ASM386 Assembly Language
Reference

Order Number: 469165-003

In the United States, additional copies of this manual or other Intel literature may be obtained by writing:
Literature Distribution Center
Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641
Or you can call the following toll-free number: 1-800-548-4725

In locations outside the United States, obtain additional copies of Intel documentation by contacting your local
Intel sales office. For your convenience, international sales office addresses are printed on the last page of
this document. Contact your local sales office to obtain the latest specifications before placing your order.

Intel Corporation (Intel) makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel assumes no
responsibility for any errors that may appear in this document. Intel makes no commitment to update nor to
keep current the information contained in this document. No part of this document may be copied or
reproduced in any form or by any means without prior written consent of Intel. Intel retains the right to make
changes to these specifications at any time, without notice.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's Software License Agreement.
U.S. GOVERNMENT RESTRICTED RIGHTS: These software products and documentation were
developed at private expense and are provided with "RESTRICTED RIGHTS." Use, duplication, or
disclosure by the Government is subject to restrictions as set forth in FAR 52.227-14 and

DFAR 252.227-7013 et seq. or its successor.

The Intel logo, i960, Pentium, and iRMX are registered trademarks of Intel Corporation, registered in the
United States of America and other countries. Above, i287, i386, i387, i486, Intel287, Intel386, Intel387,
Intel486, Intel487 and EtherExpress are trademarks of Intel Corporation.

Adaptec is a registered trademark of Adaptec, Inc. AT, IBM and PS/2 are registered trademarks and PC/XT
is a trademark of International Business Machines Corporation. All Borland products are trademarks or
registered trademarks of Borland International, Inc. CodeView, Microsoft, MS, MS-DOS and XENIX are
registered trademarks of Microsoft Corporation. Comtrol is a registered trademark and HOSTESS is a
trademark of Comtrol Corporation. DT2806 is a trademark of Data Translation, Inc. Ethernet is a registered
trademark of Xerox Corporation. Hayes is a registered trademark of Hayes Microcomputer Products.
Hazeltine and Executive 80 are trademarks of Hazeltine Corporation. Hewlett-Packard is a registered
trademark of Hewlett-Packard Co. MIXO is a registered trademark of MIX Software, Incorporated. MIX is an
acronym for Modular Interface eXtension. MPI is a trademark of Centralp Automatismes (S.A.). NetWare
and Novell are registered trademarks of Novell Corp. NFS is a trademark of Sun Microsystems, Inc. Phar
Lap is a trademark of Phar Lap Software, Inc. Soft-Scope is a registered trademark of Concurrent Sciences,
inc. TeleVideo is a trademark of TeleVideo Systems, Inc. UNIX is a registered trademark in the United
States and other countries, licensed exclusively through X/Open Company Limited. VAX is a registered
trademark and VMS is a trademark of Digital Equipment Corporation. Visual Basic and Visual C++ are
trademarks of Microsoft Corporation. All Watcom products are trademarks or registered trademarks of
Watcom International Corp. Windows, Windows 95 and Windows for Workgroups are registered trademarks
and Windows NT is a trademark of Microsoft in the U.S. and other countries. Wyse is a registered trademark
of Wyse Technology. Zentec is a trademark of Zentec Corporation. Other trademarks and brands are the
property of their respective owners.

Copyright © 1991 - 1995 Intel Corporation, All Rights Reserved

REVISION HISTORY DATE
-001 Original Issue 12/91
-002 Update for Release 2.0 of the OS 08/92
-003 Update for Release 2.2 of the OS 11/95

Quick Contents

Chapter 1. Introduction

Chapter 2. Segmentation

Chapter 3. Program Linkage Directives
Chapter 4. Defining and Initializing Data
Chapter 5. Accessing Data

Chapter 6. Processor Instructions
Chapter 7. Floating-point Instructions
Chapter 8. Textmacros

Chapter 9. Codemacros

Appendix A. Processor Architecture Summary

Appendix B. Sample Program

Appendix C. Keywords and Reserved Words

Appendix D. ASCII Tables

Appendix E. Differences Between ASM386 and ASM286
Appendix F. Differences Between the Intel386™ and 376

Processors

Appendix G. Differences Between the Intel386 and Intel486™
Processors

Index

Service Information

ASM386 Assembly Language Reference

Notational Conventions

This manual uses the following conventions:

UPPERCASE

italic

[]

In syntax descriptions, uppercase indicates keywords or
reserved words that must be spelled exactly as shown. They
can be entered in either uppercase or lowercase.

Within the text, uppercase indicates a mnemonic, operator,
or example code.

An item in italic is a metasymbol that may be replaced with
an item that fulfills the rules for that symbol.

In syntax descriptions, square brackets indicate an optional
part of a statement. If square brackets are required, the
syntax shows them in bold fact type, as [].

However, in certain register expressions, brackets are
required within the actual statement. The descriptions of
such statements will indicate this requirement.

In syntax descriptions, an ellipsis indicates that the preceding
argument or parameter may be repeated.

In syntax descriptions, an ellipsis, preceded by a comma and
enclosed in brackets, indicates that the immediately
preceding item may be repeated, but that each repetition
must be separated by a comma.

In examples, a vertical ellipsis indicates that some lines of
code have been omitted.

« In syntax descriptions, any punctuation other than ellipses and brackets must
be entered as shown. For example, the colon in the following syntax
description must be included in a statement:

label:[instruction]

e User input, command syntax and computer output are printed
like this, in regular monospaced text.

e In examples combining user input and computer output,
user input is printed like this, in bold monospaced

text.

Throughout this manual, the word "may" means "is permitted to".

|:| Note

Notes indicate important information.

A CAUTION

Cautions indicate situations which may damage hardware or data.

Related Publications

The following Intel manuals contain detailed information about processor
architecture and the assembler for your development system:

« 80386 Programmer's Reference Manuatler number 230985, describes
processor architecture from an application or system programmer's point of
view.

 ASMS386 Macro Assembler Operating Instructiomsler number 451290 for
DOS and 167675 for VAX/VMS, describes the assembler controls, assembler
output, and assembler error messages.

* Intel386™ DX Microprocessor Hardware Reference Manoeder number
231732, describes the processor from a system engineer's or hardware
designer's point of view.

The following Intel manuals contain detailed information about using floating-
point coprocessors with the processor:

e 80386 Programmer's Reference Manuatler number 230985, Chapter 11,
describes coprocessing and multiprocessing.

e 80387 Programmer's Reference Manuatler number 231917.

e IAPX 286 Programmer's Reference Manuwaber number 210498, Numerics
Supplement section, provides information about the Intel287™ coprocessor.

You may also need the processor systems utilities manual(s).

ASM386 Assembly Language Reference 5

Contents

1 Introduction
ADOUL ThiS MANUALcoeiiiii e 23
ADOUL THIiS CRAPLEI ...ttt e e e e e e e 23
LeXiCal EIBMENLSouiiiii e 24

(O g =T =Tt (] G =] SRR 24

ToKens and SEPAratorS.........ccooiiiiiiiiiiiiiiiiiiiii e e e e e e e e e e 24
LOQICAl SPACES ..vvvuiiiiiie i 25
D= 1] T (=T €T PP 25
IAENETIEIS .o 26
Continued Statements and COMMENLS.............coovvvviiiiiiiieiiieeiieeeeeeviiiieens 26
AsSEMDBIEr StateMENTScoiii i 29
ASSEMDIET DIFECLIVES ...vvveiiiiiiiiiiiiii s 29
AssemMDBIEr INSLIUCLIONSvviiiiiiiiiiiiii e 31
Specifying Assembler StatemMeNtS...........uvuvviiiiiiiiii 38
Specifying Directive Statements............coovvvvvivviiiiiiiiieeeeiiiiiiiiiiiinnns 38
Specifying Instruction Statements...........cccccovvveeiiiiiiiie e, 39
Assembler Program StrUuCtUIre..........coevieeiiiiiiiii e s a0 40
NAME DIFCHIVE ...t 41
STACKSEG DIr€CHVE......cceveeiiiiiiiiiiiiiieiee e 42
SEGMENT Directive for Data Segments.......cccoeeeevvvvviviiiiie e, 42
SEGMENT Directive for the Code Segment............cceeevvveevvvveiiiiennneenn, 43
ASSUME DIFCHVE.....cceiiiiiiiiiiii ettt 44
END DIFECLIVE ...vvtviiiiei ittt s 45
Initializing Segment Registers with INStructions.............ccccccceeieieeeeeens 45
Initializing DS, ES, FS, and GS..........ccooiiiiiiiiiiiiie e 46
INItIALIZING SS. it a7
2 Segmentation
Overview of SegmMeNtatioNc.uuu e 49
Defining Code, Data, and Stack Segmentsccccceviiiiieeeeeeeeeeeeeeeee, 51
SEGMENT..ENDS Dir€CHIVEcccoeiiiiiiiieeeee et 51
Specifying EO, ER, RO, or RW ACCESS........ccvvvvviiiiiiiiiiiiiiiiiiiienenns 52
Specifying USE32 0r USELBcuuiiiiiiiiiiiiiiieeeeeeeeeeeeeeeee e 52

ASM386 Assembly Language Reference Contents 7

Specifying PUBLIC or COMMON...........cuuuiiiiiiiiieeiiiiieeeiiiiiiiiennn
Multiple Definitions for a Segment..............uvvvvveviiiiiiiinniinninnnnnnnn
Lexically Nested or Embedded Segment Definitions

STACKSEG Dilr€CHVE .. .cuiieiiei et e eeennns

Combining Stack and Data Segmentsccccceeevvviiiiiiiiinneennnnn.

ASSUMING SEOMENT ACCESS ...iiiiiiiiiiiiiiieeieiieieiaeeereeeeeeenenennensssss ———

ASSUME DIFECHVE ...ttt
Specifying Segment Selectors with ASSUME...........ccccvvvveeenn.n.
Specifying ASSUME NOTHING and ASSUME CS:NOTHING....

Program Linkage Directives
Modular Programming with NAME and ENDccccooiiiiiiiiccenens

NAME DIFECLIVE ...ivveieiii et eeaaaes
END DIFECHIVE....uiiiiieiii et
Defining Shared Data with PUBLIC, EXTRN, and COMMcccccc.....
PUBLIC DIFECLIVEvuiiiiiieeeie et
EXTRN Dir€CHVE....cvuiiiiiiiiie et
Placement of EXTRNiiiiiiiii e

COMM DITECLIVE .. ettt s e a e eas

67
68
69
71
71
72
73
74

Defining And Initializing Data

Overview of Assembler Labels and Variablesccoooviiviiiiiiiinninnnnn.
Assembler Label and Variable TYPeSuuvvviiiiiiiiiiiiiiiiiiiiieeeneenn

Assembler Data ValUEs..........ooouiiieiieieee e e s

DaAta TYPES ..ottt aaas
Numeric Data Value Ranges..........ccoovvviiviiviiiiiiiiiiiiiiiiiiene s
Specifying Assembler Data Values.............ccccceeiiiiiie,
Initializing Variablescccee i
How the Assembler Evaluates Constant Expressions
VANADIES ..o ————— s
Simple Data AlIOCALIONSvvvviiiiiiiiiiee e
Variable AtrDULEScoviieeie e
Defining and Initializing Variables of a Simple Typeccccvvvvvveeeeeee.
DBIT Dir€CLVE.....cceiiiiiieieeeee et e e e e e
DB DIFECHIVE ..ot
DW DIFECHIVE ...ttt e e
DD DIlECLIVEceeiiiieeeeeiiitee ettt e e e e e e e e e e eeeeaees
D e BT = Tox 1)Y= TP
[T I €= Tod 1Y
DT DIFECLIVE oo
Defining Compound Types and Their Variables..............ccccevvvvnnnnnn.

Contents

79

Record Allocation StatemMeNt..........coveiiviiiiiiiiieeiee e 102
STRUC DirBCHVE vttt e e 104
Structure Allocation StatemMENt..........cviiiiiiiiie e 106
DUP ClAUSE....ouniiitieeii ettt et e e e e e e e e eaaeaeen 109
0= o 1] F 111
Label AfFIDULES ..oveiiiiicie e 112
The LOCAtion COUNTEL......cccvuiiiiii et 113
(@] 2 LT BT =Tox 11 ISP 114
EVEN DIFECHIVE ...ttt 114
ALIGN DIFECLIVE .vuiiiiiiciiie e 115
LABEL DilrBCHIVE ...uuiiiiiiiiii ettt 116
Defining Implicit NEAR LabelS......cccoooiiiiiiiiii, 118
[2 (O O B[¢=To1 1) V7 TP 119
USING SYMDBOKIC DAtauuueciiiiiiiiie e e 122
L@ TW B = Tox {11 123
PURGE DIFECHIVE .. ccvuiiiiiieeiie ettt e e e e 125

Accessing Data

Overview of Assembler EXPresSSioNnSccoouuuiiiiiiiiiiiiiiie e 127
CoNStANt EXPrESSIONS ...uutiiiiiiii e eiieeeieiiiire e e e e e e e e e e e 128
AdAresSS EXPreSSIONS......cceviiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeiiitis s s e e aeaeeeeeeseeenrnne 128

Variable and Label Names as Address Expressionscccuue.. 129
Register EXPreSSIONS.....cooceiiiiiiiiieeeeeeiii e enmmmme s 129
Combining Simple Address and Register Expressions 130
Structure Fields in Address EXPressionseeeeeeeevieeeeeenn. 131
Relocatable EXPresSioNS ... 132

(O] 01T £=1 (0] 1= TUT U 134
(@] o1 -1 o] gl o ¢=To=To (=] o [od SRR 136
1SOIAtION OPEIALOrS .. oo i i e e e e e 137
Multiplication and DiviSiON OPEratorsS.............uuvveevereeieieeeeereeeeeeeeeeeeeee 138
Shift OPEratorsS ... ccooiii i 139
Addition and Subtraction Operators. ... 140
Relational OPeratorS.........ccvviuiiii e e e e e 141
(oo [[or-1 I @] o<1 -1 (o] £ T 142
Attribute Value OPEeratorscocevveviiiiiiee e 144

THIS OPEIatOr....cccuuieieii e e e e e mmemmmm e 144
5] =l C R @] 01T = 1 (o] S 145
OFFSET OPEratOr.......ccvevieiiieee e e e e e e e e eea e eees 146
BITOFFSET OPEIratOr.....cccuuieiiiiieeiieeiiieeeeiieeeeseeene e e e e eaneeennns 147
LENGTH OpPerator.......cccvuieiiieeeiiii i e e eeeeie e e e e e s mewmmmnn 149
TYPE OPEIrator.......ciieiieeeii e e e emm e 149

ASM386 Assembly Language Reference Contents 9

SIZE OPEIALON ...ttt 151

STACKSTART OPEIALOL......uiieeieieeaeiiieeeiie e 152
Attribute OVErride OPEIatOrSuueeeriiiiiiieiee e e e e e e e eeaeaaees 152
Segment Override OPeratorccoeeeeeeeeeeeeeeeeeeeeeeeeeee 153
PTR OPEIALON .. .ciieiiieit et eenas 155
SHORT OPEIALQL.....ccuuiiiiieiiiieeii et e e 157
Record Specific OPEratorS..........uuuvevveeiiiiriiiiiiiieeeiieeieenien s 158
WIDTH OPEIALOF ...t eiiiiiiiii ettt eeeeeee s 158
MASK OPEIALON. ...ttt ettt e e e e eees 159
Using Field Names as Shift Counts............cccceeevii i, 160
INSLIUCLION OPEIANGScevvviiiiiiiiiiiiie et eeeeeeeeeeeeeeeeee 161
Register Operandsccoeeeeeiiiiiiiiiieeeee 161
IMMmediate OPErandS.........oovviiiiiiiiiiiiie e 162
V=T o g [o] YA @ o 1=T =T o o PR 162
Memory Addressing Methods...........coooeviiiiiieiiiiii e 163
Direct Memory AddreSSiNg......coeeeiveeiiieii e 164
Indirect MemMOory AddreSSiNgoiieeeveeeeiiiie e e e 164
Register Indirect AAdressing...........ceevieeiieiiiiiiie e, 166
Based AdAreSSinNg........coveviieiiiiieeeie e 166
Based Indexed AdAresSsing.........ccoevieeeiiieiiiiiie e 167
INndexed AdAreSSING.......ccouuuiiiiiiiiii e e 167
SCAIING e 168
Default Segment Registers and Anonymous References 169
2 1Y Lo £ =1ST] T Vo 170
6 Processor Instructions
Overview of the Processor INStruction Set............uueiviiiiiiiiiiiiiinieeceeiiien, 171
Data Transfer INStrUCLIONScvvvvviiiiiiiiiiiiiiiiiiiiii s 172
Instructions That Assign Data Valuesccccoeeeeiiieeeeee, 172
Instructions That Adjust Dataceevvvvvviiiiviiiiiiiiiiiiiiiiieens 176
Instructions That Make Stack Transfers..........cccccvvvveees cmmmmnnes 177
Instructions That Yield Definitive Flag Values...............cccccuvnnee 178
Conditional Instructions That Test Flag Values............................. 179
Control INSLIUCLIONS ...oooiee e e 180
SYSLEM INSLIUCLIONS ...iiiiiiiiiiiiiiiiiiiiiie e e e e e e eeaeaen 181
INSLrUCHION StAtEMENTS ...coiiiiii e 182
Instruction Statement SYNtAXoovvvviiiiiiiiiiii e 182
INSLrUCHION ALEHDULESeiiveiiiiiiiiiiee e 183
Address Size AtHDULE ... 184
Operand Size AUHDULEuvvveeiiii s 184
Stack Size ALDULEoooiiiie e 185

10 Contents

Instruction Encoding FOrmatooooviiiiiiiiiiiiiiiiiicceeeeeveevevvvvveiiieeees 185

INstruction PrefiX COUESovvvvviviiiiiiiiiiiiiiiiviieiviiei s 186
MOORM and SIB BYLES........uuuuuiiiiiiieeiiiiiieiiiiiiiiies e e e e e e eeeeeaeeanes 188
Processor Instruction Set Reference ... 193
How to Read the Instruction Set Reference Pages............ccccceeeeviennnnnn. 193
OPCOAE COIUMN....eiiiiiiiee e e e e e e e e e e e e eeeeeeees 194
INStruction ColUMN......cooiiiiiiii 195
ClOCKS COIUMN ...t 200
Description ColUMN..........ooiiiiiiii e 201
OPEration SECHON.......ceiiiiiiieceie e e e e 201
DISCUSSION SECHON......iiiiiiiiiiiiiiiiiiiiirr e e e e e e e e e e eeeeens 207
Flags Affected SeCtion..........ccooiiiiiiiiiiiii e 207
Exceptions by Mode Section ... 207
How to LOOK Up an INStrUCLIONeeveeiiiiieiii e, 210
Processor INSIUCHONS. . ..uiiiie e 212
AAA ASCII Adjust after Addition............ccccceeeeiiieeiieeeee e, 212
AAD ASCII Adjust AX before Division...........cccceveeveviiineeeennnnnn, 214
AAM ASCII Adjust AX after Multiplycceeeiiiiiiiiiieenn 215
AAS ASCII Adjust AL after Subtractioncccccoeeeeiiiiiinnee. 216
ADC Add With Carry......ccceviiiiii e 218
ADD (Integer) Add.......ccovviiiiii i s 220
AND Logical AND 222
ARPL Adjust RPL Field of Selector...........cccvvvvviiiiieviveiiiieeeee, 224
BOUND Check Array Index Against Boundsccccoeveeeeeeninnnnns 226
BSF Bit SCAN FOrWard..........uuuiiiiiiiiiee e 228
BSR Bit SCAN REVEISE ..uuvuiiiiiii i 230
BSWAP Byte Swap (not available on Intel386 or
376 PrOCESSOIS)..ceuuuueeeeeitteereeeiiseeeeeetaseeeeetasaeeeertaeeeennnnaaaaees 232
BT Bt TSIttt 233
BTC Bit Test and Complement.........cccoovieeieeeiiiiiiiiieeeeeeeiiiies 236
BTR Bit Test and ReSEet.......ccovvuuiiiiiiiieiii e 239
BTS Bit TeStand Setl.......covieiiiiiiiiiieeiieee e 242
(07 N I I 07 1| I = o ToT =T 11] - 245
CBW/CWDE Convert Byte to Word/Convert Word to Dword 252
CLC Clear Carry Flaguuuueueeiiniiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeiiiiies 253
CLD Clear DireCtion FIagccoooviiiiieeiiiiiiiieeei 254
CLI Clear INterrupt FIaguuuveviiiiiiiiiiieeeee e 255
CLTS Clear Task Switched Flag in CRO........cccccccvvviiiiiiiiniinnnnnn. 256
CMC Complement Carry Flag..........cccooeeeiiiiinieieeeeeeeeeeeeeeeeeee 257
CMP Compare TWO Operands.........cooeevveeeeeiiiieeeeeeeeeeeeeeeeeeeeeee 258

CMPS/CMPSB/CMPSW/CMPSD Compare String Operands 260
CMPXCHG Compare Exchange (not available on Intel386
OF 376 PrOCESSOIS) ... eeeeitieeertiiiiaaaa s e e e e et et eeeabb b a e e e eeeeeees 263

ASM386 Assembly Language Reference Contents 11

6 Processor Instructions (continued)
CWD/CDQ Convert Word to Dword/Convert Dword to Qword.. 265

DAA Decimal Adjust AL after Addition..................cceeeeee. 267
DAS Decimal Adjust AL after Subtraction..................cooeeeeiinn 268
DEC Decrement by L......ccoooiiiiiiiiiiiiiiiiieiiiiiiiiins e 269
DIV UNnsigned DIVIAEoovviviiiiiiiiiiiiiine e 270
ENTER Make Stack Frame for Procedure Parameters 272
[I o - 1 RSP 274
IDIV SIigNed DIVIAEcvviiiiiiiiiiiiiieiiieeee e eeeeeeeeevieeenees 275
IMUL Signed MUtIPIYoovviiiiiiiieeeeeeeiiies 277
IN INPUL FrOM POIt e 280
INC Increment BY L.....oooiiiiiiiiiiiiiiiiiiieriie e 282
INS/INSB/INSW/INSD Input from Port to Stringccvvvveeee. 283
INT/INTO Transfer Control to Interrupt Procedure..................... 286
INVD Invalidate Data Cache (not available on Intel386 or 376

0] 011 TSTYo) £ 292
INVLPG Invalidate Paging Cache Entry (not available on

INtEI386 OF 376 PrOCESSOIS) ..evvvvriiieeeieeiiiiieeeeeeeeireea e e e e e eaeen s 293
IRET/IRETD Interrupt REtUIMNccoovvviiiiieeeeeece e 294
Jcc Jump if Condition IS Metccovvvviiiii e 299
JMP JUMD e e e 304
LAHF Load Flags into AH RegiSter.........cccoovvvvviiiiiieviiiiiiieeeeas 310
LAR Load Access RIghtS.........cceiiiiiiiiiiiii e 311
LDS/LES/LFS/LGS/LSS Load Full Pointer.........cccccceeeeeeenennnnn. 314
LEA Load Effective Address ..., 317
LEAVE High Level Procedure EXit.........cccoevvviiiiierieiiiiiiineeeeeenns 319

LGDT/LIDT Load Global/Interrupt Descriptor Table Register ... 320
LGDTW/LGDTD/LIDTW/LIDTD Load Global/Interrupt
Descriptor Table Register with WORD/DWORD Operand.. 322

LLDT Load Local Descriptor Table Register........ccccccvvvciiveeennnns 324
LMSW Load Machine Status Word ..., 326
LOCK Assert Bus LOCK# Signal PrefiX.......ccccccoiiiiiiiis . 327
LODS/LODSB/LODSW/LODSD Load String Operand......... 329
LOOP/LOOPcond Loop Control with (E)CX Counter 331
LSL Load Segment LimMit..........eeeiiiniiiiiiieeeeeeeee e 333
LTR Load Task REQISIer.......uuuuueiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeiiiiis 336
MOV MOVE DAtceeeevriiiiieiiiiiiie e s 338
MOV Move to/from Special Registers..........cccccoeevvviiiinnnnnnn. 341
MOVS/MOVSB/MOVSW/MOVSD Move String to String...... 343
MOVSX Move with Sign-Extendooo oo 346
MOVZX Move with Zero-Extend.............ccccoiiiiiiiiii, 347
MUL Unsigned Multiplication of AL, AX or EAX ... 348
NEG Two's Complement Negationuueeeeeiiinnneeeieeeeeeeeen 350

12 Contents

NOP NO OPEratiONccoeiiiiiieeieeiiiiiiiiiees e s s 351

NOT One's Complement Negation............ccceeeeeiiiiiiiiee, 352
OR Logical INCIUSIVE ORccooiiiiiiiiiiiiiiiir e 353
OUT OUPUL tO POIt ... 355
OUTS/OUTSB/OUTSW/OUTSD Output String to Patrt.......... 357
POP POP Stack TOP «.ooeeeeiiiiiiiiieeeeeeeiieiii e 360
POPA/POPAD Pop All General RegiSters...........cvvviiieeeeeeennn. 363
POPF/POPFD Pop Stack into FLAGS or EFLAGS Register. 365
PUSH Push Operand onto the Stack..........cccceeeiviiiiiiiiiieiiiiiiiinnnns 367
PUSHA/PUSHAD Push all General Registers.............cccc.uuue. 369
PUSHF/PUSHFD Push Flags Register onto the Stack.......... 371
RCL/RCR/ROL/ROR ROtaAte.......ccceiiiiiiiiiiieee e 372
RET Return from Procedurecccccvvviiiiiieeeeiiiiiiiiieeeeeeeeeeen 381
SAHF Store AHINtO Flagscooveeiiiiiiiie e 386
SAL/SAR/SHL/SHR Shiff.......cuvviiiiiiiiiiiiiiiiiiiie e 387
SBB Integer Subtraction with Borrow...........cc..oooovvvviiiiininn e, 391
SCAS/SCASB/SCASW/SCASD Compare String Data.......... 393
SETcc Byte Set on Conditionccooveeviiiiiiiieiceeecie e 395

SGDT/SIDT Store Global/Interrupt Descriptor Table Register 397
SGDTW/SGDTD/SIDTW/SIDTD Store Global/Interrupt
Descriptor Table Register with WORD/DWORD Operand.. 399

SHLD Double Precision Shift Leftccccceeviiiiiiiee e, 400
SHRD Double Precision Shift Right........ccccccovvviiiiiiiniieriin, 402
SLDT Store Local Descriptor Table Register.........ccccvvvvieieeeennnns 404
SMSW Store Machine Status Word............oooccvveeveeiinnninieeeeeeenn 405
STC SetCarry Flagccovvuiiiiieeeeies e 406
STD SetDirection Flagcccuviiieiiiiiiii e 407
STl Set INterrupt FIag.....cooveeeiii e 408
STOS/STOSB/STOSW/STOSD Store String Data................. 409
STR Store Task ReQIStErccovviiiiiiiiiiiiiiie e 411
SUB Integer SUbtraCtion............cooiviiiiiiiiiiiiiiiiiiii e 412
TEST Logical COMPAre.........cciiiiiiiiiiiiiiiiiire e 414
VERR/VERW Verify a Segment for Reading or Writing............. 416
WAIT Wait until BUSY# Pin is Inactive (HIGH) ... 418
WBINVD Write Back And Invalidate Data Cache

(not available on Intel386 or 376 ProcesSOorS)uevvvvveereveenns 419
XADD Exchange Add (not available on Intel386 or

376 PrOCESSOIS). . ueuiiieeeeee ettt et 420
XCHG Exchange Register/Memory with Register...........ccccccee... 422
XLAT/XLATB Table Look-up Translationccccceevvvvevennnne 424
XOR Logical EXclusive OR..........ccoooiiiiiiiiiiiiiiieeeeeeeeeeeies 426

ASM386 Assembly Language Reference Contents 13

14

Floating-Point Instructions

Floating-point Coprocessor ArchiteCturecooiiieiiiiiiiiiiineeeeeeeinn 429
Floating-poinNt STACKuuuueiiiiiiiiiie e 430
TNV o 1011 o SRS 431

SEAtUS WOIo a e 433
CONTOL WOT. ..o e e e e e e e e eeeeeaees 435
JLIE=To AL o] o ISP 438
Operation Locator FOrMAatSuueeiiiiiiiiiiieeeeiieieeeeeeeeeeeeeeeeviiiieeees 439
Floating-point Coprocessor Data Formats...........ccccccvvvvvviiiiiiiieceeeeee, 440

(0] o] foTol=T1]o 1 g @] o] = 11 o] o W TSR 443
NUMETIC PrOCESSINGcciiiiiiiiiiiiieeieiiiiiiise s e e ereen e e e e e 444

Overview of the Floating-point Coprocessor Instruction Set...................... 446
Data Transfer INStrUCIONScovvvviiiiiiiiiiiiiiiiiiiiii s 446
Constant INSTIUCLIONSvuvviiiiiiiiieiee e eeeeee 447
AlgebraiC INSrUCLIONS........coii i 448
Comparison INStTUCHIONSuoiiiiiiie e emeeeeean 451
Transcendental INStIUCLIONSueeiiiiiiii e 452
Coprocessor Control INStrUCtiONS..........vviiiie e, 453

Floating-point Coprocessor Instruction Set Referenceccccevvvveeieennnn, 454
How to Read the Instruction Set Reference Pages.........ccccvvvvvvvvvennnnnn. 45¢

(@] oTolo o[- I @Fo] [V 511 o 1S 454
INStruction ColUMNooiiiiiiiiiiii e 455
ClOCKS COIUMNS.....oviiiiiiiiiiiee e 455
Description COlUMN.......covviiiii e e eeeeeeee 455
DISCUSSION SECHON. ...ttt 456
ot =Y o1 [0] ST 1 o 456
How to Look Up an INStruCtionccoevuveiiiiieiiieiiie e 456
F2XM1 CompPUE Y =2 - L. 457
FABS ADSOIUte ValUe........oooviiiiiiiiiiiiiiiie e 458
FADD/FADDP Real Addition............uueiiiiiieiiiiiiiiiciiiiiieeee e 459
FBLD BCD Load to Realcoovvvvviiiiiiiiieeeecine e 460
FBSTP BCD Store and POP .ccooooveviiiiieeeeeeeeeeeeeeeee 461
FCHS Change Sign of Real NUMDEer.........ccccoiiiiiiiiiiiiiiiiieens 462
FCLEX/FNCLEX Clear Floating-point Coprocessor Exceptions 463
FCOM/FCOMP/FCOMPP Compare Real Numbers.............. 464
FCOS Compute Y = COS(X) cooveeeiiiiieieieieeeeeeeeeeeeeeeeee e 466
FDECSTP Decrement Floating-point Stack Pointer.................... 467
FDIV/FDIVP/FDIVR/FDIVRP Real Divide/Real
REVEISE DIVIAEu i 468
FFREE Free Floating-point Stack ENntry...........ccocoeeiiiiiiiiiiiiinnns 469
FIADD Integer Add to Real.........uuuiiiiiiiiiiiiiiii e 470
FICOM/FICOMP Integer Compare with Real.............cccuvveeeeeee. 471
Contents

FIDIV/IFIDIVR Integer Divide into Real...............coeeeeeiiieees 473

FILD Integer Load into Realcoooeeeeiiiiiiiiieeiiiiis 474
FIMUL Integer Multiply with Real..........cccooeiiiiiiini, 475
FINCSTP Increment Floating-point Stack Pointer....................... 476
FINIT/ENINIT Initialize Floating-point Coprocessor................... 477
FIST/FISTP Integer Store from Realccccccciiiiin, 479
FISUB/FISUBR Integer Subtract from Realoo. 480
FLD Load Real.......ccoiiiiiiiiiiiiieeeeee e 481
FLDCW Load Floating-point Coprocessor Control Word............ 482
FLDENV Load Floating-point Coprocessor Environment............ 483
FLDcon Load Real CONSLaNtccvvvveeriiiiiiiiiiiiiee e 484
FMUL/FMULP Multiply Real.........coccoiiiiiiiiiiiieee e, 485
FNOP NO OPEerationuuueueiiiiiiiiiieeeeiiieeeeeeeeeeeeeeeeeeveaeeseeees 486
FPATAN Compute R = Partial Arctangent ..., 487
FPREM/FPREM1 Partial Remainder...........occovvieviieeniiiiiiiieeneenn, 489
FPTAN Compute Y = Partial Tan(X)cccooeveeeviiiiiiiiieeeeeeeeviinnnn. 492
FRNDINT Round to INtEQerccevviiiiii e, 493

FRSTOR Restore Floating-point Coprocessor Machine State 494
FSAVE/FNSAVE Save Floating-point Coprocessor

MacChing Stateooviiiiiii 495
FSCALE Scale Exponentof Real.......cccoooeevviiiiiiiiiiiiiiiiiie e, 499
FSETPM Set Protected MOAevuvvviiiiiiiiiiiieieeiieeeeee e 500
FSIN Compute Y = SiN(X) cooeeeeeeeiiii e 501
FSINCOS Compute Y =Sin(X) and Y = CoS(X)ooeevvrvrrvrerrnnnnnn 502
FSQRT Square ROOT.......ccuiviiiiiieiiiie e v 503
FST/FSTP Store Real/Store Real and Pop..........ccccooveeevv e 504
FSTCW/FNSTCW Store Floating-point Coprocessor

CONFOL WOK ..ot 505
FSTENV/FNSTENV Store Floating-point Coprocessor

1Y T (0] o1 0= o) S 506
FSTSW/FNSTSW Store Floating-point Coprocessor Status Word 507
FSUB/FSUBP/FSUBR/FSUBRP Subtract Real...................... 508
FTST Test Real (Compare t0 Zero)ccooevvvvveiiiiieeeeeeeeeeeeeeeeeeeee 509
FUCOM/FUCOMP/FUCOMPP Unordered Comparison of

Real NUMDEIS ... e e e eees 510
FWAIT Wait for Floating-point Operation Complete 512
FXAM Examine Floating-point Stack TOPeevvvvvviiiiiiiiiniinnns 513
FXCH Exchange Real Numbers in Stack............ccooeiiiiiieeeennnn. 514
FXTRACT Extract Exponent and Significand of Real................. 515
FYL2X Compute Y * l0@X........cccooiiiiiiiiiiiiiiic i 517
FYL2XP1 Compute Y * log(X + 1) cccoooiiiiiiiiiiiiiiiiiieec, 517

ASM386 Assembly Language Reference Contents 15

8

16

Textmacros

(12T YT RN 519
MACIO PrOCESSING. . uuuuiiiieeiiieieeiieiie e e et a e e e e e e e e eeeeeeane 521
Macro Calls and Call Patterns.........ccooocoviiiiiiiie e 521
Macro Processor Scanning Modes and Macro Expansians........... 522
Predefined MAaCIOS.........coiiieiiiiie e e e e 523
MaCIO ArQUIMENTScceti ittt e e e e 525

BalanCed TeXt.....oiiiiiiii e 525
Delimiters in Call Patterns.........ccoooveiiiiiiiiii e 526
IAENTIFIEIS (oo 527
EXPIESSIONS. ..tteiiiie e e ettt e et e e e e e e e e e 527

Argument Evaluations ...t 528

Predefined Macro REfEreNCeuiiiiiiiiiiiiie e 52¢
)] N = o o T 530
2] = Tod (T 1Y, = Vol o 534
RS otz 1o L3N, = Uod o N 535
COMMENT MACKO.....uiiiiii et e e e e e e e aaans 537
METACHAR MACIO.....cieiiieiii e e e e e e e e e e eeees 538
Y I 1V = T o 539
] = Y, = 1o o 540
Y = Tod o PP PT PN 541
R AT 1 Y = Yo o 543
REPEAT MACKO ...ttt et e e e e 544
I I\ = Tod o PP PPRUPTUPRN 545
String CompPariSON MACIOSuvuiieeiieeeiiiee e ee e e e e e e et e e e eeeraan 546
I V1Y = T o 548
S0 = A0 I 1Y/ = Vo] o T 548
N O o T/ Tl o T 549
COoNSO0IE 1/O MACIOS......uuiieiiieiiiee ettt e e e et o e 551

Scanning Modes, Delimiters, and Macro EXpansions..............ccccceevvvvnnnnnnn. 552
Normal and Literal Scanning MOUES...........uuuuvuiiiiiiiiiiiieeee e 552
MaCIO DelIMITEIS.u i 553

Literal DelimItersue i 553

Implied Blank Delimiters. ..o 555

Identifier DElIMILErScoovviiiii e 555
Algorithm for Evaluating Macro Calls............cccoeeeiii 556
Contents

9 Codemacros

OVEBIVIBW. ..ttt ettt e ettt e e e ettt e e e e e bt e e e e eaa e e e eeaban e eas 559
Codemacro Definitions and CallSccoeviiiiiiiiiiieeeeeeeeeeee, 560
Processor INStruCtion FOIMAL...........uuueieeieiiiiiieiecieieeee e e e e e e e ee e 562

CodemAaCcrO REFEIENCEuuviiiiiiii i e e e 565
CODEMACRO DIr€CHVE.cceiiieei ittt ettt e e 566
Formal Parameters and SPecCifiers........ccocoviiiiiie 568
Formal Parameter MOdIfiers............oooviviiiiiiiiiiiiiicee e 569
Formal Parameter Range SPecCifiers......ccccovvvviiiiiiiieeeeee, 571
PREFIX67 DIr€CLVEccceeeiiiiiiiiiieeeititiie e emmmmmoe s 572
PREFIX66 DIr€CLIVEccceeiiiiiiiiiieeeeiiiiiiiii e emmmmmoe s 572
SEGFIX DIFECHVE ...ccevvviiiiiiiiiiiiiiiee st eees e 574
NOSEGFIX DIFECHVE.....uuuiiiieie et 575
WARNING Dir€CHVE ...uvvviiiiiieiiiieeeeeeeeeeeeeeeee e e 576
MODRM DIFECLIVE ...ttt it e e ettt e e s e e e e e e aeeeeees 577
Data Initialization DIFeCHIVES..........ccoviiiiiiiiiiiiiiirr e 578
Record Initialization DIreCHIVEuvuiiiiiiiiiiiiiee e 579
Using the Dot Operator to Shift Parameters.........cccooovvevvvviiiieiiiieeeennnn, 580
PROCLEN FUNCHON......ciiiiiiiiiiiiiiee ettt 581
Relative Displacement DIreCtiVES...........ceiiiiiiiiiiiiiii e 582

Matching Codemacro Calls to Their Definitionsccccooeeevvviiiiiiieneennns 584

A Processor Architecture Summary

BasiC Processor FOIMALS.ccooiuuiiiiieiieiiiie et e 588
Data TYPe FOIMALS ... oo 588
ProCESSOr REQISIEIS. ..uuuiiiieeiiiieeeeeetti et n e e e e e e e eeeeees 591

General, Segment, Status and Instruction Registersccccvvvunn. 591
SYSteM REQISLEIS ..oooi i 594

Processor Memory Organizationcooovviiiiiiiiiiiiiieeeceeeeeeeeeeeeeeeeveeeaeeeees 596
Segment Selection and Effective Address Computation............ccccee..... 597
Segmented Memory Managementuvveveveeeriiiirreneineiiiieenns 599
Segment Descriptors... 601

Descriptor Address Translatlon Flelds 602
Descriptor Access Rights (AR)oooviiiiiiiiiiiiiiiiiiiieeeeeeviiiiees 602
Descriptor Tables and Selector Format.............ccoovvvvvvviiiiiiiieeviiiviiiiinnnn 603
Processor Protection, Gate Descriptors, and Task Switches.................. 604
Protection and Privilege LEVEISccooviiiiiiiiiieeeee, 605
Protected Control Transfers Use Gate Descriptors............cccccvvvvenee. 606
Call Gate Descriptor Format..........ccooooeeviiiiiiii e, 607
Task Gate, TSS Descriptor, and TSS Format.............cceevvvvvivnennnn. 607
I/O Permission Bit Mapcccuuiiiieiiiiie e 610
ASM386 Assembly Language Reference Contents 17

ProCeSSOr FIagS.....covvviiiiiiiiiiiee et a e e e e e 612

) c= LU LSRN = To [TSR 613
(O T¢ YA = - o [SSRPPP 614
Parity Flag.......oovvviiiiiiiiiiie e 615
Auxiliary Carry Flag........uuueeeiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeee 615
ZEIO Flag.....coiiiieeeee e 615
SIGN FIAQ et 615
OVErflOW FIag......coovviiiiiiiiiiiiiiiie e 616

Control and System Control FIagSuevvvviiiiiiiiiiiiiiiiiiiinieeeeeeenee e 616

Processor Exceptions and INterruptscooeeeeeiiiiiiiiiiieeeeeeeeeeeeeeees 61!

Identifying INTEITUPLS....cooiiii e 619

Simultaneous Exceptions and Interrupts ..., 621

Interrupt Descriptor Table ... 621

Error Codes for EXCEPLiONS........covviviiiiiiiiiiiiiiiiiiiieiiviiiii s 623

Processor Exception ConditioNS...........ccccuuiiiiieiiiiiiiiiin e 624
Interrupt O -- DiVide ErTOr.......ccuviiiieiiiiiii e 624
Interrupt 1 -- Debug EXCEpPLioNS.......cooveiviieiiiiii e, 624
INtErrupt 2 -- NMI...eee e 624
Interrupt 3 -- Breakpoint...........ooii e 624
Interrupt 4 —- OVErflowcooevviiii e, 625
Interrupt 5 -- Bounds ChecK.........ccovivviiiiiiiiiiceece e 625
#UD 6 -- Undefined Opcode (No Error Code).......cccceeeveeevvveennnnnnn. 625
#NM 7 -- No Math Unit Available (No Error Code).............cc....... 626
#DF 8 -- Double Fault (Zero Error Code).........cceeeeeeeeeeeees mommmn 626
Interrupt 9 -- Coprocessor Segment OVerrun........ccccvvevevvneeeeennnnnn 626
#TS 10 -- Invalid Task State Segment (Selector Error Code) 627
#NP 11 -- Not Present (Selector Error Code).........ccvvvveevieeeeeninennnns 627
#SS 12 -- Stack Fault (Selector or Zero Error Code)ccceee.e 628
#GP 13 -- General Protection (Selector or Zero Error Code) 629
#PF 14 -- Page Fault (Type of Fault)...........ueiiiiiiiiini, 630
#MF 16 -- Math Fault (No Error Code) ..., 631

B Sample Program
SAMPIE SOUICE COUE ...vunniiiiiiiii et 63:
Y= g a] o] (I I 1 o U 640
C Keywords And Reserved Words 651
18 Contents

ASCII| Tables

655

Differences Between ASM386 and ASM286

New Processor Registers

NEW INSEIUCTIONS. ... ettt e et e e e e e e e e e e e eaeens

Processor Paging Mechanism
Addressing Differences.
DaALA TY PO .. iiee ettt ettt ettt e ea e
2 Y F= Vo TT 01U =1 o o PR
Assembler Directives
Assembler Operators
Assembler ArithmMetiCoooiiii e
Prefix66 and Prefix67 Codemacro Directives

Differences Between the Intel386 [1 and 376
Processors

663

Differences Between the Intel386 and Intel486 [J

Processors

667

Index

669

Service Information

ASM386 Assembly Language Reference

Contents

Inside Back Cover

Tables

1-1.
1-2.
1-3.
4-1.
4-2.
5-1.
5-2.
5-3.
5-4.
6-1.
6-2.
6-3.
6-4.
6-5.
6-6.
6-7.
6-8.
6-9.
6-10.
6-11.
6-12.
6-13.
6-14.
6-15.
6-16.
6-17.
6-18.
6-19.
6-20.
6-21.
6-22.
7-1.
7-2.
7-3.
7-4.
7-5.
7-6.
7-7.
7-8.
7-9.
7-10.

20

ASSEMDIEr DIFECHIVES ... eeees 29
ProcesSOr INSIUCHIONSuvvviiiiii et e e 31
Floating-point INSrUCTIONS.uuuiiiiiiiiiire e e e e ae e e e e e e 36
Assembler Variable Types and Numerical Value Rangesccco....... 81
Assembler Data Value Specification Rules..............ccooeeiiiiiiiiiieeeee, 82
ASSEMDIEr OPEIatOrS ...ciiiiiiiiiiiiieiiieieieeiitete et eaeneeeeeenanes 134
Assembler Operator PreCERUBNCEuuuuuriiiiiiiee et 13
TYPE Operator RESUILSuuviuiiiiiiiiiiiiiiie s emmmmmmmmm e 150

PTR ReSUIt AtHDULES .oeeieiieeeiee s 155
External 1/O INSIIUCHIONSuvveeeiiiii i 172
Internal Load and Store INStrUCtIONSevvviiviiiiiiiiiiiiiiiiiiiiii s 17:
Instructions That Make Uncalculated Value Assignmentscccccceveennn. 174
Instructions That Make Calculated Value AsSignmentscccevvvvveiininn. 175
Data Conversion INSITUCHIONS..........uvviiiiiiiiiiiiiiiiiiiiiiieeiieeeieeeeee e s 176

Shift and Rotate INStIUCLIONScvviiiiiiiiiiiiiii e 17¢
Stack Transfer INSIIUCHIONSuueiiieee e 177
Processor Instructions That Yield Definitive Flag Values.......................... 178
Conditional Instructions That Test Flag Valuesccccoooeevvviiiiiiiineeeeeenns 180
Control Transfer INStrUCtiONS.......ccoooiiiiiii e, 180
Processor Control INStrUCHIONScvvviiiiiiiiiiiiiiiiiiiiiiiiiii e s 180
Generation of Address and Operand Size Prefixes..........ccccevvvvvceeemmnnnn. 187
16-Bit Addressing Forms with ModRM Byte in Hexadecimal 190
32-Bit Addressing Forms with ModRM Byte in Hexadecimal 191
32-Bit Addressing Forms with SIB Byte in Hexadecimalcccee. 192
Processor Exceptions and INtEIrUPLSueviieciiieeiiiis e 20
Operands and Implicit Destinations for DIV..........ccccoovvieiiiiiciiiie e, 270
Operands and Implicit Destinations for IDIV............cccvvviiiiiie e 275
When IMUL Clears CF and OFccoooiiiiiiiiiiiiiiiiiiiieeieieieeees 278
JMP Label Types, Operand Sizes and Instructions.................vvvvmmmceenen.. 308
System Descriptor Types for LAR ... 312
System Descriptor TYPes fOr LSL. ..., 334
Summary of Real Format Parametersuvuuviieiiiiiiiiiiiiiiiinseeeeees 44
RoUNAING MELNOAS.......uvviiiiiie e 444
Data Transfer INStrUCHIONSovviiiiceeec e 44¢
Constant INSTIUCHIONScovveiiei i o s 447
Algebraic INSIFUCHIONSuviiiiiiiie e 448
Basic Arithmetic Instruction and Operand FOrmscccccccoevvv e, 449
Comparison INSIUCHIONSooiiiiiiiiiiiiiiieiieeieeee e eeeeeeen s 451
Transcendental INStrUCHIONSvviiiii i e 452
Processor Control INSrUCLIONSiiviiiieiiiiie e 453
Condition Code after FCOM(P/PP) .coooooiieee e 465

Contents

7-11. Condition Code after FICOM(P)uuuuuiiiiiiiiiiieieee e 471
7-12. Floating-point Coprocessor State Following FINIT/FNINIT...........ccccceee. 478
7-13. FPATAN Final ReSUIt OCLaNt...........cvvviiiiiiiiiiiiiiiiieiiiiiieieie s s 487

7-14. Condition Code after FPREM/FPREMI..........cccovvvviiiiiiiiiiiiiiiiiiiiiiiiieaee 490
7-15. Condition Code after FTSTcciiiiiiiiiiiiieeeiiiiii e e e e 509
7-16. Condition Code after FUCOM(P/PR)......uuiiiiiiieiiiiiiiiiiiiiiiiiiis e 511
7-17. Condition Code after FXAMuuuiiiiiie e 513

8-1. Predefined MACIOScooeei e 524
8-2. Predefined Macro Call Patterns..........uuuueieiiiiiiiiiiiieiiieeseseees e 529
9-1. Codemacro Syntax SUMMATYcooeeiiiiiiiiiieieieeeeeeeeeeeeeeeeeeeeeeee e 565

A-1. Default Segment Register Selection RUIES...............coovvviwmmmmmmnmeeeeeennns 597

A-2. Processor Exceptions and INterruptS ... 620
C-1. ASSEMDBIEr KEYWOIUS......cceeiiiiiiiiiii et

C-2. Assembler Reserved WOrdS...... ...

D-1. ASCII Collating SEQUENCEcccvviiiiieeeeeiiiie e e e e e s

D-2. ASCII Non-Printable Characters

Figures

1-1. Template for an Assembler Program ... 40
1-2. An ASM386 Example Programccccceeeeeeeeeeieieeeeeeeeeeeee 41
4-1. Partial Record Definition TEMPIAE..........vvvuviiiiiiiiiiiie e 101
5-1. Effective Address CalCulationouuveviviiiiiiviiiiiiiiiiiiiiiiiinenaneenn 164

6-1. Instruction ENCOding FOrMaAt..........uuuureiiiiiiiiiiieieeiiiieee e eenmmocs 185

6-2. ModRM and SIB Byte FOrmMatSooovviiiiiiiiiee 188
6-3. BitOffset for BIT[EAX,21]cvviviiiiiiiiiiiiiiiiiiinrienininnneneesnnnnnn s eeseenees 203

6-4. VLT g To T YA =71 A [T 1= q] o [204
7-1. Floating-point Coprocessor Stack Fieldsceuvvvvviiiiiiiiiiiiiiiiiiiiiiiiieeeee 430
7-2. 16-Dit ENVIFONMENTS....uiiiiiiiiiiii e e e e e 432
7-3. 32-Dit ENVIFONMENTS...coiiiiiiiiecce e e e e e e e 433
7-4. Status Word FOIMALcooviiiiiiiicc e 434
7-5. Control Word FOIMAL.........coooiiiiiiiiiiiceeeeiee e e e e e 436
7-6. LI T Ao o I o] 1 ' = ST 438
7-7. 16-bit Opcode, IP, and Op Environment Formats.............cccevvvvviiieeeeeeecennnn, 439
7-8. 32-bit Opcode, IP, and OP Environment Formats..................ccceeeeeeee. 440

7-9. Data FOIMALS.t e et 441
7-10. Floating-point Coprocessor Machine State Layout after FSAVE 497
9-1. Instruction Encoding FOrmMat...........ccoovviiiiii e e 562

9-2. ModRM and SIB Byte FOrMatsS...........ceeviieiiiiiiiiie e e e e e e 563
A-1. Fundamental Data TYPES......ccuuuuiiieiiiiiiiieeeeeeeeiin e e e e et e smmenmmmmme e 588

A-2. Processor Data Types and Storage Formats............cccceei v cmmceeeeeenennnn 589

A-3. General, Segment, Status, and Instruction Registers..........ccccoevveevvvenennns 592

A-4. Processor Stack with Stack Frame...........ccooeo 593

ASM386 Assembly Language Reference Contents 21

Figures (continued)

A-5.
A-6.
A-7.
A-8.
A-9.

A-10.
A-11.
A-12.
A-13.
A-14.
A-15.
A-16.
A-17.
A-18.
A-19.
A-20.
A-21.
A-22.

G-1.
G-2.
G-3.

22

System Control REQISIEISuuiiiiiiieiii e 594
Memory Segmentation Model for ASM386 Programsccoecvvvvvvnnnnns 596
Effective ADdress CalCulationueeeeeiiiiiiiiiiiieiieeee e e 598
Processor Address Translation OVEIVIEW............evvvviiiiiieeeeeeeeeeeeeeeinnns 599
Segment Address Translation in a Paged System....................cccew... 600
General Segment Descriptor FOrmMatS...........eieiiieeeiiiiiieiiiiiiiieee e 601
Y= (= Tod (o] g o 1 4= APPSR 603
Processor Privilege Check for Data ACCESS.......ooevvvviviiiiiiiiiiiiiiiiee e, 605
Call Gate DesCriptor FOrMAL..........ccovvviuiiiiiiiiiiie et e e 607
Task Gate DeSCriptor FOMMAL...........covvvuuiiiiiiiiiiie e e e 607
TSS Descriptor Format for 32-bit TSS......oviiiiiiii e, 608
General Segment Descriptor FOrmMatS..........ueeiiiieeeiiiiiieiiiiiiiiiee e 609
1/O AdAreSs Bit MAP......ccoiiiiiieiiiiiiiie et 611
Processor EFLAGS REQISIEL......ciiciiiiiie e ee e 612
Status Flags FOrMAL........coooiiiiiii e e 613
Control Flags and IOPL FOrmat..........cccooeeiiiiiiiiiiiiciin e 616
Interrupt Descriptor Table and RegiSter........ccooovvviiiiiiiiiiiiii e, 621

] D I CT= 11T B =TS o] o) (o] 5= 622
INtel486 Processor Control REQISIErS.........uviiiii i 66¢
Intel486 Processor Page Table/Directory Entry Format..............cceevvvvvvnnnnn. 66¢
INtel486 Processor EFLAGS REQISter.......c.covvviiiiiiieeiiieeiiie e 67C

Contents

Introduction

About This Manual

ASM386 supports the Pentignand Intel486" microprocessors and the entire
Intel386" family, including the Intel386, Intel386 SX, and 376 microprocessors, as
well as the Intel287, Intel387" and Intel387 SX floating-point coprocessors.
Throughout this manual, the word "processor" refers to any of the above
microprocessors and the words "floating-point coprocessor" refer to any of the
above coprocessors, as well as the Pentium and Intel486 processors' built-in
floating-point functions.

This manual is a reference for the ASM386 assembly language. It assumes that
you are familiar with assembly language programming and 8086/286/Intel386
processor architecture. Read Appendix A if you are already familiar with the
8086/286 processor architecture(s). If you aren't, se@0B&6 Programmer's
Reference Manual

About This Chapter

This chapter introduces the assembly language. It has three major sections:
* Lexical Elements

This section describes the assembler character set, tokens, separators,
identifiers, comments, and the difference between source file lines and logical
statement lines.

e Statements

This section introduces the assembler directives, processor instruction set, and
floating-point instruction set.

e Program Structure

This section provides a template for assembler programs together with a simple
example program (see Appendix B for another example program). It
summarizes the essential parts of every ASM386 program.

ASM386 Assembly Language Reference Chapter 1 23

Lexical Elements

This section describes the lexical elements of the assembly language, except for its
keywords and reserved words.

See also: Keywords and reserved words, Appendix C

Character Set

The assembler character set is a subset of the ASCII character set. Each characte
in a source file should be one of the following:

Alphanumerics: ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijkimnopqrstuvwxyz
0123456789

Special Characters:+-*/()[]<>;"."2?@ $ &

Logical Delimiters: space tab carriage_return line_feed

If a program contains any character that is not in the preceding set, the assembler
treats the character as a logical space.

Uppercase and lowercase letters are not distinguished from each other except in
character strings. For examptgz andXYzare interchangeable, buyZ ' and
'XYZ are not equivalent character strings.

The special characters and combinations of special characters have particular
meanings in a program, as described throughout this manual.

See also: ASCII character set, Appendix D

Tokens and Separators

24

A token is the smallest meaningful unit of a source program, much as words are the
smallest meaningful units of a sentence. A token is one of the following:

e An end of statement

e Adelimiter

e Anidentifier

* A constant

* An assembler keyword or reserved word

A separator that is a logical space or a delimiter must be specified between two
adjacent tokens that are identifiers, constants, keywords, and/or reserved words.
The most commonly used separator is the space character.

Chapter 1 Introduction

The end of statement token must be specified between two adjacent statements.
The most commonly used statement terminator is the carriage_return/line_feed
character combination.

See also: Constants, Chapter 4
keywords and reserved words, Appendix C
Logical Spaces

Any unbroken sequence of spaces can be used wherever a single space character is
valid. Horizontal tabs are also used as token separators. The assembler interprets
horizontal tabs as a single logical space. However, tabs are reproduced as multiple
space characters in the print (listing) file to maintain the appearance of the source
file.

See also: Print fileASM386 Macro Assembler Operating Instructions

Logical spaces may not be specified within tokens such as identifiers, constants,
keywords, or reserved words. The assembler treats any invalid character(s) in the
context of a source file as a separator.

Delimiters

Like logical spaces, delimiters mark the end of a token, but each delimiter has a
different special meaning. Some examples are commas and colons.

When a delimiter is present, a logical space between two tokens need not be
specified. However, extra space or tab characters often make programs easier to
read.

Delimiters are described in context throughout this manual.

ASM386 Assembly Language Reference Chapter 1 25

Identifiers

An identifier is a name for a programmer-defined entity such as a segment,
variable, label, or constant. Valid identifiers conform to the following rules:

* The initial character must be a letter (A...Z or a...z) or one of the following
special characters:

? A question mark (ASCII value: 3FH)
@ An at sign (ASCII value: 40H)
An underscore (ASCII value: 5FH)

* The remaining characters may be letters, digits (0..9), and the preceding
special characters. Separators may not be specified within identifiers.

« Anidentifier may be up to 255 characters in length; it is considered unique
only up to 31 characters.

« Every identifier within a program module represents one and only one entity.
A named entity is accessible from anywhere in the module when it is
referenced by name. The assembler does not have identifier scope rules that
allow you to specify the same name for two distinct entities in different
contexts.

Continued Statements and Comments

An assembler statement usually occupies a single source file line. A source file
line is a sequence of characters ended by a valid line delimiter:

e Either a line_feed character
e Or, a carriage_return/line_feed combination

However, the end of line in a source file is not necessarily the logical end of a
statement. Assembler statements do terminate with a line_feed or
carriage_return/line_feed combination, but logical statements can extend over
several lines by using the continuation chara&gr (

The end of line in a source file always terminates a comment. The semicpisn (
the initial character of a comment.

26 Chapter 1 Introduction

Valid comments and statements conform to the following rules:

« A comment begins with a semicolan) @nd ends when the line that contains it
is terminated. The assembler ignores comments.

« A statement or comment may be continued on subsequent continuation lines.
The first character following the line terminator that is not a logical space must
be an ampersand

e Statements and comments may extend over many source file lines if they
conform to the following:

— Symbols (such as identifiers, keywords, and reserved words) cannot be
broken across continuation lines.

— Character strings must be closed with an apostrophe on one line and
reopened with an apostrophe on a subsequent continuation line, with an
intervening comma, () after the ampersand. Space and tab characters
within a character string are significant; they are not treated as logical
spaces.

— If a comment is continued, the first character following the ampersand that
is not a logical space must be a semicolon (;).

Examples

The following examples illustrate the difference between the end of a source file
line and the logical end of an assembler statement. The notation <cr_If> represents
a carriage_return/line_feed. Both examples are equivalent.

1. This example has a single statement on a single source file line. The end of
the source file line and the logical end of the statement are the same.

; 1 2 3 4<cr_If>

; 234567890123456789012345678901234567890<cr_If>
<cr_If> ; interpreted as logical space

MOV EAX, FOO<cr_lIf>

ASM386 Assembly Language Reference Chapter 1 27

2. This example has many ends of lines in the source file, but it has only one
logical end of statement.

; 1 2 3 4<cr_If>
; 234567890123456789012345678901234567890<cr_|f>

<cr_If> ; interpreted as logical space
MOV ; this ASM386<cr_|If>

& EAX, ; statement extends<cr_If>

& ; <cr_If>

& ; <cr_If>

& ; over<cr_|f>

& ; several lines<cr_If>

& FOO ; statement ends here<cr_If>
<cr_If>

28 Chapter 1 Introduction

Assembler Statements

Assembler programs are constructed from statements. They may also contain
definitions of and calls to programmer-defined macros. There are two kinds of
statements: directives and instructions.

See also:

Programmer-defined macros, Chapter 8

Assembler Directives

Directive statements tell the assembler to perform certain operations. Assembler
directives determine the organization of a program's data, stack, and code

segments, and they affect almost every opcode that the assembler generates.

Table 1-1 lists the assembler directives by functional categories.

Table 1-1. Assembler Directives

SEGMENT..ENDS

STACKSEG

ASSUME

Segmentation Directives

Defines a program'’s logical segments and specifies a code or
data segment's attributes (access protection, whether to combine
with other logical segments, and whether to use 32- or 16-bit
addressing)

Defines stack segments and allocates a specified number of
bytes per module to the run-time stack

Informs the assembler of the expected run-time contents of the
processor segment registers

NAME

END

PUBLIC

EXTRN

COMM

Program Linkage Directives

Specifies a source module's unique name

Required last statement in module that terminates assembly; in
main module only, initializes CS and may also initialize DS and
SS segment registers

Specifies that a named symbol is accessible from another
program module

Specifies that a named PUBLIC symbol in another program
module can be accessed in this module

Specifies that a named symbol is to be allocated common and
accessible data storage with COMM or EXTRN symbols in other
program modules or specifies that a named PUBLIC symbol can
be accessed in this module

continued

ASM386 Assembly Language Reference Chapter 1

29

Table 1-1. Assembler Directives (continued)

Data Allocation and Type Definition Directives

DBIT Allocates storage for and may initialize values of BIT-type variables

DB Allocates storage for and may initialize values of BYTE-type variables

DwW Allocates (2 bytes) storage for and may initialize values of WORD-type
variables

DD Allocates (4 bytes) storage for and may initialize values of DWORD- type
variables

DP Allocates (6 bytes) storage for and may initialize values of PWORD- type
variables

DQ Allocates (8 bytes) storage for and may initialize values of QWORD- type
variables

DT Allocates (10 bytes) storage for and may initialize values of TBYTE- type
variables

Data Allocation and Type Definition Directives

RECORD Names a programmer-defined type that is a bit-encoded data structure
(1 to 4 bytes long)

STRUC Names a programmer-defined type with named fields; each field may be
any of the predefined types

DUP Allocates contiguous storage for a specified number of variables of a

single type and may initialize their values

Procedure and Label Definition Directives

labelname: Defines label within current code segment; assembler generates an
intrasegment return of type NEAR

PROC..ENDP Defines labeled sequence of instructions (assembler generates an
intrasegment return) of type NEAR or (assembler generates an
intersegment return) of type FAR

LABEL Defines label of a specified type (NEAR, FAR, or a declared variable's
type)

Location Counter Symbol and Management Directives

$ Represents location counter (location of the statement currently being
assembled)

ORG Sets $ to specified value

EVEN Sets $ for the following code or data to the next dword or word

ALIGN Sets $ to the next location for code or data that is evenly divisible by the

specified number.

Symbol Equating and Purging Directives

EQU Defines name (alias) for keyword reserved word, or program symbol
PURGE Instructs assembler to delete specified symbol(s)

See also: Chapters 1 through 4 for more information about each directive in
Table 1-1
codemacro directives, Chapter 9

30 Chapter 1 Introduction

Assembler Instructions

The assembler translates assembler instruction statements into opcodes, operands,
and addresses. The machine code causes the processor and/or floating-point
coprocessor to perform particular operations on (and with) the program's data.
There are two kinds of assembler instructions: processor instructions and floating-
point instructions. The floating-point instructions may be emulated on the
processor or they may execute on a floating-point coprocessor.

Tables 1-2 and 1-3 list the assembler instructions by functional category. See
Table 1-2 for the processor instruction set and Table 1-3 for the floating-point
instruction set.

Table 1-2. Processor Instructions

Data Transfer Instructions

MOV Move data

MOVZX Move with zero extend

MOVSX Move with sign extend

IN Input from port

ouT Output to port

XCHG Exchange register/memory with register

CMPXCHG Compare and exchange (not available on Intel386 or 376 processors)

XLAT/XLATB Table look-up translation

Address Transfer Instructions

LEA Load effective address offset

LDS Load full pointer into DS:register
LES Load full pointer into ES:register
LFS Load full pointer into FS:register
LGS Load full pointer into GS:register
LSS Load full pointer into SS:register

continued

ASM386 Assembly Language Reference Chapter 1 31

Table 1-2. Processor Instructions (continued)

Logic Instructions

NOT One's complement negation

AND Logical AND

OR Logical (inclusive) OR

XOR Logical (exclusive) OR

TEST Logical compare (non-destructive AND)

CMP Compare operands

SHL Shift logical left

SHR Shift logical right

SAL Shift arithmetic left

SAR Shift arithmetic right

SHLD Shift double precision left

SHRD Shift double precision right

ROL Rotate left

ROR Rotate right

RCL Rotate through carry flag (CF) left

RCR Rotate through carry flag (CF) right

BSWAP Byte swap (not available on Intel386 or 376 processors)
Stack Instructions

ENTER Make stack frame for procedure's local variables
LEAVE High-level procedure exit

PUSH Push operand onto the stack

POP Pop operand from the stack

PUSHFD/PUSHF Push EFLAGS or FLAGS register onto stack
POPFD/POPF Pop top of stack into EFLAGS or FLAGS register
PUSHAD/PUSHA Push all (32- or 16-bit) general registers onto the stack
POPAD/POPA Pop stack into all (32- or 16-bit) general registers
Flag Instructions

STC Set carry flag (CF)

CLC Clear carry flag

CMC Complement carry flag

STD Set direction flag (DF)

CLD Clear direction flag

STI Set interrupt flag (IF)

CLI Clear interrupt flag

LAHF Load status flags into AH

SAHF Store AH into status flags

SETcc Set byte on (status flag) condition

32 Chapter 1

continued

Introduction

Table 1-2. Processor Instructions (continued)

Mathematical Instructions

ADC
ADD
DEC
DIV

IDIV

IMUL
INC
MUL
NEG
SuUB

XADD

Add with carry

Add

Decrement by 1

Unsigned divide

Signed divide

Signed multiply

Increment by 1

Unsigned multiply

Two's complement negation
Integer subtraction

Exchange and add (not available on Intel386 or 376 processors)

Data Adjustment Instructions

AAD
CBW
CWD
CWDE
CDQ

ASCII adjust AL after addition
ASCII adjust AL after subtraction
Decimal adjust AL after addition
Decimal adjust AL after subtraction
ASCII adjust AX before division
ASCII adjust AX after multiply
ASCII adjust AX before division
Convert byte to word

Convert word to dword

Convert word to dword extended
Convert dword to quadword

String Instructions

MOVS
CMPS
SCAS
LODS
STOS
INS
OUTS

Move string to string
Compare string operands
Compare (scan) string data
Load string data

Store string data

Input from port to string
Output string to port

Bit Test and Scan Instructions

BT

BTS
BTR
BTC
BSF
BSR

Bit test

Bit test and set

Bit test and reset (to 0)
Bit test and complement
Bit scan forward

Bit scan reverse

ASM386 Assembly Language Reference Chapter 1

continued

33

Table 1-2. Processor Instructions (continued)

Control Transfer Instructions

Jcc Jump if status flag condition is met
JMP Jump unconditionally

CALL Call procedure

RET Return from procedure

LOOP Loop with (E)CX counter

LOOPcond Loop with (E)CX counter AND condition
Interrupt Instructions

INT Call to interrupt procedure

INTO Call to interrupt procedure if overflow
IRET Interrupt return (16-bits)

IRETD Interrupt return (32-bits)

Processor Control

HLT Halt

WAIT Wait until BUSY# is inactive

Protected Mode Control Instructions
LGDT/LGDTW/LGDTD Load global descriptor table register (GDTR) using 16- or 32-bit

operand

LIDT/LIDTW/LIDTD Load interrupt descriptor table register (IDTR) using 16- or 32-bit
operand

LLDT Load local descriptor table (LDT) register (LDTR)

LTR Load task register (TR)

LMSW Load machine status word (MSW)

SGDT/SGDTW/SGDTD Store GDTR using 16- or 32-bit operand
SIDT/SIDTW/SIDTD Store IDTR using 16- or 32-bit operand

SLDT Store local descriptor table register

STR Store task register

SMSW Store machine status word

ARPL Adjust requesting privilege level (RPL) field of selector
CLTS Clear task switch (TS) flag in CRO register
Parameter Verification Instructions

BOUND Check array index against bounds

LAR Load access rights

LSL Load segment limit

VERR Verify a segment for reading

VERW Verify a segment for writing

continued

34 Chapter 1 Introduction

Table 1-2. Processor Instructions (continued)

Cache Control Instructions

INVLPG Invalidate paging cache entry (not available on Intel386 or 376
processors)

INVD Invalidate data cache (not available on Intel386 or 376 processors)

WBINVD Write back and invalidate data cache (not available on Intel386 or 376
processors)

No Operation Instruction

NOP No operation (fills 1 byte and increments instruction pointer)

Instruction Prefixes

LOCK Assert BUS LOCK# signal prefix

REP Repeat following string operation

See also: Chapter 6 for an overview of the processor instruction set and for
detailed information about each processor instruction

ASM386 Assembly Language Reference Chapter 1 35

Table 1-3. Floating-point Instructions

Data Transfer Instructions

FLD Load real

FST Store real

FSTP Store real and pop floating-point stack
FXCH Exchange stack elements

FILD Load integer

FIST Store integer

FISTP Store integer and pop floating-point stack
FBLD Load packed decimal real

FBSTP Store packed decimal real

Load Internal Constant Instructions

FLDZ Load +0.0

FLD1 Load 1.0

FLDPI Load 1t

FLDL2T Load log,10

FLDL2E Load log.,e

FLDLG2 Load log, 2

FLDLN2 Load log 2

Comparison Instructions

FCOM Compare real
FCOMP Compare real and pop floating-point stack
FCOMPP Compare real and pop twice
FUCOM Unordered compare real (not available on Intel287 floating-point
coprocessor)
FUCOMP Unordered compare real and pop floating-point stack (not available on
Intel287 floating-point coprocessor)
FUCOMPP Unordered compare real and pop twice (not available on Intel287 floating-
point coprocessor)
FICOM Compare integer
FICOMP Compare integer and pop floating-point stack
FTST Test (compare to zero)
FXAM Examine
continued
36 Chapter 1 Introduction

Table 1-3. Floating-point Instructions (continued)

Transcendental Instructions

FSIN
FCOS
FSINCOS
FPTAN
FPATAN
F2XM1
FYL2X
FYL2XP1

Sine (not available on Intel287 floating-point coprocessor)

Cosine (not available on Intel287 floating-point coprocessor)

Sine and cosine (not available on Intel287 floating-point coprocessor)
Partial tangent

Partial arctangent

2x-1

Y *log? X

Y *log? (X + 1)

Algebraic Instructions

FADD
FADDP
FIADD
FSUB
FSUBP
FSUBR
FSUBRP
FISUB
FISUBR
FMUL
FMULP
FIMUL
FDIV

Add real

Add real and pop floating-point stack
Add integer

Subtract real

Subtract real and pop floating-point stack
Subtract real reversed

Subtract real reversed and pop floating-point stack
Subtract integer

Subtract integer reversed

Multiply real

Multiply real and pop

Multiply integer

Divide real

Algebraic Instructions

FDIVP
FDIVR
FDIVRP
FIDIV
FIDIVR
FSQRT
FSCALE
FPREM
FPREM1

FRNDINT
FXTRACT
FABS
FCHS

Divide real and pop floating-point stack

Divide real reversed

Divide real reversed and pop floating-point stack
Divide integer

Divide integer reversed

Square root

Scale

Partial remainder

IEEE std.754 partial remainder (not available on Intel287 floating-point
coprocessor)

Round real to integer

Extract exponent and significand

Absolute value

Change sign

continued

ASM386 Assembly Language Reference Chapter 1

37

Table 1-3. Floating-point Instructions (continued)

Processor Control Instructions

FINIT/ENINIT Initialize floating-point coprocessor
FSTCW/FNSTCW Store control word

FLDCW Load control word

FSTSW/FNSTSW Store status word

FCLEX/FNCLEX Clear exceptions

FSTENV/FNSTENV Store environment

FLDENV Load environment

FSAVE/FNSAVE Store machine state

FRSTOR Restore machine state

FINCSTP Increment floating-point stack pointer
FDECSTP Decrement floating-point stack pointer

FFREE Free (empty) stack top element

FNOP No operation

FSETPM Set (Intel287) protected mode (Otherwise FNOP)
FWAIT Wait (alternate specification of processor WAIT)

See also: Chapter 7 for detailed information about each assembler floating-
point instruction
Specifying Assembler Statements
The general syntax for assembler directive statements is similar to that for
instructions.
Specifying Directive Statements
Assembler directive statements have the following general syntax:
[namdq directive [argument [,...]]
Where:
name is a valid identifier.
directive is one of the directives listed in Table 1-1.
argument is a modifier or value to be associated witmne.

Each assembler directive has its own set and/or forms of argument(s). Some
directives have no valid arguments in the context of a program. Some have a
restricted set of arguments that are reserved words. Others accept constant values
and constant expressions.

See also: Chapters 2 through 4 for more detailed information about each
directive in Table 1-1

38 Chapter 1 Introduction

Specifying Instruction Statements
Assembler instruction statements have the following general syntax:

[label :][prefix] mnemonic[argument [,...]]

Where:
label is a unique-to-the-module identifier that defines a label.
prefix is a processor instruction prefix@CKor REP.

mnemonic s a processor or floating-point instruction (listed in Table 1-2 or 1-3)
or it is a programmer-defined codemacro.

argument is an operand.

Some instructions have no operands; others require one, two, or three operands.
Some operands may be expressions. The general form of an instruction with
operands is one of the following:

mnemonic src
where the execution result may be stored either in the source itself
(src) or in an implicit location (usually a register or the floating-point
stack top element ST).

mnemonic dest, src
where the execution result is stored either in the destinatesn J or
in an implicit location; the instruction's operation does not change the
source operand.

Only a few processor instructions have three operands. For floating-point
instructions, one operand is usually the stack top ST(0).

See also: Programmer-defined codemacros, Chapter 9
expressions, Chapter 5
instruction operands, Chapter 6 (Table 1-2) and Chapter 7 (Table 1-3)

ASM386 Assembly Language Reference Chapter 1 39

Assembler Program Structure

Figure 1-1 illustrates the essential parts of an assembler program that is contained
in a single source module and intended to run in processor protected mode.
Figurel-2 illustrates such an example program.

The following subsections explain what each assembler statement in Figure 1-1
does.

: This is a comment. Tokens in bold face can seldom

; be omitted from any non-trivial assembler program.

; Those in type like THIS are strongly recommended for

; every assembler

; program and some are required by all but the simplest.
NAME MAIN_ MODULE

; MAIN_MODULE is programmer defined for this module.
PROG_STACK STACKSEG 500

; PROG_STACK is programmer defined for program's stack

; segment and 500 is number of bytes in segment.
PROG_DATA SEGMENT RW

; PROG_DATA is programmer defined for program's data

; segment and RW (read/write) is this segment's

; access attribute (ReadOnly or ExecuteRead also possible).

; Program data must be defined and may be initialized here
PROG_DATA ENDS
PROG_CODE SEGMENT ER

; PROG_CODE is programmer defined for program's code

; segment and ER (execute/read) is this segment's

; access attribute (ExecuteOnly also possible).
ASSUME DS:PROG_DATA

; Tells assembler which processor segment register

; points to program's data segment for the following
MAIN:

; code. MAIN is programmer defined label specifying

; program entry point (execution begins here). Assembler

; instruction statements begin at label (MAIN) and must

; be coded between SEGMENT..ENDS. DS, SS, ES, FS and GS

; segment register initializations may be coded here too.
PROG_CODE ENDS ; Code segment ends.
ENDCS: MAIN, DS:PROG_DATA, SS:PROG_STACK

Figure 1-1. Template for an Assembler Program

40 Chapter 1 Introduction

NAME Directive

Assembler programs with more than one source module must specify a unique
name for each module. The assembler will assign the module identifier
ANONYMOUSthe NAMEstatement is omitted. A multi-module program cannot be
combined and located by the system utilities if two modules have the same name.

See also: NAMHlirective, Chapter 3

NAME TOY_MAIN_MODULE
PROG_STACK STACKSEG 200
EXTRN EXIT: FAR
PROG_DATA SEGMENT RW

VAR1 DB 0
VAR2DD 0
VAR3 DD 1000

PROG_DATA ENDS
PROG_CODE SEGMENT ER USE32
ASSUME DS: PROG_DATA

MAIN: INC VAR1 ; increment counter
PUSH EAX ; store EAX on stack
MOV EAX, VAR2 ; move VAR2 value to EAX
ADD EAX, 500
MOV VAR2, EAX ; store sum in VAR2
POP EAX ; restore original EAX value
; from stack
MOV ECX, VAR3 ; move VAR3 to ECX
SUB ECX, VAR2 ; subtract 500
; from 1000 in ECX
JNZ MAIN ; jump to MAIN if subtraction

; result in ECX not zero and
; end loop when result = 0
CALL EXIT
PROG_CODE ENDS

END MAIN, DS:PROG_DATA, SS:PROG_STACK
Figure 1-2. An ASM386 Example Program

ASM386 Assembly Language Reference Chapter 1 41

STACKSEG Directive

Any assembler program that allocates data dynamically on a stack should define a
named stack segment wittBaACKSEGstatement.

In assembler programs, source modules share a single stack se§meDKSEG

must be specified with the same name in each source module that references data
on the stack. In such a source module SheCKSEGtatement specifies the

number of bytes that the module will allocate on the to-be-combined stack segment
for the whole program.

For stack segments, the assembler determines the use attribute. A stack segment'
use attribute determines the upper limit for offsets within the segment; it also
determines whether the ESP or SP register is used for implicit stack references.

See also: STACKSEGIirective, Chapter 2
processor stack architecture, Appendix A

SEGMENT Directive for Data Segments

Assembler data must be defined withiBBGMENT..ENDS This directive
specifies at least a name for one program (or module) data segment; it may also
specify access, use, and combine attributes for the named data segment.

Assembler source modules may define any number of named data segments with
SEGMENT..ENDS The processor DS (default), ES, FS, and GS segment registers
provide access to data segments. At most four named data segments are accessit
at any given point in a module.

Each data segment within a module must have a distinct name. The assembler
assigns the RW (read/write access) attribute unless RO or ER is specified for the
segment.

The assembler assigns 1h8E32 (use 32-bit addressing) attribute for the whole
module by default unlessSE16is specified as an assembler control. Segments
within the module may have individually specifiedEattributes. When @SE

attribute is defined on a segment, it remains in effect throughout that segment. For
all segments, thgSEattribute determines the maximum segment size: 4 gigabytes
(232 - 1) foruse32and 64K bytes (2 - 1) forUSE16.

42 Chapter 1 Introduction

Named data segments may be shared across program source modules only if a
PUBLIC or COMMOBbmbine attribute is specified in tSEGMENBtatement. Each
data segment that is shared among modules must have the same name with the
same use and combine attributes and compatible access attributes.

See also: Processor registers, memory organization, and access protection
features, Appendix A
SEGMENTirective, Chapter 2
defining shared data entities inside 88GMENT..ENDSof multiple
source modules, Chapter 3
defining data (variables, labels, and constants) and specifying
assembler data values witt8BEGMENT..ENDS Chapter 4

SEGMENT Directive for the Code Segment

All assembler instruction statements must be specified WBBEMENT..ENDS
This directive specifies at least a name for the module's code segment. It may also
specify access, use, and combine attributes for the code segment.

The assembler assigns ER (execute/read) access unless EO (execute only) is
specified for the segment. The assembler assigEsS2 (use 32-bit addressing) for
the whole module by default unledSE16is specified as an assembler control.
When auSEattribute is defined on a segment, it remains in effect throughout that
segment.

TheUSEattribute of a segment instructs the assembler to generate 32- or 16-bit
(offset) addresses and default lengths for instruction operands. It also determines
the segment's maximum size: 4 gigabyte® 21) forUSE32and 64K bytes

(216 - 1) forUSE16.

Code segments defined with the same name and specified wiRbyBheC

combine attribute are concatenated into a single code segme&uBUIC is not
specified for a module's code segment, it is non-combinable and must be wholly
contained in a single source module.

ASM386 Assembly Language Reference Chapter 1 43

The code segment of a program's main module must have aNebsl (in
Figures 1-1 and 1-2) at the first executable instruction of the program. The main
module'sENDstatement must specify this label.

See also: ENDstatement, END Directive, in this chapter
Assembler Statements for a summary of the assembler instructions
and directives
SEGMENT..ENDSdirective, including th®UBLIC combine attribute,
Chapter 2
accessing data with address expressions, Chapter 5
Chapters 6 and 7 for detailed information about each assembler
instruction

ASSUME Directive

If no ASSUMBstatement is specified in an ASM386 code segment, the assembler
assumes that CS contains the selector of the code segment but that no other
segment register has been loaded. The assembler cannot generate a correct logic:
address for a symbolic reference unless it knows which segment register contains
the selector for the symbol's defining segment. The assembler must know the
correct segment register whenever an instruction statement references memory
data. Such references include:

« Symbolic references using the name of a variable, label, or constant as an
operand to an instruction (e.¢DDEAX VAR2

* Non-symbolic references using segment overrides aneTReperator (e.g.,
ADDEAX GS:DWORPTR24)

Initialize a segment register for each memory segment that is referenced in your
code and specifgSSUMEt each point in the source code where the run-time
contents of a segment register will change for subsequent instructions.

See also: Initializing Segment Registers with Instructions, in this chapter
ASSUMHlirective, Chapter 2
processor segment registers, Appendix A

44 Chapter 1 Introduction

END Directive

The ENDstatement terminates assembly; it must be the last statement in an
ASM386 source module.

The main module'ENDstatement must specify at least the code segment's entry

point label in order to initialize the CS and (E)IP registers. When the program is
loaded, CS:(E)IP points to the entry point label of the code segment. EIP (32-bit
addressing) or IP (16-bit addressing) also points to the (labeled) instruction.

The SS and DS segment registers may also be initialized with the main module's
ENDstatement. If they are, when the program is loaded:

eSS contains the selector for the stack segment. ESP (32-bits) or SP (16-bits)
contains the offset of the first dword (32-bits) or word (16-bits) above the
upper segment limit if the stack segment was defined SWIkCKSEG(E)SP
has a value equal to the size of the stack plus 4 (for ESP) or plus 2 (for SP).
(E)SP is 0 if the stack segment was not defined STRCKSEG

« DS contains the selector for the data segment.

Note that an expliciOweference to the data segment name is not required to
initialize DS to the data segment (see Figure 1-2) when DS is initialized ENihe
statement.

The ES, FS, and GS data segment registers cannot be initialized with the main
module'sENDstatement. In non-main modules, segment registers may not be
initialized with theENDstatement.

See also: ENDstatement, Chapter 3

Initializing Segment Registers with Instructions

Memory data must be accessible if assembler instructions are to operate on it. If all
program modules have a single, shared data segment, spesi§suyE

DS: datasegname and initializing DS with the main modulé&siDstatement

provides the necessary access. Even one-module programs that define more than
one named data segment must initialize the ES, FS, or GS register(s) explicitly in
the code segment.

ASM386 Assembly Language Reference Chapter 1 45

Since each assembler module may define several data segments, individual
modules of a program may have local, as well as shared data segments. But, as tt
program executes, only four data segment registers are available to access memor
data. Thus, the DS, ES, FS, and GS register contents may change within a module
and from module to module. In these cases, speciAssuMBtatement and

initialize the data segment register(s) before an instruction accesses memory data.

A module's stack segment may also be initialized explicitly in the code segment,
rather than with the (main) modul&siDstatement.

Initializing DS, ES, FS, and GS

The DS, ES, FS, and GS registers may be initialized in four ways in a source
module's code segment:

46

1. By specifying sequenti?dOMVinstructions using the data segment name:

The firstMOVhas a destination operand that is a general register (AX, BX,
CX, DX, SI, DI, SP, BP) and a source operand that is the name of a data
segment in the module. Avoid specifying SP or BP if the module accesses
the stack segment.

The nextMOVhas a destination operand that is a data segment register
(DS, ES, FS, or GS) and a source operand that is the destination register
specified in the precedingov

2. By specifying sequenti?dOMinstructions and using tt&EGoperator:

The firstMOVhas a destination operand that is a general register (AX, BX,
CX, DX, Sl, DI, SP, BP) and a source operand that is a symbol (named
variable, label, or constant) preceded3®G TheSEGexpression

represents the segment base address of the symbol's defining data segmer
Avoid specifying SP or BP if the module accesses the stack segment.

See also: SEG Chapter 5

The nextMOVhas a destination operand that is a data segment register
(DS, ES, FS, or GS) and a source operand that is the destination register
specified in the precedingov

3. By specifying amOMinstruction with DS, ES, FS, or GS as the destination
operand and an initialized memory location as the source operand.

By specifying an.DS, LES, LFS, or LGSinstruction with a memory operand

that is a pointer. Do not attempt to load a segment register directly by using a
segment name as a source operand; a segment name is an immediate operanc
not a memory operand.

Chapter 1 Introduction

Examples
1.

This example initializes ES. ES will contain the selector obD#iEA2
segment after botklOVstatements execute.

DATA1 SEGMENT RW
T ; its data accessed
DATA1 ENDS ; by DS:EAX later
DATA2 SEGMENT RW
VAR32 DD 0
DATA2 ENDS
T ; more segment definitions
MOV BX, DATA2
ASSUME ES:DATA2
MOV ES, BX

This example initializes FS. FS will contain the selectorAi32s defining
data segment after bottOVstatements execute. TEETRNdirective
indicates thavAR32is defined in another source module.

See also: EXTRN Chapter 3

EXTRN VAR32 DWORD

MOV CX, SEG VAR32
ASSUME FS:SEG VAR32
MOV FS, CX

Initializing SS

The SS (stack segment) register and (E)SP may also be initialized in the code
segment:

1.

By specifying sequential instructions, just as for a data segment with SS as the
destination segment register.

By specifying (E)SP asMOWestination operand and the stack segment name
as the source operand preceded bystheCKSTARToperator.

By specifying the.SS instruction with a memory operand that is a pointer. Do
not attempt to load a segment register directly by using a segment name as a
source operand; a segment name is an immediate operand, not a memory
operand.

ASM386 Assembly Language Reference Chapter 1 47

(E)SP points to the top of the processor push-down stack. This register is
referenced implicitly by the processBXTER LEAVE PUSH POP, PUSHAPOPA
PUSHE POPFE, CALL and interrupt operations. (E)BP should be used as the stack-
frame base pointer to avoid having to specify SS explicitly for each data access
within a stack frame.

Example

48

This example useSTACKSTARTO initialize (E)SP. AvMOMnto SS disables
interrupts for one instruction so that (E)SP can be initialized. After these
instructions execute, (E)SP points to the (d)word above the upper stack segment
limit.

MOV AX, PROG_STACK

MOV SS, AX
MOV ESP, STACKSTART PROG_STACK

See also: STACKSTARTChapter 5

Chapter 1 Introduction

Segmentation

This chapter contains three major sections:
« Overview of Segmentation

This section briefly describes processor segmentation, together with the
assembler directives that define and set up access to logical program segments.

» Defining Logical Segments

This section explains tH@EEGMENT..ENDSandSTACKSEGHirectives. These
directives define code, data, and stack segments in assembler programs.

e Assuming Segment Access

This section explains theSSUMHlirective. This directive specifies which
segments in an assembler program are accessed by the processor segment
registers at any given point in the program'’s code.

Overview of Segmentation

The processor addresses 4 gigabytes of physical memory. Processor memory is
segmented. For programmers, processor memory appears to consist of up to six
accessible segments at a time:

« One code segment containing the executable instructions
e One stack segment containing the run-time stack
e Up to four data segments, each containing part of the data

Assembler program segments are called logical segments, because they represent
logical addresses that must be mapped to processor physical addresses before
program execution.

The maximum size of a program segment depends on wisighttribute is
specified in the source. WheisE32is specified, the maximum size for a segment
is 4 gigabytes. WhedSE16is specified, it is 64K bytes.

See also: Processor memory organization, Appendix A
operand addressing and tbgEattribute, Chapters 5 and 6

ASM386 Assembly Language Reference Chapter 2 49

50

At run time, the physical base address of a program segment will be accessed by a
immediate value loaded into a segment register. This value is called a selector. A
selector points (indirectly in processor protected mode and directly in processor
real address mode) to the physical location of a segment. The processor segment
registers are CS, DS, and SS, which access code, data, and stack segments,
respectively, and ES, FS, and GS, which access additional data segments.

Logical segments are created in an assembler module wiSEtBRRENTcode and

data) andSTACKSE(stack or stack-and-data) directives. These directives specify
a segment name; this name defines a logical address for the segment. A segment
name can appear in several contexts throughout a program:

« In data initializations, because it stands for the value of the selector

« In segment register initializations

* In anASSUMEBstatement, which tells the assembler which segment registers
contain which selectors

See also: ASSUMEBtatement, in this chapter
selectors, Chapter 4
data and segment register initializations, Chapter 1

After program code is assembled, the system utilities map assembler program
segments to processor physical addresses. A named segment becomes a sequent
of contiguous physical addresses. A logical segment becomes physically accessibl
when the segment name is loaded into a processor segment register during progral
execution.

Chapter 2 Segmentation

Defining Code, Data, and Stack Segments

The SEGMENT..ENDdirective defines an assembler program'’s code and data
segments. Th8TACKSEGIirective defines the stack (or mixed stack and data)
segment. Both directives specify a name for each logical segment defined in a
program.

Because program segments are named, assembler logical segments need not be
contiguous lines of source code. Within a source module, a named segment can be
closed withENDSand reopened with anoth®EGMENT.. that specifies the same

name. Logical segments can also be coded in more than one source module.

See also: Logical segments in source modules, Chapter 3

SEGMENT..ENDS Directive

Syntax

name SEGMENT[access][use][combine]
[instructions, directives, and/or data initializations]

name ENDS
Where:

name is an identifier for the segmentame must be unique within the
module. namerepresents the logical address of the beginning of the
program segment. The segment's contents (specified between
SEGMENT..END$ represent logical addresses that are offsets from the
segmenthame.

access is an optional RO (read only), EO (execute only), ER (execute and
read), RW (read and write).

use is USE320r USE16 If use is not specified explicitly in thBEGMENT
statement, the segmenySEattribute defaults to that of its nearest
enclosing segment or to that of the module. The overall default for
program modules i8SE32

combine is unspecified (defaultRUBLIC, or COMMQNIf neitherPUBLIC nor
COMMOIS specified fomame, the segment is non-combinable: the
entire segment is in this module and it will not be combined with
segments of the sammame from any other module. However,
separate pieces of a non-combinable segment within a module will be
combined.

If a SEGMENPUBLIC or SEGMENTOMMOUirective has been
specified for the segmename, thecombine specification for
segments with the same name in other modules must be the same.

ASM386 Assembly Language Reference Chapter 2 51

Discussion

The SEGMENT..ENDSdirective defines all or part of a logical program segment
whose name isame. The contents of the segment consist of the assembled
instructions, directives, label declarations, and/or data initializations that occur
betweerSEGMENBNJENDS These contents will be mapped to a contiguous
sequence of processor physical addresses by the system utilities. When a segmen
name is used as an instruction operand, it is an immediate value.

Within a single source module, each occurrenceEBMENT..ENDShat has the
same name is considered part of a single program segment. All ASM386 source
code must be specified withifSEGMENT..ENDS Every named variable and label
in an assembler program must also be defined witBBGMENT..ENDS

Access , use, andcombine are optional; they may be specified in any order.

Specifying EO, ER, RO, or RW Access

access is an assembler (and processor) protection feature; it specifies the
kind(s) of access permitted to the segment.

The assembler issues a warning for the initial definition of a segmentadttbes
specification is omitted. The assembler also assigasass value according to

the contents of the segment. For a segment that contains data only, the value is
RW; for a segment that contains code only, it is EO. For mixed code and data, the
value is ER.

After a named segment has been defined wBE@VENTBtatement, access can be
omitted when the segment is reopened. However, its value may not be changed
when the segment is reopened.

Specifying USE32 or USE16

52

use specifies the segmentksEattribute, which determines the addressing
mode, maximum segment size, and operand size for code within the
segment.

If use is not specified in tleEGMENBtatement, the segmenySEattribute

defaults to that of its nearest containing segment or to that of the modul&ISEhe
attribute of a module may be specified as an assembler operating control when the
assembler is invoked. The overall default for assembler program modules is
USE32

USE32 causes 32-bit offsets to be generated for identifiers (variables, labels,
structures, records, and procedure names) defined within the segns&a2
segments can be up to 4 gigabytes long.

Chapter 2 Segmentation

USE16 causes 16-bit address offsets to be generated for identifiers defined within
the segmentUSE16 segments can be up to 64K bytes long.

The USEattribute of the segment also determines operand sizes for certain
processor instructions. For example, if the segmeunsiz32, theENTER
instruction will assume that the required immediate operand is 32-bits; if the
segment i$JSE16, the operand will be zero-extended to 32-bits.

See also: USEattribute ASM386 Macro Assembler Operating Instructions
USE32, Chapter 4
address and operand sizes, Chapter 6

Specifying PUBLIC or COMMON

combine specifies how the segment will be combined with segments of the
same name from other modules to form a single physical segment in
memory. The actual combination of modules occurs at bind time.

If a SEGMENTirective specifyindPUBLIC or COMMOAIready exists for a named
segmentcombine specifications in other modules must match it. The named
segment'sombine attribute should be specified (at least) for the initial segment
definition in subsequent modules. The following explains how a logical segment in
more than one module is combined:

» All segments of the same name that are definetL&s.IC will be
concatenated to form one physical segment. Control the order of combination
with the binder.

The length of the combingelUBLIC segment will equal approximately the

sum of the lengths of tteEGMENT..ENDSpieces. For a segment declared
PUBLIC, there is no guarantee that the beginning of a particular segment part
within the module will have an offset of zero within the final combined
segment.

« All segments of the same name that are definetbasmMOwill be overlapped
to form one physical segment. Each module's version of the segment begins at
offset zero within the segment, so each version has the same physical address.

The length of the combinedoMMOsegment will be equal to the longest
individual length within any of its defining modules. c®MMOskegment may
not specify EO or ER access.

If neitherPUBLIC nor COMMOIS specified, the segment is non-combinable.
The entire logical segment must be contained in a single source module. It
cannot be combined with segments from other program modules.

ASM386 Assembly Language Reference Chapter 2 53

Multiple Definitions for a Segment

Assembler segments can be opened and closed (WISEBRIENT..ENDS

directive) within a source module as many times as you wish. All separately
defined parts of the segment are concatenated by the assembler and treated as if
they were defined within a sSingBEGMENT..ENDS

Assembler procedure, codemacro, and structure definitions may not overlap
segment boundaries.

When a segment is reopened, it is unnecessary to respeaifgdts , use, and
combine attributes, if any. Do not change tt@nbine or use attribute when a
segment is reopened.

If a segment's access is respecified, both access specifications must form a
compatible set. The following are compatible sets:

« RO and RW are a compatible set with a resulting access attribute of RW.

* Any combination of RO, EO, and ER form a compatible set with a resulting
access attribute of ER.

There are no other compatible setsdotess specifications.

Examples

1. This example reopens the segment nabretA

DATA SEGMENT
ABYTE DB 0
AWORD DW 0
DATA ENDS

; any number of other segments not named DATA

DATA SEGMENT
ANOTHERBYTE DB 0
ANOTHERWORD DW 0
DATA ENDS

54 Chapter 2 Segmentation

2. This example is an equivalent to the preceding example as a segment
definition forDATA

DATA SEGMENT
ABYTE DB 0

AWORD DW 0
ANOTHERBYTE DB 0
ANOTHERWORD DW 0
DATA ENDS

3. This example definesRUBLIC segment with ER access.

CODE SEGMENT RO PUBLIC USE32
CODE ENDS
CODE SEGMENT EO
: ; implied PUBLIC
; and USE32 from above
CODE ENDS

4. This example has aror because RW and ER are not compatible access
specifications.

FOO SEGMENT RW
FOO ENDS
FOO SEGMENT ER ; error:
: ; RW and ER are not compatible
FOO ENDS

5. This example hasrrors because it changes combine and use attributes when a
segment is reopened.

DATA SEGMENT RW COMMON USE16
DATA ENDS
DATA SEGMENT RW PUBLIC USE32
T ; errors:
; cannot change combine

: or USE attribute

DATA ENDS

ASM386 Assembly Language Reference Chapter 2 55

Lexically Nested or Embedded Segment Definitions

Assembler segments are never nested or embedded physically in processor
memory. For convenience, segment definitions may be nested in a program. This
is a lexical nesting; it does not represent a physical nesting. However, care must b
taken to close lexically nested segments inside their containing segment(s).

Examples

1. This example illustrates a nested segment definition that is a legal assembler
construct. The assembler considers the code segment to be separate from the
data segment. The contents of the data segment are not contained within the
code segment (their physical addresses on the processor might be far apart in
memory after binding).

PROG_CODE SEGMENT
; begin PROG_CODE

PROG DATA SEGMENT
; begin PROG_DATA
; stop assembling PROG_CODE

PROG DATA ENDS
; stop PROG_DATA
; start PROG_CODE again

PROG_CODE ENDS ; end PROG_CODE

2. This code will cause arror. For lexically nested segment definitions,
SEGMENT..ENDSpairs must be matched as shown in the preceding example.

PROG_CODE SEGMENT ; begin PROG_CODE
PROG_DATA SEGMENT ; begin PROG_DATA
PROG _CODE ENDS ; error:

; cannot close PROG_CODE
; before closing
: PROG_DATA

PROG_DATA ENDS

56 Chapter 2 Segmentation

STACKSEG Directive

Syntax
name STACKSEG exp
Where:
name is an identifier for the stack segmen&yme must be unique within the
program.
exp is this declaration's contribution to the size (humber of bytes) of the
segment.exp must evaluate to a constant between 0 and 4 gigabytes
(232- 1) foruSE32segments, and between 0 and 64K bytes (65,535)
for USE16 segments.
Discussion

The STACKSEGIirective is used to allocatxp bytes for a stack segment named
name. TheSTACKSEGIirective both opens and closes the segment. Do not close
STACKSEGvith ENDS

Assembler stack segments always have RW accessuBidC combine attributes.
Multiple definitions of a stack segment with the same name will result in one
segment whose size is the sum of all specified sizes.

A stack segment is not explicitly assigned a use attributsSBB2 or USE16. A
stack segment's use attribute is either the same as:

* The nearest enclosing segment's use attribute, if any
e Or, the module's use attribute

Most single-task applications have only one stack segment. Code, labels, variables,
or data initializations cannot be defined within a stack segmentSTAKSTART
operator or th&NDdirective may be used to initialize the stack pointer (contents of
SS:(E)SP).

See also: Code, labels, variables, and data initializations, Chapter 4
STACKSTARToperator, Chapter 5
ENDdirective, Chapter 3

ASM386 Assembly Language Reference Chapter 2 57

Combining Stack and Data Segments

If a data and a stack segment are given the same name, they are combined into a
single data/stack combined (dsc) segment if they have compatible attributes.

Such a segment has both a stack part and a data part. Its data segment must be
declaredPUBLIC with RO or RW access. If the declared access is RO, the
combined access is RW.

Itis an error if the data segment is RQtBLIC (or if it has EO or ER access). The
stack and data segments will not be combined in this case. Instead, the assembler
will append STACKto the name of the stack segment to keep each segment
distinct.

Assuming Segment Access

The ASSUMHIirective may not be omitted from assembler programs that reference
symbols (named variables and labels) unless segment overrides are specified for
every symbolic reference. TR&SUMHBIirective may not be omitted from

programs with non-symbolic memory references su@&sag’ORD PTR 2.

The ASSUMHlirective tells the assembler which processor segment register points
to a particular logical segment in the program so that it generates code for
instruction operands that are named variables and labels in memory. However,
ASSUMHloes not load a segment register.

If no ASSUMEstatement is specified in a code segment, the assembler assumes tha
CS contains the selector of the code segment but that no other segment register he
been loaded. The assembler cannot generate a correct logical address for a
symbolic reference unless it knows which segment register contains the selector for
the symbol's defining segment.

The processor cannot access symbolic memory data unless the segment registers
have been correctly loaded. Whenever you load a new selector into a segment
register, specify anSSUMEf subsequently coded instructions will reference
memory data via that segment register.

See also: Segment overrides, Chapter 5
segment registers, Chapter 1

58 Chapter 2 Segmentation

ASSUME Directive

Syntax

ASSUMESreg : segpart |[,...]
ASSUMESreg :NOTHING [,...]

or
ASSUME NOTHING
Where:

Sreg is one of the registers DS, ES, FS, GS, or$&& may be CS only if
NOTHINGIs specified.

segpart is the reserved wondOTHING the name of a segment, or one of the
following forms:

SEGvarname

SEGlabelname

SEGexternalname

The name of a segment indicates thatg contains the segment
selector for variables and labels defined in the segment.

SEGvarname , labelname , or externalname indicates thaSreg
contains the selector for the symbol's defining segment.

Discussion

ASSUMBspecifies the contents of the DS, SS, ES, FS, or GS register for the source
code that follows until the nexXtSSUMEBtatement for the register occurs. When an
instruction references a variable, label, or external symbol, the assembler checks
for the following:

» Either an explicit segment override specifies that the symbol is accessible via
Sreg

« Or, anASSUMBspecifies whiclsreg holds the selector of the symbol's
defining segment

See also: Segment overrides, Chapter 5

If neither has been specified, the assembler generates an error when an instruction
references the symbol.

An ASSUMEstatement is in effect until it is changed by anof&8UME For
example, if yolASSUMEBome contents in DS, that assumption holds until you
ASSUMHEew contents dlOTHINGIn DS.

ASM386 Assembly Language Reference Chapter 2 59

When anASSUMBpecifies an appropriate selector in DS, ES, FS, GS, or SS, the
assembler generates any necessary segment override prefix byte when the symbol
is referenced. Otherwise, a segment override must be specified every time the
symbol is referenced.

ASSUME CS:may not be specified with the name of a segment or wsthG
expression.

Specifying Segment Selectors with ASSUME

60

Specify anPASSUMB~Vherever a new segment selector is loaded into a data or stack
segment register.

When anASSUMES specified as:
ASSUMESreg : segpart |[,...]
segpart defines a selector as:
* A segment name, as in
ASSUME DS:DATA, ES:EDATA, FS:FDATA
e Or, as a&SEGexpression with one of the following forms:

SEGvarname
SEGI/abelname
SEGexternalname

Assembler symbolic data (named variables, labels, or constants) represent logical
addresses that consist of a segment selector plus an offset. The selector part locat
the logical base address of the defining segment for the specified variable, label, or
external symbol. Within the segment, the variable, label, or external symbol name
represents an offset from this base address.

WhenASSUMESreg : segment name is in effect (see Example 1), the assembler
generates relocatable addresses for symbolic and non-symbolic (anonymous)
references visreg .

For SEGexpressions, thereg is assumed to hold the selector of the segment in
which the named variable, label, or external symbol is defined. BE&a
expression to access variables, labels, and symbols when you do not know their
defining segment's name (the segment is part of another module).

See also: SEGoperator, Chapter 5

Chapter 2 Segmentation

Both for segment names and &EGexpressions, the designated segment must
have attributes that are consistent with the assumed segment register:

For SS, the segment can be a stack segment, a data segment, or a data/stack
combined segment. Its specified access must be RW.

For DS, ES, FS, and GS, the segment may be a non-stack segment or a
data/stack combined segment. Its access must be RO, ER, or RW.

Note that CS is illegal in ahSSUMEtatement that specifies a segment name or
SEGexpression; the assembler generates a warning.

Examples
1.

This example tells the assembler that the ES register holds the selector of the
segment in whichBYTEIs defined. The assembler generates an ES override
byte and a relocatable address for the symbolic referenk@YtoEin CSEG |t

also generates a relocatable address for the non-symbolic reference to
ES:BYTE PTRO .

ESEG SEGMENT RW USE32
ABYTE DB ?
ESEG ENDS

CSEG SEGMENT ER USE 32

ASSUME ES:ESEG
MOV AL, ABYTE ; assembler generates ES
; override byte and
: relocatable address
T ; for ABYTE
MOV AL, ES:BYTE PTR O
; ES:BYTE PTR O is also
; relocatable

This example tells the assembler that the DS register holds the selector of the
segment in whicBYTEis defined.

ASSUME DS:SEG ABYTE

ASM386 Assembly Language Reference Chapter 2 61

62

The following example illustrates how the assembler hardies&ME
statements and checks memory accesses:

DATA SEGMENT RW PUBLIC
ABYTE DB 0

AWORD DW 0

DATA ENDS

EDATA SEGMENT RW PUBLIC
WHERE DB 0
EDATA ENDS

CODE SEGMENT ER PUBLIC
CBYTEDBO ; constant in CODE segment
ASSUME DS:DATA

; DATA segment

; is addressable through DS

MOV AX,DATA ; AX := selector for DATA

MOV DS,AX ; initialize DS
MOV AL,ABYTE ; ABYTE is in DATA segment

; and addressable via DS;
; instruction is OK

MOV BL,CBYTE ; CBYTE is in CODE segment,
; currently being assembled;
; instruction is OK and
; assembler will generate
; CS override byte

MOV CL,WHERE ; this is a program error:
; WHERE is in EDATA segment
; hot covered by any ASSUME so
; assembler issues warning

MOV AX,EDATA

MOV ES,AX ; now ES can address
: WHERE but assembler
MOV CL,WHERE ; hasn't been told,

; SO warning issued again
ASSUME ES:EDATA
MOV CL,WHERE ; is legal, because WHERE's
; segment, EDATA, is
; assumed to be in ES and
; assembler generates ES override

CODE ENDS

Chapter 2 Segmentation

Specifying ASSUME NOTHING and ASSUME CS:NOTHING
The general form:
ASSUME NOTHING
is equivalent to the following statement:

ASSUME CS: NOTHING, DS:NOTHING, ES:NOTHING,
& FS:NOTHING, GS:NOTHING, SS:NOTHING

When anASSUMES specified as:
ASSUMESreg :NOTHING [,...]

NOTHINGIndicates that no known value is in that segment register during the
execution of the following code. If there is no segment register assumption in

effect for a symbol's defining segment, references to that symbol must have an
explicit DS, ES, FS, GS, or SS override (see Example 1). Note that this does not
apply to symbols defined in code segments; the assembler always assumes that the
code segment will be accessed via the CS register.

The assembler generates a non-relocatable address for a non-symbolic reference via
Sreg when amPASSUME..NOTHINGIs in effect for a particular segment register (see
Examples 2 and 3).

WhenASSUME CS:NOTHINGSs specified (see Example 3), the assembler generates
a relocatable address relative to the current code segment for a symbolic reference
in that segment. It generates a non-relocatable address for a non-symbolic
reference.

WhenASSUME CS:NOTHINGs omitted (see Example 4), the assembler generates
relocatable addresses both for symbolic and for non-symbolic references within the
current code segment.

ASSUME..NOTHINGalso affects the assembler's generation of pointer relocatable
addresses within a data segment (see Example 5).

ASM386 Assembly Language Reference Chapter 2 63

Examples

1. This example shows haw8SUME DS:DSEGNJASSUME DS:NOTHINGaffect
symbolic references #BYTEin CSEG

ASSUME DS:DSEG

DSEG SEGMENT RW USE32
ABYTE DB ?

DSEG ENDS

CSEG SEGMENT ER USE32
T : ASSUME DS:DSEG still in effect
MOV AL, ABYTE : ABYTE is accessible,
- ; assembler always generates
: relocatable address
; for valid symbolic reference
ASSUME DS:NOTHING

MOV AL, ABYTE ; error generated
MOV AL, DS:ABYTE ; segment override so
; o error

2. This example shows howSSUME DS:DSEGNdASSUME DS:NOTHINGaffect
identical non-symbolic references@sEG

: DSEG and CSEG defined as
; in Example 1
ASSUME DS:DSEG ; assembler generates
MOV AL, DS:BYTE PTR O
: relocatable address
; for DS:BYTE PTR 0O

ASSUME DS:NOTHING ; assembler generates
MOV AL, DS:BYTE PTR O

: non-relocatable address

; for DS:BYTE PTR 0

64 Chapter 2 Segmentation

3. This example shows hawSSUME CS:NOTHINGaffects symbolic and non-
symbolic address generation. It causes the assembler to generate a relocatable

address foCVALbut not forCS:BYTE PTR O .

CSEG SEGMENT ER PUBLIC

CVAL DB 90H

ENTRY:

ASSUME CS:NOTHING

MOV AL, CVAL ; assembler generates

: relocatable address for
; symbolic reference
MOV AL, CS:BYTE PTR O
: non-relocatable address for
; non-symbolic reference

4. The same code (see Example 3) withBBSUME CS:NOTHINGauses the
assembler to generate relocatable addresses batlvAarand forCS:BYTE

PTRO.

CSEG SEGMENT ER PUBLIC
CVAL DB 90H
ENTRY: ; assembler generates
MOV AL, CVAL
: relocatable address for
; symbolic reference
MOV AL, CS:BYTE PTR O
: relocatable address for
; non-symbolic reference

ASM386 Assembly Language Reference Chapter 2 65

This example illustrates hoWSSUME ES:segname and
ASSUME ES:NOTHINGaffect the assembler's address generation within a data
segment.

ASSUME DS:DSEG, ES:ESEG
; ESEG defined here
DSEG SEGMENT RW USE32
VAR1 DP ES:WORD PTR 0
; assembler generates
; pointer relocatable address
: for VAR1

ASSUME ES:NOTHING
VAR2 DP ES:WORD PTR 0

; but not for VAR2
DSEG ENDS

Chapter 2 Segmentation

Program Linkage Directives

This chapter contains two major sections describing the five assembler directives
that support modular programs:

* NAMEandENDdirectives

These directives delimit program modul@$AMEspecifies a unique name for

each program module that the system utilities (binder and/or system builder)
will combine and locateENDterminates each program module's assembly.
ENDalso specifies a program's main module: it defines the program's entry
point (a label) and specifies the initial segment selector value for the CS (code)
segment register; it may specify the initial segment selector values for the DS
(data) and SS (stack) segment registers.

« PUBLIC directive

This directive defines variables and labels that can be accessed from another
module. TheEXTRNdirective defines variables and labels that are accessed in
one module and declar@BLIC in another. Th€OMMlirective defines
variables as uninitialized symbols that will share storage with symbols of the
same name in other modules.

The system utilities allocate storage @dMariables. They also resolve
PUBLIC, EXTRN andCOMNleferences.

Modular Programming with NAME and END

An assembler program may omit tReMEstatement only if the entire program is
contained in a single object module. Otherwise, each module of the program
should include &lAMEstatement.

Every assembler program must specify ENdDstatement as the last line of source.

ASM386 Assembly Language Reference Chapter 3 67

NAME Directive

Syntax
NAME modname
Where:
modname is a name for the modulevodnamemust be a unique identifier that
occurs at most once within the program.
Discussion

TheNAMHlirective defines a name for an object module. Each module of an
assembler program must have a unique name.

A NAMHlirective is usually placed at the beginning of a module. INgi¢E

directive does not appear anywhere in an object module, the assembler assigns the
default nameANONYMOUS® the module and issues a warning. System utilities
report an error if two or more program modules have the same name, including
ANONYMOUS

Example

It is legal to specify the same name for a module as for the source file that contains
it. The source file for this non-main module is cal&thN.386.

NAME SCAN : names the module

END

68 Chapter 3 Program Linkage Directives

END Directive

Syntax
END [[CS:] labelname [,SS: segname][,DS: segname]]
Where:

labelname is a name for the program entry point label; it must be a unique
identifier. CS is initialized with the segment selector and EIP (or IP,
for USE16 segments) is set to the offset of the specified label.
Labelname 's defining segment must have an EO or ER access
specification. Labelname may be specified only in the main module
of a program.

segname IS a segment name:

SS: A segname preceded by SS: causes the SS segment
register to be initialized to the named segment's selector.
The segment can be a stack segment defined with
STACKSEG or a data segment defined with the
SEGMENTdirective. The access specified for the
segment must be RW. For a segment defined with
STACKSEG (E)SP is set to the offset of the first dword
or word (depending on the stack segment use attribute)
immediately above the stack segment limit in memory.
(E)SP is 0 if the stack segment was not defined with
STACKSEG For a data segment, (E)SP is initialized to
the segment's size in bytes plus 4 for a 32-bit stack or
plus 2 for a 16-bit stack.

DS: A segname preceded by DS: causes the DS segment
register to be initialized to the specified segment's
selector. The segment can be a nonstack segment or a
data/stack combined segment. Access specified for the
segment must be RO, RW, or ER.

See also: SEGMENT..ENDSdirective, Chapter 2
STACKSEGChapter 2

ASM386 Assembly Language Reference Chapter 3 69

Discussion

The ENDdirective is required as the last statement in assembler modules. Its
appearance terminates the assembly process. If the assembler encounters any tex
beyond theENDdirective, it issues a warning.

In the program'’s main module, tBRDstatement must include a segment register
initialization for CS. Non-main modules must sped&fyDwithout segment
register initializations.

The optionabDS: segname andSS: segname specify the values to be loaded into
the data and stack segment registers when the program is loaded. The assembler
issues a warning if these are omitted in a module with an entry point label.

The module that contains tE&IDstatement initialization afS:EIP specifies the

code that is initially executed when the program is loaded into memory. Execution
begins at the specified label. An entry point label must be specified in main
modules, unless it is specified with the system builder. ENizdirective should

also define the initial contents of DS and SS.

Example
NAME MAIN

STACK STACKSEG 10

DATA SEGMENT RW
ABYTE DB 0
DATA ENDS

CODE SEGMENT ER
ASSUME DS:DATA
START:MOV ESP, STACKSTART STACK
; superfluous because SS
; initialized with END
MOV AL, ABYTE

CODE ENDS

END CS:START, DS:DATA, SS:STACK

70 Chapter 3 Program Linkage Directives

Defining Shared Data with PUBLIC, EXTRN,
and COMM

Variables and labels defined in a program module RIBLIC can be accessed
from other modules where they are declared WXARN

The COMMIirective defines variables with undefined values whose storage is not
allocated until the program modules are combined.

PUBLIC Directive

Syntax
PUBLIC namel,...]
Where:
name is the identifier of a variable or label defined in the current module.
Discussion

ThePUBLIC directive specifies which symbols in a module are accessible from
other modules after all modules are combined. These symbols can be variables,
labels, or constants that have been defined usingQhuirective; it is an error to
specify any other kind of symbol.

Named constants that are referenced in other modules must be deciatad in
their defining module. An external constant must be an integer; it may be up to
32-bits long.

|:| Note

Do not confuse this use of the reserved wewdLIC with the
PUBLIC segment attribute used in tASEGMENT..ENDS
statement.

See also: SEGMENT..ENDSstatement, Chapter 2

Example

PUBLIC VAR 1, VAR 2

VAR 1 DBIT 0100B : VAR 1 and VAR 2 are made

VAR 2 DD 'ABCD' : accessible to other modules
; when program is combined

ASM386 Assembly Language Reference Chapter 3 71

EXTRN Directive

Syntax
EXTRN name[type][,...][use]
EXTRN [use] name][type],-...]
or
[use] EXTRN name][type][,-..]
Where:
name is the name of the external symbol, which must be deckived IC
or COMNN another module.
type is BIT , BYTE WORDPDWORIPWORDQWORDBYTE ABS a defined
record template name, a defined structure template néEAR or
FAR Except forABS the type specification must match that of the
external symbol, or the external symbol's type must be overridden
with PTR
use isUSE320r USEl6 TheUSEattribute specifies 32-bit or 16-bit
addressing, respectively, for the named symbol or list of symbols. If
no attribute is specified, théSEattribute of the nearest enclosing
segment or module is assumed.
Discussion

72

The EXTRNdirective specifies symbols that are declerPe@LIC or COMNN
another module. Such symbols can then be referenced in the current module.

All external variables have one of the following typ®&s$T , BYTE WORPDWORD
PWORDQWORDBYTE a structure template name, or a record template name. The
type for a structure or record is its length in bytes. Structure and record template
names cannot be forward references.

External constants can be signed integers up to 32-bits USEBL segment) or up
to 16-bits long YSE16segment). External constants must be decletuglIC in
another module and be declared vEXTRN:ABSin modules that reference them.
Such symbols are assigned typ& ORQUSE32EXTRN or WORBUSE16 EXTRN.

All external labels and procedure labels have tygaRor typeFAR The label or
procedure iNEARIf it is defined in the same named segment as its callers;
otherwise, it iFAR If type is omittedFARIis assumed for aBXTRNlabel.

See also: PTR Chapter 5
segmentSEattributes, Chapter 2
variable and label types, Chapter 4

Chapter 3 Program Linkage Directives

Placement of EXTRN

Within program segments, the following rules apply to the placement &xiheN
directive:

1.

If the external variable's or label's defining segment (in another module) is
known, place th&€XTRNstatement betweenSEGMENT..ENDSpair that has
the same segment name asSEGSMENT..ENDSn which the symbol was
defined.

Such a symbol can then be referenced in the same manner as any other
variable or label. For example, if the mod8I@AN.386 contained the
following segment and variable definition:

DATA SEGMENT RW PUBLIC
COUNT DB 0

PUBLIC COUNT

DATA ENDS

then theEXTRNdirective should be specified in another module as follows:

DATA SEGMENT RW PUBLIC
EXTRN COUNT:BYTE
DATA ENDS

If the external symbol's defining segment is unknown, if its defining segment is
non-combinable, or if the symbol is BXTRN:ABSconstant, place theXTRN
statement outside of EGMENT..ENDSpairs in the module. To address such
an external symbol, load the segment selector of the symbol into a segment
register using th6EGoperator. For example:

MOV AX, SEG COUNT
MOV ES, AX

To validate its addressability, use ABSUMHElirective such as the following:

ASSUME ES:SEG COUNT
MOV DX, COUNT

or use a segment override for each reference to the symbol as in the following:

MOV DX, ES:COUNT

See also: SEGand segment overrides, Chapter 5

ASSUMHlirective, Chapter 2

ASM386 Assembly Language Reference Chapter 3 73

COMM Directive

Syntax
COMMnamd,...]
Where:
name is a variable name; it must be a unique identifigamemay not be a
variable of typeBIT .
Discussion

74

The COMMIirective specifies that a variable defined in the current module is a
CoMMymbol. COMMymbols are classified as global variables.

The COMMIirective allows the binder to allocate space for a symbol at bind time.
Variables specified wit@OMNh more than one module share storage space. They
are similar tcFORTRANlank common variables or C extern variables.

Variables declared wittOMMannot be initialized. Use?awhen definingCOMM
variables to indicate uninitialized storage.

See also: Allocating uninitialized storage, Chapter 4

The COMMIirective may appear inside or outside the segment in which the variable
is defined. COMNmIay be placed before the definition of the variable it describes
(see the Example).

Variables cannot be declareE®TRNin the same module where they are declared
with COMM They may be declared witUBLIC or with EXTRNin other modules,
as well as witlCOMM

A CcoOMMymbol does not actually occupy space in a segment until bind time. The
binder determines whether a variable reference will be resolved by a matching
PUBLIC definition from another module or whether space will be allocated for it in
a segment where tt@OMNMymbol is defined. If a variable is not declaragBLIC

in another module, the binder will allocate spaceCiomMMlata in the first-bound
module (and segment) in which it encountersdbaingymbol.

A COMMymbol may have a different type thanRt$BLIC counterpart (with the
same name) in another module. However, sucbrNMymbol is treated as an
EXTRNsymbol; the binder stores tki®MMymbol in the correspondiRiJBLIC
symbol's defining segment.

A COMMymbol that has nBUBLIC counterpart in another module is treated as a
PUBLIC symbol. The binder allocates storage for@iaanymbol in the first-

bound segment where it is defined. The binder then resolves subsequent reference
(CoMMor EXTRN to that symbol.

Chapter 3 Program Linkage Directives

A COMMymbol's containing storage segment is determined by the binder. For this
reason, loading a segment register in assembler modules with the nac@enfia
symbol's defining segment is difficult. Use hieGoperator to referenc@OMM
symbols in modules. For subsequent symbolic references, uUSEGlo@erator

again to reload the correct segment selector into the segment register.

Example

NAME MOD 1

COMM X, Z : COMM statement before data definition
; outside of defining segment

DATA SEGMENT RW PUBLIC

COMMA, B : COMM statement before data definition

ADW 13 DUP (?) ;inside defining segment

B DB ?

X DW ?

ZDD?

LOCAL DD ?

DATA ENDS
END

ASM386 Assembly Language Reference Chapter 3 75

Defining And Initializing Data

This chapter has four major sections:

* An overview of assembler labels, variables, and data
This section explains:
— Assembler label and variable types

— The relationship between assembler variable types and the values
associated with variables: the processor or floating-point coprocessor data

types
— How to specify data values in assembler programs
* Assembler variables
This section explains:
— Storage allocations for variables
— Variable attributes

— Defining and initializing simple-type variables with the DBIT, DB, DW,
DD, DP, DQ, and DT directives

— Defining compound types with tiRECORRNASTRUCdirectives; defining
and initializing variables of these types (records and structures)

— Defining and initializing variables witbUPclause(s)
e Assembler labels

This section explains:

— Label attributes

— The location counter and ti@RGandEVENdirectives

— TheLABEL directive

— Defining implicit NEARIabels

— ThePROOirective

* Using symbolic data, including named variables and labels, withQhand
PURGHlirectives

ASM386 Assembly Language Reference Chapter 4 77

Overview of Assembler Labels and Variables
The labels and variables in an assembler program define logical addresses:

* Alabel defines an address that is either an offset within the segment currently
being assembled or a location outside the current segment whose address is
both a segment selector and an offset within that segment.

* A named variable also defines an address whose contents (a value) can be
accessed by a reference to the variable name.

Labels and named variables are sometimes called symbolic addresses because the
names represent logical addresses. However, assembler variables are not requirec
to have names, as long as their values can be accessed.

See also: Accessing assembler addresses and values, Chapter 5

Assembler Label and Variable Types

The assembly language is strongly typed. The assembler enforces type rules wher
it encounters a label or allocates storage for a variable (named or unnamed).

Each assembler label has one of the following types:

NEAR indicates that the logical address represented by the label is an offset.
NEARIs the default label type.

FAR indicates that the logical address represented by the label is both a
selector and an offset.

Each assembler variable has a type that must be specified when the variable is
defined with a storage allocation statement. A variable's type indicates the
processor or floating-point coprocessor storage size for the variable's value(s). A
variable's type is either a simple type or a compound type. A compound type is
constructed from one or more simple types.

The assembler (reserved word) names for simple typesar&YTE WORD
DWORIPWORDQWORMANATBYTE ForBIT -type variables, the assembler

allocates a byte of storage because processor addresses fall on byte boundaries. F
variables of the other simple types, the assembler allocates storage of 8-, 16-, 32-,
48-, 64-, or 80-bits, respectively.

78 Chapter 4 Defining and Initializing Data

A compound-type variable is either a record or a structure. Records and structures
are programmer-defined (and named) types. A record or structure template defines
a type that specifies the storage size(s) to be allocated for any variable of the type.
Record and structure storage allocation statements define assembler variables of
these types.

A DUPclause can be added to any assembler storage allocation statement to
allocate a sequence of storage units that are all of the sameDtypallocates
storage for array-like variables whose elements are contiguous storage units,
possibly with different values.

Assembler Data Values

The processor or floating-point coprocessor stores all data as a sequence of 1s and
0s. The value that such a sequence represents is subject to interpretation. The
assembler interprets values in the context of a program. For example, the logical
address represented by a label is 32-bitsUs&32 code segment; it is 16-bits in a
USE16 segment.

The value of an assembler variable also has meaning only in context. If a variable
is used as the operand of a shift instruction, its corresponding value represents a
simple sequence of bits. If the same variable is used as the operand of a subtract
instruction, its corresponding value represents a number.

The contextually determined meaning of a variable value is called its processor or
floating-point coprocessor data type.

ASM386 Assembly Language Reference Chapter 4 79

Data Types

80

The values of assembler variables can be interpreted as the following processor an
floating-point coprocessor data types:

* Processor or floating-point coprocessor signed integers
* Processor ordinals

* Processor unpacked or packadDdigit(s)

* Floating-point coprocessor packe@Dintegers

» Processor strings

e Processor bit strings or bit fields

e Processor near or far pointers

* Floating-point coprocessor reals

For example, the value ofCAWORIype variable can represent any of the following
in the context of a program:

* A processor integer or a floating-point coprocessor short integer
e A processor ordinal
e A processor string that is 4 bytes long

* A processor bit string that is 32-bits long (it may contain a bit field up to
32-bits long)

* A floating-point coprocessor single precision real

To access string8YTEtype assembler variables must be defined. Processor
strings are composed of contiguous bytes. The nam&WvT&type variable (or

the unnamed but initially allocated storage unit) defines the logical address of such
a string's first byte.

Assembler pointer variables are 32bWORDr 48-bitPWORDypes that represent

a logical addressDWORInear) pointer variables represent an offset within a
segment.PWORI¥far) pointers have two components: a 16-bit segment selector and
a 32-bit offset.

The assembler typ&8ORPDWORDWORANDTBYTE can represent 16-, 32-, 64-,
and 80-bit floating-point coprocessor data types. 16-bit data is a word integer,
32-bit data is either a short integer or a single precision real, 64-bit data is either a
long integer or a double precision real, and 80-bit data is either a packed decimal
integer or an extended precision real.

See also: Floating-point numbers, Chapter 7

Chapter 4 Defining and Initializing Data

Numeric Data Value Ranges

The type specified for a variable determines the range of values it can represent.
The assembler checks variable definitions for initial values that are too large for the
declared type. Table 4-1 summarizes the (decimal) range of values for each
variable type that can represent a processor or floating-point coprocessor number.

Table 4-1. Assembler Variable Types and Numerical Value Ranges

Variable Data Type Length in Value Range in Decimal
Type bits
BIT bit 1 0 or 1 binary
BYTE byte 8 -28..127 for integers
0..255 for ordinals
WORD word 16 -32,768..32,767 for integers
0..65,535 for ordinals
FP word integer 32,768..32,767
DWORD dword 32 -231 (231 . 1) for integers
0..(232 - 1) for ordinals
FP short integer =231 (281.1)
FP single -3.4E38..-1.2E-38, 0.0,
precision real 1.2E-38..3.4E38
QWORD FP long integer 64 -263 (263 .1)
FP double -1.7E308..-2.3E-308, 0.0,
precision real 2.3E-308..1.7E308
TBYTE FP packed 80 -(1018 - 1)..(1018 - 1)
decimal integer
FP extended -1.1E4932..-3.4E-4932,
precision real 0.0, 3.4E-4932..1.1E4932

FP in Table 4-1 indicates a floating-point coprocessor data type.

ASM386 Assembly Language Reference Chapter 4 81

Specifying Assembler Data Values

Assembler data can be expressed in binary, hexadecimal, octal, decimal, or ASCII
form. Decimal values that represent integers or reals can be specified with a minus
sign; a plus sign is redundant but accepted. Real numbers can also be expressed |
floating-point decimal or in hexadecimal notations. Table 4-2 summarizes the

valid ways of specifying data values in assembler programs.

Table 4-2. Assembler Data Value Specification Rules

Value in Examples Rules of Formation

Binary 1100011B 110B A sequence of O's and 1's followed by the
letter B.

Octal 77770 4567Q A sequence of digits in the range 0..7
followed by the letter O or the letter Q.

Decimal 3309 3309D A sequence of digits in the range 0..9
followed by an optional letter D.

Hexadecimal 55H 4BEACH A sequence of digits in the range 0..9

and/or letters A..F followed by the letter
H. A digit must begin the sequence.

ASCII '‘AB' 'UPDATE.EXT' Any ASCII string enclosed in single
quotes.
Decimal -1. 1E-32 3.14159 A rational number that may be preceded

by a sign and followed by an optional
exponent. A decimal point is required if
no exponent is present but is optional
otherwise. The exponent begins with the
letter E followed by an optional sign and a
sequence of digits in the range 0..9.

Hexadecimal 40490FR 0CO000R A sequence of digits in the range 0..9
and/or letters A..F followed by the letter
R. The sequence must begin with a digit,
and the total number of digits and letters
must be (8/16/20) or (9/17/21 with the
first digit 0).

82 Chapter 4 Defining and Initializing Data

A real hexadecimal specification must be the exact sequence of hex digits to fill the
internal floating-point coprocessor representation of the floating-point number. For
this reason, such values must have exactly 8, 16, or 20 hexadecimal digits,
corresponding to the single, double, and extended precision reals that the floating-
point coprocessor and the floating-point instructions handle. Such values can have
9, 17, or 21 hexadecimal digits only if the initial digit must be a zero because the
value begins with a letter.

Data values can be specified in an assembler program in a variety of formats, as
shown in Table 4-2. The way the processor or floating-point coprocessor
represents such data internally is called its storage format.

See also: Processor storage formats, Appendix A
floating-point coprocessor storage formats, Chapter 7
Initializing Variables
Assembler variables can be initialized by:
e Variable or segment names that represent logical addresses
e Constants (see Table 4-2)
+ Constant expressions

A series of operands and operators is called an expression. An expression that
yields a constant value is called a constant expression.

See also: Assembler expressions, Chapter 5

The assembler evaluates constant expressions in programs.

How the Assembler Evaluates Constant Expressions

The assembler can perform arithmetic operations on 8-, 16-, and 32-bit numbers.
The assembler interprets these numbers as integer or ordinal data types.

An integer value specified with a sign is a constant expression. The assembler
evaluates integer or ordinal operands and expressions using 64-bit two's
complement integer arithmetic.

By using this arithmetic, the assembler can evaluate expressions whose operands'
sizes might extend beyond the storage type of the result. As long as the
expression's value fits in the storage type of the destination, the assembler does not
generate an error when intermediate results are too large. The assembler does
generate an error if the final result is too large to fit in the destination.

ASM386 Assembly Language Reference Chapter 4 83

Variables

A variable defines a logical address for the storage of value(s). An assembler
variable is not required to have a name as long as its associated value(s) are
accessible. But, every variable has a type; records and structures have a compour
type.

Assembler variables must be defined with a storage allocation statement. A storag
allocation specifies a type (storage size in bytes) and defines a logical address for ¢
variable that gives access to the variable's value(s). A storage allocation statemen
may also specify initial value(s) for a variable.

Use the DBIT, DB, DW, DD, DP, DQ, or DT directive to allocate storage for
simple-type variables of the following sizes:

DBIT 1-bit (zero padded to a byte boundary)

DB 8-bits (byte)

DW 16-bits (word)
DD 32-bits (dword)
DP 48-bits (pword)
DQ 64-bits (qword)
DT 80-bits (10 bytes)

Use theRECORRNASTRUCdIirectives to define type names that can be specified as
(compound) types for record or structure variables:

The RECORMDiIrective
defines a storage template for variables of its type. The template
defines 1 to 4 bytes of storage for fields of bits. Use a record
allocation statement to define a variable of the record type. Variables
of a record type consist of contiguous fields of bit-encoded data.
Records are used for accessing specific bits in the flags, in the storage
fields of a real number, in the fields of a pointer, etc. The assembler
MASK SIZE , andWIDTHoperators can be used to access record fields.

See also: MASKSIZE, andWIDTHoperators, Chapter 5

84 Chapter 4 Defining and Initializing Data

The STRUCDirective
defines a storage template with named fields, each of a specified type.
Variables of a structure type consist of contiguous variables with the
types (and names) of the constituent template fields. Structure
template fields are simple variables, usually initialized with undefined
values. Use a structure allocation statement to define a variable of
this type.

A structure template's field names define offsets from a logical
address. Any memory location pointed to by a base or index register
becomes an undeclared variable of the structure type if it is used to
reference a field name with the dot operator (e.g.,

[EBP]. fieldname).

Use aDUPclause within any assembler data allocation statement to allocate and
optionally initialize a sequence of storage units of a single variable Bpe.

defines an array-like variable whose element values are accessed by an offset from
the variable name or from the initially specified storage unit.

Simple Data Allocations

Both simple-type variables and the components of compound types are defined by
simple data allocation statements. The general syntax of a simple data allocation
statement is:

Syntax
[namg dtyp init [,..]
Where:
name is the name of the variable. Within the module, it must be a unique
identifier.
dtyp is DBIT, DB, DW, DD, DP, DQ, or DT.
init is the initial value to be stored in the allocated spa@e. can be a

numeric constant (expressed in binary, hexadecimal, decimal, or
octal), an ASCII string, or (except f8IT -type variables) the
guestion mark characte?)(which specifies storage with undefined
value(s). dtyp restricts the values that may be specifiedifar .

Record and structure allocation statements define compound-type variables.

ASM386 Assembly Language Reference Chapter 4 85

Variable Attributes

A defined variable has four attributes:

86

Segment

USE

Offset

Type

The segment in which the variable is defined. The value of a
variable's segment attribute is the selector for its segment.

TheUSE32or USE16 of the segment in which the variable is defined.
See also: SegmenbiSEattributes, Chapter 2

The variable's logical address within its defining segment. This value
represents the distance in bytes from the base (or start) of the defining
segment to the start of the variable in memory. UBE32 segments,
the offset is a 32-bit value; f&dSE16 segments, it is a 16-bit value.

The size in bytes of the variable. For simple-type variables, the data
initialization directive (DBIT, DB, DW, DD, DP, DQ, or DT)

specifies the type. For compound variables, the type is a programmer-
defined record or structure template name. A variable's type
determines how it can be used in an instruction and, in some cases,
how data will be stored within the variable.

When a variable is defined in a program, the assembler will store its definition,
which includes its attributes.

See also:

Chapter 5 for more information about expression operators that
override these attributes and access their values

Chapter 4 Defining and Initializing Data

Defining and Initializing Variables of a Simple Type

All assembler variable definitions use the DBIT, DB, DW, DD, DQ, DP, or DT
directives. The template components of compound variable types are simple types
defined with these directives.

DBIT Directive

Syntax
[namg DBIT init [,...]
Where:
name is the name of the variable. Within the module, it must be a unique
identifier.
init is a binary digit (1 or 0) followed by the letter B or b, or a string of up
to 32 binary digits followed by the letter B or b.
Discussion

DBIT reserves storage for and initializes a single-bit variable or a bit string of type
BIT. If init is not specified explicitly, the assembler assigns a 0 and issues a
warning.

DBIT actually reserves an entire byte of storage for a 1-bit variable (unless it is
defined within a structure) because processor addresses fall on byte boundaries.
DBIT fills one or more bytes for ainit list with the specified values and zero-
pads such a variable out to the nearest byte boun@@tf. variables defined one

at a time occupy consecutive bytes in memory.

Within an assembler structure consecutively defined bit variables will be
concatenated; they are stored as contiguous bits in memory and they can cross byte
boundaries.

ASM386 Assembly Language Reference Chapter 4 87

Examples
1.

88

The DBIT directive initializes a full byte for sSimplT variables, even when
fewer than 8 digits are specified for an initial value.

ONEBIT DBIT 1B ; initializes a byte to 00000001
TWOBITS DBIT 10B ; initializes a byte to 00000010

For eaclBIT -type variable defined outside a structure,DiBeT directive
concatenates an init list and pads the value with zeros out to the nearest byte
boundary. However, each variable defined iBiT is allocated storage
separately.

BIT1 DBIT 1B, 0B, 1B, 0B, 1B ; 00010101 is initial value
BIT2 DBIT 1B ; 00000001 is initial value
BIT3 DBIT 10B : 00000010 is initial value

ForBIT -type fields of a structure, the assembler concatenates contiguous bit
fields and pads the value out to the nearest byte boundary. Structure fields of
typeBIT can cross byte boundaries.

BITSTRUK STRUC

BIT1 DBIT 1B, 0B, 1B, 0B, 1B
BIT2 DBIT 1B

BITSTRUK ENDS

BITS BITSTRUK <> : 00110101 is initial value stored

Chapter 4 Defining and Initializing Data

DB Directive

Syntax
[namg DB init [,...]
Where:
name is the name of the variable. Within the module, it must be a unique
identifier.
init is a question mark?}, a constant expression, or a string of up to 255
ASCII characters enclosed in single quotés (
Discussion

DB reserves storage for and optionally initializes a variable ofByg& ?
reserves storage with an undefined value.

Numeric initial values can be specified in binary, octal, decimal, or hexadecimal
(see Table 4-2). The specified constant or constant expression must evaluate to a
number in the range 0..255 (processor ordinal) or -128..127 (processor integer).

The components of character string values must be ASCII characters and the whole
string must be enclosed in single quotes. To include a single quote character within
such a string, specify two single quotes)(

Each ASCII character requires a byte of storageBYITE strings, successive
characters occupy successive bytes. The name of the variable represents the logical
address of the first character in such a string.

Examples

1. This example initializes the variabM8YTEto the constant value 100
(decimal). It reserves storage for another byte with an undefined value.

ABYTE DB 100
DB ?

2. This example initializes three successive bytes to the values 4, 10, and 200,
respectively.

BYTES3 DB 4,10,200

3. This example initializes seven bytes containing the ASCII values of the
characters A, B, C, ', D, E, and F, respectively.

STRGWQUOT DB 'ABC"DEF'

ASM386 Assembly Language Reference Chapter 4 89

DW Directive

Syntax
[namg DW init [,...]
Where:
name is the name of the variable. Within the module, it must be a unique
identifier.
init is a question mark?}, a constant expression, the name of a variable
or label defined in &SE16 segment, the name of a segmergg16
or USE32), or a string of up to 2 characters enclosed in single
quotes ().
Discussion

DW defines storage for and optionally initializes a 16-bit variable of Wp&D ?
reserves storage with an undefined value.

Numeric initial values can be specified in binary, octal, decimal, or hexadecimal
(see Table 4-2). The specified constant or constant expression must evaluate to a
number in the range 0..65535 (processor ordinal) or -32768..32767 (processor
integer).

A USE1l6variable or label name yields an initial value that is the offset of the
variable or label. It is an error to initializextORIariable with the name of a
variable or label that has been defined inSE32 segment; its offset is too large
(32-bits). A segment name yields an initial value that is the segment selector.

A 1- or 2-character string yields an initial value that is interpreted and stored as a
number. The assembler stores a 2-byte value even if the specified string has only
one character:

« It stores the specified initial value in the least significant byte.

e It zeros the remaining byte.

90 Chapter 4 Defining and Initializing Data

Examples
1. This example tells the assembler to reserve storage for two uninitialized words.
UNINIT DW ?,?
2. This example initialize®/ORMariables with numeric values.

CONST DW 5000 : decimal constant
HEXEXP DW OFFFH -10 ; expression

3. This example initialize§AR10FFt0 the offset o/AR1 (both variables are
within aUSE16 segment) an@ODESELo the selector of a segment named
CODE

VAR1OFF DW VAR1
CODESEL DW CODE

4. This example initializeSUMBRo the ASCII value (interpreted as a number) of
the letters AB.

NUMB DW 'AB' ; equivalent to NUMB DW 4142H

ASM386 Assembly Language Reference Chapter 4 91

DD Directive

Syntax
[namg DD init [,...]
Where:
name is the name of the variable. Within the module, it must be a unique
identifier.
init is a question mark?}, a constant expression, the name of a variable
or label, or a string of up to 4 characters enclosed in single qudtes (
Discussion

92

DD defines storage for and optionally initializes a 32-bit variable of DyweORD?
reserves storage with an undefined value.

Integer initial values can be specified in binary, octal, decimal, or hexadecimal (see
Table 4-2). The specified constant or constant expression must evaluate to a
number in the range:

-281 2 3811 (processor integer or floating-point coprocessor short integer)
Or,0..2 3.1 (processor ordinal)

Real initial values can be specified in floating-point decimal or in hexadecimal (see
Table 4-2). A decimal constant must evaluate to a real in the ranges:

-3.4E38..-1.2E-38, 0.0, 1.2E-38..3.4E38
(floating-point coprocessor single precision real)

A constant expressed as a hexadecimal real must be the exact sequence of hex
digits to fill the internal floating-point coprocessor representation of a single
precision real (8 hexadecimal digits or 9 hexadecimal digits, including an initial 0).

A USE1l6variable or label name yields an initial value that fills the dword. Its
high-order word contains the segment selector and its low-order word contains the
offset of theUSE16 variable or label.

A USE32variable or label name yields an initial value that is the offset (from the
segment base) of the variable or label.

A string (up to four characters) yields an initial value that is interpreted and stored
as a number. The assembler stores a 4-byte value even if the specified string has
fewer than four characters:

» It stores the specified initial values in the least significant bytes.

e It zeros the remaining bytes.

Chapter 4 Defining and Initializing Data

Examples

1. This example defines two variables, a floating-point coprocessor short integer
and a single precision real.

INTVAR DD 1234567
REALVAR DD 1.6E25

2. In this example,AB1 was defined in &SE16 segment andAB2 was defined
in aUSE32segment.

LAB1_ADD DD LAB1 ;LAB1_ADD contains offset and
; segment selector of LAB1
LAB2_ADD DD LAB2 ; LAB2_ADD contains offset of LAB2

3. This example initializes three unnamed dwords. The first contains an
undefined value. The second contains the ASCII numeric value of the letter A.
The third contains the integer 450 (decimal).

DD ?, 'A’", 450

ASM386 Assembly Language Reference Chapter 4 93

DP Directive

Syntax
[namg DP init [,...]
Where:
name is the name of the variable. Within the module, it must be a unique
identifier.
init is a question mark?}, an integer constant expression, the name of a
variable or label, the name of a segment, or a string of up to 6
characters enclosed in single quotes (
Discussion

DP defines storage for and optionally initializes a 48-bit variable ofRyYy@RD?
reserves storage with an undefined value.

Numeric initial values can be specified in binary, octal, decimal, or hexadecimal.
The specified constant expression must evaluate to an integer in the range:

-2 47“2 47_1_
Constants used to initialize pwords cannot be expressed as real numbers.

A variable or label name (whatever thsEattribute of its defining segment) yields
an initial value that fills the pword. The pword will contain both the variable's or
label's offset and the segment selector (16-bits). The low-order dword stores the
offset.

A segment name yields an initial value that is a logical address consisting of the
segment selector (16-bits) and an offset of zero (32-bits) to the start of the named
segment.

A string (up to six characters) yields an initial value that is interpreted and stored as
a number. The assembler stores a 6-byte value even if the specified string has
fewer than six characters:

» It stores the specified initial values in the least significant bytes.

e It zeros the remaining bytes.

94 Chapter 4 Defining and Initializing Data

Examples

1. This example initializes the low-order byte to the ASCII value (interpreted as a
number) of the digit 1, and the five high-order bytes to zero.

DP '1' ; first byte contains 31H
; remaining bytes contain 00000000

2. This example initialize§ARPTRtO the segment selector and offseVaR32

VARPTR DP VAR32

ASM386 Assembly Language Reference Chapter 4 95

DQ Directive

Syntax
[namg DQ init [,...]
Where:
name is the name of the variable. Within the module, it must be a unique
identifier.
init is a question mark?}, a constant expression, or a string of up to eight
characters enclosed in single quotes (
Discussion

DQ defines storage for and optionally initializes a 64-bit variable of@QW@WeRD
The? reserves storage with an undefined value.

Integer initial values can be specified in binary, octal, decimal, or hexadecimal (see
Table 4-2). The specified constant expression must evaluate to an integer in the
range-2 63..2 3.1 (floating-point coprocessor long integer).

Real initial values can be specified in floating-point decimal or hexadecimal (see
Table 4-2). A decimal constant or expression must evaluate to a real in the ranges

-1.7E308..-2.3E-308, 0.0,
2.3E-308..1.7E308
(floating-point coprocessor double precision real).

A real hexadecimal constant must be the exact sequence of hex digits to fill the
internal floating-point coprocessor representation of a double precision real (16
hexadecimal digits or 17 hexadecimal digits, including an initial 0).

A string (up to 8 characters) yields an initial value that is interpreted and stored as «
number. The assembler stores an 8-byte value even if the specified string has
fewer than 8 characters:

» It stores the specified initial values in the least significant bytes.

e It zeros the remaining bytes.

96 Chapter 4 Defining and Initializing Data

Examples
1.

This example initialize§AR6t0 a floating-point coprocessor double precision
real andvAR7to the same value in real hexadecimal notation.

VARG6 DQ -3.6E-200 : decimal notation
VAR7 DQ 96860B837993DEES8R ; real hexadecimal notation

This example allocates 64-bits of storage for UNDEFNUM with an undefined
value.

UNDEFNUM DQ ?

This example initializeSHAR's low-order byte to the ASCII value
(interpreted as a number) of the comma, and its seven high-order bytes to zero.

CHARDQ', ; first byte contains 2CH
; remaining bytes contain 00000000

ASM386 Assembly Language Reference Chapter 4 97

DT Directive

Syntax
[namg DT init |[,...]
Where:
name is the name of the variable. Within the module, it must be a unique
identifier.
init is a question mark?] or a constant expression.
Discussion

DT defines storage for and optionally initializes an 80-bit variable of TRY&E
? reserves storage with an undefined value.

A constant expression must evaluate to an integer or real in the range(s):
-10 18-1..10 18-1 (floating-point coprocessor packed decimal integer)
Or,

-1.1E4932..-3.4E-4932, 0.0, 3.4E-4932..1.1E4932
(floating-point coprocessor extended precision real).

Real initial values can be specified in floating-point decimal or in hexadecimal (see
Table 4-2).

A hexadecimal real constant must be the exact sequence of hex digits to fill the
internal floating-point coprocessor representation of an extended precision real (20
hexadecimal digits or 21 hexadecimal digits, including an initial 0).

Examples

98

1. This example allocates 80-bits of storageAfoBYTEwith an undefined value.
ATBYTE DT ?

2. This example initializeEVARZ1to a floating-point coprocessor extended
precision real angVAR2to the same value in real hexadecimal notation.

EVAR1 DT 9E-15
EVAR2 DT 3FD0OA2212C962206C274R

Chapter 4 Defining and Initializing Data

Defining Compound Types and Their Variables

The RECORMRNASTRUCdIirectives define the names of compound types, together
with a storage allocation template.

TheRECORMirective defines a template that specifies the size and fields for
variables of the record type. Use the record template name in a record allocation
statement to allocate storage for and initialize variables of a record type.

An assembler record consists of contiguous fields of bit-coded data. Records can
be defined to format bytes, words, or dwords for bit-packing. A record template
can be from 1 to 4 bytes in size. Each record of the template type has a specific
number of fields, and each field contains a specific number of bits. Information
can be stored in and accessed from these fields.

The STRUCdirective defines a template with named and typed fields, optionally
with default data values. Each field is of a simple type (defined with DBIT, DB,
DW, DD, DP, DQ, or DT), but every field in a template may be of a different type.

Use structure templates to group associated data, such as the storage format fields
of floating-point coprocessor real numbers or the fields of a pointer. Use structure
templates to impose structure on memory data that will be accessed by a base or
index register.

Use the structure template name as the type in a structure allocation statement to
allocate storage for and initialize variables of the structure type. ASM386
structures are allocated memory in the same way bytes, words, and dwords are
allocated. Their fields can be accessed readily using the notation:

Structure-name.field-name
The (optional) default values of structure template fields can be:
e Overridden when a structure variable is allocated and initialized
* Accessed or overwritten during program execution

See also: Accessing structure template fields, Chapter 5
overwriting structure template fields, Chapters 6 and 7

ASM386 Assembly Language Reference Chapter 4 99

RECORD Directive

Syntax
nameRECORD field : exp [= init-val]][,...]
Where:
name is an identifier that creates a record template type naamee must
be unique within the module.
field is an identifier that defines a bit field within the record tyfedg
must be unique within the module.
exp is a constant expression that evaluates to the number of bits in the
field . exp must evaluate to an ordinal in the range 1..32. The
maximum number of bits in a record is 32, so it is an error if the sum
of a record templatesxps is greater than 32.
init-val iS a constant expression or a character string enclosed in single
quotes ().
Discussion

100

RECORI@reates 8YTE, WORH 3-BYTE- or DWORMized record template
definition. Record variables can then be allocated and initialized through the use
of the record name in a record allocation statement (see the next section).

Numeric initial values can be specified in binary, octal, decimal, or hexadecimal
(see Table 4-2). The specified constant expression must evaluate to a non-negativ
integer value that fits in its field.

A character string has a maximum length of four characters because the maximum
size of a record is 4 bytes and each ASCII character requires a byte of storage.

The first field specified in the record template occupies the most significant bits
when data is allocated for a record of the (template) type. Record template fields
(and their default values) are not required to fill to a byte boundary. A record
template whose fields do not occupy a BMTE, WORPor DWORIS called a partial
record.

The assembler right-justifies fields within a partial record and pads the record (with
zeros) out to the next byte boundary. A record whose fields total 17..23 bits is
padded to 24-bits (3 bytes). Figure 4-1 illustrates an example of a partial record.

Chapter 4 Defining and Initializing Data

Record Template:
Partial Record A:16, B:9

31 25 24 9 8 0
(Zero
Filled) A B
7 bits 16 bits 9 bits

W-3420

Figure 4-1. Partial Record Definition Template

Examples

1. This example definesmWORBized record template, even though it specifies
30-bits total for its fields (processor addresses must fall on byte boundaries).

ERRFLAGS RECORD 10:3=0,SYS:3=0,MEM:24="ABC'

2. This example defines a record template for floating-point coprocessor single
precision reals (the template matches the floating-point coprocessor storage
format).

SIGNEDNUM RECORD SIGN:1,EXP:8,FRAC:23

ASM386 Assembly Language Reference Chapter 4 101

Record Allocation Statement

Syntax
[name| recnm <[exp][....]>
Where:
name is an identifier;name must be unique within the module.
recnm is the name of the record template that defines how bit-fields are to be
allocated for the variable of the typeecnm may be followed by a
DUPclause.
exp is a value that overrides the default field value allocated for the
record. exp must evaluate to a number that will fit in the field
specified in the record template definition) that is to be overridden; it
may be & (undefined value).
Discussion

102

This statement allocates data in the form specified by the previously defined record
template. Default field values specified by BECORDIirective can be
overridden. The following rules must be observed:far:

* To allocate a record without overriding the default values, spesifyio exp
values).

e Assuming a record with fieldsf1 , 2, f3,..., fn >, specify a comma for
each field with an acceptable default value and specify an overegnépr
eachfn to be overridden.

For example, use the following to overrid@ (andf4) or fn , respectively:

<,2,5>
<, ppenn, 2>

11

After the last field to be overridden, commas need not be specified for remaining
fields. In the first preceding example, commas must be specified onfy fand
f2 (thefs..fn default values are acceptable).

« Use a? to override a default field value (zero used).

« Afield defined with a single string of two or more characters can be
overridden only with another string. The overriding string need not be the
same length as the record template's. If the overriding string is shorter than the
original string, the remaining characters of the default string are used. If the
overriding string is longer but still fits in the field, the overriding string is used.
Otherwise, the assembler generates an error.

Chapter 4 Defining and Initializing Data

Examples

1. This example allocates two record variables of fRRFLAGSthis record
template is defined in Example 1 of the preceding sectiBbAGS1uses the
ERRFLAGSlefault values without overrideSLAGSoverrides the defaults
defined withERRFLAGS

FLAGS1 ERRFLAGS<>
FLAGS ERRFLAGS<0,3,0>

2. This example allocates and initializes two record variables of3y@eEDNUM
(this record template is defined in Example 2 of the preceding section). For
floating-point numbers, the sign bit is O for positive values and 1 for negative
values.

PLUSONE SIGNEDNUM <0,7FH,0>
MINUS16 SIGNEDNUM <1,83H,0>

ASM386 Assembly Language Reference Chapter 4 103

STRUC Directive

Syntax

name STRUC
[field] storalloc
name ENDS

Where:

name is an identifier for the structure templatayme must be unique within

the module.
field is an identifier;field must be unique within the module.

storalloc is a DBIT, DB, DW, DD, DP, DQ, or DT storage allocation statement.
The storage allocation statement may conbrirclauses.
Storalloc specifies the variable type of the corresponding field; it
may also specify the default initial value of this field for all
subsequently defined variables of typene.

Discussion

104

The STRUC..ENDS block defines a template namegime. The templat@ame

defines a symbol table entry whose size equals the total number of bytes specified
betweerSTRUCaANdENDS Eachfield name is also defined in the symbol table,
together with its attributes.

A structure field name represents the logical address (an offset) of this field within
all structures of typeame. A field has two attributes: offset and type. The offset
of a field is the number of bytes from the start of the structure to the field. The
field's type depends on the storage allocation (storalloc) statement used in the
template.

Structure fields defined as contiguous variables of Bipeare concatenated into
one or more bytes and zero-filled to the nearest byte boundary.

A question mark?) can be used to allocate storage for Bon-type fields with
undefined initial values. If a value is specified in the storage allocation statement,
it becomes the default value for the field. This default can be overridden by the
structure allocation statement described in the next section.

Fields defined with more than ostralloc specification (a list) and fields
defined withDUP(?) have non-overridable default values.

The assembler supports up to 150 structure fields that are defined with uninitialized
values and without nest@UFs.

Chapter 4 Defining and Initializing Data

Examples

1. This example defines a structure for procedure parameters that would be
allocated on the stack. TE®Pregister would point to the procedure's stack
frame; its parameters could be accessed by name using the notation
[EBP]. field . The Examples in the next section include the dot operator.

See also: Dot operator, Chapter 5

THIS_PROC_PARAMS STRUC
OLD_EBP DD ?

RETURN DD ?

PARAM1 DD ?

PARAM2 DW ?,?

PARAM3 DW ?,?
THIS_PROC_PARAMS ENDS

The symbolTHIS_PROC_PARAMS8nters the symbol table as a structure 20
bytes in length. The fiveymbols OLD_EBP, RETURN, PARAM1, PARAM2
andPARAM3re defined as structure fieldSLD_EBPhas typeDWORRNd an
offset of 0 within the structur®ETURNas typeDWORRNd an offset of 4.
PARAM1has typeDWORRNd an offset of FARAMZhas typaVORRNd an
offset of 12, antPARAMzhas typeNORRNd an offset of 16 within the
structure.

2. This example defines a 6-byte structure template forRgPNTER

POINTER STRUC
OFFST DD ?
SEGSEL DW ?
POINTER ENDS

3. This example defines a 16-byte structure template that represents a point on a
plane expressed in polar coordinates.

POLARPOINT STRUC
RADIUS DQ 0
ANGLE DQ 0
POLARPOINT ENDS

ASM386 Assembly Language Reference Chapter 4 105

Structure Allocation Statement

Syntax

[namg strucnm <[exp][,...]>

Where:

name is an identifier that defines the logical address for a variable. The

segment part of its logical address is the current segment and its offset
is the current location counter; the binder can relocate the offset.
name must be unique within the module.

strucnm is the name of a previously defined structure templ&teucnm is

exp

the variable's type; it specifies the variable's fields, their types, and a
variable storage size equal to the number of bytes allocated by the
template. Strucnm may be followed by @uUPclause.

is a value that overrides the default field value given in the template
definition. Exp is a question marke} (except for fields of typ8IT),

a constant expression, or a string enclosed in single quoteH {t is

not a?, its value must fit in the type specified for the corresponding
structure template field.

Discussion

106

This statement allocates storage based on a structure template (see the preceding
section). The amount of storage allocated will be the number of bytes defined in
the template (multiplied by armyuPclauses).

Field values defined in the structure template are defaults. They may be overridde!
in the storage allocation statement with certain restrictions. The following rules
must be observed faxp:

To allocate a structure without overriding the default values, spegifyo
exp values).

The default value specified in the structure template definition mus?be a
(nonBIT fields only), a constant expression, or a character string used as a
default value for a byte (DB) field. The overriding value must fit within the
field.

Template fields defined with more than asteralloc specification (a list)
and template fields defined withuP(?) may not be overridden.

Chapter 4 Defining and Initializing Data

e Assuming a structure with fields? , 2, f3,..., fn >, specify a comma for
each field with an acceptable default value and specify an overggdngépr
eachfm to be overridden.

For example, use the following to overrid@ (andf4) or fn , respectively:

<,2,5>
<, ppenn, 2>

IRRRN]

After the last field to be overridden, commas need not be specified for
remaining fields. In the first preceding example, commas must be specified
only forf1 andf2 (thefs..fn default values are acceptable).

« A DB field initialized with a single string of two or more characters can be
overridden only with another string. The overriding string need not be the
same length as the template's. If the overriding string is shorter than the
original string, the remaining characters of the original string are used. If the
overriding string is longer but still fits in the field, the overriding string is used.
Otherwise, the assembler generates an error.

Examples

1. This example allocates storage for a structure of T#p®_PROC_PARAMS
(this structure template is defined in Example 1 of the preceding section).

APROC THIS_PROC_PARAMS <>
To access a field ZPROCuse the dot operator (e.gRPROC.PARAML

However, a structure field is not irrevocably tied to the structure in which it is
defined. [EBP].PARAM2 could be used in any context where you wanted a
BYTEvariable that was offset by 4 bytes from E&Pbase. It is not necessary
(and the assembler does not check) that the surrounding data pointeeBt® by
follows the template format defined foHIS_PROC_PARAMSAssuming that
EBPhas already been set to point to the beginning of this strugeR®C
parameters can be accesse{E88].PARAM1 , [EBP].PARAM2 , and
[EBP].PARAM3 .

2. This example allocates storage for and initializes a structure of type
POLARPOINT(this structure template is defined in Example 3 of the preceding
section). This structure is initialized with radius 2.0 and angle 3.1416,
overriding the template's specification (uninitialized storage for the field
values).

VALUE1 POLARPOINT<2.0,3.1416>

To perform any calculations usivg\LUEY, refer to the fields of this structure
asVALUEL.RADIUS andVALUE1.ANGLEin the instruction.

ASM386 Assembly Language Reference Chapter 4 107

108

This example allocates storage for an array of 20 structures of type
POLARPOINT each initialized with the same two data values.

POLPT_ARR1 POLARPOINT 20 DUP (<2.0,3.1416>)

This example defines a structure template with overridable fields, and allocates
storage for a variable that overrides the defaiRuCvalues.

OVERRIDABLE STRUC

ASTRING DB 'ABCDEFG'
DONTCARE DW ?

AREAL DD 3.14159
OVERRIDABLE ENDS

VARO OVERRIDABLE <'HIJ',1,1E-23>

This example defines a structure template with fields thatnoglge
overridden (see the Discussion section).

NONOVERRIDE STRUC
ALIST DB 1,2,3 : cannot override list
: of default values
ADUP DW 10 DUP (?) ; cannot override defaults
; specified with DUP
NONOVERRIDE ENDS

These equations illustrate results when multiple dot operators are used in an
expression. Given the following structure template definitions and address
expression using the dot operator:

FOO STRUC

FEDBO : offset from FOO =0
FI DW 0 ;offset =1

FOO ENDS

BAA STRUC

FODBO ; offset from BAA =0
FUM DD 0 ; offset=1

BAA ENDS

[EBP].FE.FI.FO.FUM =
[EBP]+0+1+0+1=[EBP]+2

The result's type is the same as the rightmost field specific@goORD
(=FUM's in this example). However, the result's type can be overridden with
the PTR operator as follows:

WORD PTR [EBP].FE.FI.FO.FUM

ThePTRexpression has the same valugea®].FE.FI.FO.FUM , but type
WORD

See also: PTR operator, Chapter 5

Chapter 4 Defining and Initializing Data

DUP Clause

A DUPclause reserves storage for a sequence of variables of a single typalUPUse
with any DBIT, DB, DW, DD, DP, DQ, or DT storage allocation statement to

define an array-like variable. Such a variable's elements can be accessed as
multiples of a constant offset from the initial element; the constant value equals the
size of the element type. UB&Pwith any record or structure allocation statement

to allocate contiguous storage for an array-like variable whose elements are records
or structures.

Syntax
rep-val DUP (val [,...])
Where:
rep-val specifies the number of storage units to be allocated. A storage unit is
one of the following:BIT , BYTE WORPDWORIPWORDQWORD
TBYTE or previously specified (named) record or structure template.
val is any initialization expressionn{t or exp) that is valid for the
specified storage unit, or it is anothmyPclause.
Discussion

DUPallocates storage for and optionally initializes an array-like variable with
elements of a single typ@UPis an optional part of any storage allocation
statement, including a record or structure allocation statement. For a variable
allocated with DBIT, DB, DW, DD, DP, DQ, or DT, speciffpaPclause as
follows:

[namg dtyp rep-val DUP (init [,...])

For a variable allocated with a record or structure template name, spBtify a
clause as follows:

[namg recnm rep-val DUP (<[expll.---]>)
or
[namg strucnm rep-val DUP (<[expll.---]>)

For nonBIT -type variablesDUPcan be used to reserve storage space without
producing a data initialization record in the object module. The syntax

rep-val DUP (?)

reserves storage space with undefined values. The amount of reserved space
depends on theep-val specified and the storage allocation size specified by the
directive or template that preced2dr

ASM386 Assembly Language Reference Chapter 4 109

The assembler allowBUPclauses to be nested up to the limit of the symbol table
memory space for simple types. For structure types, this limit is less than 150. The
assembler fill ODUP(?) specifications within a structure with zeros.

The assembler fills any othBiUP(?) storage allocations with zeros when an
initialization value is specified in the storage allocation statement. Speffy
every initialization value when you want totally undefined storage in the object
file. However, variables defined with DBIT may not be initialized with the
guestion mark.

Examples
1.

These examples uB&Pto initialize bit patterns.

THE_BITS DBIT 2 DUP (10b) ; initializes 2 bytes
;at THE_BITS to
; 00000010
; 00000010
BIG_BITS DBIT 4 DUP (11011B) ; initializes 4 bytes
; at BIG_BITS to
; 00011011
; 00011011
; 00011011
; 00011011

This example initializes 50 bytes; each group of five bytes contains the value
48454CACAFH.

BYTES1 DB 10 DUP ("HELLO")
This example initializes 400 bytes.
ADDEXPS DW 100 DUP (1,0FFFFH,15,10101010B)

These examples initialize 420 bytes and reserve 40 bytes of uninitialized
storage.

MANYDUPED DB 3 DUP(4 DUP(5 DUP(1, 6 DUP (0))))
NOINIT DD 10 DUP (?)

This example allocates contiguous storage for an array of 20 structures of type
POLARPOINT Each structure is initialized with the same two data values.

POLPT_ARR1 POLARPOINT 20 DUP (<2.0,3.1416>)

See also: POLARPOINT Example 3 of the STRUC directive, in this chapter

110

Chapter 4 Defining and Initializing Data

Labels

A label is a name that defines a logical address within an assembler program:

« The location counter is a predefined label that keeps track of the current offset
within a segment being assembled. T®GEVEN andALIGN directives
control the location counter.

« TheLABEL directive creates a name for the current location of assembly in
code or data segments.

* Alabeled instruction in the code segment might be the targeinP ar
conditional jump instruction. If both the jump and labeled instructions are in
the same segment, theHAR label can be a name followed by a colopthat
immediately precedes the target. TWSEL directive must be used to define
aFARIlabel (the labeled target instruction is not known to be in the same
segment as the jump instruction). TBEL directive may also be used to
define aNEARIabel.

* Alabeled sequence of instruction(s) in the code segment might be the target of
aCALL instruction. TheeROOirective defines &IEARor FARlabel for such
an instruction sequence. The target sequence is usually interpreted as a
subroutine or procedure.

Labels in code segments can be operands afAhe, JIMP, and conditional jump
instructions.

See also: CALL, JMP, and conditional jump instructions, Chapter 6

ASM386 Assembly Language Reference Chapter 4 111

Label Attributes
A label has four attributes:
Segment The in which it was defined

USE The USE attribute USE32 or USE16) of the segment in which it was
defined: this determines the size of the label's logical address.

The label's offset
This is the label's distance from the base of its defining segment.
Offset is a 32-bit value for labels UBE32 segments and a 16-bit
value for labels iUSE16 segments.

The label's type
For labels in a data segment, this is the type of the target location (a
variable or defined storage location). For labels that target code, the
type indicates the kind of jump @ALL that will be made to the
location it represents. These two types are as follows:

* TypeNEARrepresents a label that can be accessed by a jump or
call that lies within the same physical segment. This kind of
access is called an intrasegment jump or call. The logical
address defined byNEARIabel is a simple offset within the
same segment.

» TypeFARrepresents a label that can be accessed from another
segment. This kind of access is called an intersegment jump or
call. Because control is transferred from one segment to
another, the contents of the CS register must be changed when
the jump or call occurs. The logical address defined fgrRa
label is a 16-bit segment selector with 32-bit offset. JWie
conditional jump, oCALL instruction will load this address
into CS:EIP when it executes.

112 Chapter 4 Defining and Initializing Data

The Location Counter

The location counter is a predefined label represented by the sgmbdle value
of the location counter is the current offset within the segment being assembled.
The location counter has the following attribute values:

e Segment -- current segment
« Offset -- current offset

e USE-- current segment's

e Type --NEAR

The$ may be used as an operand of instructions or expressions. The assembler
will maintain the correct offset within a segment even if the segment is repeatedly
opened and closed in the module WBBBEGMENT..ENDSpairs.

See also: SEGMENT..ENDSpairs, Chapter 2

Three directives control the location counter

ORG Sets the counter to a specified value.
EVEN Sets the location counter to the next dword or word.
ALIGN Sets the location counter to the next value that is evenly divisible by

the specified number.

ASM386 Assembly Language Reference Chapter 4 113

ORG Directive

Syntax
ORG exp
Where:
exp is a constant expression or a label that is evaluated to a number in the
range of 0 to % - 1 (4 gigabytes) iSE32 segments or in the range
of 0 to 65536 iINJSE16 segments.
Discussion

Use theORGdirective to control the location counter value. @RGexpression
locates code or data at a specified offset within the current segment.
Examples

These examples use the value of the current location counter as an operand. The
first example sets the location counter to a value 1000 bytes beyond the current
location. The second example overwrites the just assembled 1000 bytes.

ORG OFFSET($ + 1000)

ORG OFFSET($ - 1000)

EVEN Directive

Syntax
EVEN

Discussion

The EVENdirective ensures that the location counter is a dword or word boundary
for subsequent code or data.

The assembler inserts (if necessary) up to tR@a (90H) followingEVENLto align
subsequent code to the nearest dword&E32 segments) or word (faySE16
segments). In the data segment,Bii€Ndirective pads with zeroes to align
subsequent data to the nearest dword segments) or word (faySE16
segments).

114 Chapter 4 Defining and Initializing Data

ALIGN Directive

Syntax
ALIGN[exp]
Where:
exp is any nonrelocatable constant expression that evaluates in the range 1
to 256. TheALIGN directive aligns subsequent code or data on an
offset that is evenly divisible by the specified number of bytes.
Discussion

TheALIGN directive sets the location counter to the specified boundary for the
subsequent alignment of code or data.

The assembler insemgOPinstructions (90H) if necessary to align subsequent code
to the specified boundary. When used in a data segment, the assembler pads to the
specified boundary with zeroes.

If exp is omitted, the default is 4-byte, DWwORDalignment.

For example, the following directive causes paragraph (16-byte) alignment:
ALIGN 16

As another example, the following directive causes page (256-byte) alignment:
ALIGN 256

ASM386 Assembly Language Reference Chapter 4 115

LABEL Directive

Syntax
nameLABEL type
Where:
name is an identifier; name must be unique within the module.
type is NEARor FAR a variable typeRIT , BYTE WORPDWORIPWORD
QWORDIrTBYTH), a label name, a record template name, or structure
template name. Label, record, and structure names cannot be forward
references.
Discussion

LABEL creates a name for the current location of assembly, whether data or code.
UseLABEL to define a variable or a label that has the following attributes:

e The segment that is currently being assembled
e The current offset within that segment

* TheUSEattribute of the current segment

* The specified type

Labels of typeFARmust be defined with theABEL directive. NEARlabels need
not be defined with ABEL but they can beNEAR andFAR-type labels may not be
overridden.

See also: Attribute override operators, Chapter 5

It is possible useABEL to alias &cARlabel to aNEARIabel. However, aliased
labels of opposite types can be used onlgnor conditional jump operands. It
is an error taCALL the same procedure twice with alias&EARandFAR labels if a
return from the procedure is expected. RET instruction coded within a
procedure is either near or far; it cannot be both.

116 Chapter 4 Defining and Initializing Data

Examples

1. This example allows two consecutive bytes to be accessed botGiznd
as two differenBYTES

AWORD LABEL WORD
LOWBYTE DB 0
HIGHBYTE DB 0

2. This example sets up three ways of accessing the same data location.
BIT_ARRAY, TBYTE_ARRAYandWORD_ARRAAI refer to the same data
locations aBYTE_ARRAYthey provide alternate forms of addressing it.

BYTE_RECORD RECORD B7:1,B6:1,B5:1,B4:1,
& B3:1,B2:1,B1:1,B0:1

BIT_ARRAY LABEL BYTE_RECORD
TBYTE_ARRAY LABEL TBYTE
WORD_ARRAY LABEL WORD

BYTE_ARRAY DB 100 DUP (0)

3. This example shows boHEARandFARlabels at the same code location.
Even though there is@ALL at this location, this example will not cause an
error. TheABORT_MESSAG®BuUtine does not return to the location that
jumped toABORT_FARor ABORT_NEAR

ABORT_FAR LABEL FAR

ABORT_NEAR:
CALL ABORT_MESSAGE
JMP EXIT : do not RET to caller

ASM386 Assembly Language Reference Chapter 4 117

Defining Implicit NEAR Labels

Syntax
Iblname [instruct]
Where:
Iblname is an identifierjblname must be unique within the module.
instruct is an instruction.
Discussion

A label within the same segment is merely a name followed by a cdlo8ych a
label has the following attributes:

e The current segment being assembled

e The label's offset (the current value of the location counter)
e The current segment$SEattribute

e The default label typeyEAR

If no target instruction is specified, a jump to the label causes the instruction
following the label to be executed. This form of label is equivalent to the
following:

Iblname LABEL NEAR

Example
ALAB: MOV EAX, COUNT

118 Chapter 4 Defining and Initializing Data

PROC Directive

Syntax
name PROC] type J[WC(exp)]
naméIéNDP
Where:
name is an identifier;name must be unique within the module.
type is NEARor FAR NEARIs the default.
exp is the number of dword®JGE32 segment) or wordJSE16 segment)
of parameters to be transferred to the more privileged stack during an
interlevel call. Exp must evaluate to an integer in the range 0..31.
Discussion

PROOefines a label for a sequence of instructions that are interpreted as a
subroutine or procedure of typiEAR(called from within the same segment) or
FAR (called from another segment).

The type specified witRROCells the assembler whether to generate a near or far
RETIinstruction for the procedure operand.RET (return) instruction coded
betweerPROC..ENDPhas the same type (near or far) as its enclosing routine. lItis
an error if pairedCALL-RET instructions have mismatched near/far attributes.

If PROCLENSs specified betweePROC..ENDR, it returnsOFFH if the procedure is
of typeFAR PROCLENeturns O for all other cases.

See also: PROCLENChapter 9

The assembler allows procedures to be nested. However, nested procedures do not
behave like nested procedures in some high-level languages:

* The assembler does not have scope rules for programmer-defined names.
Every variable and label in a module must have a unique identifier.

e The assembler is not a block-structured language. A nested procedure is coded
within the instruction sequence of another routine. Unless the containing
routine jumps around the nested procedure, the nested procedure will execute
when its containing routine executes. Furthermore, a nested procedure may
cause some of the containing routine's code to be skipped bed@ES&E@M
the nested procedure also causes a return from its containing routine (see
Example 3).

ASM386 Assembly Language Reference Chapter 4 119

Examples

1. The assembler has both near andCfsrL andRET instructions. Whether a
CALL is near or far depends on the type of its procedure operand. The
following is an example of BEARprocedure with its appropriate call.

LOCALCODE SEGMENT ER PUBLIC
ANEARPROC PROC NEAR

T : some code

RET ; near return
ANEARPROC ENDP

CALL ANEARPROC : near call
D ; (intrasegment)
LOCALCODE ENDS

2. This example shows a FAR procedure and its call.

GLOBALCODE SEGMENT ER
AFARPROC PROC FAR

T : some code
RET ; far return
AFARPROC ENDP
GLOBALCODE ENDS

SPECSEG SEGMENT ER

CALL AFARPROC ; far CALL
- ; (intersegment)

SPECSEG ENDS

120 Chapter 4 Defining and Initializing Data

3. When one procedure is defined within another, execution can fall into the

nested procedure.

P1 PROC NEAR

MOV AX,15 ; execution begun here will

continue

ADD DX,AX ; through to the second MOV

AX,0

P2 PROC NEAR
MOV AX,0
CMP AX,COUNT
JE LAB
DEC COUNT
LAB:
MOV AX,0

RET ; exit P1 and P2 here
P2 ENDP ; remaining statements
CMP DX,10 ; will never be executed

JE LAB
RET
P1 ENDP

ASM386 Assembly Language Reference

Chapter 4

121

Using Symbolic Data

122

Assembler label and variable names are symbolic data. All programmer-defined
identifiers referenced in assembler programs are symbolic data. Assembler
keywords and reserved words are symbols, as well.

See also: Assembler keywords and reserved words, Appendix C

Both labels and variables define logical addresses that represent values. A label
identifier's value is the logical address it defines. A variable identifier's value is the
contents of the logical address it defines.

The EQUdirective assigns new names to symbols. AbBGHlirective directs the
assembler to omit object file information about partic&l@tated symbols and
programmer-defined symbols.

Chapter 4 Defining and Initializing Data

EQU Directive

Syntax
nameEQU value
Where:
name is an identifier;name must be unique within the module.
value is a variable or label name, a constant or register expression, a

processor register, a floating-point stack element, a mnemonic, or
instruction prefix, a codemacro call or prefix, or the operat@$
AND OR XOR SHL, or SHR value can be any address expression.

See also: Floating-point stack elements, Chapter 7
mnemonics, Chapters 6 and 7
instruction prefixes, Chapter 6
codemacro calls or prefixes, Chapter 9
address expressions, Chapter 5

Discussion
EQUassigns a value to an identifier. In eff&pUcreates either:
e An alias for a symbol's value
* Anidentifier for an assembly-time constant or run-time expression value.

If the assigned value is a variable or label name, it can be forward referenced.
The EQUdirective defines another pointer to such a variable or label. However, the
assigned value may not be an expression that contains a forward reference.

A global integer constant can be created by specifyingthated name in a
PUBLIC statement. The value of such a global constant must be in the range:

e 281 (2 8-1) inUSE32segments
e -32,768..32,767 in USE16 segments

The precision of aEQLated real expressed in decimal notation is determined in
context. The name equated to these values can initialize data of more than one
type. Floating-point numbers expressed in hexadecimal real notation also may be
used a€QUvalues. However, the names equated to these values can only be used
to initialize data of a single type.

Register expression values can include a segment override.

See also: PUBLIC statement, Chapter 3
DD, DQ, and DT directives, in this chapter

ASM386 Assembly Language Reference Chapter 4 123

Examples

1. This example makes a forward reference to a value represented by the label
ALAB.

ALABEL EQU ALAB
ALAB:MOV EAX,0

2. This example defines aliases for processor registers.

COUNT EQU ECX

PNTR EQU EBX

MOV COUNT,10 ; ECX =10

MOV PNTR,OFFSET ARRAY ; EBX = offset of array

3. This example defines aliases for thevandINC instructions.

DATAMOVE EQU MOV
INCREMENT EQU INC
DATAMOVE EAX,EBX

INCREMENT EAX

4. These examples illustrate integer and floating-point constant value
specifications. A floating-point constant specified in decimal can initialize
data of more than one type; the precision of such values is determined in
context. A floating-point constant specified in hexadecimal real can initialize
a single type of datd{vORDQWORDr, as hereTBYTE).

TOTAL EQU 6

Pl EQU 3.141592653589793

DD PI ; single precision
DQ PI ; double precision

DEG_TO_RAD EQU 3FF98EFA351294E9C8AER ; P1/180
DT DEG_TO_RAD ; extended precision

5. This example illustrates assembly-time initializations.

ELEQU2+3
E2 EQU E1 AND 4
E3 EQU (E1-E2)/ 12

6. This example usexQuto define variables to be accessed on the stack.

STKWRD EQU WORD PTR [EBP+2]
ONEVAR EQU SS:[EBX+3]
TWOVAR EQU SS:[EBX]

124 Chapter 4 Defining and Initializing Data

PURGE Directive

Syntax
PURGEBamd,...]
Where:
name is a symbolic data identifier.
Discussion

PURGHleletes the definition of one or more specified symbols. Labels, variables,
and keyword or register aliases defined vl@ucan be purged.

The following kinds of symbols cannot be purged:
* Names declareHUBLIC

* Register names

* Assembler reserved words

See also: PUBLIC names, Chapter 3
Assembler reserved words, Appendix C

A purged symbol remains undefined unless it is redefined. A reference to a symbol
after it has been purged but before it is redefined constitutes a forward reference to
the redefinition. If no redefinition occurs, such a reference is an error.

A PURGEcoded just before the progranDstatement causes the assembler to
delete object file symbol information about purged symbols.

Examples

1. This example deletes aliases (defined \&ifh) for an assembler instruction
and a processor register.

DATAMOVE EQU MOV
COUNT EQU ECX
PURGE DATAMOVE, COUNT

2. For the variable and label specified in this example, the assembler will omit
symbol information from the object file for the module.

PURGE ALABEL, VAR1
END : module

[

ASM386 Assembly Language Reference Chapter 4 125

Accessing Data

This chapter contains four major sections:

Overview of assembler expressions
This section introduces constant and address expressions.
Operators

This section explains the assembler isolation, multiplication and division, shift,
addition and subtraction, relational, logical, attribute value, attribute override,
and record specific operators.

Instruction Operands
This section summarizes the operands to assembler instructions.
Memory Addressing Methods

This section explains the forms of assembler address expressions in detail.

Overview of Assembler Expressions

Expressions contain operands and operators. An assembler expression specifies
either:

A value that initializes data. Such a value must be a constant expression, an
external constant, or a relocatable address expression.

Or, an address in memory that may be an instruction operand. This is
sometimes called an address expression.

Constant expressions specify values that are known at assembly time. Address
expressions specify values that might not be known at assembly time; they
represent an address that will be accessed during program execution on the
processor. The contents at such an address might be modified during program
execution.

ASM386 Assembly Language Reference Chapter 5 127

For an assembler instruction to operate on data, the data must be accessible as an
instruction operand. Some instructions have implicit operands such as registers.
However, most instructions require explicit operand(s). An instruction operand can
be expressed as a register, a constant, a location in memory, or as a combination c
these components.

Some operands can be specified as expressions consisting of a series of variable
names, base and index registers, and constants combined by operators. For
example, the contents of a register and a constant could be added with the addition
operator.

There are many assembler operators that can be used to create expressions.

Constant Expressions

Constants (see Table 4-2) can be used as expression operands with most assembl
operators (see Table 5-1). The storage allocation directives (described in

Chapter 4) initialize data values using constant expressions. Constant expressions
yield a value that is known at assembly time.

However, a symbolic constant defined in another module has an unknown value at
assembly time. When modules are combined, such a constant's value replaces ea
external reference to the constant. For example:

EXTRN ANUMBER:ABS

DATA SEGMENT

AWORD DW ANUMBER ; AWORD gets value of ANUMBER
: when modules combined

DATA ENDS

External symbolic constants do not form constant expressions.

See also: PUBLIC directive, Chapter 3

Address Expressions

128

An address expression defines a location in memory. This location can be
interpreted as either a variable or label, depending on the expression used. Every
address expression has a simple tye (BYTE WORPDWORIPWORDQWORD

TBYTE NEAR or FAR). The rules for address expression formation preclude

mixing variable or label types unless #ieR operator coerces uniformity of type.

See also: PTR operator, in this chapter

Chapter 5 Accessing Data

Variable and Label Names as Address Expressions

The simplest address expression is the name of a variable or label. In this case, the
name implies addressing using the variable's or label's offset from its defining
segment's base address. This address is relocatable.

For example:
ADD DX,COUNT ; COUNT is a simple address expression
ADD DX,COUNT + 2 ; In this case, address expression has
; the same segment and type as COUNT
; but has an offset that is 2 greater
Register Expressions

A register expression is an address expression that uses a base and/or an index
register. Possible forms are:

[base-reg]Jor[index-reg * scale]

[base-reg + index-reg * scale |

[base-reg + disp Jor[index-reg * scale + disp]
[base-reg + index-reg * scale + disp]

Where:

base-reg is any 32-bit general register (EAX, ECX, EDX, EBX, ESP, EBP,
ESI, EDI) for 32-bit addressing, and is BX or BP for 16-bit
addressing.

index-reg is any 32-bit general register except ESP for 32-bit addressing, and is
Sl or DI for 16-bit addressing.

scale is (an optional) constant or constant expression that evaluates to 1, 2,
4, or 8 for 32-bit addressing. It is invalid for 16-bit addressing.

disp is an 8- or 32-bit displacement for 32-bit addressing, and is an 8- or
16-bit displacement for 16-bit addressing.

At assembly time, a simple register expression operand is called an anonymous
reference. The data addressed by a named register has no expliaiTy@Y(TE
WORPDWORIPWORDQWORDBYTE or record/structure template name).

ASM386 Assembly Language Reference Chapter 5 129

For a two-operand instruction with one register operand, the assembler determines
the type of an anonymous reference from the size of the register. For example:

MOV CX,[BX] ; move WORD data pointed to by BX into CX

For all other kinds of anonymous references TR operator must be used to
specify a type. For example:

MOV WORD PTR [DI],5 ; assign 2 bytes
INC BYTE PTR [BX]+2 ; increments 1 byte

Combining Simple Address and Register Expressions

Register expressions can be combined with simple address expressions to form a
more complex address. The form is:

varname [reg-exp |
Where:
varname is the name of a variable.

reg-exp is a register expression (see the preceding section) enclosed in
brackets.

The register expression implies that the address of the operand will be computed
from the run-time contents of the register. For example:

COUNTIEBX] ; simple base
COUNTIEBX] + 2 ; base plus displacement
COUNTIEBX] + [ESI] ; base plus index

For the preceding examples, the offset of the vari@bleNTwill be added to the
contents of the register(s) in the register expression.

See also: Implicit bracket addition, Addition and Subtraction Operators, in this
chapter
Processor registers and memory addresses, Appendix A

130 Chapter 5 Accessing Data

Structure Fields in Address Expressions

Another form of address expression uses a structure field name as a displacement
added to a structure's offset within its segment.

For a variable of a structure type, a field name represents an offset within the
structure. The field name can be combined with a named variable of the same type
as the field or with a register expression to form an address expression. Such an
address expression has the following attributes:

Its segment This is the same as the variable's, or it is the processor default for the
register.

Its offset This is the offset of the variable or register expression plus the offset
of the field within the structure.

Its type This is the type defined in the structure template for the field. If more
than one structure field is specified, the rightmost field determines the
address expression's type.

For example, consider the following structure definition and instruction results:
ASTRUC STRUCTURE

ABYTE DB O ;offset=0
AWORD DW 0 ;offset =1
BYTE2 DB O : offset =3

ASTRUC ENDS

ANARRAY DB 1,2,3,4 ; ANARRAY.AWORD has type WORD
MOV AL,ANARRAY.BYTE2 ; AL :=4

MOV CX,ANARRAY.AWORD ; CX := 0302H

MOV BX,0FFSET ANARRAY ; BX holds offset
MOV AL,[BX].ABYTE ;AL := 1 [BX].ABYTE has type BYTE

ASM386 Assembly Language Reference Chapter 5 131

Relocatable Expressions

132

Address expressions involving named variables, labels, and segments can have
results that might not be known until all program modules have been assembled,
combined, and located. Such expressions are called relocatable. The system
utilities assign values to such address expressions.

The assembler automatically generates relocatable addresses for valid symbolic
references in code segments.

See also: Relocatable and non-relocatable address genesst8uyME
directive, Chapter 2

The assembler also generates various kinds of relocatable addresses for symbolic
references in data segments:

1. A segment name in an address expression represents the logical address of its
selector. A segment name that is referenced in another data segment forms a
base relocatable address. For exanpg,Alis base relocatable in the
following:

DATA1 SEGMENT

DATA1 ENDS

DATA2 SEGMENT

SEGBASE DW DATA1 ; SEGBASE contains base
: relocatable address of DATA1

DATA2 ENDS

2. Avariable or label name in a data segment address expression forms an offset
relocatable address under either of the following conditions:

* The variable or label is defined inJSE32segment and its name is used
to initialize a variable of typpWORD

* The variable or label is defined inJ&E16 segment and its name is used
to initialize a variable of typ@/ORD

For exampleABYTE + 2 forms an offset relocatable address in the following:

DATA SEGMENT USE32

ABYTE DB O

AN_OFFSET DD ABYTE + 2 ; AN_OFFSET contains offset
: relocatable address of

DATA ENDS ;ABYTE + 2

Chapter 5 Accessing Data

3. A variable or label name in a data segment address expression forms a pointer
relocatable address under either of the following conditions:

* The variable or label is defined inksE32 or USE16 segment and its
name is used to initialize a variable of typ&ORD

* The variable or label is defined inJ&E16 segment and its name is used
to initialize a variable of typpWORD

For exampleABYTEforms a pointer relocatable address in the following:

DATA SEGMENT USE32

ABYTE DB 0

A_POINTER DP ABYTE ; A_POINTER contains pointer
: relocatable address of ABYTE

DATA ENDS

Expressions with external constant operands also have results that are unknown at
assembly time; the value of &XTRN:ABSconstant is supplied when modules are
combined. Any address expression with symbolic operands might have results that
cannot be determined until the program is located. The system utilities must
supply these values.

For these reasons, there are restrictions on the use of relocatable expressions with
some operators. These restrictions are noted in the operator descriptions in the
following sections.

ASM386 Assembly Language Reference Chapter 5 133

Operators

Table 5-1 summarizes the assembler operators. These operators are explained in

detail later in this section.

Table 5-1. Assembler Operators

Operator Description
Isolation Operators (1 Operand)
HIGHW Returns high-order word of dword operand Returns low-order
LOW word of dword operand
HIGH Returns high-order byte of word operand
LOW Returns low-order byte of word operand
Multiplication and Division (2 Operands)
* Multiplies one operand by another
/ Divides one operand by another
MOD Takes the modulus
Shift Operators (1 Operand)
SHR Shift operand bits right
SHL Shift operand bits left
Addition and Subtraction (2 Operands)
+ Adds operands
- Subtracts one operand from another
Relational Operators (2 Operands)
EQ If operands equal, returns -1; otherwise, 0
NE If operands not equal, returns -1; otherwise, O
LT If 1st operand < 2nd, returns -1; otherwise, 0
LE If 1st operand <= 2nd, returns -1; otherwise, 0
GT If 1st operand > 2nd, returns -1; otherwise, 0
GE If 1st operand >= 2nd, returns -1; otherwise, 0
Logical Operators (2 Operands, except NOT)
OR If either operand's bit = 1, result bit = 1; otherwise, 0
XOR If operands' bits different, result bit = 1; otherwise, 0
AND If both operands' bits = 1, result bit = 1; otherwise, 0
NOT If operand bit = 1, result bit = 0, and vice versa
continued
134 Chapter 5 Accessing Data

Table 5-1. Assembler Operators (continued)

Operator Description
Attribute Value Operators (1 Operand)
THIS Defines variable or label at current assembly location
SEG Returns segment selector of specified variable or label
OFFSET Returns offset of variable or label
BITOFFSET Returns bit offset of bit variable
LENGTH Returns number of storage units allocated for variable
TYPE Returns encoded value for variable or label type
SIZE Returns number of bytes allocated for variable
STACKSTART Returns offset of first (d)word above stack segment
Attribute Override Operators (1 Operand)
Sreg: Overrides default segment attribute of a variable or label
PTR Overrides variable's or label's type
SHORT Specifies that forward-referenced label is within 127 bytes of the
end of a jump instruction
Record Specific Operators (1 Operand)
MASK Masks specified field with 1's
ShiftCount Shifts bits in record by size of specified field
WIDTH Returns number of bits in record or field

ASM386 Assembly Language Reference

Chapter 5

135

Operator Precedence

Table 5-2 lists classes of assembler operators in decreasing order of precedence.

Table 5-2. Assembler Operator Precedence

Highest Precedence

1. Parenthesized expressions, angle-bracket (record) expressions,
square- bracket expressions, the structure "dot" operator, and the
operators LENGTH, SIZE, WIDTH, MASK, and STACKSTART

2. PTR, OFFSET, BITOFFSET, SEG, TYPE, THIS, and the segment
override (CS:, DS;, ES:, FS:, GS:, or SS:)

3. HIGHW, LOWW, HIGH, and LOW

4. Multiplication, division, and shifts: *, / , MOD, SHR, SHL

o

Addition and subtraction: +, -

a. unary

b. binary

Relational: EQ, NE, LT, LE, GT, GE
Logical NOT

Logical AND

Logical OR and XOR

0. SHORT

Lowest Precedence

Boo~NOo

Assembler expressions are evaluated from left to right following these precedence
rules. If two operators with equal precedence are adjacent, the leftmost operator
has precedence. Override this order of evaluation and/or operator precedence by
using parentheses.

136 Chapter 5 Accessing Data

Isolation Operators

Syntax
HIGHW number32
LOWWhumber32
HIGH numberl6
LOW numberl6
Where:

number32 is a constant expression that evaluates to a 32-bit number.

numberl6é is a constant expression that evaluates to a 16-bit number.

Discussion

The HIGHWandLOWWeperators return the high and I0MORS®, respectively, of the
32-bit operand.

TheHIGH andLOWoperators return the high and I®¥TEs, respectively, of the
16-bit operand.

When applied to &ORMalue,HIGHWreturns 0. When applied taB¥ TEvalue,
HIGH returns 0.

Examples
1.

These examples contraGH with LOWandHIGHWwith LOWVES operators on
the same values.

MOV AH, HIGH 1234H ; AH = 12H
TENHEX EQU LOW 1234H ; TENHEX := 34H
MOV AX, HIGHW 12345678H ; AX 1= 1234H
MOV CX, LOWW 12345678H ; CX :=5678H

These equations illustrate the results wHEEH/LOWandHIGHW/LOWW
operator pairs are applied to each other.

HIGH LOW number =0

HIGHW LOWW number =0

LOW HIGH number = HIGH number
LOWW HIGHW number = HIGHW number

HIGHW HIGHW number = 0 ; HIGHW applied to WORD
LOW LOW number = LOW number
HIGHW HIGH number = 0 ; HIGHW applied to BYTE

ASM386 Assembly Language Reference Chapter 5 137

3. These examples use more than one isolation operator in the same expression,
with one expression in parentheses. Compare results for the first and second
examples. The second example reverses the first example's operators.

MOV AL, LOW (HIGHW 12345678H) ; AL := 34H

MOV AL, HIGHW (LOW 1234H) : AL := 0 because
; HIGHW applied to BYTE

MOV AL, HIGH (LOWW 12345678H) ; AL := 56H

Multiplication and Division Operators

Syntax
Multiplication: operand * operand
Division: operand | operand
Modulo: operand MODoperand
Where:

operand is a constant expression.

Discussion
Use these operators only with constant expressions.

The result of a multiplication, division, or modulo operation is always an absolute
number. The result of a multiplication must be no greater than 32-bits, or an
overflow error will occur.

Examples

CMP AL,2*4 ; compare AL to 8
MOV CX, 123H/16 ;CX:=12H
ADD AX, 102 MOD 4 ; AX:=AX+2

138 Chapter 5 Accessing Data

Shift Operators

Syntax
Shift right: operand SHR count
Shift left: operand SHL count
Where:
operand is a constant expression.
count is a constant expression that evaluates to an ordimal represents
the number of bits the operand is to be shifted.
Discussion

The shift operators cause a bit-wise shift of the operand; it is shifted bits to
the right or left. Bits shifted into the operand are Os.

In effect:
« Shifts to the left multiply the operand by 2 to the power specifiecbbyt .
« Shifts to the right divide the operand by 2 to the power specifieddy .

Examples

MOV BX, OFACBH SHR 4 ; BX := OFACH
ADD AL, 111000B SHL 2 ; 11100000 added to contents of AL

MOV BL, (OFACBH AND 0111000B) SHR 3 ;BL :=001B
; (bits 3,4,5)

ASM386 Assembly Language Reference Chapter 5 139

Addition and Subtraction Operators

Syntax

Addition: operand + operand

Bracket Addition: primary [exp]

Subtraction: operand - operand
Where:

operand is a constant expression, or a variable or label defined in the current

module in the same segment.

primary is a constant expression, an ordinal, the name of a record variable

exp

followed by a record initialization, a string, a simple type name,
NEAR FAR or PROCLENenclosed in brackets or parentheses.
PROCLENwvithin aPROC..ENDPreturns the value OFFH forFaR
procedure; otherwis®ROCLENeturns O.

is a constant expression.

Discussion

Examples

140

Only constant expressions can be added or subtracted. The construct enclosed in
brackets[|) alters operator precedence and implies that an addition operator
precedes the bracketed expression (see Example 2).

Variables, labels, or identifiers that have b&e€nated to labels or variables cannot

be added or subtracted unless they have been defined in the current module and a

in the same segment.

1.

This example illustrates assembly-time expressions.

E1EQU 12 + 3
E2 EQU E1
E3EQUEL-E2

These equations illustrate the brackets as an addition operator. The last
expression is an error. The brackets operator implies addition before its
enclosed expression; it does not imply addition after its enclosed expression.

ALABL [3 * 5] = ALABL + (3 * 5)

ALABL + (3 *5) [3*5] = ALABL + (3 *5) + (3 *5)
ALABL [3* 5] [3*5] = ALABL + (3*5) + (3 * 5)
ALABL [3*5] (3*5) ; = error

Chapter 5 Accessing Data

Relational Operators

Syntax

Equal: operand EQ operand
Not equal: operand NE operand
Less than: operand LT operand

Less thanor equal:
operand LE operand

Greater than:
operand GT operand

Greater than or equal:
operand GEoperand

Where:

operands are either both constant expressions, or they are both variable or label
names that are defined in the current module and in the same segment.

Discussion

A relational operation always returns a result of -1 for true and O for false.

Either the result is 32-bits or it is truncated to 8 or 16-bits, depending on the
context.

Example
MOV AL, 3EQO ; AL := 00000000B (false)
MOV BX, 2 LE 15 ; BX := OFFFFH (true)

ASM386 Assembly Language Reference Chapter 5 141

Logical Operators

Syntax
operand OR operand
operand XOR operand
operand AND operand
NOT operand
Where:

operand is a constant expression.

Discussion

Logical operators operate on individual bits of their operand(s) and return an
absolute number. Each bit of the result depends on the corresponding bit(s) in the
operand(s).

The functions performed by these operators are as follows:

OR A result bit is 1 if corresponding operand bits are 1. A result bit is
also 1 if either corresponding bit is 1. A result bit is 0 only if both
operand bits are 0ORis the logical inclusive or.

XOR A result bit is 1 if the corresponding operand bits are different. A
result bit is O if the operand bits are the sax@Ris the logical
exclusive or.

AND A result bit is 1 only if both corresponding operand bits are 1.

Otherwise, a result bit is 0.

NOT A result bit is the opposite of the operand bit. It is 1 if the operand bit
is 0; O if the operand bit is 1.

142 Chapter 5 Accessing Data

Examples
1.

This exampl&XORs two absolute numbers indX. & is the assembler

continuation character.

MOV AX, 1111000011110000B

& XOR 0011001100110011B ; AX = 1100001111000011B

These equations illustrate the effects of@RandXORoperators.

11110000B
OR 00110011B
=11110011B

11110000B
XOR 00110011B
=11000011B

This equation illustrates the effects of A&Doperator.

11110000B
AND 00110011B
=00110000B

This equation illustrates the effects of H@Toperator.

NOT 00110011B
=11001100B

ASM386 Assembly Language Reference

Chapter 5

143

Attribute Value Operators

THIS, SEG OFFSET BITOFFSET, LENGTHTYPE, SIZE, andSTACKSTARTeturn
numerical values for the attributes of a variable, label or segment. These operators
do not change the attributes of their operands.

THIS Operator

Syntax
THIS type
Where:
type can beBIT , BYTE WORPDWORPWORPQWORDIBYTE NEAR or
FAR
Discussion

TheTHIS operator defines a variable or label at the current location of assembly.

The variable's or label's segment attribute will be the current segment being
assembled. Its offset will be the value of the current location counter. Specifying
the location counter symbab)is equivalent to specifyingHIS NEAR

See also: Location counter, Chapter 4

A variable or label type is specified by the operand of this operator. Its usage is
similar to that of the&. ABEL directive. THIS is used either in conjunction with the
EQudirective (see the following Example) or as part of an operand to an

instruction.
Examples

1. THIS can be used to define another name with an alternate type for the same
data item.
AWORD EQU THIS WORD : defines label AWORD

; at current location

BYTE1 DB O
BYTE2 DB O

2. This code is equivalent to the preceding example.

AWORD LABEL WORD
BYTE1 DB 0
BYTE2 DB 0

3. THIS may be part of an instruction operand.
MOV EAX, THIS DWORD

144 Chapter 5 Accessing Data

SEG Operator

Syntax
SEG varlab
Where:
varlab is the name of a variable or label.
Discussion

The SEGoperator returns the segment selector of the variable or label. The
segment selector is a base relocatable quantity.

SEGIs used:

1. To specify (with thé&SSUMHlirective) the segment in which a variable or
label is defined (see Example 1).

2. To store a selector in a variable or to initialize a segment register (see Example
2). The initialized segment register cannot be CS.

Examples

1. This example tells the assembler that DS will hold the selector of the segment
in which COUNTwas defined. In this case, the expressBEGCOUNTIS a
symbolic representation of the nameC@UNE defining segment wheZOUNT
has been defined in a segment of another module.

ASSUME DS:SEG COUNT

2. This example stores the segment selectoC@yNTinto SETSTARTand
initializes DS withCOUNE segment selector.

SETSTART DW SEG COUNT
; store the selector for the segment
INIT:MOV AX, SEG COUNT
MOV DS, AX ; initialize DS with COUNT's segment

3. This example is equivalent to Example 2.

SETSTART DW SEG COUNT
INIT:MOV DS, SETSTART

ASM386 Assembly Language Reference Chapter 5 145

OFFSET Operator

Syntax
OFFSET varlab
Where:
varlab is the name of a variable or label defined in the current module.
Discussion

The OFFSEToperator returns its operand's offset in bytes from the base of the
segment in which the operand is defined. The value return©gBE$ETis a 32- or
16-bit number, depending on whether the segment/&532 or USE16 segment.

If the operand t@FFSETIs a bit variable that is not within a structure, then it must
be byte-aligned; theFFSETvalue is the number of bytes from the beginning of the
segment to the byte with which the bit is aligned. For bits within a structure, the
OFFSETvalue is the number of bytes from the beginning of the segment to the
nearest low byte boundary.

In most cases, the returned value is not set until bind time; it is a relocatable
number. The®FFSEToperator is used primarily to initialize variables or registers
to be used for indirect addressing (see the Example).

Example

Some assembler instructions explicitly use indirect addressing when accessing datz
When coding these instructions, you must initialize a register to the offset value of
the data you wish to access.

TRANSLATE:

MOV EBX, OFFSET ASCIITABLE

MOV AL, VALUE

XLATB ; EBX points to translation table

146 Chapter 5 Accessing Data

BITOFFSET Operator

Syntax
BITOFFSET name. field
Where:
name is the name of a structure.
field is a field of typeBIT within the structure.
Discussion

TheBITOFFSET operator returns the bit offset from the nearest lower byte address
of a structure field of typBIT . Use the following expression to obtain a value
equal to the number of bits from the beginning of the structure to a specific bit:

((OFFSET name.field)-(OFFSET name))*8)
+ BITOFFSET name.field

For aBIT -type variable defined outside of a struct®H,0FFSET always returns a
0, because such a bit will always be byte-align@iOFFSET also returns a 0 for
structure fields that are not of typer .

ASM386 Assembly Language Reference Chapter 5 147

Example

Although theOFFSEToperator is not a required part oBETOFFSET expression,
BITOFFSET is intended for use witdFFSET

TESTBIT STRUC

TSTBITO DBIT 0B ; structure templates
TSTBIT1 DBIT 0B ; can be defined
TSTBIT2 DBIT 0B ; outside a segment

TSTBIT3 DBIT 0B
TSTBIT4 DBIT 0B
TSTBIT5 DBIT 0B
TSTBIT6 DBIT 0B
TSTBIT7 DBIT 0B
TSTBIT8 DBIT 0B
TSTBIT9 DBIT 0B
TESTBIT ENDS

These instruction statements contt@SESETandBITOFFSET assignments tax.

DATA SEGMENT USE32

BITTSTVARS TESTBIT <> ; assume offset 1001H
; from data segment
DATA ENDS

CODE SEGMENT EO ; default USE32
MOV AX, BITOFFSET BITTSTVARS.TSTBIT9 ;AX:=1
MOV AX, OFFSET BITTSTVARS.TSTBIT9 ; AX := 1002H

MOV AX,(((OFFSET BITTSTVARS.TSTBIT9)

& - (OFFSET BITTSTVARS)) * 8)

& + BITOFFSET BITTSTVARS.TSTBIT9 s AX =9
; expression yields number of bits
; from beginning of structure for TSTBIT9

148 Chapter 5 Accessing Data

LENGTH Operator

Syntax
LENGTH varname
Where:

varname is the name of a variable or structure field (without the dot operator).

Discussion

LENGTHreturns the number of storage unBsT(s, BYTEs, WOR®, DWORE)
QWORD orTBYTEs) that have been allocated for its operand. MRl atype
operandLENGTHreturns a value equal to the number of bits in the storage
allocation. Us@ ENGTHto set a counter for a loop that accesses the elements
of an array .

Examples

These equations illustrate results fE&NGTH

ABYTEARRAY DB 1,2,3,4,5,6,7
LENGTH ABYTEARRAY =7

AWORDARRAY DW 150 DUP (0)
LENGTH AWORDARRAY = 150

TYPE Operator

Syntax
TYPE varlab
Where:
varlab is the name of a variable, a structure field (without the dot operator),
or a label.
Discussion

TheTYPEoperator returns a value that represents the number of bytes occupied by

the type of its operand. These values are listed in Table 5-3.
Note thatTYPEapplied to a label operand yields a negative value.

UseTYPEin instruction sequences where a pointer is to be incremented by the
number of bytes occupied by tmgPEoperand. Or, useYPEfor scaling
operations.

ASM386 Assembly Language Reference Chapter 5 149

Table 5-3. TYPE Operator Results

Operand Type Value Returned

BIT *

BYTE 1

WORD 2

DWORD 4

PWORD 6

QWORD 8

TBYTE 10

Structure number of bytes in structure
Record number of bytes (1 to 4) in record
NEAR -1

FAR -2

* For a BIT-type variable, TYPE returns a value equal to the number of bytes allocated with DBIT.
For BIT-type structure fields, TYPE returns O if the field has less than 8-bits; otherwise, TYPE
returns 1. See also: Chapter 4

Examples

1. This example incremenEs| using thelTYPEoperator and loops to the next
ARRAYelement to be accumulated.

150

MOV EBX, OFFSET ARRAY
MOV ECX, LENGTH ARRAY
: LENGTH = number of elements
MOV ESI, 0 ; index into array
ALAB:ADD AX,[EBX] + [ESI] ; add element to AX value
ADD ESI, TYPE ARRAY ; increment pointer by size
; of an array element
LOOP ALAB

This example is functionally equivalent to Example 1.

MOV EBX, OFFSET ARRAY
MOV ECX, LENGTH ARRAY
: LENGTH = number of elements
MOV ESI, 0 ;index into array
ALAB:ADD AX,[EBX] [ESI * TYPE ARRAY]
: add element to AX value
INC ESI
LOOP ALAB

Chapter 5 Accessing Data

SIZE Operator

Syntax
SIZE varname
Where:

varname is the name of a variable or structure field (without dot operator).

Discussion

TheSIZE operator returns the number of bytes allocated for a variable. For a
variable allocated witbBIT that does not end on a byte boundary, the result is
rounded up by 1 byte. F&iT -type structure fields with less than 8-b&&ZE
returns 1; otherwis&IZE returns the same value BBNGTH

For nonBIT -type variablesSIZE returns a value that is related to tfENGTHand
TYPEresults according to the following identity:

SIZE = LENGTH * TYPE

Examples
1. These equations illustrate results $&IE .

ABYTEARRAY DB 1,2,3,4,5,6,7
SIZE ABYTE ARRAY =7

AWORDARRAY DW 150 DUP (0)
SIZE AWORDARRAY = 300

ADWORDARRAY DD 1,2,3,4,5,6,7
SIZE ADWORDARRAY = 28

2. This example initializes the variabdSIZE to 7 and assigns the value 300 to
AX.

ABYTEARRAY DB 1,2,3,4,5,6,7
AWORDARRAY DW 150 DUP (0)
ASIZE DB SIZE ABYTEARRAY ; ASIZE gets 7

MOV AX, SIZE AWORDARRAY ; AX := 300

ASM386 Assembly Language Reference Chapter 5 151

STACKSTART Operator

Syntax
STACKSTARTsegname
Where:
segname is the name of the stack segment (defined $tACKSER

Discussion

UseSTACKSTARTO initialize the stack pointer (E)SP. Because the processor stack
grows downward, the initial stack pointer value equals the offset of the first dword
(or word, depending on the stack use attribute) above the stack segment in memor
Example
STACK STACKSEG 100

MOV ESP, STACKSTART STACK

Attribute Override Operators

Use the attribute override operators to respecify attributes, such as a variable's or
label's segment or type. There are three kinds of attribute override operators:

e Segment overrides, used to override a default segment register or to specify an
anonymous reference to a variable or label

 ThePTRoperator, used to override type

 TheSHORToperator, used to override the type of a forward-refereNEa®R
label

152 Chapter 5 Accessing Data

Segment Override Operator

Syntax

CS:varlab
DS: varlab
ES: varlab
FS: varlab
GS:varlab
SS: varlab

Where:

varlab is a variable name, a label that is not of tifg\Ror FAR or an
address expression.

Discussion

This operation overrides the segment attribute of a variable or label. The explicit
use of a segment override takes precedence ovesSoMElirective and over
default segment register usage.

Use the segment override to specify a segment register as the segment part of a
memory address. A segment override applies only to a single instruction. The
ASSUMHlirective tells the assembler to generate necessary segment overrides for
all subsequent instructions.

See also: ASSUMHlirective, Chapter 2

Use this operator to override the default segment register for operands that are (or
contain) only base or index registers. Such operands (and expressions) are assumed
to point to a variable. This usage is called an anonymous (or non-symbolic)
reference.

Segment overrides cannot be specified for the default registers in the following
cases:

» ES as the destination of a string operation
eSS for stack operations
* CSforinstruction fetches

See also: Appendix A for a summary of the processor default segment selection
rules

ASM386 Assembly Language Reference Chapter 5 153

Examples
1. This example compares the us&A8BUMEaNd the segment override.

DATA SEGMENT
ABYTE DB 0
DATA ENDS

CODE SEGMENT
ASSUME DS:DATA
MOV BL, ABYTE

; reference to ABYTE is covered by the ASSUME
MOV BL, ES:ABYTE ; override default (DS)

; ASSUME not required for ABYTE reference
CODE ENDS

2. These examples make anonymous references. When the¢dmsistruction
executes, the DS (default) register is used. The segOnhstruction
specifies thaEBX points to data accessible through the ES register.

MOV BL, [EBX]

MOV BL, ES:[EBX]

The opcode for the secoMDWvill be preceded by a segment override prefix
(byte) that forces the processor to use the ES register in order to calculate the
physical address of the variable.

See also: Segment override opcode prefixes, Chapter 6

154 Chapter 5 Accessing Data

PTR Operator

Syntax
type PTR exp
Where:
type can beBIT, BYTE WORPDWORIPWORDQWORDBYTE, NEARoOr
FAR
exp can be a variable name, a label name, an address or register
expression, or an integer that represents an offset.
Discussion

UsePTRto override the type assigned to a variable or label name, or to assign a
type to an anonymous effective address expression syEBXs (see the
Examples).

PTRassigns theype attribute specified on the left to the variable, label or number
specified on the rightPTRalso assigns segment and offset attributes to the
variable or label specified on the right.

Whenexp is a constant expression, type must be preceded by a segment override.
When thetype is NEARor FAR a segment override may not be specified.

Table 5-4 summarizes segment and offset attribute assignments for the possible
values ofexp.

Table 5-4. PTR Result Attributes

exp is Segment Offset

variable or label exp's exp's

number specified by segment override exp itself
anonymous reference default segment unless overridden run-time value

ASM386 Assembly Language Reference Chapter 5 155

Examples
1. These examples increment a byte, word, and dword in memory.

INC BYTE PTR [BX]
INC WORD PTR [ESI]
INC DWORD PTR [EBX]

2. These examples move an immediate value to a byte, word, or dword in
memory.

MOV BYTE PTR [EDI],99
MOV WORD PTR [EDI],99
MOV DWORD PTR [EDI],99

3. This example jumps through two levels of indirection.

JMP PWORD PTR [EBX] ; EBX points to 4-byte offset
; followed by 2-byte segment base

4. These examples pick up a word from a byte array and a byte from a word
array.

FOOW DW 100 DUP (?)
FOOB DB 200 DUP (?)

ADD AL, BYTE PTR FOOW[101]

; add low byte of 50th word to AL
ADD DX, WORD PTR FOOBJ20]

; add word at 21st byte to DX

5. This example accesses an anonymous variable at a given offset from a
segment.

MOV AL,DS:BYTE PTR 5 ; move byte 5 of DS segment to AL
6. These examples override the type attributes of a word variable and a label.

MOV CL, BYTE PTR AWORD ; get 1st byte of variable
MOV DL, BYTE PTR AWORD + 1 ; get variable's 2nd byte
MOV AL, BYTE PTR APROC + 5 ; read a byte of program code

156 Chapter 5 Accessing Data

SHORT Operator

Syntax
SHORT labelexp
Where:
labelexp is a label or label expression defined within the same segment as the
instruction being assembled.
Discussion

The SHORToperator specifies that a label referenced byiRor conditional jump
instruction is within the range of -128..127 bytes of the end of the instruction.
SHORTallows the assembler to check that the label is in this range and to generate
the most compact code for complex label expressions.

When a single label is forward-referenced, the assembler optimizes the relative
offset. However, complex forward references cannot always be optimized.

Example
This example illustrates the useSHORTO save bytes of code. It assumes a
USE32segment.
JMP $+(FWDLAB - FWDLAB?2) ; 8 bytes

JMP SHORT $+(FWDLAB - FWDLAB2) ; 3 bytes
FWDLAB:

FWDLAB2:

ASM386 Assembly Language Reference Chapter 5 157

Record Specific Operators

TheWIDTHoperator returns a result equal to the number of bits in a record or
record field.

The MASKoperator, together with a record field name used as a shift count, helps to
isolate and access the fields within a record. This provides an alternative to
defining BIT -type variables in order to isolate specific bits in a record.

WIDTH Operator

Syntax
WIDTH record
or
WIDTH rec-field
Where:
record is the name of a record variable.

rec-field is the name of a record field.

Discussion

TheWIDTHoperator returns a value equal to the number of bits in either a record or
a record field.

Example
REC1 RECORD F1:2, F2:4, F3:1
RINUMBITS DB WIDTH REC1 ; byte initialized to 7
F2NUMBITS DB WIDTH F2 ; byte initialized to 4

158 Chapter 5 Accessing Data

MASK Operator

Syntax
MASK rec-field
Where:

rec-field is the name of a record field.

Discussion

The MASKoperator defines a value that masks a selected field in a record. This
value has 1s in the bit positions specifiedrdgfield and Os for every other bit
position in the record.

Examples

1. This sequence of instructions creates a recoEd\¥of the same type @&£Cs.
The EAXFULL field is a copy of th&®EC.FULL field. All otherEAXfields
have zeros.

MOV EAX, REC
AND EAX, MASK FULL

2. This sequence of instructions creates a recod\Kof the same type &&ECs.
TheFULL field is zeroed. All otheEAXfields are copies of the corresponding
RECfields.

MOV EAX, REC
AND EAX, NOT MASK FULL

ASM386 Assembly Language Reference Chapter 5 159

Using Field Names as Shift Counts

Syntax
rec-field
Where:

rec-field is the name of a record field.

Discussion

The record field name specifies the number of bits the record will be shifted. To
evaluate a field, the record is shifted right to move the field's contents to the low-
order bits of 8YTE, WORPor DWORI[see the Example).

Example
This example defines a record. It then isolates and evaluate€ frelthe record.
PATTERN RECORD A:3, B:1, C:2,D:4, E:6
AREC PATTERN <>

MOV DX, AREC : move record into DX

AND DX, MASK C : mask out fields A,B,D,E with
: 0000110000000000B

SHR DX, C ; DX now equal to value of field C

160 Chapter 5 Accessing Data

Instruction Operands

For an assembler instruction to operate on data, the data must be expressed in a
form that allows it to be accessed. Some instructions implicitly operate on certain
registers. In most cases, data must be specified as an explicit operand. An
instruction operand can be expressed as a register, a constant expression, an
external constant, a location in memory, or as an expression that combines these
components using assembler operators.

Register Operands

The following registers can be used as explicit operands for many processor
instructions:

e 32-bit general registers: EAX, EBX, ECX, EDX, EBP, ESP, ESI, EDI
» 16-bit general registers: AX, BX, CX, DX, SP, BP, SI, DI

e 8-bit general registers: AL, AH, BL, BH, CL, CH, DL, DH

e Segment registers: CS, DS, ES, FS, GS, SS

e Control registers: CRO, CR2, and CR3

e Testregisters: TR3, TR4, TR5, TR6, and TR7

» Debug registers: DRO, DR1, DR2, DR3, DR6, and DR7

The segment registers can be used onlydry PUSH andPOPinstructions. All
general registers can be used in processor arithmetic and logical operations.

See also: Processor registers, Appendix A
processor instructions, Chapter 6

The following examples show instructions that use processor registers as operands:

MOV AX, FS ; contents of FS moved to AX
ADD ESI, EBX . ESI := ESI + EBX
MOV AX, BX : contents of BX moved to AX

The floating-point coprocessor has its own set of registers called the floating-point
stack. The floating-point stack consists of eight elements, each of which can be
referenced as follows:

ST(i)
Where:

i is a digit from O through 7.

The top-of-stack element is always ST(0), which can be abbreviated as ST.

See also: Floating-point stack and assembler floating-point instructions,
Chapter 7

ASM386 Assembly Language Reference Chapter 5 161

Immediate Operands

An immediate operand is an integer or ordinal constant value. An immediate
operand is never the destination operand of an assembler instruction. Immediates
are source operands .

See also: Destination and source operands, Chapter 6
In the following example, 5 is an immediate operand:

MOV AL, 5 ;AL:=5
CMP AX, OFFFFH ; compare contents of AX to OFFFFH

An immediate may also be a constant expression, such@R3. & the following
example:

CMP AL, 150R 5 ; 15 OR 5 is a constant expression

OFFSETVARIs an expression that yields an integer§6SETVAR+ 1000 is an
immediate operand in the following example:

MOV EAX, OFFSET VAR + 1000 ; EAX := sum of value of the
; OFFSET of VAR and 1000

A segment name represents a logical base address (an ordinal v@apSEGS
an immediate operand in the following example:

MOV AX, DATASEG
MOV DS, AX ; initializes DS to access DATASEG

Memory Operands

A memory operand refers to a particular location in memory. The general term for
a memory operand is an address expression. An address expression may be a
simple variable or label name, or it may involve registers, structure fields, and/or
constants. Each address expression uses one of the addressing methods describe
in the next section.

162 Chapter 5 Accessing Data

Memory Addressing Methods

Logical addresses specified in an assembler program must be mapped to processor
memory addresses so the program can be executed. The system utilities perform
this mapping after the program is assembled. The system utilities translate a
program's logical addresses into processor effective addresses. An effective
address is an offset from a segment base address.

See also: Processor memory organization and effective addresses, Appendix A

Assembler segment structure and memory addressing methods reflect the processor
memory addressing forms. The processor has two forms of addressing:

« Direct Addressing
The effective address (or offset from the segment base) can be:

— Arregister
— The value of a specified variable or label
— A constant or the value of a constant expression.

e Indirect Addressing
The effective address (offset) is calculated from the contents of a specified
base or index register (or a combination of both, with an optional
displacement) pointing to a memory location. There are four forms of indirect
addressing:

— Register indirect addressing

— Based addressing

— Based indexed addressing

— Indexed addressing, which may be scaled (32-bit addressing only)

Direct address offsets can B¥TEs, WOR®, DWORDorPWOR® In the special case
when individual bits in a string are accessed, the offset indicates the specific bit in
a string that is to be affected by the processor bit test instructions.

See also: Bit addressing, in this chapter.

The following sections explain ASM386 direct and indirect addressing forms in
more detail.

ASM386 Assembly Language Reference Chapter 5 163

Direct Memory Addressing

For direct memory addressing, the instruction operand is specified by a variable or
label name. The variable or label refers to a particular location in memory. The
contents of the memory location are used as the operand. For example:

MOV EAX, COUNT ; the dword value at memory location
; COUNT is moved into EAX

Indirect Memory Addressing

Figure 5-1 shows how an indirect address offset is calculated for each register
addressing form explained after the figure.

32-bit Addressing

Segment + Base + (Index * Scale) + Displacement
N N a N N
EAX EAX
CS ECX ECX
SS EDX EDX No Displacement
EBX EBX
< gg + 5 ESP +< = + < 8-bit Displacement
Fs EBP EBP 16-bit Displacement
GS ESI ESI
EDI EDI

16-bit Addressing

Segment + Base *t Index + Displacement ~
cs) N N
gz BX sI No Displacement
+ + + 8-bit Displacement
ES BP D! 16-bit Displ. t
Fs -bit Displacemen
GS

164

Chapter 5

W-3421

Figure 5-1. Effective Address Calculation

Accessing Data

The segment override operator may be used in some cases to override the processor
defaults for segment registers listed in the first column of Figure 5-1, except that
segment overrides cannot be specified for the default registers in the following

cases:

» ES as the destination of a string operation
eSS for stack operations
« CS for instruction fetches

See also: Appendix A for a summary of the processor default segment
selection rules

A register expression uses a base and/or an index register listed in the second and
third columns of Figure 5-1. The assembler register addressing forms are:

[base-reg]Jor[index-reg * scale]
[base-reg + index-reg * scale |
[base-reg + disp Jor[index-reg * scale + disp]

[base-reg + index-reg * scale + disp]
Where:

base-reg is any 32-bit general register (EAX, ECX, EDX, EBX, ESP, EBP,
ESI, EDI) for 32-bit addressing, and is BX or BP for 16-bit
addressing.

index-reg is any 32-bit general register except ESP for 32-bit addressing, and is
Sl or DI for 16-bit addressing.

scale is (an optional) constant or constant expression that evaluates to 1-, 2-,
4-, or 8- for 32-bit addressing. It is invalid for 16-bit addressing.

disp is an 8- or 32-bit displacement for 32-bit addressing, and is an 8- or
16-bit displacement for 16-bit addressing.

Indirect memory addresses can be formed from different combinations of a base
address, an index that may be scaled for 32-bit addressing, and a displacement from
the base. Each possible combination is one of the indirect memory addressing
forms shown in Figure 5-1.

For all forms, the notation of a set of bracké}s)(enclosing a register name
indicates that the register contents point to a memory location that will supply the
value to be used as an operand.

The following sections discuss the four forms of indirect addressing and bit
addressing.

ASM386 Assembly Language Reference Chapter 5 165

Register Indirect Addressing

For register indirect addressing, the offset of the memory location is contained in a
base or index register. To address the location:

1. Load the offset into the register, and
2. Use the register name in brackets as the instruction operand.

To indirectly address a variable iU8E16 segment, code something like the
following example:

MOV BX, OFFSET AVAR ; moves offset of AVAR into BX
MOV AX, [BX] : AX now contains contents of AVAR

Based Addressing

166

The based address form is similar to register indirect form except that a
displacement is added to the contents of the register. The displacement can be an
8- or 32-bit number for 32-bit addressing and an 8- or 16-bit number for 16-bit
addressing.

In the based address form, the base register contains the offset of a location in
memory, called the base. The displacement is used to access another location
relative to that base. For example,

MOV EBX, OFFSET DATASTRUC ; EBX: = base of DATASTRUC
MOV EBX, [EBX + 4] ; EBX: = dword located at fourth
; byte from DATASTRUC

For 32-bit addressing instructions, any 32-bit general register can be used as the
base register. For 16-bit addressing instructions, the BX or BP register can be use
as the base register.

Chapter 5 Accessing Data

Based Indexed Addressing

Based indexed addressing uses the contents of a base register, the contents of an
index register, and an optional displacement. In this addressing form, the base
register points to the base of a data structure and the index register is an index into
that structure. For example:

XOR EAX,EAX : clear EAX
MOV EBX, OFFSET ARRAYSTRUC

; load array's base address
MOV ECX, LENGTH ARRAYSTRUC

MOV ESI, 0 : setindex to O
ALAB:ADD EAX, [EBX + ESI] ; get element
ADD ESI, 4 : increment index

LOOP ALAB ; repeat sequence

For 32-bit addressing, any 32-bit general register can be used as a base register, and
any 32-bit general register except ESP can be used as an index register. A scaling
factor may multiply the contents of the index register, as explained in the next
section.

If no scaling factor is used, the first register specified is assumed to be the base
register, and the second register is assumed to be the index register.

For 16-bit addressing, only registers BX and BP can be used as base registers and
only Sl and DI can be used as index registers; the base and index address may be
specified in any order.

Indexed Addressing

Indexed addressing uses an index register and a displacement. In this case, the
contents of the register specify a byte displacement from the offset of the base. For

example:
MOV SI, 0 : set indices
MOV DI, 0 :SI,DlI:=0

MOV CX, LENGTH SOURCE; moves count of SOURCE
: data units into CX
ALAB:MOV AX, SOURCE [S]] ; indexed address
MOV DEST [DI], AX ;indexed address

ADD SI, 2 ; point to next word in SOURCE
ADD DI, 2 ; point to next word in DEST
LOOP ALAB ; jump back to ALAB

ASM386 Assembly Language Reference Chapter 5 167

For 32-bit addressing, any 32-bit general register except ESP can be used as an
index register. The assembler makes certain assumptions about registers for
instructions using 32-bit addressing:

« Ifthere is only one 32-bit register used in an indirect address, it is assumed to
be a base register unless it has a scale factor.

« Ifthe 32-bit register is scaled, it is assumed to be an index register even if it is
the only 32-bit register in the indirect address.

» Ifthere are two 32-bit registers in an indirect address, the first one (specified
on the left) is assumed to be the base and the second is assumed to be the ind
register, unless one register is scaled.

For 16-bit addressing instructions, only registers S| and DI can be used as index
registers.
Scaling

The scaling factor is used to multiply the value pointed to by the 32-bit index
register by 1, 2, 4, or 8. The syntax for specifying a scaled index register is:

[register * factor]
Where:
register is EAX, EBX, ECX, EDX, EBP, EDI, or ESI.
factor is a constant expression that evaluates to 1, 2, 4, or 8.
For example:
MOV EAX, [EDX*4]

uses a scaled indexed address, with the index (EDX) scaled by a factor of 4.

168 Chapter 5 Accessing Data

Default Segment Registers and Anonymous References

Anonymous references such as:

[BX]

[EBP]

WORD PTR [DI]
[EBX].FIELDNAME
and BYTE PTR [BP]

do not specify a variable name from which a segment can be determined. Note that
the structure field name [EBX].FIELDNAME has type and offset attributes, but it
has no segment attribute.

Unless you explicitly code a segment override operator before an instruction,
segment registers for anonymous references are determined by the processor
default segment register selection rules.

DS is the default segment register for all memory references except when BP, EBP,
or ESP is used as the base register. When this occurs, SS is the default segment
register.

However, you cannot override ES as the destination segment register for string
operations. The processor string instructions always use ES as a segment register
for operands pointed to by (E)DI, and DS for operands pointed to by (E)SI. Only
DS can be overridden with the segment override operator in string operations.

Take care that the correct segment is addressed when an anonymous offset is
specified. Unless you code a segment override, the processor default segment will
be addressed, and the anonymous offset applied to the default segment.

For example, if a program's variables all reside in seg8E@t, as specified by

SEG1 SEGMENT RW
VAR DW 500 DUP(0) ; 500 words filled with O's
SEG1 ENDS

and if theASSUMHlirective in the code segment is as follows:

ASSUME DS:SEG1
then all references to named variables in segi®EGtLassemble correctly.
If BP is selected as a base register to access elememg afs follows:

MOV BP, OFFSET VAR
MOV AX, [BP]

the SS segment register is accessed at run time instead of DS (ho assembly-time
error occurs).

To override this default segment register choice, a segment prefix must be used, as
follows:

MOV BP, OFFSET VAR
MOV AX, DS:[BP] ; segment override operator
; indicates DS register

ASM386 Assembly Language Reference Chapter 5 169

Bit Addressing

The BT (bit test), BTS (bit test and set), BTR (bit test and reset), and BTC (bit test
and complement) instructions operate on bit strings. These processor instructions
make it possible to manipulate individual bits.

A bit string may be stored in a general register or in memory. The following is the
general syntax for addressing a bit within a bit string:

base, offset

Where:

base can be specified using any of the previously mentioned addressing
modes described in Memory Addressing Methods.

offset must be in the range 0 to 31 for a general register; it can range from -2

to +2 gigabits for a memory address.

The offset specified for a general register addresses a bit within the register. The
number specified for offset is taken MOD the size of the base (register). (See the
following examples).

All of the bit manipulation instructions load the carry flag with the value of the
selected bit. BTS then sets the bit to 1, BTR resets the bit to 0, and BTC
complements the bit.

BT EAX, 12 ; test bit 12 in register EAX

BTC MEM, 1111B ; complement bit 15 in word-length
; memory location MEM

BTR AX, 17 ;sethbitlin AXto O

BTS BYTEL1, 6 ; set bit 6 in byte memory
: location BYTE1to 1

See also: BT, BTS, BTR, and BTC instructions, Chapter 6.

170 Chapter 5 Accessing Data

Processor Instructions

This chapter has three major sections:
* An overview of the processor instruction set

e Adiscussion of instruction statements: their syntax, attributes, and encoding
format

* An explanation of the notational conventions used in this chapter, followed by
a detailed reference for each processor instruction.

See also: Floating-point coprocessor instructions, Chapter 7

Overview of the Processor Instruction Set

This section groups the processor instructions according to their general functions.
It has three major subsections:

» Data Transfer Instructions

» Control Instructions

* Systems Programming Instructions

Some processor instructions are listed more than once in these sections.

See also: 80386 Programmer's Reference Mantal more information about
the following topics:

* Processor application programming
e Processor system programming:
— System architecture
— Memory management, protection, multitasking, and input/output
— Exceptions, interrupts, and debugging
— Processor initialization, coprocessing, and mulitprocessing

— Processor operating modes, mixing 16-bit and 32-bit code, and porting 286
or 8086 code to the processor

ASM386 Assembly Language Reference Chapter 6 171

Data Transfer Instructions
This section classifies the processor instructions according to the following criteria:
* Does the instruction assign values? See Tables 6-1 to 6-4.
* Does the instruction adjust data values? See Tables 6-5 and 6-6.
» Does the instruction make stack transfers? See Table 6-7.

« Does the instruction yield flag values that can be tested by conditional
instructions? See Table 6-8.

» Does the instruction test specific flag values to determine its execution or
results? See Table 6-9.

Instructions for application programming are listed first in these tables; those for
system-only programming, if any, are listed last. Some processor instructions
satisfy more than one criterion. These instructions are listed more than once in the
following subsections.

Instructions That Assign Data Values

Most processor instructions assign a value to a location. Tables 6-1 to 6-4
summarize the processor instructions that assign data values:

Table 6-1 lists processor instructions that make external input/output
assignments.

Table 6-2 lists processor instructions that make internal load and store
assignments.

Table 6-3 lists processor instructions that make uncalculated value assignments.

Table 6-4 lists processor instructions that make calculated value assignments.

Table 6-1. External I/O Instructions

Processor Instruction Instruction Description
IN Input from port
ouT Output to port
INS Input string from port
ouTs Output string to port

172 Chapter 6 Processor Instructions

Table 6-2. Internal Load and Store Instructions

Processor Instruction Instruction Description

LODS Load string operand

STOS Store string operand

LAHF Load flags into AH register

SAHF Store AH into flags

LEA Load effective address offset
LDS Load full pointer into DS:register
LES Load full pointer into ES:register
LFS Load full pointer into FS:register
LGS Load full pointer into GS:register
LSS Load full pointer into SS:register
LSL Load segment limit

LAR Load access rights (AR) byte
LGDT Load global descriptor table (GDT) register
LGDTW Load GDTR using 16-bit operand
LGDTD Load GDTR using 32-bit operand
SGDT Store GDT register

SGDTW Store GDTR using 16-bit operand
SGDTD Store GDTR using 32-bit operand
LIDT Load interrupt descriptor table (IDT) register
LIDTW Load IDTR using 16-bit operand
LIDTD Load IDTR using 32-bit operand

continued

ASM386 Assembly Language Reference Chapter 6 173

Table 6-2. Internal Load and Store Instructions (continued)

Processor Instruction

Instruction Description

SIDT
SIDTW
SIDTD
LLDT
SLDT
LTR
STR
LMSW
SMSW

Store IDT register

Store IDTR using 16-bit operand

Store IDTR using 32-bit operand

Load local descriptor table (LDT) register
Store LDT register

Load task register

Store task register

Load machine status word (MSW)

Store MSW

Table 6-3. Instructions That Make Uncalculated Value Assignments

Processor Instruction

Instruction Description

MOV
MOVSX
MOVzZX
STC
CLC
MOVS
STD
CLD
XCHG
MOV
STI

CLI
CLTS

Move data

Move sign-extended data

Move zero-extended data

Set carry flag (CF)

Clear carry flag

Move string to string

Set direction flag

Clear direction flag

Exchange register/memory with register
Move to/from control, debug, or test registers
Set interrupt flag

Clear interrupt flag

Clear TS (task switch) flag in CRO

Chapter 6

Processor Instructions

Table 6-4. Instructions That Make Calculated Value Assignments

Processor Instruction

Instruction Description

ADD
ADC
XADD

SuUB
SBB
MUL
IMUL
DIV
IDIV
INC
DEC
NEG
NOT
AND
OR
XOR
TEST
CMP
CMPXCHG

CMPS
SCAS
CMC
BT
BTS
BTR
BTC
BSF
BSR
NOP
SETcc
LOOPcond
Jcc
LEA
VERR
VERW

Add

Add with carry

Exchange and add (not available on Intel386 or 376
processors)

Subtract

Subtract with borrow

Unsigned multiplication

Signed multiplication

Unsigned divide

Signed divide

Increment by 1

Decrement by 1

Two's complement negation

One's complement negation (logical NOT)
Logical AND

Logical inclusive OR

Logical exclusive XOR

Logical compare

Compare two operands

Compare and exchange (not available on Intel386 or
376 processors)

Compare two strings

Compare string data

Complement carry flag (CF)

Bit test

Bit test and set

Bit test and reset

Bit test and complement

Bit scan forward (LSB to MSB)

Bit scan reverse (MSB to LSB)

No operation (advances (E)IP)

Set byte on condition

Loop control with (E)CX counter (decrements (E)CX)
Conditional jumps (add displacement to (E)IP)
Load effective address

Verify segment for reading

Verify segment for writing

ASM386 Assembly Language Reference Chapter 6

175

Instructions That Adjust Data

176

The instructions in Tables 6-5 and 6-6 adjust data values, either by converting data
from one type or format to another or by shifting or rotating data values.

Table 6-5. Data Conversion Instructions

Processor Instruction Instruction Description

MOVSX Move sign-extended data

MOVZX Move zero-extended data

CBwW Convert byte to word

CwWD Convert word to dword

CWDE Convert sign-extended word to dword
CDQ Convert sign-extended dword to qword
AAA ASCII adjust AL after addition

AAS ASCII adjust AL after subtraction
DAA Decimal adjust AL after addition

DAS Decimal adjust AL after subtraction
AAM ASCII adjust AX after multiplication
AAD ASCII adjust AX before division
ARPL Adjust RPL field of selector

Table 6-6. Shift and Rotate Instructions

Processor Instruction Instruction Description

SHL Shift logical left

SHR Shift logical right

SAL Shift arithmetic left

SAR Shift arithmetic right

SHLD Shift double precision arithmetic left
SHRD Shift double precision arithmetic right
ROL Rotate left

ROR Rotate right

RCL Rotate through carry flag left

RCR Rotate through carry flag right
BSWAP Byte swap (not available on Intel386 or 376 processors)

Chapter 6 Processor Instructions

Instructions That Make Stack Transfers

These instructions transfer data values to or from the stack. They also decrement
or increment the 32- or 16-bit stack poinEySP . Table 6-7 lists processor
instructions that make stack transfers.

See also: Floating-point stack, Chapter 7

Table 6-7. Stack Transfer Instructions

Processor Instruction Instruction Description

PUSH Push operand onto stack

POP Pop dword or word from stack

PUSHF Push FLAGS register (16-bits) onto stack
PUSHFD Push EFLAGS (32-bits) register onto stack
POPF Pop stack into FLAGS

POPFD Pop stack into EFLAGS

PUSHA Push all general word registers onto stack
PUSHAD Push all general dword registers onto stack
POPA Pop stack into word registers (discard SP value)
POPAD Pop stack into dword registers (discard ESP value)
ENTER Make stack frame for procedure parameters
LEAVE High level procedure exit

ASM386 Assembly Language Reference Chapter 6 177

Instructions That Yield Definitive Flag Values

Processor instructions that assign an either/or flag value also create a value that ce
be tested for conditional loops, jumps, or other assignments. For the processor
comparison and bit test instructions, flag value assignments are the primary
execution results. For other processor instructions, either/or flag value assignment:
are secondary execution results. Table 6-8 lists processor instructions that make
either/or assignments to the zer), Sign §), carry €), auxiliary carry 4),

overflow (O), and/or parity B) flag(s).

See also: Processor flags, Appendix A

Table 6-8. Processor Instructions That Yield Definitive Flag Values

Instruction Assigns Either/Or Instruction Description
Value to Flags

CMP z S Cc A o P Compare two operands (non-
destructive SUB)

CMPS z S C A o P Compare two strings

CMPXCHG Z S C A O P Compare and exchange (not available
on Intel386 or 376 processors)

SCAS z S C A O P Compare string data

BT C Bit test

BTS C Bit test and set

BTR C Bit test and reset

BTC C Bit test and complement

BSF z Bit scan forward (LSB to MSB)

BSR z Bit scan reverse (MSB to LSB)

ADD Z S C A (0] P Add

ADC z S C A O P Add with carry

XADD z S A O P Exchange and add (not available on
Intel386 or 376 processors)

SUB z S C A o P Subtract

SBB z S C A O P Subtract with borrow

MUL C (0] Multiply

IMUL C 0] Signed multiplication

INC z S A O P Increment by 1

DEC z S A O P Decrement by 1

NEG z S C O P Two's complement negation

continued
178 Chapter 6 Processor Instructions

Table 6-8. Processor Instructions That Yield Definitive Flag Values (continued)

Assigns Either/Or Instruction
Instruction Value to Flags Description
AND z S P Logical AND
OR z S P Logical (inclusive) OR
XOR z S P Logical (exclusive) XOR
TEST z S P Logical compare (non-destructive AND)
AAA cC A ASCII adjust AL after addition
AAS cC A ASCII adjust AL after subtraction
AAM z S P ASCII adjust AX after multiplication
AAD z S P ASCII adjust AX before division
DAA z S cC A P Decimal adjust AL after addition
DAS z S cC A P Decimal adjust AL after subtraction
ROL C Rotate left
ROR C Rotate right
RCL C Rotate through carry flag left
RCR C Rotate through carry flag right
SHL z S C P Shift logical left
SAL z S C P Shift arithmetic left
SAR z S C P Shift arithmetic right
SHR z S C P Shift logical right
SHLD z S C (0] P Shift double precision arithmetic left
SHRD z S C (0] P Shift double precision arithmetic right
ARPL z Adjust RPL field of selector
LAR z Load AR (access rights) byte
LSL z Load segment limit
VERR z Verify segment for reading
VERW z Verify segment for writing

Conditional Instructions That Test Flag Values

Three processor instructions depend on flag values for their execution results. The
conditional loops and jumps are primarily control transfer instruct®B&scc is
not.

ASM386 Assembly Language Reference Chapter 6 179

Table 6-9 lists these instructions and indicates whether each tests the) zeign(
(S), carry €), auxiliary carry), overflow ©), and/or parity ¥) flag(s).

Table 6-9. Conditional Instructions That Test Flag Values

Instruction Tests Flag Values Description

LOOPcond z Loop control with (E)CX counter
SETcc z S C (0] P Set byte on condition

Jcc z S C (0] P Jump if condition is met

Control Instructions

Control instructions either transfer control between code sections or exert control
over the processor. Tables 6-10 and 6-11 list these processor instructions.

Table 6-10. Control Transfer Instructions

Processor Instruction Instruction Description

LOOP Loop until count in (E)YCX =0

LOOPcond Loop until count in (E)CX = 0 AND zeroflag = condition
JMP Jump to location

Jcc Jump if flag value(s) = condition

CALL Call procedure

RET Return from procedure

INT Call to interrupt procedure

INTO Call to interrupt procedure on overflow

IRET/IRETD Return from interrupt procedure

Table 6-11. Processor Control Instructions

Processor Instruction Instruction Description

NOP No operation (uses clocks)

HLT Halt

WAIT Wait until BUSY# pin is inactive(high)

180 Chapter 6 Processor Instructions

System Instructions

This section lists processor system instructions. System instructions handle the
following general functions:

1. Verification of pointer parameters:

ARPL Adjust RPL (requesting privilege level) of selector
LAR Load AR (access rights) byte

LSL Load segment limit

VERR Verify segment for reading

VERW Verify segment for writing

2. Accessing/storing descriptor tables:

LGDT Load GDT (global descriptor table) register
LGDTW Load GDT register using 16-bit operand
LGDTD Load GDT register using 32-bit operand
SGDT Store GDT register

SGDTW Store GDT register using 16-bit operand
SGDTD Store GDT register using 32-bit operand
LLDT Load LDT (local descriptor table) register
SLDT Store LDT register

LIDT Load IDT (interrupt descriptor table) register
LIDTW Load IDT register using 16-bit operand
LIDTD Load IDT register using 32-bit operand
SIDT Store IDT register

SIDTW Store IDT register using 16-bit operand
SIDTD Store IDT register using 32-bit operand

3. Input and Output:

IN Input from port
ouT Output to port
INS Input string from port

OuUTS Output string to port

4. Interrupt control:

LIDT Load IDT (interrupt descriptor table) register

LIDTW Load IDT register using 16-bit operand

LIDTD Load IDT register using 32-bit operand

SIDT Store IDT register

SIDTW Store IDT register using 16-bit operand

SIDTD Store IDT register using 32-bit operand

CLI Clear IF (interrupt enable) flag in (E)FLAGS register
STI Set IF flag

ASM386 Assembly Language Reference Chapter 6 181

5. Multitasking:

LTR Load task register
STR Store task register
CLTS Clear TS (task switch) flag in CRO

6. Coprocessing and Multiprocessing:

ESC Escape instructions (floating-point coprocessor instructions)
CLTS Clear TS (task switch) flag in CRO

WAIT Wait until coprocessor is not busy

LOCK Assert bus LOCK# signal

See also: Floating-point coprocessor instructions, Chapter 7

7. Debugging and/orLB (translation lookaside buffer) testing in a paged
memory system:

MOV Transfer data to/from debug and/or test registers
8. System control:

MOV Transfer data to/from control registers
LMSW Load MSW (machine status word) into CRO
SMSW Store MSW

HLT Halt processor

9. Cache control (not available on Intel386 or 376 processors):

INVLPG Invalidate paging cache entry
INVD Invalidate data cache
WBINVD Write back and invalidate data cache

Instruction Statements

Instruction statements form the core of an assembler program. These statements
define the actual program that the processor (and optional floating-point
coprocessor) execute.

Instruction Statement Syntax
Each assembler instruction has the following syntax:
[label :][prefix] mnemonic[argument [,...]]
Where:

label is a unique identifier that defines a label. Labels are optional.

182 Chapter 6 Processor Instructions

prefix is a processor instruction prefix@CKor REP. An explicit prefix is
optional.

mnemonic is a processor or floating-point coprocessor instruction or a
programmer-defined codemacro.

argument is an operand. Some processor and floating-point coprocessor
instructions have no operand. For these instructions, operand(s) are
implicit. Other processor instructions require one, two, or three
explicit operands. Floating-point coprocessor instructions have, at
most, two explicit operands.

See also: Labels, Chapter 4
processor instructions, in this chapter
defining codemacros, Chapter 9

For both the processor and the floating-point coprocessor, the general form of an
instruction with operands is one of the following:

mnemonic src
where the execution result may be stored either in the satreck (
itself or in an implicit location.

mnemonic dest,src
where the execution result is stored either in the destinatesn §
operand or in an implicit location; the instruction's operation does not
change the source operand.

The instruction reference pages at the end of this chapter list the valid and/or
required operands for each processor instructiabl(, SHLQ andSHRDare the

only processor instructions that require three operands). The instruction reference
pages list the valid and/or required operands for each floating-point instruction.

See also: Instruction reference pages, Chapter 7

Instruction Attributes

In the context of an assembler program, every instruction has an address size
attribute; it may also have an operand size attribute and a stack size attribute. The
assembler determines these attributes.

ASM386 Assembly Language Reference Chapter 6 183

Address Size Attribute
The assembler can calculate either 32- or 16-bit addresses and offsets.
The assembler determines an instruction's address size attribute as follows:

e If the instruction has an operand, the assembler checkssthattribute of the
segment containing the operand:

— For aUSE32segment, the instruction’'s address size attribute is 32-bits.
— For aUSE16segment, it is 16-bits.

« If the instruction has no operand and no predefined address size attribute, the
assembler checks thusEattribute of the current code segment to determine
the address size attribute.

« If the instruction contains an anonymous reference the assembler checks the
size of the register used in the reference. For example,

PUSH DWORD PTR [EAX]

implies theUSE32 attribute. BecauseAXis a 32-bit register, thiBUSH
instruction's address size attribute is 32-bits.

See also: USE16andUSE32segments, Chapter 2

Operand Size Attribute

When determining the operand size attribute for most instructions, the assembler
considers the type of the instruction operand(s), or, for no-operand instructions, the
type of the operand implied by the instruction's mnemonic. An instruction that
accesses dwords (32-bits) or words (16-bits) has an operand size attribute of 32- or
16-bits, respectively. An instruction that accesses a byte has the operand size
attribute of the current code segment.

The assembler will flag an inconsistency in the use of operands as an error. For
example,

ADD EAX,WORD_VAR

will be flagged as an error becaus&X (32-bit register operand) cannot be used
with WORD_VARL6-bits).

184 Chapter 6 Processor Instructions

Stack Size Attribute

Instructions that use the stack have a stack size attribute of 32- or 16-bits. The

assembler determines an instruction's stack size attribute accordingJ®ethe
attribute of the stack segment. The stack seg@Battribute is either:

e The current default for the module containing the instruction

e Or, theUSEattribute of the stack segment definition

Instructions with a stack size attribute of 32 use the 32-bit ESP register as the stack
pointer; those with a stack size attribute of 16 use the 16-bit SP register as the stack

pointer.

Instruction Encoding Format

All instruction encodings are subsets of the general instruction opcode format

shown in Figure 6-1.

Instruction Address-size Operand-size Segment
Prefix Prefix Prefix Override
Oor1l Oorl Oorl Oorl

Number of Bytes
Opcode ModRM SIB Displacement Immediate
lor2 Oorl Oorl 0,1,2o0r4 0,1,2o0r4
Number of Bytes

W-3422

Figure 6-1. Instruction Encoding Format

Instruction encodings consist of;

e Optional instruction prefixes

e One or two primary opcode bytes

« Possibly an address specifier consisting of:

— TheModRMbyte and theSIB (Scale Index Base) byte

— A displacement, if required

— An immediate data field, if required

ASM386 Assembly Language Reference

Chapter 6

185

Encoding fields vary depending on the class of operation. Smaller encoding fields
can be defined within the primary opcode(s). These fields define the direction of
the operation, the size of the displacements, the register encoding, or the sign
extension.

Most instructions that refer to an operand in memory have an addressing form byte
following the primary opcode byte(s). (The exceptions aréRE€/IRETD ,

INT/INTO , and allPUSHandPOPiInstructions.) This byte, called tivodRMbyte,
specifies the address form to be used. Certain encodingsabtirvbyte

indicate a second addressing byte, 3l (Scale Index Base) byte; this follows the
ModRMbyte and is required to fully specify the addressing form (see Figure 6-2).

Addressing forms can include a displacement immediately following either the
ModRMor SIB byte. If a displacement is present, it can be 8-, 16-, or 32-bits.

If the instruction specifies an immediate operand, the immediate operand follows
any displacement bytes; it is always the last field of the instruction.

Instruction Prefix Codes
Instruction prefix codes occur in three cases:

1. A programmer-specifieBEPor LOCKprefix precedes the instruction. The
assembler generates one of the following prefixes:

F3H REPprefix (used only with string instructions)

F3H REPE/REPZprefix (used only with string instructions)
F2H REPNE/REPNZorefix (used only with string instructions)
FOH LOCKprefix

2. A segment override is specified for the instruction. The assembler
automatically generates one of the following prefixes:

2EH CS segment override prefix
36H SS segment override prefix
3EH DS segment override prefix
26H ES segment override prefix
64H FS segment override prefix
65H GS segment override prefix

186 Chapter 6 Processor Instructions

3. Aninstruction's address and/or operand size requires, at most, a 2-byte prefix.
The assembler automatically generates one or more of the following prefixes:

67H Address size prefix
66H Operand size prefix

See also: LOCKandREPfor more information about specifying prefixes with
instructions, in this chapter

Table 6-12 shows when the assembler generates address and operand size prefixes
for an instruction according to the relationships among$§ address size, and
operand size attributes.

Table 6-12. Generation of Address and Operand Size Prefixes

Prefixes Generated
by Assembler Attributes
Address Operand Address Operand USE of Current
67H 66H Size Size Code Segment
no no 16 16 USE16
no yes 16 32 USE16
yes no 32 16 USE16
yes yes 32 32 USE16
no no 32 32 USE32
no yes 32 16 USE32
yes no 16 32 USE32
yes yes 16 16 USE32

ASM386 Assembly Language Reference Chapter 6 187

ModRM and SIB Bytes

TheModRMandSIB bytes follow the opcode byte(s) in many of the processor
instructions. They contain the following information:

* Indexing type or register number to be used in the instruction
* Register to be used, or more information to select the instruction
* Base, index, and scale information

Figure 6-2 shows the formats of tiledRMandSIB bytes.

ModRM Byte
7 6 5 4 3 2 1 0
Mod Reg/Opcode R/M

SIB (Scale Index Base) Byte
7 6 5 4 3 2 1 0

SF Index Base

W-3423

Figure 6-2. ModRM and SIB Byte Formats

The ModRMoyte contains three fields of information:

mod occupies the 2 most significant bits. The mod field combines with the
r/m field to form 32 possible values representing 8 general registers
and 24 indexing modes.

reg occupies the next 3-bits following the mod field. The reg field
specifies either a register number or three more bits of opcode
information. The meaning of the reg field is determined by the first
(opcode) byte of the instruction.

r/m occupies the 3 least significant bits. The r/m field can specify a
register as the location of an operand, or it can be combined with the
mod field to form the addressing-mode encoding.

See also: MOV Special Registers instruction for the control, test, and debug
register reg values, in this chapter

188 Chapter 6 Processor Instructions

32-bit based-indexed and scaled-indexed addressing forms also reqg@i@ the
byte. The presence of tis8 byte is indicated by certain encodingsvafdRM
bytes. ThesIB byte then includes the following fields:

sf occupies the 2 most significant bits. It specifies the scale factor.

index occupies the next 3-bits. It specifies the register number of the index
register.

base occupies the 3 least significant bits. It specifies the register number of

the base register.

The following tables illustrate the addressing forms for 16- and 32ehiRMoytes
and for 32-bitSIB bytes:

Table 6-13 shows the 16-bit addressing forms specified hydbiBMbyte.
Table 6-14 shows the 32-bit addressing forms specified hydbiBMbyte.
Table 6-15 shows the 32-bit addressing forms specified byithéyte.

ASM386 Assembly Language Reference Chapter 6 189

Table 6-13. 16-Bit Addressing Forms with ModRM Byte in Hexadecimal

r8(/r) AL CL DL BL AH CH DH BH
ri6(/r) AX CX DX BX SP BP Sl DI
r32(/r) EAX ECX EDX EBX ESP EBP ESI EDI
/digit(Opcode) 0 1 2 3 4 5 6 7
REG = 000 001 010 011 100 101 110 111
Effective ModRM Bits

Address MOD R/M | ModRM Values in Hexadecimal

[BX + SI] 000 00 08 10 18 20 28 30 38
[BX + DI 001 01 09 11 19 21 29 31 39
[BP + SI] 010 02 0A 12 1A 22 2A 32 3A
[BP + DI 00 011 03 0B 13 1B 23 2B 33 3B
[S1] 100 04 oC 14 1C 24 2C 34 3C
[DI] 101 05 oD 15 1D 25 2D 35 3D
disp16 110 06 OE 16 1E 26 2E 36 3E
[BX] 111 07 OF 17 1F 27 2F 37 3F
[BX + Sl]+disp8 000 40 48 50 58 60 68 70 78
[BX + DI]+disp8 001 41 49 51 59 61 69 71 79
[BP + Sl]+disp8 010 42 4A 52 5A 62 6A 72 7A
[BP + DI]+disp8 01 011 43 4B 53 5B 63 6B 73 7B
[SI]+disp8 100 44 4C 54 5C 64 6C 74 7C
[DI]+disp8 101 45 4D 55 5D 65 6D 75 7D
[BP]+disp8 110 46 4E 56 5E 66 6E 76 7E
[BX]+disp8 111 a7 4F 57 5F 67 6F 77 7F
[BX + Sl]+disp16 000 80 88 90 98 AO A8 BO B8
[BX + Dl]+disp16 001 81 89 91 99 Al A9 Bl B9
[BX + Sl]+disp16 010 82 8A 92 9A A2 AA B2 BA
[BX + DI]+disp16 10 011 83 8B 93 9B A3 AB B3 BB
[SI]+disp16 100 84 8C 94 9C A4 AC B4 BC
[DI]+disp16 101 85 8D 95 9D A5 AD B5 BD
[BP]+disp16 110 86 8E 96 9E A6 AE B6 BE
[BX]+disp16 111 87 8F 97 9F A7 AF B7 BF
EAX/AX/AL 000 Co cCs8 DO D8 EO E8 FO F8
ECX/CX/CL 001 Cl C9 D1 D9 El E9 F1 F9
EDX/DX/DL 010 C2 CA D2 DA E2 EA F2 FA
EBX/BX/BL 11 011 C3 CB D3 DB E3 EB F3 FB
ESP/SP/AH 100 C4 CC D4 DC E4 EC F4 FC
EBP/BP/CH 101 C5 CD D5 DD E5 ED F5 FD
ESI/SI/DH 110 C6 CE D6 DE E6 EE F6 FE
EDI/DI/BH 111 C7 CF D7 DF E7 EF F7 FF

disp8 denotes an 8-bit displacement following the ModRM byte that is sign-extended bits and added to the
index. displ6 denotes a 16-bit displacement following the ModRM byte that is added to the index. The
default segment register is SS for effective addresses containing a BP index; it is DS for other effective
addresses.

190 Chapter 6 Processor Instructions

Table 6-14. 32-Bit Addressing Forms with ModRM Byte in Hexadecimal

r8(/r) AL CL DL BL AH CH DH BH
ri6(/r) AX CX DX BX SP BP Sl DI
r32(/r) EAX ECX EDX EBX ESP EBP ESI EDI
/digit(Opcode) 0 1 2 3 4 5 6 7
REG = 000 001 010 011 100 101 110 111
Effective ModRM Bits

Address MOD R/M | ModRM Values in Hexadecimal

[EAX] 000 00 08 10 18 20 28 30 38
[ECX] 001 01 09 11 19 21 29 31 39
[EDX] 010 02 0A 12 1A 22 2A 32 3A
[EBX] 011 03 0B 13 1B 23 2B 33 3B
[--1[-1 00 100 04 oc 14 1C 24 2C 34 3C
disp32 101 05 0D 15 1D 25 2D 35 3D
[ESI] 110 06 OE 16 1E 26 2E 36 3E
[EDI] 111 07 OF 17 1F 27 2F 37 3F
disp8[EAX] 000 40 48 50 58 60 68 70 78
disp8[ECX] 001 41 49 51 59 61 69 71 79
disp8[EDX] 010 42 4A 52 5A 62 6A 72 7A
disp8[EBX] 011 43 4B 53 5B 63 6B 73 7B
disp8[--][--] 01 100 44 4C 54 5C 64 6C 74 7C
disp8[EBP] 101 45 4D 55 5D 65 6D 75 7D
disp8[ESI] 110 46 4E 56 5E 66 6E 76 7E
disp8[EDI] 111 a7 4F 57 5F 67 6F 77 7F
disp32[EAX] 000 80 88 90 98 A0 A8 BO B8
disp32[ECX] 001 81 89 91 99 Al A9 Bl B9
disp32[EDX] 010 82 8A 92 9A A2 AA B2 BA
disp32[EBX] 011 83 8B 93 9B A3 AB B3 BB
disp32[--][--] 10 100 84 8C 94 9C A4 AC B4 BC
disp32[EBP] 101 85 8D 95 9D A5 AD B5 BD
disp32[ESI] 110 86 8E 96 9E A6 AE B6 BE
disp32[EDI] 111 87 8F 97 9F A7 AF B7 BF
EAX/AX/AL 000 Cco cs DO D8 EO E8 FO F8
ECX/CX/CL 001 C1 C9 D1 D9 El E9 F1 F9
EDX/DX/DL 010 c2 CA D2 DA E2 EA F2 FA
EBX/BX/BL 11 011 C3 CB D3 DB E3 EB F3 FB
ESP/SP/AH 100 C4 CcC D4 DC E4 EC F4 FC
EBP/BP/CH 101 C5 CD D5 DD E5 ED F5 FD
ESI/SI/DH 110 C6 CE D6 DE E6 EE F6 FE
EDI/DI/BH 111 C7 CF D7 DF E7 EF F7 FF

[--][-] means a SIB byte follows the ModRM byte. disp8 denotes an 8-bit displacement following the SIB
byte that is sign-extended to 32 bits and added to the index. disp32 denotes a 32-bit displacement following
the ModRM byte that is added to the index.

ASM386 Assembly Language Reference

Chapter 6

191

Table 6-15. 32-Bit Addressing Forms with SIB Byte in Hexadecimal

r32 EAX ECX EDX EBX ESP * ESI EDI
Base = 0 1 2 3 4 5 6 7
Base = 000 001 010 011 100 101 110 111
Scaled Index ‘SF ‘Index ‘SIB Values in Hexadecimal

[EAX] 000 00 01 02 03 04 05 06 07
[ECX] 001 08 09 0A 0B oC oD OE OF
[EDX] 010 10 11 12 13 14 15 16 17
[EBX] 00 011 18 19 1A 1B 1C 1D 1E 1F
none 100 20 21 22 23 24 25 26 27
[EBP] 101 28 29 2A 2B 2C 2D 2E 2F
[ESI] 110 30 31 32 33 34 35 36 37
[EDI] 111 38 39 3A 3B 3C 3D 3E 3F
[EAX*2] 000 40 41 42 43 44 45 46 47
[ECX*2] 001 48 49 4A 4B 4C 4D 4E 4F
[EDX*2] 010 50 51 52 53 54 55 56 57
[EBX*2] 01 011 58 59 5A 5B 5C 5D 5E 5F
none 100 60 61 62 63 64 65 66 67
[EBP*2] 101 68 69 6A 6B 6C 6D 6E 6F
[ESI*2] 110 70 71 72 73 74 75 76 77
[EDI*2] 111 78 79 7A 7B 7C 7D 7E 7F
[EAX*4] 000 80 81 82 83 84 85 86 87
[ECX*4] 001 88 89 8A 8B 8C 8D 8E 8F
[EDX*4] 010 90 91 92 93 94 95 96 97
[EBX*4] 10 011 98 99 9A 9B 9C 9D 9E 9F
none 100 A0 Al A2 A3 A4 A5 A6 A7
[EBP*4] 101 A8 A9 AA AB AC AD AE AF
[ESI*4] 110 BO Bl B2 B3 B4 B5 B6 B7
[EDI*4] 111 B8 B9 BA BB BC BD BE BF
[EAX*8] 000 Cco C1 c2 C3 Cc4 C5 Cc6 Cc7
[ECX*8] 001 cs Cc9 CA CB CcC CD CE CF
[EDX*8] 010 DO D1 D2 D3 D4 D5 D6 D7
[EBX*8] 11 011 D8 D9 DA DB DC DD DE DF
none 100 EO El E2 E3 E4 E5 E6 E7
[EBP*8] 101 E8 E9 EA EB EC ED EE EF
[ESI*8] 110 FO F1 F2 F3 F4 F5 F6 F7
[EDI*8] 111 F8 F9 FA FB FC FD FE FF

The [*] heading in column 5 of the SIB values means a disp32 with no base if MOD is 00, EBP otherwise.
Depending on the value of MOD, the following addressing modes are possible: disp32[index], disp8[EBP]
[index], and disp32[EBP] [index] with MOD values 00, 01, and 10, respectively.

192 Chapter 6 Processor Instructions

Processor Instruction Set Reference

This section first explains how to use the instruction set reference pages and how to
find instructions that are grouped with others. The reference pages for each
processor instruction are at the end of this section.

How to Read the Instruction Set Reference Pages

For each processor instruction, a table summarizes the opcode, instruction syntax,
clocks, and description of its operation. Following the instruction table are
reference page sections titled Operation, Discussion, Flags Affected, and
Exceptions by Mode. The following is an example of an instruction table:

Opcode Instruction Clocks Description

OCib OR AL,imm8 2 OR immediate byte to AL

0D iw OR AX,imm16 2 OR immediate word to AX

oD id OR EAX,imm32 2 OR immediate dword to EAX
80/1ib OR r/m8,imm8 217 OR immediate byte to r/m byte
81/1 iw OR r/m16,imm16 2/7 OR immediate word to r/m word
81/1id OR r/m32,imm32 2/7 OR immediate dword to r/m dword
08 /r OR r/m8,r8 2/6 OR byte register to r/m byte

09 /r OR r/m16,r16 2/6 OR word register to r/m word
09 /r OR r/m32,r32 2/6 OR dword register to r/m dword
O0A /r OR r8,r/m8 217 OR r/m byte to byte register

0B /r OR r16,r/mi16 217 OR r/m word to word register
0B /r OR r32,/m32 217 OR r/m dword to dword register

The following subsections explain the notational conventions and abbreviations
used in the instruction table columns and in the reference page sections.

ASM386 Assembly Language Reference Chapter 6 193

Opcode Column

The opcode column gives the complete object code produced for each form of the
instruction. When possible, codes are expressed as hexadecimal bytes in the sam

order in which they appear in memory. Definitions of entries other than
hexadecimal bytes are as follows:

/digit is a digit from O to 7; it indicates that tMadRMbyte of the
instruction uses only them (register or memory) operand. The reg
field of the ModRM byte contains the digit (0..7) that provides an
extension to the instruction's opcode.

/r indicates that thodRMbyte of the instruction contains both a
register operand and aftnm operand.

cb, cw, cd, cp
is a 1-byte €b), 2-byte ¢w), 4-byte €d), or 6-byte €p) value

following the opcode that is used to specify a code offset and possibly
a new value for the code segment register.

ib,iw,id isal-byteip), 2-byte (w), or 4-byte [d) immediate operand to the
instruction that follows the opcod@pdRMandSIB bytes. The
opcode determines if the operand is a signed value. All wavds (
and dwordsi@) are given with the low-order byte first.

+rb , +rw, +rd

is a register code from 0 to 7 that is added to the hexadecimal byte at
the left of the plus sign to form a single opcode byte. The register

codes are:
rb w rd

AL=0 AX=0 EAX=0
CL=1 CX=1 ECX=1
DL=2 DX=2 EDX=2
BL=3 BX=3 EBX=3
AH=4 SP=4 ESP=4
CH=5 BP=5 EBP=5
DH=6 SI=6 ESI=6

BH=7 DI=7 EDI=7

194 Chapter 6 Processor Instructions

Instruction Column

The instruction column gives the syntax of the instruction statement as it would
appear in a assembler program.

The following is a list of the symbols used to represent operands in the instruction
statements:

r8 is one of the byte registers AL, CL, DL, BL, AH, DH, CH, or BH.
For exampleMOW8,imm8 can be coded

MOV DH,3

ri6 is one of the word registers AX, CX, DX, BX, SP, BP, SI, or DI. For
exampleJNC r16 can be coded

INC BX

r32 is one of the dword registers EAX, EBX, ECX, EDX, ESP, EBP, ESI,
or EDI. For exampleDECr32 can be coded

DEC EDX

r/m8 is a 1-byte operand that is either the contents of a byte register (AL,
BL, CL, DL, AH, BH, CH, DH), or a byte from memory. For
example, MOV r8,r/m8 could be coded

MOV DL,AH
meaning set DL to the value in AH. It could also be coded
MOV DL,POWER_FLAG

meaning set DL to the memory byte variab@WER_FLAGVhere
POWER_FLA®@as declared at the top of the program.

r/m16 is a word register or memory operand used for instructions whose
operand size attribute is 16-bits. The word registers are AX, BX, CX,
DX, SP, BP, SI, DI. The contents of memory are found at the address
provided by the effective address computation. As an exawpiz,
r/m16,imm8 could be coded

ADD SP,10

meaning add 10 to the contents of the SP register. It could also be
coded

ADD [BP].WORD_ELEM,10

meaning add 10 to the memory wan®RD_ELEMvhich is part of a
structure addressed by the BP register.

ASM386 Assembly Language Reference Chapter 6 195

196

r/m32

mé8

mlé6

m32

imm8

is a dword register or memory operand used for instructions whose
operand size attribute is 32-bits. The dword registers are EAX, EBX,
ECX, EDX, ESP, EBP, ESI, EDI. The contents of memory are found
at the address provided by the effective address computation.

is a memory byte that can apply to all addressing fomm&can be a
simple memory variable of ty@YTE or it can be indexed. For
exampleLODSm8can be coded

LODS BSTRING
whereBSTRINGIs a byte array addressed by the (E)SI register.

is a memory word that can apply to all addressing formscan be
a simple variable of typ&/ORpor it can be indexed. For example,
MOWDS, mi6can be coded

MOV DS,DATA_SELECTOR

whereDATA_SELECTORs a memory variable declared with the
following statement

DATA_SELECTOR DW DATA
MOV DS,m16 can also be coded
MOV DS,SELECTOR_ARRAY[DI]

where DI is a run-time index into the fixed word array
SELECTOR_ARRAY

is a memory dword that can apply to all addressing forms.
is a memory operand whose type is not checked by the assembler.

See also: BTS and other bit instructions for an explanatian of
usage, in this chapter

is an immediate byte valugmmag8is a signed number in the range
128..127 , a symbol equated to such a number, or an expression
evaluating to such a number. For exampl@D AL,imm8 can be
coded

ADD AL,37

meaning add the number 37 to the AL regist8rAX ,imm8 can be
coded

IN AX,SERIAL_PORT

Chapter 6 Processor Instructions

if the following statement appears elsewhere within the program
SERIAL_PORT EQU 40H
MOV r8,imm8 can be coded
MOV DL,LENGTH PTR_TABLE + 1

if the following statement appears elsewhere within the program
PTR_TABLE DW 30 DUP (?)

MOV DL,LENGTH PTR_TABLE + 1 loads 31 into the DL register.
Negative values between -128 and -255 wrap around to positive
numbers because the largest negative number that can be represented
with 8-bits is -128. Numbers between 127 and 255 can be used for the
representation of unsigned numbers. When instructions combine an
imm8with a word or dword operand, the immediate value is sign-
extended to form a word or dword.

imm16 is an immediate word value used for instructions whose operand size
attribute is 16-bits. This is a number in the range -32763..32762, a
symbol equated to such a number, or an expression evaluating to such
a number. For examplapD AX, imm16 can be coded

ADD AX,1000

meaning add the number 1000 to the AX regisk@Vr16,imm16
can be coded

MOV DI,OFFSET COUNTER

whereCOUNTERs a label. The instruction would mo@®UNTER
offset within its segment (not the contentCAfUNTERINto the DI
register.

imm32 is an immediate dword value used for instructions whose operand size
attribute is 32-bits. This is a number in the range
2147483648..2147483647

rel8 is a label in the range from 128 bytes before the end of the instruction
to 127 bytes after the end of the instruction. For exampiesel8
can be coded

JMP PROCESS_NEXT

if the labelPROCESS_NEXTappears nearby in the same code
segment.LOOPrel8 can be coded

FLOOP XY_LOOP

if XY_LOOP: appears several lines above.

ASM386 Assembly Language Reference Chapter 6 197

rell6, rel32
is a label within the same code segment as the instrucidts
applies to instructions with an operand size attribute of 16+ei32
applies to instructions with an operand size attribute of 32-bits. The
label cannot be BARIabel. For exampledMPre/16 can be coded

JMP ABORTX

if the destination label is declared (possibly several pages away) in the
same code segment as the jun@aLL re/l16 can be coded

CALL GET_CONSOLE
if the following statement appears elsewhere in the program
EXTRN GET_CONSOLE:NEAR

ptri6:16 , ptr16:32
is aFARIabel, typically in a code segment different from that of the
instruction. These labels are also called full pointersl6:16 is
used when the instruction's operand size attribute is 16-bits;
ptr16:32 is used with the 32-bit attribute. The notation 16:16
indicates that the value of the pointer has two parts. The value on the
left of the colon is a 16-bit selector or value destined for the code
segment register. The value on the right corresponds to the offset
within the destination segment. For exam@el.L ptr16:16 can be
coded

CALL SERVICE_ACTION
if the following statement appears elsewhere in the program
EXTRN SERVICE_ACTION:FAR

ml6:16, mi16:32
is a memory operand containing a full pointer composed of two
numbers. The number to the left of the colon corresponds to the
pointer's segment selector. The number to the right corresponds to its
offset. Like theptr16:16 andptr16:32 operandsm16:16 and
m16:32 operands are memory locations which contain full pointers.

198 Chapter 6 Processor Instructions

m16&32, m16&16, m32&32
is a memory operand consisting of paired data items whose sizes are
indicated on the left and the right side of the ampersand. All memory
addressing forms are allowed. Ari6&160or m32&32operand is used
by theBOUNDnstruction (the operand specifies upper and lower
bounds for array indicesLIDT m16&32andLGDTm16&32load a
word into the limit field, and a dword into the base field of the
Interrupt and Global Descriptor Table registers. For exam@BT
m16&32can be coded

LGDT GLOBAL_ARRAY

if the following statement appears in a data segment elsewhere in the
program (and is followed by the array initializations)

GLOBAL_ARRAY LABEL BYTE
LIDT m16&32 can be coded
LIDT [BP].IPT_TABLE
wherelPT_TABLE is the element of a structure addressed by the BP

register.

moffs8, moffs16, moffs32
(memory offset) is a simple memory variable of t{y'E WORDor
DWORDsed by tha1OMnstruction. A simple offset relative to the
segment base specifies the actual addressviddeMoyte is used in
the instruction. The number shown witloffs indicates its size,
which is determined by the address size attribute of the instruction.
For example, the instructionOVvmoffs32, EAXcan be coded

MOV ITEM_COUNT,EAX

wherelTEM_COUNTis a simple dword memory variable. These
special forms of th&OVinstruction generate less code.

Sreg is a segment register. The segment register values are ES=0, CS=1,
SS=2, DS=3, FS=4, and GS=5.

ASM386 Assembly Language Reference Chapter 6 199

Clocks Column

200

The clocks column gives the number of clock cycles for each form of the
instruction. The clock values apply only to the Intel386 processor. Instructions
which are not available on the Intel386 or 376 processors have a-daéh the
clocks column.

The clock count calculations make the following assumptions:

1. The instruction has been prefetched and decoded and is ready for execution.
2. Bus cycles do not require wait states.
3. There are no a numeric coprocessor data transfers or local bus HOLD requests
delaying processor access to the bus.
4. No exceptions are detected during instruction execution.
Memory operands are aligned on 4-byte boundaries.
Opcode Instruction Clocks Description
OCib OR AL,imm8 2 OR immediate byte to AL
0D iw OR AX,imm16 2 OR immediate word to AX
oD id OR EAX,imm32 2 OR immediate dword to EAX
80/1ib OR r/m8,imm8 217 OR immediate byte to r/m byte
81/1 iw OR r/m16,imm16 2/7 OR immediate word to r/m word
81/1id OR r/m32,imm32 2/7 OR immediate dword to r/m dword
08 /r OR r/m8,r8 2/6 OR byte register to r/m byte
09 /r OR r/m16,r16 2/6 OR word register to r/m word
09 /r OR r/m32,r32 2/6 OR dword register to r/m dword
O0A /r OR r8,r/m8 217 OR r/m byte to byte register
0B /r OR r16,r/mi16 217 OR r/m word to word register
0B /r OR r32,/m32 217 OR r/m dword to dword register

Clock counts for instructions that haver@n (register or memory) operand are
separated by a slash. The count to the left is used for a register operand; the coun
to the right is used for a memory operand.

Chapter 6 Processor Instructions

The following symbols are used in the clock count specifications:
Norn represents the number of times a clock cycle is repeated.

m represents the number of components in the next instruction executed,
where the entire displacement (if any) counts as one component, and
all other bytes of the instruction and prefix(es) each count as one
component.

pm = is a label that applies when the instruction executes in protected
mode. pm = is omitted when the clock counts are the same for
protected, real address, and virtual 8086 modes.

Tor ¥ indicates additional information about clock counts below the table.

Description Column
The description column briefly explains the various forms of the instruction.

The Operation and Discussion sections that follow the table contain more details of
the instruction's operation.

Operation Section

This reference page section contains an algorithmic description of the instruction
coded in a notation similar to the Algol languages. The algorithms are composed
of the following elements:

1. Keywords of the algorithmic language, labels, and processor registers are
capitalized; variables, functions, and prose descriptions are in capital and
lower case letters. Comments are enclosed within the symbol+painsi{).
Semi-colons separate the statements of the algorithms.

2. Compound statements are indented; compound statements are sometimes
terminated byYENDIF, ENDIFELSE, ENDWHILE or ENDFORor clarity or if
their component statements extend across page breaks.

3. Arregister name implies the contents of the register. A register name enclosed
in brackets[(]) implies the contents of the location whose address is
contained in that register. For exam@g;[DI] indicates the contents of the
location whose ES segment relative address is in registgsDI. indicates
the contents of the address contained in register Sl relative to Sl's default
segment (DS) or overridden segment.

4. := isthe assignment operator. For example,B; indicates that the value
of B is assigned to A.

ASM386 Assembly Language Reference Chapter 6 201

202

5.

=, NOT= >, >=, <, and<= are relational operators used to compare two values.
These operators mean "equal, not equal, greater than, greater or equal, less
than, less or equal," respectively. A relational expression suchas A=B is
TRUEIf the value of A is equal to that of B; otherwise, IE/AL_SE

OperandSize represents the 16- or 32-bit operand size attribute of an
instruction. StackSize represents the 16- or 32-bit stack size attribute of an
instruction. AddressSize represents the 16- or 32-bit address size attribute of
the instruction. For example,

IF instruction = CMPSW THEN
OperandSize := 16;
ELSE
IF instruction = CMPSD THEN
OperandSize := 32;

indicates that the assembler will set the operand size attribute according to the
mnemonic form of th€MPSnstruction used. The Operation sections for
certain instructions indicate how the assembler determines these attributes.

See also: OperandSize, StackSize, and AddressSize, Chapter 6

The following functions are used in the algorithmic descriptions:

1.

Truncate(value) reduces the size of the value to fit in 16-bits by discarding
high-order bits as needed.

Addr (operand) returns the effective address of the operand. (This value is the
address calculation prior to adding the segment base).

ZeroExtend(value) returns a value zero-extended to the operand size attribute
of the instruction. For example, ZeroExtend of a byte-long -10D value
converts the byte from F6H to 000000F6H. If the value passed to ZeroExtend
and the operand size attribute are the same size, ZeroExtend returns the value
unaltered.

SignExtendvalue) returns a value sign-extended to the operand size attribute
of the instruction. For example, SignExtend of a byte-long -10D converts the
byte from F6H to FFFFFFF6H. If the value passed to SignExtend and the
operand size attribute are the same size, SignExtend returns the value
unaltered.

Push(value) pushes a value onto the stack. The number of bytes pushed is
determined by the operand size attribute of the instruction.

See also: PUSHInstruction, in this chapter

Chapter 6 Processor Instructions

6. Pop(value) removes the value from the top of the stack and returns it. The
statement

EAX := Pop();

assigns the 32-bit value that Pop took from the top of the stack to the EAX
register. Pop will return either a word or a dword depending on the operand
size attribute.

See also: POPiInstruction, in this chapter

7. Bit[BitBase,BitOffset] returns the address of a bit within a bit string. Bits are
numbered from right to left within registers and within memory bytes. If the
base operand is a 32-bit register, the offset can be in the range 0..31. This
offset addresses a bit within the indicated register. An example,
BIT[EAX,21], is illustrated in Figure 6-3.

31 21 0

b BitOffset=21 ———

W-3424

Figure 6-3. BitOffset for BIT[EAX,21]

In memory, the 2 bytes of a word are stored with the low-order byte at the lower
address. If BitBase is a memory address, BitOffset can range from -2 gigabits to
+2 gigabits. The addressed bit is numbered (BitOffset MOD 8) within the byte at
address (BitBase + (BitOffset DIV 8)), where DIV is signed division with rounding
towards negative infinity, and MOD returns a positive number. This is illustrated
in Figure 6-4.

ASM386 Assembly Language Reference Chapter 6 203

204

76543210

Positive Offset
76543210

76543210

[
BitBase + 1
L

BitBase

BitBase - 1

L BitOffset = 13 4

76543210

Negative Offset
76543210

76543210

BitBase

BitBase - 1

T
BitBase - 2
L

—— BitOffset = 11 J

W-3425

Figure 6-4. Memory Bit Indexing

IOPermission(Src, width(Src)) checks the 1/0O permission bits for every byte
of the Src operand before external 1/0 operations.

See also: I/O permission bit map, Appendix A

SwitchTasksperforms certain protected mode checks before the processor
changes the value afS:(E)IP . Before the processor executeALL, RET,

INT, IRET, orJMPinstruction in protected mode, it checks the access rights
(AR) of the descriptor table entry for the selector associated with the new CS.
AR determines whether an intersegment control transfer is:

e Through a gate
* Atask switch
* Merely aFARjump to a code segment at the same privilege level

The SwitchTasks function is an abbreviation for the following checks and
actions:

IF new TSS descriptor NOT PRESENT (*P bit of AR = 0*) THEN
#NP(new TSS);

IF new TSS descriptor BUSY (*B bit of AR = 1*) THEN
#GP(new TSS);

IF new TSS descriptor limit < 103 (*or < 43 for 286 TSS*) THEN
#TS(new TSS);

Chapter 6 Processor Instructions

Save machine state in current TSS;
(*copy general, segment, and flags registers to current TSS*)
IF nesting tasks THEN
new TSS backlink := current TSS selector;
ELSE (*in current TSS descriptor*)
AR := NOT BUSY; (*B bit = 0%)
ENDIFELSE;
TR (*task register*) := new TSS selector;
new TSS descriptor := BUSY; (*B bit of AR = 1%*)
TS (*flag in MSW of CRO*) := 1,
Set general and EFLAGS (*NT := 1 if nested task*) registers
to new TSS values;

Load selectors for LDT, SS, CS, DS, ES, FS, GS, and, if paging
enabled, CR3 page directory physical address associated with

new TSS;
(*Check validity of selectors for LDT and Sreges; if paging
enabled, check CR3 associated with new TSS*)
(*Check LDT validity: *)
IF LDT selector NOT within GDT limits
OR LDT selector does not index GDT THEN
#TS(LDT selector);
IF AR (*of LDT descriptor*) indicates non-LDT segment THEN
#TS(LDT selector);
IF AR (*of LDT descriptor*) indicates NOT PRESENT THEN
#TS(LDT selector);
(*END check LDT validity*)
Load new LDT descriptor into LDT cache; (*valid LDT*)
CPL (*of new TSS*) := RPL; (*of new TSS CS selector¥)
(*Check validity CS: *)
IF CS selector = null THEN #TS(CS selector);
IF CS selector NOT within its descriptor table limits THEN
#TS(CS selector);
IF AR (*of CS descriptor*) indicates non-code segment THEN
#TS(CS selector);
IF nonconforming AND DPL NOT = CPL THEN #TS(CS selector);
IF conforming AND DPL > CPL THEN #TS(CS selector);
IF AR (*of CS descriptor*) indicates NOT PRESENT THEN
#NP(CS selector);
(*END checks CS validity*)

ASM386 Assembly Language Reference Chapter 6 205

206

Load new CS descriptor into CS cache; (*valid CS*)
(*Check validity SS: *)
IF new SS selector = null THEN #TS(SS selector):
IF SS selector NOT within its descriptor table limits THEN
#TS(SS selector);
IF RPL (*of SS selector*) NOT = CPL THEN #TS(SS selector);
IF DPL (*of SS descriptor*) NOT = CPL THEN #TS(SS selector);
IF AR (*of SS descriptor*) indicates code
OR non-writable data segment THEN
#TS(SS selector);
IF AR (*of SS descriptor*) indicates NOT PRESENT THEN
#NP(SS selector);
(*END checks SS validity*)
Load new SS descriptor into SS cache; (*valid SS*)
(*Check each of DS, ES, FS, GS segment selector(s) validity*)
IF selector index NOT within its descriptor table limits THEN
#TS(segment selector);
IF AR (*of new selector*) indicates non-data
OR non-readable code segment THEN
#TS(segment selector);
IF data OR nonconforming code THEN
IF DPL < CPL THEN #GP(segment selector);
IF DPL < RPL THEN #GP(segment selector);
ENDIF; (*data or nonconforming code*)
IF AR (*of segment descriptor*)indicates NOT PRESENT THEN
#NP(segment selector);
(*END checks DS, ES, FS, GS validity*)
Load new segment descriptor(s) into Sreg cache(s); (*valid
DS,ES,FS,GS¥)
IF PG (*bit 31 of CRO*) = 1 THEN (*paging enabled*)
IF current TSS CR3 = new TSS CR3 THEN
NOP;
ELSE
Flush page translation cache;
Load CR3 (*of new TSS*);
ENDIF; (*page directory base address in CR3*)

Chapter 6 Processor Instructions

Discussion Section

This section contains a further explanation of the instruction's operation.

Flags Affected Section
This section lists the flags that are affected by the instruction, as follows:

« Ifaflag is always cleared or always set by the instruction, the flag's value
(=0 or =1) is also listed.

« If aflag is undefined, its value may be changed by the instruction in an
indeterminate manner.

Most processor instructions assign values to flags in a uniform manner. See each
instruction's Operation section for any unconventional flag value assignments it
makes. If a flag is not mentioned in the Flags Affected section, the instruction
leaves it unchanged.

See also: Flags, Appendix A

Exceptions by Mode Section

This section lists the exceptions that can occur when the instruction executes. Each
processor operating mode can generate different exceptions:

Protected This subsection lists the exceptions that can occur when the
instruction executes in protected mode. If you write applications in a
protected mode environment, consult your operating system
documentation to determine what is done when processor exceptions
occur.

Real Address
This subsection lists the exceptions that can occur when the
instruction executes in real address mode. This mode has fewer
exception conditions than protected mode. Real address mode
exceptions do not pass error codes to interrupt procedures.

One possible exception for many instructions is Interrupt 13. The
processor generates an Interrupt 13 whenever a memory operand is
partly or wholly accessed from the effective address OFFFFH in a
segment. This exception occurs because the second byte of the word
is at location 10000H, not at O; thus, it exceeds the segment's
addressability limit.

ASM386 Assembly Language Reference Chapter 6 207

Virtual 8086
This subsection lists the exceptions that can occur when the
instruction executes in virtual 8086 mode. Virtual 8086 mode allows
the processor to simulate virtual 8086 machines. Virtual 8086 mode
exceptions are the same as those for Real 8086, with the following
additions:

* 1/Oinstructions cause a #GP(0) exception if the IOPL (I/O
privilege level) is less than 3 and an 1/O permission bit is set.

* Memory references can cause page faults, noted in the
reference pages as #PF(fault-code).

When a virtual 8086 mode exception occurs, the processor is set to
protected mode.

Processor exception names are formed from a cross-hatch character (#) followed b
2 letters and an optional error code in parentheses. Table 6-16 summarizes the
processor exceptions.

208 Chapter 6 Processor Instructions

Table 6-16. Processor Exceptions and Interrupts

Interrupt Instruction that May
Name Cause Number Generate this Interrupt
Divide error 0 DIV, IDIV
Debug exceptions 1 Any instruction
1-byte INT opcode 3 INT
2-byte interrupt 32-255 INT number
Interrupt on overflow 4 INTO
Array bounds check 5 BOUND
uD Invalid opcode 6 Any illegal instruction
#NM No math unit available 7 ESC, WAIT
#DF Double fault 8 Any instruction that can generate an
exception
Coprocessor segment 9 Any operand to an ESC instruction that
overrun wraps around the end of a segment
#TS Invalid task state segment 10 JMP, CALL, any
(TSS) interrupt, IRET
#NP Segment/gate not present 11 Any segment register modifier
#SS Stack fault 12 Any instruction that references memory
through the SS segment register
#GP General protection fault 13 Any memory reference instruction or
code fetch
#PF Page fault 14 Any memory reference instruction or
code fetch
#MF Math fault 16 ESC, WAIT
See also: Processor exceptions, Appendix A

ASM386 Assembly Language Reference

Chapter 6

209

How to Look Up an Instruction

The processor instructions are presented in mnemonic alphabetical order, with the
following exceptions:

« Floating-point instructionsg§SCinstructions for the a numeric coprocessor) are
at the end of Chapter 7.

« String handling instructions that have byte, word, and dword variants (with
suffixes B, W, and D, respectively) are grouped with the basic instruction
form.

The REPprefix variants for string instructions are also grouped. See the
following instructions for the variants that are listed on the right:

CMPS CMPSB, CMPSW, and CMPSD
INS INSB, INSW, and INSD

LODS LODSB, LODSW, and LODSD
MOVS MOVSB, MOVSW, and MOVSD
OUTS OUTSB, OUTSW, and OUTSD
SCAS SCASB, SCASW, and SCASD
STOS STOSB, STOSW, and STOSD
REP REPE, REPZ, REPNE, and REPNZ

e Some conversion instructions are grouped. See the following instructions for
the variant listed on the right:

CBW CWDE
CWD CDQ

* See theJcc andSETcc instruction tables for the many variant forms of these
conditional instructions. Se@OPfor theLOOPcond variants.

* See the following instructions for the variants listed on the right:

INT INTO
IRET IRETD
POPA POPAD
PUSHA PUSHAD
POPF POPFD
PUSHF PUSHFD
XLAT XLATB

210 Chapter 6 Processor Instructions

« Some load and store instructions are grouped. See the following instructions
for those listed on the right:

LGDT LIDT

LGDTW LGDTD, LIDTW, and LIDTD
SGDT SIDT

SGDTW SGDTD, SIDTW, and SIDTD
LDS LES, LFS, LGS and LSS

e The rotate instructions and some of the shift instructions are grouped. See the
following instructions for those listed on the right:

RCL RCR, ROL, and ROR
SAL SAR, SHL, and SHR

* SeeVERRfor theVERWnNSstruction.

The remainder of this chapter consists of the processor instruction reference pages
in mnemonic alphabetical order.

ASM386 Assembly Language Reference Chapter 6 211

Processor Instructions

AAA Ascll Adjust after Addition

Opcode Instruction Clocks Description
37 AAA 4 ASCII adjust AL after addition
Operation
IF ((AL AND OFH) > 9) OR (AF = 1) THEN
AL := AL + 6;
AH = AH + 1,
AF =1;
CF:=1;
ELSE
CF :=0;
AF :=0;
ENDIFELSE;

AL := AL AND OFH,;

Discussion

CodeAAAonly following anADDinstruction that leaves a byte result in the AL
register. The lower nibbles of ta@Doperands should be in the range 0 through 9
(BCDdigits) so thanAAadjusts AL to contain the correct decimal digit result. If
ADDproduced a decimal carrxAAincrements the AH register and sets the carry
(CF) and auxiliary carry (AF) flags to 1. ADbDproduced no decimal carigAA

clears the carry and auxiliary flags (0) and leaves AH unchanged. In either case,
AL is left with its upper nibble set to 0. To convert AL to an ASCII result, follow
the AAAinstruction withORAL, 30H.

Flags Affected

AF and CF as described in the Discussion section; OF, SF, ZF, and PF are
undefined.

Exceptions by Mode

Protected

None

212 Chapter 6 Processor Instructions

Real Address

None

Virtual 8086

None

ASM386 Assembly Language Reference Chapter 6 213

AAD

AAD Ascll Adjust AX before Division

Opcode Instruction Clocks Description
D5 0A AAD 19 ASCII adjust AX before division
Operation
AL:=AH * OAH + AL;
AH:=0;
Discussion

AADprepares 2 unpack&tDdigits (the least significant digit in AL, the most
significant digit in AH) for a division operation that will yield an unpacked result.
This is done by setting AL to AL + (10 * AH), and then setting AH to 0. AXis
then equal to the binary equivalent of the original unpacked 2-digit number.

Flags Affected
SF, ZF, and PF as described in Appendix A; OF, AF, and CF are undefined

Exceptions by Mode

Protected

None

Real Address

None

Virtual 8086

None

214 Chapter 6 Processor Instructions

AAM

AAM Ascli Adjust AX after Multiply

Opcode Instruction Clocks Description
D4 0A AAM 17 ASCII adjust AX after multiply
Operation
AH := AL / OAH,;

AL := AL MOD 0AH;

Discussion

CodeAAMonly following aMULinstruction on two unpackeBCDdigits that leaves
the result in the AX register. AL contains tl&Lresult, because it is always less
than 100.AAMunpacks this result by dividing AL by 10, leaving the quotient (most
significant digit) in AH and the remainder (least significant digit) in AL.

Flags Affected
F, ZF, and PF as described in Appendix A; OF, AF, and CF are undefined

Exceptions by Mode

Protected

None

Real Address

None

Virtual 8086

None

ASM386 Assembly Language Reference Chapter 6 215

AAS

AAS ascii Adjust AL after Subtraction

Opcode Instruction Clocks Description
3F AAS 4 ASCII adjust AL after subtraction
Operation
IF (AL AND OFH) > 9 OR AF =1 THEN
AL := AL - 6;
AH :=AH - 1;
AF =1;
CF:=1;
ELSE
CF :=0;
AF :=0;
ENDIFELSE;

AL := AL AND OFH;

Discussion

CodeAASonly following aSuBinstruction that leaves the byte result in the AL
register. The lower nibbles of tis&Boperands should be in the range 0 through 9
(BCDdigits) so thanASadjusts AL to contain the correct decimal digit result. If
SuBproduced a decimal carrxASdecrements the AH register and sets the carry
(CF) and auxiliary carry (AF) flags to 1. $tuBproduced no decimal carmAS

clears the carry and auxiliary carry flags (0) and leaves AH unchanged. In either
case, AL is left with its upper nibble set to 0. To convert AL to an ASCII result,
follow the AASwith ORAL, 30H.

Flags Affected

AF and CF as described in the Discussion section; OF, SF, ZF, and PF are
undefined

Exceptions by Mode

Protected

None

216 Chapter 6 Processor Instructions

Real Address

None

Virtual 8086

None

ASM386 Assembly Language Reference Chapter 6 217

ADC

ADC Add with Carry

Opcode Instruction Clocks Description
14ib ADC AL,imm8 2 Add with carry immediate byte to AL
15iw ADC AX,imm16 2 Add with carry immediate word to AX
15id ADC EAX,imm32 2 Add with carry immediate dword to EAX
80 /2ib ADC r/m8,imm8 217 Add with carry immediate byte tém byte
81 /2iw ADC r/ml16imml6e 2/7 Add with carry immediate word tém
word
81 /2id ADC r/m32imm32 2/7 Add with carry immediate dword tém
dword
83 /2ib ADC r/m16imm8 217 Add with carry sign-extended immediate
byte tor/m word
83 /2ib ADC r/m32imm8 217 Add with carry sign-extended immediate
byt