to the
entire line of Intel386/Intel486/Pentium processors, the Intel387 coprocessor, and
the Intel486/Pentium processor floating-point unit. Two functions are not defined
for Intel386, Intel486, and Pentium processors, as noted.

Table 6-1. Built-in Functions in i86.h

Function Function Function
buildptr halt outword
causeinterrupt inbyte restorerealstatus?!
disable initrealmathunit saverealstatus?!
enable inword setflags
getflags lockset setrealmode
getrealerror outbyte

1 Not for Intel386, Intel486, or Pentium processors. See the i386.h header file for substitute
definitions.

Theil86.h header file uses th#énclude preprocessor directive to include the
contents of thé86.h header file. Thé86.h header file contains functions that
apply to 186 and higher processors.

Table 6-2. Built-in Functions in i186.h

Function Function Function
blockinbyte blockoutbyte blockinword
blockoutword

Thei286.h header file uses th#énclude preprocessor directive to include the
contents of thé186.h header file, which similarly includes the contents of the
i86.n header file. Th&86.h header file contains functions, macros, and data
types that apply to 286 and higher processors in protected mode.

148 Chapter 6 Processor-specific Facilities



Table 6-3. Built-in Functions in i286.h

Function

Function

Function

adjustrpl
cleartaskswitchedflag
getaccessrights
getlocaltable
getmachinestatus

getsegmentlimit

gettaskregister
restoreglobaltable
restoreinterrupttable
saveglobaltable
saveinterrupttable
segmentreadable

segmentwritable
setlocaltable
setmachinestatus
settaskregister
waitforinterrupt

Thei386.h header file uses th#énclude preprocessor directive to include the
contents of thé286.h header file, which enables access to the functions and
macros in thés6.h header file, as well. ThHeg6.h header file contains

functions and macros that apply to the Intel386, Intel486, and Pentium processors
in protected mode.

Table 6-4. Built-in Functions in i386.h

Function Function Function

blockinhword gettestregister saverealstatus?!

blockouthword inhword setcontrolregister
getcontrolregister outhword setdebugregister
getdebugregister restorerealstatus? settestregister

1 These functions are defined differently from those in the i86.h header file.

Thei486.n header file uses th#énclude preprocessor directive to include the
contents of thésg86.h header file, which enables access to the functions and
macros in thé86.h , andi86.n header files, as well. Th486.n header file
contains functions and macros that apply to Intel486 and Pentium processors in
protected mode.

Table 6-5. Built-in Functions in i486.h

Function Function Function

byteswap invalidatetlbentry whbinvalidatedatacache

invalidatedatacache

The header files are include files, not libraries; usetitdude preprocessor
directive or theénclude control to include one of the headers when compiling.
Do not bind to the header files.

iC-386 Compiler User's Guide Chapter 6 149



Making Selectors, Far Pointers, and Near Pointers

Theselector data type and thauildptr ~ function, defined in th&6.h header
file, construct far pointers (segment-selector-and-offset) and extract the selector
portion from far pointers.

A value of typeselector  refers to the 16-bit selector portion of a far pointer.
This data type is compatible with PL/SELECTORJata type. Theelector type
is similar to thevoid * type for type checking:

« The compiler implicitly converts a value of typelector  to any pointer
type, and vice versa. An explicit cast is unnecessary. When the compiler
converts a far pointer to thlselector  type, the compiler discards the offset
portion of the far pointer. When the compiler converts a selector to a far
pointer type, the compiler supplies an offset of zero.

« Conversion between theelector type and any integral type requires an
explicit cast. When the compiler converts a selector to an integral type, it
zero-extends to fill, or it truncates high-order bits to shorten. When the
compiler converts an integral value to tle¢ector  type, it sign-extends
signed values and zero-extends unsigned values to fill, or it truncates
high-order bits to shorten.

Thebuildptr  function takes two arguments: a selector and an offset. The
function returns a far pointer. This is the prototypebfoidptr

void far * buildptr (selector sel ,
void near * offset );

The offset argument can be 0, and the valuetthifiptr  returns is equivalent to
casting a selector to a far pointer type, as these expressions show:

(void far *) sel
[* is the same as */
buildptr ( sel , 0)

Implicit conversion from a far pointer to a near pointer (offset-only) results in a
warning message. To retrieve the offset portion from a far pointer, explicitly cast
to a near pointer, as this expression shows:

(void near *) farptr

150 Chapter 6 Processor-specific Facilities



Using Special Control Functions

Thelockset andhalt functions in thé86.h header file provide special control
over processing.

See also:  Enabling and Causing Interrupts in this chapter for information on
functions that control the processor interrupt mechanisms

Thelockset function takes two arguments: a pointer to a byte and a byte value.
The function generates an exchange instruction (XCHG) with a LOCK prefix. This
is the prototype folockset

unsigned char lockset (unsigned char * lockptr |
unsigned char newbytevalue );

The exchange operation putswbytevalue into the byte pointed to bgckptr

and returns the value previously pointed tadakptr . The LOCK prefix ensures
that the processor has exclusive use of any shared memory during the exchange
operation.

Thehalt function enables interrupts, and halts the processor. It generates a set
interrupt instruction (STI) to enable interrupts, followed by a halt instruction
(HLT). This is the prototype fdralt :

void halt (void);

iC-386 Compiler User's Guide Chapter 6 151



Examining and Modifying the FLAGS Register

Thegetflags andsetflags  functions in thé86.h header file provide access to
the FLAGS register for 86 processors, or the EFLAGS register for Intel386,
Intel486, and Pentium processors. In Intel386, Intel486 and Pentium processors,
the EFLAGS register contains the FLAGS register in its low-order 16 bits. Table
6-6 lists several macros in tigs.h ,i286.h ,i386.h , andi486.h header files

that isolate individual flags from the FLAGS and EFLAGS registers.

|:| Note

In this section, the text refers to a 16-bit word and a 32-bit word,
according to other Intel386, Intel486 and Pentium processor
documentation. In C programming literature, a word is the
amount of storage reserved for an integer, which is 32 bits for
iC-386.

Thegetflags  function takes no arguments, and returns a 32-bit unsigned integer
for iC-386. Use it to retrieve the value of the EFLAGS register. This is the
prototype forgetflags

unsigned int getflags (void);

Thesetflags  function takes as an argument a 32-bit unsigned integer for iC-386.
Use it to set the value of the EFLAGS register. This is the prototype for
setflags

void setflags (unsigned int wordvalue );

The FLAGS register contains the processor flags reflecting the execution and
results of various operations. Figure 6-1 shows the format of the 86 FLAGS and
Intel386, Intel486, or Pentium EFLAGS register.

152 Chapter 6 Processor-specific Facilities



i386™ and i486™ Processors:
Carry Flag
Parity Flag
Auxiliary Carry Flag
Zero Flag
Sign Flag
Trap Flag
Interrupt Enable Flag
Direction Flag
Overflow Flag

386, i486 Processors:
1/O Privilege Level
Nested Task Flag

i386 and i486 Processors:
Resume Flag
Virtual Mode

1486 Processor:
Alignment Check

‘AC‘VM‘RF‘ ‘NT‘ IOFL‘OF‘DF‘IF‘TF‘SF‘ZF‘ ‘AF‘ ‘PF‘ ‘CF|
31 I15 8 0I

| Flags Register |

EFlags Register
(i386 and i486 Processors)

Reserved by Intel,
Must be Zeros W-3369

Figure 6-1. FLAGS and EFLAGS Register

Table 6-6 lists the names of the macros ini@heér ,i286.h ,i386.h , and
i486.h header files and describes the meaning of the corresponding fields of the
flags register. These macro names must be uppercase in the source text.

iC-386 Compiler User's Guide Chapter 6 153



Table 6-6. Flag Macros

Name

Value

Meaning

FLAG_CARRY

FLAG_AUXCARRY

FLAG_PARITY

FLAG_ZERO

FLAG_SIGN

FLAG_TRAP

FLAG_INTERRUPT

FLAG_DIRECTION

FLAG_OVERFLOW

FLAG_IOPL

FLAG_NESTED

0x0001

0x0010

0x0004

0x0040

0x0080

0x0100

0x0200

0x0400

0x0800

0x3000

0x4000

This flag is set when a subtraction causes a
borrow into, or an addition causes a carry out
of, the high-order bit of the result.

This flag is set when a subtraction causes a
borrow into, or an addition causes a carry out
of, the low-order 4 bits of the result.

This flag is set when the modulo 2 sum of the
low-order 8 bits of the result of an operation is
0 (even parity).

This flag is set when the result of an operation
is 0.

This flag is set when the high-order bit of the
result of an operation is set, that is, when a
signed value is negative.

This flag controls the generation of single-step
interrupts. When this flag is set, an internal
single-step interrupt occurs after each
instruction is executed.

This flag, when set, enables the processor to
recognize external interrupts.

This flag, when set, makes string operations
process characters progressing from higher to
lower addresses.

This flag is set when an operation results in a
carry into but not a carry out of the high-order
bit of the result, or a carry out of but not a
carry into the high-order bit of the result (e.g.,
signed overflow).

These two bits define the current task's 1/0
privilege level, controlling the task's right to
execute certain I/O instructions.

This flag is set when the processor executes a
task switch. The flag indicates that the back-
link field of the task state segment is valid.

Chapter 6

continued

Processor-specific Facilities



Table 6-6. Flag Macros (continued)

Name Value Meaning

FLAG_RESUME 0x10000 This flag, when set, disables debug exceptions
so that an instruction can be restarted after a
debug exception without immediately causing
another debug exception.

FLAG_VM 0x20000 This flag, when set, indicates that the current
task is a virtual 86 program.
FLAG_ALIGNCHECK! 0x40000 This flag, when set, causes interrupt 17,

generating a fault for a memory reference to a
mis-aligned address, such as a word at an odd
address. This flag is ignored if the privilege
level is less than 3.

1 For Intel486 and Pentium processors only.

Use the functions and flag macros to set or clear particular flags.

See also:  Sample coderimx386\demo\c\intraompiler directory for example

programs that test the carry bit, and disable and restore interrupts;
Enabling and Causing Interrupts in this chapter

iC-386 Compiler User's Guide Chapter 6 155



Examining and Modifying the Input/Output Ports

The functionsnbyte , inword , outbyte , andoutword in theig86.h header file,
andinhword andouthword in thei386.h header file perform reading from and
writing to processor I/O ports. The functidsisckinbyte , blockinword
blockoutbyte , andblockoutword in theil86.h header file, and

blockinhword  andblockouthword  in thei386.h header file perform block
reading from and block writing to processor I/O ports.

|:| Note

In this section, the text refers to a 16-bit word and a 32-bit word,
according to Intel386, Intel486, and Pentium processor
documentation. In C programming literature, a word is the
amount of storage reserved for an integer, which is 32 bits for
iC-386.

Theinbyte ,inword , andinhword functions take the hardware input port

number as an argument. Thbeyte function returns an 8-bit byte. Thevord
function returns a 32-bit word for Intel386, Intel486, and Pentium processors. The
inhword  function returns a 16-bit word for Intel386, Intel486, and Pentium
processors. These are the function prototypes:

unsigned char inbyte (unsigned short port );
unsigned int inword (unsigned short port );
unsigned short inhword (unsigned short port );

Theoutbyte , outword , andouthword functions take two arguments: the

hardware output port number and the value to send to the porbuibyee

function sends an 8-bit byte to an output port. diteord function sends a

32-bit word for Intel386, Intel486, and Pentium processors. olithevord

function sends a 16-bit word for Intel386, Intel486, and Pentium processors. These
are the function prototypes:

void outbyte (unsigned short port ,

unsigned char bytevalue );
void outword (unsigned short port ,

unsigned int word_or_dwordvalue );
void outhword (unsigned short port ,

unsigned short wordvalue );

156 Chapter 6 Processor-specific Facilities



Theblockinbyte , blockinword , andblockinhword  functions take three
arguments: the hardware input port number, a pointer to the initial byte in the
destination, and the byte, word, or double word count. blde&inbyte ~ function
reads 8-bit bytes from an input port. Thieckinword  function reads 32-bit

words for Intel386, Intel486, and Pentium processors. bide&inhword

function reads 16-bit words for Intel386, Intel486, and Pentium processors. These
are the function prototypes:

void blockinbyte (unsigned short port ,
unsigned char * destinationptr ,
unsigned int bytecount );
void blockinword (unsigned short port ,
unsigned int * destinationptr ,
unsigned int word_or_dwordcount );
void blockinhword (unsigned short port ,
unsigned short * destinationptr ,
unsigned int wordcount );

Theblockoutbyte , blockoutword , andblockouthword functions take three
arguments: the hardware port number, a pointer to the initial byte in the source
location, and a byte, word, or double word count. Blbekoutbyte  function
copies 8-bit bytes from a location in memory to an output port. The
blockoutword  function copies 32-bit words for Intel386, Intel486, and Pentium
processors. Thgockouthword  function copies 16-bit words for Intel386 and
Intel486 processors. These are the function prototypes:

void blockoutbyte (unsigned short port ,
unsigned char const * sourceptr
unsigned int bytecount );

void blockoutword (unsigned short port ,
unsigned int const * sourceptr

unsigned int

void blockouthword (unsigned short

unsigned short const *
unsigned int

iC-386 Compiler User's Guide

word_or_dwordcount );

port
sourceptr
wordcount );

Chapter 6 157



Enabling and Causing Interrupts

Theenable , disable , causeinterrupt , andhalt functions in thég86.h
header file provide control over the interrupt process.

Theenable function generates a set interrupt instruction (STI). STI sets the
interrupt enable flag. This is the prototype daable :

void enable (void);

Thedisable function generates a clear interrupt instruction (CLI). CLI clears the
interrupt enable flag. This is the prototype diable

void disable (void);

Thecauseinterrupt function generates an interrupt instruction (INT). It takes
the interrupt number as an argument. The interrupt number must be a constant in
the range 0 through 255. This is the prototypedoseinterrupt

void causeinterrupt (unsigned char interruptnumber  );

Thehalt function enables interrupts and halts the processor. It generates an STI
instruction followed by a halt instruction (HLT). This is the prototypentdr :

void halt (void);

Interrupt Handlers

Processors executing in protected mode require an interrupt descriptor table (IDT).
This table can be anywhere in memory. The interrupt descriptor table register
(IDTR) is a system register that holds the address of the IDT.

The entries in the IDT are task, trap, or interrupt gates. A gate is a special
control-transfer descriptor which acts like a sophisticated interrupt vector. It
contains the address of the handler and some access information. Its position in th
IDT determines which interrupt it handles. Figure 6-2 shows the format of a gate.
The special descriptors for a task state segment (TSS) and the local descriptor tabl
(LDT) share the four-bit type field but differ in other fields from the gate

descriptor.

See also:  Descriptors, Bystem Concepts

158 Chapter 6 Processor-specific Facilities



Offset 31..16 for i386" /1486

Special Descriptor (Gate, LDT, TSS) =0——— — 0100 for 286 Call Gate

— 0101 for Task Gate

Descriptor Privilege Level— — 0110 for 286 Interrupt Gate

— 0111 for 286 Trap Gate

— 1100 for i386, i486 Call Gate

— 1110 for i386, i486 Interrupt Gate
— 1111 for i386, i486 Trap Gate

Present -

Unused for Task, Trap
and Interrupt Gates

Word Count for Call
Processor Gates

ploptfo] ype [ofofo] | |

Selector Offset 15. .0

31

15 0

0OMO04423

Figure 6-2. Gate Descriptor

High-priority hardware interrupts often use an interrupt gate for automatically
disabling interrupts upon invocation. Software-invoked interrupts often use trap
gates since trap gates do not disable the maskable hardware interrupts. Sometimes
low-priority interrupts (for example, a timer) use a trap gate to enable other devices
of higher priority to interrupt the handler of the lower priority interrupt. Task gates
cause a task switch, which includes saving all of the processor registers and
isolating the address space and privilege level of the handler. A task resumes
execution on each invocation instead of starting from the initial entry point.

To make an iC-386 function into an interrupt handler, usintteupt  control.
This control causes the compiler to generate prolog and epilog code for an interrupt
handler to save and restore registers.

The easiest way to associate an iC-386 interrupt handler with a processor interrupt
is to use the Nucleus system agll set_interrupt.

See also: interrupt control description, in Chapter 3 of this manual,
rq_set_interrupt, System Call Reference

iC-386 Compiler User's Guide Chapter 6 159



Protected Mode Features of Intel386 and Higher
Processors

See also:  Th&ystem Conceptsanual for a description of the protected mode
features of the Intel386, Intel486, and Pentium processors available to
iIRMX applications

Manipulating System Address Registers

The system address registers are the task register (TR), the global descriptor table
register (GDTR), the interrupt descriptor table register (IDTR), and the local
descriptor table register (LDTR).

Thegettaskregister function returns the contents of the TR. This is the
prototype forgettaskregister

selector gettaskregister (void);

Thesettaskregister function loads a selector into the TR. Only protected
mode code at privilege level 0 can execute this function. It takes the selector value
as its argument. This is the prototypedettaskregister

void settaskregister (selector sel );

Thedescriptor_table_reg structure type describes the register value returned
by thesaveglobaltable andsaveinterrupttable functions. This is the
structure definition:

#if LONG64_

typedef unsigned int base_addr;
#else

typedef unsigned long base_addr;
#endif

#pragma NOALIGN("descriptor_table_reg")

struct descriptor_table_reg

{

unsigned short limit;
base_addr base;

b

160 Chapter 6 Processor-specific Facilities



Thesaveglobaltable function copies the contents of the GDTR into a specific
6-byte location of typéescriptor_table_reg . The function takes a pointer to
this destination as an argument. This is the prototypsaf@gylobaltable

void saveglobaltable
(struct descriptor_table_reg * destinationptr );

Therestoreglobaltable function loads a value of type

descriptor_table_reg into the GDTR. Only protected mode code at privilege
level 0 can execute this function. The function takes a pointer to the
descriptor_table_reg 6-byte area as an argument. This is the prototype for
restoreglobaltable

void restoreglobaltable

(struct descriptor_table_reg const * sourceptr );
Thesaveinterrupttable function copies the contents of the IDTR into a
specific 6-byte location of typdescriptor_table_reg . The function takes a

pointer to this destination as an argument. This is the prototype for
saveinterrupttable

void saveinterrupttable
(struct descriptor_table_reg * destinationptr );

Therestoreinterrupttable function loads a value of type
descriptor_table_reg into the IDTR. Only protected mode code at privilege
level O can execute this function. The function takes a pointer to the
descriptor_table_reg 6-byte area as an argument. This is the prototype for
restoreinterrupttable

void restoreinterrupttable
(struct descriptor_table_reg const * sourceptr );

Thegetlocaltable function returns the contents of the LDTR. This is the
prototype forgetlocaltable

selector getlocaltable (void);

Thesetlocaltable function loads a value of typelector  into the LDTR.
Only protected mode code at privilege level 0 can execute this function. It takes
the selector value as an argument. This is the prototypetfocaltable

void setlocaltable (selector sel );

iC-386 Compiler User's Guide Chapter 6 161



Manipulating the Machine Status Word

The machine status word (MSW) contains four bits that indicate the status and
configuration of the processor. In the Intel386, Intel486, and Pentium processors,
the machine status word is the lower word in control register 0 (CR0). Figure 6-3
shows the format of the machine status word.

————— i386™ and 486" Processors: Protected Mode Enable
Paging Monitor Coprocessor
i486 Processor: Emulate Coprocessor
Cache Enable Task Switched

Writes Transparent i386 Processor:

. Extension Type
Write Protect

Alignment Mask ———————— i486 Processor:

Numerics Exception

|PG‘CE‘Wﬂ ‘AM‘ ‘WP‘ ‘NE‘ET‘TS‘EM‘MP‘PE|
31 15 8 0
| |
Machine Status Word
L ]
CRO
(i386 and i486 Processors)

Reserved by Intel, Must be Zeros
W-3371

Figure 6-3. Machine Status Word

Thegetmachinestatus function returns the contents of the machine status word.
This is the prototype fagetmachinestatus

unsigned short getmachinestatus (void);

Thesetmachinestatus function loads a value into the machine status word.

The compiler generates a short jump to the next instruction to clear the instruction
prefetch queue. Only code at privilege level 0 can execute this function. The
function takes the value for the machine status word as an argument. This is the
prototype forsetmachinestatus

void setmachinestatus (unsigned short wordvalue );

162 Chapter 6 Processor-specific Facilities



The cleartaskswitchedflag function clears the task flag in the machine status
word. Only code at privilege level O can execute this function. This is the
prototype forcleartaskswitchedflag

void cleartaskswitchedflag (void);

Four macros isolate particular fields in the machine status word. Table 6-7 lists the
names of the machine status word macros iie8&h header file and describes

the meaning of the corresponding fields of the machine status word. These macro
names must be uppercase in the source text.

Table 6-7. Machine Status Word Macros

Name Value Meaning

MSW_PROTECTION_ENABLE 0x0001  This bit, when set, places the
processor into protected mode
and cannot be cleared except
by RESET.

MSW_MONITOR_COPROCESSOR  0x0002 This bit, when set, makes
WAIT instructions cause
interrupt number 7 if the
task-switched flag is set.

MSW_EMULATE_COPROCESSOR! 0x0004  This bit, when set, makes ESC
instructions cause interrupt
number 7 to enable
coprocessor emulation.

MSW_TASK_SWITCHED 0x0008  This bit, when set, makes the
next coprocessor instruction
cause interrupt number 7 so
software can test whether the
coprocessor context belongs to
the current task.

I Not meaningful for Intel486 or Pentium processors.

iC-386 Compiler User's Guide Chapter 6 163



Accessing Descriptor Information

A segment descriptor contains several attributes in its access rights byte. Figure
6-4 shows the format of an Intel386 and Intel486 segment descriptor.

Present
Available ———  Descriptor Privilege Level
Data: 16-bit Stack =0 —— Segment Descriptor = 1
32-bit Stack = 1 (Special System Descriptor = 0)
———— Data=0
Code: 16-bit Operand =0 — —— Code=1

32-bit Operand =1 —— Data: Normal =0

Expanddown = 1
Code: Normal =0

Conforming =1
Granularity: Byte =0 ——

_ Data: Read Only =0
4K Bytes =1 Read/Write = 1
Code: Execute Only = 0
Execute/Read = 1
Accessed
Base 31.24 ‘ ‘ ‘o ‘ ‘ Limit 19.16 | P ‘ DFL‘ 1 ‘  Type. ‘ | Base23.16
L L L L | L L L L
Base 15..0 Limit 15..0
31 15 0
OSD751
Figure 6-4. Segment Descriptor
The getsegmentlimit function sets the zero flag and returns the limit of the

segment indicated by the selector argument if the following conditions are met (or
clears the zero flag and returns an undefined value otherwise):

e The selector argument is non-null.
* The selector denotes a descriptor within the bounds of the GDT or the LDT.

« If the descriptor is for a data segment, its descriptor privilege level must be
greater than or equal to the current privilege level.

e If the descriptor is for a nonconforming code segment, its descriptor privilege
level must be greater than or equal to the current privilege level.

164 Chapter 6 Processor-specific Facilities



« If the descriptor is for a nonconforming code segment, its descriptor privilege
level must be greater than or equal to the selector’s requested privilege level.

« If the descriptor is for a conforming code segment, its descriptor privilege level
can be any value.

The getsegmentlimit function takes the selector value as an argument. The
prototype is as follows:

Unsigned int getsegmentlimit (selector sel );

Thesegmentreadabliinction returns a 1 if the segment indicated by the selector
argument is readable (or returns a 0 otherwise). A segment is readable if the
following conditions are met:

e The selector argument is non-null.
* The selector denotes a descriptor within the bounds of the GDT or the LDT.
» If the segment descriptor is for a code segment, the execute/read bit must be 1.

« If the descriptor is for a data segment, its descriptor privilege level must be
greater than or equal to the current privilege level.

« If the descriptor is for a nonconforming code segment, its descriptor privilege
level must be greater than or equal to the current privilege level.

« If the descriptor is for a nonconforming code segment, its descriptor privilege
level must be greater than or equal to the selector’s requested privilege level.

» If the descriptor is for a conforming code segment, its descriptor privilege level
can be any value.

Thesegmentreadable  function takes a selector value as an argument. The
prototype is a s follows:

int segmentreadable (selector sel);

The segmentwritable function returns 1 if the segment indicated by the selector
argument is writable (or returns a 0 otherwise). A segment is writable if the
following conditions are met:

e The selector argument is non-null.
e The selector denotes a descriptor within the bounds of the GDT or the LDT.

e The segment descriptor denotes a data segment.

iC-386 Compiler User's Guide Chapter 6 165



166

e The descriptor’s read/write bit must be 1.

» The descriptor privilege level of the segment must be greater than or equal to
the current privilege level.

The segmentwritable function takes a selector value as an argument. The
prototype is as follows:

int segmentwritable (selector sel);

Thegetaccessrights function returns the access rights of the segment indicated
by the selector argument and sets the zero flag if the following conditions are met
(or clears the zero flag and returns an undefined value otherwise):

e The selector argument is non-null.
e The selector denotes a descriptor within the bounds of the GDT or the LDT.

« If the descriptor is for a data segment, its descriptor privilege level must be
greater than or equal to the current privilege level.

« If the descriptor is for a nonconforming code segment, its descriptor privilege
level must be greater than or equal to the current privilege level.

« If the descriptor is for a nonconforming code segment, its descriptor privilege
level must be greater than or equal to the selector’s requested privilege level.

« If the descriptor is for a confirming code segment, its descriptor privilege level
can be any value.

Thegetaccessrights function takes a selector value as an argument. The
return value is four bytes with the access rights in the byte above the low-order
byte. The prototype for getaccessrights is as follows:

unsigned int getaccessrights (selector sel);

A segment descriptor and a special descriptor have several fields in common: the

present bit, the descriptor privilege level, and the segment or special descriptor bit.
Figure 6-5 shows the format of a special descriptor, such as a gate, local descriptol
table (LDT), or task state segment (TSS).

Chapter 6 Processor-specific Facilities



Special Descriptor (Gate, LDT, TSS) =0——————

Descriptor Privilege Level———

Present —

Offset 31. .16 for i386" /i48
Processor

0001 for 286 Available TSS
0010 for LDT

0011 for 286 Busy TSS

0100 for 286 Call Gate

0101 for Task Gate

0110 for 286 Interrupt Gate
0111 for 286 Trap Gate

1001 for i386/i486 Available TSS
1011 for i386/i486 Busy TSS
1100 for i386/i486 Call Gate
1110 for i386/i486 Interrupt Gate
1111 for i386/i486 Trap Gate

Unused for Task, Trap
and Interrupt Gates

Word Count for Call
Gates

plopLfo] e [ojojo] |

Selector

Offset 15 . .0

31 15

0 OM04422

Figure 6-5. Special Descriptor

Table 6-8 lists the name s of the macros in the i286.h header file that isolate
information for all descriptors (segment and special) and describes the meaning of
the corresponding fields of the access byte. Refer to Figure 6-4 for the format of a
segment descriptor. These macro names must be uppercase in the source text.

Table 6-8. General Descriptor Access Rights Macros

Name Value Meaning

AR_SEGMENT 0x1000 This bit is 1 for a segment descriptor and
0 for a special descriptor, such as a gate.

AR_PRIV_MASK 0x6000 These two bits indicate the descriptor
privilege level of the segment.

AR_PRESENT 0x8000 This bit indicates whether or not the
segment is present in memory.

AR_PRIVILEGE(X)! Isolates the descriptor privilege level in
the low-order bits of a word.

AR_PRIV_SHIFT 13 Used by AR_PRIVILEGE to shift the

descriptor privilege level bits.

The macro definition is as follows:

#define AR_PRIVILEGE(X) (X & AR_PRIV_MASK) >> AR_PRIV_SHIFT)

iC-386 Compiler User's Guide

Chapter 6 167



Table 6-9 lists the names of the macros in the i286.h header file that isolate
information for segment descriptors and describes the meaning of the
corresponding fields of the segment descriptor access byte. Refer to Figure 6-4 for
the format of a segment descriptor. These macro names must be uppercase in the
source text.

Table 6-9. Segment Descriptor Access Rights Macros

Name Value Meaning

AR_ACCESSED 0x0100 If the AR_SEGMENT bit is 1 and the
AR_EXECUTABLE bit is 0, this bit is set
to 1 when the segment is accessed or the
selector for the segment is loaded into a
selector register.

AR_WRITABLE 0x0200 If the AR_SEGMENT bit is 1 and the
AR_EXECUTABLE bit is 0, this bit is 1 for
a writable data segment and O for a read-
only data segment.

AR_READABLE 0x0200 If the AR_SEGMENT bit is 21 and the
AR_EXECUTABLE bit is 1, this bit is 1 for
a readable code segment and for an
execute-only code segment.

AR_EXPAND_DOWN 0x0400 If the AR_SEGMENT bit is 1 and the
AR_EXECUTABLE bit is 0, this bit is 1 for
an expand-down data segment and O for
a non-expand-down data segment.

AR_CONFORMING 0x0400 If the AR_SEGMENT bitis 1 and the
AR_EXECUTABLE bit is 1, this bit is 1 for
conforming code segment and O- for a
non-conforming code segment.

AR_EXECUTABLE 0x0800 If the AR_SEGMENT bit is 1, this bit is 1
for a code segment and - for a data
segment.

168 Chapter 6 Processor-specific Facilities



Table 6-10 lists the names of the macros in the i286.h header file that isolate
information for special descriptors and describes the meaning of the corresponding
fields of the segment descriptor access byte. These macro names must be
uppercase in the source text.

Table 6-10. Special Descriptor Access Rights Macros

Name Value Meaning

AR_CALL_GATE 0x0000 If the AR_SEGMENT bit is 0 and the
AR_GATE bit is 1, the low-order type bits
are 00 for a call gate.

AR_TSS 0x0100 If the AR_SEGMENT bit is 0-and the
AR_GATE bit is 0, this bitis 1 for an
available task state segment.

AR_TASK_GATE 0x0100 If the AR_SEGMENT bit is 0 and the
AR_GATE bit is 1, the low-order type bits
are 01 for a task gate.

AR_BUSY 0x0200 If the AR_SEGMENT bit is 0 and the
AR_GATE bit is 0, this bit is 1 for a busy
task state segment.

AR_INTR_GATE 0x0200 If the AR_SEGMENT bit is 0 and the
AR_GATE bit is 1, the low-order type bits
are 10 for an interrupt gate.

AR_GATE_MASK 0x0300 These two bits indicate the gate type.

AR_TRAP_GATE 0x0300 If the AR_SEGMENT bit is 0 and the
AR_GATE bit is 1, the low-order type bits
are 11 for a trap gate.

AR_GATE 0x0400 If the AR_SEGMENT bit is 0, this bitis 1
for a gate and O for other special
descriptors.

AR_386_TYPE 0x0800 If the AR_SEGMENT bit is 0, this bitis 1
for an i386(TM) processor call, interrupt,
or trap gate and 0 for a 286 processor
call, interrupt, or trap gate.

AR_GATE_TYPE(x)! Isolates the gate type in the high-order
byte of a word.

The macro definition is as follows:
#define AR_GATE_TYPE(x) ((X) & AR_GATE_MASK)

iC-386 Compiler User's Guide Chapter 6 169



Adjusting Requested Privilege Level

170

A selector for a processor segment has a two-bit field called requested privilege
level (RPL) This field normally contains the descriptor privilege level of the
referring or calling code segment (referring code segment if the target is a data
segment, calling code segment if the target is a code segment). Through
adjustment, the RPL field can represent the descriptor privilege level of the original
calling segment in a series of nested calls. Figure 6-6 shows the format of a
selector.

Requested Privilege Level

Table Indicator: GDT =0, LDT = 17

Index Into Table TI RI‘DL
|

15 8 0
0sD286

Figure 6-6. Selector

Adjusting the RPL field of the selector of a called segment ensures that nested cod
segment access occur at a level no more privileged than the level of the original
calling segment.

Theadjustrpl  function is the operating system software, but can execute at any
privilege level. the function takes a selector value as an argument (the selector of
the called segment). The prototypeddjustrpl  is as follows:

selector adjustrpl (selector sel );

Theadjustrpl  function compares its argument with the selector for the code
segment that called the routing that invokeflistrpl . The adjustrpl function
adjusts the selector argument and sets or clears the zero flag in the flags register a
follows:

If the RPL of the argument is more privileged than the RPL of the calling segment,
the function sets the zero flag, adjusts the RPL of the selector argument to the
lesser privilege level, and returns the adjusted selector.

If the RPL of the argument is the same or less privileged than the RPL of the
calling segment, the function clears the zero flag and returns the selector argument
unchanged.

Chapter 6 Processor-specific Facilities



Manipulating the Control, Test, and Debug Registers
of Intel386™, Intel486™, and Pentium " Processors

Thei386.h header file contains functions that enable iC-386 programs to examine
and set the contents of the control, test, and debug registers. Only code executing
at privilege level 0 can access these registers. Figure 6-7 shows the special
registers accessible in the Intel386, Intel486, and Pentium processors.

|:| Note

Applications accessing these registers cannot be debugged using
the Soft-Scope or IRMX SDM debuggers.

iC-386 Compiler User's Guide Chapter 6 171



172

CR3

CR2

CR1

CRO

DR7

DR6

DR5

DR4

DR3

DR2

DR1

DRO

TR7

TR6

TRS5

TR4

TR3

TR2

TR1

TRO

Control Registers

Page Directory‘ Base Register

Page Fault Lipear Address

Reserved, Inaccessible
\

‘ MSwW

31 15

Debug Registers

Cor‘ltrol

Sta‘tus

Reserved, Inaccessible
\

Reserved, Inaccessible
\

Breakpoint 3 L‘inear Address

Breakpoint 2 ITinear Address

Breakpoint 1 ITinear Address

Breakpoint O ITinear Address

31 15

Test Registers

TLB Te‘st Data

TLB Test ‘Command

Cache Test Control (i4860] Processor)
\

Cache Test Status (486 Processor)
\

Cache Test Data (i486 Processor)
\

Reserved, Inaccessible
\

Reserved, Inaccessible
\

Reserved, Inaccessible
|

31 15

0

W-3372

Figure 6-7. Control, Test, and Debug Registers
of Intel386, Intel486, and Pentium Processors

Chapter 6

Processor-specific Facilities



Thegetcontrolregister , gettestregister , andgetdebugregister

functions return the 32-bit contents of the specified register. The functions take the
register number as an argument. The register number must be a constant. The
functions' prototypes are:

unsigned int getcontrolregister (const unsigned char number);

unsigned int gettestregister (const unsigned char number);

unsigned int getdebugregister (const unsigned char number);
Thesetcontrolregister , Settestregister , andsetdebugregister

functions load a 32-bit value into the specified register. The functions take the
register number and the 32-bit value as arguments. These are their prototypes:

void setcontrolregister (const unsigned char number ,
unsigned int value );
void settestregister (const unsigned char number ,
unsigned int value );
void setdebugregister (const unsigned char number ,
unsigned int value );

Control register 0 (CRO0) contains the machine status word in its low-order 16 bits.
Figure 6-8 shows the format of control register O.

See also:  Manipulating the Machine Status Word in this chapter

iC-386 Compiler User's Guide Chapter 6 173



i386™ and i486™ Processors: Protected Mode Enable

Paging Monitor Coprocessor
i486 Processor: Emulate Coprocessor
Cache Enable Task Switched

Writes Transparent i386 Processor:

. Extension Type
Write Protect

Alignment Mask i486 Processor:

Numerics Exception

|PG‘CE‘Wﬁ ‘AM‘ ‘WF’( ‘NE‘ET‘TS‘EM‘MP‘PE|
31 15 8 0
| |

Machine Status Word

CRO
(i386 and i486 Processors)

Reserved by Intel, Must be Zeros
W-3373

Figure 6-8. Control Register 0 of Intel386, Intel486, and Pentium Processors

Table 6-11 lists the names of the macros ind&eh header file and describes
the meaning of the corresponding fields in the high-order 16 bits of the CRO control
register. These macro names must be uppercase in the source text.

Table 6-11. Control Register 0 Macros for Intel386, Intel486,
and Pentium Processors

Name Value Meaning

CRO_EXTENSION_TYPE 0x0010 This bitis 1 if the Intel387 coprocessor,
Intel486 processor, or the Pentium
processor is present, and 0 if the Intel287
coprocessor is present.

CRO_PAGING_ENABLED 0x8000 This bitis 1 if paging is enabled, or O if
paging is disabled.

174 Chapter 6 Processor-specific Facilities



Managing the Features of the Intel486 and Pentium
Processors

Thei486.n header file contains functions that enable iC-386 programs to
manipulate the unique features of the Intel486 and Pentium processors.

The Intel386, Intel486, and Pentium processors execute memory read and write
operations from low-order to high-order addresses. This order is called little
endian. Théyteswap function reverses the order of bytes in a 32-bit word,
converting little endian format to big endian format. This feature is useful for
transferring data between the Intel486 or Pentium processor and foreign processors
or peripherals. The function takes a 32-bit word as its argument, and returns the
swapped 32-bit value. This is the function prototype:

unsigned int byteswap (unsigned int value );

The Intel486 and Pentium processors also contain on-chip caches and provide
instructions to manipulate those caches. ihtaidatedatacache function
flushes the internal data cache. Its prototype is:

void invalidatedatacache (void);

Thewbinvalidatedatacache function flushes the internal data cache and
directs any external cache to write back its contents and flush itself. This is the
function prototype:

void wbinvalidatedatacache (void);

The translation lookaside buffer (TLB) is a cache used for page table entries. The
invalidatetlbentry function marks a single entry in the translation lookaside
buffer (TLB) invalid. The function takes an address of a memory location as an
argument; the argument must have the address opegpfmeteding it. If the

TLB contains a valid entry which maps the argument address, that entry is marked
invalid. This is the function prototype:

void invalidatetlbentry (void far * memoryaddress );

iC-386 Compiler User's Guide Chapter 6 175



Manipulating the Numeric Coprocessor

Thei86.h header file contains several functions, macros, and data types that
enable iC-386 programs to manipulate a numeric coprocessor, a true software
emulator, or the Intel486 or Pentium processors floating-point unit.

See also: 80387 Programmer's Reference ManaeASM386 Assembly
Language Reference

This section uses the term numeric coprocessor to indicate a coprocessor, emulato
or on-chip unit.

The numeric coprocessor uses 8 numeric data registers, a control word register, a
status word register, a tag word register, an instruction pointer and a data pointer.
The coprocessor treats the numeric data registers as if they were a stack.

Figure 6-9 shows the numeric data register set. Figure 6-10 shows the environmer
registers for the Intel387 coprocessor, and the Intel486 and Pentium processor FPL

Sign W ExponentW Significand W

ST(7)

ST(6)

ST(5)

ST(4)

ST(3)

ST(2)

ST(1)

ST(0)

79 78 64 63 0

W-3374

Figure 6-9. Numeric Coprocessor Stack of Numeric Data Registers

176 Chapter 6 Processor-specific Facilities



Data Pointer — —

Instruction Pointer | — —

Reserved Tag Word
Reserved Status Word
Reserved Control Word
31 15 0

W-3375

Figure 6-10. Intel387 Numeric Coprocessor or Intel486 and
Pentium Processor FPU Environment Registers

Thesetrealmode  function sets the fields of the control word.
Thegetrealerror function retrieves the value of the status word.

The numeric coprocessor's environment consists of the contents of the control
word, status word, tag word, instruction pointer, and data pointer. The numeric
coprocessor's state consists of the contents of all the registers.

See also:  Control word and thetrealmode  function; status word and the
getrealerror function; Saving and Restoring the Numeric
Coprocessor State for data types and functions relative to the numeric
data registers, environment, and state, in this chapter

iC-386 Compiler User's Guide Chapter 6 177



Tag Word

The tag word contains a 2-bit field for each numeric data register. The tag fields
indicate the kind of value in the register and whether or not the register contains a
valid value. Figure 6-11 shows the tag word and the possible values for each tag.

1] s1e | s1e st st | st@ st [ sTo |
15 8 0

For Each Tag: 00 = Valid
01 = Zero (True)
10 = Special
11 = Empty

W-3376

Figure 6-11. Numeric Coprocessor Tag Word

Table 6-12 lists the names of the tag word macros iigéie header file that

isolate a tag from the tag word. These macro names must be uppercase in the
source text.

Table 6-12. Numeric Coprocessor Tag Word Macros

Name Value Meaning

I187_TAG_MASK 0x0003 Eachtag is 2 bits.
1I87_TAG(x,))!

Isolates the tag for the yth numeric register in
the low-order bits of a word.

187_TAG_SHIFT 2 Used by 187_TAG to shift the appropriate tag
into position.

1 This is the macro definition:

#define 187_TAG( xy ) (((  X).tag>> (187_TAG_SHIFT *( V) &
187_TAG_MASK)

Control Word

The control word contains exception mask bits and three sets of control bits. The
mask bits correspond to the flags in the status word (refer to Figure 6-13 for the
format of the status word). Figure 6-12 shows the format of the control word.

178 Chapter 6 Processor-specific Facilities



Infinity Control for
8087 and i287™ Coprocessors

Rounding Control
Precision Control

Interrupt Enable Mask for
8087 Coprocessor

Exception Masks:
(1 = Exception is Masked)

Precision Mask

Underflow Mask

Overflow Mask

Zero Divide Mask
Denormalized Operand Mask
Invalid Operation Mask

[ Tec[re[ee | [ [owfomforizuloulm]

15 8 0
Reserved by Intel, PC Values: 00 = 24-Bit Significand (Single Precision)
Must be Zeros 01 = Reserved

10 = 53-Bit Significand (Double Precision)
11 = 64-Bit Significand (Extended Precision)

RC Values: 00 = Round to Nearest or Even
01 = Round Down (Toward -, )
10 = Round Up (Toward +,, )
11 = Chop (Truncate Toward Zero)

IC Values: 0 = Projective Closure Signed ©'s)
(8087/i287) 1= Affine Closure (Unsigned 's)

W-3377

Figure 6-12. Numeric Coprocessor Control Word

Thesetrealmode function loads a value into the control word. The function
takes the value as its argument. This is the prototypefi@almode

void setrealmode (unsigned short mode);

Table 6-13 lists the names of the macros ingdé header file that isolate
information from the control word. These macro names must be uppercase in the
source text.

iC-386 Compiler User's Guide Chapter 6 179



Table 6-13. Numeric Coprocessor Control Word Macros

Name Value Meaning
187_INVALID_OPERATION 0x0001  This bit masks or unmasks the IE
bit in the status word.
I87_DENORMALIZED_OPERAND 0x0002  This bit masks or unmasks the DE
bit in the status word.
187_ZERO_DIVIDE 0x0004  This bit masks or unmasks the ZE
bit in the status word.
187_OVERFLOW 0x0008  This bit masks or unmasks the OE
bit in the status word.
187_UNDERFLOW 0x0010  This bit masks or unmasks the UE
bit in the status word.
187_PRECISION 0x0020  This bit masks or unmasks the PE
bit in the status word.
I87_CONTROL_PRECISION 0x0300  These two bits control whether a
24-bit, 53-bit, or 64-bit significand
is used.
187_PRECISION_24 BIT 0x0000  The precision bits are 00 for 24-bit
significand (single) precision.
187_PRECISION_53 BIT 0x0200  The precision bits are 10 for 53-bit
significand (double) precision.
I87_PRECISION_64 BIT 0x0300  The precision bits are 11 for 64-bit
significand (extended) precision.
187_CONTROL_ROUNDING 0x0C00 These two bits control the method
used in rounding.
187_ROUND_NEAREST 0x0000  The rounding bits are 00 to round
to nearest or even.
187_ROUND_DOWN 0x0400  The rounding bits are 01 to round
down.
187_ROUND_UP 0x0800  The rounding bits are 10 to round
up.
187_ROUND_CHOP 0x0CO00  The rounding bits are 11 to
truncate toward zero.
I87_CONTROL_INFINITY1 0x1000  This bit controls whether projective
closure or affine closure is used to
represent infinity.

continued

180 Chapter 6 Processor-specific Facilities



Table 6-13. Numeric Coprocessor Control Word Macros (continued)

Name Value Meaning

I87_INFINITY_PROJECTIVE? 0x0000  The infinity bit is 0 to use
projective closure (unsigned
infinity).

I87_INFINITY_AFFINE?® 0x1000  The infinity bit is 1 to use affine
closure (signed infinities).

1 For 8087 and 287 numeric coprocessors only.

Status Word

The status word contains flags, condition codes, the top of the stack of numeric
data registers, and a busy bit. The flag bits correspond to the mask bits in the
control word (refer to Figure 6-12 for the format of the control word). Figure 6-13
shows the format of the status word. Table 6-14 shows the values of the condition
codes for the Intel387 numeric coprocessor or Intel487 FPU.

iC-386 Compiler User's Guide Chapter 6 181



Busy

Condition Code 3

Stack top Pointer
Condition Code 2
Condition Code 1
Condition Code 0

Error Summary Status
(Set if any Unmasked
Exception bit is set, Else
Cleared)

Stack Flag for i387," i486" FPU

Exception Flags:
(1 = Exception has Occured)

Precision

Underflow

Overflow

Zero Divide
Denormalized Operand
— Invalid Operation

|B‘C3‘ ST ‘CZ‘Cl‘CO‘ES‘SF‘PE‘UE‘OE‘ZE‘DE‘IE|
15 8 0

ST Values: g0 = Register 0 is Top of Stack
001 = Register 1 is Top of Stack
010 = Register 2 is Top of Stack
011 = Register 3 is Top of Stack
100 = Register 4 is Top of Stack
101 = Register 5 is Top of Stack
110 = Register 6 is Top of Stack
111 = Register 7 is Top of Stack

W-3378

Figure 6-13. Numeric Coprocessor Status Word

182 Chapter 6 Processor-specific Facilities



Table 6-14. Intel387 Numeric Coprocessor, and Intel486 or
Pentium Processor FPU Condition Codes

Instructions C, C, C; C, Interpretation
FCOM, FCOMP, 0 0 OorO/U O stack top > operand
FCOMPP, FTST, 0 0 OorO/U 1 stack top < operand
FUCOM, FUCOMP, 1 0 OorO/U O stack top = operand 1
FUCOMPP, FICOM, 1 1 OorO/U 1 unordered
FICOMP
FPREM, FPREM1 Q1 0 Qo0 Q2 complete reduction
with 3 low bits of
quotient in CO, C3,
and C1 U
U 1 U U incomplete reduction
FXAM 0 0 Sign 0 unsupported 0
0 0 Sign 1 NaN
0 1 Sign 0 normal
0 1 Sign 1 infinity
1 0 Sign 0 zero
1 0 Sign 1 empty
1 1 Sign 0 denormal
FCHS, FABS, FXCH, U U OorO/U U
FINCTOP,
FDECTOP, Constant
loads, FXTRACT,
FLD, FILD, FBLD,
FSTP
FIST, FBSTP, ) U Roundor U rounding valid when
FRNDINT, FST, Oo/U PE bit of status word
FSTP, FADD, FMUL, is set
FDIV, FDIVR, FSUB,
FSUBR, FSCALE,
FSQRT, FPATAN,
F2XM1, FYL2X,
FYL2XP1

continued

iC-386 Compiler User's Guide Chapter 6 183



Table 6-14. Intel387 Numeric Coprocessor, and Intel486 or
Pentium Processor FPU Condition Codes (continued)

Instructions C, C, C; C Interpretation
FPTAN, FSIN, FCOS, U 0 Round U complete reduction
FSINCOS or O/U

U 1 U U incomplete reduction
FLDENV, FRSTOR Loaded Loaded Loaded Loaded each bit loaded from

memory

FLDCW, FSTENV, U U U U undefined
FSTCW, FSTSW,
FCLEX, FINIT,
FSAVE
Key:

O/U = When IE and SF bits of status word are set

1 = stack overflow and 0 = stack underflow

U = instruction leaves value undefined

Qp, = quotient bit n following complete reduction (C,=0)

Thegetrealerror function returns the contents of the low-order byte of the
status word and then clears the exception flags in the status word to zeros. This is
the prototype fogetrealerror

unsigned short getrealerror (void);

184 Chapter 6 Processor-specific Facilities



Table 6-15 lists the names of the macros ingéé header file that isolate
information from the status word. These macro names must be uppercase in the
source text.

Table 6-15. Numeric Coprocessor Status Word Macros

Name Value Meaning

187_STATUS_ERROR 0x0080 This bit is 1 if any unmasked
exception bit is set.

I187_STATUS_STACKTOP_MASK 0x3800 These three bits indicate the
numeric register that is at the top
of the stack.

I87_STATUS_STACKTOP_SHIFT 11 Used by
I87_STATUS_STACKTOP to shift
the stack top bits.

I87_STATUS_STACKTOP(env)! Isolates the stack top bits in the
low-order bits of a word.
I187_STATUS_BUSY 0x8000 This bit is 1 when the

coprocessor is executing or 0
when the coprocessor is idle.

187_STATUS_CONDITION_CODE 0x4700 These four bits are the condition
code bits; they reflect the
outcome of arithmetic operations.

187_CONDITION_CO 0x0100 This bit is condition code bit 0
(see Table 6-14).
I87_CONDITION_C1 0x0200 This bit is condition code bit 1
(see Table 6-14).
I87_CONDITION_C2 0x0400 This bit is condition code bit 2
(see Table 6-14).
I87_CONDITION_C3 0x4000 This bit is condition code bit 3

(see Table 6-14).

1 This is the macro definition:
#define 187_STACKTOP(env) (((env).status &
187_STATUS_STACKTOP_MASK)
>>\ 187_STATUS_STACKTOP_SHIFT)

iC-386 Compiler User's Guide Chapter 6 185



Intel387™ Numeric Coprocessor, and Intel486 or Pentium
Processor FPU Data Pointer and Instruction Pointer

Figure 6-14 shows the protected mode format of the data pointer and instruction
pointer for the Intel387 numeric coprocessor, and the Intel486 or Pentium processo
FPU.

Protected Mode

Reserved Operand Selector

Data Pointer

Operand Offset

Instruction ?pcode 10..0 CS Selector
Pointer

IP Offset

31 26 15 0

Reserved by Intel, Must be Zeros
W-3379
Figure 6-14. Intel387 Numeric Coprocessor, and Intel486r Pentium Processor
FPU Data Pointer and Instruction Pointer

Thei387_protected_addr data type defines the structure of the information in
the data pointer or instruction pointer for the Intel387 numeric coprocessor, and the
Intel486 or Pentium processor FPU.

Thei387_protected_addr structure type accommodates the value of the
protected mode data pointer or instruction pointer. difeede field is undefined
for the data pointer. This is the structure definition:

#pragma ALIGN("i387_protected_addr")
struct i387_protected_addr
{

unsigned ip_offset: 32;

unsigned cs_sel : 16;

unsigned opcode :11,:5;

unsigned op_offset: 32;

unsigned op_sel : 16, : 16;

186 Chapter 6 Processor-specific Facilities



Saving and Restoring the Numeric Coprocessor State

The numeric coprocessor's environment is the contents of the control word, status
word, tag word, instruction pointer, and data pointer. The numeric coprocessor's
state is the contents of the environment registers plus the numeric data register
stack. Refer to Figures 6-9 and 6-10 for the general format of these registers.

Thei387_environment  data type defines the environment for the Intel387
coprocessor, and the Intel486 or Pentium processor FPUiSThempreal  data
type and theempreal_t  typedef define the format of one numeric register. The
i387_state  data type defines the structure of all the registers for the Intel387
coprocessor, and the Intel486 or Pentium processor FPUsaVéiealstatus
andrestorerealstatus functions manipulate the entire state of the numeric
COprocessor.

Thei387_environment  structure type defines the Intel387 numeric coprocessor,
and the Intel486 or Pentium processor FPU environment. This is the structure
definition:

#pragma ALIGN("i387_environment")
struct i387_environment

{
unsigned control: 16, : 16;
unsigned status : 16, : 16;
unsigned tag :16,:16;
union i387_address ptrs_n_opcode;
b

Thei87_tempreal  structure type antgmpreal_t typedef define the fields in
one numeric register. You can define 8BTFIELD macro to control whether the
one-bit sign field is signed or unsigned. These are the definitions for
i87_tempreal  andtempreal_t

#pragma NOALIGN ("i87_tempreal”)
struct i87_tempreal
{
char  significand[8];
unsigned exponent: 15;
#if defined(SBITFIELD)
signed sign : 1;
#else
unsigned sign  : 1;
#endif
3

typedef struct i87_tempreal tempreal_t;

iC-386 Compiler User's Guide Chapter 6 187



188

Thei387_state  structure defines the state of the Intel387 numeric coprocessor,
and the Intel486 or Pentium processor FPU. This is the structure definition:

struct i387_state

{
struct i387_environment environment;
tempreal_t stack[8];

b

Thesaverealstatus function copies the contents of the numeric coprocessor
state into a specific location of tyfg87_state  for the Intel387 coprocessor, and
the Intel486 or Pentium processor FPU. The function takes a pointer to this
destination as an argument.

The prototype fosaverealstatus for the Intel387 coprocessor, and the Intel486
or Pentium processor FPU is:

void saverealstatus (struct i387_state * destinationptr );

Therestorerealstatus function loads values into all the numeric coprocessor
registers. The function takes as an argument a pointer ig8thetate  save
area for the Intel387 coprocessor, and the Intel486 or Pentium processor FPU.

The prototype forestorerealstatus for the Intel387 coprocessor, and the
Intel486 or Pentium processor FPU is:
void restorerealstatus (struct i387_state const * sourceptr );

U uu

Chapter 6 Processor-specific Facilities



Assembler Header File

Theutil.ah  header file contains macros that help interface assembly routines to
iC-386 programs. To use these facilities, include the header file in your assembly
routines. Theautil.ah  assembler header file provides these facilities:

e Segmentation and linkage directives and generic data type specifiers for any
standard memory model; for iRMX applications, use compact model

« Standard prolog and epilog for conformance to either the variable parameter
list (VPL) or the fixed parameter list (FPL) calling convention

« Simple directives for using parameters and automatic variables

To select these features, use header controls thatilthe = macros recognize.
The source for theti.ah ~ header file is common for ASM86, ASM286, and
ASM386.

See also:  Sample codermx386\demo\c\intraompiler directory for examples
of code using macros, source files, expanded source code for ASM386
for the compact memory model, and implementations oftthep
andmemcpy functions.

Macro Selection
The macros defined imil.ah  fall into five groups:

Flag macros indicate segmentation model, calling convention, and
instruction set used in the assembly.

Register macros are generic register names and expand to appropriate
registers depending on the calling convention.

Segment macros are names of segments or groups as determined by
segmentation model.

Type macros are generic data type specifications and expand to
appropriate types depending on segmentation model.

Operation macros  are instructions or directives for commonly used assembly
language operations.

iC-386 Compiler User's Guide Chapter 7 189



Ensure that thenclude: environment variable contains the path for the
uti.,ah  file. For example, seinclude: as follows:

C:> set :include:=\intel\lib\
Use this line in your assembly source text to inclutdeh
$include(:include:util.ah)

The expansion of the macrosutii.an  depends on the value of a macro named
controls , which contains a list of header controls that specify the behavior of the
utl.ah  macros. Table 7-1 lists the header controls to use for iRMX applications.

Table 7-1. Assembler Header Controls for Macro Selection

Header Control Abbr. Description Default

asm386 generate code for ASM386 asm86

compact cp generate code for compact small |
memory model

fixedparams fp generate prolog/epilog for fixedparams
FPL calling convention

varparams vp generate prolog/epilog for fixedparams
VPL calling convention

'module=name' set module name module=anonymous

ram generate code for RAM ram
sub-model

rom generate code for ROM ram
sub-model

'stacksize=size'l set size of the stack segment stacksize=0

Tuse single quotation marks around these header controls on the assembler invocation line.

If you includeutil.ah , you must define theontrols ~ macro in the assembler
invocation or in the assembly source text before the line includireh

Otherwise, the assembler reports an undefined macro error. You can define the
controls  macro with an empty value; any header controls that you do not specify
take on their default settings.

190 Chapter 7 Assembler Header File



You can define theontrols  macro in the assembler invocation, or in the source
text, or both places:

e If you define thecontrols  macro in the assembler invocation, provide a
definition for thecontrols  macro each time you assemble the program.
Thus, each time you assemble the program you can specify any header control
settings or define theontrols  macro with an empty value, letting the
unspecified controls take on their default settings.

e If you define thecontrols  macro in the assembly source text as a simple list
of header controls, you can change the header control settings only by
modifying the source text. When the assembler processes a macro definition,
it discards any existing definition of that macro, so defining:tinérols
macro in the assembler invocation has no effect.

* You can define theontrols  macro in the assembler invocation, then use that
definition of it as part of a redefinition of thentrols  macro in the assembly
source text. This forces some header control settings to take effect any time
you invoke the assembler for that source text. You can also override other
header control settings and let some header controls take on their global
default settings.

This is the DOS syntax for the assembler invocation:

asm386 file [ asm_controls ] %define(controls)([ header_controls )
Where:
file is the source file to assemble.
asm_controls are controls for the assembly.

See also: ASM contro]ASM386 Macro Assembler
Operating Instructions

header_controls are header controls from Table 7-1, separated by spaces.

Within the source text, this is the syntax for definingdtr@rols macro and
including theutil.ah  header file:

%define(controls)
([ file_default_ctls ] %controls [ file_override_ctls )
$include(:include:util.ah)

iC-386 Compiler User's Guide Chapter 7 191



192

If you specify conflicting controls, the last one encountered by the assembler takes
effect. These are the precedence levels of the header controls:

The file_override_ctls , specified last in theontrols  definition in the
source text, have the highest precedence. filEheverride_ctls always
take effect, overriding any conflicting control in theader_controls or
file_default_ctls

The header_controls , specified in the assembler invocation (and expanded
in the source text from thgcontrols embedded in theontrols

definition), have second precedence. hbeder_controls take effect

when they do not conflict with thi#e_override_ctls . A control in the
header_controls overrides any conflicting control in the

file_default_ctls

Thefile_default_ctls , specified first in theontrols  definition in the
source text, have third precedence. Tilkedefault_ctls take effect
whenever they do not conflict with tieader_controls or
file_override_ctls

The global default controls, listed in Table 7-2, have the lowest precedence.
The global default controls take effect only when they do not conflict with the
file_override_ctls , header_controls , or file_default_ctls

Chapter 7 Assembler Header File



Figure 7-1 shows the precedence relationship depending on where controls are
placed.

Ell'geiggtsjtence file_override_controls
(Last in Controls Definition
in Source Text)

Overrides
Conflicting

v

header_controls
(In Assembler Invocation and Expanded in Source
Text at %controls)

Overrides
Conflicting

v

file_default_ctrls
(First in Controls Definition
in Source Text)

Overrides
Conflicting

v

Default Controls
Lowest From Table 7-2
Precedence

W-3380

Figure 7-1. Precedence Levels of Assembler Header Controls

These examples demonstrate invoking the assembler with header controls to select

macros.

1. This example invokes the ASM386 assembler with non-default assembler
settings and header controls. The assembler processes the source text in the
file utestasm using the compact model, and produces an object module with

variable parameter list (VPL) calling convention.

C:> asm386 utest.asm %define(controls)(cp vp)

iC-386 Compiler User's Guide Chapter 7 193



194

2. This example definesntrols  in the assembly source text. The header

control settings specify ASM386, the compact model, and the ROM submodel.

%define(controls)(asm386 cp rom)
$include(:include:util.ah)

This example defines header control defaults partly different from the global
default controls. The assembly source text contains:

%define(controls)
(cp vp 'stacksize=50' %controls 'module=ut1’)

This definition of thecontrols  macro sets these defaults:
e The object module is compact model rather than small.

« The calling convention is variable parameter-list (VPL) rather than fixed
parameter list (FPL).

* The stack size is 50 rather than O.

e The module name i#1 instead ofinonymous and cannot be overridden;
its position aftepocontrols  indicates that it is a file override control.

This is the assembler invocation for ASM386 on DOS:
C:> asm386 utest.asm %define(controls)(asm386 rom)

Thecontrols  defined in the assembler invocation override only the file
default controls that specify the memory model:

e The object module is ROM model rather than RAM.

* The calling convention is VPL and the stack size is 50, as specified in the
file default controls.

Chapter 7 Assembler Header File



Flag Macros

The value of a flag macro is either 1 (set) or 0. Use flag macros in ASM macro
programming languagif constructs.

See also:

Macro programming langua§§8M386 Macro Assembler Operating

Instructions

Use the flag macros to test these conditions:

%const_in_code

%far_code

%far_data

%far_stack

%fpl

%i186_instrs

%i386_asm

indicates that constants are in the code segment; set by the
rom header control.

indicates that function pointers are far.

indicates that data pointers are far; set byctinepact , or
rom header controls.

indicates that the stack is in a separate segment, that is, the
SS register value is not the same as the DS register value; set
by thecompact header control.

indicates that the calling convention is fixed parameter list
(FPL); set by théixedparams  header control.

indicates whether to use or simulate instructions available
only in 186 and higher instruction sets; set byata386
header controls.

indicates code specific to a particular architecture when code
is common between products targeted for 86, 286, or Intel386
processors; set lysm386 header control.

Table 7-2 lists which flag macros are set when you specify various header controls.

Table 7-2. Assembler Flag Macros Set by Header Controls

Header Control

Flag Macros Set

asm386

rom

compact

fixedparams

%i386_asm
%i186_instrs

%far_data
%far_stack

%fpl

%const_in_code
%far_data

iC-386 Compiler User's Guide

Chapter 7 195



Register Macros

You can use a register macro as an instruction operand in place of the register
name. Table 7-3 shows macros useful in specifying operands to instructions.

Table 7-3. Assembler Register Macros

Macro ASM386 Expansion
%ax eax

%bx ebx

%cCX ecx

%dx edx

%bp ebp

%sp esp

%si esi

%di edi

These are the register macros and the registers they reference:

%retoff is the register that holds the offset portion of a pointer return value.
The%retoff macro expands teax for ASM386.

%retsel is the register that holds the selector portion of a pointer return value.
The%retsel macro expands tedx for ASM386.

196 Chapter 7 Assembler Header File



Segment Macros

Each segment macro expands to the name of a segment. The memory model

determines the segment names. The segment names conform exactly to those used
by C and PL/M. You can use these names as instruction operands and in

segmentation directives.

The segment macros correspond to the names of segments. These are the segment

names and what each macro expands to:

%cgroup
%code
%const
%data
Y%stack
%dgroup

%sgroup

Table 7-4 shows the segment macro expansion for the compact memory model for

ASM386.

Table 7-4. ASM386 Segment Macro Expansion for Compact Memory Model

the segment to which the CS register points

the code segment name

the constant segment name

the data segment name

the stack segment name

the segment to which the DS register points

the segment to which the SS register points

Macro Model Sub-model Expansion

%code compact RAM or ROM CODE32

%cgroup compact RAM or ROM %code

%data compact RAM or ROM DATA

%dgroup compact RAM or ROM %data

%stack compact RAM or ROM STACK

%sgroup compact RAM or ROM %stack

%const compact RAM %data
compact ROM %code

iC-386 Compiler User's Guide Chapter 7

197



198

This example uses %DATA to bracket static variable data:

%data segment

;assembler commands, e.g.,
var dw 0

%data ends

This example expands to:

DATA segment

;assembler commands, e.g.,
var dw 0

DATA ends

Chapter 7

Assembler Header File



Type Macros

You can use a type macro wherever an ASM data type (susheasword ,
dword , etc.) can be used.

The type macros correspond to the data types of objects:
%fnc the type of a global function

%fnc_ptr  the size of a pointer to a function

Y%ptr the size of a pointer to data

%reg_size the size of a pointer

%int the size of an integer

%dint the size of a double integer

Table 7-5 shows the type macro expansion for the compact memory model.

Table 7-5. ASM386 Type Macro Expansion for Compact Memory Model

Macro Model Sub-model Expansion
%fnc compact RAM or ROM near
%fnc_ptr compact RAM or ROM dword
%ptr compact RAM or ROM pword
%reg_size compact RAM or ROM dword ptr
%int compact RAM or ROM dword
%dint compact RAM or ROM dd

iC-386 Compiler User's Guide Chapter 7 199



Operation Macros

The operation macros are grouped in four different classes according to their
function:

External expand to declarations of external variables, constants, and
declaration macros functions.

Instruction macros  expand to code simulating instructions or the instructions
themselves, depending on the instruction set used.

Conditional expand to instructions that test or load data pointers. The
macros expansion depends on whether data pointers have selectors.

Function definition expand to the basic parts of a function definition.
macros

External Declaration Macros

200

Use the external declaration macros as follows:

%extern( type , vname) to declare an external variable wheyge is
a valid assembler data type or a type macro,
andvname is a variable name; can be used
only outside all functions and segments.

%extern_const( type , cname) to declare an external constant whgge is
a valid assembler data type or a type macro,
andcname is a constant name; can be used
only outside all functions and segments.

%extern_fnc(  fname) to declare an external function wheéname
is a function name; can be used only outside
all functions and segments.

Table 7-6 shows the external definition macro expansion for the compact memory
model for ASM386.

Chapter 7 Assembler Header File



Table 7-6. ASM386 External Declaration Macro Expansion
for Compact Memory Model

Macro Model Sub-model Expansion
%extern compact RAM or ROM DATA segment
extrn vname:type
DATA ends
%extern_const compact RAM CONST segment
extrn aconst:type
CONST ends
compact ROM CODE32 segment

extrn aconst:type
CODE32 ends

%extern_fnc compact RAM or ROM CODE32 segment
extrn fname:near
CODE32 ends

Instruction Macros

The instruction macros provide compatibility between 86 and higher processor
instruction sets.

%enter expands to thenter instruction.

%leave expands tdeave instruction for 186 and higher instruction
sets.

%pusha expands to thpushad instruction for the Intel386
instruction set.

%popa expands to thpopad instruction for the Intel386 instruction
set.

%pushf expands tushfd for the Intel386 instruction set.

%mOovVsX expands tanovsx for the Intel386 instruction set.

%movzx expands tanovzx for the Intel386 instruction set.

iC-386 Compiler User's Guide Chapter 7 201



Conditional Macros

The conditional macros select source text for assembly depending on whether data
pointers have selectors (the far address format). The conditional macros expand a:

follows:

%mov|/sr

%if_sel( text )

%if_nsel( text )

expands tonov if %far_data is not set, or to the register
load instruction you specify as tie argument if
%far_data is set. Use this macro as an instruction
mnemonic for loading a data pointer. The argument can
be eithelds , les , Ifs , orlgs . Note thatemovuses a
vertical bar(|) rather than parentheses to delimit its
argument.

expands only if data pointers have selectors. tékre
argument is the source text to be conditionally assembled.
This macro is equivalent to:

%if (%far_data) then ( text )fi

expands only if data pointers do not have selectors. The
text argument is source text to be conditionally assembled.
This macro is equivalent to:

%if (not %far_data) then ( text ) fi

Function Definition Macros

These entries describe the function macros in detail in their order of use:

%function
%param
%param_flt
%auto
%prolog
%epilog
%ret

%endf

202 Chapter 7

open a function definition

define a parameter name

define a floating-point parameter name
define a local automatic variable
generate a function prolog

generate a function epilog

generate a return instruction

close a function definition

Assembler Header File



%function

%function

Open a function definition

Syntax

%function( fname)

Where:

fname is the name of the function to be opened.
Discussion

Use%function as the first statement in a function definition, to open the function
definition.

For ASM386 compact model, thefunction macro expands to:

CODE32 segment
fname proc near
public fname

iC-386 Compiler User's Guide Chapter 7 203



%param

Yoparam
Define a parameter name
Syntax
Y%param(type , pname)
Where:
type is the data type of the parameter.
pname is the name of the parameter, which is defined as a macro such that
%pname expands to a valid reference to the parameter.
Discussion

204

Use%param to define a parameter name. Uggaram only betweersfunction
and%prolog . When you define a parameter of data type , the size of the
parameter block increases by the number of bytes occupied by a parameter of date
typetype .

Regardless of whether the calling convention is fixed parameter list (FPL) or
variable parameter list (VPL), parameters must be declared in the order that their
corresponding arguments occur in the ASM function call expression.

Chapter 7 Assembler Header File



Y%param_flt

%param_flt

Define a floating-point parameter name

Syntax
Y%param_flt( type , fpname)
Where:
type is the data type of the parameter
foname is the name of the floating-point parameter, which is defined as a
macro such thafpname expands to a valid reference to the
floating-point parameter.
Discussion

Use%param_flt to define a floating-point parameter name. Mgparam_flt
only betweerfunction and%prolog .

If you specify thevarparams header control, the effect &dparam_fit is

identical to that ofoparam. If you specify thdixedparams header control,
%param_flt has no effect, since floating-point arguments are passed on the
numeric coprocessor stack instead of on the processor stack. In general, you must
handle floating-point arguments with a construct such as:

%if (not %fpl) then (
fld % foname ; load the argument
) fi
; body of code

iC-386 Compiler User's Guide Chapter 7 205



%auto

%auto
Define a local automatic variable

Syntax
%auto( type , mnam@
Where:
type can be any valid assembler data type or a type macro.
mname is the name of the variable, which is defined as a macro such that
%mnameexpands to a valid reference to the variable.
Discussion

Use%auto to define a local automatic variable. WUsauto only between
%function and%prolog . When you define a local automatic variable of data
typetype , the size of the local area allocatedvbyrolog increases by the number

of bytes occupied by a variable of data tyygee .

206 Chapter 7 Assembler Header File



%prolog

%prolog
Generate a function prolog
Syntax
%prolog( registers )
Where:

registers is a list of segment registers and general registers. However, the
macro ignores all but the DS, ES, EDI, and ESI registers for ASM386.
Separate the register names with spaces.

Discussion

Use%prolog to generate a prolog function. U%prolog only after%function
and before any other instructions. Usgrolog whenever you usgepilog ,
%param, Y%param_flt , or%auto, and be sure to useprolog after%parm,
%parm_flt , and%auto. You must also usigepilog whenever you use
%prolog .

Of the registers you list in thegisters  argument list, the prolog function
pushes only those that the calling convention requires to be preserved. The prolog
function performs these tasks:

e Pushes registers

* Pushes EBP for ASM386 (the base pointer register) and initializes it for use as
a local frame pointer using tlENTERassembler instruction

e Sets ESP for ASM386 using tB&TERassembler instruction

* Allocates space for automatic variables

iC-386 Compiler User's Guide Chapter 7 207



%epilog

%epilog

Generate a function epilog

Syntax
%epilog

Discussion

Use%epilog to generate a function epilog. Ugepilog only immediately

before a return instruction. The epilog deallocates space for automatic variables
(allocated by thésauto function macro) and pops registers pushed by the

%prolog function macro. The epilog also issuesltBaVEassembler instruction,
thereby restoring the EBP register for ASM386; and the ESP register for ASM386.

208 Chapter 7 Assembler Header File



%ret

%%ret

Generate a return instruction

Syntax

%ret

Discussion

Use%ret to generate a return instruction. The expansicrref depends on
whether you specify thearparams or thefixedparams  header control, as
follows.

Under thevarparams header controberet expands to:
ret

Under thefixedparams  header controbsret expands to:
ret paramsize

Theparamsize is the sum of the sizes of all the parameters declared with
%param. Theparamsize must be an even value, since parameters are
word-aligned.

iC-386 Compiler User's Guide Chapter 7 209



%endf

%endf

Close a function definition
Syntax

%endf( fname)

Where:

fname is the name of the function to be closed.
Discussion

Use%endf as the last statement in a function definition to close the function
definition. The%endf macro always expands to:

fname endp

210 Chapter 7 Assembler Header File



Function-calling Conventions

To interface functions in different languages, a programmer must know the calling
convention, data types, and segmentation model used by the different translators.
This chapter discusses calling conventions for interfacing iC-386 functions with
functions written in other Intel programming languages.

This chapter contains information on how iC-386 generates object code for a
function call, and how the fixed parameter list and variable parameter list
conventions differ.

See also:  Segmentation memory models in Chapter 4;
data types, reserved words, conformance to the ANSI C standard,
implementation-dependent compiler features, in Chapter 10

A large application can consist of many separately compiled modules. The binding
process combines the modules before execution to satisfy references to external
symbols. Use Intel translators and binding tools to ensure compatibility with the
segmentation model of the microprocessor.

A function-calling convention establishes rules and responsibilities for these
activities:

» Passing arguments to the called function
» Returning a value from the called function to the calling function
e Saving registers

e Cleaning up the stack

iC-386 Compiler User's Guide Chapter 8 211



212

The compiler generates four sections of object code for a function call. These
sections contain the code that handles the function-calling convention. Figure 8-1
shows these four sections of code. The sections are:

setup code in the calling function that the processor executes just before
control transfers to the called function

prolog code in the called function that the processor executes first when
control has transferred from the calling function

epilog code in the called function that the processor executes just before
control returns to the calling function

cleanup code in the calling function that the processor executes just after
control returns from the called function

Calling Function: Control Transfer Called Function:
>
Prolog
Setup
(Call) < (Body)
Cleanup
Epilog

W-3381

Figure 8-1. Four Sections of Code for a Function Call

Chapter 8 Function-calling Conventions



The iC-386 compiler supports two calling conventions: fixed parameter list (FPL)
and variable parameter list (VPL). The FPL calling convention is the default for
the iC-386 compiler and for most non-C compilers or translators. Ensure that the
object code for the calling function and for the called function use the same
convention. For iC-386, use tfigedparams control for the FPL convention and
thevarparams control for the VPL convention.

See also: Individual control descriptions in Chapter 3

|:| Note

The iC-386 compiler uses the fixed parameter list (FPL) calling
convention as its default. This feature produces more compact
code. Intel C compilers for Intel386 and Intel486 processors
before Version 4.1 use the variable parameter list (VPL) calling
convention. If the calling function and the called function do not
use the same calling convention, the result is unpredictable.

Passing Arguments

A calling function passes some or all of its arguments to the called function on the
processor stack. These points differ in calling conventions:

« Position that arguments occupy on the stack, or order in which arguments are
pushed onto the stack

* Whether the calling function passes an argument by value (the actual value of
the argument appears on the stack) or passes an argument by reference (a
pointer to the argument appears on the stack)

e The format of pass-by-value arguments on the stack

The iC-386 compiler always uses pass-by-reference for passing arrays and
pass-by-value for other objects. The calling function's setup code pushes
arguments onto the stack.

iC-386 Compiler User's Guide Chapter 8 213



FPL Argument Passing

214

In the FPL convention, the calling function pushes all non-floating-point arguments
onto the processor stack, and the first seven (left-to-right) floating-point arguments
onto the numeric coprocessor (or numeric coprocessor emulator) stack. The calling
function pushes all remaining floating-point arguments onto the processor stack.

The FPL convention pushes the leftmost argument in the function call first and the
rightmost argument last. Therefore, the first argument in the list occupies the
highest memory location of all the arguments on the stack for this function call,
and the last argument in the list is on the top of the stack.

Aggregate objects occupy memory on the stack in the same way that they exist in
the data segment: bytes match from low-order memory to high-order memory.

Each argument on the processor stack occupies a multiple of four bytes. If the size
of the argument is less than four bytes, the compiler pads the argument to four
bytes with undefined bits. The compiler pads aggregate arguments to a multiple of
four bytes with undefined bits.

The floating-point arguments on the numeric coprocessor stack occupy 80 bits eact
(extended precision). In conformance to the ANSI C standard, the parameter
prototype declaration determines the size of any floating-point arguments on the
processor stack. In the absence of a prototype, or if the parameter is the eight or
subsequent floating-point value, the calling function pushes floating-point
arguments inlouble format (64 bits).

When the calling function expects a structure or union as a return value, the calling
function pushes last an argument that is an address where the called function place
the structure or union.

Chapter 8 Function-calling Conventions



|:| Note

A non-prototyped FPL function risks using incorrect offsets for
all parameters following the eighth floating-point parameter if the
eighth or subsequent floating-point parameter is declared within
the function asloat instead oflouble , as follows:

1. Under the FPL calling convention, the first seven floating-
point arguments are passed in the numeric coprocessor
registers, and all subsequent floating-point arguments are
passed on the CPU stack.

2. Inthe absence of a prototype for the called function, the
calling function always promotes an argument of type
float to typedouble before passing the argument on the
CPU stack to the called function.

3. If the called function declares the eighth or subsequent
floating-point parameter as tyfieat (instead of type
double , as passed), the called function uses incorrect
offsets to access the ninth and subsequent parameters, and
the stack is not adjusted correctly upon return to the calling
function.

To avoid such errors, always provide prototypes for all FPL functions
that include floating-point parameters.

VPL Argument Passing

In the VPL convention, the calling function pushes all arguments, including
floating-point arguments, onto the processor stack.

The VPL convention pushes the rightmost argument in the function call first and
the leftmost argument last. Therefore, the last argument in the list occupies the
highest memory location of all the arguments on the stack for this function call,
and the first argument in the list is on the top of the stack.

Aggregate objects occupy memory on the stack in the same way that they exist in
the data segment: bytes match from low-order memory to high-order memory.

Each argument on the processor stack occupies a multiple of four bytes. If the size
of the argument is less than four bytes, the compiler zero-extends or sign-extends to
four bytes depending on the argument's data type. The compiler pads aggregate
arguments to a multiple of four bytes with undefined bytes.

iC-386 Compiler User's Guide Chapter 8 215



In conformance to the ANSI C standard, the parameter prototype declaration
determines the size of a floating-point argument on the processor stack. In the
absence of a prototype, or if the parameter is beyond the ellipsis, the calling
function pushes a floating-point argumentiauble format (64 bits).

When the calling function expects a structure or union as a return value, the calling
function pushes last an argument that is an address where the called function place
the structure or union.

|:| Note

Variables declared with thegister ~ storage class are
candidates for storage in registers only under the VPL calling
convention. Theegister  storage class is ignored under the
FPL calling convention.

Returning a Value

Both the FPL and VPL calling conventions return scalar values in a register and a
floating-point value on the top of the numeric coprocessor stack.

The called function copies a returned union or structure starting at the memory
location pointed to by the last argument on the stack. The called function also
loads the address of the structure or union into a register, as if returning a pointer t
the return object.

Loading the register and copying a returned union or structure occurs in the called
function's epilog code.

Table 8-1 shows the registers used for different scalar objects for iC-386.

Table 8-1. iC-386 FPL and VPL Return Register Use

Data Type FPL or VPL

8-bit result AL

16-bit result AX

32-bit result EAX

64-bit result EDX:EAX

near (short) pointer EAX

far (long) pointer EDX:EAX

real top of coprocessor or
emulator stack

216 Chapter 8 Function-calling Conventions



Saving and Restoring Registers

The FPL and VPL calling conventions preserve different sets of registers. The
VPL calling convention preserves the EDI, ESI, and EBX registers. Table 8-2
shows the register preservation scheme of iC-386 for the FPL and VPL
conventions.

In the FPL convention, if the calling function uses register variables, the calling
function is responsible for saving their values in the setup code. The balance of
register preservation occurs in the called function's prolog code.

Table 8-2. iC-386 FPL and VPL Register Preservation

FPL FPL not VPL VPL not

Register Preserved Preserved Preserved Preserved
EAX X X

EBX X X

ECX X X

EDX X X

ESP X X

EBP X X

EDI X X X

ESI X X

Cs X X

DS X X

SS X X

ES X X

FS X X

GS X X

iC-386 Compiler User's Guide Chapter 8 217



Cleaning Up the Stack

218

In the FPL calling convention, the called function pops all the arguments off the
processor stack in its epilog before it returns control to the calling function.

In the VPL calling convention, the calling function pops all the arguments off the
processor stack in its cleanup code after the called function returns control.

In both conventions, the called function's prolog code pops any floating-point
arguments off the numeric coprocessor stack and saves them as local variables. If
the called function returns a floating-point value, it is left on the top of the numeric
coprocessor stack and is overwritten by the next floating-point operand.

Chapter 8 Function-calling Conventions



Subsystems

This chapter tells how to use subsystems to create extended segmentation models,
and contains these topics:

¢ When to use subsystems

* How subsystems combine to form extended segmentation models
*  Syntax for defining subsystems

* Example definitions

Segmentation is the term for the division of code, data, and stacks in the Intel386,
Intel486, and Pentium architectures. The compact segmentation memory model
described in Chapter 4 is the standard way that iC-386 creates code, data, and stack
segments. When your program contains large amounts of data or code, the
standard segmentation memory models do not offer a way to group code and data
references and to structure your program into more segments to take advantage of
segmentation protection mechanisms.

Subsystems extend the efficiency and protection of the compact segmentation
memory model described in Chapter 4. A subsystem is a collection of program
modules that uses the same standard model of segmentation. If you use only the
standard segmentation controls (and nostiisys control) to compile your

program modules, then your program consists of one subsystem with all modules
using the same model of segmentation. The term "extended segmentation model"
refers to the memory model used by any program that consists of more than one
subsystem.

Extended segmentation models offer these advantages:
« Each program subsystem can execute at a different protection level.

» Each subsystem enjoys the segmentation protection mechanisms of the
processor architecture, such as restricted entry points and protection from
segment overruns.

Use compact subsystems for iRMX applications.

A subsystem uses either the RAM or the ROM submodel, with constants in the data
segment or code segment, respectively. A program can contain subsystems that use
different submodels.

iC-386 Compiler User's Guide Chapter 9 219



To compile a module that is part of a subsystem, place the definitions for the
subsystems in a special text file and usestthays compiler control in the
invocation or in gpragma preprocessor directive to include the special file in
each compilation. If you useibsys in a#pragma directive, the directive must
precede any data definitions or executable statements.

Dividing a Program into Subsystems

Data
Input

220

Using subsystems is an efficient way to structure programs that have large amount:
of data or code. For example, consider a program consisting of 10 machdes,
throughmod10. Modulesmod1 throughmod3 deal with input and initial

processing. Modulesod4 throughmod8 do the main data processing. Modules
mod9 andmod10 output the data. Figure 9-1 illustrates the program structure and
data flow.

INPUT PROCESS OUTPUT
(mod1 (mod4 (mod9
Data Data Data
mod2 Flow mod5 Flow mod10) Output
—> > —>

mod3) mod6

mod7

mod8)

W-3382

Figure 9-1. Subsystems Example Program Structure

Under the compact segmentation memory model described in Chapter 4, the binde
combines the segments for this program into one code segment containing all the
code frommod1 throughmod10, one data segment containing all the data from

mod1 throughmod10, and one stack segment, as shown in Figure 9-2.

Chapter 9 Subsystems



CODE32 DATA STACK
(All Modules) (All Modules) (All Modules)

<-CS <-DS <SS

W-3383

Figure 9-2. Subsystems Example Program in Regular
Compact Segmentation Memory Model

Suppose the program is restructured using an extended segmentation model
composed of three compact-model subsystems. Each subsystem is given a name
indicating its function:

Subsystem Name  Modules in Subsystem

SUBINPUT mod1 through mod3
SUBPROCESS mod4 through mod8
SUBOUTPUT mod9 and mod10

In a program composed of compact-model subsystems, modules are combined by
the binder so that:

* Each subsystem has one code segment.
* Each subsystem has one data segment.
e All subsystems share one stack segment.

Figure 9-3 shows the segments for the example if the modules are grouped into
three small-model subsystems.

iC-386 Compiler User's Guide Chapter 9 221



SUBINPUT_CODE32 SUBPROCESS_CODE32 SUBOUTPUT_CODE32

(Code From mod1 (Code From mod4 (Code From mod9
Through mod3) Through mod8) and mod10)

CS Register Changes During Execution

222

SUBINPUT_DATA SUBPROCESS_DATA SUBOUTPUT DATA STACK
(Data From mod1 (Data From mod4 (Data From mod9 (Stack For
Through mod3) Through mods) Through mod10) All Modules)
< < < < SS

DS Register Changes During Execution

W-3384

Figure 9-3. Subsystems Example Program Using Small-model Subsystems

The program is efficient because most of the calls and references are near and tak
place within a subsystem, and each subsystem enjoys segmentation protection. Fe
calls are needed only between the subsystems. Far data references are needed or
if data is referenced between subsystems, or if constants are in code. The compile
implicitly modifies the declarations of symbols referred to by other subsystems by
inserting thefar  keyword in the appropriate place in the declarations even if the
extend control is not in effect.

You do not increase efficiency or protection by merely dividing a program into
subsystems. If all the even-numbered modules are placed in one subsystem, for
instance, and all the odd-numbered ones in another, the program becomes less
efficient due to the greater number of far calls and far data references between
subsystems. A program is most efficient and takes best advantage of segmentatior
protection when you place data accessed by a collection of modules and the
functions that refer to that data into a subsystem. Data and code in another
subsystem are protected and can be accessed only if explicitly declared in the
subsystem definition. All code references within a subsystem are near calls. If you
choose the member modules for your subsystem carefully, you ensure few far calls

Chapter 9 Subsystems



Segment Combination in Subsystems

Chapter 4 describes the way the binder combines segments under the standard
segmentation memory models. To understand the combination of segments for
programs structured with subsystems, you must understand the distinction between
compiling modules with iC-386 and combining modules into a program with
BND386.

The compiler compiles only one module at a time. During these separate
compilations, the compiler generates many code, data, and stack segment
definitions. Then, the binder creates an executable program by combining the
segments that have compatible attributes.

See also:  Chapter 4 for more information on segment attributes that the binder
uses, such as like names

Both the standard segmentation contwhpact and the extended segmentation
controlsubsys determine the way segments are combined by controlling the way
segments are named.

Compact-model Subsystems

Recall that the binder combines compiler-generated segments that have the same
name and compatible characteristics. A linked compact-model subsystem named
COMPSUBoONtains three segmentsOMPSUB_CODE3ar iC-386,
COMPSUB_DATANdSTACK When code in the subsystem is executing, the CS
register contains the selector ft@MPSUB_CODERthe DS register contains the
selector folCOMPSUB_DAT/ANd the SS register contains the selectogT&CK

Table 9-1 shows the compiler segment definitions for a module compiled with the
subsys control and a definition for a compact-model subsystem. When you
specify-const in code- in the subsystem definition, the compiler places the
constants in the module's code segment, which is like specifyimgntheontrol

when you are not using subsystems. When you specifigt in data- in the
subsystem definition, the compiler places the constants in the module's data
segment, which is like specifying them control when you are not using

subsystems. If the subsystem definition contaisighaystem-id , making a

closed subsystem as defined in Open and Closed Subsystems, the identifier and an
underscore () prefix theCODE32andDATA segment names.

iC-386 Compiler User's Guide Chapter 9 223



Table 9-1. iC-386 Segment Definitions for Compact-model Subsystems

Description Name Combine-type Access

code segment [subsystem-id_JCODE32  normal execute-read
data segment  [subsystem-id_]DATA normal read-write
stack segment STACK stack read-write

The binder combines segments with the same name when linking the modules for
the program. Thus, each compact-model subsystem contains its own code segmer
up to 4 gigabytes for iC-386 and its own data segment up to 4 gigabytes for iC-386.
All stack segments from all compact-model subsystems are combined into one
stack segment up to 4 gigabytes for iC-386.

Function pointers are near by default (the offset-only address format). Data
pointers are far by default (the segment-selector-and-offset format). Compact-
model subsystems can pass pointer arguments between compact-model RAM,
compact-model ROM, small-model ROM, and large-model modules without
specifying thefar keyword because data pointers are always far pointers.

See also: near and far address formats in Chapter 4

If a function in a compact-model subsystem accepts a pointer parameter exported
from a small-model RAM subsystem, the small-model RAM subsystem must
explicitly use théar keyword in a prototype, declaration, or cast to pass the data
pointer.

Efficient Data and Code References

The most efficient and compact code contains few far calls and few far data
references. A call from any subsystem to another subsystem is always a far call.
Data references to and from other subsystems are far references.

Thenear andfar keywords are type qualifiers that allow programs to override the
default address size generated for a data or code reference. You must use the
extend control when you compile programs that useridkee andfar keywords.
Table 9-2 shows the default address sizes for code and data references in all
subsystem models.

See also: near andfar keywords in Chapter 4,
extend control description in Chapter 3

224 Chapter 9 Subsystems



Table 9-2. Subsystems and Default Address Sizes

Subsystem Model Code Reference Data Reference
compact RAM offset selector and offset
compact ROM offset selector and offset

Creating Subsystem Definitions

A text file contains the definition for a subsystem. To compile a module as part of
a subsystem, use thebsys compiler control in the invocation or in#aragma
preprocessor directive to include the definition file in the compilation. The

subsys control is a primary control and must appear in the invocation line or in a
#pragma preprocessor directive before the first line of data declaration or
executable source text. #bragma preprocessor directive containing the
modulename control cannot follow anypragma containing thesubsys control.

See also: subsys control description in Chapter 3

Open and Closed Subsystems

The subsystems that make up an iC-386 program can be either open or closed. The
definition for a closed subsystem must list every program module within it. An

open subsystem contains all modules not specified as part of another subsystem by

default. A program can use open and closed subsystems, according to one of these
options:

e All subsystems in a program are closed.
e A program can have many closed subsystems and a single open subsystem.
e By default, a program has one open subsystem and no closed subsystems.

The syntax for a subsystem definition is shown in the Syntax section. For a closed
subsystem, the compiler must know the name of the subsystem, the

subsystem-id , and the modules belonging to it, thes list. For an open

subsystem, the definition cannot haveuasystem-id . By omitting the

subsystem name in one subsystem definition, you automatically create an open
subsystem that contains all modules not claimed in another subsysieni'st.

You can add modules not named in a closed subsystem definition to your program
at any time, and the modules automatically become part of this open subsystem
without changing any subsystem definition.

iC-386 Compiler User's Guide Chapter 9 225



Syntax
Defining subsystems tells the compiler:
e The memory model that each subsystem uses

* Whether to place the constants in the code segment or data segment for the
subsystem

e The modules that belong to each subsystem
« The functions and data that are accessible from outside the subsystem

Making all functions and data available to all subsystems defeats the purpose of
subsystems and decreases the efficiency of the program. For example, if a
subsystem definition declares a function to be accessible from another subsystem,
the function is a far function, making all calls far calls, even if the function actually
is never accessed from outside its subsystem.

A function or data that is accessible to another subsystem must have external
linkage. In the C programming language, public and external symbols are
functions or variables with external linkage. The binder resolves the addresses for
such symbols. These definitions identify public and external symbols:

Public variable defined at the file level, not within a function, and without
thestatic  keyword. By default, a public variable is
globally accessible within its subsystem. Other subsystems
can refer to a public variable if the definition for the
containing subsystem exports the variable.

Public function defined without the static keyword. The public definition
includes the function code. By default, a public function is
globally accessible within its subsystem. Other subsystems
can call a public function if the definition for the containing
subsystem exports the function name.

External function declared with the extern keyword. The external declaration
refers to a corresponding public definition for the variable in
another module within the same or another subsystem.

External function declared with the extern keyword. The external declaration
can take on the form of a function prototype. The external
declaration does not contain the function code but refers to a
corresponding public definition for the function in another
module within the same or another subsystem.

226 Chapter 9 Subsystems



Each subsystem in a program must have a subsystem definition. In this subsystem
definition syntax, items in brackets}) are optional, items in braces)) are a

list from which to choose, ard...] indicates you can choose another item

from the previous list, separating adjacent list items with a semicojorEfter

the dollar signg) and parenthese§ () as shown:

$ model ([ subsystem-id ][ submodel ][{has module-list | exports public-list YG-1D
Where:
model specifies the segmentation model for the subsystem. Case is

not significant in theompact keywords. All modules in a
subsystem must be compiled with the same model of
segmentation.

subsystem-id specifies a unique name for a closed subsystem. This name
can be up to 31 characters long and must not conflict with
any module name. The compiler forces this identifier to all
uppercase. The identifier can contain dollar signsvhich
the compiler ignores.

submodel specifies the submodel, which defines the placement of
constants. Useonst in code- for placing constants in
the code segment egonst in data- (default) for placing
constants in the data segment. Case is not significant in the
-const in code- and-const in data- keywords. All
modules in one subsystem are compiled with the same
submodel.

iC-386 Compiler User's Guide Chapter 9 227



has module-list specifies the modules that make up the subsystem. Case is
not significant in thénas keyword. Ahas specification is
required for a closed subsystem, andtvelule-list ~ must
contain all the closed subsystem moduleshaé\
specification is optional for an open subsystem, and the
module-list ~ does not have to contain all of the open
subsystem modules. Identifiers in tihedule-list ~ can be
up to 31 characters long and are forced to all uppercase.

Each identifier in thenodule-list ~ must match a module
name to be included in the subsystem. A module name is the
module's source file name without extension, unless specified
differently by themodulename control. A particular module
name can appear in only onadule-list  (i.e., a module
can belong to only one subsystem). Any module whose
name does not appear imadule-list ~ becomes part of
the open subsystem. Module names can appear in any order
in the module-list

exports  public-list
lists the functions and variables exported by the subsystem,
which are the functions and variables that the subsystem
wishes to make accessible to other subsystems. Case is not
significant in theexports  keyword. Any symbol named in
the public-list must be a public symbol in one of the
subsystem modules. Each symbol must be declared as an
external symbol in all modules accessing the identified
function or variable, whether or not these modules are within
the same subsystem. Case is significant in symbols in the
public-list . Every subsystem definition, with the
possible exception of the subsystem that contains\ée)
function, must have agxports list that contains at least the
public symbol for the entry point to the subsystem.

The public-list must list all symbols referred to by other
subsystems. Public symbols not in thlic-list are
accessible only from within the subsystem itself. Non-public
symbols do not appear in theblic-list . Public symbols
can appear in any order in theblic-list

228 Chapter 9 Subsystems



Exported functions have these :
e They use the far form of call and return.
« They save and restore the caller's DS register upon entry and exit.

* They reload the DS register with their associated data segment selector upon
entry.

The compiler implicitly modifies the declarations of exported symbols, if
necessary, by inserting tfee keyword in the appropriate place in the
declarations. The modifications occur even ifékend control is not in effect.

Export a function only if it is referenced outside the defining subsystem, because
accessing exported functions requires more code and more execution time than
accessing functions within the same subsystem.

Within a program, theubsystem-id  name must be distinct from all module
names because both share the same name space. Within a program (across all
subsystems), exported symbols must also be unique. Hovsewsystem-id

names and module names do not share name space with public symbols.

Thehas andexports lists often have several dozen entries each. To
accommodate lists of this length, a subsystem definition can be continued over
more than one line. The continuation lines must be contiguous, each must begin
with a dollar signg$) in the first column, and the next non-whitespace character
cannot be a comma, a right parenthesi$ ), or a semicolon;(). You can

specify any number dfas andexports lists in a definition, in any order, which
allows you to format your subsystem specification file so it can be easily read and
maintained.

Compile all modules in your program with the same set of subsystem definitions,
so that the compiler makes consistent assumptions about the location of external
symbols. To avoid conflicting definitions, place all of the subsystem definitions in
one file and use thmubsys control in the invocation line or in#pragma
preprocessor directive for every compilation. Inconsistent subsystem definitions
cause the binder to issue an error.

iC-386 Compiler User's Guide Chapter 9 229



|:| Notes
Do not use theodesegment or datasegment control in an
invocation that specifies theibsys control, or when the source
text contains theubsys control in a#pragma preprocessor
directive. The compiler issues an error or a warning, depending
on whether thaubsys control is found in the invocation line or
in a#pragma preprocessor directive, respectively.

A #pragma preprocessor directive specifying tihedulename
control must precede ampragma directives that specify the
subsys control.

The definition for an open subsystem without submddal, list, orexports  list
can be placed on the invocation line. Place all definitions of closed subsystems
inside the subsystem definitions file.

Programs written in iC-386 and in PL/M-386 can share subsystem definitions
because the syntax for the definitions is identical for both languages. Symbol
names in thexports  list must match the case used in the C program because C is
a case-sensitive language.

The compiler preserves case distinction in identifieexports  lists. The
compiler always ignores dollar sigri {n identifiers, even if thextend control

is not in affect. The compiler ignores valid PL/M controls unrelated to
segmentation, such & and$INCLUDE. The compiler ignores lines whose first
character is not a dollar sigh)(

230 Chapter 9 Subsystems



Example Definitions

Recall the example program in Dividing a Program into Subsystems. This example
guides you through creating subsystem definitions for the compact model
subsystems in Figure 9-3.

Creating Three Compact-model RAM Subsystems

These subsystem definitions define three compact model RAM subsystems for the
program, which are closed subsystems by definition. SUBPROCESSnd
SUBOUTPUBuUbsystems export their entry-point functions. No other symbols are
exported. The definitions default to thenst in data- submodel

specification.

$ compact (SUBINPUT

$ has mod1, mod2, mod3)

$ compact (SUBPROCESS

$ has mod4, mod5, mod6, mod7, modS;
$ exports process_entry)

$ compact (SUBOUTPUT

$ has mod9, mod10;

$ exports output_entry)

The program does not contain calls or references that requife tHesyword,
because all three subsystems share one dagiasegment, which contains
constants.

iC-386 Compiler User's Guide Chapter 9 231



232

Assuming that thenod3_fn function in themod3 module calls the
process_entry  function defined in thenod4 module and passes a pointer to
some data calledata_object , the definitions ofnod3_fn andprocess_entry
have the general form:

[*in SUBINPUT */
int data_object;

int mod3_fn ()

{

extern int process_entry ((int far *)int far * );

[* calling a function in another ~ */
[* subsystem causes aloadtoa  */
[* segment register */

process_entry ( &data_object );

}
I* *

/*in SUBPROCESS */
int process_entry (int far * data)

{

int mod4int;

[* de-referencing the pointer causes */
[* aload to a segment register  */

mod4int = *data + 1;

Chapter 9 Subsystems



If the subsystem definitions are in a file nangechpss.def , the compilation of
mod3.c Is:

C:>ic386 mod3.c cp subsys(compss.def)

iC-386 Compiler User's Guide Chapter 9 233






Language Implementation

This chapter contains information on the iC-386 implementation of the C
programming language, and is divided into these topics:

» Data types and keywords
» Conformance to the ANSI C standard
¢ Implementation-dependent compiler features

Where applicable throughout the chapter, conformance to the ANSI C standard is
noted.

Data Types

The iC-386 compiler recognizes three classes of data types: scalar, aggregate, and
void . This section describes the iC-386 implementation of the data types.

Objects of a data type longer than one byte occupy consecutive bytes in memory.
Objects reside in memory from low-order to high-order bytes within a word and

from low address to high address across multiple bytes. The address of an object is
the address of the low-order byte of the object.

iC-386 Compiler User's Guide Chapter 10 235



Many names of the data types serve as keywords in the source text. These are
keywords in iC-386:

auto do goto signed unsigned
break double if sizeof void

case else int static volatile
char enum long struct while
const extern register switch

continue float return typedef

default for short union

These additional keywords are supported by iC-386 iéttend control is in
effect:

alien is a storage-class specifier that indicates a function uses the fixed
parameter list calling convention.

far is a type qualifier that indicates a segment-selector-and-offset address.

near is a type qualifier that indicates an offset-only address.

readonly is a type qualifier that is equivalent to ttwnst keyword.

See also: Using theear andfar qualifiers, in Chapter 4

Scalar Types

236

A scalar object is a single value, such as the integer value 42 or the bit field 10011.
Most scalar objects occupy 1, 2, 4, or 8 bytes of memory. Bit fields occupy as
many bits as assigned and need not be a multiple of one byte long (8 bits). A bit
field cannot be longer than one word (4 bytes for iC-386).

Table 10-1 shows the scalar data types for iC-386, the amount of memory occupiec
by the data type's object, the arithmetic format, and the range of accepted values.

The iC-386 compiler supports the declaration of:
* Achar to explicitly be declaredigned or unsigned
* Aninteger constant to be declatedg , unsigned , orunsigned long

* Enumerated types

Chapter 10 Language Implementation



Table 10-1. Intel386 Processor Scalar Data Types

Data Type Size in Bytes Format Range
charl 1 integer or 0 to 255 or
two's-complement integer -128 to 127
unsigned char 1 integer 0to 255
signed char 1 two's-complement integer -128 to 127
enum 4 two's-complement integer -2,147,483,648 to
2,147,483,647

unsigned short integer 0 to 65,535
signed short two's-complement integer -32,768 to 32,767

2
2

unsigned int 4 integer 0 to 4,294,967,295
4

signed int two's-complement integer -2,147,483,648 to
2,147,483,647
unsigned long 4 or8 integer 0 to 4,294,967,295 or
0to 264-1
signed long 4o0r8 two's-complement integer -2,147,483,648 to
2,147,483,647 or
-268 t0 2631
float 4 single precision 8.43 x 1037 t0 3.37 x 1038
floating-point (approximate absolute value)
double or 8 double precision 4.19 x 107397 t0 1.67 x 10308
long double floating-point (approximate absolute value)
bit field 1 to 32 bits integer depends on number of bits
near pointer 4 offset-only address 4 gigabytes
far pointer 6 4-byte offset and 2-byte 64 terabytes
selector

1 Integer (unsigned) if the nosignedchar  control is in effect, or two's complement integer (signed) if the

signedchar  control is in effect (default).

The iC-386 compiler supports two precisions for floating-point numbferst
anddouble . The compiler treats thdouble andlong double formats as

double . The numeric coprocessor automatically proméites anddouble
objects to extended precision for arithmetic operations.

iC-386 Compiler User's Guide Chapter 10 237



Aggregate Types

An object of an aggregate type is a group of one or more scalar objects. These are
the iC-386 aggregate data types:

array has one or more scalar or aggregate elements. All elements in an
array are the same data type. The elements reside in contiguous
locations from first to last. Multi-dimensional arrays reside in
memory in row-major order.

structure has one or more scalar or aggregate components. The different
components of a structure can be different data types. The
components of a structure reside in memory in the order that they
appear in the structure definition, but may have unused memory
between components.

See also: align control and the allocation of structures in
Chapter 3

union has one piece of contiguous memory that can hold one of a fixed set
of components of different data types. The amount of memory for a
union is sufficient to contain the largest of its components. A union
holds only one component at a time, and the union's data type is the
data type of the component most recently assigned.

Void Type

Thevoid data type has no values and no operations. Usaithekeyword for a
function that returns no value or for a function that takes no argumentsoitse

* to denote a pointer to an unspecified data type or a pointer to a function that
returns no value. Casttoid to explicitly discard a value. These are sample
declarations for these uses:

void retnothing (int a); /* function returns no value */
int intfunc (void); /* function takes no arguments */
void * genericptr();  /* pointer to unspecified type */

(void) intfunc(); [* discard the return value */

238 Chapter 10 Language Implementation



IC-386 Support for ANSI C Features

This section provides information about features in the ANSI C standard that are
not discussed elsewhere in this chapter. The iC-386 compiler supports these
features unless otherwise noted.

Lexical Elements and Identifiers

Trigraphs allow C programs to be written without using characters reserved by ISO
(International Standards Organization) as alphabet extensions.

Character constants and string literals can contain numeric escape codes in
hexadecimal format.

Wide characters support very large character sets, such as pictographic alphabets.
The iC-386 compiler recognizes the ANSI wide-character syntax but implements
wide characters the same as ASCII characters by truncation.

At least 31 characters of non-external names must be significant. The compiler
supports 40-character significance in internal and external names. Case is
significant in internal names.

Preprocessing

The operator concatenates adjacent tokens in macro definitions, forming a single
token.

The compiler concatenates adjacent string literals.

Preprocessor directives in the source text do not have to begin in column ehe; the
character must be the first nonblank character of a preprocessor directive line.

The # operator, followed by the name of a macro parameter, expands to the actual
argument enclosed in quotation marks (When creating the string, the
preprocessing facility precedes quotation marsafid backslashes ) within the
argument with a backslash.

The ANSI C standard specifies the ngsiif  preprocessor directive and the
defined preprocessor operator.

A single-character character constant intén or #elif ~ conditional preprocessor
directive has the same value as the same character in the execution character set.

The#pragma preprocessor directive allows communication of
implementation-specific information to the compiler. Most of the iC-386 compiler
controls can be used intaragma preprocessor directive.

See also: Usingpragma and compiler control syntax in Chapter 3

iC-386 Compiler User's Guide Chapter 10 239



240

The maximum length of #pragma preprocessor directive is 1 kilobyte characters.
All compiler controls exceptefine andinclude can be specified in#pragma
preprocessor directive. Wherentrol  is a single compiler control and an
optional argument list #pragma has the form:

#pragma control

An #include preprocessor directive can use a macro to identify the file or header
file.

The arguments to#ine preprocessor directive may result from macro
expansion.

The#error preprocessor directive reports user-defined diagnostics.

The maximum nesting level of conditional compilation directives is 16. The
maximum nesting level of macro invocations is 64.

The maximum number of arguments in macro invocation is 31.

See also: List of predefined macros in Chapter 5

Chapter 10 Language Implementation



Implementation-dependent iC-386 Features

This section provides additional information about how iC-386 implements the
implementation-dependent characteristics of the C language as specified by the
ANSI C standard.

The compiler's word size is 4 bytes for iC-386. By default, memory read and write
operations in the Intel386, Intel486, and Pentium processors occur from low-order
address to high-order address (little endian). Objects over 32 kilobytes do not
conform to ANSI standards for pointer arithmetic.

Characters

The source character set is 7-bit ASCII, except in comments and strings, where it is
8-bit ASCII. The execution character set is 8-bit ASCII. The compiler maps
characters one-to-one from the source to the execution character set. You can
represent all character constants in the execution character set. The iC-386
compiler recognizes the wide-character ANSI syntax. Wide characters are
implemented the same as ASCII characters.

Thesignedchar | nosignedchar  control determines whether the compiler
considers ahar that is declared without theigned orunsigned keywords to be
signed orunsigned . The default control isignedchar . A character value
occupies a single byte. Each character is made up of 8 bits, ordered from right to
left, or least significant to most significant.

In a character constant, the compiler assigns up to four characters for iC-386 to a
word, with the first character in the low-order byte. In words containing at least
one character, when any byte does not contain a character, the compiler fills the
byte with the sign of the highest-order byte that does contain a character. An
unused byte is sign-extended if #ignedchar  control is in effect (default), or
zero-extended if theosignedchar  control is in effect.

The encoding of multi-byte characters does not depend on any shift state.

Integers

When a signed or unsigned integer is converted to a narrower signed integer, or an
unsigned integer is converted to a signed integer of equal width, overflow is
ignored and high-order bits are truncated; a sign change can occur.

The compiler treats signed integers as bit strings in bitwise operations.

The sign of the remainder on integer division is the same as the sign of the
dividend.

A right shift of a signed integral type is arithmetic.
See Table 10-1 for types and sizes of integers.

iC-386 Compiler User's Guide Chapter 10 241



Floating-point Numbers

When the compiler converts:

An integral number to a floating-point number, any truncation is controlled by
the numeric coprocessor or emulator.

A floating-point number to a narrower floating-point number, the direction of
rounding is controlled by the numeric coprocessor or emulator.

See Table 10-1 for types and sizes of floating-point numbers.

Arrays and Pointers

Character string initializers within a character array are not null-terminated.

242

An unsigned integer is large enough to hold the maximum size of an array. An
integer is large enough to hold the difference between two pointers to members of
the same array.

When you cast:

A near pointer tint , the compiler preserves the bit representation.

A near pointer tdong , the iC-386 compiler sign-extends the offset if the
long64 control is in effect. If th@olong64 control is in effect, the result is
the same as casting a near pointéntto.

A far pointer toint , the compiler yields the offset-only part of the pointer
value and discards the selector.

A far pointer tolong , the iC-386 compiler sign-extends the high-order 16 bits
if thelong64 control is in effect. If th@olong64 control is in effect, the
result is the same as casting a far pointéntta

Anint constant to a near pointer, the compiler preserves the bit
representation.

Anint constant expression to a far pointer, the compiler uses zero bits for the
selector. Casting any othiet expression to a far pointer uses the current
value of the DS register for the selector.

A long integer to a near pointer, the iC-386 compiler discards the high-order
32 bits if thelong64 control is in effect. If th@olong64 control is in effect,
the result is the same as castingran to a near pointer.

A long integer to dar pointer, the iC-386 compiler discards the high-order
16 bits if thelong64 control is in effect. If th@olong64 control is in effect,
the result is the same as castingran to a far pointer.

The compiler can initialize arrays with storage clags .

See Table 10-1 for the types and sizes of pointers.

Chapter 10 Language Implementation



Register Variables

The ESI and EDI registers can contain objects ofdbister ~ storage class. The
register  storage class is effective only ffum, signed short , signed char ,

int , unsigned int , andnear pointer objects. Register storage is honored only
under the variable parameter list (VPL) function calling convention.

The iC-386 compiler allocates registers for register objects in this order (only under
VPL):

1. Parameters, in the order that they appear in the function declaration
2. Local variables, in the order that the code references them

When a local variable assigned to a register goes out of scope, its register becomes
available again.

Structures, Unions, Enumerations, and Bit Fields

Each of the sets of structure, union, and enumeration tags has its own name space.
Each function has a name space for its labels. Each structure or union has a name
space for its members. Identical names in different name spaces do not conflict.

See also:  Virtual symbol table capacity in this chapter

Assignment expressions can assign to structures or unions. A function can have
structures and unions as parameters. The function call passes structures and unions
by value. A function can return a structure or a union.

The compiler can initialize unions and structures of storage al&ss

When the program accesses a member of a union object using a member of a
different type than was last assigned, the result is undefined.

The first member in a union declaration determines the map of the union's
initializer.
The compiler represents enumeration typeatas

Bit fields are not necessarily allocated on word boundaries; if a bit field is short
enough, it occupies the space between the end of the previous bit field and the end
of the word the previous bit field occupies.

See also:  Using thaign control to allocate bit fields on word boundaries in
Chapter 3

The compiler treats a bit field that is declared withoutstyeed or unsigned
keywords asigned .

The allocation of bit fields in an integer is low-order to high-order.

iC-386 Compiler User's Guide Chapter 10 243



Declarators and Qualifiers

Objects can be declared as beingst orvolatile . Pointers can point to

const orvolatile objects. Aconst object cannot be modified by assignment.
The compiler does not remove referencesotatie ~ objects during
optimization.

Access to aolatile object constitutes two references, a load and a store, when
an object qualified with theolatile ~ keyword occurs as any of these:

e An operand of a pre-increment operator

e An operand of a pre-decrement operator

* An operand of a post-increment operator

* An operand of a post-decrement operator

« Aleft operand of a compound assignment operator

Every other occurrence ofvalatile object constitutes one reference.

The iC-386 compiler allows attribute specifiers to follow a left parenthésjo¢
comma (). Inthe ANSI C standard, attribute specifiers are valid in declarators
only when subordinate to an asterisk (For example, this line is invalid in the
ANSI C standard:

int (const i), volatile j;

However, the iC-386 compiler recognizes the line above as equivalent to these
lines:

int const i;
int volatile j;

This extended syntax does not affect the semantics of any source text that conform
fully to the rules of the ANSI C standard. The extension causes an asymmetry. Fo
example, the first of these two declarations cansgsandz all to be read-only
variables. The second declaration causesytdybe read-onlyx andz are both
modifiable:

int const x, y, z; /*valid for ANSI C */
int x, consty, z; /* extended syntax */

See also: alien ,far , andnear type qualifiers in Chapter 4

244 Chapter 10 Language Implementation



Statements, Expressions, and References
The maximum number of:
e Case values in awitch statementis 512
* Functions defined in a module is 1,022
» External references in a module is 511
* Arguments in a function call is 31
The maximum nesting level of:
» Statements is 32
* Functions specified in function argument lists is 20

The iC-386optimize  control governs association of subexpressions in evaluation.

Virtual Symbol Table

The maximum virtual symbol table size is 512 kilobytes. This size is large enough
to hold over 8,000 C symbols or over 16,000 macros. The virtual symbol table also
stores identifiers and macro bodies. In addition, the compiler generates a symbol
for each string literal, floating-point constant, and temporary variable.

The type table can contain a maximum of 2,048 entries. Each distinct type takes
up one entry in the type table. The compiler does not duplicate identical pointer,
array, function, or qualified types, except that every prototype has a unique entry,
even if an identical prototype entry exists.

iC-386 Compiler User's Guide Chapter 10 245






Messages

The iC-386 compiler can issue these types of messages:

Fatal errors

Errors (syntax and semantic)
Warnings

Remarks

Subsystem diagnostics
Internal errors

1/0O errors

All messages, except fatal and internal error messages, are reported in the print file.
Fatal and internal errors appear on the screen, abort compilation, and no object
module is produced. Other errors do not abort compilation but no object module is
produced. Warnings and remarks usually provide information only and do not
necessarily indicate a condition affecting the object module.

iC-386 messages relating to syntax are interspersed in the listing at the point of
error. Messages relating to semantics are interspersed in the listing or displayed at
the end of the source program listing; they refer to the statement number on which
the error occurred.

iC-386 Compiler User's Guide Chapter 11 247



Fatal Error Messages
Fatal error messages have the syntax:

iC-386 FATAL ERROR
message

These are the fatal error messages, in alphabetic order:

argument expected for control  control
A compiler control is specified without the argument required by context. Not
having a required argument is a fatal error if it occurs in the compiler invocation,
but the preprocessor only issues a warning if it occurstmegma directive.

See also: Compiler control syntax in Chapter 3

argument length limit exceeded for control  control
The length of the argument to the control exceeds the maximum allowable by the
compiler. For example, an argumentrtadulename exceeds 40 characters.

compiler error
This message follows internal compiler error messages. If you receive this
message, contact Intel customer service.

control  control cannot be negated
You cannot use theo prefix with this compiler control. Improper negating is a
fatal error if it occurs in the compiler invocation, but the preprocessor only issues a
warning if it occurs in &pragma directive.

See also: Negating compiler controls in Chapter 3

duplicate control  control
A control that must not be specified more than once was specified more than once.
Only these controls can be specified more than once:

align include subsys
define interrupt varparams
fixedparams searchinclude

See also: Individual control descriptions in Chapter 3

If you specify a compiler control both in the compiler invocation anddpragma
preprocessor directive, the compiler invocation specification takes precedence. A
duplicate control is a fatal error if it occurs in the compiler invocation but the
preprocessor only issues a warning if it occurs#pragma directive.

duplicate interrupt number: interrupt_number
Indicatesinterrupt_number was used more than onceinterrupt controls.
A duplicate interrupt number is a fatal error if it occurs in the compiler invocation,
but the preprocessor only issues a warning if it occurstmegma directive.

248 Chapter 11 Messages



expression too complex
A complex expression exhausted an internal structure in the compiler. Break the
expression down into simpler components, or try a lower optimization level.

illegal macro definition: macro_name

An invalid macro was defined on the command line withdéfame  control.
input pathname is missing

A primary source file pathname was not specified in the compiler invocation.
insufficient memory

There is not enough memory available for the compiler to run. Check the available
system memory.

insufficient memory for macro expansion
An internal structure was exhausted during macro expansion. Two causes of this
error are: the macro or the actual arguments are too complex, or the macro's
expansion is too deeply nested.

See also: Macro limits in Chapter 10; and the related error message,
expansion too nested
internal error: invalid dictionary access, case 3
This error occurs when the compiler is used in a DOS window for Windows 3.0 or
3.1.

* You may not have enough expanded memory for the compiler. Try compiling
the source file outside of Windows, and if this is successful, make more
expanded memory available to the compiler.

e If you are usingmm386 do not set thaoems switch.

invalid control: control
A control not supported by the compiler was specified. Check the spelling of the
control. An invalid control is a fatal error if it occurs in the compiler invocation
but the preprocessor only issues a warning if the invalid control occurs in a
#pragma directive.

See also: List of iC-386 controls in Chapter 3

invalid control syntax
The compiler control contained a syntax error. Invalid control syntax is a fatal
error if it occurs in the compiler invocation, but the preprocessor only issues a
warning if the invalid syntax occurs irkgragma directive.

See also: Compiler control syntax in Chapter 3

iC-386 Compiler User's Guide Chapter 11 249



invalid decimal parameter: value
Non-decimal characters were found in an argument that must be a decimal value.
An improper non-decimal argument is a fatal error if it occurs in the compiler
invocation, but the preprocessor only issues a warning if the improper argument
occurs in atpragma directive.

See also: Compiler control syntax in Chapter 3

invalid identifier: identifier
An identifier does not follow the rules for forming identifiers in C. An invalid
identifier is a fatal error if it occurs in the compiler invocation, but the preprocessor
only issues a warning if the invalid identifier occurs itpeagma directive.

invalid syntax for control  control
Invalid syntax is a fatal error if it occurs in the compiler invocation, but the
preprocessor only issues a warning if the improper control syntax occurs in a
#pragma directive.

See also: Compiler control syntax in Chapter 3

missing or misplaced right parenthesis
A right parenthesis is required to delimit arguments to a compiler control. An
improper right parenthesis is a fatal error if it occurs in the compiler invocation, but
the preprocessor only issues a warning if the misplaced or missing parenthesis
occurs in atpragma directive.

See also: Compiler control syntax in Chapter 3

no more free space
The internal structure used to hold macros is exhausted. Use fewer macros in your
program.

See also: Macro limits in Chapter 10

null argument for control  control
Null arguments for compiler controls are not allowed. For example, this is illegal:

ALIGN(siga=2,,sigh=2)

A null argument is a fatal error if it occurs in the compiler invocation, but the
preprocessor only issues a warning if the null argument occurégpiragma
directive.

parameter not allowed for control  control
This message indicates an attempt to pass arguments to a control that accepts nor
Improper argument passing is a fatal error if it occurs in the compiler invocation,
but the preprocessor only issues a warning if the improper argument occurs in a
#pragma directive.

250 Chapter 11 Messages



parameter not allowed for negated control  control
Negated controls generally do not accept arguments.nddlign control is the
only exception. An improper argument for a negated control is a fatal error if it
occurs in the compiler invocation, but the preprocessor only issues a warning if the
improper argument occurs intaragma directive.

parameter out of range for control  control: parameter
This message indicates an attempt to use an argument value that is out of the valid
range. An out-of-range argument is a fatal error if it occurs in the compiler
invocation, but the preprocessor only issues a warning if the improper argument
occurs in atpragma directive.

See also: Argument values accepted by compiler controls, in Chapter 3

parameter required for control  control
A missing required argument is a fatal error if it occurs in the compiler invocation,
but the preprocessor only issues a warning if the missing argument occurs in a
#pragma directive.

previous errors prevent further compilation
The compiler was unable to recover from previous errors in the compilation.
Correct the errors reported thus far, then recompile.

subsys control conflicts with codeseg/dataseg control
A subsys control cannot occur while thdesegment or datasegment control
is in effect, and vice versa.

switch table overflow
Too many activeases exist in aswitch statement that has not yet been
completed.

See also: Switch statement limits in Chapter 10

too many directories are specified for search - pathname
Too many directories are specified in the compiler invocation with the control
searchinclude . Thepathname is the directory at which the error occurred, that
is, the first directory over the limit.

See also: Search limits in Chapter 10

type table full
Too many symbols with non-standard data types are defined in the module.
Remove unused definitions, or break down the module.

iC-386 Compiler User's Guide Chapter 11 251



unable to recover from syntax error
A syntax error has put the compiler in a state that would lead to spurious error
messages or internal error messages if the compiler continues to process the
program. For example:

e Using thefar ornear keywords in a program compiled without #seend
control

«  Omitting a semicolon from a function declaration, as in this code:
struct a { int c} s /* No semicolon after s */
main () {s.c = 0;}

You can correct the problem by adding a semicolon after the declaration of the

structures:
struct a { int c} s; /* Semicolon added after s */
main () {s.c = 0;}

* Not defining a macro for a user-defined name for a standard data type, as in
this code:
INT i;
main()
{i=0;}
You can eliminate the error by using:
#define INT int
whiles, fors, etc. too deeply nested
The statement nesting structure of the module exhausted an internal structure in th
compiler.

See also: Nesting limits in Chapter 10

252 Chapter 11 Messages



Error Messages

Syntax error messages have the format:

*** ERROR AT LINE  number OF file : syntax error near token
Where:

number is the line number of the offending source line.

file is the name of the source file.

token is the token in the source text near where the error occurred.

Semantic error messages have the syntax:
*»** ERROR AT LINE  nn OF filename : message
Where:

filename is the name of the primary source file or include file in which the
error occurred.

nn is the source line number where the error is detected.
message is the explanation.

Following is an alphabetic list of error messages.

# operator missing macro parameter operand
The# operator must be followed by a macro parameter.

## operator occurs at beginning or end of macro body
The## (token concatenation) operator is used to paste together adjacent
preprocessing tokens, so it cannot be used at the beginning or end of a macro body.

a semantic token cannot precede subsys control
Text that constitutes a semantic token cannot occur befagma subsys

align/noalign control not allowed with union/enum tag
A union or enumeration tag cannot be used as an argumentdi@the or
noalign control. Use a structure tag only.

an attempt to undefine a non-existent macro
The name in théundef preprocessor directive is not recognized as a macro.

anonymous parameter
A parameter in a function definition is prototyped but not named.

arguments not allowed
Arguments were passed to a function that does not accept arguments.

array too large
This error occurs when the size of an array exceeds 4 gigabytes for iC-386.

iC-386 Compiler User's Guide Chapter 11 253



attempt to use 0 as divisor in division/modulo
A divide-by-0 was detected in a divide or modulo operation.

basic block too complex
This error is caused by a function with a long list of statements without any
statements such &bel |, case,if , goto , orreturn . Break the function into
several smaller functions, or add labels to some statements.
call not to a function
A call is made to a symbol which is not a function.
call to interrupt handler
An interrupt handler can be activated only by an interrupt.
cannot initialize
The type or number of initializers does not match the initialized variable.
cannot initialize extern in block scope
An external declaration cannot be initialized in any scope other than file scope.
This example is an invalid external declaration:

f0

{externinti=1;
}

case not in switch
A case was specified, but not withiswitch statement.

code segment too large
The size of the code segment exceeds 4 gigabytes for iC-386. Break the module
into two or more separately compiled modules, or use subsystem definitions.

See also: Defining subsystems in Chapter 9

conditional compilation directive is too nested
The module contains more than the maximum number of conditional statements.

See also: Nesting limits in Chapter 10

constant expected
A non-constant expression appears when a constant expression is expected (e.g.,
non-constant expression as array bounds or as the width of a bit field).

constant value must be an int
The constant specified must be representable as the datattype

data segment too large
The size of the data segment exceeds 4 gigabytes for iC-386. Break the module
into two or more separately compiled modules, or use subsystem definitions.

See also: Defining subsystems in Chapter 9

254 Chapter 11 Messages



default not inside switch
A default label was specified outside obaitch statement.

duplicate case in switch, number
The same valueyumber, was specified in more than ocsse in the same
switch statement.

duplicate default in switch
More than onelefault label was specified within the sameitch statement.

duplicate label
A label was defined more than once within the same function.

duplicate parameter name
The same identifier was found more than once in the identifier list of a function
declarator. For example, this code contains a duplicatentifier:

int f(a, a) {}

duplicate tag
A tag was defined more than once within the same scope.

empty character constant
A character constant should include at least one character or escape sequence.

floating point operand not allowed
An operand is non-integral, but the operator requires integral operands. Fhat is,
& | ,", % >>, and<< all require integral operands.

function body for non-function
A function body was supplied for an identifier that does not have function type, as
in this example:

inti{}
function declaration in bad context
A function is defined (i.e., appears with a formal parameter list), but not at module-

level. Or, a function declarator with an identifier list, which is legal only for
function definitions, was encountered within a function, as in this example:

int main(void)
{
int f(a);
}
function redefinition
More than one function body has been found for a single function, as in this
example:

int f() {}
int f() {}

iC-386 Compiler User's Guide Chapter 11 255



illegal assignment to const object
Constants cannot be modified.

illegal break
A break statement appears outside of amjtch , for , do, orwhile statement.

illegal constant expression
The expression within a#if or#elif is not built correctly.

illegal constant suffix
The suffix of a number is nat U, or a legal combination of the two.

illegal continue
A continue  statement appears, but not within @y , do, orwhile statement.

illegal #elif directive
An #elif  directive is encountered after #wise directive.

illegal #else directive
An #else directive is encountered after an initiaglse directive.

illegal field size
Legal field sizes are 0-32 for unnamed fields, and 1-32 for named fields.

illegal floating point constant in exponent
A floating-point constant cannot be an exponent.

illegal function declaration
Internal error; may be caused by an earlier syntax error.

illegal hex constant
A hexadecimal constant contains non-hex characters or is without a 0 prefix.

illegal macro redefinition
A macro can be redefined only if the body of the redefined macro is exactly the
same as the body of the originally defined macro.

illegal nesting of blocks, ends not balanced
Braces delimiting a block of code are unbalanced.

illegal syntax - left parenthesis is expected
The name of a macro that accepts arguments is specified with no argument list, or
the argument list is not properly delimited with parentheses.

illegal syntax in a directive line
A syntax error is encountered in a preprocessor directive.

illegal syntax in a directive line - newline expected
A preprocessor directive line is not terminated with a newline character.

illegal syntax in an argument list
An argument list in a macro contains misplaced or illegal characters.

incompatible types
The two operands of a binary operator have incompatible types, for example,
assigning a non-zero integer to a pointer.

256 Chapter 11 Messages



incomplete type
The compiler detected a variable whose type is incomplete, such as this example
declaration where the type ofis not complete if the program contains no previous
declaration defining the tag

int f(struct S s)
{..}
invalid argument for builtin function
For example, the built-in functiarauseinterrupt appears with a non-constant
argument. Built-in functions are the functions that provide direct access to various
processor features.

See also: Syntax of the built-in function calls in Chapter 6

invalid attribute for: function_name
The source program attempted to set multiple and conflicting attributes for a
function. For example,@arparams or fixedparams control appears for a
function whose calling convention has already been established by use, definition,
declaration, or a previous calling-convention control. For another example, a
function identifier appears as an argument tinsmrupt ~ control which
appeared in a previous calling-conventiornggrrupt ~ control, or the function
identifier has been previously used, defined, or declared.

invalid built-in function
Use Intel486- and Pentium-specific built-in functions only withrttoel486
control. Use Intel386-specific built-in functions only with the iC-386 compiler.

See also: Built-in functions in Chapter 6

invalid cast
These are examples of invalid casts:

e casting to or fronstruct  or union

e casting avoid expression to any type other thanid

invalid field definition
A field definition appears outside a structure definition or is attached to an invalid
type.

invalid interrupt handler
Interrupt handlers take no arguments and return no vedite .

invalid member name
The member name (that is, the right operand.obaa-> ) is not a member of the
corresponding structure or union.

invalid number of parameters
The number of actual arguments passed to a function does not match the number
defined in the prototype of that function.

iC-386 Compiler User's Guide Chapter 11 257



invalid object type
An invalid object type has been detected in a declaration, for exanigle
array[5];.

invalid pointer arithmetic
The only arithmetic allowed on pointers is to add or subtract an integral value from
a pointer, or to subtract two pointers of the same type. Any other arithmetic
operation is illegal.

invalid redeclaration name
An object is being redeclared, but not with the same type. For example, a function
reference implicitly declares the function as a function returnirigtan If the
actual definition follows, and it is different, it is an error.

invalid register number
Only certain of the Intel386, Intel486, or Pentium processor special registers are
available for use in built-in functions. The register number specified must be a
numeric constant.

See also: Intel386, Intel486, and Pentium processor special registers in Chapter 6

invalid storage class
The storage class is invalid for the object declared. For exaatiple, can be
used only for external procedures, or a module-level object canaatdeor
register

invalid storage class combination
You cannot have more than one storage class specifier in a declaration.

invalid structure reference
The left operand of a is not a structure or a union; or the left operand-of &
not a pointer to a structure or a pointer to a union. This error message also occurs
if an assignment is made from one structure to another of a different type.

invalid type
An invalid combination of type modifiers was specified.

invalid type combination
An invalid combination of type specifiers was specified.

invalid use of void expression
An expression of data typeid was used in an expression.

left operand must be Ivalue
The left operand of an assignment operator, and of-ttend
-- operators, must be an "lvalue;" that is, it must have an address.

limit exceeded: number of externals
The number of external declarations has exceeded the compiler limit.

See also: External declaration limits in Chapter 10

258 Chapter 11 Messages



macro expansion buffer overflow
Insufficient memory exists for expansion of a macro; the macro is not expanded.

macro expansion too nested
The maximum nesting level of macro expansion has been exceeded. Macro
recursion, direct or indirect, can also cause this error.

See also: Nesting limits in Chapter 10

member of unknown size
The data type of a member of a structure is not sufficiently specified.

missing left brace
The initialization data for an aggregate object (array, structure, or union) must be
enclosed by at least one pair of braces.

multiple parameters for a macro
Two parameters in the definition of a macro are identical. Every parameter must
be unique in its macro definition.

nesting too deep
See nesting level limits in Chapter 10.

newline in string or char constant
The new-line character can appear in a string or character constant only when it is
preceded by a backslash (\).

no more room for macro body
Parameter substitution in the macro has increased the number of characters to more
than the maximum allowed.

See also: Macro limits in Chapter 10

non addressable operand
The& operator is used illegally (such as to take an address of a register or of an
expression).

non-constant case expression
The expression in@se is not a constant.

nothing declared
A data type without an associated object or function name is specified.

number of arguments does not match number of parameters
The number of arguments specified for the macro expansion does not match the
number of parameters specified in the macro definition.

operand stack overflow
An illegal constant expression exists in a preprocessor directive line.

operand stack underflow
An illegal constant expression exists in a preprocessor directive line.

iC-386 Compiler User's Guide Chapter 11 259



operator not allowed on pointer
An operand is a pointer, but the operator requires non-pointer integral operands
(e-g-,&, | L] Al * L] / L] % >>| << )-

operator stack overflow
An illegal constant expression exists in a preprocessor directive line.

operator stack underflow
An illegal constant expression exists in a preprocessor directive line.

parameter list cannot be inherited from typedef
A function body was supplied for an identifier that has function type, but whose
type was specified viatgpedef identifier, as in this example:

typedef void func(void);
func f {}

parameters can't be initialized
An attempt was made to initialize the parameters in a function definition.

procedure too complex for optimize (2)
The combined complexity of statements, user-defined labels, and
compiler-generated labels is too great. Simplify as much as possible, breaking the
function into several smaller functions, or specify a lower level of optimization.

See also: Optimization in Chapter 3

program too complex
The program has too many complex functions, expressions, and cases. Break it
into smaller modules.

real expression too complex
The real stack has eight registers. Heavily nested use of real functions with real
expressions as arguments is excessively complex. Simplify as much as possible.

respecified storage class
A storage class specifier is duplicated in a declaration.

respecified type
A type specifier is duplicated in a declaration.

respecified type qualifier
A type qualifier is duplicated in a declaration.

sizeof invalid object
An implicit or explicitsizeof operation is needed on an object with an unknown
size. Examples of invalid implicéizeof operations arep++, wherep is a
pointer to a function, astruct  sigtype siga , whensigtype is not yet
completely defined.

statement is too large
A statement is too large for the compiler. Break it into several smaller statements.

260 Chapter 11 Messages



string too long
A string of over 1024 characters is being defined.

syntax error near ' string
A syntax error occurred in the program. Heer string information attempts to
identify the error more precisely.

too many active cases
The limit of active cases in an uncompletedich statement was exceeded.

See also: Switch statement limits in Chapter 10
too many active functions
The number of function calls within a single expression has exceeded the compiler
limit.
See also: Function call limits in Chapter 10

too many characters in a character constant
A character constant can include one to four characters. The effect of this error on
the object code is that the character constant value remains undefined.

See also: Character constant size for your target processor in Chapter 10

too many cross-references, data truncated
The cumulative number of cross-references exceeded the compiler's internal limit.
Cross-references appear in the symbol table listing wheaghecontrol is active.

too many externals
Too many external identifiers were declared.

See also: External identifier limits in Chapter 10

too many functions
Too many functions were declared.

See also: Function limits in Chapter 10

too many initializers
An array is initialized with more items than the number of elements specified in the
array definition.

too many macro arguments
The maximum number of arguments specified for a macro was exceeded.

See also: Macro limits in Chapter 10

too many nested calls
The nesting limit for functions called in function argument lists has been exceeded.

See also: Nesting limits in Chapter 10

iC-386 Compiler User's Guide Chapter 11 261



too many nested struct/unions
The lexical nesting oftruct andunion member lists is limited to a depth of 32.

too many parameters for one function
The maximum number of parameters specified for one function was exceeded.

See also: Function parameter limits in Chapter 10

too many parameters for one macro
The maximum number of parameters specified for one macro was exceeded.

See also: Macro parameter limits in Chapter 10

unbalanced conditional compilation directive
Conditional compilation directives are improperly formed. For example, the
program contains too mamendif preprocessor directives, or #glse
preprocessor directive without a match#iy preprocessor directive.

undefined identifier: identifier
The program contains a reference to an identifier that has not been previously
declared.

undefined label: label

A label has been referenced in the function, but has never been defined.

undefined or not a label
An identifier following agoto must be a label; the identifier was declared
otherwise, or the identifier was declared as a label but was not defined.

undefined parameter
The argument being defined did not appear in the formal parameter list of the
function.

unexpected EOF
The input source file or files ended in the middle of a token, such as a character
constant, string literal, or comment.

unit string literal too long; truncated
The maximum length of a string is 1024 characters.

variable reinitialization
An initializer for this variable was already processed.

void function cannot return value
A return with an expression is encountered in a function that is declared as type
void . In such functions, all returns must be without a value.

262 Chapter 11 Messages



Warnings
Warnings have the syntax:
*»** \WARNING AT LINE  nn OF filename : message
Where:
filename is the name of the file in which the warning occurred.
nn is the source line number where the warning is detected.
message is the explanation.

Following is an alphabetic list of warnings.

a #endif directive is missing
At least onetendif preprocessor directive is missing at the end of the input source
file(s). The#if , #elif , and#endif preprocessor directives are not balanced.

an old builtin header file has been used
A built-in header file from a previous release of the compiler has been used.
Obtain the built-in header file provided with this release and use it.

argument expected for control  control
A compiler control is specified without the argument required by context. A
missing required argument is a fatal error if it occurs in the compiler invocation,
but the preprocessor only issues a warning if it occurstmegma directive.

bad octal digit: hex_value  (hex)
An octal number contains a non-octal character. Atvevalue is the ASCII
value of the illegal character.

comment extends across the end of a file
A comment that is started in a file is not closed before the end of the file.

control  control cannot be negated
The prefixno cannot be specified for this compiler control. Improper negating is a
fatal error if it occurs in the compiler invocation, but the preprocessor only issues a
warning if it occurs in &pragma directive.

See also: List of compiler controls that can be negated in Chapter 3

control  control not allowed in pragma
The compiler encountered eithedefine or aninclude control in a#pragma
preprocessor directive.

different enum types
An attempt was made to assign @nem type to a differenénum type.

iC-386 Compiler User's Guide Chapter 11 263



directive line too long
The line length limit fopragma preprocessor directives was exceeded.

See also: Line length limit in Chapter 10
division by 0
A division by the constartt was specified.

escape sequence value overflow
The escape sequence is undefined.

export ignored: identifier
An identifier that is an enumeration constant appeared iIBXRORTIist of a
subsystem specification. An enumeration constant canrfat he

See also: Subsystems in Chapter 9

exported identifier: identifier
An identifier that is either a built-in or appears as an argument ioténeipt
control, appears also in tlEXPORT4dist of a subsystem specification.

extra characters in pragma ignored: string
Thestring represents characters that the compiler cannot process as part of the
current#pragma .

filename too long; truncated
The filename length exceeded the limit of the OS.

illegal character in header name: hex_value  (hex)
An illegal character was found in the header name eéfrafude <>
preprocessor directive.

illegal character: hex_value  (hex)
The character with the ASCII valuex_value is not part of the iC-386 character
set.

illegal escape sequence
The sequence following the backslash is not a legal escape sequence. The compil
ignores the backslash and prints the sequence.

illegal syntax in a directive line
A preprocessor directive line is not terminated with a new-line character.

illegal syntax in a directive line - newline expected
A preprocessor directive line is not terminated with a new-line character.

indirection to different types
A pointer to one data type was used to reference a different data type.

264 Chapter 11 Messages



initializing with ROM option in effect
When a program is placed in ROM, initialization of a variable that does not have
theconst type qualifier has no effect.

See alsoram androm compiler controls in Chapter 3

invalid control syntax
Invalid control syntax is a fatal error if it occurs in the compiler invocation, but the
preprocessor only issues a warning if it occurs#pragma directive.

See also: Compiler control syntax in Chapter 3

invalid decimal parameter: value
Non-decimal characters were found in an argument that requires a decimal value.
Invalid non-decimal argument is a fatal error if it occurs in the compiler
invocation, but the preprocessor only issues a warning if the invalid argument
occurs in atpragma directive.

invalid identifier: identifier
An identifier does not follow the rules for forming identifiers in C. An invalid
identifier is a fatal error if it occurs in the compiler invocation, but the preprocessor
only issues a warning if the invalid identifier occurs itpeagma directive.

invalid syntax for control  control
Invalid syntax is a fatal error if it occurs in the compiler invocation, but the
preprocessor only issues a warning if the invalid syntax occurggragma
directive.

See also: Compiler control syntax in Chapter 3

missing or misplaced right parenthesis
A right parenthesis is required to delimit arguments to a compiler control.
Improper right parenthesis is a fatal error if it occurs in the compiler invocation,
but the preprocessor only issues a warning if the missing or misplaced parenthesis
occurs in atpragma directive.

null argument for control  control
Null arguments for compiler controls are not allowed. For example, this is illegal:

align(siga=2,,sigh=2)

A null argument is a fatal error if it occurs in the compiler invocation, but the
preprocessor only issues a warning if the null argument occurgpiragma
directive.

iC-386 Compiler User's Guide Chapter 11 265



parameter not allowed for control  control
An argument or arguments were passed to a control that accepts none. Improper
argument passing is a fatal error if it occurs in the compiler invocation, but the
preprocessor only issues a warning if the argument occurgpimgma directive.

See also: Compiler control syntax in Chapter 3

parameter not allowed for negated control  control
Negated controls generally do not accept argumentdign is the only
exception). An improper argument for a negated control is a fatal error if it occurs
in the compiler invocation, but the preprocessor only issues a warning if the
argument occurs in#pragma directive.

parameter out of range for control  control: parm
An argument or arguments were passed that were out of the specified range for the
parameter. An out of range argument is a fatal error if it occurs in the compiler
invocation, but the preprocessor only issues a warning if the argument occurs in a
#pragma directive.

See also: Values accepted by compiler controls in Chapter 3

parameter required for control  control
A missing required argument is a fatal error if it occurs in the compiler invocation,
but the preprocessor only issues a warning if the argument occutpramena
directive.

See also: Compiler control syntax in Chapter 3

pointer extension
An integral expression is being converted to a far pointer type, and the current
value ofDSis being inserted as the selector part. Later operations using this value,
particularly comparison against tR&JLL constant, may not give correct results.

pointer truncation
A far pointer expression is being converted to a narrower type, which cannot
represent the value of the selector part of the pointer. Later indirection using this
value can give incorrect results.

pragma ignored
An entire#tpragma preprocessor directive was ignored as a result of an error.
Whenever an error is found irtaragma preprocessor directive, the diagnostic is
followed by either this messageremainder of pragma ignored , whichever
is appropriate. This message is usually paired with one of several other messages.

predefined macros cannot be deleted/redefined
The predefined macros (e.g.,LINE__ or__FILE__ ) cannot be deleted or
redefined by the preprocessor directi#dsfine  or #undefine

266 Chapter 11 Messages



remainder of pragma ignored
This message indicates that@magma preprocessor directive is partially ignored
as a result of an error. Whenever an error is foundtpragma preprocessor
directive, the message is followed by either this messagagma ignored
whichever is appropriate. This message is usually paired with one of several other
messages.

subsys control conflicts with codeseg/dataseg control
A subsys control cannot occur while thdesegment or datasegment control
is in effect, and vice versa. The preprocessor detected both conttptagma
preprocessing directives.

token too long; ignored from character: hex_value (hex)
A character sequence was too long (such as an identifier or a macro argument).

too many alignment specifiers for this tag: structure_tag
Alignment has already been specified for dtiscture tag , either in the
current or in a previous align control. Redundant alignment specification is a fatal
error if it occurs in the compiler invocation, but the preprocessor only issues a
warning if it occurs in &pragma directive.

zero or negative subscript
In an array declaration, the value of an array subscript must be a positive integer.

iC-386 Compiler User's Guide Chapter 11 267



Remarks

Remarks have the syntax:

*»** REMARK AT LINE  nn OF filename : message

Where:

filename is the name of the file in which the remark occurred.

nn is the source line number where the remark is detected.
message is the explanation.

Following is an alphabetic list of remark messages.

a constant in a selection statement
A constant is encountered in the expression of a selection statement suéh as an
else , orswitch statement.

implicit function declaration
The function is used without any previous declarations.

invalid number of parameters
The actual number of arguments in a function call do not agree with the number of
parameters in a function definition that is not a prototype.

return statement has no expression
A return statement with no return expression is encountered in a function definition
which returns an expression other thaial .

statement has no apparent effect
A statement that does not have any effect in the source code is encountered, as in
this example:

var + 1;

the characters /* are found in a comment
A comment-start delimitery ) occurs between a comment-start delimiter and a
comment-end delimiter( ).

268 Chapter 11 Messages



Subsystem Diagnostics
Subsystem diagnostic messages have the syntax:
*»** ERROR AT LINE  nn OF filename : message
Where:

filename is the name of the primary source file or include file in which the
error occurred.

nn is the source line number where the error is detected.
message is the explanation.

Following is an alphabetic list of subsystem diagnostic messages.

conflicting segmentation controls
More than one segmentation control affecting the module being compiled was
encountered. One common cause is specifying-botist in code- ina
subsystem definition and them control.

illegal identifier in subsystem specification
An identifier was encountered that does not follow rules for PL/M identifiers.

See also: Subsystem identifiers in Chapter 9

invalid control
An unrecognized control is in the subsystem definition.

See also: Subsystem definitions in Chapter 9

subsystem already defined
The subsystem name has already been defined.

symbol exists in more than one has list
A module name can occur in only oASlist.

unexpected end of control
A subsystem definition was expecting a continuation line or a right parenthesis.

iC-386 Compiler User's Guide Chapter 11 269



Internal Error Messages

Internal error messages have the syntax:
internal error: message

If your compilation consistently produces any of these errors, contact your Intel
representative.

IRMX Condition Codes in Error Messages

270

In some cases, such as a reference to a non-existent file, the compiler passes iRM.
condition codes, as shown below.

See also: List of iRMX condition codeSystem Call Reference
ERROR: EXCEPTION: 0021H FILE DOES NOT EXIST
Check to see that the specified file exists.

If you are using a submit file and it uses library files, check that the path to the
library files is fully expanded.

If you have just installed iRMX for Windows, verify that thetoexec.batile sets
the path to the C header files, then reboot your system.

Chapter 11 Messages



Absolute address An address in memory relative to the beginning of memory.

Access attributes Characteristics which define the type of segment access allowed:
read-only data, read-write data, execute-read code, or execute-only
code. These attributes are represented by bits 41
(Writable/Readable) and 43 (Executable) in the segment descriptor.

Aggregate data A data type that is a collection of scalar and sometimes aggregate
type data types, treated either as a unit, or as individual scalar or
aggregate data types.

Alignment (of an  The allocation of an object in memory relative to byte, even-byte, or

object) 4-byte addresses and boundaries.

Alignment (of a The allocation of a segment in memory relative to byte, word,
segment) paragraph, or page addresses and boundaries.

Big-endian A processor that stores multi-byte objects starting with the high-

order byte at the lowest address.

Binder, BND386 The utility that performs linking. The binder combines segments
with like names and resolves symbolic addressing.

Build file A file of system implementation definitions used by BLD386, to
create an absolutely-located system. The definitions describe system
data structures, initial values for the system, and memory
configuration.

Builder, BLD386 The utility that creates an absolutely-located system from linkable
input modules and system definitions in a build file.

Calling convention The set of instructions that the compiler inserts in object code to
handle parameter passing, stack and register use, and return values in
a function call.

Code segment A memory segment containing instructions and sometimes constants.

Compiler control A directive you can specify in the compiler invocation.

iC-386 Compiler User's Guide Glossary 271



Compiler
invocation

Conditional
compilation

Cross-referenced
symbol table

Current segment

D bit

(Intel386, Intel486,
and Pentium
processors)

Data register

Data segment
Data type
Debugger

Descriptor

Descriptor
privilege level

Development tool

EFLAGS register
(Intel386, Intel486,
and Pentium
processors)

Error

Expand-down

The command that causes the compiler to begin execution.

Compiling only part of the source code, depending on the
preprocessor's evaluation of conditions in the source code.

A symbol table containing source line-number reference
information.

The segment pointed to by a segment register at any particular time
during execution.

Bit 54 (B/D) in a segment descriptor. The D bit refers to the default
operand size of a code segment. If the bit is 1, the default operand
size is 32 bits. If the bit is 0, the default operand size is 16 bits.

One of four 32-bit registers (EAX, EBX, ECX, or EDX for Intel386,
Intel486, and Pentium processors); the processor usually uses data
registers in arithmetic and logical operations.

A segment containing data (e.g., variables and constants).
The format for representing a value.

A development tool that enables you to observe and manipulate the
step-by-step execution of your program.

An eight-byte data structure containing the base, limit, and access
attributes for a given region of linear address space such as a
segment, table, or task state segment.

Bits 29 and 30 in a segment descriptor. The segmentation hardware
checks descriptor privilege levels on accesses to code and data
segments to ensure that the referring code has sufficient privilege.

Any product used for application development.

The processor register containing indicators of the current state of
the processor and of the result of the just-completed instruction.

An exception that does not immediately terminate compilation but
can cause an invalid object module.

A special kind of data segment useful for stacks. The expand-down
attribute is in bit 42 of the segment descriptor. A software system
can dynamically increase the expand-down segment size by lowering
the limit in the segment descriptor.

272 Glossary



External reference

Far:far, definition
G-

Fatal error

File type

Filename

Filename base

Filename
extension

FLAGS register

Gate

General control

General register

Global descriptor
table (GDT)

Global descriptor
table register
(GDTR)

Hardware flags

Host system

A reference to a location in a different object module via a data
pointer or function call.

A reference from a location in one segment to a location in a
different segment; an address with both the segment selector and
offset specified.

An exception that terminates compilation; no object module is
produced.

The characteristics of a file reflected in the characters of the
filename following the dot character.

The name of a file, including the device and directory path, if
necessary.

The part of a filename that is left of the dot character.

The part of a filename that is right of the dot character.

The processor register containing indicators of the current state of
the processor and of the result of the just-completed instruction. The
low-order 16 bits of the EFLAGS register in Intel386, Intel486, and
Pentium processors.

An eight-byte data structure used to regulate transfer of control to
another code segment. A gate is sometimes called a descriptor
because it has a layout similar to a segment descriptor. Gates
provide indirection that allows the processor to perform protection
checks.

A compiler control that you can specify on the command line and in
a #pragma preprocessor directive anywhere in the source code as
often as necessary.

Any of the data, pointer, or index registers.

An array of descriptors defining segments and gates available for use
by all tasks in the system. A software system contains only one
global descriptor table.

The system register that contains the base address and limit of the
global descriptor table.

See FLAGS register and EFLAGS register.

The system on which the compiler executes. (See also: Target
system)

iC-386 Compiler User's Guide Glossary 273



Identifier

In-circuit emulator

Include files

Index register

Instruction set

Interrupt descriptor

table (IDT)

Interrupt descriptor

table register
(IDTR)

Interrupt handler

Listing controls

Little endian

Local descriptor
table (LDT)

Local descriptor
table register
(LDTR)

Lowercase

Machine status
word (MSW)

Macro

274

The name you specify in your source code to refer to an object or
function.

A system of hardware and software that emulates the operation of a
microprocessor or microcontroller within a target system.

The source files other than the primary source file; specified in the
include compiler control or in the #include preprocessor directive.

One of two registers, ESI or EDI (for Intel386, Intel486, and
Pentium processors) that you use for addressing operands during
execution.

The executable elements of the object code.

An array of task, interrupt, and trap gates that act as interrupt
vectors. A software system contains only one interrupt descriptor
table.

The system register that contains the base address and limit of the
interrupt descriptor table.

The function called when an interrupt occurs.

Controls which specify the names, locations, and contents of the
output listing files.

A processor that stores multi-byte objects starting with the low-order
byte at the lowest address.

An array of descriptors defining segments and gates protected from
use by all but specified tasks in the system. Tasks that have a
pointer to a local descriptor in their task state segment can access
that table. The global descriptor table can hold descriptors for local
descriptor tables. A software system can contain many local
descriptor tables.

The system register that contains the selector for the descriptor of the
currently active local descriptor table.

For ASCII characters a through z, the hexadecimal values 61 through
TA.

A 16-bit register whose value indicates the configuration and status
of the processor. In Intel386 and higher processors, the MSW is the
low-order 16 bits of control register 0 (CRO).

A string that the preprocessor replaces with text you specify.

Glossary



Module

Near

Numeric
coprocessor

Object

Object code
Object file

Object-file content
controls

Object module
Offset

Output listing
Pathname

Pointer registers

Preprint file

Primary control

Primary source file

Primary source
text

Print file

A file of code in some stage of translation. An object module refers
to the output of a translator, linker, binder, or system builder. An
input module refers to a file in the form accepted by translating,
binding, or building software.

A reference from one location to another within the same segment;
an offset-only address.

An Intel387 coprocessor, or the Intel486 or Pentium processor
on-chip floating-point unit.

A variable, temporary variable, constant, literal, or macro. (See
also: Object module)

Executable instructions and associated data in binary format.
The file containing the object module that the compiler generates.

Controls which determine the internal configuration of the object
file.

The formatted object code that the compiler generates.

The displacement; the number of units (usually bytes) away from the
zero location in memory, or the number of units away from the base
address of the enclosing segment or data structure.

The print file and preprint file that the compiler generates.
The name of a directory or file relative to a given directory.

The base pointer (EBP for Intel386, Intel486, and Pentium
processors) and stack pointer (ESP for Intel386, Intel486, and
Pentium processors) registers.

A text file that the compiler generates, containing the intermediate
source code after macro expansion, files included using the include
control or the #include preprocessor directive, and conditional
compilation.

A compiler control that can only be specified once. When you
specify it in a preprocessor directive, you must specify it before the
first line of data definition or executable source code.

The file specified as the source file in a compiler invocation.

The contents of the primary source file.

A compiler-generated text file containing code listings, symbolic
information, and information about the compilation.

iC-386 Compiler User's Guide Glossary 275



Privilege level

Privileged
instructions

Program

Protected mode

Protection

Protection-enable
bit (PE)

Qualifier

Real mode

Relative address
Scalar data type
Search path

Segment

Segment register

Segmentation
model

One of four values in bits 45 and 46 of a segment or special
descriptor: 0 (most privileged), 1, 2, or 3 (least privileged). The
descriptor privilege level (DPL) of the currently executing code
segment is also called the current privilege level (CPL).

Instructions that affect system registers or halt the processor. These
instructions can only be executed when the current privilege level
is 0.

A set of compiled modules ready to be linked or located, or the
complete associated source text.

A mode of execution where the protection-enable bit (PE) is on in
the machine status word. The first far jump has been executed. This
mode uses selectors and descriptors to calculate addresses.

The mechanisms implemented by the hardware of the processor,
especially when the protection-enable bit (PE) is on and the first far
jump has been executed. There are five basic kinds of protection
available: type checking, limit checking, restricting addressable
domain, restricting entry points, and restricting instruction set.

Bit 0 in the machine status word. If PE is 1, the processor executes
in protected mode. If PE is 0O, the processor executes in real mode.

Invocation command element that controls the result of the
invocation.

The mode of execution of the 86 processor, or of higher processors
with the protection-enable bit (PE) off. The 286 and higher
processors execute in this mode upon reset, except the 376 processor
executes in protected mode on reset.

An offset into a segment, before the segment loads into memory.
A data type treated as a single value.

A list of strings that the debugger uses as default prefixes of possible
pathnames to a file.

A continuous piece of memory defined by a base address and a limit.

One of the CS, SS, DS, and ES registers (or FS and GS registers in
Intel386 and higher processors) containing a segment selector.

The format used to combine object modules into individual or
contiguous blocks of memory addressable by the processor
determines the placement of constants and the number and names of
segments generated by the compiler.

276 Glossary



Selector A system data structure used in computing an address that identifies
a descriptor by specifying a descriptor table and an index to a
descriptor within that table. A selector also contains a requested
privilege level (RPL), which is the descriptor privilege level (DPL)
of the referring segment.

Separately- Individual object modules each resulting from its own compilation.
compiled code

Source directory The directory containing your primary source file.

Source-processing Controls which specify the names and locations of input files or

controls define macros at compile time.
Source text Text you write in a programming language such as C.
Stack segment A segment reserved for dynamic memory allocation for objects such

as temporary variables and function activation records.
Symbol table A chart in the print file containing symbolic information.

Symbolic debugger See debugger.

Symbolic Information about the format, location, and identifier of an object or

information function.

System data Descriptors, tables, gates, selectors, and task state segments.

structures

Target system The system on which your compiled program is intended to execute.
(See also: Host system)

Task The code, data, and system data structures which collectively define
a sequential thread of execution.

Uppercase For ASCII characters A through Z, the hexadecimal values 41
through 5A.

Warning A message indicating a situation that is probably unusual but that

does not terminate compilation and probably does not invalidate the
object module.

iC-386 Compiler User's Guide Glossary 277



Word Two bytes on all Intel family processors. In C programming, a word
is the amount of storage reserved for an integer, which is 32 bits for
iC-386. The Intel386, Intel486, and Pentium processor
documentation and ASM386 instruction sets refer to a 16-bit word
and a 32-bit word.

Work file A file that the compiler creates, uses, and deletes during
compilation.

278 Glossary



Index

$ dollar sign in identifiers, extend control, 77 B

Ist extension, 28
big endian, 175

binder, 221, 229
A combining segments, 223, 224
binding, compact model, 128

abnormal termination, 24 binding (iC-386), 126

access rights bit fields, 236, 243
compact-model subsystem, 224 BLD386, 17, 125
iC-386 compact model, 128 interrupt gate, 83

access rights (iC-386), 126 block nesting level, 143

activation records, 127 blockinbyte function, 157

address blockinhword function, 157
of an object, 235 blockinword functlgn, 157
. blockoutbyte function, 157
size, 139 blockoutword function, 157

aggregate types, 235, 238 BND286/386, syntax, 34

aliasing variables, 98 BND386, 17, 34

alien keyword, extend control, 77 example, 36

align | noalign control, 57, 58, 59 object control, 36
examples, 59, 61, 62 rconfigure control, 36

ANSI C standard, 18, 20, 37, 77, 235, 239, 241 renameseg control, 36
conformance, 138, 215 using libraries, 36

o Bootstrap Loader, 13
application development, 16 . ; ’
PP P buildptr function, 150
examples, 36

built-in functions, 147
modular, 17, 34 byteswap function, 175

tasks, 13
application system, 18 C
_ARCHITECTURE_ macro, 139
arguments, maximum number, 245 C libraries, 36
array, 238, 242 C-386 Compatlblllty, 65, 69

CALL instruction for Intel386 and Intel486

assembler invocation, 191
processors, 91

%auto assembler macro, 206 calling convention, 78, 79, 120

auto storage class specifier, 242, 243 calling convention, see also function-calling
automatic variables, 127 convention

iC-386 Compiler User’s Guide Index 279



case significance, 239
control arguments, 52
controls, 52

case values, maximum, 245

casting
pointer to near, 132
to and from pointers, 242

causeinterrupt function, 158

%cgroup assembler macro, 197

char data type, 110

character
constant, 241
set, 241
strings, 127

cleaning up the stack, see fixed parameter list

and variable parameter list
cleanup code, 212,217
cleartaskswitchedflag function, 163
CODE
compact-model subsystem, 224
iC-86/286 compact model, 128

segment definitions, 128
segments, 128
selector register use, 128
compact-model subsystems, 221
example, 221
far keyword, 224
segment definition, 223
segment definitions, 224
selector, 223
compatibility
function calling conventions, 77
iC-386 with C-386, 65, 69
non-C translators, 17
other intel compilers, 77, 78
with Intel tools, 19
compilation heading, 141, 142
example, 142
compilation summary, 142, 145
compiler capabilities, 18
compiler version, 20, 142
compiling, 137

code | nocode control, 63
code access, efficiency, 125, 132
%code assembler macro, 197
code segment, 65, 66, 106, 127
compact model, 128
compact-model subsystem, 224
CODE32, 223
compact-model subsystem, 224
iC-386 compact model, 128
CODE32 segment name (iC-386), 65 %const assembler macro, 197
codesegment control, 65, 230 %const_in_code assembler macro, 195
combine-type, compact-model subsystem, 224 const attribute specifier, 106, 244
combine-type, compact model, 128 constants, 106
combine-type (iC-386), 126 code or data segment, 127
combining application with iRMX, 13 compact model, 128
command line compact-model subsystem, 224
preserving case, 52 definition, 127
preserving special characters, 56 continued lines, in source text listing, 143
compact control, 66, 67, 127, 128, 223 control arguments
compact model, 125, 219, 220, 224 case significance, 52
default address size, 128 special characters, 56
dynamic data segments, 128 control register 0 (CR0), 162, 173
efficiency, 128 control registers, 171
maximum program size, 128 control word macros, numeric
number of segments, 128 coprocessor, 180, 181

cond | nocond control, 68, 144
conditional assembler macros, 202
conditional code, 144

in source listing, 68
conditional compilation, 103, 137, 140

example, 73

macros, 72

maximum nesting, 240
conditional directives, 140

280 Index



controls, 51, 52, 53, 56 default address size, 224

arguments, 22 compact model, 128
case significance, 22 overriding, 131, 132
debugging, 16 examples, 133
for print file, 85, 86 segmentation models, 131
optimizing, 17 default address size (iC-386), 126
converting define control, 72
char objects, 110 example, 73
floating-point to integer, 99 #define preprocessor directive, 72, 73
cross-reference listing, 114, 118, 123, 142, 145 defined preprocessor operator, 239
CS register %dgroup assembler macro, 197
compact model, 67, 128 descriptor
far function, 132 see special descriptor
near variable, 132 see general descriptor
see gate descriptor
D descriptor_table_reg structure, 160
diagnostic control, 24, 74, 75, 144
data diagnostic messages, 88, 104, 106, 117,
compact model, 128 141, 247
compact-model subsystem, 224 %dint assembler macro, 199
definition, 127 disable function, 158
data access, efficiency, 125, 132 dollar sign ($), 112, 229
%data assembler macro, 197 in identifiers, extend control, 77
data pointers, 224 DOS applications
compact model, 128 iC-86 compiler controls, 18
data segment, 66, 69, 106, 127 numeric coprocessor, 18
allocating dynamically, 128 DS register
compact model, 128 compact model, 67, 128
compact-model subsystem, 224 near variable, 132
data types, 235
char, 110 E
iC-386, 90
void *, 150 (E)DI register, used for register variables, 217
datasegment control, 230 (E)SI register, used for register variables, 217
iC-386, 69 eject control, 76
iC-386, and subsys control, 69 #elif preprocessor directive, 239
_ DATE__ macro, 138 embedded applications, 18
debug | nodebug control, 70 enable function, 158
debug information, 70, 118 %endf assembler macro, 210
debug registers, 171 enumeration types, 243
debugging, 96 %epilog assembler macro, 208
line control, 84 epilog code, 212
source file information, 111 interrupt handlers, 83
using print file, 63 error messages, 74, 75, 247, 253
debugging information, compatibility, 16 #error preprocessor directive, 137, 240
declaration syntax, 133 errors, 141, 144

iC-386 Compiler User’s Guide Index 281



ES register
compact model, 128
de-referencing, 132
far variable, 132
exit status, 75
extend | noextend control, 77, 236
extend control, 131, 222, 224
extended segmentation models, 219
definition, 219
extended syntax, 244
extensions to ANSI C, 77
%extern assembler macro, 200
%extern_const assembler macro, 200
%extern_fnc assembler macro, 200
extern keyword, 226

far variable, 132

fatal error messages, 247, 248

_ _FILE__ macro, 138

file use, 25

fixed parameter list (FPL), 78, 120, 212, 236
argument passing, 213
cleaning up the stack, 218
order of arguments on the stack, 213
returning values in registers, 216
saving and restoring registers, 216, 217

fixedparams control, 78, 80, 212
examples, 79

flag assembler macros, 195, 196

extern storage class specifier, examples with far flag macros, 154, 155

type qualifier, 134
external
function, definition, 226
linkage, definition, 226
variable, definition, 226
external declaration assembler macros, 200

external references, maximum per module, 245

external symbols, 118
definition, 226
type information, 70

F

far address, compact model, 128
%far_code assembler macro, 195
_FAR_CODE_ macro, 139
%far_data assembler macro, 195
_FAR_DATA_macro, 139
far function, 132
far keyword, 222, 224
extend control, 77
far pointers, 139, 150
compact model, 67
converting to near pointer, 150
converting to selector, 150
%far_stack assembler macro, 195
far type qualifier, 131, 132
effect, 131
examples, 133, 134, 135, 136
when to use, 131
where to use, 133

282 Index

flags, examples manipulating, 155
FLAGS register, 152
floating-point, 242

in-line functions, 39

libraries, 36

precisions, 237

unit, 147

unit, special functions, 176

using special libraries, 36
floating-point literals, 127
floating-point unit, see numeric coprocessor
%fnc assembler macro, 199
%fnc_ptr assembler macro, 199
%fpl assembler macro, 195
form feed in print file, 76
FS register, de-referencing, 132
FS register (Intel386), far variable, 132
function

far, 132

near, 132
function activation records, 127
%function assembler macro, 203
function call

conventions, 78

four sections of code for, 212

maximum arguments, 245
function calling conventions, 79



function definition assembler macros, 202
%auto, 206
%endf, 210
%epilog, 208
%function, 203
%param, 204
%param_flt, 205
%prolog, 207
%ret, 209
function pointers, 224
compact model, 128
function-calling convention
calling function and called function, 213
passing arguments, 213
returning a value, 216
saving and restoring registers, 217
stack use, 218
functions
interfacing, 211
maximum in argument list, 245
maximum per module, 245

G

gate, descriptor, 159
GDTR (global descriptor table register), 161
general controls, 52
getcontrolregister function, 173
getdebugregister function, 173
getflags function, 152
getlocaltable function, 161
getmachinestatus function, 162
getrealerror function, 184
gettaskregister function, 160
gettestregister function, 173
global descriptor table register
(GDTR), 160, 161
global functions, 226
global variables, 127, 226
granularity (iC-386), 126
group definition, compact-model
subsystem, 224
GS register, de-referencing, 132
GS register (Intel386), far variable, 132

iC-386 Compiler User’s Guide

H

halt function, 151, 158

header controls, 190, 191, 192, 193
controls assembler macro, 189, 190, 191,

192,193

syntax, 191
defaults, 190
flag assembler macros, 195, 196
operation assembler macros, 200
precedence, 191, 192, 193
register assembler macros, 196
segment assembler macros, 197, 198
type assembler macros, 198

header files, 109
in-line functions, 37

. extension, 28
I/O layer, 13
I/O ports, reading and writing, 156
i186.h header file, 147, 148
%i186_instrs assembler macro, 195
i286.h header file, 147
%i386_asm assembler macro, 195
i386.h header file, 147, 149
i387_environment structure type, 187
i387_protected_addr structure type, 186
i387_state structure type, 188
i486.h header file, 147
i8086.h header file, 147
i86.h header file, 147, 148
i87_tempreal structure type, 187
ICU, 13,18
identifiers, 239

with dollar signs, 112
IDTR (interrupt descriptor table register), 161
%if_nsel assembler macro, 202
%if_sel assembler macro, 202
inbyte function, 156
in-circuit emulator, 13, 16
include control, 25, 81, 82, 88, 109, 137,

139, 143

include files, 81, 88, 109, 144

nesting, 82, 143

Index 283



#include preprocessor directive, 22, 82, 88,
109, 137, 139, 143, 240
inhword function, 156
instruction assembler macros, 201
instruction set, 139
Intel386 and Intel486, 91
seeing effect in print file, 63
%int assembler macro, 199
integers, 241

integral type, converting to selector type, 150

Intel C, VPL calling convention, 213
Intel development tools

application development, 17

experience with, 21

host systems, 13
Intel publications, ordering, 20
Intel486 processor, 91, 147
interactive configuration utility, see ICU
internal error messages, 270
interrupt, task switch, 158
interrupt control, 83, 159
interrupt descriptor table (IDT), 83
interrupt descriptor table register

(IDTR), 160, 161

interrupt gate, 159

vs. trap gate and task gate, 159
interrupt gate (iC-386), 83
interrupt handlers, 83, 159

286 and higher processors, 158
interrupt number (iC-386), 83
interrupts, manipulating, 158
invalidatedatacache function, 175
invalidatetlbentry function, 175
invocation

example, 142

messages, 24

syntax, 22
invocation line

continuing, 22

length, 22
invocation-only controls, 52
inword function, 156
iPPS PROM programming software, 18
iRMX memory models, 127

284 Index

K
keywords, 236

L

/lang directory, 21
language directory, 21
language implementation, 235
large segmentation model, 219, 224
LDTR (local descriptor table register), 161
%leave assembler macro, 201
LIBn86, 17
libraries, 14, 34
binding, 34
choosing for binding, 36
choosing for iC-386, 36
far calls, 131
floating-point, 36
operating system interface, 36
line | noline control, 84
_ LINE__ macro, 138
LINK86, 17
syntax, 34
linker, 221
combining segments, 223, 224
linking, compact model, 128
#line preprocessor directive, 137, 139, 240
list | nolist control, 85, 86, 144
listexpand | nolistexpand control, 87, 144
listinclude | nolistinclude control, 88, 144
listing, see print file
listing files, 25
little endian, 175, 241
LOCS86, 17
local descriptor table register
(LDTR), 160, 161
location counter, 144
lockset function, 151
logical names, language directory, 21
_LONG64_ macro, 139
long data type (iC-386), 139
long type qualifier (iC-386), 90
long64 | nolong64 control, 237
long64 | nolong64 control (iC-386), 90, 386
aligning structures, 61, 62



M

machine status word (MSW), 162
machine status word macros, 163
macro, 103
defining with define control, 72
example, 73
expansion, In print file, 87
scope, 81
macro definition, 37
macro expansion, 144
macro invocation
maximum arguments, 240
maximum nesting, 240
macros, 138
predefined, 138
manual scope, 20
memory model, compact, 66, 67

memory model, see also segmentation memory

model
messages, 144, 247
console, 24
diagnostic, 74, 75
print file, 24
mod486 | nomod486 control, 91

modulename control, 93, 225, 228, 230

and subsys control, 93
%mov | Isr assembler macro, 202
%movsx assembler macro, 201
%movzx assembler macro, 201

N

name space, 243
near address, compact model, 128
near function, 132
near keyword, 224
extend control, 77
near pointers, 139
compact model, 67
converting to far pointer, 150
near type qualifier, 131, 132
effect, 131
when to use, 132
where to use, 133
near variable, 132
normal completion, 24

iC-386 Compiler User’s Guide

notational conventions, 56
_NPX_ macro, 139
numeric coprocessor, 36, 99, 147
control word, 177,178
macros, 180, 181
data pointer, 177
environment, 177, 187
flags, 182
instruction pointer, 177

Intel387, Intel486, and Pentium condition

codes, 183
numeric registers, 176
stack top, 182
registers, 177
special functions, 176
state, 177, 187
status word, 177, 181, 182
macros, 185
tag word, 177,178
macros, 178
numerics libraries for iC-386, 36

O

.obj extension, 26
object | noobject control, 26, 94, 95
object code
components, 127
offset information, limiting, 111
object file, 25
defaults, 26
name, 95
pseudo-assembly listing, 95
reducing size, 111
object module
name, 93
reducing the size of, 96, 118
size, 145
object module format (OMF), 16
offset-only address, 236
offset-only address, format, 224
OH386, 18
OHN86, 17

Index

285



operation assembler macros, 200
classes, 200
conditional assembler macros, 202
external declaration assembler
macros, 200
function definition assembler macros, 202
instruction assembler macros, 201
#operator, 239
## operator, 239
optimization, 17, 96, 99
at different levels, 39
reducing debug information, 70, 84
run-time performance, 147
structure aligning, 58
using FPL calling convention, 78
optimization example, 39
level 0, 39, 42
pseudo-assembly code, 42
level 1, 43
pseudo-assembly code, 43
level 2, 45
pseudo-assembly code, 45
level 3, 47
source code, 39
optimize control, 39, 96, 139, 245
_OPTIMIZE_ macro, 139
order of arguments on the stack, see fixed
parameter list and variable parameter list
outbyte function, 156
outhword function, 156
outword function, 156

P

page break in print file, 76
page header, 141, 142
pagewidth control, 101
%param assembler macro, 204
%param_flt assembler macro, 205
pass-by-reference arguments, 213
pass-by-value arguments, 213
path prefix, 108, 109
Pentium processor, 147
pointer, 242

compact model, 67

seeing size in print file, 63
pointer indirection, 98

286 Index

%popa assembler macro, 201
#pragma preprocessor directive, 52, 220, 225,
229, 239
precedence of controls, 52
preprint | nopreprint control, 25, 26, 28,
102, 137
preprint file, 102, 105
contents of, 26, 137
defaults, 26, 28
preprocessing, 28, 102, 117, 137
conditional compilation directives, 68
diagnostic messages, 75
macro expansion, 87
preprocessing directives, 140
preprocessor directives, 137, 239
primary controls, 52
primary source file, 22, 81, 102, 103, 104, 108
print | noprint control, 24, 26, 28, 104, 137
print file, 24, 103, 104, 105, 110, 113, 114,
118, 121, 143, 247
assembly code, 63
characters per line, 101
characters per tab stop, 115
contents, 26
contents of, 137
controls that affect contents, 141
defaults, 26, 28
form feed, 76
lines per page, 100
page heading, 100
page numbers, 142
source listing, 68, 85, 86, 87
include files, 81, 88
title in, 116
privilege level, 131
privilege level (iC-386), 126
processor
I/O ports, reading and writing, 156
program, efficiency, 222
programming for ROM, 18
%prolog assembler macro, 207
prolog code, 212
interrupt handlers, 83
protected mode, interrupt handlers, 158
protection, 219, 222
levels, 219
prototype, 121



pseudo-assembly code, example, 42, 43, 45
pseudo-assembly language listing, 63

pseudo-assembly listing, 141, 144
%ptr assembler macro, 199
Public function, definition, 226
public symbols, 118

definition, 226

name space, 229

type information, 70
Public variable, definition, 226
punctuation in control syntax, 56
%pusha assembler macro, 201
%pushf assembler macro, 201

Q

guotation marks around control
arguments, 52, 56

R

ram control, 106, 127, 139, 223
compact model, 128

reading and writing I/O ports, 156

%reg_size assembler macro, 199

register assembler macros, 196

register storage class, 216

register variables, 243

registers, 120

related publications, 20

remarks, 74, 75, 141, 144, 247, 268

reserved words, see keywords, 236

restoreglobaltable function, 161

restoreinterrupttable function, 161

restorerealstatus function, 188

%ret assembler macro, 209

rom control, 106, 127, 139, 223
compact model, 128

_ROM_ macro, 139

ROM, programming for, 17

run-time libraries, 14

S

saveglobaltable function, 161
saveinterrupttable function, 161
saverealstatus function, 188

iC-386 Compiler User’s Guide

SBITFIELD macro, 187
scalar data types, 235, 236, 237
searchinclude | nosearchinclude
control, 81, 108
segment
address in memory, 125
attributes, 125
binding, 125, 128
binding iC-386, 126
compact model, 128
iC-386 characteristics, 126
segment assembler macros, 197
example, 198
segmentation
definition, 219
protection mechanisms, 219
see also memory model, 51
segmentation control, 223
segmentation memory model, 223
choosing for iC-86/286, 125
efficiency, 125
extending with subsystems, 126
implementation, 125
iIRMX operating systems, 67
number of segments, 127

segmentation protection mechanisms, 219

segments
attributes, 223
compact-model subsystem, 224
name, 223

segment-selector-and-offset address, 236
segment-selector-and-offset format, 224
selector register, compact model, 67, 128

selector type, 150

converting to far pointer, 150

converting to integral type, 150
setcontrolregister function, 173
setdebugregister function, 173
setflags function, 152
setlocaltable function, 161
setmachinestatus function, 162
setrealmode function, 179
settaskregister function, 160
settestregister function, 173
setup code, 212
%sgroup assembler macro, 197

signedchar | nosignedchar control, 110, 241

Index

287



sign-off message, 24

sign-on message, 24

small segmentation model, 222, 224
Soft-Scope debugger, 13

source text

memory model, 226, 227

modules, 226, 227, 228

syntax, 225, 227
continuation lines, 229
sharing with PL/M, 230

subsystem error messages, 269
subsystems, 112, 219
closed, 223, 225, 228, 230
code segment, 223
compact keyword, 227
compact-model, 221
example, 221
compiling, 220
consistent definitions, 229
-const in code-, 227
-const in data-, 227
-const in code-, 223
-const in data-, 223
constants, 219
data segment, 223
definition, 126, 219
efficiency, 222, 224
example, 220
exported functions, 229
characteristics, 229
exported symbols, name space, 229
exports list, 228, 229
far calls, 131, 222
far data references, 222
far keyword, 229
has list, 225, 229
has specification, 228
implicit declaration modification,
222,229
module name, name space, 229
near calls, 222
open, 225, 228, 230
RAM and ROM submodels, 219
subsystem-id, 223, 225, 227
name space, 229
switch statement, maximum case values, 245
symbol attributes, 118
symbol tables, 243, 245
symbolic debugger, 16, 70, 118
symbols | nosymbols control, 114, 145
symbols listing, 114, 118, 123, 142, 145
syntax conventions, 56

filename, 138
line number, 138
listing, 123, 141, 143
source text listing, 143
special characters in control arguments, 56
srclines | nosrclines control, 111
SS register, compact model, 67, 128
stack, 120
compact model, 128
compact-model subsystem, 224
definition, 127
%stack assembler macro, 197
stack segment, 127
compact model, 66, 128
compact-model subsystem, 224
statement numbers, 143
statements, maximum nesting level, 245
static keyword, 226
static variables, 106, 127
initializing, 106
status word macros, numeric coprocessor, 185
__STDC__ macro, 138
storage-class specifier, 236
string literals, preprocessing, 239
structure, 238, 243
structure aligning, 57, 58
by structure tag, 58
with typedef, 59
structures, passing and returning, see fixed
parameter list and variable parameter list
submit files, 18
subsys control, 109, 112, 219, 220, 223,
225, 230
and modulename control, 113
subsystem definitions, 225
constants, 226, 227
examples, 231, 233
exports keyword, 228
functions and data, 226, 227
has keyword, 228

288 Index



system address registers, 160
system calls, 83
System Debugger, 13

T

tabwidth control, 115
tag word macros, numeric coprocessor, 178
target environments, 18
task gate, 159
vs. interrupt gate and trap gate, 159
task register (TR), 160
task switch in nested interrupt task, 158
tempreal_t typedef, 187
test registers, 171
__TIME__ macro, 138
title control, 116

translate | notranslate control, 24, 26, 28, 117

translation, 117
trap gate, 159
vs. interrupt gate and task gate, 159
trigraphs, 239
type | notype control, 118
and debug control, 70
type assembler macros, 198
type checking, 70, 118
type information, 118
type qualifiers, 236
interpreting, 134
near and far keywords, 131, 224
type table, 245
typedef, 16
aligning structures, 59

U

#undef preprocessing directive, 37, 72
union, 238, 243

iC-386 Compiler User’s Guide

util.ah header file, 189
assembling with, 191
controls assembler macro, 189, 190, 191,

192, 193
header controls, 190, 191, 192, 193
including in assembly text, 189
syntax, 191
macro groups, 189
utilities, 17

Vv

variable parameter list (VPL), 78, 120, 212
argument passing, 215
cleaning up the stack, 218
example, 122
order of arguments on the stack, 213
returning values in registers, 216
saving and restoring registers, 216, 217
variables
aliasing, 98
far, 132
near, 132
static, 106
varparams control, 120, 212
examples, 80
version of compiler, 20
void * data type, 150
void data type, 235, 238
void type specifier, interrupt handlers, 83
volatile attribute specifier, 244

w

warnings, 74, 75, 141, 144, 247, 263
whbinvalidatedatacache function, 175
wide characters, 239

word size, 241

work files, 25

X

xref | noxref control, 123, 145

Index 289






iC-386 Compiler User’s Guide

469163-004

WE'D LIKE YOUR OPINION

Please rate the following: Excellent Good Fair Poor

»« Manual organization O O O O

» Technical accuracy 0 O O O

» Completeness 0 O O O

» Clarity of concepts and wording O O O O

» Quality of examples and illustrations O O O O

» Overall ease of use O O O O

Comments:

Please list any errors you found (include page number):

Name

Company Name

Address

May we contact you? Phone

Thank you for taking the time to fill out this form.



NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 79 HILLSBORO, OR

POSTAGE WILL BE PAID BY ADDRESSEE

OPD Technical Publications, HF2-72
Intel Corporation

5200 NE Elam Y oung Parkway
Hillsboro, OR 97124-9978

Please fold here and close the card with tape. Do not staple.

WE'D LIKE YOUR COMMENTS....

This document is one of a series describing Intel products. Your
comments on the other side of this form will help us produce better
manuals. Each reply will be reviewed. All comments and suggestions
become the property of Intel Corporation.

If you are in the United States and are sending only this card, postage
is prepaid.

If you are sending additional material or if you are outside the United
States, please insert this card and any enclosures in an envelope. Send
the envelope to the above address, adding "United States of America" if
you are outside the United States.

Thanks for your comments.



International Sales Offices

AUSTRALIA

Intel Australia Pty. Ltd.

Unit 1A

2 Aquatic Drive

Frenchs Forest, NSW, 2086
Sydney

Intel Australia Pty. Ltd.
711 High Street

1st Floor

East Kw. Vic., 3102
Melbourne

BRAZIL

Intel Semiconductores do Brazil LTDA
Avenida Paulista, 1159-CJS 404/405
CEP 01311-Sao Paulo - S.P.

CANADA

Intel Semiconductor of Canada, Ltd.
999 Canada Place

Suite 404, #11

Vancouver V6C 3E2

British Columbia

Intel Semiconductor of Canada, Ltd.
2650 Queensview Drive

Suite 250

Ottawa K2B 8H6

Ontario

Intel Semiconductor of Canada, Ltd.
190 Attwell Drive

Suite 500

Rexdale MOW 6H8

Ontario

Intel Semiconductor of Canada, Ltd.
1 Rue Holiday

Suite 115

Tour East

Pt. Claire H9R 5N3

Quebec

CHINA/HONG KONG

Intel PRC Corporation

China World Tower, Room 517-518
1 Jian Guo Men Wai Avenue
Beijing, 100004

Republic of China

Intel Semiconductor Ltd.
32/F Two Pacific Place
88 Queensway

Central

Hong Kong

FINLAND

Intel Finland OY
Ruosilantie 2
00390 Helsinki

FRANCE

Intel Corporation S.A.R.L.

1, Rue Edison-BP 303

78054 St. Quentin-en-Yvelines
Cedex

GERMANY

Intel GmbH

Dornacher Strasse 1

85622 Feldkirchen bei Muenchen
Germany

INDIA

Intel Asia Electronics, Inc.
4/2, Samrah Plaza

St. Mark's Road
Bangalore 560001

ISRAEL

Intel Semiconductor Ltd.

Atidim Industrial Park-Neve Sharet
P.O. Box 43202

Tel-Aviv 61430

ITALY

Intel Corporation Italia S.p.A.
Milanofiori Palazzo E

20094 Assago

Milano



JAPAN

Intel Japan K.K.

5-6 Tokodai, Tsukuba-shi
Ibaraki, 300-26

Intel Japan K.K.
Hachioji ON Bldg.
4-7-14 Myojin-machi
Hachioji-shi, Tokyo 192

Intel Japan K.K.

Bldg. Kumagaya

2-69 Hon-cho
Kumagaya-shi, Saitama 360

Intel Japan K.K.
Kawa-asa Bldg.

2-11-5 Shin-Yokohama
Kohoku-ku, Yokohama-shi
Kanagawa, 222

Intel Japan K.K.
Ryokuchi-Eki Bldg.

2-4-1 Terauchi
Toyonaka-shi, Osaka 560

Intel Japan K.K.
Shinmaru Bldg.

1-5-1 Marunouchi
Chiyoda-ku, Tokyo 100

Intel Japan K.K.
Green Bldg.

1-16-20 Nishiki
Naka-ku, Nagoya-shi
Aichi 460

KOREA

Intel Korea, Ltd.

16th Floor, Life Bldg.

61 Yoido-dong, Youngdeungpo-
Ku

Seoul 150-010

MEXICO

Intel Technologica de Mexico
S.A.de C.V.

Av. Mexico No. 2798-9B, S.H.
44620 Guadalajara, Jal.,

NETHERLANDS

Intel Semiconductor B.V.
Postbus 84130

3009 CC Rotterdam

RUSSIA

Intel Technologies, Inc.
Kremenchugskaya 6/7
121357 Moscow

SINGAPORE

Intel Singapore Technology, Ltd.
101 Thomson Road #08-03/06
United Square

Singapore 1130

SPAIN

Intel Iberia S.A.
Zurbaran, 28
28010 Madrid

SWEDEN

Intel Sweden A.B.
Dalvagen 24

171 36 Solna

TAIWAN

Intel Technology Far East Ltd.
Taiwan Branch Office

8th Floor, No. 205

Bank Tower Bldg.

Tung Hua N. Road

Taipei

UNITED KINGDOM

Intel Corporation (U.K.) Ltd.
Pipers Way

Swindon, Wiltshire SN3 1RJ



If you need to contact Intel Customer Support

Contacting us is easy. Be sure that you have the following information available:

or software config

Your phone and FAX numbers ready
Complete description of your hardware o

Your

uration(s) Com

product’s product code

Current version of all software you use

plete problem description

Type of Service

How to contact us

FaxBACK*

Using any touch-tone phone,

U.S. and Canada: (800) 628-2283

fax-on-demand system have technical documents sentfto (916) 356-3105
your fax machine. Know your

24 hrs a day, 7 days a wee¢kax number before calling. Europe: +44-1793-496644

Intel PC and LAN Information on products, U.S and Canada: (503) 264-7999

Enhancement Support documentation, software driversEurope: +44-1793-432954

BBS

24 hrs a day, 7 days a wet

firmware upgrades, tools,
presentations, troubleshooting.
2k

Autobaud detect
8 data bits, no parity, 1 stop

CompuServe*
Information Service

24 hrs a day, 7 days a wet

Worldwide customer support:
information and technical
support for designers, engineer
and users of 32-bit iRMX OS
cland Multibus product families.

Worldwide Locations:

(check your local listing)
Sl
Type: GO INTELC once online.

Customer Support

Intel Multibus Support engineer
offering technical advice and
troubleshooting information on
the latest Multibus products.

sU.S. and Canada: (800) 257-5404
(503) 696-5025
FAX: (503) 681-8497
Hrs: M-F; 8-5 PST
Europe: +44-1793-641464
FAX: +44-1793-496385

Hrs: M-F; 9-5:30 GMT

Hardware Repair

Multibus board and system
repair.

U.S. and Canada: (800) 628-8686
(602) 554-4904
FAX: (602) 554-6653
Hrs: M-F; 7-5 PST
Europe: +44-1793-40352(
FAX: +44-1793-496156
Hrs: M-F; 9-5:30 GMT

Sales Intel Sales engineers offering | Worldwide: Contact your local Intel
information on the latest iRMX office or distributor
and Multibus products and theif U.S. and Canada: (800) 438-4769
availability. (503) 696-5025
FAX: (503) 681-8497
Hrs: M-F; 8-5 PST
Correspondence Worldwide: Europe:

Mail letters to:

Intel Customer Support
Mailstop HF3-55

5200 NE Elam Young Parkway
Hillsboro, Oregon 97124-6497

European Application Support
Intel Corporation (UK) Ltd.
Pipers Way

Swindon, Wiltshire

England SN3 1RJ

* Third-party trademarks are the property of their respective owners.



	Other iRMX Manuals
	iC-386 Compiler User's Guide
	Quick Contents
	Contents
	1.  Overview
	Software Development With iC-386
	Using the Run-time Libraries
	Debugging
	Optimizing
	Using the Utilities
	Programming for Embedded ROM Systems

	Compiler Capabilities
	Compatibility With Other Development Tools
	About This Manual
	Related Publications


	2.  Compiling and Binding
	Using Files and Directories
	Invoking the iC-386 Compiler
	Invocation Syntax on iRMX Systems
	Invocation Syntax on DOS Systems
	Sign-on and Sign-off Messages

	Files That the Compiler Uses
	Work Files
	Object File
	Listing Files

	Using Submit, Batch and Command Files
	Using iRMX Submit Files
	Using DOS Batch Files for iRMX for WIndows Systems
	Using DOS Command Files in iRMX for Windows Systems

	Binding Object Files
	Choosing the Files to Bind
	Examples of Binding

	In-line Functions
	Compiling at Different Optimization Levels
	Results at Optimization Level 0
	Results at Optimization Level 1
	Results at Optimization Level 2
	Results at Optimization Level 3


	3.  Compiler Controls
	How Controls Affect the Compilation
	Where to Use Controls
	Alphabetical Reference of Controls
	align | noalign
	code | nocode
	codesegment
	compact
	cond | nocond
	datasegment
	debug | nodebug
	define
	diagnostic
	eject
	extend | noextend
	fixedparams
	include
	interrupt
	line | noline
	list | nolist
	listexpand | nolistexpand
	listinclude | nolistinclude
	long64 | nolong64
	mod486 | nomod486
	modulename
	object | noobject
	optimize
	pagelength
	pagewidth
	preprint | nopreprint
	print | noprint
	ram | rom
	searchinclude | nosearchinclude
	signed char | nosignedchar
	srclines | nosrclines
	subsys
	symbols | nosymbols
	tabwidth
	title
	translate | notranslate
	type | notype
	varparams
	xref | noxref

	4.  Segmentation Memory Models
	How the Binder Combines Segments
	Combining iC-386 Segments With BND386
	How Subsystems Extend Segmentation

	Compact Segmentation Memory Model
	Compact Model

	Using near and far
	Addressing Under the Segmentation Models
	Using far and near in Declarations
	Examples Using far


	5.  Listing Files
	Preprint File
	Macros
	Include Files
	Conditional Compilation
	Propagated Directives

	Print File
	Print File Contents
	Page Header
	Compilation Heading
	Source Text Listing
	Remarks, Warnings, and Errors
	Pseudo-assembly Listing
	Symbol Table and Cross-reference
	Compilation Summary


	6.  Processor-specific Facilities
	Making Selectors, Far Pointers, and Near Pointers
	Using Special Control Functions
	Examining and Modifying the FLAGS Register
	Examining and Modifying the Input/Output Ports
	Enabling and Causing Interrupts
	Interrupt Handlers

	Protected Mode Features of Intel386 and Higher Processors
	Manipulating System Address Registers
	Manipulating the Machine Status Word
	Accessing Descriptor Information
	Adjusting Requested Privilege Level

	Manipulating the Control , Test, and Debug Registers of Intel386™, Intel486™, and Pentium® Processors
	Managing the Features of the Intel486 and Pentium Processors
	Manipulating the Numeric Coprocessor
	Tag Word
	Control Word
	Status Word
	Intel387™ Numeric Coprocessor, and Intel486 or Pentium Processor FPU Data Pointer and Instruction Pointer
	Saving and Restoring the Numeric Coprocessor State


	7.  Assembler Header File
	Macro Selection
	Flag Macros
	Register Macros
	Type Macros
	Segment Macros
	Operation Macros
	External Declaration Macros
	Instruction Macros
	Conditional Macros
	Function Definition Macros

	%function
	%param
	%param_flt
	%auto
	%prolog
	%epilog
	%ret
	%endf

	8.  Function-calling Conventions
	Passing Arguments
	FPL Argument Passing
	VPL Argument Passing

	Returning a Value
	Saving and Restoring Registers
	Cleaning Up the Stack

	9.  Subsystems
	Dividing a Program into Subsystems
	Segment Combination in Subsystems
	Compact-model Subsystems
	Efficient Data and Code References
	Creating Subsystem Definitions
	Open and Closed Subsystems
	Syntax
	Example Definitions
	Creating Three Compact-model RAM Subsystems

	10.  Language Implementation
	Data Types
	Scalar Types
	Aggregate Types
	Void Type

	iC-386 Support for ANSI C Features
	Lexical Elements and Identifiers
	Preprocessing

	Implementation-dependent iC-386 Features
	Characters
	Integers
	Floating-point Numbers
	Arrays and Pointers
	Register Variables
	Structures, Unions, Enumerations, and Bit Fields
	Declarators and Qualifiers
	Statements, Expressions, and References
	Virtual Symbol Table


	11.  Messages
	Fatal Error Messages
	Error Messages
	Warnings
	Remarks
	Subsystem Diagnostics
	Internal Error Messages
	iRMX Condition Codes in Error Messages

	Glossary
	Index
	Service Information

