
ASM386 Assembly Language
Reference
_______________________________

Order Number:  469165-003



2

In the United States, additional copies of this manual or other Intel literature may be obtained by writing:
Literature Distribution Center
Intel Corporation
P.O. Box 7641
Mt. Prospect, IL  60056-7641

Or you can call the following toll-free number:  1-800-548-4725

In locations outside the United States, obtain additional copies of Intel documentation by contacting your local
Intel sales office.  For your convenience, international sales office addresses are printed on the last page of
this document.  Contact your local sales office to obtain the latest specifications before placing your order.

Intel Corporation (Intel) makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose.  Intel assumes no
responsibility for any errors that may appear in this document.  Intel makes no commitment to update nor to
keep current the information contained in this document.  No part of this document may be copied or
reproduced in any form or by any means without prior written consent of Intel.  Intel retains the right to make
changes to these specifications at any time, without notice.

Intel software products are copyrighted by and shall remain the property of Intel Corporation.  Use,
duplication or disclosure is subject to restrictions stated in Intel's Software License Agreement.
U.S. GOVERNMENT RESTRICTED RIGHTS:  These software products and documentation were
developed at private expense and are provided with "RESTRICTED RIGHTS."  Use, duplication, or
disclosure by the Government is subject to restrictions as set forth in FAR 52.227-14 and
DFAR 252.227-7013 et seq. or its successor.

The Intel logo, i960, Pentium, and iRMX are registered trademarks of Intel Corporation, registered in the
United States of America and other countries. Above, i287, i386, i387, i486, Intel287, Intel386, Intel387,
Intel486, Intel487 and EtherExpress are trademarks of Intel Corporation.

Adaptec is a registered trademark of Adaptec, Inc.  AT, IBM and PS/2 are registered trademarks and PC/XT
is a trademark of International Business Machines Corporation.  All Borland products are trademarks or
registered trademarks of Borland International, Inc.  CodeView, Microsoft, MS, MS-DOS and XENIX are
registered trademarks of Microsoft Corporation.  Comtrol is a registered trademark and HOSTESS is a
trademark of Comtrol Corporation.  DT2806 is a trademark of Data Translation, Inc.  Ethernet is a registered
trademark of Xerox Corporation.  Hayes is a registered trademark of Hayes Microcomputer Products.
Hazeltine and Executive 80 are trademarks of Hazeltine Corporation.  Hewlett-Packard is a registered
trademark of Hewlett-Packard Co.  MIX is a registered trademark of MIX Software, Incorporated.  MIX is an
acronym for Modular Interface eXtension.  MPI is a trademark of Centralp Automatismes (S.A.).  NetWare
and Novell are registered trademarks of Novell Corp.  NFS is a trademark of Sun Microsystems, Inc.  Phar
Lap is a trademark of Phar Lap Software, Inc.  Soft-Scope is a registered trademark of Concurrent Sciences,
inc.  TeleVideo is a trademark of TeleVideo Systems, Inc.  UNIX is a registered trademark in the United
States and other countries, licensed exclusively through X/Open Company Limited.  VAX is a registered
trademark and VMS is a trademark of Digital Equipment Corporation.  Visual Basic and Visual C++ are
trademarks of Microsoft Corporation.  All Watcom products are trademarks or registered trademarks of
Watcom International Corp.  Windows, Windows 95 and Windows for Workgroups are registered trademarks
and Windows NT is a trademark of Microsoft in the U.S. and other countries.  Wyse is a registered trademark
of Wyse Technology.  Zentec is a trademark of Zentec Corporation.  Other trademarks and brands are the
property of their respective owners.

Copyright © 1991 - 1995 Intel Corporation, All Rights Reserved

REVISION HISTORY DATE
-001 Original Issue 12/91
-002 Update for Release 2.0 of the OS 08/92
-003 Update for Release 2.2 of the OS 11/95



ASM386 Assembly Language Reference 3

Quick Contents

Chapter 1. Introduction

Chapter 2. Segmentation

Chapter 3. Program Linkage Directives

Chapter 4. Defining and Initializing Data

Chapter 5. Accessing Data

Chapter 6. Processor Instructions

Chapter 7. Floating-point Instructions

Chapter 8. Textmacros

Chapter 9. Codemacros

Appendix A. Processor Architecture Summary

Appendix B. Sample Program

Appendix C. Keywords and Reserved Words

Appendix D. ASCII Tables

Appendix E. Differences Between ASM386 and ASM286

Appendix F. Differences Between the Intel386™ and 376
Processors

Appendix G. Differences Between the Intel386 and Intel486™
Processors

Index

Service Information



4

Notational Conventions
This manual uses the following conventions:

UPPERCASE In syntax descriptions, uppercase indicates keywords or
reserved words that must be spelled exactly as shown.  They
can be entered in either uppercase or lowercase.

Within the text, uppercase indicates a mnemonic, operator,
or example code.

italic An item in italic is a metasymbol that may be replaced with
an item that fulfills the rules for that symbol.

[ ] In syntax descriptions, square brackets indicate an optional
part of a statement.  If square brackets are required, the
syntax shows them in bold fact type, as [ ].

However, in certain register expressions, brackets are
required within the actual statement.  The descriptions of
such statements will indicate this requirement.

... In syntax descriptions, an ellipsis indicates that the preceding
argument or parameter may be repeated.

[,...] In syntax descriptions, an ellipsis, preceded by a comma and
enclosed in brackets, indicates that the immediately
preceding item may be repeated, but that each repetition
must be separated by a comma.

: : In examples, a vertical ellipsis indicates that some lines of
code have been omitted.

• In syntax descriptions, any punctuation other than ellipses and brackets must
be entered as shown.  For example, the colon in the following syntax
description must be included in a statement:

label:[instruction]

• User input, command syntax and computer output are printed
like this, in regular monospaced text.

•• In examples combining user input and computer output,
user input is printed like this, in bold monospaced
text.

Throughout this manual, the word "may" means "is permitted to".

✏ Note
Notes indicate important information.

▲▲! CAUTION
Cautions indicate situations which may damage hardware or data.



ASM386 Assembly Language Reference 5

Related Publications
The following Intel manuals contain detailed information about processor
architecture and the assembler for your development system:

• 80386 Programmer's Reference Manual, order number 230985, describes
processor architecture from an application or system programmer's point of
view.

• ASM386 Macro Assembler Operating Instructions, order number 451290 for
DOS and 167675 for VAX/VMS, describes the assembler controls, assembler
output, and assembler error messages.

• Intel386™ DX Microprocessor Hardware Reference Manual, order number
231732, describes the processor from a system engineer's or hardware
designer's point of view.

The following Intel manuals contain detailed information about using floating-
point coprocessors with the processor:

• 80386 Programmer's Reference Manual, order number 230985, Chapter 11,
describes coprocessing and multiprocessing.

• 80387 Programmer's Reference Manual, order number 231917.

• iAPX 286 Programmer's Reference Manual, order number 210498, Numerics
Supplement section, provides information about the Intel287™ coprocessor.

You may also need the processor systems utilities manual(s).





ASM386 Assembly Language Reference Contents 7

Contents

1 Introduction
About This Manual ..................................................................................... 23
About This Chapter..................................................................................... 23
Lexical Elements ........................................................................................ 24

Character Set........................................................................................ 24
Tokens and Separators.......................................................................... 24

Logical Spaces .............................................................................. 25
Delimiters...................................................................................... 25

Identifiers............................................................................................. 26
Continued Statements and Comments................................................... 26

Assembler Statements ................................................................................. 29
Assembler Directives ........................................................................... 29
Assembler Instructions ......................................................................... 31
Specifying Assembler Statements......................................................... 38

Specifying Directive Statements.................................................... 38
Specifying Instruction Statements.................................................. 39

Assembler Program Structure...................................................................... 40
NAME Directive .................................................................................. 41
STACKSEG Directive.......................................................................... 42
SEGMENT Directive for Data Segments.............................................. 42
SEGMENT Directive for the Code Segment......................................... 43
ASSUME Directive.............................................................................. 44
END Directive ..................................................................................... 45
Initializing Segment Registers with Instructions ................................... 45

Initializing DS, ES, FS, and GS..................................................... 46
Initializing SS................................................................................ 47

2 Segmentation
Overview of Segmentation .......................................................................... 49
Defining Code, Data, and Stack Segments .................................................. 51

SEGMENT..ENDS Directive ............................................................... 51
Specifying EO, ER, RO, or RW Access......................................... 52
Specifying USE32 or USE16......................................................... 52



8 Contents

Specifying PUBLIC or COMMON............................................... 53
Multiple Definitions for a Segment............................................... 54
Lexically Nested or Embedded Segment Definitions .................... 56

STACKSEG Directive......................................................................... 57
Combining Stack and Data Segments ........................................... 58

Assuming Segment Access......................................................................... 58
ASSUME Directive............................................................................. 59

Specifying Segment Selectors with ASSUME............................... 60
Specifying ASSUME NOTHING and ASSUME CS:NOTHING... 63

3 Program Linkage Directives
Modular Programming with NAME and END............................................ 67

NAME Directive ................................................................................. 68
END Directive..................................................................................... 69

Defining Shared Data with PUBLIC, EXTRN, and COMM ....................... 71
PUBLIC Directive............................................................................... 71
EXTRN Directive................................................................................ 72

Placement of EXTRN................................................................... 73
COMM Directive ................................................................................ 74

4 Defining And Initializing Data
Overview of Assembler Labels and Variables ............................................ 78

Assembler Label and Variable Types .................................................. 78
Assembler Data Values........................................................................ 79

Data Types ................................................................................... 80
Numeric Data Value Ranges......................................................... 81

Specifying Assembler Data Values...................................................... 82
Initializing Variables .................................................................... 83
How the Assembler Evaluates Constant Expressions .................... 83

Variables.................................................................................................... 84
Simple Data Allocations...................................................................... 85
Variable Attributes .............................................................................. 86
Defining and Initializing Variables of a Simple Type .......................... 87
DBIT Directive.................................................................................... 87
DB Directive ....................................................................................... 89
DW Directive ...................................................................................... 90
DD Directive ....................................................................................... 92
DP Directive........................................................................................ 94
DQ Directive ....................................................................................... 96
DT Directive ....................................................................................... 98
Defining Compound Types and Their Variables .................................. 99



ASM386 Assembly Language Reference Contents 9

RECORD Directive.............................................................................. 100
Record Allocation Statement................................................................ 102
STRUC Directive ................................................................................. 104
Structure Allocation Statement............................................................. 106
DUP Clause.......................................................................................... 109

Labels ......................................................................................................... 111
Label Attributes ................................................................................... 112
The Location Counter........................................................................... 113
ORG Directive ..................................................................................... 114
EVEN Directive ................................................................................... 114
ALIGN Directive ................................................................................. 115
LABEL Directive................................................................................. 116
Defining Implicit NEAR Labels ........................................................... 118
PROC Directive ................................................................................... 119

Using Symbolic Data .................................................................................. 122
EQU Directive ..................................................................................... 123
PURGE Directive................................................................................. 125

5 Accessing Data
Overview of Assembler Expressions ........................................................... 127

Constant Expressions............................................................................ 128
Address Expressions............................................................................. 128

Variable and Label Names as Address Expressions ....................... 129
Register Expressions...................................................................... 129
Combining Simple Address and Register Expressions ................... 130
Structure Fields in Address Expressions ........................................ 131
Relocatable Expressions ................................................................ 132

Operators.................................................................................................... 134
Operator Precedence ............................................................................ 136
Isolation Operators ............................................................................... 137
Multiplication and Division Operators.................................................. 138
Shift Operators ..................................................................................... 139
Addition and Subtraction Operators...................................................... 140
Relational Operators............................................................................. 141
Logical Operators................................................................................. 142
Attribute Value Operators .................................................................... 144

THIS Operator............................................................................... 144
SEG Operator ................................................................................ 145
OFFSET Operator......................................................................... 146
BITOFFSET Operator................................................................... 147
LENGTH Operator........................................................................ 149
TYPE Operator.............................................................................. 149



10 Contents

SIZE Operator .............................................................................. 151
STACKSTART Operator.............................................................. 152

Attribute Override Operators ............................................................... 152
Segment Override Operator .......................................................... 153
PTR Operator ............................................................................... 155
SHORT Operator.......................................................................... 157

Record Specific Operators ................................................................... 158
WIDTH Operator.......................................................................... 158
MASK Operator........................................................................... 159
Using Field Names as Shift Counts............................................... 160

Instruction Operands .................................................................................. 161
Register Operands ............................................................................... 161
Immediate Operands............................................................................ 162
Memory Operands............................................................................... 162

Memory Addressing Methods..................................................................... 163
Direct Memory Addressing.................................................................. 164
Indirect Memory Addressing ............................................................... 164

Register Indirect Addressing......................................................... 166
Based Addressing......................................................................... 166
Based Indexed Addressing............................................................ 167
Indexed Addressing...................................................................... 167
Scaling ......................................................................................... 168
Default Segment Registers and Anonymous References ............... 169

Bit Addressing..................................................................................... 170

6 Processor Instructions
Overview of the Processor Instruction Set .................................................. 171

Data Transfer Instructions ................................................................... 172
Instructions That Assign Data Values ........................................... 172
Instructions That Adjust Data ....................................................... 176
Instructions That Make Stack Transfers ........................................ 177
Instructions That Yield Definitive Flag Values ............................. 178
Conditional Instructions That Test Flag Values............................. 179

Control Instructions ............................................................................. 180
System Instructions ............................................................................. 181

Instruction Statements ................................................................................ 182
Instruction Statement Syntax ............................................................... 182
Instruction Attributes........................................................................... 183

Address Size Attribute .................................................................. 184
Operand Size Attribute ................................................................. 184
Stack Size Attribute...................................................................... 185



ASM386 Assembly Language Reference Contents 11

Instruction Encoding Format ................................................................ 185
Instruction Prefix Codes ................................................................ 186
ModRM and SIB Bytes.................................................................. 188

Processor Instruction Set Reference ............................................................ 193
How to Read the Instruction Set Reference Pages................................. 193

Opcode Column............................................................................. 194
Instruction Column........................................................................ 195
Clocks Column.............................................................................. 200
Description Column....................................................................... 201
Operation Section.......................................................................... 201
Discussion Section......................................................................... 207
Flags Affected Section................................................................... 207
Exceptions by Mode Section ......................................................... 207

How to Look Up an Instruction ............................................................ 210
Processor Instructions........................................................................... 212

AAA   ASCII Adjust after Addition............................................... 212
AAD   ASCII Adjust AX before Division...................................... 214
AAM   ASCII Adjust AX after Multiply........................................ 215
AAS   ASCII Adjust AL after Subtraction ..................................... 216
ADC   Add with Carry................................................................... 218
ADD   (Integer) Add...................................................................... 220
AND   Logical AND...................................................................... 222
ARPL   Adjust RPL Field of Selector ............................................ 224
BOUND   Check Array Index Against Bounds .............................. 226
BSF   Bit Scan Forward ................................................................. 228
BSR   Bit Scan Reverse ................................................................. 230
BSWAP   Byte Swap (not available on Intel386 or

376 processors).......................................................................... 232
BT   Bit Test.................................................................................. 233
BTC   Bit Test and Complement.................................................... 236
BTR   Bit Test and Reset............................................................... 239
BTS   Bit Test and Set ................................................................... 242
CALL   Call Procedure.................................................................. 245
CBW/CWDE   Convert Byte to Word/Convert Word to Dword..... 252
CLC   Clear Carry Flag ................................................................. 253
CLD   Clear Direction Flag ........................................................... 254
CLI   Clear Interrupt Flag .............................................................. 255
CLTS   Clear Task Switched Flag in CR0...................................... 256
CMC   Complement Carry Flag..................................................... 257
CMP   Compare Two Operands ..................................................... 258
CMPS/CMPSB/CMPSW/CMPSD   Compare String Operands...... 260
CMPXCHG   Compare Exchange (not available on Intel386

or 376 processors)...................................................................... 263



12 Contents

6 Processor Instructions (continued)
CWD/CDQ   Convert Word to Dword/Convert Dword to Qword.. 265
DAA   Decimal Adjust AL after Addition..................................... 267
DAS   Decimal Adjust AL after Subtraction ................................. 268
DEC   Decrement by 1.................................................................. 269
DIV   Unsigned Divide ................................................................. 270
ENTER   Make Stack Frame for Procedure Parameters ................ 272
HLT   Halt .................................................................................... 274
IDIV   Signed Divide.................................................................... 275
IMUL   Signed Multiply ............................................................... 277
IN   Input from Port ...................................................................... 280
INC   Increment by 1 .................................................................... 282
INS/INSB/INSW/INSD   Input from Port to String ....................... 283
INT/INTO   Transfer Control to Interrupt Procedure..................... 286
INVD   Invalidate Data Cache (not available on Intel386 or 376

processors)................................................................................ 292
INVLPG   Invalidate Paging Cache Entry  (not available on

Intel386 or 376 processors) ....................................................... 293
IRET/IRETD   Interrupt Return .................................................... 294
Jcc   Jump if Condition is Met ...................................................... 299
JMP   Jump................................................................................... 304
LAHF   Load Flags into AH Register............................................ 310
LAR   Load Access Rights............................................................ 311
LDS/LES/LFS/LGS/LSS   Load Full Pointer ................................ 314
LEA   Load Effective Address ...................................................... 317
LEAVE   High Level Procedure Exit ............................................ 319
LGDT/LIDT   Load Global/Interrupt Descriptor Table Register ... 320
LGDTW/LGDTD/LIDTW/LIDTD Load Global/Interrupt

Descriptor Table Register with WORD/DWORD Operand........ 322
LLDT   Load Local Descriptor Table Register.............................. 324
LMSW   Load Machine Status Word ............................................ 326
LOCK   Assert Bus LOCK# Signal Prefix..................................... 327
LODS/LODSB/LODSW/LODSD   Load String Operand.............. 329
LOOP/LOOPcond   Loop Control with (E)CX Counter ................ 331
LSL   Load Segment Limit ........................................................... 333
LTR   Load Task Register............................................................. 336
MOV   Move Data ........................................................................ 338
MOV   Move to/from Special Registers ........................................ 341
MOVS/MOVSB/MOVSW/MOVSD   Move String to String......... 343
MOVSX   Move with Sign-Extend ............................................... 346
MOVZX   Move with Zero-Extend............................................... 347
MUL   Unsigned Multiplication of AL, AX or EAX ..................... 348
NEG   Two's Complement Negation ............................................. 350



ASM386 Assembly Language Reference Contents 13

NOP   No Operation ...................................................................... 351
NOT   One’s Complement Negation.............................................. 352
OR   Logical Inclusive OR ............................................................ 353
OUT   Output to Port ..................................................................... 355
OUTS/OUTSB/OUTSW/OUTSD   Output String to Port............... 357
POP   Pop Stack Top ..................................................................... 360
POPA/POPAD   Pop All General Registers................................... 363
POPF/POPFD   Pop Stack into FLAGS or EFLAGS Register........ 365
PUSH   Push Operand onto the Stack............................................. 367
PUSHA/PUSHAD   Push all General Registers.............................. 369
PUSHF/PUSHFD   Push Flags Register onto the Stack.................. 371
RCL/RCR/ROL/ROR   Rotate....................................................... 372
RET   Return from Procedure ........................................................ 381
SAHF   Store AH into Flags .......................................................... 386
SAL/SAR/SHL/SHR   Shift........................................................... 387
SBB   Integer Subtraction with Borrow.......................................... 391
SCAS/SCASB/SCASW/SCASD   Compare String Data................ 393
SETcc   Byte Set on Condition ...................................................... 395
SGDT/SIDT   Store Global/Interrupt Descriptor Table Register.... 397
SGDTW/SGDTD/SIDTW/SIDTD Store Global/Interrupt

 Descriptor Table Register with WORD/DWORD Operand....... 399
SHLD   Double Precision Shift Left .............................................. 400
SHRD   Double Precision Shift Right ............................................ 402
SLDT   Store Local Descriptor Table Register............................... 404
SMSW   Store Machine Status Word ............................................. 405
STC   Set Carry Flag ..................................................................... 406
STD   Set Direction Flag ............................................................... 407
STI   Set Interrupt Flag.................................................................. 408
STOS/STOSB/STOSW/STOSD   Store String Data....................... 409
STR   Store Task Register ............................................................. 411
SUB   Integer Subtraction.............................................................. 412
TEST   Logical Compare............................................................... 414
VERR/VERW   Verify a Segment for Reading or Writing............. 416
WAIT   Wait until BUSY# Pin is Inactive (HIGH) ........................ 418
WBINVD   Write Back And Invalidate Data Cache

(not available on Intel386 or 376 processors) ............................. 419
XADD   Exchange Add (not available on Intel386 or

376 processors).......................................................................... 420
XCHG   Exchange Register/Memory with Register ....................... 422
XLAT/XLATB   Table Look-up Translation ................................. 424
XOR   Logical Exclusive OR......................................................... 426



14 Contents

7 Floating-Point Instructions
Floating-point Coprocessor Architecture .................................................... 429

Floating-point Stack ............................................................................ 430
Environment........................................................................................ 431

Status Word.................................................................................. 433
Control Word................................................................................ 435
Tag Word ..................................................................................... 438
Operation Locator Formats ........................................................... 439

Floating-point Coprocessor Data Formats............................................ 440
Coprocessor Operation ............................................................................... 443

Numeric Processing............................................................................. 444
Overview of the Floating-point Coprocessor  Instruction Set ...................... 446

Data Transfer Instructions ................................................................... 446
Constant Instructions ........................................................................... 447
Algebraic Instructions.......................................................................... 448
Comparison Instructions ...................................................................... 451
Transcendental Instructions ................................................................. 452
Coprocessor Control Instructions......................................................... 453

Floating-point Coprocessor Instruction Set Reference ................................ 454
How to Read the Instruction Set Reference Pages................................ 454

Opcode Column............................................................................ 454
Instruction Column....................................................................... 455
Clocks Columns............................................................................ 455
Description Column...................................................................... 455
Discussion Section........................................................................ 456
Exceptions Section ....................................................................... 456

How to Look Up an Instruction ........................................................... 456
F2XM1   Compute Y = 2x - 1 ....................................................... 457
FABS   Absolute Value................................................................. 458
FADD/FADDP   Real Addition..................................................... 459
FBLD   BCD Load to Real ........................................................... 460
FBSTP   BCD Store and Pop ........................................................ 461
FCHS   Change Sign of Real Number ........................................... 462
FCLEX/FNCLEX   Clear Floating-point Coprocessor Exceptions 463
FCOM/FCOMP/FCOMPP   Compare Real Numbers.................... 464
FCOS   Compute Y = Cos(X) ....................................................... 466
FDECSTP   Decrement Floating-point Stack Pointer .................... 467
FDIV/FDIVP/FDIVR/FDIVRP   Real Divide/Real

Reverse Divide.......................................................................... 468
FFREE   Free Floating-point Stack Entry...................................... 469
FIADD   Integer Add to Real........................................................ 470
FICOM/FICOMP   Integer Compare with Real............................. 471



ASM386 Assembly Language Reference Contents 15

FIDIV/FIDIVR   Integer Divide into Real...................................... 473
FILD   Integer Load into Real ....................................................... 474
FIMUL   Integer Multiply with Real.............................................. 475
FINCSTP   Increment Floating-point Stack Pointer ....................... 476
FINIT/FNINIT   Initialize Floating-point Coprocessor................... 477
FIST/FISTP   Integer Store from Real ........................................... 479
FISUB/FISUBR   Integer Subtract from Real ................................ 480
FLD   Load Real............................................................................ 481
FLDCW   Load Floating-point Coprocessor Control Word ............ 482
FLDENV   Load Floating-point Coprocessor Environment............ 483
FLDcon   Load Real Constant ....................................................... 484
FMUL/FMULP   Multiply Real ..................................................... 485
FNOP   No Operation .................................................................... 486
FPATAN   Compute R = Partial Arctangent .................................. 487
FPREM/FPREM1   Partial Remainder........................................... 489
FPTAN   Compute Y = Partial Tan(X) .......................................... 492
FRNDINT   Round to Integer ........................................................ 493
FRSTOR   Restore Floating-point Coprocessor Machine State...... 494
FSAVE/FNSAVE   Save Floating-point Coprocessor

Machine State ............................................................................ 495
FSCALE   Scale Exponent of Real ................................................ 499
FSETPM   Set Protected Mode ...................................................... 500
FSIN   Compute Y = Sin(X) .......................................................... 501
FSINCOS   Compute Y = Sin(X) and Y = Cos(X) ......................... 502
FSQRT   Square Root.................................................................... 503
FST/FSTP   Store Real/Store Real and Pop.................................... 504
FSTCW/FNSTCW Store Floating-point Coprocessor

Control Word............................................................................. 505
FSTENV/FNSTENV   Store Floating-point Coprocessor

Environment .............................................................................. 506
FSTSW/FNSTSW   Store Floating-point Coprocessor Status Word 507
FSUB/FSUBP/FSUBR/FSUBRP   Subtract Real............................ 508
FTST   Test Real (Compare to Zero) ............................................. 509
FUCOM/FUCOMP/FUCOMPP Unordered Comparison of

Real Numbers ............................................................................ 510
FWAIT   Wait for Floating-point Operation Complete .................. 512
FXAM   Examine Floating-point Stack Top .................................. 513
FXCH   Exchange Real Numbers in Stack..................................... 514
FXTRACT   Extract Exponent and Significand of Real ................. 515
FYL2X   Compute Y * log2X........................................................ 517
FYL2XP1   Compute Y * log2(X + 1) ........................................... 517



16 Contents

8 Textmacros
Overview.................................................................................................... 519

Macro Processing................................................................................ 521
Macro Calls and Call Patterns.............................................................. 521
Macro Processor Scanning Modes and Macro Expansions................... 522
Predefined Macros............................................................................... 523
Macro Arguments................................................................................ 525

Balanced Text............................................................................... 525
Delimiters in Call Patterns............................................................ 526
Identifiers ..................................................................................... 527
Expressions................................................................................... 527
Argument Evaluations .................................................................. 528

Predefined Macro Reference ...................................................................... 529
DEFINE Macro................................................................................... 530
Bracket Macro..................................................................................... 534
Escape Macro...................................................................................... 535
Comment Macro.................................................................................. 537
METACHAR Macro........................................................................... 538
EVAL Macro....................................................................................... 539
SET Macro .......................................................................................... 540
IF Macro ............................................................................................. 541
WHILE Macro .................................................................................... 543
REPEAT Macro .................................................................................. 544
EXIT Macro ........................................................................................ 545
String Comparison Macros .................................................................. 546
LEN Macro ......................................................................................... 548
SUBSTR Macro.................................................................................. 548
MATCH Macro................................................................................... 549
Console I/O Macros............................................................................. 551

Scanning Modes, Delimiters, and Macro  Expansions................................. 552
Normal and Literal Scanning Modes.................................................... 552
Macro Delimiters................................................................................. 553

Literal Delimiters ......................................................................... 553
Implied Blank Delimiters.............................................................. 555
Identifier Delimiters ..................................................................... 555

Algorithm for Evaluating Macro Calls................................................. 556



ASM386 Assembly Language Reference Contents 17

9 Codemacros
Overview.................................................................................................... 559

Codemacro Definitions and Calls ......................................................... 560
Processor Instruction Format ................................................................ 562

Codemacro Reference ................................................................................. 565
CODEMACRO Directive..................................................................... 566
Formal Parameters and Specifiers......................................................... 568
Formal Parameter Modifiers................................................................. 569
Formal Parameter Range Specifiers...................................................... 571
PREFIX67 Directive ............................................................................ 572
PREFIX66 Directive ............................................................................ 572
SEGFIX Directive ................................................................................ 574
NOSEGFIX Directive........................................................................... 575
WARNING Directive........................................................................... 576
MODRM Directive............................................................................... 577
Data Initialization Directives................................................................ 578
Record Initialization Directive ............................................................. 579
Using the Dot Operator to Shift Parameters.......................................... 580
PROCLEN Function............................................................................. 581
Relative Displacement Directives......................................................... 582

Matching Codemacro Calls to Their Definitions ......................................... 584

A Processor Architecture Summary
Basic Processor Formats.............................................................................. 588

Data Type Formats............................................................................... 588
Processor Registers............................................................................... 591

General, Segment, Status and Instruction Registers ....................... 591
System Registers ........................................................................... 594

Processor Memory Organization ................................................................. 596
Segment Selection and Effective Address Computation........................ 597
Segmented Memory Management ........................................................ 599
Segment Descriptors............................................................................. 601

Descriptor Address Translation Fields ........................................... 602
Descriptor Access Rights (AR) ...................................................... 602

Descriptor Tables and Selector Format................................................. 603
Processor Protection, Gate Descriptors, and Task Switches .................. 604

Protection and Privilege Levels ..................................................... 605
Protected Control Transfers Use Gate Descriptors ......................... 606
Call Gate Descriptor Format.......................................................... 607
Task Gate, TSS Descriptor, and TSS Format ................................. 607
I/O Permission Bit Map................................................................. 610



18 Contents

Processor Flags........................................................................................... 612
Status Flags ......................................................................................... 613

Carry Flag .................................................................................... 614
Parity Flag .................................................................................... 615
Auxiliary Carry Flag..................................................................... 615
Zero Flag...................................................................................... 615
Sign Flag ...................................................................................... 615
Overflow Flag............................................................................... 616

Control and System Control Flags ....................................................... 616
Processor Exceptions and Interrupts ........................................................... 618

Identifying Interrupts........................................................................... 619
Simultaneous Exceptions and Interrupts .............................................. 621
Interrupt Descriptor Table ................................................................... 621
Error Codes for Exceptions.................................................................. 623
Processor Exception Conditions........................................................... 624

Interrupt 0 -- Divide Error............................................................. 624
Interrupt 1 -- Debug Exceptions.................................................... 624
Interrupt 2 -- NMI......................................................................... 624
Interrupt 3 -- Breakpoint ............................................................... 624
Interrupt 4 -- Overflow ................................................................. 625
Interrupt 5 -- Bounds Check.......................................................... 625
#UD 6 -- Undefined Opcode (No Error Code)............................... 625
#NM 7 -- No Math Unit Available (No Error Code)...................... 626
#DF 8 -- Double Fault (Zero Error Code)...................................... 626
Interrupt 9 -- Coprocessor Segment Overrun................................. 626
#TS 10 -- Invalid Task State Segment (Selector Error Code) ........ 627
#NP 11 -- Not Present (Selector Error Code)................................. 627
#SS 12 -- Stack Fault (Selector or Zero Error Code) ..................... 628
#GP 13 -- General Protection (Selector or Zero Error Code) ......... 629
#PF 14 -- Page Fault (Type of Fault)............................................. 630
#MF 16 -- Math Fault (No Error Code)......................................... 631

B Sample Program
Sample Source Code .................................................................................. 633
Sample Listing ........................................................................................... 640

C Keywords And Reserved Words 651



ASM386 Assembly Language Reference Contents 19

D ASCII Tables 655

E Differences Between ASM386 and ASM286 659
New Processor Registers............................................................................. 659
New Instructions......................................................................................... 659
Processor Paging Mechanism ...................................................................... 660
Addressing Differences............................................................................... 660
Data Types.................................................................................................. 661
Bit Manipulation ......................................................................................... 661
Assembler Directives .................................................................................. 661
Assembler Operators ................................................................................... 661
Assembler Arithmetic ................................................................................. 662
Prefix66 and Prefix67 Codemacro Directives .............................................. 662

F Differences Between the Intel386  and 376
Processors 663

G Differences Between the Intel386    and Intel486 
Processors 667

Index 669

Service Information Inside Back Cover



20 Contents

Tables
1-1. Assembler Directives ................................................................................. 29
1-2. Processor Instructions................................................................................. 31
1-3. Floating-point Instructions.......................................................................... 36
4-1. Assembler Variable Types and Numerical Value Ranges ........................... 81
4-2. Assembler Data Value Specification Rules................................................. 82
5-1. Assembler Operators .................................................................................. 134
5-2. Assembler Operator Precedence ................................................................. 136
5-3. TYPE Operator Results .............................................................................. 150
5-4. PTR Result Attributes ................................................................................ 155
6-1. External I/O Instructions ............................................................................ 172
6-2. Internal Load and Store Instructions ........................................................... 173
6-3. Instructions That Make Uncalculated Value Assignments .......................... 174
6-4. Instructions That Make Calculated Value Assignments .............................. 175
6-5. Data Conversion Instructions...................................................................... 176
6-6. Shift and Rotate Instructions ...................................................................... 176
6-7. Stack Transfer Instructions ......................................................................... 177
6-8. Processor Instructions That Yield Definitive Flag Values ........................... 178
6-9. Conditional Instructions That Test Flag Values .......................................... 180
6-10. Control Transfer Instructions...................................................................... 180
6-11. Processor Control Instructions .................................................................... 180
6-12. Generation of Address and Operand Size Prefixes ...................................... 187
6-13. 16-Bit Addressing Forms with ModRM Byte in Hexadecimal .................... 190
6-14. 32-Bit Addressing Forms with ModRM Byte in Hexadecimal .................... 191
6-15. 32-Bit Addressing Forms with SIB Byte in Hexadecimal ........................... 192
6-16. Processor Exceptions and Interrupts ........................................................... 209
6-17. Operands and Implicit Destinations for DIV............................................... 270
6-18. Operands and Implicit Destinations for IDIV.............................................. 275
6-19. When IMUL Clears CF and OF.................................................................. 278
6-20. JMP Label Types, Operand Sizes and Instructions...................................... 308
6-21. System Descriptor Types for LAR.............................................................. 312
6-22. System Descriptor Types for LSL............................................................... 334
7-1. Summary of Real Format Parameters ......................................................... 442
7-2. Rounding Methods..................................................................................... 444
7-3. Data Transfer Instructions .......................................................................... 446
7-4. Constant Instructions.................................................................................. 447
7-5. Algebraic Instructions ................................................................................ 448
7-6. Basic Arithmetic Instruction and Operand Forms ....................................... 449
7-7. Comparison Instructions............................................................................. 451
7-8. Transcendental Instructions ........................................................................ 452
7-9. Processor Control Instructions .................................................................... 453
7-10. Condition Code after FCOM(P/PP) ............................................................ 465



ASM386 Assembly Language Reference Contents 21

7-11. Condition Code after FICOM(P) ................................................................. 471
7-12. Floating-point Coprocessor State Following FINIT/FNINIT........................ 478
7-13. FPATAN Final Result Octant...................................................................... 487
7-14. Condition Code after FPREM/FPREM1...................................................... 490
7-15. Condition Code after FTST......................................................................... 509
7-16. Condition Code after FUCOM(P/PP)........................................................... 511
7-17. Condition Code after FXAM....................................................................... 513
8-1. Predefined Macros ...................................................................................... 524
8-2. Predefined Macro Call Patterns ................................................................... 529
9-1. Codemacro Syntax Summary ...................................................................... 565
A-1. Default Segment Register Selection Rules................................................... 597
A-2. Processor Exceptions and Interrupts ............................................................ 620
C-1. Assembler Keywords.................................................................................. 652
C-2. Assembler Reserved Words......................................................................... 652
D-1. ASCII Collating Sequence .......................................................................... 655
D-2. ASCII Non-Printable Characters ................................................................. 657

Figures
1-1. Template for an Assembler Program ........................................................... 40
1-2. An ASM386 Example Program................................................................... 41
4-1. Partial Record Definition Template............................................................. 101
5-1. Effective Address Calculation ..................................................................... 164
6-1. Instruction Encoding Format ....................................................................... 185
6-2. ModRM and SIB Byte Formats ................................................................... 188
6-3. BitOffset for BIT[EAX,21] ......................................................................... 203
6-4. Memory Bit Indexing.................................................................................. 204
7-1. Floating-point Coprocessor Stack Fields ..................................................... 430
7-2. 16-bit Environments.................................................................................... 432
7-3. 32-bit Environments.................................................................................... 433
7-4. Status Word Format .................................................................................... 434
7-5. Control Word Format.................................................................................. 436
7-6. Tag Word Format........................................................................................ 438
7-7. 16-bit Opcode, IP, and Op Environment Formats ........................................ 439
7-8. 32-bit Opcode, IP, and OP Environment Formats ........................................ 440
7-9. Data Formats............................................................................................... 441
7-10. Floating-point Coprocessor Machine State Layout after FSAVE ................. 497
9-1. Instruction Encoding Format ....................................................................... 562
9-2. ModRM and SIB Byte Formats ................................................................... 563
A-1. Fundamental Data Types............................................................................. 588
A-2. Processor Data Types and Storage Formats ................................................. 589
A-3. General, Segment, Status, and Instruction Registers .................................... 592
A-4. Processor Stack with Stack Frame............................................................... 593



22 Contents

Figures (continued)
A-5. System Control Registers ........................................................................... 594
A-6. Memory Segmentation Model for ASM386 Programs ................................ 596
A-7. Effective Address Calculation .................................................................... 598
A-8. Processor Address Translation Overview.................................................... 599
A-9. Segment Address Translation in a Paged System........................................ 600
A-10. General Segment Descriptor Formats......................................................... 601
A-11. Selector Format.......................................................................................... 603
A-12. Processor Privilege Check for Data Access................................................. 605
A-13. Call Gate Descriptor Format....................................................................... 607
A-14. Task Gate Descriptor Format...................................................................... 607
A-15. TSS Descriptor Format for 32-bit TSS........................................................ 608
A-16. General Segment Descriptor Formats......................................................... 609
A-17. I/O Address Bit Map.................................................................................. 611
A-18. Processor EFLAGS Register....................................................................... 612
A-19. Status Flags Format.................................................................................... 613
A-20. Control Flags and IOPL Format.................................................................. 616
A-21. Interrupt Descriptor Table and Register...................................................... 621
A-22. IDT Gate Descriptors................................................................................. 622
G-1. Intel486 Processor Control Registers .......................................................... 669
G-2. Intel486 Processor Page Table/Directory Entry Format .............................. 669
G-3. Intel486 Processor EFLAGS Register......................................................... 670



ASM386 Assembly Language Reference Chapter 1 23

Introduction 1
About This Manual

ASM386 supports the Pentium® and Intel486™ microprocessors and the entire
Intel386™ family, including the Intel386, Intel386 SX, and 376 microprocessors, as
well as the Intel287™, Intel387™ and Intel387 SX floating-point coprocessors.
Throughout this manual, the word "processor" refers to any of the above
microprocessors and the words "floating-point coprocessor" refer to any of the
above coprocessors, as well as the Pentium and Intel486 processors' built-in
floating-point functions.

This manual is a reference for the ASM386 assembly language.  It assumes that
you are familiar with assembly language programming and 8086/286/Intel386
processor architecture.  Read Appendix A if you are already familiar with the
8086/286 processor architecture(s).  If you aren't, see the 80386 Programmer's
Reference Manual.

About This Chapter
This chapter introduces the assembly language.  It has three major sections:

• Lexical Elements

This section describes the assembler character set, tokens, separators,
identifiers, comments, and the difference between source file lines and logical
statement lines.

• Statements

This section introduces the assembler directives, processor instruction set, and
floating-point instruction set.

• Program Structure

This section provides a template for assembler programs together with a simple
example program (see Appendix B for another example program).  It
summarizes the essential parts of every ASM386 program.



24 Chapter 1 Introduction

Lexical Elements
This section describes the lexical elements of the assembly language, except for its
keywords and reserved words.

See also: Keywords and reserved words, Appendix C

Character Set
The assembler character set is a subset of the ASCII character set.  Each character
in a source file should be one of the following:

Alphanumerics: ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
0123456789

Special Characters:+ - * / ( ) [ ] < > ; ' . "_: ? @ $ &

Logical Delimiters: space  tab  carriage_return  line_feed

If a program contains any character that is not in the preceding set, the assembler
treats the character as a logical space.

Uppercase and lowercase letters are not distinguished from each other except in
character strings.  For example, xyz  and XYZ are interchangeable, but 'xyz ' and
'XYZ' are not equivalent character strings.

The special characters and combinations of special characters have particular
meanings in a program, as described throughout this manual.

See also: ASCII character set, Appendix D

Tokens and Separators
A token is the smallest meaningful unit of a source program, much as words are the
smallest meaningful units of a sentence.  A token is one of the following:

• An end of statement

• A delimiter

• An identifier

• A constant

• An assembler keyword or reserved word

A separator that is a logical space or a delimiter must be specified between two
adjacent tokens that are identifiers, constants, keywords, and/or reserved words.
The most commonly used separator is the space character.



ASM386 Assembly Language Reference Chapter 1 25

The end of statement token must be specified between two adjacent statements.
The most commonly used statement terminator is the carriage_return/line_feed
character combination.

See also: Constants, Chapter 4
keywords and reserved words, Appendix C

Logical Spaces

Any unbroken sequence of spaces can be used wherever a single space character is
valid.  Horizontal tabs are also used as token separators.  The assembler interprets
horizontal tabs as a single logical space.  However, tabs are reproduced as multiple
space characters in the print (listing) file to maintain the appearance of the source
file.

See also:  Print file, ASM386 Macro Assembler Operating Instructions

Logical spaces may not be specified within tokens such as identifiers, constants,
keywords, or reserved words.  The assembler treats any invalid character(s) in the
context of a source file as a separator.

Delimiters

Like logical spaces, delimiters mark the end of a token, but each delimiter has a
different special meaning.  Some examples are commas and colons.

When a delimiter is present, a logical space between two tokens need not be
specified.  However, extra space or tab characters often make programs easier to
read.

Delimiters are described in context throughout this manual.



26 Chapter 1 Introduction

Identifiers
An identifier is a name for a programmer-defined entity such as a segment,
variable, label, or constant.  Valid identifiers conform to the following rules:

• The initial character must be a letter (A...Z or a...z) or one of the following
special characters:

? A question mark (ASCII value: 3FH)

@ An at sign (ASCII value: 40H)

_ An underscore (ASCII value: 5FH)

• The remaining characters may be letters, digits (0..9), and the preceding
special characters.  Separators may not be specified within identifiers.

• An identifier may be up to 255 characters in length; it is considered unique
only up to 31 characters.

• Every identifier within a program module represents one and only one entity.
A named entity is accessible from anywhere in the module when it is
referenced by name.  The assembler does not have identifier scope rules that
allow you to specify the same name for two distinct entities in different
contexts.

Continued Statements and Comments
An assembler statement usually occupies a single source file line.  A source file
line is a sequence of characters ended by a valid line delimiter:

• Either a line_feed character

• Or, a carriage_return/line_feed combination

However, the end of line in a source file is not necessarily the logical end of a
statement.  Assembler statements do terminate with a line_feed or
carriage_return/line_feed combination, but logical statements can extend over
several lines by using the continuation character (&).

The end of line in a source file always terminates a comment.  The semicolon (; ) is
the initial character of a comment.



ASM386 Assembly Language Reference Chapter 1 27

Valid comments and statements conform to the following rules:

• A comment begins with a semicolon (; ) and ends when the line that contains it
is terminated.  The assembler ignores comments.

• A statement or comment may be continued on subsequent continuation lines.
The first character following the line terminator that is not a logical space must
be an ampersand (&).

• Statements and comments may extend over many source file lines if they
conform to the following:

— Symbols (such as identifiers, keywords, and reserved words) cannot be
broken across continuation lines.

— Character strings must be closed with an apostrophe on one line and
reopened with an apostrophe on a subsequent continuation line, with an
intervening comma (, ) after the ampersand.  Space and tab characters
within a character string are significant; they are not treated as logical
spaces.

— If a comment is continued, the first character following the ampersand that
is not a logical space must be a semicolon (;).

Examples

The following examples illustrate the difference between the end of a source file
line and the logical end of an assembler statement.  The notation <cr_lf> represents
a carriage_return/line_feed.  Both examples are equivalent.

1. This example has a single statement on a single source file line.  The end of
the source file line and the logical end of the statement are the same.

;         1         2         3         4<cr_lf>
; 234567890123456789012345678901234567890<cr_lf>
<cr_lf>                   ; interpreted as logical space
MOV EAX, FOO<cr_lf>



28 Chapter 1 Introduction

2. This example has many ends of lines in the source file, but it has only one
logical end of statement.

;         1        2         3         4<cr_lf>
; 234567890123456789012345678901234567890<cr_lf>
<cr_lf>                   ; interpreted as logical space
MOV                       ; this ASM386<cr_lf>
& EAX,                    ; statement extends<cr_lf>
&                         ; <cr_lf>
&                         ; <cr_lf>
&                         ; over<cr_lf>
&                         ; several lines<cr_lf>
& FOO                     ; statement ends here<cr_lf>
<cr_lf>



ASM386 Assembly Language Reference Chapter 1 29

Assembler Statements
Assembler programs are constructed from statements.  They may also contain
definitions of and calls to programmer-defined macros.  There are two kinds of
statements: directives and instructions.

See also: Programmer-defined macros, Chapter 8

Assembler Directives
Directive statements tell the assembler to perform certain operations.  Assembler
directives determine the organization of a program's data, stack, and code
segments, and they affect almost every opcode that the assembler generates.

Table 1-1 lists the assembler directives by functional categories.

Table 1-1.  Assembler Directives

Segmentation Directives
SEGMENT..ENDS Defines a program's logical segments and specifies a code or

data segment's attributes (access protection, whether to combine
with other logical segments, and whether to use 32- or 16-bit
addressing)

STACKSEG Defines stack segments and allocates a specified number of
bytes per module to the run-time stack

ASSUME Informs the assembler of the expected run-time contents of the
processor segment registers

Program Linkage Directives
NAME Specifies a source module's unique name
END Required last statement in module that terminates assembly; in

main module only, initializes CS and may also initialize DS and
SS segment registers

PUBLIC Specifies that a named symbol is accessible from another
program module

EXTRN Specifies that a named PUBLIC symbol in another program
module can be accessed in this module

COMM Specifies that a named symbol is to be allocated common and
accessible data storage with COMM or EXTRN symbols in other
program modules or specifies that a named PUBLIC symbol can
be accessed in this module

continued



30 Chapter 1 Introduction

Table 1-1.  Assembler Directives (continued)

Data Allocation and Type Definition Directives
DBIT Allocates storage for and may initialize values of BIT-type variables
DB Allocates storage for and may initialize values of BYTE-type variables
DW Allocates (2 bytes) storage for and may initialize values of WORD-type

variables
DD Allocates (4 bytes) storage for and may initialize values of DWORD- type

variables
DP Allocates (6 bytes) storage for and may initialize values of PWORD- type

variables
DQ Allocates (8 bytes) storage for and may initialize values of QWORD- type

variables
DT Allocates (10 bytes) storage for and may initialize values of TBYTE- type

variables

Data Allocation and Type Definition Directives
RECORD Names a programmer-defined type that is a bit-encoded data structure

(1 to 4 bytes long)
STRUC Names a programmer-defined type with named fields; each field may be

any of the predefined types
DUP Allocates contiguous storage for a specified number of variables of a

single type and may initialize their values

Procedure and Label Definition Directives
labelname: Defines label within current code segment; assembler generates an

intrasegment return of type NEAR
PROC..ENDP Defines labeled sequence of instructions (assembler generates an

intrasegment return) of type NEAR or (assembler generates an
intersegment return) of type FAR

LABEL Defines label of a specified type (NEAR, FAR, or a declared variable's
type)

Location Counter Symbol and Management Directives
$ Represents location counter (location of the statement currently being

assembled)
ORG Sets $ to specified value
EVEN Sets $ for the following code or data to the next dword or word
ALIGN Sets $ to the next location for code or data that is evenly divisible by the

specified number.

Symbol Equating and Purging Directives
EQU Defines name (alias) for keyword reserved word, or program symbol
PURGE Instructs assembler to delete specified symbol(s)

See also: Chapters 1 through 4 for more information about each directive in
Table 1-1
codemacro directives, Chapter 9



ASM386 Assembly Language Reference Chapter 1 31

Assembler Instructions
The assembler translates assembler instruction statements into opcodes, operands,
and addresses.  The machine code causes the processor and/or floating-point
coprocessor to perform particular operations on (and with) the program's data.
There are two kinds of assembler instructions:  processor instructions and floating-
point instructions.  The floating-point instructions may be emulated on the
processor or they may execute on a floating-point coprocessor.

Tables 1-2 and 1-3 list the assembler instructions by functional category.  See
Table 1-2 for the processor instruction set and Table 1-3 for the floating-point
instruction set.

Table 1-2.  Processor Instructions

Data Transfer Instructions
MOV Move data
MOVZX Move with zero extend
MOVSX Move with sign extend
IN Input from port
OUT Output to port
XCHG Exchange register/memory with register
CMPXCHG Compare and exchange (not available on Intel386 or 376 processors)
XLAT/XLATB Table look-up translation

Address Transfer Instructions
LEA Load effective address offset
LDS Load full pointer into DS:register
LES Load full pointer into ES:register
LFS Load full pointer into FS:register
LGS Load full pointer into GS:register
LSS Load full pointer into SS:register

continued



32 Chapter 1 Introduction

Table 1-2.  Processor Instructions (continued)

Logic Instructions
NOT One's complement negation
AND Logical AND
OR Logical (inclusive) OR
XOR Logical (exclusive) OR
TEST Logical compare (non-destructive AND)
CMP Compare operands
SHL Shift logical left
SHR Shift logical right
SAL Shift arithmetic left
SAR Shift arithmetic right
SHLD Shift double precision left
SHRD Shift double precision right
ROL Rotate left
ROR Rotate right
RCL Rotate through carry flag (CF) left
RCR Rotate through carry flag (CF) right
BSWAP Byte swap (not available on Intel386 or 376 processors)

Stack Instructions
ENTER Make stack frame for procedure's local variables
LEAVE High-level procedure exit
PUSH Push operand onto the stack
POP Pop operand from the stack
PUSHFD/PUSHF Push EFLAGS or FLAGS register onto stack
POPFD/POPF Pop top of stack into EFLAGS or FLAGS register
PUSHAD/PUSHA Push all (32- or 16-bit) general registers onto the stack
POPAD/POPA Pop stack into all (32- or 16-bit) general registers

Flag Instructions

STC Set carry flag (CF)
CLC Clear carry flag
CMC Complement carry flag
STD Set direction flag (DF)
CLD Clear direction flag
STI Set interrupt flag (IF)
CLI Clear interrupt flag
LAHF Load status flags into AH
SAHF Store AH into status flags
SETcc Set byte on (status flag) condition

continued



ASM386 Assembly Language Reference Chapter 1 33

Table 1-2.  Processor Instructions (continued)

Mathematical Instructions
ADC Add with carry
ADD Add
DEC Decrement by 1
DIV Unsigned divide
IDIV Signed divide
IMUL Signed multiply
INC Increment by 1
MUL Unsigned multiply
NEG Two's complement negation
SUB Integer subtraction
XADD Exchange and add (not available on Intel386 or 376 processors)

Data Adjustment Instructions
AAA ASCII adjust AL after addition
AAS ASCII adjust AL after subtraction
DAA Decimal adjust AL after addition
DAS Decimal adjust AL after subtraction
AAD ASCII adjust AX before division
AAM ASCII adjust AX after multiply
AAD ASCII adjust AX before division
CBW Convert byte to word
CWD Convert word to dword
CWDE Convert word to dword extended
CDQ Convert dword to quadword

String Instructions
MOVS Move string to string
CMPS Compare string operands
SCAS Compare (scan) string data
LODS Load string data
STOS Store string data
INS Input from port to string
OUTS Output string to port

Bit Test and Scan Instructions
BT Bit test
BTS Bit test and set
BTR Bit test and reset (to 0)
BTC Bit test and complement
BSF Bit scan forward
BSR Bit scan reverse

continued



34 Chapter 1 Introduction

Table 1-2.  Processor Instructions (continued)

Control Transfer Instructions
Jcc Jump if status flag condition is met
JMP Jump unconditionally
CALL Call procedure
RET Return from procedure
LOOP Loop with (E)CX counter
LOOPcond Loop with (E)CX counter AND condition

Interrupt Instructions
INT Call to interrupt procedure
INTO Call to interrupt procedure if overflow
IRET Interrupt return (16-bits)
IRETD Interrupt return (32-bits)

Processor Control
HLT Halt
WAIT Wait until BUSY# is inactive

Protected Mode Control Instructions
LGDT/LGDTW/LGDTD Load global descriptor table register (GDTR) using 16- or 32-bit

operand
LIDT/LIDTW/LIDTD Load interrupt descriptor table register (IDTR) using 16- or 32-bit

operand
LLDT Load local descriptor table (LDT) register (LDTR)
LTR Load task register (TR)
LMSW Load machine status word (MSW)
SGDT/SGDTW/SGDTD Store GDTR using 16- or 32-bit operand
SIDT/SIDTW/SIDTD Store IDTR using 16- or 32-bit operand
SLDT Store local descriptor table register
STR Store task register
SMSW Store machine status word
ARPL Adjust requesting privilege level (RPL) field of selector
CLTS Clear task switch (TS) flag in CR0 register

Parameter Verification Instructions
BOUND Check array index against bounds
LAR Load access rights
LSL Load segment limit
VERR Verify a segment for reading
VERW Verify a segment for writing

continued



ASM386 Assembly Language Reference Chapter 1 35

Table 1-2.  Processor Instructions (continued)

Cache Control Instructions
INVLPG Invalidate paging cache entry (not available on Intel386 or 376

processors)
INVD Invalidate data cache (not available on Intel386 or 376 processors)
WBINVD Write back and invalidate data cache (not available on Intel386 or 376

processors)

No Operation Instruction
NOP No operation (fills 1 byte and increments instruction pointer)

Instruction Prefixes
LOCK Assert BUS LOCK# signal prefix
REP Repeat following string operation

See also: Chapter 6 for an overview of the processor instruction set and for
detailed information about each processor instruction



36 Chapter 1 Introduction

Table 1-3.  Floating-point Instructions

Data Transfer Instructions   
FLD Load real
FST Store real
FSTP Store real and pop floating-point stack
FXCH Exchange stack elements
FILD Load integer
FIST Store integer
FISTP Store integer and pop floating-point stack
FBLD Load packed decimal real
FBSTP Store packed decimal real

Load Internal Constant Instructions   
FLDZ Load +0.0
FLD1 Load 1.0
FLDPI Load π
FLDL2T Load log210
FLDL2E Load log2e
FLDLG2 Load log102
FLDLN2 Load loge2

Comparison Instructions
FCOM Compare real
FCOMP Compare real and pop floating-point stack
FCOMPP Compare real and pop twice
FUCOM Unordered compare real (not available on Intel287 floating-point

coprocessor)
FUCOMP Unordered compare real and pop floating-point stack (not available on

Intel287 floating-point coprocessor)
FUCOMPP Unordered compare real and pop twice (not available on Intel287 floating-

point coprocessor)
FICOM Compare integer
FICOMP Compare integer and pop floating-point stack
FTST Test (compare to zero)
FXAM Examine

continued



ASM386 Assembly Language Reference Chapter 1 37

Table 1-3.  Floating-point Instructions (continued)

Transcendental Instructions
FSIN Sine (not available on Intel287 floating-point coprocessor)
FCOS Cosine (not available on Intel287 floating-point coprocessor)
FSINCOS Sine and cosine (not available on Intel287 floating-point coprocessor)
FPTAN Partial tangent
FPATAN Partial arctangent
F2XM1 2x - 1
FYL2X Y * log2 X
FYL2XP1 Y * log2 (X + 1)

Algebraic Instructions
FADD Add real
FADDP Add real and pop floating-point stack
FIADD Add integer
FSUB Subtract real
FSUBP Subtract real and pop floating-point stack
FSUBR Subtract real reversed
FSUBRP Subtract real reversed and pop floating-point stack
FISUB Subtract integer
FISUBR Subtract integer reversed
FMUL Multiply real
FMULP Multiply real and pop
FIMUL Multiply integer
FDIV Divide real

Algebraic Instructions
FDIVP Divide real and pop floating-point stack
FDIVR Divide real reversed
FDIVRP Divide real reversed and pop floating-point stack
FIDIV Divide integer
FIDIVR Divide integer reversed
FSQRT Square root
FSCALE Scale
FPREM Partial remainder
FPREM1 IEEE std.754 partial remainder (not available on Intel287 floating-point

coprocessor)
FRNDINT Round real to integer
FXTRACT Extract exponent and significand
FABS Absolute value
FCHS Change sign

continued



38 Chapter 1 Introduction

Table 1-3.  Floating-point Instructions (continued)

Processor Control Instructions
FINIT/FNINIT Initialize floating-point coprocessor
FSTCW/FNSTCW Store control word
FLDCW Load control word
FSTSW/FNSTSW Store status word
FCLEX/FNCLEX Clear exceptions
FSTENV/FNSTENV Store environment
FLDENV Load environment
FSAVE/FNSAVE Store machine state
FRSTOR Restore machine state
FINCSTP Increment floating-point stack pointer
FDECSTP Decrement floating-point stack pointer
FFREE Free (empty) stack top element
FNOP No operation
FSETPM Set (Intel287) protected mode (Otherwise FNOP)
FWAIT Wait (alternate specification of processor WAIT)

See also: Chapter 7 for detailed information about each assembler floating-
point instruction

Specifying Assembler Statements
The general syntax for assembler directive statements is similar to that for
instructions.

Specifying Directive Statements

Assembler directive statements have the following general syntax:

[ name] directive [ argument  [,...]]

Where:

name is a valid identifier.

directive is one of the directives listed in Table 1-1.

argument is a modifier or value to be associated with name.

Each assembler directive has its own set and/or forms of argument(s).  Some
directives have no valid arguments in the context of a program.  Some have a
restricted set of arguments that are reserved words.  Others accept constant values
and constant expressions.

See also: Chapters 2 through 4 for more detailed information about each
directive in Table 1-1



ASM386 Assembly Language Reference Chapter 1 39

Specifying Instruction Statements

Assembler instruction statements have the following general syntax:

[ label :][ prefix ] mnemonic [ argument [,...]]

Where:

label is a unique-to-the-module identifier that defines a label.

prefix is a processor instruction prefix (LOCK or REP).

mnemonic is a processor or floating-point instruction (listed in Table 1-2 or 1-3)
or it is a programmer-defined codemacro.

argument is an operand.

Some instructions have no operands; others require one, two, or three operands.
Some operands may be expressions.  The general form of an instruction with
operands is one of the following:

mnemonic src
where the execution result may be stored either in the source itself
(src ) or in an implicit location (usually a register or the floating-point
stack top element ST).

mnemonic dest, src
where the execution result is stored either in the destination (dest ) or
in an implicit location; the instruction's operation does not change the
source operand.

Only a few processor instructions have three operands.  For floating-point
instructions, one operand is usually the stack top ST(0).

See also: Programmer-defined codemacros, Chapter 9
expressions, Chapter 5
instruction operands, Chapter 6 (Table 1-2) and Chapter 7 (Table 1-3)



40 Chapter 1 Introduction

Assembler Program Structure
Figure 1-1 illustrates the essential parts of an assembler program that is contained
in a single source module and intended to run in processor protected mode.
Figure 1-2 illustrates such an example program.

The following subsections explain what each assembler statement in Figure 1-1
does.

         ; This is a comment. Tokens in bold face  can seldom
         ; be omitted from any non-trivial assembler program.
         ; Those in type like THIS are strongly recommended for
         ; every assembler
         ; program and some are required by all but the simplest.
NAME MAIN_MODULE

         ; MAIN_MODULE is programmer defined for this module.
PROG_STACK STACKSEG 500

         ; PROG_STACK is programmer defined for program's stack
         ; segment and 500 is number of bytes in segment.
PROG_DATA SEGMENT RW

         ; PROG_DATA is programmer defined for program's data
         ; segment and RW (read/write) is this segment's
         ; access attribute (ReadOnly or ExecuteRead also possible).
         ; Program data must be defined and may be initialized here
PROG_DATA ENDS

PROG_CODE SEGMENT ER

         ; PROG_CODE is programmer defined for program's code
         ; segment and ER (execute/read) is this segment's
         ; access attribute (ExecuteOnly also possible).
ASSUME DS:PROG_DATA
         ; Tells assembler which processor segment register
         ; points to program's data segment for the following
MAIN:

         ; code. MAIN is programmer defined label specifying
         ; program entry point (execution begins here). Assembler
         ; instruction statements begin at label (MAIN) and must
         ; be coded between SEGMENT..ENDS. DS, SS, ES, FS and GS
         ; segment register initializations may be coded here too.
PROG_CODE ENDS                                  ; Code segment ends.
END CS: MAIN, DS:PROG_DATA, SS:PROG_STACK

Figure 1-1.  Template for an Assembler Program



ASM386 Assembly Language Reference Chapter 1 41

NAME Directive
Assembler programs with more than one source module must specify a unique
name for each module.  The assembler will assign the module identifier
ANONYMOUS if the NAME statement is omitted.  A multi-module program cannot be
combined and located by the system utilities if two modules have the same name.

See also: NAME directive, Chapter 3

NAME TOY_MAIN_MODULE

PROG_STACK STACKSEG 200

EXTRN EXIT: FAR

PROG_DATA SEGMENT RW

   VAR1 DB 0
   VAR2 DD 0
   VAR3 DD 1000

PROG_DATA ENDS

PROG_CODE SEGMENT ER USE32

ASSUME DS: PROG_DATA

MAIN:        INC VAR1              ; increment counter
             PUSH EAX              ; store EAX on stack
             MOV EAX, VAR2         ; move VAR2 value to EAX
             ADD EAX, 500
             MOV VAR2, EAX         ; store sum in VAR2
             POP EAX               ; restore original EAX value
                                   ; from stack
             MOV ECX, VAR3         ; move VAR3 to ECX
             SUB ECX, VAR2         ; subtract 500
                                   ; from 1000 in ECX
             JNZ MAIN              ; jump to MAIN if subtraction
                                   ; result in ECX not zero and
                                   ; end loop when result = 0
             CALL EXIT
PROG_CODE ENDS

END MAIN, DS:PROG_DATA, SS:PROG_STACK

Figure 1-2.  An ASM386 Example Program



42 Chapter 1 Introduction

STACKSEG Directive
Any assembler program that allocates data dynamically on a stack should define a
named stack segment with a STACKSEG statement.

In assembler programs, source modules share a single stack segment.  STACKSEG
must be specified with the same name in each source module that references data
on the stack.  In such a source module, the STACKSEG statement specifies the
number of bytes that the module will allocate on the to-be-combined stack segment
for the whole program.

For stack segments, the assembler determines the use attribute.  A stack segment's
use attribute determines the upper limit for offsets within the segment; it also
determines whether the ESP or SP register is used for implicit stack references.

See also: STACKSEG directive, Chapter 2
processor stack architecture, Appendix A

SEGMENT Directive for Data Segments
Assembler data must be defined within a SEGMENT..ENDS.  This directive
specifies at least a name for one program (or module) data segment; it may also
specify access, use, and combine attributes for the named data segment.

Assembler source modules may define any number of named data segments with
SEGMENT..ENDS.  The processor DS (default), ES, FS, and GS segment registers
provide access to data segments.  At most four named data segments are accessible
at any given point in a module.

Each data segment within a module must have a distinct name.  The assembler
assigns the RW (read/write access) attribute unless RO or ER is specified for the
segment.

The assembler assigns the USE32 (use 32-bit addressing) attribute for the whole
module by default unless USE16 is specified as an assembler control.  Segments
within the module may have individually specified USE attributes.  When a USE
attribute is defined on a segment, it remains in effect throughout that segment.  For
all segments, the USE attribute determines the maximum segment size:  4 gigabytes
(232 - 1) for USE32 and 64K bytes (216 - 1) for USE16.



ASM386 Assembly Language Reference Chapter 1 43

Named data segments may be shared across program source modules only if a
PUBLIC or COMMON combine attribute is specified in the SEGMENT statement.  Each
data segment that is shared among modules must have the same name with the
same use and combine attributes and compatible access attributes.

See also: Processor registers, memory organization, and access protection
features, Appendix A
SEGMENT directive, Chapter 2
defining shared data entities inside the SEGMENT..ENDS of multiple
source modules, Chapter 3
defining data (variables, labels, and constants) and specifying
assembler data values within SEGMENT..ENDS, Chapter 4

SEGMENT Directive for the Code Segment
All assembler instruction statements must be specified within SEGMENT..ENDS.
This directive specifies at least a name for the module's code segment.  It may also
specify access, use, and combine attributes for the code segment.

The assembler assigns ER (execute/read) access unless EO (execute only) is
specified for the segment.  The assembler assigns USE32 (use 32-bit addressing) for
the whole module by default unless USE16 is specified as an assembler control.
When a USE attribute is defined on a segment, it remains in effect throughout that
segment.

The USE attribute of a segment instructs the assembler to generate 32- or 16-bit
(offset) addresses and default lengths for instruction operands.  It also determines
the segment's maximum size: 4 gigabytes (2 32 - 1) for USE32 and 64K bytes
(216 - 1) for USE16.

Code segments defined with the same name and specified with the PUBLIC
combine attribute are concatenated into a single code segment.  If PUBLIC is not
specified for a module's code segment, it is non-combinable and must be wholly
contained in a single source module.



44 Chapter 1 Introduction

The code segment of a program's main module must have a label (MAIN:  in
Figures 1-1 and 1-2) at the first executable instruction of the program.  The main
module's END statement must specify this label.

See also: END statement, END Directive, in this chapter
Assembler Statements for a summary of the assembler instructions
and directives
SEGMENT..ENDS directive, including the PUBLIC combine attribute,
Chapter 2
accessing data with address expressions, Chapter 5
Chapters 6 and 7 for detailed information about each assembler
instruction

ASSUME Directive
If no ASSUME statement is specified in an ASM386 code segment, the assembler
assumes that CS contains the selector of the code segment but that no other
segment register has been loaded.  The assembler cannot generate a correct logical
address for a symbolic reference unless it knows which segment register contains
the selector for the symbol's defining segment.  The assembler must know the
correct segment register whenever an instruction statement references memory
data.  Such references include:

• Symbolic references using the name of a variable, label, or constant as an
operand to an instruction (e.g., ADD EAX, VAR2)

• Non-symbolic references using segment overrides and the PTR operator (e.g.,
ADD EAX, GS:DWORD PTR 24)

Initialize a segment register for each memory segment that is referenced in your
code and specify ASSUME at each point in the source code where the run-time
contents of a segment register will change for subsequent instructions.

See also: Initializing Segment Registers with Instructions, in this chapter
ASSUME directive, Chapter 2
processor segment registers, Appendix A



ASM386 Assembly Language Reference Chapter 1 45

END Directive
The END statement terminates assembly; it must be the last statement in an
ASM386 source module.

The main module's END statement must specify at least the code segment's entry
point label in order to initialize the CS and (E)IP registers.  When the program is
loaded, CS:(E)IP points to the entry point label of the code segment.  EIP (32-bit
addressing) or IP (16-bit addressing) also points to the (labeled) instruction.

The SS and DS segment registers may also be initialized with the main module's
END statement.  If they are, when the program is loaded:

• SS contains the selector for the stack segment.  ESP (32-bits) or SP (16-bits)
contains the offset of the first dword (32-bits) or word (16-bits) above the
upper segment limit if the stack segment was defined with STACKSEG; (E)SP
has a value equal to the size of the stack plus 4 (for ESP) or plus 2 (for SP).
(E)SP is 0 if the stack segment was not defined with STACKSEG.

• DS contains the selector for the data segment.

Note that an explicit MOV reference to the data segment name is not required to
initialize DS to the data segment (see Figure 1-2) when DS is initialized by the END
statement.

The ES, FS, and GS data segment registers cannot be initialized with the main
module's END statement.  In non-main modules, segment registers may not be
initialized with the END statement.

See also: END statement, Chapter 3

Initializing Segment Registers with Instructions
Memory data must be accessible if assembler instructions are to operate on it.  If all
program modules have a single, shared data segment, specifying ASSUME
DS:datasegname  and initializing DS with the main module's END statement
provides the necessary access.  Even one-module programs that define more than
one named data segment must initialize the ES, FS, or GS register(s) explicitly in
the code segment.



46 Chapter 1 Introduction

Since each assembler module may define several data segments, individual
modules of a program may have local, as well as shared data segments.  But, as the
program executes, only four data segment registers are available to access memory
data.  Thus, the DS, ES, FS, and GS register contents may change within a module
and from module to module.  In these cases, specify an ASSUME statement and
initialize the data segment register(s) before an instruction accesses memory data.

A module's stack segment may also be initialized explicitly in the code segment,
rather than with the (main) module's END statement.

Initializing DS, ES, FS, and GS

The DS, ES, FS, and GS registers may be initialized in four ways in a source
module's code segment:

1. By specifying sequential MOV instructions using the data segment name:

• The first MOV has a destination operand that is a general register (AX, BX,
CX, DX, SI, DI, SP, BP) and a source operand that is the name of a data
segment in the module.  Avoid specifying SP or BP if the module accesses
the stack segment.

• The next MOV has a destination operand that is a data segment register
(DS, ES, FS, or GS) and a source operand that is the destination register
specified in the preceding MOV.

2. By specifying sequential MOV instructions and using the SEG operator:

• The first MOV has a destination operand that is a general register (AX, BX,
CX, DX, SI, DI, SP, BP) and a source operand that is a symbol (named
variable, label, or constant) preceded by SEG.  The SEG expression
represents the segment base address of the symbol's defining data segment.
Avoid specifying SP or BP if the module accesses the stack segment.

See also: SEG, Chapter 5

• The next MOV has a destination operand that is a data segment register
(DS, ES, FS, or GS) and a source operand that is the destination register
specified in the preceding MOV.

3. By specifying a MOV instruction with DS, ES, FS, or GS as the destination
operand and an initialized memory location as the source operand.

4. By specifying an LDS, LES, LFS, or LGS instruction with a memory operand
that is a pointer.  Do not attempt to load a segment register directly by using a
segment name as a source operand; a segment name is an immediate operand,
not a memory operand.



ASM386 Assembly Language Reference Chapter 1 47

Examples

1. This example initializes ES.  ES will contain the selector of the DATA2
segment after both MOV statements execute.

DATA1 SEGMENT RW
  : :                   ; its data accessed
DATA1 ENDS              ; by DS:EAX later
DATA2 SEGMENT RW
 VAR32 DD 0
DATA2 ENDS
  : :                   ; more segment definitions
MOV BX, DATA2
ASSUME ES:DATA2
MOV ES, BX

2. This example initializes FS.  FS will contain the selector of VAR32's defining
data segment after both MOV statements execute.  The EXTRN directive
indicates that VAR32 is defined in another source module.

See also: EXTRN, Chapter 3

  : :
EXTRN VAR32 DWORD
  : :
  : :
MOV CX, SEG VAR32
ASSUME FS:SEG VAR32
MOV FS, CX

Initializing SS

The SS (stack segment) register and (E)SP may also be initialized in the code
segment:

1. By specifying sequential instructions, just as for a data segment  with SS as the
destination segment register.

2. By specifying (E)SP as a MOV destination operand and the stack segment name
as the source operand preceded by the STACKSTART operator.

3. By specifying the LSS instruction with a memory operand that is a pointer.  Do
not attempt to load a segment register directly by using a segment name as a
source operand; a segment name is an immediate operand, not a memory
operand.



48 Chapter 1 Introduction

(E)SP points to the top of the processor push-down stack.  This register is
referenced implicitly by the processor ENTER, LEAVE, PUSH, POP, PUSHA, POPA,
PUSHF, POPF, CALL and interrupt operations.  (E)BP should be used as the stack-
frame base pointer to avoid having to specify SS explicitly for each data access
within a stack frame.

Example

This example uses STACKSTART to initialize (E)SP.  A MOV into SS disables
interrupts for one instruction so that (E)SP can be initialized.  After these
instructions execute, (E)SP points to the (d)word above the upper stack segment
limit.

MOV AX, PROG_STACK
MOV SS, AX
MOV ESP, STACKSTART PROG_STACK

See also: STACKSTART, Chapter 5

■■  ■■  ■■



ASM386 Assembly Language Reference Chapter 2 49

Segmentation 2
This chapter contains three major sections:

• Overview of Segmentation

This section briefly describes processor segmentation, together with the
assembler directives that define and set up access to logical program segments.

• Defining Logical Segments

This section explains the SEGMENT..ENDS and STACKSEG directives.  These
directives define code, data, and stack segments in assembler programs.

• Assuming Segment Access

This section explains the ASSUME directive.  This directive specifies which
segments in an assembler program are accessed by the processor segment
registers at any given point in the program's code.

Overview of Segmentation
The processor addresses 4 gigabytes of physical memory.  Processor memory is
segmented.  For programmers, processor memory appears to consist of up to six
accessible segments at a time:

• One code segment containing the executable instructions

• One stack segment containing the run-time stack

• Up to four data segments, each containing part of the data

Assembler program segments are called logical segments, because they represent
logical addresses that must be mapped to processor physical addresses before
program execution.

The maximum size of a program segment depends on which USE attribute is
specified in the source.  When USE32 is specified, the maximum size for a segment
is 4 gigabytes.  When USE16 is specified, it is 64K bytes.

See also: Processor memory organization, Appendix A
operand addressing and the USE attribute, Chapters 5 and 6



50 Chapter 2 Segmentation

At run time, the physical base address of a program segment will be accessed by an
immediate value loaded into a segment register.  This value is called a selector.  A
selector points (indirectly in processor protected mode and directly in processor
real address mode) to the physical location of a segment.  The processor segment
registers are CS, DS, and SS, which access code, data, and stack segments,
respectively, and ES, FS, and GS, which access additional data segments.

Logical segments are created in an assembler module with the SEGMENT (code and
data) and STACKSEG (stack or stack-and-data) directives.  These directives specify
a segment name; this name defines a logical address for the segment.  A segment
name can appear in several contexts throughout a program:

• In data initializations, because it stands for the value of the selector

• In segment register initializations

• In an ASSUME statement, which tells the assembler which segment registers
contain which selectors

See also: ASSUME statement, in this chapter
selectors, Chapter 4
data and segment register initializations, Chapter 1

After program code is assembled, the system utilities map assembler program
segments to processor physical addresses.  A named segment becomes a sequence
of contiguous physical addresses.  A logical segment becomes physically accessible
when the segment name is loaded into a processor segment register during program
execution.



ASM386 Assembly Language Reference Chapter 2 51

Defining Code, Data, and Stack Segments
The SEGMENT..ENDS directive defines an assembler program's code and data
segments.  The STACKSEG directive defines the stack (or mixed stack and data)
segment.  Both directives specify a name for each logical segment defined in a
program.

Because program segments are named, assembler logical segments need not be
contiguous lines of source code.  Within a source module, a named segment can be
closed with ENDS and reopened with another SEGMENT..  that specifies the same
name.  Logical segments can also be coded in more than one source module.

See also: Logical segments in source modules, Chapter 3

SEGMENT..ENDS Directive

Syntax

name SEGMENT[access ][ use ][ combine ]
          :   :

[instructions, directives, and/or data initializations]
          :   :
name ENDS

Where:

name is an identifier for the segment; name must be unique within the
module.  name represents the logical address of the beginning of the
program segment.  The segment's contents (specified between
SEGMENT..ENDS) represent logical addresses that are offsets from the
segment name.

access is an optional RO (read only), EO (execute only), ER (execute and
read), RW (read and write).

use is USE32 or USE16.  If use  is not specified explicitly in the SEGMENT
statement, the segment's USE attribute defaults to that of its nearest
enclosing segment or to that of the module.  The overall default for
program modules is USE32.

combine is unspecified (default), PUBLIC, or COMMON.  If neither PUBLIC nor
COMMON is specified for name, the segment is non-combinable:  the
entire segment is in this module and it will not be combined with
segments of the same name from any other module.  However,
separate pieces of a non-combinable segment within a module will be
combined.

If a SEGMENT PUBLIC or SEGMENT COMMON directive has been
specified for the segment name, the combine  specification for
segments with the same name in other modules must be the same.



52 Chapter 2 Segmentation

Discussion

The SEGMENT..ENDS directive defines all or part of a logical program segment
whose name is name.  The contents of the segment consist of the assembled
instructions, directives, label declarations, and/or data initializations that occur
between SEGMENT and ENDS.  These contents will be mapped to a contiguous
sequence of processor physical addresses by the system utilities.  When a segment
name is used as an instruction operand, it is an immediate value.

Within a single source module, each occurrence of SEGMENT..ENDS that has the
same name is considered part of a single program segment.  All ASM386 source
code must be specified within a SEGMENT..ENDS.  Every named variable and label
in an assembler program must also be defined within a SEGMENT..ENDS.

Access , use , and combine  are optional; they may be specified in any order.

Specifying EO, ER, RO, or RW Access

access is an assembler (and processor) protection feature; it specifies the
kind(s) of access permitted to the segment.

The assembler issues a warning for the initial definition of a segment if the access
specification is omitted.  The assembler also assigns an access  value according to
the contents of the segment.  For a segment that contains data only, the value is
RW; for a segment that contains code only, it is EO.  For mixed code and data, the
value is ER.

After a named segment has been defined with a SEGMENT statement, access can be
omitted when the segment is reopened.  However, its value may not be changed
when the segment is reopened.

Specifying USE32 or USE16

use specifies the segment's USE attribute, which determines the addressing
mode, maximum segment size, and operand size for code within the
segment.

If use is not specified in the SEGMENT statement, the segment's USE attribute
defaults to that of its nearest containing segment or to that of the module.  The USE
attribute of a module may be specified as an assembler operating control when the
assembler is invoked.  The overall default for assembler program modules is
USE32.

USE32 causes 32-bit offsets to be generated for identifiers (variables, labels,
structures, records, and procedure names) defined within the segment.  USE32
segments can be up to 4 gigabytes long.



ASM386 Assembly Language Reference Chapter 2 53

USE16 causes 16-bit address offsets to be generated for identifiers defined within
the segment.  USE16 segments can be up to 64K bytes long.

The USE attribute of the segment also determines operand sizes for certain
processor instructions.  For example, if the segment is USE32, the ENTER
instruction will assume that the required immediate operand is 32-bits; if the
segment is USE16, the operand will be zero-extended to 32-bits.

See also: USE attribute, ASM386 Macro Assembler Operating Instructions
USE32, Chapter 4
address and operand sizes, Chapter 6

Specifying PUBLIC or COMMON

combine specifies how the segment will be combined with segments of the
same name from other modules to form a single physical segment in
memory.  The actual combination of modules occurs at bind time.

If a SEGMENT directive specifying PUBLIC or COMMON already exists for a named
segment, combine  specifications in other modules must match it.  The named
segment's combine  attribute should be specified (at least) for the initial segment
definition in subsequent modules.  The following explains how a logical segment in
more than one module is combined:

• All segments of the same name that are defined as PUBLIC will be
concatenated to form one physical segment.  Control the order of combination
with the binder.

The length of the combined PUBLIC segment will equal approximately the
sum of the lengths of the SEGMENT..ENDS pieces.  For a segment declared
PUBLIC, there is no guarantee that the beginning of a particular segment part
within the module will have an offset of zero within the final combined
segment.

• All segments of the same name that are defined as COMMON will be overlapped
to form one physical segment.  Each module's version of the segment begins at
offset zero within the segment, so each version has the same physical address.

The length of the combined COMMON segment will be equal to the longest
individual length within any of its defining modules.  A COMMON segment may
not specify EO or ER access.

If neither PUBLIC nor COMMON is specified, the segment is non-combinable.
The entire logical segment must be contained in a single source module.  It
cannot be combined with segments from other program modules.



54 Chapter 2 Segmentation

Multiple Definitions for a Segment

Assembler segments can be opened and closed (with the SEGMENT..ENDS
directive) within a source module as many times as you wish.  All separately
defined parts of the segment are concatenated by the assembler and treated as if
they were defined within a single SEGMENT..ENDS.

Assembler procedure, codemacro, and structure definitions may not overlap
segment boundaries.

When a segment is reopened, it is unnecessary to respecify its access , use , and
combine  attributes, if any.  Do not change the combine  or use  attribute when a
segment is reopened.

If a segment's access is respecified, both access specifications must form a
compatible set.  The following are compatible sets:

• RO and RW are a compatible set with a resulting access attribute of RW.

• Any combination of RO, EO, and ER form a compatible set with a resulting
access attribute of ER.

There are no other compatible sets for access  specifications.

Examples

1. This example reopens the segment named DATA.

DATA SEGMENT
 ABYTE DB 0
 AWORD DW 0
DATA ENDS
  :  :
          ; any number of other segments not named DATA
  :  :
DATA SEGMENT
 ANOTHERBYTE DB 0
 ANOTHERWORD DW 0
DATA ENDS



ASM386 Assembly Language Reference Chapter 2 55

2. This example is an equivalent to the preceding example as a segment
definition for DATA.

DATA SEGMENT
 ABYTE DB 0
 AWORD DW 0
 ANOTHERBYTE DB 0
 ANOTHERWORD DW 0
DATA ENDS

3. This example defines a PUBLIC segment with ER access.

CODE SEGMENT RO PUBLIC USE32
  :  :
CODE ENDS
  :  :
CODE SEGMENT EO
  :  :            ; implied PUBLIC
  :  :            ; and USE32 from above
  :  :
CODE ENDS

4. This example has an error  because RW and ER are not compatible access
specifications.

FOO SEGMENT RW
  :  :
FOO ENDS
  :  :
FOO SEGMENT ER    ; error:
  :  :            ; RW and ER are not compatible
  :  :
FOO ENDS

5. This example has errors because it changes combine and use attributes when a
segment is reopened.

DATA SEGMENT RW COMMON USE16
  :  :
DATA ENDS
  :  :
DATA SEGMENT RW PUBLIC USE32
  :  :            ; errors:
  :  :            ; cannot change combine
  :  :            ; or USE attribute
  :  :
DATA ENDS



56 Chapter 2 Segmentation

Lexically Nested or Embedded Segment Definitions

Assembler segments are never nested or embedded physically in processor
memory.  For convenience, segment definitions may be nested in a program.  This
is a lexical nesting; it does not represent a physical nesting.  However, care must be
taken to close lexically nested segments inside their containing segment(s).

Examples

1. This example illustrates a nested segment definition that is a legal assembler
construct.  The assembler considers the code segment to be separate from the
data segment.  The contents of the data segment are not contained within the
code segment (their physical addresses on the processor might be far apart in
memory after binding).

PROG_CODE SEGMENT
  :  :                     ; begin PROG_CODE
  :  :
  PROG_DATA SEGMENT
  :  :                     ; begin PROG_DATA
                           ; stop assembling PROG_CODE
  :  :
  PROG_DATA ENDS
  :  :                     ; stop PROG_DATA
  :  :                     ; start PROG_CODE again
  :  :
PROG_CODE ENDS             ; end PROG_CODE

2. This code will cause an error .  For lexically nested segment definitions,
SEGMENT..ENDS pairs must be matched as shown in the preceding example.

PROG_CODE SEGMENT          ; begin PROG_CODE
  :  :
 PROG_DATA SEGMENT         ; begin PROG_DATA
  :  :
PROG_CODE ENDS             ; error:
  :  :                     ; cannot close PROG_CODE
  :  :                     ; before closing
                           ; PROG_DATA
  :  :
PROG_DATA ENDS



ASM386 Assembly Language Reference Chapter 2 57

STACKSEG Directive

Syntax

name STACKSEG exp

Where:

name is an identifier for the stack segment; name must be unique within the
program.

exp is this declaration's contribution to the size (number of bytes) of the
segment.  exp  must evaluate to a constant between 0 and 4 gigabytes
(232 - 1) for USE32 segments, and between 0 and 64K bytes (65,535)
for USE16 segments.

Discussion

The STACKSEG directive is used to allocate exp  bytes for a stack segment named
name.  The STACKSEG directive both opens and closes the segment.  Do not close
STACKSEG with ENDS.

Assembler stack segments always have RW access and PUBLIC combine attributes.
Multiple definitions of a stack segment with the same name will result in one
segment whose size is the sum of all specified sizes.

A stack segment is not explicitly assigned a use attribute of USE32 or USE16.  A
stack segment's use attribute is either the same as:

• The nearest enclosing segment's use attribute, if any

• Or, the module's use attribute

Most single-task applications have only one stack segment.  Code, labels, variables,
or data initializations cannot be defined within a stack segment.  The STACKSTART
operator or the END directive may be used to initialize the stack pointer (contents of
SS:(E)SP).

See also: Code, labels, variables, and data initializations, Chapter 4
STACKSTART operator, Chapter 5
END directive, Chapter 3



58 Chapter 2 Segmentation

Combining Stack and Data Segments

If a data and a stack segment are given the same name, they are combined into a
single data/stack combined (dsc) segment if they have compatible attributes.

Such a segment has both a stack part and a data part.  Its data segment must be
declared PUBLIC with RO or RW access.  If the declared access is RO, the
combined access is RW.

It is an error if the data segment is not PUBLIC (or if it has EO or ER access).  The
stack and data segments will not be combined in this case.  Instead, the assembler
will append _STACK to the name of the stack segment to keep each segment
distinct.

Assuming Segment Access
The ASSUME directive may not be omitted from assembler programs that reference
symbols (named variables and labels) unless segment overrides are specified for
every symbolic reference.  The ASSUME directive may not be omitted from
programs with non-symbolic memory references such as ES:WORD PTR 2.

The ASSUME directive tells the assembler which processor segment register points
to a particular logical segment in the program so that it generates code for
instruction operands that are named variables and labels in memory.  However,
ASSUME does not load a segment register.

If no ASSUME statement is specified in a code segment, the assembler assumes that
CS contains the selector of the code segment but that no other segment register has
been loaded.  The assembler cannot generate a correct logical address for a
symbolic reference unless it knows which segment register contains the selector for
the symbol's defining segment.

The processor cannot access symbolic memory data unless the segment registers
have been correctly loaded.  Whenever you load a new selector into a segment
register, specify an ASSUME if subsequently coded instructions will reference
memory data via that segment register.

See also: Segment overrides, Chapter 5
segment registers, Chapter 1



ASM386 Assembly Language Reference Chapter 2 59

ASSUME Directive

Syntax

ASSUME Sreg : segpart  [,...]
ASSUME Sreg :NOTHING [,...]

or

ASSUME NOTHING

Where:

Sreg is one of the registers DS, ES, FS, GS, or SS; Sreg  may be CS only if
NOTHING is specified.

segpart is the reserved word NOTHING, the name of a segment, or one of the
following forms:

SEG varname
SEG labelname
SEG externalname

The name of a segment indicates that Sreg  contains the segment
selector for variables and labels defined in the segment.

SEG varname , labelname , or externalname  indicates that Sreg
contains the selector for the symbol's defining segment.

Discussion

ASSUME specifies the contents of the DS, SS, ES, FS, or GS register for the source
code that follows until the next ASSUME statement for the register occurs.  When an
instruction references a variable, label, or external symbol, the assembler checks
for the following:

• Either an explicit segment override specifies that the symbol is accessible via
Sreg

• Or, an ASSUME specifies which Sreg  holds the selector of the symbol's
defining segment

See also: Segment overrides, Chapter 5

If neither has been specified, the assembler generates an error when an instruction
references the symbol.

An ASSUME statement is in effect until it is changed by another ASSUME.  For
example, if you ASSUME some contents in DS, that assumption holds until you
ASSUME new contents or NOTHING in DS.



60 Chapter 2 Segmentation

When an ASSUME specifies an appropriate selector in DS, ES, FS, GS, or SS, the
assembler generates any necessary segment override prefix byte when the symbol
is referenced.  Otherwise, a segment override must be specified every time the
symbol is referenced.

ASSUME CS: may not be specified with the name of a segment or with a SEG
expression.

Specifying Segment Selectors with ASSUME

Specify an ASSUME wherever a new segment selector is loaded into a data or stack
segment register.

When an ASSUME is specified as:

ASSUME Sreg : segpart  [,...]

segpart  defines a selector as:

• A segment name, as in

ASSUME DS:DATA, ES:EDATA, FS:FDATA

• Or, as a SEG expression with one of the following forms:

SEG varname
SEG labelname
SEG externalname

Assembler symbolic data (named variables, labels, or constants) represent logical
addresses that consist of a segment selector plus an offset.  The selector part locates
the logical base address of the defining segment for the specified variable, label, or
external symbol.  Within the segment, the variable, label, or external symbol name
represents an offset from this base address.

When ASSUME Sreg : segment name is in effect (see Example 1), the assembler
generates relocatable addresses for symbolic and non-symbolic (anonymous)
references via Sreg .

For SEG expressions, the Sreg  is assumed to hold the selector of the segment in
which the named variable, label, or external symbol is defined.  Use a SEG
expression to access variables, labels, and symbols when you do not know their
defining segment's name (the segment is part of another module).

See also: SEG operator, Chapter 5



ASM386 Assembly Language Reference Chapter 2 61

Both for segment names and for SEG expressions, the designated segment must
have attributes that are consistent with the assumed segment register:

• For SS, the segment can be a stack segment, a data segment, or a data/stack
combined segment.  Its specified access must be RW.

• For DS, ES, FS, and GS, the segment may be a non-stack segment or a
data/stack combined segment.  Its access must be RO, ER, or RW.

Note that CS is illegal in an ASSUME statement that specifies a segment name or
SEG expression; the assembler generates a warning.

Examples

1. This example tells the assembler that the ES register holds the selector of the
segment in which ABYTE is defined.  The assembler generates an ES override
byte and a relocatable address for the symbolic reference to ABYTE in CSEG.  It
also generates a relocatable address for the non-symbolic reference to
ES:BYTE PTR 0 .

  :  :
ESEG SEGMENT RW USE32
 ABYTE DB ?
ESEG ENDS
  :  :
CSEG SEGMENT ER USE 32
  :  :
 ASSUME ES:ESEG
 MOV AL, ABYTE              ; assembler generates ES
                            ; override byte and
                            ; relocatable address
  :  :                      ; for ABYTE
 MOV AL, ES:BYTE PTR 0
                            ; ES:BYTE PTR 0 is also
                            ; relocatable

2. This example tells the assembler that the DS register holds the selector of the
segment in which ABYTE is defined.

  :  :
ASSUME DS:SEG ABYTE



62 Chapter 2 Segmentation

3. The following example illustrates how the assembler handles ASSUME
statements and checks memory accesses:

DATA SEGMENT RW PUBLIC
 ABYTE DB 0
 AWORD DW 0
DATA ENDS

EDATA SEGMENT RW PUBLIC
 WHERE DB 0
EDATA ENDS
  :  :
CODE SEGMENT ER PUBLIC
 CBYTE DB 0             ; constant in CODE segment
ASSUME DS:DATA
                        ; DATA segment
                        ; is addressable through DS
  :  :
 MOV AX,DATA            ; AX := selector for DATA
 MOV DS,AX              ; initialize DS
 MOV AL,ABYTE           ; ABYTE is in DATA segment
                        ; and addressable via DS;
                        ; instruction is OK
 MOV BL,CBYTE           ; CBYTE is in CODE segment,
                        ; currently being assembled;
                        ; instruction is OK and
                        ; assembler will generate
                        ; CS override byte
 MOV CL,WHERE           ; this is a program error:
                        ; WHERE is in EDATA segment
                        ; not covered by any ASSUME so
                        ; assembler issues warning
 MOV AX,EDATA
 MOV ES,AX              ; now ES can address
                        ; WHERE but assembler
 MOV CL,WHERE           ; hasn't been told,
                        ; so warning issued again
 ASSUME ES:EDATA
 MOV CL,WHERE           ; is legal, because WHERE's
                        ; segment, EDATA, is
                        ; assumed to be in ES and
                        ; assembler generates ES override
  :  :
CODE ENDS



ASM386 Assembly Language Reference Chapter 2 63

Specifying ASSUME NOTHING and ASSUME CS:NOTHING

The general form:

ASSUME NOTHING

is equivalent to the following statement:

ASSUME CS: NOTHING, DS:NOTHING, ES:NOTHING,
& FS:NOTHING, GS:NOTHING, SS:NOTHING

When an ASSUME is specified as:

ASSUME Sreg :NOTHING [,...]

NOTHING indicates that no known value is in that segment register during the
execution of the following code.  If there is no segment register assumption in
effect for a symbol's defining segment, references to that symbol must have an
explicit DS, ES, FS, GS, or SS override (see Example 1).  Note that this does not
apply to symbols defined in code segments; the assembler always assumes that the
code segment will be accessed via the CS register.

The assembler generates a non-relocatable address for a non-symbolic reference via
Sreg  when an ASSUME..NOTHING is in effect for a particular segment register (see
Examples 2 and 3).

When ASSUME CS:NOTHING is specified (see Example 3), the assembler generates
a relocatable address relative to the current code segment for a symbolic reference
in that segment.  It generates a non-relocatable address for a non-symbolic
reference.

When ASSUME CS:NOTHING is omitted (see Example 4), the assembler generates
relocatable addresses both for symbolic and for non-symbolic references within the
current code segment.

ASSUME..NOTHING also affects the assembler's generation of pointer relocatable
addresses within a data segment (see Example 5).



64 Chapter 2 Segmentation

Examples

1. This example shows how ASSUME DS:DSEG and ASSUME DS:NOTHING affect
symbolic references to ABYTE in CSEG.

ASSUME DS:DSEG
DSEG SEGMENT RW USE32
 ABYTE DB ?
DSEG ENDS
  :  :
CSEG SEGMENT ER USE32
  :  :                  ; ASSUME DS:DSEG still in effect
 MOV AL, ABYTE          ; ABYTE is accessible,
  :  :                  ; assembler always generates
                        ; relocatable address
                        ; for valid symbolic reference
 ASSUME DS:NOTHING
 MOV AL, ABYTE          ; error generated
 MOV AL, DS:ABYTE       ; segment override so
                        ; no error

2. This example shows how ASSUME DS:DSEG and ASSUME DS:NOTHING affect
identical non-symbolic references in CSEG.

  :  :                  ; DSEG and CSEG defined as
                        ; in Example 1
ASSUME DS:DSEG          ; assembler generates
 MOV AL, DS:BYTE PTR 0
                        ; relocatable address
                        ; for DS:BYTE PTR 0
  :  :
ASSUME DS:NOTHING       ; assembler generates
 MOV AL, DS:BYTE PTR 0
                        ; non-relocatable address
                        ; for DS:BYTE PTR 0



ASM386 Assembly Language Reference Chapter 2 65

3. This example shows how ASSUME CS:NOTHING affects symbolic and non-
symbolic address generation.  It causes the assembler to generate a relocatable
address for CVAL but not for CS:BYTE PTR 0 .

  :  :
CSEG SEGMENT ER PUBLIC
 CVAL DB 90H
 ENTRY:
 ASSUME CS:NOTHING
  MOV AL, CVAL          ; assembler generates
                        ; relocatable address for
                        ; symbolic reference
  MOV AL, CS:BYTE PTR 0
                        ; non-relocatable address for
                        ; non-symbolic reference
  :  :

4. The same code (see Example 3) without ASSUME CS:NOTHING causes the
assembler to generate relocatable addresses both for CVAL and for CS:BYTE
PTR 0 .

  :  :
CSEG SEGMENT ER PUBLIC
 CVAL DB 90H
 ENTRY:                 ; assembler generates
  MOV AL, CVAL
                        ; relocatable address for
                        ; symbolic reference
  MOV AL, CS:BYTE PTR 0
                        ; relocatable address for
                        ; non-symbolic reference
  :  :



66 Chapter 2 Segmentation

5. This example illustrates how ASSUME ES:segname and
ASSUME ES:NOTHING affect the assembler's address generation within a data
segment.

  :  :
ASSUME DS:DSEG, ES:ESEG
  :  :                  ; ESEG defined here
DSEG SEGMENT RW USE32
 VAR1 DP ES:WORD PTR 0
                        ; assembler generates
                        ; pointer relocatable address
                        ; for VAR1
  :  :
ASSUME ES:NOTHING
 VAR2 DP ES:WORD PTR 0
                        ; but not for VAR2
DSEG ENDS

■■  ■■  ■■



ASM386 Assembly Language Reference Chapter 3 67

Program Linkage Directives 3
This chapter contains two major sections describing the five assembler directives
that support modular programs:

• NAME and END directives

These directives delimit program modules.  NAME specifies a unique name for
each program module that the system utilities (binder and/or system builder)
will combine and locate.  END terminates each program module's assembly.
END also specifies a program's main module:  it defines the program's entry
point (a label) and specifies the initial segment selector value for the CS (code)
segment register; it may specify the initial segment selector values for the DS
(data) and SS (stack) segment registers.

• PUBLIC directive

This directive defines variables and labels that can be accessed from another
module.  The EXTRN directive defines variables and labels that are accessed in
one module and declared PUBLIC in another.  The COMM directive defines
variables as uninitialized symbols that will share storage with symbols of the
same name in other modules.

The system utilities allocate storage for COMM variables.  They also resolve
PUBLIC, EXTRN, and COMM references.

Modular Programming with NAME and END
An assembler program may omit the NAME statement only if the entire program is
contained in a single object module.  Otherwise, each module of the program
should include a NAME statement.

Every assembler program must specify the END statement as the last line of source.



68 Chapter 3 Program Linkage Directives

NAME Directive

Syntax

NAME modname

Where:

modname is a name for the module.  Modname must be a unique identifier that
occurs at most once within the program.

Discussion

The NAME directive defines a name for an object module.  Each module of an
assembler program must have a unique name.

A NAME directive is usually placed at the beginning of a module.  If the NAME
directive does not appear anywhere in an object module, the assembler assigns the
default name ANONYMOUS to the module and issues a warning.  System utilities
report an error if two or more program modules have the same name, including
ANONYMOUS.

Example

It is legal to specify the same name for a module as for the source file that contains
it.  The source file for this non-main module is called SCAN.386.

NAME SCAN        ; names the module
  :  :
END



ASM386 Assembly Language Reference Chapter 3 69

END Directive

Syntax

END [[CS:] labelname [,SS: segname][,DS: segname]]

Where:

labelname is a name for the program entry point label; it must be a unique
identifier.  CS is initialized with the segment selector and EIP (or IP,
for USE16 segments) is set to the offset of the specified label.
Labelname 's defining segment must have an EO or ER access
specification.  Labelname  may be specified only in the main module
of a program.

segname is a segment name:

SS: A segname preceded by SS: causes the SS segment
register to be initialized to the named segment's selector.
The segment can be a stack segment defined with
STACKSEG, or a data segment defined with the
SEGMENT directive.  The access specified for the
segment must be RW.  For a segment defined with
STACKSEG, (E)SP is set to the offset of the first dword
or word (depending on the stack segment use attribute)
immediately above the stack segment limit in memory.
(E)SP is 0 if the stack segment was not defined with
STACKSEG.  For a data segment, (E)SP is initialized to
the segment's size in bytes plus 4 for a 32-bit stack or
plus 2 for a 16-bit stack.

DS: A segname preceded by DS: causes the DS segment
register to be initialized to the specified segment's
selector.  The segment can be a nonstack segment or a
data/stack combined segment.  Access specified for the
segment must be RO, RW, or ER.

See also: SEGMENT..ENDS directive, Chapter 2
STACKSEG, Chapter 2



70 Chapter 3 Program Linkage Directives

Discussion

The END directive is required as the last statement in assembler modules.  Its
appearance terminates the assembly process.  If the assembler encounters any text
beyond the END directive, it issues a warning.

In the program's main module, the END statement must include a segment register
initialization for CS.  Non-main modules must specify END without segment
register initializations.

The optional DS:segname and SS: segname specify the values to be loaded into
the data and stack segment registers when the program is loaded.  The assembler
issues a warning if these are omitted in a module with an entry point label.

The module that contains the END statement initialization of CS:EIP  specifies the
code that is initially executed when the program is loaded into memory.  Execution
begins at the specified label.  An entry point label must be specified in main
modules, unless it is specified with the system builder.  The END directive should
also define the initial contents of DS and SS.

Example

NAME MAIN

STACK STACKSEG 10

DATA SEGMENT RW
 ABYTE DB 0
DATA ENDS
  :  :
CODE SEGMENT ER
     ASSUME DS:DATA
START:MOV ESP, STACKSTART STACK
                                   ; superfluous because SS
                                   ; initialized with END
     MOV AL, ABYTE
  :  :
CODE ENDS
  :  :
END CS:START, DS:DATA, SS:STACK



ASM386 Assembly Language Reference Chapter 3 71

Defining Shared Data with PUBLIC, EXTRN,
and COMM

Variables and labels defined in a program module with PUBLIC can be accessed
from other modules where they are declared with EXTRN.

The COMM directive defines variables with undefined values whose storage is not
allocated until the program modules are combined.

PUBLIC Directive

Syntax

PUBLIC name [,...]

Where:

name is the identifier of a variable or label defined in the current module.

Discussion

The PUBLIC directive specifies which symbols in a module are accessible from
other modules after all modules are combined.  These symbols can be variables,
labels, or constants that have been defined using the EQU directive; it is an error to
specify any other kind of symbol.

Named constants that are referenced in other modules must be declared PUBLIC in
their defining module.  An external constant must be an integer; it may be up to
32-bits long.

✏ Note
Do not confuse this use of the reserved word PUBLIC with the
PUBLIC segment attribute used in the SEGMENT..ENDS
statement.

See also: SEGMENT..ENDS statement, Chapter 2

Example

PUBLIC VAR 1, VAR 2
VAR 1 DBIT 0100B       ; VAR 1 and VAR 2 are made
VAR 2 DD 'ABCD'        ; accessible to other modules
                       ; when program is combined



72 Chapter 3 Program Linkage Directives

EXTRN Directive

Syntax

EXTRN name:[ type ][,...][ use ]
EXTRN [ use ] name:[ type ][,...]

or

[ use ] EXTRN name:[ type ] [,...]

Where:

name is the name of the external symbol, which must be declared PUBLIC
or COMM in another module.

type is BIT , BYTE, WORD, DWORD, PWORD, QWORD, TBYTE, ABS, a defined
record template name, a defined structure template name, NEAR, or
FAR.  Except for ABS, the type specification must match that of the
external symbol, or the external symbol's type must be overridden
with PTR.

use is USE32 or USE16.  The USE attribute specifies 32-bit or 16-bit
addressing, respectively, for the named symbol or list of symbols.  If
no attribute is specified, the USE attribute of the nearest enclosing
segment or module is assumed.

Discussion

The EXTRN directive specifies symbols that are declared PUBLIC or COMM in
another module.  Such symbols can then be referenced in the current module.

All external variables have one of the following types:  BIT , BYTE, WORD, DWORD,
PWORD, QWORD, TBYTE, a structure template name, or a record template name.  The
type for a structure or record is its length in bytes.  Structure and record template
names cannot be forward references.

External constants can be signed integers up to 32-bits long (USE32 segment) or up
to 16-bits long (USE16 segment).  External constants must be declared PUBLIC in
another module and be declared with EXTRN:ABS in modules that reference them.
Such symbols are assigned type DWORD (USE32 EXTRN) or WORD (USE16 EXTRN).

All external labels and procedure labels have type NEAR or type FAR.  The label or
procedure is NEAR if it is defined in the same named segment as its callers;
otherwise, it is FAR.  If type is omitted, FAR is assumed for an EXTRN label.

See also: PTR, Chapter 5
segment USE attributes, Chapter 2
variable and label types, Chapter 4



ASM386 Assembly Language Reference Chapter 3 73

Placement of EXTRN

Within program segments, the following rules apply to the placement of the EXTRN
directive:

1. If the external variable's or label's defining segment (in another module) is
known, place the EXTRN statement between a SEGMENT..ENDS pair that has
the same segment name as the SEGMENT..ENDS in which the symbol was
defined.

Such a symbol can then be referenced in the same manner as any other
variable or label.  For example, if the module SCAN.386 contained the
following segment and variable definition:

DATA SEGMENT RW PUBLIC
 COUNT DB 0
 PUBLIC COUNT
DATA ENDS

then the EXTRN directive should be specified in another module as follows:

DATA SEGMENT RW PUBLIC
 EXTRN COUNT:BYTE
DATA ENDS

2. If the external symbol's defining segment is unknown, if its defining segment is
non-combinable, or if the symbol is an EXTRN:ABS constant, place the EXTRN
statement outside of all SEGMENT..ENDS pairs in the module.  To address such
an external symbol, load the segment selector of the symbol into a segment
register using the SEG operator.  For example:

MOV AX, SEG COUNT
MOV ES, AX

To validate its addressability, use an ASSUME directive such as the following:

ASSUME ES:SEG COUNT
MOV DX, COUNT

or use a segment override for each reference to the symbol as in the following:

MOV DX, ES:COUNT

See also: SEG and segment overrides, Chapter 5
ASSUME directive, Chapter 2



74 Chapter 3 Program Linkage Directives

COMM Directive

Syntax

COMM name[,...]

Where:

name is a variable name; it must be a unique identifier.  Name may not be a
variable of type BIT .

Discussion

The COMM directive specifies that a variable defined in the current module is a
COMM symbol.  COMM symbols are classified as global variables.

The COMM directive allows the binder to allocate space for a symbol at bind time.
Variables specified with COMM in more than one module share storage space.  They
are similar to FORTRAN blank common variables or C extern variables.

Variables declared with COMM cannot be initialized.  Use a ? when defining COMM
variables to indicate uninitialized storage.

See also: Allocating uninitialized storage, Chapter 4

The COMM directive may appear inside or outside the segment in which the variable
is defined.  COMM may be placed before the definition of the variable it describes
(see the Example).

Variables cannot be declared EXTRN in the same module where they are declared
with COMM.  They may be declared with PUBLIC or with EXTRN in other modules,
as well as with COMM.

A COMM symbol does not actually occupy space in a segment until bind time.  The
binder determines whether a variable reference will be resolved by a matching
PUBLIC definition from another module or whether space will be allocated for it in
a segment where the COMM symbol is defined.  If a variable is not declared PUBLIC
in another module, the binder will allocate space for COMM data in the first-bound
module (and segment) in which it encounters the COMM symbol.

A COMM symbol may have a different type than its PUBLIC counterpart (with the
same name) in another module.  However, such a COMM symbol is treated as an
EXTRN symbol; the binder stores the COMM symbol in the corresponding PUBLIC
symbol's defining segment.

A COMM symbol that has no PUBLIC counterpart in another module is treated as a
PUBLIC symbol.  The binder allocates storage for the COMM symbol in the first-
bound segment where it is defined.  The binder then resolves subsequent references
(COMM or EXTRN) to that symbol.



ASM386 Assembly Language Reference Chapter 3 75

A COMM symbol's containing storage segment is determined by the binder.  For this
reason, loading a segment register in assembler modules with the name of a COMM
symbol's defining segment is difficult.  Use the SEG operator to reference COMM
symbols in modules.  For subsequent symbolic references, use the SEG operator
again to reload the correct segment selector into the segment register.

Example

NAME MOD 1
COMM X, Z          ; COMM statement before data definition
                   ; outside of defining segment
DATA SEGMENT RW PUBLIC
COMM A, B          ; COMM statement before data definition
A DW 13 DUP (?)    ; inside defining segment
B DB ?
X DW ?
Z DD ?

LOCAL DD ?
DATA ENDS
END

■■  ■■  ■■





ASM386 Assembly Language Reference Chapter 4 77

Defining And Initializing Data 4
This chapter has four major sections:

• An overview of assembler labels, variables, and data

This section explains:

— Assembler label and variable types

— The relationship between assembler variable types and the values
associated with variables: the processor or floating-point coprocessor data
types

— How to specify data values in assembler programs

• Assembler variables

This section explains:

— Storage allocations for variables

— Variable attributes

— Defining and initializing simple-type variables with the DBIT, DB, DW,
DD, DP, DQ, and DT directives

— Defining compound types with the RECORD and STRUC directives; defining
and initializing variables of these types (records and structures)

— Defining and initializing variables with DUP clause(s)

• Assembler labels

This section explains:

— Label attributes

— The location counter and the ORG and EVEN directives

— The LABEL directive

— Defining implicit NEAR labels

— The PROC directive

• Using symbolic data, including named variables and labels, with the EQU and
PURGE directives



78 Chapter 4 Defining and Initializing Data

Overview of Assembler Labels and Variables
The labels and variables in an assembler program define logical addresses:

• A label defines an address that is either an offset within the segment currently
being assembled or a location outside the current segment whose address is
both a segment selector and an offset within that segment.

• A named variable also defines an address whose contents (a value) can be
accessed by a reference to the variable name.

Labels and named variables are sometimes called symbolic addresses because their
names represent logical addresses.  However, assembler variables are not required
to have names, as long as their values can be accessed.

See also: Accessing assembler addresses and values, Chapter 5

Assembler Label and Variable Types
The assembly language is strongly typed.  The assembler enforces type rules when
it encounters a label or allocates storage for a variable (named or unnamed).

Each assembler label has one of the following types:

NEAR indicates that the logical address represented by the label is an offset.
NEAR is the default label type.

FAR indicates that the logical address represented by the label is both a
selector and an offset.

Each assembler variable has a type that must be specified when the variable is
defined with a storage allocation statement.  A variable's type indicates the
processor or floating-point coprocessor storage size for the variable's value(s).  A
variable's type is either a simple type or a compound type.  A compound type is
constructed from one or more simple types.

The assembler (reserved word) names for simple types are BIT , BYTE, WORD,
DWORD, PWORD, QWORD, and TBYTE.  For BIT -type variables, the assembler
allocates a byte of storage because processor addresses fall on byte boundaries.  For
variables of the other simple types, the assembler allocates storage of 8-, 16-, 32-,
48-, 64-, or 80-bits, respectively.



ASM386 Assembly Language Reference Chapter 4 79

A compound-type variable is either a record or a structure.  Records and structures
are programmer-defined (and named) types.  A record or structure template defines
a type that specifies the storage size(s) to be allocated for any variable of the type.
Record and structure storage allocation statements define assembler variables of
these types.

A DUP clause can be added to any assembler storage allocation statement to
allocate a sequence of storage units that are all of the same type.  DUP allocates
storage for array-like variables whose elements are contiguous storage units,
possibly with different values.

Assembler Data Values
The processor or floating-point coprocessor stores all data as a sequence of 1s and
0s.  The value that such a sequence represents is subject to interpretation.  The
assembler interprets values in the context of a program.  For example, the logical
address represented by a label is 32-bits in a USE32 code segment; it is 16-bits in a
USE16 segment.

The value of an assembler variable also has meaning only in context.  If a variable
is used as the operand of a shift instruction, its corresponding value represents a
simple sequence of bits.  If the same variable is used as the operand of a subtract
instruction, its corresponding value represents a number.

The contextually determined meaning of a variable value is called its processor or
floating-point coprocessor data type.



80 Chapter 4 Defining and Initializing Data

Data Types

The values of assembler variables can be interpreted as the following processor and
floating-point coprocessor data types:

• Processor or floating-point coprocessor signed integers

• Processor ordinals

• Processor unpacked or packed BCD digit(s)

• Floating-point coprocessor packed BCD integers

• Processor strings

• Processor bit strings or bit fields

• Processor near or far pointers

• Floating-point coprocessor reals

For example, the value of a DWORD-type variable can represent any of the following
in the context of a program:

• A processor integer or a floating-point coprocessor short integer

• A processor ordinal

• A processor string that is 4 bytes long

• A processor bit string that is 32-bits long (it may contain a bit field up to
32-bits long)

• A floating-point coprocessor single precision real

To access strings, BYTE-type assembler variables must be defined.  Processor
strings are composed of contiguous bytes.  The name of a BYTE-type variable (or
the unnamed but initially allocated storage unit) defines the logical address of such
a string's first byte.

Assembler pointer variables are 32-bit DWORD or 48-bit PWORD types that represent
a logical address.  DWORD (near) pointer variables represent an offset within a
segment.  PWORD (far) pointers have two components: a 16-bit segment selector and
a 32-bit offset.

The assembler types WORD, DWORD, QWORD, and TBYTE can represent 16-, 32-, 64-,
and 80-bit floating-point coprocessor data types.  16-bit data is a word integer,
32-bit data is either a short integer or a single precision real, 64-bit data is either a
long integer or a double precision real, and 80-bit data is either a packed decimal
integer or an extended precision real.

See also: Floating-point numbers, Chapter 7



ASM386 Assembly Language Reference Chapter 4 81

Numeric Data Value Ranges

The type specified for a variable determines the range of values it can represent.
The assembler checks variable definitions for initial values that are too large for the
declared type.  Table 4-1 summarizes the (decimal) range of values for each
variable type that can represent a processor or floating-point coprocessor number.

Table 4-1.  Assembler Variable Types and Numerical Value Ranges

Variable
Type

Data Type Length in
bits

Value Range in Decimal

BIT bit 1 0 or 1 binary

BYTE byte 8 -28..127 for integers
0..255 for ordinals

WORD word 16 -32,768..32,767 for integers
0..65,535 for ordinals

FP word integer 32,768..32,767

DWORD dword 32 -231..(231 - 1) for integers
0..(232 - 1) for ordinals

FP short integer -231..(231 - 1)

FP single -3.4E38..-1.2E-38, 0.0,

precision real 1.2E-38..3.4E38

QWORD FP long integer 64 -263..(263 - 1)

FP double -1.7E308..-2.3E-308, 0.0,

precision real 2.3E-308..1.7E308

TBYTE FP packed 80 -(1018 - 1)..(1018 - 1)

decimal integer

FP extended -1.1E4932..-3.4E-4932,

precision real 0.0, 3.4E-4932..1.1E4932
FP in Table 4-1 indicates a floating-point coprocessor data type.



82 Chapter 4 Defining and Initializing Data

Specifying Assembler Data Values
Assembler data can be expressed in binary, hexadecimal, octal, decimal, or ASCII
form.  Decimal values that represent integers or reals can be specified with a minus
sign; a plus sign is redundant but accepted.  Real numbers can also be expressed in
floating-point decimal or in hexadecimal notations.  Table 4-2 summarizes the
valid ways of specifying data values in assembler programs.

Table 4-2.  Assembler Data Value Specification Rules

Value in Examples Rules of Formation

Binary 1100011B 110B A sequence of 0's and 1's followed by the
letter B.

Octal 7777O 4567Q A sequence of digits in the range 0..7
followed by the letter O or the letter Q.

Decimal 3309 3309D A sequence of digits in the range 0..9
followed by an optional letter D.

Hexadecimal 55H 4BEACH A sequence of digits in the range 0..9
and/or letters A..F followed by the letter
H.  A digit must begin the sequence.

ASCII 'AB' 'UPDATE.EXT' Any ASCII string enclosed in single
quotes.

Decimal -1. 1E-32 3.14159 A rational number that may be preceded
by a sign and followed by an optional
exponent.  A decimal point is required if
no exponent is present but is optional
otherwise.  The exponent begins with the
letter E followed by an optional sign and a
sequence of digits in the range 0..9.

 Hexadecimal 40490FR 0C0000R A sequence of digits in the range 0..9
and/or letters A..F followed by the letter
R.  The sequence must begin with a digit,
and the total number of digits and letters
must be (8/16/20) or (9/17/21 with the
first digit 0).



ASM386 Assembly Language Reference Chapter 4 83

A real hexadecimal specification must be the exact sequence of hex digits to fill the
internal floating-point coprocessor representation of the floating-point number.  For
this reason, such values must have exactly 8, 16, or 20 hexadecimal digits,
corresponding to the single, double, and extended precision reals that the floating-
point coprocessor and the floating-point instructions handle.  Such values can have
9, 17, or 21 hexadecimal digits only if the initial digit must be a zero because the
value begins with a letter.

Data values can be specified in an assembler program in a variety of formats, as
shown in Table 4-2.  The way the processor or floating-point coprocessor
represents such data internally is called its storage format.

See also: Processor storage formats, Appendix A
floating-point coprocessor storage formats, Chapter 7

Initializing Variables

Assembler variables can be initialized by:

• Variable or segment names that represent logical addresses

• Constants (see Table 4-2)

• Constant expressions

A series of operands and operators is called an expression.  An expression that
yields a constant value is called a constant expression.

See also: Assembler expressions, Chapter 5

The assembler evaluates constant expressions in programs.

How the Assembler Evaluates Constant Expressions

The assembler can perform arithmetic operations on 8-, 16-, and 32-bit numbers.
The assembler interprets these numbers as integer or ordinal data types.

An integer value specified with a sign is a constant expression.  The assembler
evaluates integer or ordinal operands and expressions using 64-bit two's
complement integer arithmetic.

By using this arithmetic, the assembler can evaluate expressions whose operands'
sizes might extend beyond the storage type of the result.  As long as the
expression's value fits in the storage type of the destination, the assembler does not
generate an error when intermediate results are too large.  The assembler does
generate an error if the final result is too large to fit in the destination.



84 Chapter 4 Defining and Initializing Data

Variables
A variable defines a logical address for the storage of value(s).  An assembler
variable is not required to have a name as long as its associated value(s) are
accessible.  But, every variable has a type; records and structures have a compound
type.

Assembler variables must be defined with a storage allocation statement.  A storage
allocation specifies a type (storage size in bytes) and defines a logical address for a
variable that gives access to the variable's value(s).  A storage allocation statement
may also specify initial value(s) for a variable.

Use the DBIT, DB, DW, DD, DP, DQ, or DT directive to allocate storage for
simple-type variables of the following sizes:

DBIT 1-bit (zero padded to a byte boundary)
DB 8-bits (byte)
DW 16-bits (word)
DD 32-bits (dword)
DP 48-bits (pword)
DQ 64-bits (qword)
DT 80-bits (10 bytes)

Use the RECORD and STRUC directives to define type names that can be specified as
(compound) types for record or structure variables:

The RECORD Directive
defines a storage template for variables of its type.  The template
defines 1 to 4 bytes of storage for fields of bits.  Use a record
allocation statement to define a variable of the record type.  Variables
of a record type consist of contiguous fields of bit-encoded data.
Records are used for accessing specific bits in the flags, in the storage
fields of a real number, in the fields of a pointer, etc.  The assembler
MASK, SIZE , and WIDTH operators can be used to access record fields.

See also: MASK, SIZE , and WIDTH operators, Chapter 5



ASM386 Assembly Language Reference Chapter 4 85

The STRUC Directive
defines a storage template with named fields, each of a specified type.
Variables of a structure type consist of contiguous variables with the
types (and names) of the constituent template fields.  Structure
template fields are simple variables, usually initialized with undefined
values.  Use a structure allocation statement to define a variable of
this type.

A structure template's field names define offsets from a logical
address.  Any memory location pointed to by a base or index register
becomes an undeclared variable of the structure type if it is used to
reference a field name with the dot operator (e.g.,
[EBP]. fieldname ).

Use a DUP clause within any assembler data allocation statement to allocate and
optionally initialize a sequence of storage units of a single variable type.  DUP
defines an array-like variable whose element values are accessed by an offset from
the variable name or from the initially specified storage unit.

Simple Data Allocations
Both simple-type variables and the components of compound types are defined by
simple data allocation statements.  The general syntax of a simple data allocation
statement is:

Syntax

[ name] dtyp  init  [,...]

Where:

name is the name of the variable.  Within the module, it must be a unique
identifier.

dtyp is DBIT, DB, DW, DD, DP, DQ, or DT.

init is the initial value to be stored in the allocated space.  init  can be a
numeric constant (expressed in binary, hexadecimal, decimal, or
octal), an ASCII string, or (except for BIT -type variables) the
question mark character (?), which specifies storage with undefined
value(s).  dtyp  restricts the values that may be specified for init .

Record and structure allocation statements define compound-type variables.



86 Chapter 4 Defining and Initializing Data

Variable Attributes
A defined variable has four attributes:

Segment The segment in which the variable is defined.  The value of a
variable's segment attribute is the selector for its segment.

USE The USE32 or USE16 of the segment in which the variable is defined.

See also: Segment USE attributes, Chapter 2

Offset The variable's logical address within its defining segment.  This value
represents the distance in bytes from the base (or start) of the defining
segment to the start of the variable in memory.  For USE32 segments,
the offset is a 32-bit value; for USE16 segments, it is a 16-bit value.

Type The size in bytes of the variable.  For simple-type variables, the data
initialization directive (DBIT, DB, DW, DD, DP, DQ, or DT)
specifies the type.  For compound variables, the type is a programmer-
defined record or structure template name.  A variable's type
determines how it can be used in an instruction and, in some cases,
how data will be stored within the variable.

When a variable is defined in a program, the assembler will store its definition,
which includes its attributes.

See also: Chapter 5 for more information about expression operators that
override these attributes and access their values



ASM386 Assembly Language Reference Chapter 4 87

Defining and Initializing Variables of a Simple Type
All assembler variable definitions use the DBIT, DB, DW, DD, DQ, DP, or DT
directives.  The template components of compound variable types are simple types
defined with these directives.

DBIT Directive

Syntax

[ name] DBIT init [,...]

Where:

name is the name of the variable.  Within the module, it must be a unique
identifier.

init is a binary digit (1 or 0) followed by the letter B or b, or a string of up
to 32 binary digits followed by the letter B or b.

Discussion

DBIT reserves storage for and initializes a single-bit variable or a bit string of type
BIT .  If init  is not specified explicitly, the assembler assigns a 0 and issues a
warning.

DBIT actually reserves an entire byte of storage for a 1-bit variable (unless it is
defined within a structure) because processor addresses fall on byte boundaries.
DBIT fills one or more bytes for an init  list with the specified values and zero-
pads such a variable out to the nearest byte boundary.  DBIT  variables defined one
at a time occupy consecutive bytes in memory.

Within an assembler structure consecutively defined bit variables will be
concatenated; they are stored as contiguous bits in memory and they can cross byte
boundaries.



88 Chapter 4 Defining and Initializing Data

Examples

1. The DBIT directive initializes a full byte for simple BIT  variables, even when
fewer than 8 digits are specified for an initial value.

ONEBIT DBIT 1B         ; initializes a byte to 00000001

TWOBITS DBIT 10B       ; initializes a byte to 00000010

2. For each BIT -type variable defined outside a structure, the DBIT  directive
concatenates an init list and pads the value with zeros out to the nearest byte
boundary.  However, each variable defined with DBIT  is allocated storage
separately.

BIT1 DBIT 1B, 0B, 1B, 0B, 1B ; 00010101 is initial value
BIT2 DBIT 1B                 ; 00000001 is initial value
BIT3 DBIT 10B                ; 00000010 is initial value

3. For BIT -type fields of a structure, the assembler concatenates contiguous bit
fields and pads the value out to the nearest byte boundary.  Structure fields of
type BIT  can cross byte boundaries.

BITSTRUK STRUC
BIT1 DBIT 1B, 0B, 1B, 0B, 1B
BIT2 DBIT 1B
BITSTRUK ENDS

BITS BITSTRUK <>      ; 00110101 is initial value stored



ASM386 Assembly Language Reference Chapter 4 89

DB Directive

Syntax

[ name] DB init  [,...]

Where:

name is the name of the variable.  Within the module, it must be a unique
identifier.

init is a question mark (?), a constant expression, or a string of up to 255
ASCII characters enclosed in single quotes (' ).

Discussion

DB reserves storage for and optionally initializes a variable of type BYTE.  ?
reserves storage with an undefined value.

Numeric initial values can be specified in binary, octal, decimal, or hexadecimal
(see Table 4-2).  The specified constant or constant expression must evaluate to a
number in the range 0..255 (processor ordinal) or -128..127 (processor integer).

The components of character string values must be ASCII characters and the whole
string must be enclosed in single quotes.  To include a single quote character within
such a string, specify two single quotes ('' ).

Each ASCII character requires a byte of storage.  In BYTE strings, successive
characters occupy successive bytes.  The name of the variable represents the logical
address of the first character in such a string.

Examples

1. This example initializes the variable ABYTE to the constant value 100
(decimal).  It reserves storage for another byte with an undefined value.

ABYTE DB 100
DB ?

2. This example initializes three successive bytes to the values 4, 10, and 200,
respectively.

BYTES3 DB 4,10,200

3. This example initializes seven bytes containing the ASCII values of the
characters A, B, C, ' , D, E, and F, respectively.

STRGWQUOT DB 'ABC''DEF'



90 Chapter 4 Defining and Initializing Data

DW Directive

Syntax

[ name] DW init  [,...]

Where:

name is the name of the variable.  Within the module, it must be a unique
identifier.

init is a question mark (?), a constant expression, the name of a variable
or label defined in a USE16 segment, the name of a segment (USE16
or USE32), or a string of up to 2 characters enclosed in single
quotes (' ).

Discussion

DW defines storage for and optionally initializes a 16-bit variable of type WORD.  ?
reserves storage with an undefined value.

Numeric initial values can be specified in binary, octal, decimal, or hexadecimal
(see Table 4-2).  The specified constant or constant expression must evaluate to a
number in the range 0..65535 (processor ordinal) or -32768..32767 (processor
integer).

A USE16 variable or label name yields an initial value that is the offset of the
variable or label.  It is an error to initialize a WORD variable with the name of a
variable or label that has been defined in a USE32 segment; its offset is too large
(32-bits).  A segment name yields an initial value that is the segment selector.
A 1- or 2-character string yields an initial value that is interpreted and stored as a
number.  The assembler stores a 2-byte value even if the specified string has only
one character:

• It stores the specified initial value in the least significant byte.

• It zeros the remaining byte.



ASM386 Assembly Language Reference Chapter 4 91

Examples

1. This example tells the assembler to reserve storage for two uninitialized words.

UNINIT DW ?,?

2. This example initializes WORD variables with numeric values.

CONST DW 5000          ; decimal constant
HEXEXP DW OFFFH -10    ; expression

3. This example initializes VAR1OFF to the offset of VAR1 (both variables are
within a USE16 segment) and CODESEL to the selector of a segment named
CODE.

VAR1OFF DW VAR1
CODESEL DW CODE

4. This example initializes NUMB to the ASCII value (interpreted as a number) of
the letters AB.

NUMB DW 'AB'           ; equivalent to NUMB DW 4142H



92 Chapter 4 Defining and Initializing Data

DD Directive

Syntax

[ name] DD init  [,...]

Where:

name is the name of the variable.  Within the module, it must be a unique
identifier.

init is a question mark (?), a constant expression, the name of a variable
or label, or a string of up to 4 characters enclosed in single quotes (' ).

Discussion

DD defines storage for and optionally initializes a 32-bit variable of type DWORD.  ?
reserves storage with an undefined value.

Integer initial values can be specified in binary, octal, decimal, or hexadecimal (see
Table 4-2).  The specified constant or constant expression must evaluate to a
number in the range:

-2 31..2 31-1 (processor integer or floating-point coprocessor short integer)

Or, 0..2 32-1 (processor ordinal)

Real initial values can be specified in floating-point decimal or in hexadecimal (see
Table 4-2).  A decimal constant must evaluate to a real in the ranges:

-3.4E38..-1.2E-38, 0.0, 1.2E-38..3.4E38
(floating-point coprocessor single precision real)

A constant expressed as a hexadecimal real must be the exact sequence of hex
digits to fill the internal floating-point coprocessor representation of a single
precision real (8 hexadecimal digits or 9 hexadecimal digits, including an initial 0).

A USE16 variable or label name yields an initial value that fills the dword.  Its
high-order word contains the segment selector and its low-order word contains the
offset of the USE16 variable or label.

A USE32 variable or label name yields an initial value that is the offset (from the
segment base) of the variable or label.

A string (up to four characters) yields an initial value that is interpreted and stored
as a number.  The assembler stores a 4-byte value even if the specified string has
fewer than four characters:

• It stores the specified initial values in the least significant bytes.

• It zeros the remaining bytes.



ASM386 Assembly Language Reference Chapter 4 93

Examples

1. This example defines two variables, a floating-point coprocessor short integer
and a single precision real.

INTVAR DD 1234567
REALVAR DD 1.6E25

2. In this example, LAB1 was defined in a USE16 segment and LAB2 was defined
in a USE32 segment.

LAB1_ADD DD LAB1    ; LAB1_ADD contains offset and
                    ; segment selector of LAB1

LAB2_ADD DD LAB2    ; LAB2_ADD contains offset of LAB2

3. This example initializes three unnamed dwords.  The first contains an
undefined value.  The second contains the ASCII numeric value of the letter A.
The third contains the integer 450 (decimal).

DD ?, 'A', 450



94 Chapter 4 Defining and Initializing Data

DP Directive

Syntax

[ name] DP init  [,...]

Where:

name is the name of the variable.  Within the module, it must be a unique
identifier.

init is a question mark (?), an integer constant expression, the name of a
variable or label, the name of a segment, or a string of up to 6
characters enclosed in single quotes (' ).

Discussion

DP defines storage for and optionally initializes a 48-bit variable of type PWORD.  ?
reserves storage with an undefined value.

Numeric initial values can be specified in binary, octal, decimal, or hexadecimal.
The specified constant expression must evaluate to an integer in the range:

-2 47..2 47-1.

Constants used to initialize pwords cannot be expressed as real numbers.

A variable or label name (whatever the USE attribute of its defining segment) yields
an initial value that fills the pword.  The pword will contain both the variable's or
label's offset and the segment selector (16-bits).  The low-order dword stores the
offset.

A segment name yields an initial value that is a logical address consisting of the
segment selector (16-bits) and an offset of zero (32-bits) to the start of the named
segment.

A string (up to six characters) yields an initial value that is interpreted and stored as
a number.  The assembler stores a 6-byte value even if the specified string has
fewer than six characters:

• It stores the specified initial values in the least significant bytes.

• It zeros the remaining bytes.



ASM386 Assembly Language Reference Chapter 4 95

Examples

1. This example initializes the low-order byte to the ASCII value (interpreted as a
number) of the digit 1, and the five high-order bytes to zero.

DP '1'        ; first byte contains 31H
              ; remaining bytes contain 00000000

2. This example initializes VARPTR to the segment selector and offset of VAR32.

VARPTR DP VAR32



96 Chapter 4 Defining and Initializing Data

DQ Directive

Syntax

[ name] DQ init  [,...]

Where:

name is the name of the variable.  Within the module, it must be a unique
identifier.

init is a question mark (?), a constant expression, or a string of up to eight
characters enclosed in single quotes (' ).

Discussion

DQ defines storage for and optionally initializes a 64-bit variable of type QWORD.
The ? reserves storage with an undefined value.

Integer initial values can be specified in binary, octal, decimal, or hexadecimal (see
Table 4-2).  The specified constant expression must evaluate to an integer in the
range -2 63..2 63-1  (floating-point coprocessor long integer).

Real initial values can be specified in floating-point decimal or hexadecimal (see
Table 4-2).  A decimal constant or expression must evaluate to a real in the ranges:

-1.7E308..-2.3E-308, 0.0,
2.3E-308..1.7E308
(floating-point coprocessor double precision real).

A real hexadecimal constant must be the exact sequence of hex digits to fill the
internal floating-point coprocessor representation of a double precision real (16
hexadecimal digits or 17 hexadecimal digits, including an initial 0).

A string (up to 8 characters) yields an initial value that is interpreted and stored as a
number.  The assembler stores an 8-byte value even if the specified string has
fewer than 8 characters:

• It stores the specified initial values in the least significant bytes.

• It zeros the remaining bytes.



ASM386 Assembly Language Reference Chapter 4 97

Examples

1. This example initializes VAR6 to a floating-point coprocessor double precision
real and VAR7 to the same value in real hexadecimal notation.

VAR6 DQ -3.6E-200            ; decimal notation
VAR7 DQ 96860B837993DEE8R    ; real hexadecimal notation

2. This example allocates 64-bits of storage for UNDEFNUM with an undefined
value.

UNDEFNUM DQ ?

3. This example initializes CHAR's low-order byte to the ASCII value
(interpreted as a number) of the comma, and its seven high-order bytes to zero.

CHAR DQ ','      ; first byte contains 2CH
                 ; remaining bytes contain 00000000



98 Chapter 4 Defining and Initializing Data

DT Directive

Syntax

[ name] DT init  [,...]

Where:

name is the name of the variable.  Within the module, it must be a unique
identifier.

init is a question mark (?) or a constant expression.

Discussion

DT defines storage for and optionally initializes an 80-bit variable of type TBYTE.
? reserves storage with an undefined value.

A constant expression must evaluate to an integer or real in the range(s):

-10 18-1..10 18-1  (floating-point coprocessor packed decimal integer)

Or,

 -1.1E4932..-3.4E-4932, 0.0, 3.4E-4932..1.1E4932
(floating-point coprocessor extended precision real).

Real initial values can be specified in floating-point decimal or in hexadecimal (see
Table 4-2).

A hexadecimal real constant must be the exact sequence of hex digits to fill the
internal floating-point coprocessor representation of an extended precision real (20
hexadecimal digits or 21 hexadecimal digits, including an initial 0).

Examples

1. This example allocates 80-bits of storage for ATBYTE with an undefined value.

ATBYTE DT ?

2. This example initializes EVAR1 to a floating-point coprocessor extended
precision real and EVAR2 to the same value in real hexadecimal notation.

EVAR1 DT 9E-15
EVAR2 DT 3FD0A2212C962206C274R



ASM386 Assembly Language Reference Chapter 4 99

Defining Compound Types and Their Variables
The RECORD and STRUC directives define the names of compound types, together
with a storage allocation template.

The RECORD directive defines a template that specifies the size and fields for
variables of the record type.  Use the record template name in a record allocation
statement to allocate storage for and initialize variables of a record type.

An assembler record consists of contiguous fields of bit-coded data.  Records can
be defined to format bytes, words, or dwords for bit-packing.  A record template
can be from 1 to 4 bytes in size.  Each record of the template type has a specific
number of fields, and each field contains a specific number of bits.  Information
can be stored in and accessed from these fields.

The STRUC directive defines a template with named and typed fields, optionally
with default data values.  Each field is of a simple type (defined with DBIT, DB,
DW, DD, DP, DQ, or DT), but every field in a template may be of a different type.

Use structure templates to group associated data, such as the storage format fields
of floating-point coprocessor real numbers or the fields of a pointer.  Use structure
templates to impose structure on memory data that will be accessed by a base or
index register.

Use the structure template name as the type in a structure allocation statement to
allocate storage for and initialize variables of the structure type.  ASM386
structures are allocated memory in the same way bytes, words, and dwords are
allocated.  Their fields can be accessed readily using the notation:

Structure-name.field-name

The (optional) default values of structure template fields can be:

• Overridden when a structure variable is allocated and initialized

• Accessed or overwritten during program execution

See also: Accessing structure template fields, Chapter 5
overwriting structure template fields, Chapters 6 and 7



100 Chapter 4 Defining and Initializing Data

RECORD Directive

Syntax

name RECORD field : exp  [= init-val ] [,...]

Where:

name is an identifier that creates a record template type name; name must
be unique within the module.

field is an identifier that defines a bit field within the record type; field
must be unique within the module.

exp is a constant expression that evaluates to the number of bits in the
field .  exp  must evaluate to an ordinal in the range 1..32.  The
maximum number of bits in a record is 32, so it is an error if the sum
of a record template's exps  is greater than 32.

init-val is a constant expression or a character string enclosed in single
quotes (' ).

Discussion

RECORD creates a BYTE-, WORD-, 3-BYTE- or DWORD-sized record template
definition.  Record variables can then be allocated and initialized through the use
of the record name in a record allocation statement (see the next section).

Numeric initial values can be specified in binary, octal, decimal, or hexadecimal
(see Table 4-2).  The specified constant expression must evaluate to a non-negative
integer value that fits in its field.

A character string has a maximum length of four characters because the maximum
size of a record is 4 bytes and each ASCII character requires a byte of storage.

The first field specified in the record template occupies the most significant bits
when data is allocated for a record of the (template) type.  Record template fields
(and their default values) are not required to fill to a byte boundary.  A record
template whose fields do not occupy a full BYTE, WORD, or DWORD is called a partial
record.

The assembler right-justifies fields within a partial record and pads the record (with
zeros) out to the next byte boundary.  A record whose fields total 17..23 bits is
padded to 24-bits (3 bytes).  Figure 4-1 illustrates an example of a partial record.



ASM386 Assembly Language Reference Chapter 4 101

Figure 4-1.  Partial Record Definition Template

Examples

1. This example defines a DWORD-sized record template, even though it specifies
30-bits total for its fields (processor addresses must fall on byte boundaries).

ERRFLAGS RECORD IO:3=0,SYS:3=0,MEM:24=`ABC'

2. This example defines a record template for floating-point coprocessor single
precision reals (the template matches the floating-point coprocessor storage
format).

SIGNEDNUM RECORD SIGN:1,EXP:8,FRAC:23

W-3420

31 0

A

25 89

Record Template:
Partial Record A:16, B:9

16 bits

B(Zero
Filled)

9 bits7 bits

24



102 Chapter 4 Defining and Initializing Data

Record Allocation Statement

Syntax

[ name] recnm <[ exp ][,...]>

Where:

name is an identifier; name must be unique within the module.

recnm is the name of the record template that defines how bit-fields are to be
allocated for the variable of the type.  recnm  may be followed by a
DUP clause.

exp is a value that overrides the default field value allocated for the
record.  exp  must evaluate to a number that will fit in the field
specified in the record template definition) that is to be overridden; it
may be a ? (undefined value).

Discussion

This statement allocates data in the form specified by the previously defined record
template.  Default field values specified by the RECORD directive can be
overridden.  The following rules must be observed for exp :

• To allocate a record without overriding the default values, specify <> (no exp
values).

• Assuming a record with fields <f1 , f2 , f3 ,..., fn >, specify a comma for
each field with an acceptable default value and specify an overriding exp  for
each fn  to be overridden.

For example, use the following to override (f3  and f4 ) or fn , respectively:

<,,2,5>
<,,,...,2>

After the last field to be overridden, commas need not be specified for remaining
fields.  In the first preceding example, commas must be specified only for f1  and
f2  (the f5..fn  default values are acceptable).

• Use a ? to override a default field value (zero used).

• A field defined with a single string of two or more characters can be
overridden only with another string.  The overriding string need not be the
same length as the record template's.  If the overriding string is shorter than the
original string, the remaining characters of the default string are used.  If the
overriding string is longer but still fits in the field, the overriding string is used.
Otherwise, the assembler generates an error.



ASM386 Assembly Language Reference Chapter 4 103

Examples

1. This example allocates two record variables of type ERRFLAGS (this record
template is defined in Example 1 of the preceding section).  FLAGS1 uses the
ERRFLAGS default values without overrides.  FLAGS overrides the defaults
defined with ERRFLAGS.

FLAGS1 ERRFLAGS<>
FLAGS ERRFLAGS<0,3,0>

2. This example allocates and initializes two record variables of type SIGNEDNUM
(this record template is defined in Example 2 of the preceding section).  For
floating-point numbers, the sign bit is 0 for positive values and 1 for negative
values.

PLUSONE SIGNEDNUM <0,7FH,0>
MINUS16 SIGNEDNUM <1,83H,0>



104 Chapter 4 Defining and Initializing Data

STRUC Directive

Syntax

name STRUC
[ field ] storalloc

...
name ENDS

Where:

name is an identifier for the structure template; name must be unique within
the module.

field is an identifier; field  must be unique within the module.

storalloc is a DBIT, DB, DW, DD, DP, DQ, or DT storage allocation statement.
The storage allocation statement may contain DUP clauses.
Storalloc  specifies the variable type of the corresponding field; it
may also specify the default initial value of this field for all
subsequently defined variables of type name.

Discussion
The STRUC..ENDS block defines a template named name.  The template name
defines a symbol table entry whose size equals the total number of bytes specified
between STRUC and ENDS.  Each field  name is also defined in the symbol table,
together with its attributes.

A structure field name represents the logical address (an offset) of this field within
all structures of type name.  A field has two attributes: offset and type.  The offset
of a field is the number of bytes from the start of the structure to the field.  The
field's type depends on the storage allocation (storalloc) statement used in the
template.

Structure fields defined as contiguous variables of type BIT  are concatenated into
one or more bytes and zero-filled to the nearest byte boundary.

A question mark (?) can be used to allocate storage for non-BIT -type fields with
undefined initial values.  If a value is specified in the storage allocation statement,
it becomes the default value for the field.  This default can be overridden by the
structure allocation statement described in the next section.

Fields defined with more than one storalloc  specification (a list) and fields
defined with DUP (?) have non-overridable default values.

The assembler supports up to 150 structure fields that are defined with uninitialized
values and without nested DUPs.



ASM386 Assembly Language Reference Chapter 4 105

Examples

1. This example defines a structure for procedure parameters that would be
allocated on the stack.  The EBP register would point to the procedure's stack
frame; its parameters could be accessed by name using the notation
[EBP]. field .  The Examples in the next section include the dot operator.

See also: Dot operator, Chapter 5

THIS_PROC_PARAMS STRUC
 OLD_EBP DD ?
 RETURN DD ?
 PARAM1 DD ?
 PARAM2 DW ?,?
 PARAM3 DW ?,?
THIS_PROC_PARAMS ENDS

The symbol THIS_PROC_PARAMS enters the symbol table as a structure 20
bytes in length.  The five symbols OLD_EBP, RETURN, PARAM1, PARAM2 ,
and PARAM3 are defined as structure fields.  OLD_EBP has type DWORD and an
offset of 0 within the structure; RETURN has type DWORD and an offset of 4.
PARAM1 has type DWORD and an offset of 8, PARAM2 has type WORD and an
offset of 12, and PARAM3 has type WORD and an offset of 16 within the
structure.

2. This example defines a 6-byte structure template for type POINTER.

POINTER STRUC
 OFFST DD ?
 SEGSEL DW ?
POINTER ENDS

3. This example defines a 16-byte structure template that represents a point on a
plane expressed in polar coordinates.

POLARPOINT STRUC
 RADIUS DQ 0
 ANGLE DQ 0
POLARPOINT ENDS



106 Chapter 4 Defining and Initializing Data

Structure Allocation Statement

Syntax

[ name] strucnm <[ exp ][,...]>

Where:

name is an identifier that defines the logical address for a variable.  The
segment part of its logical address is the current segment and its offset
is the current location counter; the binder can relocate the offset.
name must be unique within the module.

strucnm is the name of a previously defined structure template.  Strucnm  is
the variable's type; it specifies the variable's fields, their types, and a
variable storage size equal to the number of bytes allocated by the
template.  Strucnm  may be followed by a DUP clause.

exp is a value that overrides the default field value given in the template
definition.  Exp is a question mark (?) (except for fields of type BIT ),
a constant expression, or a string enclosed in single quotes (' ).  If it is
not a ?, its value must fit in the type specified for the corresponding
structure template field.

Discussion

This statement allocates storage based on a structure template (see the preceding
section).  The amount of storage allocated will be the number of bytes defined in
the template (multiplied by any DUP clauses).

Field values defined in the structure template are defaults.  They may be overridden
in the storage allocation statement with certain restrictions.  The following rules
must be observed for exp :

• To allocate a structure without overriding the default values, specify <> (no
exp  values).

• The default value specified in the structure template definition must be a ?
(non-BIT  fields only), a constant expression, or a character string used as a
default value for a byte (DB) field.  The overriding value must fit within the
field.

• Template fields defined with more than one storalloc  specification (a list)
and template fields defined with DUP (?) may not be overridden.



ASM386 Assembly Language Reference Chapter 4 107

• Assuming a structure with fields <f1 , f2 , f3 ,..., fn >, specify a comma for
each field with an acceptable default value and specify an overriding exp  for
each fm to be overridden.

For example, use the following to override (f3  and f4 ) or fn , respectively:

<,,2,5>
<,,,...,2>

After the last field to be overridden, commas need not be specified for
remaining fields.  In the first preceding example, commas must be specified
only for f1  and f2  (the f5..fn  default values are acceptable).

• A DB field initialized with a single string of two or more characters can be
overridden only with another string.  The overriding string need not be the
same length as the template's.  If the overriding string is shorter than the
original string, the remaining characters of the original string are used.  If the
overriding string is longer but still fits in the field, the overriding string is used.
Otherwise, the assembler generates an error.

Examples

1. This example allocates storage for a structure of type THIS_PROC_PARAMS
(this structure template is defined in Example 1 of the preceding section).

APROC THIS_PROC_PARAMS <>

To access a field of APROC, use the dot operator (e.g., APROC.PARAM1).

However, a structure field is not irrevocably tied to the structure in which it is
defined.  [EBP].PARAM2  could be used in any context where you wanted a
BYTE variable that was offset by 4 bytes from the EBP base.  It is not necessary
(and the assembler does not check) that the surrounding data pointed to by EBP
follows the template format defined for THIS_PROC_PARAMS.  Assuming that
EBP has already been set to point to the beginning of this structure, APROC
parameters can be accessed as [EBP].PARAM1 , [EBP].PARAM2 , and
[EBP].PARAM3 .

2. This example allocates storage for and initializes a structure of type
POLARPOINT (this structure template is defined in Example 3 of the preceding
section).  This structure is initialized with radius 2.0 and angle 3.1416,
overriding the template's specification (uninitialized storage for the field
values).

VALUE1 POLARPOINT<2.0,3.1416>

To perform any calculations using VALUE1, refer to the fields of this structure
as VALUE1.RADIUS and VALUE1.ANGLE in the instruction.



108 Chapter 4 Defining and Initializing Data

3. This example allocates storage for an array of 20 structures of type
POLARPOINT, each initialized with the same two data values.

POLPT_ARR1 POLARPOINT 20 DUP (<2.0,3.1416>)

4. This example defines a structure template with overridable fields, and allocates
storage for a variable that overrides the default STRUC values.

OVERRIDABLE STRUC
 ASTRING       DB 'ABCDEFG'
 DONTCARE DW ?
 AREAL         DD 3.14159
OVERRIDABLE ENDS
VARO OVERRIDABLE <'HIJ',1,1E-23>

5. This example defines a structure template with fields that may not be
overridden (see the Discussion section).

NONOVERRIDE STRUC
 ALIST DB 1,2,3       ; cannot override list
                      ; of default values
 ADUP DW 10 DUP (?)   ; cannot override defaults
                      ; specified with DUP
NONOVERRIDE ENDS

6. These equations illustrate results when multiple dot operators are used in an
expression.  Given the following structure template definitions and address
expression using the dot operator:

FOO STRUC
 FE DB 0              ; offset from FOO = 0
 FI DW 0              ; offset = 1
FOO ENDS

BAA STRUC
 FO DB 0              ; offset from BAA = 0
 FUM DD 0             ; offset = 1
BAA ENDS

[EBP].FE.FI.FO.FUM =
[EBP] + 0 + 1 + 0 + 1 = [EBP] + 2

The result's type is the same as the rightmost field specification, DWORD
(=FUM's in this example).  However, the result's type can be overridden with
the PTR operator as follows:

WORD PTR [EBP].FE.FI.FO.FUM

The PTR expression has the same value as [EBP].FE.FI.FO.FUM , but type
WORD.

See also: PTR operator, Chapter 5



ASM386 Assembly Language Reference Chapter 4 109

DUP Clause
A DUP clause reserves storage for a sequence of variables of a single type.  Use DUP
with any DBIT, DB, DW, DD, DP, DQ, or DT storage allocation statement to
define an array-like variable.  Such a variable's elements can be accessed as
multiples of a constant offset from the initial element; the constant value equals the
size of the element type.  Use DUP with any record or structure allocation statement
to allocate contiguous storage for an array-like variable whose elements are records
or structures.

Syntax
rep-val  DUP ( val [,...])

Where:

rep-val specifies the number of storage units to be allocated.  A storage unit is
one of the following:  BIT , BYTE, WORD, DWORD, PWORD, QWORD,
TBYTE, or previously specified (named) record or structure template.

val is any initialization expression (init  or exp ) that is valid for the
specified storage unit, or it is another DUP clause.

Discussion
DUP allocates storage for and optionally initializes an array-like variable with
elements of a single type.  DUP is an optional part of any storage allocation
statement, including a record or structure allocation statement.  For a variable
allocated with DBIT, DB, DW, DD, DP, DQ, or DT, specify a DUP clause as
follows:

[ name] dtyp  rep-val  DUP ( init [,...])

For a variable allocated with a record or structure template name, specify a DUP
clause as follows:

[ name] recnm rep-val  DUP (<[ exp ][,...]>)

or

[ name] strucnm rep-val  DUP (<[ exp ][,...]>)

For non-BIT -type variables, DUP can be used to reserve storage space without
producing a data initialization record in the object module.  The syntax

rep-val  DUP (?)

reserves storage space with undefined values.  The amount of reserved space
depends on the rep-val specified and the storage allocation size specified by the
directive or template that precedes DUP.



110 Chapter 4 Defining and Initializing Data

The assembler allows DUP clauses to be nested up to the limit of the symbol table
memory space for simple types.  For structure types, this limit is less than 150.  The
assembler fills DUP (?) specifications within a structure with zeros.

The assembler fills any other DUP(?)  storage allocations with zeros when an
initialization value is specified in the storage allocation statement.  Specify ? for
every initialization value when you want totally undefined storage in the object
file.  However, variables defined with DBIT may not be initialized with the
question mark.

Examples

1. These examples use DUP to initialize bit patterns.

THE_BITS DBIT 2 DUP (10b)        ; initializes 2 bytes
                                 ; at THE_BITS to
                                 ; 00000010
                                 ; 00000010
BIG_BITS DBIT 4 DUP (11011B)     ; initializes 4 bytes
                                 ; at BIG_BITS to
                                 ; 00011011
                                 ; 00011011
                                 ; 00011011
                                 ; 00011011

2. This example initializes 50 bytes; each group of five bytes contains the value
48454C4C4FH.

BYTES1 DB 10 DUP ('HELLO')

3. This example initializes 400 bytes.

ADDEXPS DW 100 DUP (1,0FFFFH,15,10101010B)

4. These examples initialize 420 bytes and reserve 40 bytes of uninitialized
storage.

MANYDUPED DB 3 DUP(4 DUP(5 DUP(1, 6 DUP (0) ) ) )

NOINIT DD 10 DUP (?)

5. This example allocates contiguous storage for an array of 20 structures of type
POLARPOINT.  Each structure is initialized with the same two data values.

POLPT_ARR1 POLARPOINT 20 DUP (<2.0,3.1416>)

See also: POLARPOINT, Example 3 of the STRUC directive, in this chapter



ASM386 Assembly Language Reference Chapter 4 111

Labels
A label is a name that defines a logical address within an assembler program:

• The location counter is a predefined label that keeps track of the current offset
within a segment being assembled.  The ORG, EVEN, and ALIGN directives
control the location counter.

• The LABEL directive creates a name for the current location of assembly in
code or data segments.

• A labeled instruction in the code segment might be the target of a JMP or
conditional jump instruction.  If both the jump and labeled instructions are in
the same segment, the (NEAR) label can be a name followed by a colon (: ) that
immediately precedes the target.  The LABEL directive must be used to define
a FAR label (the labeled target instruction is not known to be in the same
segment as the jump instruction).  The LABEL directive may also be used to
define a NEAR label.

• A labeled sequence of instruction(s) in the code segment might be the target of
a CALL instruction.  The PROC directive defines a NEAR or FAR label for such
an instruction sequence.  The target sequence is usually interpreted as a
subroutine or procedure.

Labels in code segments can be operands of the CALL, JMP, and conditional jump
instructions.

See also:  CALL, JMP, and conditional jump instructions, Chapter 6



112 Chapter 4 Defining and Initializing Data

Label Attributes
A label has four attributes:

Segment The in which it was defined

USE The USE  attribute (USE32 or USE16) of the segment in which it was
defined: this determines the size of the label's logical address.

The label's offset
This is the label's distance from the base of its defining segment.
Offset is a 32-bit value for labels in USE32 segments and a 16-bit
value for labels in USE16 segments.

The label's type
For labels in a data segment, this is the type of the target location (a
variable or defined storage location).  For labels that target code, the
type indicates the kind of jump or CALL that will be made to the
location it represents.  These two types are as follows:

• Type NEAR represents a label that can be accessed by a jump or
call that lies within the same physical segment.  This kind of
access is called an intrasegment jump or call.  The logical
address defined by a NEAR label is a simple offset within the
same segment.

• Type FAR represents a label that can be accessed from another
segment.  This kind of access is called an intersegment jump or
call.  Because control is transferred from one segment to
another, the contents of the CS register must be changed when
the jump or call occurs.  The logical address defined by a FAR
label is a 16-bit segment selector with 32-bit offset.  The JMP,
conditional jump, or CALL instruction will load this address
into CS:EIP  when it executes.



ASM386 Assembly Language Reference Chapter 4 113

The Location Counter
The location counter is a predefined label represented by the symbol $.  The value
of the location counter is the current offset within the segment being assembled.
The location counter has the following attribute values:

• Segment -- current segment

• Offset -- current offset

• USE -- current segment's

• Type -- NEAR

The $ may be used as an operand of instructions or expressions.  The assembler
will maintain the correct offset within a segment even if the segment is repeatedly
opened and closed in the module with SEGMENT..ENDS pairs.

See also: SEGMENT..ENDS pairs, Chapter 2

Three directives control the location counter

ORG Sets the counter to a specified value.

EVEN Sets the location counter to the next dword or word.

ALIGN Sets the location counter to the next value that is evenly divisible by
the specified number.



114 Chapter 4 Defining and Initializing Data

ORG Directive

Syntax

ORG exp

Where:

exp is a constant expression or a label that is evaluated to a number in the
range of 0 to 232 - 1 (4 gigabytes) in USE32 segments or in the range
of 0 to 65536 in USE16 segments.

Discussion

Use the ORG directive to control the location counter value.  An ORG expression
locates code or data at a specified offset within the current segment.

Examples

These examples use the value of the current location counter as an operand.  The
first example sets the location counter to a value 1000 bytes beyond the current
location.  The second example overwrites the just assembled 1000 bytes.

ORG OFFSET($ + 1000)
  :  :
ORG OFFSET($ - 1000)

EVEN Directive

Syntax

EVEN

Discussion

The EVEN directive ensures that the location counter is a dword or word boundary
for subsequent code or data.

The assembler inserts (if necessary) up to three NOPs (90H) following EVEN to align
subsequent code to the nearest dword (for USE32 segments) or word (for USE16
segments).  In the data segment, the EVEN directive pads with zeroes to align
subsequent data to the nearest dword (for USE32 segments) or word (for USE16
segments).



ASM386 Assembly Language Reference Chapter 4 115

ALIGN Directive

Syntax

ALIGN[ exp ]

Where:

exp is any nonrelocatable constant expression that evaluates in the range 1
to 256.   The ALIGN directive aligns subsequent code or data on an
offset that is evenly divisible by the specified number of bytes.

Discussion

The ALIGN directive sets the location counter to the specified boundary for the
subsequent alignment of code or data.

The assembler inserts NOP instructions (90H) if necessary to align subsequent code
to the specified boundary.   When used in a data segment, the assembler pads to the
specified boundary with zeroes.

If exp  is omitted, the default is 4-byte, or DWORD, alignment.

For example, the following directive causes paragraph (16-byte) alignment:

ALIGN 16

As another example, the following directive causes page (256-byte) alignment:

ALIGN 256



116 Chapter 4 Defining and Initializing Data

LABEL Directive

Syntax

name LABEL type

Where:

name is an identifier; name must be unique within the module.

type is NEAR or FAR, a variable type (BIT , BYTE, WORD, DWORD, PWORD,
QWORD, or TBYTE), a label name, a record template name, or structure
template name.  Label, record, and structure names cannot be forward
references.

Discussion

LABEL creates a name for the current location of assembly, whether data or code.
Use LABEL to define a variable or a label that has the following attributes:

• The segment that is currently being assembled

• The current offset within that segment

• The USE attribute of the current segment

• The specified type

Labels of type FAR must be defined with the LABEL directive.  NEAR labels need
not be defined with LABEL but they can be.  NEAR- and FAR-type labels may not be
overridden.

See also: Attribute override operators, Chapter 5

It is possible use LABEL to alias a FAR label to a NEAR label.  However, aliased
labels of opposite types can be used only as JMP or conditional jump operands.  It
is an error to CALL the same procedure twice with aliased NEAR and FAR labels if a
return from the procedure is expected.  The RET instruction coded within a
procedure is either near or far; it cannot be both.



ASM386 Assembly Language Reference Chapter 4 117

Examples

1. This example allows two consecutive bytes to be accessed both as a WORD and
as two different BYTES.

AWORD LABEL WORD
LOWBYTE DB 0
HIGHBYTE DB 0

2. This example sets up three ways of accessing the same data location.
BIT_ARRAY, TBYTE_ARRAY, and WORD_ARRAY all refer to the same data
locations as BYTE_ARRAY; they provide alternate forms of addressing it.

BYTE_RECORD RECORD B7:1,B6:1,B5:1,B4:1,
& B3:1,B2:1,Bl:1,B0:1

BIT_ARRAY  LABEL BYTE_RECORD
TBYTE_ARRAY LABEL TBYTE
WORD_ARRAY LABEL WORD

BYTE_ARRAY DB  100 DUP (0)

3. This example shows both NEAR and FAR labels at the same code location.
Even though there is a CALL at this location, this example will not cause an
error.  The ABORT_MESSAGE routine does not return to the location that
jumped to ABORT_FAR or ABORT_NEAR.

ABORT_FAR LABEL FAR
ABORT_NEAR:
CALL ABORT_MESSAGE
JMP EXIT                   ; do not RET to caller



118 Chapter 4 Defining and Initializing Data

Defining Implicit NEAR Labels

Syntax

lblname :[ instruct ]

Where:

lblname is an identifier; lblname  must be unique within the module.

instruct is an instruction.

Discussion

A label within the same segment is merely a name followed by a colon (:).  Such a
label has the following attributes:

• The current segment being assembled

• The label's offset (the current value of the location counter)

• The current segment's USE attribute

• The default label type, NEAR

If no target instruction is specified, a jump to the label causes the instruction
following the label to be executed.  This form of label is equivalent to the
following:

lblname  LABEL NEAR

Example

ALAB: MOV EAX, COUNT



ASM386 Assembly Language Reference Chapter 4 119

PROC Directive

Syntax

name PROC[ type ][WC( exp )]
        : :
name ENDP

Where:

name is an identifier; name must be unique within the module.

type is NEAR or FAR.  NEAR is the default.

exp is the number of dwords (USE32 segment) or words (USE16 segment)
of parameters to be transferred to the more privileged stack during an
interlevel call.  Exp must evaluate to an integer in the range 0..31.

Discussion

PROC defines a label for a sequence of instructions that are interpreted as a
subroutine or procedure of type NEAR (called from within the same segment) or
FAR (called from another segment).

The type specified with PROC tells the assembler whether to generate a near or far
RET instruction for the procedure operand.  A RET (return) instruction coded
between PROC..ENDP has the same type (near or far) as its enclosing routine.  It is
an error if paired CALL-RET instructions have mismatched near/far attributes.

If PROCLEN is specified between PROC..ENDP, it returns 0FFH if the procedure is
of type FAR.  PROCLEN returns 0 for all other cases.

See also: PROCLEN, Chapter 9

The assembler allows procedures to be nested.  However, nested procedures do not
behave like nested procedures in some high-level languages:

• The assembler does not have scope rules for programmer-defined names.
Every variable and label in a module must have a unique identifier.

• The assembler is not a block-structured language.  A nested procedure is coded
within the instruction sequence of another routine.  Unless the containing
routine jumps around the nested procedure, the nested procedure will execute
when its containing routine executes.  Furthermore, a nested procedure may
cause some of the containing routine's code to be skipped because a RET from
the nested procedure also causes a return from its containing routine (see
Example 3).



120 Chapter 4 Defining and Initializing Data

Examples

1. The assembler has both near and far CALL and RET instructions.  Whether a
CALL is near or far depends on the type of its procedure operand.  The
following is an example of a NEAR procedure with its appropriate call.

LOCALCODE SEGMENT ER PUBLIC
ANEARPROC PROC NEAR
  :  :                          ; some code
 RET                            ; near return
ANEARPROC ENDP
  :  :
CALL ANEARPROC                  ; near call
  :  :                          ; (intrasegment)
LOCALCODE ENDS

2. This example shows a FAR procedure and its call.

GLOBALCODE SEGMENT ER
AFARPROC PROC FAR
  :  :                          ; some code
 RET                            ; far return
AFARPROC ENDP
GLOBALCODE ENDS
  :  :
SPECSEG SEGMENT ER
CALL AFARPROC                   ; far CALL
  :  :                          ; (intersegment)
SPECSEG ENDS



ASM386 Assembly Language Reference Chapter 4 121

3. When one procedure is defined within another, execution can fall into the
nested procedure.

P1 PROC NEAR
  :  :
 MOV AX,15                ; execution begun here will
continue
 ADD DX,AX                ; through to the second MOV
AX,0
 P2 PROC NEAR
  MOV AX,0
  CMP AX,COUNT
  JE LAB
  DEC COUNT
   :  :
  LAB:
  MOV AX,0
  RET                     ; exit P1 and P2 here
 P2 ENDP                  ; remaining statements
 CMP DX,10                ; will never be executed
 JE LAB
 RET
P1 ENDP



122 Chapter 4 Defining and Initializing Data

Using Symbolic Data
Assembler label and variable names are symbolic data.  All programmer-defined
identifiers referenced in assembler programs are symbolic data.  Assembler
keywords and reserved words are symbols, as well.

See also: Assembler keywords and reserved words, Appendix C

Both labels and variables define logical addresses that represent values.  A label
identifier's value is the logical address it defines.  A variable identifier's value is the
contents of the logical address it defines.

The EQU directive assigns new names to symbols.  The PURGE directive directs the
assembler to omit object file information about particular EQUated symbols and
programmer-defined symbols.



ASM386 Assembly Language Reference Chapter 4 123

EQU Directive

Syntax

name EQU value

Where:

name is an identifier; name must be unique within the module.

value is a variable or label name, a constant or register expression, a
processor register, a floating-point stack element, a mnemonic, or
instruction prefix, a codemacro call or prefix, or the operators NOT,
AND, OR, XOR, SHL, or SHR.  value  can be any address expression.

See also: Floating-point stack elements, Chapter 7
mnemonics, Chapters 6 and 7
instruction prefixes, Chapter 6
codemacro calls or prefixes, Chapter 9
address expressions, Chapter 5

Discussion

EQU assigns a value to an identifier.  In effect, EQU creates either:

• An alias for a symbol's value

• An identifier for an assembly-time constant or run-time expression value.

If the assigned value is a variable or label name, it can be forward referenced.
The EQU directive defines another pointer to such a variable or label.  However, the
assigned value may not be an expression that contains a forward reference.

A global integer constant can be created by specifying the EQUated name in a
PUBLIC statement.  The value of such a global constant must be in the range:

• -2 31..(2 31-1)  in USE32 segments

• -32,768..32,767  in USE16 segments

The precision of an EQUated real expressed in decimal notation is determined in
context.  The name equated to these values can initialize data of more than one
type.  Floating-point numbers expressed in hexadecimal real notation also may be
used as EQU values.  However, the names equated to these values can only be used
to initialize data of a single type.

Register expression values can include a segment override.

See also: PUBLIC statement, Chapter 3
DD, DQ, and DT directives, in this chapter



124 Chapter 4 Defining and Initializing Data

Examples

1. This example makes a forward reference to a value represented by the label
ALAB.

ALABEL EQU ALAB
ALAB:MOV EAX,0

2. This example defines aliases for processor registers.

COUNT EQU ECX
PNTR EQU EBX
MOV COUNT,10             ; ECX = 10
MOV PNTR,OFFSET ARRAY    ; EBX = offset of array

3. This example defines aliases for the MOV and INC instructions.

DATAMOVE EQU MOV
INCREMENT EQU INC
DATAMOVE EAX,EBX
INCREMENT EAX

4. These examples illustrate integer and floating-point constant value
specifications.  A floating-point constant specified in decimal can initialize
data of more than one type; the precision of such values is determined in
context.  A floating-point constant specified in hexadecimal real can initialize
a single type of data (DWORD, QWORD, or, as here, TBYTE).

TOTAL EQU 6

PI EQU 3.141592653589793
DD PI                    ; single precision
DQ PI                    ; double precision

DEG_TO_RAD EQU 3FF98EFA351294E9C8AER     ; PI / 180
DT DEG_TO_RAD            ; extended precision

5. This example illustrates assembly-time initializations.

E1 EQU 2 + 3
E2 EQU E1 AND 4
E3 EQU (E1-E2) / 12

6. This example uses EQU to define variables to be accessed on the stack.

STKWRD EQU WORD PTR [EBP+2]
ONEVAR EQU SS:[EBX+3]
TWOVAR EQU SS:[EBX]



ASM386 Assembly Language Reference Chapter 4 125

PURGE Directive

Syntax

PURGEname[,...]

Where:

name is a symbolic data identifier.

Discussion

PURGE deletes the definition of one or more specified symbols.  Labels, variables,
and keyword or register aliases defined with EQU can be purged.

The following kinds of symbols cannot be purged:

• Names declared PUBLIC

• Register names

• Assembler reserved words

See also: PUBLIC names, Chapter 3
Assembler reserved words, Appendix C

A purged symbol remains undefined unless it is redefined.  A reference to a symbol
after it has been purged but before it is redefined constitutes a forward reference to
the redefinition.  If no redefinition occurs, such a reference is an error.

A PURGE coded just before the program END statement causes the assembler to
delete object file symbol information about purged symbols.

Examples

1. This example deletes aliases (defined with EQU) for an assembler instruction
and a processor register.

DATAMOVE EQU MOV
COUNT EQU ECX
  :  :
PURGE DATAMOVE, COUNT

2. For the variable and label specified in this example, the assembler will omit
symbol information from the object file for the module.

PURGE ALABEL, VAR1
END                      ; module

■■  ■■  ■■





ASM386 Assembly Language Reference Chapter 5 127

Accessing Data 5
This chapter contains four major sections:

• Overview of assembler expressions

This section introduces constant and address expressions.

• Operators

This section explains the assembler isolation, multiplication and division, shift,
addition and subtraction, relational, logical, attribute value, attribute override,
and record specific operators.

• Instruction Operands

This section summarizes the operands to assembler instructions.

• Memory Addressing Methods

This section explains the forms of assembler address expressions in detail.

Overview of Assembler Expressions
Expressions contain operands and operators.  An assembler expression specifies
either:

• A value that initializes data.  Such a value must be a constant expression, an
external constant, or a relocatable address expression.

• Or, an address in memory that may be an instruction operand.  This is
sometimes called an address expression.

Constant expressions specify values that are known at assembly time.  Address
expressions specify values that might not be known at assembly time; they
represent an address that will be accessed during program execution on the
processor.  The contents at such an address might be modified during program
execution.



128 Chapter 5 Accessing Data

For an assembler instruction to operate on data, the data must be accessible as an
instruction operand.  Some instructions have implicit operands such as registers.
However, most instructions require explicit operand(s).  An instruction operand can
be expressed as a register, a constant, a location in memory, or as a combination of
these components.

Some operands can be specified as expressions consisting of a series of variable
names, base and index registers, and constants combined by operators.  For
example, the contents of a register and a constant could be added with the addition
operator.

There are many assembler operators that can be used to create expressions.

Constant Expressions
Constants (see Table 4-2) can be used as expression operands with most assembler
operators (see Table 5-1).  The storage allocation directives (described in
Chapter 4) initialize data values using constant expressions.  Constant expressions
yield a value that is known at assembly time.

However, a symbolic constant defined in another module has an unknown value at
assembly time.  When modules are combined, such a constant's value replaces each
external reference to the constant.  For example:

EXTRN ANUMBER:ABS
DATA SEGMENT
AWORD DW ANUMBER     ; AWORD gets value of ANUMBER
                     ; when modules combined
DATA ENDS

External symbolic constants do not form constant expressions.

See also: PUBLIC directive, Chapter 3

Address Expressions
An address expression defines a location in memory.  This location can be
interpreted as either a variable or label, depending on the expression used.  Every
address expression has a simple type (BIT , BYTE, WORD, DWORD, PWORD, QWORD,
TBYTE, NEAR, or FAR).  The rules for address expression formation preclude
mixing variable or label types unless the PTR operator coerces uniformity of type.

See also: PTR operator, in this chapter



ASM386 Assembly Language Reference Chapter 5 129

Variable and Label Names as Address Expressions

The simplest address expression is the name of a variable or label.  In this case, the
name implies addressing using the variable's or label's offset from its defining
segment's base address.  This address is relocatable.

For example:

ADD DX,COUNT      ; COUNT is a simple address expression

ADD DX,COUNT + 2  ; In this case, address expression has
                  ; the same segment and type as COUNT
                  ; but has an offset that is 2 greater

Register Expressions

A register expression is an address expression that uses a base and/or an index
register.  Possible forms are:

[ base-reg ] or [ index-reg  * scale ]
[ base-reg  + index-reg  * scale ]
[ base-reg  + disp ] or [ index-reg  * scale  + disp ]
[ base-reg  + index-reg  * scale  + disp ]

Where:

base-reg is any 32-bit general register (EAX, ECX, EDX, EBX, ESP, EBP,
ESI, EDI) for 32-bit addressing, and is BX or BP for 16-bit
addressing.

index-reg is any 32-bit general register except ESP for 32-bit addressing, and is
SI or DI for 16-bit addressing.

scale is (an optional) constant or constant expression that evaluates to 1, 2,
4, or 8 for 32-bit addressing.  It is invalid for 16-bit addressing.

disp is an 8- or 32-bit displacement for 32-bit addressing, and is an 8- or
16-bit displacement for 16-bit addressing.

At assembly time, a simple register expression operand is called an anonymous
reference.  The data addressed by a named register has no explicit type (BIT , BYTE,
WORD, DWORD, PWORD, QWORD, TBYTE, or record/structure template name).



130 Chapter 5 Accessing Data

For a two-operand instruction with one register operand, the assembler determines
the type of an anonymous reference from the size of the register.  For example:

MOV CX,[BX]    ; move WORD data pointed to by BX into CX

For all other kinds of anonymous references, the PTR operator must be used to
specify a type.  For example:

MOV WORD PTR [DI],5    ; assign 2 bytes
INC BYTE PTR [BX]+2    ; increments 1 byte

Combining Simple Address and Register Expressions

Register expressions can be combined with simple address expressions to form a
more complex address.  The form is:

varname  [ reg-exp ]

Where:

varname is the name of a variable.

reg-exp is a register expression (see the preceding section) enclosed in
brackets.

The register expression implies that the address of the operand will be computed
from the run-time contents of the register.  For example:

COUNT[EBX]              ; simple base
COUNT[EBX] + 2          ; base plus displacement
COUNT[EBX] + [ESI]      ; base plus index

For the preceding examples, the offset of the variable COUNT will be added to the
contents of the register(s) in the register expression.

See also: Implicit bracket addition, Addition and Subtraction Operators, in this
chapter
Processor registers and memory addresses, Appendix A



ASM386 Assembly Language Reference Chapter 5 131

Structure Fields in Address Expressions

Another form of address expression uses a structure field name as a displacement
added to a structure's offset within its segment.

For a variable of a structure type, a field name represents an offset within the
structure.  The field name can be combined with a named variable of the same type
as the field or with a register expression to form an address expression.  Such an
address expression has the following attributes:

Its segment This is the same as the variable's, or it is the processor default for the
register.

Its offset This is the offset of the variable or register expression plus the offset
of the field within the structure.

Its type This is the type defined in the structure template for the field.  If more
than one structure field is specified, the rightmost field determines the
address expression's type.

For example, consider the following structure definition and instruction results:

ASTRUC STRUCTURE
 ABYTE DB 0            ; offset = 0
 AWORD DW 0            ; offset = 1
 BYTE2 DB 0            ; offset = 3
ASTRUC ENDS
  :  :
ANARRAY DB 1,2,3,4     ; ANARRAY.AWORD has type WORD
  :  :
 MOV AL,ANARRAY.BYTE2  ; AL := 4
 MOV CX,ANARRAY.AWORD  ; CX := 0302H
 MOV BX,OFFSET ANARRAY ; BX holds offset
 MOV AL,[BX].ABYTE     ; AL := 1 [BX].ABYTE has type BYTE



132 Chapter 5 Accessing Data

Relocatable Expressions

Address expressions involving named variables, labels, and segments can have
results that might not be known until all program modules have been assembled,
combined, and located.  Such expressions are called relocatable.  The system
utilities assign values to such address expressions.

The assembler automatically generates relocatable addresses for valid symbolic
references in code segments.

See also: Relocatable and non-relocatable address generation, ASSUME
directive, Chapter 2

The assembler also generates various kinds of relocatable addresses for symbolic
references in data segments:

1. A segment name in an address expression represents the logical address of its
selector.  A segment name that is referenced in another data segment forms a
base relocatable address.  For example, DATA1 is base relocatable in the
following:

DATA1 SEGMENT
  :  :
DATA1 ENDS
DATA2 SEGMENT
 SEGBASE DW DATA1    ; SEGBASE contains base
                     ; relocatable address of DATA1
  :  :
DATA2 ENDS

2. A variable or label name in a data segment address expression forms an offset
relocatable address under either of the following conditions:

• The variable or label is defined in a USE32 segment and its name is used
to initialize a variable of type DWORD.

• The variable or label is defined in a USE16 segment and its name is used
to initialize a variable of type WORD.

For example, ABYTE + 2  forms an offset relocatable address in the following:

DATA SEGMENT USE32
 ABYTE DB 0
 AN_OFFSET DD ABYTE + 2  ; AN_OFFSET contains offset
                         ; relocatable address of
DATA ENDS                ; ABYTE + 2



ASM386 Assembly Language Reference Chapter 5 133

3. A variable or label name in a data segment address expression forms a pointer
relocatable address under either of the following conditions:

• The variable or label is defined in a USE32 or USE16 segment and its
name is used to initialize a variable of type PWORD.

• The variable or label is defined in a USE16 segment and its name is used
to initialize a variable of type DWORD.

For example, ABYTE forms a pointer relocatable address in the following:

DATA SEGMENT USE32
 ABYTE DB 0
 A_POINTER DP ABYTE      ; A_POINTER contains pointer
                         ; relocatable address of ABYTE
DATA ENDS

Expressions with external constant operands also have results that are unknown at
assembly time; the value of an EXTRN:ABS constant is supplied when modules are
combined.  Any address expression with symbolic operands might have results that
cannot be determined until the program is located.  The system utilities must
supply these values.

For these reasons, there are restrictions on the use of relocatable expressions with
some operators.  These restrictions are noted in the operator descriptions in the
following sections.



134 Chapter 5 Accessing Data

Operators
Table 5-1 summarizes the assembler operators.  These operators are explained in
detail later in this section.

Table 5-1.  Assembler Operators

Operator Description

HIGHW
LOW
HIGH
LOW

Isolation Operators (1 Operand)
Returns high-order word of dword operand Returns low-order
word of dword operand
Returns high-order byte of word operand
Returns low-order byte of word operand

*
/
MOD

Multiplication and Division (2 Operands)
Multiplies one operand by another
Divides one operand by another
Takes the modulus

SHR
SHL

Shift Operators (1 Operand)
Shift operand bits right
Shift operand bits left

+
-

Addition and Subtraction (2 Operands)
Adds operands
Subtracts one operand from another

EQ
NE
LT
LE
GT
GE

Relational Operators (2 Operands)
If operands equal, returns -1; otherwise, 0
If operands not equal, returns -1; otherwise, 0
If 1st operand < 2nd, returns -1; otherwise, 0
If 1st operand <= 2nd, returns -1; otherwise, 0
If 1st operand > 2nd, returns -1; otherwise, 0
If 1st operand >= 2nd, returns -1; otherwise, 0

OR
XOR
AND
NOT

Logical Operators (2 Operands, except NOT)
If either operand's bit = 1, result bit = 1; otherwise, 0
If operands' bits different, result bit = 1; otherwise, 0
If both operands' bits = 1, result bit = 1; otherwise, 0
If operand bit = 1, result bit = 0, and vice versa

continued



ASM386 Assembly Language Reference Chapter 5 135

Table 5-1.  Assembler Operators (continued)

Operator Description

THIS
SEG
OFFSET
BITOFFSET
LENGTH
TYPE
SIZE
STACKSTART

Attribute Value Operators (1 Operand)
Defines variable or label at current assembly location
Returns segment selector of specified variable or label
Returns offset of variable or label
Returns bit offset of bit variable
Returns number of storage units allocated for variable
Returns encoded value for variable or label type
Returns number of bytes allocated for variable
Returns offset of first (d)word above stack segment

Sreg:
PTR
SHORT

Attribute Override Operators (1 Operand)
Overrides default segment attribute of a variable or label
Overrides variable's or label's type
Specifies that forward-referenced label is within 127 bytes of the
end of a jump instruction

MASK
ShiftCount
WIDTH

Record Specific Operators (1 Operand)
Masks specified field with 1's
Shifts bits in record by size of specified field
Returns number of bits in record or field



136 Chapter 5 Accessing Data

Operator Precedence
Table 5-2 lists classes of assembler operators in decreasing order of precedence.

Table 5-2.  Assembler Operator Precedence

Highest Precedence

1. Parenthesized expressions, angle-bracket (record) expressions,
square- bracket expressions, the structure "dot" operator, and the
operators LENGTH, SIZE, WIDTH, MASK, and STACKSTART

2. PTR, OFFSET, BITOFFSET, SEG, TYPE, THIS, and the segment
override (CS:, DS:, ES:, FS:, GS:, or SS:)

3. HIGHW, LOWW, HIGH, and LOW
4. Multiplication, division, and shifts: *, / , MOD, SHR, SHL
5. Addition and subtraction: +, -

a. unary
b. binary

6. Relational: EQ, NE, LT, LE, GT, GE
7. Logical NOT
8. Logical AND
9. Logical OR and XOR
10. SHORT

Lowest Precedence

Assembler expressions are evaluated from left to right following these precedence
rules.  If two operators with equal precedence are adjacent, the leftmost operator
has precedence.  Override this order of evaluation and/or operator precedence by
using parentheses.



ASM386 Assembly Language Reference Chapter 5 137

Isolation Operators

Syntax

HIGHW number32
LOWW number32
HIGH number16
LOW number16

Where:

number32 is a constant expression that evaluates to a 32-bit number.

number16 is a constant expression that evaluates to a 16-bit number.

Discussion

The HIGHW and LOWW operators return the high and low WORDs, respectively, of the
32-bit operand.

The HIGH and LOW operators return the high and low BYTEs, respectively, of the
16-bit operand.

When applied to a WORD value, HIGHW returns 0.  When applied to a BYTE value,
HIGH returns 0.

Examples

1. These examples contrast HIGH with LOW and HIGHW with LOWW as operators on
the same values.

MOV AH, HIGH 1234H               ; AH := 12H
TENHEX EQU LOW 1234H             ; TENHEX := 34H

MOV AX, HIGHW 12345678H          ; AX := 1234H
MOV CX, LOWW 12345678H           ; CX := 5678H

2. These equations illustrate the results when HIGH/LOW and HIGHW/LOWW
operator pairs are applied to each other.

HIGH LOW number = 0
HIGHW LOWW number = 0
LOW HIGH number = HIGH number
LOWW HIGHW number = HIGHW number
HIGHW HIGHW number = 0           ; HIGHW applied to WORD
LOW LOW number = LOW number
HIGHW HIGH number = 0            ; HIGHW applied to BYTE



138 Chapter 5 Accessing Data

3. These examples use more than one isolation operator in the same expression,
with one expression in parentheses.  Compare results for the first and second
examples.  The second example reverses the first example's operators.

MOV AL, LOW (HIGHW 12345678H)    ; AL := 34H
MOV AL, HIGHW (LOW 1234H)        ; AL := 0 because
                                 ; HIGHW applied to BYTE
MOV AL, HIGH (LOWW 12345678H)    ; AL := 56H

Multiplication and Division Operators

Syntax

Multiplication: operand  *  operand

Division: operand  /  operand

Modulo: operand   MOD operand

Where:

operand is a constant expression.

Discussion

Use these operators only with constant expressions.

The result of a multiplication, division, or modulo operation is always an absolute
number.  The result of a multiplication must be no greater than 32-bits, or an
overflow error will occur.

Examples

CMP AL, 2 * 4        ; compare AL to 8
MOV CX, 123H / 16    ; CX := 12H
ADD AX, 102 MOD 4    ; AX := AX + 2



ASM386 Assembly Language Reference Chapter 5 139

Shift Operators

Syntax

Shift right: operand  SHR count

Shift left: operand  SHL  count

Where:

operand is a constant expression.

count is a constant expression that evaluates to an ordinal; count  represents
the number of bits the operand is to be shifted.

Discussion

The shift operators cause a bit-wise shift of the operand; it is shifted count  bits to
the right or left.  Bits shifted into the operand are 0s.

In effect:

• Shifts to the left multiply the operand by 2 to the power specified by count .

• Shifts to the right divide the operand by 2 to the power specified by count .

Examples

MOV BX, 0FACBH SHR 4     ; BX := 0FACH
ADD AL, 111000B SHL 2    ; 11100000 added to contents of AL

MOV BL, (OFACBH AND 0111000B) SHR 3    ; BL := 001B
                                       ; (bits 3,4,5)



140 Chapter 5 Accessing Data

Addition and Subtraction Operators

Syntax

Addition: operand  +  operand

Bracket Addition: primary  [ exp ]

Subtraction: operand  -  operand

Where:

operand is a constant expression, or a variable or label defined in the current
module in the same segment.

primary is a constant expression, an ordinal, the name of a record variable
followed by a record initialization, a string, a simple type name,
NEAR, FAR, or PROCLEN, enclosed in brackets or parentheses.
PROCLEN within a PROC..ENDP returns the value 0FFH for a FAR
procedure; otherwise, PROCLEN returns 0.

exp is a constant expression.

Discussion

Only constant expressions can be added or subtracted.  The construct enclosed in
brackets ([] ) alters operator precedence and implies that an addition operator
precedes the bracketed expression (see Example 2).

Variables, labels, or identifiers that have been EQUated to labels or variables cannot
be added or subtracted unless they have been defined in the current module and are
in the same segment.

Examples

1. This example illustrates assembly-time expressions.

E1 EQU 12 + 3
E2 EQU E1
E3 EQU E1 - E2

2. These equations illustrate the brackets as an addition operator.  The last
expression is an error.  The brackets operator implies addition before its
enclosed expression; it does not imply addition after its enclosed expression.

ALABL [3 * 5] = ALABL + (3 * 5)
ALABL + (3 * 5) [3 * 5] = ALABL + (3 * 5) + (3 * 5)
ALABL [3 * 5] [3 * 5] = ALABL + (3 * 5) + (3 * 5)
ALABL [3 * 5] (3 * 5)        ; = error



ASM386 Assembly Language Reference Chapter 5 141

Relational Operators

Syntax

Equal: operand  EQ operand

Not equal: operand  NE  operand

Less than: operand  LT  operand

Less than or equal:
operand  LE  operand

Greater than:
operand  GT  operand

Greater than or equal:
operand  GE operand

Where:

operands are either both constant expressions, or they are both variable or label
names that are defined in the current module and in the same segment.

Discussion

A relational operation always returns a result of -1 for true and 0 for false.

Either the result is 32-bits or it is truncated to 8 or 16-bits, depending on the
context.

Example

MOV AL, 3 EQ 0           ; AL := 00000000B (false)
MOV BX, 2 LE 15          ; BX := 0FFFFH (true)



142 Chapter 5 Accessing Data

Logical Operators

Syntax

operand  OR operand

operand  XOR operand

operand  AND operand

NOT operand

Where:

operand is a constant expression.

Discussion

Logical operators operate on individual bits of their operand(s) and return an
absolute number.  Each bit of the result depends on the corresponding bit(s) in the
operand(s).

The functions performed by these operators are as follows:

OR A result bit is 1 if corresponding operand bits are 1.  A result bit is
also 1 if either corresponding bit is 1.  A result bit is 0 only if both
operand bits are 0.  OR is the logical inclusive or.

XOR A result bit is 1 if the corresponding operand bits are different.  A
result bit is 0 if the operand bits are the same.  XOR is the logical
exclusive or.

AND A result bit is 1 only if both corresponding operand bits are 1.
Otherwise, a result bit is 0.

NOT A result bit is the opposite of the operand bit.  It is 1 if the operand bit
is 0; 0 if the operand bit is 1.



ASM386 Assembly Language Reference Chapter 5 143

Examples

1. This example XORs two absolute numbers into AX.  & is the assembler
continuation character.

MOV AX,  1111000011110000B

& XOR    0011001100110011B       ; AX :=  1100001111000011B

2. These equations illustrate the effects of the OR and XOR operators.

    11110000B
 OR 00110011B
  = 11110011B

    11110000B
XOR 00110011B
  = 11000011B

3. This equation illustrates the effects of the AND operator.

    11110000B
AND 00110011B
  = 00110000B

4. This equation illustrates the effects of the NOT operator.

NOT 00110011B
  = 11001100B



144 Chapter 5 Accessing Data

Attribute Value Operators
THIS , SEG, OFFSET, BITOFFSET, LENGTH, TYPE, SIZE , and STACKSTART return
numerical values for the attributes of a variable, label or segment.  These operators
do not change the attributes of their operands.

THIS Operator

Syntax

THIS type

Where:

type can be BIT , BYTE, WORD, DWORD, PWORD, QWORD, TBYTE, NEAR, or
FAR.

Discussion
The THIS  operator defines a variable or label at the current location of assembly.

The variable's or label's segment attribute will be the current segment being
assembled.  Its offset will be the value of the current location counter.  Specifying
the location counter symbol ($) is equivalent to specifying THIS  NEAR.

See also: Location counter, Chapter 4

A variable or label type is specified by the operand of this operator.  Its usage is
similar to that of the LABEL directive.  THIS  is used either in conjunction with the
EQU directive (see the following Example) or as part of an operand to an
instruction.

Examples
1. THIS  can be used to define another name with an alternate type for the same

data item.

AWORD EQU THIS WORD        ; defines label AWORD
                           ; at current location
BYTE1 DB 0
BYTE2 DB 0

2. This code is equivalent to the preceding example.

AWORD LABEL WORD
BYTE1 DB 0
BYTE2 DB 0

3. THIS  may be part of an instruction operand.

MOV EAX, THIS DWORD



ASM386 Assembly Language Reference Chapter 5 145

SEG Operator

Syntax

SEG varlab

Where:

varlab is the name of a variable or label.

Discussion

The SEG operator returns the segment selector of the variable or label.  The
segment selector is a base relocatable quantity.

SEG is used:

1. To specify (with the ASSUME directive) the segment in which a variable or
label is defined (see Example 1).

2. To store a selector in a variable or to initialize a segment register (see Example
2).  The initialized segment register cannot be CS.

Examples

1. This example tells the assembler that DS will hold the selector of the segment
in which COUNT was defined.  In this case, the expression, SEG COUNT, is a
symbolic representation of the name of COUNT's defining segment when COUNT
has been defined in a segment of another module.

ASSUME DS:SEG COUNT

2. This example stores the segment selector for COUNT into SETSTART and
initializes DS with COUNT's segment selector.

   SETSTART DW SEG COUNT
                    ; store the selector for the segment
INIT:MOV AX, SEG COUNT
   MOV DS, AX       ; initialize DS with COUNT's segment

3. This example is equivalent to Example 2.

     SETSTART DW SEG COUNT
INIT:MOV DS, SETSTART



146 Chapter 5 Accessing Data

OFFSET Operator

Syntax

OFFSET varlab

Where:

varlab is the name of a variable or label defined in the current module.

Discussion

The OFFSET operator returns its operand's offset in bytes from the base of the
segment in which the operand is defined.  The value returned by OFFSET is a 32- or
16-bit number, depending on whether the segment is a USE32 or USE16 segment.

If the operand to OFFSET is a bit variable that is not within a structure, then it must
be byte-aligned; the OFFSET value is the number of bytes from the beginning of the
segment to the byte with which the bit is aligned.  For bits within a structure, the
OFFSET value is the number of bytes from the beginning of the segment to the
nearest low byte boundary.

In most cases, the returned value is not set until bind time; it is a relocatable
number.  The OFFSET operator is used primarily to initialize variables or registers
to be used for indirect addressing (see the Example).

Example

Some assembler instructions explicitly use indirect addressing when accessing data.
When coding these instructions, you must initialize a register to the offset value of
the data you wish to access.

TRANSLATE:
 MOV EBX, OFFSET ASCIITABLE
 MOV AL, VALUE
 XLATB           ; EBX points to translation table



ASM386 Assembly Language Reference Chapter 5 147

BITOFFSET Operator

Syntax

BITOFFSET name. field

Where:

name is the name of a structure.

field is a field of type BIT  within the structure.

Discussion

The BITOFFSET operator returns the bit offset from the nearest lower byte address
of a structure field of type BIT .  Use the following expression to obtain a value
equal to the number of bits from the beginning of the structure to a specific bit:

(((OFFSET name.field ) - (OFFSET name))*8)
+ BITOFFSET name.field

For a BIT -type variable defined outside of a structure, BITOFFSET always returns a
0, because such a bit will always be byte-aligned.  BITOFFSET also returns a 0 for
structure fields that are not of type BIT .



148 Chapter 5 Accessing Data

Example

Although the OFFSET operator is not a required part of a BITOFFSET expression,
BITOFFSET is intended for use with OFFSET.

TESTBIT STRUC

 TSTBIT0 DBIT 0B        ; structure templates

 TSTBIT1 DBIT 0B        ; can be defined

 TSTBIT2 DBIT 0B        ; outside a segment

 TSTBIT3 DBIT 0B

 TSTBIT4 DBIT 0B

 TSTBIT5 DBIT 0B

 TSTBIT6 DBIT 0B

 TSTBIT7 DBIT 0B

 TSTBIT8 DBIT 0B

 TSTBIT9 DBIT 0B

TESTBIT ENDS

These instruction statements contrast OFFSET and BITOFFSET assignments to AX.

DATA SEGMENT USE32

  :  :

 BITTSTVARS TESTBIT <>   ; assume offset 1001H

                         ; from data segment

DATA ENDS

  :  :

CODE SEGMENT EO                          ; default USE32

 MOV AX, BITOFFSET BITTSTVARS.TSTBIT9    ; AX := 1

 MOV AX, OFFSET BITTSTVARS.TSTBIT9       ; AX := 1002H

 MOV AX,(((OFFSET BITTSTVARS.TSTBIT9)

& - (OFFSET BITTSTVARS)) * 8)

& + BITOFFSET BITTSTVARS.TSTBIT9         ; AX := 9

               ; expression  yields number of bits

               ; from beginning of structure for TSTBIT9



ASM386 Assembly Language Reference Chapter 5 149

LENGTH Operator

Syntax

LENGTH varname

Where:

varname is the name of a variable or structure field (without the dot operator).

Discussion

LENGTH returns the number of storage units (BIT s, BYTEs, WORDs, DWORDs,
QWORDs, or TBYTEs) that have been allocated for its operand.  For a BIT -type
operand, LENGTH returns a value equal to the number of bits in the storage
allocation.  Use LENGTH to set a counter for a loop that accesses the elements
of an array .

Examples

These equations illustrate results for LENGTH.

ABYTEARRAY DB 1,2,3,4,5,6,7
 LENGTH ABYTEARRAY = 7

AWORDARRAY DW 150 DUP (0)
 LENGTH AWORDARRAY = 150

TYPE Operator

Syntax

TYPE varlab

Where:

varlab is the name of a variable, a structure field (without the dot operator),
or a label.

Discussion

The TYPE operator returns a value that represents the number of bytes occupied by
the type of its operand.  These values are listed in Table 5-3.

Note that TYPE applied to a label operand yields a negative value.

Use TYPE in instruction sequences where a pointer is to be incremented by the
number of bytes occupied by the TYPE operand.  Or, use TYPE for scaling
operations.



150 Chapter 5 Accessing Data

Table 5-3.  TYPE Operator Results

Operand Type Value Returned

BIT *

BYTE 1

WORD 2

DWORD 4

PWORD 6

QWORD 8

TBYTE 10

Structure number of bytes in structure

Record number of bytes (1 to 4) in record

NEAR -1

FAR -2
* For a BIT-type variable, TYPE returns a value equal to the number of bytes allocated with DBIT.

For BIT-type structure fields, TYPE returns 0 if the field has less than 8-bits; otherwise, TYPE
returns 1. See also:  Chapter 4

Examples

1. This example increments ESI  using the TYPE operator and loops to the next
ARRAY element to be accumulated.

     MOV EBX, OFFSET ARRAY
     MOV ECX, LENGTH ARRAY
                  ; LENGTH = number of elements
     MOV ESI, 0             ; index into array
ALAB:ADD AX,[EBX] + [ESI]   ; add element to AX value
     ADD ESI, TYPE ARRAY    ; increment pointer by size
                            ; of an array element
     LOOP ALAB

2. This example is functionally equivalent to Example 1.

     MOV EBX, OFFSET ARRAY
     MOV ECX, LENGTH ARRAY
                  ; LENGTH = number of elements
     MOV ESI, 0   ; index into array
ALAB:ADD AX,[EBX] [ESI * TYPE ARRAY]
                    ; add element to AX value
     INC ESI
     LOOP ALAB



ASM386 Assembly Language Reference Chapter 5 151

SIZE Operator

Syntax

SIZE varname

Where:

varname is the name of a variable or structure field (without dot operator).

Discussion

The SIZE  operator returns the number of bytes allocated for a variable.  For a
variable allocated with DBIT  that does not end on a byte boundary, the result is
rounded up by 1 byte.  For BIT -type structure fields with less than 8-bits, SIZE
returns 1; otherwise, SIZE  returns the same value as LENGTH.

For non-BIT -type variables, SIZE  returns a value that is related to the LENGTH and
TYPE results according to the following identity:

SIZE = LENGTH * TYPE

Examples

1. These equations illustrate results for SIZE .

ABYTEARRAY DB 1,2,3,4,5,6,7
 SIZE ABYTE ARRAY = 7

AWORDARRAY DW 150 DUP (0)
 SIZE AWORDARRAY = 300

ADWORDARRAY DD 1,2,3,4,5,6,7
 SIZE ADWORDARRAY = 28

2. This example initializes the variable ASIZE  to 7 and assigns the value 300 to
AX.

ABYTEARRAY DB 1,2,3,4,5,6,7
AWORDARRAY DW 150 DUP (0)
ASIZE DB SIZE ABYTEARRAY           ; ASIZE gets 7
  :  :
MOV AX, SIZE AWORDARRAY            ; AX := 300



152 Chapter 5 Accessing Data

STACKSTART Operator

Syntax

STACKSTART segname

Where:

segname is the name of the stack segment (defined with STACKSEG).

Discussion

Use STACKSTART to initialize the stack pointer (E)SP.  Because the processor stack
grows downward, the initial stack pointer value equals the offset of the first dword
(or word, depending on the stack use attribute) above the stack segment in memory.

Example

STACK STACKSEG 100
  :  :
MOV ESP, STACKSTART STACK

Attribute Override Operators
Use the attribute override operators to respecify attributes, such as a variable's or
label's segment or type.  There are three kinds of attribute override operators:

• Segment overrides, used to override a default segment register or to specify an
anonymous reference to a variable or label

• The PTR operator, used to override type

• The SHORT operator, used to override the type of a forward-referenced NEAR
label



ASM386 Assembly Language Reference Chapter 5 153

Segment Override Operator

Syntax

CS:varlab
DS:varlab
ES: varlab
FS: varlab
GS:varlab
SS: varlab

Where:

varlab is a variable name, a label that is not of type NEAR or FAR, or an
address expression.

Discussion

This operation overrides the segment attribute of a variable or label.  The explicit
use of a segment override takes precedence over an ASSUME directive and over
default segment register usage.

Use the segment override to specify a segment register as the segment part of a
memory address.  A segment override applies only to a single instruction.  The
ASSUME directive tells the assembler to generate necessary segment overrides for
all subsequent instructions.

See also: ASSUME directive, Chapter 2

Use this operator to override the default segment register for operands that are (or
contain) only base or index registers.  Such operands (and expressions) are assumed
to point to a variable.  This usage is called an anonymous (or non-symbolic)
reference.

Segment overrides cannot be specified for the default registers in the following
cases:

• ES as the destination of a string operation

• SS for stack operations

• CS for instruction fetches

See also: Appendix A for a summary of the processor default segment selection
rules



154 Chapter 5 Accessing Data

Examples

1. This example compares the use of ASSUME and the segment override.

DATA SEGMENT
 ABYTE DB 0
 DATA ENDS
  :  :

CODE SEGMENT
 ASSUME DS:DATA
 MOV BL, ABYTE
          ; reference to ABYTE is covered by the ASSUME
 MOV BL, ES:ABYTE  ; override default (DS)
          ; ASSUME not required for ABYTE reference
CODE ENDS

2. These examples make anonymous references.  When the first MOV instruction
executes, the DS (default) register is used.  The second MOV instruction
specifies that EBX points to data accessible through the ES register.

MOV BL, [EBX]
  :  :
MOV BL, ES:[EBX]

The opcode for the second MOV will be preceded by a segment override prefix
(byte) that forces the processor to use the ES register in order to calculate the
physical address of the variable.

See also: Segment override opcode prefixes, Chapter 6



ASM386 Assembly Language Reference Chapter 5 155

PTR Operator

Syntax

type  PTR exp

Where:

type can be BIT , BYTE, WORD, DWORD, PWORD, QWORD, TBYTE, NEAR or
FAR.

exp can be a variable name, a label name, an address or register
expression, or an integer that represents an offset.

Discussion

Use PTR to override the type assigned to a variable or label name, or to assign a
type to an anonymous effective address expression such as [EBX]  (see the
Examples).

PTR assigns the type  attribute specified on the left to the variable, label or number
specified on the right.  PTR also assigns segment and offset attributes to the
variable or label specified on the right.

When exp  is a constant expression, type must be preceded by a segment override.
When the type  is NEAR or FAR, a segment override may not be specified.

Table 5-4 summarizes segment and offset attribute assignments for the possible
values of exp .

Table 5-4.  PTR Result Attributes

exp is Segment Offset

variable or label exp's exp's

number specified by segment override exp itself

anonymous reference default segment unless overridden run-time value



156 Chapter 5 Accessing Data

Examples

1. These examples increment a byte, word, and dword in memory.

INC BYTE  PTR [BX]
INC WORD  PTR [ESI]
INC DWORD PTR [EBX]

2. These examples move an immediate value to a byte, word, or dword in
memory.

MOV BYTE  PTR [EDI],99
MOV WORD  PTR [EDI],99
MOV DWORD PTR [EDI],99

3. This example jumps through two levels of indirection.

JMP PWORD PTR [EBX]    ; EBX points to 4-byte offset
                       ; followed by 2-byte segment base

4. These examples pick up a word from a byte array and a byte from a word
array.

FOOW DW 100 DUP (?)
FOOB DB 200 DUP (?)
  :  :
ADD AL, BYTE PTR FOOW[101]
                     ; add low byte of 50th word to AL
ADD DX, WORD PTR FOOB[20]
                     ; add word at 21st byte to DX

5. This example accesses an anonymous variable at a given offset from a
segment.

MOV AL,DS:BYTE PTR 5     ; move byte 5 of DS segment to AL

6. These examples override the type attributes of a word variable and a label.

MOV CL, BYTE PTR AWORD     ; get 1st byte of variable
MOV DL, BYTE PTR AWORD + 1 ; get variable's 2nd byte
MOV AL, BYTE PTR APROC + 5 ; read a byte of program code



ASM386 Assembly Language Reference Chapter 5 157

SHORT Operator

Syntax

SHORT labelexp

Where:

labelexp is a label or label expression defined within the same segment as the
instruction being assembled.

Discussion

The SHORT operator specifies that a label referenced by a JMP or conditional jump
instruction is within the range of -128..127 bytes of the end of the instruction.
SHORT allows the assembler to check that the label is in this range and to generate
the most compact code for complex label expressions.

When a single label is forward-referenced, the assembler optimizes the relative
offset.  However, complex forward references cannot always be optimized.

Example

This example illustrates the use of SHORT to save bytes of code.  It assumes a
USE32 segment.

JMP $+(FWDLAB - FWDLAB2)          ; 8 bytes
JMP SHORT $+(FWDLAB - FWDLAB2)    ; 3 bytes
  :  :
FWDLAB:
  :  :
FWDLAB2:



158 Chapter 5 Accessing Data

Record Specific Operators
The WIDTH operator returns a result equal to the number of bits in a record or
record field.

The MASK operator, together with a record field name used as a shift count, helps to
isolate and access the fields within a record.  This provides an alternative to
defining BIT -type variables in order to isolate specific bits in a record.

WIDTH Operator

Syntax

WIDTH record

or

WIDTH rec-field

Where:

record is the name of a record variable.

rec-field is the name of a record field.

Discussion

The WIDTH operator returns a value equal to the number of bits in either a record or
a record field.

Example

REC1 RECORD F1:2, F2:4, F3:1
R1NUMBITS DB WIDTH REC1        ; byte initialized to 7
F2NUMBITS DB WIDTH F2          ; byte initialized to 4



ASM386 Assembly Language Reference Chapter 5 159

MASK Operator

Syntax

MASK rec-field

Where:

rec-field is the name of a record field.

Discussion

The MASK operator defines a value that masks a selected field in a record.  This
value has 1s in the bit positions specified by rec-field  and 0s for every other bit
position in the record.

Examples

1. This sequence of instructions creates a record in EAX of the same type as REC's.
The EAX FULL field is a copy of the REC.FULL field.  All other EAX fields
have zeros.

MOV EAX, REC
AND EAX, MASK FULL

2. This sequence of instructions creates a record in EAX of the same type as REC's.
The FULL field is zeroed.  All other EAX fields are copies of the corresponding
REC fields.

MOV EAX, REC
AND EAX, NOT MASK FULL



160 Chapter 5 Accessing Data

Using Field Names as Shift Counts

Syntax

rec-field

Where:

rec-field is the name of a record field.

Discussion

The record field name specifies the number of bits the record will be shifted.  To
evaluate a field, the record is shifted right to move the field's contents to the low-
order bits of a BYTE, WORD, or DWORD (see the Example).

Example

This example defines a record.  It then isolates and evaluates field C in the record.

PATTERN RECORD A:3, B:1, C:2, D:4, E:6
AREC  PATTERN <>
  :  :
MOV DX, AREC         ; move record into DX
AND DX, MASK C       ; mask out fields A,B,D,E with
                     ; 0000110000000000B
SHR DX, C            ; DX now equal to value of field C



ASM386 Assembly Language Reference Chapter 5 161

Instruction Operands
For an assembler instruction to operate on data, the data must be expressed in a
form that allows it to be accessed.  Some instructions implicitly operate on certain
registers.  In most cases, data must be specified as an explicit operand.  An
instruction operand can be expressed as a register, a constant expression, an
external constant, a location in memory, or as an expression that combines these
components using assembler operators.

Register Operands
The following registers can be used as explicit operands for many processor
instructions:

• 32-bit general registers:  EAX, EBX, ECX, EDX, EBP, ESP, ESI, EDI

• 16-bit general registers:  AX, BX, CX, DX, SP, BP, SI, DI

• 8-bit general registers:  AL, AH, BL, BH, CL, CH, DL, DH

• Segment registers:  CS, DS, ES, FS, GS, SS

• Control registers:  CR0, CR2, and CR3

• Test registers:  TR3, TR4, TR5, TR6, and TR7

• Debug registers:  DR0, DR1, DR2, DR3, DR6, and DR7

The segment registers can be used only in MOV, PUSH, and POP instructions.  All
general registers can be used in processor arithmetic and logical operations.

See also: Processor registers, Appendix A
processor instructions, Chapter 6

The following examples show instructions that use processor registers as operands:

MOV AX, FS        ; contents of FS moved to AX
ADD ESI, EBX      ; ESI := ESI + EBX
MOV AX, BX        ; contents of BX moved to AX

The floating-point coprocessor has its own set of registers called the floating-point
stack.  The floating-point stack consists of eight elements, each of which can be
referenced as follows:

ST( i )

Where:

i is a digit from 0 through 7.

The top-of-stack element is always ST(0), which can be abbreviated as ST.

See also: Floating-point stack and assembler floating-point instructions,
Chapter 7



162 Chapter 5 Accessing Data

Immediate Operands
An immediate operand is an integer or ordinal constant value.  An immediate
operand is never the destination operand of an assembler instruction.  Immediates
are source operands .

See also: Destination and source operands, Chapter 6

In the following example, 5 is an immediate operand:

MOV AL, 5         ; AL := 5

CMP AX, OFFFFH    ; compare contents of AX to OFFFFH

An immediate may also be a constant expression, such as 15 OR 5 in the following
example:

CMP AL, 15 OR 5   ; 15 OR 5 is a constant expression

OFFSET VAR is an expression that yields an integer, so OFFSET VAR + 1000  is an
immediate operand in the following example:

MOV EAX, OFFSET VAR + 1000  ; EAX := sum of value of the

                            ; OFFSET of VAR and 1000

A segment name represents a logical base address (an ordinal value) so DATASEG is
an immediate operand in the following example:

MOV AX, DATASEG

MOV DS, AX        ; initializes DS to access DATASEG

Memory Operands
A memory operand refers to a particular location in memory.  The general term for
a memory operand is an address expression.  An address expression may be a
simple variable or label name, or it may involve registers, structure fields, and/or
constants.  Each address expression uses one of the addressing methods described
in the next section.



ASM386 Assembly Language Reference Chapter 5 163

Memory Addressing Methods
Logical addresses specified in an assembler program must be mapped to processor
memory addresses so the program can be executed.  The system utilities perform
this mapping after the program is assembled.  The system utilities translate a
program's logical addresses into processor effective addresses.  An effective
address is an offset from a segment base address.

See also: Processor memory organization and effective addresses, Appendix A

Assembler segment structure and memory addressing methods reflect the processor
memory addressing forms.  The processor has two forms of addressing:

• Direct Addressing
The effective address (or offset from the segment base) can be:

— A register

— The value of a specified variable or label

— A constant or the value of a constant expression.

• Indirect Addressing
The effective address (offset) is calculated from the contents of a specified
base or index register (or a combination of both, with an optional
displacement) pointing to a memory location.  There are four forms of indirect
addressing:

— Register indirect addressing

— Based addressing

— Based indexed addressing

— Indexed addressing, which may be scaled (32-bit addressing only)

Direct address offsets can be BYTEs, WORDs, DWORDs or PWORDs.  In the special case
when individual bits in a string are accessed, the offset indicates the specific bit in
a string that is to be affected by the processor bit test instructions.

See also: Bit addressing, in this chapter.

The following sections explain ASM386 direct and indirect addressing forms in
more detail.



164 Chapter 5 Accessing Data

Direct Memory Addressing
For direct memory addressing, the instruction operand is specified by a variable or
label name.  The variable or label refers to a particular location in memory.  The
contents of the memory location are used as the operand.  For example:

MOV EAX, COUNT    ; the dword value at memory location
                  ; COUNT is moved into EAX

Indirect Memory Addressing
Figure 5-1 shows how an indirect address offset is calculated for each register
addressing form explained after the figure.

Figure 5-1.  Effective Address Calculation

W-3421

CS
SS
DS
ES
FS
GS

32-bit Addressing

EAX
ECX
EDX
EBX
ESP
EBP
ESI
EDI

+

Segment + (Index * Scale)

EAX
ECX
EDX
EBX
- - -
EBP
ESI
EDI

+

+

1

2

4

8

*

Base + Displacement

No Displacement
8-bit Displacement
16-bit Displacement

+

CS
SS
DS
ES
FS
GS

16-bit Addressing

BX
BP

+

Segment + Index

SI
DI

+

+Base + Displacement

No Displacement
8-bit Displacement
16-bit Displacement

+



ASM386 Assembly Language Reference Chapter 5 165

The segment override operator may be used in some cases to override the processor
defaults for segment registers listed in the first column of Figure 5-1, except that
segment overrides cannot be specified for the default registers in the following
cases:

• ES as the destination of a string operation

• SS for stack operations

• CS for instruction fetches

See also: Appendix A for a summary of the processor default segment
selection rules

A register expression uses a base and/or an index register listed in the second and
third columns of Figure 5-1.  The assembler register addressing forms are:

[ base-reg ] or [ index-reg  * scale ]
[ base-reg  + index-reg  * scale ]
[ base-reg  + disp ] or [ index-reg  * scale  + disp ]
[ base-reg  + index-reg  * scale  + disp ]

Where:

base-reg is any 32-bit general register (EAX, ECX, EDX, EBX, ESP, EBP,
ESI, EDI) for 32-bit addressing, and is BX or BP for 16-bit
addressing.

index-reg is any 32-bit general register except ESP for 32-bit addressing, and is
SI or DI for 16-bit addressing.

scale is (an optional) constant or constant expression that evaluates to 1-, 2-,
4-, or 8- for 32-bit addressing.  It is invalid for 16-bit addressing.

disp is an 8- or 32-bit displacement for 32-bit addressing, and is an 8- or
16-bit displacement for 16-bit addressing.

Indirect memory addresses can be formed from different combinations of a base
address, an index that may be scaled for 32-bit addressing, and a displacement from
the base.  Each possible combination is one of the indirect memory addressing
forms shown in Figure 5-1.

For all forms, the notation of a set of brackets ([] ) enclosing a register name
indicates that the register contents point to a memory location that will supply the
value to be used as an operand.

The following sections discuss the four forms of indirect addressing and bit
addressing.



166 Chapter 5 Accessing Data

Register Indirect Addressing

For register indirect addressing, the offset of the memory location is contained in a
base or index register.  To address the location:

1. Load the offset into the register, and

2. Use the register name in brackets as the instruction operand.

To indirectly address a variable in a USE16 segment, code something like the
following example:

MOV BX, OFFSET AVAR  ; moves offset  of AVAR into BX
MOV AX, [BX]         ; AX now contains contents of AVAR

Based Addressing

The based address form is similar to register indirect form except that a
displacement is added to the contents of the register.  The displacement can be an
8- or 32-bit number for 32-bit addressing and an 8- or 16-bit number for 16-bit
addressing.

In the based address form, the base register contains the offset of a location in
memory, called the base.  The displacement is used to access another location
relative to that base.  For example,

MOV EBX, OFFSET DATASTRUC   ; EBX: = base of DATASTRUC
MOV EBX, [EBX + 4]   ; EBX: = dword located at fourth
                     ; byte from DATASTRUC

For 32-bit addressing instructions, any 32-bit general register can be used as the
base register.  For 16-bit addressing instructions, the BX or BP register can be used
as the base register.



ASM386 Assembly Language Reference Chapter 5 167

Based Indexed Addressing

Based indexed addressing uses the contents of a base register, the contents of an
index register, and an optional displacement.  In this addressing form, the base
register points to the base of a data structure and the index register is an index into
that structure.  For example:

     XOR EAX,EAX            ; clear EAX
     MOV EBX, OFFSET ARRAYSTRUC
                            ; load array's base address
     MOV ECX, LENGTH ARRAYSTRUC
     MOV ESI, 0             ; set index to 0
ALAB:ADD EAX, [EBX + ESI]   ; get element
     ADD ESI, 4             ; increment index
     LOOP ALAB              ; repeat sequence

For 32-bit addressing, any 32-bit general register can be used as a base register, and
any 32-bit general register except ESP can be used as an index register.  A scaling
factor may multiply the contents of the index register, as explained in the next
section.

If no scaling factor is used, the first register specified is assumed to be the base
register, and the second register is assumed to be the index register.

For 16-bit addressing, only registers BX and BP can be used as base registers and
only SI and DI can be used as index registers; the base and index address may be
specified in any order.

Indexed Addressing

Indexed addressing uses an index register and a displacement.  In this case, the
contents of the register specify a byte displacement from the offset of the base.  For
example:

     MOV SI, 0            ; set indices
     MOV DI, 0            ; SI, DI := 0
     MOV CX, LENGTH SOURCE; moves count of SOURCE
                          ; data units into CX
ALAB:MOV AX, SOURCE [SI]  ; indexed address
     MOV DEST [DI], AX    ; indexed address
     ADD SI, 2            ; point to next word in SOURCE
     ADD DI, 2            ; point to next word in DEST
     LOOP ALAB            ; jump back to ALAB



168 Chapter 5 Accessing Data

For 32-bit addressing, any 32-bit general register except ESP can be used as an
index register.  The assembler makes certain assumptions about registers for
instructions using 32-bit addressing:

• If there is only one 32-bit register used in an indirect address, it is assumed to
be a base register unless it has a scale factor.

• If the 32-bit register is scaled, it is assumed to be an index register even if it is
the only 32-bit register in the indirect address.

• If there are two 32-bit registers in an indirect address, the first one (specified
on the left) is assumed to be the base and the second is assumed to be the index
register, unless one register is scaled.

For 16-bit addressing instructions, only registers SI and DI can be used as index
registers.

Scaling

The scaling factor is used to multiply the value pointed to by the 32-bit index
register by 1, 2, 4, or 8.  The syntax for specifying a scaled index register is:

[ register  * factor ]

Where:

register is EAX, EBX, ECX, EDX, EBP, EDI, or ESI.

factor is a constant expression that evaluates to 1, 2, 4, or 8.

For example:

MOV EAX, [EDX*4]

uses a scaled indexed address, with the index (EDX) scaled by a factor of 4.



ASM386 Assembly Language Reference Chapter 5 169

Default Segment Registers and Anonymous References

Anonymous references such as:

[BX]
[EBP]
WORD PTR [DI]
[EBX].FIELDNAME
and BYTE PTR [BP]

do not specify a variable name from which a segment can be determined.  Note that
the structure field name in [EBX].FIELDNAME  has type and offset attributes, but it
has no segment attribute.

Unless you explicitly code a segment override operator before an instruction,
segment registers for anonymous references are determined by the processor
default segment register selection rules.

DS is the default segment register for all memory references except when BP, EBP,
or ESP is used as the base register.  When this occurs, SS is the default segment
register.

However, you cannot override ES as the destination segment register for string
operations.  The processor string instructions always use ES as a segment register
for operands pointed to by (E)DI, and DS for operands pointed to by (E)SI.  Only
DS can be overridden with the segment override operator in string operations.

Take care that the correct segment is addressed when an anonymous offset is
specified.  Unless you code a segment override, the processor default segment will
be addressed, and the anonymous offset applied to the default segment.

For example, if a program's variables all reside in segment SEG1, as specified by

SEG1 SEGMENT RW
 VAR DW 500 DUP(0)    ; 500 words filled with 0's
SEG1 ENDS

and if the ASSUME directive in the code segment is as follows:

ASSUME DS:SEG1

then all references to named variables in segment SEG1 assemble correctly.

If BP is selected as a base register to access elements of VAR, as follows:

MOV BP, OFFSET VAR
MOV AX, [BP]

the SS segment register is accessed at run time instead of DS (no assembly-time
error occurs).

To override this default segment register choice, a segment prefix must be used, as
follows:

MOV BP, OFFSET VAR
MOV AX, DS:[BP]       ; segment override operator
                      ; indicates DS register



170 Chapter 5 Accessing Data

Bit Addressing
The BT (bit test), BTS (bit test and set), BTR (bit test and reset), and BTC (bit test
and complement) instructions operate on bit strings.  These processor instructions
make it possible to manipulate individual bits.

A bit string may be stored in a general register or in memory.  The following is the
general syntax for addressing a bit within a bit string:

base , offset

Where:

base can be specified using any of the previously mentioned addressing
modes described in Memory Addressing Methods.

offset must be in the range 0 to 31 for a general register; it can range from -2
to +2 gigabits for a memory address.

The offset specified for a general register addresses a bit within the register.  The
number specified for offset is taken MOD the size of the base (register).  (See the
following examples).

All of the bit manipulation instructions load the carry flag with the value of the
selected bit.  BTS then sets the bit to 1, BTR resets the bit to 0, and BTC
complements the bit.

BT EAX, 12          ; test bit 12 in register EAX
BTC MEM, 1111B      ; complement bit 15 in word-length
                    ; memory location MEM
BTR AX, 17          ; set bit 1 in AX to 0
BTS BYTE1, 6        ; set bit 6 in byte memory
                    ; location BYTE1 to 1

See also: BT, BTS, BTR, and BTC instructions, Chapter 6.

■■  ■■  ■■



ASM386 Assembly Language Reference Chapter 6 171

Processor Instructions 6
This chapter has three major sections:

• An overview of the processor instruction set

• A discussion of instruction statements:  their syntax, attributes, and encoding
format

• An explanation of the notational conventions used in this chapter, followed by
a detailed reference for each processor instruction.

See also: Floating-point coprocessor instructions, Chapter 7

Overview of the Processor Instruction Set
This section groups the processor instructions according to their general functions.
It has three major subsections:

• Data Transfer Instructions

• Control Instructions

• Systems Programming Instructions

Some processor instructions are listed more than once in these sections.

See also: 80386 Programmer's Reference Manual for more information about
the following topics:

• Processor application programming

• Processor system programming:

— System architecture

— Memory management, protection, multitasking, and input/output

— Exceptions, interrupts, and debugging

— Processor initialization, coprocessing, and mulitprocessing

— Processor operating modes, mixing 16-bit and 32-bit code, and porting 286
or 8086 code to the processor



172 Chapter 6 Processor Instructions

Data Transfer Instructions
This section classifies the processor instructions according to the following criteria:

• Does the instruction assign values?  See Tables 6-1 to 6-4.

• Does the instruction adjust data values?  See Tables 6-5 and 6-6.

• Does the instruction make stack transfers?  See Table 6-7.

• Does the instruction yield flag values that can be tested by conditional
instructions?  See Table 6-8.

• Does the instruction test specific flag values to determine its execution or
results?  See Table 6-9.

Instructions for application programming are listed first in these tables; those for
system-only programming, if any, are listed last.  Some processor instructions
satisfy more than one criterion.  These instructions are listed more than once in the
following subsections.

Instructions That Assign Data Values

Most processor instructions assign a value to a location.  Tables 6-1 to 6-4
summarize the processor instructions that assign data values:

Table 6-1 lists processor instructions that make external input/output
assignments.

Table 6-2 lists processor instructions that make internal load and store
assignments.

Table 6-3 lists processor instructions that make uncalculated value assignments.

Table 6-4 lists processor instructions that make calculated value assignments.

Table 6-1.  External I/O Instructions

Processor Instruction Instruction Description

IN Input from port

OUT Output to port

INS Input string from port

OUTS Output string to port



ASM386 Assembly Language Reference Chapter 6 173

Table 6-2.  Internal Load and Store Instructions

Processor Instruction Instruction Description

LODS Load string operand

STOS Store string operand

LAHF Load flags into AH register

SAHF Store AH into flags

LEA Load effective address offset

LDS Load full pointer into DS:register

LES Load full pointer into ES:register

LFS Load full pointer into FS:register

LGS Load full pointer into GS:register

LSS Load full pointer into SS:register

LSL Load segment limit

LAR Load access rights (AR) byte

LGDT Load global descriptor table (GDT) register

LGDTW Load GDTR using 16-bit operand

LGDTD Load GDTR using 32-bit operand

SGDT Store GDT register

SGDTW Store GDTR using 16-bit operand

SGDTD Store GDTR using 32-bit operand

LIDT Load interrupt descriptor table (IDT) register

LIDTW Load IDTR using 16-bit operand

LIDTD Load IDTR using 32-bit operand
continued



174 Chapter 6 Processor Instructions

Table 6-2.  Internal Load and Store Instructions (continued)

Processor Instruction Instruction Description

SIDT Store IDT register

SIDTW Store IDTR using 16-bit operand

SIDTD Store IDTR using 32-bit operand

LLDT Load local descriptor table (LDT) register

SLDT Store LDT register

LTR Load task register

STR Store task register

LMSW Load machine status word (MSW)

SMSW Store MSW

Table 6-3.  Instructions That Make Uncalculated Value Assignments

Processor Instruction Instruction Description

MOV Move data

MOVSX Move sign-extended data

MOVZX Move zero-extended data

STC Set carry flag (CF)

CLC Clear carry flag

MOVS Move string to string

STD Set direction flag

CLD Clear direction flag

XCHG Exchange register/memory with register

MOV Move to/from control, debug, or test registers

STI Set interrupt flag

CLI Clear interrupt flag

CLTS Clear TS (task switch) flag in CR0



ASM386 Assembly Language Reference Chapter 6 175

Table 6-4.  Instructions That Make Calculated Value Assignments

Processor Instruction Instruction Description

ADD Add
ADC Add with carry
XADD Exchange and add (not available on Intel386 or 376

processors)
SUB Subtract
SBB Subtract with borrow
MUL Unsigned multiplication
IMUL Signed multiplication
DIV Unsigned divide
IDIV Signed divide
INC Increment by 1
DEC Decrement by 1
NEG Two's complement negation
NOT One's complement negation (logical NOT)
AND Logical AND
OR Logical inclusive OR
XOR Logical exclusive XOR
TEST Logical compare
CMP Compare two operands
CMPXCHG Compare and exchange (not available on Intel386 or

376 processors)
CMPS Compare two strings
SCAS Compare string data
CMC Complement carry flag (CF)
BT Bit test
BTS Bit test and set
BTR Bit test and reset
BTC Bit test and complement
BSF Bit scan forward (LSB to MSB)
BSR Bit scan reverse (MSB to LSB)
NOP No operation (advances (E)IP)
SETcc Set byte on condition
LOOPcond Loop control with (E)CX counter (decrements (E)CX)
Jcc Conditional jumps (add displacement to (E)IP)
LEA Load effective address
VERR Verify segment for reading
VERW Verify segment for writing



176 Chapter 6 Processor Instructions

Instructions That Adjust Data

The instructions in Tables 6-5 and 6-6 adjust data values, either by converting data
from one type or format to another or by shifting or rotating data values.

Table 6-5.  Data Conversion Instructions

Processor Instruction Instruction Description

MOVSX Move sign-extended data

MOVZX Move zero-extended data

CBW Convert byte to word

CWD Convert word to dword

CWDE Convert sign-extended word to dword

CDQ Convert sign-extended dword to qword

AAA ASCII adjust AL after addition

AAS ASCII adjust AL after subtraction

DAA Decimal adjust AL after addition

DAS Decimal adjust AL after subtraction

AAM ASCII adjust AX after multiplication

AAD ASCII adjust AX before division

ARPL Adjust RPL field of selector

Table 6-6.  Shift and Rotate Instructions

Processor Instruction Instruction Description

SHL Shift logical left

SHR Shift logical right

SAL Shift arithmetic left

SAR Shift arithmetic right

SHLD Shift double precision arithmetic left

SHRD Shift double precision arithmetic right

ROL Rotate left

ROR Rotate right

RCL Rotate through carry flag left

RCR Rotate through carry flag right

BSWAP Byte swap (not available on Intel386 or 376 processors)



ASM386 Assembly Language Reference Chapter 6 177

Instructions That Make Stack Transfers

These instructions transfer data values to or from the stack.  They also decrement
or increment the 32- or 16-bit stack pointer (E)SP .  Table 6-7 lists processor
instructions that make stack transfers.

See also: Floating-point stack, Chapter 7

Table 6-7.  Stack Transfer Instructions

Processor Instruction Instruction Description

PUSH Push operand onto stack

POP Pop dword or word from stack

PUSHF Push FLAGS register (16-bits) onto stack

PUSHFD Push EFLAGS (32-bits) register onto stack

POPF Pop stack into FLAGS

POPFD Pop stack into EFLAGS

PUSHA Push all general word registers onto stack

PUSHAD Push all general dword registers onto stack

POPA Pop stack into word registers (discard SP value)

POPAD Pop stack into dword registers (discard ESP value)

ENTER Make stack frame for procedure parameters

LEAVE High level procedure exit



178 Chapter 6 Processor Instructions

Instructions That Yield Definitive Flag Values

Processor instructions that assign an either/or flag value also create a value that can
be tested for conditional loops, jumps, or other assignments.  For the processor
comparison and bit test instructions, flag value assignments are the primary
execution results.  For other processor instructions, either/or flag value assignments
are secondary execution results.  Table 6-8 lists processor instructions that make
either/or assignments to the zero (Z), sign (S), carry (C), auxiliary carry (A),
overflow (O), and/or parity (P) flag(s).

See also: Processor flags, Appendix A

Table 6-8.  Processor Instructions That Yield Definitive Flag Values

Instruction Assigns Either/Or
Value to Flags

Instruction Description

CMP Z S C A O P Compare two operands (non-
destructive SUB)

CMPS Z S C A O P Compare two strings

CMPXCHG Z S C A O P Compare and exchange (not available
on Intel386 or 376 processors)

SCAS Z S C A O P Compare string data

BT C Bit test

BTS C Bit test and set

BTR C Bit test and reset

BTC C Bit test and complement

BSF Z Bit scan forward (LSB to MSB)

BSR Z Bit scan reverse (MSB to LSB)

ADD Z S C A O P Add

ADC Z S C A O P Add with carry

XADD Z S C A O P Exchange and add (not available on
Intel386 or 376 processors)

SUB Z S C A O P Subtract

SBB Z S C A O P Subtract with borrow

MUL C O Multiply

IMUL C O Signed multiplication

INC Z S A O P Increment by 1

DEC Z S A O P Decrement by 1

NEG Z S C O P Two's complement negation
continued



ASM386 Assembly Language Reference Chapter 6 179

Table 6-8.  Processor Instructions That Yield Definitive Flag Values (continued)

Instruction
Assigns Either/Or
Value to Flags

Instruction
Description

AND Z S P Logical AND

OR Z S P Logical (inclusive) OR

XOR Z S P Logical (exclusive) XOR

TEST Z S P Logical compare (non-destructive AND)

AAA C A ASCII adjust AL after addition

AAS C A ASCII adjust AL after subtraction

AAM Z S P ASCII adjust AX after multiplication

AAD Z S P ASCII adjust AX before division

DAA Z S C A P Decimal adjust AL after addition

DAS Z S C A P Decimal adjust AL after subtraction

ROL C Rotate left

ROR C Rotate right

RCL C Rotate through carry flag left

RCR C Rotate through carry flag right

SHL Z S C P Shift logical left

SAL Z S C P Shift arithmetic left

SAR Z S C P Shift arithmetic right

SHR Z S C P Shift logical right

SHLD Z S C O P Shift double precision arithmetic left

SHRD Z S C O P Shift double precision arithmetic right

ARPL Z Adjust RPL field of selector

LAR Z Load AR (access rights) byte

LSL Z Load segment limit

VERR Z Verify segment for reading

VERW Z Verify segment for writing

Conditional Instructions That Test Flag Values

Three processor instructions depend on flag values for their execution results.  The
conditional loops and jumps are primarily control transfer instructions; SETcc is
not.



180 Chapter 6 Processor Instructions

Table 6-9 lists these instructions and indicates whether each tests the zero (Z), sign
(S), carry (C), auxiliary carry (A), overflow (O), and/or parity (P) flag(s).

Table 6-9.  Conditional Instructions That Test Flag Values

Instruction Tests Flag Values Description

LOOPcond Z Loop control with (E)CX counter

SETcc Z S C O P Set byte on condition

Jcc Z S C O P Jump if condition is met

Control Instructions
Control instructions either transfer control between code sections or exert control
over the processor.  Tables 6-10 and 6-11 list these processor instructions.

Table 6-10.  Control Transfer Instructions

Processor Instruction Instruction Description

LOOP Loop until count in (E)CX = 0

LOOPcond Loop until count in (E)CX = 0 AND zeroflag = condition

JMP Jump to location

Jcc Jump if flag value(s) = condition

CALL Call procedure

RET Return from procedure

INT Call to interrupt procedure

INTO Call to interrupt procedure on overflow

IRET/IRETD Return from interrupt procedure

Table 6-11.  Processor Control Instructions

Processor Instruction Instruction Description

NOP No operation (uses clocks)

HLT Halt

WAIT Wait until BUSY# pin is inactive(high)



ASM386 Assembly Language Reference Chapter 6 181

System Instructions
This section lists processor system instructions.  System instructions handle the
following general functions:

1. Verification of pointer parameters:

ARPL Adjust RPL (requesting privilege level) of selector
LAR Load AR (access rights) byte
LSL Load segment limit
VERR Verify segment for reading
VERW Verify segment for writing

2. Accessing/storing descriptor tables:

LGDT Load GDT (global descriptor table) register
LGDTW Load GDT register using 16-bit operand
LGDTD Load GDT register using 32-bit operand
SGDT Store GDT register
SGDTW Store GDT register using 16-bit operand
SGDTD Store GDT register using 32-bit operand
LLDT Load LDT (local descriptor table) register
SLDT Store LDT register
LIDT Load IDT (interrupt descriptor table) register
LIDTW Load IDT register using 16-bit operand
LIDTD Load IDT register using 32-bit operand
SIDT Store IDT register
SIDTW Store IDT register using 16-bit operand
SIDTD Store IDT register using 32-bit operand

3. Input and Output:

IN Input from port
OUT Output to port
INS Input string from port
OUTS Output string to port

4. Interrupt control:

LIDT Load IDT (interrupt descriptor table) register
LIDTW Load IDT register using 16-bit operand
LIDTD Load IDT register using 32-bit operand
SIDT Store IDT register
SIDTW Store IDT register using 16-bit operand
SIDTD Store IDT register using 32-bit operand
CLI Clear IF (interrupt enable) flag in (E)FLAGS register
STI Set IF flag



182 Chapter 6 Processor Instructions

5. Multitasking:

LTR Load task register
STR Store task register
CLTS Clear TS (task switch) flag in CR0

6. Coprocessing and Multiprocessing:

ESC Escape instructions (floating-point coprocessor instructions)
CLTS Clear TS (task switch) flag in CR0
WAIT Wait until coprocessor is not busy
LOCK Assert bus LOCK# signal

See also: Floating-point coprocessor instructions, Chapter 7

7. Debugging and/or TLB (translation lookaside buffer) testing in a paged
memory system:

MOV Transfer data to/from debug and/or test registers

8. System control:

MOV Transfer data to/from control registers
LMSW Load MSW (machine status word) into CR0
SMSW Store MSW
HLT Halt processor

9. Cache control (not available on Intel386 or 376 processors):

INVLPG Invalidate paging cache entry
INVD Invalidate data cache
WBINVD Write back and invalidate data cache

Instruction Statements
Instruction statements form the core of an assembler program.  These statements
define the actual program that the processor (and optional floating-point
coprocessor) execute.

Instruction Statement Syntax
Each assembler instruction has the following syntax:

[ label :][ prefix ] mnemonic [ argument [,...]]

Where:

label is a unique identifier that defines a label.  Labels are optional.



ASM386 Assembly Language Reference Chapter 6 183

prefix is a processor instruction prefix (LOCK or REP).  An explicit prefix is
optional.

mnemonic is a processor or floating-point coprocessor instruction or a
programmer-defined codemacro.

argument is an operand.  Some processor and floating-point coprocessor
instructions have no operand.  For these instructions, operand(s) are
implicit.  Other processor instructions require one, two, or three
explicit operands.  Floating-point coprocessor instructions have, at
most, two explicit operands.

See also: Labels, Chapter 4
processor instructions, in this chapter
defining codemacros, Chapter 9

For both the processor and the floating-point coprocessor, the general form of an
instruction with operands is one of the following:

mnemonic src
where the execution result may be stored either in the source (src )
itself or in an implicit location.

mnemonic dest,src
where the execution result is stored either in the destination (dest )
operand or in an implicit location; the instruction's operation does not
change the source operand.

The instruction reference pages at the end of this chapter list the valid and/or
required operands for each processor instruction (IMUL, SHLD, and SHRD are the
only processor instructions that require three operands).  The instruction reference
pages list the valid and/or required operands for each floating-point instruction.

See also: Instruction reference pages, Chapter 7

Instruction Attributes
In the context of an assembler program, every instruction has an address size
attribute; it may also have an operand size attribute and a stack size attribute.  The
assembler determines these attributes.



184 Chapter 6 Processor Instructions

Address Size Attribute

The assembler can calculate either 32- or 16-bit addresses and offsets.

The assembler determines an instruction's address size attribute as follows:

• If the instruction has an operand, the assembler checks the USE attribute of the
segment containing the operand:

— For a USE32 segment, the instruction's address size attribute is 32-bits.

— For a USE16 segment, it is 16-bits.

• If the instruction has no operand and no predefined address size attribute, the
assembler checks the USE attribute of the current code segment to determine
the address size attribute.

• If the instruction contains an anonymous reference the assembler checks the
size of the register used in the reference.  For example,

PUSH DWORD PTR [EAX]

implies the USE32 attribute.  Because EAX is a 32-bit register, this PUSH
instruction's address size attribute is 32-bits.

See also: USE16 and USE32 segments, Chapter 2

Operand Size Attribute

When determining the operand size attribute for most instructions, the assembler
considers the type of the instruction operand(s), or, for no-operand instructions, the
type of the operand implied by the instruction's mnemonic.  An instruction that
accesses dwords (32-bits) or words (16-bits) has an operand size attribute of 32- or
16-bits, respectively.  An instruction that accesses a byte has the operand size
attribute of the current code segment.

The assembler will flag an inconsistency in the use of operands as an error.  For
example,

ADD EAX,WORD_VAR

will be flagged as an error because EAX (32-bit register operand) cannot be used
with WORD_VAR (16-bits).



ASM386 Assembly Language Reference Chapter 6 185

Stack Size Attribute

Instructions that use the stack have a stack size attribute of 32- or 16-bits.  The
assembler determines an instruction's stack size attribute according to the USE
attribute of the stack segment.  The stack segment USE attribute is either:

• The current default for the module containing the instruction

• Or, the USE attribute of the stack segment definition

Instructions with a stack size attribute of 32 use the 32-bit ESP register as the stack
pointer; those with a stack size attribute of 16 use the 16-bit SP register as the stack
pointer.

Instruction Encoding Format
All instruction encodings are subsets of the general instruction opcode format
shown in Figure 6-1.

Figure 6-1.  Instruction Encoding Format

Instruction encodings consist of:

• Optional instruction prefixes

• One or two primary opcode bytes

• Possibly an address specifier consisting of:

— The ModRM byte and the SIB  (Scale Index Base) byte

— A displacement, if required

— An immediate data field, if required

Number of Bytes

Instruction
Prefix

Address-size
Prefix

Operand-size
Prefix

Segment
Override

0 or 1 0 or 1 0 or 1 0 or 1

W-3422

Number of Bytes

ModRM SIB Displacement Immediate

1 or 2 0 or 1 0, 1, 2 or 4

Opcode

0 or 1 0, 1, 2 or 4



186 Chapter 6 Processor Instructions

Encoding fields vary depending on the class of operation.  Smaller encoding fields
can be defined within the primary opcode(s).  These fields define the direction of
the operation, the size of the displacements, the register encoding, or the sign
extension.

Most instructions that refer to an operand in memory have an addressing form byte
following the primary opcode byte(s).  (The exceptions are the IRET/IRETD ,
INT/INTO , and all PUSH and POP instructions.) This byte, called the ModRM byte,
specifies the address form to be used.  Certain encodings of the ModRM byte
indicate a second addressing byte, the SIB  (Scale Index Base) byte; this follows the
ModRM byte and is required to fully specify the addressing form (see Figure 6-2).

Addressing forms can include a displacement immediately following either the
ModRM or SIB  byte.  If a displacement is present, it can be 8-, 16-, or 32-bits.

If the instruction specifies an immediate operand, the immediate operand follows
any displacement bytes; it is always the last field of the instruction.

Instruction Prefix Codes

Instruction prefix codes occur in three cases:

1. A programmer-specified REP or LOCK prefix precedes the instruction.  The
assembler generates one of the following prefixes:

F3H REP prefix (used only with string instructions)
F3H REPE/REPZ prefix (used only with string instructions)
F2H REPNE/REPNZ prefix (used only with string instructions)
F0H LOCK prefix

2. A segment override is specified for the instruction.  The assembler
automatically generates one of the following prefixes:

2EH CS segment override prefix
36H SS segment override prefix
3EH DS segment override prefix
26H ES segment override prefix
64H FS segment override prefix
65H GS segment override prefix



ASM386 Assembly Language Reference Chapter 6 187

3. An instruction's address and/or operand size requires, at most, a 2-byte prefix.
The assembler automatically generates one or more of the following prefixes:

67H Address size prefix
66H Operand size prefix

See also: LOCK and REP for more information about specifying prefixes with
instructions, in this chapter

Table 6-12 shows when the assembler generates address and operand size prefixes
for an instruction according to the relationships among its USE, address size, and
operand size attributes.

Table 6-12.  Generation of Address and Operand Size Prefixes

Prefixes Generated
by Assembler Attributes

Address
67H

Operand
66H

Address
Size

Operand
Size

USE of Current
Code Segment

no no 16 16 USE16

no yes 16 32 USE16

yes no 32 16 USE16

yes yes 32 32 USE16

no no 32 32 USE32

no yes 32 16 USE32

yes no 16 32 USE32

yes yes 16 16 USE32



188 Chapter 6 Processor Instructions

ModRM and SIB Bytes

The ModRM and SIB  bytes follow the opcode byte(s) in many of the processor
instructions.  They contain the following information:

• Indexing type or register number to be used in the instruction

• Register to be used, or more information to select the instruction

• Base, index, and scale information

Figure 6-2 shows the formats of the ModRM and SIB  bytes.

Figure 6-2.  ModRM and SIB Byte Formats

The ModRM byte contains three fields of information:

mod occupies the 2 most significant bits.  The mod field combines with the
r/m field to form 32 possible values representing 8 general registers
and 24 indexing modes.

reg occupies the next 3-bits following the mod field.  The reg field
specifies either a register number or three more bits of opcode
information.  The meaning of the reg field is determined by the first
(opcode) byte of the instruction.

r/m occupies the 3 least significant bits.  The r/m field can specify a
register as the location of an operand, or it can be combined with the
mod field to form the addressing-mode encoding.

See also: MOV Special Registers instruction for the control, test, and debug
register reg values, in this chapter

W-3423

7 0

R/M

12

Mod Reg/Opcode

56 34

ModRM Byte

7 0

Base

12

SF Index

56 34

SIB (Scale Index Base) Byte



ASM386 Assembly Language Reference Chapter 6 189

32-bit based-indexed and scaled-indexed addressing forms also require the SIB
byte.  The presence of the SIB  byte is indicated by certain encodings of ModRM
bytes.  The SIB  byte then includes the following fields:

sf occupies the 2 most significant bits.  It specifies the scale factor.

index occupies the next 3-bits.  It specifies the register number of the index
register.

base occupies the 3 least significant bits.  It specifies the register number of
the base register.

The following tables illustrate the addressing forms for 16- and 32-bit ModRM bytes
and for 32-bit SIB  bytes:

Table 6-13 shows the 16-bit addressing forms specified by the ModRM byte.

Table 6-14 shows the 32-bit addressing forms specified by the ModRM byte.

Table 6-15 shows the 32-bit addressing forms specified by the SIB  byte.



190 Chapter 6 Processor Instructions

Table 6-13.  16-Bit Addressing Forms with ModRM Byte in Hexadecimal

r8(/r) AL CL DL BL AH CH DH BH
r16(/r) AX CX DX BX SP BP SI DI
r32(/r) EAX ECX EDX EBX ESP EBP ESI EDI
/digit(Opcode) 0 1 2 3 4 5 6 7
REG = 000 001 010 011 100 101 110 111

Effective
Address

ModRM Bits
MOD    R/M ModRM Values in Hexadecimal

[BX + SI] 000 00 08 10 18 20 28 30 38
[BX + DI] 001 01 09 11 19 21 29 31 39
[BP + SI] 010 02 0A 12 1A 22 2A 32 3A
[BP + DI] 00 011 03 0B 13 1B 23 2B 33 3B
[SI] 100 04 0C 14 1C 24 2C 34 3C
[DI] 101 05 0D 15 1D 25 2D 35 3D
disp16 110 06 0E 16 1E 26 2E 36 3E
[BX] 111 07 0F 17 1F 27 2F 37 3F

[BX + SI]+disp8 000 40 48 50 58 60 68 70 78
[BX + DI]+disp8 001 41 49 51 59 61 69 71 79
[BP + SI]+disp8 010 42 4A 52 5A 62 6A 72 7A
[BP + DI]+disp8 01 011 43 4B 53 5B 63 6B 73 7B
[SI]+disp8 100 44 4C 54 5C 64 6C 74 7C
[DI]+disp8 101 45 4D 55 5D 65 6D 75 7D
[BP]+disp8 110 46 4E 56 5E 66 6E 76 7E
[BX]+disp8 111 47 4F 57 5F 67 6F 77 7F

[BX + SI]+disp16 000 80 88 90 98 A0 A8 B0 B8
[BX + DI]+disp16 001 81 89 91 99 A1 A9 B1 B9
[BX + SI]+disp16 010 82 8A 92 9A A2 AA B2 BA
[BX + DI]+disp16 10 011 83 8B 93 9B A3 AB B3 BB
[SI]+disp16 100 84 8C 94 9C A4 AC B4 BC
[DI]+disp16 101 85 8D 95 9D A5 AD B5 BD
[BP]+disp16 110 86 8E 96 9E A6 AE B6 BE
[BX]+disp16 111 87 8F 97 9F A7 AF B7 BF

EAX/AX/AL 000 C0 C8 D0 D8 E0 E8 F0 F8
ECX/CX/CL 001 C1 C9 D1 D9 E1 E9 F1 F9
EDX/DX/DL 010 C2 CA D2 DA E2 EA F2 FA
EBX/BX/BL 11 011 C3 CB D3 DB E3 EB F3 FB
ESP/SP/AH 100 C4 CC D4 DC E4 EC F4 FC
EBP/BP/CH 101 C5 CD D5 DD E5 ED F5 FD
ESI/SI/DH 110 C6 CE D6 DE E6 EE F6 FE
EDI/DI/BH 111 C7 CF D7 DF E7 EF F7 FF

disp8  denotes an 8-bit displacement following the ModRM byte that is sign-extended bits and added to the
index. disp16  denotes a 16-bit displacement following the ModRM byte that is added to the index. The
default segment register is SS for effective addresses containing a BP index; it is DS for other effective
addresses.



ASM386 Assembly Language Reference Chapter 6 191

Table 6-14.  32-Bit Addressing Forms with ModRM Byte in Hexadecimal

r8(/r) AL CL DL BL AH CH DH BH
r16(/r) AX CX DX BX SP BP SI DI
r32(/r) EAX ECX EDX EBX ESP EBP ESI EDI
/digit(Opcode) 0 1 2 3 4 5 6 7
REG = 000 001 010 011 100 101 110 111

Effective
Address

ModRM Bits
MOD      R/M ModRM Values in Hexadecimal

[EAX] 000 00 08 10 18 20 28 30 38
[ECX] 001 01 09 11 19 21 29 31 39
[EDX] 010 02 0A 12 1A 22 2A 32 3A
[EBX] 011 03 0B 13 1B 23 2B 33 3B
[--][--] 00 100 04 0C 14 1C 24 2C 34 3C
disp32 101 05 0D 15 1D 25 2D 35 3D
[ESI] 110 06 0E 16 1E 26 2E 36 3E
[EDI] 111 07 0F 17 1F 27 2F 37 3F

disp8[EAX] 000 40 48 50 58 60 68 70 78
disp8[ECX] 001 41 49 51 59 61 69 71 79
disp8[EDX] 010 42 4A 52 5A 62 6A 72 7A
disp8[EBX] 011 43 4B 53 5B 63 6B 73 7B
disp8[--][--] 01 100 44 4C 54 5C 64 6C 74 7C
disp8[EBP] 101 45 4D 55 5D 65 6D 75 7D
disp8[ESI] 110 46 4E 56 5E 66 6E 76 7E
disp8[EDI] 111 47 4F 57 5F 67 6F 77 7F

disp32[EAX] 000 80 88 90 98 A0 A8 B0 B8
disp32[ECX] 001 81 89 91 99 A1 A9 B1 B9
disp32[EDX] 010 82 8A 92 9A A2 AA B2 BA
disp32[EBX] 011 83 8B 93 9B A3 AB B3 BB
disp32[--][--] 10 100 84 8C 94 9C A4 AC B4 BC
disp32[EBP] 101 85 8D 95 9D A5 AD B5 BD
disp32[ESI] 110 86 8E 96 9E A6 AE B6 BE
disp32[EDI] 111 87 8F 97 9F A7 AF B7 BF

EAX/AX/AL 000 C0 C8 D0 D8 E0 E8 F0 F8
ECX/CX/CL 001 C1 C9 D1 D9 E1 E9 F1 F9
EDX/DX/DL 010 C2 CA D2 DA E2 EA F2 FA
EBX/BX/BL 11 011 C3 CB D3 DB E3 EB F3 FB
ESP/SP/AH 100 C4 CC D4 DC E4 EC F4 FC
EBP/BP/CH 101 C5 CD D5 DD E5 ED F5 FD
ESI/SI/DH 110 C6 CE D6 DE E6 EE F6 FE
EDI/DI/BH 111 C7 CF D7 DF E7 EF F7 FF

[--][--]  means a SIB byte follows the ModRM byte. disp8  denotes an 8-bit displacement following the SIB
byte that is sign-extended to 32 bits and added to the index. disp32  denotes a 32-bit displacement following
the ModRM byte that is added to the index.



192 Chapter 6 Processor Instructions

Table 6-15.  32-Bit Addressing Forms with SIB Byte in Hexadecimal

r32 EAX ECX EDX EBX ESP [*] ESI EDI
Base = 0 1 2 3 4 5 6 7
Base = 000 001 010 011 100 101 110 111

Scaled Index SF Index SIB Values in Hexadecimal

[EAX] 000 00 01 02 03 04 05 06 07
[ECX] 001 08 09 0A 0B 0C 0D 0E 0F
[EDX] 010 10 11 12 13 14 15 16 17
[EBX] 00 011 18 19 1A 1B 1C 1D 1E 1F
none 100 20 21 22 23 24 25 26 27
[EBP] 101 28 29 2A 2B 2C 2D 2E 2F
[ESI] 110 30 31 32 33 34 35 36 37
[EDI] 111 38 39 3A 3B 3C 3D 3E 3F

[EAX*2] 000 40 41 42 43 44 45 46 47
[ECX*2] 001 48 49 4A 4B 4C 4D 4E 4F
[EDX*2] 010 50 51 52 53 54 55 56 57
[EBX*2] 01 011 58 59 5A 5B 5C 5D 5E 5F
none 100 60 61 62 63 64 65 66 67
[EBP*2] 101 68 69 6A 6B 6C 6D 6E 6F
[ESI*2] 110 70 71 72 73 74 75 76 77
[EDI*2] 111 78 79 7A 7B 7C 7D 7E 7F

[EAX*4] 000 80 81 82 83 84 85 86 87
[ECX*4] 001 88 89 8A 8B 8C 8D 8E 8F
[EDX*4] 010 90 91 92 93 94 95 96 97
[EBX*4] 10 011 98 99 9A 9B 9C 9D 9E 9F
none 100 A0 A1 A2 A3 A4 A5 A6 A7
[EBP*4] 101 A8 A9 AA AB AC AD AE AF
[ESI*4] 110 B0 B1 B2 B3 B4 B5 B6 B7
[EDI*4] 111 B8 B9 BA BB BC BD BE BF

[EAX*8] 000 C0 C1 C2 C3 C4 C5 C6 C7
[ECX*8] 001 C8 C9 CA CB CC CD CE CF
[EDX*8] 010 D0 D1 D2 D3 D4 D5 D6 D7
[EBX*8] 11 011 D8 D9 DA DB DC DD DE DF
none 100 E0 E1 E2 E3 E4 E5 E6 E7
[EBP*8] 101 E8 E9 EA EB EC ED EE EF
[ESI*8] 110 F0 F1 F2 F3 F4 F5 F6 F7
[EDI*8] 111 F8 F9 FA FB FC FD FE FF

The [*]  heading in column 5 of the SIB values means a disp32 with no base if MOD is 00, EBP otherwise.
Depending on the value of MOD, the following addressing modes are possible: disp32[index], disp8[EBP]
[index], and disp32[EBP] [index] with MOD values 00, 01, and 10, respectively.



ASM386 Assembly Language Reference Chapter 6 193

Processor Instruction Set Reference
This section first explains how to use the instruction set reference pages and how to
find instructions that are grouped with others.  The reference pages for each
processor instruction are at the end of this section.

How to Read the Instruction Set Reference Pages
For each processor instruction, a table summarizes the opcode, instruction syntax,
clocks, and description of its operation.  Following the instruction table are
reference page sections titled Operation, Discussion, Flags Affected, and
Exceptions by Mode.  The following is an example of an instruction table:

Opcode Instruction Clocks Description

0C ib OR AL,imm8 2 OR immediate byte to AL

0D iw OR AX,imm16 2 OR immediate word to AX

0D id OR EAX,imm32 2 OR immediate dword to EAX

80 /1 ib OR r/m8,imm8 2/7 OR immediate byte to r/m byte

81 /1 iw OR r/m16,imm16 2/7 OR immediate word to r/m word

81 /1 id OR r/m32,imm32 2/7 OR immediate dword to r/m dword

08 /r OR r/m8,r8 2/6 OR byte register to r/m byte

09 /r OR r/m16,r16 2/6 OR word register to r/m word

09 /r OR r/m32,r32 2/6 OR dword register to r/m dword

0A /r OR r8,r/m8 2/7 OR r/m byte to byte register

0B /r OR r16,r/m16 2/7 OR r/m word to word register

0B /r OR r32,r/m32 2/7 OR r/m dword to dword register

The following subsections explain the notational conventions and abbreviations
used in the instruction table columns and in the reference page sections.



194 Chapter 6 Processor Instructions

Opcode Column

The opcode column gives the complete object code produced for each form of the
instruction.  When possible, codes are expressed as hexadecimal bytes in the same
order in which they appear in memory.  Definitions of entries other than
hexadecimal bytes are as follows:

/digit is a digit from 0 to 7; it indicates that the ModRM byte of the
instruction uses only the r/m  (register or memory) operand.  The reg
field of the ModRM byte contains the digit (0..7) that provides an
extension to the instruction's opcode.

/r indicates that the ModRM byte of the instruction contains both a
register operand and an r/m  operand.

cb , cw, cd , cp
is a 1-byte (cb ), 2-byte (cw), 4-byte (cd ), or 6-byte (cp ) value
following the opcode that is used to specify a code offset and possibly
a new value for the code segment register.

ib , iw , id is a 1-byte (ib ), 2-byte (iw ), or 4-byte (id ) immediate operand to the
instruction that follows the opcode, ModRM, and SIB  bytes.  The
opcode determines if the operand is a signed value.  All words (iw )
and dwords (id ) are given with the low-order byte first.

+rb , +rw , +rd
is a register code from 0 to 7 that is added to the hexadecimal byte at
the left of the plus sign to form a single opcode byte.  The register
codes are:

                      rb             rw             rd
                     AL=0          AX=0          EAX=0
                     CL=1          CX=1          ECX=1
                     DL=2          DX=2          EDX=2
                     BL=3          BX=3          EBX=3
                     AH=4          SP=4          ESP=4
                     CH=5          BP=5          EBP=5
                     DH=6          SI=6          ESI=6
                     BH=7          DI=7          EDI=7



ASM386 Assembly Language Reference Chapter 6 195

Instruction Column

The instruction column gives the syntax of the instruction statement as it would
appear in a assembler program.

The following is a list of the symbols used to represent operands in the instruction
statements:

r8 is one of the byte registers AL, CL, DL, BL, AH, DH, CH, or BH.
For example, MOV r8,imm8  can be coded

MOV DH,3

r16 is one of the word registers AX, CX, DX, BX, SP, BP, SI, or DI.  For
example, INC r16  can be coded

INC BX

r32 is one of the dword registers EAX, EBX, ECX, EDX, ESP, EBP, ESI,
or EDI.  For example, DEC r32  can be coded

DEC EDX

r/m8 is a 1-byte operand that is either the contents of a byte register (AL,
BL, CL, DL, AH, BH, CH, DH), or a byte from memory.  For
example, MOV r8,r/m8 could be coded

MOV DL,AH

meaning set DL to the value in AH. It could also be coded

MOV DL,POWER_FLAG

meaning set DL to the memory byte variable POWER_FLAG, where
POWER_FLAG was declared at the top of the program.

r/m16 is a word register or memory operand used for instructions whose
operand size attribute is 16-bits.  The word registers are AX, BX, CX,
DX, SP, BP, SI, DI.  The contents of memory are found at the address
provided by the effective address computation.  As an example, ADD
r/m16,imm8  could be coded

ADD SP,10

meaning add 10 to the contents of the SP register.  It could also be
coded

ADD [BP].WORD_ELEM,10

meaning add 10 to the memory word WORD_ELEM, which is part of a
structure addressed by the BP register.



196 Chapter 6 Processor Instructions

r/m32 is a dword register or memory operand used for instructions whose
operand size attribute is 32-bits.  The dword registers are EAX, EBX,
ECX, EDX, ESP, EBP, ESI, EDI.  The contents of memory are found
at the address provided by the effective address computation.

m8 is a memory byte that can apply to all addressing forms.  m8 can be a
simple memory variable of type BYTE, or it can be indexed.  For
example, LODS m8 can be coded

LODS BSTRING

where BSTRING is a byte array addressed by the (E)SI register.

m16 is a memory word that can apply to all addressing forms.  m16 can be
a simple variable of type WORD, or it can be indexed.  For example,
MOV DS,m16 can be coded

MOV DS,DATA_SELECTOR

where DATA_SELECTOR is a memory variable declared with the
following statement

DATA_SELECTOR DW DATA

MOV DS,m16 can also be coded

MOV DS,SELECTOR_ARRAY[DI]

where DI is a run-time index into the fixed word array
SELECTOR_ARRAY.

m32 is a memory dword that can apply to all addressing forms.

m is a memory operand whose type is not checked by the assembler.

See also: BTS and other bit instructions for an explanation of m
usage, in this chapter

imm8 is an immediate byte value.  imm8 is a signed number in the range -
128..127 , a symbol equated to such a number, or an expression
evaluating to such a number.  For example, ADD AL,imm8 can be
coded

ADD AL,37

meaning add the number 37 to the AL register.  IN AX ,imm8 can be
coded

IN AX,SERIAL_PORT



ASM386 Assembly Language Reference Chapter 6 197

if the following statement appears elsewhere within the program

SERIAL_PORT EQU 40H

MOV r8,imm8  can be coded

MOV DL,LENGTH PTR_TABLE + 1

if the following statement appears elsewhere within the program

PTR_TABLE DW 30 DUP (?)

MOV DL,LENGTH PTR_TABLE + 1  loads 31 into the DL register.
Negative values between -128 and -255 wrap around to positive
numbers because the largest negative number that can be represented
with 8-bits is -128.  Numbers between 127 and 255 can be used for the
representation of unsigned numbers.  When instructions combine an
imm8 with a word or dword operand, the immediate value is sign-
extended to form a word or dword.

imm16 is an immediate word value used for instructions whose operand size
attribute is 16-bits.  This is a number in the range -32763..32762, a
symbol equated to such a number, or an expression evaluating to such
a number.  For example, ADD AX, imm16 can be coded

ADD AX,1000

meaning add the number 1000 to the AX register.  MOV r16,imm16
can be coded

MOV DI,OFFSET COUNTER

where COUNTER is a label.  The instruction would move COUNTER's
offset within its segment (not the contents of COUNTER) into the DI
register.

imm32 is an immediate dword value used for instructions whose operand size
attribute is 32-bits.  This is a number in the range -
2147483648..2147483647 .

rel8 is a label in the range from 128 bytes before the end of the instruction
to 127 bytes after the end of the instruction.  For example, JMP rel8
can be coded

JMP PROCESS_NEXT

if the label PROCESS_NEXT: appears nearby in the same code
segment.  LOOP rel8  can be coded

FLOOP XY_LOOP

if XY_LOOP: appears several lines above.



198 Chapter 6 Processor Instructions

rel16, rel32
is a label within the same code segment as the instruction.  rel16
applies to instructions with an operand size attribute of 16-bits; rel32
applies to instructions with an operand size attribute of 32-bits.  The
label cannot be a FAR label.  For example, JMP rel16  can be coded

JMP ABORTX

if the destination label is declared (possibly several pages away) in the
same code segment as the jump.  CALL rel16  can be coded

CALL GET_CONSOLE

if the following statement appears elsewhere in the program

EXTRN GET_CONSOLE:NEAR

ptr16:16 , ptr16:32
is a FAR label, typically in a code segment different from that of the
instruction.  These labels are also called full pointers.  ptr16:16  is
used when the instruction's operand size attribute is 16-bits;
ptr16:32  is used with the 32-bit attribute.  The notation 16:16
indicates that the value of the pointer has two parts.  The value on the
left of the colon is a 16-bit selector or value destined for the code
segment register.  The value on the right corresponds to the offset
within the destination segment.  For example, CALL ptr16:16  can be
coded

CALL SERVICE_ACTION

if the following statement appears elsewhere in the program

EXTRN SERVICE_ACTION:FAR

m16:16 , m16:32
is a memory operand containing a full pointer composed of two
numbers.  The number to the left of the colon corresponds to the
pointer's segment selector.  The number to the right corresponds to its
offset.  Like the ptr16:16  and ptr16:32  operands, m16:16  and
m16:32  operands are memory locations which contain full pointers.



ASM386 Assembly Language Reference Chapter 6 199

m16&32, m16&16, m32&32
is a memory operand consisting of paired data items whose sizes are
indicated on the left and the right side of the ampersand.  All memory
addressing forms are allowed.  An m16&16 or m32&32 operand is used
by the BOUND instruction (the operand specifies upper and lower
bounds for array indices).  LIDT  m16&32 and LGDT m16&32 load a
word into the limit field, and a dword into the base field of the
Interrupt and Global Descriptor Table registers.  For example, LGDT
m16&32 can be coded

LGDT GLOBAL_ARRAY

if the following statement appears in a data segment elsewhere in the
program (and is followed by the array initializations)

GLOBAL_ARRAY LABEL BYTE

LIDT m16&32 can be coded

LIDT [BP].IPT_TABLE

where IPT_TABLE  is the element of a structure addressed by the BP
register.

moffs8, moffs16, moffs32
(memory offset) is a simple memory variable of type BYTE, WORD, or
DWORD used by the MOV instruction.  A simple offset relative to the
segment base specifies the actual address.  No ModRM byte is used in
the instruction.  The number shown with moffs  indicates its size,
which is determined by the address size attribute of the instruction.
For example, the instruction MOV moffs32, EAX can be coded

MOV ITEM_COUNT,EAX

where ITEM_COUNT is a simple dword memory variable.  These
special forms of the MOV instruction generate less code.

Sreg is a segment register.  The segment register values are ES=0, CS=1,
SS=2, DS=3, FS=4, and GS=5.



200 Chapter 6 Processor Instructions

Clocks Column

The clocks column gives the number of clock cycles for each form of the
instruction.  The clock values apply only to the Intel386 processor.  Instructions
which are not available on the Intel386 or 376 processors have a dash (—) in the
clocks column.

The clock count calculations make the following assumptions:

1. The instruction has been prefetched and decoded and is ready for execution.

2. Bus cycles do not require wait states.

3. There are no a numeric coprocessor data transfers or local bus HOLD requests
delaying processor access to the bus.

4. No exceptions are detected during instruction execution.

5. Memory operands are aligned on 4-byte boundaries.

Opcode Instruction Clocks Description

0C ib OR AL,imm8 2 OR immediate byte to AL

0D iw OR AX,imm16 2 OR immediate word to AX

0D id OR EAX,imm32 2 OR immediate dword to EAX

80 /1 ib OR r/m8,imm8 2/7 OR immediate byte to r/m byte

81 /1 iw OR r/m16,imm16 2/7 OR immediate word to r/m word

81 /1 id OR r/m32,imm32 2/7 OR immediate dword to r/m dword

08 /r OR r/m8,r8 2/6 OR byte register to r/m byte

09 /r OR r/m16,r16 2/6 OR word register to r/m word

09 /r OR r/m32,r32 2/6 OR dword register to r/m dword

0A /r OR r8,r/m8 2/7 OR r/m byte to byte register

0B /r OR r16,r/m16 2/7 OR r/m word to word register

0B /r OR r32,r/m32 2/7 OR r/m dword to dword register

Clock counts for instructions that have an r/m  (register or memory) operand are
separated by a slash.  The count to the left is used for a register operand; the count
to the right is used for a memory operand.



ASM386 Assembly Language Reference Chapter 6 201

The following symbols are used in the clock count specifications:

N or n represents the number of times a clock cycle is repeated.

m represents the number of components in the next instruction executed,
where the entire displacement (if any) counts as one component, and
all other bytes of the instruction and prefix(es) each count as one
component.

pm = is a label that applies when the instruction executes in protected
mode.  pm =  is omitted when the clock counts are the same for
protected, real address, and virtual 8086 modes.

† or  ‡ indicates additional information about clock counts below the table.

Description Column

The description column briefly explains the various forms of the instruction.

The Operation and Discussion sections that follow the table contain more details of
the instruction's operation.

Operation Section

This reference page section contains an algorithmic description of the instruction
coded in a notation similar to the Algol languages.  The algorithms are composed
of the following elements:

1. Keywords of the algorithmic language, labels, and processor registers are
capitalized; variables, functions, and prose descriptions are in capital and
lower case letters.  Comments are enclosed within the symbol pairs (*  and * ).
Semi-colons separate the statements of the algorithms.

2. Compound statements are indented; compound statements are sometimes
terminated by ENDIF, ENDIFELSE, ENDWHILE, or ENDFOR for clarity or if
their component statements extend across page breaks.

3. A register name implies the contents of the register.  A register name enclosed
in brackets ([ ] ) implies the contents of the location whose address is
contained in that register.  For example, ES:[DI]  indicates the contents of the
location whose ES segment relative address is in register DI.  [SI]  indicates
the contents of the address contained in register SI relative to SI's default
segment (DS) or overridden segment.

4. :=  is the assignment operator.  For example, A:= B;  indicates that the value
of B is assigned to A.



202 Chapter 6 Processor Instructions

5. =, NOT = ,>, >=, <, and <= are relational operators used to compare two values.
These operators mean "equal, not equal, greater than, greater or equal, less
than, less or equal," respectively.  A relational expression such as A = B is
TRUE if the value of A is equal to that of B; otherwise, it is FALSE.

6. OperandSize represents the 16- or 32-bit operand size attribute of an
instruction.  StackSize represents the 16- or 32-bit stack size attribute of an
instruction.  AddressSize represents the 16- or 32-bit address size attribute of
the instruction.  For example,

IF instruction = CMPSW THEN
   OperandSize := 16;
ELSE
   IF instruction = CMPSD THEN
      OperandSize := 32;

indicates that the assembler will set the operand size attribute according to the
mnemonic form of the CMPS instruction used.  The Operation sections for
certain instructions indicate how the assembler determines these attributes.

See also: OperandSize, StackSize, and AddressSize, Chapter 6

The following functions are used in the algorithmic descriptions:

1. Truncate(value) reduces the size of the value to fit in 16-bits by discarding
high-order bits as needed.

2. Addr (operand) returns the effective address of the operand.  (This value is the
address calculation prior to adding the segment base).

3. ZeroExtend(value) returns a value zero-extended to the operand size attribute
of the instruction.  For example, ZeroExtend of a byte-long -10D value
converts the byte from F6H to 000000F6H.  If the value passed to ZeroExtend
and the operand size attribute are the same size, ZeroExtend returns the value
unaltered.

4. SignExtend(value) returns a value sign-extended to the operand size attribute
of the instruction.  For example, SignExtend of a byte-long -10D converts the
byte from F6H to FFFFFFF6H.  If the value passed to SignExtend and the
operand size attribute are the same size, SignExtend returns the value
unaltered.

5. Push(value) pushes a value onto the stack.  The number of bytes pushed is
determined by the operand size attribute of the instruction.

See also: PUSH instruction, in this chapter



ASM386 Assembly Language Reference Chapter 6 203

6. Pop(value) removes the value from the top of the stack and returns it.  The
statement

EAX := Pop();

assigns the 32-bit value that Pop took from the top of the stack to the EAX
register.  Pop will return either a word or a dword depending on the operand
size attribute.

See also: POP instruction, in this chapter

7. Bit [BitBase,BitOffset] returns the address of a bit within a bit string.  Bits are
numbered from right to left within registers and within memory bytes.  If the
base operand is a 32-bit register, the offset can be in the range 0..31.  This
offset addresses a bit within the indicated register.  An example,
BIT[EAX,21],  is illustrated in Figure 6-3.

Figure 6-3.  BitOffset for BIT[EAX,21]

In memory, the 2 bytes of a word are stored with the low-order byte at the lower
address.  If BitBase is a memory address, BitOffset can range from -2 gigabits to
+2 gigabits.  The addressed bit is numbered (BitOffset MOD 8) within the byte at
address (BitBase + (BitOffset DIV 8) ), where DIV is signed division with rounding
towards negative infinity, and MOD returns a positive number.  This is illustrated
in Figure 6-4.

W-3424

031 21

BitOffset = 21



204 Chapter 6 Processor Instructions

Figure 6-4.  Memory Bit Indexing

8. IOPermission(Src, width(Src) ) checks the I/O permission bits for every byte
of the Src operand before external I/O operations.

See also: I/O permission bit map, Appendix A

9. SwitchTasks performs certain protected mode checks before the processor
changes the value of CS:(E)IP .  Before the processor executes a CALL, RET,
INT , IRET , or JMP instruction in protected mode, it checks the access rights
(AR) of the descriptor table entry for the selector associated with the new CS.
AR determines whether an intersegment control transfer is:

• Through a gate

• A task switch

• Merely a FAR jump to a code segment at the same privilege level

The SwitchTasks function is an abbreviation for the following checks and
actions:

IF new TSS descriptor NOT PRESENT (*P bit of AR = 0*) THEN

      #NP(new TSS);

IF new TSS descriptor BUSY (*B bit of AR = 1*) THEN

      #GP(new TSS);

IF new TSS descriptor limit < 103 (*or < 43 for 286 TSS*) THEN

      #TS(new TSS);

W-3425

7  6  5  4  3  2  1  0 7  6  5  4  3  2  1  0 7  6  5  4  3  2  1  0

BitBase + 1 BitBase BitBase - 1

BitOffset = 13

Positive Offset

7  6  5  4  3  2  1  0 7  6  5  4  3  2  1  0 7  6  5  4  3  2  1  0

BitBase - 2BitBase BitBase - 1

BitOffset = 11

Negative Offset



ASM386 Assembly Language Reference Chapter 6 205

Save machine state in current TSS;

(*copy general, segment, and flags registers to current TSS*)

IF nesting tasks THEN

      new TSS backlink := current TSS selector;

ELSE (*in current TSS descriptor*)

      AR := NOT BUSY; (*B bit = 0*)

ENDIFELSE;

TR (*task register*) := new TSS selector;

new TSS descriptor := BUSY; (*B bit of AR = 1*)

TS (*flag in MSW of CR0*) := 1;

Set general and EFLAGS (*NT := 1 if nested task*) registers

  to new TSS values;

Load selectors for LDT, SS, CS, DS, ES, FS, GS, and, if paging

  enabled, CR3 page directory physical address associated with

  new TSS;

(*Check validity of selectors for LDT and Sreges; if paging

  enabled, check CR3 associated with new TSS*)

(*Check LDT validity: *)

      IF LDT selector NOT within GDT limits

      OR LDT selector does not index GDT THEN

           #TS(LDT selector);

      IF AR (*of LDT descriptor*) indicates non-LDT segment THEN

           #TS(LDT selector);

      IF AR (*of LDT descriptor*) indicates NOT PRESENT THEN

           #TS(LDT selector);

(*END check LDT validity*)

Load new LDT descriptor into LDT cache; (*valid LDT*)

CPL (*of new TSS*) := RPL; (*of new TSS CS selector*)

(*Check validity CS: *)

      IF CS selector = null THEN #TS(CS selector);

      IF CS selector NOT within its descriptor table limits THEN

           #TS(CS selector);

      IF AR (*of CS descriptor*) indicates non-code segment THEN

           #TS(CS selector);

      IF nonconforming AND DPL NOT = CPL THEN #TS(CS selector);

      IF conforming AND DPL > CPL THEN #TS(CS selector);

      IF AR (*of CS descriptor*) indicates NOT PRESENT THEN

           #NP(CS selector);

(*END checks CS validity*)



206 Chapter 6 Processor Instructions

Load new CS descriptor into CS cache; (*valid CS*)

(*Check validity SS: *)

      IF new SS selector = null THEN #TS(SS selector):

      IF SS selector NOT within its descriptor table limits THEN

           #TS(SS selector);

      IF RPL (*of SS selector*) NOT = CPL THEN #TS(SS selector);

      IF DPL (*of SS descriptor*) NOT = CPL THEN #TS(SS selector);

      IF AR (*of SS descriptor*) indicates code

      OR non-writable data segment THEN

           #TS(SS selector);

      IF AR (*of SS descriptor*) indicates NOT PRESENT THEN

           #NP(SS selector);

(*END checks SS validity*)

Load new SS descriptor into SS cache; (*valid SS*)

(*Check each of DS, ES, FS, GS segment selector(s) validity*)

IF selector index NOT within its descriptor table limits THEN

      #TS(segment selector);

IF AR (*of new selector*) indicates non-data

OR non-readable code segment THEN

      #TS(segment selector);

IF data OR nonconforming code THEN

      IF DPL < CPL THEN #GP(segment selector);

      IF DPL < RPL THEN #GP(segment selector);

ENDIF; (*data or nonconforming code*)

IF AR (*of segment descriptor*)indicates NOT PRESENT THEN

      #NP(segment selector);

(*END checks DS, ES, FS, GS validity*)

Load new segment descriptor(s) into Sreg cache(s); (*valid

  DS,ES,FS,GS*)

IF PG (*bit 31 of CR0*) = 1 THEN (*paging enabled*)

      IF current TSS CR3 = new TSS CR3 THEN

           NOP;

      ELSE

           Flush page translation cache;

           Load CR3 (*of new TSS*);

ENDIF; (*page directory base address in CR3*)



ASM386 Assembly Language Reference Chapter 6 207

Discussion Section

This section contains a further explanation of the instruction's operation.

Flags Affected Section

This section lists the flags that are affected by the instruction, as follows:

• If a flag is always cleared or always set by the instruction, the flag's value
(=0 or =1) is also listed.

• If a flag is undefined, its value may be changed by the instruction in an
indeterminate manner.

Most processor instructions assign values to flags in a uniform manner. See each
instruction's Operation section for any unconventional flag value assignments it
makes.  If a flag is not mentioned in the Flags Affected section, the instruction
leaves it unchanged.

See also: Flags, Appendix A

Exceptions by Mode Section

This section lists the exceptions that can occur when the instruction executes.  Each
processor operating mode can generate different exceptions:

Protected This subsection lists the exceptions that can occur when the
instruction executes in protected mode.  If you write applications in a
protected mode environment, consult your operating system
documentation to determine what is done when processor exceptions
occur.

Real Address
This subsection lists the exceptions that can occur when the
instruction executes in real address mode.  This mode has fewer
exception conditions than protected mode.  Real address mode
exceptions do not pass error codes to interrupt procedures.

One possible exception for many instructions is Interrupt 13.  The
processor generates an Interrupt 13 whenever a memory operand is
partly or wholly accessed from the effective address 0FFFFH in a
segment.  This exception occurs because the second byte of the word
is at location 10000H, not at 0; thus, it exceeds the segment's
addressability limit.



208 Chapter 6 Processor Instructions

Virtual  8086
This subsection lists the exceptions that can occur when the
instruction executes in virtual 8086 mode.  Virtual 8086 mode allows
the processor to simulate virtual 8086 machines.  Virtual 8086 mode
exceptions are the same as those for Real 8086, with the following
additions:

• I/O instructions cause a #GP(0) exception if the IOPL (I/O
privilege level) is less than 3 and an I/O permission bit is set.

• Memory references can cause page faults, noted in the
reference pages as #PF(fault-code).

When a virtual 8086 mode exception occurs, the processor is set to
protected mode.

Processor exception names are formed from a cross-hatch character (#) followed by
2 letters and an optional error code in parentheses.  Table 6-16 summarizes the
processor exceptions.



ASM386 Assembly Language Reference Chapter 6 209

Table 6-16.  Processor Exceptions and Interrupts

Name Cause
Interrupt
Number

Instruction that May
Generate this Interrupt

Divide error 0 DIV, IDIV

Debug exceptions 1 Any instruction

1-byte INT opcode 3 INT

2-byte interrupt 32-255 INT number

Interrupt on overflow 4 INTO

Array bounds check 5 BOUND

UD Invalid opcode 6 Any illegal instruction

#NM No math unit available 7 ESC, WAIT

#DF Double fault 8 Any instruction that can generate an
exception

Coprocessor segment
overrun

9 Any operand to an ESC instruction that
wraps around the end of a segment

#TS Invalid task state segment
(TSS)

10 JMP, CALL, any
interrupt, IRET

#NP Segment/gate not present 11 Any segment register modifier

#SS Stack fault 12 Any instruction that references memory
through the SS segment register

#GP General protection fault 13 Any memory reference instruction or
code fetch

#PF Page fault 14 Any memory reference instruction or
code fetch

#MF Math fault 16 ESC, WAIT

See also: Processor exceptions, Appendix A



210 Chapter 6 Processor Instructions

How to Look Up an Instruction
The processor instructions are presented in mnemonic alphabetical order, with the
following exceptions:

• Floating-point instructions (ESC instructions for the a numeric coprocessor) are
at the end of Chapter 7.

• String handling instructions that have byte, word, and dword variants (with
suffixes B, W, and D, respectively) are grouped with the basic instruction
form.

The REP prefix variants for string instructions are also grouped.  See the
following instructions for the variants that are listed on the right:

CMPS CMPSB, CMPSW, and CMPSD
INS INSB, INSW, and INSD
LODS LODSB, LODSW, and LODSD
MOVS MOVSB, MOVSW, and MOVSD
OUTS OUTSB, OUTSW, and OUTSD
SCAS SCASB, SCASW, and SCASD
STOS STOSB, STOSW, and STOSD
REP REPE, REPZ, REPNE, and REPNZ

• Some conversion instructions are grouped.  See the following instructions for
the variant listed on the right:

CBW CWDE
CWD CDQ

• See the Jcc  and SETcc instruction tables for the many variant forms of these
conditional instructions.  See LOOP for the LOOPcond variants.

• See the following instructions for the variants listed on the right:

INT INTO
IRET IRETD
POPA POPAD
PUSHA PUSHAD
POPF POPFD
PUSHF PUSHFD
XLAT XLATB



ASM386 Assembly Language Reference Chapter 6 211

• Some load and store instructions are grouped.  See the following instructions
for those listed on the right:

LGDT LIDT
LGDTW LGDTD, LIDTW, and LIDTD
SGDT SIDT
SGDTW SGDTD, SIDTW, and SIDTD
LDS LES, LFS, LGS and LSS

• The rotate instructions and some of the shift instructions are grouped.  See the
following instructions for those listed on the right:

RCL RCR, ROL, and ROR
SAL SAR, SHL, and SHR

• See VERR for the VERW instruction.

The remainder of this chapter consists of the processor instruction reference pages
in mnemonic alphabetical order.



AAA

212 Chapter 6 Processor Instructions

Processor Instructions

AAA    ASCII Adjust after Addition

Opcode Instruction Clocks Description

37 AAA 4 ASCII adjust AL after addition

Operation

IF ((AL AND 0FH) > 9) OR (AF = 1) THEN
AL := AL + 6;
AH := AH + 1;
AF := 1;
CF := 1;

ELSE
CF := 0;
AF := 0;

ENDIFELSE;
AL := AL AND 0FH;

Discussion

Code AAA only following an ADD instruction that leaves a byte result in the AL
register.  The lower nibbles of the ADD operands should be in the range 0 through 9
(BCD digits) so that AAA adjusts AL to contain the correct decimal digit result.  If
ADD produced a decimal carry, AAA increments the AH register and sets the carry
(CF) and auxiliary carry (AF) flags to 1.  If ADD produced no decimal carry, AAA
clears the carry and auxiliary flags (0) and leaves AH unchanged.  In either case,
AL is left with its upper nibble set to 0.  To convert AL to an ASCII result, follow
the AAA instruction with OR AL, 30H.

Flags Affected

AF and CF as described in the Discussion section; OF, SF, ZF, and PF are
undefined.

Exceptions by Mode

Protected

None



AAA

ASM386 Assembly Language Reference Chapter 6 213

Real Address

None

Virtual 8086

None



AAD

214 Chapter 6 Processor Instructions

AAD   ASCII Adjust AX before Division

Opcode Instruction Clocks Description

D5 0A AAD 19 ASCII adjust AX before division

Operation

AL:=AH * 0AH + AL;
AH:=0;

Discussion

AAD prepares 2 unpacked BCD digits (the least significant digit in AL, the most
significant digit in AH) for a division operation that will yield an unpacked result.
This is done by setting AL to AL + (10 * AH), and then setting AH to 0.  AX is
then equal to the binary equivalent of the original unpacked 2-digit number.

Flags Affected

SF, ZF, and PF as described in Appendix A; OF, AF, and CF are undefined

Exceptions by Mode

Protected

None

Real Address

None

Virtual 8086

None



AAM

ASM386 Assembly Language Reference Chapter 6 215

AAM   ASCII Adjust AX after Multiply

Opcode Instruction Clocks Description

D4 0A AAM 17 ASCII adjust AX after multiply

Operation

AH := AL / 0AH;
AL := AL MOD 0AH;

Discussion

Code AAM only following a MUL instruction on two unpacked BCD digits that leaves
the result in the AX register.  AL contains the MUL result, because it is always less
than 100.  AAM unpacks this result by dividing AL by 10, leaving the quotient (most
significant digit) in AH and the remainder (least significant digit) in AL.

Flags Affected

F, ZF, and PF as described in Appendix A; OF, AF, and CF are undefined

Exceptions by Mode

Protected

None

Real Address

None

Virtual 8086

None



AAS

216 Chapter 6 Processor Instructions

AAS   ASCII Adjust AL after Subtraction

Opcode Instruction Clocks Description

3F AAS 4 ASCII adjust AL after subtraction

Operation

IF (AL AND 0FH) > 9 OR AF = 1 THEN
    AL := AL - 6;
    AH := AH - 1;
    AF := 1;
    CF := 1;
ELSE
    CF := 0;
    AF := 0;
ENDIFELSE;
    AL := AL AND 0FH;

Discussion

Code AAS only following a SUB instruction that leaves the byte result in the AL
register.  The lower nibbles of the SUB operands should be in the range 0 through 9
(BCD digits) so that AAS adjusts AL to contain the correct decimal digit result.  If
SUB produced a decimal carry, AAS decrements the AH register and sets the carry
(CF) and auxiliary carry (AF) flags to 1.  If SUB produced no decimal carry, AAS
clears the carry and auxiliary carry flags (0) and leaves AH unchanged.  In either
case, AL is left with its upper nibble set to 0.  To convert AL to an ASCII result,
follow the AAS with OR AL, 30H.

Flags Affected

AF and CF as described in the Discussion section; OF, SF, ZF, and PF are
undefined

Exceptions by Mode

Protected

None



AAS

ASM386 Assembly Language Reference Chapter 6 217

Real Address

None

Virtual 8086

None



ADC

218 Chapter 6 Processor Instructions

ADC   Add with Carry

Opcode Instruction Clocks Description

14 ib ADC AL,imm8 2 Add with carry immediate byte to AL

15 iw ADC AX,imm16 2 Add with carry immediate word to AX

15 id ADC EAX,imm32 2 Add with carry immediate dword to EAX

80 /2 ib ADC r/m8,imm8 2/7 Add with carry immediate byte to r/m byte

81 /2 iw ADC r/m16,imm16 2/7 Add with carry immediate word to r/m
word

81 /2 id ADC r/m32,imm32 2/7 Add with carry immediate dword to r/m
dword

83 /2 ib ADC r/m16,imm8 2/7 Add with carry sign-extended immediate
byte to r/m word

83 /2 ib ADC r/m32,imm8 2/7 Add with carry sign-extended immediate
byte into r/m dword

10 /r ADC r/m8,r8 2/7 Add with carry byte register to r/m byte

11 /r ADC r/m16,r16 2/7 Add with carry word register to r/m word

11 /r ADC r/m32,r32 2/7 Add with carry dword register to r/m dword

12 /r ADC r8,r/m8 2/6 Add with carry r/m byte to byte register

13 /r ADC r16,r/m16 2/6 Add with carry r/m word to word register

13 /r ADC r32,r/m32 2/6 Add with CF r/m dword to dword register

Operation

IF (Src is byte) AND (Dest is word or dword) THEN
     Dest := Dest + SignExtend(Src) + CF;
ELSE
     Dest := Dest + Src + CF;

Discussion

ADC performs integer addition of the two operands, Dest and Src, and of the carry
flag, CF.  ADC assigns the result to the first operand (Dest), and sets the flags
accordingly.  ADC is usually executed as part of a multi-byte or multi-word addition
operation.  When an immediate byte value is added to a word or dword operand,
the immediate value is first sign-extended to the size of the operand.



ADC

ASM386 Assembly Language Reference Chapter 6 219

Flags Affected

OF, SF, ZF, AF, CF, and PF as described in Appendix A

Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) if page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from 0 to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



ADD

220 Chapter 6 Processor Instructions

ADD   (Integer) Add

Opcode Instruction Clocks Description

04 ib ADD AL, imm8 2 Add immediate byte to AL

05 iw ADD AX, imm16 2 Add immediate word to AX

05 id ADD EAX,imm32 2 Add immediate dword to EAX

80 /0 ib ADD r/m8,imm8 2/7 Add immediate byte to r/m byte

81 /0 iw ADD r/m16,imm16 2/7 Add immediate word to r/m word

81 /0 id ADD r/m32,imm32 2/7 Add immediate dword to r/m dword

83 /0 ib ADD r/m16,imm8 2/7 Add sign-extended immediate byte to r/m
word

83 /0 ib ADD r/m32,imm8 2/7 Add sign-extended immediate byte  to r/m
dword

00 /r ADD r/m8,r8 2/7 Add byte register to r/m byte

01 /r ADD r/m16,r16 2/7 Add word register to r/m word

01 /r ADD r/m32,r32 2/7 Add dword register to r/m dword

02 /r ADD r8,r/m8 2/6 Add r/m byte to byte register

03 /r ADD r16,r/m16 2/6 Add r/m word to word register

03 /r ADD r32,r/m32 2/7 Add r/m dword to dword register

Operation

IF (Src is byte) AND (Dest is word or dword) THEN
     Dest := Dest + SignExtend(Src);
ELSE
     Dest := Dest + Src;

Discussion

ADD performs integer addition of the two operands.  ADD assigns the result to the
first operand (Dest) and sets the flags accordingly.  When an immediate byte is
added to a word or dword operand, the immediate value is sign-extended to the size
of the operand.

Flags Affected

OF, SF, ZF, AF, CF, and PF as described in Appendix A



ADD

ASM386 Assembly Language Reference Chapter 6 221

Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from 0 to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



AND

222 Chapter 6 Processor Instructions

AND   Logical AND

Opcode Instruction Clocks Description

24 ib AND AL, imm8 2 AND immediate byte to AL

25 iw AND AX, imm16 2 AND immediate word to AX

25 id AND EAX,imm32 2 AND immediate dword to EAX

80 /4 ib AND r/m8,imm8 2/7 AND immediate byte to r/m byte

81 /4 iw AND r/m16,imm16 2/7 AND immediate word to r/m word

81 /4 id AND r/m32,imm32 2/7 AND immediate dword to r/m dword

83 /4 ib AND r/m16,imm8 2/7 AND sign-extended byte to r/m word

83 /4 ib AND r/m32,imm8 2/7 AND sign-extended byte to r/m dword

20 /r AND r/m8,r8 2/7 AND byte register to r/m byte

21 /r AND r/m16,r16 2/7 AND word register to r/m word

21 /r AND r/m32,r32 2/7 AND dword register to r/m dword

22 /r AND r8,r/m8 2/6 AND r/m byte to byte register

23 /r AND r16,r/m16 2/6 AND r/m word to word register

23 /r AND r32,r/m32 2/6 AND r/m dword to dword register

Operation

Dest := Dest AND Src;
CF := 0;
OF := 0;

Discussion

If corresponding bits of the operands are both 1, AND sets the corresponding result
bit to 1.  Otherwise, AND sets the corresponding result bit to 0.

Flags Affected

CF = 0, OF = 0; PF, SF, and ZF as described in Appendix A



AND

ASM386 Assembly Language Reference Chapter 6 223

Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from 0 to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



ARPL

224 Chapter 6 Processor Instructions

ARPL   Adjust RPL Field of Selector

Opcode Instruction Clocks Description

63 /r ARPL r/m16,r16 pm=20/21 Adjust RPL of r/m16 to not less
than RPL of r16

Operation

IF RPL (*bits 0,1*) of Dest < RPL (*bits 0,1*) of Src THEN
     ZF := 1;
     RPL (*bits 0,1*) of Dest := RPL (*bits 0,1*) of Src;
ELSE
     ZF := 0;

Discussion

The ARPL instruction has 2 operands:

1. The first operand is a 16-bit memory variable or word register that contains the
value of a selector.

2. The second operand is a word register that also contains a selector.

If the RPL field (requesting privilege level -- lower two bits) of the first operand is
less than the RPL field of the second operand, ARPL sets ZF to 1 and increases the
RPL field of the first operand to match that of the second operand.  Otherwise,
ARPL clears ZF (0) and makes no change in the first operand.

ARPL appears only in operating system software.  It is used to guarantee that a
selector parameter to a subroutine does not request more privilege than the caller is
allowed.  The second operand of ARPL is normally a register that contains the CS
selector value of the caller.

Flags Affected

ZF as described in the Discussion section

Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault



ARPL

ASM386 Assembly Language Reference Chapter 6 225

Real Address

Interrupt 6

Virtual 8086

Interrupt 6; #PF(fault-code) for a page fault



BOUND

226 Chapter 6 Processor Instructions

BOUND   Check Array Index Against Bounds

Opcode Instruction Clocks Description

62 /r BOUND r16, 10† Interrupt 5 if r16 is not within bounds m16&16

62 /r BOUND r32, 10† Interrupt 5 if r32 is not within bounds m32&32

† Does not include clocks for Interrupt 5.

Operation

IF (LeftSrc < [RightSrc] (* lower limit *)

   OR LeftSrc > [RightSrc + OperandSize/8] ) (* upper limit *)

THEN Interrupt 5;

Discussion

BOUND checks that a signed array index is within limits.  The register operand
contains the index.  Contiguous dword or word operands specify the lower and
upper limits.  If the index is not within bounds, an Interrupt 5 occurs; the return
EIP  points to the BOUND instruction.  The second operand must be a memory
operand, not a register.

The bounds limit data structure can be placed in memory just before the array
itself.  This makes the limits addressable via a constant offset from the beginning of
the array.

Flags Affected

None

Exceptions by Mode

Protected

Interrupt 5 if the bounds test fails; #GP(0) for an illegal memory operand effective
address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the
SS segment; #PF(fault-code) for a page fault; #UD if the second operand is a
ModRM byte representing a register



BOUND

ASM386 Assembly Language Reference Chapter 6 227

Real Address

Interrupt 5 if the bounds test fails; Interrupt 13 if any part of the operand would lie
outside the effective address space from 0 to 0FFFFH; Interrupt 6 if the second
operand is a register

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



BSF

228 Chapter 6 Processor Instructions

BSF   Bit Scan Forward

Opcode Instruction Clocks Description

0F BC BSF r16,r/m16 10+3n† Bit scan forward on r/m word

0F BC BSF r32,r/m32 10+3n† Bit scan forward on r/m dword
† n is the number of leading zero bits.

Operation

IF r/m  = 0 THEN
     ZF := 1;
     register := UNDEFINED;
ELSE
   temp := 0;
   ZF := 0;
WHILE Bit[r/m,temp] = 0 DO
   temp := temp + 1;
ENDWHILE;
   register := temp;

Discussion

BSF scans the bits in the second operand from right to left starting at bit 0.  BSF
places the index of the first set bit that it finds into the first operand and clears ZF.
If no bit is set in the second operand, BSF sets ZF, and the first operand is
undefined.

Flags Affected

ZF as described in the Discussion section

Exceptions by Mode

Protected

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or
GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a
page fault



BSF

ASM386 Assembly Language Reference Chapter 6 229

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from 0 to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



BSR

230 Chapter 6 Processor Instructions

BSR   Bit Scan Reverse

Opcode Instruction Clocks Description

0F BD BSR r16,r/m16 10+3n† Bit scan reverse on r/m word

0F BD BSR r32,r/m32 10+3n† Bit scan reverse on r/m dword
† n is the number of leading zero bits.

Operation

IF r/m  = 0 THEN
     ZF := 1;
     register := UNDEFINED;
ELSE
     temp := OperandSize - 1;
     ZF := 0;
     WHILE Bit[r/m,temp] = 0 DO
       temp := temp - 1;
     ENDWHILE;
     register := temp;

Discussion

BSR scans the bits in the second operand from left to right starting at the most
significant bit (31 or 15).  BSR places the index of the first bit that it finds set into
the first operand and clears ZF.  If no bit is set, BSR sets ZF, and the first operand is
undefined.

Flags Affected

ZF as described in the Discussion section

Exceptions by Mode

Protected

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or
GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a
page fault



BSR

ASM386 Assembly Language Reference Chapter 6 231

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from 0 to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



BSWAP

232 Chapter 6 Processor Instructions

BSWAP   Byte Swap (not available on Intel386 or 376 processors)

Opcode Instruction Clocks Description

0F C8 + rd BSWAP r32 — Swaps r32 high byte for low byte,  middle-
high byte for middle-low byte

Operation

temp := r 32 ;
r 32  [0..7] := temp[24..31];
r 32  [8..15] := temp[16..23];
r 32  [16..23] := temp[8..15];
r 32  [24..31] := temp[0..7];

Discussion

BSWAP swaps the high bytes and low bytes of a 32-bit register.  BSWAP takes a
single operand as its source and destination.

Flags Affected

None

Exceptions by Mode

Protected

None

Real Address

None

Virtual 8086

None



BT

ASM386 Assembly Language Reference Chapter 6 233

BT   Bit Test

Opcode Instruction Clocks Description

0F A3 /r BT r/m16,r16 3/12 Save bit in carry flag

0F A3 /r BT r/m32,r32 3/12 Save bit in carry flag

0F BA /4 ib BT r16,imm8 3 Save bit in carry flag

0F BA /4 ib BT r32,imm8 3 Save bit in carry flag

0F BA /4 ib BT m,imm16 6 Save bit in carry flag

0F BA /4 ib BT m,imm32 6 Save bit in carry flag

0F BA /4 ib BT m 6 Save bit in carry flag

Operation

CF := Bit[LeftSrc,RightSrc];

Discussion

BT copies the value of a selected bit into the carry flag.  The BT operands specify:

• A bit string (register first operand) or bit string base address (memory first
operand)

• A bit offset (second operand) to the selected bit

If the first operand is a register, the bit offset of the selected bit can be specified as
an immediate byte constant as well as a value in a general register.  The bit offset is
taken modulo the operand size, so the range is 0..31 (or 0..15 for a 16-bit operand).

If the bit string is in memory, the first operand is its base address, and the second
operand is an offset relative to this base address.  The USE attribute of the first
operand determines register size and offset limits for the second operand.

If the first operand is in a USE32 segment, the second operand must be either a
dword register, containing a value, or an immediate constant value within the
range:

-2 gigabits to (+2 gigabits - 1).

For non-combinable USE32 segments, assembly time address calculation requires
the effective address of the bit string and bit offset to satisfy:

0 < = ((effective address * 8) + (bit offset)) < 32 gigabits.



BT

234 Chapter 6 Processor Instructions

If the first operand is in a USE16 segment, the second operand must be either a
word register, containing a value, or an immediate constant value within the range:

-32 Kbits to (+32 Kbits - 1).

For non-combinable USE16 segments, assembly time address calculation requires
the effective address of the bit string and bit offset to satisfy:

0 < = ((effective address * 8) + (bit offset)) < 512 Kbits.

If the bit string is in memory, the assembler will combine the bit offset with the
effective address to generate a dword aligned 32-bit address, or a word aligned 16-
bit address, and it will adjust the bit offset accordingly.

When accessing a bit in memory, the processor may access 4 or 2 bytes starting
from the memory address:

• Effective Address + (4 * (BitOffset DIV 32) ) for a 32-bit operand size

• Effective Address + (2 * (BitOffset DIV 16) ) for a 16-bit operand size

It may do this even when only a single byte needs to be accessed in order to reach
the given bit.  Therefore, avoid referencing areas of memory close to address space
holes.  In particular, avoid references to memory-mapped I/O registers.  Instead,
use the MOV instructions to load from these addresses.  Then, use a register form of
BT to manipulate the data.

The BT m form (without offset) assumes an operand of type DBIT , but the
assembler does not check the type.  For example,

BT BAZ.Y

accesses a bit where BAZ and Y were defined as follows:

; structure definition
FOO STRUC
 X DBIT 11 DUP (110B)
 Y DBIT 1B
 Z DBIT 1B
FOO ENDS
;
BAZ FOO <>

Flags Affected

CF as described in the Discussion section; all other flags are undefined



BT

ASM386 Assembly Language Reference Chapter 6 235

Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from 0 to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



BTC

236 Chapter 6 Processor Instructions

BTC   Bit Test and Complement

Opcode Instruction Clocks Description

0F BB /r BTC r/m16,r16 6/13 Save bit in carry flag; complement bit

0F BB /r BTC r/m32,r32 6/13 Save bit in carry flag; complement bit

0F BA /7 ib BTC r16,imm8 6 Save bit in carry flag; complement bit

0F BA /7 ib BTC r32,imm8 6 Save bit in carry flag; complement bit

0F BA /7 ib BTC m,imm16 8 Save bit in carry flag; complement bit

0F BA /7 ib BTC m,imm32 8 Save bit in carry flag; complement bit

0F BA /7 ib BTC m 8 Save bit in carry flag; complement bit

Operation

CF := Bit[LeftSrc, RightSrc];
Bit[LeftSrc,RightSrc] := NOT Bit[LeftSrc,RightSrc];

Discussion

BTC copies the value of a selected bit into the carry flag and then complements the
bit.  The BTC operands specify:

• A bit string (register first operand) or bit string base address (memory first
operand)

• A bit offset (second operand) to the selected bit

If the first operand is a register, the bit offset of the selected bit can be specified as
an immediate byte constant as well as a value in a general register.  The bit offset is
taken modulo the operand size, so the range is 0..31 (or 0..15 for a 16-bit operand).

If the bit string is in memory, the first operand is its base address, and the second
operand is an offset relative to this base address.  The USE attribute of the first
operand determines register size and offset limits for the second operand.

If the first operand is in a USE32 segment, the second operand must be either a
dword register, containing a value, or an immediate constant value within the
range:

-2 gigabits to (+2 gigabits - 1).

For non-combinable USE32 segments, assembly time address calculation requires
the effective address of the bit string and bit offset to satisfy:

0 < = ((effective address * 8) + (bit offset)) < 32 gigabits.



BTC

ASM386 Assembly Language Reference Chapter 6 237

If the first operand is in a USE16 segment, the second operand must be either a
word register, containing a value, or an immediate constant value within the range:

-32 Kbits to (+32 Kbits - 1).

For non-combinable USE16 segments, assembly time address calculation requires
the effective address of the bit string and bit offset to satisfy:

0 < = ((effective address * 8) + (bit offset)) < 512 Kbits.

If the bit string is in memory, the assembler will combine the bit offset with the
effective address to generate a dword aligned 32-bit address, or a word aligned 16-
bit address, and it will adjust the bit offset accordingly.

When accessing a bit in memory, the processor may access 4 or 2 bytes starting
from the memory address:

• Effective Address + (4 * (BitOffset DIV 32) ) for a 32-bit operand size

• Effective Address + (2 * (BitOffset DIV 16) ) for a 16-bit operand size

It may do this even when only a single byte needs to be accessed in order to reach
the given bit.  Therefore, avoid referencing areas of memory close to address space
holes.  In particular, avoid references to memory-mapped I/O registers.  Instead,
use the MOV instructions to load from (or store to) these addresses.  Use a register
form of BTC to manipulate the data.

The BTC m form (without offset) assumes an operand of type DBIT , but the
assembler does not check the type.  For example,

BTC BAZ.Y

accesses a bit where BAZ and Y were defined as follows:

; structure definition
FOO STRUC
 X DBIT 11 DUP (110B)
 Y DBIT 1B
 Z DBIT 1B
FOO ENDS
;
BAZ FOO <>

Flags Affected

CF as described in the Discussion section; the other flags are undefined



BTC

238 Chapter 6 Processor Instructions

Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from 0 to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



BTR

ASM386 Assembly Language Reference Chapter 6 239

BTR   Bit Test and Reset

Opcode Instruction Clocks Description

0F B3 /r BTR r/m16,r16 6/13 Save bit in carry flag; clear bit

0F B3 /r BTR r/m32,r32 6/13 Save bit in carry flag; clear bit

0F BA /6 ib BTR r16,imm8 6 Save bit in carry flag; clear bit

0F BA /6 ib BTR r32,imm8 6 Save bit in carry flag; clear bit

0F BA /6 ib BTR m,imm16 13 Save bit in carry flag; clear bit

0F BA /6 ib BTR m,imm32 13 Save bit in carry flag; clear bit

0F BA /6 ib BTR m 13 Save bit in carry flag; clear bit

Operation

CF := Bit[LeftSrc,RightSrc];
Bit[LeftSrc,RightSrc] := 0;

Discussion

BTR copies the value of a selected bit into the carry flag and then clears the bit.
The BTR operands specify:

• A bit string (register first operand) or bit string base address (memory first
operand)

• A bit offset (second operand) to the selected bit

If the first operand is a register, the bit offset of the selected bit can be specified as
an immediate byte constant as well as a value in a general register.  The bit offset is
taken modulo the operand size, so the range is 0..31 (or 0..15 for a 16-bit operand).

If the bit string is in memory, the first operand is its base address, and the second
operand is an offset relative to this base address.  The USE attribute of the first
operand determines register size and offset limits for the second operand.

If the first operand is in a USE32 segment, the second operand must be either a
dword register, containing a value, or an immediate constant value within the
range:

-2 gigabits to (+2 gigabits - 1).



BTR

240 Chapter 6 Processor Instructions

For non-combinable USE32 segments, assembly time address calculation requires
the effective address of the bit string and bit offset to satisfy:

0 < = ((effective address * 8) + (bit offset)) < 32 gigabits.

If the first operand is in a USE16 segment, the second operand must be either a
word register, containing a value, or an immediate constant value within the range:

-32 Kbits to (+32 Kbits - 1).

For non-combinable USE16 segments, assembly time address calculation requires
the effective address of the bit string and bit offset to satisfy:

0 < = ((effective address * 8) + (bit offset)) < 512 Kbits.

If the bit string is in memory, the assembler will combine the bit offset with the
effective address to generate a dword aligned 32-bit address, or a word aligned
16-bit address, and it will adjust the bit offset accordingly.

When accessing a bit in memory, the processor may access 4 or 2 bytes starting
from the memory address:

• Effective Address + (4 * (BitOffset DIV 32) ) for a 32-bit operand size

• Effective Address + (2 * (BitOffset DIV 16) ) for a 16-bit operand size

It may do this even when only a single byte needs to be accessed in order to reach
the given bit.  Therefore, avoid referencing areas of memory close to address space
holes.  In particular, avoid references to memory-mapped I/O registers.  Instead,
use the MOV instructions to load from (or store to) these addresses.  Use a register
form of BTR to manipulate the data.

The BTR m form (without offset) assumes an operand of type DBIT , but the
assembler does not check the type.  For example,

BTR BAZ.Y

accesses a bit where BAZ and Y were defined as follows:

; structure definition
FOO STRUC
 X DBIT 11 DUP (110B)
 Y DBIT 1B
 Z DBIT 1B
FOO ENDS
;
BAZ FOO <>



BTR

ASM386 Assembly Language Reference Chapter 6 241

Flags Affected

CF as described in the Discussion section; the other flags are undefined

Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from 0 to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



BTS

242 Chapter 6 Processor Instructions

BTS   Bit Test and Set

Opcode Instruction Clocks Description

0F AB /r BTS r/m16,r16 6/13 Save bit in carry flag; set bit

0F AB /r BTS r/m32,r32 6/13 Save bit in carry flag; set bit

0F BA /5 ib BTS r16,imm8 6 Save bit in carry flag; set bit

0F BA /5 ib BTS r32,imm8 6 Save bit in carry flag; set bit

0F BA /5 ib BTS m,imm16 8 Save bit in carry flag; set bit

0F BA /5 ib BTS m,imm32 8 Save bit in carry flag; set bit

0F BA /5 ib BTS m 8 Save bit in carry flag; set bit

Operation

CF := Bit[LeftSrc,RightSrc];
Bit[LeftSrc,RightSrc] := 1;

Discussion

BTS copies the value of a selected bit into the carry flag and then sets the bit.  The
BTS operands specify:

• A bit string (register first operand) or bit string base address (memory first
operand)

• A bit offset (second operand) to the selected bit

If the first operand is a register, the bit offset of the selected bit can be specified as
an immediate byte constant as well as a value in a general register.  The bit offset is
taken modulo the operand size, so the range is 0..31 (or 0..15 for a 16-bit operand).

If the bit string is in memory, the first operand is its base address, and the second
operand is an offset relative to this base address.  The USE attribute of the first
operand determines register size and offset limits for the second operand.

If the first operand is in a USE32 segment, the second operand must be either a
dword register, containing a value, or an immediate constant value within the
range:

-2 gigabits to (+2 gigabits - 1).



BTS

ASM386 Assembly Language Reference Chapter 6 243

For non-combinable USE32 segments, assembly time address calculation requires
the effective address of the bit string and bit offset to satisfy:

0 < = ((effective address * 8) + (bit offset)) < 32 gigabits.

If the first operand is in a USE16 segment, the second operand must be either a
word register, containing a value, or an immediate constant value within the range:

-32 Kbits to (+32 Kbits - 1).

For non-combinable USE16 segments, assembly time address calculation requires
the effective address of the bit string and bit offset to satisfy:

0 < = ((effective address * 8) + (bit offset)) < 512 Kbits.

If the bit string is in memory, the assembler will combine the bit offset with the
effective address to generate a dword aligned 32-bit address, or a word aligned
16-bit address, and it will adjust the bit offset accordingly.

When accessing a bit in memory, the processor may access 4 or 2 bytes starting
from the memory address:

• Effective Address + (4 * (BitOffset DIV 32) ) for a 32-bit operand size

• Effective Address + (2 * (BitOffset DIV 16) ) for a 16-bit operand size

It may do this even when only a single byte needs to be accessed in order to reach
the given bit.  Therefore, avoid referencing areas of memory close to address space
holes.  In particular, avoid references to memory-mapped I/O registers.  Instead,
use the MOV instructions to load from (or store to) these addresses.  Use a register
form of BTS to manipulate the data.

The BTS m form (without offset) assumes an operand of type DBIT , but the
assembler does not check the type.  For example,

BTS BAZ.Y

accesses a bit where BAZ and Y were defined as follows:

; structure definition
FOO STRUC
 X DBIT 11 DUP (110B)
 Y DBIT 1B
 Z DBIT 1B
FOO ENDS
;
BAZ FOO <>



BTS

244 Chapter 6 Processor Instructions

Flags Affected

CF as described in the Discussion section; the other flags are undefined

Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, or GS segments; #SS(0) for an illegal
address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
form 0 to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



CALL

ASM386 Assembly Language Reference Chapter 6 245

CALL    Call Procedure

Opcode Instruction Clocks Description

E8 cw CALL rel16 7+m Call near, displacement relative to
next instruction

FF /2 CALL r/m16 7+m/10+m Call near, register indirect/memory
indirect

9A cd CALL ptr16:16 17+m,pm=34+m Call intersegment to full pointer
given

9A cd CALL ptr16:16 pm=52+m Call gate, same privilege

9A cd CALL ptr16:16 pm=86+m Call gate, more privilege, no
parameters

9A cd CALL ptr16:16 pm=94+4x+m Call gate, more privilege, x
parameters

9A cd CALL ptr16:16 pm=217-309† Call to task

FF /3 CALL m16:16 22+m,pm=38+m Call intersegment, address at r/m
dword

FF /3 CALL m16:16 pm=56+m Call gate, same privilege

FF /3 CALL m16:16 pm=90+m Call gate, more privilege, no
parameters

FF /3 CALL m16:16 pm=98+4x+m Call gate, more privilege, x
parameters

FF /3 CALL m16:16 pm=222-314† Call to task

E8 cd CALL rel32 7+m Call near, displacement relative to
next instruction

FF /2 CALL r/m32 7+m/10+m Call near, indirect

9A cp CALL ptr16:32 17+m,pm=34+m Call intersegment, to full pointer
given

9A cp CALL ptr16:32 pm=52+m Call gate, same privilege

9A cp CALL ptr16:32 pm=86+m Call gate, more privilege, no
parameters

9A cp CALL ptr32:32 pm=94+4x+m Call gate, more privilege, x
parameters

9A cp CALL ptr16:32 pm=217-309† Call to task



CALL

246 Chapter 6 Processor Instructions

FF /3 CALL m16:32 22+m,pm=38+m Call intersegment, address at r/m
dword

FF /3 CALL m16:32 pm=56+m Call gate, same privilege

FF /3 CALL m16:32 pm=90+m Call gate, more privilege, no
parameters

FF /3 CALL m16:32 pm=98+4x+m Call gate, more privilege, x
parameters

FF /3 CALL m16:32 pm=222-314† Call to task
† See also:   80386 Programmer's Reference Manual

Operation
IF destination address > its segment limit THEN #GP(0);

IF rel16 or rel32 type call THEN (*near relative call*)

     IF OperandSize = 16 THEN

        Push(IP);

        EIP := (EIP + rel16) AND 0000FFFFH;

     ELSE (*OperandSize = 32*)

       Push(EIP):

       EIP := EIP + rel32;

ENNDIF; (*rel16 or rel32 type call*)

IF r/m16 or r/m32 type call THEN (*near absolute call*)

     IF OperandSize = 16 THEN

        Push(IP);

        EIP := [r/m16] AND 0000FFFFH;

     ELSE (*OperandSize = 32*)

        Push(EIP);

        EIP := [r/m32];

ENDIF; (*r/m16 or r/m32 type call*)

IF (PE = 0 OR (PE = 1 AND VM = 1) )

(*mode = real address or virtual 8086*)

   AND instruction = FarCall THEN

   (*operand is m16:16/32 or ptr16:16/32*)

     IF OperandSize = 16 THEN

        Push(CS);

        Push(IP); (*next instruction address: 16-bits*)

     ELSE (*OperandSize = 32*)

        Push(CS);

        Push(EIP);



CALL

ASM386 Assembly Language Reference Chapter 6 247

     IF operand is m16:16 or m16:32 THEN (*indirect far call*)

        IF OperandSize = 16 THEN

           CS:IP := [m16:16];

           EIP := EIP AND 0000FFFFH; (*clear upper bits*)

     ELSE

       CS:EIP := ptr16:32;

    ENDIF; (*ptr16:16 or ptr16:32 type call*)

ENDIF; (*mode = real address or virtual 8086*)

IF (PE = 1 AND VM = 0) (*mode = protected*)

    AND instruction = FarCall THEN

    IF new CS selector is null THEN #GP(0);

    IF new CS selector is NOT within its descriptor table limits

       THEN #GP(new CS selector);

    (*Examine AR of selected descriptor for various

    legal values; depending on value: *)

      GOTO CONFORMING_CODE_SEGMENT;

      GOTO NONCONFORMING_CODE_SEGMENT;

      GOTO CALL_GATE;

      GOTO TASK_GATE;

      GOTO TASK_STATE_SEGMENT;

    ELSE #GP(code segment selector); (*AR illegal*)

    CONFORMING_CODE_SEGMENT:

      IF DPL > CPL THEN #GP(code segment selector);

      IF segment NOT PRESENT THEN

         #NP (code segment selector);

      Stack must be big enough for return address ELSE

         #SS(0);

      IF target_offset NOT in code segment limit THEN #GP(0);

      Load code segment descriptor into CS cache;

      Load CS with new code segment selector;

      Load EIP with ZeroExtend(new offset);

      IF OperandSize = 16 THEN

         EIP : = EIP AND 0000FFFFH;

    NONCONFORMING_CODE_SEGMENT:

     IF RPL > CPL THEN #GP(code segment selector);

     IF DPL NOT = CPL then #GP(code segment selector);

     IF segment NOT PRESENT THEN

        #NP(code segment selector);

     Stack must be big enough for return address ELSE#SS(0);

     IF target_offset NOT in code segment limit THEN #GP(0);

     Load code segment descriptor into CS cache;



CALL

248 Chapter 6 Processor Instructions

     Load CS with new code segment selector;

     Set RPL of CS to CPL;

     Load EIP with ZeroExtend(new offset);

     IF OperandSize = 16 THEN

        EIP := EIP AND 0000FFFFH;

   CALL_GATE:

     IF call gate DPL < CPL THEN #GP(call gate selector);

     IF call gate DPL < RPL THEN #GP(call gate selector);

     IF call gate NOT PRESENT THEN #NP(call gate selector);

     (*Examine code segment selector in call gate descriptor: *)

     IF selector is null THEN #GP(0);

     IF selector is NOT within its descriptor table limits THEN

        #GP (code segment selector);

     IF AR of selected descriptor indicates non-code segment THEN

        #GP(code segment selector);

     IF DPL of selected descriptor > CPL THEN

        #GP(code segment selector);

     IF non-conforming code segment AND DPL < CPL THEN

        GOTO MORE_PRIVILEGE;

     ELSE

        GOTO SAME_PRIVILEGE;

     MORE_PRIVILEGE:

      Get new SS selector for new privilege level from TSS;

      (*Check selector and descriptor for new SS: *)

        IF selector is null THEN #TS(0);

        IF selector index NOT within descriptor table limits THEN

           #TS(SS selector);

        IF selector's RPL NOT = DPL of code segment THEN

           #TS(SS selector);

        IF stack segment DPL NOT = DPL of code segment THEN

           #TS(SS selector);

        Descriptor must indicate writable data segment ELSE

           #TS(SS selector);

        IF segment NOT PRESENT THEN #SS(SS selector);

        IF OperandSize = 32 THEN

           New stack must have room for parameters plus 16 bytes

             ELSE #SS(0);

        IF target_offset NOT in code segment limit THEN #GP(0);

        Load new SS:ESP value from TSS;

        Load new CS:EIP value from gate;



CALL

ASM386 Assembly Language Reference Chapter 6 249

     ELSE (*OperandSize = 16*)

        New stack must have room for parameters plus 8 bytes

          ELSE #SS(0);

        IF target_offset NOT in code segment limit THEN #GP(0);

        Load new SS:SP from TSS;

        Load new CS:IP value from gate;

     ENDIFELSE;

     Load CS descriptor;

     Load SS descriptor;

     Push long pointer of old stack onto new stack;

     Get word count from call gate, mask to 5-bits;

     Copy parameters from old stack onto new stack;

     Push return address onto new stack;

     Set CPL to stack segment DPL;

     Set RPL of CS to CPL;

  (*END CALL_GATE to MORE_PRIVILEGE*)

  SAME_PRIVILEGE:

   IF OperandSize = 32 THEN

      Stack must have room for 6-byte return address

         (*padded to 8 bytes*) ELSE #SS(0);

      IF target_offset NOT in code segment limit THEN #GP(0);

      Load CS:EIP from gate;

   ELSE (*OperandSize = 16*)

     Stack must have room for 4-byte return address

       ELSE #SS(0);

     IF target_offset NOT in code segment limit THEN #GP(0);

     Load CS:IP from gate;

   ENDIFELSE;

   Push return address onto stack;

   Load code segment descriptor into CS cache;

   Set RPL of CS to CPL;

(*END CALL_GATE*)

TASK_GATE:

  IF task gate DPL < CPL THEN #TS(gate selector);

  IF task gate DPL < RPL THEN #TS(gate selector);

  IF task gate NOT PRESENT THEN #NP(gate selector);

  (*Examine selector to TSS, given in task gate descriptor: *)

    Must specify global in local/global bit ELSE #TS(TSS selector);

    Index must be within GDT limits ELSE #TS(TSS selector);

  (*END checks selector in task gate descriptor*)



CALL

250 Chapter 6 Processor Instructions

  IF new TSS stack selector(s) THEN

  (*Check new TSS privileged stack selectors: *)

    IF stack selector NOT PRESENT THEN #SS(bad stack selector);

    IF stack selector invalid THEN #TS(bad stack selector);

  (*END checks new TSS stack selector(s)*)

  SwitchTasks (*with nesting*) to TSS;

  IF (E)IP NOT in code segment limit THEN #TS(0);

TASK_STATE_SEGMENT:

  IF TSS DPL < CPL THEN #TS(TSS selector);

  IF TSS DPL < RPL THEN #TS(TSS selector);
  SwitchTasks (*with nesting*) to TSS;
  IF (E)IP NOT in code segment limit THEN #TS(0);

Discussion

The CALL instruction causes a procedure (designated by the operand) to be
executed.  After a RET instruction is executed within the procedure, the caller's
execution resumes at the instruction following the CALL.

The assembler automatically generates the correct form of CALL according to the
procedure operand's type.  A procedure name is a label representing the destination
of the CALL.

Near calls are those with r/m16 , r/m32 , rel16 , or rel32  operands.  Near calls do
not need to change or save the segment register (CS) value.  The CALL rel32  and
CALL rel16  forms determine the destination by adding a signed offset to the next
instruction's address:

• The rel32  form is used when the operand size attribute is 32-bits.  The result
is stored in the 32-bit EIP register.

• The rel16  form is used when the CALL's operand size attribute is 16-bits.  The
result is also stored in EIP, but its upper bits are cleared so that the offset value
does not exceed 16-bits.

CALL r/m16  and CALL r/m32  specify a register or memory location from which
the absolute segment offset for the procedure is fetched.

In real address or virtual 8086 mode, the long pointer provides 16-bits for the CS
register and 32- or 16-bits for the

Far calls are those with ptr16:32 , ptr16:16 , m16:32 , and m16:16  operands.
CALL ptr16:32  uses a 6-byte operand as a long pointer to the procedure; CALL
ptr16:16  uses a 4-byte operand.  CALL m16:32  and CALL m16:16  fetch the long
pointer from the specified memory location (indirection).



CALL

ASM386 Assembly Language Reference Chapter 6 251

EIP register (depending on the operand size attribute).  These forms of CALL push
both CS and EIP or IP as a return address.

In protected mode, CALL ptr16:32  and CALL ptr16:16  consult the access rights
(AR) in the descriptor indexed by the selector part of the long pointer.  Depending
on the value of AR, CALL will perform one of the following control transfers:

• A far call to the same protection level

• An inter-protection level far call

• A task switch

Any far call from a 32-bit code segment to a 16-bit code segment should be made
from the first 64K bytes of the 32-bit code segment.  CALL's  operand size attribute
is set to 16, so it can save only 16-bits as a return address offset.

Flags Affected

All flags are affected if a task switch occurs; otherwise, no flags are affected

Exceptions by Mode

Protected

For near indirect calls: #GP(0) for an illegal memory operand effective address in
the CS, DS, ES, FS, or GS segments; #SS(0) if pushing the return address exceeds
the bounds of the stack segment; #GP(0) if the indirect offset obtained is beyond
the code segment limits; #PF(fault-code) for a page fault

For near direct calls: #GP(0) if procedure location is beyond the code segment
limits; #SS(0) if pushing the return address exceeds the bounds of the stack
segment; #PF(fault-code) for a page fault

For far calls: #GP, #NP, #SS, and #TS, as indicated in the Operation section

Real Address

Interrupt 13 if any part of the operand would be outside the effective address space
from 0 to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault code) for a page fault



CBW/CWDE

252 Chapter 6 Processor Instructions

CBW/CWDE   Convert Byte to Word/Convert Word to Dword

Opcode Instruction Clocks Description

98 CBW 3 AX := sign-extend of AL

98 CWDE 3 EAX := sign-extend of AX

Operation

IF OperandSize = 16 (*instruction = CBW*) THEN
    AX := SignExtend(AL);
ELSE (*OperandSize = 32, instruction = CWDE*)
    EAX := SignExtend(AX);

Discussion

CBW converts the signed byte in AL to a signed word in AX by extending the most
significant bit of AL (the sign bit) into all of the bits of AH.  CWDE converts the
signed word in AX to a dword in EAX.  Note that CWDE is not a variant of CWD.
CWD uses DX:AX, rather than EAX, as a destination.

Flags Affected

None

Exceptions by Mode

Protected

None

Real Address

None

Virtual 8086

None



CLC

ASM386 Assembly Language Reference Chapter 6 253

CLC   Clear Carry Flag

Opcode Instruction Clocks Description

F8 CLC 2 Clear carry flag

Operation

CF := 0;

Discussion

CLC clears the carry flag.  It does not affect other flags or registers.

Flags Affected

CF = 0

Exceptions by Mode

Protected

None

Real Address

None

Virtual 8086

None



CLD

254 Chapter 6 Processor Instructions

CLD   Clear Direction Flag

Opcode Instruction Clocks Description
FC CLD 2 Clear direction flag

Operation

DF :=0;

Discussion

CLD clears the direction flag.  After CLD executes, string operations will increment
the index registers (E)SI and/or (E)DI.  CLD does not affect other flags or registers.

Flags Affected

DF = 0

Exceptions by Mode

Protected

None

Real Address

None

Virtual 8086

None



CLI

ASM386 Assembly Language Reference Chapter 6 255

CLI   Clear Interrupt Flag

Opcode Instruction Clocks Description

FA CLI 3 Clear interrupt flag; interrupts disabled

Operation

IF CPL > IOPL THEN
    #GP(0);
ELSE
    IF (*interrupt flag*) := 0;

Discussion

CLI  clears the interrupt flag if the current privilege level is at least as privileged as
IOPL .  (IOPL  specifies the least privileged level at which I/O can be performed.)

After CLI  executes, external interrupts are not recognized until the interrupt flag is
set.  CLI  affects no other flags.

Flags Affected

IF = 0

Exceptions by Mode

Protected

#GP(0) if the current privilege level is greater (has less privilege) than IOPL in the
flags register.

Real Address

None

Virtual 8086

#GP(0) as for Protected Mode



CLTS

256 Chapter 6 Processor Instructions

CLTS   Clear Task Switched Flag in CR0

Opcode Instruction Clocks Description

0F 06 CLTS 5 Clear task-switched flag

Operation

TS (*Flag in CR0*) := 0;

Discussion

CLTS clears the task-switched (TS) flag in the machine status word (MSW) of
register CR0.  The processor sets this flag every time a task switch occurs.

CLTS appears only in operating system software.  It is a privileged instruction that
can be executed only at level 0.  The TS flag is used to synchronize processor task
switching with numerics coprocessor context switching as follows:

• Every execution of an ESC instruction is trapped if the TS flag is set.

• Every execution of an (F)WAIT instruction is trapped if both the TS and MP
flags are set.

These cases generate Interrupt 7.  If a task switch occurs after an ESC (numeric)
instruction begins executing, the numerics coprocessor context may need to be
saved before a new ESC instruction can be issued.  A fault handler should save the
current context, restore the new task context, and reset the TS flag.

Flags Affected

TS = 0 (TS in CR0, not the (E)FLAGS register)

Exceptions by Mode

Protected

#GP(0) if CLTS is executed with a current privilege level other than 0

Real Address

None (valid in Real Address Mode to allow initialization for Protected Mode)

Virtual 8086

#GP(0)



CMC

ASM386 Assembly Language Reference Chapter 6 257

CMC   Complement Carry Flag

Opcode Instruction Clocks Description

F5 CMC 2 Complement carry flag

Operation

CF := NOT CF;

Discussion

CMC changes the carry flag value from 0 to 1 or from 1 to 0.  It does not affect any
other flags.

Flags Affected

CF as described

Exceptions by Mode

Protected

None

Real Address

None

Virtual 8086

None



CMP

258 Chapter 6 Processor Instructions

CMP   Compare Two Operands

Opcode Instruction Clocks Description

3C ib CMP AL,imm8 2 Compare immediate byte to AL

3D iw CMP AX,imm16 2 Compare immediate word to AX

3D id CMP EAX,imm32 2 Compare immediate dword to EAX

80 /7 ib CMP r/m8,imm8 2/5 Compare immediate byte to r/m byte

81 /7 iw CMP r/m16,imm16 2/5 Compare immediate word to r/m word

81 /7 id CMP r/m32,imm32 2/5 Compare immediate dword to r/m
dword

83 /7 ib CMP r/m16,imm8 2/5 Compare sign extended immediate byte
to r/m word

83 /7 ib CMP r/m32,imm8 2/5 Compare sign extended immediate byte
to r/m dword

38 /r CMP r/m8,r8 2/5 Compare byte register to r/m byte

39 /r CMP r/m16,r16 2/5 Compare word register to r/m word

39 /r CMP r/m32,r32 2/5 Compare dword register to r/m dword

3A /r CMP r8,r/m8 2/6 Compare r/m byte to byte register

3B /r CMP r16,r/m16 2/6 Compare r/m word to word register

3B /r CMP r32,r/m32 2/6 Compare r/m dword to dword register

Operation

(*CMP's purpose is to set the flags*)
IF (RightSrc is byte) AND (LeftSrc is word or dword) THEN
     LeftSrc - SignExtend(RightSrc);
ELSE
     LeftSrc - RightSrc;



CMP

ASM386 Assembly Language Reference Chapter 6 259

Discussion

CMP subtracts the second operand from the first and sets the flags accordingly.  If
an operand greater than one byte is compared to an immediate byte, the byte value
is first sign-extended.  CMP does not store the result of its non-destructive
subtraction.  CMP is used in conjunction with conditional jumps and the SETcc
instructions.  (See the Jcc  instructions for a list of signed and unsigned flag tests
provided.)

Flags Affected

OF, SF, ZF, AF, PF, and CF as described in Appendix A

Exceptions by Mode

Protected

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or
GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a
page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from 0 to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



CMPS/CMPSB/CMPSW/CMPSD

260 Chapter 6 Processor Instructions

CMPS/CMPSB/CMPSW/CMPSD   Compare String Operands

Opcode Instruction Clocks Description

A6 CMPS m8,m8 10 Compare bytes ES:[ (E)DI] (second operand)
with [ (E)SI] (first operand)

A7 CMPS
m16,m16

10 Compare words ES:[ (E)DI] (second operand)
with [ (E)SI] (first operand)

A7 CMPS
m32,m32

10 Compare dwords ES:[ (E)DI] (second operand)
with [ (E)SI] (first operand)

A6 CMPSB 10 Compare bytes ES:[ (E)DI] with DS: [ (E)SI]

A7 CMPSW 10 Compare words ES:[ (E)DI] with DS: [ (E)SI]

A7 CMPSD 10 Compare dwords ES:[ (E)DI] with DS:[ (E)SI]

Operation

IF (instruction = CMPSD) OR (instruction has dword operands)
THEN
   OperandSize = 32; (*Assembler action*)
ELSE
   OperandSize = 16;
IF AddressSize = 16 THEN
   Use SI for SrcIndex and DI for DestIndex;
ELSE (*AddressSize = 32*)
   Use ESI for SrcIndex and EDI for DestIndex;
IF byte type instruction THEN
   [SrcIndex] - [DestIndex]; (*low-byte comparison in words*)
   IF DF = 0 THEN IncDec := 1 ELSE IncDec := -1;
ELSE
   [SrcIndex] - [DestIndex]; (*comparison*)
   IF OperandSize = 16 THEN
       IF DF = 0 THEN IncDec := 2 ELSE IncDec := -2;
   ELSE (*OperandSize = 32*)
       IF DF = 0 THEN IncDec := 4 ELSE IncDec := -4;
SrcIndex := SrcIndex + IncDec;
DestIndex := DestIndex + IncDec;



CMPS/CMPSB/CMPSW/CMPSD

ASM386 Assembly Language Reference Chapter 6 261

Discussion

CMPS compares the byte, word, or dword pointed to by the source index register
with the byte, word, or dword pointed to by the destination index register.  CMPS
does the comparison by subtracting the destination operand from the source
operand.  CMPS does not store the result of its subtraction; it sets the flags.

If the address size attribute of this instruction is 16-bits, CMPS uses SI and DI for
source and destination index registers; otherwise, it uses ESI and EDI.  Load the
correct index values into the appropriate registers before executing CMPS.  The
(E)SI) and (E)DI contents determine addresses for compared memory values.

The direction of subtraction for CMPS is [SI] - [DI] or [ESI] - [EDI].  The left
operand ( (E)SI) is the source, and the right operand ( (E)DI) is the destination.
CMPS reverses ASM386's conventional operand ordering: left-to-right is usually
destination-source.

The CMPS operands determine whether bytes, words, or dwords are compared.  The
segment addressability of the first operand (SI or ESI) determines whether a
segment override byte is produced or whether the default segment register DS is
used.  The second operand (DI or EDI) must be addressable from the ES register;
no segment override is possible.

After the comparison, both the source index and destination index registers are
automatically advanced.  If the direction flag is 0 (CLD was executed), the registers
increment; if the direction flag is 1 (STD was executed), the registers decrement.
The registers increment or decrement by 1 if a byte is compared, by 2 if a word is
compared, or by 4 if a dword is compared.

CMPSB, CMPSW, and CMPSD are synonyms for the byte, word, and dword CMPS
instructions.  They are simpler, but they do not provide type checking, nor do they
allow the (E)SI operand to override the DS segment.

CMPS can be preceded by the REPE or REPNE prefix for block comparison of (E)CX
bytes, words, or dwords.  See the REP reference page for details about this
operation.

Flags Affected

OF, SF, ZF, AF, PF, and CF as described in Appendix A



CMPS/CMPSB/CMPSW/CMPSD

262 Chapter 6 Processor Instructions

Exceptions by Mode

Protected

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or
GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a
page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from 0 to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



CMPXCHG

ASM386 Assembly Language Reference Chapter 6 263

CMPXCHG   Compare Exchange (not available on Intel386 or 376 processors)

Opcode Instruction Clocks Description

0F A6 /r CMPXCHG r/m8,r8 — Compare AL with r/m8; if equal,
move r8  to r/m8; if not equal, move
r/m8 to AL

0F A7 /r CMPXCHG r/m16, r16 — Compare AX with r/m16; if equal,
move r16 to r/m16; if not equal, move
r/m16 to AX

0F A7 /r CMPXCHG r/m32, r32 — Compare EAX with r/m32; if equal,
move r32 to r/m32; if not equal, move
r/m32 to EAX

Operation

IF OperandSize = 8 (* r/m 8, r8, AL*) THEN
   temp :=  r/m 8;
   IF AL = temp THEN
         r/m 8 := r 8;
   ELSE
         r/m 8 := temp;
         AL := temp;
IF OperandSize = 16 (* r/m 16, r 16, AX*) THEN
   temp :=  r/m 16;
   IF AX = temp THEN
         r/m 16 :=  r 16;
   ELSE
         r/m 16 := temp;
         AX := temp;
IF OperandSize = 32 (* r/m 32,  r 32, EAX*) THEN
   temp :=  r/m 32;
   IF EAX = temp THEN
          r/m 32 :=  r 32;
   ELSE
          r/m 32 := temp;
          EAX := temp;



CMPXCHG

264 Chapter 6 Processor Instructions

Discussion

CMPXCHG compares the contents of AL, AX, or EAX with the contents of the first
operand and sets the flags accordingly.  If the comparison is equal, the second
operand is copied into the first; if the comparison is not equal, the first operand is
copied into AL, AX, or EAX.

The LOCK prefix is only valid for the forms of CMPXCHG which involve memory
operands.

Flags Affected

OF, SF, ZF, AF, PF, and CF as described in Appendix A

Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from 0 to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



CWD/CDQ

ASM386 Assembly Language Reference Chapter 6 265

CWD/CDQ   Convert Word to Dword/Convert Dword to Qword

Opcode Instruction Clocks Description

99 CWD 2 DX:AX := sign-extend of AX

99 CDQ 2 EDX:EAX := sign-extend of EAX

Operation

IF Operand Size = 16 (*CWD instruction*) THEN
   IF AX < 0 THEN
       DX := 0FFFFH;
   ELSE
       DX := 0;
ELSE (*OperandSize = 32, CDQ instruction*)
   IF EAX < 0 THEN
       EDX := 0FFFFFFFFH;
   ELSE
       EDX := 0;

Discussion

CWD converts the signed word in AX to a signed dword in DX:AX by extending the
most significant bit of AX into all the bits of DX.  CDQ converts the signed dword
in EAX to a signed qword in the register pair EDX:EAX by extending the most
significant bit of EAX (the sign bit) into all the bits of EDX.

Note that CWDE is not a variant of CWD.  CWDE uses EAX as a destination, rather
than (E)DX:(E)AX.

Flags Affected

None

Exceptions by Mode

Protected

None



CWD/CDQ

266 Chapter 6 Processor Instructions

Real Address

None

Virtual 8086

None



DAA

ASM386 Assembly Language Reference Chapter 6 267

DAA   Decimal Adjust AL after Addition

Opcode Instruction Clocks Description

27 DAA 4 Decimal adjust AL after addition

Operation

IF ( (AL AND 0FH) > 9) OR (AF = 1) THEN
      AL := AL + 6;
      AF := 1;
ELSE
      AF := 0;
IF (AL > 9FH) OR (CF = 1) THEN
      AL := AL + 60H;
      CF := 1;
ELSE
      CF := 0;

Discussion

Code DAA only after an ADD instruction that leaves a 2-BCD-digit byte result in the
AL register.  The ADD operands should consist of 2 packed BCD digits.  The DAA
instruction adjusts AL to contain the correct 2-digit packed decimal result.

Flags Affected

AF and CF as described in the Operation section; SF, ZF, and PF, as described in
Appendix A

Exceptions by Mode

Protected

None

Real Address

None

Virtual 8086

None



DAS

268 Chapter 6 Processor Instructions

DAS   Decimal Adjust AL after Subtraction

Opcode Instruction Clocks Description

2F DAS 4 Decimal adjust AL after subtraction

Operation

IF (AL AND 0FH) > 9 OR AF = 1 THEN
AL := AL - 6;
AF := 1;
ELSE
AF := 0;
IF (AL > 9FH) OR (CF = 1) THEN
AL := AL - 60H;
CF := 1;
ELSE
CF := 0;

Discussion

Code DAS only after a subtraction instruction that leaves a 2-BCD-digit byte result
in the AL register.  The operands should consist of 2 packed BCD digits.  DAS
adjusts AL to contain the correct 2-digit packed decimal result.

Flags Affected

AF and CF as described in the Operation section; SF, ZF, and PF as described in
Appendix A

Exceptions by Mode

Protected

None

Real Address

None

Virtual 8086

None



DEC

ASM386 Assembly Language Reference Chapter 6 269

DEC   Decrement by 1

Opcode Instruction Clocks Description

FE /1 DEC r/m8 2/6 Decrement r/m byte by 1

FF /1 DEC r/m16 2/6 Decrement r/m word by 1

FF /1 DEC r/m32 2/6 Decrement r/m dword by 1

48+rw DEC r16 2 Decrement word register by 1

48+rd DEC r32 2 Decrement dword register by 1

Operation

Dest := Dest - 1;

Discussion

DEC subtracts 1 from the operand.  DEC does not change the carry flag.  (Use the
SUB instruction with an immediate operand of 1 to affect the carry flag.)

Flags Affected

OF, SF, ZF, AF, and PF as described in Appendix A

Exceptions by Mode

Protected

#GP(0) if the result is a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from 0 to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



DIV

270 Chapter 6 Processor Instructions

DIV   Unsigned Divide

Opcode Instruction Clocks Description

F6 /6 DIV r/m8 14/17 Unsigned divide AX by r/m byte (AL = Quo,
AH = Rem)

F7 /6 DIV r/m16 22/25 Unsigned divide DX:AX by r/m word
(AX = Quo, DX = Rem)

F7 /6 DIV r/m32 38/41 Unsigned divide EDX:EAX by r/m dword
(EAX = Quo, EDX = Rem)

Operation

(*Divisions are unsigned.  The only operand is the divisor; 
the dividend, quotient, and remainder use implicit 
registers.*)
IF r/m = 0 THEN
     Interrupt 0;
temp := dividend / (r/m);
IF temp does not fit in quotient THEN
     Interrupt 0;
ELSE
     quotient := temp;
     remainder := dividend MOD (r/m);

Discussion

DIV  performs an unsigned division.  The dividend is implicit; DIV 's single operand
is the divisor.  The remainder is always less than the divisor.

The divisor, dividend, quotient, and remainder locations are summarized as
follows:

Table 6-17.  Operands and Implicit Destinations for DIV

Size Divisor Dividend Quotient Remainder

byte r/m8 AX AL AH

word r/m16 DX:AX AX DX

dword r/m32 EDX:EAX EAX EDX

Flags Affected

OF, SF, ZF, AR, PF, and CF are undefined



DIV

ASM386 Assembly Language Reference Chapter 6 271

Exceptions by Mode

Protected

Interrupt 0 if the quotient is too large to fit in the destination register (AL or AX),
or if the divisor is 0; #GP(0) for an illegal memory operand effective address in the
CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment;
#PF(fault-code) for a page fault

Real Address

Interrupt 0 if the quotient is too large to fit in the destination register (AL or AX),
or if the divisor is 0; Interrupt 13 if any part of the operand would lie outside the
effective address space from 0 to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



ENTER

272 Chapter 6 Processor Instructions

ENTER   Make Stack Frame for Procedure Parameters

Opcode Instruction Clocks Description

C8 iw 00 ENTER imm16,0 10 Make procedure stack frame

C8 iw 01 ENTER imm16,1 12 Make stack frame for nested
procedure

C8 iw ib ENTER imm16,
imm8

15+4(n-1) Make stack frame for nested
procedure

Operation

level := level MOD 32; (*level is rightmost parameter*)
IF stack segment is USE = 32 THEN
     StackAddrSize := 32; (*Assembler action*)
     Push(EBP);
     frame_pointer := ESP;
ELSE
     StackAddrSize := 16;
     Push(BP);
     frame_pointer := SP;
IF level > 0 THEN
     FOR i := 1 TO (level - 1) DO
         IF StackAddrSize = 16 THEN
             Push[BP];
             BP := BP - 2;
         ELSE (*StackAddrSize = 32*)
             Push[EBP];
             EBP := EBP - 4;
     ENDFOR;
ENDIF; (*level > 0*)
IF StackAddrSize = 16 THEN
     BP := frame_pointer;
     SP := SP - first_operand;
ELSE
     EBP := frame_pointer;
     ESP := ESP - ZeroExtend(first_operand);



ENTER

ASM386 Assembly Language Reference Chapter 6 273

Discussion

ENTER creates the stack frame required by most block-structured high-level
languages.  The first operand specifies the number of bytes of dynamic storage
allocated on the stack for the routine being entered.  The second operand gives the
lexical nesting level (0-31) of the routine within the high-level source code.  It
determines the number of stack frame pointers copied into the new stack frame
from the preceding frame.

If the stack size attribute is 16-bits, the processor uses BP as the frame pointer and
SP as the stack pointer.  If the stack size attribute is 32-bits, the processor uses EBP
for the frame pointer and ESP for the stack pointer.

ENTER pushes the frame pointer (BP or EBP).  ENTER copies the frame pointer
addresses for enclosing callers' frames, if any; it then sets the frame pointer to the
current stack pointer value and subtracts the first operand from the stack pointer.

For example, a procedure with 12 bytes of local variables would have an ENTER
12,0 instruction at its entry point and a LEAVE instruction before every RET.  The
12 local bytes would be addressed as negative offsets from (E)BP.

Flags Affected

None

Exceptions by Mode

Protected

#SS(0) if SP or ESP would exceed the stack limit at any point during instruction
execution; #PF(fault-code) for a page fault

Real Address

None

Virtual 8086

None



HLT

274 Chapter 6 Processor Instructions

HLT   Halt

Opcode Instruction Clocks Description

F4 HLT 5 Halt

Operation

Enter Halt state;

Discussion

HLT stops instruction execution and places the processor in a Halt state.  An
enabled interrupt, NMI, or a hardware RESET# will resume execution.  If an
interrupt or NMI is used to resume execution after HLT, the saved CS:IP (or
CS:EIP) value points to the instruction following HLT.

Flags Affected

None

Exceptions by Mode

Protected

HLT is a privileged instruction: #GP(0) if the current privilege level is not 0

Real Address

None

Virtual 8086

Same as Protected Mode



IDIV

ASM386 Assembly Language Reference Chapter 6 275

IDIV   Signed Divide

Opcode Instruction Clocks Description

F6 /7 IDIV r/m8 19 Signed divide AX by r/m byte(AL=Quo,AH=Rem)

F7 /7 IDIV r/m16 27 Signed divide DX:AX by r/m
word(AX=Quo,DX=Rem)

F7 /7 IDIV r/m32 43 Signed divide EDX:EAX by r/m
dword(EAX=Quo,EDX=Rem)

Operation

(*The only operand is the divisor; the dividend, quotient, 
and remainder use implicit registers.*)
IF r/m  = 0 THEN
     Interrupt 0;
ELSE
     temp := dividend / ( r/m );
     IF temp does not fit in quotient register THEN
         Interrupt 0;
     ELSE
         quotient := temp;
         remainder := dividend MOD ( r/m );

Discussion

IDIV  performs a signed division.  The dividend, quotient, and remainder are
implicitly allocated to fixed registers.  Only the divisor is given as an explicit r/m
operand.  The type of the divisor (size) determines which instructions and registers
to use as follows:

Table 6-18.  Operands and Implicit Destinations for IDIV

Size Divisor Dividend Quotient Remainder

byte r/m8 AX AL AH

word r/m16 DX:AX AX DX

dword r/m32 EDX:EAX EAX EDX



IDIV

276 Chapter 6 Processor Instructions

If the resulting quotient is too large to fit in the destination, or if the divisor is 0, an
Interrupt 0 is generated.  Nonintegral quotients are truncated toward 0.  The
remainder has the same sign as the dividend, and its absolute value is always less
than the divisor's.

Flags Affected

For dword operands, CF and OF are set (1) if EDX is not the sign extension of
EAX; otherwise, CF = 0 and OF = 0; SF, ZF, AF, and PF are undefined

Exceptions by Mode

Protected

Interrupt 0 if the quotient is too large to fit in the implicit destination register, or if
the divisor is 0; #GP (0) for an illegal memory operand effective address in the CS,
DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment;
#PF(fault-code) for a page fault

Real Address

Interrupt 0 if the quotient is too large to fit in the implicit destination register, or if
the divisor is 0; Interrupt 13 if any part of the operand would lie outside the address
space from 0 to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



IMUL

ASM386 Assembly Language Reference Chapter 6 277

IMUL   Signed Multiply

Opcode Instruction Clocks Description

F6 /5 IMUL r/m8 9-14/12-17 AX:=AL * r/m byte

F7 /5 IMUL r/m16 9-22/12-25 DX:AX := AL * r/m word

F7 /5 IMUL r/m32 9-38/12-41 EDX:EAX := EAX * r/m dword

0F AF /r IMUL r16,r/m16 9-22/12-25 word register := word register * r/m
word

0F AF /r IMUL r32,r/m32 9-38/12-41 dword register := dword register * r/m
dword

6B /r ib IMUL r16,r/m16,
imm8

9-14/12-17 word register := r/m16 * sign-extended
immediate byte

6B /r ib IMUL r32,r/m32,
imm8

9-14/12-17 dword register := r/m32 * sign-extended
immediate byte

6B /r ib IMUL r16,imm8 9-14/12-17 word register := word register * sign-
extended immediate byte

6B /r ib IMUL r32,imm8 9-14/12-17 dword register := dword register * sign-
extended immediate byte

69 /r iw IMUL r16,r/m16, 9-22/12-25 word register := r/m16 * immediate
word

69 /r id IMUL r32,r/m32,
imm32

9-38/12-41 dword register := r/m32 * immediate
dword

69 /r iw IMUL r16,imm16 9-22/12-25 word register := r/m16 * immediate
word

69 /r id IMUL r32,imm32 9-38/12-41 dword register := r/m32 * immediate
dword



IMUL

278 Chapter 6 Processor Instructions

✏ Note
The processor uses an early-out multiply algorithm.  The actual
number of clocks depends on the position of the most significant
bit in the optimizing multiplier, shown underlined in the table.
The optimization occurs for positive and negative values.
Because of the early-out algorithm, clock counts given are
minimum to maximum.  To calculate the actual clocks, use the
following formula:

IF m = 0 THEN ActualClock := 9;
ELSE ActualClock := max( ceiling( log2 |m|), 3) + 6 clocks;

where m is the optimizing multiplier.  Add 3 clocks if the multiplier is
a memory operand.

Operation

result := multiplicand * multiplier;

Discussion

IMUL performs signed multiplication.  Some forms of the instruction use implicit
register operands.  The operand combinations for all forms of the instruction are
shown in the Description column of the preceding table.

IMUL clears the overflow and carry flags under the following conditions:

Table 6-19.  When IMUL Clears CF and OF

Operand(s) Condition for Clearing CF and OF

r/m8 AX = sign-extend  AL to 16-bits

r/m16 DX:AX = sign-extend AX to 32-bits

r/m32 EDX:EAX = sign-extend EAX to 64-bits

r16,r/m16 Result exactly fits within r16

r32,r/m32 Result exactly fits within r32

r16,r/m16,imm16 Result exactly fits within r16

r32,r/m32,imm32 Result exactly fits within r32

The IMUL accumulator forms (IMUL r/m8 , IMUL r/m16 , or IMUL r/m32 ) yield a
result even if the overflow flag is set because such a result is twice the size of the
multiplicand and multiplier.  This is large enough to handle any possible result.



IMUL

ASM386 Assembly Language Reference Chapter 6 279

Flags Affected

OF and CF as shown in Table 6-19; SF, ZF, AF, and PF are undefined

Exceptions by Mode

Protected

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or
GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a
page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from 0 to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



IN

280 Chapter 6 Processor Instructions

IN   Input from Port

Opcode Instruction Clocks Description

E4 ib IN AL, imm8 12,pm=6†/26‡ Input byte from immediate port
into AL

E5 ib IN AX, imm8 12,pm=6†/26‡ Input word from immediate port
into AX

E5 ib IN EAX,imm8 12,pm=6†/26‡ Input dword from immediate port
into EAX

EC IN AL,DX 13,pm=7†/27‡ Input byte from port DX into AL

ED IN AX,DX 13,pm=7†/27‡ Input word from port DX into AX

ED IN EAX,DX 13,pm=7†/27‡ Input dword from port DX into
EAX

† If CPL <= IOPL
‡ If CPL > IOPL or if in virtual 8086 mode

Operation

IF (PE = 1) AND ((VM = 1) OR (CPL > IOPL)) THEN
(*virtual 8086 mode or protected mode with CPL > IOPL*)
      IF NOT IOPermission(Src, width(Src)) THEN #GP(0);
Dest := [Src]; (*reads from I/O address space*)

Discussion

IN  transfers a data byte, word, or dword from the port numbered by the second
operand into the register (AL, AX, or EAX) specified by the first operand.  Access
any port from 0 to 65535 by placing the port number in the DX register and using
an IN  instruction with DX as the second operand.  These I/O instructions can be
shortened by using an 8-bit number of a port in the instruction.

If executed in virtual 8086 mode or in protected mode with CPL greater than IOPL :

• IN  cannot access any given byte unless the I/O permission bit map has a
corresponding clear bit.

See also: I/O permission bit map, Appendix A

• IN  also cannot access a dword or word unless it can access every byte in the
dword or word.



IN

ASM386 Assembly Language Reference Chapter 6 281

Flags Affected

None

Exceptions by Mode

Protected

#GP(0) if the current privilege level is larger (has less privilege) than IOPL and any
of the corresponding I/O permission bits in TSS equals 1

Real Address

None

Virtual 8086

#GP(0) if any of the corresponding I/O permission bits in TSS equals 1



INC

282 Chapter 6 Processor Instructions

INC   Increment by 1

Opcode Instruction Clocks Description

FE /0 INC r/m8 2/6 Increment r/m byte by 1

FF /0 INC r/m16 2/6 Increment r/m word by 1

FF /0 INC r/m32 2/6 Increment r/m dword by 1

40 + rw INC r16 2 Increment word register by 1

40 + rd INC r32 2 Increment dword register by 1

Operation

Dest := Dest + 1;

Discussion

INC adds 1 to the operand.  It does not change the carry flag.  (Use the ADD
instruction with a second operand of 1 to affect the carry flag.)

Flags Affected

OF, SF, ZF, AF, and PF as described in Appendix A

Exceptions by Mode

Protected

#GP(0) if the operand is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the address space from 0 to
0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



INS/INSB/INSW/INSD

ASM386 Assembly Language Reference Chapter 6 283

INS/INSB/INSW/INSD   Input from Port to String

Opcode Instruction Clocks Description

6C INS m8,DX 15,pm=9†/29‡ Input byte from port DX into ES:(E)DI

6D INS m16,DX 15,pm=9†/29‡ Input word from port DX into
ES:(E)DI

6D INS m32,DX 15,pm=9†/29‡ Input dword from port DX into
ES:(E)DI

6C INSB 15,pm=9†/29‡ Input byte from port DX into ES:(E)DI

6D INSW 15,pm=9†/29‡ Input word from port DX into
ES:(E)DI

6D INSD 15,pm=9†/29‡ Input dword from port DX into
ES:(E)DI

† If CPL <= IOPL
‡ If CPL > IOPL or if in virtual 8086 mode

Operation

IF AddressSize = 16 THEN
    Use DI for DestIndex;
ELSE (*AddressSize = 32*)
    Use EDI for DestIndex;
IF (PE = 1) AND ( (VM = 1) OR (CPL > IOPL) ) THEN
(*virtual 8086 mode or protected mode with CPL > IOPL*)
    IF NOT IOPermission(Src, width(Src) ) THEN #GP(0);
IF byte type instruction THEN
    ES:[DestIndex] := [DX]; (*reads at DX from I/O address space*)

    IF DF = 0 THEN IncDec := 1 ELSE IncDec := -1;
ELSE (*read word or dword*)
    IF OperandSize = 16 THEN
        ES:[DestIndex] := [DX];
        IF DF = 0 THEN IncDec := 2 ELSE IncDec := -2;
    ELSE (*OperandSize = 32*)
        ES:[DestIndex] := [DX];
        IF DF = 0 THEN IncDec := 4 ELSE IncDec := -4;
DestIndex := DestIndex + IncDec;



INS/INSB/INSW/INSD

284 Chapter 6 Processor Instructions

Discussion

INS  transfers data from the port numbered by the DX register to the memory byte,
word, or dword at ES:DestinationIndex.  The memory operand must be addressable
from ES; no segment override is possible.  The destination is DI if the address size
attribute of the instruction is 16-bits, or EDI if the address size attribute is 32-bits.

INS  does not allow the specification of the port number as an immediate value.
The port must be addressed through the DX register.  Load the correct value into
DX before executing the INS  instruction.

The destination address is determined by the contents of the (E)DI register (not by
the first operand to INS).  The purpose of the operand is to validate ES segment
addressability and to determine the data type (byte, word, or dword).

After the transfer, (E)DI advances automatically.  If the direction flag is 0 (CLD
was executed), (E)DI increments; if the direction flag is 1 (STD was executed),
(E)DI decrements.  (E)DI increments or decrements by 1 if a byte is input, by 2 if a
word is input, or by 4 if a dword is input.

INSB, INSW and INSD are synonyms of the byte, word, and dword INS
instructions.  They are simpler, but they provide no type or segment checking.

If executed in virtual 8086 mode or in protected mode with CPL greater than IOPL :

• INS  cannot access any given byte unless the I/O permission bit map has a
corresponding clear bit.

See also: I/O permission bit map, Appendix A

• INS  also cannot access a dword or word unless it can access every byte in the
dword or word.

INS  can be preceded by the REP prefix for block input of (E)CX bytes or words.
See the REP reference page for details of this operation.

Flags Affected

None

Exceptions by Mode

Protected

#GP(0) if CPL is numerically greater than IOPL  and any of the corresponding I/O
permission bits in TSS equals 1; #GP(0) if the destination is in a nonwritable
segment; #GP(0) for an illegal memory operand effective address in the ES
segment; #PF(fault-code) for a page fault



INS/INSB/INSW/INSD

ASM386 Assembly Language Reference Chapter 6 285

Real Address

Interrupt 13 if any part of the operand would lie outside the address space from 0 to
0FFFFH

Virtual 8086

#GP(0) if any of the corresponding I/O permission bits in TSS equals 1; #GP(0) for
an illegal memory operand effective address in the ES segment; #PF(fault-code) for
a page fault



INT/INTO

286 Chapter 6 Processor Instructions

INT/INTO   Transfer Control to Interrupt Procedure

Opcode Instruction Clocks Description

CC INT 3 33 Interrupt 3 - trap to debugger

CC INT 3 pm=59 Interrupt 3 - protected mode, same privilege

CC INT 3 pm=99 Interrupt 3 - protected mode, more privilege

CC INT 3 pm=119 Interrupt 3 - from virtual 8086 mode to
privilege level 0

CC INT 3 pm=224-314† Interrupt 3 - protected mode, via task gate

CD ib INT imm8 37 Interrupt numbered by immediate byte

CD ib INT imm8 pm=59 Interrupt - protected mode, same privilege

CD ib INT imm8 pm=99 Interrupt - protected mode, more privilege

CD ib INT imm8 pm=119 Interrupt - from virtual 8086 mode to
privilege level 0

CD ib INT imm8 pm=224-314† Interrupt - protected mode, via task gate

CE INTO Fail:3,pm=3
Pass:35

Interrupt 4 - if overflow flag is 1

CE INTO pm=59 Interrupt 4 - protected mode, same privilege

CE INTO pm=99 Interrupt 4 - protected mode, more privilege

CE INTO pm=119 Interrupt 4 - from virtual 8086 mode to
privilege level 0

CE INTO pm=224-314† Interrupt 4 - protected mode, via task gate

† See also:   80386 Programmer's Reference Manual

Operation

(*These operations also occur for exceptions and external

 interrupts*)

IF PE = 0 THEN (*real address mode*)

   IF interrupt table entry > IDT limit THEN #DF(0);

   ELSE

     Push(FLAGS);

     IF := 0; (*Clear interrupt flag*)

     TF := 0; (*Clear trap flag*)

     Push(CS);

     Push(IP);

     (*no error codes are pushed*)



INT/INTO

ASM386 Assembly Language Reference Chapter 6 287

     CS := IDT[interrupt number * 4].selector;

     IP := IDT[interrupt number * 4].offset;

ELSE

   IF VM = 1 THEN

      GOTO INTERRUPT_FROM_VIRTUAL_8086_MODE;

   ELSE

      GOTO PROTECTED_MODE;

PROTECTED_MODE:

   IF interrupt vector NOT within IDT table limit THEN

      #GP(vector number * 8+2+EXT);

   Descriptor AR must indicate interrupt, trap or task gate

      ELSE #GP(vector number * 8+2+EXT);

   IF software interrupt (*caused by INT n, INT 3, INTO,

      BOUND*)

   AND gate descriptor DPL < CPL THEN

      #GP(vector number * 8+2+EXT);

   IF gate NOT PRESENT THEN #NP(vector number * 8+2+EXT);

   IF trap gate OR interrupt gate THEN

      GOTO TRAP_OR_INTERRUPT_GATE;

   ELSE

      GOTO TASK_GATE;

   TRAP_OR_INTERRUPT_GATE:

(*Examine CS selector and descriptor given in gatedescriptor: *)

  IF selector is null THEN #GP(EXT);

  IF selector NOT within its descriptor table limits THEN

     #GP(selector + EXT);

  IF descriptor AR indicates non-code segment THEN

     #GP(selector + EXT);

IF segment NOT PRESENT THEN #NP(selector + EXT);

IF code segment is non-conforming AND DPL < CPL THEN

   GOTO INTERRUPT_TO_MORE_PRIVILEGED;

IF code segment is conforming OR code segment DPL=CPL

   THEN GOTO INTERRUPT_TO_SAME_PRIVILEGE;

ELSE #GP(CS selector + EXT);

INTERRUPT_TO_MORE_PRIVILEGED:

(*Check selector and descriptor for new stack in currentTSS: *)

  IF selector is null THEN #GP(EXT);

  IF selector index NOT within descriptor table limits THEN

     #TS(SS selector + EXT);

  IF selector's RPL NOT = DPL of code segment THEN

     #TS(SS selector + EXT);



INT/INTO

288 Chapter 6 Processor Instructions

  IF stack segment DPL NOT = DPL of code segment THEN

     #TS(SS selector + EXT);

  Descriptor must indicate writable data segment

    ELSE #TS(SS selector + EXT);

  IF segment NOT PRESENT THEN #SS(SSselector +EXT);

IF 32-bit gate THEN

  New stack must have room for 24 bytes ELSE #SS(0);

    IF interrupt caused by exception with error code THEN

      Stack limits must allow pushing 2 more bytes

        ELSE #SS(0);

  gate_offset must be within CS segment boundaries

    ELSE #GP(0);

  Load new SS and ESP values from TSS;

  CS:EIP := selector:offset from gate;

ELSE (*16-bit gate*)

  New stack must have room for 12 bytes ELSE #SS(0);

    IF interrupt caused by exception with error code THEN

      Stack limits must allow pushing 2 more bytes

        ELSE #SS(0);

  gate_offset must be within CS segment boundaries

    ELSE #GP(0);

  Load new SS and SP values from TSS;

  CS:IP := selector:offset from gate;

ENDIFELSE;

Load CS descriptor into CS cache;

Load SS descriptor into SS cache;

IF 32-bit gate THEN

  Push(long pointer to old stack); (*3 words padded to 4*)

  Push(EFLAGS);

  Push(long pointer to return location);

      (*3 words padded to 4*)

ELSE (*16-bit gate*)

  Push(long pointer to old stack); (*2 words*)

  Push(FLAGS);

  Push(long pointer to return location); (*2 words*)

ENDIFELSE;

CPL := (*new code segment's*) DPL;

RPL (*of CS*) := CPL;

Push error code if exception;

IF interrupt gate THEN IF := 0; (*interrupt flag disabled*)

TF := 0;

NT := 0;



INT/INTO

ASM386 Assembly Language Reference Chapter 6 289

INTERRUPT_TO_SAME_PRIVILEGE:

  IF 32-bit gate THEN

    Current stack limits must allow pushing 12 bytes

      ELSE #SS(0);

    IF interrupt caused by exception with error code THEN

      Stack limits must allow pushing 2 more bytes

        ELSE #SS(0);

    gate_offset must be within CS limit ELSE #GP(0);

    Push(EFLAGS);

    Push(long pointer to return location); (*3 words pad to 4*)

    CS:EIP := selector:offset from gate;

  ELSE (*16-bit gate*)

    Current stack limits must allow pushing 6 bytes

      ELSE #SS(0);

    IF interrupt caused by exception with error code THEN

      Stack limits must allow pushing 2 more bytes

        ELSE #SS(0);

    gate_offset must be in CS limit ELSE #GP(0);

    Push(FLAGS);

    Push(long pointer to return location); (*2 words*)

    CS:IP := selector:offset from gate;

  ENDIFELSE;

    Load CS descriptor into CS cache;

    RPL (*of CS*) := CPL;

    Push error code (*if any*) onto stack;

    IF interrupt gate THEN IF := 0; (*clear interrupt flag*)

    TF := 0;

    NT := 0;

INTERRUPT_FROM_VIRTUAL8086_MODE:

  tempEFlags := EFLAGS;

  VM := 0;

  TF := 0;

  IF service through task gate THEN GOTO TASK_GATE;

  ELSE (*service through trap or interrupt gate*)

    IF interrupt gate THEN IF := 0; (*Clear interrupt flag*)

    tempSS := SS;

    tempESP := ESP;

    SS := TSS.SS0; (*Change to level 0 stack segment*)

    ESP := TSS.ESP0; (*Change to level 0 stack pointer*)

    Push(GS); (*padded to 2 words*)

    Push(FS); (*padded to 2 words*)

    Push(DS); (*padded to 2 words*)

    Push(ES); (*padded to 2 words*)



INT/INTO

290 Chapter 6 Processor Instructions

    GS := 0;

    FS := 0;

    DS := 0;

    ES := 0;

    Push(TempSS); (*padded to 2 words*)

    Push(TempESP);

    Push(TempEFlags);

    Push(CS); (*padded to 2 words*)

    Push(EIP);

    CS:EIP := selector:offset from trap or interrupt gate;

  (*starts execution of new routine in protected mode*)

  TASK_GATE:

  (*Examine selector to TSS in task gate descriptor: *)

    IF TSS selector specifies local in local/global bit THEN

       #TS(TSS selector);

    IF index NOT within GDT limits THEN #TS(TSS selector);

  SwitchTasks (*with nesting*) to TSS;

  IF interrupt caused by exception with error code THEN

     Stack limits must allow pushing 2 more bytes ELSE SS(0);

     Push error code onto stack;

  ENDIF;

  (E)IP must be in CS limit ELSE #GP(0);

Discussion

The INT  n instruction gives control to an interrupt procedure via software.  The
immediate operand gives the index number (0 to 255) into the interrupt descriptor
table (IDT) for the routine called.  In protected mode, the IDT consists of an array
of 8-byte descriptors; each descriptor must indicate an interrupt, trap, or task gate.
In real address mode, the IDT is an array of 4 byte-long pointers.  In protected and
real address modes, the base linear address of the IDT is defined by the contents of
the IDTR.

The INTO conditional software instruction is identical to the INT  n instruction
except that the interrupt number is implicitly 4, and the interrupt is made only if the
processor overflow flag is set.

The first 32 interrupts are reserved by Intel for system use.  Some of these
interrupts are used for internally generated exceptions.

INT  n behaves like a far call except that the flags register is pushed onto the stack
before the return address.  Interrupt procedures return via the IRET/IRETD
instruction, which pops the flags and return address from the stack.



INT/INTO

ASM386 Assembly Language Reference Chapter 6 291

In real address mode, INT  n pushes the flags, CS, and the return IP onto the stack
and then jumps to the long pointer indexed by the interrupt number.

Flags Affected

None

Exceptions by Mode

Protected

#GP, #NP, #SS, and #TS as described in the Operation section

Real Address

None; if SP or ESP = 1, 3, or 5 before executing INT  or INTO, the processor will
shut down due to insufficient stack space

Virtual 8086

For INT  n only, #GP(0) if IOPL  is less than 3 to allow emulation; Interrupt 3
(0CCH) generates Interrupt 3; INTO generates Interrupt 4 if the overflow flag
equals1



INVD

292 Chapter 6 Processor Instructions

INVD   Invalidate Data Cache (not available on Intel386 or 376 processors)

Opcode Instruction Clocks Description

0F 08 INVD — Destructively flush data cache

Operation

FOR ALL CacheEntries DO
Bit[CacheEntry,Valid] := 0;

Discussion

INVD destructively invalidates (flushes) the data cache of all entries.  The entries
are flushed by resetting their valid bits.  This instruction takes no operand.

Flags Affected

None

Exceptions by Mode

Protected

None

Real Address

None

Virtual 8086

None



INVLPG

ASM386 Assembly Language Reference Chapter 6 293

INVLPG   Invalidate Paging Cache Entry
(not available on Intel386 or 376 processors)

Opcode Instruction Clocks Description

0F 01 /7 INVLPG m — Invalidate paging cache entry for m

Operation

VirtualAddr := Segment + Addr(m);
IF VirtualAddr IN PagingCache THEN
Bit[PageCacheEntry,0] := 0;

Discussion

INVLPG invalidates (flushes) a page entry from the 486 processor's on-chip paging
cache (translation lookaside buffer).  The full virtual address of m is generated.  The
paging cache is then checked to see if the corresponding entry for that virtual
address exists in the cache.  If so, the entry is flushed by resetting the Present bit
(bit 0).

Only memory operands are valid with this instruction.

Flags Affected

None

Exceptions by Mode

Protected

#UD if a register operand is used.

Real Address

None

Virtual 8086

None



IRET/IRETD

294 Chapter 6 Processor Instructions

IRET/IRETD   Interrupt Return

Opcode Instruction Clocks Description

CF IRET 22,pm=38 16-bit interrupt return (far return, pop
flags)

CF IRET pm=82 16-bit interrupt return to lesser privilege

CF IRET pm=214-275† 16-bit interrupt return different task
(NT = 1)

CF IRETD 22,pm=38 32-bit interrupt return (far return, pop
flags)

CF IRETD pm=60 32-bit interrupt return to virtual 8086
mode

CF IRETD pm=82 32-bit interrupt return to lesser privilege

CF IRETD pm=214-275† 32-bit interrupt return, different task
(NT = 1)

† See also:   80386 Programmer's Reference Manual

Operation

IF PE = 0 THEN (*real address mode*)

    IF OperandSize = 32 (*instruction IRETD*) THEN

       EIP := Pop( ); (*pop stack top into EIP*)

    ELSE (*instruction IRET*)

       IP := Pop( );

    CS := Pop( );

    IF OperandSize = 32 THEN

       EFLAGS := Pop( );

    ELSE (*OperandSize = 16*)

       FLAGS := Pop( );

ELSE (*protected mode*)

    IF VM = 1 THEN #GP(0);

    IF NT = 1 THEN

       GOTO TASK_RETURN;

    ELSE

      IF VM = 1 (*in flags image on stack*) THEN

         GOTO STACK_RETURN_TO_VIRTUAL8086;

      ELSE

         GOTO STACK_RETURN;

TASK_RETURN:

 (*Examine back link selector in TSS addressed by currentTR: *)



IRET/IRETD

ASM386 Assembly Language Reference Chapter 6 295

     Must specify global in local/global bit ELSE

       #TS(new TSS selector);

     Index must be within GDT limits ELSE #TS(new TSS selector);

     AR must specify TSS ELSE #TS(new TSS selector);

     New TSS must be busy ELSE #TS(new TSS selector);

     IF TSS NOT PRESENT THEN #NP(new TSS selector);

   (*END check back link selector*)

   SwitchTasks without nesting to TSS

     specified by back link selector;

   Mark task just abandoned as NOT busy;

   (E)IP must be within code segment limit ELSE #GP(0);

STACK_RETURN_TO_VIRTUAL8086:

   EFLAGS := SS:[ESP + 8]; (*sets VM in interrupted routine*)

   EIP := Pop( );

   CS := Pop( ); (*behaves as in 8086, due to VM = 1*)

   throwaway := Pop( ); (*Pop EFLAGS already read*)

   ES := Pop( ); (*pop 2 words; throw away high-order word*)

   DS := Pop( ); (*pop 2 words; throw away high-order word*)

   FS := Pop( ); (*pop 2 words; throw away high-order word*)

   GS := Pop( ); (*pop 2 words; throw away high-order word*)

   tempESP := Pop( );

   tempSS := Pop( );

   SS:ESP := tempSS:tempESP;

(*resume execution in virtual 8086 mode*)

STACK_RETURN:

   IF OperandSize = 32 THEN

      Fourth word on stack must be within stack limits ELSE #SS(0);

  ELSE (*OperandSize = 16*)

      Second word on stack must be within stack limits ELSE #SS(0);

  IF return CS selector RPL < CPL THEN #GP(return selector);

  IF return selector RPL = CPL THEN

      GOTO RETURN_SAME_PRIVILEGE;

  ELSE

      GOTO RETURN_LESS_PRIVILEGED;

  RETURN_SAME_PRIVILEGE:

  IF OperandSize = 32 THEN

     Top 12 bytes on stack must be within limits ELSE #SS(0);

     Return CS selector (*at ESP+4*) must be non-null ELSE

       #GP(0);

  ELSE (*OperandSize = 16*)

     Top 6 bytes on stack must be within limits ELSE #SS(0);



IRET/IRETD

296 Chapter 6 Processor Instructions

     Return CS selector (*at SP+2*) must be non-null ELSE

       #GP(0);

  ENDIFELSE;

  IF selector index NOT within its descriptor table limits THEN

     #GP(return selector);

  AR must indicate code segment ELSE #GP(return selector);

  IF non-conforming AND code segment DPL NOT = CPL THEN

     #GP(return selector);

  IF conforming AND code segment DPL > CPL THEN

     #GP(return selector);

  IF segment NOT PRESENT THEN #NP(return selector);

  return_offset must be within code segment boundaries ELSE

     #GP(0);

  IF OperandSize = 32 THEN

     Load CS:EIP from stack;

     Load CS cache with new code segment descriptor;

     Load EFLAGS with third dword from stack;

     (E)SP := (E)SP + 12;

  ELSE (*OperandSize = 16*)

     Load CS:IP from stack;

     Load CS cache with new code segment descriptor;

     Load FLAGS with third word on stack;

     (E)SP := (E)SP + 6;

  RETURN_LESS_PRIVILEGED:

     IF OperandSize = 32 THEN

        Top 20 bytes on stack must be within limits ELSE #SS(0);

     ELSE (*OperandSize = 16*)

        Top 10 bytes on stack must be within limits ELSE #SS(0);

(*Examine return CS selector and associated descriptor: *)

  IF selector is null THEN #GP(0);

  IF selector index NOT within its descriptor table limits THEN

     #GP(return selector);

  IF AR does NOT indicate code segment THEN

     #GP(return selector);

  IF non-conforming AND

  code segment DPL NOT = CS selector RPL THEN

     #GP(return selector);

  IF conforming AND code segment DPL < = CPL THEN

     #GP(return selector);

  IF segment NOT PRESENT THEN #NP(return selector);

(*END check return CS selector and associated descriptor*)

(*Examine return SS selector and associated descriptor: *)

  IF selector is null THEN #GP(0);



IRET/IRETD

ASM386 Assembly Language Reference Chapter 6 297

  IF selector index NOT within its descriptor table limits THEN

     #GP(SS selector);

  IF selector RPL NOT = RPL of return CS selector THEN

     #GP(SS selector);

  IF AR does NOT indicate writable data segment THEN

     #GP(SS selector);

  IF stack segment DPL NOT = RPL of return CS selector

     THEN #GP(SS selector);

  IF SS NOT PRESENT THEN #NP(SS selector);

(*END check return SS selector and associated descriptor*)

return_offset must be in code segment ELSE#GP(0);

IF OperandSize = 32 THEN

   Load CS:EIP from stack;

   Load EFLAGS with values at (ESP + 8);

ELSE (*OperandSize = 16*)

   Load CS:IP from stack;

   Load FLAGS with values at (SP+4);

ENDIFELSE;

Load SS:(E)SP from stack;

CPL := RPL of CS return selector;

Load CS cache with CS descriptor;

Load SS cache with SS descriptor;

FOR each of ES, FS, GS, and DS DO

  IF current register value NOT valid for interrupted routine

    THEN zero register and clear valid flag;

  (*To be valid, register setting must satisfy:

    Selector index is within its descriptor table limits;

    AR indicates data or readable code segment;

    IF segment is data or non-conforming code THEN

    DPL must be >= CPL or DPL must be >= RPL;*)

ENDFOR;

Discussion

IRETD is a 32-bit and IRET  is a 16-bit return from an interrupt routine, whatever
the USE attribute (32- or 16-bit) of the containing segment.  In real address mode,
IRET (D) pops the (E)IP, CS, and the flags register from the stack and resumes the
interrupted routine.  In protected mode, the action of IRET (D) depends on the
setting of the nested task flag (NT) bit in the flag register.  When popping the new
flag image from the stack, the IOPL  bits in the flag register are changed only when
CPL equals 0.



IRET/IRETD

298 Chapter 6 Processor Instructions

If NT equals 0, IRET (D) returns from an interrupt procedure without a task switch.
The code that resumes execution after IRET (D) must be equally or less privileged
than the interrupt routine (as indicated by the RPL bits of the CS selector popped
from the stack).  If the destination code is less privileged, IRET (D) also pops (E)SP
and SS from the stack.

If NT equals 1, IRET (D) reverses the operation of the CALL or INT that caused a
task switch.  The task executing IRET (D) has its updated state saved in its task
state segment.  If the task is reentered, the code that follows IRET (D) is executed.

Flags Affected

All; the flags register is popped from stack

Exceptions by Mode

Protected

#GP, #NP, #TS, or #SS, as indicated in the preceding Operation section

Real Address

Interrupt 13 if any part of the operand being popped lies beyond address 0FFFFH

Virtual 8086

#GP(0) if IOPL is less than 3 to permit emulation



Jcc

ASM386 Assembly Language Reference Chapter 6 299

Jcc    Jump if Condition is Met

Opcode Instruction Clocks Description

77 cb JA rel8 7+m,3 Jump short if above (CF=0 and ZF=0)

73 cb JAE rel8 7+m,3 Jump short if above or equal (CF=0)

72 cb JB rel8 7+m,3 Jump short if below (CF=1)

76 cb JBE rel8 7+m,3 Jump short if below or equal (CF=1 or ZF=1)

72 cb JC rel8 7+m,3 Jump short if carry (CF=1)

E3 cb JCXZ rel8 9+m,5 Jump short if CX register is 0

E3 cb JECXZ rel8 9+m,5 Jump short if ECX register is 0

74 cb JE rel8 7+m,3 Jump short if equal (ZF=1)

74 cb JZ rel8 7+m,3 Jump short if 0 (ZF=1)

7F cb JG rel8 7+m,3 Jump short if greater (ZF=0 and SF=OF)

7D cb JGE rel8 7+m,3 Jump short if greater or equal (SF=OF)

7C cb JL rel8 7+m,3 Jump short if less (SF NOT = OF)

7E cb JLE rel8 7+m,3 Jump short if less or equal (ZF=1 and
SF NOT = OF)

76 cb JNA rel8 7+m,3 Jump short if not above (CF=1 or ZF=1)

72 cb JNAE rel8 7+m,3 Jump short if not above or equal (CF=1)

73 cb JNB rel8 7+m,3 Jump short if not below (CF=0)

77 cb JNBE rel8 7+m,3 Jump short if not below or equal (CF=0 and ZF=0)

73 cb JNC rel8 7+m,3 Jump short if not carry (CF=0)

75 cb JNE rel8 7+m,3 Jump short if not equal (ZF=0)

7E cb JNG rel8 7+m,3 Jump short if not greater (ZF=1 or SF NOT = OF)

7C cb JNGE rel8 7+m,3 Jump short if not greater or equal (SF NOT = OF)

7D cb JNL rel8 7+m,3 Jump short if not less (SF=OF)

7F cb JNLE rel8 7+m,3 Jump short if not less or equal (ZF=0 and SF=OF)

71 cb JNO rel8 7+m,3 Jump short if not overflow (OF=0)

7B cb JNP rel8 7+m,3 Jump short if not parity (PF=0)

79 cb JNS rel8 7+m,3 Jump short if not sign (SF=0)

NOTE: The first clock count is for the true condition (branch taken); the second clock count is for the false
condition (branch not taken).  rel16/32 indicates that these instructions map to two; one with a 16-bit relative
displacement, the other with a 32-bit relative displacement, depending on the operand size attribute of the
instruction.  The assembler does not allow an operand override for relative jumps.



Jcc

300 Chapter 6 Processor Instructions

Opcode Instruction Clocks Description
75 cb JNZ rel8 7+m,3 Jump short if not zero (ZF=0)

70 cb JO rel8 7+m,3 Jump short if overflow (OF=1)

7A cb JP rel8 7+m,3 Jump short if parity (PF=1)

7A cb JPE rel8 7+m,3 Jump short if parity even (PF=1)

7B cb JPO rel8 7+m,3 Jump short if parity odd (PF=0)

78 cb JS rel8 7+m,3 Jump short if sign (SF=1)

74 cb JZ rel8 7+m,3 Jump short if zero (ZF = 1)

0F 87 cw/cd JA rel16/32 7+m,3 Jump near if above (CF=0 and ZF=0)

0F 83 cw/cd JAE rel16/32 7+m,3 Jump near if above or equal (CF=0)

0F 82 cw/cd JB rel16/32 7+m,3 Jump near if below (CF=1)

0F 86 cw/cd JBE rel16/32 7+m,3 Jump near if below or equal (CF=1 or
ZF=1)

0F 82 cw/cd JC rel16/32 7+m,3 Jump near if carry (CF=1)

0F 84 cw/cd JE rel16/32 7+m,3 Jump near if equal (ZF=1)

0F 84 cw/cd JZ rel16/32 7+m,3 Jump near if 0 (ZF=1)

0F 8F cw/cd JG rel16/32 7+m,3 Jump near if greater (ZF=0 and SF=OF)

0F 8D cw/cd JGE rel16/32 7+m,3 Jump near if greater or equal (SF=OF)

0F 8C cw/cd JL rel16/32 7+m,3 Jump near if less (SF NOT = OF)

0F 8E cw/cd JLE rel16/32 7+m,3 Jump near if less or equal (ZF=1 and SF
NOT = OF)

0F 86 cw/cd JNA rel16/32 7+m,3 Jump near if not above (CF=1 or ZF=1)

0F 82 cw/cd JNAE rel16/32 7+m,3 Jump near if not above or equal (CF=1)

0F 83 cw/cd JNB rel16/32 7+m,3 Jump near if not below (CF=0)

0F 87 cw/cd JNBE rel16/32 7+m,3 Jump near if not below or equal (CF=0 and
ZF=0)

0F 83 cw/cd JNC rel16/32 7+m,3 Jump near if not carry (CF=0)

0F 85 cw/cd JNE rel16/32 7+m,3 Jump near if not equal (ZF=0)

0F 8E cw/cd JNG rel16/32 7+m,3 Jump near if not greater (ZF=1 or SF NOT
= OF)

0F 8C cw/cd JNGE rel16/32 7+m,3 Jump near if not greater or equal
(SF NOT = OF)

NOTE: The first clock count is for the true condition (branch taken); the second clock count is for the false
condition (branch not taken).  rel16/32 indicates that these instructions map to two; one with a 16-bit relative
displacement, the other with a 32-bit relative displacement, depending on the operand size attribute of the
instruction.  The assembler does not allow an operand override for relative jumps.



Jcc

ASM386 Assembly Language Reference Chapter 6 301

Opcode Instruction Clocks Description

0F 8D cw/cd JNL rel16/32 7+m,3 Jump near if not less (SF=OF)

0F 8F cw/cd JNLE rel16/32 7+m,3 Jump near if not less or equal (ZF=0
and SF=OF)

0F 81 cw/cd JNO rel16/32 7+m,3 Jump near if not overflow (OF=0)

0F 8B cw/cd JNP rel16/32 7+m,3 Jump near if not parity (PF=0)

0F 89 cw/cd JNS rel16/32 7+m,3 Jump near if not sign (SF=0)

0F 85 cw/cd JNZ rel16/32 7+m,3 Jump near if not zero (ZF=0)

0F 80 cw/cd JO rel16/32 7+m,3 Jump near if overflow (OF=1)

0F 8A cw/cd JP rel16/32 7+m,3 Jump near if parity (PF=1)

0F 8A cw/cd JPE rel16/32 7+m,3 Jump near if parity even (PF=1)

0F 8B cw/cd JPO rel16/32 7+m,3 Jump near if parity odd (PF=0)

0F 88 cw/cd JS rel16/32 7+m,3 Jump near if sign (SF=1)

0F 84 cw/cd JZ rel16/32 7+m,3 Jump near if 0 (ZF=1)

NOTE: The first clock count is for the true condition (branch taken); the second clock count is for the false
condition (branch not taken).  rel16/32 indicates that these instructions map to two; one with a 16-bit relative
displacement, the other with a 32-bit relative displacement, depending on the operand size attribute of the
instruction.  The assembler does not allow an operand override for relative jumps.

Operation

IF condition THEN
    EIP := EIP + SignExtend( rel8/rel16/rel32 );
    IF OperandSize = 16 THEN
    EIP := EIP AND 0000FFFFH;



Jcc

302 Chapter 6 Processor Instructions

Discussion

Conditional jumps (except JECXZ and JCXZ) test the flags which have been set by
a previous instruction.  If the given condition is true, a jump is made to the location
(label) specified as the operand.  The conditions for each mnemonic are
parenthesized in the Description column of the preceding table.  The terms less and
greater are used for comparisons of signed integers; above and below are used for
unsigned integers.

Instruction coding is most efficient when the target for the conditional jump is in
the current code segment and within
-128 to +127 bytes of the next instruction's first byte.  The jump can also target a
label in the range:

• -32768 to +32767 for a USE16 code segment.

• -231 to (+231 -1) for a USE32 code segment.

When the target for the conditional jump is a far label (in a different segment), use
the opposite case of the jump instruction (i.e., JE and JNE), and then access the
target with an unconditional jump to the far label.  For example, you cannot code:

JZ FARLABEL

You must instead code:

  JNZ BEYOND
BEYOND:
  JMP FARLABEL

The assembler provides more than one mnemonic for most of the conditional jump
opcodes because there are several interpretations for a particular state of the flags.
For example, use JE for a jump when two characters compared in AX are equal.
Or, use JZ (a synonym for JE) for a jump when the result is 0 if AX is ANDed with
a bit field mask.

Use J(E)CXZ within a conditional loop.  The conditional loop instructions use an
implicit limiting count in the ECX or CX register, and J(E)CXZ tests the contents
of (E)CX for 0.  (The other Jcc instructions test the flags.) J(E)CXZ is useful at the
beginning of a conditional loop that terminates with a conditional loop instruction
(such as LOOPNE TARGET_LABEL).  J(E)CXZ prohibits entry to such a loop if
(E)CX equals 0; otherwise, the loop would execute 32G or 64K times.

Flags Affected

None



Jcc

ASM386 Assembly Language Reference Chapter 6 303

Exceptions by Mode

Protected

#GP(0) if the offset jumped to is beyond the limits of the code segment

Real Address

None

Virtual 8086

None



JMP

304 Chapter 6 Processor Instructions

JMP   Jump

Opcode Instruction Clocks Description

EB cb JMP rel8 7+m Jump short

E9 cw JMP rel16 7+m Jump near, displacement relative to
next instruction

FF /4 JMP r/m16 7+m/10+m Jump near indirect

EA cd JMP ptr16:16 12+m,pm=27+m Jump intersegment, 4-byte
immediate address

EA cd JMP ptr16:16 pm=45+m Jump to call gate, same privilege

EA cd JMP ptr16:16 pm=218-312† Jump via task state segment

EA cd JMP ptr16:16 pm=218-312† Jump via task gate

FF /5 JMP m16:16 43+m,pm=31+m Jump r/m16:16 indirect and
intersegment

FF /5 JMP m16:16 pm=49+m Jump to call gate, same privilege

FF /5 JMP m16:16 pm=223-317† Jump via task state segment

FF /5 JMP m16:16 pm=223-317† Jump via task gate

E9 cd JMP rel32 7+m Jump near, displacement relative to
next instruction

FF /4 JMP r/m32 7+m,10+m Jump near, indirect

EA cp JMP ptr16:32 12+m,pm=27+m Jump intersegment, 6-byte
immediate address

EA cp JMP ptr16:32 pm=45+m Jump to call gate, same privilege

EA cp JMP ptr16:32 pm=218-312† Jump via task state segment

EA cp JMP ptr16:32 pm=218-312† Jump via task gate

FF /5 JMP m16:32 43+m,pm=31+m Jump intersegment, address at r/m
dword

FF /5 JMP m16:32 pm=49+m Jump to call gate, same privilege

FF /5 JMP m16:32 pm=223-317† Jump via task state segment

FF /5 JMP m16:32 pm=223-317† Jump via task gate

† See also:   80386 Programmer's Reference Manual



JMP

ASM386 Assembly Language Reference Chapter 6 305

Operation

IF instruction = relative JMP (* rel8/16/32  operand*) THEN

     EIP := EIP +  rel8/16/32;

     IF protected mode AND destination address > its segment limit

        THEN #GP(0);

     IF OperandSize = 16 THEN

        EIP := EIP AND 0000FFFFH;

ENDIF; (*relative JMP*)

IF instruction = near indirect JMP (* r/m16/m32  operand*) THEN

     IF OperandSize = 16 THEN

        EIP := [ r/m16 ] AND 0000FFFFH;

     ELSE (*OperandSize = 32*)

        EIP := [ r/m32 ];

ENDIF; (*near indirect JMP*)

IF (PE = 0 OR (PE = 1 AND VM = 1)) (*real address or virtual 8086

mode*) AND instruction = far JMP  (* m/ptr16:16/32  operand*) THEN

     IF operand =  m16:16  OR m16:32  (*indirect*) THEN

        IF OperandSize = 16 THEN

           CS:IP := [ m16:16 ];

           EIP := EIP AND 0000FFFFH; (*clear upper 16-bits*)

        ELSE (*OperandSize = 32*)

           CS:EIP := [ m16:32 ];

     ENDIF; (* m16:16  or  m16:32  indirect JMP*)

     IF operand =  ptr16:16  or  ptr16:32  (*absolute JMP*) THEN

        IF OperandSize = 16 THEN

           CS:IP :=  ptr16:16 ;

           EIP := EIP AND 0000FFFFH; (*clear upper 16-bits*)

        ELSE (*OperandSize = 32*)

           CS:EIP :=  ptr16:32 ;

     ENDIF; (* ptr16:16  or  ptr16:32  absolute JMP*)

IF (PE = 1 AND VM = 0) (*protected mode*)

AND instruction = far JMP THEN

     IF operand =  m16:16  OR m16:32  (*indirect*) THEN

     (*check access of dword effective  address*)

       IF limit violation THEN #GP(0);

     ENDIF; (*check access*)

IF destination selector is null THEN #GP(0);

IF destination selector index NOT within its descriptor table limits

   THEN #GP(selector);

(*Examine AR of destination descriptor: *)

  IF invalid AR THEN #GP(selector);

  ELSE (*depending on AR value: *)



JMP

306 Chapter 6 Processor Instructions

    GOTO CONFORMING_CODE_SEGMENT;

    GOTO NONCONFORMING_CODE_SEGMENT;

    GOTO CALL_GATE;

    GOTO TASK_GATE;

    GOTO TASK_STATE_SEGMENT;

CONFORMING_CODE_SEGMENT:

  IF target_segment DPL > CPL or

     gate DPL < Max(CPL,RPL) THEN #GP(selector);

  IF segment NOT PRESENT THEN #NP(selector);

  IF target_offset NOT within code segment limit THEN #GP(0);

  IF OperandSize = 32 THEN

     Load CS:EIP from destination pointer;

  ELSE

     Load CS:IP from destination pointer;

  Load CS cache with new segment descriptor;

NONCONFORMING_CODE_SEGMENT:

  IF gate DPL < Max(CPL,RPL) THEN #GP(selector);

  IF target_segment DPL NOT = CPL THEN #GP(selector);

  IF segment NOT PRESENT THEN #NP(selector);

  IF target_offset NOT within code segment limit THEN #GP(0);

  IF OperandSize = 32 THEN

     Load CS:EIP from destination pointer;

  ELSE

     Load CS:IP from destination pointer;

  Load CS cache with new segment descriptor;

  RPL (*of CS*) := CPL;

CALL_GATE:

  IF descriptor DPL < CPL THEN #GP(gate selector);

  IF descriptor DPL < gate selector RPL THEN

     #GP(gate selector);

  IF gate NOT PRESENT THEN #NP(gate selector);

(*Examine selector to code segment in call gate descriptor: *)

  IF selector is null THEN #GP(0);

  IF selector NOT within its descriptor table limits THEN

     #GP(CS selector);

  IF descriptor AR indicates non-code segment THEN

     #GP(CS selector);

  IF nonconforming AND

  code segment descriptor DPL NOT = CPL THEN

     #GP(CS selector);

  IF conforming AND

  code segment descriptor DPL > CPL THEN



JMP

ASM386 Assembly Language Reference Chapter 6 307

     #GP(CS selector);

  IF code segment NOT PRESENT THEN #NP(CS selector);

  IF target_offset NOT within code segment limit THEN

     #GP(0);

  (*END check code segment selector in call gate descriptor*)

  IF OperandSize = 32 THEN

    Load CS:EIP from call gate;

  ELSE

  Load CS:IP from call gate;

  Load CS cache with new code segment descriptor;

  RPL (*of CS*) := CPL;

TASK_GATE:

  IF gate descriptor DPL < CPL THEN #TS(gate selector);

  IF gate descriptor DPL < gate selector RPL THEN

     #TS(gate selector);

  IF task gate NOT PRESENT THEN #NP(gate selector);

  (*Examine selector to TSS given in task gate descriptor: *)

    IF selector specifies local in local/global bit THEN

       #TS(TSS selector);

    IF index NOT within GDT limits THEN #TS(TSS selector);

  (*END check TSS selector given in task gate descriptor*)

  SwitchTasks (*without nesting*) to TSS;

  IF (E)IP NOT within code segment limit THEN #TS(0);

TASK_STATE_SEGMENT:

  IF TSS DPL < CPL THEN #TS(TSS selector);

  IF TSS DPL < TSS selector RPL THEN #TS(TSS selector);

  SwitchTasks (*without nesting*) to TSS;

  IF (E)IP NOT within code segment limit THEN #TS(0);



JMP

308 Chapter 6 Processor Instructions

Discussion

The JMP instruction transfers control to a different point in the instruction stream
without recording return information.

The assembler automatically generates the correct form and sets the operand size
attribute of the instruction according to the type of label:

Table 6-20.  JMP Label Types, Operand Sizes and Instructions

Operand
Size Instruction Chosen Label Type
† E8 cd JMP rel8 NEAR (short within code segment)
† E9 cw JMP rel16 NEAR within USE16 code segment
† E9 cd JMP rel32 NEAR within USE32 code segment
† FF /4 JMP r16 NEAR (label in register and USE16 code segment)
† FF /4 JMP r32 NEAR (label in register and USE32 code segment)

16 FF /4 JMP m16 memory indirect NEAR USE16 code segment

32 FF /4 JMP m32 memory indirect NEAR USE32 code segment

16 FF /5 JMP m16:16 memory indirect FAR USE16 code segment

32 FF /5 JMP m16:32 memory indirect FAR USE32 code segment

16 EA cd JMP ptr16:16 FAR to USE16 code segment

32 EA cp JMP ptr16:32 FAR to USE32 code segment

†  The operand size attribute defaults to the USE attribute of the code segment.

Jumps with labels of type r/m16 , r/m32 , rel8 , rel16 , and rel32  are near
jumps.  They do not involve changing the segment register value.

JMP rel8 , JMP rel16 , and JMP rel32  determine the destination by adding an
offset to the address of the instruction following the JMP.  The rel16  form is used
when the instruction's operand size attribute is 16-bits (USE16 segment only);
rel32  is used when the operand size attribute is 32-bits (USE32 segment only).
The result is stored in the 32-bit EIP register.  The upper 16-bits of EIP are cleared
for a rel16  operand so that the offset does not exceed 16-bits.

JMP r/m16  and JMP r/m32  specify a register or memory location from which the
absolute offset is fetched.  The number of bits in the offset depends on the operand
size attribute.

JMP ptr16:16  and JMP ptr16:32  use a 4-byte or 6-byte operand as a long
pointer to the destination.  JMP m16:16  and JMP m16:32  fetch the long pointer
from the memory location specified (indirection).



JMP

ASM386 Assembly Language Reference Chapter 6 309

In real address or virtual 8086 mode, the long pointer provides 16-bits for the CS
register and 16- or 32-bits for the EIP register (depending on the operand size
attribute).  In protected mode, the long pointer forms of JMP check the access rights
(AR) in the descriptor indexed by the selector part of the long pointer.  Depending
on the value of AR, JMP performs one of the following control transfers:

• A jump to a code segment at the same privilege level

• A jump to a conforming code segment (at a more privileged level)

• A task switch

See also: Protected mode control transfers, 80386 Programmer's Reference
Manual

Flags Affected

All if a task switch takes place; none if no task switch occurs

Exceptions by Mode

Protected

Near direct jumps: #GP(0) if the label is beyond the code segment limits

Near indirect jumps: #GP(0) for an illegal memory operand effective address in the
CS, DS, ES, FS, or GS segments: #SS(0) for an illegal address in the SS segment;
#GP if the indirect offset obtained is beyond the code segment limits; #PF(fault-
code) for a page fault

Far jumps: #GP, #NP, #SS, and #TS, as indicated in the Operation section

Real Address

Interrupt 13 if any part of the operand would be outside of the address space from 0
to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



LAHF

310 Chapter 6 Processor Instructions

LAHF   Load Flags into AH Register

Opcode Instruction Clocks Description

9F LAHF 2 Load AH with flags SF ZF xx AF xx PF

xx CF

Operation

(AH) := (SF):(ZF):xx:(AF):xx:(PF):xx:(CF);

Discussion

LAHF transfers the low byte of the flag dword to AH.  The bits, from MSB to LSB,
are sign, zero, indeterminate, auxiliary, carry, indeterminate, parity, indeterminate,
and carry.

Flags Affected

None

Exceptions by Mode

Protected

None

Real Address

None

Virtual 8086

None



LAR

ASM386 Assembly Language Reference Chapter 6 311

LAR   Load Access Rights

Opcode Instruction Clocks Description

0F 02 /r LAR r16,r/m16 pm=15/16 r16 := r/m16 masked by FF00

0F 02 /r LAR r32,r/m32 pm=15/16 r32 := r/m32 masked by 00FxFF00

Operation

IF selector index NOT within its table limits
OR ( (descriptor (*selected by Src*) does
    NOT indicate conforming code segment)
    AND (CPL > DPL (*of descriptor*)
      OR RPL (*of Src*) > DPL) )
OR
    descriptor (*selected by Src*) is Invalid
    (*see Table 6-21*)
THEN
    ZF := 0;
ELSE
    ZF := 1;
    temp := second dword of selected descriptor;
    IF OperandSize = 32 THEN
       Dest := temp AND 00FxFF00H;
    ELSE (*OperandSize = 16*)
       Dest := (Truncate(temp)) AND FF00H;

Discussion

LAR loads the destination register (first operand) with the segment descriptor's
access rights that it obtains from the second operand; the second operand should be
a selector.  LAR clears ZF if:

• The selector (second operand) index is outside its table limits.

• The associated descriptor does not indicate a conforming code segment, and
the current privilege level or the selector's privilege level does not permit
access to the descriptor.

• The AR of the descriptor has an invalid type field value (see Table 6-21).

Otherwise, LAR sets ZF and loads a masked form of the second dword of the
descriptor.  LAR masks this dword with 00FxFF00 and loads the result (or its lower
16-bits) into the destination register.  The X in the 32-bit mask value indicates that
the upper 4-bits of the limit field are undefined in the value loaded by LAR.



LAR

312 Chapter 6 Processor Instructions

All code and data segment descriptors are valid for LAR.  The valid/invalid system
descriptor types for LAR are the following:

Table 6-21.  System Descriptor Types for LAR

Type Valid/Invalid Name

0 Invalid Invalid

1 Valid Available 286 processor TSS

2 Valid LDT

3 Valid Busy 286 processor TSS

4 Valid 286 processor call gate

5 Valid 286/Intel386 processor task gate

6 Valid 286 processor trap gate

7 Valid 286 processor interrupt gate

8 Invalid Invalid

9 Valid Available Intel386 processor TSS

A Invalid Invalid

B Valid Busy Intel386 processor TSS

C Valid Intel386 processor call gate

D Invalid Invalid

E Valid Intel386 processor trap gate

F Valid Intel386 processor interrupt gate

Flags Affected

ZF as described in the Discussion section

Exceptions by Mode

Protected

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or
GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a
page fault



LAR

ASM386 Assembly Language Reference Chapter 6 313

Real Address

Interrupt 6; LAR is not recognized in Real Address Mode

Virtual 8086

Same as Real Address Mode



LDS/LES/LFS/LGS/LSS

314 Chapter 6 Processor Instructions

LDS/LES/LFS/LGS/LSS    Load Full Pointer

Opcode Instruction Clocks Description

C5 /r LDS r16,m16:16 7,pm=22 Load DS:r16 with pointer from memory

C5 /r LDS r32,m16:32 7,pm=22 Load DS:r32 with pointer from memory

0F B2 /r LSS r16,m16:16 7,pm=22 Load SS:r16 with pointer from memory

0F B2 /r LSS r32,m16:32 7,pm=22 Load SS:r32 with pointer from memory

C4 /r LES r16,m16:16 7,pm=22 Load ES:r16 with pointer from memory

C4 /r LES r32,m16:32 7,pm=22 Load ES:r32 with pointer from memory

0F B4 /r LFS r16,m16:16 7,pm=25 Load FS:r16 with pointer from memory

0F B4 /r LFS r32,m16:32 7,pm=25 Load FS:r32 with pointer from memory

0F B5 /r LGS r16,m16:16 7,pm=25 Load GS:r16 with pointer from memory

0F B5 /r LGS r32,m16:32 7,pm=25 Load GS:r32 with pointer from memory

Operation

CASE instruction OF
   LSS: Sreg is SS; (*load SS register*)
   LDS: Sreg is DS; (*load DS register*)
   LES: Sreg is ES; (*load ES register*)
   LFS: Sreg is FS; (*load FS register*)
   LGS: Sreg is GS; (*load GS register*)
ENDCASE;
IF mode = protected THEN
   GOTO CHECK_SREG_LOAD;
ELSE
   GOTO LOAD_SREG;

CHECK_SREG_LOAD:
   IF Sreg = SS THEN
      IF selector is null THEN #GP(0);
      IF selector index NOT within its descriptor table limits THEN

         #GP(selector);
      IF selector RPL NOT = CPL THEN #GP(selector);
      AR must indicate writable data segment
        ELSE #GP(selector);
      IF DPL (*in AR*) NOT = CPL THEN #GP(selector);
      IF segment NOT PRESENT THEN #NP(selector);
      GOTO LOAD_SREG;



LDS/LES/LFS/LGS/LSS

ASM386 Assembly Language Reference Chapter 6 315

    (*END checks protected mode, load SS*)
    IF Sreg = DS OR ES OR FS OR GS THEN
       IF selector index NOT within its descriptor table limits THEN

          #GP(selector);
       AR must indicate data or readable code segment
          ELSE #GP(selector);
       IF data or nonconforming code segment AND
       RPL > DPL (*in AR*) OR CPL > DPL THEN
          #GP(selector);
       IF segment NOT PRESENT THEN #NP(selector);
       GOTO LOAD_SREG;
     (*END checks protected mode, load DS, ES, FS, or GS*)

LOAD_SREG:
   IF OperandSize = 16 THEN
     r16  := [EffectiveAddress]; (* 16-bit transfer *)
     Sreg := ([EffectiveAddress] + 2); (* 16-bit transfer *)
   ELSE (*OperandSize = 32*)
     r32  := [EffectiveAddress]; (* 32-bit transfer *)
     Sreg := ( [EffectiveAddress] + 4); (* 16-bit transfer *)
   ENDIFELSE; (*OperandSize = 16 or 32*)
   IF mode = protected THEN
      Load Sreg cache with descriptor;

Discussion

LDS/LES/LFS/LGS/LSS  read a full pointer (second operand) from memory and
store it in the selected segment register:register pair.  Depending on the instruction,
the 16-bit full pointer is loaded into SS, DS, ES, FS, or GS.  The r32  or r16  (first
operand) is loaded with 32- or 16-bits depending on its operand size attribute.

When a protected mode assignment is made to one of the segment registers, its
associated segment register cache is also loaded.  The data for the cache is obtained
from the descriptor table entry for the selector.

LGS/LDS/LES/LFS  can load a null selector (values 0000-0003) into the DS, ES,
FS, or GS registers without causing a protection exception.  However, the #GP(0)
exception is raised by any subsequent attempt to access a segment whose
corresponding segment register has a null selector.  (No memory reference to the
segment occurs.)

Flags Affected

None



LDS/LES/LFS/LGS/LSS

316 Chapter 6 Processor Instructions

Exceptions by Mode

Protected

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or
GS segments; #SS(0) for an illegal address in the SS segment; #UD if the second
operand is a register; #GP(0) if a null selector is loaded into SS; #PF(fault-code) for
a page fault

Real Address

Interrupt 6 if the second operand is a register; Interrupt 13 if any part of the
operand would lie outside the effective address space from 0 to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



LEA

ASM386 Assembly Language Reference Chapter 6 317

LEA   Load Effective Address

Opcode Instruction Clocks Description

8D /r LEA r16,m 2 Store effective address for m in register r16

8D /r LEA r32,m 2 Store effective address for m in register r32

Operation

IF OperandSize = 16 AND AddressSize = 16 THEN

    r16  := Addr( m);

IF OperandSize = 16 AND AddressSize = 32 THEN

    r16  := Truncate(Addr( m) ); (*32-bits truncated to 16-bits*)

IF OperandSize = 32 AND AddressSize = 16 THEN

    r32  := ZeroExtend(Addr( m) ); (*16-bits extended to 32-bits*)

IF OperandSize = 32 AND AddressSize = 32 THEN

    r32  := Addr( m);

Discussion

LEA calculates the offset effective address and loads it into the 32- or 16-bit register
specified as the first operand.  The first operand (destination) determines LEA's
operand size attribute (represented by OperandSize in the Operation algorithm).
The USE attribute of the segment that contains LEA's second operand (source)
determines the address size attribute (represented by AddressSize in the Operation
algorithm).  If the address size attribute does not match the operand size attribute,
LEA truncates or zero-extends the second operand to fit the destination.

Flags Affected

None

Exceptions by Mode

Protected

#UD if the second operand is a register



LEA

318 Chapter 6 Processor Instructions

Real Address

Interrupt 6 if the second operand is a register

Virtual 8086

Same as Real Address Mode



LEAVE

ASM386 Assembly Language Reference Chapter 6 319

LEAVE   High Level Procedure Exit

Opcode Instruction Clocks Description

C9 LEAVE 4 Set SP to BP, then pop BP

C9 LEAVE 4 Set ESP to EBP, then pop EBP

Operation

IF StackAddrSize = 16 THEN
    SP := BP;
    BP := Pop( );
ELSE (*StackAddrSize = 32*)
    ESP := EBP;
    EBP := Pop( );

Discussion

LEAVE reverses the actions of the ENTER instruction.  By copying the frame pointer
to the stack pointer, LEAVE releases the stack space used by a procedure for its
local variables.  The old frame pointer is popped into BP or EBP, restoring the
caller's frame.  A subsequent RET n instruction removes any parameters that were
passed via the stack to the exiting procedure.

Flags Affected

None

Exceptions by Mode

Protected

#SS(0) if (E)BP does not point to a location within the limits of the current stack
segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from 0 to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



LGDT/LIDT

320 Chapter 6 Processor Instructions

LGDT/LIDT   Load Global/Interrupt Descriptor Table Register

Opcode Instruction Clocks Description

0F 01 /2 LGDT m 11 Load m into GDTR

0F 01 /3 LIDT m 11 Load m into IDTR

Operation

(*OperandSize is determined by the USE attribute of the code
segment*)
IF instruction = LIDT THEN
     IF OperandSize = 16 THEN
        IDTR.Limit:Base := m16:24;  (*24-bits of base loaded*)
     ELSE
        IDTR.Limit:Base := m16:32;
ELSE (*instruction = LGDT*)
     IF OperandSize = 16 THEN
        GDTR.Limit:Base := m16:24;  (*24-bits of base loaded*)
     ELSE
         GDTR.Limit:Base := m16:32;

Discussion

The LGDT and LIDT  instructions load a linear base address and limit value from a
6-byte operand in memory into the GDTR or IDTR, respectively.  LGDT/LIDT  load
the low-order word of the operand into the limit field.  If a 32-bit operand is used,
LGDT/LIDT  load the high-order dword of the 6-byte operand as the base field.  If a
16-bit operand is used, LGDT/LIDT  load the first 3 bytes of the high-order dword as
the base field; the high-order 8-bits of the 6-byte operand are not used.

LGDT and LIDT  are privileged (level 0) instructions that appear in operating system
software.  They are the only instructions that directly load an actual linear address
(i.e., not a segment relative address) in processor protected mode.  LGDT/LIDT  are
valid in real address mode to allow power-up initialization for protected mode.

The counterpart instructions for LGDT/LIDT  are SGDT/SIDT.  These instructions
always store into all 48-bits of the 6-byte operand.  The processor SGDT/SIDT
write the high-order 8 address bits for both 32- and 16-bit operands.  If a preceding
LGDT/LIDT  loaded a 16-bit operand, SGDT/SIDT store the upper 8-bits as zeros.
The 286 processor SGDT/SIDT left the upper 8-bits undefined in this case.



LGDT/LIDT

ASM386 Assembly Language Reference Chapter 6 321

Flags Affected

None

Exceptions by Mode

Protected

#GP(0) if the current privilege level is not 0; #UD if the source operand is a
register; #GP(0) for an illegal memory operand effective address in the CS, DS, ES,
FS, or GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-
code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the address space from 0 to
0FFFFH; Interrupt 6 if the source operand is a register

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



LGDTW/LGDTD/LIDTW/LIDTD

322 Chapter 6 Processor Instructions

LGDTW/LGDTD/LIDTW/LIDTD
Load Global/Interrupt Descriptor Table Register with WORD/DWORD Operand

Opcode Instruction Clocks Description

0F 01 /2 LGDTW m16 11 Load m16 into GDTR

0F 01 /2 LGDTD m32 11 Load m32 into GDTR

0F 01 /2 LIDTW m16 11 Load m16 into IDTR

0F 01 /2 LIDTD m32 11 Load m32 into IDTR

Operation

IF instruction = LIDTW THEN
     IDTR.Limit:Base =  m16:24 ; (* 24-bits of base loaded *)
IF instruction = LIDTD THEN
     IDTR.Limit:Base =  m16:32
IF instruction = LGDTW THEN
     GDTR.Limit:Base =  m16:24 ; (* 24-bits of base loaded *)
IF instruction = LGDTD
     GDTR.Limit:Base =  m16:32

Discussion

The LGDTW, LGDTD, LIDTW , and LIDTD  instructions are variants of the LGDT and
LIDT  instructions.   They load a linear base address and limit value from 6 bytes in
memory into the GDTR or IDTR, respectively.

These variants allow the 16-bit or 32-bit form of the instructions to be used without
hard-coding address and operand prefixes to override the USE attribute currently in
effect.

For example, since the processor starts up in USE16, real address mode, if you are
writing in a USE32 code segment for flat model, the LGDTW and LIDTW instructions
can be used to force the correct override prefixes.

The variants automatically generate any operand or address prefixes that are
necessary as follows:



LGDTW/LGDTD/LIDTW/LIDTD

ASM386 Assembly Language Reference Chapter 6 323

Instruction
USE16

Operand Prefix
USE16 Address

Prefix
USE32 Operand

Prefix
USE32 Address

Prefix

LGDTW/LIDTW NO NO YES YES

LGDTD/LIDTD YES YES NO NO

See also: LGDT/LIDT  instructions for further discussion, flags affected, and
exceptions, in this chapter



LLDT

324 Chapter 6 Processor Instructions

LLDT   Load Local Descriptor Table Register

Opcode Instruction Clocks Description

0F 00 /2 LLDT r/m16 20 Load selector r/m16 into LDTR

Operation

IF TI (*of selector*) NOT = 0
OR descriptor (*indexed by selector*) NOT an LDT THEN
    #GP(selector);
IF LDT NOT PRESENT THEN #NP(selector);
IF selector NOT within GDT limits THEN #GP(0);
LDTR := Src;

Discussion

LLDT loads the Local Descriptor Table register (LDTR).  The word operand
(memory or register) to LLDT should contain a selector to the Global Descriptor
Table (GDT).  The GDT entry should be a Local Descriptor Table descriptor.  If so,
then the LDTR is loaded from the entry.  The selector operand can be 0; if so, the
LDTR is marked invalid.  All subsequent descriptor references through that LDT
(except by LAR, VERR, VERW or LSL) cause a #GP exception.  LLDT does not affect
the descriptor cache entries for DS, ES, SS, FS, GS, and CS, nor does it change the
LDT field in the task state segment.  The operand size attribute has no effect on this
instruction.  LLDT is a privileged (level 0) instruction used only in operating
system software.

Flags Affected

None

Exceptions by Mode

Protected

#GP(0) if the current privilege level is not 0; #GP(selector) if the selector operand
does not point into the Global Descriptor Table, or if the entry in the GDT is not a
Local Descriptor Table; #GP(0) if LDT selector is outside GDT limits;
#NP(selector) if the LDT descriptor is not present; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault



LLDT

ASM386 Assembly Language Reference Chapter 6 325

Real Address

Interrupt 6; LLDT is not recognized in Real Address Mode

Virtual 8086

Same as Real Address Mode (because the instruction is not recognized, it will not
execute or perform a memory reference)



LMSW

326 Chapter 6 Processor Instructions

LMSW   Load Machine Status Word

Opcode Instruction Clocks Description

0F 01 /6 LMSW r/m16 10/13 Load r/m16 into machine status word in CR0

Operation

MSW := r/m16 ; (*16-bits stored in MSW of CR0*)

Discussion

LMSW loads the machine status word from the source operand into CR0.  LMSW is a
privileged (level 0) instruction used only in operating system software.  The
operand size attribute has no effect on LMSW.

LMSW can be used to switch to protected mode.  If it is, LMSW must be followed by a
jump to flush the instruction queue.  LMSW will not switch back to real address
mode.

This instruction is provided for compatibility with the 286 processor.  LMSW will
not affect the ET bit.  In new processor programs, use MOV CR0 rather than LMSW.

Flags Affected

None

Exceptions by Mode

Protected

#GP(0) if the current privilege level is not 0; #GP(0) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal
address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from 0 to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



LOCK

ASM386 Assembly Language Reference Chapter 6 327

LOCK   Assert Bus LOCK# Signal Prefix

Opcode Instruction Clocks Description

F0 LOCK 0 Assert bus LOCK# signal for the next instruction

Discussion

The LOCK prefix causes the processor LOCK# signal to be asserted during execution
of the instruction that follows it.  In a multiprocessor environment, this signal
ensures that the processor has exclusive use of any shared memory while LOCK# is
asserted.

The LOCK prefix functions only with the following instructions:

BT,BTS,BTR,BTC mem,reg/imm
CMPXCHG,XADD,XCHG mem,reg
XCHG reg,mem
ADD,ADC,SBB,SUB,AND,OR,XORmem,reg/imm
NOT,NEG,INC,DEC mem

A LOCK prefix to any other instruction causes an undefined opcode exception.
XCHG always asserts LOCK# regardless of the presence or absence of the LOCK
prefix.

The integrity of the lock is not affected by the alignment of the memory field.
Memory locking is observed for arbitrarily misaligned fields.

Locked access is not assured if another processor is concurrently executing an
instruction that has one of the following characteristics:

• The instruction is not preceded by a LOCK prefix.

• The instruction is not in the preceding list.

• The instruction specifies a memory operand that does not exactly overlap the
destination operand.  Locking is not guaranteed for partial overlap, even if one
memory operand is wholly contained within another.

The 8086, 80186, and 286 processors implement a superset of the processor LOCK
function.  8086/80186/286 processor programs that depend on LOCK may not
execute properly if transported to the processor.

Flags Affected

None



LOCK

328 Chapter 6 Processor Instructions

Exceptions by Mode

Protected

#GP(0) if the current privilege level is higher (less privileged) than IOPL ; #UD if
LOCK is used with an instruction not listed in the Discussion section; other
exceptions can be generated by the subsequent (locked) instruction

Real Address

Interrupt 6 if LOCK is used with an instruction not listed in the Discussion section;
exceptions can still be generated by the subsequent (locked) instruction

Virtual 8086

Same as Real Address Mode



LODS/LODSB/LODSW/LODSD

ASM386 Assembly Language Reference Chapter 6 329

LODS/LODSB/LODSW/LODSD    Load String Operand

Opcode Instruction Clocks Description

AC LODS m8 5 Load byte [ (E)SI] into AL, update (E)SI

AD LODS m16 5 Load word [ (E)SI] into AX, update (E)SI

AD LODS m32 5 Load dword [ (E)SI] into EAX, update (E)SI

AC LODSB 5 Load byte DS:[ (E)SI] into AL, update (E)SI

AD LODSW 5 Load word DS:[ (E)SI] into AX, update (E)SI

AD LODSD 5 Load dword DS:[ (E)SI] into EAX, update (E)SI

Operation

IF AddressSize = 16 THEN
    Use SI for SrcIndex;
ELSE (*AddressSize = 32*)
    Use ESI for SrcIndex;
IF byte instruction THEN
    AL := [SrcIndex]; (* byte load *)
    IF DF = 0 THEN IncDec := 1 ELSE IncDec := -1;
ELSE
    IF OperandSize = 16 THEN
       AX := [SrcIndex]; (* word load *)
       IF DF = 0 THEN IncDec := 2 ELSE IncDec := -2;
    ELSE (* OperandSize = 32 *)
       EAX := [SrcIndex]; (* dword load *)
       IF DF = 0 THEN IncDec := 4 ELSE IncDec := -4;
SrcIndex := SrcIndex + IncDec;

Discussion

LODS loads the AL, AX, or EAX register with the memory byte, word, or dword at
the location pointed to by SI or ESI.  The source index register advances after the
transfer is made.  If the direction flag is 0 (CLD was executed), it increments; if the
direction flag is 1 (STD was executed), it decrements.  The increment or decrement
is 1 if a byte is loaded, 2 if a word is loaded, or 4 if a dword is loaded.

If the address size attribute for this instruction is 16-bits, SI is used for the source
index register; otherwise, the address size attribute is 32-bits, and ESI is the source
index register.



LODS/LODSB/LODSW/LODSD

330 Chapter 6 Processor Instructions

The address of the source data is determined solely by the contents of (E)SI, not by
the LODS operand.  Load the correct index value into (E)SI before executing LODS.
The USE attribute of the code segment determines whether ESI or SI is the source
index register.

The purpose of the operand is to validate segment addressability and to determine
the data type.  The type of the LODS operand determines whether a byte, word, or
dword is moved.  The segment addressability of the operand determines whether a
segment override byte is produced.

LODSB, LODSW, LODSD are synonyms for the byte, word, and dword LODS
instructions.  They are simpler, but they provide no type or segment checking.

Use LODS within a LOOP construct when further processing of data moved into AX
or AL is necessary.  LODS can be preceded by the REP prefix, but REP just uses
clocks with LODS.  If REP is specified, the repeat count is taken from ECX (USE32
segment) or CX (USE16 segment).

Flags Affected

None

Exceptions by Mode

Protected

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or
GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a
page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from 0 to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



LOOP/LOOPcond

ASM386 Assembly Language Reference Chapter 6 331

LOOP/LOOPcond    Loop Control with (E)CX Counter

Opcode Instruction Clocks Description

E2 cb LOOP rel8 11+m DEC count; jump short if count NOT = 0

E1 cb LOOPE rel8 11+m DEC count; jump short if count NOT = 0
and ZF = 1

E1 cb LOOPZ rel8 11+m DEC count; jump short if count NOT = 0
and ZF = 1

E0 cb LOOPNE rel8 11+m DEC count; jump short if count NOT = 0
and ZF = 0

E0 cb LOOPNZ rel8 11+m DEC count; jump short if count NOT = 0
and ZF = 0

Operation

IF AddressSize = 16 THEN
    CountReg := CX;
ELSE
    CountReg := ECX;
CountReg := CountReg - 1;
IF instruction = LOOP THEN
    BranchCond := CountReg NOT = 0;
ELSE
    IF instruction = LOOPE OR LOOPZ THEN
       BranchCond := (ZF = 1) AND (CountReg NOT = 0);
    IF instruction = LOOPNE or LOOPNZ THEN
       BranchCond := (ZF = 0) AND (CountReg NOT = 0);
ENDIFELSE; (*determine BranchCond*)
IF BranchCond THEN
    IF OperandSize = 16 THEN
       IP := IP + SignExtend( rel8 );
    ELSE (*OprandSize = 32*)
       EIP := EIP + SignExtend( rel8 );



LOOP/LOOPcond

332 Chapter 6 Processor Instructions

Discussion

LOOP decrements the count register without changing any of the flags.  Conditions
are then checked for the form of LOOP being used.  If the conditions are met, a
short jump is made to the label specified as the LOOP operand.

The LOOP operand must be a label in the range from 128 (decimal) bytes before the
instruction to 127 bytes ahead of the instruction.

Otherwise, the assembler cannot generate the 1-byte signed displacement required
by the instruction format.

The USE attribute of the segment determines the address size attribute.  If the
address size attribute is 16-bits, the CX register is used as the count register;
otherwise the ECX register is used.

The LOOP instructions not only provide iteration control; they combine loop index
management with conditional branching.  Use these instructions by loading an
unsigned iteration count into the count register, then code the LOOP at the end of a
series of instructions to be iterated.  The destination of LOOP is a label that points to
the beginning of the iteration.

Flags Affected

None

Exceptions by Mode

Protected

#GP(0) if the offset jumped to is beyond the limits of the current code segment

Real Address

None

Virtual 8086

None



LSL

ASM386 Assembly Language Reference Chapter 6 333

LSL   Load Segment Limit

Opcode Instruction Clocks Description

0F 03 /r LSL r16,r/m16 pm=20/21 Load: r16 := segment limit, selector
r/m16 (byte granular)

0F 03 /r LSL r32,r/m32 pm=20/21 Load: r32 := segment limit, selector
r/m32 (byte granular)

0F 03 /r LSL r16,r/m16 pm=25/26 Load: r16 := segment limit, selector
r/m16 (page granular)

0F 03 /r LSL r32,r/m32 pm=25/26 Load: r32 := segment limit, selector
r/m32 (page granular)

Operation

IF selector index NOT within its table limits
OR ((descriptor (*selected by Src*) does
    NOT indicate conforming code segment)
    AND (CPL > DPL (*of selected descriptor*)
    OR RPL (*of Src*) > DPL) )
OR
    descriptor (*selected by Src*) is Invalid
    (*see Table 6-22*)
THEN
    ZF := 0;
ELSE
    ZF := 1;
temp := ZeroExtend(limit); (*of descriptor selected by Src*)
(*Convert page granularity to byte granularity*)
IF G(*granularity bit of descriptor*) = 1 THEN
    temp := (ShiftLeft(temp,12) ) OR 0FFFH;
IF OperandSize = 32 THEN
    Dest := temp;
ELSE
    Dest := Truncate(temp);



LSL

334 Chapter 6 Processor Instructions

Discussion

LSL loads a segment limit (second operand) into a register; this operand should be
a selector.

LSL clears ZF if:

• The selector (second operand) index is outside its table limits.

• The associated descriptor does not indicate a conforming code segment, and
the current privilege level or the selector's privilege level does not permit
access to the descriptor.

• The access rights (AR) of the descriptor has an invalid type field value (see
Table 6-22).

Otherwise, LSL sets ZF and loads the byte-granular segment limits from the
descriptor.  Code and data segment descriptors are valid for LSL.  The valid/invalid
system descriptor types for LSL are:

Table 6-22.  System Descriptor Types for LSL

Type Valid/Invalid Name

0 Invalid Invalid
1 Valid Available Intel286 processor TSS
2 Valid LDT
3 Valid Busy Intel286 processor TSS
4 Invalid Intel286 processor call gate
5 Invalid Intel286/Intel386 processor task gate
6 Invalid Intel286 processor trap gate
7 Invalid Intel286 processor interrupt gate
8 Invalid Invalid
9 Valid Available Intel386 processor TSS
A Invalid Invalid
B Valid Busy Intel386 processor TSS
C Invalid Intel386 processor call gate
D Invalid Invalid
E Invalid Intel386 processor trap gate
F Invalid Intel386 processor interrupt gate

LSL always loads the segment limit as a byte granular value.  If the descriptor has a
page-granular segment limit, LSL will translate it to a byte-granular limit before
loading it in the destination register by shifting left 12 the 20-bit raw limit from the
descriptor, then ORing it with 00000FFFH.



LSL

ASM386 Assembly Language Reference Chapter 6 335

Flags Affected

ZF as described in the Discussion section

Exceptions by Mode

Protected

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or
GS segments; #SS(0) for an illegal address in the SS segments; #PF(fault-code) for
a page fault

Real Address

Interrupt 6; LSL is not recognized in Real Address Mode

Virtual 8086

Same as Real Address Mode



LTR

336 Chapter 6 Processor Instructions

LTR   Load Task Register

Opcode Instruction Clocks Description

0F 00 /3 LTR r/m16 pm=23/27 Load r/m effective address into

task register

Operation

IF TI (*table index field of Src selector*) = 1 THEN
    #GP(selector);
IF selector index NOT within GDT limits THEN #GP(selector);
IF descriptor (*selected by Src*) NOT TSS or
    descriptor marked busy THEN #GP(selector);
IF B (*in descriptor*) = 1 THEN #GP(selector);
IF TSS NOT PRESENT THEN #NP(selector);
TR := r/m16 ;
B (*in descriptor*) := 1;
Load TSS descriptor into TR cache;

Discussion

LTR loads the task register from the source register or memory location specified
by the operand.  The operand is a selector for a TSS descriptor.  The associated TSS
descriptor in the GDT is then marked busy.  A task switch does not occur.  LTR is a
privileged (level 0) instruction used only in operating system software.  The
operand size attribute has no effect on this instruction.

Flags Affected

None

Exceptions by Mode

Protected

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or
GS segments; #SS(0) for an illegal address in the SS segment; #GP(0) if the current
privilege level is not 0; #GP(selector) if the object named by the source selector is
not a TSS or is already busy; #NP(selector) if the TSS is marked not present;
#PF(fault-code) for a page fault



LTR

ASM386 Assembly Language Reference Chapter 6 337

Real Address

Interrupt 6; LTR is not recognized in Real Address Mode

Virtual 8086

Same as Real Address Mode



MOV

338 Chapter 6 Processor Instructions

MOV   Move Data

Opcode Instruction Clocks Description

88 /r MOV r/m8,r8 2/2 Move byte register to r/m byte

89 /r MOV r/m16,r16 2/2 Move word register to r/m word

89 /r MOV r/m32,r32 2/2 Move dword register to r/m
dword

8A /r MOV r8,r/m8 2/4 Move r/m byte to byte register

8B /r MOV r16,r/m16 2/4 Move r/m word to word register

8B /r MOV r32,r/m32 2/4 Move r/m dword to dword
register

8C /r MOV r/m16,Sreg 2/2 Move segment register to r/m
word

8E /r MOV Sreg,r/m16 2/5,
pm=18/19

Move r/m word to
segment register

A0 MOV AL,moffs8 4 Move byte at (seg:offset) to AL

A1 MOV AX,moffs16 4 Move word at (seg:offset) to AX

A1 MOV EAX,moffs32 4 Move dword at (seg:offset) to
EAX

A2 MOV moffs8,AL 2 Move AL to (seg:offset)

A3 MOV moffs16,AX 2 Move AX to (seg:offset)

A3 MOV moffs32,EAX 2 Move EAX to (seg:offset)

B0 + rb
ib

MOV reg8,imm8 2 Move immediate byte to register

B8 + rw
iw

MOV reg16,imm16 2 Move immediate word to register

B8 + rd
id

MOV reg32,imm32 2 Move immediate dword to
register

C6 ib MOV r/m8,imm8 2/2 Move immediate byte to r/m byte

C7 iw MOV r/m16,imm16 2/2 Move immediate word to r/m
word

C7 id MOV r/m32,imm32 2/2 Move immediate dword to r/m

dword

NOTE: moffs8, moffs16, and moffs32 all consist of a simple offset relative to the segment base.  The 8, 16, and
32 refer to the size of the data.  The address size attribute of the instruction determines the size of the offset,
either 16- or 32-bits.   Sreg is one of SS, DS, ES, FS, or GS.



MOV

ASM386 Assembly Language Reference Chapter 6 339

Operation

IF Dest NOT Sreg THEN

    Dest := Src;

ELSE

    IF mode NOT = protected THEN

       Sreg := r/m16;

    ELSE

       GOTO CHECK_SREG_LOAD;

CHECK_SREG_LOAD:

   IF Sreg = SS THEN

      IF selector is null THEN #GP(0);

      IF selector index NOT within its descriptor table limits THEN

         #GP(selector);

      IF selector RPL NOT = CPL THEN #GP(selector);

      AR must indicate writable data segment

         ELSE #GP(selector);

      IF DPL (*in AR*) NOT = CPL THEN #GP(selector);

      IF segment NOT PRESENT THEN #NP(selector);

      (*Disable interrupts until end of following instruction*)

      GOTO LOAD_SREG;

    (*END checks protected mode, load SS*)

    IF Sreg = DS OR ES OR FS OR GS THEN

       IF selector index NOT within its descriptor table limits

          THEN #GP(selector);

       AR must indicate data or readable code segment

          ELSE #GP(selector);

       IF data or nonconforming code segment AND

       RPL > DPL (*in AR*) OR CPL > DPL THEN

          #GP(selector);

       IF segment NOT PRESENT THEN #NP(selector);

       GOTO LOAD_SREG;

(*END checks protected mode, load DS, ES, FS, or GS*)

LOAD_SREG:

   Sreg := r/m16 ;

   Load Sreg cache with descriptor;



MOV

340 Chapter 6 Processor Instructions

Discussion

MOV copies the second operand to the first operand.

In protected mode when the destination operand is a segment register (SS, DS, ES,
etc.), then the associated register cache is also loaded.  The data for the cache is
obtained from the descriptor table entry for the selector.  A null selector (values
0000-0003) can be loaded into the DS, ES, FS, or GS registers without causing an
exception.  However, the #GP(0) exception is raised by any subsequent attempt to
access a segment whose corresponding segment register has a null selector.  (No
memory reference occurs.)

A MOV into SS inhibits all interrupts until after the execution of the next instruction
(presumably a MOV into (E)SP).

Flags Affected

None

Exceptions by Mode

Protected

#GP, #SS, and #NP for an invalid load into a segment register, as described in the
Operation section; #GP(0) if the destination is a nonwritable segment; #GP(0) for
an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a
page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from 0 to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



MOV

ASM386 Assembly Language Reference Chapter 6 341

MOV   Move to/from Special Registers

Opcode Instruction Clocks Description

0F 20 /r MOV r32,CR0/
CR2/CR3

6 Move control register to register

0F 22 /r MOV CR0/CR2/
CR3,r32

10/4/5 Move register to control register

0F 21 /r MOV r32,
DR0-DR3

22 Move debug register to register

0F 21 /r MOV r32,
DR6/DR7

14 Move debug register to register

0F 23 /r MOV DR0-DR3,r32 22 Move register to debug register

0F23 /r MOV DR6/DR7,r32 16 Move register to debug register

0F 24 /r MOV r32,TR3/ — Move test register to register

TR4/TR5 (not available on Intel386 or 376
processors)

0F 24 /r MOV r32,TR6/TR7 12 Move test register to register

0F 26 /r MOV TR3/TR4/
TR5,r32

— Move register to test register (not
available on Intel386 or 376 processors)

0F 26 /r MOV TR6/TR7,r32 12 Move register to test register

Operation

Dest := Src;

Discussion

These forms of MOV store or load the following special registers into or from a
general purpose register:

• Control registers CR0, CR2, and CR3

• Debug registers DR0, DR1, DR2, DR3, DR6, and DR7

• Test registers TR3, TR4, and TR5 (not available on Intel386 or 376 processors)

• Test registers TR6 and TR7

32-bit operands are always used with these instructions, regardless of the operand
size attribute.  These MOVs must be executed at privilege level 0 or in real address
mode; otherwise, a protection exception will be raised.



MOV

342 Chapter 6 Processor Instructions

The reg field within the ModRM byte specifies which of the special registers in each
category is involved; the reg field value is identical to the integer suffix of the
special register name.  The two bits in the mod field are always 11.  The r/m  field
specifies the general register involved.

Flags Affected

OF, SF, ZF, AF, PF, and CF are undefined

Exceptions by Mode

Protected

#GP(0) if the current privilege level is not 0

Real Address

None

Virtual 8086

#GP(0) if instruction execution is attempted



MOVS/MOVSB/MOVSW/MOVSD

ASM386 Assembly Language Reference Chapter 6 343

MOVS/MOVSB/MOVSW/MOVSD   Move String to String

Opcode Instruction Clocks Description

A4 MOVS m8,m8 7 Move byte [ (E)SI] to ES:[ (E)DI]

A5 MOVS m16,m16 7 Move word [ (E)SI] to ES:[ (E)DI]

A5 MOVS m32, m32 7 Move dword [ (E)SI] to ES:[ (E)DI]

A4 MOVSB 7 Move byte DS:[ (E)SI] to ES:[ (E)DI]

A5 MOVSW 7 Move word DS:[ (E)SI] to ES:[ (E)DI]

A5 MOVSD 7 Move dword DS:[ (E)SI] to ES:[ (E)DI]

Operation

IF (instruction = MOVSD) OR (instruction has dword operands) THEN

     OperandSize := 32; (*Assembler action*)
ELSE
     OperandSize := 16;
IF AddressSize = 16 THEN
     Use SI for SrcIndex and DI for DestIndex;
ELSE (*AddressSize = 32*)
     Use ESI for SrcIndex and EDI for DestIndex;
IF byte type of instruction THEN
     [DestIndex] := [SrcIndex];
     IF DF = 0 THEN IncDec := 1 ELSE IncDec := -1;
ELSE
     [DestIndex] := [SrcIndex];
     IF OperandSize = 16 THEN
        IF DF = 0 THEN IncDec := 2 ELSE IncDec  := -2;
     ELSE (*OperandSize = 32*)
        IF DF = 0 THEN IncDec := 4 ELSE IncDec := -4;
SrcIndex := SrcIndex + IncDec;
DestIndex := DestIndex + IncDec;



MOVS/MOVSB/MOVSW/MOVSD

344 Chapter 6 Processor Instructions

Discussion

MOVS copies the byte, word, or dword at [(E)SI] to the byte, word, or dword at
ES:[(E)DI].  The destination operand must be addressable from the ES register; no
segment override is possible for the destination.  A segment override can be used
for the source operand; the default is DS.

The contents of (E)SI and (E)DI determine the source and destination addresses,
not the MOVS operands.  The purpose of the operands is to validate segment
addressability and to determine the data type.  Load the correct index values into
(E)SI and (E)DI before executing the MOVS instruction.

MOVSB, MOVSW, and MOVSD are synonyms for the byte, word, and dword MOVS
instructions.  They are simpler, but they provide no type checking and no way to
override the DS segment for the SI source location.

After the data is moved, both (E)SI and (E)DI advance automatically.  If the
direction flag is 0 (CLD was executed), the registers increment; if the direction flag
is 1 (STD was executed), the registers decrement.  (E)SI and (E)DI are incremented
or decremented by 1 if a byte was moved, by 2 if a word was moved, or by 4 if a
dword was moved.

MOVS can be preceded by the REP prefix for block movement of (E)CX bytes or
words.  (See the REP reference page for more information.) For 32-bit operands
where strings overlap, the REP MOV will not overlap destructively only if:

Addr(Src) >= Addr(Dest) AND DF = 0
OR Addr(Src) <= Addr(Dest) AND DF = 1.

Use an 8- or 16-bit operand for overlapped strings that must be moved in a
predictable way with REP MOVS.

Flags Affected

None

Exceptions by Mode

Protected

#GP(0) if the destination is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault



MOVS/MOVSB/MOVSW/MOVSD

ASM386 Assembly Language Reference Chapter 6 345

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from 0 to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



MOVSX

346 Chapter 6 Processor Instructions

MOVSX   Move with Sign-Extend

Opcode Instruction Clocks Description

0F BE /r MOVSX r16,r/m8 3/6 Move sign-extended byte to word register

0F BE /r MOVSX r32,r/m8 3/6 Move sign-extended byte to dword register

0F BF /r MOVSX r32,r/m16 3/6 Move sign-extended word to dword register

Operation

Dest := SignExtend(Src);

Discussion

MOVSX reads the contents of the effective address or register as a byte or a word.  It
sign-extends the value to the operand size attribute of the instruction (16- or 32-
bits).  Then, MOVSX stores the result in the destination register.

Flags Affected

None

Exceptions by Mode

Protected

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or
GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a
page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from 0 to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



MOVZX

ASM386 Assembly Language Reference Chapter 6 347

MOVZX   Move with Zero-Extend

Opcode Instruction Clocks Description

0F B6 /r MOVZX r16,r/m8 3/6 Move zero-extended byte to word register

0F B6 /r MOVZX r32,r/m8 3/6 Move zero-extended byte to dword register

0F B7 /r MOVZX r32,r/m16 3/6 Move zero-extended word to dword register

Operation

Dest := ZeroExtend(Src);

Discussion

MOVZX reads the contents of the effective address or register as a byte or a word.  It
zero-extends the value to the operand size attribute of the instruction (16- or 32-
bits).  Then, MOVZX stores the result in the destination register.

Flags Affected

None

Exceptions by Mode

Protected

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or
GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a
page fault

Real Address

Interrupt 13 if any part of the operand would lie outside of the effective address
space from 0 to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



MUL

348 Chapter 6 Processor Instructions

MUL   Unsigned Multiplication of AL, AX or EAX

Opcode Instruction Clocks Description

F6 /4 MUL r/m8 9-14/12-17 Unsigned multiply (AX := AL * r/m byte)

F7 /4 MUL r/m16 9-22/12-25 Unsigned multiply (DX:AX := AX * r/m word)

F7 /4 MUL r/m32 9-38/12-41 Unsigned multiply (EDX:EAX := EAX * r/m
dword)

NOTE: The processor uses an early-out multiply algorithm.  The actual number of clocks depends on the
position of the most significant bit in the multiplier.  Optimization occurs for both positive and negative
multiplier values.  Because of the early-out algorithm, clock counts given are minimum to maximum.
To calculate the actual clocks, use the following formula:

IF m = 0 THEN ActualClock := 9;
ELSE ActualClock := max( ceiling(log

2
 |m|),3) = 6 clocks;

where m is the multiplier.

Operation

IF byte-size operation THEN
     AX := AL * r/m8 ;
ELSE (*word or dword operation*)
     IF OperandSize = 16 THEN
        DX:AX := AX * r/m16 ;
     ELSE (*OperandSize = 32*)
        EDX:EAX := EAX * r/m32 ;

Discussion

MUL performs unsigned multiplication.  Its actions depend on the size of its
operand, as follows:

• A byte operand is multiplied with AL; the result is left in AX.  MUL clears the
carry and overflow flags (CF and OF) if AH is 0; otherwise, it sets CF and OF.

• A word operand is multiplied with AX; the result is left in DX:AX.  DX
contains the high-order 16-bits of the product.  MUL clears CF and OF if DX
is 0; otherwise, it sets CF and OF.

• A dword operand is multiplied with EAX and the result is left in EDX:EAX.
EDX contains the high-order 32-bits of the product.  MUL clears CF and OF if
EDX is 0; otherwise, it sets CF and OF.



MUL

ASM386 Assembly Language Reference Chapter 6 349

Flags Affected

OF and CF as described in the Discussion section; SF, ZF, AF, and PF are
undefined

Exceptions by Mode

Protected

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or
GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a
page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from 0 to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



NEG

350 Chapter 6 Processor Instructions

NEG   Two's Complement Negation

Opcode Instruction Clocks Description

F6 /3 NEG r/m8 2/6 Two's complement negate r/m byte

F7 /3 NEG r/m16 2/6 Two's complement negate r/m word

F7 /3 NEG r/m32 2/6 Two's complement negate r/m dword

Operation

IF r/m  = 0 THEN
     CF := 0;
ELSE
     CF := 1;
r/m  := - r/m ;

Discussion

NEG replaces the value of a register or memory operand with its two's complement.
If the operand is 0, NEG clears the carry flag; otherwise, NEG sets CF.

Flags Affected

CF as described; OF, SF, ZF, and PF as described in Appendix A

Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from 0 to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



NOP

ASM386 Assembly Language Reference Chapter 6 351

NOP   No Operation

Opcode Instruction Clocks Description

90 NOP 3 No operation

Discussion

NOP performs no operation.  NOP is a one-byte instruction that affects none of the
machine context except that (E)IP increments.

NOP is an alias mnemonic for the XCHG (E)AX, (E)AX instruction.

Flags Affected

None

Exceptions by Mode

Protected

None

Real Address

None

Virtual 8086

None



NOT

352 Chapter 6 Processor Instructions

NOT   One’s Complement Negation

Opcode Instruction Clocks Description

F6 /2 NOT r/m8 2/6 Reverse each bit of r/m byte

F7 /2 NOT r/m16 2/6 Reverse each bit of r/m word

F7 /2 NOT r/m32 2/6 Reverse each bit of r/m dword

Operation

r/m  := NOT r/m ;

Discussion

NOT inverts the operand.  Every 1 becomes a 0, and vice versa.

Flags Affected

None

Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from 0 to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



OR

ASM386 Assembly Language Reference Chapter 6 353

OR   Logical Inclusive OR

Opcode Instruction Clocks Description

0C ib OR AL,imm8 2 OR immediate byte to AL

0D iw OR AX,imm16 2 OR immediate word to AX

0D id OR EAX,imm32 2 OR immediate dword to EAX

80 /1 ib OR r/m8,imm8 2/7 OR immediate byte to r/m byte

81 /1 iw OR r/m16,imm16 2/7 OR immediate word to r/m word

81 /1 id OR r/m32,imm32 2/7 OR immediate dword to r/m dword

83 /1 ib OR r/m16,imm8 2/7 OR sign-extended immediate byte to r/m word

83 /1 ib OR r/m32,imm8 2/7 OR sign-extended immediate byte to r/m
dword

08 /r OR r/m8,r8 2/6 OR byte register to r/m byte

09 /r OR r/m16,r16 2/6 OR word register to r/m word

09 /r OR r/m32,r32 2/6 OR dword register to r/m dword

0A /r OR r8,r/m8 2/7 OR r/m byte to byte register

0B /r OR r16,r/m16 2/7 OR r/m word to word register

0B /r OR r32,r/m32 2/7 OR r/m dword to dword register

Operation

Dest := Dest OR Src;
CF := 0;
OF := 0;

Discussion

A corresponding result bit is 0 if both corresponding bits of the operands are 0;
otherwise, the result bit is 1.

Flags Affected

OR clears OF and CF; SF, ZF, and PF as described in Appendix A; AF is undefined



OR

354 Chapter 6 Processor Instructions

Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from 0 to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



OUT

ASM386 Assembly Language Reference Chapter 6 355

OUT   Output to Port

Opcode Instruction Clocks Description

E6 ib OUT imm8,AL 10,pm=4†/24‡ Output byte AL to immediate  port
number

E7 ib OUT imm8,AX 10,pm=4†/24‡ Output word AX to immediate  port
number

E7 ib OUT imm8,EAX 10,pm=4†/24‡ Output dword EAX to immediate port
number

EE OUT DX,AL 11,pm=5†/25‡ Output byte AL to port number in DX

EF OUT DX,AX 11,pm=5†/25‡ Output word AX to port number  in DX

EF OUT DX,EAX 11,pm=5†/25‡ Output dword EAX to port number  in DX

† If CPL <= IOPL
‡ If CPL > IOPL or if in virtual 8086 mode

Operation

IF (PE = 1 AND ( (VM = 1) OR (CPL > IOPL) ) THEN
(*virtual 8086 mode, or protected mode with CPL > IOPL*)
     IF NOT IOPermission(Dest, width(Dest) ) THEN #GP(0);
[Dest] := Src; (*I/O address space used*)

Discussion

OUT transfers data from the register (AL, AX, or EAX) given as the second operand
to the output port numbered by the first operand.  Output to any port from 0 to
65535 is performed by placing the port number in the DX register and then using
an OUT instruction with DX as the first operand.  If the instruction contains an
eight-bit port ID, the value is zero-extended to 16-bits.

If executed in virtual 8086 mode or in protected mode with CPL greater than IOPL :

• OUT cannot access any given byte unless the I/O permission bit map has a
corresponding clear bit.

• OUT also cannot access a dword or word unless it can access every byte in the
dword or word.

Flags Affected

None



OUT

356 Chapter 6 Processor Instructions

Exceptions by Mode

Protected

#GP(0) if the current privilege level is higher (has less privilege) than IOPL  and
any of the corresponding I/O permission bits in TSS equals 1

Real Address

None

Virtual 8086

#GP(0) if any of the corresponding I/O permission bits in TSS equals 1



OUTS/OUTSB/OUTSW/OUTSD

ASM386 Assembly Language Reference Chapter 6 357

OUTS/OUTSB/OUTSW/OUTSD   Output String to Port

Opcode Instruction Clocks Description
6E OUTS DX,r/m8 14,pm=8†/28‡ Output byte [ (E)SI] to port in DX
6F OUTS DX,r/m16 14,pm=8†/28‡ Output word [ (E)SI] to port in DX
6F OUTS DX,r/m32 14,pm=8†/28‡ Output dword [ (E)SI] to port in DX
6E OUTSB 14,pm=8†/28‡ Output byte DS:[ (E)SI] to port in DX
6F OUTSW 14,pm=8†/28‡ Output word DS:[ (E)SI] to port in DX
6F OUTSD 14,pm=8†/28‡ Output dword DS:[ (E)SI] to port in DX
† If CPL <= IOPL
‡ If CPL > IOPL or if in virtual 8086 mode

Operation

IF AddressSize = 16 THEN
    Use SI for SrcIndex;
ELSE (* AddressSize = 32 *)
    Use ESI for SrcIndex;
IF (PE = 1) AND ( (VM = 1) OR (CPL > IOPL) ) THEN
(*virtual 8086 mode, or protected mode with CPL > IOPL*)
    IF NOT IOPermission(Dest, width(Dest) ) THEN #GP(0);
IF byte type instruction THEN
    [DX] := [SrcIndex]; (*writes at DX I/O address*)
    IF DF = 0 THEN IncDec := 1 ELSE IncDec := -1;
ELSE (*word or dword operand*)
    [DX] := [SrcIndex];
    IF OperandSize = 16 THEN
       IF DF = 0 THEN IncDec := 2 ELSE IncDec := -2;
    ELSE (*OperandSize = 32*)
       IF DF = 0 THEN IncDec := 4 ELSE IncDec := -4;
SrcIndex := SrcIndex + IncDec;

Discussion

OUTS transfers data from the memory byte, word, or dword at the source index
register to the output port numbered by DX.  ESI is the source index register if the
address size attribute is 32-bits; SI is the source index register if the address size
attribute is 16-bits.

OUTS does not allow specification of the port number as an immediate value.  The
port must be addressed through the DX register.  Load the correct value into DX
before executing OUTS.



OUTS/OUTSB/OUTSW/OUTSD

358 Chapter 6 Processor Instructions

The source data address is determined by the contents of ESI or SI, not by the
second operand.  Load the correct index value into (E)SI before executing OUTS.
The second operand determines:

• The data type: whether a byte, word, or dword is transferred

• Segment addressability: whether a segment override byte is produced, or
whether the default segment register (DS) is used

After the transfer, (E)SI advances automatically.  If the direction flag is 0 (CLD
was executed), (E)SI increments; if the direction flag is 1 (STD was executed),
(E)SI decrements.  (E)SI increments or decrements by 1 if a byte is output, by 2 if a
word is output, or by 4 if a dword is output.

OUTSB, OUTSW, and OUTSD are synonyms for the byte, word, and dword OUTS
instructions.  They are simpler, but they provide no type or segment checking.

If executed in virtual 8086 mode or in protected mode with CPL greater than IOPL :

• OUTS cannot access any given byte unless the I/O permission bit map has a
corresponding clear bit.

• OUTS also cannot access a dword or word unless it can access every byte in the
dword or word.

OUTS can be preceded by the REP prefix for block output of (E)CX bytes or words.
See the REP instruction for details on this operation.

Flags Affected

None

Exceptions by Mode

Protected

#GP(0) if CPL is greater than IOPL and any of the corresponding I/O permission
bits in TSS equals 1; #GP(0) for an illegal memory operand effective address in the
CS, DS, or ES segments; #SS(0) for an illegal address in the SS segment;
#PF(fault-code) for a page fault



OUTS/OUTSB/OUTSW/OUTSD

ASM386 Assembly Language Reference Chapter 6 359

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from 0 to 0FFFFH

Virtual 8086

#GP(0) if any of the corresponding I/O permission bits in TSS equals 1; #PF(fault-
code) for a page fault



POP

360 Chapter 6 Processor Instructions

POP   Pop Stack Top

Opcode Instruction Clocks Description

8F /0 POP m16 5 Pop top of stack into memory word

8F /0 POP m32 5 Pop top of stack into memory dword

58 +rw POP r16 4 Pop top of stack into word register

58 +rd POP r32 4 Pop top of stack into dword register

1F POP DS 7,pm=21 Pop top of stack into DS

07 POP ES 7,pm=21 Pop top of stack into ES

0F A1 POP FS 7,pm=21 Pop top of stack into FS

0F A9 POP GS 7,pm=21 Pop top of stack into GS

17 POP SS 7,pm=21 Pop top of stack into SS

Operation

IF Dest = Sreg AND mode = protected THEN
    GOTO CHECK_SREG;
ELSE
    GOTO POP_FROM_STACK;
CHECK_SREG:
    IF Sreg = SS THEN
       IF selector is null THEN #GP(0);
       IF selector index NOT within its descriptor table limits THEN

          #GP(selector);
       IF selector RPL NOT = CPL THEN #GP(selector);
       AR must indicate writable data segment
          ELSE #GP(selector);
       IF DPL (*in AR*) NOT = CPL THEN #GP(selector);
       IF segment NOT PRESENT THEN #NP(selector);
    (*Disable interrupts until end of following instruction*)
      GOTO POP_FROM_STACK;
    (*END checks protected mode, load SS*)
    IF Sreg = DS OR ES OR FS OR GS THEN
       IF selector index NOT within its descriptor table limits THEN

          #GP(selector);
       AR must indicate data or readable code segment
          ELSE #GP(selector);
       IF data or nonconforming code segment AND



POP

ASM386 Assembly Language Reference Chapter 6 361

       RPL > DPL (*in AR*) OR CPL > DPL THEN
          #GP(selector);
       IF segment NOT PRESENT THEN #NP(selector);
       GOTO POP_FROM_STACK;
(*END checks protected mode, load DS, ES, FS, or GS*)

POP_FROM_STACK:
   IF StackAddrSize = 16 THEN
      SP is StackPtr;
   ELSE
      ESP is StackPtr;
   Dest := SS:[StackPtr];
   IF Dest is Sreg AND mode = protected THEN
      Load Sreg cache with descriptor;
   StackPtr := StackPtr + (OperandSize / 8);

Discussion

POP copies the top of the processor stack into its memory, register, or segment
register operand.  The stack pointer (E)SP is incremented by 2 for a 16-bit operand
or by 4 for a 32-bit operand.  SS:(E)SP then points to the new top of stack.

If the value popped was PUSHed as an immediate operand in a USE32 segment, its
operand size was a full 32-bits.  Only the PUSH of a 16-bit register decrements
(E)SP by 2 in a USE32 segment.

If the destination operand is another segment register (DS, ES, FS, GS, or SS), the
value popped must be a selector.  In protected mode, loading the selector initiates
automatic loading of the descriptor associated with that selector into the segment
register cache.  Loading DS, ES, FS, GS, or SS also initiates validation of both the
selector and the descriptor information.

A null value (0000-0003) can be popped into DS, ES, FS, or GS without causing a
protection exception.  However, the #GP(0) exception is raised by any subsequent
attempt to access a segment whose corresponding segment register has a null
selector.  (No memory reference occurs.)

POP SS inhibits all interrupts, including NMI (non-maskable interrupt), until after
execution of the next instruction.  This allows sequential execution of POP SS and
POP (E)SP without danger of having an invalid stack during an interrupt.  However,
the LSS instruction is the preferred method of loading the SS and (E)SP registers.

POP CS causes the assembler to issue an error message.  Use RET to pop from the
stack into CS; RET pops both IP and CS (operand size attribute of 16-bits) or both
EIP and CS (operand size attribute of 32-bits).



POP

362 Chapter 6 Processor Instructions

Flags Affected

None

Exceptions by Mode

Protected

#GP, #SS, and #NP if a segment register is being loaded; #SS(0) if the current top
of stack is not within the stack segment; #GP(0) if the result is in a nonwritable
segment; #GP(0) for an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-
code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from 0 to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



POPA/POPAD

ASM386 Assembly Language Reference Chapter 6 363

POPA/POPAD   Pop All General Registers

Opcode Instruction Clocks Description

61 POPA 24 Pop DI, SI, BP, BX, DX, CX, and AX

61 POPAD 24 Pop EDI, ESI, EBP, EDX, ECX, and

EAX

Operation

IF OperandSize = 16 (*instruction = POPA*) THEN
    DI := Pop( );
    SI := Pop( );
    BP := Pop( );
    throwaway := Pop ( ); (* Skip SP *)
    BX := Pop( );
    DX := Pop( );
    CX := Pop( );
    AX := Pop( );
ELSE (*OperandSize = 32; instruction = POPAD*)
    EDI := Pop( );
    ESI := Pop( );
    EBP := Pop( );
    throwaway := Pop ( ); (* Skip ESP *)
    EBX := Pop( );
    EDX := Pop( );
    ECX := Pop( );
    EAX := Pop( );

Discussion

POPA pops the eight 16-bit general registers and discards the SP value.  POPA
reverses the preceding PUSHA, restoring the general registers to their values before
PUSHA was executed.  DI is the first register popped.

POPAD pops the eight 32-bit general registers and discards the ESP value.  POPAD
reverses the preceding PUSHAD, restoring the general registers to their values before
PUSHAD was executed.  EDI is the first register popped.

Flags Affected

None



POPA/POPAD

364 Chapter 6 Processor Instructions

Exceptions by Mode

Protected

#SS(0) if the starting or ending stack address is not within the stack segment;
#PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from 0 to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



POPF/POPFD

ASM386 Assembly Language Reference Chapter 6 365

POPF/POPFD   Pop Stack into FLAGS or EFLAGS Register

Opcode Instruction Clocks Description

9D POPF 5 Pop top of stack into FLAGS

9D POPFD 5 Pop top of stack into EFLAGS

Operation

IF StackA
ddrSize = 16 THEN
   SP is StackPtr;
ELSE
   ESP is StackPtr;
IF OperandSize = 16 THEN
   FLAGS := Pop( );
   StackPtr := StackPtr + 2;
ELSE (*OperandSize = 32*)
   EFLAGS := Pop( );
   StackPtr := StackPtr + 4;

Discussion

POPF/POPFD pops the word or dword on the top of the stack and stores the value in
the flags register.  If the operand size attribute of the instruction is 16-bits, POPF
pops a word and stores the value in FLAGS.  If the operand size attribute is 32-bits,
POPFD pops a dword and stores the value in EFLAGS.

The EFLAGS bits 16 and 17 (VM and RF, respectively) are not affected by POPF or
POPFD.  POPF/POPFD changes the I/O privilege level only if the current privilege
level is 0.  Real address mode is equivalent to privilege level 0.  POPF/POPFD
change the interrupt flag only if the current privilege level is at least as privileged
as IOPL .  If a POPF instruction is executed with insufficient privilege, an exception
does not occur, but the privileged bits do not change.

See also: (E)FLAGS  registers, Appendix A

Flags Affected

All except VM and RF



POPF/POPFD

366 Chapter 6 Processor Instructions

Exceptions by Mode

Protected

#SS(0) if the top of stack is not within the stack segment

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from 0 to 0FFFFH

Virtual 8086

#GP(0) if IOPL is less than 3, to permit emulation



PUSH

ASM386 Assembly Language Reference Chapter 6 367

PUSH   Push Operand onto the Stack

Opcode Instruction Clocks Description

FF /6 PUSH m16 5 Push memory word

FF /6 PUSH m32 5 Push memory dword

50+/r PUSH r16 2 Push register word

50+/r PUSH r32 2 Push register dword

6A PUSH imm8 2 Push immediate byte

68 PUSH imm16 2 Push immediate word

68 PUSH imm32 2 Push immediate dword

0E PUSH CS 2 Push CS

1E PUSH DS 2 Push DS

06 PUSH ES 2 Push ES

0F A0 PUSH FS 2 Push FS

0F A8 PUSH GS 2 Push GS

16 PUSH SS 2 Push SS

Operation

IF StackAddrSize = 16 THEN
   SP is StackPtr;
ELSE
   ESP is StackPtr;
IF imm operand THEN
   IF USE32 segment THEN
     OperandSize = 32;
   ELSE (*USE16 segment*)
     OperandSize = 16;
IF Sreg operand (*CS,DS,ES,FS,GS, SS*) and USE32 segment THEN
   OperandSize = 32;
StackPtr := StackPtr - (OperandSize / 8);
SS:[StackPtr] := (Src);



PUSH

368 Chapter 6 Processor Instructions

Discussion

PUSH decrements the stack pointer (E)SP and copies the operand onto the top of the
stack.

In USE16 segments, PUSH decrements the stack pointer by 2 if the operand size
attribute of the instruction is 16-bits; otherwise, it decrements the stack pointer
by 4.

In USE32 segments, PUSH decrements the stack pointer by 2 if the operand is a
16-bit general register; otherwise, it decrements the stack pointer by 4.

PUSH (E)SP pushes the current value of the stack pointer.  The 8086 PUSH SP
instruction pushes the decremented (by 2) value of SP.

Flags Affected

None

Exceptions by Mode

Protected

#SS(0) if the new value of (E)SP is outside the stack segment limit; #GP(0) for an
illegal memory operand effective address in the CS, DS, ES, FS, or GS segments;
#SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault

Real Address

None; if (E)SP is 1, the processor shuts down due to a lack of stack space

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



PUSHA/PUSHAD

ASM386 Assembly Language Reference Chapter 6 369

PUSHA/PUSHAD   Push all General Registers

Opcode Instruction Clocks Description

60 PUSHA 18 Push AX, CX, DX, BX, original SP, BP, SI, and DI

60 PUSHAD 18 Push EAX, ECX, EDX, EBX, original ESP, EBP, ESI,
and EDI

Operation

IF OperandSize = 16 (*PUSHA instruction*) THEN
    Temp := (SP);
    Push(AX);
    Push(CX);
    Push(DX);
    Push(BX);
    Push(Temp);
    Push(BP);
    Push(SI);
    Push(DI);
    (*SP := SP - 16*)
ELSE (*OperandSize = 32, PUSHAD instruction*)
    Temp := (ESP);
    Push(EAX);
    Push(ECX);
    Push(EDX);
    Push(EBX);
    Push(Temp);
    Push(EBP);
    Push(ESI);
    Push(EDI);
    (*ESP := ESP - 32*)

Discussion

PUSHA and PUSHAD save the 16-bit or 32-bit general registers, respectively, on the
processor stack.  PUSHA decrements the stack pointer by 16 to hold the 8 word
values.  PUSHAD decrements the stack pointer by 32 to hold 8 dword values.

PUSHA/PUSHAD push the registers onto the stack in the order listed in the
Operation section.  Therefore, they appear in the 16 or 32 new stack bytes in
reverse order.



PUSHA/PUSHAD

370 Chapter 6 Processor Instructions

Flags Affected

None

Exceptions by Mode

Protected

#SS(0) if the starting or ending stack address is outside the stack segment limit;
#PF(fault-code) for a page fault

Real Address

The processor shuts down before executing PUSHA or PUSHAD if (E)SP equals 1, 3,
or 5; Interrupt 13 if (E)SP equals 7, 9, 11, 13, or 15

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



PUSHF/PUSHFD

ASM386 Assembly Language Reference Chapter 6 371

PUSHF/PUSHFD   Push Flags Register onto the Stack

Opcode Instruction Clocks Description

9C PUSHF 4 Push FLAGS

9C PUSHFD 4 Push EFLAGS

Operation

IF StackAddrSize = 16 THEN
   SP is StackPtr;
ELSE
   ESP is StackPtr;
IF OperandSize = 16 THEN
   StackPtr := StackPtr - 2;
   Push(FLAGS);
ELSE (*OperandSize = 32*)
   StackPtr := StackPtr - 4;
   Push(EFLAGS):

Discussion

PUSHF decrements the stack pointer by 2; PUSHFD decrements the stack pointer
by 4.  Then PUSHF/PUSHFD copies (E)FLAGS  to the new top of stack (pointed to
by SS:(E)SP).

See also: (E)FLAGS  register, Appendix A

Flags Affected

None

Exceptions by Mode

Protected

#SS(0) if the new value of (E)SP is outside the stack segment boundaries

Real Address

None; the processor shuts down due to insufficient stack space

Virtual 8086

#GP(0) if IOPL  is less than 3, to permit emulation



RCL/RCR/ROL/ROR

372 Chapter 6 Processor Instructions

RCL/RCR/ROL/ROR   Rotate

Opcode Instruction Clocks Description

D0 /2 RCL r/m8,1 9/10 Rotate 9-bits (CF,r/m byte) left once

D2 /2 RCL r/m8,CL 9/10 Rotate 9-bits (CF,r/m byte) left CL times

C0 /2 ib RCL r/m8,imm8 9/10 Rotate 9-bits (CF,r/m byte) left imm8 times

D1 /2 RCL r/m16,1 9/10 Rotate 17-bits (CF,r/m word) left once

D3 /2 RCL r/m16,CL 9/10 Rotate 17-bits (CF,r/m word) left CL times

C1 /2 ib RCL r/m16,imm8 9/10 Rotate 17-bits (CF,r/m word) left imm8 times

D1 /2 RCL r/m32,1 9/10 Rotate 33-bits (CF,r/m dword) left once

D3 /2 RCL r/m32,CL 9/10 Rotate 33-bits (CF,r/m dword) left CL times

C1 /2 ib RCL r/m32,imm8 9/10 Rotate 33-bits (CF,r/m dword) left imm8 times

D0 /3 RCR r/m8,1 9/10 Rotate 9-bits (CF,r/m byte) right once

D2 /3 RCR r/m8,CL 9/10 Rotate 9-bits (CF,r/m byte) right CL times

C0 /3 ib RCR r/m8,imm8 9/10 Rotate 9-bits (CF,r/m byte) right imm8 times

D1 /3 RCR r/m16,1 9/10 Rotate 17-bits (CF,r/m word) right once

D3 /3 RCR r/m16,CL 9/10 Rotate 17-bits (CF,r/m word) right CL times

C1 /3 ib RCR r/m16,imm8 9/10 Rotate 17-bits (CF,r/m word) right imm8 times

D1 /3 RCR r/m32,1 9/10 Rotate 33-bits (CF,r/m dword) right once

D3 /3 RCR r/m32,CL 9/10 Rotate 33-bits (CF,r/m dword) right CL times

C1 /3 ib RCR r/m32,imm8 9/10 Rotate 33-bits (CF,r/m dword) right imm8
times

D0 /0 ROL r/m8,1 3/7 Rotate 8-bits r/m byte left once

D2 /0 ROL r/m8,CL 3/7 Rotate 8-bits r/m byte left CL times

C0 /0 ib ROL r/m8,imm8 3/7 Rotate 8-bits r/m byte left imm8 times

D1 /0 ROL r/m16,1 3/7 Rotate 16-bits r/m word left once

D3 /0 ROL r/m16,CL 3/7 Rotate 16-bits r/m word left CL times

C1 /0 ib ROL r/m16,imm8 3/7 Rotate 16-bits r/m word left imm8 times

D1 /0 ROL r/m32,1 3/7 Rotate 32-bits r/m dword left once

D3 /0 ROL r/m32,CL 3/7 Rotate 32-bits r/m dword left CL times



RCL/RCR/ROL/ROR

ASM386 Assembly Language Reference Chapter 6 373

Opcode Instruction Clocks Description

C1 /0 ib ROL r/m32,imm8 3/7 Rotate 32-bits r/m dword left imm8 times

D0 /1 ROR r/m8,1 3/7 Rotate 8-bits r/m byte right once

D2 /1 ROR r/m8,CL 3/7 Rotate 8-bits r/m byte right CL times

C0 /1 ib ROR r/m8,imm8 3/7 Rotate 8-bits r/m word right imm8 times

D1 /1 ROR r/m16,1 3/7 Rotate 16-bits r/m word right once

D3 /1 ROR r/m16,CL 3/7 Rotate 16-bits r/m word right CL times

C1 /1 ib ROR r/m16,imm8 3/7 Rotate 16-bits r/m word right imm8 times

D1 /1 ROR r/m32,1 3/7 Rotate 32-bits r/m dword right once

D3 /1 ROR r/m32,CL 3/7 Rotate 32-bits r/m dword right CL times

C1 /1 ib ROR r/m32,imm8 3/7 Rotate 32-bits r/m dword right imm8 times

Operation

(*RCL - Rotate through Carry Flag Left*)
temp := Count;
WHILE (temp NOT = 0) DO
   tmpCF := high-order bit of ( r/m );
   r/m  := r/m  * 2 + CF;
   CF := tempCF;
   temp := temp - 1;
ENDWHILE;
IF Count = 1 THEN
   IF high-order bit of r/m  NOT = CF THEN
      OF := 1;
   ELSE
      OF := 0;
ELSE (*Count NOT = 1*)
   OF := undefined;
(*ROL - Rotate Left*)
temp := Count;
WHILE (temp NOT = 0) DO
   tmpCF := high-order bit of ( r/m );
   r/m  := r/m  * 2 + (tmpCF);
   temp := temp - 1;
ENDWHILE;
CF := tempCF;



RCL/RCR/ROL/ROR

374 Chapter 6 Processor Instructions

IF Count = 1 THEN
   IF high-order bit of r/m  NOT = CF THEN
      OF := 1;
   ELSE
      OF := 0;
ELSE (*Count NOT = 1*)
   OF := undefined;

(*RCR - Rotate through Carry Flag Right*)
temp := Count;
WHILE (temp NOT = 0 ) DO
   tmpCF := low-order bit of ( r/m );
   r/m  := r/m  / 2 + (CF * 2width( r/m ));
   CF := tempCF;
   temp := temp - 1;
ENDWHILE;
IF COUNT = 1 THEN
   IF (high-order bit) NOT = (next bit) (*in r/m *) THEN
      OF := 1;
   ELSE
      OF := 0;
ELSE (*Count NOT = 1*)
   OF := undefined;

(*ROR - Rotate Right*)
temp := Count;
WHILE (temp NOT = 0 ) DO
   tmpCF := low-order bit of ( r/m );
   r/m  := r/m  / 2 + (tmpCF * 2width( r/m ));
   temp := temp - 1;
ENDWHILE;
CF := tempCF;
IF COUNT = 1 THEN
   IF (high-order bit) NOT = (next bit) (*in r/m *) THEN
      OF := 1;
   ELSE
      OF := 0;
ELSE (*Count NOT = 1*)
   OF := undefined;



RCL/RCR/ROL/ROR

ASM386 Assembly Language Reference Chapter 6 375

Discussion

RCL/RCR/ROL/ROR shift the bits of the register or memory operand.

RCL shifts all bits left, copying the carry flag (CF) into the LSB and the top bit into
CF.  RCR shifts all the bits downward, copying CF into the MSB and the bottom bit
into CF.

ROL (left rotate) shifts all the bits upward and copies the top bit into the LSB.  RCR
(right rotate) shifts the bits downward and copies the bottom bit into the MSB.  The
original value of the carry flag is not a part of the result, but the carry flag receives
a copy of the bit that was shifted from one end to the other.

The second operand is a rotation count, either the contents of CL or an immediate
number in the range 1..31.  The overflow flag is defined only if the second operand
equals 1; otherwise, OF is undefined.  After left shifts or rotates, the CF bit is
XORed with the high-order result bit.  After right shifts or rotates, the high-order
two bits of the result are XORed to get OF.  If a rotation count value is greater than
31, only the bottom five bits are used.  In virtual 8086 mode, the processor masks
rotation counts.  The 8086 does not.

Flags Affected

OF only for single rotates; OF is undefined for multi-bit rotates; CF as described in
the Discussion section

Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from 0 to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



REP/REPE/REPZ/REPNE/REPNZ

376 Chapter 6 Processor Instructions

REP/REPE/REPZ/REPNE/REPNZ   Repeat String Operation

Opcode Instruction Clocks Description
F3 6C REP INS r/m8,DX 13+6*(E)CX,

pm=7+6*(E)CX1/
27+6*(E)CX2

Input (E)CX bytes from
port DX into ES:[ (E)DI]

F3 6D REP INS r/m16,DX 13+6*(E)CX,
pm=7+6*(E)CX1/
27+6*(E)CX2

Input (E)CX words from
port DX into ES:[ (E)DI]

F3 6D REP INS r/m32,DX 13+6*(E)CX,
pm=7+6*(E)CX1/
27+6*(E)CX2

Input (E)CX dwords from
port DX into ES:[ (E)DI]

F3 6C REP INSB 13+6*(E)CX,
pm=7+6*(E)CX1/
27+6*(E)CX2

Input (E)CX bytes from
port DX into ES:[ (E)DI]

F3 6D REP INSW 13+6*(E)CX,
27+6*(E)CX2

Input (E)CX words ES:
[ (E)DI]

F3 6D REP INSD 13+6*(E)CX,
pm=7+6*(E)CX1/
27+6*(E)CX2

Input (E)CX dwords from
port DX into ES:[ (E)DI]

F3 6E REP OUTS
DX,r/m8

5+12*(E)CX,
pm=6+5*(E)CX1/

Output (E)CX bytes from
[ (E)SI] to port DX

F3 6F REP OUTS DX,6
r/m1

5+12*(E)CX,
pm=6+5*(E)CX1/
26+5*(E)CX2

Output (E)CX words from
[ (E)SI] to DX

F3 6F REP OUTS DX,
r/m32

5+12*(E)CX,
pm=6+5*(E)CX1/
26+5*(E)CX2

Output (E)CX dwords
from [ (E)SI] to port DX

F3 6E REP OUTSB 5+12*(E)CX,
pm=6+5*(E)CX1/
26+5*(E)CX2

Output (E)CX bytes from
DS:[ (E)SI] to port DX

F3 6F REP OUTSW 5+12*(E)CX,
pm=6+5*(E)CX1/
26+5*(E)CX2

Output (E)CX words from
DS:[ (E)SI] to port DX

F3 6F REP OUTSD 5+12*(E)CX,
pm=6+5*(E)CX1/
26+5*(E)CX2

Output (E)CX dwords
from DS:[ (E)SI] to port
DX

1 If CPL <= IOPL
2 If CPL > IOPL or if in virtual 8086 mode



REP/REPE/REPZ/REPNE/REPNZ

ASM386 Assembly Language Reference Chapter 6 377

Opcode Instruction Clocks Description
F3 A4 REP MOVS m8,m8 5+4*(E)CX Move (E)CX bytes from [ (E)SI]u to

ES:[ (E)DI]
F3 A5 REP MOVS m16, m16 5+4*(E)CX Move (E)CX words from [ (E)SI] to

ES:[ (E)DI]
F3 A5 REP MOVS m32, m32 5+4*(E)CX Move (E)CX dwords from [ (E)SI]

to ES:[ (E)DI]
F3 A4 REP MOVSB 5+4*(E)CX Move (E)CX bytes from DS:

[ (E)SI] to ES:[ (E)DI]
F3 A5 REP MOVSW 5+4*(E)CX Move (E)CX words from DS:

[ (E)SI] to ES:[ (E)DI]
F3 A5 REP MOVSD 5+4*(E)CX Move (E)CX dwords from DS:

[ (E)SI] to ES:[ (E)DI]
F3 AA REP STOS m8 5+5*(E)CX Fill (E)CX bytes at ES:[ (E)DI] with

AL
F3 AB REP STOS m16 5+5*(E)CX Fill (E)CX words at ES:[ (E)DI]

with AX
F3 AB REP STOS m32 5+5*(E)CX Fill (E)CX dwords at ES:[ (E)DI]

with EAX
F3 AA REP STOSB 5+5*(E)CX Fill (E)CX bytes at ES:[ (E)DI] with

AL
F3 AB REP STOSW 5+5*(E)CX Fill (E)CX words at ES:[ (E)DI]

with AX
F3 AB REP STOSD 5+5*(E)CX Fill (E)CX dwords at ES:[ (E)DI]

with EAX
F3 A6 REPE/Z CMPS

m8,m8
5+9*N 3 Find nonmatching bytes in

ES:[ (E)DI] and [ (E)SI]

F3 A7 REPE/Z CMPS
m16,m16

5+9*N 3 Find nonmatching words in
ES:[ (E)DI] and [ (E)SI]

F3 A7 REPE/Z CMPS
m32,m32

5+9*N 3 Find nonmatching dwords in
ES:[ (E)DI] and [ (E)SI]

F3 A6 REPE/Z CMPSB 5+9*N 3 Find nonmatching bytes in ES:
[ (E)DI] and [ (E)SI]

F3 A7 REPE/Z CMPSW 5+9*N 3 Find nonmatching words in
ES:[ (E)DI] and [ (E)SI]

F3 A7 REPE/Z CMPSD 5+9*N 3 Find nonmatching words in
ES:[ (E)DI] and [ (E)SI]

3 N denotes the number of iterations actually executed.  These clock counts correspond to (E)CX iterations.



REP/REPE/REPZ/REPNE/REPNZ

378 Chapter 6 Processor Instructions

Opcode Instruction Clocks Description

F3 AE REPE/Z SCAS m8 5+8*N 3 Find non-AL byte starting at
ES:[ (E)DI]

F3 AF REPE/Z SCAS m16 5+8*N 3 Find non-AX word starting at
ES:[ (E)DI]

F3 AF REPE/Z SCAS m32 5+8*N 3 Find non-EAX dword starting at
ES:[ (E)DI]

F3 AE REPE/Z SCASB 5+8*N 3 Find non-AL byte starting at
ES:[ (E)DI]

F3 AF REPE/Z SCASW 5+8*N 3 Find non-AX word starting at
ES:[ (E)DI]

F3 AF REPE/Z SCASD 5+8*N 3 Find non-EAX dword starting at
ES:[ (E)DI]

F2 A6 REPNE/NZ CMPS
m8,m8

5+9*N 3 Find matching bytes in ES:[ (E)DI] and
[ (E)SI]

F2 A7 REPNE/NZ CMPS
m16,m16

5+9*N 3 Find matching words in ES: [ (E)DI]
and [ (E)SI]

F2 A7 REPNE/NZ CMPS
m32,m32

5+9*N 3 Find matching dwords in ES: [ (E)DI]
and [ (E)SI]

F2 A6 REPNE/NZ CMPSB 5+9*N 3 Find matching bytes in ES: [ (E)DI] and
[ (E)SI]

F2 A7 REPNE/NZ
CMPSW

5+9*N 3 Find matching words in ES: [ (E)DI]
and [ (E)SI]

F2 A7 REPNE/NZ CMPSD 5+9*N 3 Find matching dwords in ES: [ (E)DI]
and [ (E)SI]

F2 AE REPNE/NZ
SCAS m8

5+8*N 3 Find AL byte starting at ES:[ (E)DI]

F2 AF REPNE/NZ
SCAS m16

5+8*N 3 Find AX word starting at ES: [ (E)DI]

F2 AF REPNE/NZ
SCAS m32

5+8*N 3 Find EAX dword starting at ES:[ (E)DI]

F2 AE REPNE/NZ SCASB 5+8*N 3 Find AL byte starting at ES: [ (E)DI]

F2 AF REPNE/NZ SCASW 5+8*N 3 Find AX word starting at ES: [ (E)DI]

F2 AF REPNE/NZ SCASD 5+8*N 3 Find EAX dword starting at ES:[ (E)DI]

3 N denotes the number of iterations actually executed.  These clock counts correspond to (E)CX iterations.



REP/REPE/REPZ/REPNE/REPNZ

ASM386 Assembly Language Reference Chapter 6 379

Operation

IF AddressSize = 16 THEN
   Use CX for CountReg;
ELSE (*AddressSize = 32*)
   Use ECX for CountReg;
WHILE CountReg NOT = 0 DO
   service pending interrupts (*if any*);
   execute primitive string instruction;
   CountReg := CountReg - 1;
   IF primitive instruction = CMPSB OR CMPSW OR CMPSD OR
   SCASB OR SCASW OR SCASD THEN
     IF (instruction is REPE OR REPZ) AND (ZF=1) THEN
        exit WHILE loop;
     IF (instruction is REPNE OR REPNZ) AND (ZF=0) THEN
        exit WHILE loop;
ENDWHILE;

Discussion

REP, REPE (repeat while equal), and REPNE (repeat while not equal) prefix a string
instruction.  REP causes the following string instruction to repeat the number of
times indicated in the count register (E)CX.  REPE and REPNE cause the string
instruction to repeat until the indicated condition in the zero flag is no longer met.
REPZ and REPNZ are synonyms for REPE and REPNE, respectively.

REP/REPE/REPZ/REPNE/REPNZ affect only a single string instruction.  Use the
LOOP instruction or another looping construct to repeat a block of string
instructions.

The precise action for each iteration of REP/REPE/REPZ/REPNE/REPNZ is as
follows:

1. If the address size attribute is 16-bits, use CX for the count register; if the
address size attribute is 32-bits, use ECX for the count register.

2. Check (E)CX.  If it is zero, exit the iteration, and move to the next instruction.

3. Acknowledge any pending interrupts.

4. Perform the string operation once.

5. Decrement CX or ECX by 1; no flags are modified.



REP/REPE/REPZ/REPNE/REPNZ

380 Chapter 6 Processor Instructions

6. Check the zero flag if the string operation is SCAS or CMPS.  If the repeat
condition does not hold, exit the iteration and move to the next instruction.
Exit the iteration if the prefix is REPE and ZF is 0 (the last comparison was not
equal), or if the prefix is REPNE and ZF is 1 (the last comparison was equal).

7. Return to step 1 for the next iteration.

Repeated CMPS and SCAS instructions can be exited if the count is exhausted or if
the zero flag fails the repeat condition.  These two cases can be distinguished either
by using the JECXZ/JCXZ instruction, or by using the conditional jumps that test
the zero flag (JZ, JNZ, and JNE).

Not all input/output ports can handle the rate at which the REP INS  and REP OUTS
instructions execute.

Flags Affected

ZF by REP CMPS and REP SCAS as indicated in the Operation section

Exceptions by Mode

Protected

#UD if REP is used with any instruction (except LODS) not listed in the preceding
table; further exceptions can be generated when the string operation is executed.

See also: LODS and other string instructions, in this chapter

Real Address

Interrupt 6 if REP is used with any instruction (except LODS) not listed in the
preceding table; further exceptions can be generated when the string operation is
executed.

Virtual 8086

#UD if REP is used with any instruction (except LODS) not listed in the preceding
table; further exceptions can be generated when the string operation is executed.



RET

ASM386 Assembly Language Reference Chapter 6 381

RET   Return from Procedure

Opcode Instruction Clocks Description

C3 RET 10+m Return (near) to caller

CB RET 18+m,pm=32+m Return (far) to caller, same privilege

CB RET pm=68 Return (far), lesser privilege, switch stacks

C2 iw RET imm16 10+m Return (near), pop imm16 bytes of
parameters

CA iw RET imm16 18+m,pm=32+m Return (far), same privilege, pop imm16
bytes

CA iw RET imm16 pm=68 Return (far), lesser privilege, pop imm16
bytes

Operation

IF instruction = near RET THEN

    IF OperandSize = 16 THEN

       IP := Pop( );

       EIP := EIP AND 0000FFFFH;

    ELSE (*OperandSize = 32*)

       EIP := Pop( );

    IF instruction has immediate operand THEN

       (E)SP := (E)SP + imm16;

ENDIF; (*near RET*)

IF (PE = 0 OR (PE = 1 AND VM = 1) ) AND instruction = far RET

THEN

(*PE in CR0; VM in EFLAGS; real address or virtual 8086 mode*)

    IF OperandSize = 16 THEN

       IP := Pop( );

       EIP := EIP AND 0000FFFFH;

       CS := Pop( ); (*16-bit pop*)

    ELSE (*OperandSize = 32*)

       EIP := Pop( );

       CS := Pop( ); (*32-bit pop, high-order 16-bits discarded*)

    IF instruction has immediate operand THEN

       (E)SP := (E)SP + imm16;



RET

382 Chapter 6 Processor Instructions

ENDIF; (*far RET in real address or virtual 8086 mode*)

IF (PE = 1 AND VM = 0) AND instruction = far RET THEN

(*protected mode*)

    IF OperandSize = 32 THEN

       IF third word on stack NOT within stack limits THEN #SS(0);

    ELSE

       IF second word on stack NOT within stack limits THEN

          #SS(0);

    IF return selector RPL < CPL THEN #GP(return selector);

    IF return selector RPL = CPL THEN

       GOTO SAME_PRIVILEGE;

    ELSE

       GOTO LESS_PRIVILEGED;

    SAME_PRIVILEGE:

      IF return selector is null THEN #GP(0);

      IF selector index NOT within its descriptor table limits THEN

         #GP(selector);

      IF descriptor AR indicates non-code segment THEN

         #GP(selector);

      IF nonconforming AND

      code segment DPL NOT = CPL THEN

         #GP(selector);

      IF conforming AND code segment DPL > CPL THEN

         #GP(selector);

      IF code segment NOT PRESENT THEN #NP(selector);

      IF top word on stack NOT with stack limits THEN #SS(0);

      IF return_offset NOT within code segment limit THEN

         #GP(0);

      IF OperandSize = 32 THEN

         Load CS:EIP from stack;

         Load CS cache with descriptor;

         ESP := ESP + (8 + immediate offset (*if any*) );

      ELSE (*OperandSize = 16*)

         Load CS:IP from stack;

         Load CS cache with descriptor;

         SP := SP + (4 + immediate offset (*if any*) );

LESS_PRIVILEGED:

  IF OperandSize = 32 AND top (16 + immediate) bytes

  on stack NOT within stack limits THEN

     #SS(0);



RET

ASM386 Assembly Language Reference Chapter 6 383

  ELSE

     IF top (8 + immediate) bytes on stack

     NOT within stack limits THEN

       #SS(0);

ENDIFELSE; (*check top stack bytes*)

(*Examine return CS selector and associated descriptor: *)

  IF selector is null THEN #GP(0);

  IF selector index NOT within its descriptor table limits

THEN

     #GP(selector);

  Descriptor AR must indicate code segment

     ELSE #GP(selector);

  IF nonconforming AND code segment DPL NOT =

  return selector RPL THEN

     #GP(selector);

  IF conforming AND code segment DPL >

  return selector RPL THEN

     #GP(selector);

  IF segment NOT PRESENT THEN #NP(selector);

(*END examine return CS selector and descriptor*)

(*Examine return SS selector and associated descriptor: *)

  IF selector is null THEN #GP(0);

  IF selector index NOT within

  its descriptor table limits THEN

     #GP(selector);

  IF selector RPL NOT =

  RPL of return CS selector THEN

    #GP(selector);

  Descriptor AR must indicate writable data segment

    ELSE #GP(selector);

  IF descriptor DPL NOT = RPL

  of return CS selector THEN

     #GP(selector);

  IF segment NOT PRESENT THEN #NP(selector);

(*END examine return SS selector and descriptor*)

  IF return_offset NOT within code segment limit THEN

    #GP(0);

  CPL := RPL of return CS selector;

  IF OperandSize = 32 THEN

     Load CS:EIP from stack;

     (*CS*) RPL := CPL;

     ESP := ESP + (16 + immediate offset (*if any*) );

     Load SS:ESP from stack;



RET

384 Chapter 6 Processor Instructions

  ELSE (*OperandSize = 16*)

     Load CS:IP from stack;

     (*CS*) RPL := CPL;

     SP := SP + (8 + immediate offset (*if any*) );

     Load SS:SP from stack;

  ENDIFELSE; (*OperandSize = 32 or 16*)

  Load CS cache with return CS descriptor;

  Load SS cache with return SS descriptor;

  FOR each of ES, FS, GS, and DS DO

    IF current register setting NOT

    valid for calling routine THEN

      register := null; (*selector and AR := 0*)

    (*To be valid, register setting must satisfy:

    Selector index must be within its

      descriptor table limits;

    Descriptor AR must indicate data

      or readable code segment;

    For data or nonconforming code segment,

      DPL must be >= either CPL or RPL*)

  ENDFOR;

Discussion

RET transfers control to a return address located on the stack.  The address is
usually placed on the stack by a CALL instruction, and the return is made to the
instruction that follows the CALL.

RET's optional numeric operand specifies the number of stack bytes to be released
after the return address is popped.  The bytes released were input parameters to the
procedure called.

An intrasegment (NEAR) RET pops the 4- or 2-byte segment offset address on the
stack into (E)IP.  The CS register is unchanged.  For an intersegment (FAR) RET,
the address on the stack is a 4-byte (operand size attribute is 16-bits) or 6-byte
(operand size attribute is 32-bits) long pointer, stored on the stack in 8 bytes.  RET
pops the offset first, followed by the selector.

The assembler distinguishes between NEAR and FAR RETs via the PROC-ENDP
context of the instruction.  If RET is coded in a NEAR procedure, the near form is
used; if RET is in a FAR procedure, the far form is used.



RET

ASM386 Assembly Language Reference Chapter 6 385

In real address mode, RET loads CS and IP directly.  In protected mode, an
intersegment RET causes the processor to check the descriptor addressed by the
return selector.  The access rights (AR) of the descriptor must indicate a code
segment of equal or lesser privilege (equal or greater numeric value) than the
current privilege level.  Returns to a lesser privilege level cause the stack from that
level to be restored with parameters removed if an immediate operand is specified.

RET can zero the DS, ES, FS, and GS segment registers during an interlevel
transfer.  If these registers refer to segments that cannot be used by the new
privilege level, they are set to 0 to prevent unauthorized access.

Flags Affected

None

Exceptions by Mode

Protected

#GP, #NP, or #SS, as described in the Operation section; #PF(fault-code) for a page
fault

Real Address

Interrupt 13 if any part of the operand would be outside the effective address space
from 0 to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



SAHF

386 Chapter 6 Processor Instructions

SAHF   Store AH into Flags

Opcode Instruction Clocks Description

9E SAHF 3 Store AH into flags SF ZF xx AF xx PF xx CF

Operation

(SF):(ZF):xx:(AF):xx:(PF):xx:(CF) := (AH);

Discussion

SAHF loads bits 7, 6, 4, 2, and 0 from the AH register into the SF, ZF, AF, PF, and
CF flags of the (E)FLAGS  register.

Flags Affected

SF, ZF, AF, PF, and CF

Exceptions by Mode

Protected

None

Real Address

None

Virtual 8086

None



SAL/SAR/SHL/SHR

ASM386 Assembly Language Reference Chapter 6 387

SAL/SAR/SHL/SHR    Shift

Opcode Instruction Clocks Description

D0 /4 SAL r/m8,1 3/7 Multiply r/m byte by 2, once

D2 /4 SAL r/m8,CL 3/7 Multiply r/m byte by 2, CL times

C0 /4 ib SAL r/m8,imm8 3/7 Multiply r/m byte by 2, imm8 times

D1 /4 SAL r/m16,1 3/7 Multiply r/m word by 2, once

D3 /4 SAL r/m16,CL 3/7 Multiply r/m word by 2, CL times

C1 /4 ib SAL r/m16,imm8 3/7 Multiply r/m word by 2, imm8 times

D1 /4 SAL r/m32,1 3/7 Multiply r/m dword by 2, once

D3 /4 SAL r/m32,CL 3/7 Multiply r/m dword by 2, CL times

C1 /4 ib SAL r/m32,imm8 3/7 Multiply r/m dword by 2, imm8 times

D0 /7 SAR r/m8,1 3/7 Signed divide† r/m byte by 2, once

D2 /7 SAR r/m8,CL 3/7 Signed divide† r/m byte by 2, CL times

C0 /7 ib SAR r/m8,imm8 3/7 Signed divide† r/m byte by 2, imm8
times

D1 /7 SAR r/m16,1 3/7 Signed divide† r/m word by 2, once

D3 /7 SAR r/m16,CL 3/7 Signed divide† r/m word by 2, CL times

C1 /7 ib SAR r/m16,imm8 3/7 Signed divide† r/m word by 2, imm8
times

D1 /7 SAR r/m32,1 3/7 Signed divide† r/m dword by 2, once

D3 /7 SAR r/m32,CL 3/7 Signed divide† r/m dword by 2, CL times

C1 /7 ib SAR r/m32,imm8 3/7 Signed divide† r/m dword by 2, imm8
times

D0 /4 SHL r/m8,1 3/7 Unsigned multiply r/m byte by 2, once

D2 /4 SHL r/m8,CL 3/7 Unsigned multiply r/m byte by 2, CL
times

C0 /4 ib SHL r/m8,imm8 3/7 Unsigned multiply r/m byte by 2, imm8
times

D1 /4 SHL r/m16,1 3/7 Unsigned multiply r/m word by 2, once

D3 /4 SHL r/m16,CL 3/7 Unsigned multiply r/m word by 2, CL
times

† Rounding is toward negative infinity



SAL/SAR/SHL/SHR

388 Chapter 6 Processor Instructions

Opcode Instruction Clocks Description

C1 /4 ib SHL r/m16,imm8 3/7 Unsigned multiply r/m word by 2, imm8
times

D1 /4 SHL r/m32,1 3/7 Unsigned multiply r/m dword by 2, once

D3 /4 SHL r/m32,CL 3/7 Unsigned multiply r/m dword by 2, CL times

C1 /4 ib SHL r/m32,imm8 3/7 Unsigned multiply r/m dword by 2, imm8
times

D0 /5 SHR r/m8 ,1 3/7 Unsigned divide r/m byte by 2, once

D2 /5 SHR r/m8 ,CL 3/7 Unsigned divide r/m byte by 2, CL times

C0 /5 ib SHR r/m8,imm8 3/7 Unsigned divide r/m byte by 2, imm8 times

D1 /5 SHR r/m16,1 3/7 Unsigned divide r/m word by 2, once

D3 /5 SHR r/m16,CL 3/7 Unsigned divide r/m word by 2, CL times

C1 /5 ib SHR r/m16,imm8 3/7 Unsigned divide r/m word by 2, imm8 times

D1 /5 SHR r/m32,1 3/7 Unsigned divide r/m dword by 2, once

D3 /5 SHR r/m32,CL 3/7 Unsigned divide r/m dword by 2, CL times

C1 /5 ib SHR r/m32,imm8 3/7 Unsigned divide r/m dword by 2, imm8 times

Operation

(*Count is the second operand*)
temp := Count;
WHILE (temp NOT = 0) DO
   IF instruction = SAL OR SHL THEN
      CF := high-order bit of r/m ;
      r/m  := r/m  * 2;
   ELSE (*instruction is SAR or SHR*)
      CF := low-order bit of r/m ;
   IF instruction = SAR THEN
      r/m  := r/m  / 2; (*signed divide; round toward - ∞*)
   ELSE (*instruction is SHR*)
      r/m  := r/m  / 2; (*unsigned divide*);
   temp := temp - 1;
ENDWHILE;
IF Count = 1 THEN (*Determine overflow*)
    IF instruction is SAL or SHL THEN
       IF high-order bit of r/m NOT = (CF) THEN
          OF := 1;



SAL/SAR/SHL/SHR

ASM386 Assembly Language Reference Chapter 6 389

       ELSE
          OF := 0;
       IF instruction is SAR THEN
          OF := 0;
       IF instruction is SHR THEN
          OF := high-order bit of operand;
    ELSE (*Count NOT = 1*)       OF := UNDEFINED;

Discussion

SAL/SAR/SHL/SHR  shift the bits of the register or memory operand.  SAL/SHL
shift the bits upward, copying the high-order bit into the carry flag and clearing the
low-order bit (0).  SAR/SHR shift the bits downward, copying the low-order bit into
the carry flag; the effect is to divide the operand by 2.  SAR performs a signed
divide by 2 with rounding toward negative infinity (not like IDIV ); the high-order
bit remains the same.  SHR performs an unsigned divide; the high-order bit is
cleared.

The second operand is a shift count in the range 1..31; the operand is either an
immediate number or the contents of CL.  For a shift count value greater than 31,
the processor uses only its low-order 5-bits.  (The 8086 uses all 8-bits of the shift
count.)

The overflow flag is defined only if the second operand is 1; otherwise, it is
undefined.  SAL/SHL clear OF (to 0) if the high bit of the answer is the same as the
result of the carry flag (i.e., the top two bits of the original operand are the same);
OF is set to 1 if they are different.  SAR clears OF for all single shifts.  SHR sets OF
to the high-order bit of the original operand.

Flags Affected

CF and OF for single shifts as indicated in the Discussion section; OF is undefined
for shift counts greater than 1; ZF, PF, and SF as described in Appendix A

Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault



SAL/SAR/SHL/SHR

390 Chapter 6 Processor Instructions

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from 0 to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



SBB

ASM386 Assembly Language Reference Chapter 6 391

SBB   Integer Subtraction with Borrow

Opcode Instruction Clocks Description

1C ib SBB AL,imm8 2 Subtract with borrow immediate byte from AL

1D iw SBB AX,imm16 2 Subtract with borrow immediate word from
AX

1D id SBB EAX,imm32 2 Subtract with borrow immediate dword from
EAX

80 /3 ib SBB r/m8,imm8 2/7 Subtract with borrow immediate byte from
r/m byte

81 /3 iw SBB r/m16,imm16 2/7 Subtract with borrow immediate word from
r/m word

81 /3 id SBB r/m32,imm32 2/7 Subtract with borrow immediate dword from
r/m dword

83 /3 ib SBB r/m16,imm8 2/7 Subtract with borrow sign-extended
immediate byte from r/m word

83 /3 ib SBB r/m32,imm8 2/7 Subtract with borrow sign-extended
immediate byte from r/m dword

18 /r SBB r/m8,r8 2/6 Subtract with borrow byte register from r/m
byte

19 /r SBB r/m16,r16 2/6 Subtract with borrow word register from r/m
word

19 /r SBB r/m32,r32 2/6 Subtract with borrow dword register from r/m
dword

1A /r SBB r8,r/m8 2/7 Subtract with borrow r/m byte from byte
register

1B /r SBB r16,r/m16 2/7 Subtract with borrow r/m word from word
register

1B /r SBB r32,r/m32 2/7 Subtract with borrow r/m dword from dword
register

Operation

IF Src is byte AND Dest is word OR dword THEN
    Dest = Dest - (SignExtend(Src) + CF);
ELSE
    Dest := Dest - (Src + CF);



SBB

392 Chapter 6 Processor Instructions

Discussion

SBB adds the second operand to the carry flag (CF) and subtracts the result from the
first operand.  Then SBB copies the result to the first operand, and sets the flags
accordingly.

When SBB subtracts an immediate byte value from a word or dword operand, it
sign-extends the immediate value before the subtraction.

Flags Affected

OF, SF, ZF, AF, PF, and CF as described in Appendix A

Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from 0 to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



SCAS/SCASB/SCASW\SCASD

ASM386 Assembly Language Reference Chapter 6 393

SCAS/SCASB/SCASW/SCASD    Compare String Data

Opcode Instruction Clocks Description

AE SCAS m8 7 Compare bytes AL - ES:[ (E)DI], update (E)DI

AF SCAS m16 7 Compare words AX - ES:[ (E)DI], update (E)DI

AF SCAS m32 7 Compare dwords EAX - ES:[ (E)DI], update
(E)DI

AE SCASB 7 Compare bytes AL - ES:[ (E)DI], update (E)DI

AF SCASW 7 Compare words AX - ES:[ (E)DI], update (E)DI

AF SCASD 7 Compare dwords EAX - ES:[ (E)DI], update
(E)DI

Operation

IF AddressSize = 16 THEN
   Use DI for DestIndex;
ELSE (*AddressSize = 32*)
   Use EDI for DestIndex;
IF byte type of instruction THEN
   AL - [DestIndex]; (*compare byte in AL with destination*)
   IF DF = 0 THEN IncDec := 1 ELSE IncDec := -1;
ELSE
   IF OperandSize = 16 THEN
      (*compare word in AX with destination*)
      AX - [DestIndex];
      IF DF = 0 THEN IncDec := 2 ELSE IncDec := -2;
   ELSE (*OperandSize = 32*)
      (*compare dword in EAX with destination*)
      EAX - [DestIndex];
      IF DF = 0 THEN IncDec := 4 ELSE IncDec := -4;
DestIndex := DestIndex + IncDec;



SCAS/SCASB/SCASW\SCASD

394 Chapter 6 Processor Instructions

Discussion

SCAS subtracts the memory byte, word, or dword at the destination register from
the AL, AX or EAX register.  SCAS discards the result; only the flags are set.  The
operand must be addressable from the ES segment; no segment override is possible.

If the address size attribute for this instruction is 16-bits, DI is used as the
destination index register; otherwise, the address size attribute is 32-bits and EDI is
used.

The address of memory data is determined solely by the contents of the destination
index register, not by the SCAS operand.  Load the correct index value into (E)DI
before executing SCAS.

The SCAS operand validates ES segment addressability and determines the data
type.  After the comparison is made, the destination register is automatically
updated.  If the direction flag is 0 (CLD was executed), the destination index
register is incremented; if the direction flag is 1 (STD was executed), it is
decremented.  SCAS increments or decrements the destination by 1 if it compares
bytes, by 2 if it compares words, or by 4 if it compares dwords.

SCASB, SCASW, and SCASD are synonyms for the byte, word and dword SCAS
instructions.  They are simpler, but they provide no type or segment checking.

SCAS can be preceded by the REPE or REPNE prefix for a block search of (E)CX
bytes, words, or dwords.  See the REP prefix for details of this operation.

Flags Affected

OF, SF, ZF, AF, PF, and CF as described in Appendix A

Exceptions by Mode

Protected

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or
GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a
page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from 0 to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



SETcc

ASM386 Assembly Language Reference Chapter 6 395

SETcc    Byte Set on Condition

Opcode Instruction Clocks Description

0F 97 SETA r/m8 4/5 Set byte if above (CF=0 and ZF=0)

0F 93 SETAE r/m8 4/5 Set byte if above or equal (CF=0)

0F 92 SETB r/m8 4/5 Set byte if below (CF=1)

0F 96 SETBE r/m8 4/5 Set byte if below or equal (CF=1 or ZF=1)

0F 92 SETC r/m8 4/5 Set if carry (CF=1)

0F 94 SETE r/m8 4/5 Set byte if equal (ZF=1)

0F 9F SETG r/m8 4/5 Set byte if greater (ZF=0 and SF=OF)

0F 9D SETGE r/m8 4/5 Set byte if greater or equal (SF=OF)

0F 9C SETL r/m8 4/5 Set byte if less (SF NOT = OF)

0F 9E SETLE r/m8 4/5 Set byte if less or equal (ZF=1 or SF NOT = OF)

0F 96 SETNA r/m8 4/5 Set byte if not above (CF=1 or ZF = 1)

0F 92 SETNAE r/m8 4/5 Set byte if not above and not equal (CF=1)

0F 93 SETNB r/m8 4/5 Set byte if not below (CF=0)

0F 97 SETNBE r/m8 4/5 Set byte if not below and not equal (CF=0 and
ZF=0)

0F 93 SETNC r/m8 4/5 Set byte if not carry (CF=0)

0F 95 SETNE r/m8 4/5 Set byte if not equal (ZF=0)

0F 9E SETNG r/m8 4/5 Set byte if not greater (ZF=1 or SF NOT = OF)

0F 9C SETNGE r/m8 4/5 Set byte if not greater and not equal (SF NOT =
OF)

0F 9D SETNL r/m8 4/5 Set byte if not less (SF=OF)

0F 9F SETNLE r/m8 4/5 Set byte if not less and not equal (ZF=1 and
SF=OF)

0F 91 SETNO r/m8 4/5 Set byte if not overflow (OF=0)

0F 9B SETNP r/m8 4/5 Set byte if not parity (PF=0)

0F 99 SETNS r/m8 4/5 Set byte if not sign (SF=0)

0F 95 SETNZ r/m8 4/5 Set byte if not zero (ZF=0)

0F 90 SETO r/m8 4/5 Set byte if overflow (OF=1)

0F 9A SETP r/m8 4/5 Set byte if parity (PF=1)



SETcc

396 Chapter 6 Processor Instructions

Opcode Instruction Clocks Description

0F 9A SETPE r/m8 4/5 Set byte if parity even (PF=1)

0F 9B SETPO r/m8 4/5 Set byte if parity odd (PF=0)

0F 98 SETS r/m8 4/5 Set byte if sign (SF=1)

0F 94 SETZ r/m8 4/5 Set byte if zero (ZF=1)

Operation

IF condition THEN
   r/m8  := 1;
ELSE
   r/m8  := 0;

Discussion

SETcc stores a byte value at the destination specified by the memory effective
address or register.  SETcc stores a 1 if the condition is met; it stores 0 if the
condition is not met.

Flags Affected

None

Exceptions by Mode

Protected

#GP(0) if the result is in a non-writable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from 0 to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



SGDT/SIDT

ASM386 Assembly Language Reference Chapter 6 397

SGDT/SIDT   Store Global/Interrupt Descriptor Table Register

Opcode Instruction Clocks Description

0F 01 /0 SGDT m 9 Store GDTR to m

0F 01 /1 SIDT m 9 Store IDTR to m

Operation

Dest := 48-bit BASE/LIMIT register contents;

Discussion

SGDT/SIDT copies the contents of the descriptor table register to the 6 bytes of
memory specified by the operand.  SGDT/SIDT assign the limit field of the register
to the low-order word at the effective address.

If the operand size attribute is 32-bits, SGDT/SIDT assign the 32-bit base field of
the register to the next 4 bytes.  If the register was loaded with operand size
attribute of 16-bits, these instructions assign the base field of the register to the next
3 memory bytes and zero to the high-order byte.

The 16-bit forms of the SGDT/SIDT instructions are compatible with the 286
processor SGDT/SIDT if the value in the high-order 8-bits is not referenced.

Flags Affected

None

Exceptions by Mode

Protected

#UD if the destination operand is a register; #GP(0) if the destination is in a
nonwritable segment; #GP(0) for an illegal memory operand effective address in
the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS
segment; #PF(fault-code) for a page fault



SGDT/SIDT

398 Chapter 6 Processor Instructions

Real Address

Interrupt 6 if the destination operand is a register; Interrupt 13 if any part of the
operand would lie outside the effective address space from 0 to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



SGDTW/SGDTD/SIDTW/SIDTD

ASM386 Assembly Language Reference Chapter 6 399

SGDTW/SGDTD/SIDTW/SIDTD
Store Global/Interrupt Descriptor Table Register with WORD/DWORD Operand

Opcode Instruction Clocks Description

0F 01 /0 SGDTW m16 9 Load m16 into GDTR

0F 01 /0 SGDTD m32 9 Load m32 into GDTR

0F 01 /1 SIDTW m16 9 Load m16 into IDTR

0F 01 /1 SIDTD m32 9 Load m32 into IDTR

Operation

DEST := 48-bit BASE/LIMIT register contents;

Discussion

The SGDTW, SGDTD, SIDTW, and SIDTD instructions are variants of the SGDT and
SIDT  instructions.   They copy the contents of the descriptor table register to the 6
bytes of memory specified by the operand.

These variants allow the 16-bit or 32-bit form of the instructions to be used without
hard-coding address and operand prefixes to override the USE attribute currently in
effect.

The variants automatically generate any operand or address prefixes that are
necessary as follows:

Instruction

USE16
Operand
Prefix

USE16
Address
Prefix

USE32
Operand
Prefix

USE32
Address
Prefix

SGDTW/SIDTW NO NO YES YES

SGDTD/SIDTD YES YES NO NO

See also: SGDT/SIDT instructions for further discussion, flags affected, and
exceptions, in this chapter



SHLD

400 Chapter 6 Processor Instructions

SHLD   Double Precision Shift Left

Opcode Instruction Clocks Description

0F A4 /r ib SHLD r/m16,
r16,imm8

3/7 r/m16 gets SHL of r/m16 concatenated
with r16

0F A4 /r ib SHLD r/m32,
r32,imm8

3/7 r/m32 gets SHL of r/m32 concatenated
with r32

0F A5 /r SHLD r/m16,
r16,CL

3/7 r/m16 gets SHL of r/m16 concatenated
with r16

0F A5 /r SHLD r/m32,
r32,CL

3/7 r/m32 gets SHL of r/m32 concatenated
with r32

Operation

(*Count is an unsigned integer corresponding to the last operand of

the instruction, either an immediate byte or the byte in register CL*)

ShiftAmt := Count MOD 32; (*Count = third operand*)

IF ShiftAmt = 0 THEN

    NOP;

ELSE

    IF  ShiftAmt  >= OperandSize THEN (*bad parameters*)
      r/m  := UNDEFINED;

      Flags := UNDEFINED; (*CF, OF, SF, ZF, AF, and PF*)

    ELSE (*do the shift; allow overlapped operands*)

      inBits :=  r16/32 ; (*second operand*)

      Base := Dest;

      CF := BIT[Base, (OperandSize - ShiftAmt) ];

      (*last bit shifted out on exit*)

      FOR i := (OperandSize - 1) DOWNTO ShiftAmt DO

        BIT[Base, i] := BIT[Base,i - ShiftAmt];

      ENDFOR;

      FOR i := (ShiftAmt - 1) DOWNTO 0 DO

        BIT[Base,i] := BIT[inBits,i - ShiftAmt + OperandSize];

      ENDFOR;

      (*SF, ZF, PF, OF are set according to the result value*)

      Set SF, ZF, PF, ( r/m );

      IF BIT[Base, OperandSize - 1] NOT = CF THEN

         OF := 1;

      ELSE

         OF := 0;

      AF := UNDEFINED;



SHLD

ASM386 Assembly Language Reference Chapter 6 401

Discussion

SHLD shifts the r/m first operand to the left as many bits as specified by the count
(third operand) modulo 32.  The second operand (r16 or r32) provides the bits to
shift in from the right, starting with the bit (OperandSize - ShiftAmount).  The
result is stored back into the r/m operand.  The second operand is unchanged.

The count is either an immediate byte or the contents of the CL register.  Its value
is taken modulo 32 to yield a shift amount in the range 0..31.  The shift amount
must be less than the operand size, or SHLD does nothing.

SHLD sets SF, ZF and PF according to the value of the result.  It sets CF to the
value of the last bit shifted out and OF to 1 if this bit caused an overflow.  AF is
undefined.

Flags Affected

OF, SF, ZF, PF, and CF as described in the Discussion section; AF is undefined

Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from 0 to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



SHRD

402 Chapter 6 Processor Instructions

SHRD   Double Precision Shift Right

Opcode Instruction Clocks Description

0F AC /r ib SHRD r/m16,
r16,imm8

3/7 r/m16 gets SHR of r16 concatenated with
r/m16

0F AC /r ib SHRD r/m32,
r32,imm8

3/7 r/m32 gets SHR of r32 concatenated with
r/m32

0F AD /r SHRD r/m16,
r16,CL

3/7 r/m16 gets SHR of r16 concatenated with
r/m16

0F AD /r SHRD r/m32,
r32,CL

3/7 r/m32 gets SHR of r32 concatenated with
r/m32

Operation

(*Count is an unsigned integer corresponding to the last operand of

the instruction, either an immediate byte or the byte in register CL*)

ShiftAmt := Count MOD 32;

IF ShiftAmt = 0 THEN

   NOP;

ELSE

   IF ShiftAmt >= OperandSize THEN (*bad parameters*)

   r/m  := UNDEFINED;

   Flags := UNDEFINED; (*CF,OF,SF,ZF,AF, and PF*)

ELSE (*do the shift; allow overlapped operands*)

   inBits :=  r16/32 ; (*second operand*)

   Base := Dest;

   CF := BIT[Base, ShiftAmt - 1];

   (*last bit shifted out on exit*)

   FOR i := 0 TO (OperandSize - 1 - ShiftAmt) DO

     BIT[Base, i] := BIT[Base, i + ShiftAmt];

   ENDFOR;

   FOR i := (OperandSize - ShiftAmt) TO (OperandSize - 1) DO

     BIT[Base,i] := BIT[inBits, i + ShiftAmt - OperandSize];

   ENDFOR;

   (*SF, ZF, PF, and OF are set according to the result value*)

   Set SF, ZF, PF ( r/m );



SHRD

ASM386 Assembly Language Reference Chapter 6 403

   IF BIT[Base, OperandSize - 1]

   NOT = BIT[Base, OperandSize - 2] THEN

     OF := 1;

   ELSE

     OF := 0;

   AF := UNDEFINED;

Discussion

SHRD shifts the r/m first operand to the right as many bits as specified by the count
(third operand) modulo 32.  The second operand (r16 or r32) provides the bits to
shift in from the left, starting with bit 0.  The result is stored back into the r/m
operand.  The second operand is unchanged.

The count is either an immediate byte or the contents of the CL register.  Its value
is taken modulo 32 to yield a shift amount in the range 0..31.  The shift amount
must be less than the operand size, or SHRD does nothing.

SHRD sets SF, ZF and PF according to the value of the result.  It sets CF to the
value of the last bit shifted out and sets OF if the 2 most significant bits differ.  AF
is undefined.

Flags Affected

SF, ZF, PF, CF and OF as described in the Discussion section; AF is undefined

Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from 0 to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



SLDT

404 Chapter 6 Processor Instructions

SLDT   Store Local Descriptor Table Register

Opcode Instruction Clocks Description

0F 00 /0 SLDT r/m16 pm=2/2 Store LDTR to r/m16

Operation

r/m16  := LDTR;

Discussion

SLDT stores the Local Descriptor Table Register (LDTR) in the operand, a 2-byte
register or memory location.  The operand size attribute has no effect on SLDT's
operation.

LDTR is a selector that points to the LDT descriptor in the Global Descriptor Table.

Flags Affected

None

Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 6; SLDT is not recognized in Real Address Mode

Virtual 8086

Same as Real Address Mode



SMSW

ASM386 Assembly Language Reference Chapter 6 405

SMSW   Store Machine Status Word

Opcode Instruction Clocks Description

0F 01 /4 SMSW r/m16 2/3,pm=2/2 Store machine status word to r/m16

Operation

r/m16  := MSW;

Discussion

SMSW stores the machine status word of CR0 in the 2-byte register or memory
location specified by its operand.

Flags Affected

None

Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from 0 to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



STC

406 Chapter 6 Processor Instructions

STC   Set Carry Flag

Opcode Instruction Clocks Description

F9 STC 2 Set carry flag

Operation

CF := 1;

Discussion

STC sets the carry flag to 1.

Flags Affected

CF = 1

Exceptions by Mode

Protected

None

Real Address

None

Virtual 8086

None



STD

ASM386 Assembly Language Reference Chapter 6 407

STD   Set Direction Flag

Opcode Instruction Clocks Description

FD STD 2 Set direction flag so (E)SI and/or (E)DI decrement

Operation

DF := 1;

Discussion

STD sets the direction flag to 1, causing all subsequent string operations to
decrement the index registers, (E)SI and/or (E)DI.

Flags Affected

DF = 1

Exceptions by Mode

Protected

None

Real Address

None

Virtual 8086

None



STI

408 Chapter 6 Processor Instructions

STI   Set Interrupt Flag

Opcode Instruction Clocks Description

FB STI 3 Set interrupt flag; interrupts enabled at the end of
the next instruction

Operation

IF CPL > IOPL THEN
   #GP(0);
ELSE
   IF (*interrupt flag*) := 1;

Discussion

STI  sets the interrupt flag in the (E)FLAGS  register.  The processor then responds
to external interrupts after executing the next instruction (if this instruction allows
the interrupt flag to remain enabled).  If external interrupts are disabled:

• STI , CLI  has no effect except that it uses clocks.  CLI  clears the interrupt flag
set by STI ; external interrupts are not recognized after this instruction
sequence.

• STI , RET (at the end of a subroutine) allows RET to execute before external
interrupts are recognized.

Flags Affected

IF = 1

Exceptions by Mode

Protected

#GP(0) if the current privilege level (CPL) is greater (has less privilege) than IOPL

Real Address

None

Virtual 8086

#GP(0) to allow emulation



STOS/STOSB/STOSW/STOSD

ASM386 Assembly Language Reference Chapter 6 409

STOS/STOSB/STOSW/STOSD   Store String Data

Opcode Instruction Clocks Description

AA STOS m8 4 Store AL in byte ES:[ (E)DI], update (E)DI

AB STOS m16 4 Store AX in word ES:[ (E)DI], update (E)DI

AB STOS m32 4 Store EAX in dword ES:[ (E)DI], update (E)DI

AA STOSB 4 Store AL in byte ES:[ (E)DI], update (E)DI

AB STOSW 4 Store AX in word ES:[ (E)DI], update (E)DI

AB STOSD 4 Store EAX in dword ES:[ (E)DI], update (E)DI

Operation

IF AddressSize = 16 THEN
   Use ES:DI for DestReg;
ELSE (*AddressSize = 32*)
   Use ES:EDI for DestReg;
IF byte type of instruction THEN
   (ES:DestReg) := AL;
   IF DF = 0 THEN IncDec := 1 ELSE IncDec := -1;
ELSE (*word or dword instruction*)
   IF OperandSize = 16 THEN
   (ES:DestReg) := AX;
   IF DF = 0 THEN IncDec := 2 ELSE IncDec := -2;
ELSE (*OperandSize = 32*)
   (ES:DestReg) := EAX;
   IF DF = 0 THEN IncDec := 4 ELSE IncDec := -4;
DestReg := DestReg + IncDec;

Discussion

STOS transfers the contents of AL, AX, or EAX register to the memory byte, word
or dword accessed by ES:(E)DI.  The destination register is DI for an address size
attribute of 16-bits or EDI for an address size attribute of 32-bits.  The destination
operand must be addressable from the ES register.  No segment override is
possible.

The address of the destination is determined by the contents of (E)DI, not by the
STOS operand.  This operand is used only to validate ES segment addressability
and to determine the data type.  Load the correct index value into (E)DI before
executing STOS.



STOS/STOSB/STOSW/STOSD

410 Chapter 6 Processor Instructions

STOSB, STOSW, and STOSD are synonyms for the byte, word, and dword STOS
instructions.  They are simpler, but they provide no type or segment checking.

After the transfer is made, (E)DI is automatically updated.  If the direction flag is 0
(CLD was executed), the destination register is incremented; if the direction flag is
1 (STD was executed), (E)DI is decremented.  (E)DI is incremented or
decremented by 1 if a byte is stored, by 2 if a word is stored, or by 4 if a dword is
stored.

STOS can be preceded by the REP prefix for a block fill of (E)CX bytes, words, or
dwords.  See the REP reference for details of this operation.

Flags Affected

None

Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from 0 to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



STR

ASM386 Assembly Language Reference Chapter 6 411

STR   Store Task Register

Opcode Instruction Clocks Description

0F 00 /1 STR r/m16 pm=23/27 Store task register into r/m word

Operation

r/m16  := task register;

Discussion

STR copies the contents of the task register into the 2-byte register or memory
location specified by the operand.

The operand size attribute has no effect on this instruction.

Flags Affected

None

Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 6; STR is not recognized in Real Address Mode

Virtual 8086

Same as Real Address Mode



SUB

412 Chapter 6 Processor Instructions

SUB   Integer Subtraction

Opcode Instruction Clocks Description

2C ib SUB AL,imm8 2 Subtract immediate byte from AL

2D iw SUB AX,imm16 2 Subtract immediate word from AX

2D id SUB EAX,imm32 2 Subtract immediate dword from EAX

80 /5 ib SUB r/m8,imm8 2/7 Subtract immediate byte from r/m byte

81 /5 iw SUB r/m16,imm16 2/7 Subtract immediate word from r/m word

81 /5 id SUB r/m32,imm32 2/7 Subtract immediate dword from r/m dword

83 /5 ib SUB r/m16,imm8 2/7 Subtract sign-extended immediate byte from
r/m word

83 /5 ib SUB r/m32,imm8 2/7 Subtract sign-extended immediate byte from
r/m dword

28 /r SUB r/m8,r8 2/6 Subtract byte register from r/m byte

29 /r SUB r/m16,r16 2/6 Subtract word register from r/m word register
from r/m dword

2A /r SUB r8,r/m8 2/7 Subtract r/m byte from byte register

2B /r SUB r16,r/m16 2/7 Subtract r/m word from word register

2B /r SUB r32,r/m32 2/7 Subtract r/m dword from dword register

Operation

IF Src is byte AND Dest is word OR dword THEN
    SignExtend(Src);
Dest := Dest - Src;

Discussion

SUB subtracts the second operand from the first operand, assigns the result to the
first operand (Dest), and sets the flags accordingly.

When an immediate byte value is subtracted from a word or dword operand, the
immediate value is first sign-extended to the size of the destination operand.

Flags Affected

OF, SF, ZF, AF, PF, and CF as described in Appendix A



SUB

ASM386 Assembly Language Reference Chapter 6 413

Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from 0 to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



TEST

414 Chapter 6 Processor Instructions

TEST   Logical Compare

Opcode Instruction Clocks Description

A8 ib TEST AL,imm8 2 AND immediate byte with AL

A9 iw TEST AX,imm16 2 AND immediate word with AX

A9 id TEST EAX,imm32 2 AND immediate dword with EAX

F6 /0 ib TEST r/m8,imm8 2/5 AND immediate byte with r/m byte

F7 /0 iw TEST r/m16,imm16 2/5 AND immediate word with r/m word

F7 /0 id TEST r/m32,imm32 2/5 AND immediate dword with r/m dword

84 /r TEST r/m8,r8 2/5 AND byte register with r/m byte

85 /r TEST r/m16,r16 2/5 AND word register with r/m word

85 /r TEST r/m32,r32 2/5 AND dword register with r/m dword

84 /r TEST r8,r/m8 2/5 AND r/m byte with byte register

85 /r TEST r16,r/m16 2/5 AND r/m word with word register

85 /r TEST r32,r/m32 2/5 AND r/m dword with dword register

Operation

Dest AND RightSrc;
(*Set SF, ZF, and PF according to AND result*)
CF := 0;
OF := 0;

Discussion

TEST does a bit-wise logical AND of its two operands.  A corresponding AND result
bit is 1 if both operands' corresponding bits are 1; otherwise, the result bit is 0.

TEST discards the AND result; its purpose is to assign values to the ZF, SF, and PF
flags, and to clear CF and OF.  For example:

TEST AL,1   ; AND AL bottom bit with 1;
            ; assign to ZF, SF, PF
JNZ FINISH  ; jump to FINISH if AL's
            ; LSB is set

See the Jcc and SETcc  instructions for more information about the SF, ZF, and
PF tests.  TEST clears CF and OF.



TEST

ASM386 Assembly Language Reference Chapter 6 415

Flags Affected

OF = 0, CF = 0; SF, ZF, and PF as described in Appendix A

Exceptions by Mode

Protected

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or
GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a
page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from 0 to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



VERR/VERW

416 Chapter 6 Processor Instructions

VERR/VERW   Verify a Segment for Reading or Writing

Opcode Instruction Clocks Description

0F 00 /4 VERR r/m16 pm=10/11 Set ZF=1 if segment can be read, selector in
r/m16

0F 00 /5 VERW r/m16 pm=15/16 Set ZF=1 if segment can be written, selector
in r/m16

Operation

IF segment (*selector at (r/m)*) accessible with CPL
AND ((segment is readable for VERR)
OR (segment is writable for VERW)) THEN
   ZF := 1;
ELSE
   ZF := 0;

Discussion

VERR/VERW's 2-byte register or memory operand contains the value of a selector.
These instructions determine whether the segment denoted by the selector is
accessible from the current privilege level and whether the segment is readable
(VERR) or writable (VERW).  The zero flag is set if the segment is accessible;
otherwise, ZF is cleared.  VERR/VERW set ZF only if:

• The selector denotes a descriptor within the bounds of the global/local
descriptor table (GDT or LDT).  (The selector must be defined.)

• The selector denotes the descriptor of a code or data segment (not that of a task
state segment, LDT, or gate).

• The segment is readable for VERR, or writable for VERW.

• If the code segment is readable and conforming, the descriptor privilege level
(DPL) can be any value for VERR.  Otherwise, the DPL must be greater than or
equal to (have less or the same privilege as) both the current privilege level
(CPL) and the selector's RPL (requesting privilege level).

VERR/VERW perform the same segment validation checks as the
LGS/LDS/LES/LFS  instructions.  (See the LGS/LSS/LDS/LES/LFS  Operation
section for details).  However, VERR/VERW never raise a protection exception
because the operand's selector is not loaded into a segment register.  VERR/VERW
validate the segment's accessibility, check its readability/writability, and then set
ZF accordingly.  Thus, ZF can be tested before a segment access problem occurs.



VERR/VERW

ASM386 Assembly Language Reference Chapter 6 417

Flags Affected

ZF as described in the Discussion section

Exceptions by Mode

Protected

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or
GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a
page fault

Real Address

Interrupt 6; VERR and VERW are not recognized in Real Address Mode

Virtual 8086

Same as Real Address Mode



WAIT

418 Chapter 6 Processor Instructions

WAIT   Wait until BUSY# Pin is Inactive (HIGH)

Opcode Instruction Clocks Description

9B WAIT min.  6 Wait until BUSY# pin is inactive (HIGH)

Discussion

WAIT suspends execution of processor instructions until the BUSY# pin is inactive
(high).  The BUSY# pin is driven by the floating-point coprocessor.

WAIT allows a check to be made for pending unmasked floating-point errors before
the next floating-point coprocessor instruction executes.

See also: FWAIT instruction, Chapter 7

WAIT also synchronizes the processor with an Intel287 coprocessor.

Flags Affected

None

Exceptions by Mode

Protected

#NM if the task-switched flag is set in the machine status word (the lower 16-bits
of register CR0); #MF if the ERROR# input pin is asserted (i.e., the floating-point
coprocessor has detected an unmasked numeric error)

Real Address

Same as Protected Mode

Virtual 8086

Same as Protected Mode



WBINVD

ASM386 Assembly Language Reference Chapter 6 419

WBINVD   Write Back And Invalidate Data Cache
(not available on Intel386 or 376 processors)

Opcode Instruction Clocks Description

0F 09 WBINVD — Write back then flush data cache

Operation

FOR ALL CacheEntries DO
   WriteBack(CacheEntry);
   Bit[CacheEntry,Valid] := 0;

Discussion

WBINVD writes back and invalidates (flushes) all entries in the data cache.  The
entries are flushed by resetting their valid bits.  This instruction takes no operand.

Flags Affected

None

Exceptions by Mode

Protected

None

Real Address

None

Virtual 8086

None



XADD

420 Chapter 6 Processor Instructions

XADD   Exchange Add (not available on Intel386 or 376 processors)

Opcode Instruction Clocks Description

0F C0 /r XADD r/m8,r8 — Exchanges values of r/m8 and r8, adds
them, and moves the sum into r/m8

0F C1 /r XADD r/m16,r16 — Exchanges values of r/m16 and r16, adds
them, and moves the sum into r/m16

0F C1 /r XADD r/m32,r32 — Exchanges values of r/m32 and r32, adds
them, and moves the sum into r/m32

Operation

IF OperandSize = 8 (* r/m8 , r8 *) THEN
     temp := r/m8 ;
     r/m8  := r8  + temp;
     r8  := temp;
IF OperandSize = 16 (* r/m16 , r16 *) THEN
     temp := r/m16 ;
     r/m16  := r16  + temp;
     r16  := temp;
IF OperandSize = 32 (* r/m32 , r32 *) THEN
     temp := r/m32 ;
     r/m32  := r32  + temp;
     r32  := temp;

Discussion

XADD exchanges the contents of the first operand with the second operand, adds
them, copies their sum into the first operand, and sets the flags accordingly.

The LOCK prefix is only valid for the forms of XADD which involve memory
operands.

Flags Affected

OF, SF, ZF, AF, PF, and CF as described in Appendix A



XADD

ASM386 Assembly Language Reference Chapter 6 421

Exceptions by Mode

Protected

#GP(0) if either operand is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from 0 to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



XCHG

422 Chapter 6 Processor Instructions

XCHG   Exchange Register/Memory with Register

Opcode Instruction Clocks Description

90+r XCHG AX,r16 3 Exchange word register with AX

90+r XCHG r16,AX 3 Exchange word register with AX

90+r XCHG EAX,r32 3 Exchange dword register with EAX

90+r XCHG r32,EAX 3 Exchange dword register with EAX

86 /r XCHG r/m8,r8 3 Exchange r/m byte with byte register

86 /r XCHG r8,r/m8 3/5 Exchange byte register with r/m byte

87 /r XCHG r/m16,r16 3 Exchange r/m word with word register

87 /r XCHG r16,r/m16 3/5 Exchange word register with r/m word

87 /r XCHG r/m32,r32 3 Exchange r/m dword with dword register

87 /r XCHG r32,r/m32 3/5 Exchange dword register with r/m dword

Operation

temp := Dest;
Dest := Src;
Src := temp;

Discussion

XCHG swaps two operands.  For a memory operand, bus LOCK# is asserted for the
duration of the exchange, regardless of the presence or absence of the LOCK prefix
or of the value of IOPL .

Flags Affected

None

Exceptions by Mode

Protected

#GP(0) if either operand is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault



XCHG

ASM386 Assembly Language Reference Chapter 6 423

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from 0 to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



XLAT/XLATB

424 Chapter 6 Processor Instructions

XLAT/XLATB    Table Look-up Translation

Opcode Instruction Clocks Description

D7 XLAT m8 5 Set AL to memory byte DS:[ (E)BX + unsigned AL]

D7 XLATB 5 Set AL to memory byte DS:[ (E)BX + unsigned AL]

Operation

IF AddressSize = 16 THEN
    AL := [ (BX + ZeroExtend(AL) ) ];
ELSE (*AddressSize = 32*)
    AL := [ (EBX + ZeroExtend(AL) ) ];

Discussion

XLAT changes the AL register from the table index to the table entry.  AL should be
the unsigned index into a table addressed by DS:BX (for an address size attribute of
16-bits) or DS:EBX (for an address size attribute of 32-bits).

XLAT allows a segment override.  XLAT uses (E)BX even if its contents differ from
the operand's offset.  The offset should have been moved into (E)BX by a
preceding instruction.

XLATB can be used only if the (E)BX table always resides in the DS segment.

Flags Affected

None

Exceptions by Mode

Protected

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or
GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a
page fault



XLAT/XLATB

ASM386 Assembly Language Reference Chapter 6 425

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from 0 to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault



XOR

426 Chapter 6 Processor Instructions

XOR   Logical Exclusive OR

Opcode Instruction Clocks Description

34 ib XOR AL,imm8 2 Exclusive-OR immediate byte to AL

35 iw XOR AX,imm16 2 Exclusive-OR immediate word to AX

35 id XOR EAX,imm32 2 Exclusive-OR immediate dword to EAX

80 /6 ib XOR r/m8,imm8 2/7 Exclusive-OR immediate byte to r/m byte

81 /6 iw XOR r/m16,imm16 2/7 Exclusive-OR immediate word to r/m word

81 /6 id XOR r/m32,imm32 2/7 Exclusive-OR immediate dword to r/m
dword

83 /6 ib XOR r/m16,imm8 2/7 XOR sign-extended immediate byte to r/m
word

83 /6 ib XOR r/m32,imm8 2/7 XOR sign-extended immediate byte to r/m
dword

30 /r XOR r/m8,r8 2/6 Exclusive-OR byte register to r/m byte

31 /r XOR r/m16,r16 2/6 Exclusive-OR word register to r/m word

31 /r XOR r/m32,r32 2/6 Exclusive-OR dword register to r/m dword

32 /r XOR r8,r/m8 2/7 Exclusive-OR r/m byte to byte register

33 /r XOR r16,r/m16 2/7 Exclusive-OR r/m word to word register

33 /r XOR r32,r/m32 2/7 Exclusive-OR r/m dword to dword register

Operation

Dest := LeftSrc XOR RightSrc;
CF := 0;
OF := 0;

Discussion

XOR computes the exclusive OR of the two operands.  A corresponding bit of the
result is 1 if the corresponding bits of the operands are different; a bit is 0 if the
corresponding bits are the same.  The result replaces the first operand.

Flags Affected

CF = 0, OF = 0; SF, ZF, and PF as described in Appendix A; AF is undefined



XOR

ASM386 Assembly Language Reference Chapter 6 427

Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from 0 to 0FFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault

■■  ■■  ■■





ASM386 Assembly Language Reference Chapter 7 429

Floating-Point Instructions 7
This chapter contains four major sections:

• A summary discussion of the floating-point coprocessor architecture.  This
discussion applies to the built-in floating-point unit of the Intel486 processor,
as well as the Intel287 and Intel387 floating-point coprocessors.

• A brief description of floating-point coprocessor operation as background in
numeric processing and exception handling.

• An overview of the floating-point coprocessor instructions: their functional
classifications and operands.

• An explanation of the notational conventions used in this chapter, followed by
a detailed reference for each floating-point instruction.

See also: Floating-point coprocessor architecture and coprocessor operation,
and writing exception handlers, 80387 Programmer's Reference or
iAPX 286 Programmer's Reference

Floating-point Coprocessor Architecture
The programmer-accessible features of the floating-point coprocessor architecture
are:

• Eight floating-point registers organized as a stack

• Environment:  the floating-point coprocessor status, control and tag words,
together with instruction and operand pointers

• Seven numeric data types: the word, short, and long integers, packed BCD
integers, and the single, double, and extended precision reals



Chapter 7 Floating-point Instructions430

Floating-point Stack
The floating-point coprocessor stack consists of eight registers divided into the
fields shown in Figure 7-1 and accessed relative to the current stack top element
ST(0).  The format of the fields corresponds with the extended precision real data
format used in all stack calculations.

See also: Data Formats, in this chapter

The TOP field of the floating-point coprocessor status word identifies the current
stack top register.  This floating-point stack element is an implicit or explicit
operand of every floating-point coprocessor instruction; it is addressed as ST(0) or
simply as ST.  (In the rest of this chapter, the stack top element is called ST.) Every
other stack element is addressed relative to the current stack top element.  ST(1) is
the first element below the current ST, ST(2) is the next element below ST(1), ..,
and ST(7) is the bottom stack element.

But, as Figure 7-1 shows, ST is not necessarily stack_register(0).  If the TOP field
of the status word indicates that stack_register(3) is ST, then stack_register(4) is
ST(1).  In other words, ST(1) corresponds to the stack_register indexed by
TOP + 1.

W-3426

Significand

ST (7)

ST (6)

ST (5)

ST (4)

ST (3)

ST (2)

ST (1)

ST (0)ExponentS

(2)

(1)

(0)

(7)

(6)

(5)

(4)

(3)Stack-register

79 78 64 63 0

Top

Figure 7-1.  Floating-point Coprocessor Stack Fields

A load (push) operation, such as FLDLN2, decrements TOP by 1 and loads a value
(in this case loge2) into the new stack top element.



ASM386 Assembly Language Reference Chapter 7 431

An operation that pops the floating-point stack increments TOP by 1.  For example,
the instruction FADDP ST(i), ST adds the contents of the stack top register to the
stack element designated by (i), stores the result in ST(i), frees the top of stack, and
increments TOP by 1.  This makes the former ST(1) the new ST.

Elements of the floating-point stack can be addressed either implicitly or explicitly.
As two examples of implicit addressing:

• FST ST(3) stores the contents of ST into the third stack element below ST.

• FADD adds the contents of ST to the contents of ST(1), stores the result in
ST(1), and then pops the stack.

Environment
The floating-point coprocessor environment consists of the control, status, and tag
words, together with the current instruction and operand pointers.  The FSTENV and
FSAVE instructions store the floating-point coprocessor environment, while FLDENV
and FRSTOR load an environment from memory.  The size and layout of an
environment depend on the USE attribute of the code segment in which the
FSTENV/FSAVE/FLDENV/FRSTOR instruction appears.  Figure 7-2 shows the
floating-point coprocessor environments for the processor protected and real
address modes when the USE attribute is USE16.



Chapter 7 Floating-point Instructions432

Figure 7-2.  16-bit Environments

Figure 7-3 shows the environments when the USE attribute is USE32.
Environments for virtual 8086 mode are identical to those of the real address mode.

In all floating-point coprocessor environments, the control word, the status word,
and the tag word have the same meaning.  The remaining components (IP and OP)
identify the location of an instruction and its operand (if it has an operand).

W-3427

Control Word

+ CH

+ AH

+ 8H

+ 6H

+ 4H

+ 2H

+ 0H

15 0

Instruction Pointer (IP) 15 .. 0

Status Word

Tag Word

IP 19 .. 16 OPCODE 10 .. 00

Operand Pointer (OP) 15 .. 0

OP 19 .. 16 0 0 0 0 0 0 0 0 0 0 0 0

16-bit Real Address Mode Environment

Control Word

+ CH

+ AH

+ 8H

+ 6H

+ 4H

+ 2H

+ 0H

15 0

Instruction Pointer Offset

Status Word

Tag Word

Instruction Pointer CS Selector

Operand Pointer Offset

Operand Pointer Selector

16-bit Protected Mode Environment



ASM386 Assembly Language Reference Chapter 7 433

Figure 7-3.  32-bit Environments

Status Word

The status word reflects the overall condition of the floating-point co-processor.
The floating-point coprocessor instructions FSTSW AX/FNSTSW AX transfer the
status word into the processor AX register.  Then, processor code can inspect the
status word information and do conditional branching, pass control to exception
handlers, etc.

The status word is divided into the exception flag fields and the status fields shown
in Figure 7-4.

Operand Pointer 31 .. 16

Reserved

Instruction Pointer (IP) 15 .. 0

Instruction Pointer 31 .. 16 Opcode 10 .. 00 0 0 0 0

Operand Pointer (OP) 15 .. 0

0 0 0 0 0 0 0 0 0 0 0 00 0 0 0

Reserved+ CH

+ 10H

+ 14H

+ 18H

Reserved

Reserved

Reserved Control Word

Status Word

Tag Word+ 8H

+ 4H

+ 0H

32-bit Real Address Mode Environment

31 15 0

Reserved

W-3428

Instruction Pointer Offset

Operand Pointer Offset

+ CH

+ 10H

+ 14H

+ 18H

Reserved

Reserved

Reserved Control Word

Status Word

Tag Word+ 8H

+ 4H

+ 0H

32-bit Protected Mode Environment

31 15 0

Operand Selector

Opcode CS Selector



Chapter 7 Floating-point Instructions434

Figure 7-4.  Status Word Format

The low-order bits of the status word indicate which exceptions have occurred.
Both the Intel287 and Intel387 coprocessors set bits 5..0 for precision (PE),
underflow (UE), overflow (OE), zerodivide (ZE), denormalized (DE), and invalid
(IE) operations.

See also: Exception masks, in the Control Word section of this chapter

The Intel387 coprocessor status word indicates an invalid operation due to stack
overflow or underflow by setting the SF bit (6) along with the IE bit (0).  When
both SF and IE are set, the C1 condition code bit (9) indicates whether stack
overflow (C1 = 1) or underflow (C1 = 0) has occurred.

The Intel287 coprocessor status word does not distinguish between invalid
operations caused by stack overflow/underflow and those caused by illegal
arithmetic operations.  Bit 6 of the Intel287 coprocessor status word is reserved.

The exception status bit (7) of the floating-point coprocessor status word is set (1)
if any unmasked exception bits are set and is clear (0) otherwise.  If ES is set, the
ERROR# signal is asserted.

The condition code bits (14 and 10..8) are set by several floating-point coprocessor
instructions.  The condition code is frequently used for conditional branching.  For
more information about the interpretation of these bits, see the following
instructions later in this chapter: FCOM/FCOMP/FCOMPP,
FUCOM/FUCOMP/FUCOMPP, FTST, FXAM, and FPREM/FPREM1.

W-3429

Exception Flags (1 =
Exception Has Occurred)

15 0

IEDEZEOEUEPESFESC0C1C2B C3 Top

7

Invalid Operation

Denormalized Operand

Zerodivide

Overflow

Underflow

Precision

Intel387  Stack Fault

Exception Status

Condition Code

Top Register = ST

Busy



ASM386 Assembly Language Reference Chapter 7 435

The TOP bits (13..11) of the status word indicate which floating-point coprocessor
internal register is the current stack top.  TOP can have the following binary values:

000 = stack_register(0) is stack top
001 = stack_register(1)1 is stack top
   :      :
111 = stack_register(7) is stack top

Pushing the stack with TOP equal to 000B sets the status word TOP bits to 111B;
popping the stack with TOP equal to 111B sets the status word TOP bits to 000B.

The busy bit (15) of the status word:

• Reflects the contents of the Intel387 coprocessor ES bit (7), not the status of
the BUSY# output of the Intel387 coprocessor

• Or, indicates whether the Intel287 coprocessor is idle (B = 0) or is currently
executing an instruction or signaling an exception (B = 1).

Control Word

The floating-point coprocessor control word consists of the exception masks and
control fields as shown in Figure 7-5.

The high-order bits 12..8 of the control word have the following meanings:

PC (9..8) Precision Control specifies the significand length for FADD,
FSUB(R), FMUL, FDIV (R), and SQRT operands as 64-bits, 53-bits, or
24-bits.



Chapter 7 Floating-point Instructions436

Figure 7-5.  Control Word Format

RC (11..10) Rounding Control rounds results in one of four directions:
unbiased round to nearest with even preferred, round toward + ∞,
round toward - ∞, or round toward 0 (chop).  This control determines
the rounding method when an exact mathematical result requires more
bits than the destination format has available.

IC (12) Intel287 coprocessor Infinity Control provides two types of
Intel287 coprocessor infinity arithmetic, affine and projective.  The
Intel287 coprocessor default is projective.  The Intel387 coprocessor
has only affine (in compliance with the IEEE 754 standard).

W-3430

Exception Masks (1 =
Exception is Masked)

15 0

IMDMZMOMUMPMPCRCIC

7

Invalid Operation

Denormalized Operand

Zerodivide

Overflow

Underflow

Precision

(Reserved)

Control Fields

Precision Control

Rounding Control

Infinity Control

(Reserved)

Precision Control:
00
01
10
11

=
=
=
=

24 Bits
(Reserved)
53 Bits
64 Bits

1

Rounding Control:
00
01
10
11

=
=
=
=

Round to Nearest or Even
Round Down (Toward - ∞)
Round Up (Toward + ∞)
Chop (Truncate Toward Zero)

2

(1)

(2)

(3)

(Reserved)

0
1

80387: 0 or 1

= Projective
= Affine
= Affine

Intel287  Infinity Control:3



ASM386 Assembly Language Reference Chapter 7 437

The low-order bits 5..0 of the control word mask/unmask exceptions.  When a
floating-point coprocessor exception occurs, the corresponding exception flag is set
to 1.  If the exception is unmasked, the ES bit in the status word is also set to 1.
The floating-point coprocessor then checks the appropriate mask in the control
word to determine whether it should:

• Process the exception with its on-chip exception handling procedure (mask is
1: the exception is masked from software)

• Pass control to a software exception handler (mask is 0) by asserting the
ERROR# line

During the execution of most instructions, the floating-point coprocessor checks for
six classes of exception conditions:

1. Invalid exceptions are caused by programming errors such as:

• Trying to load onto a floating-point stack element that is not empty,

• Popping an operand from an element that is empty,

• Using operands that cause indeterminate results (0/0, square root of a
negative number, etc.).

2. Denormalized exceptions occur when an instruction attempts to operate on a
denormalized number.

3. Zerodivide exceptions occur when an operation on finite operands will produce
an infinite result.

4. Overflow exceptions occur when the exponent of the rounded result is too
large for the format of the destination.

5. Intel387 coprocessor underflow exceptions depend on the UM value of the
control word:

• 0: If UM is clear (unmasked), underflow exceptions occur when  a non-
zero result (rounded as though its exponent range were unbound) would
be too small for the format of the destination.

• 1: If UM is set (masked), underflow exceptions occur when such a
result (rounded to the destination format) is also inexact.

Intel287 coprocessor underflow exceptions occur when the true exponent is too
small for the result format.

6. Precision exceptions occur when the exact mathematical result did not fit in
the result format.



Chapter 7 Floating-point Instructions438

Tag Word

The tag word, as shown in Figure 7-6, contains tags that classify the contents of the
corresponding stack elements as valid, zero, invalid, or empty.

Figure 7-6.  Tag Word Format

The Intel387 coprocessor generates exact values for these tags during execution of
the FSTENV and FSAVE instructions.  For all other instructions, the Intel387
coprocessor updates the tag word only to indicate whether a stack location is empty
or not.  After Intel387 coprocessor FSTENV or FSAVE, the tag values indicate
whether each stack element contained one of the following:

Valid An extended precision real value

Zero +0.0 or -0.0

Invalid (or Special): + ∞, - ∞, pseudoinfinity, NaN (not-a-number), pseudo-
NaN, a denormal, or an unsupported format (including 8087/Intel287
coprocessor unnormals, pseudozeros, and pseudodenormals)

Empty No value

The Intel287 coprocessor tag values indicate that each stack element contains one
of the following:

Valid An extended precision real value or an unnormal

Zero +0.0 or -0.0

Invalid (or Special): + ∞, - ∞, NaN, denormal, or pseudodenormal

Empty No value

W-3431

7 0

Tag(0)

15

Tag(1)Tag(2)Tag(3)Tag(4)Tag(5)Tag(6)Tag(7)

Tag Values:
00
01
10
11

=
=
=
=

Valid (Normal or Unnormal)
Zero (True)
Invalid (or Special)
Empty



ASM386 Assembly Language Reference Chapter 7 439

Operation Locator Formats

The opcode, IP (instruction pointer), and OP (operand pointer) fields of the
floating-point coprocessor environment support programmers who write software
exception handlers.  Whenever the processor decodes a floating-point coprocessor
instruction, it saves the opcode and pointer(s) to the instruction and operand (if
any).  (The floating-point coprocessor FLDENV, FSTENV, FSAVE, and FRSTOR
instructions access this data.)

Figures 7-7 and 7-8 illustrate these parts of the floating-point coprocessor
environment.

Figure 7-7.  16-bit Opcode, IP, and Op Environment Formats

Exception handlers can be written to store these locations in memory and obtain
information concerning the instruction that caused the error.

In the 32-bit real address (and virtual 8086) mode environment, the instruction
pointer (IP) and operand pointer (OP) are formed by shifting the 16-bit segment left
by four to form a 20-bit quantity, and then adding this quantity to the 32-bit offset.

+ CH

+ AH

+ 8H

+ 6H

15 0

Instruction Pointer (IP) 16 LSB

IP (4 MSB) Opcode (11 Bits)0

Operand Pointer (OP) 16 LSB

OP (4 MSB) 0   0   0   0   0   0   0   0   0   0   0   0

16-bit Real Address Mode:

W-3432

+ CH

+ AH

+ 8H

+ 6H

15 0

Instruction Pointer Offset

Instruction Pointer - CS Selector

Operand Pointer Offset

Operand Pointer Selector

16-bit Protected Mode:

Instruction
Location

Operand
Location

Instruction
Location

Operand
Location

Notes:
LSB = Least Significant Bits
MSB = Most Significant Bits



Chapter 7 Floating-point Instructions440

Figure 7-8.  32-bit Opcode, IP, and OP Environment Formats

Floating-point Coprocessor Data Formats
The floating-point coprocessor accesses seven different data formats using all of
the processor addressing modes.  Figure 7-9 illustrates how these formats are stored
in memory.

✏ Note
Figure 7-9's terms for real formats, like the Intel387 coprocessor,
comply with the IEEE 754 standard.  The following Intel387
coprocessor and 8087/Intel287 coprocessor terms are equivalent:

Intel387 Coprocessor 8087/Intel287 Coprocessor
single precision real = short real
double precision real = long real
extended precision real = temporary real

32-bit Operand Pointer (16 MSB)

Reserved

W-3433

32-bit Real Address Mode:

31

32-bit Instruction Pointer (16 LSB)

32-bit Instruction Pointer (16 MSB) Opcode (11 Bits)0 0 0 0 0

32-bit Operand Pointer (16 LSB)

0 0 0 0 0 0 0 0 0 0 0 00 0 0 0

Reserved

15 0

+ CH

+ 10H

+ 14H

+ 18H

Instruction
Location

Operand
Location

Operand Pointer Selector

32-bit Protected Mode:

31

Instruction Pointer Offset

Instruction Pointer - CS SelectorOpcode

Operand Pointer Offset

Reserved

15 0

+ CH

+ 10H

+ 14H

+ 18H

Instruction
Location

Operand
Location

Notes:
LSB = Least Significant Bits
MSB = Most Significant Bits



ASM386 Assembly Language Reference Chapter 7 441

Figure 7-9.  Data Formats

W-3434

S  =  Sign bit (0 = positive, 1 = negative)
*   =  Decimal digit (two per byte)
N  =  If set, indicates BCD NaN indefinite
    =  Position of implicit binary point
I   =  Integer bit of significand:  explicit in extended precision 
            real, implicit in single and double precision
Exponent Bias (normalized values):
Single:  127 (7FH)
Double:  1023 (3FFH)
Extended Real:  16383 (3FFFH)
Packed BCD:  ( -1)   (d    . . .d  )
Real:  ( -1)  ) (2        ) (significand bits)E-BIASS

S

Data
Formats

Approx.
Range Precision

7  0 7  0 7  0 7  0 7  0 7  0 7  0 7  0 7  0 7  0

MSB LSB

(Two's
Complement)

15 0

Word
Integer 10 16 Bits4

(Two's
Complement)

31 0

Short
Integer 10 32 Bits9

(Two's
Complement)

63 0

Long
Integer 10 64 Bits19

79 0

Packed
BCD 10 18 Digits18

31 0

Single
Precision 10 24 Bits±38

63 0

Double
Precision 10 53 Bits

79 0

Extended
Precision 64 Bits

±308

10 ±4932 Significand

Significand

SignificandBiased
Exp.S

23

Biased
ExponentS

52

Biased
ExponentS

64

1

63

S N Magnitude 18 Digits*

72

17 0



Chapter 7 Floating-point Instructions442

The integer, BCD, single precision real, and double precision real formats exist
only in memory.  The floating-point coprocessor converts each memory operand in
one of these formats to extended precision real whenever such an operand is loaded
onto the stack.

The three binary integer formats are identical except for length, which governs the
range that can be accommodated in each format.  Integers are represented in
standard two's complement notation.  The integer 0 is represented with all bits 0.
The floating-point coprocessor word integer format corresponds to the 16-bit
signed integer data type of the processor.

The floating-point coprocessor BCD integer format has two (binary coded) decimal
digits packed into each byte: each nibble holds one decimal digit.  Therefore, all
BCD digits must be in the range 0H through 9H when the floating-point
coprocessor loads such an operand from memory.  Negative BCD integers are not
stored in two's complement; they are distinguished from positive numbers only by
the sign bit.

The floating-point coprocessor real formats resemble scientific notation.  These
numbers have a three-field binary format:

1. The number's significant bits are in the significand field.

2. The exponent field locates the binary point within the significand field.

3. The sign field indicates whether the number is positive or negative.

Negative real numbers differ from positive numbers only in their sign bits.
Table 7-1 summarizes the format parameters for real numbers.

Table 7-1.  Summary of Real Format Parameters

Real Number Format
Parameter Single Double Extended

Format width in bits 32 64 80

P (bits of precision) 24 53 64

Exponent width in bits 8 11 15

Emax +127 +1023 +16383

Emin -126 -1022 -16382

Exponent bias (normalized) +127 +1023 +16383



ASM386 Assembly Language Reference Chapter 7 443

The floating-point coprocessor also recognizes certain special floating-point values,
although they are not within the domain of normal floating-point arithmetic.  These
special values are listed here:

Signed zero
Signed infinity
Indefinite values
NaN values (Not-a-Number)
Denormals and pseudodenormals
Intel387 coprocessor unsupported format/Intel287 coprocessor unnormals,
pseudozeros

For more information about these values, consult the Programmer's Reference for
your coprocessor.

Coprocessor Operation
The processor has a section of its opcode space dedicated to floating-point
instructions.  When the processor decodes a floating-point opcode, it transmits the
necessary information (opcode and any memory address operands) to the floating-
point coprocessor.  The information is transmitted through the reserved I/0 address
800000F8H for instructions and 800000FCH for data.  The processor continues
executing while the floating-point coprocessor processes the instruction in parallel.

If the floating-point coprocessor requires access to memory, it makes a request
through a built-in data channel in the processor dedicated to coprocessor usage.  If
such a request violates processor protection rules, a processor exception is
generated.  This can happen at any time during processor instruction execution.

If the floating-point coprocessor detects an unmasked numeric exception, it sends a
signal on its dedicated ERROR# line.  The processor samples this line when
executing WAIT or before most floating-point instructions and produces an
exception (interrupt) at that time.  Floating-point instructions that begin with FN
(except FNOP) do not test for a pending numeric error.

No error status is transmitted to the processor when an exception is masked.
However, the floating-point coprocessor status word's ES bit remains set until it is
explicitly cleared.  This can be done by the FNCLEX, FNSAVE, FNSTENV or FNINIT
instructions.



Chapter 7 Floating-point Instructions444

Numeric Processing
The Intel287 and Intel387 coprocessors have four rounding methods that can be set
in the RC field of the control word.  The rounding methods and their corresponding
RC fields are shown in Table 7-2.

Table 7-2.  Rounding Methods

RC Field Rounding Method Rounding Action  †

00 To nearest with even preferred Closer to b of a or c; if equally
close, select even number (with
LSB = 0)

01 Down toward - ∞ a

10 Up toward + ∞ c

11 Chop toward 0 Smaller in magnitude of a or c.

† a and c are successively representable numbers such that a < b < c where b is not a
representable number.

Rounding occurs in arithmetic and store operations when the format of the
destination cannot exactly represent the true result.  Rounding introduces an error
in the result; this error is less than one unit in the last place of the destination
format.

Round to nearest with even preferred is the default method for both coprocessors.
This is suitable for most applications.

See also: Programmer's Reference for your coprocessor for more information
about the other rounding methods

The Intel287 and Intel387 coprocessors can calculate the precision of results to 64-,
53-, or 24-bits for addition, subtraction, multiplication, division, and square root.
The PC field of the control word specifies the degree of precision.  The default PC
setting for both coprocessors is 64-bits.  Specifying less precision allows the
floating-point coprocessor to mimic calculations on a floating-point unit with less
precision.

The Intel287 coprocessor's system of real numbers can be closed by either of two
models of infinity.  The IC bit in the Intel287 coprocessor control word specifies
either projective or affine closure.  The default is projective.  Under this closure,
the Intel287 coprocessor treats the special values + ∞ and - ∞ as a single, unsigned
infinity.



ASM386 Assembly Language Reference Chapter 7 445

The IEEE 754 system of real numbers is closed by the affine model of infinity.
Although the IC bit of the Intel387 coprocessor control word can be set or cleared,
the Intel387 coprocessor complies with the IEEE standard.  For this reason,
Intel287 coprocessor applications that use projective closure may produce
unexpected Intel387 coprocessor results with respect to infinity.

It is important to remember that computer arithmetic on real numbers is inherently
approximate.  The floating-point coprocessor produce real arithmetic results that
are as accurate as the destination format allows.  The floating-point coprocessors
perform exact arithmetic on their subset of the integers.  An operation on two
integers returns an exact integral result, provided that the true result is an integer
and is in range.

The floating-point coprocessor can detect six exceptions.  You can use the floating-
point coprocessor on-chip exception-handling capability, or you can write your
own exception handlers.

In either case, consult your coprocessor's Programmer's Reference manual for:

• Detailed information about the on-chip (default) exception handling of your
coprocessor

• Information about how to write an exception handler, because exception
handlers vary widely from one application to the next

See also: Exceptions, Environment section of this chapter



Chapter 7 Floating-point Instructions446

Overview of the Floating-point Coprocessor
 Instruction Set

This section groups the floating-point coprocessor instructions according to their
general functions.  The Intel387 coprocessor executes all of the Intel287
coprocessor instructions.  Intel387 coprocessor-only instructions are flagged in the
tables of this section.  For details of any particular instruction, see the reference
pages at the end of this chapter.

Data Transfer Instructions
The data transfer instructions move operands between stack elements or between
the stack top and memory.  These instructions are summarized in Table 7-3.

Table 7-3.  Data Transfer Instructions

FLD Load real

FST Store real

FSTP Store real and pop

FXCH Exchange stack elements

FILD Load integer onto ST

FIST Store integer

FISTP Store integer and pop

FBLD Load packed decimal (BCD) onto ST

FBSTP Store packed decimal and pop

Any of the floating-point coprocessor data formats can be converted to extended
precision real and loaded (pushed) onto the stack in a single operation.  They also
can be stored in memory in a single operation.  The data transfer instructions
automatically update the floating-point coprocessor tag word to reflect the stack
contents following the instruction.



ASM386 Assembly Language Reference Chapter 7 447

Constant Instructions
Each of the instructions shown in Table 7-4 loads (pushes) a commonly used
constant onto the stack.

Table 7-4.  Constant Instructions

FLDZ Load +0.0 onto ST
FLD1 Load +1.0 onto ST
FLDPI Load π onto ST
FLDL2T Load log210 onto ST
FLDL2E Load log2e onto ST
FLDLG2 Load log102 onto ST
FLDLN2 Load loge2 onto ST

The values have full extended precision (64-bits) and are accurate to approximately
19 decimal digits.  The constant instructions are only 2 bytes long; they save
storage (an extended precision real constant occupies 10 memory bytes) and
improve execution speed.



Chapter 7 Floating-point Instructions448

Algebraic Instructions
The floating-point coprocessor algebraic instructions provide many variations on
the basic add, subtract, multiply, and divide operations, and a number of other
useful functions.  Table 7-5 gives a summary of these instructions.

Table 7-5.  Algebraic Instructions

FADD Add real

FADDP Add real and pop

FIADD Add integer

FSUB Subtract real

FSUBP Subtract real and pop

FSUBR Subtract real reversed

FSUBRP Subtract real reversed and pop

FISUB Subtract integer

FISUBR Subtract integer reversed

FMUL Multiply real

FMULP Multiply real and pop

FIMUL Multiply integer

FDIV Divide real

FDIVP Divide real and pop

FDIVR Divide real reversed

FDIVRP Divide real reversed and pop

FIDIV Divide integer

FIDIVR Divide integer reversed

FSQRT Square root

FSCALE Scale

FPREM Partial remainder

FPREM1 IEEE partial remainder(not available on
Intel287 floating-point coprocessor)

FRNDINT Round to integer

FXTRACT Extract exponent and significand

FABS Absolute value

FCHS Change sign



ASM386 Assembly Language Reference Chapter 7 449

The two reversed instructions, FSUBR and FDIVR, make subtraction and division as
symmetrical as addition and multiplication.

The floating-point coprocessor basic arithmetic instructions (addition, subtraction,
multiplication, and division) either operate on two stack elements or on ST and a
memory operand.  The two-stack-element forms minimize memory references and
make optimum use of the floating-point stack.

The other algebraic instructions operate on stack elements.

Table 7-6 summarizes the available operation/operand forms provided for basic
arithmetic instructions.

Table 7-6.  Basic Arithmetic Instruction and Operand Forms

Mnemonic
Form

Operand(s)
destination, source ASM386 Example Instruction Form

Fop {ST(1),ST} FADD Classical stack (includes pop)

FopP {ST(1),ST} FADDP Classical stack, extra pop

Fop ST(i),ST or ST,ST(i) FSUB ST,ST(3) Stack element

FopP ST(i),ST FMULP ST(2),ST Stack element with pop

Fop {ST,} real FDIV AZIMUTH Memory single or double
precision real

FIop {ST,} integer FIDIV NUM Memory word or short integer

Braces ({}) surround implicit operands that are not coded; they are shown here for
information only.  Fop(P) is one of the following arithmetic operations:

op Operation

ADD destination := destination + source

SUB destination := destination - source

SUBR destination := source - destination

MUL destination := destination * source

DIV destination := destination / source

DIVR destination := source / destination



Chapter 7 Floating-point Instructions450

These instruction forms can be used across all six operations, as shown in
Table 7-6:

• The classical stack form can be used to make the floating-point coprocessor
operate like a classical stack machine.  No operands are coded in this form;
only the instruction mnemonic is coded.  The floating-point coprocessor picks
the source operand from the stack top and the destination from the next stack
element.  It then performs the operation, pops the stack, and returns the result
to the new stack top.

• Often the stack top value is needed only for one operation.  The stack element
and pop form can be used to pick up the stack top as the source operand and
then discard it by popping the floating-point stack.  Coding operands ST(1),ST
with a stack element pop mnemonic is equivalent to a classical stack operation:
the top is popped and the result is left at the new top.

• The stack element forms are a generalization of the classical stack form:
specify the stack top as one operand and any stack element as the other
operand.  Coding the stack top as the destination provides a convenient way to
use a constant held elsewhere in the stack.  Coding ST as the source operand
provides a convenient way to add the top into a stack element used as an
accumulator.

• The memory operand forms increase the flexibility of the arithmetic
instructions.  A number in memory can be used as a source operand directly
when it is not used frequently enough to justify holding it in the floating-point
stack.



ASM386 Assembly Language Reference Chapter 7 451

Comparison Instructions
Each comparison instruction in Table 7-7 analyzes the top stack element, often in
relationship to another operand, and reports the result in the floating-point
coprocessor status word condition code.  The FSTSW (store status word) instruction
can be used following a comparison to transfer the condition code to memory for
later inspection.  (See the instruction reference pages at the end of this chapter for
the interpretation of the condition code bits.)

Table 7-7.  Comparison Instructions

FCOM Compare real

FCOMP Compare real and pop

FCOMPP Compare real and pop twice

FUCOM Unordered compare real (not available on the Intel287
floating-point coprocessor)

FUCOMP Unordered compare real and pop (not available on the
Intel287 floating-point coprocessor)

FUCOMPP Unordered compare real and pop twice (not available
on the Intel287 floating-point coprocessor)

FICOM Compare integer

FICOMP Compare integer and pop

FTST Test

FXAM Examine

The basic operations are compare, test (compare with 0), and examine (report sign
and classify operand).  Special forms of the compare operation optimize algorithms
by comparing ST directly with binary integers and real numbers in memory.

Many non-comparison floating-point coprocessor instructions also update the status
word condition code bits.  Use FSTSW immediately after a comparison to be sure
that the status word is not changed unintentionally.



Chapter 7 Floating-point Instructions452

Transcendental Instructions
The instructions summarized in Table 7-8 perform the core calculations for all
common trigonometric, inverse trigonometric, logarithmic, and exponential
functions.

Table 7-8.  Transcendental Instructions

FSIN Sine (not available on the Intel287 floating-point
coprocessor)

FCOS Cosine (not available on the Intel287 floating-point
coprocessor)

FSINCOS Sine and Cosine (not available on the Intel287
floating-point coprocessor)

FPTAN Partial tangent

FPATAN Partial arctangent

F2XM1 2x - 1

FYL2X Y * log2X

FYL2XP1 Y * log2(X + 1)

The transcendentals operate on the top one or two stack elements and they return
their results to the stack.  The instruction descriptions at the end of this chapter
specify the operand range for each transcendental.

If a transcendental operand is invalid or out of range, the Intel287 coprocessor may
produce an undefined result without signaling an exception.  It is the programmer's
responsibility to ensure that transcendental operands are valid and in range.

Prologue software can be used to reduce arguments to the range accepted by the
transcendental instructions.  Epilog software can be used to adjust transcendental
results to correspond to the original arguments, if  necessary, floating-point
coprocessor FPREM or Intel387 coprocessor FPREM1 can be used to bring an
operand into range for the trigonometric functions.



ASM386 Assembly Language Reference Chapter 7 453

Coprocessor Control Instructions
Most instructions shown in Table 7-9 are used in system rather than application
software.  These activities include: Intel387/Intel287 coprocessor initialization,
exception handling, and task switching.

Table 7-9.  Processor Control Instructions

FINIT/FNINIT Initialize processor

FSTCW/FNSTCW Store control word

FLDCW Load control word

FSTSW/FNSTSW Store status word

FCLEX/FNCLEX Clear exceptions

FSTENV/FNSTENV Store environment

FLDENV Load environment

FSAVE/FNSAVE Store state

FRSTOR Restore state

FINCSTP Increment stack pointer

FDECSTP Decrement stack pointer

FFREE Free (empty) stack top element

FNOP No operation

FSETPM Set Intel286 processor protected mode

FWAIT Alternate processor WAIT

Alternate mnemonics are shown for several processor control instructions in
Table 7-9.  The alternates with a second character of N instruct the assembler not to
prefix the instruction with an automatically generated (F)WAIT .  This no-wait form
is intended for use in critical code regions where a pending and unmasked
exception should not generate an interrupt.

All instructions that provide a no-wait mnemonic are self-synchronizing; they can
be executed back-to-back in any combination without intervening (F)WAIT s.
These instructions can be executed by one part of the floating-point coprocessor
while the other part is busy with a previously decoded instruction.

Use the wait forms of these instructions when control should pass to a software
exception handler before these instructions execute.



Chapter 7 Floating-point Instructions454

Floating-point Coprocessor Instruction Set
Reference

This section provides a detailed reference for each floating-point instruction
available to the Intel386/Intel387 or Intel386/Intel287 processor/coprocessor
combinations.

How to Read the Instruction Set Reference Pages
For each floating-point coprocessor instruction, a table summarizes the opcode,
instruction syntax, clocks, and description of its operation.  Following the table is a
discussion of the instruction and a list of exceptions it may generate.  As an
example of an instruction table:

Clocks

Opcode Instruction i387 NPX i287 NPX Description
D9 C0+i FLD ST(i ) 14 17-22 Push, ST := old ST(i )
D9 /0 FLD m32r 20† 38-56 Push, ST := m32r
DD /0 FLD m64r 25† 40-60 Push, ST := m64r
DB /5 FLD m80r 44 53-65 Push, ST := m80r

† Add 5 clocks when loading zero from memory.

The following subsections describe the notation used in each column of these tables
and the reference page sections for each instruction.

Opcode Column

The Opcode column lists the object bytes generated for each form of the
instruction.  Where possible, the bytes are given in hexadecimal.  Code other than
hexadecimal is as follows:

/n This value goes in the REG/OPCODE field of the ModRM byte (see
Figure 6-2).  Tables 6-13 and 6-14 show the possible hexadecimal
values for the ModRM byte.  The column labels show the REG= or
/digit(Opcode) associated with the REG field.  The row labels show the
address form associated with the ModRM byte's other fields.  The
bottom eight rows of Tables 6-13 and 6-14 do not apply because
register forms of the ModRM byte are illegal for floating-point
instructions.

+i This is the index number of the floating-point stack element (0 is the
top element, 1 is the next element, .., 7 is the last element).  i  is added
to the preceding hexadecimal value to form a single opcode byte.



ASM386 Assembly Language Reference Chapter 7 455

Instruction Column

The instruction column shows the template for each floating-point instruction as it
should appear in the ASM386 source program.  Items in italics represent operands
that you must specify, as follows:

ST(i) The letter i  stands for a digit from 1 through 7, indicating which
floating-point stack element is the operand.  i  = 0 is legal but
redundant.

m32r , m64r , m80r , m16j , m32j , m64j , m80d
Each of these symbols stands for a memory operand.  Suffixes r , j ,
and d represent "real," "integer," and "binary coded decimal,"
respectively; 16, 32, 64, and 80 represent the length in bits of the
operand.

m2by, m14/28by , m94/108by
The suffix by  indicates operand length measured in bytes.  m2by
refers to the address of a 2-byte memory location.  m14/28by  refers
to the address of a 14- or 28-byte memory location, respectively;
m94/108by  refers to the location of a 94- or 108-byte location.

If the operand is 16-, 32-, 64-, or 80-bits in length, the memory operand should be
declared with DW, DD, DQ, or DT, respectively.

See also: Types of memory addressing allowed, Chapter 5

Clocks Columns

The clocks columns give the number of clock cycles each instruction takes to
execute on the Intel287 or Intel387 floating-point coprocessor (NPX).  A dash (----)
in the Intel287 coprocessor column indicates a Intel387 coprocessor-only
instruction.  Clock count calculations make the following assumptions:

1. The instruction is ready for execution.

2. Bus cycles do not require wait states.

3. There are no floating-point coprocessor data transfers or local bus HOLD
requests delaying processor access to the bus.

4. No exceptions are detected during instruction execution.

5. Memory operands are aligned.

Description Column

The description column contains a concise definition of the operation performed
for each form of the instruction.



Chapter 7 Floating-point Instructions456

Discussion Section

This section describes the instruction's operands, function, and results.  It states
whether the instruction is available only for the Intel387 coprocessor.  It explains
any differences between how the Intel287 and Intel387 coprocessors handle the
instruction and its operands.

Exceptions Section

This section lists the exceptions that can occur during instruction execution.  If the
Intel287 and Intel387 coprocessors generate different exceptions, they are listed
separately by coprocessor.

How to Look Up an Instruction
The floating-point instructions are presented in mnemonic alphabetical order, with
the following exceptions:

• Instructions that reverse the operands of a division (FDIVR) or subtraction
(FSUBR) operation are listed with FDIV  and FSUB, respectively.

• Instructions that pop the stack after a comparison are listed with FCOM or
FUCOM.  Those that pop the stack after a basic arithmetic operation are listed
with FADD, FDIV , FMUL, and FSUB.

• Instructions beginning with FN, except for FNOP, are alternate forms of the
instructions without the N.  They are listed with the non-N mnemonics.

• Some instructions beginning with FLD load constants into the floating-point
stack.  They are listed together under FLDcon, after the other FLD instructions.

Some mnemonics are not included in the instruction pages, even though they are a
part of the floating-point instruction set.  They are provided to make 8086/8088
programs compatible with the assembler.  FENI , FNENI, FDISI , and FNDISI  are
interrupt control instructions on the 8087 that are not needed on the floating-point
coprocessor.  These instructions are legal, but the assembler generates no floating-
point coprocessor object code for them.

The remainder of this chapter consists of the floating-point coprocessor instructions
accompanied by descriptive text, listed in alphanumeric order.



F2XM1

ASM386 Assembly Language Reference Chapter 7 457

F2XM1   Compute Y = 2x - 1

Clocks
Opcode Instruction i387 NPX i287 NPX Description
D9 F0 F2XM1 211-476 310-630 ST := 2ST - 1

Discussion

F2XM1 calculates the function Y = 2x - 1.  X is taken from the top of the floating-
point stack.  X must be in the range:

• -1.0 < = X < = +1.0 for the Intel387 coprocessor.

• 0 < = X < = +0.5 for the Intel287 coprocessor.

The result Y replaces X at the stack top.

The instruction is designed to produce an accurate exponential even for inputs very
close to 0.  The following formulas show how values other than 2 can be raised to a
power of X:

• 10x = 2x*log210

• ex = 2x*log2e

• Yx = 2x*log2Y

Floating-point coprocessor instructions (see FLDcon) are available to load the
constants log210 and log2e.  The FYL2X instruction can be used to calculate X *
log2Y.

Exceptions

Intel387 NPX

Invalid, denormalized, underflow, precision

Intel287 NPX

Underflow, precision



FABS

Chapter 7 Floating-point Instructions458

FABS   Absolute Value

Clocks
Opcode Instruction i387 NPX i287 NPX Description
D9 E1 FABS 22 10-17 ST := |ST|

Discussion

FABS changes the element in the top of the stack to its absolute value by making its
sign positive.

Exceptions

Intel387 NPX

Invalid only for stack overflow/underflow

Intel287 NPX

Invalid



FADD/FADDP

ASM386 Assembly Language Reference Chapter 7 459

FADD/FADDP   Real Addition

Clocks
Opcode Instruction i387 NPX i287 NPX Description
DE C1 FADD 26-34 75-105 ST(1) := ST(1) + ST,

pop old ST
D8 C0+i FADD ST,ST(i ) 23-31 70-100 ST := ST + ST(i )
DC C0+i FADD ST(i ),ST 26-34 70-100 ST(i ) := ST(i ) + ST
D8 /0 FADD m32r 24-32 90-120 ST := ST + m32r
DC /0 FADD m64r 29-37 95-125 ST := ST + m64r
DE C0+i FADDP ST(i ),ST 26-34 75-105 ST(i ) := ST(i ) + ST,

pop

Discussion

FADD and FADDP add two floating-point numbers.  The two-operand forms of the
instructions add the second operand to the first operand and replace the first
operand with the sum.  The one-operand forms add the operand to the stack top and
replace the stack top with the sum.

The FADDP instruction returns a result to ST(i ).  The FADD instruction with no
operands returns a result to ST(1).  Both instructions pop the top element (old
ST(0) ) from the stack when the operation is complete.

Exceptions

Invalid, denormalized, overflow, underflow, precision



FBLD

Chapter 7 Floating-point Instructions460

FBLD   BCD Load to Real

Clocks
Opcode Instruction i387 NPX i287 NPX Description
DF /4 FBLD m80d 266-275 290-310 Push, ST : = m80d

Discussion

The BCD load instruction converts the memory operand from packed decimal to an
extended precision real and pushes the result onto the floating-point coprocessor
stack.

FBLD is an exact operation; the floating-point coprocessor loads the BCD operand
with no rounding error.  The sign of the source operand is preserved, including the
case when its value is -0.

The packed decimal digits of the operand are assumed to be in the range 0H
through 9H.  If the source contains invalid digits (A through F hexadecimal), the
result is undefined.

ST(7) must be empty to avoid causing an exception.

Exceptions

Invalid



FBSTP

ASM386 Assembly Language Reference Chapter 7 461

FBSTP   BCD Store and Pop

Clocks
Opcode Instruction i387 NPX i287 NPX Description
DF /6 FBSTP m80d 512-534 520-540 m80d := ST, pop

Discussion

FBSTP converts the stack top to a packed decimal integer, stores the result in the
memory location indicated by the operand, and pops the stack.

Intel387 coprocessor FBSTP rounds a non-integral value according to the RC
(rounding control) field of the Intel387 coprocessor control word.  (See Figure 7-5
for control word layout.)

The Intel287 coprocessor adds 0.5 to the input value, then chops away the
fractional part to convert such a value to integer.  Precede FBSTP with FRNDINT to
control the method of rounding by the RC field of the Intel287 coprocessor control
word.

Exceptions

Intel387 NPX

Invalid, precision

Intel287 NPX

Invalid



FCHS

Chapter 7 Floating-point Instructions462

FCHS   Change Sign of Real Number

Clocks
Opcode Instruction i387 NPX i287 NPX Description
D9 E0 FCHS 24-25 10-17 ST := -ST

Discussion

FCHS reverses the sign of the stack top element.

Exceptions

Intel387 NPX

Invalid only for stack overflow/underflow

Intel287 NPX

Invalid



FCLEX/FNCLEX

ASM386 Assembly Language Reference Chapter 7 463

FCLEX/FNCLEX   Clear Floating-point Coprocessor Exceptions

Clocks
Opcode Instruction i387 NPX i287 NPX Description
9B DB E2 FCLEX 11† 2-8† Clear exceptions after

check for pending
unmasked floating-point
error

DB E2 FNCLEX 11 2-8 Clear exceptions
without check for
floating-point error

† Add at least 6 clocks for automatic FWAIT.

Discussion

FCLEX and FNCLEX clear all floating-point coprocessor exception flags and the
busy bit in the status word.  FCLEX/FNCLEX also clears the floating-point
coprocessor exception status bit.  As a consequence, the ERROR# line goes
inactive.

An assembler-generated WAIT instruction precedes the FCLEX form of this
instruction.  It is used when a pending unmasked numeric error should be serviced
before clearing the exceptions.

FNCLEX is used in critical areas of code where a pending unmasked numeric error
cannot be allowed to generate an interrupt.

Exceptions

None



FCOM/FCOMP/FCOMPP

Chapter 7 Floating-point Instructions464

FCOM/FCOMP/FCOMPP   Compare Real Numbers

Clocks
Opcode Instruction i387 NPX i287 NPX Description
D8 D1 FCOM 24 40-50 Compare ST with ST(1)
D8 D0+i FCOM ST(i ) 24 40-50 Compare ST with ST(i )
D8 /2 FCOM m32r 26 60-70 Compare ST with m32r
DC /2 FCOM m64r 31 65-75 Compare ST with m64r
D8 D9 FCOMP 26 45-52 Compare ST with

ST(1), pop
D8 D8+i FCOMP ST(i ) 26 45-52 Compare ST with ST(i ),

pop
D8 /3 FCOMP m32r 26 63-73 Compare ST with m32r,

pop
DC /3 FCOMP m64r 31 67-77 Compare ST with m64r,

pop
DE D9 FCOMPP 26 45-55 Compare ST with

ST(1), pop twice

Discussion

The FCOM instructions compare the stack top to the source operand.  After making
the comparison, FCOMP pops the top element from the stack.  After comparing the
top two stack elements, FCOMPP pops both of them.

There are four possible results to the comparison of two real numbers.  Three are
greater than, less than, and equals.  The fourth, unordered (not comparable) occurs
when one of the compared quantities is a NaN, an unsupported Intel387
coprocessor format, or an Intel287 coprocessor projective infinity.
FCOM/FCOMP/FCOMPP ignores the sign of zero: -0.0 = +0.0.

The flags C3, C2, and C0 (bits 14, 10, and 8, respectively) of the floating-point
coprocessor status word indicate the result of an FCOM comparison, as shown in the
Table 7-10.

To test these bits, load them into the processor flags register by following FCOM
with the following instruction sequence:

FSTSW AX    ; store status word in AX
SAHF        ; bits are now stored in
            ; zero, parity, and carry flags
JPE UNORDR  ; JUMP if the result was unordered



FCOM/FCOMP/FCOMPP

ASM386 Assembly Language Reference Chapter 7 465

Table 7-10.  Condition Code after FCOM(P/PP)

Order
(ZF)
C3

(PF)
C2

(CF)
C0

Processor
Conditional Branch

ST > Operand 0 0 0 JA

ST < Operand 0 0 1 JB

ST = Operand 1 0 0 JE

Unordered 1 1 1 JP

Conditional jumps can now be made, using the below (JB), above (JA), and equal
(JE) mnemonics.

Exceptions

Invalid, denormalized



FCOS

Chapter 7 Floating-point Instructions466

FCOS   Compute Y = Cos(X)

Clocks
Opcode Instruction i387 NPX i287 NPX Description
D9 FF FCOS 123-772† ----- ST := cos(ST)

† Add up to 76 clocks when |ST| >= π/4.

Discussion

FCOS replaces the contents of ST with COS(ST).  ST must be an angle expressed in
radians and it must lie in the range |ST| < (π/4 *263).  Pi is the Intel387
coprocessor's 67-bit approximation to true pi.

If ST is in range, C2 of the Intel387 coprocessor status word is cleared and the
result of the operation is produced.  Otherwise, C2 is set to 1 (function incomplete)
and the operand value of ST remains intact.

It is the programmer's responsibility to reduce the operand to an absolute value less
than (π/4 *263).  Use FPREM1 or FPREM if it is necessary to bring ST into range.

FCOS is a Intel387 coprocessor instruction; it is not available for a Intel287
coprocessor.

Exceptions

Invalid, denormalized, underflow, precision



FDECSTP

ASM386 Assembly Language Reference Chapter 7 467

FDECSTP   Decrement Floating-point Stack Pointer

Clocks
Opcode Instruction i387 NPX i287 NPX Description
D9 F6 FDECSTP 22 6-12 Decrement stack_top

pointer

Discussion

FDECSTP subtracts 1 from the stack top pointer (TOP) of the floating-point
coprocessor status word.  No tags or registers are altered, nor is any data
transferred.  Executing FDECSTP when the stack top pointer is 0 changes the
pointer to 7.

The effect of FDECSTP ST is to rotate the stack.  Instead of something being
pushed onto the stack, the new stack top contains the contents of the former ST(7).

Exceptions

None



FDIV/FDIVP/FDIVR/FDIVRP

Chapter 7 Floating-point Instructions468

FDIV/FDIVP/FDIVR/FDIVRP   Real Divide/Real Reverse Divide

Clocks
Opcode Instruction i387 NPX i287 NPX Description
DE F9 FDIV 91 197-207 ST(1) := ST(1) / ST,

pop old ST
DC F8+i FDIV ST(i ),ST 91 193-203 ST(i ) := ST(i ) / ST
D8 F0+i FDIV ST,ST(i ) 88 193-203 ST := ST / ST(i )
D8 /6 FDIV m32r 89 215-225 ST := ST / m32r
DC /6 FDIV m64r 94 220-230 ST := ST / m64r
DE F8+i FDIVP ST(i ),ST 91 197-207 ST(i ) := ST(i ) / ST,
pop
DE F1 FDIVR 91 198-208 ST(1 ) := ST / ST(1),

pop old ST
DC F0+i FDIVR ST(i ),ST 91 194-204 ST(i ) := ST / ST(i )
D8 F8+i FDIVR ST,ST(i ) 88 194-204 ST := ST(i ) / ST
D8 /7 FDIVR m32r 89 216-226 ST := m32r / ST
DC /7 FDIVR m64r 94 221-231 ST := m64r / ST
DE F0+i FDIVRP ST(i ),ST 91 198-208 ST(i ) := ST / ST(i ),

pop

Discussion

FDIV , FDIVP, FDIVR, and FDIVRP divide two floating-point numbers.

The two-operand forms of the FDIV/FDIVP  instructions divide the first operand
(dividend) by the second operand (divisor).  FDIV/FDIVP  replace the dividend
with the result.  The one-operand forms divide the stack top by the operand and
replace the stack top with the result.

The two-operand forms of the FDIVR/FDIVRP  instructions divide the second
operand by the first.  FDIVR/FDIVRP  replace the divisor with the result.  The one-
operand forms divide the operand by the stack top and replace the stack top with
the result.

The FDIVP/FDIVRP  instructions return a result to ST(i).  The FDIV/FDIVR

instructions with no operands return a result to ST(1).  These instructions pop the
top element (old ST(0) ) from the stack when the operation is complete.

Exceptions

Invalid, denormalized, zerodivide, overflow, underflow, precision



FFREE

ASM386 Assembly Language Reference Chapter 7 469

FFREE   Free Floating-point Stack Entry

Clocks
Opcode Instruction i387 NPX i287 NPX Description
DD C0+i FFREE ST(i ) 18 9-16 Empty ST(i )

Discussion

FFREE changes the tag of the operand stack element to empty.  The contents of this
stack element are unaffected.  The floating-point stack pointer (TOP) is also
unaffected.

Exceptions

None



FIADD

Chapter 7 Floating-point Instructions470

FIADD   Integer Add to Real

Clocks
Opcode Instruction i387 NPX i287 NPX Description
DE /0 FIADD m16j 71-85 102-137 ST := ST + m16j
DA /0 FIADD m32j 57-72 108-143 ST := ST + m32j

Discussion

FIADD adds the integer memory operand into the element on top of the stack.  It
replaces the top of the stack with the result.

Exceptions

Intel387 NPX

Invalid, denormalized, overflow, underflow if integer 0 is added to a denormal
when underflow is unmasked, precision

Intel287 NPX

Invalid, denormalized, overflow, precision



FICOM/FICOMP

ASM386 Assembly Language Reference Chapter 7 471

FICOM/FICOMP   Integer Compare with Real

Clocks
Opcode Instruction i387 NPX i287 NPX Description
DE /2 FICOM m16j 71-75 72-86 Compare ST with m16j
DA /2 FICOM m32j 56-63 78-91 Compare ST with m32j
DE /3 FICOMP m16j 71-75 74-88 Compare ST with m16j,

pop
DA /3 FICOMP m32j 56-63 80-93 Compare ST with m32j,

pop

Discussion

FICOM and FICOMP convert the memory operand (a word or short integer)
internally to extended precision real and compare it with the top of the stack.  The
FICOMP instruction pops the top stack element after the comparison is made.

There are four possible results to the comparison of two real numbers.  Three are
greater than, less than, and equals.  The fourth, unordered or not comparable,
occurs when ST is a NaN, an unsupported Intel387 coprocessor format, or an
Intel287 coprocessor projective infinity.  FICOM/FICOMP ignores the sign of zero:
-0.0 = +0.0.

The flags C3, C2, and C0 (bits 14, 10, and 8, respectively) of the floating-point
coprocessor status word indicate the result of an FICOM/FICOMP comparison, as
shown in Table 7-11.

Table 7-11.  Condition Code after FICOM(P)

Order
(ZF)
C3

(PF)
C2

(CF)
C0

Processor
Conditional Branch

ST > Operand 0 0 0 JA

ST < Operand 0 0 1 JB

ST = Operand 1 0 0 JE

Unordered 1 1 1 JP



FICOM/FICOMP

Chapter 7 Floating-point Instructions472

To test these bits, load them into the processor flags register by following FICOM
with the following instruction sequence:

FSTSW AX    ; store status word in AX
SAHF        ; bits are now stored in
            ; zero, parity, and carry flags
JPE UNORDR  ; JUMP if the result was unordered

Conditional jumps can now be made, using the below (JB), above (JA), and equal
(JE) mnemonics.

Exceptions

Invalid, denormalized



FIDIV/FIDIVR

ASM386 Assembly Language Reference Chapter 7 473

FIDIV/FIDIVR   Integer Divide into Real

Clocks
Opcode Instruction i387 NPX i287 NPX Description
DE /6 FIDIV m16j 136-140 224-238 ST := ST / m16j
DA /6 FIDIV m32j 120-127 230-243 ST := ST / m32j
DE /7 FIDIVR m16j 137-141 225-239 ST := m16j / ST
DA /7 FIDIVR m32j 121-128 231-245 ST := m32j / ST

Discussion

FIDIV  divides the top of the stack by the integer memory operand.  The answer
replaces the dividend on the top of the stack.

FIDIVR  performs the reverse divide: the integer memory operand is divided by the
top of the stack.  The answer replaces the divisor on the top of the stack.

Exceptions

Invalid, zerodivide, denormalized, (FIDIVR ) overflow, underflow, precision



FILD

Chapter 7 Floating-point Instructions474

FILD   Integer Load into Real

Clocks
Opcode Instruction i387 NPX i287 NPX Description
DF /0 FILD m16j 61-65 46-64 Push, ST := m16j
DB /0 FILD m32j 45-52 52-60 Push, ST := m32j
DF /5 FILD m64j 56-67 60-68 Push, ST := m64j

Discussion

FILD  converts the integer memory operand from its binary integer format (word,
short, or long) to an extended precision real and pushes the result onto the stack.

ST(7) must be empty to avoid causing an exception.

Exceptions

Invalid



FIMUL

ASM386 Assembly Language Reference Chapter 7 475

FIMUL   Integer Multiply with Real

Clocks
Opcode Instruction i387 NPX i287 NPX Description
DE /1 FIMUL m16j 76-87 124-138 ST := ST * m16j
DA /1 FIMUL m32j 61-82 130-144 ST := ST * m32j

Discussion

FIMUL multiplies the integer memory operand into the top of the stack.  The
product replaces the multiplicand on the top of the stack.

Exceptions

Intel387 NPX

Invalid, denormalized, overflow, unmasked underflow, precision

Intel287 NPX

Invalid, denormalized, overflow, precision



FINCSTP

Chapter 7 Floating-point Instructions476

FINCSTP   Increment Floating-point Stack Pointer

Clocks
Opcode Instruction i387 NPX i287 NPX Description
D9 F7 FINCSTP 21 6-12 Increment stack_top

pointer

Discussion

FINCSTP adds 1 to the stack top pointer (TOP) of the floating-point coprocessor
status word.  It does not alter any tags or registers, nor does it transfer data.
Executing FINCSTP when the stack top pointer is 7 changes it to 0.

FINCSTP rotates the stack, but it is not equivalent to popping the stack.  It does not
set the tag of the previous stack top to empty, and the former stack top becomes
ST(7).

Exceptions

None



FINIT/FNINIT

ASM386 Assembly Language Reference Chapter 7 477

FINIT/FNINIT   Initialize Floating-point Coprocessor

Clocks
Opcode Instruction i387 NPX i287 NPX Description
9B DB E3 FINIT 33† 2-8† Initialize floating-point

coprocessor after check
for pending unmasked
floating-point errors

DB E3 FNINIT 33 2-8 Initialize floating-point
coprocessor without
check for floating-point
errors

† Add at least 6 clocks for automatic FWAIT.

Discussion

FINIT/FNINIT  sets the floating-point coprocessor into a known state, unaffected
by any previous activity.

FINIT/FNINIT  is not quite the functional equivalent of a hardware RESET:

• For the Intel387 coprocessor, RESET causes the IM bit of the control word to
be zeroed and the ES and IE bits of the status word to be set (1) in order to
signal the presence of an Intel387 coprocessor.  FINIT/FNINIT  puts the
opposite values in these 3-bits.

• For the Intel287 coprocessor, RESET initializes the coprocessor in real address
mode.  FINIT/FNINIT  does not affect the current operating mode (real
address or protected mode).

The FNINIT  form of this instruction aborts the floating-point coprocessor bus
cycles in progress if a preceding memory-referencing instruction is running.
FNINIT  may be necessary to clear the floating-point coprocessor if the processor
detects an interrupt 9 (a processor extension segment overrun exception).



FINIT/FNINIT

Chapter 7 Floating-point Instructions478

Table 7-12 summarizes the effect of FINIT/FNINIT  for both the Intel387 and
Intel287 coprocessors.

Table 7-12.  Floating-point Coprocessor State Following FINIT/FNINIT

Value
Field i387 NPX i287 NPX Interpretation

Control Word:
  Infinity†

  Rounding
  Precision
  Exception Masks

1

00
11

111111

0

00
11

111111

387 NPX: Affine†; i287
NPX: Projective
Round to nearest
64-bits
All exceptions masked

Status Word:
  Busy

  Condition Code
  Stack Top
  Exception Status
  Stack Flag
  Exception Flags

0

????
000

0
0

000000

0

????
000

0
††

000000

i387 NPX: Reflects the
Exception Status setting;
i287 NPX: not busy
Indeterminate
stack_register (0) = TOP
No exceptions
i387 NPX: -
No exceptions

Tag Word:
  Tags 11 11 Empty

  Registers
  Exception Pointers:
  Instruction Code
  Instruction Address
  Operand Address

n.c.

n.c.
n.c.
n.c.

n.c.

n.c.
n.c.
n.c.

Not changed

Not changed
Not changed
Not changed

† The Intel387 floating-point coprocessor has IEEE 754 infinity closure.  This value is listed to
emphasize that programs written for the Intel287 floating-point coprocessor may not behave
the same on the Intel387 floating-point coprocessor if they depend on this bit.

†† The Intel287 floating-point coprocessor status word does not use this field.

Exceptions

None



FIST/FISTP

ASM386 Assembly Language Reference Chapter 7 479

FIST/FISTP   Integer Store from Real

Clocks
Opcode Instruction i387 NPX i287 NPX Description
DF /2 FIST m16j 82-95 80-90 m16j := ST
DB /2 FIST m32j 79-93 82-92 m32j := ST
DF /3 FISTP m16j 82-95 82-92 m16j := ST, pop
DB /3 FISTP m32j 79-93 84-94 m32j := ST, pop
DF /7 FISTP m64j 80-97 94-105 m64j := ST, pop

Discussion

FIST  rounds the stack top to an integer according to the RC field of the floating-
point coprocessor control word.  It then transfers the result to the memory
destination indicated by the operand.

FISTP  is identical to FIST  except that the stack top is popped after the operand is
stored.

The FIST/FISTP  operand may define a word or a short integer variable.  Only
FISTP  stores a long integer.  Negative zero is stored in the same encoding as
positive zero: all bits are 0.

Exceptions

Invalid, underflow if ST is empty, precision



FISUB/FISUBR

Chapter 7 Floating-point Instructions480

FISUB/FISUBR   Integer Subtract from Real

Clocks
Opcode Instruction i387 NPX i287 NPX Description
DE /4 FISUB m16j 71-83 102-137 ST := ST - m16j
DA /4 FISUB m32j 57-82 108-143 ST := ST - m32j
DE /5 FISUBR m16j 72-84 103-139 ST := m16j - ST
DA /5 FISUBR m32j 58-83 109-144 ST := m32j - ST

Discussion

FISUB subtracts the integer memory operand (subtrahend) from the top of the
stack.  The answer replaces the minuend on the top of the stack.

FISUBR performs the reverse subtraction: the stack top is subtracted from the
integer memory operand, and the answer replaces the subtrahend on the top of the
stack.

Exceptions

Intel387 NPX

Invalid, denormalized, overflow, unmasked underflow, precision

Intel287 NPX

Invalid, denormalized, overflow, precision



FLD

ASM386 Assembly Language Reference Chapter 7 481

FLD   Load Real

Clocks
Opcode Instruction i387 NPX i287 NPX Description
D9 C0+i FLD ST(i ) 14 17-22 Push, ST := old ST(i )
D9 /0 FLD m32r 20† 38-56 Push, ST := m32r
DD /0 FLD m64r 25† 40-60 Push, ST := m64r
DB /5 FLD m80r 44 53-65 Push, ST := m80r

† Add 5 clocks when loading zero from memory.

Discussion

FLD pushes the source operand onto the top of the floating-point stack.  This is
done by decrementing the stack pointer by 1 and then copying the value of the
source to the new stack top.

The source can be an element on the stack or any of the real data types in memory.
FLD converts single and double precision real operands to extended precision real
automatically.

FLD ST(0) duplicates the old stack top in the new stack top.  ST(7) must be empty
whenever ST is loaded to avoid causing an invalid (stack overflow) exception.

If the denormal exception is masked, the Intel387 coprocessor converts a
denormalized single or double precision real operand to extended precision real.  It
raises an invalid exception when loading a signaling NaN.

The Intel287 coprocessor converts a denormal operand to an unnormal.  It does not
raise an invalid exception when loading a signaling NaN.

Exceptions

Intel387 NPX

Invalid, unmasked denormalized (except when loading an extended precision real)

Intel287 NPX

Invalid, denormalized (except when loading an extended precision real)



FLDCW

Chapter 7 Floating-point Instructions482

FLDCW   Load Floating-point Coprocessor Control Word

Clocks
Opcode Instruction i387 NPX i287 NPX Description
D9 /5 FLDCW m2by 19 7-14 Control_word : = m2by

Discussion

FLDCW replaces the current floating-point coprocessor control word with the word
defined by the source operand.  Use FLDCW to establish or change the floating-point
coprocessor mode of operation.

If an exception bit in the status word is set, loading a new control word that
unmasks the exception activates the ERROR# output.

When changing the floating-point coprocessor exception masks be careful about
unmasking pending exceptions.

Exceptions

None, except for unmasking an existing exception



FLDENV

ASM386 Assembly Language Reference Chapter 7 483

FLDENV   Load Floating-point Coprocessor Environment

Clocks
Opcode Instruction i387 NPX i287 NPX Description
D9 /4 FLDENV m14/28by 71 35-45 Environment := m14by

or m28by

Discussion

FLDENV loads the floating-point coprocessor environment from the 14- or 28-byte
memory area indicated by the operand.  The USE attribute of the current code
segment determines the size of the operand:

• The 14-byte operand applies to a USE16 segment.

• The 28-byte operand applies to a USE32 segment.

This data should have been written to by a previous FSTENV instruction.

The floating-point coprocessor environment consists of the entire state of the
processor, except for the elements of the floating-point stack.

FLDENV waits for all data transfers to complete before executing the next
instruction.  If the environment image contains an unmasked exception, it causes a
numeric exception when the next (F) WAIT or exception-checking numeric
instruction executes.

Exceptions

None, except for unmasking an existing exception



FLDcon

Chapter 7 Floating-point Instructions484

FLDcon    Load Real Constant

Clocks
Opcode Instruction i387 NPX i287 NPX Description
D9 E8 FLD1 24 15-21 Push, ST := +1.0
D9 EA FLDL2E 40 15-21 Push, ST := log2(e)
D9 E9 FLDL2T 40 16-22 Push, ST := log2(10)
D9 EC FLDLG2 41 18-24 Push, ST := log10(2)
D9 ED FLDLN2 41 17-23 Push, ST := loge(2)
D9 EB FLDPI 40 16-22 Push, ST := p
D9 EE FLDZ 20 11-17 Push, ST := +0.0

Discussion

These instructions push various constant values onto the top of the floating-point
stack.  Each constant is an extended precision real.

Use the FLDcon  instructions to save storage and improve execution speed.  The
same constants in memory require 10 bytes of storage plus access time, while the
FLDcon  are 2-byte instructions.

The Intel387 coprocessor stores these constants in a format even more precise than
extended precision real format (accurate to approximately 19 decimal digits).  It
rounds these constants according to the RC field (bits 10 and 11) of the Intel387
coprocessor control word.  Set the Intel387 coprocessor RC field to 00 (round to
nearest with even preferred) to obtain FLDcon  values identical to those of the
Intel287 coprocessor.

For the Intel287 coprocessor, the constants 0.0 and 1.0 are exact.  All others have
full extended precision and are accurate to approximately 19 decimal digits.  The
rounding control is not in effect.

Exceptions

Invalid



FMUL/FMULP

ASM386 Assembly Language Reference Chapter 7 485

FMUL/FMULP   Multiply Real

Clocks
Opcode Instruction i387 NPX i287 NPX Description
DE C9 FMUL 29-57 95-150 ST(1) := ST(1) * ST,

pop old ST
D8 C8+i FMUL ST,ST(i ) 46-54 90-145 ST := ST * ST(i )
DC C8+i FMUL ST(i ),ST 29-57 90-145 ST(i ) := ST(i ) * ST
D8 /1 FMUL m32r 27-35 110-125 ST := ST * m32r
DC /1 FMUL m64r 32-57 112-168 ST := ST * m64r
DE C8+i FMULP ST(i ),ST 29-57 95-150 ST(i ) := ST(i ) * ST,

pop

Discussion

FMUL and FMULP multiply two floating-point numbers.  The two-operand forms of
the instructions multiply the second operand into the first operand and replace the
first operand with the result.  The one-operand forms multiply the operand into the
stack top and replace the stack top with the result.

The FMULP instruction returns a result to ST(i).  The FMUL instruction with no
operands returns a result to ST(1).  These instructions pop the top element (old
ST(0) ) from the stack when the operation is complete.

Exceptions

Invalid, denormalized, overflow, underflow, precision



FNOP

Chapter 7 Floating-point Instructions486

FNOP   No Operation

Clocks
Opcode Instruction i387 NPX i287 NPX Description
D9 D0 FNOP 12 10-16 No operation

Discussion

In effect, FNOP performs no operation.  The processor instruction pointer is
incremented.

Exceptions

None



FPATAN

ASM386 Assembly Language Reference Chapter 7 487

FPATAN   Compute R = Partial Arctangent

Clocks
Opcode Instruction i387 NPX i287 NPX Description
D9 F3 FPATAN 314-487 250-800 ST(1) := arctan(ST(1) /

ST), pop old ST

Discussion

FPATAN computes the function R = ARCTAN(Y/X).  X is the top stack element,
and Y is the next stack element, ST(1).  (Y is pushed first.)  After the function is
computed, the floating-point stack is popped once and the answer replaces the
former ST(1) on the top of the stack.

For the Intel387 coprocessor, the range of operands is unrestricted.  The octant of
the result depends on the relationship between the operands:

Table 7-13.  FPATAN Final Result Octant

Atan of Y/X
Final Result

Sign
Y

Sign
X

??
|Y| < |X|

0 < atan < π/4 + + yes

π/4 < atan < π/2 + + no

π/2< atan < 3*π/4 + - no

3*π/4 < atan < π + - yes

-π/4 < atan < 0 - + yes

-π/2 < atan < -π/4 - + no

-3*π/4 < atan < -π/2 - - no

-π < atan < -3*π/4 - - yes

For the Intel287 coprocessor, Y and X must satisfy the inequality 0 < Y < X < + ∞.
FPATAN does not check for compliance with the inequality.  If this inequality does
not hold, results are undefined.



FPATAN

Chapter 7 Floating-point Instructions488

Exceptions

Intel387 NPX

Invalid, denormalized, overflow, underflow, precision

Intel287 NPX

Underflow, precision



FPREM/FPREM1

ASM386 Assembly Language Reference Chapter 7 489

FPREM/FPREM1   Partial Remainder

Clocks
Opcode Instruction i387 NPX i287 NPX Description
D9 F8 FPREM 74-155 15-190 ST : = remainder

( integer_chop
( ST / ST(1) ) )

D9 F5 FPREM1 95-185 ----- ST : = remainder
( integer_round
( ST / ST(1) ) )

Discussion

FPREM and FPREM1 perform modulo division of ST by ST(1) and leave the result in
ST.  The result is always exact; the rounding control has no effect.

If the difference between the FPREM/FPREM1 operands' exponents is less than 64,
the function is complete; bit C2 of the floating-point coprocessor status word
condition code is cleared to 0.  If the function is incomplete, C2 is set to 1 and the
result in ST is called the partial remainder.  (See Figure 7-4 for status word layout.)

Software can inspect C2 by storing the status word following the execution of
FPREM/FPREM1 and reexecuting the instruction (using the partial remainder as the
dividend) until C2 is cleared.  When this occurs, FPREM/FPREM1 stores the least-
significant 3-bits of the quotient in C3, C1, and C0 of the floating-point
coprocessor status word.  For Intel287 coprocessor FPREM, take care that the final
reduction has an operand large enough to generate values in all 3-bits.

FPREM1 is available only for a Intel387 coprocessor; FPREM is available for both
the Intel387 and Intel287 coprocessors.  FPREM1 differs from FPREM as follows:

• FPREM1 is compatible with the IEEE 754 standard.

• The C3, C1, and C0 settings of the floating-point coprocessor status word
(low-order 3-bits of the quotient) may differ by 1 in some cases.

• FPREM1 yields a remainder R1 such that -|ST(1)|/2 < R1 < +|ST(1)|/2.  FPREM
yields a remainder R such that 0 <= R < |ST(1)| or -|ST(1)| < R < 0, depending
on the sign of the dividend.



FPREM/FPREM1

Chapter 7 Floating-point Instructions490

When the FPREM/FPREM1 operands differ greatly in magnitude, obtaining an exact
remainder could seriously increase interrupt latency.  For this reason,
FPREM/FPREM1 are designed to be coded in a software-controlled loop.  The
following loop executes FPREM1 until the modulus is complete.  A context switch
between the instructions in this loop could be forced by an interrupting routine with
higher priority.

REMLOOP:
 FPREM1        ; reduce ST modulo ST(1)
 FSTSW AX      ; store the status word in AX
 SAHF          ; C2 bit is now stored
               ; in the parity flag
 JPE REMLOOP   ; loop for repeated
               ; execution if C2 is 1

An important use of FPREM/FPREM1 is to reduce trigonometric arguments to
operands in the range permitted by the floating-point coprocessor trigonometric
instructions.  Because FPREM/FPREM1 produces an exact result, argument
reduction does not introduce roundoff error even if many iterations are needed to
bring an argument into range.

When the FPREM/FPREM1 function is complete, it stores the least significant 3-bits
of the quotient in C3, C1, C0 of the floating-point coprocessor status word, as
shown in Table 7-14.  This is also important for trigonometric argument reduction
because it locates the original angle in the correct octant of the unit circle.

Table 7-14.  Condition Code after FPREM/FPREM1

Condition Code Interpretation after
(Q1)
C3

(PF)
C2

(Q0)
C1

(Q2)
C0

i387 NPX FPREM/FPREM1
and after i287 NPX FPREM

X 1 X X Incomplete reduction; further iteration
needed

X 0 X X Complete reduction; C3, C1, C0 contain
low-order bits of quotient (Q1, Q0, Q2):

0 0 0 0 (Quo) MOD 8 = 0
0 0 1 0 (Quo) MOD 8 = 1
1 0 0 0 (Quo) MOD 8 = 2
1 0 1 0 (Quo) MOD 8 = 3
0 0 0 1 (Quo) MOD 8 = 4
0 0 1 1 (Quo) MOD 8 = 5
1 0 0 1 (Quo) MOD 8 = 6
1 0 1 1 (Quo) MOD 8 = 7



FPREM/FPREM1

ASM386 Assembly Language Reference Chapter 7 491

Exceptions

Intel387 NPX

Invalid, denormalized, unmasked underflow

Intel287 NPX

Invalid, denormalized, underflow



FPTAN

Chapter 7 Floating-point Instructions492

FPTAN   Compute Y = Partial Tan(X)

Clocks
Opcode Instruction i387 NPX i287 NPX Description
D9 F2 FPTAN 191-497† 30-540 Y / X := tan(ST),

ST := Y, push, ST := X

† Add up to 76 clocks when |ST| >=π/4.

Discussion

FPTAN computes the function Y / X = tan(ST).  The implicit operand ST must be
expressed in radians.  The result is a ratio.  Y replaces old ST in the stack and X is
pushed, becoming the new stack top.

For the Intel387 coprocessor, ST must be less than (π/4 * 263).  When π/4 <= |ST|
< (π/4 * 263), FPTAN reduces ST to a value less than π/4 using an internally stored
π/4 divisor with 67 significant bits.  For values of ST > (π/4 *263), use

FPREM/FPREM1 to reduce ST to the range of FPTAN.

For the Intel287 coprocessor, ST must be in the range 0 <= ST <= π/4.  If ST is not
within the correct range or is not normalized, the result is undefined; FPTAN does
not issue an exception for out of range input.  Use FPREM and the 64-bit constant π
(see FLDPI  with the FLDcon  instructions) to reduce ST to the range of FPTAN.

When FPTAN's argument is within range, it computes Y and X such that Y/X =
tan(ST).  Y replaces ST.  Then, X is pushed, becoming the new stack top.  The
Intel387 coprocessor pushes X = 1, so ST(1) contains the tangent of the original
operand.

Exceptions

Intel387 NPX

Invalid, denormalized, underflow, precision

Intel287 NPX

Invalid, precision



FRNDINT

ASM386 Assembly Language Reference Chapter 7 493

FRNDINT   Round to Integer

Clocks
Opcode Instruction i387 NPX i287 NPX Description
D9 FC FRNDINT 66-80 16-50 ST := round(ST)

Discussion

FRNDINT rounds the stack top ST to an integer according to the setting of the RC
field of the floating-point coprocessor control word.  The result replaces the input
value on the floating-point stack top.

For example, assume that ST contains the real number 155.625.  FRNDINT changes
the value to 155 if the RC field of the control word is set to round down (01) or
chop (11).  FRNDINT changes the value to 156 if the RC field is set to round up
(10) or round to nearest with even preferred (00).  See Figure 7-5 for control word
layout.

Exceptions

Invalid, precision



FRSTOR

Chapter 7 Floating-point Instructions494

FRSTOR   Restore Floating-point Coprocessor Machine State

Clocks
Opcode Instruction i387 NPX i287 NPX Description
DD /4 FRSTOR m94/ 308 205-215 Machine_state := m94by

108by or m108by

Discussion

FRSTOR restores the entire state of the floating-point coprocessor from the 94- or
108-byte memory location specified by the operand.

This information should have been written by a previous FSAVE instruction and not
altered by any subsequent instruction.  See Figure 7-10 (with the FSAVE
instruction) for illustrations of the floating-point coprocessor machine state
memory layout.  See Figures 7-2 through 7-8 for detailed illustrations of the
floating-point coprocessor environments loaded by FRSTOR.

The floating-point coprocessor resets to its new state at the conclusion of FRSTOR.
(F)WAIT  is not required after FRSTOR.  If the exception and mask bits in the
memory image so indicate, the floating-point coprocessor generates an exception
when the next (F)WAIT  or exception-checking numeric instruction occurs.

Exceptions

None, except for unmasking an existing exception



FSAVE/FNSAVE

ASM386 Assembly Language Reference Chapter 7 495

FSAVE/FNSAVE   Save Floating-point Coprocessor Machine State

Clocks
Opcode Instruction i387 NPX i287 NPX Description
9B DD /6 FSAVE m94/108by 375-376† 205-215† m94/108by : =

machine_state after
check for pending
unmasked floating-point
errors

DD /6 FNSAVE m94/ 375-376 205-215 m94/108by : =
108by machine_state without

check for floating-point
errors

† Add at least 6 clocks for automatic FWAIT.

Discussion

FSAVE writes the full floating-point coprocessor state (environment plus stack) to
the 94- or 108-byte memory location specified by the operand.  The USE attribute
of the current code segment determines the size of the operand:

• The 94-byte operand applies to a USE16 segment.

• The 108-byte operand applies to a USE32 segment.

FSAVE includes an assembler-generated (F)WAIT  instruction.  FSAVE/FNSAVE
delays its execution until all floating-point coprocessor activity completes
normally.  The saved image reflects the machine state following the completion of
any running instruction.



FSAVE/FNSAVE

Chapter 7 Floating-point Instructions496

For the Intel387 coprocessor, values stored in the tag word are determined during
the execution of FSAVE/FNSAVE.  If the tag in the status register indicates that the
corresponding register is nonempty, the Intel387 coprocessor examines the data in
the register and stores the appropriate tag in memory.

Following the save, the floating-point coprocessor is automatically reinitialized (an
implicit FNINIT  is executed).  If a program is to read from the 94- or 108-byte
location following FSAVE, it must issue an FWAIT instruction to ensure that the
storage is complete.

Figure 7-10 shows the 94- or 108-byte layout of the floating-point coprocessor
machine state.  The layout is composed of the 14- or 28-byte environment and the
eight extended precision stack elements.  The tags stored always reflect the actual
contents of the registers.

Typically, FSAVE will be coded to save this image on the processor stack.  See
Figures 7-2 through 7-8 for details of the environment layout.



FSAVE/FNSAVE

ASM386 Assembly Language Reference Chapter 7 497

Figure 7-10.  Floating-point Coprocessor Machine State Layout after FSAVE

W-3435

Bytes

 Intel387   /Intel287
32-bit

Environment

015 7

 Intel387/Intel287
16-bit

Environment

31 01523 7

+0
+2

+4
+6

+8
+10

+12

Bytes

+0
+4

+8
+12

+16
+20

+24

Floating Point Stack

Significand 31-0Top Stack
Element

ST

(ST(6) Sign
and Exponent)

Exponent
14-0

Intel387 Stack Memory Layout

Significand
63-48

Next Stack
Element

ST(1)

Last Stack
Element

ST(7)

Significand 63-32

Significand
15-0

Exponent
14-0S

Significand 47-16

S

S

Significand 47-16

Significand
15-0

Exponent
14-0

Significand
63-48

Bytes

+28/16

+32/20

+40/28

+44/32

ST(7):
+98/86

+100/88

+104/92

+36/24

 

Top Stack
Element

ST

Intel287 Stack Memory Layout

Next Stack
Element

ST(1)

Last Stack
Element

ST(7)

Exponent 14-0S

Bytes

+28/16

+30/18

+34/22

+36/24

+38/26

+40/28

+42/30

+32/20

+26/14

+44/32

+96/84

+98/86

+100/88

+102/90

+104/92

Significand 15-0

Significand 31-16

Significand 47-32

Significand 63-48

Exponent 14-0S

Significand 15-0

Significand 31-16

Significand 47-32

Significand 63-48

Significand 15-0

Significand 31-16

Significand 47-32

Significand 63-48

Exponent 14-0S



FSAVE/FNSAVE

Chapter 7 Floating-point Instructions498

Some uses of FSAVE are:

• An operating system needs to perform a context switch (suspend the task that
has been running and give control to a new task)

• An exception handler needs to use the floating-point coprocessor

• An application task wants to pass a clean floating-point coprocessor to a
subroutine

Exceptions

None



FSCALE

ASM386 Assembly Language Reference Chapter 7 499

FSCALE   Scale Exponent of Real

Clocks
Opcode Instruction i387 NPX i287 NPX Description
D9 FD FSCALE 67-86 32-38 ST := ST*2ST(1)

Discussion

FSCALE adds the integer part of ST(1) to the exponent of the number in ST.
FSCALE does rapid multiplication or division by integral powers of 2.

For the Intel387 coprocessor, there is no limit on the range of the scale term in
ST(1).  If the ST(1) value is not integral, FSCALE chops the value toward zero.  If
the resulting ST(1) integer is zero, FSCALE does not change the number in ST.

For the Intel287 coprocessor, the scale factor in ST(1) must be in the range -215

<= ST(1) < +215.  FSCALE produces definable results for nonintegral values of
ST(1) only if |ST(1)| > 1.  In that case, the integer produced by chopping ST(1)
toward 0 is used.  If the input is invalid, the result is undefined and no exception is
generated.  To ensure correct operation, load the scale factor from a word integer.

Exceptions

Intel387 NPX

Invalid, denormalized, overflow, underflow, precision (on masked
underflow/overflow)

Intel287 NPX

Invalid, overflow, underflow



FSETPM

Chapter 7 Floating-point Instructions500

FSETPM   Set Protected Mode

Clocks
Opcode Instruction i387 NPX i287 NPX Description
9B DB E4 FSETPM ----- 2-8† Set protected mode for

i287 NPX
9B DB E4 FSETPM 12 ----- NOP in i387 NPX

† Add at least 6 clocks for automatic FWAIT

Discussion

FSETPM puts the Intel287 coprocessor into protected mode.  This instruction should
be executed in the power-up initialization routine of the processor, when the
processor is placed into protected mode.  Once FSETPM is executed, the Intel287
coprocessor remains in protected mode until the next hardware RESET#, even after
execution of FINIT , FSAVE, or FRSTOR.

For the Intel387 coprocessor, FSETPM is handled as a NOP (no operation).  The
processor handles all addressing and exception pointer information, whether in
protected mode or not.

Exceptions

None



FSIN

ASM386 Assembly Language Reference Chapter 7 501

FSIN   Compute Y = Sin(X)

Clocks
Opcode Instruction i387 NPX i287 NPX Description
D9 FE FSIN 122-771† ----- ST := sin(ST)

† Add up to 76 clocks when |ST| >= π/4.

Discussion

When complete, FSIN  replaces the contents of ST with sin(ST).  ST must be an
angle expressed in radians.  It must lie in the range |ST| < (π/4 *263).

If ST is in range, C2 of the Intel387 coprocessor status word is cleared and the
result of the operation is put in ST.  Otherwise, C2 is set to 1 (function incomplete)
and the operand value of ST remains intact.  (See Figure 7-4 for the status word
format.)

It is the programmer's responsibility to reduce the operand to an absolute value less
than (π/4 *263).  Use FPREM1 or FPREM if it is necessary to bring ST into range.
For ST in the range π/4 < |ST| < (π/4 *263), FSIN  automatically reduces ST to a
value less than π/4 using an internally stored π/4 divisor with 67 significant bits.

FSIN  is a Intel387 coprocessor instruction; it is not available for a Intel287
coprocessor.

Exceptions

Invalid, denormalized, underflow, precision



FSINCOS

Chapter 7 Floating-point Instructions502

FSINCOS   Compute Y = Sin(X) and Y = Cos(X)

Clocks
Opcode Instruction i387 NPX i287 NPX Description
D9 FB FSINCOS 194-809† — ST := sin(ST), push,

ST := cos(ST)

† Add up to 76 clocks when |ST| >= π/4.

Discussion

When complete, FSINCOS replaces the contents of ST with cos(ST) after putting
sin(ST) in ST(1).  ST must be an angle expressed in radians, and it must lie in the
range |ST| < (π/4 *263).

If ST is in range, C2 of the Intel387 coprocessor status word is cleared and the
results of the operation are produced.  Otherwise, C2 is set to 1 (function
incomplete) and the operand value of ST remains intact.  (See Figure 7-4 for the
status word layout.)

It is the programmer's responsibility to reduce the operand to an absolute value less
than (π/4 *263).  Use FPREM1 or FPREM if it is necessary to bring ST into range.

For ST in the range π/4 < |ST| < (π/4 *263), FSINCOS automatically reduces ST to a
value less than π/4 using an internally stored π/4 divisor with 67 significant bits.

FSINCOS is a Intel387 coprocessor instruction; it is not available for a Intel287
coprocessor.

Exceptions

Invalid (stack overflow if ST(7) is nonempty), denormalized, underflow, precision



FSQRT

ASM386 Assembly Language Reference Chapter 7 503

FSQRT   Square Root

Clocks
Opcode Instruction i387 NPX i287 NPX Description
D9 FA FSQRT 122-129 180-186 ST := square_root(ST)

Discussion

FSQRT replaces the contents of the top of the stack with its square root.

The FSQRT of (ST = -0) is defined to be -0.  Otherwise, FSQRT of a negative
operand is invalid.

For the Intel387 coprocessor with the denormal exception masked, a denormal
operand produces a correct square root.

For the Intel287 coprocessor, a denormal or unnormal operand generates an invalid
exception.

Exceptions

Intel387 NPX

Invalid, denormalized, underflow for unmasked denormal, precision

Intel287 NPX

Invalid, denormalized, precision



FST/FSTP

Chapter 7 Floating-point Instructions504

FST/FSTP   Store Real/Store Real and Pop

Clocks
Opcode Instruction i387 NPX i287 NPX Description
DD D0+i FST ST(i ) 11 15-22 ST(i ) := ST
D9 /2 FST m32r 44 84-90 m32r := ST
DD /2 FST m64r 45 96-104 m64r := ST
DD D8+i FSTP ST(i ) 12 17-24 ST(i ) := ST, pop
D9 /3 FSTP m32r 44 86-92 m32r := ST , pop
DD /3 FSTP m64r 45 98-106 m64r := ST, pop
DB /7 FSTP m80r 53 52-58 m80r := ST, pop

Discussion

FST/FSTP copies the stack top ST to the destination indicated by the operand.
FSTP pops the stack after copying ST.

The destination can be a stack element or a single or double precision real memory
operand.  If the destination is a single or double precision real, FST/FSTP rounds
ST to the width of the destination according to the RC field of the floating-point
coprocessor control word.  FST/FSTP also converts the exponent to the width and
bias of the destination format.

FSTP stores extended precision real (DT) memory variables while FST does not.
Coding FSTP ST(0) is equivalent to popping the stack with no data transfer.

FST/FSTP does not round ST:

• When the Intel387 coprocessor ST contains an unsupported format, FST/FSTP
stores the QNaN indefinite if the invalid exception is masked.

• When the Intel387 coprocessor ST contains NaN, FST/FSTP sets the leading
fraction bit and truncates the least significant bits of the significand and
exponent to fit the
destination.

• When ST contains an infinity or a Intel287 coprocessor NaN, FST/FSTP
truncates the least significant bits of the stack top's significand and exponent to
make the value fit the destination.

See also: Programmer's Reference for your coprocessor, for more information
about the special values handled by FST/FSTP

Exceptions

Invalid; overflow, underflow, precision for single or double precision destination



FSTCW/FNSTCW

ASM386 Assembly Language Reference Chapter 7 505

FSTCW/FNSTCW Store Floating-point Coprocessor Control
Word

Clocks
Opcode Instruction i387 NPX i287 NPX Description
9B D9 /7 FSTCW m2by 15† 12-18† m2by : = control_word

after check for pending
unmasked floating-point
errors

D9 /7 FNSTCW m2by 15 12-18 m2by : = control_word
without check for
floating-point errors

† Add at least 6 clocks for automatic FWAIT.

Discussion

FSTCW writes the current floating-point coprocessor control word to the two-byte
memory location defined by the operand.  FSTCW includes an assembler-generated
(F)WAIT  instruction.  FNSTCW can be used in code regions that must not be
interrupted by pending unmasked numeric errors.  See Figure 7-5 for the control
word format.

Exceptions

None



FSTENV/FNSTENV

Chapter 7 Floating-point Instructions506

FSTENV/FNSTENV   Store Floating-point Coprocessor
Environment

Clocks
Opcode Instruction i387 NPX i287 NPX Description
9B D9 /6 FSTENV m14/28by 103-104† 40-50† m14/28by : =

environment after
check for pending
unmasked floating-point
errors

D9 /6 FNSTENV m14/ 103-104 40-50 m14/28by : =
28by environment without

check for floating-point
errors

† Add at least 6 clocks for automatic FWAIT.

Discussion

FSTENV writes the floating-point coprocessor environment to the 14- or 28-byte
memory location specified by the operand.  The USE attribute of the current code
segment determines the operand size:

• The 14-byte operand applies to a USE16 segment.

• The 28-byte operand applies to a USE32 segment.

The environment consists of the floating-point coprocessor control word, status
word, tag word, and the exception pointers.  See Figures 7-2 through 7-8 for
detailed illustrations of the environment layouts.

FSTENV includes an assembler-generated WAIT instruction.  FNSTENV does not, but
the data saved reflects the state of the floating-point coprocessor after any
previously decoded instruction has been executed.

FNSTENV is often used by exception handlers because it provides access to
exception pointers that identify the offending instruction and operand.  FNSTENV
typically saves the environment on the processor stack.  After saving the
environment, FNSTENV sets all exception masks in the floating-point coprocessor
control word.  This prevents numeric errors from interrupting the exception
handler.

Exceptions

None



FSTSW/FNSTSW

ASM386 Assembly Language Reference Chapter 7 507

FSTSW/FNSTSW   Store Floating-point Coprocessor Status Word

Clocks
Opcode Instruction i387 NPX i287 NPX Description
9B DF F0 FSTSW AX 13† 10-16† AX : = status_word

after check for pending
unmasked floating-point
errors

9B DD /7 FSTSW m2by 15† 12-18† m2by : = status_word
after check for pending
unmasked floating-point
errors

DF F0 FNSTSW AX 13 10-16 AX : = status_word
without check for
floating-point errors

DD /7 FNSTSW m2by 15 12-18 m2by : = status_word
without check for
floating-point errors

† Add at least 6 clocks for automatic FWAIT.

Discussion

FSTSW writes the current value of the floating-point coprocessor status word to the
operand.  The destination is either the AX register or a two-byte memory operand.

FSTSW includes an assembler-generated (F)WAIT  instruction.  FNSTSW reads the
status word without checking for pending unmasked numeric errors, but it delays
execution until any running numeric instruction is finished.

The primary use of FSTSW/FNSTSW is to do conditional branching following a
comparison, FPREM/FPREM1, or FXAM instruction.

When FNSTSW AX is executed, the processor AX register is updated with the
floating-point coprocessor status word before the processor executes any further
instructions.

Exceptions

None



FSUB/FSUBP/FSUBR/FSUBRP

Chapter 7 Floating-point Instructions508

FSUB/FSUBP/FSUBR/FSUBRP    Subtract Real

Clocks
Opcode Instruction i387 NPX i287 NPX Description
DE E9 FSUB 26-34 75-105 ST(1) : = ST(1) - ST,

pop
DC E8+i FSUB ST(i ),ST 26-34 70-100 ST(i ) : = ST(i ) - ST
D8 E0+i FSUB ST,ST(i ) 29-37 70-100 ST : = ST - ST(i )
D8 /4 FSUB m32r 24-32 90-120 ST : = ST - m32r
DC /4 FSUB m64r 28-36 95-125 ST : = ST - m64r
DE E8+i FSUBP ST(i ),ST 26-34 75-105 ST(i ) : = ST(i ) - ST,

pop
DE E1 FSUBR 26-34 75-105 ST(1) : = ST - ST(1),

pop
DC E0+i FSUBR ST(i ),ST 26-34 70-100 ST(i ) : = ST - ST(i )
D8 E8+i FSUBR ST,ST(i ) 29-37 70-100 ST : = ST(i ) - ST
D8 /5 FSUBR m32r 25-33 90-120 ST : = m32r - ST
DC /5 FSUBR m64r 29-37 95-125 ST : = m64r - ST
DE E0+i FSUBRP ST(i ),ST 26-34 75-105 ST(i ) := ST - ST(i ),

pop

Discussion

FSUB/FSUBP/FSUBR/FSUBRP subtract floating-point numbers.  These instructions
always use ST as one of the operands.  The other operand may be another stack
element or a single or double precision real memory operand.

The two-operand forms of the FSUB/FSUBP instructions subtract the second
operand (subtrahend) from the first operand, replacing the first operand (minuend)
with the result.  The one-operand forms subtract the operand from the stack top,
replacing the stack top with the result.

FSUBR/FSUBRP reverse the operands and the destination of the result.  The two-
operand forms of these instructions subtract the first operand from the second,
replacing the first operand (subtrahend) with the result.

The FSUBP/FSUBRP instructions return a result to ST(i).  The FSUB/FSUBR

instructions with no operands return a result to ST(1).  These instructions pop the
top element (old ST(0) ) from the stack when the operation is complete.

Exceptions

Invalid, denormalized, overflow, underflow, precision



FTST

ASM386 Assembly Language Reference Chapter 7 509

FTST   Test Real (Compare to Zero)

Clocks
Opcode Instruction i387 NPX i287 NPX Description
D9 E4 FTST 28 38-48 Compare ST to +0.0

Discussion

FTST compares the stack top ST with the value +0.0 and sets the flags C3, C2, and
C0 of the floating-point coprocessor status word with the resulting information.
There are four possible results to the comparison of two real numbers.  Three are
greater than, equals, and less than.  The fourth, unordered, occurs when one of the
compared quantities is a NaN, a Intel387 coprocessor unsupported format, or a
Intel287 coprocessor projective infinity.  The flags C3, C2, and C0 (bits 14, 10, and
8, respectively of the floating-point coprocessor status word) indicate the result of
an FTST comparison, as shown in Table 7-15.

Table 7-15.  Condition Code after FTST

Order
(ZF)
C3

(PF)
C2

(CF)
C0

Processor
Conditional Branch

ST >0.0 0 0 0 JA

ST <0.0 0 0 1 JB

ST = 0.0 1 0 0 JE

Unordered 1 1 1 JP

To test these bits, load them into the processor flags register by following FTST
with the following instruction sequence:

FSTSW AX   ; store status word in AX
SAHF       ; bits are now stored in zero,
           ; parity, and carry flags
JPE UNORDR ; JUMP if the result was unordered

Conditional jumps can now be made, using the below (JB), above (JA), and equal
(JE) mnemonics.

Exceptions

Invalid, denormalized



FUCOM/FUCOMP/FUCOMPP

Chapter 7 Floating-point Instructions510

FUCOM/FUCOMP/FUCOMPP Unordered Comparison of
Real Numbers

Clocks
Opcode Instruction i387 NPX i287 NPX Description
DD E1 FUCOM 24 ----- Compare ST with ST(1)
DD E0+i FUCOM ST(i ) 24 ----- Compare ST with ST(i )
DD E9 FUCOMP 26 ----- Compare ST with

ST(1), pop
DD E8+i FUCOMP ST(i ) 26 ----- Compare ST with ST(i ),

pop
DA E9 FUCOMPP 26 ----- Compare ST with

ST(1), pop twice

Discussion

FUCOM/FUCOMP/FUCOMPP compare real numbers on the stack.  After making the
comparison, FUCOMP pops the top element from the stack.  After comparing the top
two elements, FUCOMPP pops both of them.

FUCOM, FUCOMP, and FUCOMPP are Intel387 coprocessor instructions.  These
instructions conform to the IEEE 754 standard for the comparison of real numbers,
differing from FCOM/FCOMP/FCOMPP as follows:

• FUCOM/FUCOMP/FUCOMPP do not cause an invalid operation unless an operand
is a signaling NaN or is empty.

• FUCOM/FUCOMP/FUCOMPP compare stack operands only.
FCOM/FCOMP/FCOMPP also compare memory operands to the stack top.

There are four possible results to the comparison of two real numbers as shown in
Table 7-16.  Three are greater than, less than, and equals.  The fourth, unordered,
(not comparable) occurs when one of the operands is a NaN or an unsupported
Intel387 coprocessor format.



FUCOM/FUCOMP/FUCOMPP

ASM386 Assembly Language Reference Chapter 7 511

Table 7-16.  Condition Code after FUCOM(P/PP)

Order
(ZF)
C3

(PF)
C2

(CF)
C0

Processor
Conditional Branch

ST >Operand 0 0 0 JA

ST <Operand 0 0 1 JB

ST = Operand 1 0 0 JE

Unordered 1 1 1 JP

To test these bits, load them into the processor flags register by following FUCOM
with the following instruction sequence:

FSTSW AX   ; store status word in AX
SAHF       ; bits are now stored in zero,
           ; parity, and carry flags
JPE UNORDR ; JUMP if the result was unordered

Conditional jumps can now be made, using the below (JB), above (JA), and equal
(JE) mnemonics.  FUCOM/FUCOMP/FUCOMPP ignores the sign of zero: -0.0 = +0.0.

Exceptions

Invalid, denormalized



FWAIT

Chapter 7 Floating-point Instructions512

FWAIT   Wait for Floating-point Operation Complete

Opcode Instruction Clocks Description
9B FWAIT min. 6 Alternate of WAIT

Discussion

FWAIT is an alternate mnemonic for the processor WAIT instruction.

(F)WAIT  allows a check to be made for pending unmasked floating-point errors
before the next floating-point coprocessor instruction modifies a variable used in
the preceding instruction.  This transfers control to exception handlers that deal
with such exceptions before the next floating-point coprocessor instruction uses
invalid results as an operand.

FWAIT also synchronizes the processor with the Intel287 coprocessor.  FWAIT
suspends processor execution until the Intel287 coprocessor completes its current
instruction.  Follow FIST  with an FWAIT instruction to be sure that the value has
been stored before attempting to examine it.

Exceptions

None; the processor raises the following exceptions: #NM if the task-switched flag
is set in the machine status word (lower 16 bits of CR0); #MF if the ERROR# pin
is asserted



FXAM

ASM386 Assembly Language Reference Chapter 7 513

FXAM   Examine Floating-point Stack Top

Clocks
Opcode Instruction i387 NPX i287 NPX Description
D9 E5 FXAM 30-38 12-23 Status_word

condition_bits : =
classification of ST

Discussion

FXAM provides information about the classification of the floating-point
coprocessor stack top value.  The results are reported by the condition codes C3-C0
of the floating-point coprocessor status word, as shown in Table 7-17.

Table 7-17.  Condition Code after FXAM

Condition Code Interpretation of Floating-point
C3 C2 C1 C0 Coprocessors ST value

0 0 0 0 i387 NPX: Unsupported;
i287 NPX: +Unnormal

0 0 0 1 +NaN
0 0 1 0 i387 NPX: Unsupported;

i287 NPX: -Unnormal
0 0 1 1 -NaN
0 1 0 0 +Normal
0 1 0 1 +∞
0 1 1 0 -Normal
0 1 1 1 -∞
1 0 0 0 +Zero
1 0 0 1 Empty
1 0 1 0 -Zero
1 0 1 1 Empty
1 1 0 0 +Denormal
1 1 0 1 i287 NPX: Empty
1 1 1 0 -Denormal
1 1 1 1 i287 NPX: Empty

Although four different encodings can be returned for an empty register, bits C3
and C0 are always 1 for empty.  Ignore bits C2 and C1 when testing for empty.

Exceptions

None



FXCH

Chapter 7 Floating-point Instructions514

FXCH   Exchange Real Numbers in Stack

Clocks
Opcode Instruction i387 NPX i287 NPX Description
D9 C9 FXCH 18 10-15 Exchange ST and ST(1)
D9 C8+i FXCH ST(i ) 18 10-15 Exchange ST and ST(i )

Discussion

FXCH swaps the contents of the stack top ST with the stack element given as the
operand.  If a stack element is not specified explicitly, ST(1) is used.

Many floating-point coprocessor instructions operate only on the stack top.  FXCH
provides an easy way to use these instructions on lower stack elements.  For
example, the following sequence takes the square root of the third element from the
top (assuming that ST is nonempty):

FXCH ST(3)
FSQRT
FXCH ST(3)

Exceptions

Invalid



FXTRACT

ASM386 Assembly Language Reference Chapter 7 515

FXTRACT   Extract Exponent and Significand of Real

Clocks
Opcode Instruction i387 NPX i287 NPX Description
D9 F4 FXTRACT 70-76 27-55 Push, ST(1) : =

ST_exponent_field,
ST : = ST_significand

Discussion

FXTRACT decomposes the stack top ST into two numbers that represent the actual
value of the operand's exponent and significand fields.  The exponent replaces the
original operand on the stack.  Then, FXTRACT pushes the significand onto the
stack.  ST(7) must be empty to avoid an invalid exception.

After FXTRACT on a valid operand, ST contains the value of the original
significand expressed as a real number:

• Its sign is the same as the original operand's.

• Its exponent is zero true (3FFFH biased).

• Its significand is identical to the original operand's.

After FXTRACT on a valid operand, ST(1) contains the original operand's exponent.
For example, assume that ST contains a number whose true exponent is +4 (the
exponent field contains 4003H).  After FXTRACT, ST(1)'s exponent field will
contain 4001H (+2 true) and its significand field will contain 1

Ù
00...0B (1.0).

As an example with a negative exponent, suppose ST contains an operand whose
true exponent is -7 (the exponent field contains 3FF8H).  After FXTRACT, ST(1)'s
exponent field will contain C001H (-2 true) and its significand field will contain
1

Ù
1100...0B.



FXTRACT

Chapter 7 Floating-point Instructions516

The Intel287 and Intel387 coprocessors FXTRACTs handle zero, denormal, or
infinity operands differently:

• When the operand is a zero, Intel387 coprocessor FXTRACT leaves 0.0 in ST
with the same sign as the operand and leaves -∞ in ST (1); the Intel387
coprocessor also raises the zerodivide exception.  When the operand is a
denormal and the denormal exception is masked, Intel387 coprocessor
FXTRACT leaves a normalized significand in ST and the exponent of the
normalized operand in ST(1).  When the operand is an infinity, Intel387
coprocessor FXTRACT leaves the original operand in ST and +∞ in ST(1), and
the Intel387 coprocessor does not raise an exception.

• When the operand is a zero, Intel287 coprocessor FXTRACT leaves 0's in both
ST and ST(1) with the same sign as the original operand.  When the operand is
a denormal, Intel287 coprocessor FXTRACT leaves an unnormalized significand
in ST and the operand's exponent in ST(1).  When the operand is an infinity,
Intel287 coprocessor FXTRACT raises the invalid exception.

Exceptions

Intel387 NPX

Invalid, denormal, zerodivide

Intel287 NPX

Invalid



FYL2X

ASM386 Assembly Language Reference Chapter 7 517

FYL2X   Compute Y * log2X

Clocks
Opcode Instruction i387 NPX i287 NPX Description
D9 F1 FYL2X 120-538 900-1100 ST(1) := ST(1) *

log2(ST), pop old
ST

Discussion

FYL2X calculates ST(1) * log2(ST).  FYL2X stores the result in ST(1) and then
pops the stack, leaving the answer in ST.

The ST(1) operand to FYL2X must be in the range -∞< ST(1) < +∞, and:

• For the Intel387 coprocessor FYL2X, the ST operand must be in the range
0 <= ST < +∞.

• For the Intel287 coprocessor FYL2X, the ST operand must be in the range
0 < ST < +∞.

FYL2X optimizes the calculation of log to any base other than 2 by providing the
multiplication that is always required:

• logbX = logb2 * log2X

Exceptions

Intel387 NPX

Invalid, denormalized, zerodivide, overflow, underflow, precision

Intel287 NPX

Overflow, underflow, precision



FYL2XP1

Chapter 7 Floating-point Instructions518

FYL2XP1   Compute Y * log2(X + 1)

Clocks
Opcode Instruction i387 NPX i287 NPX Description
D9 F9 FYL2XP1 257-547 700-1000 ST(1) := ST(1) *

log2(ST + 1), pop old
ST

Discussion

FYL2XP1 calculates ST(1) * log2(ST + 1.0).  FYL2XP1 stores the result in ST(1)
and then pops the stack, leaving the answer in ST.

FYL2XP1 provides improved accuracy over FYL2X when computing the logarithm
of a number very close to 1.

The ST(1) operand to FYL2XP1 must be in the range -∞ < ST(1) < +∞, and:

• For Intel387 coprocessor FYL2XP1, the ST operand must be in the range
-(1-√ 2/2) < ST < +(1-√ 2/2).  If either operand is out of range, the result is
undefined.

• For Intel287 coprocessor FYL2XP1, the ST operand must be in the range
0.0 <= |ST| < +(1-√ 2/2).  If either operand is out of range, FYL2XP1 results are
undefined and no exception is generated.

It is the programmer's responsibility to check that these operands are in range.

Exceptions

Intel387 NPX

Invalid, denormalized, underflow, precision

Intel287 NPX

Underflow, precision

■■  ■■  ■■



ASM386 Assembly Language Reference Chapter 8 519

Textmacros 8
This chapter describes assembler textmacros.  The chapter has three major sections.

• Overview explains what textmacros are and describes the basics of using them.

• Predefined Macro Reference describes the predefined macros in detail.

• Scanning Modes, Delimiters, and Macro Expansions contains more detailed
information about these topics than the Overview section.

Overview
Textmacros are optional, programmer-defined functions that have two major uses
in assembler programs:

• As convenient abbreviations for a sequence of assembler statements that will
be reused

• As a way to assemble sections of code conditionally

For example, the following source module fragment defines two macros (PROLOG
and EPILOG) for reuse with three procedures:

          NAME TEXT_SUB
          PUBLIC PROC1,PROC2,PROC3
    :  :
%*DEFINE  (PROLOG) (
          PUSH EBP
          MOV EBP, ESP
          )
%*DEFINE (EPILOG) (
          POP EBP
          RET 8
          )
     :  :

Each macro definition specifies a macro name followed by a macro body
containing assembler instruction statements.  PROC1, PROC2, and PROC3 perform
similar operations with data on the stack.  The source module's code segment
contains macro calls to PROLOG and EPILOG inside each of these procedures.



520 Chapter 8 Textmacros

The following fragment shows how the PROLOG and EPILOG calls appear within
PROC1:

CODE32   SEGMENT ER PUBLIC
    :  :
PROC1    PROC
          %PROLOG
          MOV EAX, [EBP+8]
          ADD EAX, [EBP+12]      ; in PROC1 only
          %EPILOG
PROC1    ENDP
    :  :

PROC2 and PROC3 are almost identical to PROC1, except for the commented ADD
statement.  PROC2 uses SUB and PROC3 uses IMUL on the same operands as PROC1.

In the listing for this source module, the PROC1 fragment appears as:

CODE32   SEGMENT ER PUBLIC
    :  :
PROC1    PROC
          PUSH EBP               ; instead of
          MOV EBP,ESP            ; PROLOG call
          MOV EAX, [EBP+8]
          ADD EAX, [EBP+12]
          POP EBP                ; instead of
          RET 8                  ; EPILOG call
PROC1    ENDP
    :  :

The macro body defined with PROLOG replaces each %PROLOG in the source file
versions of PROC1, PROC2, and PROC3.  The macro body defined with EPILOG
replaces each %EPILOG.

See also: Controlling the macro processor and controlling the listing of macros,
ASM386 Macro Assembler Operating Instructions



ASM386 Assembly Language Reference Chapter 8 521

Macro Processing
The macro processor preprocesses assembler source text before it is assembled.
The macro processor scans the source text for macro calls, which are signaled by a
specific metacharacter (%, by default).  When it encounters a macro call, the macro
processor:

1. Expands the macro to its return value, which is usually text but is sometimes
the null string

2. Inserts the expanded result into the source file that will be input to the
assembler

3. Updates information in the macro processor symbol table and continues
scanning the source file for another macro call

The macro processor ignores assembler directive, instruction, and codemacro
statements in the source file, passing them on as a sequence of characters to the
assembler.  Until it encounters the metacharacter, the macro processor scans the
file as a stream of characters with no semantic content.  The macro processor
cannot access the assembler's symbol table because it expands macros prior to
assembly.

After macro processing, the assembler processes the source file's assembly
language statements, including every statement that has been inserted as the result
of a macro call.

Macro Calls and Call Patterns
The term macro call denotes an invocation of a macro identifier recognized by the
macro processor.  Such an identifier may be:

• An assembler predefined macro

• A previously defined macro

Each kind of macro call begins with the metacharacter, followed by the call pattern
of the macro.  A call pattern is the macro name, followed by a delimited list of
arguments if the call pattern requires arguments.

Each predefined macro has its own call pattern.  Some require a parenthesized
expression, macro name, or string argument; some require two or more arguments,
enclosed in parentheses and separated by commas.  For example, the SUBSTR
macro's call pattern is:

%SUBSTR(balanced-text , expr1 , expr2 )



522 Chapter 8 Textmacros

A call to SUBSTR must specify three arguments enclosed by parentheses and
separated by two commas, such as:

%SUBSTR(ABCDEFG,3,4)

The first argument is a string of balanced text, the second is an index to the initial
character of the substring, and the third specifies the length of the substring.  The
result of this macro call is CDEF.

See also: Macro arguments, in this chapter

Each programmer-defined macro also has its own call pattern.  The call pattern is
specified in the macro's definition.  Every macro definition must specify a macro
name and a macro body that is expanded when the macro is called.  A macro
definition may include formal parameters that must be replaced by arguments each
time the macro is called; it may also include LOCAL symbols that will be expanded
into assembly time symbols.

A macro definition may contain calls to other macros nested within its macro body.
The macro processor expands a macro body according to its definition every time
the macro is called.  The result of a macro call is the fully expanded macro body,
including the fully expanded results of any nested macro calls.

Each macro call must match its defined call pattern exactly.  There must be an
argument to match each formal parameter.  Argument delimiters must match those
required by the predefined macro or those specified in the macro's definition.

Macro Processor Scanning Modes and Macro Expansions
The macro processor has two scanning modes for processing macros:

1. Normal scanning mode -- expands macro calls, including nested macro calls

2. Literal scanning mode -- does not expand calls nested in the macro body, but
updates the macro processor symbol table

By default, the macro processor scans calls to predefined and programmer-defined
macros in normal scanning mode: it replaces the macro call with an expanded
result and passes the expanded text on to the assembler.



ASM386 Assembly Language Reference Chapter 8 523

In normal scanning mode:

• For a predefined macro, the macro processor returns a null string for the macro
name and an expanded text result for the call.

See also: Predefined macros, in this chapter

• For a programmer-defined macro, the macro processor returns a null string for
the macro name and the expanded text result of the processed macro body.  If
the definition contains nested macro calls, they are fully expanded when their
containing macro is called.

A macro definition is a result of a call to the predefined macro %*DEFINE.  The
asterisk (* ) following the default metacharacter tells the macro processor to use
literal scanning mode to process the macro definition.  In literal scanning mode:

• The macro processor does not attempt to expand formal parameters or LOCAL
symbols referenced in the macro body as macro calls.

As a side effect of a literal mode call to %*DEFINE, the newly defined macro call
pattern (name, formal parameters, and delimiters) enters the macro processor's
symbol table, together with the definition's LOCAL symbols, if any.  The macro
processor can recognize a subsequent call to the new macro and expand it fully in
normal scanning mode.

See also: Algorithm for evaluating macro calls, in this chapter

Predefined Macros
The assembler predefined macros are used to create and manipulate macros.
Table 8-1 summarizes these macros by usage categories.



524 Chapter 8 Textmacros

Table 8-1.  Predefined Macros

Name Used For:

Creating New Macros and Controlling Expansion

DEFINE Defines a macro identifier as callable and a macro body as the result of a
call; a formal parameter list and/or a LOCAL list are optional

Bracket Tells the macro processor to evaluate a parenthesized string in literal
scanning mode

Escape Tells the macro processor to evaluate a specified number of characters
(n = 1..9) in literal scanning mode

Comment Puts a comment into a macro definition; always evaluates to the null
string when scanned

METACHAR Redefines the metacharacter for subsequent macro calls

Evaluating Floating-point Expressions

EVAL Returns a string of hexadecimal digits representing an expression's value

SET Assigns a numeric value to an identifier and stores the identifier in the
macro processor symbol table

Expanding a Macro Conditionally and/or More than Once

IF Expands text if specified expression is true or expands optional ELSE
clause if specified expression is false; otherwise, returns the null string

WHILE Expands text repeatedly as long as expression is true

  REPEAT Expands text a specified number of times

  EXIT Terminates expansion of the most recently called WHILE,REPEAT, or
programmer-defined macro

Comparing Strings (true = -01H, false = 00H)

EQS Returns -01H for equal strings

NES Returns -01H for unequal strings

LTS Returns -01H if left string less than right string

GTS Returns -01H if left string greater than right string

LES Returns -01H if left string less than or equal to right string

GES
continued



ASM386 Assembly Language Reference Chapter 8 525

Table 8-1.  Predefined Macros (continued)

Name Used For:

Manipulating Strings

LEN Returns the length of a string (0..255 characters)

SUBSTR Extracts substring from a string

MATCH Splits a string at the specified delimiter and specifies an identifier for
each substring

Controlling Console I/O

IN Inputs (and echoes) a character string from the console

Out Outputs a character string to the console

CI Inputs a character (no echo) from the console

CO Outputs a character to the console

Macro Arguments
The following sections describe general rules for macro arguments, including
delimiters in call patterns and identifiers in macro definitions.

Balanced Text

Most arguments to the predefined macros must be balanced text with respect to
parentheses.  Macro definitions must also be balanced text.  A macro definition
supplies at least two parenthesized arguments to DEFINE:  the macro identifier and
the macro body.  If a macro is defined with formal parameters, the corresponding
arguments must be passed as balanced text when the macro is called.

Text is balanced if it conforms to the following rules:

• During the left to right scan, the macro processor's count of unliteralized left
parentheses must always be greater than or equal to its count of unliteralized
right parentheses.

• After the scan, the macro processor's count of unliteralized left parentheses
must equal its count of unliteralized right parentheses.

An unbalanced parenthesis may be literalized with the predefined Escape macro to
make an argument conform to these rules.



526 Chapter 8 Textmacros

Delimiters in Call Patterns

The macro processor recognizes two kinds of delimiters used to enclose a list of
arguments to a macro call:

1. Literal delimiters such as balanced parentheses

2. Implied blank delimiters

The macro processor recognizes three kinds of delimiters used to separate
arguments to a macro call:

1. Literal delimiters such as commas

2. Implied blank delimiters such as spaces

3. ID delimiters

The call patterns for the predefined macros require unliteralized left and right
parentheses as enclosing delimiters.  Some require the comma as a separating
delimiter.  The DEFINE macro requires the following arguments enclosed in
parentheses:  the macro name and the macro body.  Such a macro definition has no
formal parameters, and its call pattern consists of the metacharacter followed
immediately by the macro name.

If the macro definition has one formal parameter, it may be enclosed by paired
parentheses, by any literal delimiter(s), or by logical spaces.  Such a macro's call
pattern consists of the metacharacter followed immediately by the macro name
followed by an argument that must be enclosed with the same delimiters as the
definition has.

The comma may be used to separate elements in a formal parameter list.  If the
definition of a macro uses commas to separate formal parameters, the
corresponding arguments must be separated by commas when the macro is called.
The comma is a literal delimiter.

However, the macro processor recognizes other characters as delimiters in defined
formal parameter and corresponding argument lists.  The macro processor can
recognize any single character except the following as a separating literal delimiter:

• The metacharacter

• An unliteralized left or right parenthesis

• The space, tab, carriage return, and linefeed characters

• The at character (@)

• A valid identifier character (A..Z, a..z, 0..9, the underscore, or the question
mark)



ASM386 Assembly Language Reference Chapter 8 527

The space, tab, carriage return, and linefeed characters are logical spaces; they may
be used as implied blank delimiters.  The at character (@) followed by one or more
valid identifier characters is an ID delimiter.

See also: Macro delimiters, in this chapter

Identifiers

A macro definition specifies the name by which the macro can be called.  A macro
definition may also specify identifiers for formal parameters and LOCAL symbols.
The following summarizes the rules for identifiers in macros:

• An identifier must begin with an alphabetic character (A...Z or a...z).

• The second and subsequent characters may be alphabetic, a question mark (?),
an underscore (_), or decimal digits (0...9).

• Upper- and lower-case characters are interchangeable in identifiers.

• An identifier may not have more than 31 characters.

• An identifier may be terminated by a right parenthesis, a logical space, a null-
string Bracket call (%( ) ), or a null-string Escape call (%0).

• Formal parameter identifiers and LOCAL identifiers have scope exclusive to
their defining macro.  A nested macro cannot reference such symbols.

• A formal parameter or LOCAL identifier has precedence over a nested macro
identifier if they are duplicates; the macro processor will not interpret the
duplicated symbol as a nested macro call.

• Most predefined macros have reserved identifiers: they may not be used as
programmer-defined macro, formal parameter, or LOCAL symbol identifiers.
Only the SET macro does not have a reserved identifier; it may be redefined.

A macro cannot be called as a forward reference to its identifier.  The definition of
a new macro is in effect during macro processing or until the macro identifier is
redefined by another call to %*DEFINE.

Expressions

Some predefined macros require arguments with numeric values.  The macro
processor interprets certain text string arguments to EVAL, SET, IF , WHILE,
REPEAT, and SUBSTR as numeric expressions.



528 Chapter 8 Textmacros

The macro processor recognizes and evaluates numeric expressions according to
the following guidelines:

• Signed integer values may be represented in binary (B suffix), octal (O or Q
suffix), decimal (no suffix or D suffix), and hexadecimal (H suffix).

• The range of valid integers is -32768..32767 (decimal).

• The valid expression operators are:

Highest Precedence

1.    ( )
2.    HIGH, LOW

3.    *, /, MOD, SHL, SHR

4.    +, - (unary and binary)
5.    EQ, NE, LE, LT, GE, GT
6.    NOT

7.    AND

8.    OR, XOR

Lowest Precedence

The IF  and WHILE macros require arguments that are expressions.  The macro
processor interprets the result of such expressions as true or false based on whether
the least significant bit is odd (1 = true) or even (0 = false).  The predefined string
comparison macros return -01H for true and 00H for false; these macros are valid
expression arguments for calls to IF  and WHILE.  The macro processor always
represents true and false as the character strings -01H and 00H, respectively.

Argument Evaluations

The macro processor uses call-by-immediate-value as it scans arguments to macro
calls.  For this reason, it evaluates arguments that are nested macro calls whatever
the current scanning mode.

For example, suppose STRNG is a defined macro with the value DOGS,CATS and
MAC1's defined call pattern is MAC1( P1, P2).  Even if MAC1 is called in literal mode
as follows

%*MAC1( %STRNG, mouse)

the macro processor will expand the call to STRNG.  Use the Bracket macro on the
call to MAC1 or the Escape macro on the call to STRNG to postpone the immediate
expansion of such an argument.

See also: Bracket and Escape macros, in this chapter



ASM386 Assembly Language Reference Chapter 8 529

Predefined Macro Reference
Table 8-2 summarizes the call pattern syntax for each predefined macro described
in the following sections.  Except for SET, tokens in uppercase letters are reserved;
they may not be used as new macro, formal parameter, or LOCAL symbol
identifiers.

Table 8-2.  Predefined Macro Call Patterns

Name Call Pattern Syntax

DEFINE %[*]DEFINE (macro-name [param-list] ) [LOCAL local-list] (macro-body)

Bracket %(balanced-text)

Escape %n text-n-chars-long

Comment %'text end-line or % 'text '

METACHAR %METACHAR (balanced-text)

EVAL %EVAL (expr)

SET %SET (macro-name, expr)

IF %IF (expr) THEN (balanced-text1) [ELSE (balanced-text2) ] FI

WHILE %WHILE (expr) (balanced-text)

REPEAT %REPEAT (expr) (balanced-text)

EXIT %EXIT

EQS %EQS (arg1, arg2)

NES %NES (arg1, arg2)

LTS %LTS (arg1, arg2)

GTS %GTS (arg1, arg2)

LES %LES (arg1, arg2)

GES %GES (arg1, arg2)

LEN %LEN (balanced-text)

SUBSTR %SUBSTR (balanced-text, expr1, expr2)

MATCH %MATCH ( [ident1] delim ident2 [delim identN]...[delim] ) (balanced-text)

IN %IN

OUT %OUT (balanced-text)

CI %CI

CO %CO(char)



530 Chapter 8 Textmacros

DEFINE Macro

Syntax

%[*]DEFINE ( macro-name  [ param-list ] ) [LOCAL local-list ] ( macro-body )

Where:

% represents the current metacharacter.

* tells the macro processor to scan the definition in literal mode.  The *
(literal character) may be omitted if the definition has only macro-
name and macro-body  arguments; it is required if the definition has
a param-list  and/or local-list .

The %, optional * , and DEFINE may not be separated by spaces.

macro-name
is a valid identifier; macro-name  and the optional param-list  must
be enclosed in parentheses.

param-list
is an optional list containing one or more valid identifiers separated
by literal, implied blank, or ID delimiters.  Each identifier in the list
must be unique.  Param-list  must be a balanced text string,
enclosed by paired parentheses or by literal or implied blank
delimiters.

local-list
is an optional list containing one or more valid identifiers separated
by logical spaces.  At least one space is required between LOCAL and
the initial identifier in a list.

macro-body
is a balanced text string, enclosed in parentheses.  It may contain
nested macro calls, but it may not contain a call to re-DEFINE the
macro-name .



ASM386 Assembly Language Reference Chapter 8 531

Discussion

The DEFINE macro returns the null string.  As a side effect, a call to DEFINE
creates a new macro call pattern.

%*DEFINE specifies at least a name for a programmer-defined macro and the result
for a call to the macro.  The macro body specifies the return value of the macro
call.  It may contain nested macro calls, including a call to itself.  The return value
of a nested macro is the fully expanded macro body, including the return value(s)
of its nested macro calls, if any.  A macro is expanded each time it is called.  After
the definition has been fully scanned, the macro name may be redefined with a
different macro body.

The literal character (* ) suppresses the expansion of nested macro calls when the
macro processor scans the definition of the macro body.  However, *  does not
suppress expansion of macro calls that are nested arguments.

Param-list  specifies formal parameter identifier(s) to serve as placeholders for
argument(s) passed when the new macro is called.  Within the macro body, each
reference to a parameter identifier must be preceded by the metacharacter.
Parameters may be used any number of times and in any order within the macro
body.  Do not nest a call to an already defined macro if it has the same name as a
parameter to the new macro.  The macro processor interprets the duplicate
identifier as a reference to the parameter.

The macro name and formal parameter list must be enclosed in parentheses.  When
the macro is called, the corresponding argument list must match the call pattern of
the definition: its enclosing and separating delimiters must match those of the
definition.  Each argument must be balanced text and each may contain nested
macro calls.

Within the macro body, each reference to an identifier in local-list  must be
preceded by the metacharacter.  However, there is no corresponding argument list
for local-list  when the macro is called.  The LOCAL construct allows macro
identifiers to be expanded into unique assembly time symbols every time the new
macro is called.

For every call to a macro with a LOCAL construct, the macro processor increments a
counter.  LOCAL symbol references in the macro body are expanded with a 2- to 5-
digit suffix that is the current (hexadecimal) value of the counter.  For this reason,
local-list  identifiers should be no longer than 26 characters.  The suffix is 00
for the first call to a macro with a LOCAL construct.



532 Chapter 8 Textmacros

Examples

1. The following examples show nested macro calls.

%*DEFINE(ASTRING) (PHANT)
%*DEFINE(JUMBO) (ELE%ASTRING)
%*DEFINE(TOADY) (SYCO%ASTRING)
  :  :
%JUMBO                      ; expanded to ELEPHANT
%TOADY                      ; expanded to SYCOPHANT

2. The following example shows two macros defined without parameters or a
LOCAL list.

%*DEFINE (PROLOG) (
  PUSH EBP
  MOV EBP,ESP
  )                         ; need end line after ESP
%*DEFINE(EPILOG) (
  POP EBP
  RET 8
  )                         ; need end line after 8
  :  :
%PROLOG                     ; macro calls
  :  :
%EPILOG

The return values of these macro calls are:

PUSH EBP
MOV EBP, ESP
  :  :
POP EBP
RET 8

3. The following example shows two macros, each defined with a formal
parameter list.

%*DEFINE (PROLOG (VARSIZE)) (
  PUSH EBP
  MOV EBP,ESP
  SUB ESP, %VARSIZE
  )                 ; need end line after VARSIZE
%*DEFINE(EPILOG (POPVAL)) (
  MOV ESP, EBP
  POP EBP
  RET %POPVAL



ASM386 Assembly Language Reference Chapter 8 533

  )                 ; need end line after POPVAL
  :  :
%PROLOG (4)         ; macro calls
  :  :
%EPILOG (8)
  :  :
%PROLOG (16)
  :  :

The return values of these macro calls are:

PUSH EBP
MOV EBP, ESP
SUB ESP, 4
  :  :
MOV ESP, EBP
POP EBP
RET 8
  :  :
PUSH EBP
MOV EBP, ESP
SUB ESP, 16
  :  :

4. The following example shows a macro defined with a LOCAL symbol, LABEL.

%*DEFINE (MOVE_ADD_GEN(SOURCE,DEST,COUNT) )
    LOCAL LABEL (
         MOV   ECX, %COUNT
         MOV   ESI, 0
%LABEL:  MOV   EAX, %SOURCE[ESI]
         MOV   %DEST[ESI], EAX
         ADD   ESI, 4
         LOOPZ %LABEL
)                   ; need end line after LABEL



534 Chapter 8 Textmacros

  :  :
  :  :              ; 11th call to a macro
                    ; with LOCAL symbol(s)
%MOVE_ADD_GEN(DATA,FILE,67)

The return value of this macro call is:

          MOV   ECX, 67
          MOV   ESI, 0
LABEL0A:  MOV   EAX, DATA[ESI]
          MOV   FILE[ESI], EAX
          ADD   ESI, 4
          LOOPZ LABEL0A

Bracket Macro

Syntax

%(balanced-text )

Where:

% represents the current metacharacter.

Discussion

The macro processor scans the argument to the Bracket in literal scanning mode.
The Bracket macro may not be called with the literal character (* ).

The Bracket prevents the macro processor from expanding the balanced-text
string, except for the following cases:

• The macro processor always expands calls to the Escape and Comment
macros.

• The macro processor expands arguments that are nested macro calls (see
Example 1 in this section).

See also: Macro arguments, in this chapter

The Bracket prevents the macro processor from evaluating macro calls that are
nested in the balanced-text  argument, including calls to Bracket.



ASM386 Assembly Language Reference Chapter 8 535

Examples

1. The following examples illustrate how the macro processor evaluates nested
macro calls inside the Bracket.

%*DEFINE(STRNG) (DOGS,CATS)
%*DEFINE(NULLMAC ( P1, P2) ) ()
  :  :
%(%NULLMAC( %STRNG, MOUSE) )
  :  :
%(%NULLMAC( %(%STRNG), MOUSE) )

During its scan of these calls to the Bracket macro, the macro processor
expands the balanced-text  arguments to:

  :  :
%NULLMAC( %STRNG, MOUSE)
  :  :
%NULLMAC( %(%STRNG), MOUSE)

2. The following macro adds DW statements to the source file.  When it is called,
the Bracket macro is used to literalize the argument(s) that correspond to the
formal parameter LIST .  Without the Bracket, the first comma in this
argument list would be interpreted as the delimiter separating the two %DW
arguments.

%*DEFINE(DW (LIST,NAME) ) (
%NAME            DW    %LIST
)                               ; need end line after LIST
  :  :
%DW (%(1, 2, 3), NUMS)

The return value of this call is:

NUMS             DW   1,2,3

Escape Macro

Syntax

%n text

Where:

% represents the current metacharacter.

n is a decimal digit from 0 to 9.

text is n characters long.



536 Chapter 8 Textmacros

Discussion

The Escape macro interrupts the macro processor in its normal scanning of text.
The metacharacter and the decimal digit n are not evaluated, but the macro
processor scans the next n characters as literals.  The Escape macro may not be
called with the literal character (* ).

Use the Escape to insert a metacharacter as text, to add a comma as part of an
argument, or to place a single parenthesis into a character string that requires
balanced parentheses.

Examples

Several examples of the Escape follow the definition of INCMTS.

%*DEFINE(INCMTS(ARG1,ARG2,ARG3) )
(
              ; %ARG1
              ; %ARG2
              ; %ARG3
)
  :  :
; COMPUTE 10%1% OF SUM
%INCMTS(JAN23%1,86,MAR15%1,86,APR9%1,86)
  :  :
%INCMTS(1%1) +INPUT,2%1) -20%1%,3%1) GET NEXT)

The expanded text for this fragment is:

              ; COMPUTE 10% OF SUM
              ; JAN23,86
              ; MAR15,86
              ; APR9,86
  :  :
              ; 1) +INPUT
              ; 2) -20%
              ; 3) GET NEXT



ASM386 Assembly Language Reference Chapter 8 537

Comment Macro

Syntax

%'text end-line

or

%'text '

Where:

% represents the current metacharacter

text is a character string that may include any character except the
apostrophe (') or linefeed; the metacharacter should be literalized
within text .

end-line is the linefeed character (ASCII 0AH) or the carriage return/linefeed
combination (ASCII 0D0AH).

Discussion

The Comment macro always evaluates to the null string, including the terminating
delimiter for text .  The macro processor recognizes two terminating characters:
the linefeed and the apostrophe.

The first form of the call spreads macro comments over several lines without
inserting extra end line characters into the processed text.  The Comment macro
may not be called with the literal character (* ).

Example

The following example of a commented macro definition causes an assembly-time
error  after the macro is called.  The macro processor removes the linefeed
delimiter as it expands the first comment line in the macro body.

%*DEFINE(MOVE_ADD_GEN(SOURCE, DEST, COUNT) )
    LOCAL LABEL
(
 MOV ECX,%COUNT %'COUNT should be constant
 MOV ESI,0
 %LABEL %' %1%LABEL will get hex suffix
 :MOV EAX, %SOURCE[ESI] %'SOURCE is address'
 MOV %DEST[ESI],EAX %'DEST is address'
 ADD ESI,4
 LOOPZ %LABEL %'gets same hex suffix
 %'as the %1%LABEL above'



538 Chapter 8 Textmacros

)
  :  :
%MOVE_ADD_GEN(DATA, STOR, 20H)

The return value of this call is:

MOV ECX,20H MOV ESI,0
LABEL07:MOV EAX,DATA[ESI]
MOV STOR[ESI],EAX
ADD ESI,4
LOOPZ LABEL07

After macro processing, the first line has two instructions, which causes an
assembler error.  The first call to the Comment macro should be terminated with an
apostrophe to avoid this error.  However, when the comment has been processed in
the %LABELed line, the colon is raised to the same line as %LABEL, making it a
valid ASM386 instruction.

METACHAR Macro

Syntax

%METACHAR (balanced-text )

Where:

% represents the current metacharacter.

Discussion

The METACHAR macro redefines the metacharacter.  The initial and default
metacharacter is %.  The leftmost character within the parentheses is interpreted as
the new metacharacter.  The old metacharacter loses its function after a call to
METACHAR; a previously defined macro with nested calls might return its
unexpanded macro body as a text string.

The initial character in the argument to METACHAR may be any ASCII character
except a logical space (space, tab, linefeed, carriage return), a left or right
parenthesis, an identifier character, an asterisk, or a control character (any
character with an ASCII value less than 20H).



ASM386 Assembly Language Reference Chapter 8 539

Examples

1. The following example changes the metacharacter to !.

%METACHAR(!)

2. After the following call to METACHAR, the backslash becomes the new
metacharacter because it is the first character after the left parenthesis.

!METACHAR(\&)

EVAL Macro

Syntax

%EVAL ( expr )

Where:

% represents the current metacharacter.

expr is a valid expression.

Discussion

The EVAL macro returns its argument's value in hexadecimal digits.  A call to EVAL
returns a value with at least three characters, even if the argument evaluates to a
single digit.  The leading character is either a minus sign (-) or a decimal digit
(0..9); the remaining digits can be any hexadecimal digit (0...F).  The last character
is the hexadecimal suffix (H).

Examples

These examples show five calls to EVAL followed by the return values.

MOV EAX, %EVAL(1 + 1)
COUNT EQU %EVAL(33H + 15H + 0F00H)
ADD EAX,%EVAL(10H - ( (13+6) * 2) + 7
MOV EAX,%EVAL(%NUM1 LE %NUM2)
MOV AL,%EVAL (1111B EQ 0FH)

MOV EAX, 02H        ; expanded results
COUNT EQU 0F48H
ADD EAX,OFFF1H
MOV EAX,00H         ; 00H = false
MOV AL,-01H         ; -01H = true



540 Chapter 8 Textmacros

SET Macro

Syntax

%SET ( macro-name , expr )

Where:

% represents the current metacharacter.

macro-name is a valid identifier.

expr is a valid expression.

Discussion

The SET macro assigns the value of an expression to an identifier and stores the
named value in the macro processor symbol table.  A subsequent macro call to the
identifier returns the value.

SET affects only the macro processor symbol table.  When a call to SET is scanned,
the macro processor replaces it with the null string in the source file.  Symbols
defined by SET can be redefined by a subsequent call to SET or to DEFINE.  SET is
not a reserved macro identifier and it may be redefined; its previous function is
then lost.

Examples

The macro processor inserts no text into the source file for a call to SET.  SET
assigns a value to a callable identifier in the macro processor's symbol table.

%SET(COUNT,0)             ; null string result into source
%SET(OFFSET,16)           ; null string result into source
MOV EAX,%COUNT + %OFFSET  ; expands to MOV EAX,00H +10H
MOV EBX,%COUNT            ; expands to MOV EBX,00H
  :  :
%SET(COUNT,%COUNT + %OFFSET) ; null string result into source
%SET(OFFSET,%OFFSET * 2)  ; null string result into source
MOV EAX,%COUNT + %OFFSET  ; expands to MOV EAX,10H + 20H
MOV EBX,%COUNT            ; expands to MOV EBX,10H



ASM386 Assembly Language Reference Chapter 8 541

IF Macro

Syntax

%IF ( expr ) THEN ( balanced-text1 ) [ELSE ( balanced-text2 ) ] FI

Where:

% represents the current metacharacter.

expr is a valid expression; its result is interpreted as a logical value.

Discussion

The IF  macro returns expanded results for balanced-text1  if the expression
argument evaluates to true (least significant bit equals 1).  An ELSE clause is
optional; if it is included, the IF  macro returns balanced-text2  results if the
expression argument evaluates to false.  IF  returns the null string when there is no
ELSE clause and the expression argument evaluates to false.  FI  must terminate the
call.

Use the relational operators (EQ, NE, LE, LT, GT, or GE) or the string comparison
macros (EQS, NES, LES, LTS, GTS, or GES) to specify an expression argument.

IF  calls may be nested; when they are, an ELSE clause refers to the immediately
preceding IF  call that is still open (not terminated by FI).

Examples

1. The following examples illustrate an IF  call without an ELSE clause and an IF
call with an ELSE clause.

%IF (0FFH GT %VAR) THEN (MOV EAX, %VAR) FI
%IF(%EQS(ADD EAX,%OPERATION) )THEN
 (ADD EBX,%R1) ELSE (ADD EBX, %R2) FI

2. These examples illustrate nested IF  calls.  Each IF  must be terminated by a
matching FI .

%IF(%EQS(%OPER,ADD) )THEN (ADD EAX,DATUM
  ) ELSE (
 %IF(%EQS(%OPER,SUB) ) THEN (SUB EAX,DATUM
  ) ELSE (
 %IF(%EQS(%OPER,MUL) )THEN(MUL DATUM
   ) ELSE (DIV DATUM
   )FI
  )FI
 )FI



542 Chapter 8 Textmacros

3. The following examples contrast calls and results for two conditional macros.

%*DEFINE (PROLOG (VARSIZE) ) (
 PUSH EBP
 MOV EBP, ESP
 %IF (%VARSIZE EQ 0) THEN (
  %SET(LEVEL, 0) ) ELSE (
  %SET(LEVEL, 1)  %'used in %1%EPILOG'
  SUB ESP, %VARSIZE ) FI
 )
%*DEFINE(EPILOG (POPVAL) ) (
 %IF(%EQS(%LEVEL,1) THEN (
  MOV ESP, EBP ) FI
 POP EBP
 RET %POPVAL
 )
  :  :
%PROLOG (4)           ; call sets LEVEL = 1
  :  :
%EPILOG (8)
  :  :
%PROLOG(0)            ; call sets LEVEL = 0
  :  :
%EPILOG (8)

The results of these calls to PROLOG and EPILOG are as follows:

PUSH EBP              ; 1st %1%PROLOG, LEVEL = 1
MOV EBP, ESP
SUB ESP, 4
  :  :
MOV ESP, EBP          ; 1st %1%EPILOG, LEVEL = 1
POP EBP
RET 8
  :  :
PUSH EBP              ; 2nd %1%PROLOG, LEVEL = 0
MOV EBP, ESP
  :  :
POP EBP               ; 2nd %1%EPILOG, LEVEL = 0
RET 8



ASM386 Assembly Language Reference Chapter 8 543

4. The following example demonstrates the use of SET and IF  for conditional
assembly.  %SET (DEBUG, 0) would turn off the debug code.

%SET (DEBUG, 1)
%IF (%DEBUG) THEN (
 MOV EAX,DEBUG_FLAG
 OUT 2,EAX) FI
MOV EBX,OFFSET ARRAY
SUB EBX,1
  :  :

The following is the expanded result:

 MOV EAX,DEBUG_FLAG
 OUT 2,EAX
MOV EBX,OFFSET ARRAY
SUB EBX,1

WHILE Macro

Syntax

%WHILE (expr ) ( balanced-text )

Where:

% represents the current metacharacter.

expr is a valid expression; its result is interpreted as a logical value.

Discussion

The WHILE macro returns expanded results as long as the expression argument
evaluates to true.

The macro processor first evaluates WHILE's expression argument.  If its least
significant bit is 1, the balanced text is expanded; otherwise, it is not.  Once the
balanced text has been expanded, the logical argument is retested; if the least
significant bit is still 1, the balanced text is expanded again.  This process continues
until the logical argument proves false (the least significant bit is 0).

Use the relational operators (EQ, NE, LE, LT, GT, or GE) or the string comparison
macros (EQS, NES, LES, LTS, GTS, or GES) to specify an expression argument.

Unless the value of expr  is modified within the balanced text, the WHILE
expansion might never terminate.  A call to the EXIT  macro can be used to
terminate a WHILE expansion.



544 Chapter 8 Textmacros

Examples

The following examples illustrate calls to WHILE.

%SET(COUNTER,5)
  :  :
%WHILE(%COUNTER GT 0)
(INC EBX
 %SET(COUNTER,%COUNTER - 1)
)
%WHILE(%COUNT LT 0FFH) (HLT
  %SET(COUNT,%COUNT + 1) )

REPEAT Macro

Syntax

%REPEAT (expr ) ( balanced-text )

Where:

% represents the current metacharacter.

expr is a valid expression; its value is interpreted as a non-negative integer.

Discussion

The REPEAT macro returns expanded results expr  times.  The macro processor
first evaluates the expression argument; then, it expands the balanced text argument
the specified number of times.  A call to the EXIT  macro can be used to terminate a
REPEAT expansion.

Examples

The following examples perform the same text insertion as the WHILE examples.
For correct assembly of the expanded text, a linefeed must be coded immediately
preceding the right parenthesis that closes each macro body.

%REPEAT (5) (INC EBX
)
%REPEAT (0FFH-COUNT) (HLT
)



ASM386 Assembly Language Reference Chapter 8 545

EXIT Macro

Syntax

%EXIT

Where:

% represents the current metacharacter.

Discussion

The EXIT  macro terminates expansion of the most recently called REPEAT, WHILE,
or programmer-defined macro.  The terminated REPEAT, WHILE, or macro returns
the already expanded text.  EXIT  returns the null string.

Use EXIT  to avoid infinite loops such as a WHILE expression that never becomes
false or a recursive macro that never terminates.  EXIT  may be specified more than
once in the same macro.

Examples

1. The following example is a simple jump out of a recursive loop.  BODY is a
macro that modifies CONDITION so that CONDITION eventually becomes true.

%*DEFINE(UNTIL (CONDITION,BODY) )
(%BODY
 %IF (%CONDITION) THEN (%EXIT)
  ELSE (%UNTIL(%CONDITION,%BODY) ) FI

2. The following example of EXIT  terminates a recursive macro when an odd
number of bytes have been added.  The M_ADD_M macro adds paired bytes and
stores the results in DEST.  If there are more than 2 byte pairs to be added,
M_ADD_M calls itself.  Expansion continues as long as BYTES is greater than 2.
When BYTES reaches a value of 1 (odd number of byte pairs), the macro calls
EXIT .

%*DEFINE(M_ADD_M(SRC,DEST,BYTES) ) (
 MOV AL,%SRC
 ADD AL,%DEST
 MOV %DEST,AL
 IF (%BYTES EQ 1) THEN (%EXIT)FI
 MOV AL,%SRC + 1
 ADD AL,%DEST + 1
 MOV %DEST + 1, AL
 IF (%BYTES GT 2) THEN
(%M_ADD_M(%SRC+2,%DEST+2,%BYTES-2) )FI
)



546 Chapter 8 Textmacros

String Comparison Macros

Syntax

%EQS (arg1 , arg2 )
%NES (arg1 , arg2 )
%LTS ( arg1 , arg2 )
%GTS (arg1 , arg2 )
%LES ( arg1 , arg2 )
%GES (arg1 , arg2 )

Where:

% represents the default metacharacter.

args are balanced text strings; they may contain nested macro calls.

Discussion

These predefined macros compare two strings and return a logical value based on
the comparison.  If a string comparison macro evaluates to true, it returns the
character string -01H.  If it evaluates to false, it returns 00H.

The macro processor expands both arguments completely before making the
comparison.  Then the ASCII value of the first character in the first string is
compared to the ASCII value of the first character in the second string.  If they
differ, the character with the higher ASCII value determines which string is
considered greater.

If the characters are identical, the process continues with the second character in
each string, and so on.  Only strings of equal length that contain the same
characters in the same order are equal.  If one string is a proper initial substring of
the other, it is less than the other.

The following list describes each string comparison macro:

EQS Equal:  true if both arguments are identical

NES Not equal:  true if arguments are different in any way

LTS Less than:  true if first argument precedes second argument in
dictionary ordering

GTS Greater than:  true if first argument follows second argument in
dictionary ordering

LES Less than or equal:  true if first argument precedes second argument in
dictionary ordering or if both arguments are identical

GES Greater than or equal:  true if first argument follows second argument
in dictionary ordering or if both arguments are identical



ASM386 Assembly Language Reference Chapter 8 547

Examples

1. These examples illustrate calls to each string comparison macro commented
with results.

%GTS(16D,11H)   %' -01H (true: ASCII 6 > 1)'
%EQS(ABC,ABC)   %' -01H (true: strings identical)'
%EQS(ABC, ABC)  %' 00H (false: space character
                %' in second argument)'
%LTS(CBA,cba)   %' -01H (true: ASCII C < c)'
%GES(ABCDEF,ABCDEF )
                %' 00H (false: additional
                %' space in second argument)'

2. Like any other macro, the string comparison macros accept nested macros as
arguments.  The result of the following call to EQS is -01H (true).

%*DEFINE(DOG) (CAT)
%*DEFINE(MOUSE) (%DOG)
%EQS(%DOG,%MOUSE)

LEN Macro

Syntax

%LEN ( balanced-text )

Where:

% represents the current metacharacter.

Discussion

The LEN macro returns the length of its balanced text argument in hexadecimal.
The expanded argument may have from 0 to 255 characters.

Examples

These examples illustrate four calls to LEN commented with results.

%LEN(ABCDEFGHIJKLMNOPQRSTUVWXYZ)
                %' 1AH'
%LEN(A,B,C)     %' 05H (commas are counted)'
%LEN()          %' 00H'
%*DEFINE(CHEESE) (MOUSE)
%*DEFINE(DOG) (CAT)
%LEN(%DOG %CHEESE)
                %' 09H (space between expanded
                %' %1%DOG %1%CHEESE counted)'



548 Chapter 8 Textmacros

SUBSTR Macro

Syntax

%SUBSTR (balanced-text , expr1 , expr2 )

Where:

% represents the current metacharacter.

expr1 is a valid expression; its value is an index to the initial character of the
substring.

expr2 is a valid expression; its value is a count of the number of characters
to be included in the substring.

Discussion

SUBSTR returns a substring of its balanced text argument.  Expr1  specifies the
starting character of the substring and expr2  specifies the number of characters to
be included in the substring.

SUBSTR operates as follows:

• If expr1  is 0 or it is greater than the length of the argument string, SUBSTR
returns the null string.

• If expr2  is 0, SUBSTR returns the null string.

• If expr2  is greater than the remaining length of the string, all characters from
the first character of the substring to the end of the string are included.

Examples

These examples illustrate four calls to SUBSTR, commented with results.

%SUBSTR(ABCDEFG,5,1)    %' E'
%SUBSTR(ABCDEFG,5,100)  %' EFG'
%SUBSTR(123(56)890,4,4) %' (56)'
%SUBSTR(ABCDEFG,8,1)    %' null'
%SUBSTR(ABCDEFG,3,0)    %' null'



ASM386 Assembly Language Reference Chapter 8 549

MATCH Macro

Syntax

%MATCH ( [ name1] delim  name2 [ delim  nameN]...[ delim ] ) ( balanced-text )

Where:

% represents the current metacharacter.

names are valid identifiers.

delims are delimiters; the initial character of each delim may not be a valid
identifier character.

Discussion

The MATCH macro returns the null string.  As a side effect, MATCH adds callable
macro identifiers to the macro symbol table.  Each newly defined macro has a
value that is either a substring of the balanced text argument or the null string.

When it encounters a call to MATCH, the macro processor discards logical spaces
between the left parenthesis and the initial non-blank character of the balanced text
argument.  Then, it searches the balanced text for the leftmost delimiter of MATCH's
other argument.

If this delimiter is found, the macro processor assigns the characters to the left of
delim  to name1 or it discards these characters if name1 is omitted.  The macro
processor continues searching the balanced text argument for the next-specified
delimiter and assigns the substring between the preceding delim  and this delim  to
name2, and so forth.

Whenever a specified delimiter cannot be matched, the macro processor assigns the
remaining balanced text to name(N - 1).  It assigns the null string to any remaining
names.

Example

This example illustrates calls to MATCH and WHILE.

%MATCH(NEXT,LIST) (10H,20H,30H)
 MOV ESI, VAR_PTR
%WHILE(%LEN(%NEXT)NE 0) (
 MOV EBX, %NEXT
 MOV EAX, [EBX+ESI]
 ADD EAX, 22H
 MOV [EBX+ESI], EAX
 %MATCH(NEXT,LIST) (%LIST)
)



550 Chapter 8 Textmacros

After the call to MATCH, the %WHILE expands as follows:

MOV EBX,10H            ; 1st iteration of WHILE
MOV EAX,[EBX+ESI]
ADD EAX,22H
MOV [EBX+ESI],EAX
MOV EBX,20H            ; 2nd iteration of WHILE
MOV EAX,[EBX,+ESI]
ADD EAX,22H
MOV [EBX+ESI],EAX
MOV EBX,30H            ; 3rd iteration of WHILE
MOV EAX,[EBX+ESI]
ADD EAX,22H
MOV [EBX+ESI],EAX

Console I/O Macros

Syntax

%IN

%OUT (balanced-text)

%CI

%CO (char)

Where:

% represents the current metacharacter.

Discussion

The IN , OUT, CI , and CO macros perform console input and output.  IN  and OUT are
line-oriented macros.  CI  and CO are character-oriented macros.

IN  sends the characters >> as a prompt to the console and returns the next line
typed at the console, including the line terminator.  OUT sends a string to the
console; the return value of OUT is the null string.

CI  returns a single character typed at the console; CI  neither prompts for input nor
echoes the character typed.  CO sends a single character to the console; the return
value of CO is the null string.  If the %CO argument has more than one character,
only the first character is sent.



ASM386 Assembly Language Reference Chapter 8 551

Examples

1. This example illustrates calls to IN  and OUT.

%OUT(HOW MANY PROCESSORS IN SYSTEM?)
%SET(PROC_COUNT, %IN)
%OUT (WHAT'S THIS PROCESSOR'S ADDRESS?)
ADDRESS EQU %IN
%OUT (WHAT'S THE BAUD RATE?)
%SET(BAUD, %IN)

These macro calls return the following results to the console:

HOW MANY PROCESSORS IN SYSTEM?>> response
WHAT'S THIS PROCESSOR'S ADDRESS?>> response
WHAT'S THE BAUD RATE>> response

2. This example defines the macro NUMBER as a string of three characters typed at
the console and echoes the characters as they are typed.

%DEFINE(NUMBER) ( )
%REPEAT(3) (%DEFINE(A) (%CI) %CO(%A)
 %DEFINE(NUMBER) (%NUMBER%A) )



552 Chapter 8 Textmacros

Scanning Modes, Delimiters, and Macro
 Expansions

This section explains scanning modes, delimiters, and macro expansions in greater
detail than the Overview section.

Normal and Literal Scanning Modes
In normal mode, the macro processor scans text for the metacharacter.  When it
finds one, it begins expanding the macro call.  If it encounters a macro definition
containing nested calls, the macro processor expands them in the process of
defining the new macro.

In the definition of a macro body, the metacharacter precedes each reference to a
formal parameter and/or LOCAL symbol.  In normal mode, the macro processor
attempts to evaluate such references as parameterless macro calls.

When the literal character (* ) is placed in a call to DEFINE, the macro processor
shifts to literal scanning mode.  As it scans the %*DEFINE arguments, the macro
processor always expands Escape and Comment calls, whatever the current
scanning mode.  It expands Bracket calls that are not nested in other Bracket calls.
The macro processor also expands nested macro calls that are arguments unless
they are literalized with Escape or Bracket.

Whatever the scanning mode for a call to DEFINE, the macro processor inserts the
null string into the source file that it passes on to the assembler.  The assembler
generates a listing file (by default) and merges in the macro processor's
intermediate listing file if appropriate controls are specified.

See also: Listing file, ASM386 Macro Assembler Operating Instructions

The following examples illustrate the differences between how the macro processor
handles macro definitions and calls in literal and normal scanning modes.



ASM386 Assembly Language Reference Chapter 8 553

Compare the definitions of AB and CD:

%SET (CARP,1)                 ; null string into source
%*DEFINE(AB) (%EVAL(%CARP) )  ; literal mode scan
%DEFINE(CD) (%EVAL(%CARP) )   ; normal mode scan:
                              ; %1%CD:= 01H
                              ; in macro symbol table,
                              ; null string into source

The macro processor does not evaluate %EVAL(%CARP) in the body of AB, but it
expands the macro body of CD completely because the literal (* ) character is not
used in the definition.  If the value of CARP changes, it has no effect on subsequent
calls to CD.  However, a new value for CARP does affect subsequent calls to AB.
For example:

%SET(CARP,2)    ; null string into source
%AB             ; returns 02H
%CD             ; returns 01H (unless CD was redefined)

Macros may be called with the literal character.  For example:

%*CD            ; returns 01H
%*AB            ; returns %EVAL(%CARP)

The literalized call to AB returns the definition of its macro body.  Both literal and
normal mode calls to CD return 01H because the macro processor expanded the
original CD definition fully in normal scanning mode.

Macro Delimiters
Only the delimiters used in the definition of a macro can be used in a call to that
macro.  When the macro processor scans a definition's formal parameter list, the
delimiters are stored in the macro symbol table as part of that macro's call pattern.
When the macro processor scans the call, it searches for these delimiters to isolate
each argument string for evaluation.

There are three kinds of macro delimiters: literal delimiters, implied blank
delimiters, and identifier (or ID) delimiters.

Literal Delimiters

A literal delimiter may be any single character except the metacharacter.  However,
literal delimiters defined with more than one character, or with an unbalanced
parenthesis, a logical space, the at character (@), or an identifier character must be
literalized every time they are used.



554 Chapter 8 Textmacros

Literalize the delimiter string with the Bracket or Escape macro if the literal
delimiter includes any of the following:

• More than one character

• An unbalanced left or right parenthesis

• A...Z, a..z, 0...9, underbar (_), or question mark (?)

• An at character (@)

• A space, tab, carriage return, or linefeed

Following are some examples of definitions and calls using a variety of literal
delimiters:

Before Macro Expansion After Macro Expansion

%*DEFINE(MAC(A,B) ) (%A %B) null string into source
%MAC(4,5) 4 5
%*DEFINE(MOV[A%(@)B]) (MOV[%A],%B) null string into source
%MOV[BX @ DI] MOV[BX],DI
%*DEFINE(ADD(A%(AND)B) ) (ADD %A,%B) null string into source
%ADD(AX AND 5) ADD AX,5

%*DEFINE(ADD P1 %(TO) P2 %(AND) P3)
( null string into source
MOV EAX,%P1
MOV EBX,EAX
ADD EAX,%P2
MOV %P2,EAX
MOV EAX,EBX
ADD EAX,%P3
MOV %P3,EAX
)
%ADD COUNT TO INCR AND FACTOR MOV EAX,COUNT

MOV EBX,EAX
ADD EAX,INCR
MOV INCR,EAX
MOV EAX,EBX
ADD EAX,FACTOR
MOV FACTOR, EAX



ASM386 Assembly Language Reference Chapter 8 555

Implied Blank Delimiters

An implied blank delimiter is one or more spaces, tabs, or end lines (a carriage
return/linefeed pair or just a linefeed) specified between parameters.  To define a
macro only with implied blank delimiters, place one or more spaces, tabs, or end
lines preceding the formal parameter list and between each parameter.

When calling such a macro, match each delimiter with a series of spaces, tabs, or
end lines.  Each argument to the call begins with the first nonblank character and
ends at the next logical space.

Consider the following macro definition:

%*DEFINE (SENTENCE  SUBJ VERB OBJ) (
 THE %SUBJ %VERB %OBJ.
)

All of the following calls are valid for this macro:

Before Macro Expansion After Macro Expansion

%SENTENCE TIME IS RIPE THE TIME IS RIPE.
%SENTENCE CATS
     EAT
     MICE THE CATS EAT MICE.
%SENTENCE
     PEOPLE
LIKE      CATS THE PEOPLE LIKE CATS.

Implied blank delimiters may be used as enclosing and/or separating delimiters,
mixed with other kinds of delimiters.  The terminating blank delimiter may be
omitted in the definition of a formal parameter list, but it may not be omitted in the
corresponding argument list when the macro is called.

Identifier Delimiters

Identifier (or ID) delimiters are macro identifiers designated as separating
delimiters.  To define an ID delimiter, specify the at character (@) followed
immediately by the delimiter character(s).  Separate each ID delimiter from the
formal parameter identifiers with logical spaces.  When calling a macro with ID
delimiters, substitute an implied blank delimiter for the @ and specify only the
identifier characters of each ID delimiter.  Separate each ID delimiter from the
arguments with logical spaces.



556 Chapter 8 Textmacros

Consider the following macro definition:

%*DEFINE(ADD P1 @TO P2 @AND P3) (
 MOV EAX, %P1
 MOV EBX, EAX
 ADD EAX, %P2
 MOV %P2, EAX
 MOV EAX, EBX
 ADD EAX, %P3
 MOV %P3, EAX
)

Compare the following calls:

%ADD ATOM TO MOLECULE AND CRYSTAL
%ADD ATOM TO MOLECULE AND CRYSTAL

Both calls are valid.  Each returns the following code when expanded

MOV EAX, ATOM
MOV EBX, EAX
ADD EAX, MOLECULE
MOV MOLECULE, EAX
MOV EAX, EBX
ADD EAX, CRYSTAL
MOV CRYSTAL, EAX

but the second call adds extra logical spaces between some operands.

Algorithm for Evaluating Macro Calls
The macro processor uses the following steps to evaluate the source file:

1. Scan the source input stream until the metacharacter is found.

2. Isolate the call pattern (see the following Note).

3. Expand each argument, if any, from left to right before expanding the next; go
back to Step 1 if an argument has a nested macro call.

4. Substitute the expanded arguments for their corresponding formal parameters
in the macro body.

5. Initiate Step 1 on the macro body if the literal character is not used.

6. Enter any newly defined macro identifiers and call pattern(s) into the macro
processor symbol table and/or update already defined symbols.

7. Insert the result into the output stream and go to Step 1.



ASM386 Assembly Language Reference Chapter 8 557

✏ Note
When isolating the macro name and the argument(s) in a call
pattern, the macro processor is actually scanning input for the
next specified delimiter.  The text between delimiters is
considered to be the macro name or an argument.

The terms input stream and output stream are used because the return value of one
macro can be an argument of another macro.  On the first iteration, the input stream
is the source file.  On the final iteration, the output stream is passed as source to the
assembler.

Consider the following macro definitions:

%SET(BASS,3)
%*DEFINE(CARP) (%SET(BASS,%BASS - 1)%BASS)
%*DEFINE(PIKE(A,B)) (
DB %A,%B,%A,%B,%A,%B
)

The following macro calls illustrate how the macro processor evaluates nested calls
that are arguments and expands them in their caller's macro body.

Before Macro Expansion After Macro Expansion

%PIKE(%BASS,%CARP) DB 03H,02H,03H,03H,02H
%SET(BASS,3)
%PIKE(%CARP,%BASS) DB 02H,02H,02H,02H,02H,02H
%SET(BASS,3)
%PIKE(%*CARP,%BASS) DB 02H,03H,01H,03H,00H,03H

The first call to PIKE  has %BASS as the first argument and %CARP as the second.
The macro processor expands the call to %BASS before it evaluates the second
argument.  After the call to %PIKE has been completely expanded, BASS has the
value 02H because its value was reSET during the expansion of %CARP.

The second call to PIKE  reverses the order of the arguments.  The macro processor
expands %CARP first; thus, it decrements %BASS before it evaluates %BASS as the
second argument to %PIKE.  Both %PIKE arguments have the same value when the
macro processor substitutes them into the macro body.

The third call to PIKE  has a literal call (%*CARP) as its first argument; the result of
the literal mode call is the defined macro body of CARP: %SET(BASS, %BASS-
1)%BASS.  The macro processor substitutes this result for each %A in the macro
body of PIKE .



558 Chapter 8 Textmacros

Then, the macro processor evaluates the second argument to PIKE:  a call to %BASS
in normal scanning mode.  %BASS is fully expanded to 03H.  The macro processor
substitutes this result for each %B in PIKE 's macro body.

As the macro processor expands PIKE 's macro body, it evaluates %SET(BASS,
%BASS - 1)%BASS  three times, once for each reference to %A in the definition of
PIKE .

■■  ■■  ■■



ASM386 Assembly Language Reference Chapter 9 559

Codemacros 9
This chapter describes the assembler codemacro directives and the function
PROCLEN.  It has three major sections:

• Overview
Explains what codemacros are, briefly describes their definition and calls, and
includes reference illustrations of the processor instruction encoding formats.

• Codemacro Reference
Explains the codemacro directives, the dot record field shift construct, and the
function PROCLEN in detail.

• Matching Codemacro Calls to Their Definitions
Explains how the assembler determines that a codemacro call matches a
definition and/or matches a particular definition when more than one
codemacro is defined with the same name.

Overview
Codemacros are defined bodies of code that act like assembler instructions and
instruction prefixes when they are called.  A codemacro is called when its name is
used as an instruction.



560 Chapter 9 Codemacros

Codemacro Definitions and Calls
The CODEMACRO directive defines a codemacro.  A codemacro definition tells the
assembler how to generate object code for the codemacro when it is called.  The
codemacro name, followed by appropriate operands (if any) is the codemacro call.
Thus, codemacro definitions either redefine assembler instructions or create new
instructions.  However, you cannot invent new instructions that are not supported
by the processor or by the processor and floating-point coprocessor.

Most directives and values within a codemacro definition are fixed, but a definition
may specify formal parameters as placeholders for operands to be supplied at the
codemacro call.  Like many assembler instructions, a codemacro may be called
with various kinds of operands.  For example, a codemacro might be called first
with an immediate source operand and an implicit register as the destination.  The
same codemacro might be called next with a register source operand and an
explicit memory destination.

Such a codemacro must be defined more than once with the same name but with
different kinds of formal parameters for each definition.  Multiple definitions of the
same codemacro name are linked by the assembler.  When such a codemacro is
called, the assembler checks each definition for a match of operands and generates
appropriate object code when it finds a match.

The body of a codemacro is located between the first and last lines of its definition.
For a simple codemacro definition without formal parameters, the body tells the
assembler what opcode to generate when the codemacro is called.  For more
complex codemacros, the body tells the assembler how to construct and fill the
processor instruction format fields

See also: Parameter-operand matching, in this chapter
Processor instruction format, in this chapter



ASM386 Assembly Language Reference Chapter 9 561

A codemacro body may contain the following directives:

• PREFIX66

• PREFIX67

• SEGFIX

• NOSEGFIX

• WARNING

• DB, DW, DD, and DP, the data initialization directives

• The record initialization directive

• RELB, RELW, and RELD, the relative displacement directives

• MODRM

PREFIX66, PREFIX67, SEGFIX, NOSEGFIX, WARNING, RELB, RELW, RELD, and
MODRM are valid assembler statements only within codemacro bodies.  The DB,
DW, DD, DP, and record initialization directives accept only codemacro
expression arguments within codemacro bodies.

See also: DB, DW, DD, and DP as data storage allocation directives, Chapter 4

The next section of this chapter includes a detailed reference for each directive.  It
also explains using the dot record field shift construct and the special expression
function PROCLEN within codemacro definitions.



562 Chapter 9 Codemacros

Processor Instruction Format
Codemacro definitions tell the assembler how to generate object code when the
codemacro is called.  The codemacro directives control the generation of processor
instruction encodings.

Figure 9-1 illustrates the general encoding format for processor instructions.

Figure 9-1.  Instruction Encoding Format

Certain codemacro directives control the encoding of particular fields:

CODEMACROdetermines whether a call generates an INSTRUCTION PREFIX byte
or a full instruction encoding, possibly with operands, for the named
codemacro.

PREFIX67 tells the assembler to generate an ADDRESS SIZE  PREFIX byte, if
necessary.

PREFIX66 tells the assembler to generate an OPERAND SIZE  PREFIX byte, if
necessary.

SEGFIX tells the assembler to generate a SEGMENT OVERRIDE prefix byte, if
necessary.

DB or DW specifies the value for the OPCODE byte(s).

MODRM tells the assembler how to construct any necessary ModRM and SIB
bytes (see Figure 9-2).

Number of Bytes

Instruction
Prefix

Address-size
Prefix

Operand-size
Prefix

Segment
Override

0 or 1 0 or 1 0 or 1 0 or 1

W-3436

Number of Bytes

ModRM SIB Displacement Immediate

1 or 2 0 or 1 0, 1, 2 or 4

Opcode

0 or 1 0, 1, 2 or 4



ASM386 Assembly Language Reference Chapter 9 563

The data initialization, record initialization, dot-shift construct, PROCLEN and
relative displacement directives are used in conjunction with formal parameters to
tell the assembler how to generate instruction bytes.  The CODEMACRO directive
may specify a formal parameter whose matching operand requires one or more
displacement bytes; it also may specify a formal parameter whose matching
operand is an immediate value.

Figure 9-2 illustrates the encoding formats of the ModRM and SIB  bytes.

Figure 9-2.  ModRM and SIB Byte Formats

The ModRM byte specifies the addressing form for operand(s).  Certain encodings of
the ModRM byte indicate that a SIB  (Scale Index Base) byte follows the ModRM byte
to fully specify the addressing form.  To summarize the ModRM and SIB  fields:

MOD combines with the R/M field to form 32 possible values representing 8
general registers and 24 indexing modes.

REG specifies either a register number or 3 more bits of OPCODE
information; the first OPCODE byte (see Figure 9-1) determines the
meaning of the REG field.

R/M specifies an operand location either as a register number or as a
memory address (in combination with the MOD field).

SF specifies a scale factor (1, 2, 4, or 8) for an operand with a scaled
indexed address.

INDEX specifies the register number of the index register for an operand with
a based indexed or scaled indexed address.

W-3423

7 0

R/M

12

Mod Reg/Opcode

56 34

ModRM Byte

7 0

Base

12

SF Index

56 34

SIB (Scale Index Base) Byte



564 Chapter 9 Codemacros

BASE specifies the register number of the base register for an operand with a
based, based indexed, or based indexed and scaled address.

The MODRM directive tells the assembler how to generate ModRM and SIB  bytes.

See also: Chapter 5 for more information about indirect memory addressing,
including the processor rules about base and index registers for 32-
and 16-bit addressing
Chapter 6 for tables of ModRM and SIB  values for the 16- and 32-bit
addressing forms.



ASM386 Assembly Language Reference Chapter 9 565

Codemacro Reference
Table 9-1 summarizes the syntax for assembler codemacro directives, the record
field shift construct, and the PROCLEN function.

Table 9-1.  Codemacro Syntax Summary

CODEMACRO

formal

or

CODEMACRO cmac-name [formal] [, formal]...
     cmac-body
ENDM
fparam:specifier[modifier] [ (range) ]

CODEMACRO cmac-name PREFX
     cmac-body
ENDM

PREFIX67
PREFIX66
SEGFIX
NOSEGFIX
WARNING
MODRM

PREFIX67 fparam
PREFIX66 [PTR,] fparam
SEGFIX fparam
NOSEGFIX Sreg, fparam
WARNING
MODRM fp/num, fparam

DB
DW
DD
DP
Record

DB cmac-expr
DW cmac-expr
DD cmac-expr
DP cmac-expr
rec-name [ <cmac-expr [,...]> ]

Dot-shift
PROCLEN

fparam.rec-field
PROCLEN

RELB
RELW
RELD

RELB fparam
RELW fparam
RELD fparam

The following subsections are a detailed reference for each item in Table 9-1.



566 Chapter 9 Codemacros

CODEMACRO Directive

Syntax

CODEMACRO cmac-name  [ formal ] [, formal ]...
    cmac-body
ENDM

or

CODEMACRO cmac-name  PREFX
    cmac-body
ENDM

Where:

cmac-name is a valid identifier or an instruction mnemonic.  The same name may
be specified for more than one CODEMACRO statement in the module;
otherwise, it must be unique within the module.

formal is a formal parameter, specified as follows:

fparam : specifier [ modifier ] [ ( range ) ]

cmac-body contains at least one codemacro directive.  Cmac-body  may not
contain a nested CODEMACRO directive or a codemacro call.

See also: Identifiers, Chapter 1
instruction mnemonic keywords, Appendix C

Discussion

The CODEMACRO statement defines a codemacro.  A codemacro definition begins
with a line specifying its name and an optional list of up to 15 formal parameters.
ENDM must terminate the definition.  A codemacro definition may cause the
generation of up to 255 bytes per codemacro call.

CODEMACRO statements may be specified anywhere after the NAME statement in an
assembler source module.  However, it is an error to call a codemacro as a forward
reference, to call a codemacro defined in another module, or to call a codemacro
within cmac-body .

A codemacro may have the same name as an assembler instruction or prefix.  If a
codemacro has the same name and same kinds of operands as an instruction, the
assembler processes the codemacro instead of the instruction when it encounters
that name.



ASM386 Assembly Language Reference Chapter 9 567

If a codemacro is defined with the same name as an instruction but with different
kinds of operands, the assembler processes the codemacro only if the given
operands match those of the codemacro definition; otherwise, it processes the
instruction of that name.

Codemacros with formal parameters must use parameter names that follow the
same rules as other identifiers.  Each formal parameter must be followed by a
specifier  (A, C, D, E, F, M, R, S, T, or X).  A specifier indicates the kind of
operand that matches the corresponding formal parameter when the codemacro is
called.  An optional modifier  (BIT, B, W, D, DN, P, Q, or T) and/or range
specifier impose(s) further requirements on the codemacro operand.

The reserved word PREFX indicates that the codemacro will be used as an
instruction prefix, much as LOCK and REP are used.  Codemacros defined with
PREFX may not have formal parameters.

Examples

1. This example defines a new mnemonic for the processor FSIN  instruction.

CODEMACRO SINE
 DW 0D9FEH         ; opcode
ENDM SINE

2. The following examples parallel three ADD instructions.  Each has two formal
parameters, DST and SRC.  Each matches different kinds of destination and
source operands, as indicated by the comments.

CODEMACRO ADD DST:AB, SRC:DB
 DB 04H            ; DST = AL
 DB SRC            ; SRC = immediate byte value
ENDM ADD

CODEMACRO ADD DST:AW, SRC:DW
 DB 05H            ; DST = AX
 DW SRC            ; SRC = immediate word value
ENDM ADD

CODEMACRO ADD DST:AD, SRC:DD
 DB 05H            ; DST = EAX
 DD SRC            ; SRC = immediate dword value
ENDM ADD



568 Chapter 9 Codemacros

3. This example duplicates the function of the LOCK instruction prefix.

CODEMACRO LOCK PREFX
 DB 11110000B
ENDM

Formal Parameters and Specifiers

Syntax

fparam : specifier [ modifier ] [ ( range ) ]

Where:

fparam is a valid identifier; fparam  must be unique within the codemacro
definition.

specifier is one of the letters A, C, D, E, F, M, R, S, T, or X.

See also: Valid identifiers, Chapter 1

Discussion

Every formal parameter must have a specifier letter that indicates which kind of
codemacro operand matches the parameter:

Formal Specifier Matching Operand(s)
A Accumulator:  EAX, AX, or AL register
C Code: label expression only
D Data: integer used as an immediate operand
E Effective Address: a general register, a bracketed register

expression, or a variable with or without indexing
F Floating-point Stack Element: ST or ST(i) where i is a

digit from 0 to 7
M Memory Address: either a bracketed register expression or

a variable with or without indexing
R Register: general register only -- not an address

expression, a bracketed register, or a segment, debug, or
control register

S Sreg: CS, DS, ES, FS, GS, or SS segment register
T Floating-point Stack Top: ST or ST(0)
X Direct Memory Reference: a simple variable name with no

index or base register

See also: Operand-specifier matching, in this chapter



ASM386 Assembly Language Reference Chapter 9 569

Formal Parameter Modifiers

Syntax

fparam : specifier [ modifier ] [ ( range ) ]

Where:

modifier is BIT, B, W, D, DN, P, Q, or T; a space between a specifier and
modifier is an error.

Discussion

The optional modifier imposes another requirement on a codemacro operand,
relating either to the size of data being manipulated or to the amount of code
generated for the operand.

The meaning of the modifier depends on the operand, as follows:

• If the operand is an immediate (D specifier), the modifier depends on the range
of acceptable values:

Modifier Value in Range
B -255..255
W -65535..65535
D -(231 - 1)..(231 - 1)

Immediate operands must have values that fit in one of these ranges; the
specifier-modifier pairs DBIT, DP, DQ, and DT are invalid.

• If the operand is a label (C specifier), the modifier depends on the type and
sometimes on the distance jumped or USE attribute:

Modifier Label of Type
B 8-bit relative displacement on a NEAR label
W NEAR labels in USE16 segments
DN NEAR labels in USE32 segments
D FAR labels in USE16 segments
P FAR labels in USE32 segments



570 Chapter 9 Codemacros

• If the operand is a variable, the modifier depends on the type:

Modifier Variable of Type
BIT BIT
B BYTE
W WORD
D DWORD
P PWORD
Q QWORD
T TBYTE

Examples

1. This codemacro accepts an immediate operand whose value must fit in a byte.
It also redefines the mnemonic for one of the PUSH instructions.

CODEMACRO PUSHBYTE SRC:DB(-128,127)
 DB 6AH
 DB SRC
ENDM

2. The following codemacros accept only operands that are assembler procedures
of type NEAR.  The specifier-modifier pairs CW and CDN are matched by an
operand that is a PROC label in the same segment.  The RELW and RELD
directives cause a displacement of 16-bits (USE16 segment) and 32-bits
(USE32 segment), respectively.

CODEMACRO CALL ADDR:CW
 DB 0E8H
 RELW ADDR
ENDM

CODEMACRO CALL ADDR:CDN
 DB 0E8H
 RELD ADDR
ENDM

3. The following codemacro accepts an operand that is the address of a byte in
memory.

CODEMACRO XLAT TABLE:MB
 PREFIX67 TABLE
 SEGFIX TABLE
 DB 0D7H
ENDM



ASM386 Assembly Language Reference Chapter 9 571

Formal Parameter Range Specifiers

Syntax

fparam : specifier [ modifier ] [ ( range ) ]

Where:

specifier must be A, D, R or S.

range is either a single expression enclosed in parentheses or two
expressions separated by a comma and enclosed in parentheses.

Discussion

The optional range specifier imposes another requirement on a codemacro operand:
its value must match the specified expression or its value must lie within the
inclusive range of both expressions.

A range expression must evaluate to a register or to a signed integer.  Range
specifiers that are register names have the following binary values:

Value For Registers
000 EAX, AX, AL, ES
001 ECX, CX, CL, CS
010 EDX, DX, DL, SS
011 EBX, BX, BL, DS
100 ESP, SP, AH, FS
101 EBP, BP, CH, GS
110 ESI, SI, DH
111 EDI, DI, BH

A range expression may not include a symbolic address.

Example

The following is the first line of a sample codemacro, IN , that uses a range
specifier.  For a call to this codemacro, only DX can be used as the port from which
to input a WORD.

CODEMACRO IN DST:AW,PORT:RW(DX)



572 Chapter 9 Codemacros

PREFIX67 Directive

Syntax

PREFIX67 fparam

Where:

fparam is the name of a formal parameter with a C, E, M, or X specifier.

Discussion

PREFIX67 generates an address size prefix byte (67H) for an operand whose
addressing mode is different from the USE attribute of the current segment.

Example

This codemacro accepts an operand that is the address of a byte in memory.  For an
assembler codemacro call, the assembler always generates a 32- or 16-bit address.
PREFIX67 tells the assembler to generate an address size prefix byte (see Figure
9-1) if the codemacro is called from a code segment with a different USE attribute
than the operand's defining segment.

CODEMACRO XLAT TABLE:MB
 PREFIX67 TABLE
 SEGFIX TABLE
 DB 0D7H
ENDM

PREFIX66 Directive

Syntax

PREFIX66 [PTR,] fparam

Where:

fparam is the name of a formal parameter with an A, C, E, M, R, or X
specifier and a P (C specifier only), D, or W modifier.



ASM386 Assembly Language Reference Chapter 9 573

Discussion

The PREFIX66 directive instructs the assembler to generate an operand size prefix
byte (66H), depending on the operand's ASM386 type and the USE attribute (USE32
or USE16) of the current segment.  PTR tells the assembler to compare DWORD and
PWORD operands against the USE attribute of the current segment.

If the optional PTR is omitted, the assembler generates the 66H prefix under the
following conditions:

• The operand is of type WORD and the current segment is USE32.

• The operand is of type DWORD and the segment is USE16.

If PTR is specified, the assembler generates the 66H prefix under the following
conditions:

• The operand is of type DWORD and the current segment is USE32.

• The operand is of type PWORD and the segment is USE16.

Examples

The second and third codemacro definitions tell the assembler to generate an
operand size prefix byte (see Figure 9-1) if the operand matched to DVSR was
defined in a segment with a different USE attribute than the current segment.

CODEMACRO CMDIV DVSR:EB
 PREFIX67 DVSR
 SEGFIX DVSR
 DB 0F6H
 MODRM 6, DVSR
ENDM

CODEMACRO CMDIV DVSR:EW
 PREFIX67 DVSR
 PREFIX66 DVSR
 SEGFIX DVSR
 DB 0F7H
 MODRM 6, DVSR
ENDM



574 Chapter 9 Codemacros

CODEMACRO CMDIV DVSR:ED
 PREFIX67 DVSR
 PREFIX66 DVSR
 SEGFIX DVSR
 DB 0F7H
 MODRM 6, DVSR
ENDM

The preceding examples are the functional equivalent of the DIV  instructions.  The
CMDIV codemacro definitions must be coded as shown (small-to-large operand
ordering) so that the assembler matches a call to CMDIV with the appropriate
definition.

See also: Call-definition matching, in this chapter

SEGFIX Directive

Syntax

SEGFIX fparam

Where:

fparam is the name of a formal parameter with an E, M, or X specifier
(memory address).

Discussion

The SEGFIX directive tells the assembler to determine whether a segment override
prefix byte is needed to access a given memory location.

See also: Segment override prefix codes, Chapter 6

In the absence of a segment override prefix byte, the processor hardware uses either
the DS or SS register, depending on which base register, if any, was used.  (E)BP or
(E)SP implies SS; every other 32- or 16-bit general register implies DS.



ASM386 Assembly Language Reference Chapter 9 575

The operand should be a memory address expression.  The assembler examines the
operand's segment attribute as follows:

• For an operand with a symbolic reference, the assembler determines whether
its defining segment has been ASSUMEd into the hardware-implied segment
register.  If so, an override byte is unnecessary and none is generated.  If not,
the assembler checks the ASSUMEs of other segment registers looking for the
name of the symbol's defining segment.  If it is found, the assembler generates
the override byte for that segment register; otherwise, the assembler reports an
error.

See also: ASSUME directive, Chapter 2

• For an operand without a symbolic reference, the assembler checks whether
the operand has an explicit segment override.  If the override is omitted or is
the hardware-implied segment register, the assembler generates no segment
override byte.  Otherwise, it generates the specified register's override.

Example

The following codemacro tells the assembler to generate a segment override prefix
byte if the operand's defining segment has been ASSUMEd into a non-default
segment register or is an anonymous reference with an explicit, non-default
override.

CODEMACRO CMDIV DVSR:EB
 PREFIX67 DVSR
 SEGFIX DVSR
 DB 0F6H
 MODRM 6, DVSR
ENDM

NOSEGFIX Directive

Syntax

NOSEGFIX Sreg , fparam

Where:

Sreg is one of the segment registers ES, FS, GS, CS, SS, or DS.

fparam is the name of a formal parameter with an E, M, or X specifier
(memory address).



576 Chapter 9 Codemacros

Discussion

The NOSEGFIX directive tells the assembler to check that an operand's segment
attribute matches the specified Sreg .  Such an operand must either:

• Have an explicit segment override that matches Sreg

• Or, have the selector for its defining segment ASSUMEd into Sreg  prior to the
codemacro call.

See also: ASSUME directive, Chapter 2

The assembler checks that one of these conditions is met but it generates no object
code for NOSEGFIX.  If neither condition is met, the assembler reports an error.

For example, a codemacro for instructions such as CMPS should specify NOSEGFIX
ES, fparam  with an E, M, or X specifier for the destination fparam .  The
destination operand of the processor CMPS, INS , MOVS, SCAS, and STOS
instructions must be accessed via the ES segment register.

WARNING Directive

Syntax

WARNING

Discussion

The WARNING directive tells the assembler to flag calls to the codemacro.  The
assembler issues a warning message at the end of every segment that includes a
processor privileged instruction or a call to a codemacro containing the WARNING
directive.

The assembler generates no object code for the WARNING directive.

Example

This codemacro duplicates the CLTS instruction.

CODEMACRO CLTS
 WARNING
 DW 0F06H
ENDM



ASM386 Assembly Language Reference Chapter 9 577

MODRM Directive

Syntax

MODRM fp/num , fparam

Where:

fp/num is the name of a formal parameter or a number that represents the
value that goes into the REG field of the ModRM byte (see Figure 9-2).

fparam is the name of another formal parameter with an A, C, E, M, R, S, or
X specifier.

Discussion

The MODRM directive tells the assembler to create the ModRM byte and optional SIB
byte, which follow the OPCODE byte(s) in many processor instructions.

See also: SIB  and OPCODE instruction encoding bytes, in this chapter

The assembler checks whether the operand is a register, a variable, or an indexed
variable and constructs the MOD and R/M fields that correctly represent the operand,
together with any displacement that is part of the effective address.

If fp/num  is a number, that value is used in the ModRM REG field every time the
codemacro is called.  The number is a continuation of the opcode identifying which
instruction the hardware is to execute.  If fp/num  is a formal parameter, the
corresponding operand (usually a register) is used each time.

Examples

1. In the following codemacro, the specifier M indicates that this codemacro
matches only when a memory operand is supplied with the call.

CODEMACRO FLDENV MEMOP:M
 SEGFIX MEMOP
 DB 11011001B
 MODRM 100B,MEMOP
ENDM



578 Chapter 9 Codemacros

2. The following codemacro specifies that it adds a memory word into a register.
Its MODRM directive constructs a ModRM byte (see Figure 9-2) from the
destination register operand (REG field) and a source register or memory
operand.

CODEMACRO ADD DST:RW,SRC:EW
 PREFIX67 SRC
 PREFIX66 SRC
 SEGFIX SRC
 DB 3
 MODRM DST,SRC
ENDM

The following three calls to ADD have DX encoded as 010B in bits 5-3 (REG
field), a MOD of 10B in bits 7-6, and an R/M of 000B in the ModRM byte.  The
comments show the generated object code:

ADD DX,[BX] [SI]            ; 00000011 10010000B

  :  :

ADD DX,MEMWORD[BX] [SI]    ; 00000011 10010000B followed

              ; by offset of MEMWORD (low-order byte first)

  :  :

ADD DX,[DI]                ; 00000011 10010101B

See also: Dot Operator example, in this chapter, for another codemacro with a
MODRM directive

Data Initialization Directives

Syntax

DB cmac-expr
DW cmac-expr
DD cmac-expr

or

DP cmac-expr

Where:

cmac-expr is an expression (without forward references) that evaluates to a
number, a formal parameter name, or a shifted formal parameter with
the DB, DW, and DD directives.  For the DP directive, cmac-expr  is
a formal parameter with a C specifier (label expression only).



ASM386 Assembly Language Reference Chapter 9 579

Discussion

The codemacro data initialization directives are similar to the DB, DW, DD, and
DP storage allocation directives, but they require cmac-expr  arguments.

For the DB, DW, and DD directives, a number indicates that the same value is to
be assembled every time the codemacro is called.  A formal parameter indicates
that the corresponding operand is to be assembled.  A dot record field shift
construct indicates that the operand is to be shifted and then plugged in.

For the DP directive, the formal parameter indicates a FAR label in a USE32
segment.

The DBIT , DQ, and DT directives are not allowed inside codemacro definitions.

Record Initialization Directive

Syntax

rec-name  [ < cmac-expr  [,...]> ]

Where:

rec-name is the name of a previously defined record template.

cmac-expr is a number, a formal parameter, a shifted formal parameter or null.
A cmac-expr  list is optional only if rec-name  was defined with
default initial values for its fields; a null list element is valid only if
the corresponding field of rec-name  was initialized.

See also: RECORD directive, Chapter 4

Discussion

The record initialization directive controls bit fields smaller than 1 byte in
codemacro definitions.  Use the record template name to initialize bit fields in
codemacro definitions; you need not allocate storage for a named variable of the
template type.

If an expression value does not fit in the field, the least significant bits are used and
no error is reported.



580 Chapter 9 Codemacros

Using the Dot Operator to Shift Parameters

Syntax

fparam.rec-field

Where:

fparam is the name of a formal parameter whose corresponding operand is a
number.

rec-field is the name of a previously defined record template field.

Discussion

The shifted formal parameter is a special construct allowed as a DB, DW, or DD
operand or as an element of the operand of a record initialization.

The assembler evaluates this expression when the codemacro is called by right-
shifting the operand and using the record field's bit offset from the least significant
bit as a shift count.

Example

The dot-shift can be used in a codemacro that duplicates the ESC feature of the
instruction set.  The opcodes for every floating-point instruction begin with an ESC.
ESC opens communication with other devices using the same bus.  This enables
execution of commands from an external device both with or without an associated
operand (address operand only).  These commands are represented in ESC as
numbers between 0 and 63 inclusive.  The external device interprets the number.

R53 RECORD RF1:5,RF2:3
R233 RECORD RF6:2,MID3:3,RF7:3
CODEMACRO ESC INDX:DB(0,63),ADDR:E
SEGFIX ADDR
R53 <11011B,INDX.MID3>
MODRM INDX,ADDR
ENDM

The R53 line in the body of the codemacro generates 8-bits.  The high-order 5-bits
are 11011B.  The low-order 3-bits are filled with the low-order 3-bits of the
operand that corresponds to INDX after it has been shifted right by the shift count of
MID3 (bit offset of 3 in R233).

The following example calls the codemacro ESC with an operand (INDX) of 39 on a
16-bit address (ADDR) of MEMWORD, whose offset is 477H from ES, indexed by DI:

ESC 39, ES:MEMWORD[DI]



ASM386 Assembly Language Reference Chapter 9 581

The assembler generates the following 5 bytes of object code for this call:

0010 0110B   ; 26H: the ES override in byte 1
1101 1100B   ; INDX = 39 = 0010 0111B
             ; INDX.MID3 =
             ; (000)00100B, so R53<11011B,INDX.MID3>
             ; becomes 11011 100B for [DI],
             ; MOD = 10B,R/M = 101B
1011 1101B   ; ModRM byte with fields:
             ; MOD = 10B, OPCODE = 111B
             ; R/M = 101B
0111 0111B   ; offset of MEMWORD
0000 0100B   ; in these 2 bytes

The high-order 5-bits of ESC's first OPCODE byte (see Figure 9-1) are always
11011B.  The remaining opcode bits are split between the low-order 3-bits of this
OPCODE byte and bits 5-3 of the ModRM byte (see Figure 9-2).

PROCLEN Function

Syntax

PROCLEN

Discussion

The PROCLEN function returns 00H if the current procedure is type NEAR, and
0FFH if it is type FAR.  Code outside of PROC..ENDP blocks is considered NEAR.

Example

The RET codemacro uses PROCLEN to create the correct machine instructions to
return from a call to a NEAR or FAR procedure.

R413 RECORD RF:8:4, RF9:1, RF10:3
CODEMACRO RET
 R413 <0CH,PROCLEN,3>
ENDM

The field RF8 is set to 0CH (1100B), and RF10 is set to 3 (011B).  Field RF9,
which becomes bit 3 of the allocated record byte, is 0 if the current procedure (in
which RET appears) is type NEAR, or it is 1 if the procedure is type FAR.  PROCLEN
returns all 0s or all 1s, but R413 uses only the low-order bit.



582 Chapter 9 Codemacros

Relative Displacement Directives

Syntax

RELB fparam

RELW fparam

or

RELD fparam

Where:

fparam is the name of a formal parameter with a C (code) specifier letter.

Discussion

The relative displacement directives instruct the assembler to generate the
displacement between the end of an instruction and a label expression operand as
follows:

RELB 1-byte displacement
RELW 2-byte displacement
RELD 4-byte displacement

The relative displacement directives may occur elsewhere in a codemacro
definition (e.g., a multi-instruction codemacro).  However, if a larger formal
parameter is matched with a smaller operand, the assembler generates wasted
bytes.  If a smaller formal parameter is matched with a larger operand, the
assembler reports an error.

Examples

The following codemacros JMP and JE show the use of relative displacement
directives.  These codemacros are direct jumps to labels in the current code
segment.

1. The following codemacro uses the RELD directive.  The specifier for the formal
parameter calls for a NEAR label in the current CS segment.  The assembler
computes the distance and provides a dword to follow the 0E9H OPCODE byte
(see Figure 9-1).

CODEMACRO JMP PLACE:CDN
 DB 0E9H
 RELD PLACE
ENDM



ASM386 Assembly Language Reference Chapter 9 583

If the target is 513 bytes from the EIP value at the end of the codemacro call,
the assembler generates:

11101001 00000001 00000010 00000000 00000000B

The distance to the target label begins at the end of the RELD dword.  The first
byte counted is that following the 5 bytes comprising this jump.  A match
occurs only if the target label was assembled under the same assumed CS
register as the jump.  Object code is generated only if a match occurs.

2. The JE codemacro defines a jump that is executed only if ZF is 1.

CODEMACRO JE PLACE:CW
 DW 0F84H
 RELW PLACE
ENDM

If the target is 513 bytes from the IP value at the end of the codemacro call and
ZF equals 1, the assembler generates:

00001111 10000100 00000001 00000010B



584 Chapter 9 Codemacros

Matching Codemacro Calls to Their Definitions
When you call a codemacro, the assembler matches the call to a particular
codemacro definition as follows:

Step 1

The assembler looks for all codemacro definitions with the same name as the call.
If the assembler cannot find matching call-definition names, it reports an error.

Then, the assembler evaluates any operands.  For a codemacro call with a forward-
referenced operand, the assembler reserves space for the definition that would
require the most instruction bytes.

If an operand is a register expression without an associated type (e.g., [EBX] ), or if
an implicit reference to the accumulator is made (e.g., CMDIV, MEMVAR), the other
parameters are checked to see if at least one contains an unambiguous modifier
type.

Numbers matching B, W, or D, explicitly specified registers, and all variable types
suffice to distinguish the modifier type.  If no such parameter is found, the
assembler reports an error.  However, a single, untyped register expression (as in
FSTENV [EBX]) is allowed.

Step 2

The assembler searches the chain of codemacro definitions for a match, beginning
with the last definition and moving backwards.  A match occurs when the number
of operands matches the number of formal parameters in a particular definition and
each operand matches the corresponding formal in specifier, modifier (if any), and
range (if any).



ASM386 Assembly Language Reference Chapter 9 585

The following is a list of operand-formal matches:

Specifiers EAX, AX and AL match A, E, R.
Labels match C.
Numbers match D.
Nonindexed variables match E, M, X.
Indexed variables and register expressions match E, M.
Registers (except segment registers) match E, R.
Segment registers CS, DS, ES, FS, GS and SS match S.
Floating-point stack elements (ST, ST(0)...ST(7)) match F.
The floating-point stack top (ST,ST(0)) matches T.

Modifiers Modifier-matching is dependent upon the kind of specifier used:

D Numbers between -255 and 255 match B only.
D Numbers between -65535 and -255, or +255 and

+65535 match W only.
D Numbers between -(231 - 1) and -65535, or +65535 and

(231 - 1) match D only.
D Other numbers cause an overflow error.
C NEAR labels with the same CS-assume that are -128 to

+127 bytes from the end of the codemacro call match
only B.

C Other NEAR labels with the same CS-assume match W
in USE16 segments or DN in USE32 segments.

C NEAR labels with a different CS-assume match no
modifier and cause an error.

C FAR labels match D in USE16 segments and P in
USE32 segments.

For all other specifiers:
Type BIT  matches BIT.
Type BYTE matches B.
Type WORD matches W.
Type DWORD matches D.
Type PWORD matches P.
Type QWORD matches Q.
Type TBYTE matches T.

Index register expressions with no associated type (e.g., [(E)BX]) match B, W, or
D when used with another operand that has a B, W, or D modifier, respectively.
They match no modifier for single-operand instructions and cause an error.



586 Chapter 9 Codemacros

Ranges Range specifiers are allowed for parameters that are numbers or
registers (specifiers A, D, R, S).  If one specifier follows the formal
parameter, the value of the operand must match; if two follow the
formal, the value must fall within the inclusive range of the specifiers.

For this matching, register operands assume the following numeric
values:
Value General and Segment Registers

0 EAX AX AL ES

1 ECX CX CL CS

2 EDX DX DL SS

3 EBX BX BL DS

4 ESP SP AH FS

5 EBP BP CH GS

6 ESI SI DH

7 EDI DI BH

The assembler reports an error if no match can be found for the codemacro call.  It
pads the generated object code with 90H (NOPs) if a matched definition requires
fewer instruction bytes than the assembler reserved for a forward-referenced
operand in Step 1.

■■  ■■  ■■



ASM386 Assembly Language Reference  Appendix A 587

Processor
Architecture Summary A

This appendix is a quick reference for assembler application and system
programmers.  Note that this appendix covers the Intel386 processor.  Since there
are differences between the Intel386, 376, and Intel486 processors, some of the text
in this appendix does not apply to the 376 processor.

See also: Processor architecture, 80386 Programmer's Reference Manual
376 processor, Appendix F
Intel486 processor, Appendix G

This appendix contains four major sections:

• The first section contains illustrations of the formats for the basic data types,
and for the general, segment, status, instruction, and control registers.

• The second section summarizes processor memory organization, including
effective address computation for assembler operands, and illustrates the data
structures that support segmented memory organization.

• The third section illustrates the processor EFLAGS register and describes the
individual flags.

• The fourth section summarizes information about processor exceptions and
interrupts.  It illustrates the IDT (interrupt descriptor table) and the formats for
IDT entries (descriptors) and exception error codes.

Application programmers can skip some subsections in this appendix.  The
following sections are the most useful for application programmers:

• Data Type Formats

• General, Segment, Status and Instruction Registers

• Processor Memory Organization

• Segment Selection and Effective Address Computation

• Processor Flags



Appendix A Processor Architecture Summary588

Basic Processor Formats
This section contains reference illustrations for the basic data types and registers
used by all assembler programs.

Data Type Formats
The byte, word, and dword are the fundamental data types.  Figure A-1 illustrates
their storage format.

W-3438

31

High Word

15 0

DwordLow Word

23 7

address n + 3 address n + 2 address n + 1 address n

15 0

High Byte

7

address n + 1 address n

Low Byte Word

07

Byte Byte

Figure A-1.  Fundamental Data Types

Assembler operands represent interpretations of the fundamental data types.  Figure
A-2 graphically summarizes the data storage formats supported by the processor.



ASM386 Assembly Language Reference Appendix A 589

Figure A-2.  Processor Data Types and Storage Formats

W-3439

07
Byte

Integer

07
Packed

BCD

077 0
0

Least
Significant Digit

Most
Significant Digit

+N

(Two's Complement)
Sign

015
Word

Integer

7

String

07 0
0+N

(Two's Complement)
Sign

14 87
0+1 +1

15
Dword
Integer

Bit
String

0

(Two's Complement)
Sign

31
+3

016
+2 +1 0

07
Byte

Ordinal
32-bit

Bit Field

+5

Bit Field
1 to 32 Bits

Magnitude

0+4 +3 +2 +1

+2 Gigabits

Bit 0

21
-2 Gigabits

0
15

Word
Ordinal

Near 32-bit
Pointer

Magnitude

00
+1

Offset

31
+3 +2 +1 0

Far
48-bit

Pointer

48 0
Dword

Ordinal

Magnitude

31
+3

0
+2 +1 0

Selector Offset

+5 0+4 +3 +2 +1

07Binary
Coded

Decimal
(BCD)

077 0
0

BCD
Digit N

+N

BCD
Digit 1

BCD
Digit 0

+1



Appendix A Processor Architecture Summary590

Depending on the assembler instruction, the processor data types are one of the
following:

Integer is a signed numeric value contained in a byte, word, or dword.  All
operations assume a two's complement representation.  The most
significant bit of each integer type indicates the sign: 0 for non-
negative, 1 for negative.  Integer zero is non-negative.  The range for
each integer type is:

-128..127 for byte integers
-32,768..32,767 for word integers
-231..(231 - 1) for dword integers

Ordinal is an unsigned binary numeric value contained in a byte, word, or
dword.  The range for each ordinal type is:

0..255 for byte ordinals
0..65,535 for word ordinals
0..(232 - 1) for dword ordinals

BCD is a byte (unpacked) representation of an unsigned decimal digit in the
range 0..9; the low-order nibble contains the BCD value.
Hexadecimal values 0..9 are interpreted as decimal numbers; all other
hexadecimal values are invalid.  The high-order nibble must be zero
for multiplication and division operations.

Packed BCD
is a byte representation of 2 decimal digits, each in the range 0..9;
values outside this range are invalid.  The most significant digit is in
the high-order nibble.  The range of a packed decimal byte is 0..99.

String is a contiguous sequence of bytes, words, or dwords.  A string can
contain from 1 byte to 232 bytes (4 gigabytes).

Bit String is a contiguous sequence of bits.  A bit string may begin at any bit
position of any byte and contain up to 232 bits.

Bit Field is also a contiguous sequence of bits.  A bit field may begin at any bit
position of any byte, but it can contain only up to 32-bits.

Near Pointer
is a 32-bit logical address.  It is an offset within a segment.  Near
pointers are used in either a flat or segmented model of memory
organization.

Far Pointer is a 48-bit logical address with 2 components: a 16-bit segment
selector and a 32-bit offset.  Far pointers are used by application
programmers only when system designers choose a segmented
memory organization.



ASM386 Assembly Language Reference Appendix A 591

Processor Registers
The processor registers are classified as general, status and instruction, segment,
and system registers.  Application programmers need not concern themselves with
the system registers.

General, Segment, Status and Instruction Registers

The processor general registers can be used interchangeably to contain the operands
of logical and arithmetic operations, and for operands of address computations
(except that ESP cannot be used as an index operand).  Figure A-3 illustrates the
eight 32-bit general registers, the six 16-bit segment registers, and the status and
instruction registers.



Appendix A Processor Architecture Summary592

Figure A-3.  General, Segment, Status, and Instruction Registers

The 32-bit general registers are EAX, EDX, ECX, EBX, EBP, ESI, EDI, and ESP.

As Figure A-3 shows, the low-order word of each general register represents a word
register; each has a distinct name without the E prefix.  Each word register can be
used as an operand to contain 16-bit data items.  The AX, DX, CX, and BX word
registers contain separately named byte registers to contain 8-bit data items.  AH/L,
DH/L, CH/L, and BH/L can be used as operands in some assembler instructions.

W-3440

15 0

  CS (Code Segment)

  SS (Stack Segment)

  DS (Data Segment)

  ES (Data Segment)

  FS (Data Segment)

  GS (Data Segment)

7

31 0

 EIP (Instruction Pointer)

15

 EFLAGS

23 7

 Instruction Register

 Status Register

 Segment
Registers

ESP

 General
Registers

SP

EDI DI

ESI SI

EBP BP

EBX BX

ECX CX

EDX DX

EAX AXAH AL

DH DL

CH CL

BH BL

31 01523 7



ASM386 Assembly Language Reference Appendix A 593

The segment registers identify up to six segments that are immediately accessible
to an executing program.  The CS register addresses the currently executing code
segment.  SS addresses the current stack segment.  DS, ES, FS, and GS access data
segments; DS is the default data segment register (see Table A-1).

Application programmers can ignore the segment registers - and the instructions
that deal with them - if their operating system uses an unsegmented memory
model.  If it doesn't, the 16-bits shown in Figure A-3 represent a selector.  Each
segment register also has a cache that holds the descriptor associated with each
selector that is loaded into a segment register.

Figure A-4.  Processor Stack with Stack Frame

The EIP register contains the offset address, relative to the start of the current code
segment, for the next instruction to be executed in sequence.

As in the general registers, the low-order word of the EFLAGS register represents a
16-bit register: the FLAGS register.

See also: (E)FLAGS , in this appendix

Note that assembler instructions that use the stack depend on the SS, EBP, and ESP
registers.  Figure A-4 illustrates the processor stack.

SS addresses the single stack in memory that is directly accessible from the
currently executing code segment.

W-3441

Old EBP

Bottom of Stack
(Initial SS:ESP Value)

Display

31

EBP
EBP for Main

Dynamic
Storage

0
Stack Segment

POP

PUSH

ESP Top of
Stack

SS



Appendix A Processor Architecture Summary594

EBP is the stack frame base pointer, identifying the base address of the current
stack frame.  When EBP is used as the base register in an offset calculation, the
processor calculates the current offset, relative to SS, automatically.

ESP points to the current top of the stack.  It is referenced implicitly by the PUSH,
POP, CALL, RET, INT , and IRET  instructions.

System Registers

System control, global descriptor table (GDTR), local descriptor table (LDTR),
interrupt descriptor table (IDTR), test (TR), and debug registers are accessible only
to system programmers via variants of the MOV instruction.

Figure A-5 illustrates the system control registers.

Figure A-5.  System Control Registers

W-3442

P
E

M
P

E
MReserved T

S
E
T

CR3

CR2

CR1

CR0P
G

31 01523

Reserved

Page Fault Linear Address

Page Directory Base Register (PDBR) Reserved

7



ASM386 Assembly Language Reference Appendix A 595

The CR0 register contains the following system control flags:

PE (bit 0) is the Protection Enable control flag.  Setting PE causes the processor
to execute in protected mode.  Clearing PE causes the processor to
execute in real address mode.

MP (bit 1) is the Monitor coProcessor control flag.  When MP is set, the
processor tests the TS (task switch) flag at every occurrence of a WAIT
instruction; it signals Exception 7 (math unit unavailable) if the
floating-point coprocessor is currently executing a floating-point
instruction.  If MP is clear, a floating-point coprocessor is not attached
to the processor.

EM  (bit 2) is the EMulation control flag.  When EM is set, the occurrence of an
ESC (floating-point) instruction raises Exception 7 so the processor
can transfer control from the currently executing program to an
exception handler for floating-point emulation.

TS (bit 4) is the Task Switch control flag.  The processor sets TS with every task
switch.

ET (bit 4) is the Extension Type control flag.  If ET is set, the processor uses the
32-bit protocol of an Intel387 coprocessor; if ET is clear, the
processor uses the 16-bit protocol of an Intel287 coprocessor.

PG (bit 31) is the PaGing control flag.  If PG is set, the processor handles a paged
memory organization.  The processor translates logical segment
addresses into linear addresses, maps the linear addresses through a
page directory and page table, and accesses physical addresses in a
page frame.

The CR2 register is used for handling page faults when PG is set.  The processor
stores the linear address that triggers the page fault into CR2.

The CR3 register is also used when PG is set.  CR3 stores the base address of the
page table directory for the current task.

The CR0 flags apply to the system as a whole.  The EFLAGS register contains
additional system flags that control the interaction among system software
components.

The GDTR, LDTR, IDTR, and TR registers locate the data structures that control
segmented memory management.  See the Processor Memory Organization and
Processor Exceptions and Interrupts subsections for the formats these registers
handle.

See also: Debug and test registers, 80386 Programmer's Reference Manual



Appendix A Processor Architecture Summary596

Processor Memory Organization
The physical memory of the processor is organized as a sequence of bytes.  Each
byte in a processor segment has a unique address in the range 0..232 - 1 (4
gigabytes).  Assembler programs are independent of the physical address space.

System designers determine the model of memory organization seen by application
programmers.  The processor architecture gives system designers the freedom to
choose a model for each task.

The choice of models varies between the following extremes:

• A flat address space maps the logical addresses of an assembler program 1-to-1
to the physical address space as elements of a single array.  A pointer to this
flat address space is a 32-bit ordinal number in the range 0..232 - 1.

• A segmented address space consists of a collection of up to 16,383 linear
address spaces, each up to 4 gigabytes in length.  Each segment is a sequence
of contiguous byte addresses.  A pointer in a segmented address space consists
of two parts:

— A 16-bit segment selector that identifies a segment.

— A 32-bit offset that is an ordinal index to a byte within a segment.

Assembler programs implicitly use a segmented logical address space; the CS, SS,
DS, ES, FS, and GS segment registers contain selectors to the program's code, data,
and stack segments.  Figure A-6 illustrates this implicit model.

Figure A-6.  Memory Segmentation Model for ASM386 Programs

For an assembler application programmer, it is immaterial how this model is
mapped to the processor physical address space.

W-3443

Module A
Code

Stack

GS (Data)

FS (Data)

ES (Data)

DS (Data)

SS (Stack)

CS (Code)
Module A

Data

Data
Structure 1

Data
Structure 3

Data
Structure 2



ASM386 Assembly Language Reference Appendix A 597

Segment Selection and Effective Address Computation
If system designers have chosen a flat model of memory organization, the segment
registers point to the same segment and the processor rules for choosing them are
hidden from application programmers.  Nevertheless, the rules remain in effect.

For other models of memory organization, there is a close connection between the
kinds of memory reference made in an assembler program and the segments in
which instructions and operands reside.

Table A-1 summarizes the processor default segment register selection rules.

Table A-1.  Default Segment Register Selection Rules

ASM386
Segment
Type

Memory
Reference
Needed

Segment
Register
Used Processor Implicit Segment Selection

Code Instruction CS Automatic with instruction prefetch.

Stack Stack SS All stack pushes and pops; any memory
reference that uses ESP or EBP as a base
pointer.

Data Local Data DS All data references except relative to stack
or string destination.

Strings ES Destination of string instructions.

Most assembler instructions allow programmers to use a segment override prefix to
specify an explicit segment register selection.  However, a segment override prefix
cannot alter the segment selection rules in the following three cases:

• ES must be used for destination strings with the string instructions.

• SS must be used for stack instructions.

• CS must be used for instruction fetches.



Appendix A Processor Architecture Summary598

The CS, SS, DS, ES, FS, and GS segment registers contain a selector to a logical
segment address.  Every assembler instruction accesses the logical addresses of
code, stack, and data indirectly through a segment register.  For instructions
encoded with a ModRM byte, the offset within a segment is calculated by taking
the sum of up to three components:

• A displacement element in the instruction

• A base register

• An index register, which can be automatically multiplied by a scaling factor of
1, 2, 4, or 8

Figure A-7 illustrates this address calculation.

Figure A-7.  Effective Address Calculation

The segment offset that results from adding these components to the segment
register address is called an effective address:

• The Base and Index components both use the same general registers to address
dynamically allocated data, such as procedure parameters and local variables
in the stack, or the beginning of one record in an array of records.

• The Scaling Factor allows efficient indexing into an array when its elements
are 2, 4, or 8 bytes wide.

• The Displacement component is encoded in the instruction; it is used for
addressing fixed data, such as the location of a simple scalar operand.  The
displacement alone indicates the offset of an operand.  An 8-, 16-, or 32-bit
displacement can be used.

W-3444

CS
SS
DS
ES
FS
GS

EAX
ECX
EDX
EBX
ESP
EBP
ESI
EDI

+

Segment + (Index * Scale)

EAX
ECX
EDX
EBX
- - -
EBP
ESI
EDI

+

+

1

2

4

8

*

Base + Displacement

No Displacement
8-bit Displacement
16-bit Displacement
32-bit Displacement

+



ASM386 Assembly Language Reference Appendix A 599

Segmented Memory Management
The processor transforms logical addresses (i.e., addresses as viewed by assembler
programmers) into physical addresses in one or two steps:

1. Segment translation, in which a logical address consisting of a segment
selector and segment offset are converted to a linear address.  The linear
address can be mapped directly to a physical address if system designers
choose not to implement paging.

2. Page translation, in which a linear address is converted to a physical address if
system designers choose a paged memory model.

Figure A-8 sketches the segment and optional page translation of logical addresses
to physical addresses.

Figure A-8.  Processor Address Translation Overview

W-3445

31 0

Dir OffsetLinear
Address

015

SelectorLogical
Address

31 0

Offset

Segment
Translation

PG ?

Page

Paging
Enabled

Page
Translation

31 0
Physical
Address

Paging
Disabled



Appendix A Processor Architecture Summary600

The processor uses the following data structures and registers to translate a logical
address into a linear address:

• Descriptors

• Segment registers (see Figure A-3)

• GDT (global descriptor table) and LDT (local descriptor table) registers

• Selectors

In a paged memory system, the processor also uses the control register CR3
illustrated in Figure A-5.

Figure A-9 illustrates segment to linear address translation, together with linear to
physical address translation in a paged system, in more detail.

Figure A-9.  Segment Address Translation in a Paged System

W-3446

Dir OffsetLinear
Address

015
Logical

Address

31 0

Offset

Segment Descriptor

Page

Selector

Descriptor Table

+

DIR Entry

Page Directory

PG TBL Entry

Page Table

Physical
Address

Page Frame

CR3



ASM386 Assembly Language Reference Appendix A 601

Segment Descriptors
The processor uses a descriptor in a segment register's cache to map a logical
address to a linear address.  In addition, descriptors contain protection parameter
fields that apply to segment translation.  The protection field values determine how
the processor does the following:

• Type checking

• Limit checking

• Restriction of addressable domain

• Restriction of procedure entry points

• Restriction of the assembler instruction set

Figure A-10 illustrates the general segment descriptor formats for application and
system segments.

Creation and maintenance of descriptors is the responsibility of system software.

Figure A-10.  General Segment Descriptor Formats

W-3447

G B O

Segment Limit 15 .. 0

Limit
19 .. 16 4

0

A
AVL
DPL
G
P
B
D

-  
-  
-  
-  
-  
-  
- 

AR Byte

15 0731 23
A
V
L

P DPL 0 Type Base 23 .. 16

Segment Base 15 .. 0

Base 31 .. 24

Descriptors Used for
Special System Segments

Accessed
Available for Use by Systems Programmers
Descriptor Privilege Level
Granularity
Segment Present
Determine ESP/SP
Determine USE32/USE16

G B O

Segment Limit 15 .. 0

Limit
19 .. 16 4

0

AR Byte

15 0731 23
A
V
L

P DPL 1 Type A Base 23 .. 16

Segment Base 15 .. 0

Base 31 .. 24

Descriptors Used for
Applications Code and Data Segments



Appendix A Processor Architecture Summary602

Descriptor Address Translation Fields

Both application and system segment descriptors contain the following address
translation fields:

Base (32-bits) defines the location of a segment within a 4-gigabyte linear
address space.

Limit  (20-bits) defines the size of the segment.  Depending on the setting of
the Granularity bit (23), the processor interprets the limit
field as units of 1 byte (G = 0) or units of 4 Kilobytes
(G = 1).

Descriptor Access Rights (AR)

Bits 8-15 of the upper dword in Figure A-10 is the descriptor AR (access rights)
byte.  The processor checks the protection parameters in this byte during segment
translation.

These fields in a descriptor's high-address dword are:

Accessed (bit 8) is set when the selector for this segment is loaded into a
segment register or used by a selector test instruction.

Type (bits 9-12) specifies the intended usage of a segment.  It's value
indicates executable/readable code and readable/writable
data segments, or it indicates a system descriptor type, such
as a call gate, task gate, task state segment (TSS), interrupt
gate, etc.

DPL (bits 13-14) specifies the Descriptor Privilege Level; this field's value
determines whether the segment can be accessed from other
code or system segments in a protected system.

Present (bit 15) is set if this descriptor is valid for use in address formation.
If P = 0, the processor raises an #NP exception when a
selector for this descriptor is loaded into a segment register.

For assembler instructions that transfer control among code segments, the processor
checks the validity of a descriptor's AR fields before calculating the segment linear
address — or allowing access to a segment.  System designers determine the
restrictions enforced by the processor in the descriptors created by compilers,
linkers, loaders, and by the operating system itself.



ASM386 Assembly Language Reference Appendix A 603

Descriptor Tables and Selector Format
Segment descriptors are stored in memory as tables: arrays of 8-byte elements.  The
processor global descriptor table (GDT) is an array of descriptors for up to 8192
segments, local descriptor tables (LDT), tasks, and/or gates.  The first entry of the
GDT (selector INDEX = 0) is not used by the processor.  The processor locates the
GDT and the current LDT in memory by means of the GDTR and LDTR registers.
These registers store the memory base addresses of these tables, together with the
segment limits.

The selector portion of any logical address identifies a descriptor.  A selector
specifies the global or a local descriptor table and indexes a descriptor in that table.
Figure A-11 illustrates the format of a selector.

Figure A-11.  Selector Format

Segment selectors contain the following fields:

RPL (bits 0-2) is the Requesting Privilege Level field.  This represents the
privilege level of a code segment, such as a procedure, that
may request access to a data segment or a control transfer.
For example, an application routine might call an operating
system I/O routine if system designers decide to prohibit
application from using the IN  and OUT instructions.

TI  (bit 3) is the Table Indicator bit.  It specifies whether the selector
refers to the GDT (TI = 0) or to the current LDT (TI = 1).

Index (bits 4-15) selects one of up to 8192 descriptors in the GDT or current
LDT.  The processor multiplies the index of the selector by 8
(length in bytes of a descriptor), and adds the result to the
base address of the selected descriptor table.

See also: IOPL  field, in the Processor Flags section of this appendix

W-3448

15 0

RPL

34

TI
RPL

- Table Indicator
- Requestor's Privilege Level

Index T
I



Appendix A Processor Architecture Summary604

The processor segment registers (see Figure A-3) contain the selectors to current
segments; each segment register also has an inaccessible cache that holds the
descriptor associated with the selector.  CS contains the selector and descriptor for
the currently executing code segment, SS the selector and descriptor for the current
stack, etc.

Processor Protection, Gate Descriptors, and Task Switches
All processor descriptors store protection parameters in their access rights (AR)
fields.  These parameters can be ignored at the discretion of system designers.  Or,
they can be exploited to verify memory accesses and instruction execution, to
detect and identify bugs, and to restrict damage by runaway applications.



ASM386 Assembly Language Reference Appendix A 605

Protection and Privilege Levels

Both application and system segment descriptors and selectors are designed for
protected systems.  Central to processor protection checking is the notion of
privilege levels.  By assigning values from 0 to 3 (highest to lowest privilege) to
the descriptors and selectors visible to the processor, system designers use the
processor to protect modules within the operating system.  For example, Figure
A-12 illustrates how the processor makes a privilege check for data access.

Figure A-12.  Processor Privilege Check for Data Access

As Figure A-12 shows, three different privilege levels enter into this type of
processor protection check:

1. The segment selector in the CS register contains a protection field (CPL) that
specifies the current privilege level.

2. The selector attempting to access a data segment contains the RPL field
(requesting privilege level).

3. The descriptor of the target data segment's DPL field is also a protection field.

W-3449

G B O

Segment Limit 15 .. 0

Limit
19 .. 16 4

0

Data Segment Descriptor

15 0731 23
A
V
L

P DPL
Type

1  0  E  W  A
Base 23 .. 16

Segment Base 15 .. 0

Base 31 .. 24

CPL
RPL
DPL

-  
-  
- 

Current Privelege Level
Requestor's Privilege Level
Descriptor Privilege Level

Index RPL
Privilege
Check
by CPU

Target Segment Selector

CS CPL

Cached Descriptor
16-bit

Selector



Appendix A Processor Architecture Summary606

The currently executing code segment can access this data only if the DPL of the
target segment is numerically greater (less privileged) or equal to the maximum of
the CPL and the RPL.

Level 0 is the highest privilege level.  If CPL equals 0, the currently executing code
segment can access any data segment in the system.  (The IOPL field in the
processor flags register is a fourth privilege level that is checked for assembler
instructions that perform I/O.

See also: IOPL  field, in the Processor Flags section of this appendix

Protected Control Transfers Use Gate Descriptors

The processor uses gate descriptors to provide protection for control transfers
among executable segments at different privilege levels, possibly in a multi-tasking
system.  There are 4 kinds of gate descriptors:

• Call gates

• Task gates

• Trap gates

• Interrupt gates

Call gate and task gate descriptors are stored either in the GDT or in an LDT.  Note
that call and task gate descriptor access can be restricted either by using the
protection fields in these descriptors or by restricting access to the LDT in which
they are stored.

Task gate descriptors are used in a multi-tasking processor system.  Trap and
interrupt gates transfer control to an exception handler; they are stored in the IDT
(interrupt descriptor table).

See also: Processor Exceptions and Interrupts, in this appendix



ASM386 Assembly Language Reference Appendix A 607

Call Gate Descriptor Format

Figure A-13 illustrates the format of a call gate descriptor.

Figure A-13.  Call Gate Descriptor Format

A processor call gate:

• Defines an entry point of a procedure

• Specifies the privilege level of such an entry point

The selector and offset fields of a call gate descriptor form a pointer to the entry
point of a procedure.  In a control transfer that accesses a call gate, only the
selector part of a far pointer operand is used; the far pointer's offset part isn't
needed to access the call gate descriptor.

Task Gate, TSS Descriptor, and TSS Format

Figure A-14 illustrates a task gate descriptor.

Figure A-14.  Task Gate Descriptor Format

W-3450

Offset 15 .. 0

4

0

AR Byte

15 0731 23

P DPL Type
0  1  1  0  0

Dword
Count

Selector

Offset 31 .. 16 0 0 0

W-3451

4

0

AR Byte

15 0731 23

P DPL 0  0  1  0  1

Selector

(Not Used)(Not Used)

(Not Used)



Appendix A Processor Architecture Summary608

A task gate descriptor provides indirect, protected reference to a processor task
state segment (TSS).  Any segment with sufficient privilege to access a task gate or
a TSS descriptor can cause a task switch to a new task state segment.  As Figure
A-14 shows, a task gate descriptor consists of a AR byte and a selector.

The task gate descriptor can be stored in the GDT, in an LDT, or in the IDT if
system designers choose to make exception handlers separate tasks.  Subject to
protection checking, the selector of the task gate descriptor points to a task
descriptor for a task state segment.  Figure A-15 illustrates the format of a TSS
descriptor.

Figure A-15.  TSS Descriptor Format for 32-bit TSS

The B bit (9) of the AR Type field indicates whether a task is already busy.  Tasks
are not reentrant; if the B bit equals 1, the processor will not allow a task switch to
occur because the task is already busy.

The selector for the currently executing task state segment is in the task register
(TR).  All the information the processor needs to manage a task is stored in the
TSS.  Task state segments can reside anywhere in the linear address space.  With
these structures the processor can rapidly switch execution from one task to
another, saving the context of the original task to be restarted later.

System designers might choose the TSS structure for exception and interrupt
handlers because the TSS structure provides an easy way of saving an interrupted
task's environment.

W-3452

G 0 0

Limit 15 .. 0

Limit
19 .. 16 4

0

AR Byte

15 0731 23
A
V
L

P DPL
Type

0  1  0  B  1
Base 23 .. 16

Base 15 .. 0

Base 31 .. 24



ASM386 Assembly Language Reference Appendix A 609

Figure A-16 shows the format of a processor TSS.  Note that a processor TSS is not
identical to an 286 processor TSS.

Figure A-16.  General Segment Descriptor Formats

W-3453

15 031

0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0

Note:  0 means Intel reserved.  Do not define.

723

0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0

0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0

0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0

Back Link to Previous TSS

ESP0

SS0

ESP1

ESP2

CR3 (PDPR)

Instruction Pointer (EIP)

EFLAGS

EAX

SS1

SS2

0

4

8

0C

10

14

18

1C

20

24

28

2C

30

34

38

3C

40

44

48

4C

50

54

58

5C

60

640  0  0  0  0  0    0  0     0  0     0  0     T

LDT

GS

FS

DS

SS

CS

ES

0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0

I/O Map Base

0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0

0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0

0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0

0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0

0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0

0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0

EDI

ESI

EBP

ESP

EBX

EDX

ECX



Appendix A Processor Architecture Summary610

The fields of a TSS are either dynamic or static:

1. The processor updates the following fields with each switch from the task:

• Segment registers GS, FS, DS, SS, CS, and ES

• General registers EDI, ESI, EBP, ESP, EBX, EDX, ECX, and EAX

• Flags register EFLAGS

• Instruction pointer EIP

• Back link selector to previously executing TSS (updated only when a
return is expected)

2. The processor reads but does not change the following fields:

• T-bit (debug trap bit); if set, the T-bit causes the processor to raise a debug
exception when a task switch occurs

• I/O map base address (see Figure A-17)

• Selector of the task's LDT

• CR3 (PDBR) register that contains the base address of the task's page
directory (read only if paging enabled)

• SS2, ESP2, SS1, ESP1, SSO, and ESPO pointers to the stacks for privilege
levels 0..2

I/O Permission Bit Map

The I/O map base address stored in a TSS contains an offset to the beginning of the
(memory) I/O permission bit map for the TSS.  Figure A-17 illustrates the I/O
address bit map and permission bit map.



ASM386 Assembly Language Reference Appendix A 611

Figure A-17.  I/O Address Bit Map

Each bit in the map corresponds to an I/O port address.  The I/O permission bit
map allows the processor to selectively trap references to specific I/O port
addresses.  In protected mode, IN , INS , OUT, and OUTS instructions are subject to
two protection checks:

1. The processor checks that the instruction's CPL (current privilege level) is less
than or equal to the value of IOPL  in the EFLAGS register.  IOPL  is the lowest
privilege level at which direct I/O can be performed.  (0 is the highest privilege
level and 3 is the lowest privilege level.)

2. If the current privilege level is insufficient, the processor checks the I/O
permission bit map.  Each bit in the map corresponds to an I/O port byte
address.  The processor tests 4 bits for a dword I/O operation, 2 bits for a word
I/O operation, etc.  If any tested bit is set, the processor signals a #GP
exception.

Because the I/O permission bit map is in a TSS segment, different tasks can have
different maps; a multi-tasking operating system can allocate I/O ports on a task-
by-task basis by changing the I/O permission map.

W-3454

I/O Map Base

Limit

31

LDT

0

TSS Segment

0

I/O Permission Bit Map
8K Byte Maximum

1523 7

GS

00000000 00000000

00000000 00000000

T

00000000 00000000 TSS Back Link
4

58
5C

60

64

Software State (Optional)

uuuuuuuuuuuuuuu



Appendix A Processor Architecture Summary612

Processor Flags
This appendix section describes the processor flags.  Figure A-18 illustrates the
format of the EFLAGS register.

Figure A-18.  Processor EFLAGS Register

Flag conditions reflect the result of a mathematical operation, the state of operation
of the processor, or the current restrictions placed upon the microprocessor's
operation.  There are two categories of flags in the processor EFLAGS register:

• The carry, parity, auxiliary, zero, sign, and overflow flags are status flags.

• The direction flag is a control flag; the interrupt, trap, nested task, resume, and
virtual mode flags are system control flags.

W-3455

16-bit Flags Register

C
F

Virtual 8086 Mode

Resume Flag

Nested Task Flag

I/O Privilege Level

Overflow

Direction Flag

Interrupt Enable

Trap Flag

Sign Flag

Zero Flag

Auxiliary Carry

Parity Flag

Carry Flag

1P
F0A

F0Z
F

S
F

T
F

I
F

D
F

O
F

IO
PL

V
M

R
F 0 N

T0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0

15 0731 23

-  X

-  X

-  X

-  X

-  S

-  C

-  X

-  X

-  S

-  S

-  S

-  S

-  S

S = Status Flag       C = Control Flag       X = System Flag

Note:  0 or 1 indicates Intel reserved.  Do not define.



ASM386 Assembly Language Reference Appendix A 613

The IOPL  field of EFLAGS specifies the system Input/Output Privilege Level.
Tasks with less privilege (a higher numerical value) than IOPL  cannot perform I/O
operations unless the I/O address bit(s) allow access to an I/O port

See also: I/O Permission Bit Map, In this appendix

The following sections briefly explain the function of each flag and give a general
description of how they are affected by processor instructions.  To find out how (or
if) a particular instruction affects the flags, see the instruction's reference page.

See also: Instruction reference pages, Chapter 6

Status Flags
The status flags indicate the results of most assembler arithmetic, logical, or
comparison operations.  Figure A-19 illustrates the status flags.

Figure A-19.  Status Flags Format

The six status flags are set (to 1) or cleared (to 0) by most arithmetic operations to
reflect certain properties of the result:

CF (bit 0) is set if the operation resulted in a carry out of (from addition) or a
borrow into (from subtraction) the high-order bit of the result;
otherwise, CF is cleared.

PF (bit 2) is set if the modulo 2 sum of the low-order 8 bits of the result is 0
(even parity); otherwise, PF is cleared (odd parity).

W-3456

16-bit Flags Register

C
F

Overflow

Sign Flag

Zero Flags

Auxiliary Carry

Parity Flag

Carry Flag

1P
F0A

F0Z
F

S
F

T
F

I
F

D
F

O
F

IO
PL

V
M

R
F 0 N

T0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0

15 0731 23



Appendix A Processor Architecture Summary614

AF (bit 4) is set if the operation resulted in a carry out of (from addition) or
borrow into (from subtraction) the low-order 4 bits of the result;
otherwise, AF is cleared.  AF is set according to the carry/borrow out
of bit 3.  It is not affected by the size of the operand.

ZF (bit 6) is set if the result of the operation is 0; otherwise, ZF is cleared.

SF (bit 7) is set if the result of the operation is negative; otherwise, SF is
cleared.

OF (bit 11) is set if the signed operation resulted in an overflow; otherwise, OF is
cleared.

A program can test the setting of the carry, parity, zero, sign, and/or overflow flags
in order to transfer control according to the outcome of a previous operation.  See
Table 6-8 for a list of instructions that assign definitive values to one or more status
flags.

It is important to know which flags are set by a particular instruction.  For example,
assume a program is to test the parity of an input byte and execute one instruction
sequence if parity is even and another if parity is odd.  Coding JPE (jump if parity
is even) or JPO (jump if parity is odd) immediately following the IN  (input)
instruction would cause random jumps because IN  does not affect the parity flag.
It is necessary to code an instruction that alters the parity flag (such as an ADD of 0)
between the IN  instruction and the conditional jump instruction to get meaningful
results in such a program.

Carry Flag

As its name implies, the carry flag is used to indicate whether an addition causes a
carry into the next higher-order digit.  (However, INC and DEC do not affect CF.)
The carry flag is also used as a borrow flag in subtractions.

For example, the addition of two 1-byte numbers can produce a carry out of the
high-order bit:

Hex Bit Number:
Value 7654 3210
AEH 1010 1110B
+74H 0111 0100B      _____     ________________
122H 0010 0010B ; = 22H

; carry flag = 1.

An addition that causes a carry out of the high-order bit of the destination sets the
flag to 1; an addition that does not cause a carry resets the flag to 0.



ASM386 Assembly Language Reference Appendix A 615

The logical AND, OR, and XOR instructions also affect CF.  These instructions set or
reset particular bits of their destination (register or memory).

See also: Logic instructions, Chapter 6

The rotate and shift instructions move the contents of the operand (registers or
memory) one or more positions to the left or right.   RCL and RCR treat the carry
flag as though it were an extra bit of the operand.  ROL and ROR assign an operand
bit to CF.  The bit test instructions copy a specified bit into CF.

Parity Flag

Parity is determined by counting the number of 1 bits in the low-order 8 bits of the
destination of the last operation to affect PF.  Instructions that affect the parity flag
set the flag to 1 for even parity and reset the flag to 0 for odd parity.

Auxiliary Carry Flag

The auxiliary carry flag indicates a carry out of bit 3 of the result.  This flag cannot
be tested directly in an assembler program.  AF allows the decimal adjust
instructions to perform their function; it represents a carry out of or borrow into the
least significant 4-bit digit when performing BCD arithmetic.  The auxiliary carry
flag is affected by all add, subtract, increment, decrement, compare, and the logical
AND, OR, and XOR instructions.

Zero Flag

Many assembler instructions affect the zero flag.  ZF = 1 indicates that the last
operation to affect ZF resulted in all 0s in the destination (register or memory).  If
the result was something other than 0, ZF is reset to 0.  A result that has a carry and
a 0 result sets both flags, as shown:

10100111
+01011001

   ÄÄÄÄÄÄÄÄÄ

00000000 ; carry flag = 1
; zero flag = 1

Sign Flag

The most significant bit of the result of operations on registers or memory can be
interpreted as a sign.  Instructions that affect the sign flag set the flag equal to this
bit.  A 0 indicates a non-negative value; a 1 indicates a negative value.  This value
is duplicated in the sign flag so that conditional jump instructions can test for
positive and negative values.



Appendix A Processor Architecture Summary616

Overflow Flag

The overflow flag is set if a signed operation resulted in a carry into the most
significant bit of the result, but not a carry out of this bit or vice versa.  Otherwise,
OF is cleared.

Control and System Control Flags
The control and system flags determine how certain processor instructions behave
and are tested during processor protection checking.  Figure A-20 illustrates the
control and system control flags.

Figure A-20.  Control Flags and IOPL Format

The following flags can be set/cleared by explicit processor instructions:

IF  (bit 9) is the Interrupt Flag, used to enable or disable certain kinds of
external interrupts.  For example, if IF is set, vectored and external
interrupts are enabled.  The instructions STI and CLI set and clear IF,
respectively.  IF is a system control flag.  In protected mode, CLI and
STI can be executed only if the CPL is less than or equal to IOPL (the
current privilege level has at least as much privilege as the I/O
privilege level).

W-3457

C
F

Virtual 8086 Mode

Resume Flag

Nested Task Flag

I/O Privilege Level

Direction Flag

Interrupt Enable

Trap Flag

1P
F0A

F0Z
F

S
F

T
F

I
F

D
F

O
F

IO
PL

V
M

R
F 0 N

T0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0

15 0731 23

16-bit Flags Register



ASM386 Assembly Language Reference Appendix A 617

DF (bit 10) is the Direction Flag, used by string instructions to determine whether
to increment or decrement the default string registers (E)SI and (E)DI
during a string operation.  The instructions STD and CLD set and
clear DF, respectively.  If DF is set, (E)SI and (E)DI are decremented;
if DF is cleared, (E)SI and (E)DI are incremented.

The EFLAGS register contains other system control flags and the IOPL  field:

TF (bit 8) is the Trap Flag.  It controls the generation of single-step interrupts.
Once TF is set, an internal single-step interrupt will occur after each
instruction is executed.

VM  (bit 11) is the Virtual Mode flag.  When set, it tells the processor to switch
from protected mode to virtual 8086 mode.  The VM flag can be set
by task switches that occur during protected mode execution, or by
the IRET  instruction (only at CPL = 0).  PUSHF always clears VM,
even if the processor is executing in virtual 8086 mode; POPF has no
effect on VM.  However, an EFLAGS image pushed during interrupt
processing or saved during a task switch will contain a 1 in VM if the
interrupted process was executing in virtual 8086 mode.

NT (bit 14) is the Nested Task flag.  It is set to indicate that an executing task is
nested within another task.  The NT flag is set or reset by control
transfers through interrupt, trap, and task gates.  The IRET  instruction
tests the NT flag; if NT is 0, IRET  returns from an interrupt procedure
without a task switch.  If NT is 1, a task switch occurs; NT = 1
indicates that the current task's TSS has a valid back link to the
previous TSS.

IOPL  (bits 12-13)
is the I/O Privilege Level field.  IOPL  specifies the highest privilege
level (0, 1, 2, or 3) from which I/O instructions can be executed
directly.  Task switches can change the setting of the IOPL  field, as do
the POPF and IRET  instructions executed at privilege level 0.



Appendix A Processor Architecture Summary618

RF (bit 16) is the Resume Flag.  It is used to restart program execution after a
debug fault.  RF is cleared after the successful execution of the
faulting instruction.

TF, VM, NT, IOPL, and RF values cannot be set and reset by explicit processor
instructions.  To alter these values (assuming sufficient privilege in protected
mode):

1. Use PUSHF to copy the EFLAGS register to the stack.

2. Set/clear these flag values in the stack image with the BTS or BTR
instructions.

3. Use POPF to return the modified stack top to the EFLAGS register.

NT and IOPL  values are irrelevant in real address mode.  Only DF and TF are not
subject to protection checking in protected mode.

Processor Exceptions and Interrupts
Exceptions and interrupts alter the normal flow of program execution.  Exceptions
indicate erroneous conditions detected by the processor itself while it is executing
instructions; interrupts usually indicate asynchronous events external to the
processor.

Exceptions have two sources:

• Errors detected by the processor:

Faults detected before or during an instruction's execution that leave the
machine in a state that permits the instruction to be restarted

Traps reported at the instruction boundary immediately after an
instruction in which an exception was detected

Aborts reporting hardware errors and/or exceptions so severe that there is
no clue about which instruction caused the error; restart of the
program is not possible

• The instructions INTO, INT  3, INT  number , and BOUND are sometimes called
software interrupts because they can trigger exceptions.  The processor detects
the exceptions triggered by these instructions.

Interrupts also have two sources:

• Signals from the INTR# pin are maskable interrupts.

• Signals from the NMI# pin are non-maskable interrupts.



ASM386 Assembly Language Reference Appendix A 619

Identifying Interrupts
The processor associates an identifying number with each interrupt or exception it
recognizes.  These numbers are in the range 0..31.  Some of these numbers are
unused but reserved by Intel for future expansion.

Identifiers of the maskable interrupts are determined by external interrupt
controllers (such as Intel's 8259 Programmable Interrupt Controller); they are
communicated to the processor during its interrupt-acknowledge cycle.

Processor exception names are formed from a cross-hatch character (#) followed by
2 letters and an optional error code in parentheses.  Table A-2 summarizes the
processor exceptions and interrupts.



Appendix A Processor Architecture Summary620

Table A-2.  Processor Exceptions and Interrupts

Name Cause Interrupt
Number

ASM386 Instruction  That May
Generate This Interrupt

Divide error 0 DIV, IDIV

Debug exception 1 Any instruction

NMI# signal 2 (non-maskable external interrupt)

1-byte INT opcode 3 INT

2-byte interrupt 32-255 INT number

Interrupt on overflow 4 INTO

Array bounds check 5 BOUND

#UD Invalid opcode 6 Any illegal instruction

#NM No math unit available 7 ESC, WAIT

#DF Double fault 8 Any instruction that can generate an
exception

Coprocessor
Segment Overrun

9 Any operand to an ESC instruction that
wraps around the end of a segment

#TS Invalid task state 10 JMP, CALL, any interrupt,

segment (TSS) IRET

#NP Segment/gate 11 Any segment register

not present modifier

#SS Stack fault 12 Any instruction that references memory
through SS

#GP General protection fault 13 Any memory reference instruction or
code fetch

#PF Page fault 14 Any memory reference instruction or
code fetch

(reserved) 15

#MF Math fault 16 ESC, WAIT

Interrupts 15 and 17-31 are reserved by Intel; interrupts 32-255 are available for
external interrupts via the INTR# pin.  In real address mode, interrupts 9-12 and
14-15 are reserved.

See also: Real address and virtual 8086 interrupts, 80386 Programmer's
Reference Manual



ASM386 Assembly Language Reference Appendix A 621

Simultaneous Exceptions and Interrupts
The processor services interrupts and exceptions only between the end of one
instruction and the beginning of the next.  If more than one exception or interrupt is
pending at an instruction boundary, the processor services them one at a time.  The
processor ranks exception/interrupt priority from highest to lowest as follows:

1. Faults except debug faults

2. Trap instructions INTO, INT  number , INT  3

3. Debug traps for current instruction

4. Debug faults for next instruction

5. NMI# interrupts

6. INTR# interrupts

Interrupt Descriptor Table
Both exceptions and interrupts have dedicated positions within the Interrupt
Descriptor Table; the IDT is accessed by the processor IDT register, as shown in
Figure A-21.

Figure A-21.  Interrupt Descriptor Table and Register

W-3458

Interrupt Descriptor Table

IDT Register

Gate for
Interrupt #0

Gate for
Interrupt #N

Gate for
Interrupt #1

Gate for
Interrupt #2

15 0

IDT Base

IDT Limit

31 0



Appendix A Processor Architecture Summary622

The IDT  can reside anywhere in physical memory.  The LIDT , LIDTW, or LIDTD
instructions load the IDT  register with a 6-byte pseudodescriptor operand that
represents the linear base address and limit value of an IDT .

Interrupts located in an IDT  are indexed by their number  * 8.  An IDT  must
contain descriptors only for interrupts that are used to call exception handlers; it
can contain up to 256 descriptors.

The processor can use the interrupt or exception identifier as an index to an IDT
with descriptors for task, interrupt, or trap gates.  Figure A-22 illustrates the format
for IDT  gate descriptors.

Figure A-22.  IDT Gate Descriptors

W-3459

4

0

AR Byte

15 0731 23

P DPL 0  0  1  0  1

Selector

(Not Used)(Not Used)

(Not Used)

Intel386
Task Gate

4

0

AR Byte

15 0731 23

P DPL 0  1  1  1  0

Selector

Offset 31 .. 16

Offset 15 .. 0

Intel386
Interrupt Gate

0  0  0

4

0

AR Byte

15 0731 23

P DPL 0  1  1  1  1

Selector

Offset 31 .. 16

Offset 15 .. 0

Intel386
Trap Gate

0  0  0

(Not
Used)

(Not
Used)





ASM386 Assembly Language Reference Appendix A 623

While executing instructions in protected or virtual 8086 mode, the processor
checks all memory references for validity of addressing and of type of access.
Violation of the processor memory protection rules generates exceptions or
interrupts that can transfer program control to an exception handler.

Error Codes for Exceptions
In protected mode, some exceptions cause the processor to pass a 16-bit error code
to supply additional information for an exception handler.

In error code format for protection violations, bit values are as follows:

Bits Meaning
31 to 16 Undefined
15 to 3 Selector Index
2 TI
1 I
0 EXT

The error code generally contains the selector of the segment that caused the
protection violation.  However, the RPL field (requesting privilege level) of the
error code does not contain the privilege level.

The values of bits 0 and 1 are determined as follows:

EXT  (bit 0) is 1 if the exception is detected during an interrupt caused by an event
external to the program (i.e., an external interrupt, a single step, a
floating-point coprocessor-not-present exception, or a floating-point
coprocessor segment overrun).  If bit 0 is set, the instruction pointed
to by the saved CS:EIP address is not responsible for the error.  Bit 0
is clear if the exception is detected in processing the regular
instruction stream, even if the instruction stream is part of an external
interrupt handling procedure or task.

I  (bit 1) is 1 if the selector points to the Interrupt Descriptor Table.  In this
case, bit 2 can be ignored, and bits 3 through 15 contain the index into
the IDT.  Bit 1 is clear if the selector points to the Global or Local
Descriptor Tables.  In this case, bits 2 through 15 have their usual
selector interpretation: TI (bit 2) selects the table (1 = Local, 0 =
Global) and bits 3 through 15 are the index into the table.

In some cases, the processor passes an error code with no information in it.  In
these cases, all 16 bits of the error code are 0.  The page fault exception passes an
error code with significant information only for the low-order 3 bits.  (See the
descriptions of the individual exceptions following this section for details.)



Appendix A Processor Architecture Summary624

The processor pushes the 16-bit error code onto the stack just before it transfers
control to an exception handler.  If stacks were switched as a result of the interrupt
(if a privilege level change or task switch occurs), the error code appears on an
exception handler's stack, not on the stack of the interrupted task.

Processor Exception Conditions
This section summarizes the processor errors interrupts, exceptions and exception
error codes, as well as the conditions that cause each error, interrupt, or exception.

Interrupt 0 -- Divide Error

This fault occurs during a DIV  or IDIV  instruction when the divisor is zero. Note
that a floating-point coprocessor zerodivide error generates the #MF exception, not
an Interrupt 0.

Interrupt 1 -- Debug Exceptions

The processor triggers this interrupt; whether the exception is a fault or a trap
depends on the condition:

• Instruction address breakpoint fault

• Data address breakpoint trap

• General detect fault

• Single-step trap

• Task-switch breakpoint trap

The processor does not push an error code for the debug exception.

See also:  debugging and the debug registers, 80386 Programmer's Reference
Manual
breakpoints, Interrupt 3, in this appendix

Interrupt 2 -- NMI

NMI is a non-maskable interrupt signaled via the NMI# pin.  This signal is
inhibited during the execution of POP SS or MOV SS in protected mode.

Interrupt 3 -- Breakpoint

The INT  3 instruction causes this trap.  INT  3 is a 1-byte instruction so debuggers
can readily substitute INT  3's opcode for another opcode in an executable segment.



ASM386 Assembly Language Reference Appendix A 625

Interrupt 4 -- Overflow

The overflow trap occurs when the processor encounters an INTO instruction and
the overflow flag (OF in EFLAGS) is set.

Interrupt 5 -- Bounds Check

This fault occurs when the processor finds that a BOUND operand exceeds the
specified limits, i.e. a signed array index exceeds the signed limits defined for it in
a block of memory.

#UD 6 -- Undefined Opcode (No Error Code)

This exception is generated when an invalid opcode is detected in the instruction
stream.  Under normal circumstances, the assembler will not produce invalid
opcodes, nor will the processor allow a jump to a data segment; however, bad code
can still be executed, causing the #UD exception, in the following cases:

• The first byte of an instruction is completely invalid (e.g., 64H).

• The first byte indicates a two-byte opcode, and the second byte is invalid (e.g.,
0FH followed by OFFH).

• An invalid register is used with an otherwise valid opcode (e.g., MOV CS,AX).

• An invalid opcode extension is given in the reg field of the ModRM byte (e.g.,
0F6H /1).

• A register operand is given in an instruction that requires a memory operand
(e.g., LGDT AX).

• A LOCK prefix is used with an unlockable instruction.

Because the offending opcode will always be invalid, it cannot be restarted.
However, a #UD handler can be coded to implement an extension of the processor
instruction set.  Such a handler can advance the return pointer beyond the extended
instruction and return control to the program after the extended instruction is
emulated; however, the extensions may be incompatible with the processor.



Appendix A Processor Architecture Summary626

#NM 7 -- No Math Unit Available (No Error Code)

This exception occurs when the processor encounters a floating-point instruction
and the EM (emulate) bit or the TS (task switched) bit of the machine status word
is 1.  Exception 7 also occurs when a WAIT instruction is encountered and both the
MP (monitor coprocessor) and TS bits of the machine status word are 1.

Depending on the setting of the machine status word bits that caused this exception,
an exception handler can emulate the floating-point coprocessor, or it can perform
a context switch of the math processor to prepare the floating-point coprocessor for
use by another task.  The instruction that caused #NM can be restarted if the
handler performs a context switch.  If the handler emulates the math unit, it should
advance the return pointer beyond the floating-point instruction that caused #NM.

#DF 8 -- Double Fault (Zero Error Code)

This exception is generated when a second exception is detected while the
processor is attempting to transfer control to an exception handler.  For example,
#DF is generated if the code segment containing an exception handler is marked
"not present."  It is also generated if calling an exception handler causes a stack
overflow.

The saved CS:EIP points to the instruction that was executing when the double
fault occurred.  Because the #DF error code is 0, no information on the source of
the exception is available.  Restart is not possible.

#DF is never generated during the execution of an exception handler.  An exception
detected within the instruction stream of an exception handler causes one of the
regular exceptions.

Interrupt 9 -- Coprocessor Segment Overrun

This exception is raised in processor protected mode if the floating-point
coprocessor overruns a page or segment limit while attempting to read/write the
non-initial byte of an operand.



ASM386 Assembly Language Reference Appendix A 627

#TS 10 -- Invalid Task State Segment (Selector Error Code)

This exception is generated when a task state is invalid.  This occurs when:

• A task state segment is too small.

• The LDT indicated in a task state segment is invalid or not present.

• The CS, DS, ES, FS, GS, or SS indicated in a task state segment is invalid
(task switch).

• A privileged stack in a task state segment is invalid.

• The back link in a task state segment is invalid (intertask IRET ).

The error code passed to an exception handler contains the selector of the offending
segment, which can either be the task state segment's or another segment's selector
found within the task state segment.  The instruction causing #TS can be restarted.
#TS must be handled through a task gate so that an exception handler has a valid
task environment in which to execute.

#TS is not generated when the CS, DS, ES, FS, GS, SS back link or privileged
stack selectors point to a descriptor that is not present but is valid otherwise; in
these cases, #NP or #SS is generated.

#NP 11 -- Not Present (Selector Error Code)

This exception occurs when CS, DS, ES, FS, GS, or the task register (TR) is loaded
with a descriptor that is marked not present but is otherwise valid.  #NP can occur
in a LLDT instruction, but not when the processor attempts to load the LDT register
in a task switch (this causes the #TS exception).  #NP also occurs when attempting
to use a gate that is marked "not present."

If #NP is detected during the loading of CS, DS, ES, FS, or GS in a task switch, the
exception occurs in the new task, and the IRET from an exception handler jumps
directly to the next instruction in the new task.

The #NP error code is the selector of the descriptor that is marked "not present."

An #NP exception handler can be used to implement a virtual memory system.
The operating system can swap inactive memory segments to a mass storage device
such as a disk.  An application program need not be informed of this.  When the
program attempts to access the swapped-out memory segment, the #NP handler can
be invoked, the segment brought back into memory, and the offending instruction
restarted.



Appendix A Processor Architecture Summary628

#SS 12 -- Stack Fault (Selector or Zero Error Code)

This exception is generated when a limit violation is detected in addressing through
the SS register.  It can occur for stack-oriented instructions such as PUSH or POP, as
well as for other types of memory references using SS, such as MOV EAX,[EBP+28].

#SS can also occur for an ENTER instruction when there is not enough space on the
stack for the indicated local variable space, even if the stack exception is not
triggered by pushing (E)BP or copying the display stack.  Therefore, a stack
exception can indicate a stack overflow, a stack underflow, or a wild offset.  The
error code is 0 in these cases.

#SS is also generated during an attempt to load SS with a descriptor that is marked
"not present" but is otherwise valid.  This can occur in a task switch, an interlevel
call, an interlevel return, a move to SS, or a pop to SS.  The error code is not 0 in
these cases.  An interlevel call deals with two stacks; #SS can occur on either one
of them.  They are distinguished by the error code.  If #SS is caused by a "not
present" condition or by overflow on the new stack in an interlevel call, the error
code contains the selector of the segment that caused the exception.  Otherwise, the
error code is 0.

#SS is never generated when addressing through the DS, ES FS, or GS registers,
even if the offending register points to the same segment as the SS register.



ASM386 Assembly Language Reference Appendix A 629

#GP 13 -- General Protection (Selector or Zero Error Code)

This exception is generated for all protection violations not covered by the other
exceptions in this section.

#GP is generated by an attempt to do any of the following:

• Violate the privilege rules.  For example, an occurrence of an interrupt or
exception via a trap or interrupt from virtual 8086 mode to a privilege level
other than 0 generates #GP.

• Address a memory location using an offset that exceeds the limit for the
segment involved

• Jump to a data segment

• Write to a read-only segment

• Exceed the instruction length limit of 15 bytes

• Load SS with a selector for a system segment or a read-only segment when the
selector does not come from a task state segment (#TS occurs if it does come
from a task state segment.)

• Load DS, ES, FS, or GS with the descriptor of a system segment or a non-
readable code segment

• Access memory via DS, ES, FS, or GS when the segment register contains a
null selector

• Switch to a task marked "busy"

• Load CR0 with PG = 1 and PE = 0 (paging enabled, protection disabled)

If #GP occurred while a descriptor is being loaded, the error code contains the
selector involved.  Otherwise, the error code is 0.  If the error code is not 0, the
instruction can be restarted if the erroneous condition is corrected.  If the error code
is 0, either a limit violation, a write-protect violation, or an attempt to use an
invalid segment register occurred.  An invalid segment register contains a value
from 0 to 3.



Appendix A Processor Architecture Summary630

#PF 14 -- Page Fault (Type of Fault)

This exception is generated when a page fault occurs.  Paging can be enabled
during protected mode or virtual 8086 mode (the PG bit of CR0 equals 1).

The program currently executing is faulted in a manner that allows the instruction
to be restarted.  When a page fault occurs, the CS and EIP register images point to
the instruction causing the page fault, and the control register CR2 is loaded with
the linear address causing the page fault.

The error code provides the following information in its lower three bits:

• Bit 0 (P) indicates whether a page fault was caused by a page not present
(P=0), or by a page level protection violation (P=1).

• Bit 1 (W/R) indicates that the access causing the fault was a read (W/R = 0) or
a write (W/R = 1).

• Bit 2 (U/S) indicates that the fault occurred while at User level (U/S = 1) or at
Supervisor level (U/S = 0).

The remaining bits of the fault code provided by #PF are undefined.



ASM386 Assembly Language Reference Appendix A 631

#MF 16 -- Math Fault (No Error Code)

This exception is generated when the floating-point coprocessor detects an error.
The coprocessor signals an error by the ERROR# input pin leading from the
floating-point coprocessor to the processor.  The processor tests ERROR# at the
beginning of most floating-point instructions and when a WAIT instruction is
executed with the EM bit of the machine status word set to 0 (i.e., no emulation of
the math unit).  The floating-point instructions that do not cause the ERROR# pin
to be tested are FNCLEX, FNINIT , FNSAVE, FNSTCW, FNSTSW, and FNSTENV.

■■  ■■  ■■





ASM386 Assembly Language Reference Appendix B 633

Sample Program B
This appendix contains:

• The source code for a program that switches from real address mode to
protected mode.

• The listing generated by the ASM386 Macro Assembler for this program.

This example works on an Intel386 processor.

  For an example of a program that uses the new instructions, see the Program
Development Templates, order number 481894-001.

Sample Source Code
$TITLE('Protected Mode Transition -- 386 initialization')
NAME RESET
;*****************************************************************
;
; Upon reset the 386 starts executing at address 0FFFFFFF0H.
; The upper 12 address bits remain high until a FAR call or
; jump is executed.
;
; Assume the following:
;
;
; -a short jump at address 0FFFFFFF0H (placed there by the
;  system builder) causes execution to begin at START in
;  segment RESET-CODE.
;
;
; -segment RESET_CODE is based at physical address 0FFFF0000H,
;  i.e. at the start of the last 64K in the 4G address space.
;  Note that this is the base of the CS register at reset. If
;  you locate ROMcode above this address, you will need to
;  figure out an adjustment factor to address things within
;  this segment.
;
;*****************************************************************
$EJECT ;@newpage



Appendix B Sample Program634

; Define addresses to locate GDT and IDT in RAM.
; These addresses are also used in the BLD386 file that defines
; the GDT and IDT. If you change these addresses, make sure you
; change the base addresses specified in the build file.

GDTbase   EQU  00001000H       ; physical address for GDT base
IDTbase   EQU  00000400H       ; physical address for IDT base

PUBLIC  GDT-EPROM
PUBLIC  IDT-EPROM
PUBLIC  START

DUMMY   segment rw             ; ONLY for ASM386 main module stack init
    DW 0
DUMMY ends

;**************************************************************
;
; Note: RESET_CODE must be USE16 because the 386 initially executes
;   in real mode.
;

RESET_CODE segment er PUBLIC  USE16

ASSUME DS:nothing, ES:nothing

;
; 386 Descriptor template
;
DESC   STRUC
  lim_0_15  DW 0                    ; limit bits (0..15)
  bas_0_15  DW 0                    ; base bits (0..15)
  bas_16_23 DB 0                    ; base bits (16..23)
  access    DB 0                    ; access byte
  gran      DB 0                    ; granularity byte
  bas_24_31 DB 0                    ; base bits (24..31)
DESC   ENDS

; The following is the layout of the real GDT created by BLD386.
; It is located in EPROM and will be copied to RAM.
;
; GDT[0]  ... NULL
; GDT[1]  ... Alias for RAM GDT
; GDT[2]  ... Alias for RAM IDT
; GDT[2]  ... initial task TSS
; GDT[3]  ... initial task TSS alias
; GDT[4]  ... initial task LDT
; GDT[5]  ... initial task LDT alias



ASM386 Assembly Language Reference Appendix B 635

;
; define entries in GDT and IDT.

GDT_ENTRIES EQU 8
IDT_ENTRIES EQU 32

; define some constants to index into the real GDT

GDT_ALIAS  EQU 1*SIZE DESC
IDT_ALIAS  EQU 2*SIZE DESC
INIT_TSS   EQU 3*SIZE DESC
INIT_TSS_A EQU 4*SIZE DESC
INIT_LDT   EQU 5*SIZE DESC
INIT_LDT_A EQU 6*SIZE DESC

;
; location of alias in INIT_LDT

INIT_LDT_ALIAS EQU 1*SIZE DESC

;
; access rights byte for DATA and TSS descriptors

DS_ACCESS  EQU 10010010B
TSS_ACCESS EQU 10001001B

;
; This temporary GDT will be used to set up the real GDT in RAM.

Temp_GDT  LABEL BYTE   ; tag for begin of scratch GDT

NULL_DES  DESC <>      ; NULL descriptor

                       ; 32-Gigabyte data segment based at 0
FLAT_DES  DESC <0FFFFH,0,0,92h,0CFh,0>

GDT_eprom  DP  ?       ; Builder places GDT address and limit
                       ; in this 6 byte area.

IDT_eprom  DP  ?       ; Builder places IDT address and limit
                       ; in this 6 byte area.



Appendix B Sample Program636

;
; Prepare operand for loading GDTR and LDTR.

TGDT_pword  LABEL PWORD     ; for temp GDT
   DW  end_Temp_GDT-Temp_GDT -1
   DD  0

GDT_pword   LABEL PWORD     ; for GDT in RAM
   DW  GDT_ENTRIES * SIZE DESC -1
   DD  GDTbase

IDT_pword   LABEL PWORD     ; for IDT in RAM
   DW  IDT_ENTRIES * SIZE DESC -1
   DD  IDTbase

end_Temp_GDT  LABEL BYTE

;
; Define equates for addressing convenience.

GDT_DES_FLAT   EQU DS:GDT_ALIAS +GDTbase
IDT_DES_FLAT   EQU DS:IDT_ALIAS +GDTbase

INIT_TSS_A_OFFSET EQU DS:INIT_TSS_A
INIT_TSS_OFFSET   EQU DS:INIT_TSS

INIT_LDT_A_OFFSET EQU DS:INIT_LDT_A
INIT_LDT_OFFSET   EQU DS:INIT_LDT

; define pointer for first task switch

ENTRY_POINTER LABEL DWORD
     DW 0, INIT_TSS

;**************************************************************
;
; Jump from reset vector to here.

START:

  CLI       ;disable interrupts
  CLD       ;clear direction flag

  LIDT  NULL_des  ;force shutdown on errors



ASM386 Assembly Language Reference Appendix B 637

;
; move scratch GDT to RAM at physical 0

  XOR DI,DI
  MOV ES,DI                         ;point ES:DI to physical location 0

  MOV SI,OFFSET Temp_GDT
  MOV CX,end_Temp_GDT-Temp_GDT      ;set byte count
  INC CX
;
; move table

  REP MOVS BYTE PTR ES:[DI],BYTE PTR CS:[SI]

  LGDT  tGDT_pword                  ;load GDTR for Temp. GDT
                                    ;(located at 0)

; switch to protected mode

  MOV EAX,CR0                       ;get current CR0
  ADD EAX,1                         ;set PE bit
  MOV CR0,EAX                       ;begin protected mode
;
; clear prefetch queue

  JMP SHORT flush
flush:

; set DS,ES,SS to address flat linear space (0 ... 4GB)

  MOV BX,FLAT_DES-Temp_GDT
  MOV DS,BX
  MOV ES,BX
  MOV SS,BX
;
; initialize stack pointer to some (arbitrary) RAM location

  MOV ESP, OFFSET end_Temp_GDT

;
; copy eprom GDT to RAM

  MOV ESI,DWORD PTR GDT_eprom +2    ; get base of eprom GDT
                                    ; (put here by builder).

  MOV EDI,GDTbase                   ; point ES:EDI to GDT base in RAM.



Appendix B Sample Program638

  MOV CX,WORD PTR gdt_eprom +0      ; limit of eprom GDT
  INC CX
  SHR CX,1                          ; easier to move words
  CLD
  REP MOVS  WORD PTR ES:[EDI],WORD PTR DS:[ESI]

;
; copy eprom IDT to RAM
;
  MOV ESI,DWORD PTR IDT_eprom +2    ; get base of eprom IDT
                                    ; (put here by builder)

  MOV EDI,IDTbase                   ; point ES:EDI to IDT base in RAM.

  MOV CX,WORD PTR idt_eprom +0      ; limit of eprom IDT
  INC CX
  SHR CX,1
  CLD
  REP MOVS  WORD PTR ES:[EDI],WORD PTR DS:[ESI]

; switch to RAM GDT and IDT
;
  LIDT IDT_pword
  LGDT GDT_pword

;
  MOV BX,GDT_ALIAS                  ; point DS to GDT alias
  MOV DS,BX
;
; copy eprom TSS to RAM
;
  MOV BX,INIT_TSS_A                 ; INIT_TSS_A descriptor base
                                    ; has RAM location of INIT_TSS.

  MOV ES,BX                         ; ES points to TSS in RAM

  MOV BX,INIT_TSS                   ; get initial task selector
  LAR DX,BX                         ; save access byte
  MOV [BX].access,DS_ACCESS         ; set access as data segment
  MOV FS,BX                         ; FS points to eprom TSS

  XOR SI,SI                         ; FS:SI points to eprom TSS
  XOR DI,DI                         ; ES:DI points to RAM TSS

  MOV CX,[BX].lim_0_15              ; get count to move
  INC CX



ASM386 Assembly Language Reference Appendix B 639

;
; move INIT_TSS to RAM.

  REP MOVS BYTE PTR ES:[DI],BYTE PTR FS:[SI]

  MOV [BX].access,DH                  ; restore access byte

;
; change base of INIT_TSS descriptor to point to RAM.

  MOV AX,INIT_TSS_A_OFFSET.bas_0_15
  MOV INIT_TSS_OFFSET.bas_0_15,AX
  MOV AL,INIT_TSS_A_OFFSET.bas_16_23
  MOV INIT_TSS_OFFSET.bas_16_23,AL
  MOV AL,INIT_TSS_A_OFFSET.bas_24_31
  MOV INIT_TSS_OFFSET.bas_24_31,AL

;
; change INIT_TSS_A to form a save area for TSS on first task
; switch. Use RAM at location 0.

  MOV BX,INIT_TSS_A
  MOV WORD PTR [BX].bas_0_15,0
  MOV [BX].bas_16_23,0
  MOV [BX].bas_24_31,0
  MOV [BX].access,TSS_ACCESS
  MOV [BX].gran,0
  LTR BX                            ; defines save area for TSS

;
; copy eprom LDT to RAM
;
  MOV BX,INIT_LDT_A                 ; INIT_LDT_A descriptor has
                                    ; base address in RAM for INIT_LDT.

  MOV ES,BX                         ; ES points LDT location in RAM.

  MOV AH,[BX].bas_24_31
  MOV AL,[BX].bas_16_23
  SHL EAX,16
  MOV AX,[BX].bas_0_15              ; save INIT_LDT base (ram) in EAX

  MOV BX,INIT_LDT                   ; get initial LDT selector
  LAR DX,BX                         ; save access rights
  MOV [BX].access,DS_ACCESS          ; set access as data segment
  MOV FS,BX                         ; FS points to eprom LDT

  XOR SI,SI                         ; FS:SI points to eprom LDT
  XOR DI,DI                         ; ES:DI points to RAM LDT
  MOV CX,[BX].lim_0_15              ; get count to move
  INC CX



Appendix B Sample Program640

;
; move initial LDT to RAM

  REP MOVS BYTE PTR ES:[DI],BYTE PTR FS:[SI]

  MOV [BX].access,DH                ; restore access rights in
                                    ; INIT_LDT descriptor

;
; change base of alias (of INIT_LDT) to point to location in RAM.

  MOV ES:[INIT_LDT_ALIAS].bas_0_15,AX
  SHR EAX,16
  MOV ES:[INIT_LDT_ALIAS].bas_16_23,AL
  MOV ES:[INIT_LDT_ALIAS].bas_24_31,AH
;
; now set the base value in INIT_LDT descriptor

  MOV AX,INIT_LDT_A_OFFSET.bas_0_15
  MOV INIT_LDT_OFFSET.bas_0_15,AX
  MOV AL,INIT_LDT_A_OFFSET.bas_16_23
  MOV INIT_LDT_OFFSET.bas_16_23,AL
  MOV AL,INIT_LDT_A_OFFSET.bas_24_31
  MOV INIT_LDT_OFFSET.bas_24_31,AL

;
; Now GDT, IDT, initial TSS and initial LDT are all set up.
;
; Start the first task!
;
  JMP ENTRY_POINTER

RESET_CODE ends
  END START, SS:DUMMY,DS:DUMMY

Sample Listing
The following pages are a listing of the preceding program.



ASM386 Assembly Language Reference Appendix B 641

OS Vx.y  (038-N) 80386 MACRO ASSEMBLER Protected Mode Transition -- 386 initialization

09:37:35  11/11/87 PAGE 1

OS Vx.y  (038-N) 80386 MACRO ASSEMBLER Xnnn, ASSEMBLY OF MODULE RESET

OBJECT MODULE PLACED IN RESET.OBJ

ASSEMBLER INVOKED BY: C:\TSTASM\ASM386.EXE RESET.SRC

LOC  OBJ                  LINE  SOURCE

                           1 +1 $TITLE('Protected Mode Transition -- 386

                              initialization')

                           2  NAME RESET

                           3

                           4

                           5

;******************************************************************

                           6  ;

                           7  ; Upon reset the 386 starts executing at address

                           8  ; 0FFFFFFF0H. The upper 12 address bits remain high

                           9  ; until a FAR call or jump is executed.

                          10  ;

                          11  ; Assume the following:

                          12  ;

                          13  ;

                          14  ; - a short jump at address 0FFFFFFF0H (placed there by

                          15  ; the system builder) causes execution to begin at

                          16  ; START in segment RESET_CODE.

                          17  ;

                          18  ;

                          19  ; - segment RESET_CODE is based at physical address

                          20  ; 0FFFF0000H, i.e. at the start of the last 64K in the 4G

                          21  ; address space. Note that this is the base of the CS

                          22  ; register at reset. If you locate ROMcode above this

                          23  ; address, you will need to figure out an adjustment

                          24  ; factor to address things within this segment.

                          25  ;

                          26

;******************************************************************

                          27 +1 $EJECT ;@newpage



Appendix B Sample Program642

OS Vx.y  (038-N) 80386 MACRO ASSEMBLER Protected Mode Transition -- 386 initialization

09:37:35  11/11/87 PAGE 2

LOC  OBJ                 LINE  SOURCE

                          28

                          29

                          30  ; Define addresses to locate GDT and IDT in RAM.

                          31  ; These addresses are also used in the BLD386 file that

                          32  ; defines the GDT and IDT. If you change these

                          33  ; addresses, make sure you change the base addresses

                                specified in the build file.

                          34

1000                   35  GDTbase   EQU  00001000H ; physical address for GDT base

0400                   36  IDTbase   EQU  00000400H ; physical address for IDT base

                          37

                          38  PUBLIC  GDT_EPROM

                          39  PUBLIC  IDT_EPROM

                          40  PUBLIC  START

                          41

--------                42  DUMMY  segment rw  ; ONLY for ASM386 main module stack init

00000000 0000    43   DW 0

--------                44  DUMMY ends

                          45

                          46

;******************************************************************

                          47  ;

                          48  ; Note: RESET_CODE must be USE16 because the 386

                          49  ; initially executes in real mode.

                          50  ;

                          51

  ----                    52  RESET_CODE segment er PUBLIC  USE16

                          53

                          54  ASSUME DS:nothing, ES:nothing

                          55

                          56  ;

                          57  ; 386 Descriptor template

                          58  ;

  ----                    59  DESC   STRUC

0000                      60   lim_0_15  DW 0     ; limit bits (0..15)

0002                      61   bas_0_15  DW 0     ; base bits (0..15)

0004                      62   bas_16_23 DB 0     ; base bits (16..23)

0005                      63   access    DB 0     ; access byte

0006                      64   gran      DB 0     ; granularity byte

0007             65   bas_24_31 DB 0     ; base bits (24..31)

  ----                    66  DESC   ENDS

                          67

                          68  ; The following is the layout of the real GDT created by

                          69  ; BLD386. It is located in EPROM and will be copied to

                                RAM.



ASM386 Assembly Language Reference Appendix B 643

                          70  ;

                          71  ; GDT[0]  ... NULL

                          72  ; GDT[1]  ... Alias for RAM GDT

                          73  ; GDT[2]  ... Alias for RAM IDT

                          74  ; GDT[2]  ... initial task TSS

                          75  ; GDT[3]  ... initial task TSS alias

                          76  ; GDT[4]  ... initial task LDT

                          77  ; GDT[5]  ... initial task LDT alias

                          78

                          79  ;

                          80  ; define entries in GDT and IDT.

                          81

 0008                     82  GDT_ENTRIES EQU 8

OS Vx.y  (038-N) 80386 MACRO ASSEMBLER Protected Mode Transition -- 386 initialization

09:37:35  11/11/87 PAGE 3

LOC  OBJ                 LINE  SOURCE

0020                      83  IDT_ENTRIES EQU 32

                          84

                          85  ; define some constants to index into the real GDT

                          86

0008                      87  GDT_ALIAS  EQU 1*SIZE DESC

0010                      88  IDT_ALIAS  EQU 2*SIZE DESC

0018                      89  INIT_TSS   EQU 3*SIZE DESC

0020                      90  INIT_TSS_A EQU 4*SIZE DESC

0028                      91  INIT_LDT   EQU 5*SIZE DESC

0030                      92  INIT_LDT_A EQU 6*SIZE DESC

                          93

                          94  ;

                          95  ; location of alias in INIT_LDT

                          96

 0008                     97  INIT_LDT_ALIAS EQU 1*SIZE DESC

                          98

                          99  ;

                         100  ; access rights byte for DATA and TSS descriptors

                         101

 0092                    102  DS_ACCESS  EQU 10010010B

 0089                    103  TSS_ACCESS EQU 10001001B

                         104

                         105

                         106  ;

                         107  ; This temporary GDT will be used to set up the real GDT

                                in RAM.

                         108

  0000                   109  Temp_GDT  LABEL BYTE  ; tag for begin of scratch GDT

                         110

  0000 0000              111  NULL_DES  DESC <>     ; NULL descriptor



Appendix B Sample Program644

  0002 0000

  0004 00

  0005 00

  0006 00

  0007 00

                         112

                         113             ; 32-Gigabyte data segment based at 0

  0008 FFFF              114  FLAT_DES  DESC <0FFFFH,0,0,92h,0CFh,0>

  000A 0000

  000C 00

  000D 92

  000E CF

  000F 00

                         115

                         116

  0010 ????????????      117  GDT_eprom  DP  ?     ; Builder places GDT address and

                         118                       ; limit in this 6 byte area.

                         119

  0016 ????????????      120  IDT_eprom  DP  ?     ; Builder places IDT address and

                         121                       ; limit in this 6 byte area.

                         122

                         123  ;

                         124  ; Prepare operand for loading GDTR and LDTR.

                         125

  001C                   126  TGDT_pword  LABEL PWORD     ; for temp GDT

  001C 2D00              127  DW  end_Temp_GDT-Temp_GDT -1

OS Vx.y  (038-N) 80386 MACRO ASSEMBLER Protected Mode Transition -- 386 initialization

09:37:35  11/11/87 PAGE 4

LOC  OBJ                LINE  SOURCE

001E 00000000            128     DD  0

                         129

0022                     130  GDT_pword   LABEL PWORD     ; for GDT in RAM

0022 3F00                131  DW  GDT_ENTRIES * SIZE DESC -1

0024 00100000            132  DD  GDTbase

                         133

0028                     134  IDT_pword   LABEL PWORD     ; for IDT in RAM

0028 FF00                135  DW  IDT_ENTRIES * SIZE DESC -1

002A 00040000            136  DD  IDTbase

                         137

002E                     138  end_Temp_GDT  LABEL BYTE

                         139

                         140  ;

                         141  ; Define equates for addressing convenience.

                         142

1008:                    143  GDT_DES_FLAT   EQU DS:GDT_ALIAS +GDTbase

1010:                    144  IDT_DES_FLAT   EQU DS:IDT_ALIAS +GDTbase

                         145



ASM386 Assembly Language Reference Appendix B 645

0020:                    146  INIT_TSS_A_OFFSET EQU DS:INIT_TSS_A

0018:                    147  INIT_TSS_OFFSET   EQU DS:INIT_TSS

                         148

0030:                    149  INIT_LDT_A_OFFSET EQU DS:INIT_LDT_A

0028:                    150  INIT_LDT_OFFSET   EQU DS:INIT_LDT

                         151

                         152

                         153  ; define pointer for first task switch

                         154

002E                     155  ENTRY_POINTER LABEL DWORD

002E 0000                156  DW 0, INIT_TSS

0030 1800

                         157

                         158

;******************************************************************

                         159  ;

                         160  ; Jump from reset vector to here.

                         161

0032                     162  START:

                         163

0032 FA                  164  CLI              ;disable interrupts

0033 FC                  165  CLD              ;clear direction flag

                         166

0034 2E0F011E0000     R  167   LIDT  NULL_des  ;force shutdown on errors

                         168

                         169  ;

                         170  ; move scratch GDT to RAM at physical 0

                         171

003A 31FF                172  XOR DI,DI

003C 8EC7                173  MOV ES,DI        ;point ES:DI to physical location 0

                         174

003E BE0000           R  175  MOV SI,OFFSET Temp_GDT

0041 B92E00              176  MOV CX,end_Temp_GDT-Temp_GDT   ;set byte count

0044 41                  177  INC CX

                         178  ;

                         179  ; move table

                         180

0045 F32EA4              181  REP MOVS BYTE PTR ES:[DI],BYTE PTR CS:[SI]

OS Vx.y  (038-N) 80386 MACRO ASSEMBLER Protected Mode Transition -- 386 initialization

09:37:35  11/11/87 PAGE 5

LOC  OBJ                LINE  SOURCE

                         182

0048 2E0F01161C00     R  183  LGDT  tGDT_pword      ;load GDTR for Temp. GDT

                         184                        ;(located at 0)

                         185

                         186                        ; switch to protected mode

                         187

004E 660F20C0            188  MOV EAX,CR0           ;get current CR0

0052 660501000000        189  ADD EAX,1             ;set PE bit



Appendix B Sample Program646

0058 660F22C0            190  MOV CR0,EAX           ;begin protected mode

                         191  ;

                         192                        ; clear prefetch queue

                         193

005C EB00                194  JMP SHORT flush

005E                     195  flush:

                         196

                         197  ; set DS,ES,SS to address flat linear space (0 ... 4GB)

                         198

005E BB0800              199  MOV BX,FLAT_DES-Temp_GDT

0061 8EDB                200  MOV DS,BX

0063 8EC3                201  MOV ES,BX

0065 8ED3                202  MOV SS,BX

                         203  ;

                         204  ; initialize stack pointer to some (arbitrary) RAM

                                location

                         205

0067 66BC2E000000     R  206  MOV ESP, OFFSET end_Temp_GDT

                         207

                         208  ;

                         209  ; copy eprom GDT to RAM

                         210

006D 662E8B361200     R  211  MOV ESI,DWORD PTR GDT_eprom +2 ; get base of eprom GDT

                         212                        ; (put here by builder).

                         213

0073 66BF00100000        214  MOV EDI,GDTbase       ; point ES:EDI to GDT base in RAM.

                         215

0079 2E8B0E1000       R  216  MOV CX,WORD PTR gdt_eprom +0  ; limit of eprom GDT

007E 41                  217  INC CX

007F D1E9                218  SHR CX,1              ; easier to move words

0081 FC                  219  CLD

0082 F367A5              220  REP MOVS  WORD PTR ES:[EDI],WORD PTR DS:[ESI]

                         221

                         222  ;

                         223  ; copy eprom IDT to RAM

                         224  ;

0085 662E8B361800     R  225  MOV ESI,DWORD PTR IDT_eprom +2 ; get base of eprom IDT

                         226                        ; (put here by builder)

                         227

008B 66BF00040000        228  MOV EDI,IDTbase       ; point ES:EDI to IDT base in RAM.

                         229

0091 2E8B0E1600       R  230  MOV CX,WORD PTR idt_eprom +0  ; limit of eprom IDT

0096 41                  231  INC CX

0097 D1E9                232  SHR CX,1

0099 FC                  233  CLD

009A F367A5              234  REP MOVS  WORD PTR ES:[EDI],WORD PTR DS:[ESI]

                         235

                         236  ; switch to RAM GDT and IDT



ASM386 Assembly Language Reference Appendix B 647

OS Vx.y  (038-N) 80386 MACRO ASSEMBLER Protected Mode Transition -- 386 initialization

09:37:35  11/11/87 PAGE 6

LOC  OBJ                LINE  SOURCE

                         237  ;

009D 2E0F011E2800     R  238  LIDT IDT_pword

00A3 2E0F01162200     R  239  LGDT GDT_pword

                         240

                         241  ;

00A9 BB0800              242  MOV BX,GDT_ALIAS       ; point DS to GDT alias

00AC 8EDB                243  MOV DS,BX

                         244  ;

                         245  ; copy eprom TSS to RAM

                         246  ;

00AE BB2000              247  MOV BX,INIT_TSS_A      ; INIT_TSS_A descriptor base

                         248                         ; has RAM location of INIT_TSS.

                         249

00B1 8EC3                250  MOV ES,BX              ; ES points to TSS in RAM

                         251

00B3 BB1800              252  MOV BX,INIT_TSS        ; get initial task selector

00B6 0F02D3              253  LAR DX,BX              ; save access byte

00B9 C6470592            254  MOV [BX].access,DS_ACCESS  ; set access as data segment

00BD 8EE3                255  MOV FS,BX              ; FS points to eprom TSS

                         256

00BF 31F6                257  XOR SI,SI              ; FS:SI points to eprom TSS

00C1 31FF                258  XOR DI,DI              ; ES:DI points to RAM TSS

                         259

00C3 8B0F                260  MOV CX,[BX].lim_0_15    ; get count to move

00C5 41                  261  INC CX

                         262

                         263  ;

                         264  ; move INIT_TSS to RAM.

                         265

00C6 F364A4              266  REP MOVS BYTE PTR ES:[DI],BYTE PTR FS:[SI]

                         267

00C9 887705              268  MOV [BX].access,DH      ; restore access byte

                         269

                         270  ;

                         271  ; change base of INIT-TSS descriptor to point to RAM.

                         272

00CC A12200              273  MOV AX,INIT_TSS_A_OFFSET.bas_0_15

00CF A31A00              274  MOV INIT_TSS_OFFSET.bas_0_15,AX

00D2 A02400              275  MOV AL,INIT_TSS_A_OFFSET.bas_16_23

00D5 A21C00              276  MOV INIT_TSS_OFFSET.bas_16_23,AL

00D8 A02700              277  MOV AL,INIT_TSS_A_OFFSET.bas_24_31

00DB A21F00              278  MOV INIT_TSS_OFFSET.bas_24_31,AL

                         279

                         280  ;

                         281  ; change INIT_TSS_A to form a save area for TSS on

                         282  ; first task switch. Use RAM at location 0.



Appendix B Sample Program648

                         283

00DE BB2000              284  MOV BX,INIT_TSS_A

00E1 C747020000          285  MOV WORD PTR [BX].bas_0_15,0

00E6 C6470400            286  MOV [BX].bas_16_23,0

00EA C6470700            287  MOV [BX].bas_24_31,0

00EE C6470589            288  MOV [BX].access,TSS_ACCESS

00F2 C6470600            289  MOV [BX].gran,0

00F6 0F00DB              290  LTR BX                  ; defines save area for TSS

                         291

OS Vx.y  (038-N) 80386 MACRO ASSEMBLER Protected Mode Transition -- 386 initialization

09:37:35  11/11/87 PAGE 7

LOC  OBJ                LINE  SOURCE

                         292  ;

                         293  ; copy eprom LDT to RAM

                         294  ;

00F9 BB3000              295  MOV BX,INIT_LDT_A      ; INIT_LDT_A descriptor has

                         296                         ; base address in RAM for

                                                     ; INIT_LDT.

                         297

00FC 8EC3                298  MOV ES,BX              ; ES points LDT location in RAM.

                         299

00FE 8A6707              300  MOV AH,[BX].bas_24_31

0101 8A4704              301  MOV AL,[BX].bas_16_23

0104 66C1E010            302  SHL EAX,16

0108 8B4702              303  MOV AX,[BX].bas_0_15    ; save INIT_LDT base (ram) in EAX

                         304

010B BB2800              305  MOV BX,INIT_LDT         ; get initial LDT selector

010E 0F02D3              306  LAR DX,BX               ; save access rights

0111 C6470592            307  MOV [BX].access,DS_ACCESS   ; set access as data segment

0115 8EE3                308  MOV FS,BX               ; FS points to eprom LDT

                         309

0117 31F6                310  XOR SI,SI               ; FS:SI points to eprom LDT

0119 31FF                311  XOR DI,DI               ; ES:DI points to RAM LDT

                         312

011B 8B0F                313  MOV CX,[BX].lim_0_15    ; get count to move

011D 41                  314  INC CX

                         315  ;

                         316  ; move initial LDT to RAM

                         317

011E F364A4              318  REP MOVS BYTE PTR ES:[DI],BYTE PTR FS:[SI]

                         319

0121 887705              320  MOV [BX].access,DH      ; restore access rights in

                         321                          ; INIT_LDT descriptor

                         322

                         323  ;

                         324  ; change base of alias (of INIT_LDT) to point to

                                location in RAM.



ASM386 Assembly Language Reference Appendix B 649

                         325

0124 26A30A00            326  MOV ES:[INIT_LDT_ALIAS].bas_0_15,AX

0128 66C1E810            327  SHR EAX,16

012C 26A20C00            328  MOV ES:[INIT_LDT_ALIAS].bas_16_23,AL

0130 2688260F00          329  MOV ES:[INIT_LDT_ALIAS].bas_24_31,AH

                         330  ;

                         331  ; now set the base value in INIT_LDT descriptor

                         332

0135 A13200              333  MOV AX,INIT_LDT_A_OFFSET.bas_0_15

0138 A32A00              334  MOV INIT_LDT_OFFSET.bas_0_15,AX

013B A03400              335  MOV AL,INIT_LDT_A_OFFSET.bas_16_23

013E A22C00              336  MOV INIT_LDT_OFFSET.bas_16_23,AL

0141 A03700              337  MOV AL,INIT_LDT_A_OFFSET.bas_24_31

0144 A22F00              338  MOV INIT_LDT_OFFSET.bas_24_31,AL

                         339

                         340  ;

                         341  ; Now GDT, IDT, initial TSS and initial LDT are all

                              ; set up.

                         342  ;

                         343  ; Start the first task!

                         344  ;

0147 2EFF2E2E00      R   345  JMP ENTRY_POINTER

                         346

OS Vx.y  (038-N) 80386 MACRO ASSEMBLER Protected Mode Transition -- 386 initialization

09:37:35  11/11/87 PAGE 8

LOC  OBJ                LINE  SOURCE

  ----                   347  RESET_CODE ends

*** WARNING #377 IN 347, (PASS 2) SEGMENT CONTAINS PRIVILEGED INSTRUCTION(S)

                         348   END START, SS:DUMMY,DS:DUMMY

ASSEMBLY COMPLETE,       1 WARNING,  NO ERRORS.

■■  ■■  ■■





ASM386 Assembly Language Reference Appendix C 651

Keywords And
Reserved Words C

This appendix lists assembler keywords and reserved words. Keywords consist of
processor and numerics coprocessor mnemonics.  Reserved words consist of all
predefined keywords except the mnemonics.

Programmer-defined mnemonics may be defined as aliases for keywords if (1) the
programmer-defined substitute is equated to the keyword with the EQU directive
and (2) the original keyword is then purged with the PURGE directive. Programmer-
defined aliases may be substituted for assembler reserved words if they are defined
with EQU. However, reserved words cannot be purged.

See also: PURGE directive, Chapter 4

Note that AND, NOT, OR, XOR, SHR, and SHL function as both processor instructions
and assembler operators. As operators, they are considered reserved words that
cannot be purged. As instructions, they may be aliased to an identifier with EQU;
this will not affect the use of AND, NOT, OR, XOR, SHR, and SHL as operators.



Appendix C Keywords and Reserved Words 652

Table C-1.  Assembler Keywords

AAA
AAD
AAM
AAS
ADC
ADD
AND
ARPL
BOUND
BSF
BSR
BSWAP
BT
BTC
BTR
BTS
CALL
CBW
CDQ
CLC
CLD
CLI
CLTS
CMC
CMP
CMPS
CMPSB
CMPSD
CMPSW
CMPXCHG
CWD
CWDE
DAA
DAS
DIV
ENTER
ESC
F2XM1
FABS
FADD
FADDP
FBLD
FBSTP
FCHS
FCLEX

FCOM
FCOMP
FCOMPP
FCOS
FDECSTP
FDISI
FDIV
FDIVP
FDIVR
FDIVRP
FENI
FFREE
FIADD
FICOM
FICOMP
FIDIV
FIDIVR
FILD
FIMUL
FINCSTP
FINIT
FIST
FISTP
FISUB
FISUBR
FLD
FLD1
FLDCW
FLDENV
FLDL2E
FLDL2T
FLDLG2
FLDLN2
FLDPI
FLDZ
FMUL
FMULP
FNCLEX
FNDISI
FNENI
FNINIT
FNOP
FNSAVE
FNSTCW
FNSTENV

FNSTSW
FPATAN
FPREM
FPTAN
FRNDINT
FRSTOR
FSAVE
FSCALE
FSETPM
FSIN
FSINCOS
FSQRT
FST
FSTCW
FSTENV
FSTP
FSTSW
FSUB
FSUBR
FSUBRP
FTST
FUCOM
FUCOMP
FUCOMPP
FWAIT
FXAM
FXCH
FXTRACT
FYL2X
FYL2XP1
HLT
IDIV
IMUL
IN
INC
INS
INSB
INSD
INSW
INT
INTO
INVD
INVLPG
IRET
IRETD

JA
JAE
JB
JBE
JC
JCXZ
JE
JECXZ
JG
JGE
JL
JLE
JMP
JNA
JNAE
JNB
JNBE
JNC
JNE
JNG
JNGE
JNL
JNLE
JNO
JNP
JNS
JNZ
JO
JP
JPE
JPO
JS
JZ
LAHF
LAR
LDS
LEA
LEAVE
LES
LFS
LGDT
LGDTD
LGDTW
LGS
LIDT

LIDTD
LIDTW
LLDT
LMSW
LOCK
LODS
LODSB
LODSD
LODSW
LOOP
LOOPE
LOOPNE
LOOPNZ
LOOPZ
LSL
LSS
LTR
MOV
MOVS
MOVSB
MOVSD
MOVSW
MOVSX
MOVZX
MUL
NEG
NIL†

NOP
NOT
OR
OUT
OUTS
OUTSB
OUTSD
OUTSW
POP
POPA
POPAD
POPF
POPFD
PUSH
PUSHA
PUSHAD
PUSHF
PUSHFD



ASM386 Assembly Language Reference Appendix C 653

RCL
RCR
REP
REPE
REPNE
REPNZ
REPZ
RET
ROL
ROR
SAHF
SAL
SAR
SBB
SCAS
SCASB

SCASD
SCASW
SETA
SETAE
SETB
SETBE
SETC
SETE
SETG
SETGE
SETL
SETLE
SETNA
SETNAE
SETNBE
SETNC

SETNE
SETNGE
SETNL
SETNLE
SETNO
SETNP
SETNS
SETNZ
SETO
SETP
SETPE
SETPO
SETS
SETZ
SGDT
SGDTW

SHL
SHLD
SHR
SHRD
SIDT
SIDTD
SIDTW
SLDT
SMSW
STC
STD
STI
STOS
STOSB
STOSD
STOSW

STR
SUB
TEST
VERR
VERW
WAIT
WBINVD
XADD
XCHG
XLAT
XLATB
XOR

† NIL is the "empty imperative." The assembler generates no opcode when NIL is specified.

Table C-1.  Assembler Keywords (continued)



Appendix C Keywords and Reserved Words 654

Table C-2.  Assembler Reserved Words

ABS
AH
AL
ALIGN
AND
ASSUME
AX
BH
BIT
BITOFFSET
BL
BP
BX
BYTE
CH
CL
CODEMACRO
COMM
COMMON
CR0
CR2
CR3
CS
CX
DB
DBIT
DD

DH
DI
DL
DP
DQ
DR0
DR1
DR2
DR3
DR6
DR7
DS
DT
DUP
DW
DWORD
DX
EAX
EBP
EBX
ECX
EDI
EDX
END
ENDM
ENDP
ENDS

EO
EQ
EQU
ER
ES
ESI
ESP
EVEN
EXTRN
FAR
FS
GE
GS
GT
HIGH
HIGHW
LABEL
LE
LENGTH
LOW
LOWW
LT
MASK
MOD
MODRM
NAME
NE

NEAR
NOSEGFIX
NOT
NOTHING
OFFSET
OR
ORG
PREFIX66
PREFIX67
PREFX
PROC
PROCLEN
PTR
PUBLIC
PURGE
PWORD
QWORD
RECORD
RELB
RELD
RELW
RO
RW
SEG
SEGFIX
SEGMENT
SHL

SHORT
SHR
SI
SIZE
SP
SS
ST
STACKSEG
STACKSTART
STRUC
TBYTE
THIS
TR3
TR4
TR5
TR6
TR7
TYPE
USE16
USE32
WARNING
WC
WIDTH
WORD
XOR
?

■■  ■■  ■■



ASM386 Assembly Language Reference Appendix D 655

ASCII TablesD
Table D-1 lists the ASCII character set according to its hexadecimal collating
sequence.  Table D-2 summarizes the ASCII non-printable characters and their
respective functions.

Table D-1.  ASCII Collating Sequence

Hex
Value

ASCII
Character

Hex
Value

ASCII
Character

00 NUL 17 ETB
01 SOH 18 CAN
02 STX 19 EM
03 ETX 1A SUB
04 EOT 1B ESC
05 ENQ 1C FS
06 ACK 1D GS
07 BEL 1E RS
08 BS 1F US
09 HT 20 SP
0A LF 21 !
0B VT 22 `
0C FF 23 #
0D CR 24 $
0E SO 25 %
0F SI 26 &
10 DLE 27 '
11 DC1 28 (
12 DC2 29 )
13 DC3 2A *
14 DC4 2B +
15 NAK 2C '
16 SYN 2D -

continued



656 Appendix D ASCII Tables

Table D-1  ASCII Collating Sequence (continued)

Hex
Value

ASCII
Character

Hex
Value

ASCII
Character

2E . 57 W
2F / 58 X
30 0 59 Y
31 1 5A Z
32 2 5B [
33 3 5C \
34 4 5D ]
35 5 5E +
36 6 5F

37 7 60 `
38 8 61 a
39 9 62 b
3A : 63 c
3B ; 64 d
3C < 65 e
3D = 66 f
3E > 67 g
3F ? 68 h
40 @ 69 i
41 A 6A j
42 B 6B k
43 C 6C l
44 D 6D m
45 E 6E n
46 F 6F o
47 G 70 p
48 H 71 q
49 I 72 r
4A J 73 s
4B K 74 t
4C L 75 u
4D M 76 v
4E N 77 w
4F O 78 x
50 P 79 y
51 Q 7A z
52 R 7B {
53 S 7C |
54 T 7D }
55 U 7E [degree]
56 V 7F DEL



ASM386 Assembly Language Reference Appendix D 657

Table D-2.  ASCII Non-Printable Characters

Hex Value Abbreviation Meaning

00 NUL NULL Character
01 SOH Start of Heading
02 STX Start of Text
03 ETX End of Text
04 EOT End of Transmission
05 ENQ Enquiry
06 ACK Acknowledge
07 BEL Bell
08 BS Backspace
09 HT Horizontal Tabulation
0A LF Line Feed
0B VT Vertical Tabulation
0C FF Form Feed
0D CR Carriage Return
0E SO Shift Out
0F SI Shift In
10 DLE Data Link Escape
11 DC1 Device Control 1
12 DC2 Device Control 2
13 DC3 Device Control 3
14 DC4 Device Control 4
15 NAK Negative Acknowledge
16 SYN Synchronous Idle
17 ETB End of Transmission Block
18 CAN Cancel
19 EM End of Medium
1A SUB Substitute
1B ESC Escape
1C FS File Separator
1D GS Group Separator
1E RS Record Separator
1F US Unit Separator
20 SP Space
7F DEL Delete

■■  ■■  ■■





ASM386 Assembly Language Reference Appendix E 659

Differences Between
ASM386 and ASM286 E

This appendix summarizes the major differences between the ASM386 and
ASM286 assembly languages.

New Processor Registers
The following processor registers are not part of the Intel286 processor register set:

• The 32-bit general registers -- EAX, ECX, EDX, EBX, EBP, ESI, EDI, and
ESP

• The two "extra" segment registers, FS and GS

• The 32-bit instruction pointer register, EIP

• The 32-bit flag register, EFLAGS

• The control registers, CR0, CR1 (reserved), CR2, CR3 (PDBR)

• The debug and test registers, DR0, DR1, DR2, DR3, DR6, DR7, TR6, TR7

New Instructions
The processor instruction set contains the following instructions that are not part of
the Intel286 processor instruction set:

BSF, BSR, BT, BTC, BTR, BTS, CDQ, CMPSD, CWDE, INSD, IRETD,

JECXZ, LFS, LGDTD, LGDTW, LGS, LIDTD, LIDTW, LODSD, LSS, MOVSD,

MOVSX, MOVZX, OUTSD, POPAD, POPFD, PUSHAD, PUSHFD, SCASD, SET,

SETAE, SETB, SETC, SETE, SETG, SETGE, SETL, SETLE, SETNA,

SETNAE, SETNB, SEGNBE, SETNC, SETNE, SETNG, SETNGE, SETNL,

SETNLE, SETNO, SETNP, SETNS, SETNZ, SETO, SETP, SETPO, SETPE,

SETS, SETZ, SGDTD, SGDTW, SHLD, SIDTD, SIDTW, SHRD, STOSD

See also: Processor instructions, Chapter 6



660 Appendix E Differences Between ASM386 and ASM286

The floating-point coprocessor instruction set contains the following instructions
that are not part of the Intel287 coprocessor (and the ASM286) instruction set:

FCOS, FPREM1, FUCOM, FUCOMP, FUCOMPP, FSIN, FSINCOS

The Intel287 coprocessor FSETPM instruction is an Intel387 coprocessor FNOP.

See also: Floating-point coprocessor instruction set, Chapter 7

Processor Paging Mechanism
The processor has a paging mechanism, an optional addressing structure that can be
used in protected mode and virtual 8086 mode, but not in real address mode.

See also: Paging, 80386 Programmer's Reference Manual

Addressing Differences
• The processor and ASM386 allow both 16-bit and 32-bit addressing.  Each

ASM386 segment is given a use attribute:  USE32 specifies that the assembler
should generate 32-bit offsets for logical addresses in the segment and USE16
specifies that the assembler should generate 16-bit offsets.  The default is
USE32, but 32-bit addressing can be used to access 16-bit logical addresses and
vice versa.  The USE32 default can be overridden by specifying USE16 in a
segment definition or for the whole module with an assembler control.

• The processor and assembler allow you to use any general register as a base or
index register (except ESP).  This differs from the Intel286 processor and
ASM286, for which only the registers BX, BP, SI, or DI could be used as base
or index registers.

• The processor and assembler permit index scaling, in which the contents of an
index register can be multiplied by a factor of 1, 2, 4, or 8.  Scaling is not
available in ASM286.

• The EVEN assembler directive aligns to dword boundaries in USE32 segments.
In USE16 segments, EVEN aligns to word boundaries as it does in ASM286.

See also: Addressing information, Chapter 5
index registers, Chapter 5



ASM386 Assembly Language Reference Appendix E 661

Data Types
Two new data types are available in the assembler that are not available in
ASM286 -- the BIT  and PWORD data types.  These are defined with the assembler
directives DBIT and DP, respectively.

See also: Data types, Chapter 4

Bit Manipulation
The BIT  data type allows programmers to directly access and change individual
bits, a feature that is not available with ASM286 and the Intel286 processor.
However, you need not declare data as type BIT in order to use the processor bit
instructions (BT, BTS, BTR, BTC, BSF, and BSR).  These instructions provide
direct control over individual bits in bit strings.  The BITOFFSET operator can
return the offset of a structure field of type BIT .

See also: BITOFFSET operator, Chapter 5

Assembler Directives
The assembler includes the COMM directive for variables and labels shared across
modules.  This directive supports the assembler interface to C language programs.

See also: COMM directive, Chapter 3

ASM386 includes the ALIGN directive to set the location counter to a value that is
evenly divisible by the specified number for alignment of subsequent code or data.

Assembler Operators
The following assembler operators are not part of ASM286:

• HIGHW and LOWW return the high-or low-order word of a dword operand,
respectively.

• BITOFFSET returns the bit offset from the nearest lower byte address of a
structure field of type BIT .



662 Appendix E Differences Between ASM386 and ASM286

Assembler Arithmetic
The assembler evaluates expressions in 64-bit two's complement integer arithmetic.
ASM286 evaluates expressions with 17-bit arithmetic and truncates fractions to
zero.

Prefix66 and Prefix67 Codemacro Directives
Assembler codemacro definitions may include two new directives:

PREFIX66 tells the assembler to generate operand size prefix bytes, if necessary.

PREFIX67 tells the assembler to generate address size prefix bytes, if necessary.

PREFIX66 allows codemacros to reference operands whose type implies a different
USE attribute than the segment of the codemacro call.  PREFIX67 allows
codemacros to reference operands whose defining segment has a different USE
attribute than the segment of the codemacro call.

■■  ■■  ■■



ASM386 Assembly Language Reference Appendix F 663

Differences Between the
Intel386  and 376 Processors F

The 376 processor is a member of the Intel386 Family of Microprocessors.  It has
been streamlined for use in embedded applications.

The 376 processor can execute all 32-bit programs for the Intel386 processor that
do not depend on paging or Virtual-86 mode.

The main differences between the Intel386 and 376 processors are summarized in
the following chart:

Differences Intel386 Processor 376 Processor

Speed 16-25 MHz 16 MHz

Physical address size 4 Gigabytes 16 Megabytes

Bus size 32-bit data
32-bit addr

16-bit data
24-bit addr

Modes of Operation real/VM86/paging/
protected mode

protected (32-bit)
mode

Reset state real mode protected (32-bit)
mode

Memory Management segments/pages/flat segments/flat

Pipelining 32-bit bus cycles any bus cycle

Coprocessor 387 Processor 387SX Processor

Package 132-pin PGA 100-pin PQFP
88-pin PGA

The following text explains these differences in more detail.

• The 376 processor starts executing code in protected mode. The Intel386
processor starts execution in real mode, which is then used to enter protected
mode.

• The Intel386 processor can execute from 16-bit code segments (USE16) or
32-bit code segments (USE32). The 376 processor can only execute from 32-bit
code segments and does not allow 16-bit code segments.



664 Appendix F Differences Between the Intel386 and 376 Processors

• The Intel386 processor allows both 16-bit stack segments (USE16) and 32-bit
stack segments. The 376 processor allows only 32-bit stack segment.

• The Intel386 processor prefetch unit fetches code in 4-byte units. The 376
processor prefetch unit reads two bytes as one unit (like the 286 processor). In
BS16 mode, the Intel386 processor takes two consecutive bus cycles to
complete a prefetch request. If there is a data read or write request after the
prefetch starts, the Intel386 processor will fetch all four bytes before
addressing a new request.

• The Intel386 processor has a Virtual-86 mode so that real mode 8086 programs
can execute as a task in protected mode. The 376 processor has no Virtual-86
mode.

• The Intel386 processor supports 286 processor call gates, interrupt gates, trap
gates, and task state segments. The 376 processor does not support these 286
processor features.

• The Intel386 processor maps a 48-bit logical address into a 32-bit physical
address by segmentation and paging. The 376 processor has no paging
mechanism. The 376 processor maps its 48-bit logical address into a 24-bit
physical address by segmentation only.

• The 376 processor 24-bit address bus limits segment size to 16 megabytes
(224-1) for 376 processor stack and code segments. The segment size for the
Intel386 processor, as determined by its 32-bit address bus, is 4 gigabytes
(232-1).

• The 376 processor has no bus-sizing option for data. The Intel386 processor
can select either a 32-bit data bus or a 16-bit data bus by use of the BS16#
input. The 376 processor has a 16-bit data bus size.

• The 376 processor generates byte select signals on BHE# and BLE# (like the
8086 and the 286 processors) to distinguish upper and lower bytes on its 16-bit
data bus. The Intel386 processor uses four, byte-select signals, BE0# through
BE3#, to distinguish between the different bytes on its 32-bit bus.

• The contents of all 376 processor registers at reset are identical to the contents
of the Intel386 processor registers at reset, except the DX register. The DX
register contains a stepping identifier at reset. The following chart summarizes
the value in the DX register after reset.

Processor DH DL
Intel386 Processor 3 revision number
376 Processor 33H revision number



ASM386 Assembly Language Reference Appendix F 665

• The 376 processor uses the Intel387 SX processor floating-point coprocessor
for floating-point operations, while the Intel386 processor uses the 387
floating-point coprocessor.

• The Intel386 processor uses the A31 and M/IO# pins to select its floating-point
coprocessor. The 376 processor uses the A23 and M/IO# pins to select its
floating-point coprocessor.

• The NA# pin operation in the 376 processor is identical to that of the NA# pin
on the Intel386 processor with one exception: the Intel386 processor's NA# pin
cannot be activated on 16-bit bus cycles (where BS16# is LOW in the Intel386
processor case). The NA# pin can be activated on any 376 processor bus cycle.

■■  ■■  ■■





ASM386 Assembly Language Reference Appendix G 667

Differences Between the
Intel386 and Intel486    Processors G
This appendix summarizes the major differences between the Intel386 and Intel486
processors.

The Intel486 processor is a member of the 32-bit 80x86 family of microprocessors.
The Intel486 processor object code is compatible with all previous 80x86 chips,
including the 8086, 186, 286, 376, and Intel386 processors. The Intel486 processor
instruction set is fully compatible with the Intel386 processor instruction set. All
programs written for the Intel386 processor can run without modification on the
Intel486 processor. However, new features have been added to the Intel486
processor to increase performance and capabilities.

The major differences between the Intel386 and Intel486 processors are
summarized below.

• The Intel486 processor integrates a number of architectural features which
were formerly implemented with optional components:

— A 387 numerics coprocessor compatible floating-point unit is added. All
assembler floating-point instructions are accepted by the floating-point
unit.

— A data cache is implemented. The cache is transparent to software and
keeps cache contents coherent with main memory.

• New cache control instructions are added to support the architectural features
of the Intel486 processor:

— INVD (invalidate data cache) and WBINVD (write back and invalidate data
cache) allow a systems programmer to flush the data cache either
destructively or with a write-back operation to main memory.

— INVLPG (invalidate paging cache entry) allows a systems programmer to
flush a single entry from the page translation cache (translation lookaside
buffer).

• The following new instructions are added to aid the programmer.

— BSWAP (byte swap) supports fast translation between "big endian" (highest
order byte at lowest address) and "little endian" (highest order byte at
highest address) data for compatibility with other data storage methods.



668 Appendix G Differences Between the Intel386 and Intel486 Processors

— CMPXCHG (compare exchange) is useful in multi-processor systems (with
the LOCK prefix) to let the programmer indivisibly acquire a semaphore
and identify its owner.

— XADD (exchange add) is useful (with the LOCK prefix) in multi-processor
systems that partition algorithms across several processors.

• There are three new test registers for systems programming: TR3, TR4, and
TR5. A privileged form of the MOV instruction enables systems programmers to
access the new registers.

• The CR0 register (Control Register 0) contains five new bits. All bits are zero
at reset and are so defined for Intel386 processor compatibility. Figure G-1
shows the Intel486 processor control registers.

— Numeric Error (NE), bit 5. If cleared, user-defined floating-point error
reporting through external interrupts (DOS compatibility) is possible. If
set, standard floating-point error reporting through vector 16 is used.

— Write Protect (WP), bit 16. If set, read-only pages are protected from
being written into. If cleared, read-only pages may be written into.

— Alignment Mask (AM), bit 18. AM masks the Alignment Check (AC) in
the EFLAGS register. If set, AC is enabled. If cleared, AC is disabled.

— Writes Transparent (WT), bit 29. If cleared, no write-through operation
occurs when a write hits the cache; invalidate cycles are ignored. If set,
write-through operations are enabled; invalidate cycles will remove a line
from the cache.

— Cache Enable (CE), bit 30. If cleared, the on-chip cache is disabled by not
filling the cache on cache misses. If set, cache fill operations are enabled.

• The CR3 register (control register 3) and the Intel486 processor page
table/directory contain two new bits. Figure G-1 shows the Intel486 processor
control registers. Figure G-2 shows the Intel486 processor page table/directory
format.

— Write Through (PWT), bit 3. This bit acts as a status bit that software can
use as a write-back page bit for an external cache. In this implementation,
the bit indicates the current cache write-back policy. This bit is equivalent
to PWT (bit 3) in the Intel486 processor page table/directory entry.

— Cache Disable (PCD), bit 4. The Intel486 processor does not perform
cache fill operations to any page in which this bit is set. This bit is
equivalent to PCD (bit 4) in the Intel486 processor page table/directory
entry.



ASM386 Assembly Language Reference Appendix G 669

Figure G-1.  Intel486 Processor Control Registers

Figure G-2.  Intel486 Processor Page Table/Directory Entry Format

• The Intel486 processor EFLAGS register contains a new bit. Figure G-3 shows
the Intel486 processor EFLAGS register.

— Alignment Check (AC), bit 18. If set, enables the generation of faults if a
memory reference is to a misaligned address. Alignment faults are
generated only at privilege level 3.

All other Intel486 processor architecture specifications are identical to those of the
Intel386 processor.

See also: Intel386 processor architecture, Appendix A

W-3461

P
E

M
P

E
M

T
S

E
T

N
E

15 0731 23

P
G

C
E

W
T

A
M

W
PReserved Reserved

P
W
T

P
C
D

0000000000Page Directory Base Register (PDBR)

Page Fault Linear Address

Reserved

CR3

CR2

CR1

CR0

W-3462

P

31 0

R
/

W

U
/
S

Page Frame Address 31 .. 12

11

P
W
T

P
C
D

D A0  0AVAIL

12

P
R/W
U/S
A
D
AVAIL
PCD
PWT

 - 
 - 
 - 
 - 
 - 
 - 
 - 
 - 

Present
Read/Write
User/Supervisor
Accessed
Dirty
Available for Systems Programmer Use
Cache Disable
Write Through

Note:  0 indicates Intel reserved.  Do not define.



670 Appendix G Differences Between the Intel386 and Intel486 Processors

Figure G-3.  Intel486 Processor EFLAGS Register

■■  ■■  ■■

W-3463

16-bit Flags Register

C
F

Alignment Check

Virtual 8086 Mode

Resume Flag

Nested Task Flag

I/O Privilege Level

Overflow

Direction Flag

Interrupt Enable

Trap Flag

Sign Flag

Zero Flag

Auxiliary Carry

Parity Flag

Carry Flag

1P
F0A

F0Z
F

S
F

T
F

I
F

D
F

O
F

IO
PL

A
C

V
M

R
F 0 N

T0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0

15 0731 23

-  X

-  X

-  X

-  X

-  X

-  S

-  C

-  X

-  X

-  S

-  S

-  S

-  S

-  S

S = Status Flag       C = Control Flag       X = System Flag

Note:  0 or 1 indicates Intel reserved.  Do not define.



ASM386 Assembly Language Reference Index 671

Index

#DF exception,  626

#DF exception,  626
#GP exception,  611, 629
#MF exception,  631
#NM exception,  626
#NP exception,  627
#PF exception,  630
#SS exception,  628
#TS exception,  627
#UD exception,  625
$, location counter,  30, 113
% macro metacharacter,  521
(E)BP register,  575
(E)DX:(E)AX,  270, 275, 278
* literal character, textmacros,  530, 552
* operator,  134, 138, 528
+ operator,  134, 140, 528
 - operator,  134, 140, 528
/ operator,  134, 138, 528
/digit notation,  194
/r notation,  194
< notation,  202
<= notation,  202
= notation,  202
> notation,  202
>= notation,  202
? initial value,  74, 89, 90, 91, 92, 94, 96, 100,

102, 110
? special character,  26
@ character, textmacros,  556
@ special character,  26
[ ] pseudocode notation,  201
[regname], addressing,  165
_ special character,  26
16-bit addressing, ModRM byte,  190
16-bit environments, floating-point

coprocessor,  432
16-bit opcode, IP and OP environment,

floating-point coprocessor,  439

32-bit addressing
ModRM byte,  191
SIB byte,  192

376 processor, differences from
Intel386,  663

A
AAA instruction,  33, 176, 179, 212
AAD instruction,  33, 176, 179, 214
AAM instruction,  33, 176, 179, 215
AAS instruction,  33, 176, 179, 216
abort, exception,  618
ABS type constant,  72, 128
access attribute

compatible for segment,  54
segment,  51, 52
stack segment,  57

access rights (AR) byte,  311, 334
access rights byte, descriptor,  602
accessed field, descriptor,  602
accessing segment, ASSUME,  58
ADC instruction,  176, 179, 218, 327
ADD instruction,  176, 179, 212, 220, 267, 327
addition operator,  140
Addr pseudocode function,  202
address expression,  123, 128

structure field type,  131
address size attribute, instructions,  184
address space,  596
address translation, logical to physical,  600
address, symbolic,  78
addressing methods,  163
addressing, bit in string,  170
AddressSize pseudocode notation,  202
ADI register,  260
affine infinity,  445, 478
AH register,  161, 270, 275, 310, 386, 593



672 Index

AL register,  161, 216, 218, 220, 264, 267, 268,
270, 275, 278, 280, 329, 348, 355, 391, 409,
412, 414, 424, 593

alias
label,  117
symbol,  123

ALIGN directive,  30, 111, 113, 115
alphanumeric character,  24
AND instruction,  32, 176, 179, 222, 327,

615, 651
AND operator,  123, 134, 142, 528
ANONYMOUS,  41, 68
anonymous reference,  152

assembler-determined type,  130
default segment registers,  169

anonymous reference, codemacro call,  575
AR byte,  311, 334, 602, 605
arctangent, see FPATAN,  487
argument evaluation, nested textmacros,  527
arguments, textmacros,  525, 534
arithmetic, assembler,  83
ARPL instruction,  34, 176, 179, 181
array,  79, 85, 109, 149
ASCII character set,  655
ASM286, differences from ASM386,  659
ASM286, base and index registers,  660
ASM386, differences from ASM286,  659
ASSUME CS, NOTHING,  63, 64, 65
ASSUME directive,  29, 44, 50, 59, 145,

153, 575
ASSUME NOTHING,  63
attributes

code segment,  43
data segment,  42
instructions,  183
label,  112
segment,  51
stack or dsc segment,  58
structure field,  104
variable,  86

auxiliary carry flag,  178
auxiliary carry flag (AF),  310, 386, 614, 615
AX register,  46, 161, 214, 215, 218, 220, 252,

270, 275, 278, 280, 329, 348, 355, 363, 369,
391, 393, 409, 412, 414, 433, 592

B
balanced text, textmacros,  525, 531
base address, segment,  60
base field, descriptor,  602
base field, SIB byte,  189
base registers,  129, 165, 166
base relocatable expression,  132
based addressing,  166
based indexed addressing,  167, 189
BCD,  80

digits,  214
format,  590
integer, floating-point coprocessor,  442

BH register,  161, 593
binary data, specification rules,  82
bit

string,  80, 87
string, format,  590
variable,  87

bit field,  80
format,  590
structure,  106

Bit Pseudocode function,  203
BIT type,  72, 79, 87, 150, 155, 661
BITOFFSET operator,  135, 147, 661
BL register,  161, 593
blank delimiter, textmacros,  553
BOUND,  226
BOUND instruction,  34, 618
bounds check fault, interrupt,  625
BP register,  46, 129, 161, 165, 273, 319,

363, 369
Bracket macro,  524, 530, 534
brackets

addition operator,  140
addressing,  165

breakpoint, interrupt,  624
BSF instruction,  33, 176, 179, 228
BSR instruction,  33, 176, 179, 230
BSWAP instruction,  177, 232
BT instruction,  33, 170, 176, 179, 233, 327
BTC instruction,  33, 170, 176, 179, 236, 327
BTR instruction,  33, 170, 176, 179, 239, 327
BTS instruction,  33, 170, 176, 179, 242, 327
busy bit, AR byte,  608



ASM386 Assembly Language Reference Index 673

BX register,  46, 129, 161, 165, 363, 369,
424, 593

byte string,  89
BYTE type,  72, 79, 89, 150, 155

C
call

codemacro,  560
pattern, textmacros,  521, 529, 531
textmacros,  521, 528, 556

call gate,  606
interlevel procedure call,  120

CALL instruction,  34, 48, 111, 117, 119, 180,
245, 298, 384

carry flag,  178, 253, 257
carry flag (CF),  310, 348, 350, 353, 372, 386,

389, 406, 614
CBW instruction,  33, 176, 252
CDQ instruction,  33, 176, 265
CH register,  161, 593
character set,  24, 655
character string,  24, 27, 89, 90, 92, 94,

103, 106
character string, textmacros,  548, 549
CI macro,  525, 530, 550
CL register,  161, 372, 388, 593
CLC instruction,  32, 175, 253
CLD instruction,  32, 175, 254, 329, 394
CLI instruction,  175, 182, 255
clocking, assumptions,  200
close segment,  54
CLTS instruction,  34, 175, 182, 256
CMC instruction,  32, 176, 257
CMP instruction,  32, 176, 179, 258
CMPS instruction,  33, 176, 179, 260, 378, 576
CMPSB instruction,  260
CMPSD instruction,  260
CMPSW instruction,  260
CMPXCHG instruction,  176, 179, 263
CO macro,  525, 530, 550
code segment,  49
codemacro

call,  579
definition,  566
modifiers,  569, 585
operand,  560

range specifiers,  571, 585, 586

specifiers,  568

CODEMACRO directive,  560, 562, 566

collating sequence, ASCII,  655

combine attribute

segment,  51, 53

stack segment,  58

COMM directive,  29, 72, 74, 661

comment,  26

Comment macro,  524, 530, 537

COMMON attribute,  51, 53

compatible access attributes,  54

compound types,  99

condition bits, floating-point coprocessor,  435

constant

expression,  83, 128

external,  128

global,  71, 123

real,  484

continuation character,  26

control flags, CR0 register,  593

control transfers, protected,  603

control word, floating-point coprocessor,  435,
478, 482

coprocessor segment overrun, interrupt,  626

coprocessor synchronization,  418

coprocessors,  443

CPL,  280

CPL field, selector,  605

CR0 register,  161, 256, 341, 595, 659

CR2 register,  161, 341, 595, 659

CR3 register,  161, 341, 595, 659

CS register,  44, 50, 63, 67, 69, 113, 153, 161,
165, 367, 381, 593

(E)IP initial value,  45, 69

CS:(E)IP register,  250

CWD instruction,  33, 176, 265

CWDE instruction,  33, 176, 252

CX register,  46, 161, 330, 331, 344, 357, 363,
369, 377, 379, 593



674 Index

D
DAA instruction,  33, 176, 179, 267
DAS instruction,  33, 176, 179, 268
data

access, privilege levels,  605
allocation, general syntax,  84
assembler interpretation,  79
formats, floating-point coprocessor,  440
modular programs,  71
segment,  42
segment USE attribute, relocatability,  132
storage formats, floating-point

coprocessor,  588
symbolic,  122
type,  80
type, floating-point coprocessor,  80
values ,defining,  81

data segment,  49
DB directive,  30, 84, 89, 109, 561, 562,

578, 580
DBIT directive,  30, 84, 87, 109, 661
DD directive,  30, 84, 92, 109, 455, 561,

578, 580
debug exceptions, interrupt,  624
debug registers,  594
DEC instruction,  176, 179, 269, 327
decimal data, specification rules,  82
decimal real data, specification,  82
default

EXTRN label type,  72
module name,  68
segment access,  52
segment attributes,  51
segment registers, indirect addressing,  169
segment USE attribute,  52

DEFINE macro,  530
definitions, codemacros,  566
delimiter, ASM386,  25
delimiters

textmacro call pattern,  531
textmacros,  526, 553

denormalized exception, floating-point
coprocessor,  437

descriptor access, gate,  606
descriptor formats, segments,  602
descriptor tables,  603

descriptor, segment,  601
descriptors, gate,  606
destination operand,  183
DH register,  161, 593
DI register,  46, 129, 161, 165, 167, 260, 283,

343, 363, 369, 377, 393, 407, 409
direct addressing,  164
direction flag,  254
direction flag (DF),  284, 407, 617
directives,  29
displacement, address,  185
displacement, addressing,  129, 165
DIV instruction,  176, 270
divide error, interrupt,  624
division operator,  138
DL register,  161, 593
dot operator,  85, 105, 107, 108, 580
dot-shift,  563, 580
double precision real, floating-point

coprocessor,  440
DP directive,  30, 84, 94, 109, 561, 578, 661
DPL field, descriptor,  602, 606
DQ directive,  30, 84, 96, 109, 455
DR0 register,  341, 659
DR1 register,  341, 659
DR2 register,  341, 659
DR3 register,  341, 659
DR6 register,  341, 659
DR7 register,  341, 659
DS register,  45, 46, 50, 59, 67, 69, 161, 169,

340, 343, 357, 360, 367, 377, 424, 575, 593
Dsc segment,  58, 69
DT directive,  30, 84, 98, 109, 455
DUP clause,  30, 79, 85, 109
DW directive,  30, 84, 90, 109, 455, 561, 562,

578, 580
DWORD type,  72, 79, 91, 150, 155
DX register,  46, 161, 270, 275, 280, 283, 348,

355, 357, 363, 369, 592

E
EAX register,  129, 161, 165, 218, 220, 252,

270, 275, 278, 280, 329, 348, 355, 363, 369,
391, 393, 409, 412, 414, 592, 659

EBP register,  129, 161, 165, 273, 319, 363,
369, 592, 659



ASM386 Assembly Language Reference Index 675

EBX register,  129, 161, 165, 363, 369, 424,
592, 659

ECS register,  329
ECX register,  129, 161, 165, 332, 358, 363,

369, 377, 394, 410, 592, 659
EDI register,  129, 161, 165, 284, 344, 363,

369, 377, 393, 407, 409, 592, 659
EDX register,  129, 161, 165, 270, 275, 348,

369, 592, 659
effective address,  163, 165, 597
EFLAGS register,  365, 371, 593, 612, 659
EIP register,  45, 69, 308, 351, 381, 593, 659
ELSE, textmacro,  541
EM control flag,  595
encoding format,  185
END directive,  29, 44, 58, 69
ENDS,  29, 42, 51
ENTER instruction,  32, 178, 272, 319
entry point, program,  44, 69
environment, floating-point

coprocessor,  431, 483
EO access,  52
EQ operator,  134, 141, 528, 541, 543
EQS macro,  524, 530, 541, 543, 546
EQU directive,  30, 71, 123, 144, 651
ER access,  52
error code

exceptions,  623
format, exceptions,  623

ES register,  42, 46, 59, 153, 161, 165, 169,
284, 314, 340, 343, 360, 367, 377, 393, 409,
575, 593

ESC,  182, 580
Escape macro,  524, 529, 530, 535
ESI register,  129, 161, 165, 254, 331, 344, 358,

592, 659
ESP register,  42, 45, 69, 129, 152, 161, 165,

177, 273, 361, 368, 369, 371, 575, 592, 659
ET control flag,  595
EVAL macro,  524, 530, 539
evaluation, textmacro calls,  556
EVEN directive,  30, 111, 114, 661
examples, program listing,  633
exceptions,  207, 618

causes,  624
double fault,  626
error code,  623

floating-point coprocessor,  434, 437, 463
floating-point coprocessor, fault,  631
general protection violation,  629
handling, floating-point coprocessor,  445
invalid TSS,  627
no floating-point coprocessor,  626
not present,  627
page fault,  630
priority,  621
stack fault,  628
undefined opcode,  625

EXIT macro,  524, 530, 544, 545
expression evaluation order,  136
expression evaluation, textmacros,  527, 539
expression, assembler evaluation,  83
EXT field, error code,  623
extended precision real, floating-point

coprocessor,  440
external constant,  128
EXTRN, ABS constant,  133
EXTRN directive,  29, 72, 74

F
F2XM1 instruction,  37, 452, 457
FABS instruction,  37, 449, 458
FADD instruction,  37, 459
FADDP instruction,  37, 459
far pointer format,  591
FAR procedure return,  384
FAR PUBLIC, procedures,  119
FAR type,  72, 78, 111, 116, 140, 150, 155
fault, exception,  618
FBLD instruction,  36, 446, 460
FBSTP instruction,  36, 446, 461
FCHS instruction,  37, 449, 462
FCLEX instruction,  38, 453, 463
FCOM instruction,  36, 435, 451, 464
FCOMP instruction,  36, 435, 451, 464
FCOMPP instruction,  36, 435, 451, 464
FCOS instruction,  37, 452, 466
FDECSTP instruction,  38, 453, 467
FDISI 8087 instruction,  456
FDIV instruction,  37, 468
FDIVP instruction,  37, 468
FDIVR instruction,  37
FDIVRP instruction,  37, 468



676 Index

FENI 8087 instruction,  456
FFREE instruction,  38, 453, 469
FIADD instruction,  37, 470
FICOM instruction,  36, 451, 471
FICOMP instruction,  36, 451, 471
FIDIV instruction,  37, 473
FIDIVR instruction,  37, 473
FIDVR instruction,  468
field of structure, offset,  131
field, record,  85, 99, 100
field, structure,  85, 99, 104, 106
FILD instruction,  36, 446, 474
FIMUL instruction,  37, 475
FINCSTP instruction,  38, 453, 476
FINIT instruction,  453, 477
FIST instruction,  36, 446, 479
FISTP instruction,  36, 446, 479
FISUB instruction,  37, 480
FISUBR instruction,  37, 480
flag value assignments,  178
flags,  612
FLAGS register,  365, 371, 593
flat address space,  596
FLD instruction,  36, 446, 481
FLD1 instruction,  36, 447, 484
FLDcon instruction,  456, 484
FLDCW instruction,  38, 453, 482
FLDENV instruction,  38, 431, 439, 453, 483
FLDL2E instruction,  36, 447, 484
FLDL2T instruction,  36, 447, 484
FLDLG2 instruction,  36, 447, 484
FLDLN2 instruction,  36, 447, 484
FLDPI instruction,  36, 447, 484
FLDZ instruction,  36, 447, 484
floating-point coprocessor

context switch,  256
control word,  435, 478
data type,  80
double precision real,  82, 96
exceptions,  437, 445
extended precision real,  82, 98
long integer,  82, 96
machine state,  494, 496
packed decimal integer,  82, 98
short integer,  82, 93
single precision real,  82, 93
state after initialization,  478

Status word,  432, 478
tag word,  438, 478
word integer,  82

floating-point stack,  430
FMUL instruction,  37, 485
FMULP instruction,  37, 485
FNCLEX instruction,  38, 444, 453, 463
FNDISI 8087 instruction,  456
FNENI 8087 instruction,  456
FNINIT instruction,  38, 444, 453, 477
FNOP instruction,  38, 453, 486
FNSAVE instruction,  38, 444, 453
FNSTCW instruction,  38, 453, 505
FNSTENV instruction,  38, 444, 453, 506
FNSTSW instruction,  38, 433, 453, 507
formal parameters

codemacros,  560, 568
in textmacro body,  531
textmacro definitions,  530

FPATAN instruction,  37, 452, 487
FPREM instruction,  37, 435, 449, 466, 489,

501, 502, 507
FPREM1 instruction,  37, 435, 449, 466, 489,

501, 502, 507
FPTAN instruction,  37, 452, 492
frame pointer,  273, 319
FRNDINT,  493
FRNDINT instruction,  37, 449, 461
FRSTOR,  494
FRSTOR instruction,  431, 439, 453
FS register,  42, 46, 50, 59, 161, 314, 340, 360,

367, 593, 659
FSAVE instruction,  38, 431, 439, 453,

494, 495
FSCALE instruction,  37, 449, 499
FSETPM instruction,  38, 453, 500
FSIN instruction,  37, 452, 501
FSINCOS instruction,  37, 452, 502
FSQRT instruction,  37, 449, 503
FST instruction,  36, 446, 504
FSTCW instruction,  38, 453, 505
FSTENV instruction,  38, 431, 439, 453,

483, 506
FSTP instruction,  36, 446, 504
FSTSW instruction,  38, 433, 453, 472,

490, 507
FSUB instruction,  37, 508



ASM386 Assembly Language Reference Index 677

FSUBP instruction,  37, 508
FSUBR instruction,  37, 508
FSUBRP instruction,  37, 508
FTST instruction,  36, 435, 451, 509
FUCOM instruction,  36, 435, 451, 510
FUCOMP instruction,  36, 435, 451, 510
FUCOMPP instruction,  36, 435, 451, 510
FWAIT instruction,  38, 453, 463, 477, 495,

507, 512
FXAM instruction,  36, 435, 451, 507, 513
FXCH instruction,  36, 446, 514
FXTRACT,  515
FXTRACT instruction,  37, 449
FYL2X instruction,  37, 452, 517
FYL2XP1,  518
FYL2XP1 instruction,  37, 452

G
gate descriptors,  604, 606
GDT,  603
GDTR register,  594, 603
GE operator,  134, 141, 528, 541, 543
general registers,  591
GES macro,  524, 530, 541, 543, 546
global constant,  123
GS register,  42, 46, 50, 59, 161, 314, 340, 360,

367, 593, 659
GT operator,  134, 141, 528, 541, 543
GTS macro,  524, 530, 541, 543, 546

H
hexadecimal data, specification rules,  82
hexadecimal real data, specification,  82
HIGH operator,  134, 137, 528
HIGHW operator,  134, 137, 661
HLT instruction,  34, 181, 182, 274

I
I field, error code,  623
I/O

address map, TSS,  610
permission bit map,  280, 284, 355,

358, 610

predefined macros,  550
privilege level (IOPL),  617

ib, iw, id notation,  194
identifier delimiter, textmacros,  555
identifier, ASM386,  26
identifier, textmacro,  527
IDIV instruction,  176, 275
IDT gate, descriptor format,  622
IDT register,  622
IDTR register,  290, 594
IF macro,  528, 530, 541
imm32 notation,  197
imm8, imm16 notation,  196
immediate operand,  162, 185, 197
immediate operand, segment name,  52
implicit operands,  128
implicit reference, register,  48
implied blank, textmacro,  553
IMUL instruction,  176, 179, 277
IN instruction,  31, 173, 181, 280, 611
IN macro,  525, 530, 550
INC instruction,  176, 179, 282, 327
index field, selector,  603
index field, SIB byte,  189, 563
index registers,  129, 165, 167
indexed addressing,  167
indirect addressing,  164
infinite loops, textmacros,  545
infinities, floating-point coprocessor,  445
infinity control (IC), floating-point

coprocessor,  436
initial value

defining,  80
DS register,  69
instruction pointer,  70
stack pointer,  69

initializing
data segment register,  46
stack segment register,  47

input stream, macro processor,  556
INS instruction,  33, 173, 181, 283, 377,

576, 611
INSB instruction,  283
INSD instruction,  283
instruction, type,  150
instruction register, floating-point

coprocessor,  591



678 Index

instructions, floating-point coprocessor, by
function,  31

instructions, syntax,  182
INSW instruction,  283
INT instruction,  34, 180, 186, 286, 298, 618
integer,  80, 89, 90, 92

floating-point coprocessor,  442
format,  590

Intel287 floating-point coprocessor
long, short, and temporary reals,  440

Intel386 processor
differences from 376,  663
differences from Intel486,  667

Intel486 processor
differences from Intel386,  667

interlevel procedure call,  119
Interrupt Descriptor Table (IDT),  290
interrupt flag (IF),  255, 617
interrupt gate,  606

descriptor,  622
interrupts,  209, 618, 621

causes,  624
indexing to,  622
priority,  621
reserved,  621

intersegment jump or call,  113
INTO instruction,  34, 180, 186, 286, 618
INTR# pin,  618
intrasegment jump or call,  112
invalid exception, floating-point

coprocessor,  437
INVD instruction,  182, 292
INVLPG instruction,  182, 293
IOPermission pseudocode function,  204
IOPL,  255, 284, 298, 355, 358
IOPL field,  606, 613, 617

and I/O permission,  611
IP register,  45, 69, 351, 381
IRET instruction,  34, 180, 186, 294, 618
IRETD instruction,  34, 180, 186, 294

J
JA instruction,  299
JAE instruction,  299
JB instruction,  299
JBE instruction,  299

JC instruction,  299
Jcc instruction,  34, 111, 113, 117, 157, 176,

180, 259, 299, 415
JCXZ instruction,  299, 380
JE instruction,  299
JECXZ instruction,  299, 380
JG instruction,  299
JGE instruction,  299
JL instruction,  299
JLE instruction,  299
JMP instruction,  34, 111, 113, 117, 157,

180, 304
JNA instruction,  299
JNAE instruction,  299
JNB instruction,  299
JNBE instruction,  299
JNC instruction,  299
JNE instruction,  299
JNG instruction,  299
JNGE instruction,  299
JNL instruction,  299, 301
JNLE instruction,  299, 301
JNO instruction,  299, 301
JNP instruction,  299, 301
JNS instruction,  299, 301
JNZ instruction,  301
JO instruction,  301
JP instruction,  301
JPE instruction,  301
JPO instruction,  301
JS instruction,  301
JZ instruction,  299, 301

K
keywords,  651

L
label,  111

addressing offset,  129
attributes,  112
default EXTRN type,  72
FAR,  116
NEAR,  118



ASM386 Assembly Language Reference Index 679

relocatable in data segment,  132
shared across modules,  71
simplest definition,  116

LABEL directive,  30, 111, 116
labeled variable,  116
LAHF instruction,  32, 174, 310
LAR instruction,  34, 174, 179, 181, 311
LDS instruction,  31, 174, 314, 417
LDT,  603
LDTR register,  594, 603
LE operator,  134, 141, 528, 541, 543
LEA instruction,  31, 174, 176, 317
LEAVE instruction,  32, 178, 319
LEN macro,  525, 530, 547
LENGTH operator,  135, 149, 151
LES instruction,  31, 174, 314, 417
LES macro,  530, 541, 543, 546
LFS instruction,  31, 174, 314, 417
LGDT instruction,  34, 174, 181, 320
LGDTW/LGDTD instruction,  34, 174,

181, 322
LGS instruction,  31, 174, 314, 417
LIDT instruction,  34, 174, 181, 182, 320, 622
LIDTW/LIDTD instructions,  34, 174, 181,

182, 322
Limit field, descriptor,  334, 602
literal delimiters, textmacros,  526, 553
literal scanning mode, textmacros,  522, 534,

536, 552
LLDT instruction,  34, 174, 181, 324
LMSW instruction,  34, 174, 182, 326
loading

data segment registers,  46
stack segment register,  47
unnamed segment,  60

LOCAL symbols, textmacros,  530
location counter,  30, 111, 113, 144
LOCK instruction prefix,  35, 182, 186,

327, 567
LODS instruction,  33, 174, 329
LODSB instruction,  329
LODSD instruction,  329
LODSW instruction,  329
logical address,  44, 49, 78, 83, 163, 599

segment,  51
symbolic data,  60

logical delimiter,  24

logical expressions, textmacros,  527
logical segment,  49

definition,  51
logical space,  25
long integer, floating-point coprocessor,  440
long real, Intel287 coprocessor,  440
LOOP instruction,  34, 180, 331, 379
LOOPcond instruction,  34, 176, 180, 331
LOW operator,  134, 137, 528
LOWW operator,  134, 137, 661
LSL instruction,  34, 174, 179, 181, 333
LSS instruction,  31, 174, 314
LT operator,  134, 141, 528, 541, 543
LTR instruction,  34, 174, 182, 336
LTS macro,  524, 530, 543, 546
LTS operator,  541

M
m notation,  196, 201
m14/28by notation,  455
m16&32, m16&16, m32&32 notation,  199
m16:16, m16:32 notation,  199
m16j notation,  455
m2by notation,  455
m32j notation,  455
m32r notation,  455
m64j notation,  455
m64r notation,  455
m80d notation,  455
m80r notation,  455
m94/108by notation,  455
machine state, floating-point coprocessor,  498
macro

body, textmacro definitions,  530
call,  521, 528
call, with local list,  530
call, without arguments,  521
delimiters,  526
identifiers,  527
processor, scanning modes,  522

MASK operator,  85, 135, 159
maskable interrupts,  618
MATCH macro,  525, 530, 549
memory operand,  162
memory organization,  49, 596
METACHAR macro,  524, 530, 538



680 Index

metacharacter, textmacros,  521
mnemonic,  123, 183
mod field, ModRM byte,  188, 563
MOD operator,  134, 138, 528
modifiers, codemacros,  569, 585
ModRM byte,  186, 188, 342, 454, 563, 577
MODRM directive,  561, 563, 577
module, ASM386,  67

combined segments,  53
default name,  68
shared variables or labels,  71

modulo operator,  138
moffs8, moffs16, moffs32 notation,  199
MOV,  182
MOV instruction,  31, 45, 161, 175, 338, 594
MOVS instruction,  33, 175, 343, 378
MOVSB instruction,  343
MOVSD instruction,  343
MOVSW instruction,  343
MOVSX instruction,  31, 175, 176, 346
MOVZX instruction,  31, 175, 176, 347
MP control flag,  595
MUL instruction,  176, 179, 215, 348
multiplication operator,  138

N
n notation,  201
NAME directive,  41, 67
NE operator,  134, 141, 528, 541, 543
near pointer format,  590
NEAR procedure return,  384
NEAR type,  72, 78, 111, 117, 140, 150, 155
NEG instruction,  176, 179, 327, 350
NES macro,  530, 541, 543, 546
nested, task flag (NT),  617
nested DUP clauses,  110
nested macro call, as argument,  527
nested procedure,  119
nested segment,  56
nested task flag (NT),  298
new instructions,  659
NEX macro,  524
NMI, interrupt,  624
non-combinable segment,  44, 51, 53
non-maskable interrupt (NMI),  619, 624
non-printable characters, ASCII,  655

non-relocatable address,  63
non-symbolic reference,  44, 63, 64, 575
NOP instruction,  35, 115, 176, 181, 351
normal scanning mode, textmacros,  522, 552
NOSEGFIX directive,  561, 575
NOT instruction,  32, 176, 327, 352, 651
NOT notation,  202
NOT operator,  123, 134, 528, 651
NOTD operator,  142
NOTHING,  59, 63

O
object file, omit symbol information,  125
octal data, specification rules,  82
offset

address,  51, 317
attribute, label,  112
attribute, variable,  86
effective address calculation,  165
relocatable address, data segment,  132
segment,  598

OFFSET operator,  135, 146, 148
opcode format, instructions,  185
operand

$,  113
[regname],  165
codemacros,  560
direct memory addressing,  164
implicit,  128
indirect addressing,  164
instructions,  39, 161, 182
segment name,  52

operand size
attribute,  184, 308
prefix,  186
USE attribute,  52

operands, floating-point instructions,  450
OperandSize pseudocode notation,  202
operation locator formats, floating-point

coprocessor,  439
operators,  134

precedence rules,  136
operators, textmacros,  528
OR instruction,  32, 176, 179, 327, 615, 651
OR operator,  134, 142, 528, 651
ordinal,  80, 89, 90, 92



ASM386 Assembly Language Reference Index 681

ORG directive,  30, 111, 114
OUT instruction,  31, 173, 181, 355, 611
OUT macro,  525, 530, 550
output stream, macro processor,  557
OUTS instruction,  33, 173, 181, 357, 377, 611
OUTSB instruction,  357
OUTSD instruction,  357
OUTSW instruction,  357
overflow flag (OF),  348, 353, 375, 389, 437,

614, 616
overflow, interrupt,  625
override byte,  61

P
packed BCD format,  590
paged memory,  599, 660
parameters, stack frame,  272
parity flag,  178
parity flag (PF),  310, 386, 614, 615
partial record,  100
PG control flag,  595
pm= notation,  201
pointer,  93

format,  590
operand,  250
relocatable address, data segment,  132
variable, type,  78

POP instruction,  32, 48, 161, 178, 186, 360
Pop pseudocode function,  203
POPA instruction,  32, 178, 363
POPAD instruction,  32, 178, 363
POPF instruction,  32, 178, 365, 618
POPFD instruction,  32, 178, 365
precedence, ASM386 operators,  136
precedence, exceptions and interrupts,  621
precedence, operators in textmacros,  528
precision exception, floating-point

coprocessor,  438
prefix codes, instructions,  186
prefix, instruction,  186
PREFIX66 directive,  561, 562, 572, 662
PREFIX67 directive,  561, 562, 572, 662
present field, descriptor,  602
privilege level,  605
PROC directive,  30, 111, 119

procedure,  119
nested,  119

processor
data formats,  588
exceptions,  207, 618
interrupts,  618
stack,  593

PROCLEN function,  119, 140, 562, 563, 581
program

entry point,  69
general structure,  40
segment,  49
with modules,  67

program example,  633
projective infinity,  445, 478
protected mode,  50
protected mode exceptions,  207
protection checking, privilege levels,  605
protection, descriptors,  604
PTR operator,  44, 72, 130, 135, 155
PTR, codemacros,  573
ptr16:16, ptr16:32 notation,  198
PUBLIC attribute,  51, 53
PUBLIC directive,  29, 71, 74, 128
PUBLIC, procedures,  119
PURGE directive,  30, 125, 651
PUSH instruction,  32, 48, 161, 178, 186,

361, 367
Push pseudocode function,  203
PUSHA instruction,  32, 178, 363, 369
PUSHAD instruction,  32, 178, 363, 369
PUSHF instruction,  32, 178, 371
PUSHFD instruction,  32, 178, 371
PWORD type,  72, 79, 94, 150, 155, 661

Q
qbase field, SIB byte,  563
quote character, in strings,  89
QWORD type,  72, 79, 96, 150, 155

R
r/m field, ModRM byte,  188, 563
r/m16, r/m32 notation,  195
r/m8 notation,  195
r8, r16, r32 notation,  195



682 Index

range specifiers, codemacros,  571, 586
ranges, numeric values,  81
RCL instruction,  32, 177, 179, 372, 615
RCR instruction,  32, 177, 179, 372, 615
real address mode,  50

exceptions,  207
reals, floating-point coprocessor,  442
record

allocation statement,  97, 100
field,  99, 100
field as operator,  135, 160
initialization directive,

codemacros,  561, 579
type,  72, 150
variable,  78, 84, 98, 100, 107

RECORD directive,  30, 84, 99
reference, anonymous,  130
reg field, ModRM byte,  188
reg/opcode field, ModRM byte,  563
register addressing, assumptions,  168
register expression,  129, 130, 165
register indirect, addressing,  166
rel8, rel16, rel32 notation,  198
RELB directive,  561, 582
RELD directive,  561, 582
relocatable address,  129

code segment,  65
data segment,  65

relocatable expressions,  132
relocatable segment,  60
relocatable symbol

code segment,  63, 64
data segment,  64, 132

RELW directive,  561, 582
reopen segment,  54
reopened segment

access,  52
restriction,  54

REP instruction,  376
REP instruction prefix,  35, 186, 284, 330, 344,

358, 567
REPE instruction,  376, 394
REPE instruction prefix,  186, 261
REPEAT macro,  524, 530, 544
REPNE instruction,  376, 394
REPNE instruction prefix,  186, 261
REPNZ instruction,  376

REPNZ instruction prefix,  186
REPZ instruction,  376
REPZ instruction prefix,  186
reserved words,  125, 651
RESET floating-point coprocessor,  477
RESET, coprocessor,  500
restrictions

* in textmacro calls,  534, 536, 537
ASSUME CS,  60
ASSUME data segment register,  62
ASSUME SS,  61
codemacro definition,  54
COMM variables,  74
data/stack combined (dsc) segment

attributes,  58
DEFINE in macro body,  530
FAR labels,  116
index register,  167
initialize segment registers,  45
LOCAL textmacro identifier,  531
macro call delimiters,  553
macro symbol access,  522
numbers in textmacros,  528
procedure definition,  54
PURGE,  125
record field initialization,

codemacros,  579
reopened segment,  54
segment override,  153, 165, 424
structure definition,  54
structure field defaults,  106
textmacro Identifiers,  527
unique identifier,  26

resume flag (RF),  618
RET instruction,  34, 117, 119, 180, 319, 381
RO access,  52
ROL instruction,  32, 177, 179, 372, 615
ROR instruction,  32, 177, 179, 372, 615
rounding, floating-point coprocessor,  444
RPL,  295
RPL field adjustment,  224
RPL field, selector,  603
RW access,  52



ASM386 Assembly Language Reference Index 683

S
SAHF instruction,  32, 174, 386
SAL instruction,  32, 177, 179, 387
SAR instruction,  32, 177, 179, 387
SBB instruction,  176, 179, 327, 391
scale factor

addressing,  168
based indexed addressing,  167
indexed addressing,  129

scale factor field, SIB byte,  189
scaled addressing,  129, 165
scaled indexed addressing,  189
scanning modes, macro processor,  552
SCAS instruction,  33, 176, 179, 393, 576
SCASB instruction,  393
SCASD instruction,  393
SCASW instruction,  393
SEG operator,  46, 59, 75, 135, 145
SEGFIX,  561
SEGFIX directive,  562, 574
segment

accessing,  58
address,  597
attribute, label,  112
attribute, variable,  86
close and reopen,  54
defining,  51
descriptor,  601, 602
modular programs,  53
name, operand,  161
nested,  56
non-combinable,  51, 53
relocatable,  60, 132

SEGMENT directive,  29, 42, 51
segment override

operators,  44, 60, 63, 134, 135, 153,
169, 409

prefix byte,  61, 574
prefix generation,  61
prefixes,  186

segment register,  593
cache,  601
initialization,  45, 69

segmented address space,  597

selector
ASSUME,  60
segment,  59

selector format,  603
selector, SEG,  145
selector, segment,  45, 593
separator,  24
SET cc instruction,  395
SET macro,  524, 530, 540
SETcc instruction,  32, 176, 180, 259, 415
SF field, SIB byte,  563
SGDT instruction,  34, 174, 181, 321, 397
SGDTW/SGDTD instructions,  34, 174,

181, 399
shift

count,  389
count, record field,  135, 160, 580

SHL instruction,  32, 177, 179, 387, 651
SHL operator,  123, 134, 139, 528, 651
SHLD,  400
SHLD instruction,  32, 177, 179
short integer, floating-point coprocessor,  440
SHORT operator,  135, 157
short real, coprocessor,  440
SHR instruction,  32, 177, 179, 387, 651
SHR operator,  123, 134, 139, 528, 651
SHRD instruction,  32, 177, 179, 402
SI register,  46, 129, 161, 165, 168, 260, 329,

343, 357, 363, 369, 407
SIB byte,  186, 188, 563, 577
SIDT instruction,  34, 174, 181, 182, 321, 397
SIDTW/SIDTD instructions,  34, 174, 181,

182, 399
sign flag,  178
sign flag (SF),  310, 386, 614, 615
SignExten pseudocode function,  202
single precision real, floating-point

coprocessor,  440
SIZE operator,  85, 135, 151
size segment, maximum,  49
SLDT instruction,  34, 174, 181, 404
SMSW instruction,  34, 174, 182, 405
software interrupts,  618
source operand,  183
SP register,  42, 45, 152, 161, 177, 185, 273,

319, 361, 368, 369, 371
spaces, logical,  25



684 Index

special characters,  24, 27
specifications, data,  82
specifiers, codemacros,  568, 585
Sreg notation,  199
SS register,  47, 50, 59, 67, 69, 153, 161, 165,

169, 314, 340, 360, 367, 575, 593
(E)SP, initializing,  47, 69

SS:(E)SP, initialize,  58
ST(i) notation,  455
stack,  152, 593

fields, floating-point coprocessor,  430
frame,  593
frame base pointer register,  48
pointer register,  48
segment,  49
size attribute,  185

stack pointer,  273, 319
initialization,  152

STACKSEG directive,  29, 42, 57, 152
STACKSTART operator,  47, 58, 135, 152
statement,  29

general syntax,  38
status flags format,  613
status flags, assignments,  178
status word, floating-point coprocessor,  433,

477, 506, 507
STC instruction,  32, 175, 406
STD instruction,  32, 175, 329, 394, 407, 410
STI instruction,  32, 175, 182, 408
storage allocation statement,  84
storage format,  83
STOS instruction,  33, 174, 378, 409, 576
STOSB instruction,  409
STOSD instruction,  409
STOSW instruction,  409
STR instruction,  34, 174, 182, 411
string

access,  80
format,  590
operations, override restrictions,  153, 165,

169
STRUC directive,  30, 85, 99, 104
structure

allocation statement,  99, 106
BIT-type fields,  87, 104
type,  72
variable,  79, 84, 98, 104, 107

structure field,  104
BITOFFSET,  147
displacement,  131
type,  131

SUB instruction,  176, 179, 216, 327, 412
SUBSTR macro,  525, 530, 548
subtraction operator,  140
SwitchTasks pseudocode function,  204
symbolic reference,  44, 63
symbolic reference, codemacro call,  575
symbolic value, in macro symbol

table,  540, 549
symbols,  122

PUBLIC,  71
PURGE restrictions,  125
relocatable,  132

syntax, instruction statements,  182
system control flags,  616
system registers,  594

T
tag word, floating-point coprocessor,  438,

478, 506
task, switches,  604
task gate,  606

descriptor,  607
task switched flag (TS),  256
TBYTE type,  72, 79, 98, 150, 155
tempreal, coprocessor,  440
TEST instruction,  32, 176, 179, 414
THIS operator,  135, 144
TI field, selector,  603
token,  24
TOP, floating-point coprocessor,  435
TR register,  411, 608
TR3 register,  161
TR4 register,  161
TR5 register,  161
TR6 register,  161, 341, 659
TR7 register,  161, 341, 659
trap flag (TF),  617
trap gate,  606
trap, exception,  618
Truncate pseudocode function,  202
TS control flag,  595
TSS descriptor,  336, 607



ASM386 Assembly Language Reference Index 685

TSS fields,  610
TSS layout,  608
type attribute

label,  112
variable,  84

type field, descriptor,  604
TYPE operator,  135, 149, 150
types, variables and labels,  78

U
underflow exception, floating-point

coprocessor,  437
USE attribute,  184, 308

label,  112
segment,  49, 51, 52
stack segment,  45, 57, 185
variable,  86

USE16,  49, 51, 52, 72, 146, 361, 368, 483,
495, 506

USE16 instruction,  431
USE32,  49, 51, 52, 72, 146, 361, 368, 483,

495, 506
USE32 instruction,  431

V
value

external constant,  133
register expression,  130

value, ASSUME CS
NOTHING,  63

values, hexadecimal to ASCII,  655
values, privilege level,  605
variable

addressing offset,  128, 129
attributes,  86
byte string,  89
compound type,  78, 99
EXTRN placement in code,  73
global,  74

initialization,  83
labeled,  116
relocatable in data segment,  132
shared across modules,  71
uninitialized storage,  74, 89, 90, 91, 92,

94, 97, 110
VERR instruction,  34, 176, 179, 181, 416
VERW instruction,  34, 176, 179, 181, 416
Virtual 8086 mode exceptions,  208
virtual mode flag (VM),  617

W
WAIT instruction,  34, 181, 182, 418
WARNING directive,  561, 576
WBINVD instruction,  182, 419
WHILE macro,  524, 527, 530, 543
WIDTH operator,  85, 135, 158
WORD type,  72, 79, 90, 150, 155

X
XADD instruction,  176, 179, 420
XCHG instruction,  31, 175, 327, 351, 422
XLAT instruction,  31, 424
XLATB instruction,  31, 424
XOR instruction,  32, 176, 179, 327, 426,

615, 651
XOR operator,  123, 134, 142, 528, 651

Z
zero flag,  178
zero flag (ZF),  310, 331, 334, 379, 386, 416,

614, 615
zerodivide exception, floating-point

coprocessor,  437
ZeroExtend pseudocode function,  202



WE'D LIKE YOUR OPINION

Please rate the following: Excellent Good Fair Poor

■ Manual organization ❒ ❒ ❒ ❒

■ Technical accuracy ❒ ❒ ❒ ❒

■ Completeness ❒ ❒ ❒ ❒

■ Clarity of concepts and wording ❒ ❒ ❒ ❒

■ Quality of examples and illustrations ❒ ❒ ❒ ❒

■ Overall ease of use ❒ ❒ ❒ ❒

Comments: ________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________

Please list any errors you found (include page number): ________________________________

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________

Name ____________________________________________________________________________

Company Name ____________________________________________________________

Address _________________________________________________________________________

_________________________________________________________________________________

May we contact you? ______________________   Phone _______________________________

Thank you for taking the time to fill out this form.

ASM386 Macro Assembler Operating Instructions
ASM386 Assembly Language Reference

469165-003



Please fold here and close the card with tape. Do not staple.

POSTAGE WILL BE PAID BY ADDRESSEE

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

WE'D LIKE YOUR COMMENTS....

This document is one of a series describing Intel products. Your
comments on the other side of this form will help us produce better
manuals. Each reply will be reviewed. All comments and suggestions
become the property of Intel Corporation.

If you are in the United States and are sending only this card, postage
is prepaid.

If you are sending additional material or if you are outside the United
States, please insert this card and any enclosures in an envelope. Send
the envelope to the above address, adding "United States of America" if
you are outside the United States.

Thanks for your comments.

BUSINESS REPLY MAIL

OPD Technical Publications, HF2-72
Intel Corporation
5200 NE Elam Young Parkway
Hillsboro, OR  97124-9978

FIRST CLASS  PERMIT NO. 79  HILLSBORO, OR



International Sales Offices

AUSTRALIA
Intel Australia Pty. Ltd.
Unit 1A
2 Aquatic Drive
Frenchs Forest, NSW, 2086
Sydney

Intel Australia Pty. Ltd.
711 High Street
1st Floor
East Kw. Vic., 3102
Melbourne

BRAZIL
Intel Semiconductores do Brazil LTDA
Avenida Paulista, 1159-CJS 404/405
CEP 01311-Sao Paulo - S.P.

CANADA
Intel Semiconductor of Canada, Ltd.
999 Canada Place
Suite 404, #11
Vancouver V6C 3E2
British Columbia

Intel Semiconductor of Canada, Ltd.
2650 Queensview Drive
Suite 250
Ottawa K2B 8H6
Ontario

Intel Semiconductor of Canada, Ltd.
190 Attwell Drive
Suite 500
Rexdale M9W 6H8
Ontario

Intel Semiconductor of Canada, Ltd.
1 Rue Holiday
Suite 115
Tour East
Pt. Claire H9R 5N3
Quebec

CHINA/HONG KONG
Intel PRC Corporation
China World Tower, Room 517-518
1 Jian Guo Men Wai Avenue
Beijing, 100004
Republic of China

Intel Semiconductor Ltd.
32/F Two Pacific Place
88 Queensway
Central
Hong Kong

FINLAND
Intel Finland OY
Ruosilantie 2
00390 Helsinki

FRANCE
Intel Corporation S.A.R.L.
1, Rue Edison-BP 303
78054 St. Quentin-en-Yvelines
Cedex

GERMANY
Intel GmbH
Dornacher Strasse 1
85622 Feldkirchen bei Muenchen
Germany

INDIA
Intel Asia Electronics, Inc.
4/2, Samrah Plaza
St. Mark's Road
Bangalore 560001

ISRAEL
Intel Semiconductor Ltd.
Atidim Industrial Park-Neve Sharet
P.O. Box 43202
Tel-Aviv 61430

ITALY
Intel Corporation Italia S.p.A.
Milanofiori Palazzo E
20094 Assago
Milano



JAPAN
Intel Japan K.K.
5-6 Tokodai, Tsukuba-shi
Ibaraki, 300-26

Intel Japan K.K.
Hachioji ON Bldg.
4-7-14 Myojin-machi
Hachioji-shi, Tokyo 192

Intel Japan K.K.
Bldg. Kumagaya
2-69 Hon-cho
Kumagaya-shi, Saitama 360

Intel Japan K.K.
Kawa-asa Bldg.
2-11-5 Shin-Yokohama
Kohoku-ku, Yokohama-shi
Kanagawa, 222

Intel Japan K.K.
Ryokuchi-Eki Bldg.
2-4-1 Terauchi
Toyonaka-shi, Osaka 560

Intel Japan K.K.
Shinmaru Bldg.
1-5-1 Marunouchi
Chiyoda-ku, Tokyo 100

Intel Japan K.K.
Green Bldg.
1-16-20 Nishiki
Naka-ku, Nagoya-shi
Aichi 460

KOREA
Intel Korea, Ltd.
16th Floor, Life Bldg.
61 Yoido-dong, Youngdeungpo-
Ku
Seoul 150-010

MEXICO
Intel Technologica de Mexico
S.A. de C.V.
Av. Mexico No. 2798-9B, S.H.
44620 Guadalajara, Jal.,

NETHERLANDS
Intel Semiconductor B.V.
Postbus 84130
3009 CC Rotterdam

RUSSIA
Intel Technologies, Inc.
Kremenchugskaya 6/7
121357 Moscow

SINGAPORE
Intel Singapore Technology, Ltd.
101 Thomson Road #08-03/06
United Square
Singapore 1130

SPAIN
Intel Iberia S.A.
Zurbaran, 28
28010 Madrid

SWEDEN
Intel Sweden A.B.
Dalvagen 24
171 36 Solna

TAIWAN
Intel Technology Far East Ltd.
Taiwan Branch Office
8th Floor, No. 205
Bank Tower Bldg.
Tung Hua N. Road
Taipei

UNITED KINGDOM
Intel Corporation (U.K.) Ltd.
Pipers Way
Swindon, Wiltshire SN3 1RJ



If you need to contact Intel Customer Support
Contacting us is easy. Be sure that you have the following information available:

• Your phone and FAX numbers ready • Your product’s product code
• Complete description of your hardware • Current version of all software you use

or software configuration(s) • Complete problem description

Type of Service How to contact us
FaxBACK*
fax-on-demand system

24 hrs a day, 7 days a week

Using any touch-tone phone,
have technical documents sent to
your fax machine. Know your
fax number before calling.

U.S. and Canada: (800) 628-2283
(916) 356-3105

Europe: +44-1793-496646
Intel PC and LAN
Enhancement Support
BBS

24 hrs a day, 7 days a week

Information on products,
documentation, software drivers,
firmware upgrades, tools,
presentations, troubleshooting.

U.S and Canada: (503) 264-7999
Europe: +44-1793-432955

Autobaud detect
8 data bits, no parity, 1 stop

CompuServe*
Information Service

24 hrs a day, 7 days a week

Worldwide customer support:
information and technical
support for designers, engineers,
and users of 32-bit iRMX OS
and Multibus product families.

Worldwide Locations:
(check your local listing)

Type: GO INTELC once online.

Customer Support Intel Multibus Support engineers
offering technical advice and
troubleshooting information on
the latest Multibus products.

U.S. and Canada: (800) 257-5404
(503) 696-5025

FAX: (503) 681-8497
Hrs: M-F; 8-5 PST

Europe: +44-1793-641469
FAX: +44-1793-496385

Hrs: M-F; 9-5:30 GMT
Hardware Repair Multibus board and system

repair.
U.S. and Canada: (800) 628-8686

(602) 554-4904
FAX: (602) 554-6653

Hrs: M-F; 7-5 PST
Europe: +44-1793-403520

FAX: +44-1793-496156
Hrs: M-F; 9-5:30 GMT

Sales Intel Sales engineers offering
information on the latest iRMX
and Multibus products and their
availability.

Worldwide:  Contact your local Intel
office or distributor

U.S. and Canada: (800) 438-4769
(503) 696-5025

FAX: (503) 681-8497
Hrs: M-F; 8-5 PST

Correspondence
Mail letters to:

Worldwide:

Intel Customer Support
Mailstop HF3-55
5200 NE Elam Young Parkway
Hillsboro, Oregon 97124-6497

Europe:

European Application Support
Intel Corporation (UK) Ltd.
Pipers Way
Swindon, Wiltshire
England SN3 1RJ

* Third-party trademarks are the property of their respective owners.


	Other iRMX Manuals
	ASM386 Assembly Language Reference
	Quick Contents
	Contents
	1.  Introduction
	About This Manual
	About This Chapter
	Lexical Elements
	Character Set
	Tokens and Separators
	Identifiers
	Continued Statements and Comments

	Assembler Statements
	Assembler Directives
	Assembler Instructions
	Specifying Assembler Statements

	Assembler Program Structure
	NAME Directive
	STACKSEG Directive
	SEGMENT Directive for Data Segments
	SEGMENT Directive for the Code Segment
	ASSUME Directive
	END Directive
	Initializing Segment Registers with Instructions


	2.  Segmentation
	Overview of Segmentation
	Defining Code, Data, and Stack Segments
	SEGMENT..ENDS Directive
	Specifying EO, ER, RO, or RW Access
	Specifying USE32 or USE16
	Specifying PUBLIC or COMMON
	Multiple Definitions for a Segment
	Lexically Nested or Embedded Segment Definitions

	STACKSEG Directive
	Combining Stack and Data Segments


	Assuming Segment Access
	ASSUME Directive
	Specifying Segment Selectors with ASSUME
	Specifying ASSUME NOTHING and ASSUME CS:NOTHING



	3.  Program Linkage Directives
	Modular Programming with NAME and END
	NAME Directive
	END Directive

	Defining Shared Data with PUBLIC, EXTRN, and COMM
	PUBLIC Directive
	EXTRN Directive
	Placement of EXTRN

	COMM Directive


	4.  Defining And Initializing Data
	Overview of Assembler Labels and Variables
	Assembler Label and Variable Types
	Assembler Data Values
	Data Types
	Numeric Data Value Ranges

	Specifying Assembler Data Values
	Initializing Variables
	How the Assembler Evaluates Constant Expressions


	Variables
	Simple Data Allocations
	Variable Attributes
	Defining and Initializing Variables of a Simple Type
	DBIT Directive
	DB Directive
	DW Directive
	DD Directive
	DP Directive
	DQ Directive
	DT Directive
	Defining Compound Types and Their Variables
	RECORD Directive
	Record Allocation Statement
	STRUC Directive
	Structure Allocation Statement
	DUP Clause

	Labels
	Label Attributes
	The Location Counter
	ORG Directive
	EVEN Directive
	ALIGN Directive
	LABEL Directive
	Defining Implicit NEAR Labels
	PROC Directive

	Using Symbolic Data
	EQU Directive
	PURGE Directive


	5.  Accessing Data
	Overview of Assembler Expressions
	Constant Expressions
	Address Expressions
	Variable and Label Names as Address Expressions
	Register Expressions
	Combining Simple Address and Register Expressions
	Structure Fields in Address Expressions
	Relocatable Expressions


	Operators
	Operator Precedence
	Isolation Operators
	Multiplication and Division Operators
	Shift Operators
	Addition and Subtraction Operators
	Relational Operators
	Logical Operators
	Attribute Value Operators
	THIS Operator
	SEG Operator
	OFFSET Operator
	BITOFFSET Operator
	LENGTH Operator
	TYPE Operator
	SIZE Operator
	STACKSTART Operator

	Attribute Override Operators
	Segment Override Operator
	PTR Operator
	SHORT Operator

	Record Specific Operators
	WIDTH Operator
	MASK Operator
	Using Field Names as Shift Counts


	Instruction Operands
	Register Operands
	Immediate Operands
	Memory Operands

	Memory Addressing Methods
	Direct Memory Addressing
	Indirect Memory Addressing
	Register Indirect Addressing
	Based Addressing
	Based Indexed Addressing
	Indexed Addressing
	Scaling
	Default Segment Registers and Anonymous References

	Bit Addressing


	6.  Processor Instructions
	Overview of the Processor Instruction Set
	Data Transfer Instructions
	Instructions That Assign Data Values
	Instructions That Adjust Data
	Instructions That Make Stack Transfers
	Instructions That Yield Definitive Flag Values
	Conditional Instructions That Test Flag Values

	Control Instructions
	System Instructions

	Instruction Statements
	Instruction Statement Syntax
	Instruction Attributes
	Address Size Attribute
	Operand Size Attribute
	Stack Size Attribute

	Instruction Encoding Format
	Instruction Prefix Codes
	ModRM and SIB Bytes


	Processor Instruction Set Reference
	How to Read the Instruction Set Reference Pages
	Opcode Column
	Instruction Column
	Clocks Column
	Description Column
	Operation Section
	Discussion Section
	Flags Affected Section
	Exceptions by Mode Section

	How to Look Up an Instruction
	Processor Instructions
	AAA ASCII Adjust after Addition
	AAD ASCII Adjust AX before Division
	AAM ASCII Adjust AX after Multiply
	AAS ASCII Adjust AL after Subtraction
	ADC Add with Carry
	ADD (Integer) Add
	AND Logical AND
	ARPL Adjust RPL Field of Selector
	BOUND Check Array Index Against Bounds
	BSF Bit Scan Forward
	BSR Bit Scan Reverse
	BSWAP Byte Swap
	BT Bit Test
	BTC Bit Test and Complement
	BTR Bit Test and Reset
	BTS Bit Test and Set
	CALL Call Procedure
	CBW/CWDE Convert Byte to Word/Convert Word to Dword
	CLC Clear Carry Flag
	CLD Clear Direction Flag
	CLI Clear Interrupt Flag
	CLTS Clear Task Switched Flag in CR0
	CMC Complement Carry Flag
	CMP Compare Two Operands
	CMPS/CMPSB/CMPSW/CMPSD Compare String Operands
	CMPXCHG Compare Exchange
	CWD/CDQ Convert Word to Dword/Convert Dword to Qword
	DAA Decimal Adjust AL after Addition
	DAS Decimal Adjust AL after Subtraction
	DEC Decrement by 1
	DIV Unsigned Divide
	ENTER Make Stack Frame for Procedure Parameters
	HLT Halt
	IDIV Signed Divide
	IMUL Signed Multiply
	IN Input from Port
	INC Increment by 1
	INS/INSB/INSW/INSD Input from Port to String
	INT/INTO Transfer Control to Interrupt Procedure
	INVD Invalidate Data Cache
	INVLPG Invalidate Paging Cache Entry
	IRET/IRETD Interrupt Return
	Jcc Jump if Condition is Met
	JMP Jump
	LAHF Load Flags into AH Register
	LAR Load Access Rights
	LDS/LES/LFS/LGS/LSS Load Full Pointer
	LEA Load Effective Address
	LEAVE High Level Procedure Exit
	LGDT/LIDT Load Global/Interrupt Descriptor Table Register
	LGDTW/LGDTD/LIDTW/LIDTD Load Global/Interrupt Descriptor Table Register with WORD/DWORD Operand
	LLDT Load Local Descriptor Table Register
	LMSW Load Machine Status Word
	LOCK Assert Bus LOCK# Signal Prefix
	LODS/LODSB/LODSW/LODSD Load String Operand
	LOOP/LOOPcond Loop Control with (E)CX Counter
	LSL Load Segment Limit
	LTR Load Task Register
	MOV Move Data
	MOV Move to/from Special Registers
	MOVS/MOVSB/MOVSW/MOVSD Move String to String
	MOVSX Move with Sign-Extend
	MOVZX Move with Zero-Extend
	MUL Unsigned Multiplication of AL, AX or EAX
	NEG Two's Complement Negation
	NOP No Operation
	NOT One’s Complement Negation
	OR Logical Inclusive OR
	OUT Output to Port
	OUTS/OUTSB/OUTSW/OUTSD Output String to Port
	POP Pop Stack Top
	POPA/POPAD Pop All General Registers
	POPF/POPFD Pop Stack into FLAGS or EFLAGS Register
	PUSH Push Operand onto the Stack
	PUSHA/PUSHAD Push all General Registers
	PUSHF/PUSHFD Push Flags Register onto the Stack
	RCL/RCR/ROL/ROR Rotate
	REP/REPE/REPZ/REPNE/REPNZ Repeat String Operation
	RET Return from Procedure
	SAHF Store AH into Flags
	SAL/SAR/SHL/SHR Shift
	SBB Integer Subtraction with Borrow
	SCAS/SCASB/SCASW/SCASD Compare String Data
	SETcc Byte Set on Condition
	SGDT/SIDT Store Global/Interrupt Descriptor Table Register
	SGDTW/SGDTD/SIDTW/SIDTD Store Global/Interrupt Descriptor Table Register with WORD/DWORD Operand
	SHLD Double Precision Shift Left
	SHRD Double Precision Shift Right
	SLDT Store Local Descriptor Table Register
	SMSW Store Machine Status Word
	STC Set Carry Flag
	STD Set Direction Flag
	STI Set Interrupt Flag
	STOS/STOSB/STOSW/STOSD Store String Data
	STR Store Task Register
	SUB Integer Subtraction
	TEST Logical Compare
	VERR/VERW Verify a Segment for Reading or Writing
	WAIT Wait until BUSY# Pin is Inactive (HIGH)
	WBINVD Write Back And Invalidate Data Cache
	XADD Exchange Add
	XCHG Exchange Register/Memory with Register
	XLAT/XLATB Table Look-up Translation
	XOR Logical Exclusive OR



	7.  Floating-Point Instructions
	Floating-point Coprocessor Architecture
	Floating-point Stack
	Environment
	Status Word
	Control Word
	Tag Word
	Operation Locator Formats

	Floating-point Coprocessor Data Formats

	Coprocessor Operation
	Numeric Processing

	Overview of the Floating-point Coprocessor Instruction Set
	Data Transfer Instructions
	Constant Instructions
	Algebraic Instructions
	Comparison Instructions
	Transcendental Instructions
	Coprocessor Control Instructions

	Floating-point Coprocessor Instruction Set Reference
	How to Read the Instruction Set Reference Pages
	Opcode Column
	Instruction Column
	Clocks Columns
	Description Column
	Discussion Section
	Exceptions Section

	How to Look Up an Instruction
	F2XM1 Compute Y = 2 x - 1
	FABS Absolute Value
	FADD/FADDP Real Addition
	FBLD BCD Load to Real
	FBSTP BCD Store and Pop
	FCHS Change Sign of Real Number
	FCLEX/FNCLEX Clear Floating-point Coprocessor Exceptions
	FCOM/FCOMP/FCOMPP Compare Real Numbers
	FCOS Compute Y = Cos(X)
	FDECSTP Decrement Floating-point Stack Pointer
	FDIV/FDIVP/FDIVR/FDIVRP Real Divide/Real Reverse Divide
	FFREE Free Floating-point Stack Entry
	FIADD Integer Add to Real
	FICOM/FICOMP Integer Compare with Real
	FIDIV/FIDIVR Integer Divide into Real
	FILD Integer Load into Real
	FIMUL Integer Multiply with Real
	FINCSTP Increment Floating-point Stack Pointer
	FINIT/FNINIT Initialize Floating-point Coprocessor
	FIST/FISTP Integer Store from Real
	FISUB/FISUBR Integer Subtract from Real
	FLD Load Real
	FLDCW Load Floating-point Coprocessor Control Word
	FLDENV Load Floating-point Coprocessor Environment
	FLDcon Load Real Constant
	FMUL/FMULP Multiply Real
	FNOP No Operation
	FPATAN Compute R = Partial Arctangent
	FPREM/FPREM1 Partial Remainder
	FPTAN Compute Y = Partial Tan(X)
	FRNDINT Round to Integer
	FRSTOR Restore Floating-point Coprocessor Machine State
	FSAVE/FNSAVE Save Floating-point Coprocessor Machine State
	FSCALE Scale Exponent of Real
	FSETPM Set Protected Mode
	FSIN Compute Y = Sin(X)
	FSINCOS Compute Y = Sin(X) and Y = Cos(X)
	FSQRT Square Root
	FST/FSTP Store Real/Store Real and Pop
	FSTCW/FNSTCW Store Floating-point Coprocessor Control Word
	FSTENV/FNSTENV Store Floating-point Coprocessor Environment
	FSTSW/FNSTSW Store Floating-point Coprocessor Status Word
	FSUB/FSUBP/FSUBR/FSUBRP Subtract Real
	FTST Test Real (Compare to Zero)
	FUCOM/FUCOMP/FUCOMPP Unordered Comparison of Real Numbers
	FWAIT Wait for Floating-point Operation Complete
	FXAM Examine Floating-point Stack Top
	FXCH Exchange Real Numbers in Stack
	FXTRACT Extract Exponent and Significand of Real
	FYL2X Compute Y * log 2 X
	FYL2XP1 Compute Y * log 2 (X + 1)



	8.  Textmacros
	Overview
	Macro Processing
	Macro Calls and Call Patterns
	Macro Processor Scanning Modes and Macro Expansions
	Predefined Macros
	Macro Arguments
	Balanced Text
	Delimiters in Call Patterns
	Identifiers
	Expressions
	Argument Evaluations


	Predefined Macro Reference
	DEFINE Macro
	Bracket Macro
	Escape Macro
	Comment Macro
	METACHAR Macro
	EVAL Macro
	SET Macro
	IF Macro
	WHILE Macro
	REPEAT Macro
	EXIT Macro
	String Comparison Macros
	LEN Macro
	SUBSTR Macro
	MATCH Macro
	Console I/O Macros

	Scanning Modes, Delimiters, and Macro Expansions
	Normal and Literal Scanning Modes
	Macro Delimiters
	Literal Delimiters
	Implied Blank Delimiters
	Identifier Delimiters

	Algorithm for Evaluating Macro Calls


	9.  Codemacros
	Overview
	Codemacro Definitions and Calls
	Processor Instruction Format

	Codemacro Reference
	CODEMACRO Directive
	Formal Parameters and Specifiers
	Formal Parameter Modifiers
	Formal Parameter Range Specifiers
	PREFIX67 Directive
	PREFIX66 Directive
	SEGFIX Directive
	NOSEGFIX Directive
	WARNING Directive
	MODRM Directive
	Data Initialization Directives
	Record Initialization Directive
	Using the Dot Operator to Shift Parameters
	PROCLEN Function
	Relative Displacement Directives

	Matching Codemacro Calls to Their Definitions

	A.  Processor Architecture Summary
	Basic Processor Formats
	Data Type Formats
	Processor Registers
	General, Segment, Status and Instruction Registers
	System Registers


	Processor Memory Organization
	Segment Selection and Effective Address Computation
	Segmented Memory Management
	Segment Descriptors
	Descriptor Address Translation Fields
	Descriptor Access Rights (AR)

	Descriptor Tables and Selector Format
	Processor Protection, Gate Descriptors, and Task Switches
	Protection and Privilege Levels
	Protected Control Transfers Use Gate Descriptors
	Call Gate Descriptor Format
	Task Gate, TSS Descriptor, and TSS Format
	I/O Permission Bit Map


	Processor Flags
	Status Flags
	Carry Flag
	Parity Flag
	Auxiliary Carry Flag
	Zero Flag
	Sign Flag
	Overflow Flag

	Control and System Control Flags

	Processor Exceptions and Interrupts
	Identifying Interrupts
	Simultaneous Exceptions and Interrupts
	Interrupt Descriptor Table
	Error Codes for Exceptions
	Processor Exception Conditions
	Interrupt 0 -- Divide Error
	Interrupt 1 -- Debug Exceptions
	Interrupt 2 -- NMI
	Interrupt 3 -- Breakpoint
	Interrupt 4 -- Overflow
	Interrupt 5 -- Bounds Check
	#UD 6 -- Undefined Opcode (No Error Code)
	#NM 7 -- No Math Unit Available (No Error Code)
	#DF 8 -- Double Fault (Zero Error Code)
	Interrupt 9 -- Coprocessor Segment Overrun
	#TS 10 -- Invalid Task State Segment (Selector Error Code)
	#NP 11 -- Not Present (Selector Error Code)
	#SS 12 -- Stack Fault (Selector or Zero Error Code)
	#GP 13 -- General Protection (Selector or Zero Error Code)
	#PF 14 -- Page Fault (Type of Fault)
	#MF 16 -- Math Fault (No Error Code)



	B.  Sample Program
	Sample Source Code
	Sample Listing

	C.  Keywords And Reserved Words
	D.  ASCII Tables
	E.  Differences Between ASM386 and ASM286
	New Processor Registers
	New Instructions
	Processor Paging Mechanism
	Addressing Differences
	Data Types
	Bit Manipulation
	Assembler Directives
	Assembler Operators
	Assembler Arithmetic
	Prefix66 and Prefix67 Codemacro Directives

	F.  Differences Between the Intel386 and 376 Processors
	G.  Differences Between the Intel386 and Intel486 Processors
	Index
	Service Information

